
Martin Frith
Christian Nørgaard Storm Pedersen (Eds.)

 123

LN
BI

 9
83

8

16th International Workshop, WABI 2016
Aarhus, Denmark, August 22–24, 2016
Proceedings

Algorithms
in Bioinformatics



Lecture Notes in Bioinformatics 9838

Subseries of Lecture Notes in Computer Science

LNBI Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

LNBI Editorial Board

Søren Brunak
Technical University of Denmark, Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA



More information about this series at http://www.springer.com/series/5381

http://www.springer.com/series/5381


Martin Frith
Christian Nørgaard Storm Pedersen (Eds.)

Algorithms
in Bioinformatics
16th International Workshop, WABI 2016
Aarhus, Denmark, August 22–24, 2016
Proceedings

123



Editors
Martin Frith
AIST and University of Tokyo
Tokyo
Japan

Christian Nørgaard Storm Pedersen
Aarhus University
Aarhus
Denmark

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-319-43680-7 ISBN 978-3-319-43681-4 (eBook)
DOI 10.1007/978-3-319-43681-4

Library of Congress Control Number: 2016945963

LNCS Sublibrary: SL8 – Bioinformatics

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

This proceedings volume contains papers presented at the 16th Workshop on Algo-
rithms in Bioinformatics (WABI 2016) that was held at Aarhus University, Aarhus,
Denmark, August 22–24, 2016. WABI 2016 was one of eight conferences that were
organized as part of ALGO 2016. The Workshop on Algorithms in Bioinformatics was
established in 2001, and is an annual conference on all aspects of algorithmic work in
bioinformatics, computational biology, and systems biology. The emphasis is on dis-
crete algorithms and machine-learning methods that address important problems in
molecular biology, that are founded on sound models, that are computationally effi-
cient, and that have been implemented and tested in simulations and on real datasets.
The goal is to present recent research results, including significant work-in-progress,
and to identify and explore directions of future research. WABI 2016 was sponsored by
the European Association for Theoretical Computer Science (EATCS).

In 2016, a total of 56 manuscripts were submitted to WABI from which 27 were
selected for presentation at the conference. Among them, 25 are included in this
proceedings volume as full papers presenting novel results not previously published in
journals, and two are included as short abstracts of papers that are in the process of
being published simultaneously in journals. The 27 papers were selected based on
thorough reviewing, usually involving three independent reviewers per submitted
paper, followed by discussions in the WABI Program Committee. The selected papers
cover a wide range of topics from networks, to phylogenetic studies, sequence and
genome analysis, comparative genomics, and mass spectrometry data analysis.
Extended versions of selected papers will be published in a thematic series in the
journal Algorithms for Molecular Biology (AMB), published by BioMed Central.

We thank all the authors of submitted papers and the members of the WABI
Program Committee and their reviewers for their efforts that made this conference
possible, and the WABI Steering Committee for their help and advice. We also thank
all the conference participants and speakers. In particular, we are indebted to the
keynote speaker of the conference, Kiyoshi Asai, for his presentation. Finally, we thank
Gerth Stølting Brodal and the local ALGO Organizing Committee for their hard work.

June 2016 Martin Frith
Christian N. S. Pedersen
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Mass Graphs and Their Applications
in Top-Down Proteomics

Qiang Kou1, Si Wu2, Nikola Tolić3, Yunlong Liu4,5,
Ljiljana Paša-Tolić3 and Xiaowen Liu1,5(&)

1 Department of BioHealth Informatics,
Indiana University-Purdue University Indianapolis, Indianapolis, Indiana

2 Department of Chemistry and Biochemistry,
University of Oklahoma, Norman, Oklahoma

3 Biological Science Division, Pacific Northwest National Laboratory,
Richland, USA

4 Department of Medical and Molecular Genetics,
Indiana University School of Medicine, Indianapolis, Indiana

5 Center for Computational Biology and Bioinformatics,
Indiana University School of Medicine, Indianapolis, Indiana

xwliu@iupui.edu

Abstract. Although proteomics has rapidly developed in the past decade,
researchers are still in the early stage of exploring the world of complex pro-
teoforms, which are protein products with various primary structure alterations
resulting from gene mutations, alternative splicing, post-translational modifi-
cations, and other biological processes. Proteoform identification is essential to
mapping proteoforms to their biological functions as well as discovering novel
proteoforms and new protein functions. Top-down mass spectrometry is the
method of choice for identifying complex proteoforms because it provides a
“bird's eye view” of intact proteoforms. Fragment ion series in top-down tandem
mass spectra provide essential information for identifying primary sequence
alterations in proteoforms. Extended proteoform databases and spectral align-
ment are the two main approaches for proteoform identification. However, due
to the combinatorial explosion of various alterations on a protein and the lim-
itations of available spectral alignment algorithms, the proteoform identification
problem has still not been fully solved.

We propose a new data structure, called the mass graph, for efficient representation of
proteoforms of a protein with variable post-translational modifications and/or terminal
truncations. The proteoform identification problem is transformed to the mass graph
alignment problem, and dynamic programming algorithms are proposed for a restricted
version of the problem. The proposed algorithms were tested on two top-down tandem
mass spectrometry data sets. Experimental results showed that the proposed algorithms
were efficient in identifying proteoforms with variable post-translational modifications
and outperformed MS-Align-E in running time and sensitivity for identifying complex
proteoforms, especially those with terminal truncations.

Acknowledgement. The research was supported by the National Institute of General Medical
Sciences, National Institutes of Health (NIH) through Grant R01GM118470.



Safely Filling Gaps with Partial Solutions
Common to all Solutions

Leena Salmela and Alexandru I. Tomescu

Department of Computer Science, Helsinki Institute for Information
Technology HIIT, University of Helsinki, Helsinki, 00014, Finland

{leena.salmela,tomescu}@cs.helsinki.fi

Abstract. Gap filling has emerged as a natural sub-problem of many de novo
genome assembly projects (e.g., filling gaps in scaffolds). Several methods have
addressed it, but only few have focused on strategies for dealing with multiple
gap filling solutions and for guaranteeing reliable results. Such strategies include
reporting only unique solutions, or exhaustively enumerating all filling solutions
and heuristically creating their consensus.

The gap filling problem is usually formulated as finding an s-t path in the assembly
graph, whose length matches the gap length estimate. In this paper we address it with
the “safe and complete” framework proposed in [Tomescu and Medvedev, RECOMB
2016] for the contig assembly problem. In terms of gap filling, a safe solution is a path
of the assembly graph that is a sub-path of all possible s-t paths whose length matches
the gap length estimate.

We give an efficient safe algorithm for the gap filling problem, running in time O
(dm), where d is the gap length estimate and m is the number of edges of the assembly
graph. To transform the safe paths into a single filling sequence usable in downstream
analysis, we fill the gap with an arbitrary filling path, in which we mark the safe
subsequences. Experiments on the GAGE bacterial datasets show that our method
retrieves over 90 % more safe and correct bases as compared to previous methods
differentiating between ambiguous and unambiguous positions, with a precision similar
to the one of previous methods.

We implemented this method as version 2.0 of our gap filler of scaffolds, Gap2Seq,
available at www.cs.helsinki.fi/u/lmsalmel/Gap2Seq/.

Fig. 1. A de Bruijn graph (k = 31) built on S.aureus data. We represent unary paths by
numbers indicating their length. The estimated gap length is d = 3774, and there are
9216 different s-t paths of length d. The safe sub-paths (in black) have length 3337 and
the precision of our method on these sub-paths is 99.9 %. Notice that most of the
bubbles of this graph are caused by SNPs.

http://www.cs.helsinki.fi/u/lmsalmel/Gap2Seq/
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Optimal Computation of Avoided Words

Yannis Almirantis1, Panagiotis Charalampopoulos2, Jia Gao2,
Costas S. Iliopoulos2, Manal Mohamed2, Solon P. Pissis2(B),

and Dimitris Polychronopoulos3

1 National Center for Scientific Research Demokritos, Athens, Greece
yalmir@bio.demokritos.gr

2 Department of Informatics, King’s College London, London, UK
{panagiotis.charalampopoulos,jia.gao,costas.iliopoulos,

manal.mohamed,solon.pissis}@kcl.ac.uk
3 Computational Regulatory Genomics, MRC Clinical Sciences Centre,

Imperial College London, London W12 0NN, UK
d.polychronopoulos@csc.mrc.ac.uk

Abstract. The deviation of the observed frequency of a word w from its
expected frequency in a given sequence x is used to determine whether
or not the word is avoided. This concept is particularly useful in DNA
linguistic analysis. The value of the standard deviation of w, denoted
by std(w), effectively characterises the extent of a word by its edge con-
trast in the context in which it occurs. A word w of length k > 2 is a
ρ-avoided word in x if std(w) ≤ ρ, for a given threshold ρ < 0. Notice
that such a word may be completely absent from x. Hence computing all
such words näıvely can be a very time-consuming procedure, in particu-
lar for large k. In this article, we propose an O(n)-time and O(n)-space
algorithm to compute all ρ-avoided words of length k in a given sequence
x of length n over a fixed-sized alphabet. We also present a time-optimal
O(σn)-time algorithm to compute all ρ-avoided words (of any length)
in a sequence of length n over an integer alphabet of size σ. We pro-
vide a tight asymptotic upper bound for the number of ρ-avoided words
over an integer alphabet and the expected length of the longest one.
We make available an implementation of our algorithm. Experimental
results, using both real and synthetic data, show the efficiency of our
implementation.

1 Introduction

The one-to-one mapping of a DNA molecule to a sequence of letters suggests
that DNA analysis can be modelled within the framework of formal language
theory [13]. For example, a region within a DNA sequence can be considered
as a “word” on a fixed-sized alphabet in which some of its natural aspects can
be described by means of certain types of automata or grammars. However, a
linguistic analysis of the DNA needs to take into account many distinctive physi-
cal and biological characteristics of such sequences: DNA contains coding regions

This research was partially supported by the Leverhulme Trust.

c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 1–13, 2016.
DOI: 10.1007/978-3-319-43681-4 1



2 Y. Almirantis et al.

that encode for polypeptide chains associated with biological functions; and non-
coding regions, most of which are not linked to any particular function. Both
appear to have many statistical features in common with natural languages [10].

A computational tool oriented towards the systematic search for avoided
words is particularly useful for in silico genomic research analyses. The search
for absent words is already undertaken in the recent past and several results
exist [1]. However, words which may be present in a genome or in genomic
sequences of a specific role (e.g., protein coding segments, regulatory elements,
conserved non-coding elements etc.) but they are strongly underrepresented—as
we can estimate on the basis of the frequency of occurrence of their longest proper
factors—may be of particular importance. They can be words of nucleotides
which are hardly tolerated because they negatively influence the stability of the
chromatin or, more generally, the functional genomic conformation; they can
represent targets of restriction endonucleases which may be found in bacterial
and viral genomes; or, more generally, they may be short genomic regions whose
presence in wide parts of the genome are not tolerated for less known reasons.
The understanding of such avoidances is becoming an interesting line of research
(for recent studies, see [5,12]).

On the other hand, short words of nucleotides may be systematically avoided
in large genomic regions or whole genomes for entirely different reasons: just
because they play important signaling roles which restrict their appearance only
in specific positions: consensus sequences for the initiation of gene transcription
and of DNA replication are well-known such oligonucleotides. Other such cases
may be insulators, sequences anchoring the chromatin on the nuclear envelope
like lamina-associated domains, short sequences like dinucleotide repeat motifs
with enhancer activity, and several other cases. Again, we cannot exclude that
this area of research could lead to the identification of short sequences of regu-
latory activities still unknown.

Brendel et al. in [6] initiated research into the linguistics of nucleotide
sequences that focuses on the concept of words in continuous languages—
languages devoid of blanks—and introduced an operational definition of words.
The authors suggested a method to measure, for each possible word w of length
k, the deviation of its observed frequency from the expected frequency in a given
sequence. The values of the standard deviation, denoted by std(w), were then
used to identify words that are avoided among all possible words of length k. The
typical length of avoided (or of overabundant) words of the nucleotide language
was found to range from 3 to 5 (tri- to pentamers). The statistical significance of
the avoided words was shown to reflect their biological importance. This work,
however, was based on the very limited sequence data available at the time: only
DNA sequences from two viral and one bacterial genomes were considered. Also
note that k might change when considering eukaryotic genomes, the complex
dynamics and function of which might impose a more demanding analysis.

Our Contribution. The computational problem can be described as follows.
Given a sequence x of length n, an integer k, and a real number ρ < 0, compute
the set of ρ-avoided words of length k, i.e. all words w of length k for which
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std(w) ≤ ρ. We call this set the ρ-avoided words of length k in x. Brendel et al.
did not provide an efficient solution for this computation [6]. Notice that such a
word may be completely absent from x. Hence the set of ρ-avoided words can be
näıvely computed by considering all possible σk words, where σ is the size of the
alphabet. Here we present an O(n)-time and O(n)-space algorithm for computing
all ρ-avoided words of length k in a sequence x of length n over a fixed-sized
alphabet. We also present a time-optimal O(σn)-time algorithm to compute all
ρ-avoided words (of any length) in a sequence of length n over an integer alphabet
of size σ. We provide a tight asymptotic upper bound for the number of ρ-avoided
words over an integer alphabet and the expected length of the longest one. We
make available an open-source implementation of our algorithm. Experimental
results, using both real and synthetic data, show its efficiency and applicability.
Specifically, using our method we confirm that restriction endonucleases which
target self-complementary sites are not found in eukaryotic sequences [12].

2 Terminology and Technical Background

Definitions and Notation. We begin with basic definitions and notation generally
following [7]. Let x = x[0]x[1] . . x[n − 1] be a word of length n = |x| over a finite
ordered alphabet Σ of fixed size, i.e. σ = |Σ| = O(1). We also consider the case
of an integer alphabet; in this case each letter is replaced by its rank such that
the resulting string consists of integers in the range {1, . . . , n}. For two positions
i and j on x, we denote by x[i . . j] = x[i] . . x[j] the factor (sometimes called
subword) of x that starts at position i and ends at position j (it is empty if
j < i), and by ε the empty word, word of length 0. We recall that a prefix of x
is a factor that starts at position 0 (x[0 . . j]) and a suffix is a factor that ends at
position n − 1 (x[i . . n − 1]), and that a factor of x is a proper factor if it is not
x itself. A factor of x that is neither a prefix nor a suffix of x is called an infix
of x.

Let w = w[0]w[1] . . w[m − 1] be a word, 0 < m ≤ n. We say that there
exists an occurrence of w in x, or, more simply, that w occurs in x, when w is
a factor of x. Every occurrence of w can be characterised by a starting position
in x. Thus we say that w occurs at the starting position i in x when w =
x[i . . i + m − 1]. Further let f(w) denote the observed frequency, that is, the
number of occurrences of a non-empty word w in word x. If f(w) = 0 for some
word w, then w is called absent, otherwise, w is called occurring.

By f(wp), f(ws), and f(wi) we denote the observed frequency of the longest
proper prefix wp, suffix ws, and infix wi of w in x, respectively. We can now
define the expected frequency of word w, |w| > 2, in x as in Brendel et al. [6]:

E(w) =
f(wp) × f(ws)

f(wi)
, if f(wi) > 0; else E(w) = 0. (1)

The above definition can be explained intuitively as follows. Suppose we are
given f(wp), f(ws), and f(wi). Given an occurrence of wi in x, the probability
of it being preceded by w[0] is f(wp)

f(wi)
as w[0] precedes exactly f(wp) of the f(wi)
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occurrences of wi. Similarly, this occurrence of wi is also an occurrence of ws

with probability f(ws)
f(wi)

. Although these two events are not always independent,

the product f(wp)
f(wi)

× f(ws)
f(wi)

gives a good approximation of the probability that an
occurrence of wi at position j implies an occurrence of w at position j − 1. It
can be seen then that by multiplying this product by the number of occurrences
of wi we get the above formula for the expected frequency of w.
Moreover, to measure the deviation of the observed frequency of a word w from
its expected frequency in x, we define the standard deviation (χ2 test) of w as:

std(w) =
f(w) − E(w)

max{
√

E(w), 1}
. (2)

For more details on the biological justification of these definitions see [6].
Using the above definitions and a given threshold, we are in a position to

classify a word w as either avoided or common in x. In particular, for a given
threshold ρ < 0, a word w is called ρ-avoided if std(w) ≤ ρ. In this article, we
consider the following computational problem.

AvoidedWordsComputation

Input: A word x of length n, an integer k > 2, and a real number ρ < 0
Output: All ρ-avoided words of length k in x

Suffix Trees. In our algorithms, suffix trees are used extensively as computational
tools. For a general introduction to suffix trees, see [7].

The suffix tree T (x) of a non-empty word x of length n is a compact trie
representing all suffixes of x, the nodes of the trie which become nodes of the
suffix tree are called explicit nodes, while the other nodes are called implicit. Each
edge of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path of
that kind. Then, each node of the trie can be represented in the suffix tree by
the edge it belongs to and an index within the corresponding path.

We use L(v) to denote the path-label of a node v, i.e., the concatenation of
the edge labels along the path from the root to v. We say that v is path-labelled
L(v). Additionally, D(v) = |L(v)| is used to denote the word-depth of node v.
Node v is a terminal node, if and only if, L(v) = x[i . . n − 1], 0 ≤ i < n; here
v is also labelled with index i. It should be clear that each occurring word w
in x is uniquely represented by either an explicit or an implicit node of T (x).
The suffix-link of a node v with path-label L(v) = αy is a pointer to the node
path-labelled y, where α ∈ Σ is a single letter and y is a word. The suffix-link
of v exists if v is a non-root internal node of T (x).

In any standard implementation of the suffix tree, we assume that each node
of the suffix tree is able to access its parent. Note that once T (x) is constructed,
it can be traversed in a depth-first manner to compute the word-depth D(v) for
each node v. Let u be the parent of v. Then the word-depth D(v) is computed
by adding D(u) to the length of the label of edge (u, v). If v is the root then
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D(v) = 0. Additionally, a depth-first traversal of T (x) allows us to count, for
each node v, the number of terminal nodes in the subtree rooted at v, denoted by
C(v), as follows. When internal node v is visited, C(v) is computed by adding up
C(u) of all the nodes u, such that u is a child of v, and then C(v) is incremented
by 1 if v itself is a terminal node. If a node v is a leaf then C(v) = 1.

3 Useful Properties

In this section, we provide some useful insights of combinatorial nature which
were not considered by Brendel et al. [6]. By the definition of ρ-avoided words it
follows that a word w may be ρ-avoided even if it is absent from x. In other words,
std(w) ≤ ρ may hold for either f(w) > 0 (occurring) or f(w) = 0 (absent).

This means that a näıve computation should consider all possible σk words.
Then for each possible word w, the value of std(w) can be computed via pattern
matching on the suffix tree of x. In particular we can search for the occurrences
of w, wp, ws, and wi in x in time O(k) [7]. In order to avoid this inefficient
computation, we exploit the following crucial lemmas.

Definition 1 [3]. An absent word w of x is minimal if and only if all its proper
factors occur in x.

Lemma 1. Any absent ρ-avoided word w in x is a minimal absent word of x.

Proof. For w to be a ρ-avoided word it must hold that

std(w) =
f(w) − E(w)

max{
√

E(w), 1}
≤ ρ < 0.

This implies that f(w) − E(w) < 0, which in turn implies that E(w) > 0 since
f(w) = 0. From E(w) = f(wp)×f(ws)

f(wi)
> 0, we conclude that f(wp) > 0 and

f(ws) > 0 must hold. Since f(w) = 0, f(wp) > 0, and f(ws) > 0, w is a minimal
absent word of x: all proper factors of w occur in x. ��
Lemma 2. Let w be a word occurring in x and T (x) be the suffix tree of x.
Then, if wp is a path-label of an implicit node of T (x), std(w) ≥ 0.

Proof. For any w that occurs in x it holds that f(wi) ≥ f(ws), which implies that
f(wp) ≥ f(wp)×f(ws)

f(wi)
= E(w). Furthermore, by the definition of the suffix tree,

if w occurs in x and wp is a path-label of an implicit node then f(wp) = f(w). It
thus follows that f(w)−E(w) = f(wp)−E(w) ≥ 0, and since max{1,

√
E(w)} >

0, the claim holds. ��
Lemma 3. The number of ρ-avoided words of length k > 2 in a word of length
n over an alphabet of size σ is O(σn); in particular, this number is no more than
(σ + 1)n − k + 1.

Proof. By Lemma 1, every ρ-avoided word is either occurring or a minimal absent
word. It is known that the number of minimal absent words in a word of length
n is smaller than or equal to σn [11]. Clearly, the occurring ρ-avoided words in
a word of length n are at most n − k + 1. Therefore the lemma holds. ��
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4 Avoided Words Algorithm

In this section, we present Algorithm AvoidedWords for computing all ρ-
avoided words of length k in a given word x. The algorithm builds the suffix
tree T (x) for word x, and then prepares T (x) to allow constant-time observed
frequency queries. This is mainly achieved by counting the terminal nodes in
the subtree rooted at node v for every node v of T (x). Additionally dur-
ing this preprocessing, the algorithm computes the word-depth of v for every
node v of T (x). By Lemma 1, ρ-avoided words are classified as either occur-
ring or (minimal) absent, therefore Algorithm AvoidedWords calls Routines
AbsentAvoidedWords and OccurringAvoidedWords to compute both
classes of ρ-avoided words in x. The outline of Algorithm AvoidedWords is as
follows.

AvoidedWords(x, k, ρ)
1 T (x) ← SuffixTree(x)
2 for each node v ∈ T (x) do
3 D(v) ← word-depth of v
4 C(v) ← number of terminal nodes in the subtree rooted at v
5 AbsentAvoidedWords(x, k, ρ)
6 OccurringAvoidedWords(x, k, ρ)

4.1 Computing Absent Avoided Words

In Lemma 1, we showed that each absent ρ-avoided word is a minimal absent
word. Thus, Routine AbsentAvoidedWords starts by computing all minimal
absent words in x; this can be done in time and space O(n) for a fixed-sized
alphabet or in time O(σn) for integer alphabets [3,4]. Let <(i, j), α> be a tuple
representing a minimal absent word in x, where for some minimal absent word
w of length |w| > 2, w = x[i . . j]α, α ∈ Σ; this representation is clearly unique.

AbsentAvoidedWords(x, k, ρ)
1 A ← MinimalAbsentWords(x)
2 for each tuple < (i, j), α >∈ A such that k = j − i + 2 do
3 up ← Node(i, j)
4 if IsImplicit(up) then
5 (u, v) ← Edge(up)
6 fp ← C(v)
7 else fp ← C(up)
8 ui ← Node(i + 1, j)
9 if IsImplicit(ui) then

10 (u, v) ← Edge(ui)
11 fi ← fs ← C(v)
12 else fi ← C(ui)
13 us ← Child(ui, α)
14 fs ← C(us)
15 E ← fp × fs/fi

16 if (0 − E)/(max{1,
√

E}) ≤ ρ then
17 Report(x[i . . j]α)
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Intuitively, the idea is to check the length of every minimal absent word. If a
tuple <(i, j), α> represents a minimal absent word w of length k = j−i+2, then
the value of std(w) is computed to determine whether w is an absent ρ-avoided
word. Note that, if w = x[i . . j]α is a minimal absent word, then wp = x[i . . j],
wi = x[i + 1 . . j], and ws = x[i + 1 . . j]α occur in x by Definition 1. Thus,
there are three (implicit or explicit) nodes in T (x) path-labelled wp, wi, and ws,
respectively. The observed frequencies of wp, wi, and ws are already computed
during the preprocessing of C, which stores the number of terminal nodes in the
subtree rooted at v, for each node v.

Notice that for an explicit node v path-labelled w′ = x[i′ . . j′], the value C(v)
represents the number of occurrences (observed frequency) of w′ in x; whereas
for an implicit node along the edge (u, v) path-labelled w′′, the number of occur-
rences of w′′ is equal to C(v) (and not C(u)). The implementation of this proce-
dure is given in Routine AbsentAvoidedWords.

4.2 Computing Occurring Avoided Words

Lemma 2 suggests that for each occurring ρ-avoided word w, wp is a path-label of
an explicit node v of T (x). Thus, for each internal node v such that D(v) = k−1
and L(v) = wp, Routine OccurringAvoidedWords computes std(w), where
w = wpα, α ∈ Σ, is a path-label of a child (explicit or implicit) node of v. Note
that if wp is a path-label of an explicit node v then wi is a path-label of an
explicit node u of T (x); node u is well-defined and it is the node pointed at by
the suffix-link of v. The implementation of this procedure is given in Routine
OccurringAvoidedWords.

OccurringAvoidedWords(x, k, ρ)
1 N ← an empty stack
2 Push(N, root(T (x)))
3 while N is not empty do
4 u ← Pop(N)
5 for each edge (u, v) of T (x) do
6 if D(v) < k − 1 then
7 Push(N, v)
8 elseif D(v) = k − 1 then
9 fp ← C(v)

10 fi ← C(suffix-link [v])
11 for each child v′ of v do
12 fw ← C(v′)
13 α ← L(v′)[k − 1]
14 fs ← C(Child(suffix-link [v], α))
15 E ← fp × fs/fi

16 if (fw − E)/(max{1,
√

E}) ≤ ρ then
17 Report(L(v′)[0 . . k − 1])
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4.3 Analysis of the Algorithm

Lemma 4. Given a word x, an integer k > 2, and a real number ρ < 0, Algo-
rithm AvoidedWords computes all ρ-avoided words of length k in x.

Proof. By definition, a ρ-avoided word w is either an absent ρ-avoided word or
an occurring one. Hence, the proof of correctness relies on Lemmas 1 and 2. First,
Lemma 1 indicates that an absent ρ-avoided word in x is necessarily a minimal
absent word. Routine AbsentAvoidedWords considers each minimal absent
word w and verifies if w is a ρ-avoided word of length k.

Second, Lemma 2 indicates that for each occurring ρ-avoided word w, wp is a
path-label of an explicit node v of T (x). Routine OccurringAvoidedWords

considers every child of each such node of word-depth k, and verifies if its path-
label is a ρ-avoided word. ��
Lemma 5. Given a word x of length n over a fixed-sized alphabet, an integer
k > 2, and a real number ρ < 0, Algorithm AvoidedWords requires time and
space O(n); for integer alphabets, it requires time O(σn).

Proof. Constructing the suffix tree T (x) of the input word x takes time and
space O(n) for a word over a fixed-sized alphabet [7]. Once the suffix tree is
constructed, computing arrays D and C by traversing T (x) requires time and
space O(n). Note that the path-labels of the nodes of T (x) can by implemented
in time and space O(n) as follows: traverse the suffix tree to compute for each
node v the smallest index i of the terminal nodes of the subtree rooted at v.
Then L(v) = x[i . . i + D(v) − 1].

Next, Routine AbsentAvoidedWords requires time O(n). It starts by com-
puting all minimal absent words of x, which can be achieved in time and space
O(n) over a fixed-sized alphabet [3,4]. The rest of the procedure deals with check-
ing each of the O(n) minimal absent words of length k. Checking each minimal
absent word w to determine whether it is a ρ-avoided word or not requires time
O(1). In particular, an O(n)-time preprocessing of T (x) allows the retrieval of
the (implicit or explicit) node in T (x) corresponding to the longest proper pre-
fix of w in time O(1) [9]. Finally, Routine OccurringAvoidedWords requires
time O(n). It traverses the suffix tree T (x) to consider all explicit nodes of word-
depth k − 1. Then for each such node, the procedure checks every (explicit or
implicit) child of word-depth k. The total number of these children is at most
n − k + 1. For every child node, the procedure checks whether its path-label is
a ρ-avoided word in time O(1) via the use of suffix-links.

For integer alphabets, the suffix tree can be constructed in time O(n) [8] and
all minimal absent words can be computed in time O(σn) [3,4]. The efficiency
of Algorithm AvoidedWords is then limited by the total number of words to
be considered, which, by Lemma 3, is O(σn). ��
Lemmas 4 and 5 imply the first result of this article.

Theorem 1. Algorithm AvoidedWords solves Problem AvoidedWord-

sComputation in time and space O(n). For integer alphabets, the algorithm
solves the problem in time O(σn).
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4.4 Optimal Computation of all ρ-Avoided Words

Although the biological motivation is yet to be shown for this, we present here
how we can modify Algorithm AvoidedWords so that it computes all ρ-avoided
words (of all lengths) in a given word x of length n over an integer alphabet of
size σ in time O(σn). We further show that this algorithm is in fact time-optimal.
All omitted proofs will be presented in the full version of this article.

Lemma 6. The upper bound O(σn) on the number of minimal absent words of
a word of length n over an alphabet of size σ is tight if 2 ≤ σ ≤ n.

Lemma 7. The number of ρ-avoided words in a word of length n over an alpha-
bet of size 2 ≤ σ ≤ n is O(σn) and this bound is tight.

It is clear that if we just remove the condition on the length of each minimal
absent word in Line 2 of AbsentAvoidedWords we then compute all absent ρ-
avoided words in time O(σn). In order to compute all occurring ρ-avoided words
in x it suffices by Lemma 2 to investigate the children of explicit nodes. We can
thus traverse the suffix tree T (x) and for each explicit internal node, check for all
of its children (explicit or implicit) whether their path-label is a ρ-avoided word.
We can do this in O(1) time as described. The total number of these children is
at most 2n − 1, as this is the bound on the number of edges of T (x) [7]. This
modified algorithm is clearly time-optimal for fixed-sized alphabets as it then
runs in time O(n). The time optimality for integer alphabets follows directly
from Lemmas 6 and 7. Hence we obtain the second result of this article.

Theorem 2. Given a word x of length n over an integer alphabet of size σ and
a real number ρ < 0, all ρ-avoided words in x can be computed in time O(σn).
This is time-optimal if 2 ≤ σ ≤ n.

Lemma 8. The expected length of the longest ρ-avoided word in a word of length
n over an alphabet Σ of size σ > 1 is O(logσ n) when the letters are independent
and identically distributed random variables uniformly distributed over Σ.

5 Implementation and Experimental Results

Algorithm AvoidedWords was implemented as a program to compute the
ρ-avoided words of length k in one or more input sequences. The program
was implemented in the C++ programming language and developed under
GNU/Linux operating system. The input parameters are a (Multi)FASTA file
with the input sequences(s), an integer k > 2, and a real number ρ < 0. The out-
put is a file with the set of ρ-avoided words of length k per input sequence. The
implementation is distributed under the GNU General Public License, and it is
available at http://github.com/solonas13/aw. The experiments were conducted
on a Desktop PC using one core of Intel Core i5-4690 CPU at 3.50 GHz under
GNU/Linux. The program was compiled with g++ version 4.8.4 at optimisation
level 3 (-O3). We also implemented a brute-force approach for the computation

http://github.com/solonas13/aw
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Fig. 1. Elapsed time of Algorithm AvoidedWords using synthetic DNA (σ = 4) and
proteins (σ = 20) data of length 1M for variable k and variable ρ.

of ρ-avoided words. We mainly used it to confirm the correctness of our imple-
mentation. Here we do not plot the results of the brute-force approach as it is
easily understood that it is orders of magnitude slower than our approach.

To evaluate the time performance of our implementation, synthetic DNA
(σ = 4) and proteins (σ = 20) data were used. The input sequences were gener-
ated using a randomised script. In the first experiment, our task was to establish
that the performance of the program does not essentially depend on k and ρ;
i.e., the elapsed time of the program remains unchanged up to some constant
with increasing values of k and decreasing values of ρ. As input datasets, for
this experiment, we used a DNA and a proteins sequence both of length 1M
(1 Million letters). For each sequence we used different values of k and ρ. The
results, for elapsed time are plotted in Fig. 1. It becomes evident from the results
that the time performance of the program remains unchanged up to some con-
stant. The longer time required for the proteins sequences for some value of k
is explained by the increased number of branching nodes in this depth in the
corresponding suffix tree due to the size of the alphabet (σ = 20). To confirm
this we counted the number of nodes considered by the algorithm to compute
the ρ-avoided words for k = 4 and ρ = −10 for both sequences. The number
of considered nodes for the DNA sequence was 260 whereas for the proteins
sequence it was 1, 585, 510.

In the second experiment, our task was to establish the fact that the elapsed
time and memory usage of the program grow linearly with n, the length of
the input sequence. As input datasets, for this experiment, we used synthetic
DNA and proteins sequences ranging from 1 to 128 M. For each sequence we
used constant values for k and ρ: k = 8 and ρ = −10. The results, for elapsed
time and peak memory usage, are plotted in Fig. 2. It becomes evident from the
results that the elapsed time and memory usage of the program grow linearly
with n. The longer time required for the proteins sequences compared to the DNA
sequences for increasing n is explained by the increased number of branching
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nodes in this depth (k = 8) in the corresponding suffix tree due to the size of the
alphabet (σ = 20). To confirm this we counted the number of nodes considered
by the algorithm to compute the ρ-avoided words for n = 64M for both the
DNA and the proteins sequence. The number of nodes for the DNA sequence
was 69, 392 whereas for the proteins sequence it was 43, 423, 082.
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Fig. 2. Elapsed time and peak memory usage of Algorithm AvoidedWords using
synthetic DNA (σ = 4) and proteins (σ = 20) data of length 1M to 128M.

In the next experiment, our task was to evaluate the time and memory perfor-
mance of our implementation with real data. As input datasets, for this exper-
iment, we used all chromosomes of the human genome. Their lengths range
from around 46M (chromosome 21) to around 249M (chromosome 1). For each
sequence we used k = 8 and ρ = −10. The results, for elapsed time and peak
memory usage, are plotted in Fig. 3. The results with real data confirm that the
elapsed time and memory usage of the program grow linearly with n.

As last experiment, we computed the set of avoided words for k = 6 (hexam-
ers) and ρ = −10 in the complete genome of E. coli and sorted the output
in increasing order of their standard deviation. The most avoided words were
extremely enriched in self-complementary (palindromic) hexamers. In particu-
lar, within the output of 28 avoided words, 23 were self-complementary; and the
17 most avoided ones were all self-complementary. For comparison, we computed
the set of avoided words for k = 6 and ρ = −10 from an eukaryotic sequence:
a segment of the human chromosome 21 (its leftmost segment devoid of N’s)
equal to the length of the E. coli genome. In the output of 10 avoided words, no
self-complementary hexamer was found. Our results confirm that the restriction
endonucleases which target self-complementary sites are not found in eukaryotic
sequences [12].

Our immediate target is to investigate the avoidance of words in the context
of Genomic Regulatory Blocks (GRBs), chromosomal regions spanned by highly
conserved non-coding elements (HCNEs), most of which serve as regulatory
inputs of one target gene in the region [2].
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Fig. 3. Elapsed time and peak memory usage of Algorithm AvoidedWords using all
chromosomes of the human genome.
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Abstract. We formalize a new problem variant in gene-block discov-
ery, denoted Reference-Anchored Gene Blocks (RAGB). Given a query
sequence Q of length n, representing the gene-array of a DNA element,
a window size bound d on the length of a substring of interest in Q,
and a set of target gene sequences T = {T1 . . . Tc}. Our objective is to
identify gene-blocks in T that are centered in a subset q of co-localized
genes from Q, and contain genomes from T in which the corresponding
orthologs of the genes from q are also co-localized. We cast RAGB as a
variant of a (colored) biclique problem in bipartite graphs, and analyze
its parameterized complexity, as well as the parameterized complexity of
other related problems. We give an O(nm+2dnm/ lgm) time algorithm
for the uncolored variant of our biclique problem, where m is the number
of areas of interest that are parsed from the target sequences, and n and
d are as defined above. Our algorithm can be adapted to compute all
maximal bicliques in the graph within the same time complexity, and
to handle edge-weights with a slight O(lg d) increase to its time com-
plexity. For the colored version of the problem, our algorithm has a time
complexity of O(2dnm). We implement the algorithm and exemplify its
application to LEE, a well-known pathogenicity island from the e. coli
genome harboring virulence genes. Our code and supplementary materi-
als, including omitted proofs and figures, are available at https://www.
cs.bgu.ac.il/∼negevcb/RAGB/.

1 Introduction

Genomes of bacterial species can evolve through a variety of processes including
mutations, rearrangements and horizontal gene transfer. Information gathered
over the past few years from a rapidly increasing number of sequenced genomes
c© Springer International Publishing Switzerland 2016
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has shown that besides the core genes which encode essential metabolic functions,
bacterial genomes also harbour a variable number of accessory genes acquired
by horizontal gene transfer, encoding adaptative traits that might be beneficial
for bacteria under certain growth or environmental conditions [15]. Many of
the accessory genes acquired by horizontal gene transfer form syntenic blocks
recognized as genomic islands - discrete DNA segments that are transferred
between closely related strains. During island evolution, several genetic elements
have been acquired independently at different time points and from different
hosts. Thus, genomic islands often represent mosaic-like structures rather than
homogeneous segments of horizontally acquired DNA.

Genomic islands are known to carry genes offering a selective advantage for
host bacteria. They play a key role in the emergence of highly virulent and highly
resistant pathogenic strains of bacteria, which are of major concern worldwide
[15]. This concern motivates new studies, such as the one proposed in this paper,
aimed to develop new tools that will help explore the evolution and spreading
patterns of pathogenicity, virulence and resistance components harbored within
genomic islands, across the bacterial kingdom. Furthermore, applying gene-block
discovery approaches to these studies may shed light on the function of unknown
proteins which are consistently co-transferred with functional gene cascades.

1.1 The Reference Anchored Gene Block Problem

We propose a new bioinformatic approach that is based on interrogating a given
reference DNA element from a specific genome for subsets of genes that are
conserved as proximity blocks across other microbial genomes. The subsequent
computational problem is called the Reference Anchored Gene Blocks problem
(RAGB). The input to this problem consists of the gene sequence of a reference
DNA element, and a set of target genome sequences. The target sequences are
then parsed, either via a simple sliding window approach or according to some a
priori biological data, into areas of interest or segments of small proximity. The
output of our problem are gene blocks that are clustered together in small vicinity
in the reference element, and that have orthologous genes clustered together
in segments of sufficiently many target genomes. Note that our model allows
paralogous occurrences of genes from the reference elements, and moreover, we
do not require that all input genomes be represented in an output block.

Our framework is based on a bipartite graph modulation. Following the phase
where the input element and genomes are parsed into (gene cluster encompass-
ing) segments, a bipartite graph is constructed according to these segments.
In this graph, vertices of one side represent subsets of reference genes, nodes
in the other side represent segments from the target genomes, and edges con-
nect the subsets of reference genes to segments from the target genomes that
contain corresponding orthologs. Based on this, we cast the problem of enumer-
ating reference-anchored gene blocks as a special type of biclustering problem:
Compute appropriately constrained bicliques in an input bipartite graph. The
constraint is a bound that ensures the co-localization of the reference genes par-
ticipating in a block. When it is necessary to distinguish between segments of
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different genomes, we color-code the vertices corresponding to segments in our
bipartite graph, and require colorful bicliques as solutions.

1.2 Results

Since our problem translates to a computationally hard problem, we use the
theory of parameterized complexity [13] which provides a convenient theoreti-
cal framework for analyzing exact algorithms for hard problems. In particular,
given a bipartite graph with n vertices corresponding to references genes, and
m vertices corresponding to target segments, we show how to compute all max-
imal constrained bicliques in O(nm + 2dnm/ lg m) time, where d is the bound
on the genomic distance between two genes in a cluster. We then show how
to extend this algorithm to a weighted variant of the problem with an O(lg d)
increase to the time complexity. Finally, our algorithm can also be extended
to the more challenging vertex-colored variant corresponding to the case where
segments are overlapping sliding windows in the target genomes, yet we allow
only one segment per each genome in the output. The time complexity increases
in this case to O(2dnm). We also use the theory of parameterized complexity
to analyze closely related biclique problems, and show that these are unlikely to
admit efficient algorithms with respect to their natural parameterizations.

We implement our algorithm in a program called RAGB Monitor (Reference-
Anchored Gene Block Monitor). This program enumerates conserved blocks that
are centered in small components of a given input DNA element and ranks them
according to a probabilistic p-value. The program is exemplified by applying it to
the analysis of LEE, a well-known pathogenicity island from the E. coli genome,
where it identifies components of type III secretion system from LEE that are
conserved across several proteobacterial genomes.

1.3 Related Work

On the biological front, previous related works studied the evolution of oper-
ons across different species by using either experimentally validated operons, or
sets of genes from a pathway of interest, as anchors. A computational method
was recently proposed for generalizing such studies in [12]. This method uses
alignment-based approaches to measure the distance between the gene maps
of orthologous gene clusters in various species and then interprets this infor-
mation against the phylogeny of the target genomes. The method assumes a
model where a chromosome is considered as a permutation of distinct genes.
Similarly to these works, we also base our search on the gene map of an anchor
DNA element. However, in contrast to these previous works, we consider several
orthologs in each target genome, per each gene in the reference element. More
importantly, our biological objective is quite different: We apply an exhaustive
approach, aimed to discover all (possibly overlapping) co-localized subsets of
genes from the anchor reference element that are conserved as orthologous gene
clusters in (possibly overlapping) subsets of genomes from the input set.
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In this respect, our problem is related to the well-studied gene team discov-
ery problem (thoroughly reviewed in [2]) that seeks conserved gene clusters in
an input set of genomes. Several models were considered for this problem. In
the most basic one, a chromosome is considered as a permutation of distinct
genes, and a gene team is defined to be a set of genes that appear in all the
prespecified species, possibly in a different order, yet with the distance between
adjacent genes in the team for each chromosome bounded by a certain thresh-
old. This model is generalized to consider paralogous copies of the same gene
in [16]. Polynomial time exact algorithms exist for the problem variants men-
tioned above. The next step to further generalize the gene team problem is to
find teamsthat only occur in a subset of a given set of genomes. This step makes
the problem NP-complete, and several heuristic approaches were proposed for
this variant [10,11]. Chateau et al. [3] modeled approximate gene clusters as
cliques in a graph, where nodes represent intervals (sets of genes co-located in
a genomic region) and an edge connecting two nodes indicates that their set-
distance is bounded by some predefined constant. The problem introduced in
our paper could be viewed as a special variant of gene team discovery, where the
sought gene teams are clustered around a predefined team of “centroid” genes.
The model we follow in our solution to the problem is the most general one: It
allows paralogous occurrences of genes in input strings, does not require gene
order conservation, and does not require that all input genomes participate in a
candidate solution.

2 Problem Definition and Formulations

Let Σ denote a finite set of characters representing genes. A genome is repre-
sented by a sequence S = σ1 · · · σn of concatenated characters σ1, . . . , σn ∈ Σ.
For a sequence S = σ1 · · · σn, we use |S| = n to denote the length of S, and
S[i] = σi to denote the i’th character of S. A subsequence of S is any non-
empty sequence S′ that can be obtained by deleting zero or more characters
from S. An interval of S is a subsequence of S with consecutive characters. For
1 ≤ i ≤ j ≤ |S|, we let S[i, j] = σi · · · σj denote the interval of S beginning
at position i and ending at position j. We call a sequence where all characters
are different a permutation. Two sequences S1 and S2 are said to be equivalent,
denoted S1 ≡ S2, if |{S1[i] = σ : 1 ≤ i ≤ |S1|}| = |{S2[i] = σ : 1 ≤ i ≤ |S2|}|
for all σ ∈ Σ. In other words, S1 ≡ S2 if both sequences have the same number
of occurrences of each character σ ∈ Σ. Clearly, for two equivalent sequences S1

and S2 we have |S1| = |S2|.
Let Q denote a sequence representing our designated reference element, and

let T = {T1, . . . , TC} denote a set of sequences representing the target genomes.
An instance of our problem is defined by a triplet (Q, I, d), where d is a pos-
itive integer, and I = {I1, . . . , IC} is a family of interval sets where each
Ii = {T 1

i , . . . , T ti
i } contains intervals of Ti. Each interval T j

i represents an area
of interest in the target genome Ti, and d represents the length of intervals that
are of interest in Q. Our goal is to find subsequences in intervals of length d
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in Q, representing operons in the reference element modeled by Q, that have
equivalent occurrences in areas of interest of the target genomes. We formalized
this in the following definition:

Definition 1 (Block). A block in (Q, I, d) is a set of sequences {q, ti1 , . . . , tik
}

satisfying:

1. q is a subsequence of some interval of length d in Q,
2. tij

is a subsequence of some interval in Iij
for each 1 ≤ j ≤ k,

3. i1 �= i2 �= · · · �= ik, and
4. q ≡ tij

for each 1 ≤ j ≤ k.

We say that a block {q, ti1 , . . . , tik
} is maximal in (Q, I, d) if there is no

other block {q′, t′j1 , . . . , t
′
j�

} in this instance where q is a subsequence of q′ and
{i1, . . . , ik} ⊆ {j1, . . . , j�}.

Definition 2 (Reference Anchored Gene Blocks Problem (RAGB)).
The Reference Anchored Gene Blocks problem is the problem of com-
puting all maximal blocks in a given problem instance (Q, I, d).

We consider two distinct approaches to parse the intervals of our target
genomes. The first approach, which we call the sliding window approach, is an
exhaustive approach where each target genome in Ti is parsed into all its sub-
strings of length d, i.e. Ti[1, d], Ti[2, d+1], . . . , Ti[n−d, n], and each such substring
yields an interval in Ii. The second approach takes into account biological signals
to parse the genome into non-overlapping intervals. Another modeling option to
be considered is whether we allow one or more orthologous genes in each of our
input genomes; that is, whether or not our input sequences are permutations.
This leads to the following two RAGB problem variants:

RAGB1. Compute reference anchored gene clusters in the following model:
Intervals in I are parsed biologically into non-overlapping intervals. All input
sequences are permutations.

RAGB2. Compute reference anchored gene clusters in the following model:
Intervals in I are parsed via the sliding window approach. The input sequences
are not necessarily permutations.

We cast both RAGB problem variants as biclique enumeration problems in bipar-
tite graphs. The input to our framework consists of a sequence Q representing our
designated genome, and T1, . . . , TC sequences representing the target genomes.
Each genome Ti is parsed into intervals, and the ensemble of intervals from all
the genomes yields the interval set I = {I1, . . . , IC}.

Based on Q and the intervals in I a bipartite graph G = (A � B,E) is
constructed: Each node in A = {a1, . . . , an} represents a single character in
Q, such that node ai ∈ A corresponds to character Q[j]. Each node in B =
{b1, . . . , bm} represents a distinct interval in I. We then connect vertex ai ∈ A
to vertex bj ∈ B iff the character Q[i] appears in the interval corresponding to bj .
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We can also add a weight measure to this edge to indicate the level of similarity
between the gene Q[i] and its occurrence in the interval corresponding to bj .

Next, for the second variant of RAGB, RAGB2, we further need to distinguish
between intervals of different genomes. For this, we introduce a coloring function
c : B → {1, . . . , C} for the vertices of B, where c(bj) = i iff bj corresponds to an
interval of Ti. The reason we do not need this function for RAGB1 is that each
sequence Ti is a permutation, so any character of Q can appear at most once in
any of these sequences.

A biclique in G is a pair of non-empty vertex subsets A′ ⊆ A and B′ ⊆ B
where {a, b} ∈ E for each pair of vertices a ∈ A′ and b ∈ B′. We say that a
biclique (A′, B′) is maximal if for any biclique (A′′, B′′) in G with A′ ⊆ A′′ and
B′ ⊆ B′′ we have A′ = A′′ and B′ = B′′. In case G is equipped with a coloring
function for the vertices in B, we say that a biclique (A′, B′) is colorful if no
two distinct vertices in B′ have the same color. For 1 ≤ i ≤ n − d, let A[i, i + d]
denote the subset of vertices {ai, ai+1, . . . , ai+d} ⊆ A.

Observation 1. There is one-to-one bijection between maximal (colorful)
bicliques (A′, B′) in G with A′ ⊆ A[i, i + d] for some 1 ≤ i ≤ n − d and maximal
blocks in (Q, I, d).

3 Block Bicliques

In this section we present algorithms for our model for the Reference

Anchored Gene Blocks problem, as well as analyze related possible mod-
els. We are interested in computing bicliques of certain properties in a bipartite
graph. Since computing a biclique with a certain number of edges or vertices in
a bipartite graph is NP-complete [7], any meaningful model for our problem will
be NP-hard as well. Thus, we use the theory of parameterized complexity [13]
to cope with this hardness.

Recall that G = (A � B,E) denotes a bipartite graph with A = {a1, . . . , an}
and B = {b1, . . . , bm}. For a vertex v ∈ A � B, let N(v) denote the set of
neighbors of v, i.e. N(v) = {u : {u, v} ∈ E}. For a subset of vertices A′ ⊆ A,
denote the set of common neighbors of A′ by BA′ =

⋂
a∈A′ N(a). Similarly, let

AB′ =
⋂

b∈B′ N(b) denote the set of common neighbors of any B′ ⊆ B. In this
way, a pair of non-empty subsets A′ ⊆ A and B′ ⊆ B is a biclique in G iff
BA′ = B′ and AB′ = A′. Clearly, the number of edges in a biclique (A′, B′) is
|A′||B′|.

3.1 Three Biclique Problems

We next consider three possible candidates for biclique computation problems.
For the sake of simplicity, we consider only decision problems for now.
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Bipartite Biclique :
Input: A bipartite graph G = (A � B,E) and an integer k.
Question: Is there a biclique (A′, B′) in G with |A′||B′| ≥ k ?

Bipartite Balanced Biclique :
Input: A bipartite graph G = (A � B,E) and an integer k.
Question: Is there is a biclique (A′, B′) in G with |A′| = |B′| ≥ k ?

For a fixed positive integer d, a biclique (A′, B′) is called a d-block biclique if
A′ ⊆ A[i, i + d] for some 1 ≤ i ≤ n − d.

Block Bipartite Biclique :
Input: A bipartite graph G = (A � B,E) and two positive integers d and k.
Question: Is there a d-block biclique (A′, B′) in G with with |A′||B′| ≥ k ?

Clearly, the latter of these problems is tailor suited for the RAGB problem,
but the other two might a priori be of use in this context as well. In Bipartite

Biclique we wish to find a biclique with at least k edges, and in Bipartite

Balanced Biclique we wish to find a biclique where each side has at least
k vertices. Solutions to both of these problems are clearly meaningful in our
context. Note that we could have also considered a third variant where the goal
is to find a biclique with k vertices altogether (i.e. on both sides), but in the
setting of parameterized complexity of which we analyze all our problems, this
problem is quite similar to Bipartite Biclique.

Lemma 1. Bipartite Biclique can be solved in O(2kn) time.

Lemma 2. Bipartite Balanced Biclique is W[1]-hard with respect to
parameter k.

Thus, the Bipartite Biclique problem is FPT with respect to parame-
ter k, while Balanced Bipartite Biclique is not (under the widely believed
assumption that FPT �= W[1]). Note however that the main issue with the
Bipartite Biclique problem is that we assume that the number of edges in
a solution biclique will be rather small, and can thus be taken as a parameter.
This is not the case for the Block Bipartite Biclique problem. As we will see
in the next section, this latter problem is fixed-parameter tractable with respect
to d, which for our purposes is much smaller than the number of edges in a
solution biclique. The biological motivation for RAGB1 and RAGB2 naturally
yields small bounds on d.

3.2 Solving RAGB1: An Algorithm for Computing d-block
Bicliques

The Block Bipartite Biclique problem trivially has a fixed parameter algo-
rithm with respect k, the number of edges in the solution biclique, by using the
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same arguments used in proving Lemma 1. We next show that this problem also
has a fixed parameter algorithm with respect to parameter d, the size of the
block, which is expected to be much smaller in practice than k. In fact, we will
show a much stronger result in that we can compute in FPT time the set of all
maximal d-block bicliques of our input graph.

Lemma 3. Given a bipartite graph G = (A � B,E) with |A| = n and |B| = m,
and an integer d, one can compute the set of all maximal d-block bicliques of G
in O(nm + 2dnm/ lg m) time.

Algorithm for computing d-block bicliques:

– For each i ∈ {1, . . . , n − d} and A′ ⊆ A[i, i + d] do
a. Compute the set BA′ of common neighbors of A′.
b. Return (A′, B′).

Note that the set of all bicliques produced by this algorithm contains all maximal
bicliques of G. These can be easily weeded out at a post-processing stage, or
during the computation of the algorithm.

To bound the running time of the algorithm above, first observe that we need
O(nm) time just to read the entire input. Next, notice that the algorithm has
O(n) iterations, where in each iteration it computes 2d bicliques (A′, B′). Start-
ing in each iteration with bicliques (A′, B′) where |A′| = 1, and increasing the
size of A′ by one each time, each set of common neighbors BA′ can be computed
with a single set intersection operation between N(a) ⊆ B and BA′\{a} ⊆ B for
some a ∈ A′. This set intersection operation can be naively performed in O(m)
time, giving a total running time of O(2dnm) to our algorithm. However, using
standard bit-tricks of the RAM model, we can improve the running time of each
such operation to O(m/ lg m), reducing the total running time of our algorithm
to the one stated in Lemma 3.

In the full version of the paper, we show how to use the “four russians tech-
nique” in order to adapt the algorithm above the case where the edges of G are
weighted. This allows us to compute all maximal d-block bicliques, along with
their weight, with only a factor of O(lg d) increase to the time complexity of the
algorithm. Details are omitted due to space constraints.

Lemma 4. Given a bipartite graph G = (A � B,E) with |A| = n and |B| = m,
a function w : E → {1, . . . , x} assigning weights to the edges of G, and an
integer d, one can compute the set of all weighted maximal d-block bicliques of
G in O(nm + 2d lg d · nm/ log m) time.

3.3 Solving RAGB2: The Colorful Variant

For the purposes of solving RAGB2, we consider the colorful variant of the
Block Bipartite Biclique problem where the vertices in B have colors, and
we wish to find a biclique that contains at most one vertex b ∈ B of each color.
For this purpose, let c : B → {1, . . . , C} be a coloring function of the vertices



22 A. Benshahar et al.

in B. Recall that a biclique (A′, B′) is said to be colorful if c(b1) = c(b2) implies
b1 = b2, for every b1, b2 ∈ B′. The Colorful Block Bipartite Biclique

problem is the variant of Block Bipartite Biclique where we wish to find a
colorful block biclique with a certain number of edges.

Unfortunately, we can no longer apply dynamic programming and the four
russians trick in this case. This is because the colors make the problem harder to
handle. In fact, it turns out that the colorful variants of the two other bipartite
biclique problems discussed above are W[1]-hard. This is not surprising for Col-

orful Balanced Bipartite Biclique, as Balanced Bipartite Biclique

is W[1]-hard by Lemma 2, and there is a generic parameterized reduction from
any problem to its colorful variant using the color-coding technique [1]. For
Colorful Bipartite Biclique we need a slightly more elaborate argument:

Lemma 5. Colorful Bipartite Biclique is W[1]-hard when parameterized
by k.

Regardless of the above, we can still compute in O(m) time a maximum sized
subset B′ ⊆ BA′ in a set of common neighbors of some A′ ⊆ A. This means that
we can adapt the algorithm above to compute maximum size colorful biclique
(A′, B′) in O(m) time per each biclique. Moreover, note that in the same amount
of time we can actually count the number of different colorful bicliques (A′, B′)
corresponding to some A′ ⊆ A[i, i + d]. This is done by a simple combinatorial
computation that considers all possibilities of picking a single vertex out of each
color in BA′ .

Lemma 6. Colorful Block Bipartite Biclique can be solved in O(2dnm)
time.

4 Methods

We implemented the algorithm for the RAGB2 problem in a program called
RAGB Monitor (Reference-Anchored Gene Blocks Monitor). Given the gene
map of a reference element and a set of target genomes, both in GenBank file
format, our program first BLASTs each gene from the reference element against
each gene from the target genomes, and considers the two genes to be orthologous
if their BLAST score is below 10−8. Upon a successful BLAST result, genes from
the target genome are re-labeled with the gene id of the corresponding gene from
the reference element. If a gene in a target genome is found to be orthologous
with more than one gene from the reference element, we map it to the one with
the highest BLAST score. Genes from the reference element, on the other hand,
are allowed to be mapped to more than one gene in each target genome. For
each target genome, a sequence of gene ids is then created, consisting only of the
genes that were labeled by an ortholog from the reference element genes, and
preserving the gene order in the original target genome.

Our program also takes as input several parameters, including an upper
bound d on the length (measured as number of genes) of an interval in the
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reference element, an upper bound d′ (measured as number of genes) on the
length of an interval in the target genomes, and quorums q1 and q2 on the min-
imal number of anchor genes and target genomes, respectively, required in a
bicluster. For segmenting the target genomes into intervals, biological segmen-
tation is applied: The distance between two consecutive genes in an interval is
bounded from above by 2000bp, and in addition, an interval length is bounded
from above by parameter d′. The tool was implemented in Python 2.8.3 and the
experiments performed on an Intel Xeon X5680 machine with 192 GB RAM. For
a query reference element consisting of 42 genes versus 33 target proteobacterial
genomes (see Sect. 5), the running time of our program ranged from 0.19 s for
d = 2, up to 379.8 s for d = 20.

Finally, we define a p-value that determines the probabilistic likelihood of
each gene block found. Let m denote the number of target genomes, and let n
denote the length of each target genome. We define our p-value as the probability
that k genes appear together in d-blocks of c out of the m genomes. We denote
the probability of this event by Pr[k, d, c]. Here, we assume that each genome is
a permutation on {1, . . . , n} drawn uniformly and independently at random.

Theorem 1. The following bound holds:

Pr[k, d, c] ≤
(

m

c

)((
n−k
d−k

)

(
n
d

) (n − d)

)c

.

5 Preliminary Bioinformatics Results

Enteropathogenic Escherichia coli (EPEC) is a major cause of food poisoning,
leading to significant morbidity and mortality. EPEC virulence is dependent on
a type III secretion system (T3SS), a molecular syringe employed by EPEC
to inject effector proteins into host cells [8]. The hallmark of T3SS is the nee-
dle apparatus it forms, also called “injectisome”. Bacterial effector proteins that
need to be secreted pass from the bacterial cytoplasm through the needle directly
into the host cytoplasm. Three membranes separate the two cytoplasms: the dou-
ble membrane (inner and outer membranes) of the Gram-negative bacterium
and the eukaryotic membrane. The needle provides a smooth passage through
those highly selective and almost impermeable membranes. The injected effector
proteins subvert host cellular functions to the benefit of the infecting bacteria.
A single bacterium can have several hundred needle complexes spread across its
membrane. It has been proposed that the needle complex is a universal feature
of all T3SSs of pathogenic bacteria. More than 15 proteins are needed to build
the T3SS, some of which are highly conserved in all known T3SSs. In EPEC, the
T3SS and related genes reside in several operons clustered in the Locus of Entero-
cyte Effacement (LEE), which is a stable pathogenicity island [5]. We exemplify
our tool based on LEE (EPEC) as the reference element and on representative
proteobacteria species as the target genomes.
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Fig. 1. The main result bicluster, anchored by genes 10–13 (escR, escS, escT, and escU)
from the LEE pathogenicity Island. For each co-localized instance of the anchor genes
in a target proteobacterial genome, the figure also shows additional homologs of genes
from the query island that were identified within the same genomic interval.

Sequences of LEE proteins from EPEC strain O127:H6 (str. E2348/69) [6],
NC 011601, were downloaded from the IslandViewer database [9], based on pre-
diction by SIGI-HMM [17], spanning genomic coordinates 4103271-4138312 of
the main chromosome. Islandviewer predicted 42 genes for this island. 33 target
genomes of proteobacteria were downloaded from NCBI, as described in Ream
et al. [12], who used this set of genomes in a study of the evolution of E. coli
operons.

Our objective was to identify biclusters: sets of genes, that are located in LEE
within a small proximity (i.e. contained within a window of size d in the gene
map of LEE), and that have orthologous genes conserved within small proximity
in some of the genomes of the proteobacteria species in our target set. For this,
we ran sliding windows of increasing sizes on the gene map of LEE, starting
with d = 2 (two genes) and converging at d = 17, after three runs in a row
gave consistent clusters. For each value of d, we considered all sliding windows
of length d (i.e. d consecutive genes) in the gene-map of LEE. For each sliding
window, we computed all biclusters, and selected the one with the lowest p-value,
computed according to the method described in Sect. 4.

The results shown in Fig. 1 were obtained for d = 17. The top-scoring cluster,
consistently across all window sizes, was the cluster containing the four genes:
10,11,12, and 13. The p-value for this bicluster (e−78 for d = 17) was signifi-
cantly lower than the p-values for all the other biclusters, based on its ortholo-
gous occurrences in 14 out of the 33 genomes in the target set. Furthermore, in
some of these genomes: Chromobacterium violaceum, Pseudomonas aeruginosa,
Vibrio parahaemolyticus, and Salmonella enterica serovar Typhi CT18, our tool
identified two or three copies of this bicluster in distinct locations on the chromo-
some. To interpret this result, we checked the literature and the Virulence Factor
Data Base [4]. The genes participating in the main bicluster predicted by our
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program were identified as four consecutive genes within the first operon of LEE:
escR, escS, escT, and escU. These genes are annotated as conserved T3SS pro-
teins: assembly of an inner membrane complex containing these proteins might
represent a critical early step in the biogenesis of the “syringe” apparatus men-
tioned above [14]. The other (less significant) biclusters yielded by our program
were also combinations of T3SS genes.
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Abstract. Cancer is a disease driven mostly by somatic mutations
appearing in an individual’s genome. One of the main challenges in large
cancer studies is to identify the handful of driver mutations responsi-
ble for cancer among the hundreds or thousands mutations present in
a tumour genome. Recent approaches have shown that analyzing muta-
tions in the context of interaction networks increases the power to iden-
tify driver mutations.

In this work we propose an ILP formulation for the exact solution
of the combinatorial problem of finding subnetworks mutated in a large
fraction of cancer patients, a problem previously proposed to identify
important mutations in cancer. We show that a branch and cut algo-
rithm provides exact solutions and is faster than previously proposed
greedy and approximation algorithms. We test our algorithm on real
cancer data and show that our approach is viable and allows for the
identification of subnetworks containing known cancer genes.

Keywords: Cancer mutations · Branch and cut · Combinatorial
optimization · Network analysis

1 Introduction

Recent advances in DNA sequencing technologies have allowed the study of
cancer genomes at an unprecedented level of detail. In particular, it is now
possible to measure all somatic mutations, changes in the DNA arising dur-
ing the lifetime of an individual and causing the disease, in a large number of
cancer patients [12,28]. These large cancer studies have shown that each indi-
vidual tumour harbours hundreds or thousands somatic mutations, with two
tumours showing a large diversity in the complement of somatic mutations they
exhibit [9,27]. This phenomenon is commonly referred to as (intertumor) cancer
heterogeneity.
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Cancer heterogeneity is explained by the fact that only a handful of all the
somatic mutations in a cancer genome are driver mutations related to the dis-
eases, while the majority of mutations are passenger mutations not related to
cancer progression and development. Moreover, driver mutations target regula-
tory and signaling pathways, groups of interacting genes that perform specific
functions in the cell [10,26] and that may be altered by mutating any of the
genes in the group. Therefore, to identify all driver mutations and the genes
they affect one cannot focus on genes in isolation, but has to study mutations
in the context of interaction networks [5].

In recent years, several methods have been proposed to identify significantly
mutated pathways in cancer [21]. Some of these methods work on known path-
ways [4], thus limiting our ability to identify novel pathways as well as subnetworks
connecting two pathways that are important for cancer. Other methods identify
significantly mutated pathways by combining mutation data with a large protein-
protein interaction network [14,15,18,23,25]. A common formulation is to look
for connected subnetworks that are mutated in a large number of patients, that
is equivalent to identifying connected subnetworks whose vertices cover a large
number of elements (i.e., patients) from a universe. In particular [25] defined the
connected maximum coverage problem (CMCP) as finding a connected subnet-
work of cardinality k that covers the maximum number of patients, proven to be
NP-hard in [25] where an approximation algorithm was also presented.

In this paper, we propose an integer linear programming formulation for
CMCP. Our formulation draws from an analogous formulation for Steiner tree
problems that have been the object of a recent DIMACS challenge [13]. In partic-
ular, the connectivity constraint leads to an exponential number of constraints
that we handle within a branch and cut framework. We show that our algo-
rithm allows for the identification of the optimal solution of CMCP on real
cancer datasets, and that the identified solutions cover more patients compared
to previously proposed heuristic approaches or approximation algorithms. We
also show that the subnetworks identified by our approach have higher statisti-
cal significance, estimated through permutation testing, compared to solutions
found by the approximation algorithm. We generalize our formulation to the
weighted version of the problem, and show that our branch and cut strategy
can be used to solve this formulation as well, and also show that our approach
identifies subnetworks of genes known to be associated with cancer.

Related Work. The computational problem of identifying connected subnet-
works with vertices covering a large number of elements have been studied in bioin-
formatics [14,15,24,25] as well as in wireless network design [16]. As mentioned
above, [25] studied the CMCP and provided an approximation algorithm for its
solution (see Sect. 2.1); [14,15,24] studied related, but different, problems. In gene
expression studies, [24] studied the problem of finding the smallest connected sub-
network such that at least k genes in the subnetwork are differentially expressed in
all patients but at most �. [14,15] study the problem of finding the minimum cost
collection of modules (i.e., subgraphs) covering each patient at least k times, where
a patient is covered by a module if at least one gene in the module is altered in the
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patient. The cost of a collection of modules is a function of the size of the modules
and other pairwise properties of the genes in the module (e.g., their distance in a
network; the degree of exclusivity of alterations).

The CMCP has some similarity with the cardinality constrained Maximum
Weight Connected Subgraph Problem [1,6], that asks to find a connected sub-
graph with maximum total weight in a node-weighted graph, and with the prize-
collecting Steiner Tree Problem [8,13,19], that asks to find a subtree of minimum
costs that spans all vertices from a set of terminals. Different ILP formulations
for these problems have recently been studied both theoretically and in prac-
tice [1,6,29]. The main issue from an ILP perspective is modeling the connec-
tivity requirement. In the formulations of [1,6], the connectivity constraints are
formulated by means of a root node and a generalized form of node separators.
With this approach, an additional set of node variables is needed to locate the
root. Later [8] proposes a thinned formulation that does not need a root and vari-
ables to locate it and that uses node separators in non-generalized form. Both
formulations exhibit an exponential number of connectivity constraints; there-
fore, branch and cut (B&C) algorithms have been used to solve these models.
In this approach connectivity constraints are not explicitly declared, rather they
are introduced during the search when they are needed. The B&C algorithm by
[1,6] finds violated connectivity cuts by identifying a minimum cut in a support
digraph. The B&C algorithm by [8] uses a lazy approach in which violated con-
straints are only searched when an integer solution is found and employs a linear
time algorithm to discover minimal node separators that are facet-defining. [3]
introduced a flow based, polynomial size formulation for connectivity constraints
for the problem of finding colorful connected subgraphs.

We note that while the connectivity requirement of CMCP is the same as
the connectivity requirements in the Maximum Weight Connected Subgraph
Problem and the prize-collecting Steiner Tree Problem, the latter two problems
have objective functions that are additive in the vertices chosen in the solution
(and also in the edges for the prize-collecting Steiner Tree Problem), while the
objective function for the CMCP is the more complicated coverage function,
that is a submodular set function [16].

2 Model and Algorithms

We are given a graph G = (V,E), with vertices V = {1, . . . , n} representing genes
and edges E representing interactions among genes (or the associated proteins).
Let P denotes the set of patients for which mutations have been assayed. Let
Pi ⊆ P be the set of patients in which gene i ∈ V is mutated. We say that a
patient j ∈ P is covered by a subset of vertices S ⊆ V , if there exists at least
one vertex v in S such that j ∈ Pv.

Our goal is to identify connected subgraphs of G that are mutated in a large
number of patients, where a subgraph is mutated in a patient if at least one of
the vertices in the subgraph covers the patient. More formally, we consider the
following problem, defined in [25].
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Fig. 1. Left: an instance of CMCP, with blue vertices and black edges representing G,
red vertices representing patients P and gray lines linking patients to their mutated
genes. Right: an optimal solution (in blue) to the instance on the left for k = 2. Patients
covered by the optimal solution are in red. (Color figure online)

Connected Maximum Coverage Problem (CMCP). Given a graph G
defined on a set of n vertices V , an integer k > 0, a set P , a family of subsets P =
{P1, . . . , Pn} where for each i, Pi ⊆ P is associated with i ∈ V , find the connected
subgraph S∗ ⊆ G with k vertices that maximizes the coverage | ∪i∈S∗ Pi|.

Figure 1 shows an instance of CMCP. If G is a complete graph, the connected
maximum coverage problem is the maximum coverage problem [11], where, given
a set U of elements, a family of subsets F ⊂ 2U , and a value k, one needs to find
a collection of k sets in F that covers the maximum number of elements in U .
The maximum coverage problem is NP-hard [11], thus, the connected maximum
coverage problem is NP-hard for a general graph and even for star graphs [25].

Preprocessing. Only connected components of G of size ≥k need to be considered.
The problem can be solved for each of those components in turn, returning the
best solution found. Nodes v ∈ V that cannot be in an optimal solution are
removed using the following rules: (i) v has degree 1, Pv = ∅, and after removal
the number of nodes in the connect component is ≥k; (ii) there is a node v′ �= v
whose set of neighbors is a superset of the set of neighbors of v and the set Pv′

is a superset of the set Pv.
The rest of the section is organized as follows: Sect. 2.1 reviews previously

proposed algorithms for the CMCP; Sect. 2.2 presents our ILP formulation for
the CMCP and the corresponding branch and cut algorithm; Sect. 2.3 extends the
ILP to a weighted version of the CMCP; and Sect. 2.4 describes the permutation
test used to assess the statistical significance of the solutions.

2.1 Previous Methods: Approximation Algorithm and Greedy
Algorithms

In this section we present previously proposed methods as well as simple greedy
algorithms for the CMCP. [7] proposed a polynomial time 1/(cr)-approximation
algorithm, where c = (2e−1)/(e−1) and r is the radius of optimal solution in the
graph. The algorithm starts by computing and storing all pairs shortest paths.
Then the algorithm finds a solution starting from each node v of the graph, and
at the end reports the best solution found. Given the current solution S obtained
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starting from vertex v, the algorithm augments it by adding the (shortest) path
to a vertex u that maximizes the ratio between the number of newly covered
patients and the number of new vertices added to the solution, while keeping
the number of vertices in the solution ≤k. We also implemented two variants of
the approximation algorithm that do not compute all pairs shortest paths and
differ in the way they define candidate paths to extend the current solution. The
first variant (bfs) performs a BFS (of depth ≤k) starting from the node v from
which the solution is grown. The second variant (ratio) considers all paths (not
only shortest ones) among pairs of vertices, and it does not guarantee to run in
polynomial time but has been shown to run efficiently on real datasets [7].

We also consider a simple greedy algorithm that builds a solution starting
from each vertex v and reports the best solution found. The algorithm builds
a solution by always adding to the current solution S the neighboring node
providing the maximum increase in the coverage.

2.2 ILP Formulation and Branch and Cut Algorithm

Our ILP formulation for CMCP is analogous to a recent formulation [8] for the
prize-collecting Steiner Tree problem. It involves only node variables and is based
on node separator inequalities, some of which can be proved to be facet defining
for the connected subgraph polytope [29].

Given the graph G = (V,E) and two distinct nodes h and � from V , a subset
of nodes N ⊆ V \{h, �} is an (h, �) (node) separator if and only if after removing
N from V there is no path between h and � in G. Let N (h, �) denote the family
of all (h, �) separators. A separator N ∈ N (h, �) is minimal if N \ {i} is not
an (h, �) separator, for any i ∈ N . We use binary coefficients aij for i ∈ V and
j ∈ P to indicate whether i covers j (i.e., gene i is mutated in patient j), that
is, aij = 1 if j ∈ Pi, and aij = 0 otherwise. Let xi for i ∈ V be binary variables
such that xi = 1 if the vertex i is in the solution S ⊆ V and xi = 0 otherwise,
and let yj for i ∈ V be binary variables such that yj = 1 if patient j is covered
by S and yj = 0 otherwise. We formulate the CMCP as an ILP as follows:

max
∑

j∈P

yj (1)

∑

i∈V

xi = k (2)

∑

i∈V

aijxi ≥ yj ∀ j ∈ P (3)

∑

i∈N

xi ≥ xh + x� − 1 ∀ h, � ∈ V, h �= �,∀ N ∈ N (h, �) (4)

xi ∈ {0, 1} ∀i ∈ V (5)
yj ∈ {0, 1} ∀j ∈ P (6)
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Constraints (2) impose that exactly k nodes of V are in the solution S. Con-
straints (3) ensure that the variables yj are set to one only when the correspond-
ing j ∈ P is covered. Constraints (4) are the node separator constraints for the
connectivity requirement. They ensure that for any pair of nodes h, � in S there
is a path in the graph induced by S, i.e., for any node separator N ∈ N (h, �)
at least one node in N must also be selected. [29] shows that the constraints
(4) are facets defining for the connected subgraph polytope if and only if N is a
minimal node separator separating h and �.

The Branch and Cut Algorithm. Our B&C algorithm (B&C) is analogous
to the one for the Steiner tree problem in [8]. The connectivity cuts (4) are
treated as lazy constraints, that is, they are not explicitly represented in the
initial ILP model but they are introduced only when an integer solution that
violates any of these constraints is found. B&C starts by including only a special
case of inequalities (4), i.e., xi ≤

∑
�∈V :(i,�)∈E x� for all i ∈ V . They state

that a node, if selected, must have a neighbor also selected. At any node of
the branch and bound tree an integral solution x̃ to the model (1)–(6) with a
subset of the constraints (4) gives a set of nodes S̃ = {i ∈ V | x̃i = 1}. If the
solution is not feasible with respect to the full model, then in the subgraph of G
induced by S̃ there are disjoint connected components. Let Ch and C� be two such
components, containing the nodes h and �, respectively. Then, the linear time
algorithm from [8] reported in Fig. 2 and exemplified in Fig. 3 finds the minimal
node separator that must be added to the model. In our implementation, for an
integer solution with m disjoint connected components we find the minimal node
separator for all m×(m−1) combinations and add all corresponding constraints.
B&C terminates when an integer solution that does not violate any lazy constraint
and whose value is proven optimal is found.

1 Function findMinNodeSeparator(G, S̃, { } ∈ S̃, Ch)
2 A(Ch) ← neighbors of nodes of Ch in G
3 G ← G with all edges between vertices in Ch ∪ A(Ch) removed
4 R ← nodes that can be reached from in G
5 return N = A(Ch) ∩ R

Fig. 2. Linear time algorithm for finding a minimal node separator N . The input is G,
two nodes h and � of an infeasible solution S̃, and the connected component Ch of the
subgraph of G induced by S̃ containing h and not containing �.

2.3 Weighted Model

We extend the ILP formulation to the case where for each (gene) vertex i ∈ V
and each patient j ∈ P we have a weight wij that we gain when i is used to
cover j; the objective is to maximize the weight of the covered patients with at
most one gene that can be picked to cover a patient. Without loss of generality
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h h h

Fig. 3. Left: example of disconnected solution S̃ (black nodes). Blue nodes are nodes
A(Ch), neighbors of Ch, and constitute a non minimal node separator. Middle: grey
and blue nodes represent the nodes in R� that are reachable from � in G′ and the
blue nodes constitute the minimal node separator. Right: the red nodes represent the
minimal node separator determined repeating the same procedure for component C�.
(Color figure online)

we assume that for all i ∈ V and all j ∈ P : wij ≤ 1 (weights can be normalized
by dividing them by the highest value). We introduce binary variables zij for
all pairs i ∈ V and j ∈ Pi. The interpretation of zij is that zij = 1 if gene i
is chosen to cover patient j, and zij = 0 otherwise. For j ∈ P , let Mj be the
set of genes mutated in j. We define the following model: we keep the objective
function (1) and the constraints (2), (4), (5) and add the following constraints:
(7) xi ≥ zij , ∀i ∈ V, j ∈ Pi; (8) yj ≤ wijzij + (1 − zij), ∀i ∈ V, j ∈ Pi; (9)
yj ≤

∑
i∈Mj

zij , ∀j ∈ P ; (10) 0 ≤ yj ≤ 1, ∀j ∈ P . Note that yj are now
continuous variables and that for a feasible solution we may have that for some
j ∈ P :

∑
i∈Mj

zij > 1, however at the optimal solution
∑

i∈Mj
zij ≤ 1 (assuming

all weights are different).

2.4 Permutation Test

We use a permutation test to assess the statistical significance of the subnetworks
identified by the methods above. In particular, we generate datasets under the
null hypothesis by permuting the identity of the genes in the network. The test
statistic used to compute the (empirical) p-value is the value of the objective
function of the solution. Given a permuted dataset and the value X of the test
statistic obtained from the solution found using the real dataset, we are only
interested in knowing if there is solution with test statistic ≥X in a permuted
dataset. Hence, we can stop an algorithm as soon as we are sure that the statistic
on the current permuted dataset will be either certainly larger or certainly lower
than the observed value X. This can be easily implemented in the branch and
bound framework of B&C by adding a constraint on the value of a feasible solution,
so that we can halt the search when either the lower bound of B&C becomes ≥X
or when the upper bound becomes <X.

We note that when a significant correlation between the degree of a node and
its coverage is present, permuting the identity of the genes in the network may
overestimate the significance of the subnetworks identified. We therefore checked
if in our instances there was a high correlation between degree and coverage of
the nodes: in all instances the absolute value of such correlation is low (≤0.08).
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3 Results

In this section we describe the cancer data and the computing environment used
in our experiments and the results obtained on the cancer datasets.

Data. We use the HIPPIE network1 [22]. The corresponding interaction graph
G consists of 15094 nodes and 188891 edges. Mutation data is obtained from the
TCGA Pan-Cancer analysis2 [18,28], with mutations of all genes measured in
3425 patients from 11 cancer types. We considered datasets of individual cancer
types as well as all samples together, the latter referred to as pancan dataset
(Table 1).

In all our experiments we performed the preprocessing described in Sect. 2,
and we report running times for methods after the preprocessing.

Table 1. Cancer datasets. For each dataset, we report the number genes of gene nodes
in graph G after preprocessing and the number |P | of patients in the instance.

Dataset Genes |P | Dataset Genes |P | Dataset Genes |P | Dataset Genes |P |
pancan 12310 3412 coadread 12088 495 kirc 11611 424 lusc 11752 177

blca 11424 100 gbm 11452 276 laml 10964 194 ov 11536 456

brca 11535 506 hnsc 11738 306 luad 11740 230 ucec 11865 248

Computing Environment and Solver Configuration. We implemented B&C in Py-
thon 2.7.5 using Gurobi 6.5.0 and callback functions. All experiments were con-
ducted on local nodes of a computing cluster. Each node had the following
configuration: two Intel E5-2680v3 CPUs with 12 CPU cores each, amounting to
24 cores in total, 64 GB RAM and 200 GB local SSD storage. All parameters in
Gurobi were left at their default values, except for the number of threads that
was set to one. In this way, experiments to compare the running times among
different programs are conducted with serial computation. In permutation tests,
we first solved the real dataset instance using a single thread and, then, the per-
muted datasets in parallel, one dataset per process, using python multiprocessing
module and work stealing strategy.

We run the approximation and the greedy algorithms described in Sect. 2.1
and our B&C on the datasets of Table 1 for k = 10, 15, and 20. For each pair
(dataset, k), Table 2 shows the coverage of the best solution found by the various
algorithms and the running time (median over 10 runs). We observe that for only
five of the 36 pairs (dataset, k) the approximation or greedy algorithms identify
solutions with coverage as high as the the optimal found by B&C. Even more
interestingly, the runtime of the B&C is comparable to the runtime of the greedy
algorithm, and it is above 1 min only for 11 pairs (instance, k), and only twice
above 5 min. For k = 10, we also compared the runtime of the B&C with the
runtime of an ILP formulation that models connectivity constraints as in [6],
1 http://cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/.
2 http://compbio-research.cs.brown.edu/pancancer/hotnet2/.

http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
http://compbio-research.cs.brown.edu/pancancer/hotnet2/
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Table 2. Comparison of algorithms. For each pair (dataset, k), the coverage (cov) of the
solution reported by the various algorithms and their running time (time [hh:mm:ss])
are shown. In bold: coverages of solutions from B&C that are strictly higher then coverage
of solutions from approximation and greedy algorithms; runtimes of B&C that are lower
than runtimes of greedy algorithm.

Dataset k approximation bfs ratio greedy flow B&C

Cov Time Cov Time Cov Time Cov Time Cov Time Cov Time

pancan 10 1804 4:00:12 1804 2:08:30 - >12 h 1469 0:00:55 1855 >18 h 1855 0:00:34

15 2072 4:30:14 2079 2:42:24 - >12 h 1648 0:01:48 2168 >18 h 2168 0:00:38

20 2276 5:01:51 2277 3:10:17 - >12 h 1817 0:02:33 2361 >18 h 2361 0:02:05

blca 10 84 2:29:19 85 1:04:08 87 6:15:03 79 0:00:34 87 9:09:23 87 0:02:06

15 94 2:44:52 93 1:19:21 96 6:44:01 86 0:01:01 97 8:35:49 97 0:02:40

20 100 2:59:28 100 1:36:49 100 7:03:14 93 0:01:29 100 4:40:14 100 0:02:23

brca 10 190 2:30:25 193 1:03:45 189 7:42:21 162 0:00:34 196 6:55:42 196 0:00:09

15 229 2:43:46 229 1:19:40 226 8:17:40 184 0:01:03 236 6:59:14 236 0:00:43

20 258 3:00:06 258 1:32:21 256 8:42:12 233 0:01:34 270 8:16:49 270 0:01:42

coadread 10 468 3:06:52 468 1:25:02 - >12 h 454 0:00:41 472 0:14:41 472 0:00:23

15 479 3:25:38 479 1:46:10 - >12 h 465 0:01:13 481 6:29:51 481 0:00:50

20 485 3:48:49 484 2:04:56 - >12 h 473 0:01:49 488 7:31:48 488 0:01:05

gbm 10 173 2:27:19 170 1:03:22 172 6:38:31 142 0:00:32 176 1:33:48 176 0:00:23

15 193 2:42:53 192 1:17:23 194 7:14:15 152 0:00:56 198 3:04:07 198 0:00:38

20 209 2:58:39 209 1:34:27 210 7:39:26 158 0:01:23 215 3:11:56 215 0:01:07

hnsc 10 208 2:42:36 208 1:08:37 205 7:50:45 181 0:00:37 214 6:58:14 214 0:01:22

15 241 2:56:58 241 1:23:36 240 8:36:33 206 0:01:08 248 7:01:28 248 0:00:58

20 259 3:11:00 260 1:43:39 260 9:11:04 225 0:01:44 267 12:37:39 267 0:03:16

kirc 10 335 2:32:54 337 1:02:42 328 9:17:26 306 0:00:34 337 0:22:21 337 0:00:06

15 352 2:48:38 353 1:19:03 350 9:49:22 321 0:01:04 359 0:32:10 359 0:00:18

20 366 3:07:14 366 1:38:15 362 10:33:34 331 0:01:36 374 0:56:15 374 0:00:34

laml 10 96 2:07:23 97 0:55:42 93 5:10:48 79 0:00:27 98 1:56:59 98 0:00:08

15 109 2:20:35 109 1:09:39 105 5:30:37 84 0:00:44 111 >18 h 111 0:00:18

20 118 2:35:59 119 1:23:56 113 5:52:13 89 0:00:58 122 0:04:13 122 0:00:28

luad 10 183 2:42:34 184 1:08:58 185 9:24:50 171 0:00:36 188 4:16:21 188 0:00:55

15 202 2:55:32 201 1:25:29 201 8:22:01 183 0:01:06 206 7:20:46 206 0:02:18

20 213 3:12:17 213 1:41:32 213 8:58:25 189 0:01:40 219 7:25:30 219 0:04:55

lusc 10 159 2:43:13 160 1:10:05 159 7:36:18 145 0:00:36 160 13:24:59 160 0:04:09

15 170 2:57:22 170 1:26:39 169 8:04:27 158 0:01:07 173 >18 h 173 0:14:07

20 176 3:16:17 177 1:45:46 176 8:53:21 167 0:01:39 177 >18 h 177 0:05:38

ov 10 259 2:33:15 258 1:05:38 263 9:51:42 253 0:00:34 264 0:45:25 264 0:00:14

15 284 2:48:59 284 1:22:26 288 10:27:14 267 0:01:00 290 2:31:51 290 0:00:25

20 304 3:04:25 306 1:38:59 306 11:18:41 277 0:01:28 313 2:57:04 313 0:00:42

ucec 10 209 2:53:05 209 1:18:22 210 9:03:36 194 0:00:38 211 0:21:33 211 0:00:12

15 218 3:12:04 218 1:35:53 219 9:41:43 204 0:01:07 222 9:44:56 222 0:00:35

20 226 3:31:24 228 1:58:31 227 10:22:08 211 0:01:39 231 10:23:55 231 0:00:49

adds forbidden solution cuts whenever a nonconnected integer solution is found,
and employs a min-cut flow algorithm on fractional solutions for separation (as
in [6]). The results in Table 2 (column flow) show that the B&C approach we
propose is much faster than this alternative ILP approach.

To test the scalability of our B&C algorithm, we generated one larger instance
by replicating the mutations in the pancan dataset three times, for a total of
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Table 3. Permutation test results. For each pair (instance, k) and each combination
of algorithms used on real dataset and permuted datasets, the p-value (from 100 per-
mutations) is reported.

Instance k p-value: real dataset/permuted datasets Instance k p-value: real dataset/permuted datasets

B&C/B&C bfs/B&C bfs/bfs B&C/B&C bfs/B&C bfs/bfs

pancan 10 0.01 0.02 0.01 kirc 10 0.02 0.02 0.01

15 0.01 0.09 * 15 0.01 0.18 0.03

blca 10 0.13 0.54 0.28 laml 10 0.02 0.06 0.02

15 0.34 0.99 0.85 15 0.02 0.08 0.02

brca 10 0.01 0.02 0.01 luad 10 0.14 0.53 0.3

15 0.03 0.17 0.04 15 0.32 0.85 0.49

coadread 10 0.01 0.3 0.16 lusc 10 0.77 0.77 0.6

15 0.11 0.52 0.14 15 0.69 1 0.83

gbm 10 0.13 0.55 0.39 ov 10 0.03 0.19 0.1

15 0.18 0.75 0.39 15 0.06 0.41 0.14

hnsc 10 0.17 0.56 0.17 ucec 10 0.01 0.03 0.02

15 0.07 0.38 0.06 15 0.02 0.36 0.12

*denotes experiments that did not complete in <2 h.

Table 4. Weighted model results. For each dataset and value of k, the weight of the
optimal solution and the median runtime over 10 runs is shown.

Dataset k Weight Runtime [s] p-value k Weight Runtime [s] p-value k Weight Runtime [s] p-value

brca 10 127.06 22.29 0.01 15 137.06 141.04 0.01 20 141.98 184.16 0.03

gbm 10 93.37 130.41 0.03 15 94.26 341.02 0.02 20 94.69 479.55 0.01

10275 patients in P . On such instance, B&C identifies the optimal solution in
257 s for k = 10, 270 s for k = 15, and 435 s for k = 20.

We also compared the statistical significance of the results obtained using
B&C for k = 10, 15 with the statistical significance of the results obtained using
the variant bfs of the approximation algorithm, that reported the best solution
among the approximation and greedy algorithm in most cases. In particular, we
used bfs to obtain the best solution on the instances from Table 1 and used bfs
in the permutation test of Sect. 2.4 to compute the p-value for such solutions.
We repeated the same experiment (with the same permuted datasets) using B&C
instead of bfs for both the instances in Table 1 and the permuted datasets. We
also used B&C to compute the p-value for the solutions obtained by bfs on real
data. Results are shown in Table 3. We observe that B&C almost always identifies
more statistically significant solutions compared to bfs. Moreover, in several
instances we see that the solution obtained by bfs appears significant when bfs
(that does not identify the optimal solution) is used for the permuted datasets,
while the significance of such a solution is greatly reduced when B&C (that does
identify the optimal solution) is used instead.

We considered the model with weights from Sect. 2.3 and tested it on the
brca and gbm datasets. Similarly to the analysis performed in [18], the weights
are obtained as − log10 qi, where qi is the MutSigCV3 [17] q-value for gene
i. Weight, runtime, and p-value of optimal solutions are presented in Table 4.

3 http://firebrowse.org.

http://firebrowse.org
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While the runtime increases, as expected for these more complicated formula-
tion, it still remains feasible to identify statistically significant large subnetworks
of high weight. For brca and k = 10, our B&C algorithm identifies the subnetwork
containing genes {BMI1, CTCF, ELAV1L, FOXA1, GATA3, MLL3, NCOR1,
PTEN, RUNX1, TBX3}. While the last 6 genes were reported as significantly
mutated by single gene test in the TCGA publication on the same dataset [20],
CTCF and FOXA1 are known cancer genes that did not pass significance for
single gene testing in [20]. Further, the polycomb group gene BMI1 is mutated
with low frequency, but has been reported to be involved in various cancers [2].

4 Conclusions and Discussion

We presented a novel algorithm for the connected maximum coverage problem,
previously proposed for finding frequently mutated subnetworks in cancer. Our
algorithm is based on an ILP formulation solved in a branch and cut frame-
work. Our results show that our algorithm identifies subnetworks more frequently
mutated and of higher statistical significance compared to previously proposed
algorithms and to greedy approaches, while maintaining a runtime lower than
or comparable to the runtime of greedy approaches. We also generalised our for-
mulation to the case of weights for each gene in each patient, and showed that
using this formulation we identify networks containing cancer genes that are not
identified by single gene tests. While we considered a protein-protein interaction
networks as interaction graph, our approach is also applicable when a diffusion-
based influence graph [25] is used. In this work we focused on CMCP, but we
believe that our framework could be beneficial to other optimization problems
in bioinformatics where connected subgraphs are sought.
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Abstract. Isometric gene tree reconciliation is a gene tree/species tree
reconciliation problem where both the gene tree and the species tree
include branch lengths, and these branch lengths must be respected by
the reconciliation. The problem was introduced by Ma et al. (2008a) in
the context of reconstructing evolutionary histories of genomes in the
infinite sites model. In this paper, we show that the original algorithm
by Ma et al. (2008a) is incorrect, and we propose a modified algorithm
that addresses the problems that we discovered. Moreover, by adapting
a data structure by Amir et al. (2007), we were able to improve the
running time from O(mn) to O(n + m logm), where n is the size of the
species tree, and m is the size of the gene tree.

1 Introduction

In this paper, we revisit the problem of isometric gene tree reconciliation intro-
duced by Ma et al. (2008a). We point out several mistakes in the original publi-
cation and provide a corrected and simplified version of the algorithm. We also
improve its running time by employing appropriate data structures and suggest
several related open problems.

We will consider evolution of a single gene family. The evolutionary history
starts with a single ancestral gene which evolves by a series of duplications,
speciations and losses, resulting in several present-day species, each carrying
some number of copies of the studied gene. A particular evolutionary history of
a gene family defines a gene tree G and a species tree S (see Fig. 1). The leaves of
the species tree S are the present-day species, and the internal nodes correspond
to speciation events. The leaves of the gene tree G are the present-day copies of
the gene and the internal nodes correspond to duplications or speciations.

Species trees and gene trees can be reconstructed from sequence data by
well-established methods (Felsenstein 2004). However, a pair of gene tree G and
species tree S can correspond to many different histories, because it is not clear,
which nodes of G correspond to speciations from S. The goal of gene tree/species
tree reconciliation is to map nodes of the gene tree to the species tree, and thus
to reconstruct the evolutionary history of the gene family.

Classical approaches to reconciliation consider only topologies of G and S.
As the reconciliation is not unique, the goal is to find the most parsimonious
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 40–51, 2016.
DOI: 10.1007/978-3-319-43681-4 4
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a1 a2 a3 b1 b2 c1 c2 a1 a2 b1 c1 c2a3 b2 a b c

history gene tree G species tree S

Fig. 1. An example of an evolutionary history of a gene family and its corresponding
gene tree G and species tree S. Gene identifiers start with species label; thus a1, a2

and a3 are three copies of the studied gene in species a. Gene loss is depicted as an
empty circle. Duplications are highlighted by gray dotted horizontal lines, speciations
by dashed lines.

reconciliation minimizing the number of events. This problem is studied since
1979 (Goodman et al. 1979), and multiple algorithms were developed (Guigo
et al. 1996; Zhang 1997; Eulenstein 1997; Zmasek and Eddy 2001).

In this paper, we consider a different variant of the problem called isometric
gene tree reconciliation. In this problem, branch lengths in both the gene tree
and the species tree are known exactly, and the reconciliation should obey them.
This problem was introduced by Ma et al. (2008a), who used this form of gene
tree reconciliation as one of the steps in their polynomial-time algorithm which
can reconstruct evolutionary history of several genomes in a rich model which
includes duplications, two and three breakpoint rearrangements, deletions, and
insertions under assumptions of the infinite sites model. This result is rather
remarkable, as reconstruction of rearrangement histories is typically NP hard
even in simple models (Fertin et al. 2009).

If both the gene tree and the species tree are rooted, their isometric recon-
ciliation can be found by a straightforward algorithm: we map each leaf of S to
the corresponding leaf of G and once a node v is mapped, we can map its parent
p to the unique place in G determined by the length of the edge (p, v). Note
that in general, a node from G can map either to one of the nodes in S or to
a point on an edge of S. For example, in Fig. 2 node y from G maps to a point
in the middle of edge (r, x) in S, because this is the unique point on the path
from the root to leaf c, which is situated in distance 3 from c. Note that this
simple algorithm maps node p using one of its children. When the other child
of p suggests mapping of p to a different place, the trees cannot be reconciled.
However, if the reconciliation exists, it is clearly unique.

However, Ma et al. (2008a) and (2008b) consider a more difficult problem, in
which the species tree is rooted, but the gene tree is unrooted. This is needed,
because in practice most of the phylogenetic reconstruction methods produce
unrooted trees. While the species tree can be rooted by including an outgroup,
finding an appropriate outgroup for a multi-gene family, which may harbor
ancient duplications, is more problematic. Ma et al. (2008a) and (2008b) give
a polynomial-time algorithm for the isometric reconciliation problem, and after



42 B. Brejová et al.
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Fig. 2. Isometric reconciliation of rooted G and S.

some unspecified modifications, apply it to real data with inexact branch lengths.
In this paper, we point out several mistakes in their version of the algorithm and
provide a corrected version. Note that although it is not obvious, the isometric
reconciliation is still unique in this case.

Reconciliation with some branch length information was also considered
in several more complex models, such as probabilistic approaches considering
branch lengths in S (Sennblad and Lagergren 2009; Górecki et al. 2011; Doyon
et al. 2012) and models allowing horizontal gene transfer (Doyon et al. 2010;
Bansal et al. 2012).

Notation. We will now introduce notation used in this paper, which slightly
differs from notation in the publications by Ma et al. Given two nodes u and v
belonging to the same phylogenetic tree, d(u, v) denotes their distance, i.e. the
sum of edge lengths on the unique simple path between u and v. If u is a node
in a rooted phylogenetic tree, anc(u, d) denotes the point in the tree which is
at a distance exactly d from u on the path towards the root. The result can be
one of the ancestors of u, or a point on some edge on the path from u to the
root, or even on an implicit edge of infinite length leading from the root upward.
By lca(u, v), we denote the lowest common ancestor of nodes u and v, and by
lca(X) the lowest common ancestor of a whole set of nodes X. We will assume
that all phylogenetic trees have strictly positive edge lengths.

2 Problems in the Original Algorithm

Both Ma et al. (2008a) and (2008b) include the same algorithm for isometric gene
tree reconciliation. In this section, we describe some of its details and point out
mistakes in the original paper. We start with the original definition of isometric
reconciliation as given by Ma et al. (2008a).

Definition 1 (Original Definition). Any mapping Φ from a gene tree G to a
species tree S that roots the gene tree is an isometric reconciliation if
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Fig. 3. A counter-example for the original definition of isometric reconciliation. G and
S are input trees, G′ is the rooted version of G and S′ is S with duplication nodes
added. Although this reconciliation satisfies Definition 1, it does not correspond to any
evolutionary history.

1. Every leaf of G maps to the leaf of the designated species in S.
2. Each internal node of G maps to a speciation node in S or a point on a

branch in S.
3. The new root q of G maps to a point Φ(q) on a branch in S such that any

other node x in G maps to Φ(x) below Φ(q) and d(Φ(x), Φ(q)) = d(x, q)

As the example in Fig. 3 shows, this definition is not sufficiently stringent to
characterize meaningful reconciliations. The mapping Φ shown satisfies all the
above conditions, but does not correspond to any valid history. In particular,
node x in the rooted version of G is a parent of leaf a1, but node Φ(x) is not an
ancestor of Φ(a1).

This problem is very easily corrected by demanding that mapping Φ pre-
serves distances and ancestor relationships between every pair of nodes in G, or
equivalently, between every pair of adjacent nodes in G. We will also introduce a
more explicit notation distinguishing the input trees and their modified versions,
as follows.

Definition 2 (Modified Definition). Let G be an unrooted gene tree and S be
a rooted species tree. Isometric reconciliation of G and S is a triple (Φ,G′, S′).
Tree G′ is a rooted version of G. Tree S′ is obtained from S by potentially
subdividing some edges by new nodes and potentially adding a path leading to the
original root of S from above. Mapping Φ maps nodes of G′ to nodes of S′ so
that:

1’. Every leaf of G′ maps to the leaf of the designated species in S′.
2’. Each internal node of G′ maps to an internal node in S′.
3’. If node x is the parent of y in G′, then Φ(x) is an ancestor of Φ(y) in S′ and

d(Φ(x), Φ(y)) = d(x, y); or in our notation, Φ(x) = anc(Φ(y), d(x, y)).

In addition, we require that each node from S′ either exists in S or some node
from G′ maps to it.

Overall Scheme of the Original Algorithm. The algorithm of Ma et al. (2008a)
proceeds by first mapping leaves of G to corresponding leaves of S and then
repeatedly choosing one unmapped node x from G which has at least two of its
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Fig. 4. An example which can be reconciled, but which the original algorithm may
recognize as irreconcilable. When mapping node x, all three neighbors are already
mapped, and thus the algorithm by Ma et al. can choose any two of them as nodes
u and v. If it chooses b1 and b2, it works correctly, but if it chooses a1 and b1, it will
reject the tree in step 7(b)iii.

three neighbours already mapped. Each such node is mapped to its corresponding
point Φ(x), and if one of the adjacent edges in G contains a root, the gene tree
is rooted. This process continues, until only one node remains.

The overall scheme of the algorithm reveals another minor issue: the algo-
rithm does not work for gene trees with two leaves. The leaves can be mapped
trivially, but we also need to find the position of the root on the edge connect-
ing them in G, and since in the algorithm, rooting is done simultaneously with
mapping internal nodes, it is not obvious how to find the root in this case.

Mapping One Node. The algorithm for mapping an internal node and, if appro-
priate, rooting the gene tree, consists of a rather extensive case analysis, with
about ten different cases. After simulating the algorithm on several examples, we
have discovered that it does not always work correctly. Figure 4 shows a simple
input, which can be reconciled. The algorithm maps the only internal node x
correctly, but sometimes fails during rooting, rejecting the input as irreconcil-
able. When mapping the last internal vertex, the algorithm arbitrarily chooses,
which of the two neighbours of this vertex are considered first, and depending
on this choice, the algorithm may fail or succeed on this input.

Speciation and Duplication Happening at the Same Time. Ma et al. (2008a) and
(2008b) assume that the input trees are binary and that two events (two dupli-
cations or duplication and speciation) never happen at the same time. However,
even binary input trees may lead to situations, where two events happen at the
same time. A simple example is when the root of G′ coincides with one of the
internal vertices of G, and thus it has three children. This situation is handled
by the original algorithm and rejected in case 7(b)iii. An example of such an
input is shown in Fig. 5.

Figure 6 shows a similar input, with only one branch length changed. Here
also duplication happens at the same time as speciation, but due to later losses
the rooted gene tree G′ remains binary. The original algorithm accepts this input,
which seems inconsistent with handling the input from Fig. 5. Note that both
of these inputs can be reconciled so that they satisfy the corrected definition of
isometric reconciliation (as well as the weaker original definition).
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Fig. 5. An input rejected by the original algorithm where reconciliation maps duplica-
tion and speciation to the same point in the history.
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Fig. 6. An input accepted by the original algorithm, where reconciliation maps dupli-
cation and speciation to the same point in the history.

If we work in a model where no two events may happen at the same time,
we would need to modify the algorithm so that it reject both of these inputs
and also modify the definition of isometric reconciliation so that when a node
v of G′ maps to a speciation node Φ(v) in S′, then indeed one of the subtrees
of v contains only leaves corresponding to species in one of the subtrees of Φ(v)
and the other subtree of v analogously contains only leaves corresponding to
species from the other subtree of Φ(v). Alternatively, we can use a more relaxed
evolutionary model, in which we allow an arbitrary combination of events happen
at the same time; we will take this approach in our modified algorithm.

Summary of Issues. To summarize, the original definition of isometric reconcili-
ation allows nonsense mappings that do not correspond to any evolutionary his-
tory and does not handle sufficiently clearly cases with simultaneous duplication

u x v
Φ(u) Φ(v)

λ

Φ(x)

d(φ(u), λ) + ε d(φ(v), λ) + ε
d(Φ(u), λ) d(Φ(v), λ)

εd(u, v)

Fig. 7. Illustration of stage 3: creating a potential root x inside edge (u, v).
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and speciation. In addition, the original algorithm does not handle gene trees
with two leaves and sometimes fails to root valid inputs. In the next section,
we present a new algorithm that corrects these problems and, at the same time,
simplifies the proof of correctness by reducing the case analysis to minimum.

3 The Modified Algorithm

In this section, we describe a new version of the algorithm for isometric gene tree
reconciliation. Although the overall idea is similar to the original algorithm, we
have made it more modular, with several passes through the tree, each relatively
simple. This allows us to avoid complicated case analysis in both the algorithm
and the proof. Our algorithm works even for non-binary input trees and allows an
arbitrary combination of events to happen at any given point in the evolutionary
history. If desired, a reconciliation with such simultaneous events can be rejected
in the verification stage. Our algorithm proceeds in five stages:

Stage 1: Map leaves of G to the corresponding leaves of S.
Stage 2: Map internal vertices of G.

Repeatedly consider an unmapped internal node x of G with at least two
mapped neighbors u and v. Let xu = anc(Φ(u), d(u, x)) and xv = anc(Φ(v),
d(v, x)). If one of xu and xv is a descendant of the other, use the descendant
as Φ(x) (this includes the case when xu = xv). Otherwise reject the input
tree.

Stage 3: Add the root of G.
Consider each edge (u, v) of G. We want to decide if this edge should be
subdivided by a new node, which will be a potential root.
Let λ = lca(Φ(u), Φ(v)) and let ε = (d(u, v) − d(Φ(u), λ) − d(Φ(v), λ))/2. If
ε > 0 or λ /∈ {Φ(u), Φ(v)}, create a new node on the edge (u, v) in distance
d(Φ(u), λ)+ε from u and d(Φ(v), λ)+ε from v (see Fig. 7). Map the new node
to anc(λ, ε).

Stage 4: Create rooted tree G′.
Let V be the set of all nodes of G, including nodes created in stage 3, if
any. Let Φ(V ) be the set of points in S where nodes from V map, and let
λ = lca(Φ(V )). If there is a unique node q ∈ V that maps to λ, select it as
the root of G′. Otherwise reject the input.

Stage 5: Check that the mapping satisfies the definition of isometric reconcili-
ation: consider each edge of G′ and verify condition (3’) of Definition 2.

To keep the algorithm efficient, we will not explicitly construct S′ with added
duplication nodes. When a node x maps to a point on an edge (u, v) in S, we
will keep the mapping as a pair (u, d), where u is the bottom endpoint of the
edge and d is distance from u to the mapped point.

Proof of Correctness. If the algorithm does not reject the input, it will produce
a correct isometric reconciliation, thanks to the verification in stage 5. Therefore
it is sufficient to prove that we will never falsely reject an input if a reconciliation
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exists. Assume that (Φ∗, G′, S′) is an isometric reconciliation; we will prove that
the algorithm will find it. This also proves that the isometric reconciliation is
unique, because if there were two distinct reconciliations, the algorithm cannot
produce both of them simultaneously.

Correctness of mapping constructed in stage 2 can be obtained by induction
using Lemma 1. Note that the existence of an unmapped node with at least
two mapped neighbors in each iteration of the algorithm is guaranteed by basic
properties of trees.

Lemma 1. If stage 2 of the algorithm considers an unmapped node x with two
neighbors u and v which are mapped correctly to Φ∗(u) and Φ∗(v), it will map x
correctly to Φ∗(x).

Proof. We will distinguish several cases based on the location of the root q of
G′ in the correct reconciliation. If we remove edges (u, x) and (v, x) from G, we
will get three connected components. Root q can be in one of these components
or on one of the removed edges.

Case 1: q is in the component containing x (including the case x = q).
Then u and v are children of x in G′, and thus by Definition 2, Φ∗(x) =
anc(Φ∗(u), d(u, x)) and also Φ∗(x) = anc(Φ∗(v), d(v, x)). In the algorithm, we
thus get xu = xv = Φ∗(x), and this point is correctly selected as Φ(x).

Case 2: q is in the component containing u (including the case u = q). Then x is
a child of u and v is a child of x. Thus by definition, Φ∗(u) = anc(Φ∗(x), d(u, x))
and Φ∗(x) = anc(Φ∗(v), d(x, v)). In the algorithm, xu will be an ancestor of
Φ∗(u) and xv will be Φ∗(x). Thus xv will be correctly selected as Φ(x), because
it is a descendant of xu.

Case 2’: q is in the component containing v. This case is symmetrical to case 2.

Case 3: q is inside edge (x, u), excluding the endpoints. Vertex u is a child of
q in G′ and thus Φ∗(q) = anc(Φ∗(u), d(u, q)). Since d(u, q) < d(u, x), xu is an
ancestor of Φ∗(q). On the other hand, Φ∗(v) is a descendant of Φ∗(x), which
is a descendant of Φ∗(q). Node xv will be equal to Φ∗(x) and will be correctly
selected by the algorithm as Φ(x).

Case 3’: q is inside edge (x, v). This case is again symmetrical to case 3. ��

Similarly, we can prove by case analysis that the algorithm correctly finds
and maps the root of the tree.

Lemma 2. If stage 3 of the algorithm considers an edge (u, v) with its endpoints
correctly mapped to S, it will subdivide this edge by a new node if and only if the
correct reconciliation has a root inside this edge. The new node will be created
at the correct position and mapped correctly.

Proof. Let q be the root of G′ in the correct reconciliation, and let us consider
three cases regarding the position of q after removal of edge (u, v) from G.
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Case 1: q is in the connected component containing u. Then Φ(u) = anc(Φ(v),
d(u, v)) and thus λ = Φ(u). In addition, d(Φ(u), λ) = 0, d(φ(v), λ) = d(u, v) and
thus ε = 0. No node will be created, which is correct, as in this case the root is
not inside this edge.

Case 2: q is in the connected component containing v. This case is symmetrical
to case 1.

Case 3: q is inside edge (u, v). Let d = d(u, v) and let δ = d(q, u). We have
0 < δ < d. Since q is the parent of both u and v in G′, Φ∗(q) = anc(Φ(u), δ) and
Φ∗(q) = anc(Φ(v), d − δ). We will consider two subcases concerning the position
of λ = lca(Φ(u), Φ(v)). (a) If λ = Φ∗(q), new node will be created, because
λ /∈ {Φ(u), Φ(v)}. We have ε = (d−δ−(d−δ))/2 = 0, so the node will be created
at distance δ from u, as desired. (b) If Φ∗(q) is not λ, λ must be a descendant
of Φ∗(q), with d(λ, Φ∗(q)) = ε′ > 0. Note that in this case it is possible that
λ ∈ {Φ(u), Φ(v)}. However, δ = d(φ(u), λ) + ε′ and d − δ = d(φ(v), λ) + ε′ and
thus ε = (d − (δ − ε′) − (d − δ − ε′))/2 = ε′ > 0. Thus a node will be created and
its distance from u will be correctly set to d(φ(u), λ) + ε = δ. ��

After stage 3, we will thus have all nodes of G correctly mapped to S and
if the root of G′ is not one of the nodes of G, it was also correctly added and
mapped. The definition of isometric reconciliation implies that the true root of
G′ will be indeed the only node mapping to lca(Φ(V )), so the gene tree will be
correctly rooted by the algorithm.

Running Time Analysis. Let m be the size of G and n the size of S. Ma
et al. (2008b) claim that their algorithm works in O(mn) time; however, we
will prove that a more efficient implementation of isometric reconciliation is
possible. Within the algorithm, we use several nontrivial operations on tree S:

– Finding lca of two nodes. We can use efficient data structures for solving lca
queries in O(1) time after O(n) preprocessing of the tree (Harel and Tarjan
1984; Bender and Farach-Colton 2000).

– Determining if node u is an ancestor of v. This is equivalent to asking if
u = lca(u, v).

– Computing the distance between node v and its ancestor u. This can be done
in O(1) time by keeping the distance from the root of S in each node and
subtracting these distances for u and v.

– Finding anc(u, d). This operation is known as level ancestor. For unweighted
trees, it can be solved in O(1) time after O(n) preprocessing (Berkman and
Vishkin 1994) and for trees with integer weights in O(log log u) time, where u is
the maximum edge weight (Amir et al. 2007). Below, we outline a simplified
version of this data structure which achieves O(log n) time per query, but
works for arbitrary edge weights, as edge weights in phylogenetics are typically
not expressed as integers.



Isometric Gene Tree Reconciliation Revisited 49

Using these building blocks, the rest of the algorithm is relatively straightfor-
ward. Stage 1 of the algorithm is trivial, because identifiers of leaves in G directly
indicate the correct leaf in S. For stage 2, we maintain a counter of mapped
neighbors for each internal node of G and a stack of unprocessed nodes with
at least two neighbors already mapped. In each step, we remove one node from
the stack, map it, and increase the counters of its neighbors. If any counter
reaches 2, the corresponding node is added to the stack. The overall overhead
for selecting nodes for mapping in stage 2 is thus O(m), and mapping each node
works in O(log n). Stage 3 involves a simple loop through all edges, and each
edge is processed in O(log n) time. Stages 4 and 5 work in linear time; note that
lca(Φ(V )) can be computed by m − 1 applications of pairwise lca. The overall
running time of the algorithm is thus O(n + m log n).

Finally, note that our algorithm does not explicitly create species tree S′

with edges subdivided by duplication nodes. To do so, one would have to sort
points (u, d) mapped to each edge (u, v) of S by distance d from u. This can be
done in O(n + m log m) time. Typically, m ≥ n, and so the overall running time
would be O(m log m).

A Simple Level Ancestor for Arbitrary Weights. For completeness, we briefly
describe a data structure for finding anc(u, d) in O(log n) time for arbitrary
edge weights, provided that we can do addition, subtraction, and sign in constant
time. We use a simplified version of the data structure by Amir et al. (2007);
the simplification is possible thanks to the fact that the running time is worse
than the running time achievable for integer edge weights.

Let node weight w(u) be the sum of edge weights on the path from the root
to node u. To compute anc(u, d), we are looking for the highest ancestor v of u
such that w(u) − w(v) ≤ d. If we had only a single path instead of a tree, we
would be looking for a predecessor of value x = w(u)−d in the sequence of node
weights. Since this sequence is increasing, we can use binary search to find the
desired index v.

In a general tree, we will use the heavy path decomposition (Harel and Tarjan
1984). An edge connecting node v to its parent p in a tree is called heavy if the
size of the subtree rooted at v (the number of nodes) is at least half of the size
of the subtree rooted at p. Otherwise the edge is called light. For each node, at
most one of its children is connected to it by a heavy edge. Therefore, heavy
edges form a set of vertex-disjoint paths. Vertices which are not incident to any
heavy edge will be considered as heavy paths of length 0 so that each node is
included in exactly one heavy path.

We create an array of node weights for each heavy path. Each vertex v also
keeps the reference to the highest node on its heavy path. When searching for
anc(u, d), we search along the path from u to the root to find the heavy path that
contains the answer. Thanks to the properties of the heavy path decomposition,
there are at most O(log n) light edges on any leaf-to-root path, and thus we can
use linear search to iterate through heavy paths encountered on the way to the
root. In constant time, we can jump to the head of the path and comparing x to
the value stored in the head and in the head’s parent, we can determine if this
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path contains the answer. Within the correct path, we then find the answer by
binary search. The overall time is thus O(log n).

The data structure for integer weights by Amir et al. (2007) uses binary search
over heavy paths, which requires repeated use of the unweighted level ancestor
data structure. Instead of binary search within a path, they use efficient data
structures for the predecessor problem with integer keys.

4 Conclusion and Open Problems

In this paper, we have corrected an algorithm for isometric gene tree reconcil-
iation, first presented by Ma et al. (2008a) in the context of reconstruction of
evolutionary histories in the infinite sites model. We have also improved running
time of the algorithm from O(nm) to O(n + m log m), where n is the size of the
species tree, and m is the size of the gene tree.

In our problem, the gene tree is unrooted, and the species tree is rooted. This
corresponds to a common practice, where gene trees are inferred computationally
without outgroup genes, while species trees reflect well established phylogenetic
relationships. However, it may be of interest to extend isometric gene tree rec-
onciliation to unrooted species trees. We have shown that if the species tree is
rooted, there is always at most one solution. In case of unrooted species tree,
can there be multiple solutions?

In practical applications, we cannot rely on the assumption that the branch
lengths are exactly correct. Algorithms that would allow for errors in branch
lengths, e.g. assuming that branch lengths are correct up to some degree of
tolerance, would be useful for practical applications.

Finally, it is well known that the rate of evolution varies between individual
gene families. This fact could be captured if the exact branch length assumption
is relaxed so that all branch lengths in the gene tree are scaled by an unknown
constant factor α. The reconciliation algorithm would then simultaneously infer
node mapping and scaling factor α.
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Górecki, P., Burleigh, G.J., Eulenstein, O.: Maximum likelihood models and algorithms
for gene tree evolution with duplications and losses. BMC Bioinform. 12(1), 1 (2011)

Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny.
Mol. Phylogenet. Evol. 6(2), 189–213 (1996)

Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM
J. Comput. 13(2), 338–355 (1984)

Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Miller, W., Haussler, D.: The infinite sites
model of genome evolution. Proc. Nat. Acad. Sci. 105(38), 14254–14261 (2008a)

Ma, J., Ratan, A., Raney, B.J., Suh, B.B., Zhang, L., Miller, W., Haussler, D.: DUP-
CAR: reconstructing contiguous ancestral regions with duplications. J. Comput.
Biol. 15(8), 1007–1027 (2008b)

Sennblad, B., Lagergren, J.: Probabilistic orthology analysis. Syst. Biol. 58(4), 411–424
(2009)

Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phyloge-
nies. J. Comput. Biol. 4(2), 177–187 (1997)

Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and speciation
events on a gene tree. Bioinformatics 17(9), 821–828 (2001)



Further Improvement in Approximating
the Maximum Duo-Preservation String

Mapping Problem

Brian Brubach(B)

Department of Computer Science,
University of Maryland–College Park, College Park, MD, USA

bbrubach@cs.umd.edu

Abstract. We present an improved approximation for the Maximum
Duo-Preservation String Mapping Problem (MPSM). This problem was
introduced in [7] as the complement to the well-studied Minimum Com-
mon String Partition problem (MCSP). Prior work also considers the
k-MPSM and k-MCSP variants in which each letter occurs at most k
times. The authors of [7] showed a k2-appoximation for k ≥ 3 and 2-
approximation for k = 2. A 4-approximation independent of k was shown
in [4]. In [4], they also showed that k-MPSM is APX-Hard and achieved
approximation ratios of 8/5 for k = 2 and 3 for k = 3. In this paper, we
show an algorithm which achieves a 13/4-approximation for the general
MPSM problem using a new combinatorial triplet matching approach.
During publication of this paper, [3] presented a local search algorithm
yielding 7/2, which falls in between the previous best and this paper.
The remainder of the paper has not been altered to reflect this.

Keywords: String algorithms · Polynomial-time approximation · Max
Duo-Preservation String Mapping Problem · Min Common String
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1 Introduction

String comparison is one of the most fundamental problems in many fields such as
bioinformatics and data compression. In computer science, the difference between
two strings is often measured by edit distance, the number of edit operations
required to transform one string into the other. The most widely known defini-
tions of edit distance include insertion, deletion, and/or substitution operations.
However, the more general edit distance with moves problem studied in [10]
allows an additional operation wherein an entire block of text is shifted within
a string.
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These shift operations, also known as rearrangements, are especially rele-
vant in biology [8,18]. String comparison can be performed on DNA or protein
sequences to estimate how closely related different species are. In data compres-
sion, we may want to store many similar strings as a single string along with the
edits required to recover all strings. These two applications even overlap natu-
rally in the field of bioinformatics where extremely large datasets of biological
sequences are common. For example, the challenge of pan-genome storage is to
store many highly similar sequences from the same clade such as a bacterial
species.

One way to capture just the “moves” operation is to solve the Minimum
Common String Partition problem (MCSP) which seeks to partition two strings
into minimum cardinality sets of substrings that are permutations of each other.
While the MCSP problem has been heavily studied, the complementary Max-
imum Duo-Preservation String Mapping Problem (MPSM) is a relatively new
and under-explored problem in this area.

1.1 Problem Description

The Maximum Duo-Preservation String Mapping Problem (MPSM) is defined
as follows. We are given two strings A = a1a2 . . . an and B = b1b2 . . . bn of length
n such that B is a permutation of A. Let ai and bj be the ith and jth characters
of their respective strings. A proper mapping π from A to B is a one-to-one
mapping with ai = bπ(i) for all i = 1, . . . , n. A duo is simply two consecutive
characters from the same string. We say that a duo (ai, ai+1) is preserved if ai

is mapped some bj and ai+1 is mapped to bj+1. The objective is to return a
proper mapping from the letters of A to the letters of B which preserves the
maximum number of duos. Note that the number of duos preserved in each
string is identical and by convention we count the number of duos preserved in
a single string rather than the sum over both strings. Let OPTMPSM denote
the number of duos preserved from a single string in an optimal solution to
the MPSM problem. Figure 1 shows an example of an optimal mapping which
preserves the maximum possible number of duos.

A: a b c d d c b a

B: b c a d d c a b

Fig. 1. Illustration of a mapping π from A to B that preserves 3 duos: bc, dd, and dc. A
solution to the complementary MCSP problem on the same strings would be partitions
PA = a, bc, ddc, b, a and PB = bc, a, ddc, a, b with |PA| = |PB | = 5.
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The complementary Minimum Common String Partition problem (MCSP)
seeks to find partitions of the strings A and B where a partition PA of A is
defined as a set of substrings whose concatenation is A. The objective is to
find minimum cardinality partitions PA of A and PB of B such that PB is a
permutation of PA. Let OPTMCSP denote the cardinality of a partition in an
optimal solution to this problem. We can see that

OPTMCSP = |PA| = |PB | = n − OPTMPSM

The variants, k-MPSM and k-MCSP, add the restriction that each letter occurs
at most k times in each string. For a given algorithm, let ALGMPSM be number
of duos preserved by the algorithm. The approximation ratio for that algorithm
is defined as

OPTMPSM

ALGMPSM

1.2 Related Work

The Maximum Duo-Preservation String Mapping Problem (MPSM) was intro-
duced in [7] along with the related Constrained Maximum Induced Subgraph
(CMIS) and Constrained Minimum Induced Subgraph (CNIS) problems. They
used a linear programming and randomized rounding approach to approximate
the k-CMIS problem which they show is a generalization of k-MPSM. This leads
to a k2-approximation for k ≥ 3 and a 2-approximation for k = 2. This was
improved by [4] to a 4-approximation independent of k as well as approximation
ratios of 3 for k = 3 and 8/5 for k = 2. [4] also show that k-MPSM is APX-hard
even for k = 2, meaning no polynomial-time approximation scheme (PTAS)
exists assuming P �= NP . The fixed-parameter tractability was studied in [1]
and MPSM was shown to be fixed-parameter tractable when parameterized by
the number of preserved duos.

The Minimum Common String Partition problem (MCSP) has been exten-
sively studied from many angles including polynomial-time approximation [7,9,
10,14,16,17], fixed-parameter tractability [5,6,11,15], and heuristics [2,12,13].
FPT algorithms have been parameterized by maximum number of times any
character occurs, minimum block size, and the size of the optimal minimum par-
tition. Heuristic approaches range from an ant colony optimization algorithm [12]
to integer linear programming (ILP) based strategies [2,13] which in some cases
solve the problem optimally for strings up to 2, 000 characters in length.

The problem was shown to be NP-hard (thus implying MPSM is also NP-
hard) and APX-hard even for 2-MCSP [14]. The current best approximations
are an O(log n log∗ n)-approximation due to [10] for general MCSP and an O(k)-
approximation for k-MCSP due to [17]. Applications to evolutionary distance
and genome rearrangement can be found in [8,18].
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1.3 Our Contributions

We show a 13/4-approximation ratio for the general MPSM problem using a
new combinatorial triplet matching approach. This improves the previous best
approximation ratio of 4 for the general problem due to [4].

Theorem 1. For any two strings A and B such that B is a permutation of A,
there is an algorithm which finds a proper mapping from A to B that preserves
at least 4/13 of the duos that the optimal algorithm preserves.

2 Preliminaries

Let A = a1a2 . . . an and B = b1b2 . . . bn be the two strings of length n with ai

and bi being the ith characters of their respective strings. A duo DA
i = (ai, ai+1)

corresponds to the pair of consecutive characters ai and ai+1 in the string. We
use DA = (DA

1 , . . . , DA
n−1) and DB = (DB

1 , . . . , DB
n−1) to denote the sets of duos

for A and B, respectively. We similarly define a triplet TA
i = (ai, ai+1, ai+2) as

a set of three consecutive characters ai, ai+1, and ai+2 in the string and sets
of triplets TA = (TA

1 , . . . , TA
n−2) and TB = (TB

1 , . . . , TB
n−2) for strings A and B,

respectively. Observe that the duos DA
i and DA

i+1 correspond to the first two
and last two characters, respectively, of the triplet TA

i . We refer to duos DA
i and

DA
i+1 as subsets of the triplet TA

i .

Important note: In the first step of our algorithm, we append a special char-
acter ‘&’ to the beginning and end of each string (indices 0 and n+1). We define
this character to be not equal to any other character including itself (meaning
& �= &). This ensures that each duo can be a subset of exactly two triplets.

A proper mapping π from A to B is a one-to-one mapping from the letters
of A to the letters of B with ai = bπ(i) for all ∀ i = 1, . . . , n. Recall that a duo
(ai, ai+1) is preserved if and only if ai is mapped to some bj and ai+1 is mapped
to bj+1. We call a pair of duos (DA

i ,DB
j ) preservable if and only if ai = bj and

ai+1 = bj+1.
For consistency, we define the concept of conflicting pairs of duos using the

terminology of [4] with a small modification to accommodate our particular
analysis. Two preservable pairs of duos (DA

i ,DB
j ) and (DA

h ,DB
� ) are said to be

conflicting if no proper mapping can preserve both of them. These conflicts can
be of two types Type 1 and Type 2.

– Type 1: Either i = h ∧ j �= � or i �= h ∧ j = �.
– Type 2: Either i = h + 1 ∧ j �= � + 1 or i �= h + 1 ∧ j = � + 1.

Exception: In our analysis, we also consider two pairs of consecutive preserv-
able duos (DA

i ,DB
j ) and (DA

i+1,D
B
j+1) and a third pair of duos (DA

h ,DB
� ) which

conflicts with one or both of them, potentially creating conflicts of both Type 1
and Type 2. However, we classify such conflicts simply as Type 1 conflicts.
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3 Triplet Matching Approach

In this section, we introduce and analyze the triplet matching algorithm.

3.1 The Triplet Matching Algorithm

We start by finding a weighted matching on triplets that upper bounds the
optimal solution, translating that to a fractional matching on duos, and rounding
the fractional solution to a mapping S that preserves a number of duos that is
at least 4/13 the weight of the triplet matching.

Step 1: Construct a weighted bipartite graph GT on the triplets.
We first append the special character ‘&’ to the beginning and end of each

string as discussed in the preliminaries. Recall that & �= &. This ensures that
each duo can be a subset of exactly two triplets.

We then construct a weighted bipartite graph GT = (TA ∪ TB, E) with each
partition being the set of triplets from a string. We add three types of edges to
this graph: full edges, first-half edges, and last-half edges. For a given pair of
triplets, (TA

i , TB
j ), from the different strings, we can add at most one type of

edge. A full edge is added if (ai = bj)∧(ai+1 = bj+1)∧(ai+2 = bj+2). A first-half
edge is added if (ai = bj) ∧ (ai+1 = bj+1) ∧ (ai+2 �= bj+2). Similarly, a last-half
edge is added if (ai �= bj) ∧ (ai+1 = bj+1) ∧ (ai+2 = bj+2). The full edges have
weight 1 and the half edges have weight 1/2.

In other words, if the triplets are a perfect match, the weight of the edge is 1.
Otherwise, if only the first two or last two characters match, the weight is 1/2.
Finally, if the previous conditions are not met, we do not add an edge between
these triplets. Figure 2 illustrates this step.

(1)

A: a b c b a a

B: a b a a b c

(2)

&ab abc bcb cba baa aa&

&ab aba baa aab abc bc&

Fig. 2. Step 1 of the algorithm. (1) shows the original strings. (2) shows the bipartite
triplet graph GT .
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(3)

&ab abc bcb cba baa aa&

&ab aba baa aab abc bc&

(4)

&ab abc bcb cba baa aa&

ab bc cb ba aa

&ab aba baa aab abc bc&

ab ba aa ab bc

Fig. 3. Steps 2 and 3 of the algorithm. (3) shows the maximum weight matching found
in Step 2. (4) shows the construction of the bipartite duo graph GD in Step 3. Note
that the double edges connecting the duos (b, c), (b, a), and (a, a) will each be collapsed
into single edges of weight 1.

Step 2: Find a maximum weight matching MT on the triplets in GT.
We find a maximum weight matching MT in the graph GT . We will prove

later that the weight of this matching is a valid upper bound on the optimum
solution to the MPSM problem. Figure 3 illustrates this step.

Step 3: Transfer the matching to a weighted bipartite graph GD on
the duos.

We now construct a bipartite graph GD = (DA ∪ DB , E) on the duos using
the edges of the matching MT found on GT . For every edge (TA

i , TB
j ) ∈ MT ,

we add one or two edges to GD. Each edge added to GD has weight 1/2. Since
each duo from the original string is contained in two separate triplets, it can
happen that we get two copies of the edge (DA

i ,DB
j ). In this case, we simply

merge them into a single edge with weight 1. Edges are added according to the
following simple rules:

– If (TA
i , TB

j ) is a full edge, we add the edges (DA
i ,DB

j ) and (DA
i+1,D

B
j+1) to

GD.
– If (TA

i , TB
j ) is a first-half edge, we add the edge (DA

i ,DB
j ) to GD.
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– If (TA
i , TB

j ) is a last-half edge, we add the edge (DA
i+1,D

B
j+1) to GD.

Recall that TA
i and DA

i refer to the triplet and duo, respectively, starting at
letter ai in the string A and the duos DA

i and DA
i+1 are both subsets of the triplet

TA
i . If the triplet edge (TA

i , TB
j ) causes duo edges (DA

i ,DB
j ) or (DA

i+1,D
B
j+1), we

say that the triplets support the duo edges. The extra ‘&’ characters are discarded
in this step since by definition, they can’t be part of any pair of matched duos.

Step 4: Use GD to find a mapping from string A to string B.
In this step, we select a subset of the edges in GD to be the duos preserved in

our final mapping solution S. This step happens in three phases, each of which
may include many iterations. Each iteration of a phase removes edges from GD

corresponding to one or two pairs of duos preserved as well as any conflicting
edges. The first two phases each remove all instances of a particular structure
from the graph while the third phase tries to preserve as many duos as possible
from the remaining graph.

Phase 1. For each edge (DA
i ,DB

j ) ∈ GD with weight 1. We remove (DA
i ,DB

j )
from GD and map ai and ai+1 to bi and bi+1 in S. We also remove any conflicting
edges from GD.

Phase 2. Define a pair of consecutive parallel edges to be edges (DA
i ,DB

j ) and
(DA

i+1,D
B
j+1) in GD such that the triplet edge (TA

i , TB
j ) was chosen in MT .

Starting at the beginning of string A, we choose the first pair of consecutive
parallel edges (DA

i ,DB
j ) and (DA

i+1,D
B
j+1) in GD. In other words, we find the

smallest i such that (DA
i ,DB

j ) and (DA
i+1,D

B
j+1) are a pair of consecutive parallel

edges. We map ai, ai+1, and ai+2 to bi, bi+1, and bi+2 in S. We then remove
the edges (DA

i ,DB
j ) and (DA

i+1,D
B
j+1) from GD as well as any conflicting edges.

We continue this process until we reach the end of string A and no pairs of
consecutive parallel edges remain in GD.

Phase 3. Starting at the beginning of string A, we add the duos of the first edge
we encounter to S and remove any conflicting edges. We repeat this step until
we reach the end of A and no edges remain in GD.

3.2 Proof of 13/4-approximation

We will first show that the weight of the maximum weight triplet matching MT

found in Step 2 (and by construction the total weight of GD) is an upper bound
on the maximum number of duos preserved. Then, we will show that the number
of preserved duos added to S in each iteration of Step 4 is at least 4/13 of the
total weight of edges removed from GD in that iteration. Finally, we will show
that at the end of Phase 3 of Step 4, no edges remain in GD.
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Lemma 1. The weights of the maximum weight triplet matching MT and the
corresponding duo graph GD are an upper bound on the maximum number of
duos preserved.

Proof. We show that any proper mapping π from A to B which preserves Δ
duos implies a matching MT of weight at least Δ in the corresponding triplet
graph GT .

For each preserved duo (DA
i ,DB

j ) in π, we add the triplet edges (TA
i−1, T

B
j−1)

and (TA
i , TB

j ) to MT if they have not been added already. Note that in the
construction of GT , (DA

i ,DB
j ) was responsible for adding 1/2 to the weights of

both (TA
i−1, T

B
j−1) and (TA

i , TB
j ) for a total contribution of 1. Thus, if we can

guarantee that both triplet edges are added to the matching for each preserved
duo, that ensures MT has weight at least Δ.

Assume for the sake of contradiction that we encounter some preserved duo
(DA

i ,DB
j ) and at least one of the triplet edges corresponding to (DA

i ,DB
j ) cannot

be added. WLOG assume the triplet edge which cannot be added is (TA
i , TB

j ) and
it is blocked by some other edge (TA

i , TB
� ), j �= �. The edge (TA

i , TB
� ) must have

been added by either the preserved duo (DA
i ,DB

� ) or (DA
i+1,D

B
�+1). However,

both of those duos are in conflict with (DA
i ,DB

j ) and therefore could not exist
in the mapping π, leading to a contradiction. It follows that both triplet edges
are added to the matching for each preserved duo in π. �	

Lemma 2. The number of preserved duos added to S in each iteration of Phase
1 of Step 4 is at least 1/3 the total weight of edges removed from GD in that
iteration.

Proof. The worst case structure for this phase is illustrated in Fig. 4.
Suppose some edge (DA

i ,DB
j ) has weight 1 in GD. Then both triplet edges

(TA
i−1, T

B
j−1) and (TA

i , TB
j ) containing (DA

i ,DB
j ) must have been chosen in the

matching MT . Therefore, there can be no conflicts of Type 1.
Note that the edge (DA

i ,DB
j ) can have at most four conflicts of Type 2 arising

from the neighboring duos DA
i−1, DA

i+1, DB
j−1, and DB

j+1. Each of these potential
conflicts is symmetric. So WLOG, we focus on the conflict with DA

i−1 and show
that there is at most one edge (DA

i−1,D
B
� ), � �= j − 1, and this edge can only

have weight 1/2.
By construction, the edge (DA

i−1,D
B
� ) can only be added by the triplet edges

(TA
i−2, , T

B
�−1) or (TA

i−1, , T
B
� ). However, the latter triplet edge (TA

i−1, , T
B
� ) could

not exist in MT since we assume MT contains the edge (TA
i−1, T

B
j−1) and MT is a

matching. Therefore, there is at most one such edge (DA
i−1,D

B
� ) with weight 1/2

which must have come from a triplet edge (TA
i−2, T

B
�−1) chosen in the matching MT .

Then the sum of weights of edges removed is at most the weight (DA
i ,DB

j )
plus the weight of four Type 2 conflicting edges with weight 1/2 each:

1 + 4(1/2) = 3
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TA
i−2 TA

i−1 TA
i TA

i+1

DA
i−1 DA

i DA
i+1

TB
j−2 TB

j−1 TB
j TB

j+1

DB
j−1 DB

j DB
j+1

1

1/2 1/2

1/2 1/2

Fig. 4. Illustration of the worst case for Phase 1 of Step 4 in Lemma 2. The solid
black lines correspond to the edge (DA

i , DB
j ) and its supporting triplets. The dashed

lines correspond to conflicting edges of Type 2 that must be removed. The gray lines
illustrate other edges that may or may not exist, but are not conflicting.

It follows that the ratio of the number of preserved duos added to S to weight
of edges removed from GD is at least 1/3. �	

Note that after Phase 1 of Step 4, all remaining edges in GD have weight 1/2
since the edges with weight 1 have been removed.

Lemma 3. The number of preserved duos added to S in each iteration of Phase
2 of Step 4 is at least 4/13 of the total weight of edges removed from GD in that
iteration.

Proof. The worst case structure for this phase is illustrated in Fig. 5.
Suppose we select edges (DA

i ,DB
j ) and (DA

i+1,D
B
j+1) in Phase 2. We can

upper bound the number of edges removed by identifying all triplets that could
support conflicting duo edges and bounding the number of such edges they could
have supported. Recall that a triplet supports a duo edge if it belongs to a triplet
edge in MT and thus caused the duo edge to be added to GD.

First, there are four triplets at distance two from i and j that could each
support at most one conflicting edge. These are triplets TA

i−2, TA
i+2, TB

j−2, and
TB

j+2. Second, there are four triplets at distance one. Three of these, TA
i+1, TB

j−1,
and TB

j+1, can support two conflicting edges. However, the fourth triplet, TA
i−1,

can support at most one conflicting edge since we chose the smallest i such that
(DA

i ,DB
j ) and (DA

i+1,D
B
j+1) are a pair of consecutive parallel edges.
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TA
i−2 TA

i−1 TA
i TA

i+1 TA
i+2

DA
i−1 DA

i DA
i+1 DA

i+2

TB
j−2 TB

j−1 TB
j TB

j+1 TB
j+2

DB
j−1 DB

j DB
j+1 DB

j+2

Fig. 5. Illustration of the worst case for Phase 2 of Step 4 in Lemma 3. The solid lines
correspond to the edges (DA

i , DB
j ) and (DA

i+1, D
B
j+1) and their supporting triplets. The

dashed lines correspond to conflicting edges that must be removed. The pair of parallel
dotted lines originating from TA

i−1 represent two edges that could not both exist. This is
due to the assumption that (DA

i , DB
j ) and (DA

i+1, D
B
j+1) is the first pair of consecutive

parallel edges in the string A.

In addition to these conflicting edges, we also remove the two edges (DA
i ,DB

j )
and (DA

i+1,D
B
j+1) leading to a total weight removed of

4(1/2) + 7(1/2) + 2(1/2) = 6.5

It follows that the ratio of the number of preserved duos added to S to weight
of edges removed from GD is at least 2/6.5 = 4/13. �	

Lemma 4. The number of preserved duos added to S in each iteration of Phase
3 of Step 4 is at least 1/3 of the total weight of edges removed from GD in that
iteration.

Proof. Suppose we select the duo edge (DA
i ,DB

j ) in some iteration of Phase 3. We
can upper bound the weight of edges deleted from GD by counting the number
of triplets which could have supported duo edges that conflict with (DA

i ,DB
j ).

Recall that a triplet supports a duo edge if it belongs to a triplet edge in MT

and thus caused the duo edge to be added to GD. Because we have removed all
pairs of consecutive parallel edges in Phase 2, each triplet can support at most
one duo edge remaining in GD.
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There are eight triplets which could potentially support a conflicting duo
edge: TA

i−2, TA
i−1, TA

i , TA
i+1, TB

j−2, TB
j−1, TB

j , TB
j+1. Notice that we have been

selecting edges starting from the beginning of A and moving towards the end.
Therefore any edge supported by the triplet TA

i−2 would have already been
selected or removed prior to the current iteration. Further note that two of
those triplets must support the currently selected edge. Therefore, we removed
the selected duo edge (DA

i ,DB
j ) and at most five other duo edges. Each of these

edges has weight at most 1/2 since all edges of weight 1 were removed in Phase 1.
Then the sum of weights of edges removed is at most

1/2 + 5(1/2) = 3

It follows that the ratio of the number of preserved duos added to S to weight
of edges removed from GD is at least 1/3. �	

Lemma 5. At the conclusion of Step 4, no edges remain in GD.

Proof. Phase 3 iterates through every remaining edge in GD, thus removing all
of them. �	

4 Conclusion and Future Directions

We have shown that a combinatorial triplet matching approach yields an
improved approximation to the Maximum Duo Preservation String Mapping
problem. Given the fact that triplet matching allows for an improvement over
the ratio achieved by the duo matching approach in [4], a natural question is
whether a 4-tuple matching could yield even better results. However, a direct
extension of the work in this paper to a 4-tuple matching approach is not possible
because the 4-tuple matching would not provide an upper bound on the MPSM.
The issue with such an approach is that the first and last duos in a 4-tuple have
no potential to be conflicting and likely should not be grouped together. On
the bright side, we conjecture that the triplet matching approach can be pushed
further to achieve a 3-approximation. The clear bottleneck in this paper arises
from Phase 2 of Step 4, but we’re hopeful this obstacle can be avoided somehow.

Other interesting future directions would be to follow the lead of the work
on the MCSP problem. This could include analyzing the performance of faster
algorithms such as greedy algorithms or searching for heuristics that solve smaller
instances of the problem near optimally. Further, since MPSM currently appears
to be “easier” than MCSP, it could be fruitful to explore more applications for
this problem in fields such as bioinformatics and data compression.
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Abstract. Tandem Mass Spectrometry (or MS/MS) is the most com-
mon strategy used to identify unknown proteins present in a mixture. It
generates thousands of MS/MS spectra per sample, each one having to
be compared to a large reference database from which artificial spectra
are produced. The goal is to map each experimental spectrum to an arti-
ficial one, so as to identify the proteins they come from. However, this
comparison step is highly time consuming. Thus, in order to reduce com-
putation time, most methods filter a priori the reference database. This
tends to discard potential candidates and leads to frequent errors and
lacks of identifications. We have developed an original alternate method,
efficient both in terms of memory and computation time, that allows to
pairwise compare spectra without any a priori filtering. The core of our
method is SpecTrees, a data structure designed towards this goal, that
stores all the input spectra without any filtering. It is designed to be easy
to implement, and is also highly scalable and incremental. Once Spec-
Trees is built, one can run its own identification process by extracting
from SpecTrees any information of interest, including pairwise spectra
comparison. In this paper, we first present SpecTrees, its main fea-
tures and how to implement it. We then experiment our method on two
sets of experimental spectra from the ISB standard 18 proteins mixture,
thereby showing its rapidity and its ability to make identifications that
other software do not reach.

1 Introduction

General Context. Proteins play an essential role in many biological processes in
living organisms. They are composed of long chains of amino acids – up to several
thousands. A frequent and important task in experimental biology is to identify
the proteins that constitute a complex mixture, i.e. determine the sequence of
amino acids of each of them. Tandem Mass Spectrometry, also called MS/MS,
has become the most usual technique to achieve this task. The MS/MS process
can be roughly sketched as follows: first, an enzyme cuts the proteins of the
mixture into smaller pieces, called peptides. Then, the mass spectrometer breaks
each peptide p into fragments, the masses of the most intense fragments are
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measured, and from this a mass spectrum (that we will model here as an ordered
list of the measured masses) is obtained. In a given experiment, thousands of
MS/MS spectra are thus generated, and the set SE of experimental spectra is
the one from which identification of proteins is undertaken.

The most common strategy to interpret experimental spectra is through com-
parison to known databases of related proteins. First, from the database DB at
hand, a set of peptides P is computed, by simulating the action of the enzyme
on all the proteins in DB. Next, a set of artificial spectra SP is also created in
silico from the set of peptides P , using theoretical knowledge about the princi-
ples of MS/MS. Thus, for each peptide p in P , an artificial spectrum is created
and added to SP . Once this is done, for each spectrum s in SE , we look for
the artificial spectrum s′ in SP that is the closest to s. Most of the current
popular software, such as Sequest [4], Mascot [7] or X!Tandem [3] define the
above notion of “closest” in the following intuitive way: maximize some scoring
function f that represents the similarity between s and s′. Although f may vary
between algorithms, it is essentially based on the number of common masses
Sim(s, s′) between s and s′. Finally, the set of peptides that have been inferred
in the above described process is used to determine which proteins are likely to
be in the initial experimental mixture.

Although this process seems simple and easily achievable, identification of
peptides, let alone of proteins, remains a very complicated task. Because of
chemical noise, chemical modifications, imperfect fragmentation, contaminations
in the experiments and lack of mass resolution from the mass spectrometer,
experimental spectra are far from being perfect. In addition, protein databases
are still incomplete and consequently, artificial spectra corresponding to experi-
mental spectra may be absent. These difficulties lead to partial and sometimes
unsatisfactory results: typically, only around 30% of MS/MS spectra are iden-
tified with high confidence. This is why the development of better identification
methods remains a very active research area [5]. Moreover, even if the experiment
was perfect, the identification process also presents computational limitations.
Indeed, in a typical experiment, SE is composed of 5, 000 to 10, 000 spectra,
while the size of SP is usually larger than 500, 000. Therefore, comparing each
s ∈ SE to each s′ ∈ SP requires a huge computational effort. Most of the algo-
rithms thus tend to avoid this complexity by filtering SP : for each s ∈ SE , they
only consider a small subset S′

P ∈ SP of artificial spectra to compare s to. S′
P is

chosen based on the assumption that the best-scoring artificial spectrum should
have a total mass that is close to the total mass of s, ms; thus, any s′ ∈ SP

whose total mass is too far from ms is discarded. Unfortunately, this filtering
is too stringent, and certainly forbids some identifications. For instance, it is
unable to take into account a large number of chemical modifications, called
post-translational modifications, that yet are very common in proteins. In order
to address this problem, some unrestricted database search algorithms have been
recently proposed, see e.g. [1,2,8,9]. In spite of recent progress, the development
of such methods is still challenging because they remain too time-consuming.
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Our Proposal. In this paper, we are mainly interested in the peptide identifi-
cation process, during which each spectrum from SE has to be compared to all
spectra from SP . More precisely, we propose a new method to compare sets of
spectra of large size without a priori restriction (i.e. without filtering) of the
search space. At the core of our method lies SpecTrees, an easy to implement
data structure that allows to rapidly store the data contained both in SE and SP

without any filtering, even for very large sets of spectra. Moreover, SpecTrees
is incremental: any new set of spectra can be easily added to the currently built
structure. SpecTrees is designed so as to efficiently compute Sim(s, s′) for any
spectra s ∈ SE and s′ ∈ SP . As previously mentioned, this number is essential
for defining the scoring function that is at the heart of any peptide identification
method. Once SpecTrees is built, one can exploit it and run its own identifica-
tion process, by extracting from SpecTrees any further information of interest.
The paper is organized as follows: in Sect. 2, we describe the main features of
SpecTrees and detail its construction algorithm. In Sect. 3, we propose a pep-
tide identification method based on SpecTrees, that we experiment on two
sets of experimental spectra from the ISB standard 18 proteins mixture [6], and
confront to the Arabidopsis thaliana protein database. We analyze our results,
and in particular compare them to those obtained by one of the most popular
software, X!Tandem [3], and show the interest of our method in terms of space
occupancy, execution time and richness of the results.

2 From Sets of Spectra to SpecTrees

In this section, we develop and illustrate our algorithm, that takes SE and SP

as input, and builds our SpecTrees data structure. We then explain how to
exploit SpecTrees so as to compute efficiently Sim(s, s′) for any s ∈ SE and
s′ ∈ SP .

Main Features of SpecTrees. Assume that each spectrum in S is identified
by a unique integer s-id, for spectrum identifier. We will suppose that |S| = Ns,
and for simplicity we will assume that any s-id lies in the interval [0;Ns − 1].
Conceptually, SpecTrees stores all available information from S in the form of
a forest, i.e. a set of trees. Each tree T of SpecTrees is rooted and directed in
such a way that T is an in-tree, i.e. any child node c in T is connected to its
parent p by an arc from c to p. Thus the root of T is the only node without
outgoing arc. Suppose SpecTrees contains n nodes, say v0, v1 . . . vn−1, and
let each 0 ≤ i ≤ n − 1 be the node identifier (or n-id) of SpecTrees. Each
node vi in SpecTrees, 0 ≤ i ≤ n − 1, contains two pieces of information: a
spectrum identifier s-id ∈ [0;Ns − 1], and a non negative integer cpti, which will
act as a counter. It is important to note that distinct nodes in SpecTrees may
contain the same value s-id, and thus each s-id may be present several times in
SpecTrees. Because we want to access rapidly all the nodes storing the same
value s-id in the in-trees, we add to SpecTrees a set of linked lists, which we call
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Transverse Pathways (or T-Path); there will be one list per spectrum identifier s-
id. We refer the reader to Fig. 1 for an example of a SpecTrees structure, where
the dotted red lines represent the T-Paths. Although SpecTrees is conceptually
a forest of in-trees to which we superimpose the T-Paths, we have chosen to
implement it most simply, in the form of five integer arrays, which we describe
now. Arrays Id[ ], Cpt[ ] and Par[ ] are all of length n, indexed from 0 to n − 1,
and for any 0 ≤ i ≤ n − 1, (i) Id[i] contains the s-id of node vi, (ii) Cpt[i]
contains the counter cpti of node vi and (iii) Par[i] contains the n-id j of the
node vj which is the parent of vi in the in-tree T that contains vi (Par[i] is set
to −1 if vi is the root of T ). The T-Paths are not implemented as actual linked
lists, but through two arrays TP [ ] and Next[ ], again for simplicity, and also for
code optimization purposes. Next[ ] is of length n, and for any 0 ≤ i ≤ n − 1,
Next[i] contains the n-id j of the node vj that follows vi in the T-Path. We set
Next[i] to −1 when we have reached the end of the list. In order to access the
first node of every linked list, a fifth array called TP [ ], of length Ns, is defined.
It works as follows: for any 0 ≤ i ≤ Ns − 1, TP [i] = k, where k is the smallest
integer such that vk stores a value s-id = i. Note that vk is also the leftmost node
in our forest of in-trees that stores s-id = i (see Fig. 1). Now, in order to access
all nodes that store s-id = i, it suffices to start with TP [i], then to use Next[ ]
iteratively until we reach the value −1.

Fig. 1. The different components of SpecTrees. (a) is the forest of in-trees. Each
node possesses a (black) n-id (b), and contains both a (blue) s-id (c) and a (green)
counter (d). T-Paths are represented as dotted red lines (e). (f) and (g) are the arrays
that encode SpecTrees. (Color figure online)

Building SpecTrees. The algorithm that builds SpecTrees from any set S
of spectra works in two steps. First, we operate a pre-processing of S, that we
call Bucket Clustering. Second, we create the in-trees of SpecTrees (together
with the T-Paths), with the help of the clusters (the buckets) that we computed
during the Bucket Clustering.
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Bucket Clustering. Let us denote by MS the set of distinct masses that are
present over all the spectra present in S, and let Nm = |MS |. We can then
write MS = {m0,m1 . . . mNm

}. The Bucket Clustering pre-processing step cre-
ates a set BC of buckets, where each bucket Bi ∈ BC, 0 ≤ i ≤ Nm − 1, is
a set which contains all the s-ids of the spectra that contain mi in their set
of masses. Moreover, we impose that each bucket Bi is sorted in increasing
order of the s-ids it contains. In practice, this sorting is obtained at no extra
cost, because spectra from SE are already given in this order when they come
out of the mass spectrometer. Spectra from SP are produced in silico, thus
can be indexed in such a way as to respect this property too. Next, the set
BC of buckets is also sorted by lexicographic order, and we denote this new
order as follows: BC = {B′

0, B
′
1 . . . B′

Nm−1}. For instance, if S = {s0, . . . , s4}
with s0 = {m0,m1,m3}, s1 = {m1,m2,m3,m4}, s2 = {m0,m2,m4}, s3 =
{m1,m3,m4} and s4 = {m0,m1,m2}, then BC = {B′

0, B
′
1, B

′
2, B

′
3, B

′
4}, with

B′
0 = {0, 1, 3}, B′

1 = {0, 1, 3, 4}, B′
2 = {0, 2, 4}, B′

3 = {1, 2, 3}, B′
4 = {1, 2, 4}.

This pre-processing step has a complexity of O(
∑

si∈S |si| + Nm log Nm). If we
consider that any spectrum contains a constant number of masses (which is
the case in practice) then

∑
si∈S |si| = O(Ns) and Nm = O(Ns) too, and the

previous complexity becomes O(Ns log Ns).

Construction of SpecTrees. The second step consists in building SpecTrees,
based on the bucket clustering BC we just computed. We refer to Algorithm 1 for
a detailed description. We roughly sketch the algorithm here: we scan through
the buckets B′

0, B
′
1 . . . B′

Nm−1, following the order of the buckets, and inside
each bucket following the (increasing) order of s-ids. Then, depending on the
contents found, we either follow an already constructed branch of SpecTrees
(and update the counters contained in its nodes), or create either a new branch
or a new tree. First, bucket B′

0 is used for the initialization step (lines 1–4):
starting from an empty structure, we create an in-tree T which is actually an
in-path of root r, that contains as many nodes as there are elements in B′

0. The
s-id stored in each node (from r to the unique leaf of T ) is the s-id found in B′

0

(read from left to right). All cpt values of these nodes are set to 1. Then, each
bucket B′

i, 1 ≤ i ≤ Nm −1 is compared to B′
i−1: if the first values of B′

i and B′
i−1

differ, create a new in-tree T ′ the same way it has been done for B′
0. Otherwise,

let CP = {x1, x2 . . . xc}, c > 0, be the longest common prefix of B′
i and B′

i−1,
where any xp, 1 ≤ p ≤ c is an s-id (lines 7–9). Then, follow in SpecTrees the
latest produced tree, from its root (which necessarily contains x1), and along the
branch whose nodes share the same s-id, while incrementing by 1 the counters
that have been met. Whenever xc+1 (the first s-id in B′

i that is not in CP ) is
encountered, create a new branch starting from the latest visited node, again in
the same way as was done for B′

0 (lines 10–15). Note that pre is used as an index
keeping track of the previously accessed node, in order to define it as a parent in
Par[ ] when we insert a new node which is not a tree root. Besides, every time
a new node is created, it is added to the T-Paths, by updating Next[ ] and/or
TP [ ] (lines 3 and 13–15). As T-Paths simulate linked lists, adding an element at
the end of a list would require to go through the entire list, and thus would be too
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time-consuming. In order to avoid this, we use array Last[ ] to keep track of the
s-id of the last node inserted in each list. As mentioned in the previous section,
SpecTrees is managed through five integer arrays, which makes Algorithm 1
very easy to implement. Moreover, the complexity of Algorithm 1 is clearly in
O(Nm), which, as discussed in the previous paragraph, may be assumed to be
an O(Ns), since Ns and Nm differ in practice by a constant factor.

Algorithm 1. Building SpecTrees from the buckets
Input : A bucket clustering BC = {B′

0, B
′
1 . . . B′

Nm−1}.
Output: Structure SpecTrees, i.e. integer arrays Id[ ], Cpt[ ], Par[ ], Next[ ] of size
n, and TP [ ] of size Ns.
Variables: Integer array Last[ ] of size Ns, integers pre = −1, in = 0 and pos.

1: for all id ∈ B′
0 do � A node is inserted for each element in the first bucket

2: Id[in] ← id ; Cpt[in] ← 1 ; Par[in] ← pre;
3: TP [id] ← in ; Last[id] ← in;
4: pre ← in ; in ← in + 1;
5: for i from 1 to Nm − 1 do � For each bucket, parent and position are reset
6: pre ← −1 ; pos ← 0;
7: while Bi[pos] = Bi−1[pos] do � Bi and Bi−1 share a common prefix
8: Cpt[Last[Bi[pos]]] ← Cpt[Last[Bi[pos]]] + 1;
9: pre ← Last[Bi[pos]] ; pos ← pos + 1;

10: while pos < |Bi| do � Now the rest of Bi differs from Bi−1

11: Id[in] ← Bi[pos] ; Cpt[in] ← 1 ; Par[in] ← pre;
12: Next[Last[Bi[pos]]] ← in;
13: Last[Bi[pos]] ← in;
14: if TP [Bi[pos]] = −1 then
15: TP [Bi[pos]] ← in;
16: pre ← in ; in ← in + 1 ; pos ← pos + 1;

Exploiting SpecTrees to Compute Sim(si , sj ). Now that SpecTrees has
been built from a set of spectra S, it is possible to compute Sim(si, sj) for any
si, sj ∈ S, using the algorithm we describe in this section. We will assume for
simplicity that the s-id of si (resp. sj) is equal to i (resp. j). Note that for a fixed
value i, our algorithm actually computes Sim(si, sj) for all values j such that
j < i, at no extra cost. For this, we use an integer accumulator array Acc[ ], of
length Ns, with all values initialized to -1. At the end of the process Acc[j] will
contain a value k which is exactly Sim(si, sj). The rough idea of the algorithm is
the following: we find all nodes of vx1 , vx2 . . . vxt

of SpecTrees that contain i –
this can be easily done by our T-Paths. Then, for each node vxp

, 1 ≤ p ≤ t, we
follow the path from vxp

to the root of the tree it belongs to. Whenever a node
with s-id = j is encountered, we add cptxp

to Acc[j]. For instance, in the example
given in Fig. 2(a) with i = 3, on the path from node with n-id = 3 to the root (n-
id=0) in the leftmost tree, nodes with s-id=1 and s-id=0 are encountered, thus
after this path is visited we have Acc[0] = Acc[1] = 2, since the counter value
of node with n-id = 3 equals 2. We claim that, at the end of the process, Acc[j]
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contains exactly Sim(si, sj): indeed, in SpecTrees, given a node v storing an
s-id = i, only nodes storing an s-id = j with j < i appear above v in its tree – this
is due to the fact that buckets in BC are sorted in increasing order. Moreover,
if two nodes are in the same branch of a tree, they necessarily have at least one
mass in common, and the number of common masses is given by the value of
the counter of the lowest of the two nodes in this branch.

Fig. 2. Computing Sim(s3, sj), for all j < 3, from SpecTrees. (a) After the first
branch is visited. (b) After the second branch is visited.

Visiting all nodes in SpecTrees that store the same s-id = i can be achieved
easily: the leftmost node is stored in TP [i], and array Next[ ] allows to go from
one node to the next in constant time. Besides, following branches up to the
root is achieved using array Par[ ]. The above description allows to obtain, for a
fixed i, all values of Sim(si, sj) with j < i. The algorithm that we implemented
(and that is described in Algorithm 2) realizes an even bigger task: it actually
computes Sim(si, sj) for all i and all j (see the for loop line 5). To this aim,
we use three extra structures: one integer array WitAcc[ ] (“Wit” stands for
“Witness”), of length Ns, that basically avoids reinitializing Acc[ ] when the
value of i changes. We also have a stack St that stores all indices j of Acc[ ]
such that Acc[j] �= −1, i.e. St contains only those j for which Sim(si, sj) �= 0.
In practice, this speeds up computations, since the length Ns of Acc[ ] is very
large, and using St avoids scanning through the whole array Acc[ ] to display
similarities of interest. Finally, array WitEx[ ] is used to avoid duplicates in St.
At the end of each iteration for i, stack St is emptied (for instance, the result
for this specific value of i may be copied elsewhere), so as to be reused for the
next value of i. Note that the interest of our implementation also lies in the fact
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Algorithm 2. Extracting similarities from SpecTrees

Input: Structure SpecTrees, i.e. integer arrays Id[ ], Cpt[ ], Par[ ], Next[ ] of size
n, and TP [ ] of size Ns.
Output: Res a set of triples of integers (si, sj , Sim(si, sj)).
Variables: Integer arrays Acc[ ], WitAcc[ ], WitEx[ ] of size NS , integer stack St,
integers start, pos, τ and temp.

1: for i from 0 to Ns − 1 do � Initialization
2: Acc[i] ← −1 ; WitAcc[i] ← −1 ; WitEx[i] ← −1;
3: St ← ∅ ; Res ← ∅;
4: for i from Ns − 1 to 0 do � Iteration over the spectra indices in decreasing order
5: start ← TP [i];
6: while start �= −1 do � Until the end of the ‘linked list’ is reached
7: pos ← start;
8: while pos �= −1 do � Until the root of the tree is reached
9: if WitAcc[Id[pos]] = i then � If the accumulator has been modified

this iteration we accumulate values
10: Acc[Id[pos]] = Acc[Id[pos]] + Cpt[start];
11: if Acc[Id[pos]] ≥ τ &&WitEx[Id[pos]] �= i then � If an

accumulator goes over the threshold put the index in the stack
and track it

12: push(St, Id[pos]);
13: WitEx[Id[pos]] = i;
14: else � Otherwise we start a new sum
15: Acc[Id[pos]] = Cpt[start];
16: WitAcc[Id[pos]] = i;
17: if Acc[Id[pos]] ≥ τ &&WitEx[Id[pos]] �= i then � If an

accumulator goes over the threshold put the index in the stack
and track it

18: push(St, Id[pos]);
19: WitEx[Id[pos]] = i;
20: pos ← Par[pos];
21: start ← Next[start];
22: while St �= ∅ do
23: temp ← pop(St); � Unstack and create similarity measures
24: Res ← Res ∩ (si, stemp, Acc[temp]);
25: return Res;

that for any new value of i, no specific initialization or structure allocation is
necessary. Thus we avoid these procedures, which are time-consuming due to
the size of the data we consider in practice. We also added an extra feature to
Algorithm 2. Indeed, in practice, for a given i, the number of spectra for which
Sim(si, sj) �= 0 is exceedingly large, and the fact that two spectra have at least
one mass in common is not informative enough. Hence, it is desirable to introduce
a parameter τ that acts as a threshold, and to memorize only those spectra sj

such that Sim(si, sj) ≥ τ . Thus, we added τ as a tunable parameter (see lines 11
and 17 of Algorithm 2) in order to provide such flexibility. Similarly to Bucket
Clustering and Algorithm 1, we chose to implement Algorithm 2 with simple
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structures, namely a few arrays and one stack. Let us now turn to the complexity
analysis of Algorithm 2. For a fixed value 0 ≤ i ≤ Ns −1, Algorithm 2 is linearly
dependent of ni, where ni is the total number of nodes of SpecTrees which
lie above the nodes having s-id = i in the in-trees that compose SpecTrees.
Theoretically, it is difficult to determine precisely ni, and all can be said is that
ni = O(n), where n is the total number of nodes in SpecTrees. Thus the overall
complexity of Algorithm 2 is in O(n ·Ns), but we will see in the following section
that, in practice, its behavior is much more efficient.

3 Experiments

The tests we propose in this section have two purposes: first, show that Spec-
Trees is rapidly built, does not require too much memory space, and that com-
puting function Sim() can be done efficiently. Second, show that even with a
very basic usage of Sim(), SpecTrees allows peptide identifications that other
software are unable to discover.

Data Collection. We downloaded the ISB standard 18 proteins mixture (or
18mix) [6] from https://regis-web.systemsbiology.net/PublicDatasets/ in order
to obtain two different sets SE . The first experimental dataset datA contains
about 3, 000 spectra provided by the 18mix. The second dataset datB contains
about 9, 000 spectra generated by triplicating datA: datB is thus large enough
to represent a classical MS/MS experiment. The database used for peptide iden-
tification is a set SP of roughly 500, 000 artificial spectra obtained from the
addition of the 18mix proteins, the most common contaminant proteins and the
Arabidopsis thaliana database (release 2012). Our algorithms were written in
Java, and our tests were executed on a workstation (Intel Xeon E3-1245, 8 MB
cache, 16 GB RAM) running the 64-bits Windows 7 operating system.

Construction of SpecTrees and Computation of Sim(si, sj). The first series
of tests was dedicated to SpecTrees itself. We evaluated independently (a) the
execution time and the memory requirements for the Bucket Clustering algo-
rithm and the construction of SpecTrees (see Table 1), and (b) the execution
time and volume of data generated for the pairwise computation of spectra sim-
ilarities depending of the value of the threshold τ (see Table 2).

From Table 1, what we first note is that our method is extremely fast, as it
takes only a few seconds to build SpecTrees from scratch, on realistic datasets,

Table 1. Time and space needed to build SpecTrees from our two datasets.

SpecTrees

Bucket clustering (s) Construction (s) Memory occupancy (Gb)

datA+ SP 1.4 1.3 1.48

datB + SP 1.4 4.3 1.49

https://regis-web.systemsbiology.net/PublicDatasets/
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Table 2. Execution time and volume of the data generated by Algorithm 2 from
SpecTrees, depending on the threshold τ .

Threshold τ Execution time Volume of generated data (Mb)

With storage (s) Without storage (s)

datA+SP datB+SP datA+SP datB+SP datA+SP datB+SP

6 211 631 26 81 1324 3923

8 167 498 26 79 98 291

10 165 494 26 80 5 15

12 164 490 26 79 0.2 0.6

14 162 486 26 79 0.02 0.05

16 163 485 26 79 0.008 0.02

Table 3. Execution time for X!Tandem depending on the mass tolerance parameter.

Mass filter tolerance (Daltons) ±1 ±5 ±25 ±50 ±100 ±200 ±500 ±1000

Execution time (s)

datA+ SP 6 16 65 125 251 492 1156 1987

datB + SP 17 44 185 360 698 1414 3348 5689

Table 4. Examples of peptides identified by SpecXtract that may not be identified
by X!Tandem.

Identified Number of Minimum mass Maximum mass

peptide occurrences tolerance (Daltons) tolerance (Daltons)

GAGAFGYFEVTHDITR 5 5.37× 10−4 437.187

GGADATEDVTAVEVDPADR 3 0.001 786.303

SVDDYQECYIAMVPSHAVVAR 11 0.002 215.135

VPQVSTPTIVEVSR 1 128.093 128.093

PDYVTDSAASATAWSTGVK 9 286.152 368.104

IQGGFVWDWVDQSIIK 1 617.051 617.051

even on a regular workstation. The lack of significant difference between the
processing of datA and datB is explained by the relatively small difference
between datA and datB in terms of number of spectra, compared to the size
of SP .

Table 2 shows the execution time for the computation of Sim(si, sj) for all
pairs of spectra in SpecTrees with si ∈ SE and sj ∈ SP , for different values
of the threshold τ (see Algorithm 2). As writing the results on the hard-drive is
extremely slow, in order to assess the rapidity of the computation itself, we also
provide the execution times when storage is excluded. What we can see from
Table 2 is that low values of the threshold τ generate a considerable amount
of similarities, the large majority of which being irrelevant, and this gives rise
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to an important computational overtime; however, when τ ≥ 8, the execution
time is stabilized. Nevertheless, extracting the similarities without adding an
intermediate writing step drastically reduces the execution time, even with a
small τ . This shows that the computation of the pairwise similarities in itself is
very efficient, and is only slowed down by the storage process.

Identification of Peptides Using SpecTrees. In a second series of tests, we com-
pared a very basic peptide identification procedure, that we called SpecXtract,
to X!Tandem (version Sledgehammer), a widely-used peptide identification soft-
ware specifically designed to be fast [3]. SpecXtract does the following: for
every experimental spectrum si ∈ SE , SpecXtract returns the peptides in SP

that share a maximum number of common masses with si. This procedure is
very basic in that it does not incorporate any additional information. Our goal
here is to test whether, even with such a simple analysis, the absence of a priori
filtering in SpecTrees is sufficient to provide identifications that other software
cannot provide. We also want to compare SpecXtract to X!Tandem in terms
of execution time.

Note that X!Tandem uses a notion of mass tolerance in order to filter the
artificial spectra. We thus evaluated the execution time required by X!Tandem
to analyze datA and datB according to different mass tolerances. The concept of
mass tolerance is a filtering process which works as follows: let si ∈ SE and let
mi be the total mass (expressed in Daltons, or Da) of the peptide associated to
si. Given a value Δ ∈ R

+ (the mass tolerance), the idea is to identify the peptide
associated to si by only considering those spectra in SP whose total mass lies
in the interval [mi − Δ : mi + Δ]. This filtering is widely used, as discussed
in Sect. 1, to reduce the number of computations of Sim(). We configured the
X!Tandem parameters so that we could compare SpecXtract and X!Tandem
under close conditions. Table 3 shows our results, that have to be compared to
the ones presented in Table 2. It can be seen that on small datasets and with
restricted filters, X!Tandem performs faster than SpecXtract, but the running
time increases proportionally to the number of spectra and the mass tolerance. In
particular, as soon as τ = 8 (a reasonable threshold in practice), SpecXtract
outperforms X!Tandem whenever Δ ≥ 100Da, and competes reasonably well
when Δ = 50Da. Moreover, as illustrated by some examples in Table 4, a large
number of spectra cannot be identified with a low mass tolerance. In Table 4,
each line lists a given peptide p, whose amino-acid sequence is given in the first
column, and the “Number of occurrences” column indicates how many spectra
in SE have led to identify p. The last two columns indicate the minimum (resp.
maximum) value one has to set Δ to in order to detect at least one spectrum
(resp. all spectra) that led to identify p. Note that with a standard mass tolerance
Δ = 1Da, only 17 % of the spectra found a match in datA with X!Tandem.
Table 4 shows that X!Tandem misses some identifications, either completely (see
the last three peptides), or partially (i.e. not all occurrences of p will be found,
thus the confidence that p is an actual peptide may be underestimated – see the
first three peptides). However, SpecXtract is able to identify these peptides
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with the right number of occurrences, since it does not filter spectra before
comparing them.

4 Conclusion

SpecTrees is a very well designed data structure that allows to provide rapidly
the number of common masses between experimental and theoretical spectra in
an MS/MS experiment. In a first approach, we developed a simple extraction
algorithm to demonstrate the potential of SpecTrees. The promising results of
SpecXtract call for going further in order to fit a more complete identification
demand, e.g. by designing a more elaborate scoring function, and by associating
some degree of confidence to our results using statistical measurements. This
line of work is currently followed by the authors.
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Abstract. In a computed protein multiple sequence alignment, the core-
ness of a column is the fraction of its substitutions that are in so-called
core columns of the gold-standard reference alignment of its proteins.
In benchmark suites of protein reference alignments, the core columns of
the reference are those that can be confidently labeled as correct, usually
due to all residues in the column being sufficiently close in the spatial
superposition of the folded three-dimensional structures of the proteins.
When computing a protein multiple sequence alignment in practice, a
reference alignment is not known, so its coreness can only be predicted.

We develop for the first time a predictor of column coreness for
protein multiple sequence alignments. This allows us to predict which
columns of a computed alignment are core, and hence better estimate
the alignment’s accuracy. Our approach to predicting coreness is similar
to nearest-neighbor classification from machine learning, except we trans-
form nearest-neighbor distances into a coreness prediction via a regres-
sion function, and we learn an appropriate distance function through a
new optimization formulation that solves a large-scale linear program-
ming problem. We apply our coreness predictor to parameter advising,
the task of choosing parameter values for an aligner’s scoring function
to obtain a more accurate alignment of a specific set of sequences. We
show that for this task, our predictor strongly outperforms other column-
confidence estimators from the literature, and affords a substantial boost
in alignment accuracy.

1 Introduction

The accuracy of a multiple sequence alignment computed on a benchmark set of
input sequences is usually measured with respect to a reference alignment that
represents the gold-standard alignment of the sequences. For protein sequences,
reference alignments are typically determined by structural superposition of the
known three-dimensional structures of the proteins in the benchmark. The accu-
racy of a computed alignment is then defined to be the fraction of pairs of
residues aligned in the so-called core columns of the reference alignment that
are also present in columns of the computed alignment. Core columns represent
those in the reference that are deemed to be reliable, and can be objectively
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 77–89, 2016.
DOI: 10.1007/978-3-319-43681-4 7
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defined as those columns containing a residue from every input sequence such
that the pairwise distances between these residues in the structural superposi-
tion of the proteins are all within some threshold (typically a few angstroms).
In short, given a known reference alignment whose columns are labeled as either
core or non-core, we can determine the accuracy of any other computed align-
ment of its proteins by evaluating the fraction of aligned residue pairs from these
core columns that are recovered. For a given column in a computed alignment,
we can also define the coreness value of the column to be the fraction of its
aligned residue pairs that are in core columns of the reference alignment. (Note
that column coreness is a fully objective quantity when core columns are iden-
tified through superposition of protein structures, as in PALI [1] benchmarks.)
A coreness value of 1 means the column of the computed alignment corresponds
to a core column of the reference alignment.

When aligning sequences in practice, obviously such a reference alignment
is not known, and the accuracy of a computed alignment, or the coreness of
its columns, can only be estimated. A good accuracy estimator for computed
alignments is extremely useful [7]. It can be leveraged to: pick among alternate
alignments of the same sequences the one of highest estimated accuracy, for
example, to choose good parameter values for an aligner’s scoring function as in
parameter advising [15]; or to select the best result from a collection of different
aligners, yielding a natural ensemble aligner that can be far more accurate than
any individual aligner in the collection [5].

Similarly, a good coreness predictor for columns in a computed alignment
can be used to: mask out unreliable regions of the alignment before computing
an evolutionary tree; or to improve an alignment accuracy estimator by concen-
trating its evaluation function on columns of higher predicted coreness, thereby
boosting the performance of parameter advising. In fact, in principle a perfect
coreness predictor would itself yield an ideal accuracy estimator.

In this paper, we develop for the first time a column coreness predictor for
protein multiple sequence alignments. Our approach to predicting coreness is
similar in some respects to nearest-neighbor classification from machine learning,
except we transform nearest-neighbor distance into a coreness prediction via a
regression function, and we learn an appropriate distance function through a new
optimization formulation that solves a large-scale linear programming problem.
We evaluate the performance of our new coreness predictor by applying it to the
task of parameter advising in multiple sequence alignment.

Related Work. To our knowledge, this is the first fully general attempt to
directly predict the coreness of columns in computed protein alignments. Tools
are available that assess the quality of columns in an alignment, and can be cat-
egorized into: (a) those that only identify columns as unreliable, for removal
from further analysis; and (b) those that compute a column quality score,
which can be thresholded. Tools that simply mask unreliable columns include
GBLOCKS [3], TrimAL [2], and ALISCORE [16]. Popular quality-score tools are
Noisy [8], ZORRO [21], TCS [4], and GUIDANCE [17].
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Our experiments compare our coreness predictor to TCS and ZORRO: the
most recent tools that provide quality scores, as opposed to masking columns.
GUIDANCE requires four or more sequences, which excludes many benchmarks.
Noisy is dominated by an earlier version of GUIDANCE, which along with
ALISCORE and GBLOCKS are in turn dominated by ZORRO.

Plan of the Paper. Section 2 next describes how we learn our coreness predic-
tor. Section 3 then explains how we use predicted coreness to improve accuracy
estimation for protein alignments. Section 4 evaluates our approach to coreness
prediction by applying the improved accuracy estimator to alignment parameter
advising. Section 5 concludes.

2 Learning a Coreness Predictor

To describe how we learn a column coreness predictor, we first discuss our rep-
resentation of alignment columns, and our grouping of consecutive columns into
window classes. We then present our regression function for predicting coreness,
which transforms the nearest-neighbor distance from a window to a class into a
coreness value. Finally, we describe how we learn this window distance function
by solving a large-scale linear programming problem.

2.1 Representing Alignment Columns

The information used by our coreness predictor, beyond the multiple sequence
alignment itself, is an annotation of its protein sequences by predicted sec-
ondary structure (which can be obtained in a preprocessing step by running the
sequences through a standard protein secondary structure prediction tool such
as PSIPRED [12]). When inputting a column from such an annotated alignment
to our coreness predictor, we need a column representation that, while capturing
the association of amino acids and predicted secondary structure types, is also
independent of the number of sequences in the column. This is necessary as our
predictor will be trained on example alignments of particular sizes, yet the result-
ing predictor must apply to alignments with arbitrary numbers of sequences.

Let Σ be the 20-letter amino acid alphabet, and Γ = {α, β, γ} be the sec-
ondary structure alphabet, corresponding respectively to types α-helix, β-strand,
and other (also called coil). We encode the association of an amino acid c ∈ Σ
with its predicted secondary structure type s ∈ Γ by an ordered pair (c, s) that
we call a state, from the set Q = (Σ ×Γ ) ∪ {ξ}. Here ξ = (-, -) is the gap state,
where the dash symbol ‘-’ �∈ Σ is the alignment gap character.

We represent a multiple alignment column as a distribution over the set of
states Q, which we call its profile (mirroring standard terminology [9, p. 101]).
We denote the profile C for a given column by a function C(q) on states q ∈ Q
satisfying C(q) ≥ 0 and

∑
q∈Q C(q) = 1. Most secondary structure prediction

tools output a confidence value (not a true probability) that an amino acid in a
protein sequence has a given secondary structure type. For a column of amino
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acids (c1 · · · ck) in a multiple alignment of k sequences, denote the confidence that
amino acid ci has structure type s ∈ Γ by pi(s) ≥ 0, where

∑
s∈Γ pi(s) = 1.

For non-gap state q = (a, s) �= ξ, profile C has value C(q) :=
∑

i : ci=a pi(s)
/

k.
In other words, C(q) is the normalized total confidence across the column in
state q �= ξ. For gap state q = ξ, the profile value is C(ξ) :=

∣∣{i : ci = ‘-’}
∣∣ /

k,
the relative frequency of gap characters in the column.

2.2 Classes of Column Windows

In protein benchmarks, a column of a reference alignment is labeled core if
its residues are all sufficiently close in the superposition of the proteins’ three-
dimensional structures. The folded structure around a residue is a function of
nearby residues in the protein. Consequently, to predict the coreness of a column
in a computed alignment, we need contextual information from nearby columns.
We gather this context for a column by forming a window of consecutive columns
centered on it. Formally, a window W of width w ≥ 1 is a sequence of 2w+1 con-
secutive column profiles C−w · · · C−1C0C+1 · · · C+w centered around profile C0.

We define the following set of window classes C, depending on whether the
columns in a labeled training window are known to be core or non-core in the
reference alignment. We denote a column labeled core by C, and a column labeled
non-core by N. For window width w=1 (which has three consecutive columns),
such labeled windows correspond to strings of length 3 over alphabet {C, N}. The
three classes of core windows are CCC, CCN, NCC; the three classes of non-core
windows are CNN, NNC, NNN. (A window is considered core or non-core depending
on the label of its center column. We exclude windows NCN and CNC, as these
almost never occur in reference alignments.) Together these six classes comprise
set C. We call the five classes with at least one core column C in the window,
structured classes; the one class with no core columns is the unstructured class,
denoted by ⊥ = NNN.

2.3 The Coreness Regression Function

We learn a coreness predictor by fitting a regression function that measures the
similarity between a column’s window and training examples of windows with
known coreness, and transforms this similarity into a coreness value.

The similarity of windows V = V−w · · · Vw and W = W−w · · · Ww is expressed
in terms of the similarity of their corresponding column profiles Vi and Wi.
We measure the dissimilarity of two such profiles from window class c at posi-
tion i, using class- and position-specific substitution scores σc,i(p, q) on pairs of
states p, q. (Section 2.4 describes how we learn these scores.) Given substitution
scores σc,i, the distance between windows V and W from class c ∈ C−{⊥} is,

dc(V,W ) :=
∑

−w ≤ i ≤+w

∑

p,q ∈ Q

Vi(p) Wi(q) σc,i(p, q).

These positional σc,i allow distance function dc to score dissimilarity higher at
positions i near the center of the window, and lower towards its edges.
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The regression function that predicts the coreness of a column first forms a
window W centered on the column, and then performs the following.

(1) (Find distance to closest class) Across all labeled training windows, in all
structured window classes, find the training window that has smallest class-
specific distance to W . Call this closest window V , its class c, and their
distance δ = dc(V,W ).

(2) (Transform distance to coreness) If class c is a core class, return the coreness
value given by transform function fcore(δ). Otherwise, return value fnon(δ).

To transform the nearest-neighbor distance δ from Step (1) into a coreness value
in Step (2), we use logistic functions for fcore and fnon. We fit these logistic curves
to empirically-measured average-coreness values at nearest-neighbor distances
collected for either core or non-core training examples, using the curve fitting
tools in SciPy [13]. As Fig. 1 in Sect. 4.1 later shows, these logistic transform
functions fit actual coreness data remarkably well.

2.4 Learning the Distance Function by Linear Programming

We now describe the linear program used to learn the distance function on
column windows. The linear program learns a class-specific distance function dc

for each window class c ∈ C.
To construct the linear program, we partition the training set T of labeled

windows by window class: subset Tc ⊆ T contains all training windows of
class c ∈ C. We then form a smaller training sample Sc ⊆ Tc for each class c
by choosing a random subset of Tc with a specified cardinality |Sc|.

The constraints of the linear program fall in several categories. For a sample
training window W ∈ Sc, we identify other windows V ∈ Tc from the same class c
in the full training set that are close to W (under a default distance d̃c). We call
these close windows V from the same class c, targets. Similarly for W ∈ Sc, we
identify other windows U ∈ Tb from a different class b �= c in the full training set
that are also close to W (under d̃b). We call these other close windows U from a
different class b, impostors. More formally, the neighborhood Nc(W, i) for a struc-
tured class c ∈ C − {⊥} denotes the set of i-nearest-neighbors to W (not includ-
ing W ) from training set Tc under the class-specific default distance function d̃c.
(The default distance function that we use in our experiments is described in
Sect. 4.1.) The constraints of the linear program find distance functions that for
a sample window W ∈ Sc, pull in targets V ∈ Nc(W, i) by making dc(V,W )
small, and push away impostors U ∈ Nb(W, i) for b �= c by making db(U,W )
large.

The target constraints for each sample window W ∈ Sc from each structured
class c ∈ C − {⊥}, and each target window V ∈ Nc(W,k), are,

eV W ≥ dc(V,W ) − τ, (1)
eV W ≥ 0, (2)
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where eV W is a target error variable and τ is a threshold variable. In the
above, quantity dc(V,W ) is a linear expression in the substitution score vari-
ables σc,i(p, q), so constraint (1) is a linear inequality in the variables. Intuitively,
we would like condition dc(V,W ) ≤ τ to hold (so W will be considered to be in
its correct class c); in the solution, variable eV W will equal max

{
dc(V,W )−τ, 0

}
,

the amount of error by which this ideal condition is violated.
The impostor constraints for each sample window W ∈ Sc from each struc-

tured class c ∈ C − {⊥}, and each impostor window V ∈ Nb(W, �) from each
structured class b ∈ C − {⊥} with b �= c, are,

fW ≥ τ − db(V,W ) + 1, (3)
fW ≥ 0, (4)

where fW is an impostor error variable. Intuitively, we would like condition
db(V,W ) > τ to hold (so W will not be considered to be in the incorrect class b),
which we can express by db(V,W ) ≥ τ + 1 using a margin of 1. (Since the scale
of the distance functions is arbitrary, we can always pick a unit margin without
loss of generality.) In the solution to the linear program, variable fW will equal
maxb ∈ C−{⊥}, V ∈ Nb(W,�)

{
τ − db(V,W ) + 1, 0

}
, the largest amount of error by

which this condition is violated for W across all b and V .
We also have impostor constraints for each completely non-core window

W ∈ T⊥, and each core window V ∈ Nb(W, �) from each structured core class b
(as we do not want W to be considered core), which are of the same form as
inequalities (3) and (4) above.

The triangle inequality constraints, for each structured class c ∈ C − {⊥},
each window position −w ≤ i ≤ w, and all states p, q, r ∈ Q (including the gap
state ξ), are: σc,i(p, r) ≤ σc,i(p, q)+σc,i(q, r). A consequence of these constraints
is that the resulting distance functions dc also satisfy the triangle-inequality
property. (We omit the proof due to page limits.) This property allows us to use
faster metric-space data structures for computing the nearest-neighbor distance δ
from Sect. 2.3.

The remaining constraints, for classes c, positions i, and states p and q,
are: σc,i(p, q) = σc,i(q, p), σc,i(p, p) ≤ σc,i(p, q), σc,i(p, q) ≥ 0, σc,i(ξ, ξ) = 0, and
τ ≥ 0, which ensure the distance functions are symmetric and non-negative.

Finally, the objective function minimizes the average error over all training
sample windows. Formally, we minimize,

α 1
|C|−1

∑

c ∈ C−{⊥}

1
|Sc|

∑

W ∈ Sc

1
k

∑

V ∈ Nc(W,k)

eV W + (1−α) 1
|C|

∑

c ∈ C

1
|Sc|

∑

W ∈ Sc

fW ,

where 0 ≤ α ≤ 1 is a blend parameter controlling the weight on target error ver-
sus impostor error. We note that in an optimal solution to this linear program,
variables eV W = max

{
dc(V,W )−τ, 0

}
and fW = maxV,b

{
τ − db(V,W )+1, 0

}
,

since inequalities (1)–(4) ensure the error variables are at least these values,
while minimizing the above objective function ensures they will not exceed them.
Thus solving the linear program finds distance functions dc, given by substitution
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scores σc,i(p, q), that minimize the average over the training windows W ∈ Sc of
the amount of violation of our ideal conditions dc(V,W ) ≤ τ for targets V ∈ Tc

and db(V,W ) > τ for impostors V ∈ Tb.

3 Applying Coreness to Accuracy Estimation

The Facet alignment accuracy estimator [15] is a linear combination of
efficiently-computable feature functions that are positively correlated with true
accuracy. As mentioned earlier, the accuracy of a computed alignment is mea-
sured only with respect to core columns of the reference alignment. We leverage
our coreness predictor to improve the Facet estimator by: (1) creating a new
feature function that attempts to directly estimate accuracy, and (2) concentrat-
ing the evaluation of existing feature functions on columns with high predicted
coreness.

3.1 Creating a New Coreness Feature

Our new feature function on alignments, Predicted Alignment Coreness, is sim-
ilar to the so-called total-column score sometimes used to measure alignment
accuracy. Predicted Alignment Coreness counts the number of columns in the
alignment that are predicted to be core, by taking a window W around each
column, and determining whether its predicted coreness χ(W ) exceeds a thresh-
old κ. This count of predicted core columns is normalized by an estimate of the
number of core columns in the unknown reference alignment of the sequences.
Formally, for computed alignment A of sequences S, the Predicted Alignment
Coreness feature function is FAC(A) :=

∣
∣{W ∈A : χ(W ) ≥ κ

}∣
∣ /

L(S).
Normalizer L(S) is designed to be positively correlated with the number of

core columns in the reference alignment for sequences S. We consider functions L
that are linear combinations of products of at most three factors from the fol-
lowing: aggregate measures of the lengths of sequences in S (their minimum,
mean, and maximum length); ratios of the longest-common-subsequence length
for pairs of sequences, divided by an aggregate length measure (a form of “per-
cent identity”); and ratios of the difference in maximum and minimum length,
divided by an aggregate length measure (a form of “percent indel”). Finally,
we obtain L(S) by solving a linear program to find coefficients of the linear
combination that minimizes the L1-norm with the true number of core columns.

3.2 Augmenting Former Features by Coreness

We also augment some of the features currently in Facet to concentrate their
evaluation on columns of higher predicted coreness. A full description of all
feature functions in Facet is in [15]; we use predicted coreness to augment: Sec-
ondary Structure Blockiness, Secondary Structure Identity, Amino Acid Identity,
and Average Substitution Score. Each of these functions computes a feature value
that in essence is a sum over substitutions in a column; in the modified feature,
this is now a weighted sum over columns weighted by predicted coreness.
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4 Assessing the Coreness Predictor

We evaluate our new approach to coreness prediction, and its use in accuracy
estimation for alignment parameter advising, through experiments on a collec-
tion of protein multiple sequence alignment benchmarks. A full description of
the benchmarks, and the universe of parameter choices for parameter advising, is
in [15]. Briefly, the benchmarks in our experiments consist of reference alignments
of protein sequences largely induced by structurally aligning their known three-
dimensional structures. We use the BENCH suite of Edgar [10], supplemented by
a selection from the PALI suite of Balaji et al. [1]. Our full benchmark collection
consists of 861 reference alignments.

We use twelve-fold cross-validation to assess both column classification with
our coreness predictor, and parameter advising with our augmented accuracy
estimator. To correct for the overabundance of easy-to-align benchmarks when
assessing parameter advising, we bin the benchmarks according to difficulty,
measured by the true accuracy of their alignment computed by the Opal
aligner [19,20] under its default parameter setting. We ensure folds are balanced
in their representation of benchmarks from all difficulty bins. For each fold, we
generate a training set and testing set of example alignments by running Opal
on each benchmark for each parameter choice from a fixed universe of settings.

4.1 Constructing the Coreness Predictor

We first discuss learning distance functions and fitting transform functions.

Learning the Distance Function. To keep the linear program manageable,
each training fold and each structured class has a training set of 4,000 window
examples. When learning the distance functions and testing the accuracy of
our coreness predictor, we use training and testing samples of 2,000 window
examples representing all classes (including the unstructured class), drawn from
our training and testing example alignments.

We form the initial sets of targets and impostors for the linear program by
either: (1) using a default distance function whose positional substitution score is
a convex combination of (a) the VTML200 substitution score on the states’ amino
acids (transformed to a dissimilarity value in the range [0, 1]) and (b) the identity
function on the states’ secondary structure types, with positions weighted so the
center column has twice the weight of its flanking columns; or (2) randomly
sampling example windows from the appropriate classes to form targets and
impostors.

When learning the distance function we use 2 targets and 150 impostors per
class for each window in the training sample. Once a distance function is learned,
we iterate the process by using the learned distance function to recompute the
sets of targets and impostors for another instance of the linear program that
is in turn solved to learn a new distance function. For the receiver operating
characteristic (ROC) curve, we give the area under the curve (AUC) measure
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Fig. 1. Fit of the logistic trans-
form functions to the average
true coreness of training exam-
ples. (Color figure online)

Fig. 2. Average parameter advising accu-
racy within difficulty bins for greedy advi-
sor sets of cardinality 7. (Color figure
online)

on both training and testing data, for successive iterations of distance learning,
starting from the default distance function. Across the first 5 iterations, the suc-
cessive training AUC is 86.3, 93.9, 98.9, 99.3, 99.3; the corresponding testing AUC
is 83.8, 82.5, 84.9, 84.8, 85.0. Note that the training AUC increases steadily for
the first four iterations, though this translates into only a slight improvement
in testing AUC; after this fifth iteration, no further improvement is seen. While
iterating distance learning markedly improves our core column predictor on the
training examples, it is overfitting and does not generalize well to testing exam-
ples, most likely due to the smaller training sample and training set we used to
reduce the time for solving the linear program. We also found that using random
examples for the targets and impostors led to much better generalization, namely
a training and testing AUC of 85.8 and 88.7, so we use these resulting distance
functions (without iterating) when evaluating results on parameter advising.

Transforming Distance to Coreness. Figure 1 shows the fitted logistic func-
tions fcore and fnon used to transform nearest-neighbor distance to predicted
coreness, superimposed on the underlying true coreness data for one fold of
training examples. The horizontal axis is nearest-neighbor distance δ, while the
vertical axis is the average true coreness of training examples at that distance.
The blue and red curves respectively show the average true coreness of training
examples for which the nearest neighbor is in either a core class or a structured
non-core class. The top and bottom green curves respectively show the logistic
transform functions for the core and non-core classes fitted to this training data.
Note that the green logistic curves fit the data quite well.

4.2 Improving Parameter Advising

A parameter advisor and has two components: (1) an accuracy estimator, which
estimates the accuracy of a computed alignment, and (2) an advisor set, which is



86 D. DeBlasio and J. Kececioglu

a set of candidate assignments of values to the aligner’s parameters. The advisor
picks the choice of parameter values from the advisor set for which the aligner
yields the alignment of highest estimated accuracy. In our experiments, we eval-
uate the true accuracy of the Opal aligner [19,20] combined with a parameter
advisor using Facet (the best accuracy estimator for advising from the liter-
ature [15]), augmented by our new coreness predictor as well as by TCS and
ZORRO. We compare these parameter advising results to previous results using
unmodified Facet as well TCS (the next-best accuracy estimator for advising).
We also compare against augmenting Facet by true coreness, which provides a
limit for an unattainable perfect coreness predictor.

The choice of advisor set is crucial for parameter advising, as the perfor-
mance of an advisor is limited by the quality of the alignments generated by this
set of parameter choices. We consider two types of advisor sets [6]: estimator-
independent oracle sets, which are optimal for a conceptual oracle advisor that
uses true accuracy as its estimator; and estimator-aware greedy sets, which tend
to perform better than oracle sets in practice, but are tuned to a specific accuracy
estimator. Finding such advisor sets requires specifying a universe of possible
parameter choices; we use the universe of 243 parameter choices from [6].

As mentioned earlier, we bin alignments according to difficulty to correct
for the overabundance of easy-to-align benchmarks. Figure 2 lists in parentheses
above the bars the number of benchmarks in each bin. When reporting advis-
ing accuracy, we give the true accuracy of the alignments chosen by the advi-
sor, uniformly averaged over bins (rather than uniformly averaging over bench-
marks). With this equal weighting of bins, an advisor that uses only the single
optimal default parameter choice will achieve an average advising accuracy of
roughly 50 % (illustrated in Fig. 3). This establishes, as a point of reference,
advising accuracy 50 % as the baseline against which to compare advising per-
formance.

The Augmented Facet Estimator. We use our coreness predictor to mod-
ify the Facet accuracy estimator by including the new Predicted Alignment
Coreness feature of Sect. 3.1, and augmenting existing feature functions by core-
ness as in Sect. 3.2. We learned coefficients for these feature functions using the
difference-fitting technique described in [15]. The new alignment accuracy esti-
mator that uses our coreness predictor has non-zero coefficients for: the new
feature, Predicted Alignment Coreness FAC; two features augmented by pre-
dicted coreness, Amino Acid Identity F ′

AI, and Secondary Structure Identity F ′
SI;

and four original unaugmented features, Gap Open Density FGO, Secondary
Structure Agreement FSA, Amino Acid Identity FAI, and Secondary Structure
Blockiness FBL. The resulting augmented accuracy estimator is: (0.512)FGO +
(0.304)F ′

SI + (0.157)FSA + (0.109)FAI + (0.096)FBL + (0.025)F ′
AI + (0.013)FAC.

Improvement in Advising Accuracy. We assess the parameter advising per-
formance of our augmented Facet estimator (“Facet/predicted”) by comparing
it to unaugmented Facet (“Facet/none”), as well as Facet augmented by TCS
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Fig. 3. Advising accuracy on oracle sets
with modified Facet or TCS estimators.

Fig. 4. Advising accuracy on greedy sets
with modified Facet or TCS estimators.

(“Facet/TCS”), ZORRO (“Facet/ZORRO”), and true coreness (“Facet/true”). We
also compare against TCS, the next-best estimator from the literature.

Parameter advising performance using oracle and greedy advisor sets is shown
in Figs. 3 and 4. In both figures, the horizontal axis is advisor set cardinality,
while the vertical axis is advising accuracy for testing folds, averaged across
bins. The curves show performance with the Opal aligner [19,20]. For refer-
ence, the default alignment accuracy for three other popular aligners, MAFFT [14],
MUSCLE [11], and Clustal Omega [18], is also shown with dashed horizontal lines.

Figure 3 shows that on oracle advisor sets, Facet/predicted compared to
Facet/none boosts the average accuracy of parameter advising by nearly 3 %.
This increase is in addition to the improvement of Facet over TCS.

Figure 4 shows that on greedy advisor sets, Facet/predicted at cardinality 7
boosts advising accuracy by 2 %. (Note the curves are higher for greedy sets
than oracle sets.) The accuracy for Facet/predicted is about halfway between
Facet/none and Facet/true (the perfect predictor). Interestingly, Facet/TCS
and Facet/ZORRO actually have worse accuracy than Facet/none.

Advising accuracy within difficulty bins for greedy sets of cardinality 7 is
shown earlier in Fig. 2. In this bar chart, for the bin at each difficulty on the
horizontal axis, advising accuracy averaged over just the benchmarks in the bin is
shown on the vertical axis. The final chart on the right gives accuracy averaged
across all bins. Note that on the most difficult benchmarks, Facet/predicted
boosts accuracy over Facet/none by more than 5 %.

For reference, advising accuracy uniformly-averaged over benchmarks (rather
than bins), on greedy sets of cardinality 10, is: for Facet/none, 81.9 %; and for
Facet/predicted, 82.1 %. On these same benchmarks, the corresponding average
accuracy of other popular aligners, using their default parameter settings, is:
Clustal Omega, 77.3 %; MUSCLE, 78.1 %; MAFFT, 79.4 %; and Opal, 80.5 %.

5 Conclusion

We have developed a column coreness predictor for protein multiple sequence
alignments that uses a regression function on nearest neighbor distances for class
distance functions learned by solving a new linear programming formulation.
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When applied to alignment accuracy estimation and parameter advising, the
coreness predictor strongly outperforms other column confidence estimators from
the literature, and provides a substantial boost in advising accuracy.
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Abstract. Semi-labeled trees are phylogenies whose internal nodes may
be labeled by higher-order taxa. Thus, a leaf labeled Mus musculus could
nest within a subtree whose root node is labeled Rodentia, which itself
could nest within a subtree whose root is labeled Mammalia. Suppose we
are given collection P of semi-labeled trees over various subsets of a set of
taxa. The ancestral compatibility problem asks whether there is a semi-
labeled tree T that respects the clusterings and the ancestor/descendant
relationships implied by the trees in P. We give a Õ(MP) algorithm for
the ancestral compatibility problem, where MP is the total number of
nodes and edges in the trees in P. Unlike the best previous algorithm,
the running time of our method does not depend on the degrees of the
nodes in the input trees.

1 Introduction

In the tree compatibility problem, we are given a collection P = {T1, . . . , Tk}
of rooted phylogenetic trees with partially overlapping taxon sets. P is called a
profile and the trees in P are the input trees. The question is whether there exists
a tree T whose taxon set is the union of the taxon sets of the input trees, such
that T exhibits the clusterings implied by the input trees. That is, if two taxa
are together in a subtree of some input tree, then they must also be together
in some subtree of T . The tree compatibility problem has been studied for over
three decades [1,8,10,20].

In the original version of the tree compatibility problem, only the leaves of
the input trees are labeled. Here we study a generalization, called ancestral com-
patibility, in which taxa may be nested. That is, the internal nodes may also
be labeled; these labels represent higher-order taxa, which are, in effect, sets
of taxa. Thus, for example, an input tree may contain the taxon Glycine max
(soybean) nested within a subtree whose root is labeled Fabaceae (the legumes),
itself nested within an Angiosperm subtree. Note that leaves themselves may be
labeled by higher-order taxa. The question now is whether there is a tree T whose
taxon set is the union of the taxon sets of the input trees, such that T exhibits
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not only the clusterings among the taxa, but also the ancestor/descendant rela-
tionships among taxa in the input trees. Our main result is a Õ(MP) algorithm
for the compatibility problem for trees with nested taxa, where MP is the total
number of nodes and edges in the trees in P.

Background. The tree compatibility problem is a basic special case of the
supertree problem. A supertree method is a way to synthesize a collection of
phylogenetic trees with partially overlapping taxon sets into a single supertree
that represents the information in the input trees. The supertree approach, pro-
posed in the early 90s [2,15], has been used to build large-scale phylogenies [4].

The original supertree methods were limited to input trees where only the
leaves are labeled. Page [13] was among the first to note the need to handle
phylogenies where internal nodes are labeled, and taxa are nested. A major
motivation is the desire to incorporate taxonomies as input trees in large-scale
supertree analyses, as way to circumvent one of the obstacles to building compre-
hensive phylogenies: the limited taxonomic overlap among different phylogenetic
studies [16]. Taxonomies group organisms according to a system of taxonomic
rank (e.g., family, genus, and species); two examples are the NCBI taxonomy
[17] and the Angiosperm taxonomy [21]. Taxonomies spanning a broad range of
taxa provide structure and completeness that might be hard to obtain otherwise.
A recent example of the utility of taxonomies is the Open Tree of Life, a draft
phylogeny for over 2.3 million species [11].

Taxonomies are not, strictly speaking, phylogenies. In particular, their inter-
nal nodes and some of their leaves are labeled with higher-order taxa. Never-
theless, taxonomies have many of the same mathematical characteristics as phy-
logenies. Indeed, both phylogenies and taxonomies are semi-labeled trees [5,18].
We will use this term throughout the rest of the paper to refer to trees with
nested taxa.

The fastest previous algorithm for testing ancestral compatibility, based on
earlier work by Daniel and Semple [7], is due to Berry and Semple [3]. Their
algorithm runs in O

(
τP · log2 n

)
time using O(τP) space. Here, n is the num-

ber of distinct taxa in P and τP =
∑k

i=1

∑
v∈I(Ti)

d(v)2, where I(Ti) is the set
of internal nodes of Ti, for each i ∈ {1, . . . , k}, and d(v) is the degree of node
v. While the algorithm is polynomial, its dependence on node degrees is prob-
lematic: semi-labeled trees can be highly unresolved (i.e., contain nodes of high
degree), especially if they are taxonomies.

Our Contributions. The Õ(MP) running time of our ancestral compatibility
algorithm is independent of the degrees of the nodes of the input trees, a valuable
characteristic for large datasets that include taxonomies. To achieve this time
bound, we extend ideas from our recent algorithm for testing the compatibility
of ordinary phylogenetic trees [8]. As in that algorithm, a central notion in the
current paper is the display graph of profile P, denoted HP . This is the graph
obtained from the disjoint union of the trees in P by identifying nodes that have
the same label (see Sect. 4). The term “display graph” was introduced by Bryant
and Lagergren [6], but similar ideas have been used elsewhere. In particular, the
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display graph is closely related to Berry and Semple’s restricted descendancy
graph [3], a mixed graph whose directed edges correspond to the (undirected)
edges of HP and whose undirected edges have no correspondence in HP . The
second kind of edges are the major component of the τP term in the time and
space complexity of Berry and Semple’s algorithm. The absence of such edges
makes HP significantly smaller than the restricted descendancy graph. Display
graphs also bear some relation to tree alignment graphs [19].

Here, we exploit the display graph more extensively and more directly than
our previous work. Although the display graph of a collection of semi-labeled
trees is more complex than that of a collection of ordinary phylogenies, we are
able to extend several of the key ideas — notably, that of a semi-universal label —
to the general setting of semi-labeled trees. As in [8], the implementation relies
on a dynamic graph data structure, but it requires a more careful amortized
analysis based on a weighing scheme.

Contents. Section 2 presents basic definitions regarding semi-labeled trees and
ancestral compatibility. Section 3 introduces the display graph and discusses its
properties. Section 4 presents BuildNT, our algorithm for testing ancestral com-
patibility. Section 5 gives the implementation details for BuildNT. Section 6 gives
some concluding remarks.

2 Preliminaries

For each positive integer r, [r] denotes the set {1, . . . , r}.
Let G be a graph. V (G) and E(G) denote the node and edge sets of G.

The degree of a node v ∈ V (G) is the number of edges incident on v. A tree is
an acyclic connected graph. In this paper, all trees are assumed to be rooted.
For a tree T , r(T ) denotes the root of T . Suppose u, v ∈ V (T ). Then, u is an
ancestor of v in T , denoted u ≤T v, if u lies on the path from v to r(T ) in T . If
u ≤T v, then v is a descendant of u. Node u is a proper descendant of v if u is a
descendant of v and v �= u. If {u, v} ∈ E(T ) and u ≤T v, then u is the parent of
v and v is a child of u. If neither u ≤T v nor v ≤T u hold, then we write u ‖T v
and say that u and v are not comparable in T .

Semi-labeled Trees. A semi-labeled tree is a pair T = (T, φ) where T is a tree and
φ is a mapping from a set L(T ) to V (T ) such that, for every node v ∈ V (T ) of
degree at most two, v ∈ φ(L(T )). L(T ) is the label set of T and φ is the labeling
function of T .

For every node v ∈ V (T ), φ−1(v) denotes the (possibly empty) subset of
L(T ) whose elements map into v; these elements as the labels of v (thus, each
label is a taxon). If φ−1(v) �= ∅, then v is labeled ; otherwise, v is unlabeled. Note
that, by definition, every leaf in a semi-labeled tree is labeled. Further, any node,
including the root, that has a single child must be labeled. Nodes with two or
more children may be labeled or unlabeled. A semi-labeled tree T = (T, φ) is
singularly labeled if every node in T has at most one label; T is fully labeled if
every node in T is labeled.
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Semi-labeled trees, also known as X-trees, generalize ordinary phylogenetic
trees, also known as phylogenetic X-trees [18]. An ordinary phylogenetic tree is
a semi-labeled tree T = (T, φ) where r(T ) has degree at least two and φ is a
bijection from L(T ) into leaf set of T (thus, internal nodes are not labeled).

Let T = (T, φ) be a semi-labeled tree and let � and �′ be two labels in L(T ).
If φ(�) ≤T φ(�′), then we write � ≤T �′, and say that �′ is a descendant of � in T
and that � is an ancestor of �′. We write � <T �′ if φ(�′) is a proper descendant
of φ(�). If φ(�) ‖T φ(�′), then we write � ‖T �′ and say that � and �′ are not
comparable in T . If T is fully labeled and φ(�) is the parent of φ(�′) in T , then
� is the parent of �′ in T and �′ is a child of � in T ; two labels with the same
parent are siblings.

Two semi-labelled trees T = (T, φ) and T ′ = (T ′, φ′) are isomorphic if there
exists a bijection ψ : V (T ) → V (T ′) such that φ′ = ψ ◦φ and, for any two nodes
u, v ∈ V (T ), (u, v) ∈ E(T ) if and only (ψ(u), ψ(v)) ∈ E(T ′).

Let T = (T, φ) be a semi-labeled tree. For each u ∈ V (T ), X(u) denotes the
set of all labels in the subtree of T rooted at u; that is, X(u) =

⋃
v:u≤T v φ−1(v).

X(u) is called a cluster of T . Cl(T ) denotes the set of all clusters of T . It is well
known [18, Theorem 3.5.2] that a semi-labeled tree T is completely determined
by Cl(T ). That is, if Cl(T ) = Cl(T ′) for some other semi-labeled tree T ′, then
T is isomorphic to T ′.

Suppose A ⊆ L(T ) for a semi-labeled tree T = (T, φ). The restriction of
T to A, denoted T |A, is the semi-labeled tree whose cluster set is Cl(T |A) =
{X ∩ A : X ∈ Cl(T ) and X ∩ A �= ∅}. Intuitively, T |A is obtained from the
minimal rooted subtree of T that connects the nodes in φ(A) by suppressing all
vertices of degree two that are not in φ(A).

Let T = (T, φ) and T ′ = (T ′, φ′) be semi-labeled trees such that L(T ′) ⊆
L(T ). T ancestrally displays T ′ if Cl(T ′) ⊆ Cl(T |L(T ′)). Equivalently, T ances-
trally displays T ′ if T ′ can be obtained from T |L(T ′) by contracting edges, and,
for any �1, �2 ∈ L(T ′), (i) if �1 <T ′ �2, then �1 <T �2, and (ii) if �1 ‖T ′ �2, then
�1 ‖T �2. The notion of “ancestrally displays” for semi-labeled trees generalizes
the well-known notion of “displays” for ordinary phylogenetic trees [18].

For a semi-labelled tree T , let D(T ) = {(�, �′) : �, �′ ∈ L(T ) and � <T �′}
and N(T ) = {{�, �′} : �, �′ ∈ L(T ) and � ‖T �′}. Note that D(T ) consists of
ordered pairs, while N(T ) consists of unordered pairs.

Lemma 1 (Bordewich et al. [5]). Let T and T ′ be semi-labelled trees such
that L(T ′) ⊆ L(T ). Then T ancestrally displays T ′ if and only if D(T ′) ⊆ D(T )
and N(T ′) ⊆ N(T ).

Profiles and Ancestral Compatibility. Throughout the rest of this paper P =
{T1, . . . , Tk} denotes a set where, for each i ∈ [k], Ti = (Ti, φi) is a semi-labeled
tree. We refer to P as a profile, and write L(P) to denote

⋃
i∈[k] L(Ti), the

label set of P. Figure 1 shows a profile where L(P) = {a, b, c, d, e, f, g, h, i}. We
write V (P) for

⋃
i∈[k] V (Ti) and E(P) for

⋃
i∈[k] E(Ti), The size of P is MP =

|V (P)| + |E(P)|.
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Fig. 1. A profile P = {T1, T2, T3} —
trees are ordered left-to-right. The
letters are the original labels; grey
numbers are labels added to make
the trees fully labeled. (Adapted
from [3].)
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Fig. 2. A tree T that
ancestrally displays
the profile of Fig. 1.
(Adapted from [3].)
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Fig. 3. The display
graph HP for the
profile of Fig. 1.

P is ancestrally compatible if there is a rooted semi-labeled tree T that ances-
trally displays each of the trees in P. If T exists, we say that T ancestrally
displays P (see Fig. 2).

Given a subset X of L(P), the restriction of P to X, denoted P|X, is the
profile {T1|X ∩ L(T1), . . . , Tk|X ∩ L(Tk)}. The proof of the following lemma is
straightforward.

Lemma 2. Suppose P is ancestrally compatible and let T be a tree that ances-
trally displays P. Then, for any X ⊆ L(P), T |X ancestrally displays P|X.

A semi-labeled tree T = (T, φ) is fully labeled if every node in T is labeled.
Any profile P that contains trees that are not fully labeled can be converted into
an equivalent profile P ′ of fully-labeled trees by introducing distinct new labels
for the unlabeled nodes of P, as illustrated in Fig. 1.

Lemma 3 (Daniel and Semple [7]). Let P ′ be a profile obtained by adding
distinct new labels to P. Then, P is ancestrally compatible if and only if P ′

is ancestrally compatible. Further, if T is a semi-labeled phylogenetic tree that
ancestrally displays P ′, then T ancestrally displays P.

From this point forward, we shall assume that, for each i ∈ [k], Ti is fully
and singularly labeled. By Lemma3, no generality is lost in assuming that all
trees in P are fully labeled. The assumption that the trees are singularly labeled
is only for clarity; even with this assumption, a tree that ancestrally displays P
is not necessarily singularly labeled. Figure 2 illustrates this fact.

3 The Display Graph

The display graph of a profile P, denoted HP , is the graph obtained from the
disjoint union of the underlying trees T1, . . . , Tk by identifying nodes that have
the same label. Multiple edges between the same pair of nodes are replaced by
a single edge. See Fig. 3.
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HP has O(MP) nodes and edges, and can be constructed in O(MP) time.
By our assumption that all the trees in P are fully and singularly labeled, there
is a bijection between the labels in L(P) and the nodes of HP . Thus, from this
point forward, we refer to the nodes of HP by their labels. It is easy to see that
if HP is not connected, then P decomposes into label-disjoint sub-profiles, and
that P is compatible if and only if each sub-profile is compatible. Thus, we shall
assume, without loss of generality, that HP is connected.

Positions. A position (for P) is a vector U = (U(1), . . . , U(k)), where U(i) ⊆
L(Ti), for each i ∈ [k]. Since labels may be shared among trees, we may have
U(i) ∩ U(j) �= ∅, for i, j ∈ [k] with i �= j. For each i ∈ [k], let Desci(U) = {� :
�′ ≤Ti

�, for some �′ ∈ U(i)}, and let DescP(U) =
⋃

i∈[k] Desci(U).
A position U is valid if, for each i ∈ [k],

(V1) if |U(i)| ≥ 2, then the elements of U(i) are siblings in Ti and
(V2) Desci(U) = DescP(U) ∩ L(Ti).

Lemma 4. For any valid position U , P|DescP(U) = {T1|Desc1(U), . . . ,
Tk|Desck(U)}.

Let U be a valid position. HP(U) denotes the subgraph of HP induced by
DescP(U).

Observation 1. For any valid position U , HP(U) is the subgraph of HP
obtained by deleting all labels in V (HP) \ DescP(U), along with all incident
edges.

A valid position of special interest is Uroot, where Uroot(i) = φ−1
i (r(Ti)),

for each i ∈ [k]. That is, Uroot(i) is a singleton containing only the label of
r(Ti). In Fig. 3, (Uroot(1), Uroot(2), Uroot(3)) = ({1}, {2}, {g}). It is straightfor-
ward to verify that Uroot is indeed valid, that DescP(Uroot) = L(P), and that
HP(Uroot) = HP .

Semi-universal Labels. Let U be a valid position, and let � be a label in U . Then,
� is semi-universal in U if U(i) = {�}, for every i ∈ [k] such that � ∈ L(Ti). It
can be verified that in Fig. 3, labels 1 and 2 are semi-universal in Uroot, but g is
not, since g is in both L(T2) and L(T3), but Uroot(2) �= {g}.

The term “semi-universal”, borrowed from Pe’er et al. [14], derives from the
following fact. Suppose that P is ancestrally compatible, that T is a tree that
ancestrally displays P, and that � is a semi-universal label for some valid position
U . Then, as we shall see, for every i such that � ∈ L(Ti), � must label the root
u� of a subtree of T that contains all the descendants of � in Ti. The qualifier
“semi” is because this subtree may also contain labels that do not descend from
� in any input tree, but descend from some other semi-universal label �′ in U
instead. In this case, �′ also labels u�. This property of semi-universal labels is
exploited in our ancestral compatibility algorithm (see Sect. 4).

For each label � ∈ L(P), let k� denote the number of input trees that con-
tain label �. We can obtain k� for every � ∈ L(P) in O(MP) time during the
construction of HP .
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Lemma 5. Let U = (U(1), . . . , U(k)) be a valid position. Then, label � is semi-
universal in U if |{i ∈ [k] : U(i) = {�}}| = k�.

Successor Positions. For every i ∈ [k] and every � ∈ L(Ti), let Chi(�) denote
the set of children of � in L(Ti). Let U be a valid position, and S be the set of
semi-universal labels in U . The successor of U with respect to S is the position
U ′ defined as follows. For each � ∈ S and each i ∈ [k], if U(i) = {�}, then
U ′(i) = Chi(�); otherwise, U ′(i) = U(i).

In Fig. 3, the set of semi-universal labels in Uroot is S = {1, 2}. Since
Ch1(1) = {3, f} and Ch2(2) = {e, f, g}, the successor of Uroot is U ′ =
({3, f}, {e, f, g}, {g}).

Observation 2. Let U be a valid position, and let U ′ be the successor of U with
respect to the set S of semi-universal labels in U . Then, HP(U ′) can be obtained
from HP(U) by doing the following for each � ∈ S: (1) for each i ∈ [k] such that
U(i) = {�}, delete all edges between � and Chi(�); (2) delete �.

Let U be a valid position, and W be a subset of DescP(U). Then, U |W
denotes the position (U(1) ∩ W,U(2) ∩ W, . . . , U(k) ∩ W ). In Fig. 3, the compo-
nents of HP(U ′), where U ′ is the successor of Uroot, are W1 = {3, 4, a, b, c, d, e, g}
and W2 = {f, h, i}. Thus, U ′|W1 = ({3}, {e, g}, {g}) and U ′|W2 = ({f}, {f}, ∅).

Lemma 6. Let U be a valid position, and S be the set of all semi-universal labels
in U . Let U ′ be the successor of U with respect to S, and let W1,W2, . . . ,Wp be
the label sets of the connected components of HP(U ′). Then, U ′|Wj is a valid
position, for each j ∈ [p].

4 Testing Ancestral Compatibility

BuildNT (Algorithm 1) is our algorithm for testing compatibility of semi-labeled
trees. Its argument, U , is a valid position in P such that HP(U) is connected.
Line 1 computes the set S of semi-universal labels in U . If S is empty, then,
as argued in Theorem 1 below, P|DescP(U) is incompatible, and, thus, so is P.
This fact is reported in Line 3. Line 4 checks if S contains exactly one label �,
with no proper descendants. If so, by the connectivity assumption, � must be
the only element in DescP(U). Therefore, Line 5 simply returns the tree with a
single node, labeled �. Line 6 updates U , replacing it by its successor with respect
to S. Let W1, . . . ,Wp be the connected components of HP(U) after updating U .
By Lemma 6, U |Wj is a valid position, for each j ∈ [p]. Lines 7–11 recursively
invoke BuildNT on U |Wj for each j ∈ [p], to determine if there is a tree tj
that ancestrally displays P|DescP(U ∩ Wj). If any subproblem is incompatible,
Line 11 reports that P is incompatible. Otherwise, Lines 12 and 13 assemble the
tjs into a single tree that displays P|DescP(U), whose root is labeled by the
semi-universal labels in the set S of Line 1.

Next, we argue the correctness of BuildNT.
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Algorithm 1. BuildNT(U)
Input: A valid position U for P such that HP(U) is connected.
Output: A semi-labeled tree that ancestrally displays P ′ = P|DescP(U), if P ′

is ancestrally compatible; incompatible otherwise.
1 Let S = {� ∈ U : � is semi-universal in U}
2 if S = ∅ then
3 return incompatible

4 if |S| = 1 and the single element, �, of S has no proper descendants then
5 return the tree consisting of exactly one node, whose label set is {�}
6 Replace U by the successor of U with respect to S.
7 Let W1, W2, . . . , Wp be the connected components of HP(U)
8 foreach j ∈ [p] do
9 Let tj = BuildNT(U |Wj)

10 if tj is not a tree then
11 return incompatible

12 Create a node rU , whose label set is S
13 return the tree with root rU and subtrees t1, . . . , tp

Theorem 1. Let P = {T1, . . . , Tk} be a profile and let Uroot = (Uroot(1), . . . ,
Uroot(k)), where, for each i ∈ [k], Uroot(i) = φ−1

i (r(Ti)). Then, BuildNT(Uroot)
returns either (i) a semi-labeled tree T that ancestrally displays P, if P is ances-
trally compatible, or (ii) incompatible otherwise.

Proof. (i) Suppose that BuildNT(Uroot) outputs a semi-labeled tree T . We prove
that T ancestrally displays P. By Lemma 1, it suffices to show that D(Ti) ⊆
D(T ) and N(Ti) ⊆ N(T ), for each i ∈ [k].

Consider any (�, �′) ∈ D(Ti). Then, � has a child �′′ in Ti such that �′′ ≤Ti
�′.

There must be a recursive call to BuildNT(U), for some valid position U , where �
is the set S of semi-universal labels obtained in Line 1. By Observation 2, label �′′,
and thus �′, both lie in one of the connected components of the graph obtained
by deleting all labels in S, including �, and their incident edges from HP(U). It
now follows from the construction of T that (�, �′) ∈ D(T ). Thus, D(Ti) ⊆ D(T ).

Now, consider any {�, �′} ∈ N(Ti). Let v be the lowest common ancestor of
φi(�) and φi(�′) in Ti and let �v be the label of v. Then, �v has a pair of children,
�1 and �2 say, in Ti such that �1 ≤Ti

�, and �2 ≤Ti
�′. Because BuildNT(Uroot)

returns a tree, there are recursive calls BuildNT(U1) and BuildNT(U2) for valid
positions U1 and U2 such that �1 is semi-universal for U1 and �2 is semi-universal
for U2. We must have U1 �= U2; otherwise, |U1(i)| = |U2(i)| ≥ 2, and, thus,
neither �1 nor �2 is semi-universal, a contradiction. Further, it follows from the
construction of T that we must have DescP(U1)∩DescP(U2) = ∅. Hence, � ‖T �′,
and, therefore, {�, �′} ∈ N(T ).

(ii) Asssume, by way of contradiction, that BuildNT(Uroot) returns
incompatible, but that P is ancestrally compatible. By assumption, there exists
a semi-labeled tree T that ancestrally displays P. Since BuildNT(Uroot) returns
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incompatible, there is a recursive call to BuildNT(U) for some valid position U
such that U has no semi-universal label, and the set S of Line 1 is empty.

By Lemma 2, T |DescP(U) ancestrally displays P|DescP(U). Thus, by
Lemma 4, T |DescP(U) ancestrally displays Ti|Desci(U), for every i ∈ [k]. Let
� be any label in the label set of the root of T |DescP(U). Then, for each i ∈ [k]
such that � ∈ L(Ti), � must be the label of the root of Ti|Desci(U). Thus, for
each such i, U(i) = {�}. Hence, � is semi-universal in U , a contradiction. �


5 Implementation

We focus on two key aspects of the implementation of BuildNT: finding semi-
universal labels in Line 1, and updating U and HP(U) in Lines 6 and 7.

By Observation 1, each recursive call to BuildNT deals with a graph obtained
from HP through edge and node deletions. To handle these deletions efficiently,
we represent HP using the dynamic graph connectivity data structure of Holm
et al. [12], which we refer to as HDT. HDT maintains the list of nodes in each
component, as well as the number of these nodes so that, starting with no edges in
a graph with N nodes, the amortized cost of each update is O(log2 N). Since HP
has O(MP) nodes, each update takes O(log2 MP) time. The total number of edge
and node deletions performed by BuildNT(Uroot) — including all deletions in the
recursive calls — is at most the total number of edges and nodes in HP , which
is O(MP). HDT allows us to maintain connectivity information throughout the
entire algorithm in O(MP log2 MP) time.

As deletions are performed on HP , BuildNT maintains three data fields for
each connected component Y that is created: Y.weight, Y.map, and Y.semiU. It
also maintains a field �.count, for each � ∈ L(P).

(i) Y.weight equals
∑

�∈Y k�.
(ii) Y.map is a map from a set JY ⊆ [k] to a set of nonempty subsets of Y ∩L(Ti).

For each i ∈ JY , Y.map(i) denotes the set associated with i.
(iii) �.count equals the cardinality of the set {i ∈ [k] : Y.map(i) is defined and

Y.map(i) = {�}}.
(iv) Y.semiU is a set containing all labels � ∈ Y such that �.count = k�.

Informally, each set Y.map(i) corresponds to a non-empty U(i); Y.semiU corre-
sponds to the semi-universal labels in Y . Next, we formalize these ideas.

At the start of the execution of BuildNT(U) for any valid position U , HP(U)
has a single connected component, YU = DescP(U). Our implementation main-
tains the following invariant.

INV: At the beginning of the execution of BuildNT(U), YU .map(i) = U(i) for
each i ∈ [k] such that U(i) �= ∅, and YU .map(i) is undefined for each i ∈ [k]
such that U(i) = ∅.

Thus, �.count equals the number of indices i ∈ [k] such that U(i) = {�}.
Along with Lemma 5, INV implies that, at the beginning of the execution of
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BuildNT(U), YU .semiU contains precisely the semi-universal labels of U . Thus,
the set S of line 1 of BuildNT(U) can be retrieved in O(1) time.

We establish INV for the initial valid position Uroot as follows. By assumption,
HP(Uroot) has a single connected component, Yroot = L(P). Since HP(Uroot)
equals HP , we initialize data fields (i)–(iv) for Yroot during the construction of
HP . Yroot.weight is simply

∑
�∈L(P) k�. For each i ∈ [k], Yroot.map(i) is {�},

where � is the label of the root of Ti. We initialize the count fields as follows.
First, set �.count to 0 for all � ∈ L(P). Then, iterate through each i ∈ [k],
incrementing �.count by one if Yroot.map(i) = {�}. Finally, Yroot.semiU consists
of all � ∈ Uroot such that �.count = k�. All data fields can be initialized in
O(MP) time.

We now focus on Lines 6 and 7 of BuildNT. We update U and HP(U) jointly
as follows. Let GBNT be a temporary variable, such that, initially, GBNT = HP(U).
Now, successively consider each label � ∈ S, and perform two steps: (a) initialize
data fields (i)–(iv) in preparation for the deletion of � and (b) delete from GBNT

the edges incident on � and then � itself, updating data fields (i)–(iv) as necessary,
to maintain INV. By Observation 2, after these steps are executed, GBNT must
equal HP(U) for the new set U created by Line 6.

To initialize the data fields prior to deleting label �, first consult HDT to
identify the connected component Y that contains �. Then, since � will cease to be
semi-universal, remove � from Y.semiU. Next, for each i ∈ [k] such that � ∈ L(Ti),
if Chi(�) �= ∅, replace Y.map(i) by Chi(�); otherwise, Y.map(i) is undefined. These
operations may create new singleton sets Y.map(i), so we may need to update
certain count and semiU fields. Since each label is considered at most once, the
total number of operations on map fields of the various sets Y considered over the
entire execution of BuildNT(Uroot) is O(

∑
i∈[k]:�∈L(Ti)

|Chi(�)|), which is O(MP).
The same bound holds for updates to count and semiU fields.

To delete a label �, we begin by successively deleting each edge between � and
a child α of �, updating the appropriate data fields for the resulting connected
components. This is done as follows.

1. Query HDT to determine the connected component Y containing �.
2. Delete (�, α), querying HDT to determine whether this disconnects Y .
3. If Y remains connected, skip the next steps and proceed directly to the next

child of �. Otherwise, Y is split into two components, Y1 and Y2.
4. Identify which of Y1 and Y2 has the smaller weight field. Without loss of

generality, assume that Y1.weight ≤ Y2.weight.
5. Initialize Y1.map and Y1.semiU to null and Y2.map and Y2.semiU to the cor-

responding fields of Y .
6. Iterate through each label β in Y1. For every i such that β ∈ L(Ti), move β

from Y2.map(i) to Y1.map(i). As we do this, record in a set J the indices i such
that Y1.map(i) and Y2.map(i) are modified.

7. For each i ∈ J , (i) if Y1.map(i) is empty, delete it, and (ii) if Y1.map(i) consists
of a single label γ, increment γ.count by one and, if γ.count = kγ , add γ to
Y1.semiU. Proceed similarly for Y2.

After all edges incident on � are deleted, � itself is deleted.
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Let us track the number of operations on map fields in step 5 that can
be attributed to some specific label β ∈ L(P) over the entire execution of
BuildNT(Uroot). Each execution of step 5 for β performs kβ operations on map
fields. Let wr(β) be the weight of the connected component containing β at the
beginning of step 5, at the rth time that β is considered in that step; thus,
w0(β) ≤

∑
�∈L(P) k�. We claim that wr(β) ≤ w0(β)/2r. The reason is that we

only consider β if (a) β is contained in one of the two components that result
from deleting an edge in step 5 and (b) the component containing β has the
smaller weight. Thus, the number of times β is considered in step 5 over the
entire execution of BuildNT(Uroot) is O(log w0(β)), which is O(log MP), since
w0(β) = O(MP). Therefore, the total number of updates of map fields over all
labels is O(log MP ·

∑
�∈L(P) k�), which is O(MP log MP). We remark that this

analysis, in effect, invokes a weighted version of the well-known technique of
scanning the smaller component [9].

The weight fields of the connected components are maintained using the
original, unweighted, version of technique of scanning the smaller component.
It can be shown that total time to update these fields over all edge deletions
performed by BuildNT(Uroot) is O(MP log MP). The number of updates to count
and semiU fields in step 5 can also be shown to be O(MP log MP); each update
takes O(1) time. Due to space limitations, we omit further details.

To summarize, the work done by BuildNT(Uroot) consists of three parts:
(i) initialization, (ii) maintaining connected components, and (iii) maintaining
the data fields for each connected component and each label. Part (i) takes
O(MP) time. Part (ii) involves O(MP) edge and node deletions on the HDT data
structure, at an amortized cost of O(log2 MP) per deletion. Part (iii) requires a
total of O(MP log MP) updates to the various fields. Using data structures that
take logarithmic time per update, leads to our main result.

Theorem 2. BuildNT can be implemented so that BuildNT(Uroot) runs in
O(MP log2 MP) time.

6 Discussion

Like our earlier algorithm for compatibility of ordinary phylogenetic trees, the
more general algorithm presented here, BuildNT, is a polylogarithmic factor away
from optimality (a trivial lower bound is Ω(MP), the time to read the input).
BuildNT has a linear-space implementation, using the results of Thorup [22].
A question to be investigated next is the performance of the algorithm on
real data. Another important issue is integrating our algorithm into a synthesis
method that deals with incompatible profiles.
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Abstract. The gene family-free framework for comparative genomics
aims at developing methods for gene order analysis that do not require
prior gene family assignment, but work directly on a sequence similarity
graph. We present a model for constructing a median of three genomes in
this family-free setting, based on maximizing an objective function that
generalizes the classical breakpoint distance by integrating sequence sim-
ilarity in the score of a gene adjacency. We show that the corresponding
computational problem is MAX SNP-hard and we present a 0–1 linear
program for its exact solution. The result of this program is a median
genome with median genes associated to extant genes, in which median
adjacencies are assumed to define positional orthologs. We demonstrate
through simulations and comparison with the OMA orthology database
that the herein presented method is able compute accurate medians and
positional orthologs for genomes comparable in size of bacterial genomes.

1 Introduction

The prediction of evolutionary relationships between genomic sequences is a
long-standing problem in computational biology. According to Fitch [8], two
genomic sequences are called homologous if they descended from a common
ancestral sequence. Furthermore, Fitch identifies different events that give rise to
a branching point in the phylogeny of homologous sequences, leading to the well-
established concepts of orthologous genes (who descend from their last common
ancestor through a speciation) and paralogous genes (descending from their last
common ancestor through a duplication) [9]. Until quite recently, orthology and
paralogy relationships were mostly inferred from sequence similarity. However it
is now well accepted that the syntenic context can carry valuable evolutionary
information, which has lead to the notion of positional orthologs [5], which are
orthologs whose syntenic context was not changed in a duplication event. In the
present work, we describe a method to compute groups of likely orthologous
genes for a group of three genomes, through a new problem we introduce, the
gene family-free median of three.

Most methods for detecting potential orthologous groups require a prior clus-
tering of the genes of the considered genomes into homologous gene families,
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 102–120, 2016.
DOI: 10.1007/978-3-319-43681-4 9
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defined as groups of genes assumed to originate from a single ancestral gene. Yet
clustering protein sequences into families is already in itself a difficult problem.

Here, we follow the matching-based approach, framed within the gene family-
free principle, that embodies the idea to perform gene order analysis without the
prerequisite of gene family or homology assignments. Instead, we are given all-
against-all gene similarities through a symmetric and reflexive similarity mea-
sure σ : Σ×Σ → R≥0 over the universe of genes Σ [3]. We use sequence similarity
but other similarity measures can fit the previous definition. This leads to the
formalization of the gene similarity graph [3], i.e. a graph where each vertex cor-
responds to a gene of the dataset and where each pair of vertices associated with
genes of distinct genomes are connected by a strictly positively weighted edge
according to gene similarity measure σ. Gene family or homology assignments
represent a particular subgroup of gene similarity functions that require tran-
sitivity. Independent of the particular similarity measure σ, relations between
genes imposed by σ are considered as candidates for homology assignments.
A gene family-free research program was outlined in [3] (see also [7]) and has so
far been developed for the pairwise comparison of genomes [6,10,13] and shown
to be effective for orthology analysis [11].

In Sect. 2 we introduce a new genome median problem in the family-free
framework, that generalizes the traditional breakpoint median problem [16]. For
a group of three genomes, the input of the family-free median problem is a
tripartite similarity graph of pairwise gene similarities. Informally, a median of
three is defined as a genome, and as such is composed of a set of median genes
that are associated to the genes of the input genomes and that give rise to one
or more linear or circular gene order sequences. The matching of median genes
to input genes as well as their ordering in the median genome is subject to an
optimization problem. Hereby, our optimization criterion fully integrates both
sequence similarity and gene order conservation.

In Sect. 3 we study its the computational complexity and give an exact algo-
rithm for its solution. We show that our method can be used for positional
ortholog prediction in simulated and real data sets of bacterial genomes in Sect. 4.

2 The Gene Family-Free Median of Three

Extant genomes, genes and adjacencies. In this work, a genome G is entirely
represented by a tuple G ≡ (C,A), where C denotes a non-empty set of unique
genes, and A is a set of adjacencies. Genes are represented by their extremities,
i.e., a gene g ≡ (gt, gh), g ∈ C, consists of a head gh and a tail gt. Telomeres are
modeled explicitly, as special genes of C(G) with a single extremity, denoted by
“◦”. Extremities ga

1 , gb
2, a, b ∈ {h, t} of any two genes g1, g2 form an adjacency

{ga
1 , gb

2} if they are immediate neighbors in their genome sequence. In the fol-
lowing, we will conveniently use the notation C(G) and A(G) to denote the set
of genes and the set of adjacencies of genome G, respectively. We indicate the
presence of an adjacency {xa

1 , x
b
2} in an extant genome X by
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Fig. 1. (a) Illustration of the score of a candidate median gene. (b) Gene similarity
graph of three genomes G, H, and I. Colored components indicate candidate median
genes m1 = (g1, h1, i2), m2 = (g2, h2, i1), m3 = (g3, h3, i2), and m4 = (g4, h3, i3).
Median gene pairs m1, m3 and m3, m4 are conflicting.

IX(xa
1 , x

b
2) =

{
1 if {xa

1 , x
b
2} ∈ A(X)

0 otherwise.
(1)

Given two genomes G and H and gene similarity measure σ, two adjacen-
cies, {ga

1 , gb
2} ∈ A(G) and {ha

1 , h
b
2} ∈ A(H) with a, b ∈ {h, t} are conserved iff

σ(g1, h1) > 0 and σ(g2, h2) > 0. We subsequently define the adjacency score of
any four extremities ga, hb, ic, jd, where a, b, c, d ∈ {h, t} and g, h, i, j ∈ Σ as the
geometric mean of their corresponding gene similarities [3]:

s(ga, hb, ic, jd) ≡
√

σ(g, h) · σ(i, j) (2)

Median genome, genes and adjacencies. Informally, the family-free median prob-
lem asks for a fourth genome M that maximizes the sum of pairwise adjacency
scores to three given extant genomes G, H, and I. In doing so, the gene content
of the requested median M must first be defined: each gene m ∈ C(M) must
be unambiguously associated with a triple of extant genes (g, h, i), g ∈ C(G),
h ∈ C(H), and i ∈ C(I). Moreover, we want to associate to a median gene m a
sequence similarity score (g, h, i) relatively to the three extant genes it is related
to. As the sequence of the median gene is obviously not available, we define this
score as the geometric mean of their pairwise similarities (see Fig. 1 (a)):

σ(g,m) = σ(h,m) = σ(i,m) ≡ 3
√

σ(g, h) · σ(g, i) · σ(h, i) (3)

In the following we make use of mapping πG(m) ≡ g, πH(m) ≡ h, and
πI(m) ≡ i to relate gene m with its extant counterparts. Two candidate median
genes or telomeres m1 and m2 are conflicting if m1 �= m2 and the intersection
between associated gene sets {πG(m1), πH(m1), πI(m1)} and {πG(m2), πH(m2),
πI(m2)} is non-empty (see Fig. 1 (b) for example). A set of candidate median genes
or telomeres C is called conflict-free if no two of its members m1,m2 ∈ C are con-
flicting. This definition trivially extends to the notion of a conflict-free median.

Problem 1 (FF-Median). Given three genomes G, H, and I, and gene similarity
measure σ, find a conflict-free median M , which maximizes the following formula:
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F�(M) =
∑

{ma
1 ,mb

2}∈A(M)

∑

X∈{G,H,I},

{πX (m1)
a,πX (m2)

b}∈A(X)

s(ma
1 , πX(m1)

a, mb
2, πX(m2)

b),

(4)
where a, b ∈ {h, t} and s(·) is the adjacency score as defined by Eq. (2).

Remark 1. The adjacency score for a median adjacency {ma
1 ,m

b
2} with respect

to the corresponding potential extant adjacency {πX(m1)a, πX(m2)b}, where
{ma

1 ,m
b
2} ∈ A(M) and X ∈ {G,H, I}, can be entirely expressed in terms of

pairwise similarities between genes of extant genomes using Eq. (3):

s(m
a
1 , πX(m1)

a
, m

b
2, πX(m2)

b
) = 6

√ ∏
{Y,Z}⊂{G,H,I}

σ(πY (m1), πZ(m1)) · σ(πY (m2), πZ(m2))

In the following, a median gene m and its extant counterparts (g, h, i) are
treated as equivalent. We denote the set of all candidate median genes by

Σ� = {(g, h, i) | g ∈ C(G), h ∈ C(H), i ∈ C(I) : σ(g, h) ·σ(g, i) ·σ(h, i) > 0} . (5)

Each pair of median genes (g1, h1, i1), (g2, h2, i2) ∈ Σ� and extremities a, b ∈
{h, t} give rise to a candidate median adjacency {(ga

1 , ha
1 , i

a
1), (g

b
2, h

b
2, i

b
2)} if

(ga
1 , ha

1 , i
a
1) �= (gb

2, h
b
2, i

b
2), and (ga

1 , ha
1 , i

a
1) and (gb

2, h
b
2, i

b
2) are non-conflicting. We

denote the set of all candidate median adjacencies and the set of all conserved
(i.e. present in at least one extant genome) candidate median adjacencies by
A� = {{ma

1 ,m
b
2} | m1,m2 ∈ Σ�, a, b ∈ {h, t}} and AC

�
= { {ma

1 ,m
b
2} ∈ A� |∑

X∈{G,H,I} IX(πX(m1)a, πX(m2)b) ≥ 1}, respectively.

Remark 2. A median gene can only belong to a median adjacency with non-
zero adjacency score if all pairwise similarities of its corresponding extant genes
g, h, i are non-zero. Thus, the search for median genes can be limited to 3-cliques
(triangles) in the tripartite similarity graph.

Remark 3. The right-hand side of the above formula for the weight of an adja-
cency is independent of genome X. From Eq. (4), an adjacency in median M
has only an impact in a solution to problem FF-Median if it participates in a
gene adjacency in at least one extant genome. So including in a median genome
median genes that do not belong to a candidate median adjacency in AC

�
do not

increase the objective function.

Related problems. The FF-median problem relates to previously studied gene
order evolution problems. It is a generalization of the tractable mixed multi-
chromosomal median problem introduced in [16], that can indeed be defined as
an FF-median problem with a similarity graph composed of disjoint 3-cliques and
edges having all the same weight. The FF-median problem also bears similarity
with methods aimed at detecting groups of orthologous genes based on gene order
evolution, especially the MultiMSOAR [15] algorithm, although other method
integrate synteny and sequence conservation for inferring orthogroups, see [5].
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Our approach differs first and foremost in its family-free principle (all other
methods require a prior gene family assignment). Compared to MultiMSOAR,
the only other method that can handle more than two genomes with an opti-
mization criterion that considers gene order evolution, both MultiMSOAR (for
three genomes) and FF-median aim at computing a maximum weight tripartite
matching. However we differ fundamentally from MultiMSOAR by the full inte-
gration of sequence and synteny conservation into the objective function, while
MultiMSOAR proceeds first by computing pairwise orthology assignments to
define a multipartite graph.

3 Algorithmic and Complexity Results

We now describe our theoretical results: a NP-hardness proof, an exact Inte-
ger Linear Program (ILP), and an algorithm to detect local optimal structures.

Theorem 1. Problem FF-Median is MAX SNP-hard.

We describe the full hardness proof in AppendixA. It is based on a reduction
from the Maximum Independent Set for Graphs of Bounded Degree 3.

An exact ILP algorithm to problem FF-Median. We now present program
FF-Median, described by Algorithm 1, that exploits the specific properties of
problem FF-Median to design an ILP using O(n5) variables and statements. Pro-
gram FF-Median makes use of two types of binary variables a and b as declared
in domain specifications (D.01) and (D.02), that defines the set of median genes
Σ� and of candidate conserved median adjacencies AC

�
(Remark 3). The former

variable type indicates the presence or absence of candidate genes in an optimal
median M . The latter, variable type b, specifies if an adjacency between two
gene extremities or telomeres is established in M . Constraint (C.01) ensures
that M is conflict-free, by demanding that each extant gene (or telomere) can
be associated with at most one median gene (or telomere). Further, constraint
(C.02) dictates that a median adjacency can only be established between genes
that both are part of the median. Lastly, constraint (C.03) guarantees that each
gene extremity and telomere of the median participates in at most one adjacency.

Property 1. The size (i.e. number of variables and statements) of any
ILP returned by program FF-Median is limited by O(n5) where n =
max(|C(G)|, |C(H)|, |C(I)|).

Remark 4. The output of the algorithm FF-Median is a set of adjacencies
between median genes that define a set of linear and/or circular orders, called
CARs (Contiguous Ancestral Regions), where linear segments are not capped by
telomeres. So formally the computed median might not be a valid genome. How-
ever, as adding adjacencies that do not belong to AC

�
do not modify the score

of a given median, a set of median adjacencies can always be completed into
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Algorithm 1. Program FF-Median for three genomes (G,H, I)
Objective: Maximize∑

{m1,m2}∈AC
�

,

m1 = (g1,h1,i1),
m2 = (g2,h2,i2),

a,b∈{h, t}

b(g
a
1 , g

b
2, h

a
1 , h

b
2, i

a
1 , i

b
2)

∑
X∈{G,H,I},

{πX (m1)a,πX (m2)b}∈A(X)

s(m
a
1 , πX(m1)

a
, m

b
2, πX(m2)

b
)

Constraints:

(C.01) ∀ g′ ∈ C(G):
∑

(g′,h,i)∈Σ�

a(g′, h, i) ≤ 1

∀ h′ ∈ C(H):
∑

(g,h′,i)∈Σ�

a(g, h′, i) ≤ 1

∀ i′ ∈ C(I):
∑

(g,h,i′)∈Σ�

a(g, h, i′) ≤ 1

(C.02) ∀ {(g1, h1, i1), (g2, h2, i2)} ∈ AC
� and ∀ a, b ∈ {h, t}:

2 · b(ga
1 , gb

2, h
a
1 , hb

2, i
a
1 , ib2) ≤ a(g1, h1, i1) + a(g2, h2, i2)

(C.03) ∀ (g1, h1, i1) ∈ Σ� and ∀ a ∈ {h, t}:
∑

(g2,h2,i2)∈Σ�, b∈{h, t}
b(ga

1 , gb
2, h

a
1 , hb

2, i
a
1 , ib2) ≤ 1

Domains:

(D.01) ∀ (g, h, i) ∈ Σ�: a(g, h, i) ∈ {0, 1}
(D.02) ∀ {(g1, h1, i1), (g2, h2, i2)} ∈ AC

� and ∀ a, b ∈ {h, t}:

b(ga
1 , gb

2, h
a
1 , hb

2, i
a
1 , ib2) ∈ {0, 1}

a valid genome by such adjacencies that join the linear segments together and
add telomeres. These extra adjacencies would not be supported by any extant
genome and thus can be considered as dubious, and in our implementation, we
only return the median adjacencies computed by the ILP, i.e. a subset of AC

�
.

Remark 5. Following Remark 2, preprocessing the input extant genomes requires
to handle the extant genes that do not belong to at least one 3-clique in the
similarity graph. Such genes can not be part of any median. So one could decide
to leave them in the input, and the ILP can handle them and ensures they
are never part of the output solution. However, discarding them from the extant
genomes can help recover adjacencies that have been disrupted by the insertion of
a mobile element for example, so in our implementation we follow this approach.

As discussed at the end of Sect. 2, the FF-median problem is a generalization
of the mixed multichromosomal breakpoint median [16]. However, it was shown
in [16] that this breakpoint median problem can be solved in polynomial time
by a Maximum-Weight Matching (MWM) algorithm. This motivates the results
presented in the next paragraph that use a MWM algorithm to identify optimal
median substructures by focusing on conflict-free sets of median genes.
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Finding local optimal segments. Tannier et al. [16] solve the mixed multichromo-
somal breakpoint median problem by transforming it into an MWM problem,
that we outline now. A graph is defined in which each extremity of a candidate
median gene and each telomere gives rise to a vertex. Any two vertices are con-
nected by an edge, weighted according to the number of observed adjacencies
between the two gene extremities in extant genomes. Edges corresponding to
adjacencies between a gene extremity and telomeres are weighted only by half
as much. An MWM in this graph induces a set of adjacencies that defines an
optimal median.

We first describe how this approach applies to our problem. We define a graph
Γ (Σ�) constructed from an FF-Median instance (G,H, I, σ) that is similar to
that of Tannier et al., deviating by defining vertices as candidate median gene
extremities and weighting an edge between two vertices ma

1 ,m
b
2, a, b ∈ {h, t}, by

w({ma
1 , mb

2}) =
∑

X∈{G,H,I}
IX(πX(m1)

a, πX(m2)
b) · s(ma

1 , πX(m1)
a, mb

2, πX(m2)
b).

(6)

We make first the following observation, where a conflict-free matching is
a matching that does not contain two conflicting vertices (candidate median
genes):

Observation 2. Any conflict-free matching in graph Γ (Σ�) of maximum weight
defines an optimal median.

We show now that we can define notions of sub-instances – of a full FF-
median instance – that contains no internal conflicts, for which applying the
MWM can allow to detect if the set of median genes defining the sub-instance
is part of at least one optimal FF-median. Let S be a set of candidate median
genes. An internal conflict is a conflict between two genes from S; an external
conflict is a conflict between a gene from S and a candidate median gene not
in S. We say that S is contiguous in extant genome X if the set πX(S) forms
a unique, contiguous, segment in X. We say that S is an internal-conflict free
segment (IC-free segment) if it contains no internal conflict and is contiguous in
all three extant genomes; this can be seen as the family-free equivalent of the
notion of common interval in permutations [2]. An IC-free segment is a run if
the order of the extant genes is conserved in all three extant genomes, up to a
full reversal of the segment.

Intuitively, one can find an optimal solution to the sub-instance defined by
an IC-free segment, but it might not be part of an optimal median for the whole
instance due to side effects of the rest of the instance. So we need to adapt the
graph to which we apply an MWM algorithm to account for such side effects.
To do so, we define the potential of a candidate median gene m as

Δ(m) = max
{ma

1 ,mb},{ma,mb
2}∈A�

(
w({ma

1 ,m
b}) + w({ma,mb

2})
)
.

We then extend graph Γ (S) =: (V,E) to graph Γ ′(S) := (V,E′) by adding edges
between the extremities of each candidate median gene of an IC-free segment S,
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i.e. E′ = E ∪ {{mh,mt} | m ∈ S} (note that when |S| > 1, w({mh,mt}) = 0
since S is contiguous in all three extant genomes). In the following we refer to
these edges as conflict edges. Let C(m) be the set of candidate median genes that
are involved in an (external) conflict with a given candidate median gene m of
S, then the conflict edge {mh,mt} ∈ E′ is weighted by the maximum potential
of a non-conflicting subset of C(m),

w′({mh,mt}) = max({
∑

m′∈C′
Δ(m′) | C ′ ⊆ C(m) : C ′ is conflict-free}) .

A conflict-free matching in Γ ′(S) is a matching without a conflict edge.

Lemma 1. Given an internal conflict-free segment S, any maximum weight
matching in graph Γ ′(S) that is conflict-free defines a set of median genes and
adjacencies that belong to at least one optimal FF-median of the whole instance.

A proof is presented in AppendixB. Lemma 1 leads to a procedure (Algo-
rithm2) that iteratively identifies and tests IC-free segments in the FF-Median
instance. For each identified IC-free segment S an adjacency graph Γ ′(S) is con-
structed and a maximum weight matching is computed (Line 2–3). If the resulting
matching is conflict free (Line 4), adjacencies of IC-free segment S are reported
and S is removed from an FF-Median instance by masking its internal adjacen-
cies and removing all candidate median genes (and consequently their associated
candidate median adjacencies) corresponding to external conflicts (Line 5–6). It
then follows immediately from Lemma 1 that the set median genes returned by
Algorithm 2 belongs to at least one optimal solution to the FF-median problem.

Algorithm 2. Algorithm ICF-SEG

Input: FF-Median instance (G, H, I, σ)
Output: Set of adjacencies AdjM that is part of a median M of (G, H, I, σ).

1: while there exists an unobserved IC-free conserved segment S in (G, H, I, σ) do
2: Construct adjacency graph Γ ′(S) of S
3: Find maximum weight matching M ⊆ E(Γ ′(S))
4: if A(S) = M then
5: Add A(S) to AdjM
6: Remove S including external conflicts from (G, H, I, σ)
7: end if
8: end while

In the experiments, IC-free runs are used instead of segments. Step 1 is performed
efficiently by first identifying maximal IC-free runs, then breaking it down into
smaller runs whenever the condition in Step 4 is not satisfied.

4 Experimental Results and Discussion

Our algorithms have been implemented in Python and require CPLEX1; they
are freely available as part of the family-free genome comparison tool FFGC down-
loadable at http://bibiserv.cebitec.uni-bielefeld.de/ffgc.
1 http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

http://bibiserv.cebitec.uni-bielefeld.de/ffgc
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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In subsequent analyses, gene similarities are based on local alignment hits
identified with BLASTP on protein sequences using an e-value threshold of 10−5.
In gene similarity graphs, we discard spurious edges by applying a stringency
filter proposed by Lechner et al. [12] that utilizes a local threshold parameter
f ∈ [0, 1] and BLAST bit-scores: a BLAST hit from a gene g to h is only retained
if it is has a higher or equal score than f times the best BLAST hit from h to any
gene g′ that is member of the same genome as g. In all our experiments, we set f
to 0.5. Edge weights of the gene similarity graph are then calculated according to
the relative reciprocal BLAST score (RRBS) [14]. Finally we applied Algorithm
ICF-SEG with conserved segments defined as runs.

For solving the FF-Median problem, we granted CPLEX two CPU cores,
4 GB memory, and a time limit of 3 h per dataset.

In our experiments, we compare ourselves against the orthology prediction
tool MultiMSOAR [15]. This tool requires precomputed gene families, which we
constructed by following the workflow described in [15].

Evaluation on simulated data. We first evaluate our algorithms on simulated data
sets obtained by ALF [4]. The ALF simulator covers many aspects of genome
evolution from point mutations to global modifications. The latter includes two
types of genome rearrangements, as well as various options to customize the
process of gene family evolution. In our simulations, we mainly use standard
parameters suggested by the authors of ALF and we focus on three parame-
ters that primarily influence the outcome of gene family-free genome analysis:
(i) the rate of sequence evolution, (ii) the rate of genome rearrangements, and
(iii) the rate of gene duplications and losses. We keep all three rates constant,
only varying the evolutionary distance between the generated extant genomes.
We confine our simulations to protein coding sequences. A comprehensive list of
parameter settings used in our simulations is shown in Table 2 in AppendixC.
As root genome in the simulations, we used the genomic sequence of an E. coli
K-12 strain (Accession no: NC 000913.2) which comprises 4, 320 protein coding
genes. We then generated 7 × 10 data sets with increasing evolutionary distance
ranging from 10 to 130 percent accepted mutations (PAM). Details about the
generated data sets are shown in Table 1 in AppendixC. Figure 2(a) shows the
outcome of our analysis with respect to precision and recall2 of inferring posi-
tional orthologs. In all simulations, FF-Median generated no or very few false
positives, leading to perfect or near-perfect precision score, consistently outper-
forming MultiMSOAR. However, since the objective of FF-Median only takes
median genes into account that are conserved by synteny, the increase in muta-
tional changes over evolutionary time causes a growing loss of syntenic context
which results in a lower recall. Therefore, MultiMSOAR retains a better recall
for larger evolutionary distances, while FF-Median provides better results for
more closely related genomes.

Evaluation on real data. We study 15 γ-proteobacterial genomes that span a large
taxonomic spectrum and are contained in the OMA database [1]. A complete list
2 precision: #true positives/(#true positives + #false positives), recall: #true posi-

tives/(#true positives + #false negatives).
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Fig. 2. Top: (a) Precision and recall of FF-Median and MultiMSOAR in simulations;
(b) statistical assessment of CARs and median genes on real datasets. Bottom: agree-
ment, compatibility and disagreement of positional orthologs inferred by (c) FF-Median
and (d) MultiMSOAR with OMA database. (Color figure online)

of species names is given in Appendix D. We obtained the genomic sequences from
the NCBI database and constructed for each combination of three genomes a gene
similarity graph following the same procedure as in the simulated dataset. In 9 out
of the 455 combinations of genomes the time limit prohibited CPLEX from finding
an optimal solution. However, in those cases CPLEX was still able to find integer
feasible suboptimal solutions. Figure 2(b) displays statistics of the real dataset.
The number of candidate median genes and adjacencies ranges from 442 to 18, 043
and 3, 164 to 2, 261, 716, respectively, giving rise to up to 3, 227 median genes that
are distributed on 5 to 91 CARs per median. Some CARs are circular, indicating
dubious conformations mostly arising from tandem duplications, but the number
of such cases were low (mean: 2.78, max: 13).

We observed that the gene families in the OMA database are clustered tightly
and therefore missing many true orthologies in the considered triples of genomes.
As a result, many of the orthologous groups inferred by FF-Median and Mul-
tiMSOAR fall into more than one gene family inferred by OMA. We therefore
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evaluate our results by classifying the inferred orthologous groups into three
categories: An orthologous group agrees with OMA if its three genes are in the
same OMA group. It disagrees with OMA if extant genes x and y (of genomes
X and Y respectively) are in different OMA groups but the OMA group of x
contains another gene from genome Y . It is compatible with OMA if it neither
agrees nor disagrees with OMA. We measure the number of median genes as
well as the number orthologous groups of MultiMSOAR in each of the three
categories. Figure 2(c) and (d) shows the outcome this analysis. MultiMSOAR
is generally able to find more orthology relations in the dataset. This comes at
no surprise, as it is clear from the objective of problem FF-Median and from
the results of the simulated datasets that our method does not retain candidate
median genes which have lost their syntenic context, which happens in triples of
highly divergent genomes. The number of disagreeing orthologous groups that
disagree with OMA is comparably low for both FF-Median (mean: 35.16, var:
348) and MultiMSOAR (mean: 48.61, var: 348).

We then performed another analysis to assess the robustness of the positional
orthology predictions. To this end, we look at orthologous groups across multiple
datasets that share two extant genomes, but vary in the third. Given two genes,
x of genome X and y of genome Y , an orthologous group that contains x and
y is called robust if x and y occur in the same orthologous group, whatever
the third extant genome is. We computed the percentage of robust orthologous
groups for all gene pairs of randomly-chosen genomes E. coli K-12 MG 1655
and S. enterica subsp. enterica serovar Typhimurium str. 14028s in our dataset.
The results indicate that orthologous groups inferred by FF-Median are slightly
more robust (95.61%) than robust those by MultiMSOAR (91.77%). This is
likely due to the strict constraint of defining median adjacencies only from genes
that participate in at least one observed adjacency (Remark 4).

Overall, we can observe that FF-Median performed better than MultiM-
SOAR only for triples of closely related genomes – which is consistent with our
observation on simulated data – while being slightly more robust in general.
This suggests FF-Median is an interesting alternative to identify higher confi-
dence positional orthologs, at the expense of a higher recall rate.

Future work. We first aim to investigate alternative methods to reduce the
computational load of Program FF-Median by identifying further strictly sub-
optimal and optimal substructures, which might require a better understanding
of the impact of internal conflicts within substructures defined by intervals in the
extant genomes. Without the need to modify drastically either the FF-median
problem definition or the ILP, one can think about more complex weighting
schemes for adjacencies that could account for known divergence time between
genomes or relaxed notion of adjacencies that would address the high recall rate
we observe in FF-Median. Within that regard, it would probably be interest-
ing to combine this with the use of common intervals instead of runs to define
conflict-free sub-instances. Finally, ideal family-free analysis should take into
account the effects of gene family evolution. However, the presented family-free
median model can only resolve certain cases of gene duplication. It is generally
susceptible to gene losses that occurred along the evolutionary paths between
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the three extant genomes and their common ancestor. The definition of a family-
free median model that tolerates events of gene family evolution at a reasonable
computational cost is likely an interesting research avenue.
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A Hardness Proof

A.1 Reduction

The maximum independent set problem for graphs bounded by node degree 3,
denoted as MAX IS-3 is MAX SNP-hard [3]. The corresponding decision prob-
lem can be informally stated as follows: Given a graph Λ bounded by degree 3
and some number l ≥ 1, does there exists a set of vertices V ′ ⊆ V of size |V ′| = l
whose induced subgraph is unconnected? In the following, we present a transfor-
mation scheme R to phrase Λ as FF-median instance R(Λ) = (G,H, I, σ) such
that the value F�(M) of a median M of R(Λ) is limited by F�(M) ≤ 2 · l+3. In
doing so, we associate vertices of V with genes of extant genomes G,H and I.
In order to keep track of associated genes, we denote by function ξ(x) the list of
vertices associated with gene x. We further introduce two types of unassociated
genes, “∅” and “∗”, whose members are identified by subscript notation.

Transformation R:

1. Construct genome G such that for each vertex v ∈ V there exists two
associated genes gv, ḡv ∈ C(G), i.e. ξ(gv) = ξ(ḡv) = v. Further, let each
gene pair gv, ḡv form a circular chromosome, giving rise to adjacency set
A(G) = {{ḡhv , gtv}, {ḡhv , gtv} | v ∈ V, gv, ḡv ∈ C(G)}.

2. For each edge (u, v) ∈ E construct a circular chromosome Xuv hosting two
genes xuv, x∅ ∈ C(Xuv), with gene xuv being associated with both vertices u
and v and gene x∅ being unassociated. Further, let both genes form a circular
chromosome, giving rise to adjacency set A(Xuv) = {{xh

uv, xt
∅}, {xh

∅, xt
uv}}.

3. Assign each chromosome constructed in the previous step either to genome
H or to genome I such that each vertex v ∈ V is associated with at most two
genes per genome.

4. Complete genomes H and I with additional circular chromosomes Xv where
C(Xv) = {xv, x∅} and A(Xv) = {{xh

v , xt
∅}, {xh

∅ , xt
v}} such that each vertex in

V is associated with exactly two genes per genome.
5. For each vertex v ∈ V , let g, ḡ ∈ C(G), h, h̄ ∈ C(H), and i, ī ∈ C(I) be the pairs

of genes associated with v, i.e. ξ(g) = ξ(ḡ) = ξ(h) ∩ ξ(i) = ξ(h̄) ∩ ξ(̄i) = v.
Assign gene similarities σ(g, h) = σ(g, i) = σ(h, i) = 1 and σ(ḡ, h̄) = σ(ḡ, ī) =
σ(h̄, ī) = 1.

6. Add a copy of circular chromosome X∗ to each genome G,H, and I,
where C(X∗) = {x∗, x̄∗} and A(X∗) = {{xh

∗, x̄t
∗}, {x̄h

∗ , xt
∗}}. Let g∗, ḡ∗ ∈

C(G), h∗, h̄∗ ∈ C(H), and i∗, ī∗ ∈ C(I), set the gene similarity score between
all pairs of genes in {g∗, h∗, i∗} and {ḡ∗, h̄∗, ī∗} respectively, to 1. Lastly, set
the gene similarity score of all pairs of unassociated genes of type “∅” includ-
ing genes g∗, ḡ∗ to 1

4 .

Except for step 3, none of the instructions of transformation scheme R are
computationally challenging. Note that in step 3 the demanded partitioning
of chromosomes into genomes H and I is always possible as consequence of
Vizing’s Theorem [4], by which every graph with maximum node degree d is
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Fig. 3. (a) A simple graph bounded by degree three and (b) a corresponding FF-Median
instance constructed with transformation scheme R.

edge-colorable using at most d or d + 1 colors. Hence, using colors χ1, χ2, χ3, χ4

with χ1 = χ2 ≡ I, χ3 = χ4 ≡ H and Misra and Gries’ algorithm [2], edges of
graph Λ = (E, V ) can be partitioned into two groups in O(|E||V |) time implying
an assignment to genomes H and I.

Example 1. Fig. 3(b) shows a FF-Median instance constructed with transforma-
tion scheme R from the simple graph depicted in Fig. 3(a). Gene similarities
between genes are not shown, but can be derived from the genes’ labeling.

We structure our proof that the presented transformation is in fact a valid
mapping of an MAX IS-3 instance to an instance of FF-Median into three dif-
ferent lemmas:

Lemma 2. Given a median M of FF-Median instance R(Λ) = (G,H, I, σ),
(1) for each median gene (g, h, i) ∈ C(M) where g, h, or i are associated with
vertices in V (Λ) holds ξ(g) = ξ(h) ∩ ξ(i) = v, v ∈ V (Λ); (2) there exist at most
two median genes whose corresponding extant genes are not associated to any
vertex in V (Λ).

Proof. Assume for contradiction that claim (1) does not hold. Then either ξ(g) �=
ξ(h) ∩ ξ(i), or ξ(h) ∩ ξ(i) = ∅, both of which violate the constraint of establishing
gene similarities between associated genes that is given in step 5. For claim (2),
observe that the only unassociated genes in genomeG are gene g∗ and ḡ∗ introduced
in step 6, limiting the overall number of unassociated genes in any median M . ��

Lemma 3. The conserved adjacency set of any median M of FF-
Median instance R(Λ) = (G,H, I, σ) is of the form A(M) ∩ AC

�
=

AG
�

(M) ∪ {{mh
∗,mt

∗}, {mh
∗,mt

∗}}, where the extant genes corresponding to
m∗ and m∗ are all unassociated genes of type “∗” and A(M)G

�
⊆{

{mh
1 ,m

t
2} ∈ AC

�
| ξ(πG(m1)) = ξ(πG(m2))

}
.
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Proof. Observe that both candidate median adjacencies a∗ = {mh
∗,mt

∗} and
ā∗ = {mh

∗,mt
∗} are conserved in all three genomes, whereas all other conserved

candidate adjacencies between associated and unassociated genes can be at most
conserved in H and I. Establishing adjacencies a∗, ā∗ gives rise to a cumulative
adjacency score of 6. Conversely, up to 4 non-conflicting adjacencies between
associated and unassociated genes can be established that are conserved in both
genomes H and I. However, since such adjacencies are only conserved between
unassociated genes of type “∅” whose gene similarities are set to 1

4 , the best
cumulative adjacency score can not exceed 4. Thus, adjacencies a∗, ā∗ must be
contained in any median. Further, because of this and the fact that in both
genomes H and I, each gene associated with vertices of V (Λ) is only adjacent
to an unassociated gene, M cannot contain adjacencies that are conserved in
extant genomes other than genome G, which are the adjacencies of each gene
pair (gv, ḡv) associated with the same vertex v ∈ V (Λ). ��

Lemma 4. Given FF-median instance R(Λ) = (G,H, I, σ), let mu,mv be any
pair of candidate median adjacencies of A� whose corresponding extant genes
are associated to vertices u, v ∈ V (Λ), then mu,mv are conflicting if and only if
(u, v) ∈ E.

Proof. By construction in step 5 of transformation scheme R, each vertex v ∈ V
is associated with exactly two candidate median genes mv = (g, h, i),mv =
(ḡ, h̄, ī), mv,mv ∈ Σ�, such that ξ(g) = ξ(h)∩ξ(i) = v and ξ(ḡ) = ξ(h̄)∩ξ(̄i) = v.
Further, let u be another vertex of V (Λ), such that (u, v) ∈ E(Λ), and mu,mu

are its two corresponding candidate median genes. Then, by construction in step
2, there exists exactly one extant gene x with ξ(x) = uv (which, by assignment
in step 3, is either contained in genome H or I). Consequently, either mu is
in conflict with mv, or mu with mv, or mu with mv, or mu with mv. Recall
that by construction in step 2 in R and by Lemma 3, mu,mu and mv,mv form
conserved candidate adjacencies {mh

u,mt
u}, {mh

u,mt
u} and {mh

v ,mt
v}, {mh

v ,mt
v},

respectively. Clearly, independent of which of the candidate median gene pairs of
u and v are in conflict, both pairs of candidate median adjacencies are in conflict
with each other.

Now, let u, v be two vertices of V (Λ) such that edge (u, v) �∈ E(Λ), then there
exists no gene x in extant genomes H and I with ξ(x) = uv. Even more, due
to Lemma 2, there cannot exist a candidate median gene (g, h, i) with {u, v} ⊆
ξ(g)∪ξ(h)∪ξ(i). Thus, the candidate median genes of u and v are not conflicting
and neither are their corresponding candidate median adjacencies. ��

We proceed to show that the given transformation scheme gives rise to
an approximation preserving reduction known as L-reduction. An L-reduction
reduces a problem P to a problem Q by means of two polynomial-time com-
putable transformation functions: A function f : P → Q′ ⊆ Q that maps each
instance of P onto an instance of Q, herein represented by transformation scheme
R, and a function g : Q′ → P to transform any feasible solution of an instance
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in Q′ to a feasible solution of an instance of P . Here, a feasible solution means
any – not necessarily optimal – solution that obeys the problem’s constraints.
A feasible solution of FF-Median instance (G,H, I, σ) is an ancestral genome
X where C(X) ⊆ Σ� and A(X) ⊆ A� such that A(X) is conflict-free. We give
the following transformation scheme to map ancestral genomes of an FF-Median
instance to solutions of an MAX IS-3 instance:

Transformation S: Given any ancestral genome X of R(Λ), return {ξ(πG(m1))|
{ma

1 ,m
b
2} ∈ A(X) : IG(πG(m1)a, πG(m2)b) = 1 and ξ(πG(m1)) �= ∅}.

We define score function s�(X) ≡ 1
2F�(X) − 3 of an ancestral genome X.

For (R,S) to be an L-reduction the following two properties must hold for any
given MAX IS-3 instance (Λ, l): (1) There is some constant α such that for any
median M of the transformed FF-Median instance R(Λ) holds s�(M) ≤ α · l; (2)
There is some constant β such that for any ancestral genome X of R(Λ) holds
l − |S(X)| ≤ β · |s�(M) − s�(X)|. We proceed to proof the following lemma:

Lemma 5. (R,S) is an L-reduction of problem MAX IS-3 to problem FF-
Median with α = β = 1.

Proof. For any median M of FF-Median instance R(Λ), the number of con-
served median adjacencies with correspondence to the same vertex of Λ is two,
giving rise a cumulative adjacency score of two. From Lemmata 3 and 4 immedi-
ately follows that any ancestral genome of R(Λ) that maximizes the number of
conserved adjacencies also maximizes the number of independent vertices in Λ.
Recall that the two conserved adjacencies between unassociated genes of type
“∗” (which are part of all medians) give rise to a cumulative adjacency score of
6, we conclude that |A(M) ∩ AC

�
| − 2 = 1

2F�(M) − 3 = s�(M) = l, thus α = 1.
Because l = sλ(M), it remains to show that l−|S(X)| ≤ β|l−s�(X)|. In a sub-

optimal ancestral genome of R(Λ), median genes with no association to vertices
of Λ can also contain extant genes of type “∅”. These unassociated median
genes can form “mixed” conserved adjacencies with genes that are associated
with vertices of Λ. Such mixed conserved adjacencies have no correspondence
to vertices in Λ and do not contribute to the transformed solution S(X) of an
ancestral genome X. Yet, as mentioned earlier, the cumulative adjacency score
of all mixed conserved adjacencies can not not exceed 4. Therefore it holds that
|S(X)| ≥ s�(X) and we conclude β = 1. ��

B Speeding up the Search for a Median

Proof of Lemma 1:

Proof. Given an IC-free segment S = {m1, . . . ,mk} of an FF-Median instance
(G,H, I, σ). Let M be a conflict-free matching in graph Γ ′(S). Because M is
conflict-free and S contiguous in all three extant genomes, M must contain all
candidate median genes of S. Now, let M ′ be a median such that S �⊆ C(M ′).
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Further, let C(m) be the set of candidate median genes that are involved in a
conflict with with a given median gene m of S and X = C(M ′)∩(

⋃
m∈S C(m)∪S).

Clearly, X �= ∅ and for the contribution F�(X) must hold F�(X) ≥ F�(S),
otherwise M ′ is not optimal since it is straightforward to construct a median
higher score which includes S. Clearly, the contribution F(X) to the median is
bounded by max({

∑
m′∈C′ Δ(m′) | C ′ ⊆ C(m) : C ′is conflict-free}) + F�(S).

But since S gives rise to a conflict-free matching with maximum score, also
median M ′′ with C(M ′′) = (C(M ′) \X)∪C(S) and A(M ′′) = (A(M ′) \A(X))∪
A(S)) must be an (optimal) median. ��

C Simulated Sequence Evolution with ALF

Table 1. Average benchmark data of seven evolutionary distances, each comprising
ten genomic datasets generated by ALF [1].

PAM Genome Inversions Transpositions Duplications Losses

10 G 8.7 6.1 7.3 6.9

H 7.3 4.5 6.3 5.4

I 8.5 6.6 10.4 5.6

30 G 24.5 16.9 21.0 22.7

H 23.4 19.8 20.6 18.4

I 25.5 17.2 17.5 20.9

50 G 39.9 27.8 32.4 36.7

H 41.8 31.8 31.0 31.7

I 43.2 30.0 28.7 39.7

70 G 58.6 42.3 41.1 39.2

H 57.0 43.6 46.3 45.1

I 60.4 41.4 40.7 39.1

90 G 75.0 54.5 53.1 64.2

H 69.9 50.5 54.1 65.0

I 75.2 55.5 60.3 58.5

110 G 96.3 69.4 67.0 74.6

H 90.6 64.2 62.5 70.9

I 90.2 68.5 62.6 61.2

130 G 105.7 76.3 74.4 81.0

H 108.7 78.2 79.6 82.8

I 110.8 73.6 73.9 77.3
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Table 2. Parameter settings for simulations generated by ALF [1].

Parameter name Value

Sequence evolution

Substitution model WAG (amino acid substitution model)

Insertion and deletion Zipfian distribution exponent c = 1.8214

Insertion rate 0.0003

Maximum insertion length 50

Rate variation among sites Γ -distribution shape parameter a = 1

Number of classes 5

Rate of invariable sites 0.01

Genome rearrangement

Inversion rate 0.0004

Maximum inversion length 100

Transposition rate 0.0002

Maximum transposition length 100

Rate of inverted transposition 0.1

Gene family evolution

Gene duplication Rate 0.0001

Max. no. of genes involved in
one dupl.

5

Probability of transposition
after dupl.

0.5

Fission/fusion after duplication 0.1

Probability of rate change 0.2

Rate change factor 0.9

Probability of temporary rate
change (duplicate)

0.5

Temporary rate change factor
(duplicate)

1.5

Life of rate change (duplicate) 10 PAM

Probability of temporary rate
change (orig+duplicate)

0.3

Temporary rate change factor
(orig+duplicate)

1.2

Life of rate change
(orig+duplicate)

10 PAM

Gene loss Rate 0.0001

Maximum length of gene loss 5

Gene fission/fusion rate 0.0

Maximum number of fused
genes

−
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D Real Genomes Dataset

See Table 3.

Table 3. Dataset of genomes used in comparison with the OMA database.

Genbank ID Name

U00096.3 Escherichia coli str. K-12 substr. MG1655, complete genome

AE004439.1 Pasteurella multocida subsp. multocida str. Pm70, complete genome

AE016853.1 Pseudomonas syringae pv. tomato str. DC3000, complete genome

AM039952.1 Xanthomonas campestris pv. vesicatoria complete genome

CP000266.1 Shigella flexneri 5 str. 8401, complete genome

CP000305.1 Yersinia pestis Nepal516, complete genome

CP000569.1 Actinobacillus pleuropneumoniae L20 serotype 5b complete genome

CP000744.1 Pseudomonas aeruginosa PA7, complete genome

CP000766.3 Rickettsia rickettsii str. Iowa, complete genome

CP000950.1 Yersinia pseudotuberculosis YPIII, complete genome

CP001120.1 Salmonella enterica subsp. enterica serovar Heidelberg str. SL476,
complete genome

CP001172.1 Acinetobacter baumannii AB307-0294, complete genome

CP001363.1 Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S,
complete genome

FM180568.1 Escherichia coli 0127:H6 E2348/69 complete genome, strain E2348/69

CP002086.1 Nitrosococcus watsoni C-113, complete genome
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Abstract. A relation graph for a gene family is a graph with vertices
representing the genes, edges connecting pairs of orthologous genes and
“missing” edges representing paralogs. While a gene tree directly leads
to a set of orthology and paralogy relations, the converse is not always
true. Indeed a relation graph cannot necessarily be inferred from any
tree, and even if it is “satisfiable” by a tree, this tree is not necessarily
“consistent”, i.e. does not necessarily reflect a valid history for the genes,
in agreement with a species tree. Here, we consider the problems of min-
imally correcting a relation graph for satisfiability and consistency, when
a degree of confidence is assigned to each orthology or paralogy relation,
leading to a weighted relation graph. We provide complexity and algo-
rithmic results for minimizing corrections on a weighted graph, and also
for the maximization variant of the problems for unweighted graphs.

1 Introduction

As genes are the basic molecular units of heredity, key for understanding genetic
diversity, a first step of most genomic studies is to group genes into families.
Gene families are usually inferred from sequence similarity, the underlying idea
being that similar sequences reflect homologous genes that have diverged from
a common ancestral sequence.

Given a gene family, it is important to discriminate between two types of
homologs: orthologs being gene copies originating from a speciation event, and
paralogs originating from a duplication. For this purpose, tree-based methods
consist in first constructing a phylogenetic tree for the gene family, and then,
given a species tree, applying a reconciliation approach for inferring speciation
and duplication nodes [8]. On the other hand, tree-free methods are based on
gene clustering according to sequence similarity (c.f. for example [3,17,18,22]),
synteny [15,16] or functional annotation of genes [5]. Results of these methods
are pairwise orthology relations, or groups of orthologs, that can be represented
as relation graphs, where vertices are genes and edges are orthology relations.
Assuming a full inference of pairwise orthology relations, “missing” edges of the
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 121–136, 2016.
DOI: 10.1007/978-3-319-43681-4 10
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relation graph represent paralogy relations. In addition, as different inference
methods may lead to different predictions, instead of a yes or no orthology assign-
ment, existing methods can rather motivate a way of assigning a score to a given
relation [14], leading to a weighted relation graph. For example, orthology pre-
dictions with OrthoMCL [18] are based on a weighted graph, where edge weights
are related to the sequence similarity score of the adjacent genes, while InPara-
noid [3] provides a confidence value that shows how closely related a paralog is to
its “seed ortholog”. Surprisingly, as far as we know, weighted orthology/paralogy
relation graphs have not been formally considered in the literature.

While a gene tree induces a set of relations between genes, the converse is not
true, as a set of relations may or may not represent a valid history for the gene
family. Two underlying questions are: (1) is the set of relations “satisfiable”
i.e. is there a tree, with internal nodes labeled as duplication or speciation,
containing them all? (2) is the set of relations “S-consistent” with the known
species tree S, i.e. is there a tree containing the relations that is a “valid” gene
tree “in agreement” with S? Polynomial-time algorithms are known to exist for
deciding satisfiability and S-consistency for full [9–11] or partial [14] pairwise
gene relations.

In this paper, we address the problem of correcting a full relation graph
R, and more specifically a full weighted relation graph, so that it represents a
satisfiable and S-consistent set of relations. The related minimization problems
consist in editing, i.e. adding or removing, edges of minimum total weight. In
the unweighted case, the satisfiability correction problem reduces to editing a
minimum number of edges of R in order to make it P4-free, which is known to
be NP-hard [19]. In [10], an integer linear programming formulation is used to
correct relation graphs of small size, which is also applicable to weighted graphs.
In [20], the authors propose an approximation algorithm of factor 4Δ, where Δ
is the maximum degree of the input graph. The algorithm, however, offers no
guarantees in the case of weighted graphs, as there are weighted instances on
which it is arbitrarily far from optimal. It is shown in [1] that the minimum edge
editing problem cannot be approximated within an “additive” factor of n2−ε,
for any ε > 0. Yet, the authors give a class of polynomial time algorithms that
are approximable within an additive factor of εn2, for any ε > 0. This implies a
constant factor algorithm for graphs with an edit distance of Ω(n2), but offers no
guarantee in the other cases. Moreover, this algorithm only applies to unweighted
graphs, and does not consider that two genes from the same species must remain
paralogs. Finally in [19], parameterized versions of the algorithm are explored.
As for the S-consistency correction problem, we proved in a previous paper [13]
that it is NP-hard, which is the only result so far.

We show in, Sect. 3, that the weighted satisfiability and S-consistency prob-
lems are not approximable within a constant factor, assuming the Unique
Games Conjecture. In Sect. 4, we then show that they can be approximated
within a factor of n (the number of vertices of the relation graph), and provide
n-approximation algorithms for both the satisfiability and S-consistency prob-
lems. We end this paper by giving, in Sect. 5, a few results on the maximization
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variants of the problems for the unweighted case, which consists in maximizing
the number of preserved relations. We first introduce the concepts and optimiza-
tion problems.

2 Trees and Orthology Relations

A graph H is denoted H = (VH , EH), where VH is its set of vertices (or nodes if
H is a tree) and EH its set of edges. If H is a tree, degree one nodes are leaves.

2.1 Trees

All considered trees are rooted and binary. Given a set X, a tree T for X is a
tree whose leafset L(T ) is in bijection with X. Given an internal node u of T ,
the subtree rooted at u is denoted Tu and we call the leafset L(Tu) the clade of
u. A node u is an ancestor of v if u is on the (inclusive) path between v and
the root. The lowest common ancestor (lca) of u and v, denoted lcaT (u, v), is
the ancestor common to both nodes that is the most distant from the root. We
define lcaT (U) analogously for a set U ⊆ V (T ).

A species tree S for a species set Σ represents an ordered set of speciation
events that have led to Σ: an internal node is an ancestral species at the moment
of a speciation event, and its children are the new descendant species. For sim-
plicity, we will assume that species trees are binary.

A gene family Γ is a set of genes accompanied with a function s : Γ → Σ
mapping each gene to its corresponding species. The evolutionary history of Γ
can be represented as a node-labeled gene tree for Γ , where each internal node
refers to an ancestral gene at the moment of an event (either speciation or dupli-
cation), and is labeled as a speciation (Spec) or duplication (Dup) accordingly.
Formally, we call a DS-tree for Γ a pair (G, ev), where G is a tree with L(G) = Γ ,
and ev : VG \ L(G) → {Dup, Spec} is a function labeling each internal node of
G as a duplication or a speciation. For example, in Fig. 1, G1 and G2 are two
DS-trees.

According to the Fitch [7] terminology, we say that two genes x, y of Γ are
orthologous in G if ev(lcaG(x, y)) = Spec, and paralogous in G if ev(lcaG(x, y)) =
Dup.

A DS-tree G for Γ does not necessarily represent a valid history. For
this to hold, any speciation node of G should reflect a clustering of species
“in agreement” with S [14]. Formally G should be S-consistent, as defined
below, where sG is the LCA-mapping function, mapping each gene, ancestral
or extant, to a species as follows: if g ∈ L(G), then sG(g) = s(g); otherwise,
sG(g) = lcaS({s(g′) : g′ ∈ L(Gg)}).

Definition 1. Let S be a species tree and G be a DS-tree. Let v be an internal
node of G such that ev(v) = Spec. Then the speciation node v, with children v1
and v2, is S-consistent iff none of sG(v1) and sG(v2) is an ancestor of the other.
We say that G is S-consistent iff every speciation node of G is S-consistent.

For example, in Fig. 1, G1 is not S-consistent as the root of G1 is not
S-consistent.
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2.2 Relation Graphs

For a graph H = (VH , EH), we denote the complementary set of EH by EH =
{{u, v} : u, v ∈ VH , {u, v} /∈ EH}. Let V ′ be a subset of VH . The subgraph of H
induced by V ′, denoted H[V ′], is the subgraph of H with vertex-set V ′ having
every edge {u, v} of H such that u, v ∈ V ′. If I is another graph, we say H is
I-free if there is no V ′ ⊆ VH such that H[V ′] is isomorphic to I.

A relation graph R on a gene family Γ is a graph with vertex set VR = Γ ,
in which we interpret each edge {u, v} of ER as an orthology relation between u
and v, and each “missing” edge {u, v} ∈ ER, also called non-edge, as a paralogy
relation. Notice that if s(u) = s(v), then {u, v} must be a non-edge (u and v are
paralogous). We denote n = |VR|.

A DS-tree G leads to a relation graph, denoted R(G), with vertex set L(G)
and edge set corresponding to all gene pairs that are orthologous in G. Con-
versely, a relation graph R does not necessarily lead to a DS-tree. If this is the
case, i.e. if there exists a DS-tree G such that R(G) = R, then R is said satisfi-
able. As shown in [9], a relation graph R is satisfiable if and only if R is P4-free,
meaning that no four vertices of R induce a path of length 3 (number of edges).
The P4-free graphs are sometimes called cographs. See Fig. 1 for an example.
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Fig. 1. S is the species tree for Σ = {a, b, c, d}. The internal nodes, represent-
ing ancestral species, are labeled by x, y and z. R is a relation graph on gene set
Γ = {a1, a2, b1, c1, d1}. A gene name corresponds to the species it belongs to (e.g.
s(a1) = a). R is not satisfiable as the set of vertices {c1, b1, d1, a2} induces a P4. R′ is
a satisfiable relation graph obtained from R by inserting the edge {c1, d1}, and G1 is
a DS-tree displaying every relation of R′ (each internal node v is labeled by sG1(v)).
However, G1 is not consistent with the species tree S. R′′ is another correction of R
that is S-consistent, as the tree G2 displays the relations in R′′ and is S-consistent.
Dup nodes in DS-trees are marked by a square; all other nodes are speciation nodes.

As a DS-tree does not necessarily represent a true history for Γ , satisfiability
of a relation graph does not ensure a possible translation in terms of a history for
Γ . For this to hold, R should also be consistent with the species tree, according
to the following definition.

Definition 2. Let S be a species tree. A relation graph R for Γ is S-consistent
if and only if R is satisfiable by a DS-tree G which is itself S-consistent.

2.3 Problem Statements

We call a weight for a relation graph R = (VR, ER) a function w :
(
VR

2

)
→ R

+

on its vertex pairs. Notice that w assigns a weight to both edges (orthologies)
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and non-edges (paralogies). We shall assume that if s(u) = s(v) for two genes u
and v, then {u, v} ∈ ER and w({u, v}) = ∞. The weight function w is extended
to any IR ⊆

(
VR

2

)
by defining w(IR) =

∑
{x,y}∈IR

w({x, y}).
Given a relation graph R = (VR, ER), an edge-editing of R is a pair

E∗
R = (E+

R , E−
R ) with E+

R ⊆ ER and E−
R ⊆ ER. We denote by R(E∗

R) the
graph R(E∗

R) = (VR, (ER ∪ E+
R )\E−

R , w). In other words, E+
R (respectively E−

R )
denotes inserted (respec. removed) edges. Given a relation graph R′ = (VR′ , ER′)
computed from R by edge insertion and removal, the set of removed edges is
E−

R = ER\ER′ , and the set of inserted edges is E+
R = ER′\ER. For example, for

the graph R′ of Fig. 1, E+
R = {{c1, d1}} and E−

R = ∅. An edge-editing E∗
R is said

P4-free if R(E∗
R) is itself P4-free.

The problems considered in Sects. 3 and 4 are the following (corresponding
maximization problems are introduced in Sect. 5). The first problem asks for a
satisfiable relation graph, hence no species tree is considered, while the second
asks for an S-consistent relation graph, hence the input contains also a species
tree.

Minimum Weighted Editing for Satisfiability (MinWES):
Input: A relation graph R = (VR, ER) and a weight function w;
Output: A satisfiable relation graph R′ = (VR, ER′), obtained from R by an
edge-editing E∗

R = (E+
R , E−

R ) that minimizes w(E+
R ) + w(E−

R ).

Minimum Weighted Editing for Consistency (MinWEC):
Input: A relation graph R = (VR, ER), a weight function w and a species tree
S for Σ (the set of species containing the genes represented by R);
Output: An S-consistent relation graph R′ = (VR, ER′), obtained from R by
an edge-editing E∗

R = (E+
R , E−

R ) that minimizes w(E+
R ) + w(E−

R ).

3 Hardness of Approximation of Minimum Weighted
Editing for Satisfiability and Consistency

We show that MinWES is unlikely to be approximable within a constant fac-
tor, by presenting a gap-preserving reduction from Minimum Multi-Cut. First,
we consider the variant of MinWES, called Minimum Weighted Removal for Sat-
isfiability (MinWRS), where only edge removal is allowed, then we easily extend
the result to MinWES.

Given a graph H = (VH , EH), and a set X ⊆
(
VH

2

)
(i.e. a set of pairs),

Minimum Multi-Cut asks for a set E′
H of minimum cardinality such that each

pair {vi, vj} ∈ X is disconnected in H ′ = (VH , EH\E′
H).

Given an instance H = (VH , EH ,X) of Minimum Multi-Cut, we construct an
instance R = (VR, ER, w) of MinWRS as follows. The vertex set VR includes,
for each vi ∈ VH , two vertices vi,R and v′

i,R. For any distinct x, y ∈ VR, we set
s(x) �= s(y), and hence there are no “forced” paralogs. As for ER, it is defined
as follows, where q = |VH |5 + 1.
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– For each v ∈ VH , define an edge {vi,R, v′
i,R} in ER of weight q′ = q|EH | +

2
((|VH |

2

)
− |EH |

)
;

– For each {vi, vj} ∈ X, define an edge {vi,R, vj,R} in ER with weight q if
{vi, vj} ∈ EH , and with weight 1 if {vi, vj} /∈ EH ;

– For each {vi, vj} /∈ X, define the edges {vi,R, v′
j,R} and {v′

i,R, vj,R} in ER,
each with weight q/2 if {vi, vj} ∈ EH , and with weight 1 if {vi, vj} /∈ EH .

For each {uR, vR} ∈ ER, {uR, vR} has weight q′. Notice however, that, since
edge insertion is not allowed in MinWRS, the weight of {uR, vR} never contributes
to the cost of a solution of MinWRS.

We first show (in the Appendix) that there is a correspondance between
solutions to the two problems on our constructed instances.

Lemma 1. Let H = (VH , EH ,X) be an instance of Minimum Multi-Cut and let
R = (VR, ER, w) be the corresponding instance of MinWRS. Given a solution E′

H

of Minimum Multi-Cut, we can compute in polynomial time a solution of MinWRS

of weight at most q|E′
H | + 2

((|VH |
2

)
− |EH |

)
.

Lemma 2. Let H = (VH , EH ,X) be an instance of Minimum Multi-Cut and let
R = (VR, ER, w) be the corresponding instance of MinWRS. Given a solution R′

of MinWRS of weight at most qW + 2
((|VH |

2

)
− |EH |

)
for some integer W , we

can compute in polynomial time a multicut E′
H of H of size at most W .

Assuming the Unique Games Conjecture, the inapproximability of MinWRS
is deduced from the inapproximability of Minimum Multi-Cut [4].

Theorem 1. MinWRS is not approximable within a constant factor assuming
the Unique Games Conjecture.

The result of Theorem 1 can be easily extended to MinWES.

Corollary 1. MinWES is not approximable within a constant factor assuming
the Unique Games Conjecture.

Proof. The result follows by a gap-preserving reduction similar to that for
MinWRS. Recall that for each pair {uR, vR} ∈ ER, a weight of q′ is associ-
ated with {uR, vR}. Consider a solution R′ of MinWES on instance R that has
cost not greater than qW +

((|VH |
2

)
− |EH |

)
+

(|VH |
2

)
. It is easy to see that R′ is

obtained without any edge insertion. 	


The inapproximability result for MinWES is easily extended to MinWEC.
This is achieved by defining a species tree S on VR such that the root of S is
connected to two subtrees, one with leafset {vi,R : vi ∈ VH}, one with leafset
{v′

i,R : vi ∈ VH}, and showing that any solution to our instance of MinWRS must
agree with this species tree.

Corollary 2. MinWEC is not approximable within a constant factor assuming
the Unique Games Conjecture.
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4 A Bounded Approximation Algorithm for Minimum
Weighted Editing for Satisfiability and Consistency

While MinWES and MinWEC are not approximable within a constant factor, we
show here that they can be approximated within factor n = |V (R)|, and we
give the corresponding algorithms. Despite being a large approximation factor,
this is the best known bound so far and shows that the problems have polyno-
mially bounded approximability. We first describe the approximation algorithm
for MinWES.

Denote by R = (VR, ER) the complement of the graph R = (VR, ER).
A well-known property of cographs is given by the following lemma.

Lemma 3. [6] A graph R is P4-free if and only if for any X ⊆ VR, one of R[X]
or R[X] is disconnected.

This motivates a greedy min-cut approach for MinWES, performing an edge-
editing of minimum weight disconnecting the graph or its complement, and iter-
ating recursively on the resulting components. This is the main idea of Algorithm
MinCut-Cograph-Editing below. Note that assuming forced paralogs have infinite
weight, this algorithm will never make two genes from the same species orthologs.

More formally, let R = (VR, ER) be a relation graph accompanied with a
weight function w. Define a cut C = {X,Y } as a partition of VR with X and
Y being non-empty sets, and denote ER(C) = {{x, y} ∈ ER : x ∈ X, y ∈ Y }.
The weight of C is w(C) = w(ER(C)). The cut C is a minimum cut or MinCut
if no other cut has a smaller weight w(C). Applying a cut C to R consists in
removing all edges of ER(C) from R.

Algorithm MinCut-Cograph-Editing(R):

If R has at most 2 vertices Then Return;
Find a MinCut C = {X, Y } for R;

Find a MinCut C = {X, Y } of R;

If w(C) < w(C) Then

Remove all edges between X and Y in R;
MinCut-Cograph-Editing(R[X]);
MinCut-Cograph-Editing(R[Y ]);

Else

Add all possible edges between X and Y in R;

MinCut-Cograph-Editing(R[X]);

MinCut-Cograph-Editing(R[Y ]);
End If

End Algorithm

Complexity: A MinCut of a given graph of n vertices and m edges can be found
in time O(nm+n2 log n) using the Stoer-Wagner algorithm [21]. In the MinCut-
Cograph-Editing algorithm, MinCut is applied to both R and R. As at least one
of these two graphs has Ω(n2) edges, the required time for MinCut is therefore



128 R. Dondi et al.

O(n3). This step is repeated at most n times, hence the overall time complexity
of MinCut-Cograph-Editing is O(n4).

The remaining of this section is dedicated to proving Theorem2, which states
that MinCut-Cograph-Editing is an n-approximation algorithm. We denote by σR

the minimum weight of a P4-free edge-editing of R. If X ⊆ VR, we denote σR[X]

by σX .

Lemma 4. Let C be a minimum cut of R, and let C be a minimum cut of R.
Then σR ≥ min{w(C), w(C)}.

Proof. Let E∗
R be a P4-free edge-editing of R. By Lemma 3, either R(E∗

R) or its
complement is disconnected, implying that E∗

R must apply some cut on either
R or R. This cut is at best a minimum cut. 	


Lemma 5. Let {X,Y } be a partition of V . Then, σR ≥ σX + σY .

Proof. Let E∗
R be a P4-free edge-editing of weight σR, and let R′ = R(E∗

R).
Assume that E∗

R has a weight stricly smaller than σX+σY . Then, since R′[X] and
R′[Y ] are P4-free, there must either be an edge-editing of R[X] of weight smaller
than σX , or an edge-editing of R[Y ] of weight smaller than σY , contradicting
the definition of σX and σY . 	


Theorem 2. MinCut-Cograph-Editing is an n factor approximation algorithm
for MinWES.

Proof. Denote by β(R) the weight of the edge-editing found by the algorithm
on R. We proceed by induction on n = |VR| to show that β(R) ≤ nσR. The
statement is trivial for n ≤ 3 (as there is nothing to correct), so assume that
the algorithm finds a solution of weight β(R) ≤ kσR for any graph of size at
most k < n. The algorithm applies a minimum cut C = {X,Y } on R or R,
and proceeds recursively on X and Y , with |X|, |Y | ≤ n − 1. By the induction
hypothesis, we have

β(R) ≤ |X|σX + |Y |σY + w(C) ≤ (n − 1)(σX + σY ) + w(C)
≤ (n − 1)σR + σR = nσR

where the last inequality holds due to Lemmas 4 and 5. 	


It is possible to show that the approximation factor of MinCut-Cograph-
Editing is tight.

By modifying MinCut-Cograph-Editing, it is possible to design an n factor
approximation algorithm for MinWEC. The main difference with respect to
MinCut-Cograph-Editing, is that the algorithm considers a minimum cut on a
subset of R and a cut on a subset of R induced by the species tree S. The
detailed algorithm, along with the proof of the following Theorem, are given in
the Appendix. It also requires time O(n4).

Theorem 3. MinCut-Cograph-Editing-Cons is an n factor approximation algo-
rithm for MinWEC.
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5 Polynomial Time Approximation Schemes for the
Maximization Variant of Graph Correction

Here, we consider the complementary maximization problem, which consists in
maximizing conservation between the original and corrected graphs. Although
sharing the same objectives, the minimization and maximization variants are
not equivalent from an approximation point of view.

Below is a formal statement of the corresponding maximization version of
MinWES (see Sect. 2) for unweighted graphs. Remember that edges represent
orthologies, while non-edges are paralogies. Maximizing conservation therefore
requires accounting for both edges and non-edges.

Maximum Editing for Satisfiability (MaxES):
Input: A relation graph R = (VR, ER);
Output: A satisfiable relation graph R′ = (VR, ER′) obtained from R by an
edge-editing, such that its value |ER ∩ ER′ | + |(ER ∩ ER′)| is maximized.

Given a relation graph R, the value of a solution R′ for MaxES over instance
R is called the agreement value of R′.

Lemma 6. Given a relation graph R, an optimal solution of MaxES over
instance R has an agreement value of at least n2

8 .

Proof sketch: Consider the two ‘extreme’ solutions: either make all genes from
two distinct species orthologs, or all genes paralogs. In R, either at least half the
genes are orthologs, or at least half the genes are paralogs. Thus one extreme
solution preserves at least half the total number of relations, which is

(
n
2

)
/2 > n2

8 .
The detailed proof is in the Appendix. 	


Note that Lemma 6 gives, almost trivially, a factor 1/2 approximation (i.e.
preserving at least half as many relations as the optimal). Using Lemma6 and
results from [1], one can devise a PTAS for MaxES in the case that every gene
belongs to a distinct species. Let OPT (R) be the value of an optimal solution
on R, and let c be such that OPT (R) = cn2. The additive εn2 approximation
algorithm for cograph editing [1] yields a solution of value (c − ε)n2. As c ≥ 1/8
by Lemma 6, ε can be adjusted so that, for any 0 < ε′ < 1, (c − ε)n2 ≥ (1 −
ε′)cn2, hence yielding a PTAS. In the more general case, this algorithm does not
ensure that genes from the same species remain paralogs. However, the authors
of [1] claim that their approximation algorithm applies to any hereditary graph
property (i.e. preserved after vertex-deletion), which holds for satisfiability.

Finally, we end this paper with few insights on the maximization version of
graph correction for consistency, that we call MaxEC. Notice that the lower bound
n2

8 of Lemma 6 also holds for an optimal solution of MaxEC. However, the PTAS
for MaxES does not guarantee that the returned relation graph R′ is S-consistent
with the given species tree S. We can show however that a PTAS for MaxEC can
be obtained, based on smooth-polynomial integer programming [2], a technique
that has been applied to problems like Maximum Quartet Consistency [12].
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Proofs are quite involved, and require several technical arguments, that will be
included in a journal version of this extended abstract.

6 Conclusion

This paper explores a new direction in the field of orthology and paralogy pre-
diction. Taking advantage of the many existing prediction tools, a set of relations
is better represented as a weighted relation graph, where the weight of a relation
represents its degree of confidence. In case of non-satisfiability or unconsistency,
the goal is to minimally correct the corresponding relation graph. While the prob-
lem has been largely explored in the case of unweighted graphs, the weighted
version of the problem remains largely unexplored. Here, we provide complexity
results and polynomial approximation algorithms for this problem.

For real application to biological datasets, the challenge remains to assign
appropriate weights to relations. This can be done by weighting relations accord-
ing to sequence similarity scores, or in a more sophisticated way by incorporating
various information from different prediction tools, depending on the degree of
confidence given to each of them. A full bioinformatics study on simulated and
real datasets remains to be undertaken for this purpose.

Appendix

A Proof of Lemma1

We first bound the number of edges of weight 1 in R.

Claim. Let H = (VH , EH ,X) be an instance of Minimum Multi-Cut and let R =
(VR, ER, w) be the corresponding instance of MinWRS. Then, R contains at most
2
((|V |

2

)
− |EH |

)
edges of weight 1.

Proof. Consider the edges connecting vertices vi,R and vj,R; vi,R and vj,R are
connected by an edge of weight 1 if and only if {vi, vj} /∈ EH and {vi, vj} ∈ X.

Consider the edges connecting vertices vi,R and v′
j,R, v′

i,R and vj,R. vi,R,
v′

j,R (and v′
i,R,vj,R) are connected by an edge of weight 1 if {vi, vj} /∈ EH and

{vi, vj} /∈ X.
Any other edge has weight greater than 1, hence the lemma follows. 	


We are now ready to prove Lemma 1.

Proof. Given a set E′ that defines a multicut in H, let VH,1, . . . , VH,p be the sets
of vertices of the connected components in the graph V ′

H = (V ′
H , EH\E′

H).
We define a solution of MinWRS over instance R as follows. We construct the

partition VR,1, . . . , VR,p of the vertices of R such that vj,R and v′
j,R belong to

set VR,i if and only if vj ∈ VH,i. All edges having their endpoints in two distinct
VR,i, VR,j are removed.
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We claim that the computed graph R′ induced by the partition is P4-free.
By construction, for each vj,R, v′

j,R, vh,R, v′
h,R that belong to VR,i, the edges

{vj,R, v′
h,R} and {v′

j,R, vh,R} belong to ER (because {vj , vh} /∈ X). Moreover,
there is no edge between vj,R and vh,R, nor between v′

j,R and v′
h,R. Thus any

path on four vertices in the graph on vertex set Vi,R must be either of the form
vj,Rv′

h,Rvk,Rv′
�,R, or of the form v′

j,Rvh,Rv′
k,Rv�,R. In both cases, the endpoints

of the path share an edge, and thus cannot induce a P4.
Now, consider the edges {vi, vj} ∈ E′

H . If {vi, vj} ∈ X, the corresponding
solution of MinWRS removes an edge of weight q, namely {vi,R, vj,R}. If {vi, vj} /∈
X, the corresponding solution of MinWRS removes two edges of weight q/2,
namely {vi,R, v′

j,R} and {v′
i,R, vj,R}. Hence those edges have a total weight q|E′

H |.
Since at most 2

((|VH |
2

)
− |EH |

)
edges of weight 1 are removed (see Claim A),

we can conclude that the lemma holds. 	


B Proof of Lemma2

Proof. Consider a solution R′ = (VR, E′
R, w) of MinWRS over instance R =

(VR, ER, w) of weight at most qW + 2
((|VH |

2

)
− |EH |

)
, with W ≤ |EH |. First,

notice that no edge {vi,R, v′
i,R}, with 1 ≤ i ≤ |V |, is removed to obtain R′, since

the weight of such an edge is greater than qW + 2
((|VH |

2

)
− |EH |

)
.

Consider now two vertices v′
i,R, v′

j,R, such that, given the corresponding ver-
tices vi, vj in H, we have {vi, vj} ∈ X. By construction there is a P4 in R, namely
v′

i,R, vi,R, vR,j , v
′
j,R. It follows that the edge {vi,R, vj,R} must be removed in R′.

Moreover, we claim that in R′, the vertices v′
i,R, v′

j,R must be disconnected.
Assume by contradiction that this does not hold, and that v′

i,R, v′
j,R belong to

the same connected component of R′. Consider the shortest path P that con-
nects vertices vi,R and vj,R in R′. Then P has length at least 2. Note that as
P is a shortest path, it has no chord, i.e. non-consecutive vertices of P cannot
share an edge.

Suppose that P does not include the vertex v′
i,R. Then we can assume that

vi,R is adjacent in P to a vertex v′
t,R, since if it is adjacent to a vertex vq,R, then

the vertices vi,R, v′
i,R, vq,R, and v′

q,R would induce a P4. Now, if v′
t,R is adjacent

to vj,R, then v′
i,R, vi,R, v′

t,R and vj,R induce a P4. If there is no such v′
t,R, then

P has length at least 3 and it must therefore contain an induced P4.
So suppose instead that P includes the vertex v′

i,R. Since by construction
v′

i,R is not adjacent to vj,R and it is not adjacent to any v′
t,R, with t �= i, while it

is adjacent to vi,R, P has length at least 3, and again must have an induced P4.
We can conclude that when {vi, vj} ∈ X, the corresponding vertices v′

i,R,
v′

j,R belong to disconnected connected components of R′. Hence we can compute
a multi-cut of H as follows:

E′
H ={{vi, vj} : {vi,R, vj,R}, of weight q, or {vi,R, v′

j,R}, {v′
i,R, vj,R},

of weight
q

2
, are removed in R′.}
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E′
H is a multi-cut, since each {vi, vj} ∈ X is disconnected. Now, recall that R′

is obtained by removing edges of overall weight at most qW +2
((|VH |

2

)
− |EH |

)
.

Since edge edge in E′
H corresponds to edges of overall weight q in R (an edge

{vi,R, vj,R} of weight q if {vi, vj} ∈ X, or two edges of weight q/2, namely
{vi,R, v′

j,R} and {v′
i,R, vj,R} if {vi, vj} /∈ X), we must have |E′

H | ≤ W . 	


C Proof of Theorem1

Proof. Given a graph H instance of Minimum Multi-Cut and the correspond-
ing instance R of MinWRS, denote by OPTM (APM , respectively) the
value of an optimal solution (of an approximation solution, respectively) of
Minimum Multi-Cut on instance H, and denote by OPTC (APC , respectively)
the value of an optimal solution (of an approximation solution, respectively) of
MinWRS on instance R. Define z = 2

((|VH |
2

)
− |EH |

)
. By Lemma 1, we assume

that APC(R) ≤ APM (H)/q, as there exists an algorithm that always outputs at
most such a value, and thus any approximation algorithm can be adapted to out-
put at most this value. Also, by Lemma 2, we have OPTC(R) ≤ OPTM (H)q+z.
We have that

APC(R)
OPTC(R)

≥ APM (H)q
OPTM (H)q + z

=
APM (H)q + APM (H)z − APM (H)z

OPTM (H)q + z
=

=
APM (H)q + APM (H)z

OPTM (H)q + z
− APM (H)z

OPTM (H)q + z

≥ APM (H)q + APM (H)z
OPTM (H)q + OPTM (H)z

− APM (H)z
OPTM (H)q + z

=
APM (H)(q + z)

OPTM (H)(q + z)
− APM (H)z

OPTM (H)q + z

=
APM (H)

OPTM (H)
− APM (H)z

OPTM (H)q + z

where we assume OPTM (H) ≥ 1 for the second inequality (the case
OPTM (H) = 0 can be checked in polynomial time). Since Minimum Multi-Cut
is not approximable within a constant factor assuming the Unique Games Con-
jecture [4], even on unweighted graphs, it follows that

APM (H)
OPTM (H)

≥ α

on an infinity of instances of H for any constant α ≥ 1. As a consequence, for
any constant α ≥ 1, an infinity of instances of R yield:

APC(R)
OPTC(R)

≥ α − APM (H)z
OPTM (H)q + z
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Since q = n5 +1, APM (H) ≤ n2 and z ≤ n2, it follows that APM (H)z
OPTM (H)q+z ≤ 1/n.

Combining the last two inequalities, we have that

APC(R)
OPTC(R)

≥ α − 1/n ≥ β

for any constant β ≥ 1, which concludes the proof. 	


D Proof of Corollary 2

Proof. The result follows by a gap-preserving reduction similar to that for
MinWRS and MinWES. Define a species tree S on VR such that the root of
S is connected to two subtrees, one with leafset {vi,R : vi ∈ VH}, one with
leafset {v′

i,R : vi ∈ VH}.
Consider the partition VR,1, . . . , VR,p of the vertices of a solution R′ of

MinWRS and MinWES. Each connected component VR,t that contains vertices
vi,R, v′

i,R, vj,R, v′
j,R, contains only edges {vi,R, v′

i,R}, {vj,R, v′
j,R}, {vi,R, v′

j,R},
{vj,R, v′

i,R}.
For each set VR,i, we construct a tree GR,i by defining two subtrees G1

R,i

and G2
R,i such that G1

R,i has leafset {vj,R : vj,R ∈ VR,i} and G2
R,i has leafset

{v′
j,R : v′

j,R ∈ VR,i}. Each node of G1
R,i and G2

R,i is associated with a duplication.
GR,i is obtained by joining G1

R,i and G2
R,i in a root, associated with a speciation.

Finally, the subtrees GR,1, . . . , GR,p are joined in a gene tree G by duplication
nodes (with any topology). By construction, G is S-consistent, thus the hardness
result can be extended to MinWEC. 	


E Proof of Theorem3

We first provide the detailed MinCut-Cograph-Editing-Cons algorithm, and show
that it also is a n-factor approximation.

Given a species tree S and a set Z ⊆ VR, let Σ(Z) = {s(x) : x ∈ Z}. Let
S|Σ(Z) be the subtree of S restricted to Σ(Z) and let XS , YS be the clades of
the left and right child, respectively, of the root of S|Σ(Z). Consider the sets
X = {x : s(x) ∈ XS} and Y = {y : s(y) ∈ YS}, the cut CS(Z) on R[Z] is
defined as CS(Z) = {XR, YR}. Observe that CS(Z) is the only possible cut on
R that maintains S-consistency, as this cut corresponds to a speciation in a DS-
tree, and speciations must separate genes according to S. Therefore, it suffices
to modify MinCut-Cograph-Editing by forcing the cut C to be CS(Z). Call this
modified algorithm MinCut-Cograph-Editing-Cons.
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Algorithm MinCut-Cograph-Editing-Cons(R):

If R has at most 2 vertices Then Return;
Find a MinCut C = {X, Y } for R;

Let CS(VR) = {X, Y };
If w(C) < w(CS(VR)) Then

Remove all edges between X and Y in R;
MinCut-Cograph-Editing-Cons(R[X]);
MinCut-Cograph-Editing-Cons(R[Y ]);

Else

Add all possible edges between X and Y in R;

MinCut-Cograph-Editing-Cons(R[X]);

MinCut-Cograph-Editing-Cons(R[Y ]);
End If

End Algorithm

Proof. Denote by β(R) the weight of the edge-editing found by the algorithm
on R. We proceed by induction on n = |VR| to show that β(R) ≤ nσR. The
statement is trivial for n ≤ 2 (as there is nothing to correct), so assume that the
algorithm finds a solution of weight β(R) ≤ kσR for any graph of size at most
k < n.

The algorithm applies a cut C = {X,Y } which is either a minimum cut on
R or it is the cut CS(VR), and proceeds recursively on X and Y , with |X|, |Y | ≤
n − 1. By the induction hypothesis, we have

β(R) ≤ |X|σX + |Y |σY + w(C) ≤ (n − 1)(σX + σY ) + w(C)

Now, similarly to Lemma 4, we have that w(C) ≤ σR. First, let G′ be the gene
tree associated with a solution of MinWEC over instance R. If C is a minimum
cut on R, it holds due to the proof Lemma4. If C is CS(VR), then notice that,
in order to guarantee the consistency with S, the root of G′ must be exactly
CS(VR).

Lemma 5 holds also for MinWEC, hence

β(R) ≤ |X|σX + |Y |σY + w(C) ≤ (n − 1)(σX + σY ) + w(C)
≤ (n − 1)σR + σR = nσR

hence the theorem holds. 	


F Proof of Lemma6

Given a relation graph R, the value of a solution R′ for MaxES over instance
R is called the agreement value of R′ and it is denoted by A(R′, R). Moreover,
given a gene tree G, we denote by A(G,R) the agreement between the relation
graph associated with G and R.
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Proof. Let X = {{u, v} : u, v ∈ VR and s(u) = s(v)} be the set of ‘must-
be’ paralogs. Consider the relation graphs R′ = (VR, ∅) and R′′ = (VR,

(
VR

2

)
\X),

where
(
VR

2

)
is the set of all unordered pairs of VR. It is not hard to see that R′ and

R′′ are both feasible solutions of MaxES and of MaxEC. For each {u, v} ∈
(
VR

2

)
\X,

the u, v relation in R agrees with exactly one of R′ or R′′, and for each {u, v} ∈ X,
the u, v relation agrees with both R′ and R′′. It follows that

A(R,R′) + A(R,R′′) ≥
(

n

2

)

But then, for this inequality to hold, at least one of R′, R′′ must have an agree-
ment value of at least 1

2

(
n
2

)
, hence an optimal solution of MaxES and MaxEC has

an agreement value of at least 1
2

(
n
2

)
≥ n2

8 . 	
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Abstract. Cancer is an evolutionary process characterized by the accu-
mulation of somatic mutations in a population of cells that form a tumor.
One frequent type of mutations are copy number aberrations, which alter
the number of copies of genomic regions. The number of copies of each
position along a chromosome constitutes the chromosome’s copy-number
profile. Understanding how such profiles evolve in cancer can assist in
both diagnosis and prognosis. We model the evolution of a tumor by
segmental deletions and amplifications, and gauge distance from profile
a to b by the minimum number of events needed to transform a into
b. Given two profiles, our first problem aims to find a parental profile
that minimizes the sum of distances to its children. Given k profiles, the
second, more general problem, seeks a phylogenetic tree, whose k leaves
are labeled by the k given profiles and whose internal vertices are labeled
by ancestral profiles such that the sum of edge distances is minimum.
For the former problem we give a pseudo-polynomial dynamic program-
ming algorithm that is linear in the profile length, and an integer linear
program formulation. For the latter problem we show it is NP-hard and
give an integer linear program formulation. We assess the efficiency and
quality of our algorithms on simulated instances.

1 Introduction

The clonal theory of cancer posits that cancer results from an evolutionary
process where somatic mutations that arise during the lifetime of an individ-
ual accumulate in a population of cells that form a tumor [9]. Consequently,
a tumor consists of clones, which are subpopulations of cells sharing a unique
combination of somatic mutations. The evolutionary history of the clones can be
described by a phylogenetic tree whose leaves correspond to extant clones and
whose edges are labeled by mutations. Computational inference of phylogenetic
trees is a fundamental problem in species evolution [4], and has recently been

c© Springer International Publishing Switzerland 2016
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2 2 2 2 2 2

2 1 0 1 2 2

4 3 0 3 3 2 4 0 0 0 3 4

1 1 2 3 3 2

1 4 4 5 5 3 2 0 2 3 4 2

Fig. 1. Copy-Number Tree Problem. As input we are given the copy-number profiles of
four leaves, each profile is an integer vector that is inferred from data; e.g. the coverage
of mapped reads (blue segments). The tree topology and profiles at internal vertices
are found to minimize the total number of amplifications (green bars) and deletions
(red bars). The displayed scenario has 14 total events. (Color figure online)

studied extensively for tumor evolution in the case where mutations are single-
nucleotide variants [3,7,8,10,15]. Here, we study the problem of constructing
a phylogenetic tree of a tumor in the case where mutations are copy number
aberrations.

Copy number aberrations include segmental deletions and amplifications that
affect large genomic regions, and are common in many cancer types [2]. As a
result of these events, the number of copies of genomic regions (positions) along
a chromosome can deviate from the diploid, two-copy state of each position in a
normal chromosome. Understanding these events and the underlying evolution-
ary tree that relates them is important in predicting disease progression and the
outcome of medical interventions [5].

Several methods have been introduced to infer trees from copy number aber-
rations in cancer. In [1,16] the authors use fluorescent in situ hybridisation data
to analyze gain and loss of whole chromosomes and single genes. However, due
to technical limitations, this technology does not scale to a large number of
positions. In addition, common deletions and amplifications that affect only a
subset of the positions of a chromosome are not supported by the model. In
another work, Schwartz et al. [12] introduced MEDICC, an algorithm that ana-
lyzes amplifications and deletions of contiguous segments. The input to MEDICC
is a set of copy-number profiles, vectors of integers defining the copy-number
state of each position. These profiles are measured for multiple samples from
a tumor using DNA microarrays or DNA sequencing. The edit distance from
profile a to b was defined as the minimum number of amplifications and dele-
tions of segments required to transform a into b. Note that this distance is not
symmetric. Using this distance measure, the authors applied heuristics to recon-
struct phylogenetic trees. However, the complexity of their methods was not ana-
lyzed. Recently, Shamir et al. [13] analyzed some combinatorial aspects of this
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amplification/deletion distance model and proved that the distance from one
profile to another can be computed in linear time.

In this work, we consider two problems in the evolutionary analysis of copy-
number profiles: the Copy-Number Triplet (CN3) and Copy-Number Tree (CNT)
problems. Given two profiles, the CN3 problem aims to find a parental profile
that minimizes the sum of distances to its children. The CNT problem asks to
construct a phylogenetic tree whose k leaves are labeled by the k given pro-
files, and to assign profiles to the internal vertices so that the sum of distances
over all edges is minimum; such a tree describes the evolutionary history under
a maximum parsimony assumption (Fig. 1). For the CN3 problem we give a
pseudo-polynomial time algorithm that is linear in n, the number of positions
in the profiles, along with an integer linear program (ILP) formulation whose
number of variables and constraints is linear in n. We show that the CNT prob-
lem is NP-hard and present an ILP formulation that scales to practical problem
instance sizes. Finally, we use simulations to test our algorithms. Due to space
constraints, some details are omitted.

2 Preliminaries

Profiles and Events. We represent a reference chromosome as a sequence of
intervals that we call positions, numbered from 1 to n in left to right order. We
consider mutations that amplify or delete contiguous positions. The copy-number
profile, or profile for short, of a clone specifies the number of copies of each of
the n positions. Formally, a profile yi = [yi,s] is a vector of length n. An entry
yi,s ∈ N indicates the number of copies of position s in clone i. For simplicity,
we consider a single chromosome only. The results can be easily extended to the
case of multiple chromosomes.

An operation, or event, acting on profile yi increases or decreases copy-
numbers in a contiguous segment of yi. Formally, an event is a triple (s, t, b)
where s ≤ t and b ∈ Z. If b is positive then profile-valued positions s, . . . , t are
incremented by b, whereas for negative b the positions s, . . . , t are decremented
by at most |b|. That is, applying event (s, t, b) to yi results in a new profile y′

i

such that

y′
i,� =

{
max{yi,� + b, 0}, if s ≤ � ≤ t and yi,� �= 0,
yi,�, otherwise.

(1)

As indicated by the condition above, once a position � has been lost, i.e. yi,� = 0,
it can never be regained (or deleted). Therefore, for a pair of profiles, there might
not be any sequence of events that transform one into the other.

The Copy-Number Tree Problem. We describe the evolutionary process
that led to the tumor clones by a copy-number tree T , which is a rooted full
binary tree. As such, each vertex of T has either zero or two children. We denote
the vertex set of T by V (T ), root vertex by r(T ), leaf set by L(T ) and edge set
by E(T ). The vertices of T correspond to clones. Thus, each vertex vi ∈ V (T ) is
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labeled by a profile yi. The root vertex r(T ) corresponds to the normal clone,
which we assume to be diploid. As such, we have for the corresponding profile
that yr,s = 2 for all positions s. Note that we do not require vertices to be labeled
by a unique profile.

Each edge (vi, vj) ∈ E(T ) relates a parent clone vi to its child vj , and is
labeled by a sequence σ(i, j) = (s1, t1, b1), . . . , (sq, tq, bq) (where q = |σ(i, j)|)
of events that yielded yi from yj . These events are applied in order from 1 to
q. Since events in σ(i, j) may overlap, i.e. affect the same position, the order
as specified by σ(i, j) matters. The cost of an event (s, t, b) is the number of
changes and is thus equal to |b|. Therefore, the cost δσ(i, j) of an edge (vi, vj) is
the total cost of the events in σ(i, j), i.e.

δσ(i, j) =
∑

(s,t,b)∈σ(i,j)

|b|. (2)

Note that the cost is not symmetric. The cost Δ(T ) of the tree T is the sum of
the costs of all edges.

Our observations correspond to the profiles c1, . . . , ck of k extant clones.
Under the assumption of parsimony, the goal is to find a copy-number tree T ∗

of minimum cost whose leaves correspond to the extant clones. Furthermore, we
assume that the maximum copy-number in the phylogeny is bounded by e ∈ N.
We thus have the following problem.

Problem 1 (Copy-Number Tree (CNT)). Given profiles c1, . . . , ck on n positions
and an integer e ∈ N, find a copy-number tree T ∗, vertex labeling yi and edge
labeling σ(i, j) such that (1) T ∗ has k leaves labeled 1, . . . , k and yi = ci for all
i ∈ {1, . . . , k}, (2) yi,s ≤ e for all vi ∈ V (T ∗) and s ∈ {1, . . . , n}, and (3) Δ(T ∗)
is minimum.

Note that by definition the profile of the root vertex r(T ) of any copy-number
tree T is the vector whose entries are all 2’s. As such, this must hold as well for
the minimum-cost tree T ∗ which always exists. Additionally, the requirement
of T being a binary tree can be made without loss of generality by splitting
high degree vertices. Furthermore, the assumption that T is a full binary tree
(i.e. each vertex has out-degree either 0 or 2) can also be made without loss of
generality by collapsing degree-2 internal non-root vertices. To account for the
case where r(T ) has out-degree 1, given an instance (c1, . . . , ck, e) we solve a
second instance (c1, . . . , ck, ck+1, e) with an additional profile ck+1 consisting of
2’s. The result is the minimum-cost tree among the two instances.

The Copy-Number Triplet Problem. The special case where k = 2 is the
Copy-Number Triplet (CN3) problem. When discussing CN3, due to the fact
that we consider only two input profiles, it is not necessary to explicitly refer to
trees. Thus, we formulate CN3 as follows:

Problem 2 (Copy-Number Triplet (CN3)). Given profiles u and v on n posi-
tions, find a profile m on n positions and sequences of events, σ(m,u) an σ(m,v),
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such that (1) σ(m,u) yields u from m and σ(m,v) yields v from m, and (2)
δσ(m,u) + δσ(m,v) is minimum.

Instances to both CNT and CN3 always have a solution as the diploid profile
is an ancestor to any other profile. Next, we present definitions that will allow
us to describe results specific to CN3 in a compact manner. We denote the mini-
mum value δσ(m,u)+δσ(m,v) associated with a solution (m, σ(m,u), σ(m,v))
by Δ(u,v). We say that a triple (m, σ(m,u), σ(m,v)) is optimal if it realizes
Δ(u,v). Note that Δ(u,v) is symmetric and finite. Moreover, if δσ(u,v) (resp.
δσ(v,u)) is finite then m ← u (resp. m ← v) gives a trivial solution to CN3.
Let N = max{maxn

i=1{ui},maxn
i=1{vi}} denote the maximum copy-number in

the input. Finally, given α ∈ {σ(m,u), σ(m,v)} and w ∈ {−,+}, we denote the
cost of deletions/amplifications affecting position i by

co(α,w, i) =
∑

(s, t, b) ∈ α : s ≤ i ≤ t, sign(b) = w

|b|.

Previous Results. We now turn to present three results incorporated in the
design of our dynamic programming and ILP algorithms for CN3 and CNT.
The first one relies on the observation that if ui = vi = 0, then Δ(u,v) =
Δ((u1, . . . , ui−1, ui+1, . . . , un), (v1, . . . , vi−1, vi+1, . . . , vn)), i.e. it is safe to fix
mi = 0. Therefore, we have the following straightforward yet useful result.

Lemma 1. Without loss of generality, it can be assumed that for all 1 ≤ i ≤ n,
at least one value among ui and vi is positive.

This lemma also implies that we can assume that the profile m of any optimal
triple (m, σ(m,u), σ(m,v)) consists only of positive values (since for a position
i such that mi = 0, it holds that vi = ui = 0).

We say that a sequence of events where all of the deletions precede all of the
amplifications is sorted. Formally, let σ(p,q) be a sequence of events that yields
q from p. Then, if there exist a sequence α− of deletion events and a sequence
α+ of amplification events such that σ(p,q) = α−α+, we say that σ(p,q) is
sorted. The following lemma states that we can focus on sorted sequences of
events:

Lemma 2. [13] Given a sequence of events σ(p,q) that yields q from p, there
exists a sorted sequence of cost at most δσ(p,q) that yields q from p.

Shamir et al. [13] also showed that the minimum cost of a sequence yielding
q from p is computable by the recursive formula given below. Here, we let
G[i, d, a] be the minimum cost of a sequence of events σ that from the prefix
pi = (p1, . . . , pi) of p yields the prefix qi = (q1, . . . , qi) of q and which satisfies
co(σ,−, i) = d and co(σ,+, i) = a. In case such a sequence does not exist, we let
G[i, d, a] = ∞.
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Lemma 3. [13] Let p and q be two profiles, and let 0 ≤ d, a ≤ N . Then,

1. If qi > 0 and either d ≥ pi or qi �= pi − d + a: G[i, d, a] = ∞.
2. Else if qi = 0 and d < pi: G[i, d, a] = ∞.
3. Else if i = 1: G[i, d, a] = d + a.
4. Else: G[i, d, a] = min

0≤d′,a′≤N
{G[i − 1, d′, a′] + max{d − d′, 0}+max{a − a′, 0}}.

The minimum cost of a sequence yielding q from p is min0≤d,a≤N G[n, d, a].

3 Complexity

In this section we show that CNT is NP-hard by reduction from the Maximum
Parsimony Phylogeny (MPP) problem [6]. In MPP, we seek to find a binary
phylogeny T , which is a full binary tree whose vertices are labeled by binary
vectors of size n. The cost of a binary phylogeny T is defined as the sum of
the Hamming distances of the two binary vectors associated with each edge.
We are only given the leaves of an unknown binary phylogeny in the form of k
binary vectors b1, . . . ,bk of size n, and the task is to find a minimum-cost binary
phylogeny T with k leaves such that each leaf vi ∈ L(T ) is labeled by bi and the
root is labeled by a vector of all 0s. We consider the decision version where we
are asked whether there exists a binary phylogeny T with cost at most h. This
problem is NP-complete [6].

We start by defining the transformation (Fig. 2). Let b1, . . . ,bk be an
instance of MPP such that |bi| = n. The corresponding CNT-instance has para-
meter e = 2 and profiles c1, . . . , ck+1 of length n + (n − 1)nk. Each input profile
ci, where i ∈ {1, . . . , k}, is defined as

ci = φ(bi) =
(
φ(bi,1) Ω φ(bi,2) Ω · · · Ω φ(bi,k)

)
(3)

where

φ(bi,s) =

{
1, if bi,s = 1,
2, otherwise

(4)

and Ω, called a wall, is a vector of size nk such that for each j ∈ {1, . . . , nk}

Ωj =

{
2, if j is odd,
1, otherwise.

(5)

Informally, ci is defined as a vector consisting of true positions (which corre-
spond to the original values) that are separated by walls (which are vectors Ω
of alternating 2, 1 values of length nk). The purpose of wall positions Ω is to
prevent an event from spanning more than one true position. Profile ck+1 con-
sists of only 2’s, and plays a role in initializing the wall elements Ω immediately
from the all 2’s root. This transformation can be computed in polynomial time,
and it is used in the hardness proof (omitted).

Theorem 1. The CNT problem is NP-hard.
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Fig. 2. Transformation of an MPP instance and solution T (left) to a CNT instance
and solution T ′ (right). Edges are labeled by the cost of the associated events and their
affected positions are colored in blue. (Color figure online)

4 Algorithms

4.1 Copy-Number Triplet Problem: DP

In this section we develop a DP algorithm, called DP-Alg1, that solves the CN3
problem in time O(nN10) and space O(nN5). We will assume w.l.o.g. that
sequences of events consist only of events of the form (s, t, b) where b ∈ {−1, 1}.
Events with |b| > 1 can be replaced by |b| events of that form, having the same
total cost. DP-Alg1 is based on Lemma 3 and the following claim.

Lemma 4. Let u and v be two profiles. Then, there exists an optimal triple
(m, σ(m,u), σ(m,v)) where both σ(m,u) and σ(m,v) are sorted sequences of
events, and such that each position i of m has at most N copies and the cost of
amplifications/deletions affecting i (in both σ(m,u) and σ(m,v)) is at most N .

Let ui = (u1, . . . , ui) and vi = (v1, . . . , vi) be the prefixes consisting of
the first i positions of u and v, respectively. We will store costs correspond-
ing to partial solutions in a table L (see Fig. 3). This table has an entry
L[i,m, du, au, dv, av] for all 1 ≤ i ≤ n, 0 ≤ m ≤ N and 0 ≤ du, au, dv, av ≤ N .
At such an entry, we will store the the minimum total cost, δσ(m,ui)+δσ(m,vi)

? ? ? 2 ? ?L[4,2,1,2,0,3]: m

3 2 1 3 5 4 4 1 1 5 0 3u v

1 deletion
2 amplifications

no deletion
3 amplifications

Fig. 3. Illustration of an item in the DP table: Given that the 4th position of m is 2,
one of the combinations considered is 1 deletion and 2 amplifications on the path to u,
and 3 amplifications on the path to v. The best cost of that combination is computed
by DP-Alg1 based on the L entries for position 3.
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of a triple (m, σ(m,ui), σ(m,vi)) in the set S(i,m, du, au, dv, av), which is
defined as follows. This set contains all triples (m, σ(m,ui), σ(m,vi)) such the
numbers of deletions/amplifications affecting i are given by du, au, dv, av, where
the notation d/a and v/u indicate whether we consider amplifications or dele-
tions as well as σ(m,ui) or σ(m,vi), mi = m and for all j ∈ {1, . . . , n}, mj ≤ N .

By Lemma 4, Δ(u,v) is the minimum cost stored in an entry where i = n.
Thus, it remains to show how to correctly compute the entries of L efficiently.
We use the following base cases, whose correctness follows from Lemma 3:

1. If ui > 0, and du ≥ mi or ui �= mi − du + au: L[i,m, du, au, dv, av] = ∞.
2. Else if vi > 0, and dv ≥ mi or vi �= mi − dv + av: L[i,m, du, au, dv, av] = ∞.
3. Else if ui = 0 and du < mi: L[i,m, du, au, dv, av] = ∞.
4. Else if vi = 0 and dv < mi: L[i,m, du, au, dv, av] = ∞.
5. Else if i = 1: L[i,m, du, au, dv, av] = du + au + dv + av.

Now, consider entries L[i,m, du, au, dv, av] that are not filled by the base
cases. We compute them using the following formula:

L[i,m, du, au, dv, av] = min
0≤m′≤N

0≤du′,au′,dv′,av′≤N

{
L[i− 1,m′, du′

, au′
, dv

′
, av′

]

+ max{du − du
′
, 0} + max{au − au′

, 0}

+ max{dv − dv
′
, 0} + max{av − av′

, 0}
}
.

The correctness of this formula follows from Lemma 3 and since in light of
Lemma 4, it exhaustively searches for the best choice for the previous value of
m. By computing the entries of L in an ascending order according to their first
argument i, we have that the computation of each entry relies only on entries
that are computed before it. The table L consists of O(nN5) entries, and each of
them can be computed in time O(nN5). Thus, we obtain the following lemma.

Lemma 5. DP-Alg1 solves CN3 in time O(nN10) and space O(nN5).

We can show that DP-Alg1 can be modified to obtain a DP algorithm, called
DP-Alg2, for which we prove the following result.

Theorem 2. DP-Alg2 solves CN3 in time O(nN7) and space O(nN4).

We also devised an ILP formulation for CN3 using only O(n) variables.
Details are omitted.

4.2 Copy-Number Tree Problem: ILP

In this section we describe an ILP for CNT consisting of O(k2n + kn log e)
variables and O(k2n + kn log e) constraints. Let (c1, . . . , ck, e) be an instance of
CNT. Recall that we seek to find a full binary tree with k leaves. We define a
directed graph G that contains any full binary tree with k leaves as a spanning
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tree. As such, |V (G)| = 2k − 1. The vertex set V (G) consists of a subset L(G)
of leaves such that |L(G)| = k. We denote by r(T ) ∈ V (G)\L(G) the vertex
that corresponds to the root vertex. Throughout the following, we consider an
order v1, . . . , vk, . . . , v2k−1 of the vertices in V (G) such that v1 = r(T ) and
{vk, . . . , v2k−1} = L(G). The edge set E(G) has edges {(vi, vj) | 1 ≤ i < k, 1 ≤
i < j ≤ 2k − 1}. We denote by N−(j) the set of vertices incident to an outgoing
edge to j. Conversely, N+(i) denotes the set of vertices incident to an incoming
edge from i. We make the following two observations.

Observation 1. G is a directed acyclic graph.

Observation 2. Any copy-number tree T is a spanning tree of G.

We now proceed to define the set of feasible solutions (X,Y ) to a CNT
instance (c1, . . . , ck, e) by introducing constraints and variables modeling the
tree topology, and vertex labeling and edge costs. More specifically, variables
X = [xi,j ] encode a spanning tree T of G and variables Y = [yi,s] encode the
profiles of each vertex such that X and Y combined induce edge costs. In the
following we provide more details.

Tree Topology. The goal is to enforce that we select a spanning tree T of G
that is a full binary tree. To do so, we introduce a binary variable xi,j ∈ {0, 1} for
each edge (vi, vj) ∈ E(G) indicating whether the corresponding edge (vi, vj) is in
T . Note that by construction i < j. We require that each vertex v ∈ V (G)\{v1}
has exactly one incoming edge in T .

∑

i∈N−(j)

xi,j = 1 1 < j ≤ 2k − 1 (6)

We require that each vertex v ∈ V (G)\L(G) has two outgoing edges in T .
∑

j∈N+(i)

xi,j = 2 1 ≤ i < k (7)

Vertex Labeling and Edge Costs. We introduce variables yi,s ∈ {0, . . . , e}
that encode the copy-number state of position s of vertex vi. Since the profiles of
each leaf as well as the root vertex are given, we have the following constraints.

y1,s = 2 1 ≤ s ≤ n (8)
yi,s = ci−k+1,s k ≤ i ≤ 2k − 1, 1 ≤ s ≤ n (9)

Next, we encode a set σ(vi, vj) of events that transform the profile yi of vi

into profile yj of vj . Recall that an event is a triple (s, t, b) and corresponds
to an amplification if b > 0 and a deletion otherwise. We model the cost of
the amplifications and the cost of the deletions covering any position s with
two separate variables. Variables ai,j,s ∈ {0, . . . , e} correspond to the cost of



146 M. El-Kebir et al.

the amplifications in σ(vi, vj) covering position s. Variables di,j,s ∈ {0, . . . , e}
correspond to the cost of the deletions in σ(vi, vj) covering position s.

Now, we consider the effect of amplifications and deletions on a position s. By
Lemma 2, we have that there exists an optimal solution such that for each edge
(vi, vj) there are two sets of events σ−(vi, vj) and σ+(vi, vj) that yield yj,s from
yi,s by first applying σ−(vi, vj) followed by σ+(vi, vj). If a subset of the events in
σ−(vi, vj) results in position s reaching value 0, the remaining amplifications and
deletions will not change the value of that position. We distinguish the following
four different cases.

(a) yi,s = 0 and yj,s = 0: Since both positions have value 0, the number of
amplifications ai,j,s and deletions di,j,s are between 0 and e.

(b) yi,s �= 0 and yj,s �= 0: Since yj,s > 0, the number of deletions di,j,s must
be strictly smaller than yi,s. Moreover, it must hold that yj,s + di,j,s =
yi,s + ai,j,s.

(c) yi,s �= 0 and yj,s = 0: Recall that by Lemma 2 deletions precede amplifica-
tions. As such, the number of deletions di,j,s must be at least yi,s.

(d) yi,s = 0 and yj,s �= 0: Once a position s has been lost it cannot be regained.
As such, this case is infeasible.

The full description of the constraints and variables that model these cases and
the objective function are omitted.

5 Experimental Evaluation

Copy-Number Triplet (CN3) Problem. We compared the running times of
our DP and ILP algorithms for the CN3 problem as a function of n and N . Our
results on simulations (omitted) show that while the running time of the DP
algorithm highly depends on the copy-number range N , the ILP time is almost
independent of N . With the exception of the case of N = 2, the ILP is faster.

Copy-Number Tree (CNT) Problem. To assess the performance of the ILP
for CNT, we simulated instances by randomly generating a full binary tree T
with k leaves. We randomly labeled edges by events according to a specified
maximum number m of events per edge with amplifications/deletions ratio ρ.
Specifically, we label an edge by d events where d is drawn uniformly from the
set {1, . . . , m}. For each event (s, t, b) we uniformly at random draw an interval
s ≤ t and decide with probability ρ whether b = 1 (amplification) or b = −1
(deletion). The resulting instance of CNT is composed of the profiles c1, . . . , ck

of the k leaves of T and e is set to the maximum value of the input profiles.
We considered varying numbers of leaves k ∈ {4, 6, 8} and of segments n ∈

{5, 10, 15, 20, 30, 40}. In addition, we varied the number of events m ∈ {1, 2, 3}
and varied the ratio ρ ∈ {0.2, 0.4}. We generated three instances for each com-
bination of k, n, m and ρ, resulting in a total of 324 instances.

We implemented the ILP in C++ using CPLEX v12.6 (www.cplex.com). The
implementation is available upon request. We ran the simulated instances on a

www.cplex.com
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compute cluster with 2.6 GHz processors (16 cores) and 32 GB of RAM each.
We solved 302 instances (93.2 %) to optimality within the specified time limit of
5 hours. Computations exceeding this limit were aborted and the best identified
solution was considered. The instances that were not solved to optimality are a
subset of the larger instances with k = 8 and n ∈ {20, 30, 40}.

For 323 out of 324 instances (99.7 %) the tree inferred by the ILP has a cost
that was at most the simulated tree cost. The only exception is an instance with
k = 8 leaves and n = 40 positions that was not solved to optimality, and where
the inferred cost was 15 vs. a simulated cost of 14. These results empirically
validate the correctness of our ILP implementation.

We observe that the running time increases with the number of leaves and to
a lesser extent with the number of positions (Fig. 4a). In addition, we assessed
the distance between topologies of the inferred and simulated trees using the
Robinson-Foulds (RF) metric [11]. To allow for a comparison across varying
number of leaves, we normalized by the total number of splits to the range [0,1]
such that a value of 0 corresponds to the same topology of both trees. For 264
instances (81.4 %) the normalized RF was at most 0.35. For k = 4 leaves the
median RF value was 0, which indicates that for at least 50 % of these instances
the simulated tree topology was recovered. Figure 4b shows the distribution of
normalized RF values with varying numbers of leaves and positions. Given a fixed
number of leaves, the normalized RF value decreases with increasing number
of positions. This indicates that the maximum parsimony assumption becomes
more appropriate with larger number of positions, which is not surprising since
amplifications and deletions are less likely to overlap. In addition, we observed
(data not shown) that running time and RF values are not affected by varying
values of m and ρ. In summary, we have shown that our ILP scales to practical
problem instance sizes with k = 6 and up to n = 40 positions, which is a
reasonable size for applications to real data [12,14].
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Fig. 4. Violin plots of running time (a) and tree distance (b) for varying number k of
leaves and number n of positions. Median values are indicated by a white dot in each
plot. (Color figure online)
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6 Discussion

In this paper we studied two problems in the evolution of copy-number profiles.
For the CN3 problem, we gave a pseudo-polynomial DP algorithm and an ILP
formulation, and compared their efficiency on simulated data. Determining the
computational complexity of CN3 remains an open problem. We showed that
the general CNT problem is NP-hard and gave an ILP solution. Finally, we
assessed the performance of our tree reconstruction on simulated data. While all
formulations describe copy-number profiles on a single chromosome, our results
readily generalize to multiple chromosomes. In addition, while our formulations
presently lack the phasing step performed in [12], both the DP algorithm and
the ILP formulations can be extended to support phasing.

We note that experiments on real cancer sample data are required to establish
the relevance of our formulations. To this end, several extensions to our models
might be required. These include handling fractional copy-number values that
are a result of most experiments and handling missing data for some positions.
Moreover, since tumor samples are often impure, each sample may actually rep-
resent a mixture of several clones. In such situations, different objectives might
try to decompose the clone mixture in order to reconstruct the evolutionary tree
as has been investigated for single-nucleotide variants [3,7,8,10,15].
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Abstract. A basic task in bioinformatics is the counting of k-mers in
genome strings. The k-mer counting problem is to build a histogram of all
substrings of length k in a given genome sequence. We present the open
source k-mer counting software Gerbil that has been designed for the effi-
cient counting of k-mers for k ≥ 32. Given the technology trend towards
long reads of next-generation sequencers, support for large k becomes
increasingly important. While existing k-mer counting tools suffer from
excessive memory resource consumption or degrading performance for
large k, Gerbil is able to efficiently support large k without much loss of
performance. Our software implements a two-disk approach. In the first
step, DNA reads are loaded from disk and distributed to temporary files
that are stored at a working disk. In a second step, the temporary files
are read again, split into k-mers and counted via a hash table approach.
In addition, Gerbil can optionally use GPUs to accelerate the count-
ing step. For large k, we outperform state-of-the-art open source k-mer
counting tools by up to a factor of 4 for large genome data sets.

1 Introduction

The counting of k-mers in large amounts of reads is a common task in bioin-
formatics. The problem is to count the occurrences of all k-long substrings in
a large amount of sequencing reads. Its most prominent application is de novo
assembly of genome sequences. Although building a histogram of k-mers seems
to be quite a simple task from an algorithmic point of view, it has attracted a
considerably amount of attention in recent years. In fact, the counting of k-mers
becomes a challenging problem for large instances, if it is to be both resource- and
time-efficient and therefore makes it an interesting object of study for algorithm
engineering. Existing tools for k-mer counting are often optimized for k < 32
and lack good performance for larger k. Recent advances in technology towards
larger read lengths are leading to the quest to cope with values of k exceeding 32.
Studies elaborating on the optimal choice for the value of k recommend for var-
ious applications relatively high values [1,13]. In particular, working with long
sequencing reads helps to improve accuracy and contig assembly (with k values
in the hundreds) [11]. In this paper, we develop a tool with a high performance
for such large values of k.
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 150–161, 2016.
DOI: 10.1007/978-3-319-43681-4 12
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Related Work. Among the first software tools that succeeded in counting
the k-mers of large genome data sets was Jellyfish [5], which uses a lock-free hash
table that allows parallel insertion. In the following years, several tools were pub-
lished, successively reducing running time and required memory. BFCounter [6]
uses Bloom filters for k-mer counting to filter out rarely occurring k-mers stem-
ming from sequencing errors. Other tools like DSK [7] and KMC [2] exploit a
two-disk architecture and aim at reducing expensive IO operations. Turtle [10]
replaces a standard Bloom filter by a cache-efficient counterpart. MSPKmer-
Counter [4] introduces the concept of minimizers to the k-mer counting, thus
further optimizing the disk-based approach. The minimizer approach was later
on refined to signatures within KMC2 [3]. Up to now, the two most efficient
open source software tools have been KMC2 and DSK. KMC2 uses a sorting
based counting approach that has been optimized for k < 32. However, its per-
formance drops when k grows larger. Instead, DSK uses a single large hash table
and is therefore efficient for large k (but does not support k > 127). However, for
small k, it is clearly slower than KMC2. To the best of our knowledge, the only
existing approach that uses GPUs for counting k-mers is the work by Suzuki et
al. [12].

Contribution. In this article we present the open source k-mer counting tool
Gerbil. Our software is the result of an extensive process of algorithm engineer-
ing that tried to bring together the best ideas from the literature. The result is
a k-mer counting tool that is both time efficient and memory frugal.1 In addition,
Gerbil can optionally use GPUs to accelerate the counting step. It outperforms
its strongest competitors both in efficiency and resource consumption signifi-
cantly. For large values of k, it reduces the runtime by up to a factor of four.
The software is written in C++ and CUDA and is freely available at https://
github.com/uni-halle/gerbil.

In the next section we describe the general algorithmic work flow of Gerbil.
Thereafter, in Sect. 3, we focus on algorithm engineering aspects that proved
essential for high performance and describe details, like the integration of a
GPU into the counting process. In Sect. 4, we evaluate Gerbil’s performance in a
set of experiments and compare it with those of KMC2 and DSK. We conclude
this article by a short summary and a glance on future work.

2 Methods

Gerbil is divided into two phases: (1) Distribution and (2) Counting. In this
section, we give a high-level description of Gerbil’s work flow.

Distribution. Whole genome data sets typically do not fit into the main
memory. Hence, it is necessary to split the input data into a couple of smaller
1 The tool is named Gerbil because of its modest resource requirements, which it has

in common with the name-giving mammal.

https://github.com/uni-halle/gerbil
https://github.com/uni-halle/gerbil
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temporary files. Gerbil uses a two-disk approach that is similar to those of most
contemporary k-mer counting tools [3,4,7]. The first disk contains the input
read data and is used to store the counted k-mer values. We call this disk
input/output-disk. The second disk, which we call working disk, is used to store
temporary files. The key idea is to assure that the temporary files partition the
input reads in such a way, that all occurrences of a certain k-mer are stored in
the same temporary file. This way, one can simply count the k-mers of the tem-
porary files independently of each other, with small main memory requirements.
To split the genome data into temporary files, we make use of the minimizer
approach that has been proposed by [9] and later on refined by [3]. A genome
sequence can be decomposed into a number of overlapping super-mers. Each
super-mer is a substring of maximal length such that all k-mers on that sub-
string share the same minimizer. Hereby, a minimizer of a k-mer is defined as
its lexicographically smallest substring of a fixed length m < k with respect to
some total ordering on strings of length m. See Fig. 1 for an example. It suffices
to partition the set of super-mers into different temporary files to achieve a par-
titioning of all different k-mers [3]. In our experiments, we found that choosing
minimizer length m = 7 is most efficient.

Fig. 1. Minimizers and super-mers of the DNA string CAAGAACAGTG. Here, k = 4
and m = 3. For each k-mer, the bold part is its minimizer. The example uses the
lexicographic ordering on 3-mers based on A < C < G < T . The sequence is divided
into the five super-mers CAAGA, AGAA, GAACA, ACAG, and CAGTG that would be stored in
temporary files.

Counting. The counting of k-mers is typically done by one of two approaches:
Sorting and Compressing [3] or using a hash table with k-mers as keys and
counters as values [5,7]. The efficiency of the sorting approach typically relies on
the sorting algorithm Radix Sort, whose running time increases with the length
of k-mers. Since we aim at high efficiency for large k, we decided to implement
the hash table approach. Therefore, we use a specialized hash table with k-mers
as keys and counters as values.

2.1 Work Flow

Although the following description of the main process is sequential, all of the
steps are interleaved and therefore executed in parallel. This is done by a clas-
sical pipeline architecture. Each output of a step makes the input of the next.
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Fig. 3. Work flow of phase two.

We use ring buffers to connect the steps of the pipeline. Such buffers are spe-
cialized for all combinations of single (S)/multiple (M) producers (P) and single
(S)/multiple (M) consumers (C). The actual number of parallel threads depend
on the system and is determined by the software at runtime to achieve optimal
memory throughput.

Phase One: Distribution. The goal of the first phase is to split the input
data into a number of temporary files. Figure 2 visualizes the first phase.

1. A group of reader threads read the genome reads from the input disk into the
main memory. For compressed input, these threads also decompress it.

2. A second group of parser threads convert the read data from the input format
into an internal read bundle format.

3. A group of splitter threads compute the minimizers of the reads. All sub-
sequent substrings of a read that share the same minimizer are stored as a
super-mer into an output buffer.

4. A single writer thread stores the output buffers to a variable number of tem-
porary files at the working disk.

Phase Two: Counting. After the first phase has been completed, the tem-
porary files are sequentially re-read from working disk and processed in the
following manner (see Fig. 3).

1. A single reader thread reads the super-mers of a temporary file and stores
them in main memory.

2. A group of threads split the super-mers into k-mers. Each k-mer is distributed
to one of multiple hasher threads by using a hash function on each k-mer.
This ensures that multiple occurrences of the same k-mer are assigned to the
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same hasher thread and allows the distribution of separated hash tables to
different memory spaces.

3. A group of hasher threads insert the k-mers into their thread-own hash tables.
After a temporary file has been completely processed, each hasher thread
sends the content of its hash table to an output buffer.

4. A single writer thread writes from the output buffer to the output disk.

2.2 DNA Sequence Handling

Undetermined Bases. DNA reads typically contain bases that could not been
identified correctly during the sequencing process. Usually, such bases are marked
N in FASTQ input files. In accordance with the established k-mer counting tools,
we ignore all k-mers that contain an undetermined base.

Reverse-Complement. Since DNA is organized in double helix form, each k-
mer x ∈ {A,C,G, T}k corresponds to its reverse-complement that is defined
by reversing x and replacing A ⇔ T and C ⇔ G. Thus, the k-mer ACCG
corresponds to CGGT . Many applications do not distinguish between a k-mer
and its reverse-complement. Thus, each occurrence of ACCG and CGGT is
counted as occurrences of their unique canonical representation. Gerbil uses the
lexicographically smaller k-mer as canonical representation. The use of reverse
complement normalization can be turned off by command flag.

3 Implementation Details

We now want to point out several details on the algorithm engineering process
that were essential to gain high performance.

3.1 Total Ordering on Minimizers

The choice of a total ordering has large effects on the size of temporary files and
thus, also on the performance. To find a good total ordering, we have to balance
various aspects. On the one hand, the total number of resulting super-mers are to
be minimized to reduce the total size of disk memory that is needed by temporary
files. On the other hand, the maximal number of distinct k-mers that share the
same minimizer should not be too large since we want an approximately uniform
distribution of k-mers to the temporary files. An “ideal” total ordering would
have both a large total number of super-mers and a small maximal number of
distinct k-mers per minimizer. Since these requirements contradict each other,
we experimentally evaluated the pros and cons of various ordering strategies.

CGAT. The lexicographic ordering of minimizers based on C < G < A < T .
Roberts et al. [8]. They propose the lexicographic ordering of minimizers with

respect to C < A < T < G. Furthermore, within the minimizer computation
all bases at even positions are to be replaced by their reverse complement.
Thus, rare minimizers like CGCGCG are preferred.
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KMC2. The ordering that is proposed by [3] is a lexicographic ordering
with A < C < G < T and some built-in exceptions to eliminate the large
number of minimizers that start with AAA or ACA.

Random. A random order of all string of fixed length m is unlikely to have
both a small number of super-mers and a highly imbalanced distribution of
distinct k-mers. It is simple to establish, since we do not need frequency
samples or further assumptions about the distribution of minimizers.

Distance from Pivot (dfp(p)). To explain this strategy, consider the following
observations: Ascendingly sorting the minimizers by their frequency favors
rare minimizers. As a consequence, the maximal number of distinct k-mers
per minimizer is small. However, the total number of super-mers can be very
large. Similarly, an descendingly sorted ordering results in quite the opposite
effect. To find a compromise between both extremes, we initially sort the set
of minimizers by their frequency. Since the frequencies depend on the data
set, we approximate them by taking samples during runtime. We fix a pivot
factor 0 ≤ p ≤ 1 and re-sort the minimizers by the absolute difference of their
initial position to the pivot position 4mp. The result is an ordering that does
neither prefer very rare nor very common minimizers and therefore makes a
good compromise.
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Fig. 4. Evaluation of various total ordering strategies for minimizers (F Vesca, m =
6, k = 28). Strategy dfp(p) has been tested with p ∈ {0, 0.5, 0.8, 1}.

Evaluation. See Fig. 4 for a rating of each strategy. The value on the x-axis
corresponds to the expected temporary disk memory, whereas the value on the y-
axis is correlated with the maximal main memory consumption of our program.
A perfect strategy would be located at the bottom left corner. Several strategies
seem to be reasonable choices. We evaluated each strategy and found that a
small number of super-mers is more important than a small maximal number
of k-mer per minimizer for most data sets. As a result, we confirm that the total
ordering that is already been used by KMC2 is a good choice for most data sets.
Therefore, Gerbil uses the strategy from KMC2 for its ranking of minimizers.
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3.2 GPU Integration

To integrate one or more GPUs into the process of k-mer counting, several
problems have to be dealt with. Typically, a GPU performs well only if it deals
with data in a parallel manner. In addition, memory bound tasks (i. e. tasks
that do not require a lot of arithmetic operations) like the counting of k-mers
require a carefully chosen memory access pattern to minimize the number of the
accesses to the GPU’s global memory. We decided to transfer the hash table
based counting approach to the GPU.

GPU Hash Tables. When compiled and executed with GPU support, Gerbil
automatically detects CUDA capable GPUs. For each GPU, Gerbil replaces a
CPU hasher thread by a GPU hasher thread which maintains its own hash table
in GPU memory. Each GPU hash table is similar in function to a traditional
hash table. However, unlike the traditional approach, we add a large number
of k-mers in parallel. Therefore, the insertion procedure is slightly changed.

First, a bundle of several thousand k-mers is copied to the GPU global mem-
ory space. Afterwards, we launch a large number of CUDA blocks, each consisting
of 32 threads. Each block sequentially inserts a few k-mers into the GPU hash
table. Since with increasing running time, it becomes more and more probable to
find a mismatch when probing a hash table position, we additionally scan adja-
cent table positions in a range of 128 bytes when probing a hash table entry (see
Fig. 5). Due to the architecture of a GPU, this can be done within the same
global memory access. Thus, we scan up to 16 table entries in parallel, thereby
reducing the number of accesses to a GPU’s global memory. To eliminate race
conditions between CUDA blocks, we synchronize the probing of the hash table
by using atomic operations to lock and unlock hash table entries. Since such
operations are efficiently implemented in hardware, a large number of CUDA
blocks can be executed in parallel.
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p + 8

0

p + 12

... 1

p + 124

CAG

p + 128

Area that is scanned in parallel.

Fig. 5. GPU memory access pattern. The figure shows the memory area that is being
scanned while probing a hash table entry that is stored at memory address p. In this
example, k = 3 and each table entry needs four bytes for the key and four bytes for
the counter. Therefore, 16 entries can be loaded from global memory within one step
and are scanned in parallel.

Load Balancing. We dynamically balance the amount of k-mers that are
assigned to the various CPU and GPU hasher threads. Therefore, we constantly
measure the throughput of each hasher thread, i. e. the CPU-time needed to
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insert a certain number of k-mers. Whenever a new temporary file is loaded
from disk, we rebalance the number of k-mers that are assigned to each hasher
thread, considering the throughput and capacity of each hash table. By that,
we automatically determine a good division of labour between CPU and GPU
hasher threads without the need of careful hand-tuning.

3.3 Hash Table Details

Estimating Table Sizes. We aim at estimating the expected size of each hash
table as closely as possible to save main memory. We do so since reduced memory
consumption leaves more memory to the operating system that can be used as
cache when writing temporary files. Therefore, we approximate the number of
expected distinct k-mers in each temporary file. We use a simple approximation
mechanism that predicts the number of distinct k-mers in a file by multiplying
the number of k-mers in each file with a constant that has been determined
experimentally (see Fig. 6). Since this ratio depends on properties of the data
set, we dynamically adjust the ratio during runtime.
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Fig. 6. Left: Number of 28-mers and number of distinct 28-mers in the 512 temporary
files that have been created while processing the F Vesca data set. Each point corre-
sponds to a temporary file. Here, the KMC2 minimizer ordering did not succeed in
creating uniformly sized temporary files since a single file contains far more 28-mers
than the other 511 files. Right: Dividing the number of 28-mers in each file by number
of its distinct 28-mers leads to a ratio that is used to determine the size of the hash
tables. A ratio between 0.15 and 0.2 is a proper choice for the F Vesca data set.

Probing Strategy. As a general strategy we use double hashing. We stop
the probing of the hash table after a constant number of trials. Therefore, it is
possible that k-mers could not be inserted into a hash table. For that reason,
Gerbil has a built-in emergency mechanism that handles such k-mers to prevent
them from getting lost. Hereby, CPU and GPU hasher threads have different
strategies. CPU hasher threads store such k-mers in an additional temporary
file, which is processed after the work with the current temporary file has been
completed. In contrast, GPU hasher threads use part of free GPU memory to
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sequentially store those k-mers that could not be inserted. After all k-mers of
a temporary file have been processed, the k-mers in this area are counted via
a sorting and compression approach. However, it is still possible to exceed the
available GPU memory. In such a case, we copy the whole amount of k-mers
in that area back to main memory and store them in a temporary file, similar
to the CPU emergency handling. Such an operation is very costly. However, we
have never observed a single GPU error handling and only few executions of
CPU error handling when processing real world data sets.

4 Results

We tested our implementation in a set of experiments, using the same instances
as Deorowicz et al. [3] (see Table 1). For each data set we counted all k-mers
for k = 28, 40, 56, and 65 and compared Gerbil’s running time with those of
KMC2 in version 2.3.0 and DSK in version 2.0.7. In addition, we used a syn-
thesized test set GRCh38, created from Genome Reference Consortium Human
Reference 38 (GCA 000001405.2), from which we uniformly sampled k-mers of
size 1000. The purpose of this data set is to have longer reads allowing to test
the performance for larger values of k. To judge performance on various types
of hardware, we executed the experiments on two different desktop computers.
See Table 2 for details about the hardware configuration of the test systems.

Table 3 and Fig. 7 show the results of the performance evaluation. We want
to point out several interesting observations.

Table 1. Data sets.

Data set Format Size (GB) Read length 28-mers Distinct 28-mers

F Vesca FASTQ 10.2 353 4 134 078 256 632 436 468

M Balbisiana FASTQ 98.6 100 20 531 572 597 965 691 662

G Gallus FASTQ 115.9 101 25 337 974 831 2 727 529 829

H Sapiens FASTQ 223.3 100 62 739 461 708 6 336 805 684

H Sapiens 2 FASTQ 339.5 101 98 892 620 173 6 634 382 141

GRCh38 FASTA 100.0 1000 97 300 000 000 1 802 953 276

Table 2. Test systems.

System one System two

CPU Intel Core-i5 2550k (4 cores) Intel Xeon(R) E3-1231 v3 (8 cores)

RAM 16 GB DDR3 32 GB DDR3

GPU GeForce GTX 970 GeForce GTX TITAN X

GeForce GTX 970

Working-disk 256 GB Crucial M550 2x Samsung 850 EVO 500 GB (RAID-0)

Free disk space 128 GB 1000 GB

OS Ubuntu 14.04 LTS

In/Out-disk Transcend StoreJet 35T3 USB 3.0 (External HDD)
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Table 3. Running times in the format mm:ss (the best performing in bold). Each entry
is the average over three runs. Missing running times for DSK are due to insufficient
disk space. The label ‘gGerbil’ stands for Gerbil with activated GPU mode. Instead,
standard ‘Gerbil’ does not use any GPU.

Data set System one System two

k Gerbil gGerbil KMC2 DSK Gerbil gGerbil KMC2 DSK

F Vesca 28 02:08 01:40 02:01 03:00 01:36 01:18 01:32 02:05

40 02:34 01:53 03:03 04:14 02:01 01:38 02:12 02:52

56 02:58 01:53 03:19 03:55 02:25 01:39 02:30 02:50

65 03:05 01:59 04:34 05:23 02:16 01:42 03:35 03:37

M Balbisiana 28 13:37 11:42 12:54 14:49 11:17 10:07 10:50 11:06

40 13:48 12:24 16:15 16:12 11:46 10:59 13:46 12:26

56 12:46 11:36 16:06 14:56 10:50 10:18 13:36 11:44

65 12:32 11:28 18:33 15:52 10:46 10:16 15:47 12:34

G Gallus 28 18:41 14:25 15:39 26:54 15:47 12:31 13:10 21:00

40 19:55 16:00 19:44 29:42 16:29 14:10 16:49 23:48

56 18:12 14:48 19:48 24:11 15:38 13:12 16:48 19:59

65 18:27 15:22 22:49 26:50 15:41 13:08 19:25 21:33

H Sapiens 28 41:10 30:04 32:18 - 33:26 25:16 26:44 50:15

40 45:02 35:52 43:19 - 35:20 29:00 35:59 54:21

56 39:47 33:21 42:53 - 32:21 26:46 35:25 45:32

65 38:09 35:32 51:23 - 32:09 26:27 42:19 47:50

H Sapiens 2 28 65:33 49:41 49:17 - 53:40 39:24 41:47 76:50

40 72:06 66:04 70:33 - 57:03 46:00 57:02 83:59

56 64:00 60:27 69:58 - 51:34 42:15 56:28 72:35

65 61:05 64:44 87:24 - 51:16 41:30 68:10 78:13

– Gerbil with GPU support (gGerbil) is the most efficient tool in almost all
cases. Exceptions occur for small k = 28, where the sorting based approach
KMC2 is sometimes slightly more efficient.

– When k grows, KMC2 becomes more and more inefficient, while Gerbil stays
efficient. When counting the 200-mers in the GRCh38 data set, KMC2 did not
finish within 20 h, whereas Gerbil required only 98 min (Fig. 7). The running
time of DSK grows similarly fast as that of KMC2. Recall that DSK does not
support values of k > 127.

– For small k, the use of a GPU decreases the running time by a significant
amount of time. However, with growing k, the data structure that stores
k-mers grows larger. Therefore, the number of table entries that can be scanned
in parallel decreases. Experimentally, we found that the GPU induced speedup
vanishes when k exceeds 150.
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Fig. 7. Running times for 28 ≤ k ≤ 200 (GRCh38, test system two).

We gain some additional interesting insights when we take a closer look into
Table 4 that shows detailed information on running time and memory usage.
The use of a GPU accelerates Gerbil’s second phase by up to a factor of two,
whereas the additional speedup given by a second GPU is only moderate. All
tools were called with an option that sets the maximal memory size to 14 GB
on Test System One and 30 GB on Test System Two. However, Gerbil typically
uses much less memory due to its dynamic prediction of the hash table size.
In contrast, both KMC2 and DSK use more main memory. Gerbil’s disk usage
is comparable to KMC2’s disk usage, whereas the disk usage of DSK is much
larger. Gerbil’s frugal use of disk- and main memory is a main reason for its
high performance. The use of little main memory gives the operating system
opportunity to use the remaining main memory for buffering disk operations.
A small disk space consumption is essential since disk operations are far more
expensive than the actual counting.

Table 4. Detailed running times (in format mm:ss) and maximal main memory and
disk space consumption (in GB) for the G Gallus instance. Each entry is the average
of three runs.

System one System two

k Gerbil gGerbil KMC DSK Gerbil gGerbil KMC DSK

Phase 1 28 10:08 10:06 10:51 10:22 09:46 09:43 09:52 09:30

Phase 2 28 08:32 04:19 04:46 16:00 06:01 02:47 03:16 11:01

Main memory 28 2.36 1.77 14.28 15.28 2.20 2.01 26.99 16.69

Disk space 28 23.66 23.66 24.86 37.30 23.66 23.66 24.86 37.30

Phase 1 56 10:07 10:06 10:40 10:26 09:47 09:43 09:47 09:30

Phase 2 56 08:05 04:42 09:08 13:13 05:50 03:28 06:59 10:00

Main memory 56 4.24 3.20 14.29 15.00 4.00 3.40 26.98 14.78

Disk space 56 16.25 16.25 17.02 57.20 16.25 16.25 17.02 57.20
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5 Conclusion

We introduced the k-mer counting software Gerbil that uses a hash table based
approach for the counting of k-mers. For large k, a use case that becomes impor-
tant for long reads, we are able to clearly outperform the state-of-the-art open
source k-mer counting tools, while using significantly less resources. We showed
that Gerbil’s running time can be accelerated by the use of GPUs. However,
since this only affects the second phase, the overall additional speedup is only
very moderate. As future work, we plan to evaluate strategies to use GPUs to
accelerate also the first phase. Another option for further speed-up would be to
give up exactness by using Bloom filters.
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Abstract. All combinatorial works on genome rearrangements have so
far ignored the influence of intergene sizes, i.e. the number of nucleotides
between consecutive genes, although it was recently shown decisive for
the accuracy of the inference methods [3,4]. In this line, we define
a new genome rearrangement model called wDCJ, a generalization of
the well-known Double Cut and Join (or DCJ) model that allows for
modifying both the gene order and the intergene size distribution of
a genome. We first provide a generic formula for the wDCJ distance
between two genomes, and show that computing this distance is strongly
NP-complete. We then propose an approximation algorithm of ratio 3/2,
and two exact ones: a fixed parameterized (FPT) algorithm and an ILP
formulation. We finally provide theoretical and empirical bounds on the
expected growth of the parameter at the center of our FPT and ILP
algorithms, assuming a probabilistic model of evolution under wDCJ,
which shows that both these algorithms should run reasonably fast in
practice.

1 Introduction

General Context. Mathematical models for genome evolution by rearrangements
have defined a genome as a linear or circular ordering of genes1 [5]. These order-
ings have first been seen as (possibly signed) permutations, or strings if duplicate
genes are present, or disjoint paths and cycles in graphs in order to allow multiple
chromosomes. However, the organization of a genome is not entirely subsumed
in gene orders. In particular, consecutive genes are separated by an intergenic
region, and intergenic regions have diverse sizes [7]. Besides, it was recently
shown that integrating intergene sizes in the models radically changes the dis-
tance estimations between genomes, as usual rearrangement distance estimators
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STROME project, Investissement d’avenir ANR-10-BINF-01-01.

1 The word gene is as usual in genome rearrangement studies taken in a liberal mean-
ing, as any segment of DNA, computed from homologous genes or synteny blocks,
which is not touched by a rearrangement in the considered history.
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ignoring intergene sizes do not estimate well on realistic data [3,4]. We thus
propose to re-examine the standard models and algorithms in this light. A first
step is to define and compute standard distances, such as Double Cut and Join
(or DCJ) [9], taking into account intergene sizes. In this setting, two genomes
are considered, which are composed of gene orders and intergene sizes. One is
transformed into the other by wDCJ operations, which consist in the usual DCJ
operations, which additionally change the sizes of the intergenes it affects.

Genomes and Rearrangements. Given a set V of vertices such that |V | = 2n,
we define a genome g as a set of n disjoint edges, i.e. a perfect matching on V .
A genome is weighted if each edge e of g is assigned an integer weight w(e) ≥ 0,
and we define W (g) as the sum of all weights of the edges of g. The union of
two genomes g1 and g2 on the same set V thus forms a set of disjoint even
size cycles called the breakpoint graph BG(g1, g2) of g1 and g2, in which each
cycle is alternating, i.e. is composed of edges alternately belonging to g1 and g2.
Note that in the rest of the paper, we will be only interested in evenly weighted
genomes, i.e. genomes g1 and g2 such that W (g1) = W (g2).

A Double cut-and-join (DCJ) [9] is an operation on an unweighted genome g,
which transforms it into another genome g′ by deleting two edges ab and cd and
by adding either (i) edges ac and bd, or (ii) edges ad and bc. If g is weighted,
the operation we introduce in this paper is called wDCJ: wDCJ is a DCJ that
additionally modifies the weights of the resulting genome in the following way:
if we are in case (i), (1) any edge but ac and bd is assigned the same weight
as in g, and (2) w(ac) and w(bd) are assigned arbitrary non negative integer
weights, with the constraint that w(ac) + w(bd) = w(ab) + w(cd). If we are in
case (ii), a similar rule applies by replacing ac by ad and bd by bc. Note that
wDCJ clearly generalizes the usual DCJ, since any unweighted genome g can be
seen as a weighted one in which w(e) = 0 for any edge e in g.

Motivation for These Definitions. This representation of a genome supposes that
each vertex is a gene extremity (a gene being a segment, it has two extremities,
which explains the even number of vertices), and an edge means that two gene
extremities are contiguous on a chromosome. This representation generalizes
signed permutations, and allows for an arbitrary number of circular and linear
chromosomes. The fact that there should be n edges in a genome means that
chromosomes are circular, or that extremities of chromosomes are not in the
vertex set. It is possible to suppose so when the genomes we compare are co-
tailed, i.e. the same gene extremities are extremities of chromosomes in both
genomes. In this way, a wDCJ on a circular (resp. co-tailed) genome always
yields a circular (resp. co-tailed) genome, which, in our terminology, just means
that a weighted perfect matching stays a weighted perfect matching through
wDCJ. So all along this paper we suppose that we are in the particular case
of classical genomic studies where genomes are co-tailed or circular. Each edge
represents an intergenic region. Weights on edges are intergene sizes, that is, the
number of nucleotides separating two genes. The way weights are distributed
after a wDCJ models a breakage inside an intergene between two nucleotides.
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Statement of the Problem. Given two evenly weighted genomes g1 and g2
expressed on the same set V of 2n vertices, a sequence of wDCJ that trans-
forms g1 into g2 is called a wDCJ sorting scenario. Note that any sequence
transforming g1 into g2 can be easily transformed into a sequence of same length
transforming g2 into g1, as the problem is fully symmetric. Thus, in the follow-
ing, we will always suppose that g2 is fixed and that the wDCJ are applied on
g1. The wDCJ distance between g1 and g2, denoted wDCJ(g1, g2) is defined
as the number of wDCJ of a smallest wDCJ sorting scenario. Note that when
genomes are unweighted, computing the usual DCJ distance is tractable, as
DCJ(g1, g2) = n − c, where c is the number of cycles of BG(g1, g2) [9]. The
problem we consider in this paper, that we denote by wDCJ-dist, is the follow-
ing: given two evenly weighted genomes g1 and g2 defined on the same set V of
2n vertices, determine wDCJ(g1, g2). We need further notations. The imbal-
ance of a cycle C in BG(g1, g2) is denoted I(C), and is defined as follows:
I(C) = w1(C) − w2(C), where w1(C) (resp. w2(C)) is the sum of the weights
of the edges of C which belong to g1 (resp. g2). A cycle C of the breakpoint
graph is said to be balanced if I(C) = 0, and unbalanced otherwise. We will
denote by Cu the set of unbalanced cycles in BG(g1, g2), and by nu = |Cu| its
cardinality. Similarly, nb denotes the number of balanced cycles in BG(g1, g2),
and c = nu + nb denotes the (total) number of cycles in BG(g1, g2).

Related Works. In the recent past, generalizations of standard models integrate
more realistic features in order to be closer to real genome evolution. It concerns,
among others, models where inversions are considered, that are weighted by
their length or symmetry around a replication origin [2], by the proximity of
their extremities in the cell [8], or by their use of hot regions for rearrangement
breakages [1].

Our Results. We explore the algorithmic properties of wDCJ-dist. We first
provide the main properties of (optimal) wDCJ sorting scenarios in Sect. 2. We
then show in Sect. 3 that the wDCJ-dist problem is strongly NP-complete,
3/2 approximable, and we provide two exact (FPT and ILP) algorithms. By
simulations and analytic studies on a probabilistic model of genome evolution,
in Sect. 4 we bound the parameter at the center of both our FPT and ILP
algorithms, and conclude that they should run reasonably fast in practice. Note
that due to space constraints, some proofs are omitted from this paper.

2 Main Properties of Sorting by wDCJ

The present section is devoted to providing properties of any (optimal) wDCJ
sorting scenario. These properties mainly concern the way the breakpoint graph
evolves, whenever one or several wDCJ is/are applied. These will lead to a close
formula for the wDCJ distance (Theorem 1). Moreover, they will also be essential
in the algorithmic study of the wDCJ-dist problem that will be developed in
Sect. 3. We first show the following lemma.
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Lemma 1. Let C be a balanced cycle of some breakpoint graph BG(g1, g2). Then
there exist three consecutive edges e, f, g in C such that (i) e and g belong to g1
and (ii) w(e) + w(g) ≥ w(f).

Proof. Suppose, aiming at a contradiction, that for any three consecutive edges
e, f, g in C with e, g ∈ E(g1), we have w(e) + w(g) < w(f). Summing this
inequality over all such triplets of consecutive edges of C, we obtain the following
inequality: 2·w1(C) < w2(C). Since C is balanced, by definition we have w1(C)−
w2(C) = 0. Hence we obtain w1(C) < 0, a contradiction since all edge weights
are non negative by definition. ��

Note that any wDCJ can act on the number of cycles of the breakpoint graph
in only three possible ways: either this number is increased by one (cycle split),
decreased by one (cycle merge), or remains the same (cycle freeze). We now
show that if a breakpoint graph only contains balanced cycles, then any optimal
wDCJ sorting scenario only uses cycle splits.

Proposition 1. Let BG(g1, g2) be a breakpoint graph that contains balanced
cycles only – in which case c = nb. Then wDCJ(g1, g2) = n − nb.

In the following, we are interested in the sequences of two wDCJ formed
by a cycle split s directly followed by a cycle merge m, to the exception of df-
sequences (for double-freeze), which is the special case where s is applied on a
cycle C (forming cycles Ca and Cb) and m merges back Ca and Cb to give a new
cycle C ′ built on the same set of vertices than C. The name derives from the
fact that a df-sequence acts as a freeze, except that it can involve up to 4 edges
in the cycle, as opposed to only 2 edges for a freeze.

Proposition 2. In a wDCJ sorting scenario, if there is a sequence of two oper-
ations formed by a cycle split s directly followed by a cycle merge m that is not
a df-sequence, then there exists a wDCJ sorting scenario of same length where s
and m are replaced by a cycle merge m′ followed by a cycle split s′.

Proof. Let s and m be two consecutive wDCJ in a sorting scenario that do not
form a df-sequence, where s is a split, m is a merge, and s is applied before m.
Let also G (resp. G′) be the breakpoint graph before s (resp. after m) is applied.
We will show that there always exist two wDCJ m′ and s′, such that (i) m′ is a
cycle merge, (ii) s′ is a cycle split and (iii) starting from G, applying m′ then s′

gives G′. First, if none of the two cycles produced by s is used by m, then the
two wDCJ are independent, and it suffices to set m′ = m and s′ = s to conclude.

Now suppose one of the two cycles produced by s is involved in m. Let C1

denote the cycle on which s is applied, and let us assume s cuts ab and cd, of
respective weights w1 and w2, and joins ac and bd, of respective weights w′

1 and
w′

2 – thus w1 + w2 = w′
1 + w′

2 (a). We will denote by Ca (resp. Cb) the two
cycles obtained by s from C1; see Fig. 1 for an illustration. Now let us consider
m. Wlog, let us suppose that m acts on Cb and another cycle C2 �= Ca (since
df-sequences are excluded), in order to produce cycle C3. It is easy to see that if
m cuts an edge different from bd in Cb, then s and m are two independent wDCJ,
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Fig. 1. Two different scenarios that lead to G′ starting from G: (downward) a split s
followed by a merge m; (rightward) a merge m′ followed by a split s′.

and thus can be safely swapped. Thus we now assume that m cuts bd. Suppose
the edge that is cut in C2 is ef , of weight w3, and that the joins are edges bf
and de, of respective weights w′

3 and w′
4. We thus have w′

3 + w′
4 = w′

2 + w3 (b).
Moreover, adding (a) and (b) gives w1 +w2 +w3 = w′

1 +w′
3 +w′

4 (c). Now let us
show that there exists a scenario that allows to obtain Ca and C3 from C1 and
C2, which begins by a merge followed by a split. For this, we consider two cases:

– w1 + w3 ≥ w′
3 (see Fig. 1(i)): m′ consists in cutting ab from C1 and ef from

C2, then forming ae and bf , so as to obtain a unique cycle C. Note that C
now contains edges cd (of weight w2), bf (of weight w′

3) and ae (of weight
w1 + w3 − w′

3, which is non negative by hypothesis). Then, s′ is defined as
follows: cut ae and cd, form edges ac, de. Finally, note that assigning w′

1 to
ac and w′

4 to de is possible, since ae is of weight w1 +w3 −w′
3, cd is of weight

w2, and since w1 + w3 − w′
3 + w2 = w′

1 + w′
4 by (c).

– w1 + w3 < w′
3 (see Fig. 1(ii)). Consider the following merge m′: cut edges cd

and ef , and form the edges de of weight w′
4, and cf of weight w = w2+w3−w′

4.
This merge is feasible because w ≥ 0: indeed, by hypothesis w1 + w3 < w′

3,
i.e. w1 + w2 + w3 < w2 + w′

3, which by (c) implies w′
1 + w′

4 < w2. Thus
w′

4 < w2, and consequently w > w3 ≥ 0. Now let s′ be as follows: cut ab
(of weight w1) and cf (of weight w = w2 + w3 − w′

4) to form edges ac and
bf of respective weights w′

1 and w′
3. Note that s′ is always feasible since

w1 + w = w1 + w2 + w3 − w′
4 = w′

1 + w′
3 by (c).

In all cases, it is always possible to obtain G′, starting from G, using a merge
m′ followed by a split s′, rather than s followed by m, and the result is
proved. ��

Proposition 3. In an optimal wDCJ sorting scenario, no cycle freeze or df-
sequence occurs.
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Proof. Suppose a wDCJ sorting scenario contains at least one cycle freeze or
df-sequence, and let us consider the last such event f that appears in it. We will
show that there also exists a sorting scenario that does not contain f , and whose
length is decreased by at least one. For this, note that the sequence of wDCJ
that follow f , say S, is only composed of cycle splits and merges which do not
form df-sequences. By Proposition 2, in S any split that precedes a merge can be
replaced by a merge that precedes a split, in such a way that the new scenario
is a sorting one, and of same length. By iterating this process, we end up with
a sequence S ′ in which, after f , we operate a series M of merges, followed by a
series S of splits. Let GM be the breakpoint graph obtained after all M merges
are applied. If a cycle was unbalanced in GM , any split would leave at least one
unbalanced cycle, and it would be impossible to finish the sorting by applying
the splits in S. Thus GM must contain only balanced cycles. Recall that f acts
inside a given cycle C, while maintaining its imbalance I(C) unchanged. C may
be iteratively merged with other cycles during M , but we know that, in GM , the
cycle C ′ that finally “contains” C is balanced. Thus, if we remove f from the
scenario, the breakpoint graph G′

M we obtain only differs from GM by the fact
that C ′ is now replaced by another cycle C ′′, which contains the same vertices
and is balanced. However, by Proposition 1, we know that G′

M can be optimally
sorted using the same number of splits than GM , which allows us to conclude
that there exists a shorter sorting scenario that does not use f . ��

Proposition 4. Any wDCJ sorting scenario can be transformed into another
wDCJ sorting scenario of same or shorter length, and in which any cycle merge
occurs before any cycle split.

Proposition 5. In an optimal wDCJ sorting scenario, no balanced cycle is ever
merged.

Based on the above results, we are now able to derive a formula for the wDCJ
distance, which is somewhat similar to the “classical” DCJ distance formula [9].

Theorem 1. Let BG(g1, g2) be the breakpoint graph of two genomes g1 and g2,
and let c be the number of cycles in BG(g1, g2). Then wDCJ(g1, g2) = n − c +
2m, where m is the minimum number of cycle merges needed to obtain a set of
balanced cycles from the unbalanced cycles of BG(g1, g2).

Proof. By the previous study, we know that there exists an optimal wDCJ sce-
nario without cycle freezes or df-sequences, and in which merges occur before
splits (Propositions 3 and 4). We also know that before the splits start, the graph
GM we obtain is a collection of balanced cycles, and that the split sequence that
follows is optimal and only creates balanced cycles (Proposition 1). Thus the
optimal distance is obtained when the merges are as few as possible. By Propo-
sition 5, we know that no balanced cycle is ever used in a cycle merge in an
optimal scenario. Hence an optimal sequence of merges consists in creating bal-
anced cycles from the unbalanced cycles of BG(g1, g2) only, using a minimum
number m of merges. Altogether, we have (i) m merges that lead to c−m cycles,
then (ii) n − (c − m) splits by Proposition 1. Hence the result. ��
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3 Algorithmic Aspects of wDCJ-Dist

Based on the properties of a(n optimal) wDCJ sorting scenario given in Sect. 2,
we are now able to provide algorithmic results concerning the wDCJ-dist prob-
lem. We begin by assessing its computational complexity.

Theorem 2. The wDCJ-dist problem is strongly NP-complete.

Proof. The proof is by reduction from the strongly NP-complete 3-Partition
problem [6], whose instance is a multiset A = {a1, a2 . . . a3n} of 3n positive
integers such that (i)

∑3n
i=1 ai = B · n and (ii) B

4 < ai < B
2 for any 1 ≤ i ≤ 3n,

and where the question is whether one can partition A into n multisets A1 . . . An,
such that for each 1 ≤ i ≤ n,

∑
aj∈Ai

aj = B. Given any instance A of 3-
Partition, we construct two genomes g1 and g2 as follows: g1 and g2 are built
on a vertex set V of cardinality 8n, and consist of the same perfect matching.
Thus BG(g1, g2) is composed of 4n trivial cycles, that is cycles of length 2, say
C1, C2 . . . C4n. The only difference between g1 and g2 thus lies on the weights
of their edges. For any 1 ≤ i ≤ 4n, let e1i (resp. e2i ) be the edge from Ci that
belongs to g1 (resp. g2). The weight we give to each edge is the following: for
any 1 ≤ i ≤ 3n, w(e1i ) = ai and w(e2i ) = 0; for any 3n + 1 ≤ i ≤ 4n, w(e1i ) = 0
and w(e2i ) = B. As a consequence, the imbalance of each cycle is I(Ci) = ai for
any 1 ≤ i ≤ 3n, and I(Ci) = −B for any 3n + 1 ≤ i ≤ 4n. Now we will prove
the following equivalence: 3-Partition is satisfied iff wDCJ(g1, g2) ≤ 6n.

(⇒) Suppose there exists a partition A1 . . . An of A such that for each 1 ≤
i ≤ n,

∑
aj∈Ai

aj = B. For any 1 ≤ i ≤ n, let Ai = {ai1 , ai2 , ai3}. Then, for
any 1 ≤ i ≤ n, we merge cycles Ci1 , Ci2 and Ci3 , then apply a third merge with
C3n+i. For each 1 ≤ i ≤ n, these three merges lead to a balanced cycle, since
after the two first merges, the obtained weight is ai1 +ai2 +ai3 = B. After these
3n merges (in total) have been applied, we obtain n balanced cycles, from which
4n − n = 3n splits suffice to end the sorting, as stated by Proposition 1. Thus,
altogether we have used 6n wDCJ, and consequently wDCJ(g1, g2) ≤ 6n.

(⇐) Suppose that wDCJ(g1, g2) ≤ 6n. Recall that in the breakpoint graph
BG(g1, g2), we have c = 4n cycles and 8n vertices. Thus, by Theorem 1, we
know that wDCJ(g1, g2) = 4n−4n+2m = 2m, where m is the smallest number
of merges that are necessary to obtain a set of balanced cycles from BG(g1, g2).
Since we suppose wDCJ(g1, g2) ≤ 6n, we conclude that m ≤ 3n. Otherwise
stated, the number of balanced cycles we obtain after the merges cannot be less
than n, because we start with 4n cycles and apply at most 3n merges. However,
at least 4 cycles from C1, C2 . . . C4n must be merged in order to obtain a single
balanced cycle: at least 3 from C1, C2 . . . C3n (since any ai satisfies B

4 < ai < B
2

by definition), and at least one from C3n+1, C3n+2 . . . C4n (in order to end up with
an imbalance equal to zero). Thus any balanced cycle is obtained using exactly
4 cycles (and thus 3 merges), which in turn implies that there exists a way to
partition the multiset A into A1 . . . An in such a way that for any 1 ≤ i ≤ n,
(
∑

aj∈Ai
) − B = 0, which positively answers the 3-Partition problem. ��

Since wDCJ-dist is NP-complete, we now seek for algorithms that compute,
either approximately or exactly, the wDCJ distance.
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Theorem 3. The wDCJ-dist problem is 3
2 -approximable.

Proof. Given two weighted genomes g1 and g2, let Cu = {C1, C2 . . . Cnu
} be the

set of unbalanced cycles in BG(g1, g2). First, compute a maximum cardinality set
S2 of independent pairs {I(Ci), I(Cj)} (with i �= j) such that I(Ci) + I(Cj) =
0, where by independent we mean that any cycle Ci is used at most once in
S2; let n2 = |S2|. Intuitively, each pair in S2 represents two unbalanced cycles
that become balanced when merged. Note that S2 can be easily computed by
iteratively searching for a number and its opposite among the imbalances in Cu.
Now, our approximation algorithm does the following: merge the cycles of S2

by pairs, then merge the remaining unbalanced cycles into a unique (balanced)
cycle. At this stage we have performed mA = n2

2 + (nu − n2 − 1) cycle merges,
and we obtain nb + n2

2 + 1 cycles which are all balanced. Then we perform
sA = n−nb − n2

2 −1 splits in order to finish the sorting (see Proposition 1). Our
algorithm thus uses dcjA(g1, g2) = mA + sA = n − nb + nu − n2 − 2 wDCJ.

Now let us observe an optimal sorting scenario of length wDCJ(g1, g2),
which, as we know by the results in Sect. 2, can be assumed to contain mopt

merges followed by sopt splits. Note that we can also safely assume that this
scenario merges the pairs of cycles in S2 – if not, a scenario that does it, and is
of same length, exists. Concerning the remaining nu −n2 unbalanced cycles, the
best case scenario is when we are able to obtain balanced cycles by merging them
three by three; thus at least 2(nu−n2)

3 extra cycles merges are necessary, leading
to mopt ≥ n2

2 + 2(nu−n2)
3 . In any case, we end up with at most nb + n2

2 + (nu−n2)
3

balanced cycles, and thus sopt ≥ n−nb − n2
2 − (nu−n2)

3 . Altogether, we have that
wDCJ(g1, g2) ≥ n − nb + (nu−n2)

3 .
Our goal is now to show that dcjA(g1, g2) ≤ 3

2 · wDCJ(g1, g2). First, since
dcjA(g1, g2) = n−nb +nu −n2 − 2, we have dcjA(g1, g2) ≤ (n−nb + (nu−n2)

3 )+
2(nu−n2)

3 , that is dcjA(g1, g2) ≤ wDCJ(g1, g2) + 2(nu−n2)
3 . Hence, it suffices

to show that 2(nu−n2)
3 ≤ wDCJ(g1,g2)

2 to conclude. For this, we note that we
always have n ≥ nb + nu, since n is the maximum number of possible cycles in
BG(g1, g2). In other words, n−nb ≥ nu, which we can write n−nb + (nu−n2)

3 ≥
4(nu−n2)

3 . Since we have wDCJ(g1, g2) ≥ n − nb + (nu−n2)
3 , we conclude that

wDCJ(g1,g2)
2 ≥ 2(nu−n2)

3 , and we are done. ��

We now turn to exact algorithms for computing wDCJ-dist.

Theorem 4. The wDCJ-dist problem is FPT when parameterized by the num-
ber nu of unbalanced cycles in BG(g1, g2).

Proof. By Theorem 1, we know that, given g1 and g2, wDCJ(g1, g2) can be
computed from the three parameters n, c and m. Clearly, n and c are com-
puted from BG(g1, g2) in polynomial time; since wDCJ-dist is NP-complete,
the “hard” part consists in computing m. We recall that m is the minimum
number of cycle merges that are necessary to transform the set Cu of unbalanced
cycles of BG(g1, g2) into balanced ones. Equivalently, we seek for a maximum
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number of balanced cycles we can obtain from Cu using merges only, i.e. we want
to partition Cu into {C1, C2 . . . Cp} such that (1) for each 1 ≤ i ≤ p, merging all
cycles in Ci leads to a balanced cycle and (2) p is maximized. Thus, m = nu − p,
and consequently wDCJ(g1, g2) = n−c+2(nu−p). The algorithm thus works as
follows: exhaustively generate all the partitions of Cu, and output the solution
S that satisfies (1) and (2) above (such a solution exists, since taking p = 1
satisfies Condition (1)). From S, the wDCJ sorting scenario follows, and it is
optimal of length n− c+2(nu −p) as argued above. The exponential part of the
algorithm is clearly the generation of all partitions of Cu, which depends only on
nu = |Cu|, hence the result. ��

An Integer Linear Programming for Solving wDCJ-dist. The ILP we propose
here actually consists in computing the number p described in proof of Theorem 4
above, i.e. the maximum number of sets of a partition {C1, C2 . . . Cp} of Cu for
which for any 1 ≤ i ≤ p, the sum of the imbalances of the cycles in Ci is equal to
zero. As argued in proof of Theorem 4, once this number p is computed, one can
compute wDCJ(g1, g2) in polynomial time, as wDCJ(g1, g2) = n−c+2(nu−p),
where c (resp. nu) is the number of cycles (resp. unbalanced cycles) in BG(g1, g2).
We note that p ≤ nu

2 , since it takes at least two unbalanced cycles to create a
balanced one.

maximize
∑

1≤i≤nu/2

pi (1)

subject to
∑

1≤j≤nu/2

xi,j = 1 ∀1 ≤ i ≤ nu (2)

∑

1≤i≤nu

I(Ci) · xi,j = 0 ∀1 ≤ j ≤ nu/2 (3)

∑

1≤i≤nu

xi,j ≥ pj ∀1 ≤ j ≤ nu/ )4(2

xi,j ∈ {0, 1} ∀1 ≤ i ≤ nu and ∀1 ≤ j ≤ nu/2 (5)

pi ∈ {0, 1} ∀1 ≤ i ≤ nu/ )6(2

Fig. 2. ILP description for the computation of parameter p.

Let us now describe our ILP (see also Fig. 2): we first define binary variables
xi,j , for 1 ≤ i ≤ nu and 1 ≤ j ≤ nu

2 , that will be set to 1 if the unbalanced
cycle Ci ∈ Cu belongs to subset Cj , and 0 otherwise. The binary variables pi,
1 ≤ i ≤ nu

2 , will simply indicate whether Ci is “used” in the solution, i.e. pi = 1
if Ci �= ∅, and 0 otherwise. In our ILP, (2) ensures that each unbalanced cycle is
assigned to exactly one subset Ci; (3) requires that the sum of the imbalances of
the cycles from Ci is equal to zero. Finally, (4) ensures that a subset Ci is marked
as unused if no unbalanced cycle has been assigned to it. Moreover, since the
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objective is to maximize the number of non-empty subsets, pi will necessary be
set to 1 whenever Ci �= ∅. Note that the size of the above ILP depends only on
nu, as it contains Θ(n2

u) variables and Θ(nu) constraints.

4 A Probabilistic Model of Evolution by wDCJ

In this section, we define a model of evolution by wDCJ, in order to derive the-
oretical and empirical bounds for the parameter nu on which both the FPT and
ILP algorithms depend. The model is a Markov chain on all weighted genomes
(that is, all weighted perfect matchings) on 2n vertices. Transitions are wDCJ,
such that from one state, two distinct edges ab and cd are chosen uniformly at
random, and replaced by either ac and bd or by ad and cb (with probability 0.5
each). Weights of the new edges are computed by drawing two numbers x and y
uniformly at random in respectively [0, w(ab)] and [0, w(cd)], and assigning x+y
to one edge, and w(ab) + w(cd) − x − y to the other (with probability 0.5 each).

Proposition 6. The equilibrium distribution of this Markov chain is such that
a genome has a probability proportional to the product of the weights on its edges.

As a consequence, the weight distributions follow a symmetric Dirichlet law
with parameter α = 2. It is possible to draw a genome at random in the equi-
librium distribution by drawing a perfect matching uniformly at random and
distributing its weights with a Gamma law of parameters 1 and 2.

We first prove a theoretical bound on the number of expected unbalanced
cycles, and then show by simulations that this number probably stays far under
this theoretical bound on evolutionary experiments.

Theorem 5. Given a weighted genome g1 with n edges, if k random wDCJ
are applied to g1 to give a weighted genome g2, then the expected number of
unbalanced cycles in BG(g1, g2) satisfies E(nu) = O(k/

√
n).

Proof. In this proof, for simplicity, let us redefine the size of a cycle as half
the number of its edges. Let n+

u (respectively n−
u ) be the number of unbalanced

cycles of size greater than or equal to (respectively less than)
√

n. We thus have
nu = n+

u + n−
u . We will prove that (i) n+

u ≤ k/
√

n and (ii) n−
u = O(k/

√
n).

First, if the breakpoint graph contains u unbalanced cycles of size at least
s, then the number k of wDCJ is at least us. Indeed from Theorem 1, the DCJ
distance is at least n − c + u, and as n ≥ us + (c − u), we have k ≥ us + (c −
u) − c + u = us. As a consequence, k ≥ n+

u · √
n, and (i) is proved.

Second, any unbalanced cycle of size less than s is the product of a cycle
split. Given a cycle C of size r > s with r �= 2s, there are r possible wDCJ which
can split C and produce one cycle of size s. If r = 2s, there are r/2 possible
splits which result in 2 cycles of size s. So there are O(sr) ways of splitting C
and obtaining an unbalanced cycle of size less than s. If we sum over all cycles,
this makes O(sn) ways because the sum of the sizes of all cycles is bounded by
n. As there are O(n2) possible wDCJ in total, the probability to split a cycle
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of size r and obtain an unbalanced cycle of size less than s at a certain point
of a scenario is O(s/n). If we sum over all the scenarios of k wDCJ, this makes
an expected number of unbalanced cycles in O(ks/n), which implies (ii) since
s <

√
n. ��

We simulated a genome evolution with n = 1000, and the weights on
a genome drawn from the above discussed equilibrium distribution. Then we
applied k = 10 000 wDCJ, and we measured the value of nu on the way. As
shown in Fig. 3, nu was always below 13, and stopped growing after k = 2000.
This tends to show that the theoretical bound given in Theorem 5 is far from
being reached in reality, and that the parameter nu is very low is this model. We
actually conjecture that the expected number E(nu) = o(n) and in particular
does not depend on k. Nevertheless, this shows that, in practice, both the FPT
and ILP algorithms from the previous section should run in reasonable time on
this type of instances. As an illustration, we ran the ILP algorithm on a set of
10 000 instances, generated as described above. For each of these instances, the
execution time for computing parameter p (discussed in the description of the
ILP in Sect. 3) on a standard computer never exceeded 8 ms.
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Fig. 3. Number of unbalanced cycles, in a simulation on genomes with n = 1 000 edges
where wDCJ operations are applied successively. The number of unbalanced cycles is
computed (i) according to the theoretical bound k/

√
n (in thin), and (ii) from the

simulated genomes (in bold).

As a side remark, we note that the model presented here is different from
the one used in Biller et al. [4], in which rearrangements are drawn with a
probability proportional to the product of the weights of the involved edges. We
checked that the behavior concerning nu was the same in both models; however,
we were unable to adapt proof of Theorem 5 to that case.

5 Conclusion and Perspectives

We made the first steps in the combinatorial study of rearrangement operations
which depend on and affect intergene sizes. We leave open many problems and
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extensions based on this study. First, is wDCJ-dist APX-hard? Is it FPT in the
sought distance? Second, the applicability of our model to biological data lacks
additional flexibility, thus we suggest two (non exclusive) possible extensions:
(a) give a weight to every wDCJ, e.g. a function of the weights of the involved
edges; (b) instead of assuming that the total intergene size is conservative (which
is not the case in biological data), consider a model in which intergene size may be
altered by deletions, insertions and duplications. Third, generalizing the model
to non co-tailed genomes (in our terminology, matchings that are not perfect)
remains an open problem. It is clearly NP-complete, as it generalizes our model,
but other algorithmic questions, such as approximability and fixed-parameter
tractability, remain to be answered.
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Abstract. Genomic repeats are the most important challenge in
genomic assembly. While for single genomes the effect of repeats is largely
addressed by modern long-read sequencing technologies, in metagenomic
data intra-genome and, more importantly, inter-genome repeats con-
tinue to be a significant impediment to effective genome reconstruction.
Detecting repeats in metagenomic samples is complicated by character-
istic features of these data, primarily uneven depths of coverage and the
presence of genomic polymorphisms. The scaffolder Bambus 2 introduced
a new strategy for repeat detection based on the betweenness centrality
measure – a concept originally used in social network analysis. The exact
computation of the betweenness centrality measure is, however, compu-
tationally intensive and impractical in large metagenomic datasets. Here
we explore the effectiveness of approximate algorithms for network cen-
trality to accurately detect genomic repeats within metagenomic sam-
ples. We show that an approximate measure of centrality achieves much
higher computational efficiencies with a minimal loss in the accuracy of
detecting repeats in metagenomic data. We also show that the combina-
tion of multiple features of the scaffold graph provides a more effective
strategy for identifying metagenomic repeats, significantly outperforming
all other commonly used approaches.

Keywords: Metagenomics · Random forest · Betweenness centrality ·
Scaffolding · Algorithms · Graph

1 Introduction

Genomic repeats are the most important challenge in genomic assembly even
for isolate genomes. When reads are shorter than the repeats (a common situ-
ation until the recent development of long read sequencing technologies) it can
be shown that the number of genome reconstructions consistent with the read
data grows exponentially with the number of repeats [10]. The use of additional
information to constrain the one genome reconstruction representing the actual
genome being assembled leads to computationally intractable problems. In other
words, when reads are shorter than repeats the correct and complete reconstruc-
tion of a genome is impossible. In the case of isolate genomes, long read tech-
nologies have largely addressed this challenge, at least for bacteria where the
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-43681-4 14
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majority of genomic repeats fall within the range of achievable read lengths [11].
In metagenomics, however, the problem is compounded by the fact that micro-
bial mixtures often include multiple closely-related genomes differing in just
a few locations. The genomic segments shared by closely related organisms –
inter-genomic repeats – are substantially larger than intra-genomic repeats and
cannot be fully resolved even if long read data were available. Instead, the best
hope is to identify and flag these repeats in order to avoid mis-assemblies that
incorrectly span across genomes.

To date, most approaches for repeat detection have been based on the basic
observation that repetitive segments have unusual coverage depth, fact which is
usually ascertained through simple statistical tests. These approaches, however,
fail in the context of metagenomic data as well as in other settings (e.g., single
cell genomics) that violate the assumption of uniform depth of coverage within
the genome, assumption that is critical for the correctness of statistical tests.
Furthermore, the challenges posed by repeats to assembly algorithms are not
directly related to the depth of sequencing coverage within contigs, rather they
result from the fact that repeats “tangle” the assembly graph. More specifically,
the correct genomic sequence (whether of a single genome or mixture of genomes)
can be represented as one or more linear sub-paths of the graph. Repeats induce
links within the graph that are inconsistent with this linear structure, making it
difficult for algorithms to reconstruct the true genomic structure. We, therefore

Fig. 1. Assembly graph of a simulated community consisting of 200 Kbp subsets of
Escherichia coli str. K-12 MG1655 and Staphylococcus aureus. Nodes are colored and
sized based on their relative betweenness centrality with larger, green nodes indicating a
higher centrality. The highlighted nodes are inter-genomic repeats whose deletion would
separate the graph. Note that the betweenness centrality measure correctly identifies
these nodes.
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propose an operational definition of genomic repeats as those nodes in the graph
that induce inconsistencies. This definition is orthogonal to depth of coverage
considerations - high coverage contigs that do not “tangle” the graph do not
impact assembly algorithms, while contigs that confuse the assembly need to be
removed whether or not they can be conclusively labeled as “high coverage”.

We have previously proposed an operational definition of repeats in terms of
betweenness centrality. This approach was implemented in the Bambus 2 [12]
scaffolder and is a key component of the MetAMOS metagenomic assembly
pipeline [24]. An example of the effectiveness of this approach in a simple com-
munity composed of two genomes is shown in Fig. 1. The full implementation
of betweenness centrality, however, requires an all-pairs shortest path computa-
tion which is computationally too intensive for typical metagenomic datasets. In
Bambus 2, for example, repeat finding in a typical stool sample requires days of
computation. To overcome this limitation, we demonstrate here that substantial
speed-ups can be obtained through the use of approximate betweenness central-
ity algorithms without sacrificing accuracy. We further extend this operational
definition of repeats by integrating a larger set of graph properties to construct
an efficient and accurate repeat detection strategy.

2 Related Work

Repeat Detection in Scaffolding

Scaffolding involves using the connectivity information from mate pairs to orient
and order pre-assembled contigs obtained from an assembler to reconstruct a
genome. This problem of orienting and ordering contigs was shown to be NP-
Hard [9]. Various scaffolding methods have been designed based on different
heuristics to obtain approximate solutions to the problem. However, all of these
methods face difficulties when dealing with contigs originating from repetitive
regions in the genome. A common strategy for handling repeats is to identify and
remove them from the graph prior to the scaffolding process, then re-introduce
them after the contigs have been properly ordered and oriented. Most of the
existing scaffolders use depth of coverage information to classify a contig as a
repeat. For example, Opera [4] and SOPRA [2] filter out as repetitive contigs
with coverage 1.5 and 2.5 times more than average coverage, respectively. The
MIP scaffolder [22] uses high coverage (greater than 2.5 times average) as well as
high degree (≥ 50) of nodes within scaffold graph to determine repeats. Bambus
2 [12] – a scaffolder specifically designed for metagenomic data – uses a notion
of betweenness centrality [1] along with global coverage information to find out
repeats.

Betweenness Centrality

In network analysis, metrics of centrality are used to identify the most important
nodes within a graph. Several metrics to measure centrality have been proposed,
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but in this work, we use betweenness centrality. The betweenness centrality of
a particular node is equal to the number of shortest paths from all nodes to
all others that pass through that node. Intuitively, a node that is frequently
found on paths connecting other nodes is a potential repeat, as along a simple
path all nodes should have roughly the same centrality value. The algorithm
for computing exact centrality [1] takes Θ(mn) time on a graph with m nodes
and n edges. Several solutions were proposed to overcome this computational
cost of computing network centrality, including and exact massively parallel
implementation [16], and an approximate solution based on sampling a subset of
the nodes [6]. Recently, a better parallel approximation algorithm was proposed
by Riondato and Kornaropoulos [21] which uses a strategy for sampling from
among the shortest paths in the graph to compute betweenness centrality. The
size of chosen sample of paths can provide provable bounds on the accuracy of
the centrality value given by the algorithm. The sample size is determined as a
function of an approximation factor ε and the diameter of the graph.

3 Methods

Construction of Scaffold Graph

A scaffold graph is defined as a graph G(V,E), where V is set of all the contigs.
The edges represent links between the contigs inferred from read pairing infor-
mation – if the opposite ends of a read pair map to different contigs we can infer
the possible adjacency of these contigs within the genome. Since most genome
assemblers do not report the location of reads within contigs, we infer this infor-
mation by mapping using bowtie2 [13]. Experimental library size estimates are
often incorrect, and we re-estimate here the distance between the paired reads
from pairs of reads mapped to a same contig. We record the average insert size
l and standard deviation σ(l) within a library. For each pair of contigs we retain
the maximal set of links that are consistent in terms of the implied distance
between the contigs for each implied relative placement of the contigs. Since
contigs can be oriented in forward or reverse direction depending on the ori-
entation implied by mapped mate pairs, there exist 4 possible orientations of
adjacent contigs (forward-forward, forward-reverse, reverse-forward and reverse-
reverse). For each of the possible relative orientation, we need to find a maximal
set of consistent links implying that orientation. This set can be identified in
O(nlogn) time using an algorithm to find maximal clique in an interval graph
[20]. The distance between the contigs implied by the resulting “bundle” of links

has mean l(e) =
∑

l
σ(l)∑ 1

σ(l)2
and standard deviation σ(l) = 1

1
σ(l)2

, as suggested by

Huson et al. [7].

Orienting the Bidirected Scaffold Graph

The scaffold graph derived from the process outlined above is birected [17]. It
can be converted into a directed graph by assigning an orientation to each node,
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reflecting the strand of the DNA molecule that is represented by the correspond-
ing contig. In computational terms, we need to embed a bipartite graph (the two
sets corresponding to the two strands of DNA being reconstructed) within the
scaffold graph. In the general case, such an embedding is not possible without
removing edges in order to break all odd-length cycles in the original graph. Find-
ing such a minimum set of edges is NP-Hard [5]. We use here a greedy heuristic
proposed by Kececioglu and Myers [9] which achieves a 2−approximation and
runs in O(V + E) time.

Repeat Detection Through Betweenness Centrality

We start by calculating centrality values for all the nodes in the graph using
either an exact or approximate centrality algorithm as outlined in the intro-
duction. Let μ be the mean and σ be the standard deviation of the resulting
centrality values. A contig is marked as repeat if its centrality value is greater
than μ+3∗σ. This cutoff criterion is the same as the one used in Bambus 2. We
have also experimented with other definitions of outliers (such as interquartile
range), however the original definition used in Bambus 2 performed better than
the interquartile range cutoff (data not shown).

Repeat Detection with an Expanded Feature Set

Centrality is just one of the possible signatures that a node in the graph “tangles”
the graph structure, making it harder to identify a correct genomic reconstruc-
tion. At a high level, one can view centrality to relate to difficulties in ordering
genomic contigs along a chromosome. The orientation procedure outlined above
provides potential insights into contigs that may prevent the correct orientation
of contigs – contigs adjacent to a large number of edges invalidated by the ori-
entation procedure are possible repeats. Other potential signatures we consider
include the degree of graph nodes (highly connected nodes are potential repeats)
as well as abrupt changes in coverage between adjacent nodes. The latter infor-
mation is defined as follows. For each contig we capture the distribution of read
coverage values. We then use a Kolmogorov-Smirnov test [15] to identify pairs of
contigs that have statistically different distributions of coverage values. We flag
all edges that exceed a pre-defined p-value cutoff (in the results presented here
we simply use 0.05). We combine these different measures (contig length, cen-
trality, node degree, fraction of number of edges invalidated by the orientation
routine that are adjacent to a node, fraction of number of edges with abrupt
changes in coverage, and ratio of contig coverage to average coverage) within a
Random Forest classifier [14].

To generate training information for the classifier we aligned the contigs to
an appropriate set of reference genomes using MUMmer [3] dependent on the
data being assembled, and flagged as repetitive all contigs that had more than
one match with greater than 95 % identity over 90 % of the length within the
reference collection.
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4 Results

Dataset and Assembly

To test our methods, we used a synthetic metagenomic community dataset (S1)
by Shakya et al. [23] that was derived from a mixture of cells from 83 organisms
with known genomes. Reads in the datasets were cleaned and trimmed using
Sickle [8]. Assembly was performed using IDBA-UD [19] with default parameters.
The assembly of S1 yielded 47,767 contigs.

Extended Feature Set Improves Repeat Detection

We trained a Random Forest classifier that takes into account the various mea-
sures outlined above as follows. We simulated a low coverage (10x) dataset using
a read simulator provided with the IDBA assembler from the set of 40 genomes
downloaded from NCBI1. We constructed contigs from the simulated reads and
mapped them to reference sequences to identify which contigs are repetitive
(have ambiguous placement in the reference set). We used this information to
train the classifier, then used the resulting classifier to predict repeats within
the synthetic community S1 described above. As can be seen in Fig. 2 the accu-
racy of the classifier based on multiple graph properties is higher than that of
approaches that rely on just coverage as a criterion to classify a contig as a
repeat. Classification of repeats using approximate centrality provides higher
specificity compared to the coverage approach at the cost of slightly lower sensi-
tivity. The Random Forest approach leverages the advantage of high sensitivity
from the coverage approach and high specificity from the centrality approach
along with some additional features to provide better overall classification.

Important Parameters in Determining Repeats

We further explored the features of the data that contribute to the better per-
formance of the classifier. In Fig. 3 we show the contribution of each feature
to the classifier. The length of contigs, factor not usually taken into account
when detecting repeats, appears to have the largest influence. This is perhaps
unsurprising as repeats confuse the assembly process as well, fragmenting the
assembly. In other words, longer contigs are less likely to represent repetitive
sequences. The second most important features is the fraction of edges adjacent
to a contig that indicate an abrupt change in coverage. Contigs with unusual
coverage in comparison to their neighbors can also be reasonably assumed to be
repetitive. Centrality was the third most important factor, as expected. Perhaps
surprising, overall depth of coverage or node degree are not as important as fea-
tures despite these measures being among the most widely used signatures of
“repetitiveness” by existing tools.

1 ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.fna.tar.gz.

ftp://ftp.ncbi.nlm.nih.gov/genomes/bacteria/all.fna.tar.gz.
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Fig. 2. Plot for comparison of Random Forest classifier with the coverage and centrality
approach. The red circle in the plot indicates the sensitivity and specificity obtained
by using the Random Forest approach. The black square in the plot indicates the
sensitivity and specificity obtained by using Bambus 2.

Comparison of Incorrectly Oriented Pair of Contigs

Beyond testing the simple classification power of different approaches, we also
evaluated the different methods in terms of whether the removal of nodes marked
as repeats makes the scaffolding process more accurate. Specifically, we explored
how different repeat removal strategies affect the contig orientation process. The
scaffold graph for the S1 dataset had 21,950 nodes and 31,059 edges. We removed
the repeats reported by the different methods from this graph and oriented the
resulting graph. We then tracked the accuracy of the results in terms of the
number of edges that imply a different relative orientation of the adjacent nodes
than the correct one, inferred by mapping the contigs to the reference genomes.
Here the relative orientation can either be same if both the contigs on the edge
have same orientation (forward-forward and reverse-reverse) and different if the
contigs on the edge different orientations (forward-reverse and reverse-forward).
The results are shown in Table 1. The centrality based methods and the Random
Forest classifier based methods resulted in lower error rates and retained a higher
percentage of the edges in the original graph than coverage based methods.

Comparison of Runtime with Bambus 2

The results above show that Bambus 2 has, unsurprisingly, a similar level of
accuracy with the approximate centrality approach. We have already mentioned,
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Fig. 3. Importance of features used in Building Random Forest classifier

Table 1. Number of correctly and incorrectly oriented links in scaffold graph using
various repeat removal strategies. The % correct column represents the percentage of
correctly oriented links as a function of the total number of edges in the original scaffold
graph. % wrong column represents the percentage of incorrectly oriented links in the
graph obtained by removing repeats.

Method Correct Wrong % correct % wrong

Bambus 2 12042 867 38.77 % 4.11 %

Approximate betweenness centrality 12336 917 39.71 % 3.94 %

Coverage (MIP, SOPRA) 3840 315 17.49 % 4.72 %

Coverage (Opera) 2007 165 6.46 % 5.62 %

Random forest 12255 807 39.45 % 3.52 %
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however, that Bambus 2 is inefficient on large datasets. To explore the efficiency
of the approximate centrality approach, we used a real metagenomic dataset
(SRX024329 from NCBI) representing sequencing data from the tongue dorsum
of a female patient. Assembly of these reads was performed using IDBA yield-
ing 106,380 contigs in total. The scaffold graph constructed from these contigs
had 112,502 edges. The ‘MarkRepeats’ module of Bambus 2 took almost 2 h to
detect repeats, whereas the approximate betweenness centrality algorithm found
repeats in approximately 5 min, a substantial improvement in speed without a
loss of accuracy as shown above. To compare the runtime with training of Ran-
dom Forest classifier, we trained the classifier on contigs in this dataset. Since we
did not have reference sequences for this dataset, we randomly marked a subset
of contigs as repeats and performed training. It took about 20 min to calculate
features and fit a classifier which was still faster than time taken by Bambus 2.

5 Discussion and Conclusion

Our prior work had introduced the use of network centrality as an approach
for detecting repeats in metagenomic assembly, a setting where coverage-based
approaches are often ineffective. This approach, implemented in the scaffolder
Bambus 2, was, however, inefficient for large datasets, fact that has limited its
use. Here we extend our original approach by incorporating multiple features
of the scaffold graph (including centrality) that may be signatures of repetitive
sequences within a Random Forest classifier. We also show that an approximate
calculation of network centrality based on the random sampling of paths obtains
similar accuracy as the full centrality computation at a fraction of computational
time.

Our results demonstrate that methods that directly capture the effect of
repeats on the assembly graph are more effective at detecting repeats than indi-
rect measures such as depth of coverage, particularly in the context of metage-
nomic assembly. Our new approach improves in both accuracy and efficiency
over existing methods for repeat detection, and we plan to incorporate it within
the MetAMOS metagenomic assembly pipeline as a replacement for the exisiting
code within Bambus 2. We note that the classification accuracy was surprisingly
high despite the fact that the classifier was trained on purely simulated data yet
applied to real dataset. This underscores the robustness of the feature set we
have identified. At the same time the graph features that we have identified as
useful in detecting repeats are just a first step towards a better understanding
of the features of the data that most influence the ability of assembly algorithms
to accurately reconstruct metagenomic sequences. Also classifiers like Random
Forest can be implemented in parallel [18] which can provide significant runtime
speedups for large metagenomic datasets. We plan in future work to further
explore both the feature set and the approaches used to build and train the clas-
sifier to increase accuracy and ultimately improve the quality of metagenomic
reconstructions.
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Abstract. Given a peptide as a string of amino acids, the masses of
all its prefixes and suffixes can be found by a trivial linear scan through
the amino acid masses. The inverse problem is the ideal de novo peptide
sequencing problem: Given all prefix and suffix masses, determine the
string of amino acids. In biological reality, the given masses are mea-
sured in a lab experiment, and measurements by necessity are noisy.
The (real, noisy) de novo peptide sequencing problem therefore has a
noisy input: a few of the prefix and suffix masses of the peptide are
missing and a few others are given in addition. For this setting we ask
for an amino acid string that explains the given masses as accurately as
possible. Past approaches interpreted accuracy by searching for a string
that explains as many masses as possible. We feel, however, that it is
not only bad to not explain a mass that appears, but also to explain a
mass that does not appear. That is, we propose to minimize the sym-
metric difference between the set of given masses and the set of masses
that the string explains. For this new optimization problem, we propose
an efficient algorithm that computes both the best and the k best solu-
tions. Experiments on measurements of 342 synthesized peptides show
that our approach leads to better results compared to finding a string
that explains as many given masses as possible.

1 Introduction

The determination of the amino acid string of a peptide based on mass spectro-
metric data is an important task in proteomics. A typical tandem mass spec-
trometry experiment consists of three steps [6,8]: First, the mass spectrometer
measures the mass-to-charge ratio and the abundance of the analyzed peptide.
Then, several techniques can be applied to fragment multiple copies of this pep-
tide at random positions into charged prefix and suffix fragments. Finally, the
mass spectrometer measures the mass-to-charge ratios and abundances of the
resulting fragments. Standard data preprocessing converts mass-to-charge ratios
to masses. There are several sources of errors in every step of this experiment.
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Therefore, some masses of prefix and suffix fragments are missing, while other
masses are given in addition.

In this noisy setting, de novo sequencing is the problem to compute as accu-
rately as possible the amino acid string of the analyzed peptide given the mass
M of the peptide measured in the first step of the experiment and the set X
of prefix and suffix masses measured in the third step. Several approaches [1–
3,6,10] attack this problem by computing an amino acid string S with mass
M , such that the set TS(S) of all prefix and suffix masses of S contains as
many masses as possible of the set X (often referred to as shared peaks count).
Besides only considering the size of the intersection TS(S) ∩ X, several of these
approaches [3,7,11] can also maximize a more elaborate score on the masses in
TS(S) ∩ X.

However, considering only the intersection of TS(S) and X might lead to a
bias towards the use of amino acids with small masses: For example, the amino
acid Glutamine has the same mass as a Glycine and an Alanine. When maximiz-
ing |TS(S)∩X|, one can always replace a Glutamine by a Glycine and an Alanine
in the string S without decreasing the size of the intersection. In an ideal exper-
iment, where all prefix and suffix masses and no other masses are given in X,
there exists a string S with TS(S) = X. However, in a real experiment with miss-
ing masses, we want to explain masses that are in X, but not to explain masses
that are not in X. Danč́ık et al. [3] noted this problem and proposed a prob-
abilistic scoring model incorporating penalty scores for some specific fragment
masses present in TS(S) but not in X. However, current algorithms do not focus
on systematically accounting for exactly those masses in TS(S) \X. We propose
a different optimization goal and want to compute a string S that minimizes the
size of the symmetric difference |TS(S) � X| = |TS(S) \ X| + |X \ TS(S)|.

In this paper we first give a precise definition of our new optimization prob-
lem for de novo peptide sequencing (Sect. 2). In Sect. 3 we develop a dynamic
programming algorithm to find the best string with respect to our objective
function. It is of great interest to not only compute the best solution, but also
the k best solutions, e.g. to detect ambiguities due to missing prefix and suffix
masses. Our algorithm can compute both the best and the k best solutions. In
mass spectrometry experiments, a peptide can fragment at different chemical
bonds between two amino acids and molecular losses can happen during the
fragmentation process. Both issues affect the mass of the resulting fragments.
We do not consider these aspects in Sect. 3 and assume that the masses in X
are masses of prefixes and suffixes of the analyzed peptide. In Sect. 4 we study a
more general version of the problem that also considers mass offsets due to the
mentioned aspects of real experiments. Finally, we compare the performance of
our algorithm with Chen’s seminal algorithm [1] that aims to explain as many
masses in X as possible for experimental data from 342 synthesized peptides
(SWATH Gold Standard dataset [12]) in Sect. 5.

Preliminary data cleaning: The molecular composition of a real peptide consists
of a chain of amino acid molecules and, additionally, an oxygen and two hydrogen
atoms. The mass of an uncharged peptide is the sum of its amino acid masses and
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the mass of the additional H2O molecule (18 Dalton). For the sake of simplicity
of exposition, we assume that the given mass M (measured in the first step of
the experiment) corresponds only to the sum of the amino acid masses without
this additional mass. We can always fulfill this assumption by subtracting the
mass of the water molecule from the measured mass M after the preprocessing
step. Moreover, we assume that the set X of masses measured in the third step
of the experiment additionally contains both 0 and the peptide mass M .

2 Problem Definition

We consider a peptide as a string S of characters (amino acids) of an alphabet Σ.
Each character a ∈ Σ has its own mass m(a) ∈ R

+. For a string S = a1, . . . , an,
we denote a substring by Si,j = ai, . . . , aj for 1 ≤ i ≤ j ≤ n. The mass of S is the
sum of its characters’ masses, i.e. m(S) =

∑n
i=1 m(ai). The set Pre(S) of prefixes

of S contains every string S1,i for 1 ≤ i ≤ n and the set Suf(S) of suffixes of S
every string Sj,n with 1 ≤ j ≤ n. Both Pre(S) and Suf(S) additionally contain
the empty string whose mass is zero. A fragment of S is a prefix or a suffix of
S. The theoretical spectrum of S is the union of all fragment masses TS(S) =
{m(T) | T ∈ (Pre(S) ∪ Suf(S))}. A mass is explained by S if it is in TS(S).

The de novo sequencing problem. Let Σ be a set of characters, with a mass
m(a) ∈ R

+ for each a ∈ Σ. Given the peptide mass M ∈ R
+ (measured in the

first step of the experiment) and a set X = {xi ∈ R
+ | i = 1, . . . , k} of fragment

masses (measured in the third step), find a string S of characters in Σ with
m(S) = M that minimizes |TS(S) � X|.

We will solve the equivalent problem of finding a string S that maximizes
|X ∩ TS(S)| − |TS(S) \ X|. The reason is that for a fixed X, a chosen S that
maximizes the latter also minimizes the symmetric difference.

3 An Algorithm for the De Novo Sequencing Problem

In this section we present a new dynamic programming algorithm for the de
novo sequencing problem. Our algorithm builds on Chen’s algorithm [1], a sem-
inal graph-based algorithm for de novo sequencing that computes a string that
maximizes the number of explained masses that are in X. We will briefly present
Chen’s algorithm and then propose a new algorithm that also accounts for masses
that are explained by the solution, but are not in the set of measured masses X.

Chen’s algorithm [1] models the set X as a directed acyclic graph (NC-
spectrum graph, Fig. 1), where the vertices are masses and a path represents a
string. The problem of computing a string S that maximizes |TS(S) ∩ X| is then
reduced to the longest path avoiding forbidden pairs problem, that is the problem
of finding a longest path between two vertices s and t (vertices 0 and M in this
case) such that at most one vertex of every given forbidden pair of vertices is
used. This problem is NP-hard in general [5] and Chen’s algorithm [1] solves the
problem for a special structure of forbidden pairs.
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Fig. 1. Masses in X are denoted by vertical bars on the real line and masses in X̄M \X
by crosses. Only a subgraph of the NC-spectrum graph is shown.

The NC-spectrum graph is a directed acyclic graph on the vertex set X̄M ={
m,M − m | m ∈ X

}
. There is a directed edge from a vertex v to a vertex

w if w − v is equal to the mass of some string. Every edge is labeled with a
string that has a mass equal to the mass difference of the terminal vertices.
A path from v to w represents a string of mass w − v and for every vertex a
traversed by the path a − v is a prefix mass of this string. If a path starting
at vertex 0 traverses a vertex a, the string it represents explains both a (as a
prefix mass) and M −a (as the complementary suffix mass). The forbidden pairs
are defined as the complementary masses {m,M − m} for all m ∈ X \ {0,M}.
Thus, a path avoiding forbidden pairs does not use both complementary masses,
because it is sufficient to only use one of them to explain both. The longest path
avoiding forbidden pairs then represents a string that maximizes |TS(S)∩X| for
appropriately defined vertex weights: A vertex v has weight |{v,M − v} ∩ X| if
v /∈ {0,M} and weight 1 otherwise.

Chen’s algorithm [1] computes a path avoiding forbidden pairs by extending
two subpaths: One starts at vertex 0 and represents a prefix and the other one
ends in vertex M and represents a suffix of the solution. The algorithm repeatedly
extends one of both paths by an edge until the masses of the prefix and the suffix
sum up to M . The paths are extended such that the string represented by the
extended path has a larger mass than the string of the other path. By this, the
paths never use both vertices of a forbidden pair. The algorithm has found a
solution if both paths can be merged using an edge.

In Fig. 1, one path represents the prefix A and the other path the empty
suffix. In the next step, the algorithm either extends the prefix A by G or the
empty suffix by V. The algorithm does not extend the suffix by A, because the
corresponding mass has already been explained by the prefix. For simplicity, we
only consider edges labeled with a single character. In this example, two strings
that maximize the number of explained masses in X are AGFSGQV or AGQYQV
(Fig. 2). While the first string explains masses that are not in X (crosses), all
explained masses of the second string are in X. In our view, the second string is
more likely to be the right answer and we are interested in a string that minimizes
the symmetric difference between the explained masses and the measured masses.
At first sight, one might think that Chen’s algorithm can be easily modified to
additionally consider how many explained masses are not in X. However, this is
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M0
A G Q Y Q V

A G F S G Q V

Fig. 2. Two strings that maximize the number of explained masses in X (Fig. 1).
While the upper string has two prefixes (AGF and AGFS) with masses that are not in X
(crosses), the lower string explains no mass that is not in X.

not obvious as the algorithm needs to check whether an explained mass that is
not in X has already been explained in a different way in a previous step.

3.1 An Algorithm that Minimizes the Symmetric Difference

We propose the algorithm DeNovoΔ that solves the de novo peptide sequencing
problem as defined in Sect. 2. Similar to Chen’s algorithm, DeNovoΔ repeatedly
extends two paths until the sum of the masses of the corresponding strings is
equal to M . In contrast to Chen’s algorithm, our algorithm considers a directed
acyclic multigraph G = (X̄M , E). For every pair of vertices v and w and for
every string S with mass w − v there is a directed edge labeled with S from v
to w. Note that all edges are directed from the smaller to the larger mass. G
is a multigraph, because there can exist multiple strings with equal mass, i.e.
multiple edges can connect the same pair of vertices. We denote the label of an
edge (v, w) by l(v, w) and the concatenation of the edge labels of a path P by
l(P ). A path in G from v to w represents a string with mass w − v.

To simplify the description, we consider two paths that both start from vertex
0, such that one path represents a prefix and the other path a reversed suffix
of the solution. In contrast to Chen’s algorithm, our algorithm always extends
the path that represents the string of smaller mass. Thus, the following holds:
Assume that v and b are the two last vertices of both paths with v ≤ b and let
a be the second-to-last vertex of the path ending in b. Then, a ≤ v, because
otherwise the algorithm would not have extended this path by the edge (a, b)
in a previous step, but the path ending in v. Based on this observation, we will
argue that DeNovoΔ can update the number of explained masses that are in X
and of explained masses that are not in X efficiently while extending the paths.

Consider a prefix string with mass v and a suffix string with mass b after
some steps of our algorithm, such that v ≤ b and v + b < M . These strings
correspond to paths P = (0, . . . , v) and Q = (0, . . . , b) in G. The set of masses
that are explained by P and Q is the partial theoretical spectrum

PTS(P,Q,M) ={m(T),M − m(T) | T ∈ Pre(l(P )) ∪ Pre(l(Q))}.

Extending the path ending in v by an edge (v, w) additionally explains the
following set of masses:

TSe((v, w),M) = {m(T) + v, M − (m(T) + v) | T ∈ Pre(l(v, w)), m(T) �= 0}.
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Fig. 3. Computation of T [w, (a, b)]. Either a path P = (0, . . . , w) ends with an edge
(v, w) with v ≤ a (left) or it ends in an edge (v′, w) with v′ > a (right).

Note that we do not consider the empty string that is in Pre(l(v, w)), because v
and M − v have already been explained when extending this path to the vertex
v in a previous step of the algorithm.

The following invariant holds in every step of DeNovoΔ: Let P and Q be the
two substrings with m(P) ≤ m(Q) and let P = (0, . . . , w) and Q = (0, . . . , a, b)
be the paths such that P = l(P ) and Q = l(Q). Then, a ≤ w ≤ b and all
masses that have already been explained in a previous step are in TSe((a, b),M).
That is, for every edge (w,w′), we have that TSe((w,w′),M)∩PTS(P,Q,M) =
TSe((w,w′),M) ∩ TSe((a, b),M). Thus, it is sufficient to not consider masses in
TSe((a, b),M) to compute the set of newly explained masses by extending P .
We do not need to remember the complete paths P and Q, but it is sufficient
to remember the two last vertices of both paths to update the number of newly
explained masses that are in X, respectively not in X:

gain((w,w′), (a, b)) =
∣∣∣

(
TSe((w,w′),M) \ TSe((a, b),M)

)
∩ X

∣∣∣

−
∣∣∣

(
TSe((w,w′),M) \ TSe((a, b),M)

)
\ X

∣∣∣.

We can now formulate a dynamic program that computes a string with mass
M that minimizes the symmetric difference: We define a two-dimensional table
T with |V | rows and |E| columns, where V denotes the set of vertices and E
the multiset of edges of G. The algorithm only considers an entry T [w, (a, b)] if
a ≤ w ≤ b and w + b ≤ M . This entry T [w, (a, b)] contains the maximal number
of explained masses that are in X minus the number of explained masses that
are not in X for any two paths P = (0, . . . , w) and Q = (0, . . . , a, b), i.e.

T [w, (a, b)] = max
P,Q

{∣∣ PTS(P,Q,M) ∩ X
∣∣ −

∣∣ PTS(P,Q,M) \ X
∣∣
}

(1)

where the maximum is taken over all paths P = (0, . . . , w) and all paths
Q = (0, . . . , a, b) in G. We can compute an entry T [w, (a, b)] given the values of
all entries T [x, (c, d)] with x < w or x = w and c < a (Fig. 3): Let P = (0, . . . , w)
and Q = (0, . . . , a, b) be the paths that maximize Eq. (1). Either P ends with an
edge (v, w) with v ≤ a or it ends with an edge (v′, w) with v′ > a. In the first
case, we consider the entry T [a, (v, w)] and add gain((a, b), (v, w)). In the latter
case, we add gain((v′, w), (a, b)) to the value of T [v′, (a, b)]. Hence,
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T [w, (a, b)] = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
(v,w)∈E,

v≤a

{
T [a, (v, w)] + gain((a, b), (v, w))

}

max
(v′,w)∈E,

v′>a

{
T [v′, (a, b)] + gain((v′, w), (a, b))

}
.

DeNovoΔ computes table T by first initializing every entry by −∞. To
simplify the notation, we assume that E contains a loop edge (0, 0) and set
T [0, (0, 0)] = 2 (an empty string explains 0 and M). The algorithm then con-
siders all vertices v in ascending order and for a vertex v all edges (a, b) with
T [v, (a, b)] �= −∞ in ascending order of a and b. It extends the path ending in v
by every outgoing edge of v and updates the corresponding entry in T . Once all
entries have been computed, the optimal solution can be reconstructed starting
from an entry T [v, (w,M − v)] with maximal value among all v, w ∈ V .

Theorem 1. Given a peptide mass M ∈ R
+ and a set X = {xi ∈ R

+ | i =
1, . . . , k} of fragment masses, algorithm DeNovoΔ computes a solution for the
de novo sequencing problem.

Proof. We prove by induction that algorithm DeNovoΔ computes the entries
of table T correctly. It is easy to see that the entries T [0, (0, v)] for all (0, v) ∈ E
are computed correctly. Assume that all entries T [w′, (a′, b′)] with w′ < w or
a′ ≤ w′ = w are correct. The entry T [w, (a, b)] is either computed considering
an entry T [a, (v, w)] with v ≤ a or an entry T [v′, (a, b)] with a < v′ < w ≤ b.
Both entries are correct by the induction hypothesis. Consider the first case.
T [a, (v, w)] = |PTS(P ′, Q,M) ∩ X| − |PTS(P ′, Q,M) \ X| for some paths P ′ =
(0, . . . , a) and Q = (0, . . . , v, w). A path P ending in b can be constructed by
extending P ′ with the edge (a, b). It remains to show that

T [w, (a, b)] = |PTS(P ′, Q,M) ∩ X| − |PTS(P ′, Q,M) \ X| + gain((a, b), (v, w))
= |PTS(P,Q,M) ∩ X| − |PTS(P,Q,M) \ X|.

We denote the empty path by ∅. The set TSe((a, b),M) ∩ PTS(P ′, ∅,M) is
empty, because every mass in PTS(P ′, ∅,M) is in the interval [0, a] or [M −
a,M ], but a < m < M − a for every mass m ∈ TSe((a, b),M). Moreover,
TSe((a, b),M) ∩ PTS(∅, Q,M) = TSe((a, b),M) ∩ TSe((v, w),M) due to the
fact that v ≤ a ≤ w. Therefore, no mass considered by gain((a, b), (v, w)) has
already been considered when computing T [a, (v, w)]. We can prove the second
case similarly.

Let S be an optimal string for the de novo sequencing problem. There are
exactly two consecutive prefixes of S with masses v and w such that v ≤ M/2 <
w. The entry T [M−w, (v, w)] is equal to |PTS(P,Q,M)∩X|−|PTS(P,Q,M)\X|
for some paths P = (0, . . . , M − w) and Q = (0, . . . , w). Concatenating l(P )
and the reversed string of l(Q) either results in S or in another string S′ with
|TS(S) � X| = |TS(S′) � X|, because S is an optimal solution. �
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T [v, (a, b)] ← −∞ for all (a, b) ∈ E and v ∈ V1

T [0, (0, 0)] ← 22

for v ∈ V in ascending order do3

foreach (a, b) ∈ E with T [v, (a, b)] �= −∞ in ascend. order of a and b do4

foreach (v, w) ∈ E with w + b ≤ M do5

if w ≤ b then6

T [w, (a, b)] ← max
(
T [w, (a, b)], T [v, (a, b)]+gain((v, w), (a, b))

)
7

else8

T [b, (v, w)] ← max
(
T [b, (v, w)], T [v, (a, b)]+gain((v, w), (a, b))

)
9

end10

end11

end12

end13

Algorithm DeNovoΔ.

Theorem 2. The time complexity of DeNovoΔ is in O (|V | · |E| · d · p), where
d is the maximal out-degree of a vertex in G and p is the maximal length of an
edge label.

Proof. The table T can be initialized in O(|V | · |E|) time. Then, the algorithm
considers for every entry T [v, (a, b)] all outgoing edges of v, i.e. at most d edges.
For an edge (v, w) that is labeled with a string S, the time for computing gain()
depends linearly on the length of S. Note that G is a multigraph and that there
exists an edge from v to w for every permutation of the characters of S. The max-
imal length of an edge label is p, which is bounded by O(M/μ), where μ is the
smallest mass of a character in Σ. For every edge, it takes O(p) time to update an
entry in lines 7 or 9. Thus, the runtime of DeNovoΔ is in O (|V | · |E| · d · p). �

When considering practical applications, the parameter p depends on the
data quality rather than on the size of the input X and M . If we assume p to be
a constant, there are only O(1) edges between two vertices and every vertex has
only a constant out-degree. Hence, our algorithm matches the time complexity
of Chen’s Algorithm [1] unless the length of the edge labels grows asymptotically
with the size of the input.

3.2 Computing the k Best Solutions

In this section we briefly sketch how to find the k best solutions for the de novo
peptide sequencing problem. We model the table T as a directed acyclic graph [9]
and define weighted edges that correspond to extension steps of DeNovoΔ. A
solution for the de novo sequencing problem then corresponds to a path in this
graph and the score of the solution corresponds to the length of the path.

The matrix graph MG is a directed acyclic graph on vertices V (MG) ⊆
(V × E). A vertex vv,(a,b) represents the entry T [v, (a, b)], where a ≤ v ≤ b and
v + b ≤ M . Every vertex vv,(a,b) has the following outgoing edges in MG:
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{
(vv,(a,b), vw,(a,b)) | (v, w) ∈ E, w ≤ b, w + b ≤ M

}
∪

{
(vv,(a,b), vb,(v,w′)) | (v, w′) ∈ E, w > b, w′ + b ≤ M

}
.

The weight of each of these edges is gain((v, w), (a, b)), resp. gain((v, w′), (a, b)).
Note that the edges defined above correspond exactly to the extension steps
in lines 7 and 9 of DeNovoΔ. A vertex vv,(a,b) in MG is a terminal vertex if
v = M − b. A path from v0,(0,0) to a terminal vertex represents a string S such
that the sum of the edge weights of this path is equal to |TS(S)�X|. A solution
for the de novo sequencing problem corresponds to a longest path from v0,(0,0)

to some terminal vertex in MG. The k-th best solution corresponds to the k-th
longest path from v0,(0,0) to a terminal vertex in MG.

We can compute the longest paths in MG efficiently, as MG is directed and
acyclic. Eppstein’s Algorithm [4] computes the k shortest paths connecting a
pair of vertices s and t in a directed acyclic graph with n vertices and m edges
in O(n + m + k) time. The algorithm outputs an implicit representation of the
paths and the sequence of edges of a path can be listed in time proportional
to the length of the path. By negating the edge weights, the algorithm can
compute the k longest paths. We can build MG while executing DeNovoΔ
in time O (|V | · |E| · d · p), where V is the set of vertices and E the multiset of
edges of G, d is the maximal out-degree of a vertex in G and p is the maximal
length of an edge label in G. The matrix graph has O(|V | · |E|) vertices and
O(|V | · |E| · d) edges. Hence, we can find the k best solutions for the de novo
peptide sequencing problem in O(|V | · |E| · d · p + k) time.

4 General De Novo Sequencing Problem

In the previous section we studied the de novo sequencing problem in a simplified
version: We assumed that a mass in X is exactly the mass of the corresponding
string. In real experiments, a mass in X can have a small offset from the mass
of its string as a peptide can split at different chemical bonds between two
amino acids and can loose small neutral molecules (e.g. water, ammonia). In
this section we study a more general version of the de novo sequencing problem
that considers such mass offsets with bounded maximal pairwise difference and
present a modified version of DeNovoΔ for this problem.

We first formulate the general de novo sequencing problem for a given a set
of possible mass offsets. We define the extended theoretical spectrum for a string
S as the set of all fragment masses with all possible mass offsets. As the possible
offsets for prefixes and suffixes can differ, the extended theoretical spectrum of a
string S is not equal to the extended theoretical spectrum of the reversed string
of S. Therefore, our modified algorithm DeNovoΔg for the general de novo
sequencing problem needs to distinguish the prefix and the suffix string.

An important difference to the simplified problem is that mass offsets can
alter the order of masses in X with respect to the masses of the corresponding
strings and computing the newly explained masses by an extension becomes
more complicated. While the order of the masses does not change if the maximal
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difference of two offsets is smaller than the smallest mass μ of a character in Σ,
we propose an algorithm that handles maximal difference smaller than 2 · μ.

Let Op and Os be the sets of all possible mass offsets for a prefix fragment,
respectively a suffix fragment. A mass offset can both be positive or negative. The
maximal mass offset difference of two sets (Op, Os) is γ = maxδ∈(Op∪ Os)(δ) −
minδ′∈(Op∪ Os)(δ

′). Two sets (Op, Os) of mass offsets are α-basic if γ < α · μ.
A prefix with mass m explains all masses (m + δ) for δ ∈ Op and all masses
(M −m+δ′) for δ′ ∈ Os, i.e. OM(m,M) =

⋃
δ∈Op

(m+δ) ∪
⋃

δ∈Os
(M −m+δ).

The extended theoretical spectrum of a string S is the set of all prefix and suffix
masses with all possible offsets TSx(S) =

⋃

T∈Pre(S)

OM(m(T),m(S)).

The general de novo sequencing problem. Let Σ be a set of characters, with
a mass m(a) ∈ R

+ for each a ∈ Σ.Given a set X = {xi ∈ R
+ | i = 1, . . . , k} of

experimentally measured fragment masses, a peptide mass M ∈ R
+,and 2-basic

sets (Op, Os) of mass offsets, find a string S of characters in Σ with m(S) = M
that minimizes |TSx(S) � X|.

In a similar but more complicated fashion than for the de novo sequencing
problem, we can compute a solution for the general de novo sequencing problem:
The algorithm DeNovoΔg uses a multigraph Gx = (Vx, Ex) with up to |O|
vertices for every mass in X and a multiset of edges that is similarly defined as in
the previous section for the multigraph G. The algorithm can compute a solution
for the general de novo sequencing problem in time O (|Vx| · |Ex| · d · p · |O|),
where d is the maximal out-degree of a vertex in Gx, p is the maximal length of
an edge label, and |O| is the number of possible mass offsets.

5 Experimental Results

We implemented DeNovoΔ and studied the quality of its solution in comparison
to Chen’s algorithm [1,9]. We chose DeNovoΔ rather than DeNovoΔg in our
experiments to clearly expose the effect of the symmetric difference in a scoring
function: While DeNovoΔ computes a string S that minimizes |TS(S) � X|,
Chen’s algorithm aims for maximizing |TS(S) ∩ X|. While we are not primarily
interested in runtime differences of both approaches, we observed that both
algorithms have very similar performances (usually less than a minute for a single
peptide). We are aware that our comparison must necessarily be preliminary in
nature, and we plan a more extensive experimental evaluation for the future.

We used the SWATH-MS Gold Standard (SGS) dataset [12] containing mea-
surements of 342 synthesized peptides under different backgrounds and dilutions
with annotations that have been manually validated by field experts. We extract
for every annotated peptide the measurement at the time of maximum concen-
tration (according to the annotations). Unlike in the usual scenario for de novo
sequencing, we thus are not only given the peptide mass M and the set X of
fragment masses, but additionally the amino acid string of the analyzed peptide
that is necessary to compare the results of the algorithms.
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Fig. 4. Comparison of Chen’s algorithm (dashed line) and DeNovoΔ (solid line) for
the SGS dataset (water background, 1x dilution). Left: The complete annotated string
is among the 100 best solutions in 219 cases (64%) for Chen and in 274 cases (80%)
for DeNovoΔ. Right: In 252 cases (74 %) the relative score is at least 0.9 for Chen’s
algorithm and in 285 cases (83 %) for DeNovoΔ.

The mass spectrometer not only measures the mass-to-charge ratio of a frag-
ment, but also a signal intensity that reflects the abundance of the fragment.
Contamination or measurement errors appear as weak signals and strong signals
are usually regarded to be more important. Instead of considering only the size
of the sets TS(S) ∩ X and TS(S) \ X, we choose to sum up the intensities of the
corresponding signals, just like in [10]. As there are no measured intensities for
the masses in TS(S) \ X, we introduce a parameter I for penalizing explained
masses that are not in X. This parameter is always negative and the choice
of its value depends both on the average intensity of measured masses and on
how likely it is that a fragment of the analyzed peptide is not measured by the
mass spectrometer. This parameter can be defined depending on the type of the
fragment (prefix or suffix) and on the mass offset. Setting I = 0 is equivalent
to maximizing the intersection |TS(S) ∩ X|. We used I = −2500 in our exper-
iments. In several tests with different values I the result appeared to be not
very sensitive; other choices led to comparable results. It would be interesting
to evaluate thresholding instead of summing up intensities.

We compared the algorithms by generating all solutions with a score of at
least 90 % of the maximum score. First, we compared the position of the true,
annotated string in the lists of solution of both algorithms. Figure 4 (left) shows
in how many cases the true string is among the top x solutions computed by
the algorithms. The complete annotated string was among the top 100 strings in
80 % of the analyzed spectra for DeNovoΔ and in 64 % of the analyzed spectra
for Chen’s algorithm. Secondly, we defined a relative score that is the score of the
true string divided by the score of the best string computed by the algorithm.
The relative score is 1 if the true string is the best solution is never smaller
than 0.9, because we only computed solutions with a score of at least 90 % of
the maximum score. Figure 4 (right) shows a comparison of the results of both
algorithms with respect to this score.
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6 Discussion and Conclusion

In this paper we propose and study a new formulation of the de novo sequencing
problem. Several previous approaches [1,3,7,10] consider the set of masses that
are both explained by a string and measured in the experiment. Although it has
already been pointed out [3] that penalizing the fact that a explained mass is not
measured improves the performance of algorithms for peptide identification, to
the best of our knowledge the problem of minimizing the symmetric difference of
the set of explained masses and the set of measured masses has not been studied
before. We develop a dynamic programming algorithm that can compute both
the best and the k best solutions for this new de novo sequencing problem.
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Hannes Röst for helpful discussions.
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Abstract. In this work, we present a new coarse grained representa-
tion of RNA dynamics. It is based on cliques and their patterns within
adjacency matrices obtained from molecular dynamics simulations. RNA
molecules are well-suited for this representation due to their composi-
tion which is mainly modular and assessable by the secondary structure
alone. Each adjacency matrix represents the interactions of k nucleotides.
We then define transitions between states as changes in the adjacency
matrices which form a Markovian dynamics. The intense computational
demand for deriving the transition probability matrices prompted us
to develop StreAM -Tg, a stream-based algorithm for generating such
Markov models of k-vertex adjacency matrices representing the RNA.
Here, we benchmark StreAM -Tg (a) for random and RNA unit sphere
dynamic graphs. (b) we apply our method on a long term molecular
dynamics simulation of a synthetic riboswitch (1,000 ns). In the light of
experimental data our results show important design opportunities for
the riboswitch.

Keywords: RNA · Markovian dynamics · Dynamic graphs · Molecular
dynamics · Coarse graining · Synthetic biology

1 Introduction

The computational design of switchable and catalytic ribonucleic acids (RNA)
becomes a major challenge for synthetic biology [22]. So far, available models and
simulation tools to design and analyze functionally complex RNA based devices
are very limited [8]. Although several tools are available to assess secondary as
well as tertiary RNA structure [3], current capabilities to simulate dynamics are
still underdeveloped [15] and rely heavily on atomistic molecular dynamics (MD)
c© Springer International Publishing Switzerland 2016
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techniques [13]. RNA structure is largely modular and composed of repetitive
motifs [15] that form structural elements such as hairpins and stems based on
hydrogen-bonding patterns [30]. Such structural modules play an important role
for nano design [18,22].

In order to understand RNA dynamics [1,26] we develop a new method to
quantify all possible structural transitions, based on a coarse grained, transfer-
able representation of different module sizes. The computation of Markov State
Models have recently become practical to reproduce long-time conformational
dynamics of biomolecules using data from MD simulations [9]. To this end, we
convert MD trajectories into dynamic graphs and derive the Markovian dynam-
ics in the space of adjacency matrices. Aggregated matrices for each nucleotide
represent RNA coarse grained dynamics. However, a full computation is compu-
tationally expensive.

To address this challenge we extend Stream - a stream based algorithm for
counting motifs in dynamic graphs with an outstanding performance of count-
ing motifs in biomolecular trajectories [21]. The extension StreAM computes one
transition matrix for a single set of vertices or a full set for combinatorial many
matrices. To gain insight into global folding and stability, we propose StreAM -Tg:
It combines all Markov models for an RNA into a global weighted stochastic tran-
sition matrix Tg.

The remainder of this paper is structured as follows: In Sect. 2, we introduce
the concept as well as our biological test setup. We describe details in Sect. 3.
We present run-time evaluations of our algorithm in Sect. 4 for a synthetic tetra-
cycline (TC) dependent Riboswitch (TC-Aptamer). Finally, we summarize our
work in Sect. 5.

2 Our Approach for Coarse Grained Analysis

2.1 Structural Representation of RNA

Predicting the function of complex RNA molecules depends critically on under-
standing both, their structure as well as their conformational dynamics [14,17].
To achieve the latter we propose a new coarse grained RNA representation and
the dynamics in the implied state space at the nucleotide level. For our approach,
we start with a MD simulation to obtain a trajectory of the RNA. We reduce
these simulated trajectories to nucleotides represented by their (C3′) atoms.
From there, we represent RNA structure as an undirected graph [11] using each
C3′ as a vertex and distance dependent interactions as edges [3]. It is well known
that nucleotide-based molecular interactions take place between more than one
partner [28]. For this reason interactions exist for several edges observable in the
adjacency matrix (obtained via a Euclidean distance cut-off) of C3′ coordinates
at a given time-step. The resulting edges represent, e.g., strong local interactions
such as Watson-Crick pairing, Hoogsteen, or π − π-stacking.

Our algorithm estimates adjacency matrix transition rates of a given set
of vertices (nucleotides) and builds a Markov model. Moreover, by deriving all
Markov models of all possible combinations of vertices, we can reduce them



StreAM-Tg: Algorithms for Analyzing Coarse Grained RNA Dynamics 199

afterwards into a global weighted transition matrix for each vertex representing
the ensemble that the vertex/nucleotide is immersed in.

2.2 Dynamic Graphs, Their Analysis and Markovian Dynamics

A graph G = (V,E) is an ordered pair of vertices V = {v1, v2, . . . v|V |} and edges
E. Here, we only consider undirected graphs without loops, i.e., E ⊆ {{v, w} :
v, w ∈ V, v �= w}. For a subset V ′ of the vertex set V , we refer to GV ′

=
(V ′, E′), E′ := {{v, w} ∈ E : v, w ∈ V ′} as the V ′-induced subgraph of G.

The adjacency matrix A(G) = Ai,j (Eq. 1) of a graph G is a |V |×|V | matrix,
defined as follows:

Ai,j :=

⎧
⎨

⎩

0 : i < j ∧ {vi, vj} /∈ E
1 : i < j ∧ {vi, vj} ∈ E
↑ : otherwise

(1)

We denote the set of all adjacency matrices of size k as Ak, with |Ak| = 2
k·(k−1)

2 .
With concat(A), we denote the row-by-row concatenation of all defined values
of an adjacency matrix A. We define the adjacency id of a matrix A as the
numerical value of the binary interpretation of its concatenation, i.e., id(A) =
concat(A)2 ∈ N. We refer to id(V ′) := id(A(GV ′

)) as the adjacency id of the V ′-
induced subgraph of G. For example, the concatenation of the adjacency matrix
of graph GV ′

1 (shown in Fig. 1) is concat(A(GV ′
1 )) = 011011 and its adjacency id

is id(V ′) = 0110112 = 2710.
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3 = {{b, d}, {b, c}}

Fig. 1. Example of a dynamic graph and induced subgraphs for V ′ = (a, b, c, d)

As a dynamic graph Gt = (V,Et), we consider a graph whose edge set changes
over time. For each point in time t ∈ [1, τ ], we consider Gt as the snapshot or
state of the dynamic graph at that time. The transition of a dynamic graph Gt−1

to the next state Gt is described by a pair of edge sets which contain the edges
added to and removed from Gt−1, i.e., (E+

t , E−
t ). We refer to these changes as
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a batch, defined as follows: E+
t := Et\Et−1 and E−

t := Et−1\Et. The batch size
is referred as δt = |E+

t | + |E−
t |.

The analysis of dynamic graphs is commonly performed using stream- or
batch-based algorithms. Both output the desired result for each snapshot Gt.
Stream-based algorithms take a single update to the graph as input, i.e., the addi-
tion or removal of an edge e. Batch-based algorithms take a pair (E+

t+1, E
−
t+1) as

input. They can always be implemented by executing a stream-based algorithm
for each edge addition e ∈ E+

t+1 and removal e ∈ E−
t+1.

The result of analyzing the adjacency id of V ′ for a dynamic graph Gt is
a list (idt(V ′) : t ∈ [1, τ ]). We consider each pair (idt(V ′), idt+1(V ′)) as an
adjacency transition of V ′ and denote the set of all transitions as T (V ′). Then,
we define the local transition matrix Ti,j(V ′) of V ′ as a |Ak|×|Ak| matrix which
contains the number of transitions between any two adjacency ids over time, i.e.,
Ti,j(V ′) := |(i+1, j +1) ∈ T (V ′)|. From Ti,j(V ′), we can derive a Markov model
to describe these transitions.

By combining all possibleTi,j(V ′), a specific vertex v is immersed in a subsetV ′,
we derive a transition tensor Ci,j,l(V ′) with dimensions |Ak|×|Ak|×(k−1)!

( |V |
k−1

)
.

We define a global weighting parameter wl, by considering the local distribution
weighted by its global distribution of transitions matrices. A global transition
matrix Tg is defined as

∑
l wl × Cl(V ′) with the dimensions |Ak| × |Ak|.

For a local or global transition matrix the respective dominant eigenvector1

is called π and represents the stationary distribution attained for infinite (or
very long) times. The corresponding conformational entropy of the ensemble of
motifs is H := −

∑
i πi · log πi. The change in conformational entropy upon, e.g.,

binding a ligand is then given as ΔH = Hwt − Hcomplex.

2.3 Workflow

MD Simulation Setup. We use a structure of a synthetic tetracycline binding
riboswitch (PDB: 3EGZ, chain B, resolution: 2.2 Å, Fig. 2) [32] and perform two
simulations: the riboswitch with tetracycline in complex and without tetracy-
cline. As tetracycline binding alters the structural entropy of the molecule [31]
our proposed method should be able to detect changes in (local) dynamics
due the presence of tetracycline. Both simulations were performed with Gro-
macs using the charmm27 force field with parameters for synthetic tetracycline
derivatives (7CL) [2,5,19]. Simulations were performed at constant temperature
(300 K) and pressure (1 bar). The simulation box is filled with Tip3p water, and
Mg2+ counter ions. After minimization we equilibrate the solvent with fixed
RNA for 10 ns, release the RNA and started the simulation with an integration
step-size of 1.5 fs. Both all-atom MD simulations last for 1,000 ns.

Graph Transformation. Both MD simulations contain 160,000 snapshots. We
generated dynamic graphs Gt = (V,Et) containing |V | = 65 vertices (Table 1),
1 Guaranteed to exist due to the Perron-Frobenius theorem with an eigenvalue of

λ = 1.
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Fig. 2. Structural representation of TC-Aptamer. A: TC-Aptamer with a cut-off of
13 Å and using C3′ atom for coarse graining reveals edges for dominant WC base-
pairings. B: Secondary structure representation of TC-Aptamer. Nucleotides partic-
ipating in TC binding are colored in red. Graphics were created using Pymol and
R [23,29].

each modelling a nucleic 3C ′ (Fig. 2). This resolution is sufficient to represent
both small secondary structure elements as well as large quaternary RNA com-
plexes [10,12]. We create undirected edges between two vertices in case their
Euclidean cut-off (d) is shorter than d ∈ [10, 15]Å (cmp. Table 1).

Markov State Models (MSM) of Local Adjacency Transitions. StreAM
counts transitions of a k-vertex set with a size of |Ak| for a given set of V ′

obtained from a dynamic graph Gt(V,Et). Afterwards, we can compute respec-
tive probabilities resulting in a transition matrix: Ti,j(V ′) = |(i + 1, j + 1) ∈
T (V ′)|. Not all possible states are necessarily visited in a given, finite simula-
tion, although a “missing state” potentially might occur in longer simulations. In
order to allow for this, we introduce a minimal pseudo-count [24] of Pk = 1

|Ak| .

Global Transition Matrix. Here Ci,j,l(V ) is the count tensor of transitions
between i and j in matrix T (V ′). It contains all Ti,j(V ′) a specific vertex is
immersed in and due to this it contains all possible information of local markov-
ian dynamcis. Ci,j,l(V ) is normalized by the count of all transitions of i in all
matrices Sj,l =

∑
i Ci,j,l(V ). The global weighting parameter wl = Sjl∑

l Sjl
can be

derived by taking all transitions Ak into account with respect to their probabil-
ity. For a given set of l transition matrices Ti,j(V ′) we can combine them into a
global model:

Tgi,j(V ) =
∑

l

Sjl∑
l Sjl

· Ci,j,l(V ). (2)



202 S. Jager et al.

Stationary Distribution and Entropy. As Tg (Eq. 2) is a row stochas-
tic matrix we can compute its dominant eigenvector from a spectral decom-
position. It represents a basic quantity of interest: the stationary probability
π := (π1, . . . , πi, . . . ) of micro-states i [24]. To this end we used the markovchain
library in R [27,29]. For measuring the changes in conformational entropy
H := −

∑|Ak|
i=1 πi · log πi upon binding a ligand, we define ΔH = Hwt−Hcomplex,

form a stationary distribution.

3 Algorithm

StreAM and StreAMB . We compute the adjacency id id(V ′) for vertices
V ′ ⊆ V in the dynamic graph Gt using the stream-based algorithm StreAM, as
described in Algorithm 1. Here, id(V ′) ∈ [0, |A|V ′|] is the unique identifier of the
adjacency matrix of the subgraph GV ′

. Each change to Gt consists of the edge
{a, b} and a type to mark it as addition or removal (abbreviated to add,rem).
In addition to edge and type, StreAM takes as input the ordered list of vertices
V ′ and their current adjacency id.

An edge {a, b} is only processed by StreAM in case both a and b are contained
in V ′. Otherwise, its addition or removal has clearly no impact on id(V ′).

Assume pos(V ′, a), pos(V ′, b) ∈ [1, k] to be the positions of vertices a and b in
V ′. Then, i = min(pos(V ′, a), pos(V ′, b)) and j = max(pos(V ′, a), pos(V ′, b)) are
the row and column of adjacency matrix A(GV ′

) that represent the edge {a, b}.
In the bit representation of its adjacency id id(V ′), this edge is represented by
the bit (i−1) ·k + j − i · (i+1)/2. When interpreting this bit representation as a
number, an addition or removal of the respective edge corresponds to the addition
or subtraction of 2k·(k−1)/2−((i−1)·k+j−i·(i+1)/2). This operation is performed to
update id(V ′) for each edge removal or addition. In the following, we refer to
this position as e(a, b, V ′) := |V ′|·(|V ′|−1)

2 − ((i − 1) · |V ′| + j − i·(i+1)
2 ).

Data: V ′, id, {a, b}, type ∈ {add, rem}
begin

if a ∈ V ′ ∧ b ∈ V ′ ; /* process only relevant edges */

then
if type == add then

A := A + 2e(a,b,V ′) ; /* set corresponding bit to 1 */

else

A := A − 2e(a,b,V ′) ; /* set corresponding bit to 0 */

end

end
return id ;

end
Algorithm 1. StreAM : stream-based computation of the adjacency id

Furthermore, in Algorithm2 we show StreAMB for the batch-based compu-
tation of the adjacency id for vertices V ′
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Data: V ′, idt−1, E+
t , E−

t

begin
idt(V

′) := idt−1(V
′) ; /* init id with previous one */

for all {a, b} ∈ E+
t do

idt := StreAM(V ′, idt, {a, b}, add) ; /* process addition */

end

for all {a, b} ∈ E−
t do

idt := StreAM(V ′, idt, {a, b}, rem) ; /* process removal */

end
return idt ;

end
Algorithm 2. StreAMB : batch-based computation of the adjacency id

StreAM-Tg. We present StreAM -Tg, an algorithm for the computation of
global transition matrices, one particular vertex is participating in, given in
Algorithm 3. A full computation with StreAM -Tg can be divided into the follow-
ing steps. The first step is the computation of all possible Markov models with
StreAM from all

(|V |
k

)
·k! = |V |!

(|V |−k)! combinations, where k is the adjacency size
and |V | the number of vertices of Gt. Afterwards, StreAM -Tg sorts the matrices
by vertex id into different sets, each with the size of

( |V |
k−1

)
· (k − 1)! For each

vertex, StreAM -Tg computes a global count tensor C which is normalized by
the global distribution of transition states a vertex is immersing in, taking the
whole ensemble into account.

Data: T, a
begin

C(V ) := {V ′ ∈ P(V ) : |V ′| = k, a ∈ V ′} ; /* C vertex a immersed in */

Tg(a) := 0|Ak|,|Ak| ; /* initialize Tg(a) */

for all V ′ ∈ C(V ) do

Tg(a) := Tg(a) + S(V ′)∑
V ′′∈C(V ) |S(V ′′)| · T (V ′) ; /* sum up Tg(a) */

end
return Tg(a)

end

Algorithm 3. StreAM -Tg(a) for computing the global transition matrix Tg(a)

4 Evaluation

4.1 Objectives

As StreAM -Tg is intended to analyze large MD trajectories we first measured
the speed of StreAM for computing a single T (V ′) to estimate overall computa-
tional resources. With this in mind, we benchmark different Gt with increasing
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Table 1. Details of the dynamic graphs obtained from MD simulation trajectories. |V |
is the number of vertices, |E| the number of edges and δt is the average batch size of a
simulation. We convert simulations to unit sphere dynamic graphs with d ∈ [10, 15]Å.

10 Å 11 Å 12 Å 13 Å 14 Å 15 Å Randg1 Randg2 Randg3

|V | 65 65 65 65 65 65 500 500 500

|E| 94 129 189 241 298 353 500 1000 1200

δavg 6.1 15.6 19.4 18 19.6 23.8 80 100 120

adjacency size k (Table 1). Furthermore, we need to quantify the dependence of
computational speed with respect to δt. Note, δt represents changes in conforma-
tions within Gt. For the full computation of Tg, we want to measure computing
time in order to benchmark StreAM -Tg by increasing network size |V | and k for a
given system due to exponentially increasing matrix dimesnions |Ak| = 2

k·(k−1)
2 .

We expect due to combinatorial complexity of matrix computation a linear rela-
tion between |V | and speed and an exponential relation between increasing k
and speed. For the last part, we want to compare Markovian dynamics between
both simulations and discuss it with experimental data. We discuss the details
in Sects. 4.2 and 4.3. Furthermore, we want to illustrate the biological relevance
by applying it to a riboswitch design problem; this is shown in detail in Sect. 4.3.

4.2 Evaluation Setup

All benchmarks were performed on a machine with four Intel(R) Xeon(R) CPU
E5-2687W v2 processors with 3.4 GHz running a Debian operating system. We
implemented StreAM in Java; all sources are available in a GitHub repository2.
The final implementation StreAM -Tg is integrated in a Julia repository3. We
created plots using the AssayToolbox library for R [6,29]. We generate all ran-
dom graphs using a generator for dynamic graphs4.

Run-Time Dependencies of StreAM on Adjacency Size. For every
dynamic graph Gt(V,Et), we selected a total number of 100,000 snapshots to
measure StreAM run-time performance. In order to perform benchmarks with
increasing k, we chose randomly nodes k ∈ [3, 10] and repeated this 500 times
for different numbers of snapshots (every 10,000 steps). We determined the slope
(speed frames

ms ) of compute time vs. k for random and MD graphs with different
parameters (Table 1).

Run-Time Dependence of StreAM on Batch Size. We measured run-time
performance of StreAM for the computation of a set of all transitions T (V ′)
2 https://github.com/BenjaminSchiller/Stream.
3 http://www.cbs.tu-darmstadt.de/streAM-Tg.tar.gz.
4 https://github.com/BenjaminSchiller/DNA.datasets.

https://github.com/BenjaminSchiller/Stream
http://www.cbs.tu-darmstadt.de/streAM-Tg.tar.gz
https://github.com/BenjaminSchiller/DNA.datasets
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Fig. 3. Run-time performance of StreAM -Tg. A: Speed of computing a set of T (V ′)
using StreAM. B: Performance of Tg full computation with increasing network size |V |
and different adjacency sizes k = 3, 4, 5. C: Speed of StreAM with increasing batch
size for k = 3, 10. (Color figure online)

with different adjacency sizes k as well as dynamic networks with increasing
batch sizes. To test StreAM batch size dependencies, 35 random graphs were
drawn with increasing batch size and constant numbers of vertex and edges.
All graphs contained 100,000 snapshots and k is calculated from 500 random
combinations of vertices.

Run-Time Dependencies of StreAM-Tg on Network Size. We bench-
marked the full computation of Tg with different k ∈ [3, 5] for increasing network
sizes |V |. Therefore we performed a full computation with StreAM. StreAM -Tg

sorts the obtained transition list, converts them into transition matrices and
combines them into a global Markov model for each vertex.

4.3 Run-Time Evaluation

Figure 3B shows computational speeds for each dynamic graph. Speed decreases
linearly with a small slope (Fig. 3A). While this is encouraging the computation
of transition matrices for k > 5 is still prohibitively expensive due to the expo-
nential increase of the matrix dimensions with 2

k·(k−1)
2 . For Gt obtained from

MD simulations, we observe fast speeds due to small batch sizes (Table 1).
Figure 3B reveals that Tcpu increases linearly with increasing |V | and with k

exponentially. We restrict the Tg full computation to k < 5. In Fig. 3C, speed
decreases linearly with δt. As δt represents the changes between snapshots our
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observation has implications for the choice of MD integration step lengths as
well as trajectory granularity.

Fig. 4. ΔH for Tg of the native riboswitch and the one in complex with tetracycline
(TC). Nucleotides with TC in complex are colored in red. At the top we annotate the
nucleotides with secondary structure information. (Color figure online)

Application to Molecular Synthetic Biology. For both simulations of
Sect. 2.3, we computed 17,039,360 transition matrices and combined them into
65 global models (one for each vertex of the riboswitch, Eq. 2). To account for
both the pair-interactions and potential stacking effects we focus on k = 4-vertex
adjacencies and use dynamic RNA graphs with d = 13 Å. One global transition
matrix contains all the transitions a single nucleotide participates in. The sta-
tionary distribution and the implied entropy (changes) help to understand the
effects of ligand binding and potential improvements on this (the design problem
at hand). The ΔH obtained are shown in Fig. 4.

A positive value of ΔH in Fig. 4 indicates a loss of conformational entropy
upon ligand binding. Interestingly, the binding loop as well as complexing
nucleotides gain entropy. This is due to the fact of rearrangements between
the nucleotides in spatial proximity to the ligand because 70 % of the accessible
surface area of TC is buried within the binding pocket L3 [32]. Experiments con-
firmed that local rearrangement of the binding pocket are necessary to prevent
a possible release of the ligand [20]. Furthermore crystallographic studies have
revealed that the largest changes occur in L3 upon TC binding [32].
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Furthermore, we observe the highest entropy difference for nucleotide G51.
Experimental data reveals that G51 crosslinks to tetracycline when the complex
is subjected to UV irradiation [4]. These findings suggest a strong interaction
with TC and thus a dramatic, positive change in ΔH.

Nucleotides A52 and U54 show a positive entropy difference inside L3. Inter-
estingly, molecular probing experiments show that G51, A52, and U54 of L3 are –
in the absence of the antibiotic – the most modified nucleotides [25,32]. Clearly,
they change their conformational flexibility upon ligand binding due they direct
interaction with the solvent. U54 further interacts with A51, A52, A53 and A55
building the core of the riboswitch [32]. Taken together, these observations reveal
that U54 is necessary for the stabilization of L3. A more flexible dynamics (ΔH)
will change the configuration of the binding pocket and promotes TC release.

5 Summary, Conclusion, and Future Work

In this study, we demonstrate that StreAM -Tg fulfills our demands for a method
to extract the coarse-grained Markovian dynamics of motifs of a complex RNA
molecule. The effects observed in a designable riboswitch could be related to
known experimental facts, such as conformational altering caused by ligand
binding. Hence StreAM -Tg derived Markov models in an abstract space of motif
creation and destruction. This allows for the efficient analysis of large MD tra-
jectories. Thus we hope to elucidate molecular relaxation timescales, spectral
analysis in relation to single-molecule studies, as well as transition path theory
in the future. At present, we use it for the design of switchable synthetic RNA
based circuits in living cells [7,8].

To broaden the application areas of StreAM -Tg we will extend it to proteins
as well as evolutionary graphs mimicking the dynamics of molecular evolution
in sequence space [16].
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9. Chodera, J.D., Noé, F.: Markov state models of biomolecular conformational
dynamics. Curr. Opin. Struct. Biol. 25, 135–144 (2014)

10. Deigan, K.E., Li, T.W., Mathews, D.H., Weeks, K.M.: Accurate SHAPE-directed
RNA structure determination. PNAS 106(1), 97–102 (2009)

11. Gan, H.H., Pasquali, S., Schlick, T.: Exploring the repertoire of RNA secondary
motifs using graph theory; implications for RNA design. Nuc. Acids Res. 31(11),
2926–2943 (2003)

12. Hamacher, K., Trylska, J., McCammon, J.A.: Dependency map of proteins in the
small ribosomal subunit. PLoS Comput. Biol. 2(2), 1–8 (2006)

13. Cheatham III, T.E.: Simulation and modeling of nucleic acid structure, dynamics
and interactions. Curr. Opin. Struct. Biol. 14(3), 360–367 (2004)

14. Jonikas, M.A., Radmer, R.J., Laederach, A., Das, R., Pearlman, S., Herschlag, D.,
Altman, R.B.: Coarse-grained modeling of large RNA molecules with knowledge-
based potentials and structural filters. RNA 15(2), 189–99 (2009)

15. Laing, C., Schlick, T.: Computational approaches to RNA structure prediction,
analysis, and design. Curr. Opin. Struct. Biol. 21(3), 306–318 (2011)

16. Lenz, O., Keul, F., Bremm, S., Hamacher, K., von Landesberger, T.: Visual analysis
of patterns in multiple amino acid mutation graphs. In: 2014 IEEE Conference on
Visual Analytics Science and Technology (VAST), pp. 93–102 (2014)

17. Manzourolajdad, A., Arnold, J.: Secondary structural entropy in RNA switch
(Riboswitch) identification. BMC Bioinform. 16(1), 133 (2015)

18. Parisien, M., Major, F.: The MC-Fold and MC-Sym pipeline infers RNA structure
from sequence data. Nature 452(7183), 51–55 (2008)
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high-affinity tetracycline binding by an in vitro evolved aptamer and artificial
riboswitch. Chem. Biol. 15(10), 1125–1137 (2008)



Solving Generalized Maximum-Weight
Connected Subgraph Problem for Network

Enrichment Analysis

Alexander A. Loboda1, Maxim N. Artyomov2,
and Alexey A. Sergushichev1(B)

1 Computer Technologies Department, ITMO University,
Saint Petersburg 197101, Russia
{loboda,alserg}@rain.ifmo.ru

2 Department of Pathology and Immunology,
Washington University in St. Louis, St. Louis, MO, USA

martyomov@pathology.wustl.edu

Abstract. Network enrichment analysis methods allow to identify
active modules without being biased towards a priori defined pathways.
One of mathematical formulations of such analysis is a reduction to a
maximum-weight connected subgraph problem. In particular, in analysis
of metabolic networks a generalized maximum-weight connected sub-
graph (GMWCS) problem, where both nodes and edges are scored, nat-
urally arises. Here we present the first to our knowledge practical exact
GMWCS solver. We have tested it on real-world instances and com-
pared to similar solvers. First, the results show that on node-weighted
instances GMWCS solver has a similar performance to the best solver for
that problem. Second, GMWCS solver is faster compared to the closest
analogue when run on GMWCS instances with edge weights.

Keywords: Network enrichment · Maximum weight connected sub-
graph problem · Exact solver · Mixed integer programming

1 Introduction

Gene set enrichment methods are widely used for the analysis of untargeted bio-
logical data such as transcriptomic, proteomic or metabolomic profiles. These
methods allow to identify molecular pathways, in a form of gene sets, that have
non-random group behaviour in the data. Determining such overenriched path-
ways provides insights into the data and allows to better understand the consid-
ered system.

Network enrichment methods, in opposite to gene set enrichment, do not rely
on the predefined gene sets and, thus, allow to identify novel pathways. These
methods use network of interacting entities, such as genes, proteins, metabolites,
etc. and try to identify the most regulated subnetwork. There are different math-
ematical formulations of the network enrichment problem, but many of them are
NP-hard [1,6,9].
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Dittrich et al. in [6] suggested a formulation as a maximum-weight connected
subgraph (MWCS) problem. Originally, the authors considered node-weighted
graph, such that positive weight corresponded to “interesting” nodes and neg-
ative weight corresponded to “non-interesting” nodes. The goal was to find a
connected graph with the maximal sum of weights of its nodes, which corre-
sponded to an “active module”.

Here we consider a slightly different form of MWCS: generalized MWCS
(GMWCS), which naturally arises in the studies of metabolic networks [4,11].
In such networks nodes in the graph represent metabolites and edges represent
their interconversions via reactions. Compared to MWCS, GMWCS has edges
also weighted: the nodes can be scored using metabolomic profiles and the edges
can be scored using gene or protein expression profiles.

In recent years, a huge role of metabolic regulation became more and more
recognised, especially in a context of immune system [10] and cancer [5]. This
warrants the development of effective computational approaches for studying it,
such as metabolic network enrichment. The method results in a subnetwork of
connected reactions which are hypothesized to be the most important in the
considered process. Using such subnetwork one can get a better understanding
of the corresponding metabolic regulation and, for example, to infer its critical
points [13].

In this paper we describe an exact solver for the node-and-edge-weighted
GMWCS problem. First, in Sect. 2 we give formal definitions. Then in Sect. 3 we
describe preprocessing steps adapted for the edge-based formulation. In Sect. 4
we show how the instance can be split into three smaller instances. Section 5
is dedicated to a mixed-integer programming (MIP) formulation of the prob-
lem. In Sect. 6 we show experimental results of running the solver on real-world
instances that appear in GAM web-service and show that it is faster and more
accurate than Heinz [3] on edge-weighted instances and is similar in performance
to Heinz2 [7] on node-weighted instances.

2 Formal Definitions

Here we consider the Maximum-Weight Connected Subgraph (MWCS) problem
for which there are two slightly different formulations. In the most commonly
used definition of MWCS only nodes are weighted [2,7]. In this paper we consider
problem where edges are weighted too [8]. To remove the ambiguity we call the
former problem Simple MWCS (SMWCS) and the latter one Generalized MWCS
(GMWCS).

The goal of MWCS problems is to find in a given graph a connected subgraph
with the maximal the maximal sum of weights. As a subgraph is connected we
can consider connected components of the graph independently. Thus, below we
assume that the input graph is connected.

First, we give definition of a Simple Maximum-Weight Connected Subgraph
problem.
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Definition 1. Given a connected undirected graph G = (V,E) and weight func-
tion ωv : V → R, the Simple Maximum-Weight Connected Subgraph (SMWCS)
problem is the problem of finding a connected subgraph G̃ = (Ṽ , Ẽ) with the
maximal total weight

Ω(G̃) =
∑

v∈Ṽ

ω(v) → max

Second, we define generalized variant of this problem, where both nodes and
edges could be weighted.

Definition 2. Given a connected undirected graph G = (V,E) and a weight
function ω : (V ∪E) → R, the Generalized Maximum-Weight Connected Subgraph
(GMWCS) problem is the problem of finding a connected subgraph G̃ = (Ṽ , Ẽ)
with the maximal total weight

Ω(G̃) =
∑

v∈Ṽ

ω(v) +
∑

e∈Ẽ

ω(e) → max

Now we define a rooted variant of the problem with one of the vertices forced
to in a solution. It is used as an auxiliary subproblem of GMWCS.

Definition 3. Given a connected undirected graph G = (V,E), a weight func-
tion ω : (V ∪ E) → R and a root node r ∈ V the Rooted Generalized Maximum-
Weight Connected Subgraph (R-GMWCS) problem is the problem of finding a
connected subgraph G̃ = (Ṽ , Ẽ) such that r ∈ Ṽ and

Ω(G̃) =
∑

v∈Ṽ

ω(v) +
∑

e∈Ẽ

ω(e) → max

El-Kebir and Klau in [7] have shown that MWCS problem is NP-hard. Since
MWCS is a special case of GMWCS then GMWCS is also NP-hard. R-GMWCS
problem is NP-hard too because any instance of GMWCS problem can be solved
by solving an R-GMWCS instance for each node as a root.

Finally, below we use n as a shorthand for the number of nodes |V | and m
for the number of edges |E| in the graph G.

3 Preprocessing

We introduce two preprocessing rules adapted from [7] that simplify the problem.
These rules make a new graph with a smaller number of vertices and edges in such
a way that the GMWCS solution for the original graph can be easily recovered
from the GMWCS solution for the simplified graph.

First, we merge groups of close vertices that either none or all of them are
in the optimal solution (Fig. 1A). Let e = (u, v) be an edge with ω(e) ≥ 0 with
simultaneously ω(e) + ω(v) ≥ 0 and ω(e) + ω(u) ≥ 0. In this case if one of the
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vertices is included in the solution then the edge and the other vertex can also be
included without decreasing the total weight. Thus, we can contract edge e into
a new vertex w with a weight ω(w) = ω(e) + ω(u) + ω(v). After the contraction
parallel edges between w and some vertex t could appear. In that case we merge
all non-negative one into a single edge with weight of the sum of their weights.
After that, we remove all edges between w and t except one with the maximal
weight. To exhaustively apply the rule in O(m + kn) time, where k is a number
of contracted edges, we can use Algorithm 1.
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Fig. 1. Applying first rule that contract an edge (A) and second rule that replace
negative chain by a single edge (B). New vertices and nodes painted yellow.

Algorithm 1. Edges contraction preprocessing
1: procedure ContractEdges(V, E)
2: for all e ∈ E do
3: (u, v) ← e
4: if ω(u) + ω(e) < 0 or ω(v) + ω(e) < 0 then
5: e ← null
6: while e �= null do
7: w ← contract(e)
8: e ← null
9: for all z ∈ δw do
10: if ∃ parallel edges e1, e2 between w, z then
11: if ω(e1) ≥ 0 and ω(e2) ≥ 0 then
12: merge(e1, e2)
13: else remove( argmin

e′∈{e1,e2}
(ω(e′)))

14: for all z ∈ δw do
15: e′ ← (z, w)
16: if ω(u) + ω(e′) ≥ 0 and ω(v) + ω(e′) ≥ 0 then
17: e ← e′

Second, similarly to the previous step, we merge nonpositive chains (Fig. 1B).
Let v be a vertex with deg(v) = 2 with corresponding incident edges e1 = (u, v)
and e2 = (v, w). If all three weights ω(v), ω(e1) and ω(e2) are nonpositive, then
v, e1 and e2 could be replaced with a single edge e = (u,w) with a weight
ω(e) = ω(v)+ω(e1)+ω(e2). Merging negative chains is implemented in a single
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pass by iteratively trying to apply the rule for all the nodes. This operation takes
Θ(n) time.

4 Cut Vertex Decomposition

In this section we discuss how a GMWCS instance can be decompose into three
smaller problems. The decomposition is based on the idea that biconnected com-
ponents can be considered separately [7].

A B

C D

Fig. 2. Input graph and instances spawned by decomposition

Briefly, we have a GMWCS instance as input (Fig. 2A). First, we merge
the largest biconnected component into a single vertex with zero weight and
solve an R-GMWCS instance for this modified graph and the new vertex as a
root (Fig. 2B). Then, we replace each of the components branching from the
largest biconnected component by a single vertex with weight equal to the
weight of corresponding subgraph in the R-GMWCS solution from the previ-
ous step (Fig. 2C). Last, we try to find a subgraph with a greater weight which
fully lies in one of the branching components (Fig. 2D).

Formally, let B be a biconnected component of the graph G with the maximal
number of vertices. Let C be a set of cut vertices of the graph G that are also
contained in B. Let Bc be a component containing c in the graph G \ (B \ C).

Proposition 1. Let a subgraph G̃ of G be an optimal solution of GMWCS for
graph G and G̃c, ∀c ∈ C, are optimal solutions for R-GMWCS instances for
graphs Bc with a root c. In this case, if G̃ contains a vertex c ∈ C, then we
can construct an optimal solution G̃′ such that: (1) G̃′ ∩ B = G̃ ∩ B and (2)
G̃′ ∩ Bc = G̃c.
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Proof. Let B̃c = G̃ ∩ Bc. We prove that it can be replaced by G̃c without loss of
connectivity and optimality. First, B̃c must be connected. Let it be disconnected.
Then there is no path between c and some vertex v. Since G̃ is connected then
there is a simple path vc in G. However, by definition of cut vertex, path vc can
not contain vertices from G \ Bc and, thus it fully lies in Bc, a contradiction.
Since B̃c is connected and contains c then it cannot have weight greater than
G̃c by construction of G̃c.

Now we prove that the replacement keeps the graph connected. Repeating
the reasoning from the previous step we can get that G̃ ∩ B must be connected.
So, G̃c is connected, G̃ ∩ B connected and both these graphs contain c. Thus,
G̃′ is also connected. �	

This proposition allows us to consider only optimal solutions that either
include a vertex from B and in subgraphs Bc are identical to the corresponding
R-GMWCS instance or fully lie in some of the subgraphs Bc.

First, for each c ∈ C we want to know the best solution of the problem for
the graph Bc containing vertex c. It is precisely an R-GMWCS instance. For
practical reasons, it is better to spawn one instance at this step instead of |C|
instances. Let G∗ =

⋃
∀c∈C Bc. Then we merge all vertices from C contained in

G∗ into a single vertex r with ω(r) = 0 and solve R-GMWCS problem for such
graph. Let S to be the solution of this instance. To get solution for the graph Bc

we replace back r to c in S, and remove all the vertices which are not contained
in Bc.

Second, we find best scored subgraph of G that do not lies fully in some of Bc.
Let G̃c be the solution of R-GMWCS for graph Bc with root c obtained on the
previous step. We obtain a new GMWCS instance by considering the component
B and for all c ∈ C attaching a vertex v with weight ω(v) = Ω(G̃c). We solve
the resulting instance and then recover a solution for the original problem.

Last, we find all potential solutions that fully lie in Bc for all c ∈ C. For this
purpose we spawn one instance for the graph G∗ =

⋃
∀c∈C Bc. Clearly that if

the solution of the problem for the graph G lies fully in some of Bc then we will
find it at this step.

Decomposition of the graph into biconnected components takes O(n + m)
time, generating all the three instances also takes linear time, so overall time
complexity at this step is O(n + m).

5 Mixed Integer Programming Formulation

Here we describe a MIP formulation of the problem. The GMWCS can be repre-
sented as two parts: objective function (weight of the subgraph) that should
be maximized and constraints that ensure that the subgraph is connected.
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The objective function is linear and can be put into a MIP problem in a straight-
forward way. However, getting effective linear subgraph connectivity constraints
is not trivial. In this section we describe how it can be done. The resulting MIP
problem is solved by IBM ILOG CPLEX.

First, we consider a nonlinear formulation of the GMWCS problem, as pro-
posed in [8]. Then, we show how to eliminate nonlinearity and get a linear system.
Finally, we introduce extra symmetry-breaking and cuts, which do not impact
on the correctness of the formulation, but improve the performance.

5.1 Subgraph Representation

We use one binary variable for each vertex or edge that represent the presence
in the subgraph:

1. Binary variable yv takes the value of 1 iff v ∈ V belongs to the subgraph.
2. Binary variable we takes the value of 1 iff e ∈ E belongs to the subgraph.

For these variables to be representing a valid subgraph (not necessarily con-
nected) we need to introduce a set of constraints:

we ≤ yv, ∀v ∈ V, e ∈ δv. (1)

These constraints state that an edge can be a part of the subgraph, only if both
of its endpoints are a part of the subgraph.

5.2 Nonlinear Formulation

The nonlinear formulation of the subgraph connectivity constraints is based on
the idea that any connected graph can be traversed from any of its vertices. The
output of the traversal can be represented as an arborescence where an arc (v, u)
denotes that v has been visited before u. Accordingly, we can ensure connectivity
of a subgraph if we can provide an arborescence corresponding to the traversal
of this subgraph.

For a given graph G = (V,E), let S = (V,A) be a directed graph, where A
is obtained from E by replacing each undirected edge e = (v, u) by two directed
arcs (v, u) and (u, v).

Now, we are going to introduce variables that we will use in the formulation
and show nonlinear system of constraints, that ensure connectivity of subgraph:

1. Binary variable xa takes the value of 1 iff a ∈ A belongs to the arborescence.
2. Binary variable rv takes the value of 1 iff v ∈ V is the root of the arborescence.
3. Continuous variable dv takes the value of n if the path in the arborescence

from the root to vertex v contains n vertices. If v does not belong to the
solution then value can be arbitrary.
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Then we introduce constraints that ensure the validity of an arborescence:
∑

v∈V

rv = 1; (2)

1 ≤ dv ≤ n, ∀v ∈ V ; (3)
∑

(u,v)∈A

xuv + rv = yv, ∀v ∈ V ; (4)

xvu + xuv ≤ we, ∀e = (v, u) ∈ E; (5)
dvrv = rv, ∀v ∈ V ; (6)

duxvu = (dv + 1)xvu, ∀(v, u) ∈ A. (7)

Inequality (2) states that there is only one root in the arborescence; (3) is a
limitation on the distance between any vertex and the root; (4) states that if a
vertex is a part of the subgraph then either it is a root of the arborescence or
degin(v) = 1; (5) says that an arc of the arborescence can be in the solution only
if the corresponding edge is also in it. Last two inequalities (6) and (7) control
correct distances in the arborescence.

Haouari et al. have shown in [8] that this nonlinear system is a correct formu-
lation of GMWCS. That is, the arborescence covers all vertices of the resulting
subgraph and the solution can induce this arborescence.

However, inequalities (6) and (7) are not linear and should be replaced, so
that the formulation can be represented as a MIP problem.

5.3 Linearization

Nonlinear equations (6) and (7) can be replaced with the following system of
linear inequalities:

dv + nrv ≤ n, ∀v ∈ V ; (8)
n + du − dv ≥ (n + 1)xvu, ∀(v, u) ∈ A; (9)
n + dv − du ≥ (n − 1)xvu, ∀(v, u) ∈ A. (10)

Proposition 2. Every feasible solution to (1)–(7) is also feasible to (1)–(5),
(8)–(10) and vice versa.

Proof. First, we prove that (8) is equivalent to (6) in a sense of feasibility of the
solution. Since rv is a binary variable, we can consider two cases. Suppose that
rv = 1, then (6) will take the form dv = 1 while (8) will take the from dv ≤ 1,
and with (3) we have dv = 1. Now suppose that rv = 0, (6) will look 0 = 0, it
means that in this case there is no additional restrictions on variables and (8)
will take the form dv ≤ n, but system already have such inequality. Thus (6)
and (8) are equivalent for both possible values of rv.

At the second part of the proof we will use the same approach. Here we prove
that (7) can be represented as linear inequalities (9) and (10).
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1. Let xvu = 1. Then after substitution into (7) we have du = dv + 1. Then we
substitute xvu into (9) and (10)

n + du − dv ≥ n + 1
n + dv − du ≥ n − 1

or, equivalently,

du ≥ dv + 1
dv + 1 ≥ du

or du = dv + 1.
2. Let xvu = 0. The original nonlinear equation will take the form 0 = 0. As

mentioned above, it means that there is no additional restrictions on variables.
We have to show that (9) and (10) also do not add such restrictions. After
substitution these inequalities take the form:

n + du − dv ≥ 0
n + dv − du ≥ 0

or |dv − du| ≤ n. Obviously, variables that hold (3) automatically hold such
inequality. Thus, additional restrictions have not be added. �	

5.4 Symmetry-Breaking

It is a common practice to decrease the number of feasible solutions by limiting
the number of different but logically equivalent feasible solutions. Such solutions
are called symmetric. In our formulation constraints (1)–(5), (8)–(10) allow any
arborescence of the graph to show its connectivity. So, in this section we show
how to decrease the number of feasible arborescences and thus decrease the
search space.

Root Order Rule. First of all, for the unrooted GMWCS problem we force
the arborescence root to be a vertex with the maximal weight among present in
the subgraph. Corresponding constraint that is added in the MIP instance is:

∑

v≺u

rv ≤ 1 − yu, ∀u ∈ V, (11)

where v ≺ u if ω(v) < ω(u) or if weights are equal, we use some fixed linear
order on vertices.

For the R-GMWCS we set root of the arborescence to be the same as the
instance root.
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Restricting Traversal. Moreover, connected graph can be traversed from the
same vertex in different ways. Similarly to [12], we show how to make infeasible
such solutions that could not be reached by a breadth-first search (BFS).

To achieve such form of the arborescence we add constraints:

dv − du ≤ n − (n − 1)we, ∀e = (v, u) ∈ E; (12)
du − dv ≤ n − (n − 1)we, ∀e = (v, u) ∈ E. (13)

These constraints state that if an edge e is present the subgraph then the
distances to endpoints differ by one.

Proposition 3. For any connected subgraph Gs of the graph G there exists a solu-
tion (r, y, w, x, d) that encodes subgraph Gs and is feasible to (1)–(5), (8)–(10)
and (11)–(13).

Proof. First, for any subgraph Gs we can select any of its vertices, in particu-
lar one with the maximal weight, and make a BFS traversal starting from that
vertex. As was shown above for any connected subgraph Gs and any its arbores-
cence there is a corresponding encoding (r, y, w, x, d) that satisfy constraints
(1)–(5) and (8)–(10). By selection of the vertex with the maximal weight as an
arborescence root constraint (11) holds. Constraints (12)–(13) also hold as they
directly follow from the BFS ordering. �	

6 Experimental Results

As a testing dataset we used 101 instance generated by Shiny GAM, a web-
service for integrated transcriptional and metabolic network analysis [11], based
on user-submitted data during its testing phase. In the dataset, there are 38
instances of node-weighted SMWCS and 63 instances of GMWCS. Archive with
instances is available at http://genome.ifmo.ru/files/papers files/WABI2016/
gmwcs/instances.tar.gz. Briefly, node-weighted instances contain about 2200
nodes and 2500 edges and correspond to a network with nodes for both metabo-
lites and reactions which are connected if the metabolite is a substrate or a
product of the reaction. Edge-weighted instances contain about 700 nodes and
900 edges. Metabolites and reactions are scored proportionally to logarithm of
corresponding differential expression p-values.

For the comparison we selected two other solvers: Heinz version 1.68 [6] and
Heinz2 version 2.1 [7]. The first one, Heinz, was initially developed for node-
weighted SMWCS, but later was adjusted to account for edge weights, however,
only acyclic solutions are considered. The second one, Heinz2, does not accept
edge weights, but works faster than Heinz on node-weighted instances.

We ran each of the solver on each of the instances for 10 times with a
time limit of 1000 s. Heinz2 and our GMWCS solver were run using 4 threads.
The processor was AMD Opteron 6380 2.5 GHz. A table with the results table
are available at http://genome.ifmo.ru/files/papers files/WABI2016/gmwcs/
results.final.tsv.

http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/instances.tar.gz
http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/instances.tar.gz
http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/results.final.tsv
http://genome.ifmo.ru/files/papers_files/WABI2016/gmwcs/results.final.tsv
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6.1 Results for Simple MWCS

The experiments have shown that on the node-weighted instances GMWCS
solver has a performance similar to Heinz2 (Fig. 3A). For 24 instances (63 %)
GMWCS is slower than Heinz2. However, 32 instances (84 %) were solved by
GMWCS within 30 s, compared to 27 (71 %) of Heinz2. Moreover, 4 instances
were not solved by Heinz2 in the allowed time of 1000 s compared to only 1
instance for GMWCS.

Fig. 3. Comparison of GMWCS with Heinz2 and Heinz solvers on node-weighted (A)
and node-and-edge-weighted (B) instances. The points represent median times of 10
runs on one instance. Horizontal and vertical grey lines represent the second minimal
and the second maximal times. For convenience a small random noise was added to
the median values of more then 950 s.

6.2 Results for Generalized MWCS

For the edge-weighted GMWCS instances GMWCS solver was able to find opti-
mal solutions within 10 s all instances except two, while it took for Heinz more
than 10 s to solve 30 of the instances (48 %) (Fig. 3B). Moreover, only 35 instances
(56 %) had an acyclic solution, accordingly, 28 instances were not solved to
GMWCS-optimality by Heinz.

7 Conclusion

Network analysis approaches are being actively developed for analyzing bio-
logical data. From the mathematical point of view this usually correspond to
NP-hard problems. Here we described an exact practical solver for a particular
formulation of generalized maximum weight connected subgraph problem that
naturally arises in metabolic networks. We have tested the method on the real-
world data and have shown that the developed solver is similar in performance
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to an existing solver Heinz2 on a simple MWCS instances and works better
and more accurately compared to Heinz on the edge-weighted instances. The
implementation is freely available at https://github.com/ctlab/gmwcs-solver.

Funding. This work was supported by Government of Russian Federation [Grant 074-
U01 to A.A.S., A.A.L.].
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Abstract. We show how positional markers can be used to encode
genetic variation within a Burrows-Wheeler Transform (BWT), and use
this to construct a generalisation of the traditional “reference genome”,
incorporating known variation within a species. Our goal is to support
the inference of the closest mosaic of previously known sequences to the
genome(s) under analysis. Our scheme results in an increased alphabet
size, and by using a wavelet tree encoding of the BWT we reduce the
performance impact on rank operations. We give a specialised form of the
backward search that allows variation-aware exact matching. We imple-
ment this, and demonstrate the cost of constructing an index of the whole
human genome with 8 million genetic variants is 25GB of RAM. We also
show that inferring a closer reference can close large kilobase-scale cov-
erage gaps in P. falciparum.

Keywords: Pan-genome · Burrows-Wheeler Transform · FM-index ·
Genome

1 Introduction

Genome sequencing involves breaking DNA into fragments, identifying sub-
strings (called “reads”), and then inferring properties of the genome. Recently,
it has become possible to study within-species genetic variation on a large scale
[6,7], where the dominant approach is to match substrings to the canonical “ref-
erence genome” which is constructed from an arbitrary individual. This problem
(“mapping”) has been heavily studied (see [5]) and the Burrows-Wheeler Trans-
form (BWT) [2] underlies the two dominant mappers [3,4]. Mapping reads to
a reference genome is a very effective way of detecting genetic variation caused
by single character changes (SNPs - single nucleotide polymorphisms). How-
ever, this method becomes less effective the further the genome differs from the
reference. This is an important problem to address since, in many organisms,
biologically relevant genomic regions are highly diverse.

c© Springer International Publishing Switzerland 2016
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For a given species, our goal is to build a compact representation of the
genomes of N individuals, which we call a Population Reference Genome (PRG).
This data structure facilitates the following inference: we take as input sequence
data from a new sample, an estimate of how many genomes the sample contains
and their relative proportions - e.g. a normal human sample would contain 2
genomes in a 1:1 ratio, a bacterial isolate would contain 1 genome and a malaria
sample might contain 3 genomes in the ratio 10:3:1. We would then infer the
sequence of the underlying genomes. In this paper we describe a method for
encoding genetic variation designed to enable this approach.

Genomes evolve mainly via two processes - mutation (changing a few char-
acters) and recombination (either two chromosomes exchange a chunk of DNA,
or one chromosome copies a chunk from another). Thus once we have seen many
genomes of a given species, a new genome is likely to look like a mosaic of
genomes we have seen before. If we can infer a close mosaic, we have found a
“personalised reference genome”, and reads are more likely to match exactly.
This approach was first described in [8], applied to the human MHC region.
However their implementation was quite specific to the region and would not
scale to the whole genome. Valenzuela et al. [1] have also espoused a find-the-
closest-reference approach.

Other “reference graph” methods have been published [9–11], generally
approaching just the alignment step. Siren et al. developed a method (GCSA [10]),
with construction costs for a whole human genome (plus mutations) of more than
1 TB of RAM. Huang et al. [11] developed an FM-index [13] encoding of a ref-
erence genome-plus-variation (“BWBBLE”) by extending the genetic alphabet
to encode single-character variants with new characters and then concatenating
padded indel variants to the end of the reference genome. We do something similar,
but treat all variation in an equivalent manner, and retain knowledge of allelism
naturally. While completing this paper, the preprint for GCSA2 was published
[12], which drops RAM usage of human genome index construction to <100 GB
at the cost of >1 TB of disk I/O.

We show below how to encode a set of genomes, or a reference plus genetic vari-
ation, in an FM-index which naturally distinguishes alternate alleles. We extend
the well known BWT backward search and show how read-mapping can be per-
formed in a way that allows reads to cross multiple variants, allowing recombina-
tion to occur naturally. Our data structure supports bidirectional search (which
underlies the Super Maximal Exact Match algorithms of bwa-mem [3]), but cur-
rently we have only implemented exact matching. We use empirical datasets to
demonstrate low construction cost (human genome) and the value of inferring a
personalised reference in P. falciparum.

2 Background: Compressed Text Indexes

Burrows-Wheeler Transform. The Burrows-Wheeler Transform (BWT) of
a string is a reversible permutation of its characters. The BWT of a string
T = t1t2 . . . tn is constructed by sorting its n cyclic shifts t1t2 . . . tn, t2 . . . tnt1, . . . ,
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tnt1 . . . tn−1 in lexicographic order. The matrix obtained is called the Burrows-
Wheeler Matrix (BWM) and the sequence from its last column is the BWT.

Suffix Arrays. The suffix array of a string T is an array of integers that provides
the starting position of T ’s suffixes, after they have been ordered lexicographi-
cally. Formally, if Ti,j is the substring titi+1 . . . tj of T and SA is the suffix array
of T , then TSA[1],n < TSA[2],n < . . . < TSA[n],n. It is related to the BWT, since
looking at the substrings preceding the terminating character $ in the BWM
rows gives the suffixes of T in lexicographical order.

Backward Search. Any occurrence of a pattern P in text is a prefix for some
suffix of T , so all occurrences will be adjacent in the suffix array of T since
suffixes starting with P are sorted together in a SA-interval. Let C[a] be the
total number of occurrences in T of characters smaller than a in the alphabet. If
P ′ is a suffix of the query P and [l(P ′), r(P ′)) is its corresponding SA-interval,
then the search can be extended to aP ′ by calculating the new SA-interval:

l(aP ′) = C[a] + ranka(BWT, l(P ′) − 1) (1)

r(aP ′) = C[a] + ranka(BWT, r(P )), (2)

where the operation ranka(S, i) returns the number of occurrences of symbol
a in S[1, i]. The search starts with the SA-interval of the empty string, [1, n]
and successively adds one character of P in reverse order. When the search is
completed, it returns a SA-interval [l, r) for the entire query P . If r > l, there
are r− l matches for P and their locations in T are given by SA[i] for l ≤ i < r.
Otherwise, the pattern does not exist in T . If the C-array and the ranks have
already been stored, the backward search can be performed in O(|P |) time in
strings with DNA alphabet.

Wavelet Trees. Rank queries scale linearly with the alphabet size by default.
The wavelet tree [14] is a data structure designed to store strings with large
alphabets efficiently and provide rank calculations in logarithmic time. The tree
is defined recursively: take the lexicographically ordered alphabet, split it into
2 equal halves; in the string corresponding to the current node (start with the
original string at root), replace the first half of letters with 0 and the other half
with 1; the left child node will contain the 0-encoded symbols and the right child
node will contain the 1-encoded symbols, preserving their order from the original
string; re-apply the first step for each child node recursively until the alphabet
left in each node contains only one or two symbols (so a 0 or 1 determines which
symbol it is).

To answer a rank query over the original string with large alphabet, repeated
rank queries over the bit vectors in thewavelet tree nodes are used to locate the sub-
tree that contains the leaf where the queried symbol is non-ambiguously encoded.
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Fig. 1. Wavelet tree encoding of a string that is the same as the BWT in Fig. 4.
Calculating the rank of the marked “A” is performed by repeated rank() calls moving
down the binary tree until the alphabet remaining is just 2 characters. Note that only
the bit vectors are stored in the tree, the corresponding strings are only shown here
for clarity.

The rank of the queried symbol in this leaf is equal to its rank in the original string.
The number of rank queries needed to reach the leaf is equal to the height of the
tree, i.e. log2 |Σ| if we let Σ be the set of symbols in the alphabet. Computing ranks
over binary vectors can be done in constant time, so a rank query in a wavelet tree-
encoded string has complexity O(log2 |Σ|).

3 Encoding a Variation-Aware Reference Structure

3.1 Terminology

A variant site or site is a region of the chromosome where there are a number
of alternative options for what sequence can be present. These alternatives are
termed alleles and might be as short as a single character, or could be many hun-
dreds of characters long. A pan-genome refers to a representation (with unspeci-
fied properties) of a number (greater than 1) of genomes within a species. A Pop-
ulation Reference Graph is an encoding of a pan-genome that enables matching of
sequence data to the datastore, inference of nearest mosaic with the appropriate
ploidy, and then discovery of new variants not present in the PRG.

3.2 PRG Encoding

We use a PRG conceptually equivalent to a directed, acyclic, partial order graph,
that is generated from a reference sequence and a set of alternative sequences at
given variation sites. The graph is linearised into a long string over an alphabet
extended with new symbols marking the variants, for which the FM-index can
be constructed. We call this string the linear PRG.
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Fig. 2. A simple PRG linearised according to our encoding. The first site has 3 alleles,
which do not here look at all similar, and the second is a SNP.

Building this data structure requires multiple steps.

1. Corresponding regions of shared sequence between the input genomes must
be identified. These must be of size k at least (where k is pre-defined), and
act as anchors.

2. For any site between two anchor regions, the set of possible alleles/haplotypes
must be determined, but do not need to be aligned. Indels are supported by
haplotypes of different lengths.

3. Each variation site is assigned two unique numeric identifiers, one even and
one odd, which we call variation markers. The odd identifiers will mark vari-
ation site boundaries and will sometimes be referred to as site markers. The
even identifiers will mark alternative allele boundaries and will sometimes be
referred to as allele boundary markers.

4. For each variation site, its left anchor is added to the linear PRG, followed
by its odd identifier. Then each sequence coming from that site, starting with
the reference sequence, is successively added to the linear PRG, followed by
the even site identifier, except the last sequence, which is followed by the odd
identifier.

5. Convert the linear PRG to integer alphabet (A → 1, C → 2, G → 3, T → 4,
variation site identifiers → 5,6,...)

6. The FM-index (suffix array, BWT, wavelet tree over BWT) of the linear PRG
is constructed and we will call this the vBWT.

An illustration of these steps on a toy example is given in Fig. 2.
Importantly, the markers force the ends of alternative sequences coming from

the same site to be sorted together in a separate block in the Burrows-Wheeler
matrix, even if they do not have high sequence similarity. Therefore, alternative
alleles from each site can be queried concurrently.

3.3 Graph Structure: Constraints

We show in Fig. 3(a) two sequences which differ by 3 SNPs and give two graph
encodings in Fig. 3(b) and (c). Both represent the sequence content equally well,
and we allow both. In Fig. 3(d) we have an example where a long deletion lies
“over” two other alleles. We would encode this in our PRG as shown in Fig. 3(e).
This works but results in many alternate alleles. An alternative would be to
allow “nested” variation, where variants lie on top of other alleles, as shown in
Fig. 3(f). This could be encoded in our system, but we do not allow it for our
initial implementation, as it would potentially impact mapping speed.
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Fig. 3. PRG graph structure. The sequences shown in Fig. 3(a) could be represented
either as 3 separate mutations (shown in (b)), or enumerated as 8 small haplotypes,
shown in (c). Both are supported by our encoding. Similarly, the sequences in (d) could
be represented in our implementation as shown in (e). However, we do not support
“nesting” of alleles, as shown in (f).

4 Variation-Aware Backward Search in vBWT

In this section, we present a modified backward search algorithm for exact match-
ing against the vBWT that is aware of alternative sequence paths. Our imple-
mentation leverages the succinct data structures library SDSL [18] and is incor-
porated in our software called gramtools.

When reads align to the non-variable part of the PRG or when an allele is long
enough to enclose the entire read, the usual backward search algorithm can be
used. Otherwise, when the read must cross variation site junctions, site identifiers
and some alternative alleles must be ignored by the search. This means a read
can align to multiple substrings of the linear PRG that may not be adjacent in
the BWM, so the search can return multiple SA-intervals. We give pseudocode
in Algorithm 1 below, and outline the idea in Fig. 4.

At each step in the backward search, before extending to the next character,
we need to check whether the current matched read substring is preceded by a
variation marker anywhere in the linear PRG. A scan for symbols larger than 4
(“range search 2d” in the pseudocode) must be performed within the range given
by the current SA-interval. With a wavelet tree this range search can be done
in O(d log(|Σ|/d)) time, where d is the size of the output. If a variation marker
is found and it is an odd number, the read is about to cross a site boundary.
The suffix array can be queried to find the position of the two odd numbers
(start/end of the site) in the linear PRG.

If the search cursor is next to the start of the site, it is just the site marker
that needs to be skipped, so the SA-interval (size 1) of the suffix starting with
that marker needs to be added to the set of intervals that will be extended with
the next character in the read. If the search cursor is next to the end of a site,
all alternative alleles from that site need to be queried. Their ends are sorted
together in the BWM because of the markers, so they can be queried concurrently
by adding the SA-interval of suffixes starting with all numbers marking that site
(even and odd).
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Fig. 4. Backward search across the vBWT of the linear PRG in Fig. 2. We start at the
right-hand end of the read GTTATTTAC, with the character C, and as we extend we
hit the character 5, signalling the start or end of a variation site. We check the suffix
array to get the coordinate in the linear PRG, and find it is the end. Therefore, the
read must now continue into one of the alleles, signalled by the number 6. Continuing
in this manner (the shorter arrows signify multiple intermediate steps not shown) we
are able to align across the site.

If the variation marker found is even, the read is about to cross an allele
boundary, which means its current suffix matches the beginning of an alternative
allele and the read is about to walk out of a site, so the search cursor needs to
jump to the start of site. The odd markers corresponding to that site can be
found in the first column of the BWM, and then querying the suffix array decides
which one marks the start of site. The SA-interval (size 1) for the BWM row
starting with this odd marker is recorded. Once the check for variation markers
is finished and all candidate SA-intervals have been added, each interval can be
extended with the next character in the read by using Eqs. 1 and 2.

5 Experiments

5.1 Construction Cost: The Human Genome

We constructed a PRG from the human reference genome (GRC37 without “alt”
contigs) plus the 1000 genomes final VCF (12 GB in size) [6]. We excluded vari-
ants without specified alleles, and those with allele frequency below 5 % (rare
variation offers limited benefit - our goal is to maximise the proportion of reads
mismatching the graph by at most 1 SNP). If two variants occurred at con-
secutive bases, they were merged, and all haplotypes enumerated. If the VCF
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Algorithm 1. Variation-aware backward search
Input: pattern P [1, m] and FM-index of PRG in integer alphabet
Output: list of SA intervals corresponding to matches of P
1: l ← C(P [m]) � l for left
2: r ← C(P [m] + 1) � r for right
3: i ← m
4: SA_int = {[l, r)} � list of SA intervals
5: Extra_int = ∅ � Extra intervals
6: while i > 1 and SA_int �= ∅ do
7: for all [l, r) ∈ SA_int do
8: M ← WT.range_search_2d(l, r − 1, 5, |Σ|) � find variation site markers
9: for all (idx, num) ∈ M do � idx ∈ [l, r), num ∈ [5, |Σ|]

10: if num%2 = 0 then
11: odd_num = num − 1
12: else
13: odd_num = num
14: if SA[C(odd_num)] < SA[C(odd_num) + 1] then
15: start_site ← C(odd_num), end_site ← C(odd_num) + 1
16: else
17: start_site ← C(odd_num) + 1, end_site ← C(odd_num)
18: if num%2 = 1 and SA[idx] = SA[site_end] + 1 then
19: Extra_int = Extra_int ∪ {[C(num), C(num + 2)]}
20: else
21: Extra_int = Extra_int ∪ {[C[start_site], C[start_site] + 1]}
22: i ← i − 1
23: SA_int = SA_int ∪ Extra_int

24: for all [l, r) ∈ SA_int do
25: l = C(P [i]) + rankP [i](BWT, l − 1)
26: r = C(P [i]) + rankP [i](BWT, r)

contained two consecutive records which overlapped, the second was discarded.
This resulted in a dataset of 7.4 million SNPs and 978000 indels. We give con-
struction costs in Table 1, along with comparative figures for BWBBLE with
identical input.

For comparison, GCSA took over 1 TB of RAM building chromosomes sep-
arately and pruning the graph in high diversity regions. GCSA2 reduces the
memory footprint to below 128 GB RAM, running in 13 h with 32 cores, and
using over 1 Tb of I/O to fast disk. Our vBWT construction has a lower mem-
ory cost than GCSA, GCSA2 and BWBBLE, is faster than GCSA/GCSA2, has
no (significant) I/O burden, but is significantly slower than BWBBLE.

Table 1. FM-index construction costs and final data structure size for human reference
genome plus 1000 genomes variants

Software Peak memory (GB) Time (h/min) Final/in-use memory (GB)

vBWT 25 4h24m 17.5

BWBBLE 60 1h5m 12



230 S. Maciuca et al.

5.2 Inferring a Closer Reference Genome

P. falciparum is a haploid parasite that undergoes recombination. It has an
unusual genome that contains more indels than SNPs [15]. The gene MSP3.4 is
known to have two diverged lineages at high frequencies in multiple populations
from across the world. The lineages differ by around 1 SNP every 3 bases over
a 500 bp region (the DBL domain) of the gene. We constructed a catalog of
MSP3.4 variation from Cortex [16] variant calls from 650 P. falciparum samples
and built a PRG just for that chromosome. We show in Fig. 5 the density of
variants and number of alleles.

Fig. 5. Histogram of number of alleles at each site in MSP3.4 plotted above the chro-
mosome coordinate.)

We aligned Illumina 76 bp reads from a well-studied sample that was not
used in graph construction (named 7G8) to the PRG using backward search
(exact matching, which took 3 mins), and collected counts on the number of
reads supporting each allele. At each site we chose the allele with the highest
coverage to extract the path through the graph with maximum support - this was
our graph-inferred personalised reference for this sample. We then mapped the
reads (using bwa mem [17]) independently to the reference and to the inferred
genome. As can be seen in Figs. 6 and 7, our method gives dramatically better
pileup results over the MSP3.4 gene.

Fig. 6. Mapping reads from sample
7G8 to P. falciparum 3D7 reference
genome results in a gap covering the
DBL domain

Fig. 7. Mapping reads from sample
7G8 to our vBWT-inferred genome re-
moves the gap, leaving isolated variants
easy to detect with standard methods
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5.3 Simulations, Usability, Future Performance Improvements

We took 44,439 P. falciparum SNPs and indels called with Cortex from a single
genetic cross (7G8xGB4) [15] and created a whole-genome PRG, and simulated
10,000 reads from one random haplotype. All reads were 150 bp, error-free. We
precalculate a hash of the SA intervals corresponding to all 9-mers in the PRG
that overlap a variation site. This one-time precalculation was done in 1 h 43 min
using 25 threads. In order to avoid unfairly slowing BWBBLE we constrained it
to do exact matching only. All experiments were performed single-threaded on
a machine with 64 processors Intel Xeon CPU E5-4620 v2 @ 2.60 GHz and 1 TB
of memory.

Table 2. Simulation results

Software Step Time (sec) Speed (reads/sec)

Gramtools Map and Infer reference 1051 9.5

Gramtools bwa map to ref 0.861 11614

BWBBLE align 2.6 3846

Results are shown in Table 2. Gramtools mapping speed is notably slower
than BWBBLE, although it is usable for megabase sized genomes - a 30x whole-
genome dataset for P. falciparum would take 5.8 h using 24 cores. However, the
output is directly usable and interpretable by any bioinformatician - a reference
genome close to the sample, and a standard SAM file. By comparison, BWBBLE
outputs a SAM file with respect to an artificial reference with indels appended
at the end - to use this in a normal pipeline requires software development and
innovation.

There are a number of performance improvements we can make. We store
an integer array that allows us to determine if a position in the PRG is in
a site, and if so, which allele; this is naively encoded (in std::vector). For the
human example, this costs us around 12 GB of RAM. This array, which contains
a zero at every non-variable site in the chromosome, could be stored much more
compactly. More significantly, there is one significant speed improvement which
we have yet to implement - precalculating and storing an array of ranks at marker
positions across the BWT - just as in a standard FM-index. This is not normally
done for large alphabets, but we can store only for A,C,G,T.

6 Discussion

We have described a whole-genome scale implementation of a PRG designed to
enable inference of a within-graph mosaic reference close to that of a new indi-
vidual, followed by discovery of novel variation as a “delta” from that. As with
any reference graph approach, there is an implicit coupling between mapping
and graph structure (for handling alternate alleles). By placing positional mark-
ers, we are able to ensure that alternate alleles sort together in the BWT matrix,
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allowing mapping across sites and recombination. For haploids we naturally infer
a personalised reference genome. For other ploidies, our implementation read-
ily lends itself to “lightweight alignment” [19–21] followed by an HMM to infer
haplotypes, followed by full MEM-based graph alignment.

Software. Our software, gramtools, is available here: http://github.com/
iqbal-lab/gramtools, and scripts for reproducing this paper are here: https://
github.com/iqbal-lab/paper-2016-vBWT-gramtools-WABI.
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Abstract. The coalescent with recombination is widely accepted as the
key model to understand genetic diversity within a species. Many theo-
retical properties of the model are well understood, but formulating and
implementing efficient inference methods remains a challenge. A major
breakthrough has been to approximate the coalescent with recombina-
tion by a Markov chain along the sequences. Here we describe a new
tool, RECJumper, for inference in the Markov approximated coalescent
model. Previous methods are often based on a discretisation of the tree
space and hidden Markov models. We avoid the discretisation by using
particle filtering, and compare several proposal distributions. We also
investigate runs of homozygosity, and introduce a new summary statis-
tics from spatial statistics: Ripley’s K-function. We find that (i) choos-
ing an appropriate proposal distribution is crucial to obtain satisfactory
behaviour in particle filtering, (ii) tree space discretisation in HMM-
methodology is non-trivial and the choice can influence the results, and
(iii) Ripley’s K-function is a much more informative statistics than runs
of homozygosity for recombination rate estimation.

1 Introduction

Consider the black piecewise constant function in Fig. 1(a). The function pro-
vides the coalescence times x = {xi}1≤i≤N for two genomic sequences (e.g. from
sequencing a single diploid individual) in positions indexed by i, i = 1, . . . , N .
The coalescence times are unknown (hidden), and we instead observe the binary
mutation pattern y = {yi}1≤i≤N . Sites with large coalescence times are more
likely to experience a mutation than sites with short coalescence times; a simple
mutation model assigns probability

p(yi = 1|xi = t) = 1 − exp(−θt) (1)

for being heterozygote (and exp(−θt) for being homozygote). Recombination
events are responsible for the jumps in the coalescence path, and in general
the dependence structure between coalescence times is very complex [8]. Fortu-
nately the Markov assumption is a good approximation [13]. We observe that
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 234–245, 2016.
DOI: 10.1007/978-3-319-43681-4 19
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the Markov approximated coalescent with recombination and mutation is a state
space model where {xi}1≤i≤N is the latent process and {yi}1≤i≤N is the mea-
surement data. State space models have been analysed in financial econometrics
for more than a decade (e.g. [2]), and an efficient class of algorithms is particle
filtering.

Particle filtering is an importance sampling method. Recall that the main
idea in importance sampling is to simulate from a distribution q(x) (possibly
depending on y), assign each simulation a weight w(x) = f(x)p(x)/q(x), and
approximate the mean, E[f(X)], by the weighted sample average. For example
if the quantity of interest is the likelihood p(y) we have

p(y) =
∫

x

p(x, y)dx =
∫

x

p(x)p(y|x)
q(x)

q(x)dx =
∫

x

w(x)q(x)dx ≈ 1
n

n∑

j=1

w(zj),

where zj is a sample from q. The challenge in particle filtering is to formulate
proposal distributions that are easy to simulate and close to the optimal proposal
distribution p(x|y).

Figure 1(a) shows three coalescence paths from a naive but very fast pro-
posal distribution, and Fig. 1(b) shows their corresponding weights w(x). The
distribution of weights in Fig. 1(b) shows that the price for the fast proposal
distribution is very high: Almost all coalescence paths have a very low weight
and are therefore not useful for subsequent analysis. This unfortunate situation
is avoided in Figs. 1(c) and 1(d) where we have used the proposal function from
RECJumper. Very many RECJumper coalescent paths have a reasonable high
weight.

Particle filtering is far from the only way to infer population genetic para-
meters. Another popular method is to discretise the state space so that only a
discrete and finite number of coalescent times are possible. Most known is per-
haps the PSMC [11] that uses the Sequential Markov Coalescent (SMC) model
[13] on two DNA sequnces. ARGweaver [16] and MSMC [17] are extensions of
the PSMC to more than two sequences. The CoalHMM [12] is an implementa-
tion with the Simonsen Churchill model [18] for two sequences. The advantage
of a discrete and finite, latent state space is that the classical HMM algorithms
apply. The challenge is to formulate a reasonable discretisation procedure. How
many bins and where to place them?

In Fig. 2 we show the results of a simulation study. We simulated 100 data
sets from the model with a recombination rate of ρ = 0.1, a fixed mutation rate
θ = 0.1 in a genomic segment of size N = 20, 000 base pairs. We then estimated
the recombination rate using particle filtering and an HMM with a state space
of size 20. We observe that they yield similar results. This is expected since they
are both approximations to the same integral.

In Fig. 2 we have also included two more parameter estimation procedures.
The first is based on runs of homozygosity. Harris and Nielsen [9] use this statis-
tics for demographic inference, but we observe that actually a lot of power is lost
by summarizing the data this way. The second is based on Ripley’s K-function.
In spatial statistics the runs of homozygosity (often called the nearest neighbour
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Fig. 1. (a) The true coalescence path is black and the red bullets indicate muta-
tions (the observed sequence). The coloured lines are different paths from the pro-
posal distributions. Paths that are likely to produce the mutation pattern get a high
weight. (b) Distributions of weights from the prior distribution. (c) The proposals from
RECJumper (h = 100). (d) The variance of the prior weights is larger than the variance
of the RECJumper weights. (Color figure online)

function) is only seldom used. Ripley’s K-function is a much more popular sum-
mary of a point pattern. Ripley’s K-funcion gives the mean number of points
K(r) within a distance r from a typical point. It is straight forward to determine
an empirical estimate of Ripley’s K-function. In Fig. 2 we observe that Ripley’s
K-function is a very useful statistics. We emphasize that this observation also
has important consequences for simulation-based procedures such as Approxi-
mate Bayesian Computation [1] where the data is summarized in terms of simple
summary statistics.

Our paper is organized as follows. In Sect. 2 we describe in detail the state
space model. In particular we provide the probability of a new coalescent height,
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Fig. 2. The four methods have each produced an estimate of the recombination rate,
ρ, based on 100 simulations of size 20,000 bases from the state space model. This plot
visualises their distributions by sorting all the estimates. The K-function produces
better estimates of ρ than runs of homozygozities whereas HMM and particle filtering
performs even better. The ‘steps’ of the particle filter estimates are due to the grid of
driver values of ρ.

and the density for a new height conditional on the old height. We work with
the most general recombination model for two loci and two sequences. In Sect. 3
we describe particle filtering and RECjumper, and in Sect. 4 we consider the
HMM framework. Section 5 is concerned with Ripley’s K-function and runs of
homozygosity. Our paper ends with a general discussion of the various methods.

2 The State Space Model

A state space model is fully specified by its transition probabilities p(xi|xi−1) and
its emission probabilities p(yi|xi). Therefore, only the joint distribution of the coa-
lescence times at two adjacent genomic positions is needed in order to specify the
model. Below we let s = xi−1 and t = xi denote the left and right coalescence
times. The coalescence times are determined by the Simonsen-Churchill model [18]
which is a continuous time Markov chain. The states are the ancestry of two pairs
of loci from two sequences; see Fig. 3. The model is given a careful treatment in
the textbooks [6,19], and we only use the following theorem which provides the
transition probabilities.

Theorem 1. Let Λ denote the 8× 8 rate matrix for the states in the Simonsen-
Churchill model (see Fig. 3(c)). The conditional probability of no change from
the left to the right tree is

P (T = s|S = s) = es[eΛs]11, (2)
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and the conditional density π(t|s) of T given S = s and given T �= S is

π(t|s) =

⎧
⎪⎪⎨

⎪⎪⎩

e−(s−t) [e
Λt]12+[eΛt]13
e−s−[eΛs]11

for t < s,

e−(t−s) [e
Λs]12+[eΛs]13
e−s−[eΛs]11

for t > s.

(3)

Proof. See Lemma 2 of Hobolth and Jensen [10].

A simplification of the above model, called the SMC model has a simpler
structure and will also be used in the particle filter. In this model we have (see
Hobolth and Jensen [10], p. 52, bottom right)

P SMC(T = s|S = s) = e−ρs (4)

and

πSMC(t|s) =

{
ρ(e−ρt−e−t)

(1−ρ)(1−e−ρs) for t < s
ρe−(t−s)(e−ρs−e−s)

(1−ρ)(1−e−ρs) for t > s.
(5)

For more discussions of sequential Markov chains for two loci, two sequences we
refer to Wilton et. al. [21].

3 Particle Filtering

Particle filtering is a statistical method that can be used to improve a specific
type of importance sampler [4]. The goal is to simulate from a distribution
p(·) such that a low variance estimate of Ep[f(X)] can be constructed. This is
achieved by simulating particles z1, . . . , zn from any distribution, q, called the
proposal distribution, which satisfies that every possible sample under p is also
possible under q. The particles are each assigned a weight w(z) = f(z)p(z)/q(z).
In this study f(x) = p(y|x) such that the weighted particles

(z1, w(z1)), . . . , (zn, w(zn))

constitute a sample fromp(x|y) in the sense thatp(y) = Ep[f(Z)] ≈ 1
n

∑n
j=1 w(zj).

Having n weighted particles is not as powerful as having n regular samples because
some particles may be insignificant due to a very low weight. This problem is called
sample degeneracy. Furthermore, all simulated particles could, in principle, be
made useless by a future particle that has a much higher weight. Under the assump-
tion that no such future particle exists, we will interpret the approximation to the
Effective Sample Size

ESS(w1, . . . , wn) =

(∑n
j=1 wj

)2

∑n
j=1 w2

j
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Fig. 3. (a) Realisation of the continuous time Markov Chain where no recombination
between the two sites occur. In the present both pairs of loci are linked (—) yet not coa-
lesced with each other (•) meaning that the chain is positioned in state 1. At time point
s the chain jumps directly from state 1 to state 8 where both loci are coalesced(×).
(b) A recombination occurs which unlinks the two loci. They subsequently find differ-
ent coalescence times. (c) All possible transitions are shown with their corresponding
transition rates. The corresponding rate matrix is denoted Λ.

as the actual number of samples from p. It is evident that the choice of q(x)
affects the weights and thereby the ESS. In the case q ∝ p(x, y) all the weights
will be constant and ESS will be the highest attainable value, n. This suggests
that choosing q close to p(x|y) will lead to a high ESS.

An importance sampler is susceptible to particle filtering methods if p and q
can be decomposed as follows

p(x1:N , y1:N ) = p(x1)p(x2|x1) · · · p(xN |xN−1)p(y1|x1) · · · p(yN |xN ) (6)
q(x1:N |y1:N ) = q(x1|y1:N )q(x2|x1, y1:N ) · · · q(xN |xN−1, y1:N ). (7)

The natural way to simulate from q is to simulate x1 from q(x1|y1:N ), then
x2 from q(x2|x1, y1:N ) and so forth. If done this way, conditions (6) and (7) allow
calculation of preliminary weights after i steps

w(x1:i) =
p(x1)p(x2|x1) · · · p(xi|xi−1)p(y1|x1)p(y2|x2) · · · p(yi|xi)

q(x1|y1:N )q(x2|x1, y1:N ) · · · q(xi|xi−1, y1:N )
.

Preliminary weights make it possible to gauge the final weight of a particle
before the particle is fully produced. If a particle turns out to yield low prelim-
inary weights, we would like to discard it so that we do not waste computing
power on a particle that will most likely be insignificant. In addition we dupli-
cate the preliminarily high-weighted particles. This is done through resampling
which removes the problem of sample degeneracy completely but introduces
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sample impoverishment. Sample impoverishment is the dependencies between
the particles and it consists of two issues: (i) A particle having a low prelimi-
narily weight could recover as more coordinates are simulated. Removing such a
comeback particle through resampling will give insufficient diversity within the
sample, (ii) The first coordinates of the particles will eventually converge to one
value if there are enough resamples. The last coordinates of the particles will
not have this issue because they are only resampled a few times.

Issue (ii) is normally solved using smoothing and in particular the smoothing
algorithm called Forward-Backward Recursions. Issue (i) is a more fundamental
problem and its remedies are often costly in terms of computations. The sim-
plest remedies are increasing the number of particles, choosing a good proposal
distribution and fine-tuning the positions of resampling. The optimal resampling
positions depend both on the target distribution and proposal distribution, but
will not be explored in this study.

One of the simplest proposal distributions in particle filtering is the prior as
proposed in the early literature [7]

q(xi|xi−1, y1:N ) = p(xi | xi−1).

In this paper we use the distribution pSMC(xi|xi−1) specified in (4) and (5). The
advantage is that it is fast and easy to simulate. On the other hand it does not
use the data y so we expect a lot of particles with low weight. Some realisations
from this proposal are shown in the upper panel of Fig. 1.

We formulated a more informed choice of proposal distribution

q(xi|y1:N , xi−1) = p̃SMC(xi|xi−1, yi:(i+h)),

for some lag h. Our desire was to simulate from the distribution pSMC(xi |
xi−1, yi:(i+h)). Its distribution is fully specified by the emission probabilities in
(1), transition probabilities in (4) and (5), and the state space model assumption.
It was, however, not computationally feasible without making some approxima-
tions. Therefore, we increased the forgetfulness of the latent Markov chain and
we substituted a binomial distribution with a Poisson distribution. This reduced
model is denoted p̃SMC. The algorithm first simulates the genomic distance d
to the next recombination from p̃SMC(d|xi−1, yi:(i+h)) and then draws xi from
p̃SMC(xi|xi−1, yi:(i+h), d). The effect of the forgetfulness assumption seems to be
that fewer extreme values are simulated.

When xi is simulated, the algorithm forgets the previous d and simulates
a new d to generate xi+1. A natural extension of this procedure is to use the
simulated d by setting xi = xi+1 = · · · = xi+d−1 and then continue the algorithm
at xi+d. This speeds up the algorithm yet only decreases the accuracy slightly.
We call this faster version RECJumper. Similarly the prior can also be made
faster by simulating the next recombination event and jumping to its position.
This faster version will simply be called the prior proposal.

We compared the two proposal distributions by looking at how the ratio
between ESS and time consumption depends on sequence length in Fig. 4.
The proposals were informed of the true values (ρ, θ) = (0.1, 0.02). RECJumper is
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superior for sequences that are longer than 400 base pairs when h is big. For large
h RECjumper simulates particles more slowly but closer to the true distribution,
p(x|y).

If the distribution p is parametrised in terms of a parameter, ρ, it makes sense
to talk about the likelihood. Remembering that the Particle Filter produces
weighted samples (zj , w(zj))i=1,...,n from pρ0 , enough samples will justify the
importance sampling approximation to the likelihood function

L(ρ) ≈
n∑

j=1

w(zj)
pρ(zj)
pρ0(zj)

. (8)

In Fig. 2 we show 100 estimates using this method.
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Fig. 4. The measure of samples per seconds is ESS divided per time. Proposals from
prior and RECJumper with different lags are shown. For sequences of length 450 and
above, the prior is inferior to the more informed versions of RECJumper.

4 Hidden Markov Model

When there is only a finite number of states in a state space model, it becomes
a Hidden Markov Model. In this framework powerful algorithms exists. The For-
ward (or Backward) algorithm calculates the likelihood exactly and quickly [5],
and hidden paths are also simulated quickly [3].

The established coalescent HMM methods obtain a finite number of states by
discretising the state space model. Discretisation is done by dividing the time axis
into a number of intervals and letting the hidden states be the intervals in which
the coalescence time falls. Unfortunately, discretising a state space model does
not preserve the dependence structure of a state space model. It does not follow
that the hidden states of the discretised state space model form a Markov chain
nor that the observed data are independent conditioned on the hidden states.
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Therefore, in addition to the usual loss of power when discretising, discretisation
introduces a bias from the intended model. These disadvantages are alleviated
by applying a finer discretisation at the cost of more computations. Nevertheless,
the choice of number and shape of intervals in the discretisation influences the
results as demonstrated in Fig. 5.
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Fig. 5. A typical relationship between the maximum likelihood and the number of
intervals for a HMM-based coalescence model. The same graph is plotted on both plots
but the axis are different. The HMM converges towards an optimum as the number of
intervals increases. However, it requires 200+ states to make the number of intervals
insignificant in a comparison of maximum likelihood values.

5 Ripleys K-Function

A popular summary function in point processes theory is Ripley’s K-function.
Let θ be the intensity of events. In our case an event is a mutation, and θ is
the mutation rate per base pair. The mutation pattern can be seen as a point
process by letting the points be the indices of mutations. On this point process
Ripley’s K function is

K(r) =
1
θ
E [#{s : |s − t| ≤ r, Ys = 1} | Yt = 1]

or, equivalently, the relative number of mutations at most distance r away from
a position with a mutation. The discreteness of our point process allows us to
make sense of the ‘derivative’ of K(r)

κ(r) =
1
θ
E [#{s : |t − s| = r, Ys = 1} | Yt = 1]

which we will use in the following.
Another descriptive summary in spatial statistics is the nearest neighbour func-

tion. The nearest neighbour function is the probability distribution of the distance
froma typical point to the nearest neighbouring point. The nearest neighbour func-
tion is less popular than Ripley’s K-function in spatial statistics because it has
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less power to discriminate between point pattern models [20]. However, in popula-
tion genetics the nearest neighbour function (or ‘runs of homozygosity’ or ‘distance
between segregating sites’) is very popular [9], and Ripley’s K-function is seldom
used. In Fig. 6(a) we show κ(r) as a function of ρ and θ. Note that the curves con-
verge to θ/(1 + θ) and that the behaviour for small r is determined by the recom-
bination rate. In Fig. 6(b) we show the distribution of runs of homozygozity as a
function of ρ and θ.

To assess the power of the descriptive statistics, we make an estimator which
minimises the χ2-distance between the observed and the theoretical statistics.
In Fig. 2 we demonstrate that Ripley’s K-function is a much more powerful
summary for parameter estimation than nearest neighbour.
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Fig. 6. On (a) and (b) the summary functions, the unnormalised derivative of Ripley’s
K-function and runs of homozygosity, are plotted for different parameter values. The
starting position of the K-statistics depends on the recombination rate ρ and it slowly
converges to the mutation rate θ. For runs of homozygosity, the difference between
different recombination rates are not as profound as for K-functions.

6 Conclusion

The particle filter is an alternative method for inference about population genetic
parameters. Asymptotically, all allowed proposal distributions converge, but the
time consumption can be detrimental in applications. In our simulation study,
the RECJumper particle filter is significantly better than the prior particle filter
when the sequence segments are larger than 400 base pairs. The set-up of resam-
pling positions and number of particles determines whether simulating segments
of length larger than 400 base pairs is advantageous. It could be enough to sam-
ple segments shorter than 400 base pairs and then stitching them together with
particle filtering methods. Best practice might also differ from dataset to dataset
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which makes it convenient to have both proposals; prior and RECJumper.
Our particle filter is slower than the HMM when it comes to evaluating the
likelihood p(y) at a precision necessary to estimate the recombination rate on
two sequences.

Generally, there are two strategies for calculating an integral numerically. One
is to discretise the function so that the integral of the discretised function can
be calculated exactly while another strategy is to make a Monte Carlo estimate
which converges towards the correct integral. In this study we estimated the
integral L(ρ) =

∫
pρ(y|x)pρ(x) dx using the latter strategy in contrast to the

widespread HMM based methods applying the former. The discretisation method
normally struggles in higher dimensions like the HMM methods do with many
sequences. If time has to be divided into 200 intervals, the speed will be even
slower.

Besides estimating a constant recombination rate, the model can also be
extended to estimation of varying recombination rate, and varying mutation rate.
It could also be used to estimate variability in population sizes as Palacios and
Wakeley [15] successfully did with simulated coalescent paths under a constant
population size model.

The summary statistics investigated proved to display a big difference in
power of estimating the recombination rate. The variance of the estimator based
on Ripley’s K-function was significantly lower than that of runs of homozygosity
in the set-up with a constant-sized, panmictic population. In this study the
theoretical values of the K-function and runs of homozygosity were calculated
using the Simonsen-Churchill model. These could also be estimated empirically
from simulations avoiding the Markov assumption.

The K-function can also be used for posterior predictive checks where a fitted
model is tested by comparing datasets simulated from the fitted model with the
actual dataset. The comparison is through a summary statistic on the datasets
and a transformation of the K-function could be such a summary statistic. The
global rank envelope test [14] is one way to make the transformation.
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2. Cappé, O., Moulines, E., Rydén, T.: Hidden Markov Models. Springer, New York
(2004)

3. Cawley, S.L., Pachter, L.: HMM sampling and applications to gene finding and
alternative splicing. Bioinformatics 19(suppl. 2), 36–41 (2003)

4. Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen
years later. Handb. Nonlinear Filtering 12(3), 656–704 (2009)

5. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

6. Durrett, R.: Probability Models for DNA Sequence Evolution. Springer Science &
Business Media, Berlin (2008)



Inferring Population Genetic Parameters 245

7. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-
gaussian bayesian state estimation. IEE Proc. F - Radar Sign. Process. 140(2),
107–113 (1993)

8. Griffiths, R.C., Marjoram, P.: Ancestral inference from samples of DNA sequences
with recombination. J. Comput. Biol. 3(4), 479–502 (1996)

9. Harris, K., Nielsen, R.: Inferring demographic history from a spectrum of shared
haplotype lengths. PLoS Genet. 9(6), 1–20 (2013)

10. Hobolth, A., Jensen, J.L.: Markovian approximation to the finite loci coalescent
with recombination along multiple sequences. Theoret. Popul. Biol. 98, 48–58
(2014)

11. Li, H., Durbin, R.: Inference of human population history from individual whole-
genome sequences. Nature 475(7357), 493–496 (2011)

12. Mailund, T., Halager, A.E., Westergaard, M., Dutheil, J.Y., Munch, K., Andersen,
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Abstract. We present a generalization of the Positional Burrows-
Wheeler Transform, or PBWT, to genome graphs, which we call the
gPBWT. A genome graph is a collapsed representation of a set of genomes
described as a graph. In a genome graph, a haplotype corresponds to a
restricted form of walk. The gPBWT is a compressible representation of a
set of these graph-encoded haplotypes that allows for efficient subhaplo-
type match queries. We give efficient algorithms for gPBWT construction
and query operations. We describe our implementation, showing the com-
pression and search of 1000 Genomes data.

As a demonstration, we use the gPBWT to quickly count the number
of haplotypes consistent with random walks in a genome graph, and with
the paths taken by mapped reads; results suggest that haplotype consis-
tency information can be practically incorporated into graph-based read
mappers.

1 Introduction

The PBWT is a compressible data structure for storing haplotypes that provides
an efficient search operation for subhaplotype matches [2]. Implementations, such
as BGT (https://github.com/lh3/bgt), can be used to compactly store and query
thousands of samples. The PBWT can also allow existing haplotype-based algo-
rithms to work on much larger collections of haplotypes than would otherwise
be practical [4]. In the PBWT, each site (corresponding to a genetic variant) is
a binary feature and the sites are totally ordered. The input haplotypes to the
PBWT are binary strings, with each element in the string indicating the state
of a site. In the generalization we present, each input haplotype is a walk in a
general bidirected graph. This allows haplotypes to be partial (they can start
and end at arbitrary nodes) and to traverse arbitrary structural variation. It
does not require the sites (nodes in the graph) to have a biologically relevant
ordering to provide compression. However, despite these generalizations, the core
data structures are similar, the compression still exploits genetic linkage and the
haplotype matching algorithm is essentially the same.
c© Springer International Publishing Switzerland 2016
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2 Definitions

We define G = (V,E) as a genome graph in a bidirected formulation [5,6].
Each node in V has a DNA-sequence label; a left, or 5′, side; and a right, or 3′,
side. Each edge in E is a pairset of sides. The graph is not a multigraph: only
one edge may connect a given pair of sides and thus only one self-loop can be
present on any given side.

We consider all the sides in the graph to be (arbitrarily) ordered relative
to one another. We also define the idea of the opposite of a side s, with the
notation s, meaning the side of s’s node which is not s (i.e. the left side of the
node if s is the right side, and the right side of the node if s is the left side).
Finally, we use the notation n(s) to denote the node to which a side s belongs.

Within the graph G, we define the concept of a thread, which can be used
to represent a haplotype or haplotype fragment. A thread t on G is a reversible
nonempty sequence of sides, such that for 0 ≤ i < N sides t2i and t2i+1 are
opposites of each other, and such that G contains an edge connecting every pair
of sides t2i and t2i+1. In other words, a thread is a walk through the sides of the
graph that alternates traversing nodes and traversing edges and which starts and
ends with nodes. Note that a thread is reversible: exactly reversing the sequence
of sides making up a thread produces an equivalent thread. We call a thread
traversed in a certain direction an orientation.

We consider G to have associated with it a collection of embedded
threads, denoted as T . We propose an efficient storage and query mechanism
for T given G.

Our high-level strategy is to store T by grouping together threads that have
recently visited the same sequences of sides, and storing in one place the next
sides that those threads will visit. As with the Positional Burrows-Wheeler
Transform, used to store haplotypes against a linear reference, and the ordi-
nary Burrows-Wheeler transform, we consider the recent history of a thread to
be a strong predictor of where the thread is likely to go next [2]. By grouping
together the next side data such that nearby entries are likely to share values,
we can use efficient encodings (such as run-length encodings) and achieve high
compression.

More concretely, our approach is as follows. We call an instance of side in a
thread a visit; a thread may visit a given side multiple times. Consider all visits
of threads in T to a side s where the thread arrives at s either by traversing an
edge incident to s (and not by traversing n(s)) or by beginning at s. For each
such visit, take the sequence of sides coming before this arrival at s in the thread
and reverse it, and then sort the visits lexicographically by these sequences of
sides, breaking ties by an arbitrary global ordering of the threads. Then, for
each visit, look two steps ahead in its thread (past s and s), and note what side
comes next (or the null side if the thread ends). After repeating for all the sorted
visits to s, take all the noted sides in order and produce the array Bs[] for side
s. An example B[] array and its interpretation are shown in Fig. 1. (Note that,
throughout, arrays are indexed from 0 and can produce their lengths trivially
upon demand.)
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Each unoriented edge {s, s′} in E has two orientations (s, s′) and (s′, s). Let
c() be a function of these oriented edges, such that for an oriented edge (s, s′),
c(s, s′) is the smallest index in Bs′ [] of a visit of s′ that arrives at s′ by traversing
{s, s′}. Note that, because of the global ordering of sides and the sorting rules
defined for Bs′ [] above, c(s0, s′) will be less than or equal to c(s1, s′) for s0 < s1
both adjacent to s′.

For a given G, we call the combination of the c() function and the B[] arrays
a graph Positional Burrows Wheeler Transform (gPBWT). We submit
that a gPBWT is sufficient to represent T , and, moreover, that it allows efficient
counting of the number of threads in T that contain a given new thread as a
subthread. Figure 2 and Table 1 give a worked example.

Fig. 1. An illustration of the B0[] array for a single side numbered 0. Threads visiting
this side may enter their next nodes on sides 1, 2, or 3. The B0[] array records, for each
visit of a thread to side 0, the side on which it enters its next node. This determines
through which of the available edges it should leave the current node. Because threads
tend to be similar to each other, they are likely to run in “ribbons” of multiple threads
that both enter and leave together. These ribbons cause the Bs[] arrays to contain runs
of identical values, which may be compressed.

3 Extracting Threads

To reproduce T from G, and the gPBWT, consider each side s in G in turn.
Establish how many threads begin (or, equivalently, end) at s by taking the
minimum of c(x, s) for all sides x adjacent to s. If s has no incident edges, take
the length of Bs[] instead. Call this number b. Then, for i running from 0 to
b, exclusive, begin a new thread at n(s) with the sides [s, s]. Next, we traverse
from n(s) to the next node. Consult the Bs[i] entry. If it is the null side, stop
traversing, yield the thread, and start again from the original node s with the
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Fig. 2. A diagram of a graph containing two embedded threads. The graph consists of
nodes [1, 2, 3, 4, 5], with sides [1L, 1R, 2L, 2R, . . .], connected by edges [1R, 3L], [2R, 3L],
[3R, 4L], [3R, 5L], [4R, 4R], and [5R, 5L]. Embedded threads travel on the right-hand
side of the nodes they are traveling through. Each thread here corresponds to a pair
of “lanes” running in opposite directions. Visits are ordered from top to bottom, with
“lanes” for lesser visits above those for greater ones. the “lanes” on the top half of each
node are ordered in correspondence with the Bs[] entries for the right side of the node,
and those on the bottom half are ordered in correspondence with the Bs[] entries for
the left side of the node. The threads shown here are [1L, 1R, 3L, 3R, 5L, 5R, 5L, 5R]
and [2L, 2R, 3L, 3R, 4L, 4R, 4R, 4L].

Table 1. Bs[] and c() values for the embedding of threads illustrated in Fig. 2.

Side Bs[] Array Edge c(s, t) count

1L [3L] c(1R, 3L) 0

1R [null] c(2R, 3L) 1

2L [3L] c(3R, 4L) 1

2R [null] c(3R, 5L) 0

3L [5L, 4L] c(4R, 4R) 0

3R [2R, 1R] c(5R, 5L) 1

4L [4R, 4R] c(3L, 1R) 0

4R [3R, null] c(3L, 2R) 0

5L [5L, null] c(4L, 3R) 0

5R [5R, 3R] c(5L, 3R) 1
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Algorithm 1. Algorithm for extracting threads from a graph.
function starting at(Side, G, B[], c())

� Count instances of threads starting at Side.
� Replace by an access to a partial sum data structure if appropriate.
if Side has incident edges then

return c(s, Side) for minimum s over all sides adjacent to Side.
else

return length(BSide[])

function rank(b[], Index, Item)
� Count instances of Item before Index in b[].
� Replace by rank of a rank-select data structure if appropriate.
Rank ← 0
for all index i in b[] do

if b[i] = Item then
Rank ← Rank + 1

return Rank
function where to(Side, Index, B[], c())

� For thread visiting Side with Index in the reverse prefix sort order, get the
corresponding sort index of the thread for the next side in the thread.

return c(Side, BSide[Index]) + Rank(BSide[], Index, BSide[Index])

function extract(G, c(), B[])
� Extract all oriented threads from graph G.
for all Side s in G do

TotalStarting ← starting at(s, G, B[], c())
for all i in [0, T otalStarting) do

Side ← s
Index ← i
Thread ← [s, s]
NextSide ← BSide[Index]
while NextSide �= null do

Thread ← Thread + [NextSide, NextSide]
Index ← where to(Side, Index, B[], c())
Side ← NextSide
NextSide ← BSide[Index]

yield Thread

next i value less than b. Otherwise, traverse to side s′ = Bs[i]. Calculate the
arrival index i′ as c(s, s′) plus the number of entries in Bs[] before entry i that
are also equal to s′. This gives the index in s′ of the thread being extracted.
Then append s′ and s′ to the growing thread, and repeat the traversal process
with i ← i′ and s ← s′, until the end of the thread is reached.

This process will enumerate all threads in the graph, and will enumerate
each such thread twice (once from each end). The threads merely need to be
deduplicated (such that two enumerated threads produce one actual thread, as
the original collection of embedded threads may have had duplicates) in order to
produce the collection of embedded threads T . Pseudocode for thread extraction
is shown in Algorithm 1.
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4 Succinct Storage

For the case of storing haplotype threads specifically, we can assume that,
because of linkage, many threads in T are identical local haplotypes for long
runs, diverging from each other only at relatively rare crossovers or mutations.
Because of the reverse prefix sorting of the visits to each side, successive entries
in the B[] arrays are thus quite likely to refer to locally identical haplotypes,
and thus to contain the same value for the side to enter the next node on. Thus,
the B[] arrays should benefit from run-length compression. Moreover, since (as
will be seen below) one of the most common operations on the B[] arrays will be
expected to be rank queries, a succinct representation, such as a collection of bit
vectors or a dynamic wavelet tree, would be appropriate. To keep the alphabet
of symbols in the B[] arrays small, it is possible to replace the stored sides for
each B[] with numbers referring to the nodes adjacent to s.

We note that, for contemporary variant collections (e.g. the 1000 Genomes
Project), the underlying graph G may be very large, while there may be relatively
few threads (of the order of thousands) [1]. Implementers should thus consider
combining multiple B[] arrays into a single data structure to minimize overhead.

5 Embedding Threads

A trivial construction algorithm for the gPBWT is to independently construct
Bs[] and c(s, s′) for all sides s and oriented edges (s, s′) according to their defini-
tions above. However, this would be very inefficient. Here we present an efficient
algorithm for gPBWT construction, in which the problem of constructing the
gPBWT is reduced to the problem of embedding an additional thread.

Each thread is embedded by embedding its two orientations, one after the
other. To embed a thread orientation t = [t0, t1, . . . t2N , t2N+1], we first look at
node n(t0), entering by t0. We insert a new entry for this visit into Bt0 [], length-
ening the array by one. The location of the new entry is near the beginning,
before all the entries for visits arriving by edges, with the exact location deter-
mined by the arbitrary order imposed on thread orientations. Thus, its addition
necessitates incrementing c(s, t0) by one for all oriented edges (s, t0) incident on
t0 from sides s in G. If no other order of thread orientations suggests itself, the
order created by their addition to the graph will suffice, in which case the new
entry can be placed at the beginning of Bt0 []. We call the location of this entry
k. The value of the entry will be t2, or, if t is not sufficiently long, the null side,
in which case we have finished.

If we have not finished the thread, we first increment c(s, t2) by one for each
side s adjacent to t2 and after t1 in the global ordering of sides. This updates the
c() function to account for the insertion into Bt2 [] we are about to make. We then
find the index at which the next visit in t ought to have its entry in Bt2 [], given
that the entry of the current visit in t falls at index k in Bt0 []. This is given by
the same procedure used to calculate the arrival index when extracting threads,
denoted as WHERE TO(t1, k) (see Algorithm 1). Setting k to this value, we
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Algorithm 2. Algorithm for embedding a thread in a graph.
procedure insert(b[], Index, Item)

� Insert Item at Index in b[].
� Replace by insert of a rank-select-insert data structure if appropriate.
length(b[]) ← length(b[]) + 1 � Increase length of the array by 1
for all i in (Index, length(b[]) − 1], descending do

b[i] ← b[i − 1]

b[Index] = Item

procedure increment c(Side, NextSide, c())
� Modify c() to reflect the addition of a visit to the edge (Side, NextSide).
for all side s adjacent to NextSide in G do

if s > Side in side ordering then
c(s, NextSide) ← c(s, NextSide) + 1

procedure embed(t, G, B[], c())
� Embed an oriented thread t in graph G.
� Call this twice to embed it for search in both directions.
k ← 0 � Index we are at in Bt2i []
for all i in [0, length(t)/2) do

if 2i + 2 < length(t) then
� The thread has somewhere to go next.
insert(Bt2i [], k, t2i+2)
increment c(t2i+1, t2i+2, c())
k ← where to(t2i, k, B[], c())

else
insert(Bt2i [], k, null)

can then repeat the preceding steps to embed t2, t3, etc. until t is exhausted and
its embedding terminated with a null-side entry. Pseudocode for this process is
shown in Algorithm2.

Assuming that the B[] array information is both indexed for O(log(n)) rank
queries and stored in such a way as to allow O(log(n)) insertion and update (in
the length of the array n), this insertion algorithm is O(N · log(N + E)) in the
length of the thread to be inserted (N) and the total length of existing threads
(E). Inserting M threads of length N will take O(M · N · log(M · N)) time.

6 Counting Occurrences of Subthreads

The generalized PBWT data structure presented here preserves some of the
original PBWT’s efficient haplotype search properties [2]. The algorithm for
counting all subthread instances in T of a new thread orientation t runs as
follows.

We define fi and gi as the first and past-the-last indexes for the range of
visits of threads in T to side t2i, ordered as in Bt2i [].

For the first step of the algorithm, f0 and g0 are initialized to 0 and the
length of Bt0 [], respectively, so that they select all visits to node n(t0), seen as
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entering through t0. On subsequent steps, fi+1 and gi+1, are calculated from fi
and gi merely by applying the WHERE TO() function (see Algorithm 1). We
calculate fi+1 = WHERE TO(t2i, fi) and gi+1 = WHERE TO(t2i, gi).

This process can be repeated until either fi+1 ≥ gi+1, in which case we can
conclude that the threads in the graph have no matches to t in its entirety, or
until t2N , the last entry in t, has its range fN and gN calculated, in which case
gN − fN gives the number of occurrences of t as a subthread in threads in T .
Moreover, given the final range from counting the occurrences for a thread t, we
can count the occurrences of any longer thread that begins with t, merely by
continuing the algorithm with the additional entries in the longer thread.

Assuming that the B[] arrays have been indexed for O(1) rank queries, the
algorithm is O(N) in the length of the subthread t to be searched for, and has
a runtime independent of the number of occurrences of t. Pseudocode is shown
in Algorithm 3.

Algorithm 3. Algorithm for searching for a subthread in the graph.
function count(t, G, B[], c())

� Count occurrences of subthread t in graph G.
f ← 0
g ← length(Bt0 [])
for all i in [0, length(t)/2 − 1) do

f ← where to(t2i, f, B[], c())
g ← where to(t2i, g, B[], c())
if f ≥ g then

return 0
return g − f

7 Results

The gPBWT was implemented within xg, the succinct graph indexing component
of the vg variation graph toolkit [3]. Due to the succinct data structure libraries
employed, efficient integer vector insert operations were not possible, and so
a batch construction algorithm, applicable only to directed acyclic graphs, was
implemented. A modified release of vg, which can be used to replicate the results
shown here, is available from https://github.com/adamnovak/vg/releases/tag/
gpbwt-paper.

The modified vg was used to create a genome graph for human chromosome
22, using the 1000 Genomes Phase 3 VCF on the hg19 assembly, embedding
information about the correspondence between VCF variants and graph elements
[1]. Note that the graph constructed from the VCF was directed and acyclic; it
described only substitutions and indels, with no structural variants, and thus
was amenable to the the batch gPBWT construction algorithm. Next, haplo-
type information for the 5,008 haplotypes stored in the VCF was imported and
stored in a gPBWT-enabled xg index for the graph, using the batch construction

https://github.com/adamnovak/vg/releases/tag/gpbwt-paper
https://github.com/adamnovak/vg/releases/tag/gpbwt-paper
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algorithm mentioned above. In cases where the VCF specified self-inconsistent
haplotypes (for example, a haplotype with a G to C SNP and a G to GAT insertion
at the same position), they were broken apart at the inconsistent positions. The
xg indexing and gPBWT construction process took 25 h and 45 min using a sin-
gle indexing thread on an Intel Xeon X7560 running at 2.27 GHz, and consumed
344 GB of memory. The high memory usage was a result of the decision to retain
the entire data set in memory in an uncompressed format during construction.
However, the resulting xg index was 662 MB on disk, of which 573 MB was used
by the gPBWT. Information on the 5,008 haplotypes across the 1,103,547 vari-
ants was thus stored in about 1.7 bits per phased diploid genotype in the succinct
self-indexed representation, or 0.018 bits per haplotype base. Extrapolating lin-
early from the 51 megabases of chromosome 22 to the entire 3.1 gigabase human
reference genome, a similar index of the entire 1000 Genomes dataset would take
40 GB, with 35 GB devoted to the gPBWT. This is well within the storage and
memory capacities of modern computer systems.

Random Walks. To evaluate query performance, 1 million random walks of
100 bp each were simulated from the graph. To remove walks covering ambigu-
ous regions, walks that contained two or more N bases in a row were eliminated,
leaving 686,897 random walks. The number of haplotypes in the gPBWT index
consistent with each walk was then determined, taking 81.30 s in total using
a single query thread on the above-mentioned Xeon system. The entire opera-
tion took a maximum of 685 MB of memory, indicating that the on-disk index
did not require significant expansion during loading to be usable. Overall, the
gPBWT index required 118 microseconds per count operation on the 100 bp ran-
dom walks. It was found that 317,681 walks, or 46 %, were not consistent with
any haplotype in the graph. The distribution of of the number of haplotypes
consistent with each random walk is visible in Fig. 3.

Read Mapping. To further evaluate the performance of the query implementa-
tion, 1000 Genomes Low Coverage Phase 3 reads for NA12878 that were mapped
in the official alignment to chromosome 22 were downloaded and re-mapped to
the chromosome 22 graph, using the xg/GCSA2-based mapper in vg, allowing
for up to a single secondary mapping per read. The reads which mapped with
scores of at least 90 points out of a maximum of 101 points (for a perfectly-
mapped 101 bp read) were selected (so filtering out alignments highly like to
be erroneous), and broken down into primary and secondary mappings. The
number of haplotypes in the gPBWT index consistent with each read’s path
through the graph was calculated (Fig. 3). For 1,509,672 primary mappings, the
count operation took 226.36 s in total, or 150 microseconds per mapping, again
using 685 MB of memory. It was found that 13,918 of these primary mappings,
or 0.9 %, and 1,280 of 57,115 secondary mappings, or 2.2 %, were not consistent
with any haplotype path in the graph. These read mappings, despite having
reasonable edit based scores, may represent rare recombinations, but the set is
also likely to be enriched for spurious mappings.
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Fig. 3. Distribution (top) and cumulative distribution (bottom) of the number of
1000 Genomes Phase 3 haplotypes consistent with short paths in the chromosome
22 graph. Primary mappings of 101 bp reads with scores of 90 out of 101 or above
(n = 1, 509, 672) are the solid blue line. Secondary mappings meeting the same score
criteria (n = 57, 115) are the dashed green line. Simulated 100 bp random walks in
the graph without consecutive N characters (n = 686, 897) are the dotted red line.
Consistent haplotypes were counted using the gPBWT support added to vg [3].

8 Discussion

We have introduced the gPBWT, a graph based generalization of the PBWT.
We have demonstrated that a gPBWT can be built for a substantial genome
graph (all of human chromosome 22 and the associated chromosome 22 substi-
tutions and indels in 1000 Genomes). Using this data structure, we have been
able to quickly determine that the haplotype consistency rates of random walks
and primary and secondary read mappings differ substantially from each other,
and based on the observed distributions we hypothesize that consistency with
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very few haplotypes can be a symptom of a poor alignment. A sophisticated
analysis of haplotype consistency rate distributions could thus improve align-
ment scoring (although from a variant calling perspective it would be incorrect
to independently penalize each read with the full cost of a required recombina-
tion).

In the present experiment, we have examined only relatively simple variation:
substitutions and short indels. More complex variation, like large inversions and
translocations, which would have induced cycles in our genome graphs, was both
absent from the 1000 Genomes data set we used and unsupported by the opti-
mized DAG-based construction algorithm which we implemented. We expect
that complex structural variation is well suited to representation as a genome
graph, so supporting it efficiently should be a priority for a serious practical
gPBWT construction implementation.

Extrapolating from our results on chromosome 22, we predict that a
whole-genome gPBWT could be constructed for all 5,008 haplotypes of the
1000 Genomes data and stored in the main memory of a contemporary com-
puter. Looking forward, this combination of genome graph and gPBWT could
potentially enable efficient mapping not just to one reference genome or col-
lapsed genome graph, but simultaneously to a large set of genomes related by a
genome graph.
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Abstract. We address the problem of finding a minimum-size set of
k-mers that hits L-long sequences. The problem arises in the design of
compact hash functions and other data structures for efficient handling
of large sequencing datasets. We prove that the problem of hitting a
given set of L-long sequences is NP-hard and give a heuristic solution
that finds a compact universal k-mer set that hits any set of L-long
sequences. The algorithm, called DOCKS (design of compact k-mer sets),
works in two phases: (i) finding a minimum-size k-mer set that hits every
infinite sequence; (ii) greedily adding k-mers such that together they
hit all remaining L-long sequences. We show that DOCKS works well
in practice and produces a set of k-mers that is much smaller than a
random choice of k-mers. We present results for various values of k and
sequence lengths L and by applying them to two bacterial genomes show
that universal hitting k-mers improve on minimizers. The software and
exemplary sets are freely available at acgt.cs.tau.ac.il/docks/.

1 Introduction

Inspired by Grabowski and Raniszewski’s sampled suffix array using minimiz-
ers [1], we consider the following problem involving covering strings by selecting
short k-mer substrings:

Problem 1. Given integers k and L, find a smallest set UkL of k-mers such that
any string of length L or longer must contain at least one k-mer from UkL.

The set UkL is called a universal set of hitting k-mers, and we call each k-mer in
the set universal. Such a set has a number of applications in speeding up genomic
analyses since it can often be used in places where minimizers have been used
in the past [2]. For example:

1. Hashing for read overlapping. A näıve read overlapper must test O(n2)
pairs of reads to see whether they overlap. If we require an overlap of length
L, any pair of reads with such an overlap must contain a k-mer from set
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UkL in this overlapped region. By bucketing reads into bins according to the
universal k-mers they contain, we need only test pairs of reads in the same
bucket. The number of buckets is limited by |UkL|.

2. Sparse suffix arrays. A sparse suffix array of a string S saves memory by
storing an index for only every sth position in S [1,3]. To query a sparse
suffix array for string q, we perform at most s queries starting from indices
0, . . . , s − 1 in q; one of these queries will intersect a position stored in the
suffix array. Using UkL, we can instead store only positions in S that start
with a k-mer in UkL. Any query with |q| ≥ L must contain one of these
selected k-mers and will be matched when searching the suffix array.

3. Bloom filters to speed up sequence search. Bloom filters have been
used to speed up sequence search by storing k-mers present in a read set for
quick testing [4]. In current implementations, all k-mers present in a read
set are stored in these filters. If, instead, only the set of k-mers in a UkL is
stored, any window of length ≥ L is still guaranteed to contain one of these
representative queries, potentially reducing the size of Bloom filters that must
be maintained.

Minimizers have been used for some of these and similar applications [5–7].
Minimizers are the lexicographically first k-mer within a window of length L,
which were introduced by Roberts et al. [2] for genome assembly. MSP [8] com-
presses k-mers by hashing them to their 4-mer minimizer to efficiently construct
a de Bruijn graph for assembly. SparseAssembler [9] represents the de Bruijn
graph using only every g-th k-mer in the sequence (and has also been imple-
mented using minimizers). Kraken [10] uses minimizers to speed up database
queries for k-mers during metagenome sequence classification. The Locally Con-
sistent Parsing (LCP) [11] provides the concept of “core substrings” which, like
minimizers, are guaranteed to be shared by long enough identical strings. The
SCALCE software package [12] uses core substrings to compress DNA sequences.

A universal set UkL, if it can be found, has a number of advantages over min-
imizers for these applications. First, the set of minimizers for a given collection
of reads may be as dense as the complete set of k-mers, whereas we show below
that UkL is often smaller by a factor of k. Second, for any k and L, the set of
universal k-mers needs to be computed only once and not recomputed for every
dataset. Third, the hash buckets, sparse suffix arrays, and Bloom filters created
for different datasets will contain a comparable set of k-mers if they are sam-
pled according to UkL. The universal set of k-mers also has the advantage over
dataset-specific sets because one does not need to look at all the reads before
deciding on the k-mers to use, and one does not need to build a dataset-specific
de Bruijn graph to select covering k-mers.

The need for faster and more memory efficient genomic analysis methods is
rapidly increasing as fast as the size and depth of sequencing data is increasing.
The NIH Sequence Read Archive, for example, contains over 3.5 petabytes of
sequence data and is growing at a fast pace. Increased use of RNA-seq in many
conditions and in clinical settings leads to high processing burdens. Metage-
nomic sampling at increasing depth to quantify and assemble microbes from
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environmental samples leads to even larger sequencing datasets. New ideas in
indexing, data structures, and algorithms are essential to keep computational
pace with this data generation. The minimizer idea has been extremely success-
ful in reducing computational requirements. The universal set of k-mers proposed
here will lead to further improvements in speed and memory.

The problem is also of theoretical interest as it can be rephrased as an equiva-
lent problem on the complete (original) de Bruijn graph (see Definition 1 below).
This is the viewpoint we take for most of this article:

Problem 2. Given a de Bruijn graph Dk of order k and an integer L, find a
smallest set of vertices UkL such that any path in Dk of length L − k passes
through at least one vertex of UkL.

A solution to this problem may reveal additional hidden structure contained
within the class of de Bruijn graphs.

We show that the problem of finding a minimum-size k-mer set that hits
every string in a given set of L-long strings is NP-hard, further motivating the
need for a universal k-mer set. We provide a heuristic called DOCKS that is
based on the combination of three ideas. First, we use a decycling algorithm [13]
to convert a complete de Bruijn graph into a directed acyclic graph (DAG)
by removing a minimum number of k-mers, building off an implementation by
Knuth [14]. We then supply a novel dynamic program to score remaining k-
mers by the number of remaining length-� paths that they hit. Finally, we use
that dynamic program in a greedy heuristic to select the additional k-mers and
produce a small universal set ÛkL, which we show empirically to often be close
to the optimal size. Our use of a greedy heuristic is motivated by providing a
proof that finding a small �-path cover in a graph G is NP-hard even when G is
a DAG.

DOCKS provides the first practical solution to the identification of universal
sets of k-mers. The software is freely available on acgt.cs.tau.ac.il/docks/, as are
universal sets of k-mers over a range of values of L and k. We report on the
size of the universal k-mer hitting set produced by DOCKS and demonstrate
on two datasets that we can better cover sequences with a smaller set of k-mers
than is possible using minimizers. Our results also provide a starting point for
additional theoretical investigation of these path coverings of de Bruijn graphs.

2 Definitions

Definition 1 (de Bruijn Graph). A de Bruijn graph of order k over alphabet
Σ is a directed graph in which every vertex has an associated label (a string over
Σ) of length k (k-mer) and every edge has an associated label of length k + 1.
There are exactly |Σ|k vertices in a de Bruijn graph, each representing a unique
k-mer. If an edge (u, v) has a label l, then the label of u must be a k-prefix of l
and the label of v must be a k-suffix of l.

A complete de Bruijn graph contains all possible edges, which represent
together all (k + 1)-mers over Σ. Every path in a de Bruijn graph represents a

http://acgt.cs.tau.ac.il/docks/
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sequence. A path v0, e0, v1, e1, v2, . . . , vn of length n spells a sequence s of length
n+k such that the label of vi occurs in s starting at position i for all 0 ≤ i ≤ n,
and the label of ei occurs in s starting at position i for all 0 ≤ i ≤ n − 1. Note
that vertices may repeat in a path.

We will need two bits of terminology involving k-mers intersecting and not
intersecting sequences over an alphabet Σ:

Definition 2 (hits). K-mer w hits sequence S if w ⊆ S, i.e. w appears as a
contiguous substring in string S. K-mer set X hits sequence S if ∃w ∈ X s.t.
w ⊆ S. Denote hit(w,L) = {S ∈ ΣL | w ⊆ S} for k-mer w and length L. Denote
hit(X,L) = ∪

w∈X
hit(w,L).

Definition 3 (avoids). Sequence S avoids k-mer w if w �⊆ S. Sequence S
avoids k-mer set X if ∀w ∈ X,w �⊆ S. Denote avoid(w,L) = ΣL \ hit(w,L)
for k-mer w and similarly avoid(X,L) = ΣL \ hit(X,L) for k-mer set X.

3 Methods

It is not known how to efficiently find a minimum universal (k, L)-hitting set. As
we show in Sect. 4, the corresponding problem when restricted to a given set of
input sequences is NP-hard (Sect. 4.1). Here, we give a practical heuristic to find
small (but non-optimal) universal k-mer sets. This algorithm works in two steps:
first it finds and removes a minimum-size k-mer set hitting all infinite sequences,
and then it removes additional k-mers to hit all remaining L-long sequences.
We now describe these two steps in detail.

3.1 Finding a Minimum k-mer Set Hitting All Infinite Sequences

The problem of finding a minimum-size k-mer set hitting all infinite sequences
is known in the literature as finding an ‘unavoidable set’ of constant length [15].
This is a set of words of the same length k that hits any infinite word (but finite
words may avoid the set). The problem of finding an unavoidable set for a given
k can be solved in time polynomial in the output size [15]. The original algorithm
is due to Mykkeltveit [13]. Its running time is O(kM(k)), where M(k) is the size
of the minimum unavoidable set. M(k) converges to |Σ|k/k (an exact formula
is given in Sect. 5.1, Eq. 5), so the running time is O(|Σ|k).

An unavoidable set of constant length k is equivalent to a set of vertices in
a complete de Bruijn graph of order k whose removal turn it into a DAG. Each
k-mer in the set corresponds to a vertex, and the removal of vertices from every
cycle guarantees that no infinite sequence is represented as a path in the graph.
This set is known as a decycling set.

3.2 A Greedy Algorithm to Hit All Remaining L-long Sequences

Unfortunately, finding an unavoidable set is not enough, as there may be L-long
sequences that avoid that set. Thus, we need additional k-mers to hit those.
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If we consider the graph formulation, after removal of the unavoidable set from
the graph, we are left with a directed acyclic graph, which may contain (L − k)-
long paths representing L-long sequences. We need to remove additional vertices,
so that there is no path of length � = L−k. The problem of finding a minimum-
size set of vertices that hit all �-long paths in a directed acyclic graph is NP-hard,
as we prove in Subsect. 4.2. Therefore, we give a heuristic algorithm.

Our algorithm is based on the greedy algorithm for the minimum hitting
set [16]. We define the hitting number T�(v) of a vertex v as the number of
paths of length � that contain it. The main observation is that we can calculate
the hitting number of each vertex efficiently using dynamic programming. The
solution is based on calculating the number of paths of length i that terminate
at vertex v, and the number of paths of length i that start at vertex v, for all
v ∈ V and 0 ≤ i ≤ �. Then, the number of �-long paths through v is directly
computable from these values by breaking any path into a i-long path ending
at v and a (� − i)-long path starting at v, for all possible values of i. We set
� = L − k to get the hitting number of each vertex.

Specifically, let G′ = (V ′, E′) be the directed acyclic graph, after removing
the decycling set. Denote by D and F matrices of size |V ′|×(�+1), where D(v, i)
is the number of i-long paths in G′ starting at vertex v and F (v, i) is the number
of i-long paths ending at vertex v.

The calculation of D and F is as follows:

D(v, 0) = F (v, 0) = 1,∀v ∈ V ′ (1)

D(v, i) =
∑

(v,u)∈E′
D(u, i − 1) (2)

F (v, i) =
∑

(u,v)∈E′
F (u, i − 1) (3)

To get the number of �-long paths vertex v participates in, we sum:

T�(v) =
�∑

i=0

F (v, i) × D(v, � − i) (4)

The running time is proportional to the sum of all vertex degrees (which is
Θ(|E|)) times �, giving a running time of O(|Σ|k · �) for � = L − k.

3.3 The Complete DOCKS Algorithm

To get the complete algorithm, we combine the two steps. First, we find a decy-
cling set in a complete de Bruijn graph of order k and remove it from the graph.
Then, we repeatedly remove a vertex v with the largest hitting number T�(v)
until there are no �-long paths, recomputing T�(u) for all remaining u after each
removal. This is summarized below (Algorithm DOCKS).

Finding the decycling set takes O(|Σ|k), as the size of the set is Θ(|Σ|k/k)
and the running time for finding each k-mer is O(k) [13]. In the second phase,
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Algorithm 1. DOCKS: Find a small k-mer set hitting all L-long sequences
1: Generate a complete de Bruijn graph G of order k, set � = L − k.
2: Find a decycling vertex set X using Mykkeltveit’s algorithm.
3: Remove all vertices in X from graph G, resulting in G′.
4: while there are still paths of length � do
5: Calculate the number of starting and ending i-long paths at each vertex, for

0 ≤ i ≤ �.
6: Calculate the hitting number for each vertex.
7: Remove a vertex with maximum hitting number from G′, and add it to set X.
8: end while
9: Output set X.

each iteration calculates the hitting number of all vertices using dynamic pro-
gramming in time O(|Σ|kL). The number of iterations is 1 + p, where p is
the number of vertices removed. Thus, the total running time is dominated by
steps 4–8 and is O((1 + p)|Σ|kL).

4 Complexity

4.1 NP-hardness of MINIMUM (k, L)-HITTING SET

The problem of finding a dataset-specific hitting set is NP-hard, further moti-
vating the need for the design of a universal k-mer set:

MINIMUM (k, L)-HITTING SET
INSTANCE: Set S of L-long sequences over Σ and k.
VALID SOLUTION: Set X of k-mers s.t. S ⊆ hit(X,L).
GOAL: Minimize |X|.

We prove that MINIMUM (k, L)-HITTING SET is NP-hard. For simplicity,
we study the problem on DNA alphabet, but it can be easily generalized to any
finite alphabet Σ. We show a reduction from HITTING SET [17]. While the
problems look similar, HITTING SET is not a special case of the other since in
HITTING SET the subsets are arbitrary, while in MINIMUM (k, L)-HITTING
SET problem each subset is made of overlapping k-mers.

Theorem 1. MINIMUM (k, L)-HITTING SET is NP-hard.

Proof. Given an input to HITTING SET, a set S of subsets of E = {e1 . . . en},
we generate an input to MINIMUM (k, L)-HITTING SET problem as follows:
Denote by m the size of the maximum cardinality set, i.e. m = maxSi∈S |Si|. We
choose � = 
log2(max(m,n))�, L = 3�m and k = 2�. We map each set Si ∈ S
to a �-long binary representation of i, where instead of bits we use nucleotides C
and G. We map each element ej ∈ E to a �-long binary representation of j, where
instead of bits we use nucleotides A and T. We call these representations the set’s
{C,G}-representation and the element’s {A, T}-representation and denote them
by fCG(Si) and fAT (ej).
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We generate a sequence set T , which is the input to MINIMUM
(k, L)-HITTING SET. For each set Si ∈ S we generate a sequence
that contains all of its elements’ {A, T}-representations, each appearing
twice consecutively and buffered by the set’s {C,G}-representation. For-
mally, for the set Si = {ei1 , . . . , ei|Si|} we create the sequence: Ti :=

(
∏|Si|

j=1 fAT (eij ) · fAT (eij ) · fCG(Si)) · (fAT (ei1) · fAT (ei1) · fCG(Si))
m−|Si| (here∏

indicates concatenation). The new instance T is {T1, . . . , T|S|}.
Denote by TOPT an optimal solution to MINIMUM (k, L)-HITTING SET. If

a k-mer contains a complete {A, T}-representation w, then the element f−1
AT (w)

is in the optimal solution to HITTING SET. If a k-mer contains a complete
{C,G}-representation w, then any element from the set f−1

CG(w) can be part of
the optimal solution. The running time of the reduction is bounded by O(|S|×L)
to generate the input sequence set T . In terms of m and n the running time is
O(|S| · m · (log(m) + log(n))).

We now prove the correctness of the reduction. We start with proving several
properties of the solution.

Lemma 1. A k-mer that contains a complete {A, T}-representation w can be
replaced by k-mer ww to produce a hitting set of the same cardinality.

Proof. The k-mer contains a complete {A, T}-representation w. Thus, it can only
hit sequences that contain w. Since the sequences were constructed to contain
two adjacent {A, T}-representations per element, and since this representation
is unique, k-mer ww hits the same set of sequences. �


Lemma 2. A k-mer that contains a complete {C,G}-representation can be
replaced by a k-mer that contains two adjacent occurrences of any {A, T}-
representation from this sequence to produce a hitting set of the same cardinality.

Proof. A {C,G}-representation is unique to each sequence. Thus, it can only hit
one sequence, and replacing it by any other k-mer from that sequence preserves
the hitting properties of the set. �


We now prove the two sides of the reduction:

1. MINIMUM (k, L)-HITTING SET ⇒ HITTING SET: all L-long sequences
in T are hit by k-mers in TOPT . By Lemmas 1 and 2 we can transform any
hitting set to a hitting set of the same cardinality, but containing only k-mers
over {A, T}. These correspond to elements in an optimal solution of HITTING
SET. Assume contrary that there is a smaller solution U to HITTING SET.
Then, the set {fAT (w) · fAT (w) | w ∈ U} hits all sequences in the k-mer
hitting problem, and by that producing a smaller solution, contrary to its
optimality.

2. HITTING SET ⇒ MINIMUM (k, L)-HITTING SET: denote SOPT an opti-
mal solution to HITTING SET. Then, a set of k-mers {fAT (w) · fAT (w) |
w ∈ SOPT } is an optimal solution to MINIMUM (k, L)-HITTING SET.
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Assume contrary that there is a smaller solution U to MINIMUM (k, L)-
HITTING SET. By Lemmas 1 and 2 there is a solution composed of k-mers
over {A, T}. The set of element {f−1

AT (w1:k/2) | w ∈ U} is a smaller hitting
set in HITTING SET, contrary to its optimality. �


4.2 NP-hardness of MINIMUM �-PATH COVER IN A DAG

Our heuristic to find UkL searches for a minimum �-path cover in the DAG
created after removing a decycling set (Sect. 3.1). We show now that this problem
is in general NP-hard (by a reduction from VERTEX COVER [17]) — motivating
our use of a greedy heuristic to solve this subproblem.

MINIMUM �-PATH VERTEX COVER IN A DAG
INSTANCE: A directed acyclic graph G = (V,E) and integer �.
VALID SOLUTION: Vertex set X s.t. G′ = (V \X,E) contains no �-long paths.
GOAL: Minimize |X|.

Theorem 2. MINIMUM �-PATH COVER IN A DAG is NP-hard.

Proof. Given a graph G = (V,E) as input to VERTEX COVER, we construct an
instance to MINIMUM �-PATH COVER IN A DAG as follows. We first remove
from G any vertices that are incident to self-loop edges, since these must be
part of any vertex cover. We then transform the remaining graph into a DAG
by arbitrarily ordering the vertices of G, and directing the edges from lower-
index to higher-index vertices. Since there are no self-loops, the result is a DAG
D = (V,A). The input to the �-path cover is I = (D, 1). The running time of
the reduction is linear in the size of the graph.

A set of vertices U ⊆ V is a vertex cover in G iff it intersects every edge in
E. But this is true iff it hits every path of length 1 in D. Hence, U is a minimum
vertex cover iff it is a minimum 1-path cover in D. �


5 Results

5.1 A Theoretical Lower Bound for the Number of k-mers

For a given k-mer w, its conjugacy class is the set of k-mers obtained by rotation
of w. Conjugacy classes form cycles in the de Bruijn graph and form a partition
of the k-mers. The number of conjugacy classes over all k-mers is given by [15]

C(|Σ|, k) =
k∑

i=1

|Σ|gcd(i,k)/k. (5)

A decycling set necessarily contains a k-mer in each conjugacy class. Golomb’s
conjecture, proved by Mykkeltveit [13], states that the smallest decycling set has
cardinality C(|Σ|, k). Consequently, a (k, L)-hitting set has a size ≥ C(|Σ|, k).

Table 1 reports Lmax = �+k, the length of the longest sequence in a complete
de Bruijn graph after the decycling set is removed. The length of sequences
avoiding the decycling set is too long for most applications. Additional k-mers
must be selected to obtain a hitting set for smaller longest paths.
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Table 1. Maximum length of longest sequence avoiding an unavoidable set for different
k. For each value k, a decycling set was removed from a complete de Bruijn graph, and
the length Lmax of the longest sequence, represented as a longest path, was calculated.

k 2 3 4 5 6 7 8 9 10 11 12 13 14

Lmax 5 11 20 45 70 117 148 239 311 413 570 697 931

5.2 Computational Results

We implemented and ran DOCKS over a range of k and L: 5 ≤ k ≤ 9 with
20 ≤ L ≤ 200, in increments of 10. These are typical values used for minimizers
of longer k-mers and read lengths of short read sequences. We also implemented
two random procedures that we compare to as baselines. One, termed “random”,
removes random vertices until no � = L − k paths remains. The second, termed
“decycling+random” (DR), first removes a minimum-size decycling set and then
randomly removes vertices until no path of length � = L − k exists. In both
cases checking the termination condition is done by first testing if there are any
cycles, and if there are no cycles, computing the maximum-length path, which
takes linear time in a DAG.

The results are summarized in Fig. 1. Our method outputs a set of k-mers that
is much smaller than both random procedures. The results also show that there
is a significant benefit in removing a minimum-size decycling set first and then
additional vertices if we wish to hit all �-long paths, as the random procedure
that starts from the complete graph performs far worse than the one that is
applied to the graph after removing an optimal decycling set. Note that random
sometimes removes the same number for different values of L, since by the time it
gets an acyclic graph, only short paths remain. As expected, the ratio compared
to the lower bound decreases with L. It is easier to hit longer sequences as they
contain more k-mers.

Table 2. Running times of the DOCKS algorithm for different k and L values. The
user run time is in seconds (s) or minutes (m).

k/L 100 110 120 130 140 150 160 170 180 190 200

7 0.7 s 0.5 s 0.4 s 0.4 s 0.4 s 0.4 s 0.4 s 0.4 s 0.4 s 0.4 s 0.4 s

8 11.1 s 7.6 s 4.3 s 2.6 s 1.3 s 0.7 s 0.7 s 0.7 s 0.7 s 0.7 s 0.7 s

9 8.8 m 6.9 m 5.4 m 4.2 m 3.2 m 2.5 m 1.8 m 1.4 m 1.0 m 0.7 m 0.5 m

Table 2 reports the running times for different values of k and L. For all
instances, the dominant running time is of the second step, greedily finding
an �-path cover. This computation needs to be done only once per (k, L) pair.
Running times were benchmarked on a single CPU of a 12-CPU Intel Xeon
X5680 (3.33 GHz) machine with 47 GB 1333 MHz RAM.
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Fig. 1. Performance of DOCKS. For different combinations of k and L we ran DOCKS
and two random procedures over the DNA alphabet. The results are shown in com-
parison to the size of the decycling set. When the ratio is 1, all the sequences avoiding
the decycling set were of length shorter than L. DR: decycling+random.

5.3 Comparison to Minimizers on Bacterial Genomes

Although the number of universal hitting k-mers for a given path length can
be a significant proportion of all k-mers (around |Σ|k/k), the actual number of
k-mers hitting a given sequence set is much less, even less than the number of
minimizers. In Table 3, we compare the distribution of the universal hitting k-
mers and the minimizers in two bacterial genomes. Acetobacter tropicalis (RefSeq
NZ CP011120) has a genome of 2.8 Mbp and a GC content of 47.8%. Caulobacter
vibriodes (RefSeq NC 002696) is larger at 4.0 Mbp and has a higher GC content
of 67.2%. For each genome, we computed the number of minimizers using k = 8
and a window length of 100. Also, for each window of 100 bases we found a k-mer
from the set ÛkL for k = 8, L = 100, computed by DOCKS. Each such window is
guaranteed to contain at least one universal k-mer, and usually more than one.
In each window, we select only one of the universal k-mers, the smallest one in
lexicographic order. In addition, we measured the distances between the selected
k-mers (minimizers or universal k-mers) and computed the mean and standard
deviation of the distances. Using universal hitting k-mers instead of minimizers
gives a smaller set of selected k-mers, which is also sparser in the sequence and
more evenly distributed.

Table 3. Comparison of the number of selected minimizers and universal k-mers, for
k = 8, L = 100, and their distribution, in bacterial genomes. We report the mean
distance (±std) between positions at which consecutive selected k-mers appear in the
sequence.

Minimizers Universal k-mers

Selected Mean distance Selected Mean distance

Acetobacter 3119 44.1 ± 33.6 2439 50.8 ± 29.2

Caulobacter 7315 47.2 ± 31.0 4585 51.2 ± 28.4
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6 Conclusion

In this work, we presented the DOCKS algorithm, which generates a compact
set of k-mers that together hit all L-long DNA sequences. DOCKS’s good per-
formance can be attributed to its two components. It first optimally removes a
minimum-size set that hits all infinite sequences, which takes care of most L-long
sequences. It then greedily removes vertices that hit remaining L-long sequences.
Its feasibility stems from the first step, which runs in time O(k) times the size
of the output, and the second step, which uses dynamic programming to bound
the running time to be quadratic in the output size times L.

A limitation of our approach is its heuristic nature, which does not guaran-
tee any ratio over the optimal solution. Unfortunately, as we show, the general
problem of finding a minimum (k, L)-hitting set is NP-hard. On top of that, even
after removing a decycling edge set, the problem of finding a minimum set that
hits all L-long sequences in a directed acyclic graph is NP-hard.

Some problems from this work remain open. First, is the problem of the
universal (k, L)-hitting set polynomial in O(|Σ|k)? The size of the output
Θ(|Σ|k/k) is doubly exponential in the size of the input (the parameters k
and L), but the computational complexity remains open. Second, is the problem
of �-path cover in a DAG polynomial in the special case of directed acyclic sub-
graphs of de Bruijn graphs? Third, since the dominant run time is the second
phase, which re-calculates the vertex hitting numbers on each iteration, can we
update this number more efficiently after the removal of one vertex? Fourth, is
there a tight upper bound on the number p of vertices that will be removed by
the greedy heuristic? Fifth, can we give an upper bound or a tighter lower bound
on the size of UkL? Sixth, is the �-path cover problem polynomial for L > 1?

In conclusion, we demonstrated the ability of DOCKS to generate compact
sets of k-mers that hit all L-long sequences. These k-mer sets can be generated
once for any desired value of k and L and then used easily for many different
purposes. For example, there is a set of only 700 6-mers out of a total of 4096
that hits every sequence longer than 70 bases — a typical read length for many
sequencing experiments — enabling efficient binning of reads. These sets of k-
mers could improve many of the applications that use minimizers, as we showed
that they are both smaller and more evenly distributed across typical sequences.
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Abstract. Translocation has long been learned as a basic operation to
rearrange genomes. Signed translocation sorting can be solved in poly-
nomial time. Unsigned translocation sorting turns to be NP-Hard and
Max-SNP-Hard. The best known algorithm by now for unsigned translo-
cation sorting can achieve a performance ratio 1.408. In this paper, we
propose a new approximation algorithm for unsigned translocation sort-
ing, which can achieve a performance ratio 1.375 in polynomial time.

Keywords: Algorithm · Complexity · Approximation · Genome ·
Rearrangement · Translocation

1 Introduction

Rearrangement accounts for the stories of gene order variations in a genome, and
can be formalized into such basic operations as reversal, translocation, transposi-
tion, etc. [15]. Rearrangement sorting of genomes asks to find a shortest sequence
of rearrangements that transforms one genome into another, which can be used
to trace the evolutionary path between genomes.

Hannenhalli and Pevzner showed that reversal sorting can be solved in poly-
nomial time for signed linear genomes [8]. Subsequent work improved the running
time of their algorithm and simplified the underlying theory [2,11]. On the other
hand, reversal sorting for unsigned linear genomes is NP-Hard [3]. Unsigned
reversal sorting can be approximated to a performance ratio 1.375 [2]. More
related algorithmic developments of rearrangement sorting can be consulted in
[12,13], as well as [16] for the rearrangement sorting’s applications in computa-
tional genomics.

There has been known translocation operations happen in living genomes to
drive their evolutions [6]. The signed translocation sorting was first studied by
Kececioglu and Ravi [10]. An algorithm with the time complexity O(n3) was first
devised by Hannenhalli [7], where n is the gene number of the genomes. Then
several improved algorithms have been proposed to reduce the time complexity.
Zhu and Ma first improved the algorithm to run in O(n2logn) time [20]. Wang
et al. again improved it to run in O(n2) [18]. The algorithm of Ozery-Flato
and Shamir with a time complexity O(n

3
2
√

log n) is the fastest seemingly [17].

c© Springer International Publishing Switzerland 2016
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Translocation sorting of unsigned genomes turns to be NP-hard and Max-SNP-
Hard [19]. Kececcioglu and Ravi first proposed a 2-approximation algorithm
for this problem [10]. Cui et al. improved the performance ratio to 1.75 [4],
and further to 1.5 + ε [5]. The most recent approach for unsigned translocation
sorting was proposed by Jiang et al., whose algorithm can achieve a performance
ratio of 1.408 + ε [9].

In this paper, we present a new approximation algorithm for unsigned translo-
cation sorting, which can achieve a performance ratio of 1.375. The unsigned
translocation sorting can be approximated by decomposing a breakpoint graph
with respect to two unsigned genomes into a set of alternating cycles, which
equivalently, assigns signs to those genes in the unsigned genomes. We will first
decompose a breakpoint graph into a set of disconnected components, such that
each component can be decomposed into alternating cycles alone, then decom-
pose each component into as many cycles as those needed to approximate the
unsigned translocation sorting to 1.375.

2 Preliminaries for Translocation Sorting

A genome is a set of chromosomes, where a chromosome is a sequence of genes.
Usually, a gene is signed and represented by an integer with a sign ‘+’ or ‘−’
before it to indicate its direction, or unsigned where its direction is unknown,
and represented by just an integer. A genome is signed if all its genes are signed,
and unsigned, otherwise. A chromosome in a signed (resp. unsigned) genome
is also signed (resp. unsigned). Each gene in a genome will be represented by
an unique integer. Thus, a genome with n genes admits to have the gene set
{1, 2, ..., n}.

Let X = [x1, x2, ..., xm] be a chromosome in a genome. A segment within X
is a consecutive subsequence of X, where we refer to the first and the last genes
of the segment as the ends of it. A segment within X is signed (resp. unsigned),
if X is signed (resp. unsigned). Let I = [xi, . . ., xj ] be a signed (resp. unsigned)
segment within a chromosome, then −I = [−xj , . . ., −xi] (resp. [xj , ..., xi]).
Two segments or chromosomes, say X and Y , are congruent, if either X = Y
or X = −Y . Two genomes are congruent if their chromosome sets are the same,
provided that two congruent chromosomes are the same. It will be abbreviated
as A = B for A and B to be congruent.

Let X = [x1, x2, ..., xm] and Y = [y1, y2, ..., yn] be two chromosomes. A
reciprocal translocation on X and Y first breaks X into two non-empty segments
X1 = [x1, ..., xi−1], X2 = [xi, ..., xm], and breaks Y into two non-empty segments
Y1 = [y1 ..., yj−1], Y2 = [yj , ..., yn], then using one of the two ways, reconstructs
two new chromosomes from X1, X2 and Y1, Y2. A prefix-prefix translocation
connects X1 with Y2 and Y1 with X2, creates two new chromosomes X1Y2 and
Y1X2. A prefix-suffix translocation connects X1 with −Y1 and −X2 with Y2,
creates two new chromosomes X1 −Y1 and −X2Y2. For a translocation ρ on two
chromosomes in genome A, we denote by A • ρ the genome transformed from A
due to ρ acting on it. Then the translocation sorting problem is,
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Instance: Two genomes A and B, which have the same gene sets.
Question: Find a sequence of translocations ρ1, ρ2, ..., ρt, such that A • ρ1 •
ρ2 • · · · • ρt = B, and t is minimized.

The translocation distance between A and B is the minimum number of
translocations that transform A into B.

Two genes are adjacent in a genome if in the genome, they are adjacent on
a chromosome. Let A and B be two signed genomes each of which has the gene
set {1, ..., n}. A breakpoint graph with respect to A and B can be constructed
as follows. For each gene x in A, we set two vertices l(x), r(x). For two adjacent
genes x, y in A where x is on the left side of y, we set a black edge b(x, y) =
(r(x), l(y)). For two adjacent genes x, y in B, we set a gray edge ,

g(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(r(x), l(y)), if x and y have the same signs as they have in A;
(r(x), r(y)), if x has the same sign as it has in A, y doesn’t;
(l(x), l(y)), if y has the same sign as it has in A, x doesn’t;
(l(x), r(y)), if neither x nor y has the same sign as it has in A.

Then the breakpoint graph with respect to A and B is Gs(A,B) = (V , Eb∪Eg),
where, V = {l(x), r(x)| x ∈ {1, 2, ..., n}},Eb = {b(x, y)| x, y are adjacent in A },
Eg = {g(x, y)| x, y are adjacent in B}.

In Gs(A,B), each connected component is either a single vertex, or a cycle, in
which each vertex is incident with a black and a gray edge. A cycle in Gs(A,B)
is usually known as an alternating cycle. An alternating cycle in Gs(A,B) is
referred to as an i-cycle, if it contains i black (resp. gray) edges. An i-cycle is
long if i ≥ 2, and even (resp. odd), if i is even (resp. odd).

Note for an arbitrary segment I, I is congruent to −I. A segment, say [xi,
xi+1, ..., xj ] of at least three genes within some chromosome in A, is a sub-
permutation (abbr. SP ) in A with respect to B, if there exists a segment [xi,
permutation(xi+1, ..., xj−1), xj ] within some chromosome in B and permuta-
tion(xi+1, ..., xj−1) �= [xi+1, ..., xj−1].

Let I be a segment within a chromosome in A. An SP in A with respect
to B is within I, if it is a consecutive subsequence of I. An SP is internal for
I, if it is within I, and not congruent to I. A minimal sub-permutation (abbr.
minSP ) is a sub-permutation for which no internal SP exists.

An SP in A with respect to B is an even isolation, if all the minSP s in A occur
within it, and are totalized even. Let I = [xi, xi+1, ..., xj ] be an SP in A with
respect to B, IN(I) = {r(xi), l(xj)} ∪ {l(xk), r(xk) | i < k < j}. Then no edge of
Gs(A,B) has one end in IN(I) and the other end in V (Gs(A,B)) − IN(I). Thus,
I will also be mentioned as the subgraph of Gs(A,B) induced by the vertices in
IN(I). Moreover, an SP , minSP , or even isolation in A with respect to B will be
said in Gs(A,B).

Let b, c, s be the numbers of black edges, cycles and minSP s in Gs(A,B)
respectively. It has been shown in [7] that the translocation distance ds(A,B)
between A and B can be formulated by,
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Lemma 1. ds(A,B) = b − c + s + f , where f = 1 if s is odd, f = 2 if Gs(A,B)
has an even isolation, f = 0 otherwise.

Let A and B be two unsigned genomes each of which has the gene set {1,
..., n}. A breakpoint graph with respect to A and B (abbr. G(A,B)) can be
constructed as G(A,B) = (V , Eb ∪ Eg), where V = {1, ..., n}, Eb = {(i, j) | i,
j are adjacent in A}, Eg = {(i, j) | i, j are adjacent in B}, and all edges in Eb

(resp. Eg) are dyed with black (resp. gray). A vertex is within a chromosome if
its corresponding gene is within that chromosome. A black (resp. gray) edge is
within a chromosome in A (resp. B) if both ends of it is within that chromosome.
A black (resp. gray) edge is left (resp. right) incident with a vertex in G(A,B),
if its other end is on the left (resp. right) side of the vertex within a chromosome
in A (resp. B).

In G(A,B), each vertex is incident with either a black and a gray edge or
two black and two gray edges. This allows us to decompose G(A,B) into a set
of alternating cycles, and equivalently, to assign signs to the genes in A, if those
genes in B have been assigned. A gene is assigned positively (resp. negatively) if
it gets a sign + (resp. −). By default, all genes in B are assigned positively, and
for an arbitrary chromosome [yl, ..., yr] in B, yi+1 = yi + 1, l ≤ i ≤ r − 1.

To decompose G(A,B) into alternating cycles, each four degree vertex, say
x in G(A,B), has to be split into l(x) and r(x), where l(x) is on the left side of
r(x); then respectively, those two black edges left and right incident with x in
G(A,B) are made incident with l(x) and r(x). Moreover, those two gray edges
left and right incident with x in G(A,B) are made incident with l(x) and r(x)
(resp. r(x) and l(x)), if and only if that gene corresponding to x in A is assigned
positively (resp. negatively).

Assigning a gene in A corresponding to a vertex x, refers to splitting x into
l(x) and r(x), turning the black edges left and right incident with x in G(A,B)
to be incident with l(x) and r(x), then turning the two gray edges incident with
x to be incident with l(x) and r(x) according to the sign the gene has been
assigned.

Once G(A,B) is decomposed into one whose connected components are alter-
nating cycles, those minSP s and even isolations in this graph can be found in lin-
ear time [1]. Thus we can use Lemma 1 to approximate the translocation distance
between A and B. For short, a cycle decomposition of G(A,B) directly refers to
the graph produced by a cycle decomposition of G(A,B). Let χ(G(A,B)) be the
set of all cycle decompositions for G(A,B). The translocation distance between A
and B can be specialized as d(A,B) = min{ b(Gs) − c(Gs) + s(Gs) + f(Gs) | Gs

∈ χ(G(A,B)) }, where b(Gs), c(Gs), s(Gs) are the black edge, cycle, and minSP
numbers of Gs respectively, f(Gs) indicates the same as f in Lemma 1.

3 A Sufficient Condition

Let A and B be two unsigned genomes, while G(A,B) the breakpoint graph with
respect to A and B. A segment [xi, xi+1, ..., xj ] of at least three genes within
a chromosome in A, is a candidate sub-permutation (abbr. CSP ) with respect
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to B, if there exists a segment [xi, permutation(xi+1, ..., xj−1), xj ] within a
chromosome in B and permutation(xi+1, ..., xj−1) �= [xi+1, ..., xj−1].

Let I be a segment within a chromosome in A. A CSP in A with respect to
B is internal for I, if it is within I, and not congruent to I. A minimal candidate
sub-permutation (abbr. minCSP ) is a CSP for which no internal CSP exists.
A CSP or minCSP in A with respect to B is also mentioned to be in G(A,B).

Let Gs be a cycle decomposition of G(A,B). Then a gene in A must have
been assigned depending on Gs. A CSP in G(A,B) acts as an SP in a cycle
decomposition of G(A,B), if those genes in the CSP along with their signs
assigned depending on Gs form an SP in that cycle decomposition of G(A,B).

Since f ≤ 2 by Lemma 1, we will give up the contribution of f , aim to find a
cycle decomposition of G(A,B), such that if it has b black edges, c alternating
cycles, and s minSP s, then b − c + s ≤ 1.375 d(A,B). Therefore, we refer to
b − c + s as the translocation distance snapshot (abbr. TD-snapshot) a cycle
decomposition of G(A,B) with b black edges, c cycles, and s minSP s has. Thus
a cycle decomposition of G(A,B) is optimal, if its TD-snapshot is minimized
over all cycle decompositions of G(A,B). The TD-snapshot of G(A,B) is the
TD-snapshot an optimal cycle decomposition of G(A,B) has.

A subgraph of G(A,B) is referred to as an i-cycle candidate, if it is a cycle
which has i black (resp. gray) edges, and in which each vertex is incident with
a black and a gray edge. An i-cycle candidate in G(A,B) acts as an i-cycle in
a cycle decomposition of G(A,B), if this i-cycle uses all the edges of the i-cycle
candidate. In [4], it has been shown that every 1-cycle candidate in G(A,B)
will act as a 1-cycle in an optimal cycle decomposition of G(A,B). Thus a cycle
decomposition of G(A,B) is mentioned with all 1-cycle candidates acting as 1-
cycles. An edge in G(A,B) is valid, if it does not occur in any 1-cycle candidate.

Two subgraphs of G(A,B) are independent, if they share no edge of G(A,B).
Let I = [xi, ..., xj ] be a CSP in G(A,B), V (I) = {xi, xi+1, ..., xj}. Then I
acts as an SP in a cycle decomposition of G(A,B), if depending on this cycle
decomposition, xi, xj are assigned positively for xi < xj , or negatively otherwise.
Without loss of generality, let xi < xj . We denote by G(A,B, I) the subgraph
of G(A,B) induced by the vertices in V (I), and G(A,B, I) the subgraph of
G(A,B) induced by the vertices in V (G) − V (I) + {xi, xj}. Since I is a CSP
in A, G(A,B, I) is independent with G(A,B, I). Assigning xi and xj positively
will not only split xi and xj into l(xi), r(xi) and l(xj), r(xj) respectively, but
also transform G(A,B) into two disconnected components, which respectively,
have the vertex set {r(xi), xi+1, ..., xj−1, l(xj)} and V (G) − V (I) + {l(xi),
r(xj)}. Since that component with the vertex set {r(xi), xi+1, ..., xj−1, l(xj)}
is isomorphic with G(A,B, I) and the other one G(A,B, I), we also denote by
G(A,B, I) the former and G(A,B, I) the later.

Since I is a CSP , both G(A,B, I) and G(A,B, I) can be decomposed into
alternating cycles alone. Thus combining a cycle decomposition of G(A,B, I) and
a cycle decomposition of G(A,B, I) forms a cycle decomposition of G(A,B). A
CSP in G(A,B, I) is a CSP within I. A CSP within I or in G(A,B, I) is a
CSP in A, which is not within I and shares at most one gene with I.
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Let respectively, G1, G2 be the cycle decompositions of G(A,B, I) and G(A,
B, I), G the cycle decomposition of G(A,B) combined by G1 and G2. The
TD-snapshot of G is just the TD-snapshot summation of G1 and G2.

Let I be a CSP in G(A,B). We turn to bound the TD-snapshot of G(A,B)
by the TD-snapshots of G(A,B, I) and G(A,B, I).

Lemma 2. If in every optimal cycle decomposition of G(A,B, I), at least one
internal minSP occurs, then G(A,B) admits an optimal cycle decomposition
combined by a cycle decomposition of G(A,B, I) and a cycle decomposition of
G(A,B, I).

Moreover, a cycle decomposition of G(A,B) combined by the optimal cycle
decompositions of G(A,B, I) and G(A,B, I) has at least as many cycles as and
at most one more minSP s than those an optimal cycle decomposition of G(A,B)
has.

Lemma 3. In general, G(A,B) admits a cycle decomposition combined by a
cycle decomposition of G(A,B, I) and a cycle decomposition of G(A,B, I), which
has a TD-snapshot at most 1 more than that an optimal cycle decomposition of
G(A,B) has.

Let I be an arbitrary CSP in G(A,B). Then I induces G(A,B, I). A cycle
decomposition of G(A,B, I) will be confused as a cycle decomposition of I.

Lemma 4. If an optimal cycle decomposition of a minCSP , say I, has none
other than 2-cycles numbered more than 1, then G(A,B) admits an optimal
cycle decomposition combined by a cycle decomposition of G(A,B, I) and a cycle
decomposition of G(A,B, I).

Due to Lemma 4, a minCSP is safe, if an optimal cycle decomposition of it
has none other than 2-cycles numbered at least 2, and non-safe otherwise. In
what follows, a cycle decomposition of a safe minCSP always happens optimal
to have long cycles as none other than 2-cycles.

Two CSP s in G(A,B) are independent, if they share at most one gene.
Two subgraphs of G(A,B) must be independent, if they are induced by two
independent CSP s respectively. Let P be a set of mutually independent CSP s
in G(A,B), I = [xi(I), ..., xj(I)] for I ∈ P . Assigning xi(I), xj(I) positively if
xi(I) < xj(I) or negatively otherwise can always make I ∈ P act as an SP . If all
CSP s in P are so made to act as SP s, G(A,B) is decomposed into a breakpoint
graph combined by at most |P | + 1 mutually disconnected components, where
except those |P | ones induced by the CSP s in P , that one with the vertex set
V (G(A,B)) − {V (I) | I ∈ P} + {l(xi(I)), r(xj(I)) | I ∈ P}, is referred to as the
complement of P , and denoted as G(A,B, P ). Let �[P ] = {G(A,B, I) | I ∈ P}⋃

G(A,B, P ).
A CSP in G(A,B) is referred to as a CSP in G(A,B, P ), if for every I ∈ P ,

it is in G(A,B, I). A minCSP in G(A,B,P ) is a CSP in G(A,B, P ), for which
no internal CSP exists.
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Let Q be the set of safe minCSP s in G(A,B), G∗ an optimal cycle decompo-
sition of G(A,B) in which each minCSP in Q acts as a minSP . Let G∗∗ be the
cycle decomposition of G(A,B) combined by the optimal cycle decompositions
of those components in �[P ]. If k components induced by the CSP s in P − Q
can provide their optimal cycle decompositions without any internal minSP s,
then by Lemmas 2 and 3, the TD-snapshot of G∗ will be,

b − c(G∗) + s(G∗) ≥ b − c(G∗∗) + s(G∗∗) − k, (1)

where respectively, c(G∗), c(G∗∗) and s(G∗), s(G∗∗) stand for the cycle and
minSP numbers of G∗ and G∗∗, b the black edge number of G(A,B).

An optimal cycle decomposition of a component in �[P ] always has a mini-
mum number of internal minSP s over all its optimal cycle decompositions. For
I ∈ P , we denote by c∗(I), c∗

i (I), s∗∗(I) the cycle, i-cycle, and minimum internal
minSP numbers for an optimal cycle decomposition of G(A,B, I). We denote
by c∗(P ), c∗

i (P ), s∗∗(P ) the cycle, i-cycle, and minimum minSP numbers for an
optimal cycle decomposition of G(A,B, P ).

Lemma 5. If I ∈ P − Q admits a cycle decomposition with s(I) minSP s and
at least 5

8 c∗
2(I) + 2

8 c∗
3(I) + s(I) − s∗∗(I) long cycles; P admits a cycle decom-

position with s(P ) minSP s and at least 5
8 c∗

2(P ) + 2
8 c∗

3(P ) + s(P ) − s∗∗(P )
long cycles, then G(A,B) admits a cycle decomposition with a TD-snapshot at
most 1.375 times of d(A,B).

Proof. Assume a cycle in a cycle decomposition of G ∈ �[P ] has at most t black
edges. Let c∗ =

∑
I∈P c∗(I) + c∗(P ), c∗

i =
∑

I∈P c∗
i (I) + c∗

i (P ), s∗∗ =
∑

I∈P s∗∗(I)
+ s∗∗(P ). Then by Lemma 1 and (1), d(A,B) ≥ b − c∗ + s∗∗ + |Q| + k − k, where
b − c∗ = c∗

2 + 2c∗
3 + ... + (t − 1)c∗

t . Let Gs be the cycle decomposition combined
by the cycle decompositions of those components in �[P ]. If Gs has c cycles, ci
i-cycles and s minSP s, then b − c + s = ( c∗

1 + 2c∗
2 +... + tc∗

t ) − ( c1 + ... + ct )
+ s. Let T = 11

8 d(A,B) − (b − c + s). Then,

T ≥ 11
8

t∑

i=2

(i − 1)c∗
i −

t∑

i=1

ic∗
i +

t∑

i=1

ci +
11
8

s∗∗ +
11
8

|Q| − s

=
t∑

i=2

3i − 11
8

c∗
i +

t∑

i=2

ci +
11
8

s∗∗ +
11
8

|Q| − s

≥
t∑

i=2

ci − 5
8
c∗
2 − 2

8
c∗
3 +

11
8

s∗∗ +
11
8

|Q| − s, (2)

where the equation of the second line follows from c∗
1 = c1. Let the cycle

decomposition of G ∈ �[P ] have ci(G) i-cycles and s(G) minSP s. Then ci
=

∑
G∈�[P ] ci(G), s =

∑
G∈�[P ] s(G). Since if G is induced by a safe minCSP ,

then s(G) = 1, s =
∑

I∈P−Q s(G(A,B, I)) + s(G(A,B,P )) + |Q|. It follows the
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lemma assumption that, if G is induced by a safe minCSP , then
∑t

i=2 ci(G) =
2; if G is induced by P , then

∑t
i=2 ci(G) ≥ 5

8 c∗
2(P ) + 2

8 c∗
3(P ) + s(G) − s∗∗(P );

otherwise, G is induced by a CSP I with
∑t

i=2 ci(G) ≥ 5
8 c∗

2(I) + 2
8 c∗

3(I) +
s(G) − s∗∗(I). Adding the inequalities for all G ∈ �[P ] leads to,

t∑

i=2

ci − 5
8
c∗
2 − 2

8
c∗
3 ≥ s − s∗∗ − |Q|. (3)

Substituting
∑t

i=2 ci − 5
8c∗

2 − 2
8c∗

3 with s − s∗∗ − |Q| in (2) leads to T ≥ 0.

4 Approximation for Translocation Sorting

We devote to find a set of mutually independent CSP s, say P in G(A,B), then
for each component in �[P ], find a cycle decomposition to meet Lemma 5.

4.1 Decomposing G(A,B) into Disconnected Components

A minSP in a cycle decomposition of G(A,B) is knotty, if it has 2 or 3 valid black
edges, and non-knotty, otherwise. A minCSP in G(A,B) is knotty, if it induce
a knotty minSP , and non-knotty, otherwise. A knotty minCSP in G(A,B)
cannot provide so many cycles as those Lemma 5 asks. Thus we try to avoid
decomposing a knotty minCSP alone into alternating cycles, if it is internal for
a CSP .

A CSP in G(A,B) is referred to as a second CSP , if it is not minimal,
and each of its internal minCSP is knotty. A second CSP is minimal, and
abbreviated as a 2nd-minCSP , if it does not contain any internal second CSP .
A minCSP can be found in polynomial time trivially. Starting with a knotty
minCSP , a 2nd-minCSP can be found in polynomial time, by finding in G(A,B)
a shortest length CSP containing an internal knotty minCSP but itself, and
checking if its internal minCSP s are all knotty. Thus to decompose G(A,B)
into disconnected graphs, we try to find a set of mutually independent CSP s,
each of which is either a non-knotty minCSP or a 2nd-minCSP .

Such a CSP set, say P , can be found by: (1)Find the set of minCSP s,
say P1, in G(A,B). (2)For each I ∈ P1, check if I is non-knotty. If yes, add
it into P , otherwise, check if a 2nd-minCSP contains I. If yes, add the 2nd-
minCSP containing I into P . We name the subroutine for so as to find a CSP
set in G(A,B) as CSP -Decompose(G(A,B)). Let P be the CSP set returned
by CSP -Decompose(G(A,B)).

Lemma 6. A member in P is either a non-knotty minCSP or a 2nd-minCSP .
Any two members in P are independent. No non-knotty minCSP occurs in
G(A,B,P ).



A New Approximation Algorithm for Unsigned Translocation Sorting 277

4.2 Finding a Cycle Decomposition of a Component

Let P be a mutually independent CSP set in which a member is either a non-
knotty minCSP or a 2nd-minCSP . An independent vertex set of an undirected
simple graph is a set of mutually independent vertices in that graph, where two
vertices are independent if no edge can take them for two ends. For a graph with
each vertex given a weight, an independent vertex set whose vertex weight sum-
mation are maximized is a maximum weight independent set of that graph. The
maximum weight independent set problem (abbr. WIS) asks to find a maximum
weight independent set in an undirected simple graph with weighted vertices. The
problem of finding in a breakpoint graph a 2-cycle and 3-cycle set to achieve as
large a cycle weight summation as possible, can be reduced to WIS.

Let G ∈ �[P ]. Corresponding to each 2-cycle or 3-cycle candidate in G, set a
vertex, where we denote by V2, V3 the sets of vertices respectively corresponding
to 2-cycle and 3-cycle candidates in G. Set an edge between two vertices, if their
corresponding cycle candidates in G share an edge, where we denote by E the
set of so produced edges. Note that two cycle candidates in G are independent,
if they share no edges of G. If setting a positive weight to each vertex in V2 ∪
V3, then there exists an independent vertex set in G = (V2 ∪ V3, E) whose total
vertex weights are maximized, if and only if there is a set of mutually independent
2-cycle and 3-cycle candidates, whose total cycle weights are maximized.

In [2], by setting a weight 5
8 to each vertex in V2 and a weight 2

8 to each
vertex in V3, Berman et al. proposed a local search algorithm which can, for
an arbitrary independent vertex set J2 ∪ J3 with J2 ⊆ V2, J3 ⊆ V3, find an
independent vertex set of G which has at least 5

8 |J2| + 2
8 |J3| independent

vertices in G. More formally, we state it as,

Lemma 7. For any set of mutually independent cycle candidates in G ∈ �[P ]
with a subset J2 of 2-cycle candidates and a subset J3 of 3-cycle candidates, a
cycle decomposition of G with at least 5

8 |J2| + 2
8 |J3| 2-cycles and 3-cycles can

be found in polynomial time.

This implies the algorithm of Berman et al. can find a set of mutually inde-
pendent 2-cycle and 3-cycle candidates, whose cardinality is at least 5

8 c∗
2(G) + 2

8
c∗
3(G), where c∗

i (G) stands for the number of i-cycles in an optimal cycle decompo-
sition of G. As long as an optimal cycle decomposition of G has none other than
2-cycles and 1-cycles, it can be shown that there always exist more cycles than
those the algorithm of Berman et al. outputs.

Lemma 8. If no cycle decomposition of G(A,B, I) contains none other than 2-
cycles and 1-cycles, G(A,B, I) can be decomposed into at least 5

8c∗
2(I) + 2

8c∗
3(I)+1

long cycles in polynomial time.

In [14], a polynomial time algorithm was proposed to decide whether a break-
point graph with respect to two unsigned genomes can be decomposed into none
other than 2-cycles and 1-cycles. If so, it will return a cycle decomposition con-
taining none other than 2-cycles and 1-cycles. Otherwise, it will return an empty
set. We denote this subroutine by Two-Cycle(G(A,B, I)).
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Lemma 8 implies that, if Two-Cycle(G(A,B, I)) returns an empty set, then
the cycle decomposition Berman et al.’s algorithm outputs can meet Lemma 5.
We denote this algorithm by Non-safe(G(A,B, I)). Otherwise, I is safe and Two-
Cycle(G(A,B, I)) provides an optimal cycle decomposition of G(A,B, I). By
Lemmas 4 and 5, it suffices to select the cycle decomposition Two-Cycle(G(A,
B, I)) returns.

For finding a cycle decomposition of a 2nd-minCSP in G(A,B), we squeeze
enough long cycles by a new reduction different slightly from Berman’s. Still,
we set an undirected simple graph G = (V2 ∪ V3, E) as an instance of WIS.
However, if a 2-cycle (resp. 3-cycle) candidate in G(A,B, I) does not occur within
a knotty minCSP , set a vertex in V2 (resp. V3) corresponding to it; for every
two vertices in V2 ∪ V3 which correspond to two cycle candidates sharing an
edge of G(A,B, I), set an edge in E incident with them. This reduction can help
get as many long cycles as those to meet Lemma 5, because if a knotty minCSP
happens to act as a knotty minSP , an extra cycle can be obtained. Let I be a
second 2nd-minCSP in G(A,B).

Lemma 9. In polynomial time, a cycle decomposition of G(A,B, I) can be found
such that, if it has s∗∗(I) minSP s, then it has at least 5

8c∗
2(I) + 2

8c∗
3(I) + s(I) −

s∗∗(I) long cycles.

We denote by Second(G) the algorithm which can find a cycle decomposition
of G = G(A,B, I) for which Lemma 9 holds. We denote by c∗

i (P ), s∗∗(P ) the
numbers of i-cycles and minSP s an optimal cycle decomposition of G(A,B,P )
has. No non-knotty minCSP can occur in G(A,B, P ) by Lemma 6. If G(A,B,P )
has no minCSP , then s∗∗(P ) = 0. Consequently, G(A,B, P ) can be decomposed
into alternating cycles in the same way as for a non-knotty minCSP .

Lemma 10. If G(A,B, P ) has no minCSP , then in polynomial time, G(A, B,
P ) can be decomposed into at least 5

8c∗
2(P ) + 2

8c∗
3(P ) long cycles.

If G(A,B,P ) has minCSP s, then any cycle decomposition of G(A,B, P )
has, if present, no other minSP s than knotty ones. Thus G(A,B, P ) can be
decomposed into alternating cycles in the same way as for a 2nd-minCSP .

Lemma 11. If G(A,B,P ) has minCSP s, then in polynomial time, a cycle
decomposition of G(A,B, P ) can be found such that, if it has s(P ) minSP s,
then it has at least 5

8c∗
2(P ) + 2

8c∗
3(P ) + s(P ) − s∗∗(P ) long cycles.

Our algorithm start with decomposing G(A,B) into disconnected com-
ponents using CSP -Decompose(G(A,B)). Then for each component, using
Two-cycle(G), non-safe(G) or Second(G) to decompose it into cycles to meet
Lemma 5. The algorithm is named as USort(A,B), and depicted in Fig. 1.

Theorem 1. In polynomial time, USort(A,B) always outputs a translocation
distance at most 11

8 d(A,B) + 2.
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Algorithm USort(A,B)
Input: Unsigned genomes A, B.
Output: A translocation sequence to sort A, B.
1 Set a breakpoint graph G(A,B);
2 Set a 1-cycle for each candidate 1-cycle in G(A,B);
3 P ← CSP -Decompose(G(A,B));
4 [P ] ← {G(A,B, I) | I ∈ P} ∪ {G(A,B, P )};
5 For each G [P ]
6 If G contains no knotty minCSP , CD(G) ← Two-Cycle(G);
7 If CD(G) = ∅, CD(G) ← non-safe(G);
8 Else, CD(G) ← Second(G);
9 End for
10 Combine CD(G) for G [P ] into one cycle decomposition CD;
11 Sort A, B based on CD.

Fig. 1. Sort unsigned genomes by translocations.

5 Conclusion

To approximate unsigned translocation sorting as well as unsigned reversal sort-
ing to a better extent, it awaits to explore new techniques to decompose an
unsigned breakpoint graph into alternating cycles. It should be believed that
the promising technique for finding cycle decompositions of unsigned breakpoint
graphs lands up at making use of the structural natures of the breakpoint graphs.
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Abstract. Merging gene expression datasets is a simple way to increase
the number of samples in an analysis. However experimental and data
processing conditions, which are proper to each dataset, generally influ-
ence the expression values and can hide the biological effect of interest.
It is then important to normalize the bigger merged dataset regarding
those batch effects, as failing to adjust for them may adversely impact
statistical inference. In this context, we propose to use a “spatiotem-
poral” independent component analysis to model the influence of those
unwanted effects and remove them from the data. We show on a real
dataset that our method allows to improve this modeling and helps to
improve sample classification tasks.

Keywords: Batch effect removal · Expression data · Spatio-temporal
independent component analysis

1 Introduction

Genes hold the information to build proteins, which are the structural compo-
nents of cells and tissues. The translation of gene information into proteins is
known as “gene expression”. Nowadays, the development of sequencing technolo-
gies allows to measure those expression levels at a reasonable cost. The analysis
of the resulting data helps to better understand how genes are working, with the
goal of developing better cures for genetic diseases such as cancer.

Due to the limited number of samples that can be processed at the same time
in an experiment, the size of such datasets is often limited in samples. However,
statistical inferences need a high number of samples to be robust enough and
generalizable to other data. As more and more of those datasets are available
on public repositories such as GEO http://www.ncbi.nlm.nih.gov/geo/, merg-
ing and combining different datasets appears as a simple solution to increase
the number of samples analyzed and potentially improve the relevance of the
biological information extracted.

Expression levels of genes are the result of interactions between different
biological processes, which can increase or decrease the expression level mea-
sured. However, noise may also be added at each step of data acquisition, due
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 281–292, 2016.
DOI: 10.1007/978-3-319-43681-4 23
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to imprecisions or differences in experiment conditions. Confounding factors, or
batch effects, that complicate the analysis of genomic data can be for exam-
ple differences in dates of experiment, differences in laboratory conditions, or
even the fact that two samples subsets were treated by two different techni-
cians. The precise effects of the technical artefacts on gene expression levels is
often unknown; however some partial information is usually available, such as the
batch number, the date of experiment, . . . When merging different datasets, some
of the main confounding factors are typically due to the fact that the samples
were not processed in exactly the same conditions from one experiment/dataset
to another. Those batch effects can be quite large and hide the effects related
to the biological process of interest. Not including those effects in the analysis
process may adversely affect the validity of biological conclusions drawn from
the datasets [7,8,17]. It is then important to be able to combine datasets from
different sources while removing the unwanted variations such as batch effects.
From here, we will call aggregated dataset the bigger dataset resulting of the
concatenation of the smaller datasets, and sub-datasets or batches these smaller
datasets.

An additional difficulty in the process of removing batch effects is that the
biological process (or phenotype) of interest could partially correlate with the
batches. For example, if we want to combine two sub-datasets with respectively
75/25 % and 25/75 % of cases/controls, we should check that what is removed
during the normalization step is really only the batch effect and does not contain
potential useful information about cases/controls.

Different methods exist to tackle the problem of batch effect removal when
merging different sub-datasets, each having its advantages and weaknesses [2,6].
They can be classified in two main approaches: location-scale methods and matrix
factorization methods. The location-scale methods assume a model for the distrib-
ution of the data within batches, and adjust the data within each batch to fit this
model. The goal is to obtain genes with similar mean and/or variance for each
batch. A main hypothesis is that by adjusting the gene distributions no biolog-
ical information is removed. The matrix factorization methods assume that the
variations across the sub-datasets (biological or due to confounding factors) can
be represented by a small set of rank-one components which can be estimated by
means of matrix factorization. The components associated with the batch effects
are then removed to obtain the normalized dataset. With this approach, the main
hypothesis is that the factorization method is able to pick up the batch effects in
some of its resulting components.

In this paper, building on [1,12], we propose to use spatio-temporal Inde-
pendent Component Analysis (ICA) to remove batch effects when combining
microarray datasets. We compare our method to three other normalization meth-
ods. We show on a real dataset that spatio-temporal ICA allows to better model
the factors influencing gene expression levels, and may improve results in a sam-
ple classification task.

The paper is organized as follows. Section 2 presents the method, which is
validated in Sect. 3, and conclusions are drawn in Sect. 4.
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2 Proposed Method to Reduce Batch Effect

Building on [1,12], we propose to use spatio-temporal Independent Component
Analysis (ICA) to remove batch effects when combining microarray datasets.
After factorization of the aggregated dataset, components showing some cor-
relation with the sub-datasets are removed in order to obtain a final dataset,
hopefully cleaned from the main batch effects. The advantage of a matrix fac-
torization approach is that the removed components are interpretable: it is easy
to check that they do not correlate with some biological information of inter-
est. In [1], the authors use singular value decomposition (SVD) to model batch
effects. However ICA was shown to better model the different sources of vari-
ation [17], so we propose here an ICA based approach. We first describe the
spatio-temporal ICA of [12], then we explain how we use it to normalize the
dataset.

2.1 Spatio-Temporal Independent Component Analysis

We consider the aggregated dataset as a gene-by-sample matrix X, where Xi,j

indicates the value of gene i in sample j. Applying an ICA method to matrix X
yields a decomposition

X ≈ ABT =
K∑

k=1

A:,kBT
:,k (1)

where component A:,k can be interpreted as the gene activation pattern of com-
ponent k and component B:,k as the weights of this pattern in the samples.

When computing this decomposition, the question arises whether one should
maximize the independence between the columns of A or those of B. Indepen-
dence across genes means that the activation patterns should be as independent
as possible. Independence across samples means that the weights attributed to
the activation patterns should be as independent as possible. In earlier times,
because of the very vertical shape of matrix X in genetic datasets, independence
across genes has been favored in the literature. However aggregating sub-datasets
allows to have a more reasonable number of samples. Imposing independence
among genes, or samples, or on both was shown to give good results [14]. As
both options are justifiable a priori, we use a spatio-temporal ICA; this method
introduces a trade-off parameter allowing an easy adaptation to the different
options.

We now present the ICA method from [12] that we use to generate matrices
A and B from the data matrix X ∈ R

p×n. The algorithm depends on a spa-
tiotemporal parameter α ∈ [0, 1] that allows it to explore a continuum between
imposing independence solely on A (α = 0) and solely on B (α = 1). The
term “spatiotemporal” comes from the pixel-by-time data in medical imaging
for which the concept was introduced [16].

The first step consists of centering the gene-by-sample data matrix X by
subtracting the row and column means, followed by a dimensionality reduction
by means of a K-truncated SVD, yielding a new matrix X̃ = UKDKV T

K . All the
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possible decompositions of X̃ are given by X̃ = ABT = AW−1WBT with W a
K × K invertible matrix. The considered decomposition is then:

X̃ = UKDα
KW−1

︸ ︷︷ ︸
=:A

WD1−α
K V T

K︸ ︷︷ ︸
=:BT

(2)

where W is restricted to the orthogonal group O(K) = {W ∈ R
K×K :WT W = I}.

Consequently, the columns of A, resp. B, are structurally decorrelated when α = 0,
resp. α = 1.

In the spirit of the JADE ICA algorithm [3], the objective function to mini-
mize is of the form:

fα(W ) = α
∑

i

Off(Ci(BT )) + (1 − α)
∑

i

Off(Ci(AT )), W ∈ O(K)

where A and B depend on W through (2), Off(Y ) returns the sum of squares of
the off-diagonal elements of Y , and the Ci’s are fourth-order cumulant matrices,
satisfying the property Ci(WM) = WCi(M)WT . The minimization of fα is thus
a joint approximate diagonalization problem, which is addressed as in JADE
using Jacobi rotations. The Jacobi algorithm is initialized with W = I, ensuring
that both A and B initially have decorrelated columns.

2.2 Dataset Normalization

The normalization process to remove batch effects is detailed in Algorithm 1.
Matrices A and B are first computed (line 1), then we can use the components
B:,k to remove possible batch effects. For this, we select the components B:,k that
correlate with the batch. As batch is a categorical information and the compo-
nents B:,k are continuous, the usual correlation formula (Pearson or Spearman)
can not be used. To estimate which components are related to batch, we com-
pute the R2 value (line 2) that measures how well a variable x can predict a
variable y in a linear model:

R2(x, y) ≡ 1 − SSres

SStot

where

– SStot =
∑

i(yi − ȳ)2 is the sum of squares of the prediction errors if we take
the mean ȳ = 1

n

∑n
i=1 yi as predictor or y,

– SSres =
∑

i(yi − ŷi)2 is the sum of squares of the prediction errors if we use a
linear model ŷi = f(xi) as predictor: if x is continuous the prediction model
is a linear regression, if x is categorical we use a class mean.

The R2 value indicates the proportion of the variance in y that can be pre-
dicted from x, and has the advantage to be usable with categorical or continuous
variables. So the higher the R2 value, the better the association between both
variables. As the sub-datasets information is categorical, R2(sub-datasets, B:k)
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Algorithm 1. ICA based normalization
Require: X (p × n) the aggregated dataset to be normalized, c (n) a categorical

variable indicating the sub-datasets, α the spatio-temporal parameter for the ICA
method, t ∈ [0, 1] the threshold to consider a component associated to c, [optional]
c2 categorical/continuous information that we want to preserve

1: A, B ← ICA(X, α)
2: R ← R2(c, B)
3: ix ← which(R ≥ t)
4: R2 ← R2(c2, B) � optional
5: ix2 ← which(R2 ≥ R) � optional
6: ix ← ix \ ix2 � optional
7: Xn ← X − A[:, ix] ∗ B[:, ix]T

compares the prediction of Bik by a general mean
∑

j
Bjk

n or by a sub-dataset

mean
∑

j∈Cj

Bjk

n (where Cj represents all samples in the same sub-datasets as
sample j).

If a component presents some correlation with the sub-datasets (line 3), then
this component is selected. An additional step can be added in the process
to check if the selected components do not correlate with some information of
interest (lines 4–6, optional). The selected components are then removed from
the matrix X to obtain a cleaned dataset (line 7).

3 Results

We tested our normalization method on breast cancer expression. We combined
different datasets which can be accessed under GEO numbers GSE2034 [18]
and GSE5327 [11], GSE7390 [4], GSE2990 [15], GSE3494 [10], GSE6532 [9] and
GSE21653 [13]. All datasets were summarized with MAS5 and represented in
log2 scale, except GSE6532 which was already summarized with RMA. With
those datasets come different pieces of information: age of the patient, grade and
size of the tumor, if a lymphatic node is affected, the estrogen receptor status,
the treatment, the subtype, two values estimating the relapse risk (scoreGene76
and scoreODX), and one estimating the proliferation (scoreProlif). The last four
are values computed from a model and the expression values, and so are more
directly dependent on the dataset.

We took estrogen-receptor status (ER) prediction as the classification task.
ER is thus our phenotype of interest, and other pieces of information will be
called external information later in this paper. We removed the samples (or
genes) with missing information which gives an aggregated dataset of 1361 sam-
ples for 22276 genes. The repartition of the ER status is described in Table 1.
Proportion of ER positive samples depends on the dataset but is always in
majority.

As can be seen on the first subplot in Fig. 1 the expression values in the
aggregated dataset are clearly associated to the sub-datasets. Many genes have
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Table 1. Repartition of ER status in the sub-datasets

Sub-dataset 1 2 3 4 5 6

ER = 0 135 64 34 34 40 110

ER = 1 209 134 149 213 86 153

% of 1’s 0.61 0.68 0.81 0.86 0.68 0.58

a strong association with the sub-datasets, but the maximal R2 value between
a gene and the ER status is about 0.25.

3.1 Comparison with Centering-Scaling, ComBat, and SVD Based
Methods

Many methods exist that aim to remove the unwanted variation coming from the
batch effects. We compare our method to three different approaches: the very
simple standardization method, the well-used ComBat method and an SVD-
based method that have a similar approach to our proposition.

The simplest way to normalize a dataset in order to remove batch effect
is to standardize each sub-dataset separately. That is, for each gene in each
sub-dataset, the expression values are centered and divided by their standard
deviation.

Another widely used but more complex method is ComBat [5]. The expres-
sion value of gene g for sample j in batch i is modeled as Yijg = αg + Xβg+
γig + δigεijg where αg is the overall gene expression, and X represents the
sample conditions. The error term εijg is assumed to follow a normal distri-
bution N(0, σ2

g). Additive and multiplicative batch effects are represented by
parameters γig and δig. ComBat uses a bayesian approach to model the different
parameters, and then removes the batch effects from the data to obtain the clean
data Y ∗

ijg = ε̂ijg + α̂g + Xβ̂g.
The third method, which we term SVD, is similar to [1]. The main difference

is that a singular value decomposition is computed instead of an independent
component analysis. As it is not clear how to systematically infer which compo-
nents to remove in [1], we use our R2 criterion.

Effects of the different normalization methods on the association between
genes and sub-datasets or ER are visible on Fig. 1. Compared to the initial values,
all methods about double the maximum R2 value associated to the ER factor
(from 0.25 to 0.5). Effects on association with sub-datasets are more different.
The centering-scaling approach and ComBat remove all association with the sub-
datasets. The methods based on matrix factorization are less sharp, the SVD
one keeping the higher association with sub-datasets.

In the remaining of this section, we compare all four normalization meth-
ods (centering-scaling, ComBat, SVD and ICA based) and the case without nor-
malization regarding possible batch effects. First we look in Sect. 3.2 at how the
method works and can be interpreted regarding the external information we have



ICA to Remove Batch Effects from Merged Microarray Datasets 287

None

R2(batch,gene)

R
2 (E

R
,g

en
e)

10

1
0

Centering

R2(batch,gene)

R
2 (E

R
,g

en
e)

10

1
0

ComBat

R2(batch,gene)

R
2 (E

R
,g

en
e)

10

1
0

SVD

R2(batch,gene)

R
2 (E

R
,g

en
e)

10

1
0

ICA

R2(batch,gene)

R
2 (E

R
,g

en
e)

10

1
0

Fig. 1. R2 values between the gene expression values and the sub-datasets versus the
ER factor, for different normalizations of aggregated dataset.

access to. This is only possible for the factorization methods. In a second time, we
compare in Sect. 3.3 the results obtained in the context of a classification task.

3.2 Spatio-Temporal ICA to Model Sources of Variations

As a first step to validate our approach, we computed the ICA factorization
of the unnormalized aggregated dataset for different values of α, yielding the
components A(α) and B(α) as in Eq. 1.

The maximal R2 values between components of the matrix B and the exter-
nal information (i.e. maxi R2(info, B:i)) are represented on Fig. 2. Information
related to the sub-datasets appears to be captured quite well in at least one com-
ponent B:i. The quality of the recovering of the external information depends on
the α value. If we compare with the SVD components, ICA is at least as good as
SVD to recover the external information. For some factors like subType, score-
Gene76, scoreProlif, scoreODX, treatment, and even ER in a smaller measure,
the ICA factorization improves the modeling.

Influence of sub-datasets appears to be captured in the SVD decomposition,
and in all values of α in ICA. However if we examine the relation between compo-
nents and external information the behaviors differ. On Fig. 3 we represented for
different decompositions the R2 values between all components and the external
information, and the correlation between components themselves.

SVD gives two uncorrelated components highly associated to sub-datasets.
ICA allows to increase the number of components associated to sub-dataset,
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Fig. 2. Maximal R2 values between components of the ICA factorization and the exter-
nal information depending on α. The isolated dots on the left hand side give the same
information but for the SVD decomposition.

especially for α values close to 0. However, some of those components are redun-
dant: for α = 0, components 1,2,4,6,8,9 have high R2 values. But components
4 and 9 are correlated with component 2, and component 8 with component
1. Increasing the value of α imposes more and more independence on B and
so enable to get rid of the redundancy between components. A good trade-off
between recovering external information and avoiding redundancy would be an
intermediate value of α.

3.3 Validation by Impact on Classification

Classification Process Description. To compare the different methods, we
used them in a whole process of classification task. We predicted the ER sta-
tus using an SVM classifier. The whole process is described in Algorithm 2. The
first step is to normalize the aggregated dataset X with the chosen method (here,
centering-scaling, ComBat, SVD or ICA based normalization), then center and
scale it to be sure to treat all features with the same weight (line 2). Training
and testing sets are then separated (line 3). A basic feature selection is performed
by selecting the 10 genes with the best association with the ER label based on a
Wilcoxon test (line 4). A standard SVM model is trained based on those genes
(lines 5 to 8). The labels of testing set are finally predicted using the SVM model
(line 9). To keep the SVM model simple, we used a linear kernel, the cost para-
meter is fixed using the heuristic implemented in the LiblineaR package, and the
classes weights are set to [1 − p0, 1 − p1] where pi gives the proportion of samples
in class i. In ICA and SVD based normalizations, we computed the K = 20 first
components and removed the components with an R2 value higher than t = 0.5.
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Fig. 3. Top: R2 values between components resulting from different factorizations and
the external information. Bottom: correlation between the different components. Black
implies a null correlation (0), and white a perfect one (1).

Algorithm 2. Classification process
Require: X (p × n) aggregated matrix of genes expression, y (n) the label to predict,

c (n) the sub-dataset information
1: ytr, yte ← y
2: Xn ← normalize(X, c, ytr)
3: Xtr, Xte ← Xn;
4: idxbestGenes ← Wilcoxon(ytr, Xtr)
5: XSV M ← Xtr[idxbestGenes, :]
6: c ← heuristic(XSV M )
7: w ← 1 − [�ytr == 1 �ytr == 0]
8: modelSV M ← SV M(XSV M , ytr, c, w)
9: ŷte ← prediction(modelSV M , Xte[idxbestGenes, :])

Results on Dataset. We kept each time two sub-datasets out of six for testing,
and trained the SVM model on the four other sub-datasets, for a total of C2

6 = 15
experiments.

The impact of α in the ICA based normalization on the results are illustrated
on Fig. 4. An α closer to 1 tends to predict more positive labels. As discussed in
Sect. 3.2, a value of α = 0.5 appears to be a good compromise.

The results on the testing set for the five methods (with α = 0.5 for the
ICA based) are shown on Fig. 5. The case without normalization appears to
have a larger variance. ComBat has a smaller variance than the case without
normalization, but bigger than the factorization methods. ICA and SVD are
closer, ICA being slightly higher.
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4 Conclusion

In the context of merging gene expression datasets to increase the number of
samples analyzed and so the robustness of extracted information, we have pro-
posed a method to remove batch effects. Inspired from existing methods, we have
used a spatio-temporal independent component analysis to model those effects
and remove it from the data. We have tested our method on a real breast cancer
aggregated dataset in a classification task and compared it to other normaliza-
tion methods. We have shown that our method can recover external information
better than using a simple singular value decomposition. The spatio-temporal
parameter α allows to adjust between modeling of external information and
redundancy between components. By comparison with ComBat, the factoriza-
tion approach enables to better understand what is removed in the cleaning
process. Results on the classification task on the real dataset shows a slight
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improvement for the ICA based one. The next step would be to test it on a more
difficult dataset where the labels correlate partially with the sub-datasets.
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Abstract. Rearrangements are large-scale mutations in genomes,
responsible for complex changes and structural variations. Most rearran-
gements that modify the organization of a genome can be represented by
the double cut and join (DCJ) operation. Given two genomes with the
same content, so that we have exactly the same number of copies of each
gene in each genome, we are interested in the problem of computing the
rearrangement distance between them, i.e., finding the minimum number
of DCJ operations that transform one genome into the other. We pro-
pose a linear time approximation algorithm with approximation factor
O(k) for the DCJ distance problem, where k is the maximum number
of duplicates of any gene in the input genomes. Our algorithm uses as
an intermediate step an O(k)-approximation for the minimum common
string partition problem, which is closely related to the DCJ distance
problem. Experiments on simulated data sets show that the algorithm is
very competitive both in efficiency and quality of the solutions.

1 Introduction

Large-scale mutations or rearrangements can produce complex changes and
structural variations in genomes. They include inversions of chromosome seg-
ments, translocations of chromosome ends, fusions and fissions of chromosomes.
All these rearrangements can be represented by the double cut and join (DCJ)
operation [15], which basically consists of cutting a genome in two distinct posi-
tions (possibly in two distinct chromosomes) and joining the four resultant open
ends in a different way.

A basic task in comparative genomics is to find the rearrangement distance
between two given genomes, i.e., the minimum number of rearrangements that
transform one genome into the other. For genomes without duplicate genes,
there are linear time algorithms to compute the distance allowing only DCJ
operations [4]. On the other hand, for genomes with duplicate genes, computing
c© Springer International Publishing Switzerland 2016
M. Frith and C.N.S. Pedersen (Eds.): WABI 2016, LNBI 9838, pp. 293–306, 2016.
DOI: 10.1007/978-3-319-43681-4 24
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the rearrangement distance is NP-hard, even when the genomes have the same
content and only DCJ operations are allowed [2,3].

In this paper we study the problem of computing the DCJ distance between
two genomes with the same content and possibly duplicate genes, with the
restriction that we have exactly the same number of copies of each gene in each
genome. We propose a linear time approximation algorithm with approximation
factor O(k), where k is the maximum number of duplicates of any gene in the
input genomes. The main goal is a construction of a consistent decomposition
of the corresponding adjacency graph, which is a disjoint cycle decomposition
of this graph. And then, we can easily compute the DCJ distance from this
decomposition.

To obtain such a decomposition we use a linear time approximation algo-
rithm for the minimum common string partition problem with approximation
factor O(k) [11]. It is an efficient approximation for the breakpoint distance (the
number of genes in the genome minus the number of preserved adjacencies), an
intermediate step of our proposed algorithm. As we will show, the whole proce-
dure is an approximation algorithm with approximation factor O(k) and linear
running time for the DCJ distance problem for genomes with the same con-
tent and exactly the same number of copies of each gene in each genome. The
proposed algorithm works properly on inputs that are linear unichromosomal
genomes.

The next section presents a background for describing the DCJ distance
problem and Sect. 3 presents it formally. The subsequent section discusses the
algorithm for the minimum common string partition problem and correlates it
to the DCJ distance. In Sect. 5 we develop our approach to compute the DCJ
distance. Experiments on simulated data sets are presented in Sect. 6. The last
section concludes the paper.

2 Preliminaries

A gene g in a genome is an oriented DNA fragment that can be represented
by the symbol g itself, if it has direct orientation, or by the symbol −g, if it
has reverse orientation. Genomes can be partitioned into chromosomes, that
are linear or circular sequences of genes. Each one of the two ends of a linear
chromosome is a telomere, represented by the symbol ◦.

Each chromosome in a genome can be represented by a string of its genes that
can be circular, if the chromosome is circular, or linear and flanked by the sym-
bols ◦, if the chromosome is linear. Given a gene g, let mA(g) be the number of
occurrences of g in a genome A. To refer to each occurrence of a gene g unambigu-
ously, we number the occurrences of g from 1 to mA(g). When there exists at least
one gene that occurs more than once in genome A, we say that A has duplicate
genes. Consider for instance the genome A = {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)},
composed of two linear chromosomes (each chromosome is flanked by parenthe-
ses). In A we have one occurrence of genes b and d and two occurrences of genes
a and c, that is, A has duplicate genes.
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We use the notations G(A) and GN (A), respectively, to refer to the set of
(non-numbered) genes and to the set of numbered genes of a genome A. Con-
sidering again the genome A above, we have G(A) = {a, b, c, d} and GN (A) =
{a1, a2, b1, c1, c2, d1}. Observe that the genomes A′ = {(◦ c1 −a2 d1 ◦),
(◦ b1 −a1 c2 ◦)} and A′′ = {(◦ c2 −a2 d1 ◦), (◦ b1 −a1c1 ◦)} are equivalent
to A = {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)}. Given a genome A, possibly with
duplicate genes, we denote by [A] the equivalence class of genomes that can be
obtained from A by swapping indices between occurrences of the same gene.

2.1 Balanced Genomes

Given genomes A and B possibly with duplicate genes, if they contain the same
number of occurrences of each gene, i.e. GN (A) = GN (B), we say that A and
B are balanced. Consequently, |A| = |B| = n. Moreover, we define occ(A) =
maxg∈A{mA(g)} as the maximum number of duplicates of any gene g in A.
Thus, if A and B are balanced genomes then occ(A) = occ(B). For simplicity,
in this case we use only occ. For example, genomes A = {(◦ c1 −a1 d1 ◦),
(◦ b1 c2 ◦), (c3)} and B = {(◦ a1 ◦), (◦ c3 −c1 −b1 ◦), (◦ d1 c2 ◦)} are balanced,
since GN (A) = {a1, b1, c1, c2, c3, d1} = GN (B), and occ = 3.

2.2 DCJ Operations

Rearrangements can change the organization of a genome, i.e., the number of
chromosomes in a genome or the order and the orientation of its genes. In general,
such a rearrangement cuts a genome in two different positions, creating four open
ends, and joins these open ends in a different way. It can be modeled by a double-
cut and join (DCJ) operation [15]. Consider, for example, a DCJ applied to
genome {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)}, that cuts the first chromosome before
and after −a1 d1, creating the segments (◦ c1 •), (• −a1 d1 •) and (• ◦) (the sym-
bol • represents the open ends). If we then join the first with the third and the
second with the fourth open end, we obtain {(◦ c1 −d1 a1 ◦), (◦ b1 −a2 c2 ◦)}.
This DCJ corresponds to the inversion of contiguous genes −a1 d1. DCJ opera-
tions can also correspond to other rearrangements, such as translocations, fusions
and fissions [15].

2.3 DCJ Distance and Adjacency Graph

Observe that the DCJ operation alone can only sort balanced genomes. We
formally define the DCJ distance problem:

Problem DCJ-distance(A,B): Given two balanced genomes A and B,
compute their DCJ distance ddcj(A,B), i.e., the minimum number of DCJ
operations required to transform A into B′, such that B′ ∈ [B].
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Any sequence of ddcj(A,B) DCJ operations transforming A into B′ ∈ [B] is
called an optimal sequence of DCJ operations.

Given two balanced genomes A and B, DCJ-distance(A,B) can be com-
puted with the help of the following concepts. First note that, since a gene g has
an orientation, we can distinguish its two ends, also called its extremities, and
denote them by gt (tail) and gh (head). An adjacency in a genome either is telom-
eric and corresponds to the extremity of a gene that is adjacent to one of its chro-
mosome ends, or it is an unordered pair of consecutive extremities in one of its
chromosomes. Thus, a genome A can also be defined as a set of adjacencies adj(A)
of its numbered genes. Given genome A = {(◦ c1 −a1 d1 ◦), (◦ b1 −a2 c2 ◦)}, for
example, we have adj(A) = { ct

1 , ch
1ah

1 , at
1d

t
1 , dh

1 , bt
1 , bh

1ah
2 , at

2c
t
2 , ch

2 }.
Given two balanced genomes A and B, the adjacency graph AG(A,B) [4]

is a bipartite multigraph such that each partition corresponds to the set of
adjacencies of one of the two input genomes, and an edge connects the same
extremities of adjacencies in both partitions, regardless of their index numbers.
We say that the edge represents those extremities. The length of a path or cycle
in AG(A,B) is the number of edges it contains.

Without Duplicate Genes. When the genomes A and B contain no duplicate
genes, there is a one-to-one correspondence between the set of edges in AG(A,B)
and the set of gene extremities. In this case, vertices have degree one or two
and thus the adjacency graph is a collection of disjoint paths and cycles. Here,
problem DCJ-distance can easily be solved in linear time [4] using the formula

ddcj(A,B) = n − c − i/2 ,

where n = |G(A)| = |G(B)| is the number of genes in any of the two genomes, c
is the number of cycles and i is the number of odd-length paths in AG(A,B).

With Duplicate Genes. When genomes have duplicate genes, problem DCJ-
distance becomes NP-hard [13]. In the same paper, the authors present an
exact, exponential-time algorithm for its solution, phrased in form of an Integer
Linear Program (ILP).

3 An Approach to Compute the DCJ Distance with
Duplicate Genes

Observe that in the presence of duplicate genes, the adjacency graph may contain
vertices of degree larger than two. A decomposition of AG(A,B) is a collection
of vertex-disjoint cycles and paths covering all vertices of AG(A,B). Cycles and
paths of a decomposition D are collectively called components of D.

There can be multiple ways of selecting a decomposition of the adjacency
graph. We need to find one that allows to match each occurrence of a gene in
genome A with exactly one occurrence of the same gene in genome B. In order
to build such a decomposition, we need the following definitions.
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Let gi and gj be, respectively, occurrences of the same gene g in genomes A
and B. The edge e that represents the connection of the head of gi to the head
of gj and the edge f that represents the connection of the tail of gi to the tail
of gj are called siblings. Two edges are compatible if they are siblings, or they
represent the connection of extremities of distinct occurrences of the same gene,
or they represent the connection of extremities of distinct genes. Otherwise they
are incompatible. A set of edges is compatible if it has no pair of incompatible
edges. A path or cycle C of AG(A,B) is consistent if the set E(C) of edges
of C is compatible. Note that, when constructing a decomposition, by choosing
consistent components one may still select incompatible edges that occur in
separate components (see the three dotted cycles of length 2 in Fig. 1). Thus,
consistency cannot be taken into account in components separately.

Fig. 1. Examples of an inconsistent cycle (dashed edges) and an inconsistent set of
cycles (dotted edges): the adjacency graph for A = (◦ a1 b1 a2 b2 a3 a4 a5 ◦) and
B = (◦ b1 −a1 b2 a2 a3 a4 a5 ◦), with some edges omitted. For the sake of clarity,
edges are labeled with extremities they represent. For example, an edge labeled gt

i−j

represents extremities gt
i from A and gt

j from B.

A set of paths and cycles {C1, C2, . . . , Ck} of AG(A,B) is consistent if and
only if E(C1) ∪ E(C2) ∪ · · · ∪ E(Ck) is compatible. A consistent decomposition
D of AG(A,B) is a consistent set of vertex-disjoint cycles and paths that cover
all vertices in AG(A,B). Observe that in a consistent decomposition D we have
only pairs of siblings, i.e., either an edge e and its sibling f are in D or both e
and f are not in D. Thus, a consistent decomposition corresponds to a matching
of occurrences of genes in both genomes and allows us to compute the value

dD = n − cD − iD/2 ,

where n = |GN (A)| = |GN (B)| and cD and iD are the numbers of cycles and
odd-length paths in D, respectively. This provides a way to compute the DCJ
distance.

Theorem 1. Given two genomes A and B, possibly with duplicate genes, the
solution for the problem DCJ-distance is given by the following equation:

ddcj(A,B) = min
D∈D

{dD} ,
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where D is the set of all consistent decompositions of AG(A,B).

Proof. Since a consistent decomposition allows to match duplicates in both
genomes, clearly ddcj(A,B) ≤ minD∈D{dD}. Now, assume that ddcj(A,B) <
minD∈D{dD}. By definition, this distance corresponds to an optimal rearrange-
ment scenario from A to some B′ ∈ [B] and therefore implies a matching between
the genes of A and the genes of B′. Furthermore, this matching gives rise to a
consistent decomposition D′ of AG(A,B) such that dD′ < minD∈D{dD}, which
is a contradiction. ��

A consistent decomposition D such that dD = ddcj(A,B) is said to be opti-
mal.

Once a consistent decomposition D of the adjacency graph AG(A,B) is
found, following [4] it is easy to derive in linear time a DCJ rearrangement
scenario with dD DCJ operations transforming A into B. Moreover, an optimal
consistent decomposition allows to find all optimal rearrangement scenarios [5].

3.1 Capping Telomeres

A general technique for simplifying algorithms that handle genomes with possi-
bly unequal telomeric adjacencies is called capping and consists of transforming
each telomeric into a non-telomeric adjacency [9,12,16]. Let null extremities be
represented by τ and null adjacencies be represented by ττ . Given two genomes
A and B with 2i and 2j telomeres, respectively, in both genomes each telomeric
adjacency x is replaced by the adjacency xτ . Furthermore, in order to add the
same number of null extremities to both genomes, |j − i| null adjacencies ττ are
added to genome A, if i < j, or to genome B, if j < i. Let Aτ and Bτ be the
new sets of adjacencies obtained by this procedure. Observe that in AG(Aτ , Bτ )
each null extremity of Aτ must be connected to each null extremity of Bτ .

Observe that any consistent decomposition D of AG(Aτ , Bτ ) is composed of
cycles only, allowing to compute the value

dD = n − cD ,

where n = |GN (A)| = |GN (B)| and cD is the number of cycles in D.

Theorem 2. Let A and B be two genomes and let Aτ and Bτ be the genomes
obtained from A and B by capping telomeric adjacencies. Then,

ddcj(A,B) = min
D∈Dτ

{dD} ,

where Dτ is the set of all consistent decompositions of AG(Aτ , Bτ ).

Proof. Each consistent decomposition D of AG(A,B) corresponds to a consistent
decomposition D′ of AG(Aτ , Bτ ), such that each path in D becomes a cycle in
D′. The null extremities added to both genomes ensure that dD = dD′ : in the
formula to compute dD′ each path adds one to the term cD but (i) each even
path has two new null extremities and adds one to the term n and (ii) each
pair of odd paths has two new null extremities and adds one to the term n and
decreases two from the term iD. ��
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4 Approximating the DCJ Distance by Cycles
of Length 2

All definitions and properties for the DCJ distance for balanced genomes pre-
sented from the beginning to here work properly for the general case, where
genomes are multichromosomal. However, as we will see in this section, to solve
the DCJ distance problem we use an intermediate procedure whose inputs are
strings. Thus, from now on, we restrict our inputs for linear unichromosomal
genomes. The extension to general genomes is left as an open problem.

As mentioned in the previous section, the adjacency graph for balanced and
capped genomes is a collection of cycles and thus we have to find a disjoint cycle
decomposition of the adjacency graph to compute the DCJ distance according
to Theorems 1 and 2. Recall that it is an NP-hard problem [13].

Given a consistent decomposition D ∈ Dτ of an adjacency graph AG(Aτ , Bτ ),
we can see that

dD = n − cD = n − c2 − c> ,

where n = |GN (A)| = |GN (B)|, c2 is the number of cycles of length 2, and c>

is the number of cycles of length longer than 2 in D. A naive approach to solve
the DCJ distance problem could be, as a first step, maximizing c2. However,
this strategy is not able to solve properly the DCJ distance problem for two
main reasons: (i) finding the maximum number of cycles of length 2 is itself an
NP-hard problem, as we will justify below; and (ii) this strategy is not optimal
to solve the DCJ distance, as we can see in Fig. 2.

The problem of finding a decomposition maximizing the number of cycles of
length 2 is equivalent to the adjacency similarity problem [3], the complement of
the breakpoint distance problem, where one wants to minimize n−c2. Moreover,
from an optimal solution for the adjacency similarity (or the breakpoint distance)
problem it is possible to approximate the DCJ distance, as stated in Lemma 1.

Lemma 1. A consistent decomposition D′ of AG(Aτ , Bτ ) containing the maxi-
mum number of cycles of length 2 is a 2-approximation for the DCJ-distance
problem.

Proof. Let c∗
2 and c∗

> be the number of cycles of length 2 and longer than 2,
respectively, of an optimal decomposition D∗ of AG(Aτ , Bτ ). Let c′

2 and c′
> be

the numbers analogous to c∗
2 and c∗

> with respect to the decomposition D′. It it
easy to see that c∗

2 + 2c∗
> ≤ n, then

0 ≤ n − c∗
2 − 2c∗

>

n − c∗
2 ≤ n − c∗

2 − 2c∗
> + n − c∗

2

n − c∗
2 ≤ 2(n − c∗

2 − c∗
>) . (1)
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Fig. 2. Consistent decompositions for genomes A = (◦ −c a f −e d −a b i −h g −b ◦)
and B = (◦ c a d e f −a b g h i −b ◦), where solid edges are in both decompositions.
Gene indexes were omitted. (a) A consistent decomposition D′ containing the maximum
number of cycles of length 2, composed of 1 cycle of length 2, 1 cycle of length 8, 1
odd path of length 1 and 1 odd path of length 3, resulting in dD′ = 11 − 4 − 2/2 = 7.
(b) An optimal consistent decomposition D∗, composed of 4 cycles of length 4 and 2
odd paths of length 3, resulting in dD∗ = 11 − 4 − 2/2 = 6.

Therefore, we have

dD′

dD∗
=

n − c′
2 − c′

>

n − c∗
2 − c∗

>

≤ n − c∗
2 − c′

>

n − c∗
2 − c∗

>

(2)

≤ n − c∗
2

n − c∗
2 − c∗

>

≤ 2(n − c∗
2 − c∗

>)
n − c∗

2 − c∗
>

(3)

= 2 , (4)

where (2) holds since c′
2 ≥ c∗

2, and (3) is true from (1). ��

Recall that the adjacency similarity and breakpoint distance problems are
both NP-hard [3,6]. The former can be approximated by a factor of 4 for bal-
anced genomes [1]. However, an approximation with constant approximation
factor for the former problem does not lead to an approximation with con-
stant approximation factor for the latter. The breakpoint distance for balanced
genomes has a 1.1037-approximation when occ = 2 [8], a 4-approximation when
occ = 3 [8], and an O(k)-approximation when occ = k [11]. Those approximations
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were developed for the minimum common string partition problem (MCSP) [14],
which is equivalent to the breakpoint distance problem [10].

5 Finding Consistent Decompositions

In this section we present a linear time approximation algorithm Consistent-
Decomposition, which receives two linear unichromosomal balanced genomes
A and B with occ = k and returns a consistent decomposition for genomes A
and B, which is an O(k)-approximation for the DCJ distance. The main steps
of Consistent-Decomposition can be briefly described as follows. First, from
the input genomes, we obtain capped genomes and then we build the adjacency
graph of them. Next, we use an approximation for the (signed) minimum com-
mon string partition problem, which gives an approximation for the number of
breakpoints in the adjacency graph. After that we clean the chosen cycles of
length 2 from the adjacency graph. Following, we iteratively collect arbitrary
cycles of length longer than 2, cleaning up the remaining graph after each itera-
tion. Finally, we return the set of collected cycles as a consistent decomposition
of the prior adjacency graph.

Algorithm 1. Consistent-Decomposition(A,B)
Input: balanced genomes A and B such that occ = k
Output: a consistent decomposition of AG(A,B)
1: Add null extremities/adjacencies to A and B and obtain Aτ and Bτ , respectively
2: Build the adjacency graph AG(Aτ , Bτ )
3: Obtain an O(k)-approximation S2 for the set of cycles of length 2 in AG(Aτ , Bτ )

using the O(k)-approximation algorithm for the minimum common string partition
problem [11]

4: Remove from the adjacency graph vertices covered by S2 and all edges incompatible
with edges of S2

5: Decompose the remaining graph into consistent cycles by iteratively finding a con-
sistent cycle C and then removing from the graph vertices covered by C and edges
incompatible with edges of C, collecting them in S>

6: Remove null extremities/adjacencies of cycles in S2 ∪ S> and obtain a consistent
decomposition D of AG(A,B)

7: Return D

Step 1 of Consistent-Decomposition consists of capping telomeres from
the given balanced genomes A and B as described in Sect. 3.1. In Step 2,
Consistent-Decomposition builds the adjacency graph for capped genomes
Aτ and Bτ . After that, Step 3 collects cycles of length 2 using an O(k)-
approximation algorithm for the minimum common string partition problem [11]
as described in Sect. 4. Step 4 removes from AG(Aτ , Bτ ) vertices covered by
cycles in S2 and edges incompatible with edges of cycles in S2. Step 5 constructs
the set S> by decomposing the remaining graph into consistent cycles. Itera-
tively, it chooses a consistent cycle C and then removes from the remaining
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graph vertices covered by C and edges incompatible with edges of C. Hence
the algorithm does not choose an inconsistent set of components. Further, this
guarantees that for every edge in the decomposition, its sibling edge will also be
in the decomposition, avoiding for example the selection of the path of length
1 composed of the edge that connects ah

5 of A to ah
5 of B and then the cycle of

length 2 composed of the edge that connects ah
4 of A to ah

3 of B and the edge
that connects at

5 of A to at
4 of B in Fig. 1. In order to obtain the consistent

decomposition of AG(A,B), Consistent-Decomposition removes in Step 6
null extremities/adjacencies of cycles in S2 ∪ S>, returning the resulting set D
in Step 7.

There is one implicit but important step in the algorithm above, which is to
obtain the set S2 given the output of the k-MCSP approximation algorithm [11].
This algorithm outputs a common string partition (A,B). Both A and B are
composed of the same set of substrings, in different orders and possibly reversed.
Each substring of length l > 1 in A and B induces l − 1 preserved adjacencies
in A and B. First of all, we must normalize strings in A and B, that is, for
each substring s and its reverse r, only s appears in A and B (we reverse each
occurrence of r, resulting in s). Then we just have to map each substring in A
to the same substring in B (in case of multiple occurrences, we choose any of
them), which can be performed using a prefix tree. Thus this implicit step can
be done in linear time on the adjacency graph size.

Lemma 2. Given balanced genomes A and B such that |A| = |B|, the running
time of Consistent-Decomposition algorithm is linear on the size of the
corresponding adjacency graph.

Proof. Let m be the size of AG(Aτ , Bτ ). It is easy to see that Steps 1 and 2
of Algorithm 1 have both linear running time, i.e. O(m). The implementation
of the k-MCSP [11] in Step 3 with suffix trees [7] and disjoint sets has running
time O(m) (note that m = O(n2)). The running time of Step 4 is O(m) since
we have just to traverse vertices and edges of the remaining adjacency graph.
Step 5 consists of collecting cycles arbitrarily, and therefore its running time is
also linear, we just have to walk in AG(Aτ , Bτ ) finding cycles. To be sure we walk
only in consistent paths, we can use a hash table of size Θ(n) and store, for each
edge of previously chosen cycles in Steps 1 to 5, genes of Aτ (Bτ ) associated
to genes of Bτ (Aτ ). For instance, the selection of an edge representing the
connection of extremities at

i of Aτ and at
j of Bτ is consistent if both ai and

aj are associated with no gene of Bτ and Aτ , respectively, or both are already
associated with each other (this edge is the sibling of a previously chosen edge).
This consistency check takes O(1) time. The last step (Step 6) is similar to Step 4
and thus has running time O(m). Therefore, Consistent-Decomposition has
running time O(m). ��

To conclude this section, we present the following result which establishes an
approximation factor for DCJ-distance.
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Theorem 3. Let A and B be balanced genomes such that occ = k. Given a
common string partition (A,B) with approximation factor O(k) for the k-MCSP
problem, a consistent decomposition D of AG(A,B), containing cycles of length
2 reflecting preserved adjacencies in (A,B), is an O(k)-approximation for the
DCJ-distance problem.

Proof. Let c∗
2 and c∗

> be the number of cycles of length 2 and longer than 2,
respectively, of an optimal decomposition D∗ of AG(A,B). Let S2 be the set
of cycles of length 2 reflecting preserved adjacencies in (A,B), and let S> be
an arbitrary decomposition of cycles in AG(A,B) \ S2. Let D = S2 ∪ S>, a
consistent decomposition, c2 = |S2|, and c> = |S>|. From [11] we have an O(k)-
approximation for the k-MCSP problem, and then n − c2 ≤ �(n − c′

2), where
� = O(k) and c′

2 is the number of cycles of length 2 in a consistent decomposition
D′ with maximum number of cycles of length 2. Hence,

dD

dD∗
=

n − c2 − c>

n − c∗
2 − c∗

>

≤ � (n − c′
2) − c>

n − c∗
2 − c∗

>

≤ � (n − c′
2)

n − c∗
2 − c∗

>

≤ 2�

(
n − c′

2 − c′
>

n − c∗
2 − c∗

>

)
(5)

≤ 4� , (6)

where (5) is analogous to (1) and (6) holds from (4), both in the proof of
Lemma 1. ��

6 Experimental Results

We have implemented our approximation algorithm in C++, with the addition
of a linear time greedy heuristic for the decomposition of cycles not induced by
the k-MCSP approximation. The experiments for this approach were performed
on an Intel i3 3.3 GHz machine.

We compare our algorithm with Shao et al.’s ILP [13] on simulated datasets.
Given two genomes, the ILP based experiments first build the adjacency graph,
followed by capping of the telomeres, fixing some safe cycles of length two, and
finally invoking an ILP solver to obtain an optimal solution with a time limit
of 2 h.

Following [13], we simulate artificial genomes with segmental duplications
and DCJs. We uniformly select a position to start duplicating a segment of the
genome and place the new copy to a new position. From a genome of s distinct
genes, we generate an ancestor genome with 1.5s genes by randomly perform-
ing s/2l segmental duplications of length l, resulting in an average k = 1.5.
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Then we simulate two extant genomes from the ancestor by randomly per-
forming r DCJs (reversals) independently. Thus, the simulated evolutionary
distance between the two extant genomes is 2r. We set s = 1000 and test
three different lengths for segmental duplications (l = 1, 2, 5). We also vary
the r value over a range 200, 220, . . . , 500. Figure 3 shows the average difference
“computed number of DCJs − simulated evolutionary distance”, taking as input
five pairs of genomes for each combination of l and r, while Fig. 4 shows the
average running time. Note that, although the DCJ distance is unknown when-
ever the ILP solver is stopped after the time limit, it is always less than or equal
to the simulated evolutionary distance for these artificial genome pairs.
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Fig. 3. The computed number of DCJs vs. the simulated evolutionary distance for
s = 1000. (Color figure online)

The difference of the number of DCJs (blue lines in Fig. 3) calculated by our
approximation algorithm remains very close to the simulated evolutionary dis-
tance for small values of l. Moreover, it remains roughly the same for the same
value of l even for greater values of r. The values obtained by the ILP approach
(red lines in Fig. 3) are very close to those obtained by the approximation algo-
rithm and to the simulated evolutionary distance from the simulations for l ≤ 2
and smaller values of r. However, beyond some point the DCJ distance calcu-
lated by the ILP gets even lower than the simulated evolutionary distance in the
simulations, showing the limitations of parsimony for larger distance ranges.

Regarding the running time, our implementation time increases slowly from
≈ 0.03 (2r = 400) to ≈ 0.08 s (2r = 1000), on average, according to Fig. 4(a),
while the ILP approach takes ≈ 0.3 s to finish for smaller values of r (where
the preprocessing step fixes a considerable amount of cycles of length 2 in the
adjacency graph), always reaching the time limit of 2 h beyond some point, as
displayed in Fig. 4(b).
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Fig. 4. Execution time for s = 1000 of (a) approximation and (b) ILP based programs.

7 Conclusion

In this paper, we have proposed a new approximation algorithm for the DCJ
distance for genomes where each gene occurs the same number of times in each
input genome and there exists at least one gene that occurs more than once in
one of them. This so called DCJ distance with duplicates for balanced genomes
problem is NP-hard [13]. Our algorithm works on input genomes where the
amount of duplicates is bounded by O(k), where k is the maximum number of
duplicates of any gene in the input genomes. The approximation factor of our
algorithm is O(k). Furthermore, our algorithm has linear running time on the
adjacency graph size. As experiments on simulated genomes have shown, our
algorithm is very competitive both in efficiency and quality of the solutions, in
comparison to the ILP exact solution.

Due to an intermediate step which approximates the minimum common
string partition problem, our algorithm works properly only on linear unichro-
mosomal genomes as input. A natural extension of this work is modifying our
algorithm to work with multichromosomal genomes as well. Moreover, we have
to extend our experiments, running our algorithm on more simulated data sets
and also on biological data sets.
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Abstract. Mixtures of beta distributions have previously been shown to
be a flexible tool for modeling data with values on the unit interval, such
as methylation levels. However, maximum likelihood parameter estima-
tion with beta distributions suffers from problems because of singularities
in the log-likelihood function if some observations take the values 0 or 1.
While ad-hoc corrections have been proposed to mitigate this problem,
we propose a different approach to parameter estimation for beta mix-
tures where such problems do not arise in the first place. Our algorithm
has computational advantages over the maximum-likelihood-based EM
algorithm. As an application, we demonstrate that methylation state
classification is more accurate when using adaptive thresholds from beta
mixtures than non-adaptive thresholds on observed methylation levels.

Keywords: Mixture model · Beta distribution · Maximum likelihood ·
Method of moments · EM algorithm · Differential methylation · Classi-
fication

1 Introduction

The beta distribution is a continuous probability distribution that takes values
in the unit interval [0, 1]. It has been used in several bioinformatics applications
[4] to model data that naturally takes values between 0 and 1, such as relative
frequencies, probabilities, absolute correlation coefficients or DNA methylation
levels of CpG dinucleotides or longer genomic regions. One of the most prominent
applications is for the estimation of false discovery rates (FDRs) from p-value
distributions after multiple tests by fitting a beta-uniform mixture (BUM [5]).
By linear scaling, beta distributions can be used to model any quantity that
takes values in a finite interval [L,U ] ⊂ R.

The beta distribution has two parameters α > 0 and β > 0 and can take
a variety of shapes depending on whether 0 < α < 1 or α = 1 or α > 1 and
0 < β < 1 or β = 1 or β > 1; see Fig. 1. The beta probability density on [0, 1] is

bα,β(x) =
1

B(α, β)
· xα−1 · (1 − x)β−1 , where B(α, β) =

Γ (α)Γ (β)
Γ (α + β)

, (1)

c© Springer International Publishing Switzerland 2016
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Fig. 1. Different shapes of beta distributions depending on parameters α and β.

and Γ refers to the gamma function Γ (z) =
∫ ∞
0

xz−1 e−x dx with Γ (n) = (n−1)!
for positive integers n. It can be verified that

∫ 1

0
bα,β(x) dx = 1. Note that for

α = β = 1, we obtain the uniform distribution. Section 2.1 has more details.
While a single beta distribution can take a variety of shapes, mixtures of

beta distributions are even more flexible. Such a mixture has the general form

fθ(x) =
c∑

j=1

πj · bαj ,βj
(x) , (2)

where c is the number of components, the πj are called mixture coefficients sat-
isfying

∑
j πj = 1 and πj ≥ 0, and the αj , βj are called component parameters.

Together, we refer to all of these as model parameters and abbreviate them as
θ. The number of components c is often assumed to be a given constant and not
part of the parameters to be estimated.

The parameter estimation problem consists of estimating θ from n usually
independent observed samples (x1, . . . , xn) such that the observations are well
explained by the resulting distribution.

Maximum likelihood (ML) estimation (MLE) is a frequently used paradigm,
consisting of the following optimization problem.

Given (x1, . . . , xn), maximize L(θ) :=
n∏

i=1

fθ(xi),

or equivalently, L(θ) :=
n∑

i=1

ln fθ(xi). (3)

As we show in Sect. 2.2, MLE has significant disadvantages for beta distributions.
The main problem is that the likelihood function may not be finite (for some
parameter values) if some of the observed datapoints are xi = 0 or xi = 1.
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For mixture distributions, MLE frequently results in a non-concave problem
with many local maxima, and one uses heuristics that return a local optimum
from given starting parameters. A popular and successful method for parameter
optimization in mixtures is the expectation maximization (EM) algorithm [2]
that iteratively solves an (easier) ML problem on each estimated component
and then re-estimates which datapoints belong to which component. We review
the basic EM algorithm in Sect. 2.3.

Because already MLE for a single beta distribution is problematic, EM does
not work for beta mixtures, unless ad-hoc corrections are made. We therefore
propose a new algorithm for parameter estimation in beta mixtures that we call
iterated method of moments. The method is presented in Sect. 3.

Our main motivation for this work stems from the analysis of methylation
level data in differentially methylated regions between individuals, not cell types
or conditions; see Sect. 4. Our evaluation therefore focuses on the benefits of beta
mixture modeling and parameter estimation using our algorithm for methylation
state classification from simulated methylation level data.

2 Preliminaries

2.1 Beta Distributions

The beta distribution with parameters α > 0 and β > 0 is a continuous proba-
bility distribution on the unit interval [0, 1] whose density is given by Eq. (1).

If X is a random variable with a beta distribution, then its expected value μ
and variance σ2 are

μ := E[X] =
α

α + β
, σ2 := Var[X] =

μ(1 − μ)
α + β + 1

=
μ(1 − μ)

1 + φ
, (4)

where φ = α+β is often called a precision parameter; large values indicate that
the distribution is concentrated.

Conversely, the parameters α and β may be directly expressed in terms of μ
and σ2. First, compute

φ =
μ(1 − μ)

σ2
− 1 ; then α = μφ , β = (1 − μ)φ . (5)

2.2 Maximum Likelihood Estimation for Beta Distributions

The estimation of parameters in a parameterized distribution from n indepen-
dent samples usually follows the maximum likelihood (ML) paradigm. If θ repre-
sents the parameters and fθ(x) is the probability density of a single observation,
the goal is to find θ∗ that maximizes L(θ) as defined in (3).

Writing γ(y) := lnΓ (y), the beta log-likelihood is

L(α, β) = n(γ(α+β)−γ(α)−γ(β))+(α−1)·
∑

i

ln xi+(β−1)·
∑

i

ln(1−xi) . (6)
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Fig. 2. Estimated parameter values α (blue) and β (red) from a dataset consisting
of the ten observations 0.01, . . . , 0.10 and ten observations of ε for varying values of
ε. Estimation was done using MLE (dotted lines) as implemented in the R package
betareg and by our (moment-based) method (solid lines).

The optimality conditions dL/dα = 0 and dL/dβ = 0 are solved numerically and
iteratively. While this is inconvenient (in comparison to a mixture of Gaussians
where analytical formulas exist for the ML estimators), the main problem is a
different one. The log-likelihood function is not well defined for α �= 1 or β �= 1
if any of the observations are xi = 0 or xi = 1. Several implementations of ML
estimators for beta distributions (e.g. betareg, see below) throw errors then.

Note that, in theory, there is no problem, because x ∈ {0, 1} is an event
of probability zero if the data are truly generated by a beta distribution. Real
data, however, in particular observed methylation levels, may very well take these
values. This article’s main motivation is the desire to work with observations of
x = 0 and x = 1 in a principled way.

The above problem with MLE for beta distributions has been noted previ-
ously, but, to our knowledge, not explicitly attacked. A typical ad-hoc solution
is to linearly rescale the unit interval [0, 1] to a smaller sub-interval [ε, 1 − ε] for
some small ε > 0 or to simply replace values < ε by ε and values > 1−ε by 1−ε,
such that, in both cases, the resulting adjusted observations are in [ε, 1 − ε].

A simple example, which has to our knowledge not been presented before,
will show that the resulting parameter estimates depend strongly on the choice
of ε in the ML paradigm. Consider 20 observations, ten of them at x = 0, the
remaining ten at x = 0.01, . . . , 0.10. For different values of 0 < ε < 0.01, replace
the ten zeros by ε and compute the ML estimates of α and β. We used the R
package betareg1 [3], which performs numerical ML estimation of logit(μ) and
ln(φ), where logit(μ) = ln(μ/(1 − μ)). We then used Eq. (5) to compute ML
estimates of α and β. We additionally used our new approach (Sect. 3) with the

1 https://cran.r-project.org/web/packages/betareg/betareg.pdf.

https://cran.r-project.org/web/packages/betareg/betareg.pdf
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same varying ε. In contrast to MLE, our approach also works with ε = 0. The
resulting estimates for α and β are shown in Fig. 2: Not only is our approach
able to directly use ε = 0; it is also insensitive to the choice of ε for small ε > 0.

To summarize, while MLE is known to be statistically efficient for correct
data, its results may be sensitive to perturbations of the data. For modeling with
beta distributions in particular, the problems of MLE are severe: The likelihood
function is not well defined for reasonable datasets that occur in practice, and
the solution depends strongly on ad-hoc parameters introduced to rectify the
first problem. Before we can introduce our solution to these problems, we first
discuss parameter estimation in mixture models.

2.3 The EM Algorithm for Beta Mixture Distributions

For parameters θ of mixture models, including each component’s parameters and
the mixture coefficients, the log-likelihood function L(θ) =

∑n
i=1 ln fθ(xi), with

fθ(xi) as in Eq. (2), frequently has many local maxima; and a globally optimal
solution is difficult to compute.

The EM algorithm [2] is a general iterative method for ML parameter estima-
tion with incomplete data. In mixture models, the “missing” data is the informa-
tion which sample belongs to which component. However, this information can
be estimated (given initial parameter estimates) in the E-step (expectation step)
and then used to derive better parameter estimates by ML for each component
separately in the M-step (maximization step). Generally, EM converges slowly
to a local optimum of the log-likelihood function [6].

E-Step. To estimate the expected responsibility Wi,j of each component j for
each data point xi, the component’s relative probability at that data point is
computed, such that

∑
j Wi,j = 1 for all i.

Wi,j =
πj bαj ,βj

(xi)∑
k πk bαk,βk

(xi)
and π+

j =
1
n

n∑

i=1

Wi,j . (7)

M-Step. Using the responsibility weights Wi,j , the components are unmixed, and
a separate (weighted) sample is obtained for each component, so their parameters
can be estimated independently by MLE. The new mixture coefficients’ ML
estimates π+

j in (7) are the averages of the responsibility weights over all samples.

Initialization and Termination. EM requires initial parameters before starting
with an E-step. The resulting local optimum depends on these initial parame-
ters. It is therefore common to choose the initial parameters either based on
additional information (e.g., one component with small values, one with large
values), or to re-start EM with different random initializations. Convergence
is detected by monitoring relative changes in the log-likelihood or parameters
between iterations and stopping when these changes are below a given tolerance.
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Properties and Problems with Beta Mixtures. One of the main reasons why the
EM algorithm is predominantly used in practice for mixture estimation is the
availability of an objective function (the log-likelihood). By Jensen’s inequality,
it increases in each EM iteration, and when it stops increasing, a stationary point
has been reached [6]. Solutions obtained by two runs with different initializations
can be objectively compared by comparing their log-likelihood values.

In beta mixtures, there are several problems with using the EM algorithm.
First, the responsibility weights Wi,j are not well defined for xi = 0 or xi = 1
because of the singularities in the likelihood function described in Sect. 2.1.
Second, the M-step cannot be carried out if the data contains any such point for
the same reason. Third, even if all xi ∈ ]0, 1[, the resulting mixtures are sensitive
to perturbations of the data. Fourth, because each M-step already involves a
numerical iterative maximization, the computational burden over several EM
iterations is significant. We now propose an algorithm for parameter estimation
in beta mixtures that does not suffer from these drawbacks.

3 The Iterated Method of Moments

With the necessary preliminaries in place, the main idea behind our algorithm
can be stated briefly before we discuss the details.

From initial parameters, we proceed iteratively as in the EM framework and
alternate between an E-step, which is a small modification of EM’s E-step, and
a parameter estimation step, which is not based on the ML paradigm but on
Pearson’s method of moments until a stationary point is reached.

To estimate Q free parameters, the method of moments’ approach is to choose
Q moments of the distribution, express them through the parameters and equate
them to the corresponding Q sample moments. This usually amounts to solving
a system of Q non-linear equations. The method of moments has been applied
directly to mixture distributions. For example, a mixture of two one-dimensional
Gaussians has five free parameters: two means μ1, μ2, two variances σ2

1 , σ
2
2 and

the weight π1 of the first component. Thus one needs to choose five moments, say
mk := E[Xk] for k = 1, . . . , 5 and solve the corresponding relationships. Solving
these equations for many components (or in high dimensions) seems daunting,
even numerically. Also it is not clear whether there is always a unique solution.

For a single beta distribution, however, α and β are easily estimated from
sample mean and variance by Eq. (5), using sample moments instead of true
values. Thus, to avoid the problems of MLE in beta distributions, we replace the
likelihood maximization step (M-step) in EM by a method of moments estima-
tion step (MM-step) using expectation and variance.

We thus combine the idea of using latent responsibility weights from EM with
moment-based estimation, but avoid the problems of pure moment-based esti-
mation (large non-linear equation systems). It may seem surprising that nobody
appears to have done this before, but one reason may be the lack of an objective
function, as we discuss further below.
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Initialization. A general reasonable strategy for beta mixtures is to let each com-
ponent focus on a certain sub-interval of the unit interval. With c components,
we start with one component responsible for values around k/(c − 1) for each
k = 0, . . . , c − 1. The expectation and variance of the component near k/(c − 1)
is initially estimated from the corresponding sample moments of all data points
in the interval [(k − 1)/(c − 1), (k + 1)/(c − 1)] ∩ [0, 1]. (If an interval contains
no data, the component is removed from the model.) Initial mixture coefficients
are estimated proportionally to the number of data points in that interval.

E-step. The E-step is essentially the same as for EM, except that we assign
weights explicitly to data points xi = 0 and xi = 1.

Let j0 be the component index j with the smallest αj . If there is more than
one, choose the one with the largest βj . The j0 component takes full responsi-
bility for all i with xi = 0, i.e., Wi,j0 = 1 and Wi,j = 0 for j �= j0. Similarly, let
j1 be the component index j with the smallest βj (among several ones, the one
with the largest αj). For all i with xi = 1, set Wi,j1 = 1 and Wi,j = 0 for j �= j1.
MM-step. The MM-step estimates mean and variance of each component j by
responsibility-weighted sample moments,

μj =
∑n

i=1 Wij · xi∑n
i=1 Wij

=
∑n

i=1 Wij · xi

n · πj
, σ2

j =
∑n

i=1 Wij · (xi − μj)2

n · πj
. (8)

Then αj and βj are computed according to (5) and new mixture coefficients
according to (7).

Termination. Let θq be any real-valued parameter to be estimated and Tq a
given threshold for θq. After each MM-step, we compare θq (old value) and θ+q
(updated value) by the relative change κq := |θ+q − θq| / max

(
|θ+q |, |θq|

)
. (If

θ+q = θq = 0, we set κq := 0.) We say that θq is stationary if κq < Tq. The
algorithm terminates when all parameters are stationary.

Properties. The proposed method does not have an objective function that can be
maximized. Therefore we cannot make statements about improvement of such a
function nor can we directly compare two solutions from different initializations
by objective function values. It also makes no sense to talk about “local optima”,
but, similar to the EM algorithm, there may be several stationary points. We
have not yet established whether the method always converges. On the other
hand, we have the following desirable property.

Lemma 1. In each MM-step, before updating the component weights, the expec-
tation of the estimated density equals the sample mean. In particular, this is true
at a stationary point.

Proof. For a density f we write E[f ] for its expectation
∫

x · f(x) dx. For
the mixture density (2), we have by linearity of expectation that E[fθ] =∑

j πj E[bαj ,βj
] =

∑
j πj μj . Using (8) for μj , this is equal to 1

n

∑
j

∑
i Wij xi =

1
n

∑
i xi, because

∑
j Wij = 1 for each j. Thus E[fθ] equals the sample mean. ��
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4 Application: Classification of Methylation States

4.1 Motivation

We are interested in explaining differences in methylation levels of genomic
regions between individuals by genetic variation and would like to find single
nucleotide variants (SNVs) whose state correlates well with methylation state.
In a diploid genome, we expect the methylation level of a homgeneously methy-
lated region in a homogeneous collection of cells to be (close to) 0, 0.5 or 1,
and the state of the corresponding region may be called unmethylated, semi-
methylated or fully methylated, respectively.

When we measure the methylation level of each CpG dinucleotide in the
genome, for example by whole genome bisulfite sequencing (WGBS) [1], we
observe fractions M/(M + U) from numbers M and U of reads that indicate
methylated and unmethylated cytosines, respectively, at each CpG dinucleotide.
These observed fractions differ from the true methylation levels for several rea-
sons: incomplete bisulfite conversion, sequencing errors, read mapping errors,
sampling variance due to a finite number of reads, an inhomogeneous collec-
tion of cells being sequenced, the region being heterogeneously methylated, and
others.

Therefore we model the observed methylation level by a probability distrib-
ution depending on the methylation state. The overall distribution of the obser-
vations is captured by a 3-component beta mixture model with one component
representing values close to zero (unmethylated), one component close to 1/2
(semi-methylated), and one component close to 1 (fully methylated).

Thus the problem is as follows. After seeing n observed methylation lev-
els (x1, . . . , xn), find the originating methylation state for each xi. This is fre-
quently done using reasonable fixed cut-off values (that do not depend on the
data), e.g. calling values below 0.25 unmethylated, values between 0.25 and 0.75
semi-methylated and values above 0.75 fully methylated [7]. One may leave xi

unassigned if the value is too close to one of the cut-off values.
An interesting question is whether choosing thresholds adaptively based on

the observed sample is advantageous in some sense. Depending on the compo-
nents’ parameters, the value range of the components may overlap, and per-
fect separation may not be possible based on the value of xi. Good strategies
should be based on the component weights Wij , assigning component j∗(i) :=
argmaxj Wij to xi. We may refuse to make an assignment if there is no clearly

dominating component, e.g., if W ∗
i := maxj Wij < T , or if W ∗

i − W
(2)
i < T for

a given threshold T , where W
(2)
i is the second largest weight among the Wij .

4.2 Simulation and Fitting

We investigate the advantages of beta mixture modeling by simulation. In the
following, let U be a uniform random number from ]0, 1[.

We generate two datasets, each consisting of 1000 three-component mixtures.
In the first (second) dataset, we generate 200 (1000) samples per mixture.



A Hybrid Parameter Estimation Algorithm 315

Fig. 3. Examples of generated three-component beta mixtures (green solid lines),
data samples (blue histograms) and fitted mixture models (blue solid lines). Dashed
lines show estimated weighted component densities (green: unmethylated; red: semi-
methylated; magenta: fully methylated). Top row: examples with n = 200 samples;
bottom row: n = 1000.

To generate a mixture model, we first pick mixture coefficients π =
(π1, π2, π3) by drawing U1, U2, U3, computing s :=

∑
j Uj and setting πj := Uj/s.

This does not generate a uniform element of the probability simplex, but induces
a bias towards distributions where all components have similar coefficients, which
is reasonable for the intended application. The first component represents the
unmethylated state; therefore we choose an α ≤ 1 and a β > 1 by draw-
ing U1, U2 and setting α := U1 and β := 1/U2. The third component repre-
sents the fully methylated state and is generated symmetrically to the first one.
The second component represents the semi-methylated state (0.5) and should
have large enough approximately equal α and β. We draw U1, U2 and define
γ := 5/min{U1, U2}. We draw V uniformly between 0.9 and 1.1 and set α := γV
and β := γ/V .

To draw a single random sample x from a mixture distribution, we first draw
the component j according to π and then value x from the beta distribution with
parameters αj , βj . After drawing n = 200 (dataset 1) or n = 1000 (dataset 2)
samples, we modify the result as follows. For each mixture sample from dataset 1,
we set the three smallest values to 0.0 and the three largest values to 1.0. In
dataset 2, we proceed similarly with the 10 smallest and largest values.

We use the algorithm described in Sect. 3 to fit a mixture model with a
slightly different initialization. The first component is estimated from the sam-
ples in [0, 0.25], the second one from the samples in [0.25, 0.75] and the third one
from the samples in [0.75, 1]. The first (last) component is enforced to be falling
(rising) by setting α1 = 0.8 (β3 = 0.8) if it is initially estimated larger.
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Fig. 4. Performance of several classification rules. Shown is the fraction of called classes
N/n (i.e., data points for which a decision was made) on the x-axis against the fraction
of correct classes C/n (solid lines) and against the precision C/N (dashed lines) on the
y-axis for the three decision rules in Sect. 4.3 (blue: fixed intervals; red: highest weight
with weight threshold; magenta: highest weight with gap threshold). The datasets are
in the same layout as in Fig. 3.

Figure 3 shows examples of generated mixture models, sampled data and
fitted models. The examples have been chosen to convey a representative impres-
sion of the variety of generated models, from well separated components to
close-to-uniform distributions in which the components are difficult to separate.
Overall, fitting works well (better for n = 1000 than for n = 200), but our formal
evaluation concerns whether we can infer the methylation state.

4.3 Evaluation of Class Assignment Rules

Given the samples (x1, . . . , xn) and the information which component Ji gener-
ated which observation xi, we evaluate different procedures:

1. fixed intervals with a slack parameter 0 ≤ s ≤ 0.25: point x is assigned to the
leftmost component if x ∈ [0, 0.25−s], to the middle component if x ∈]0.25+
s, 0.75−s] and to the right component if x ∈]0.75+s, 1]. The remaining points
are left unassigned. For each value of s, we obtain the number of assigned
points N(s) and the number of correctly assigned points C(s) ≤ N(s). We
plot the fraction of correct points C(s)/n and the precision C(s)/N(s) against
the fraction of assigned points N(s)/n for different s ≥ 0.

2. choosing the component with the largest responsibility weight, ignoring points
when the weight is low: point xi is assigned to component j∗ with maximal
responsibility W ∗

i = Wij∗ , unless Wij∗ < t for a given threshold 0 ≤ t ≤ 1, in
which case it is left unassigned. We examine the resulting numbers C(t) and
N(t) as for the previous procedure.
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Fig. 5. Signed areas between the red curve and the blue curve as in Fig. 4 for all
1000 simulated mixtures in dataset 1 (left; 200 samples each) and in dataset 2 (right;
1000 samples each).

3. choosing the component with the largest responsibility weight, ignoring points
when the distance to the second largest weight is low: as before, but we leave
points xi unassigned if they satisfy W ∗

i − W
(2)
i < t.

4. repeating 2. and 3. with the EM algorithm instead of our algorithm would be
interesting, but for all reasonable choices of ε (recall that we have to replace
xi = 0 by ε and xi = 1 by 1 − ε for EM to have a well-defined log-likelihood
function), we could not get the implementation in betareg to converge; it
exited with the message “no convergence to a suitable mixture”.

Figure 4 shows examples (the same as in Fig. 3) of the performance of each
rule (rule 1: blue; rule 2: red; rule 3: magenta) in terms of N/n against C/n
(fraction correct: solid) and C/N (precision: dashed). If a red or magenta curve is
predominantly above the corresponding blue curve, using beta mixture modeling
is advantageous for this dataset. Mixture modeling fails in particular for the
example in the upper right panel. Considering the corresponding data in Fig. 3,
the distribution is close to uniform except at the extremes, and indeed this is
the prototypical case where beta mixtures do more harm than they help.

We are interested in the average performance over the simulated 1000 mix-
tures in dataset 1 (n = 200) and dataset 2 (n = 1000). As the magenta and red
curve never differed by much, we computed the (signed) area between the solid
red and blue curve in Fig. 4 for each of the 1000 mixtures. Positive values indicate
that the red curve (classification by mixture modeling) is better. For dataset 1,
we obtain a positive sign in 654/1000 cases (+), a negative sign in 337/1000
cases (−) and absolute differences of at most 10−6 in 9/1000 cases (0). For
dataset 2, the numbers are 810/1000 (+), 186/1000 (−) and 4/1000 (0). Figure 5
shows histograms of the magnitudes of the area between curves. While there are
more instances with benefits for mixture modeling, the averages (− 0.0046 for
dataset 1; + 0.0073 for dataset 2) do not reflect this because of a small number of
strong outliers on the negative side. Without analyzing each instance separately
here, we identified the main cause for this behavior as close-to-uniformly distrib-
uted data, similar to the example in the upper right panel in Figs. 3 and 4, for
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which appropriate (but incorrect) parameters are found. In fact, a single beta
distribution with α < 0 and β < 0 would fit that data reasonably well, and
the three-component model is not well identifiable. Of course, such a situation
can be diagnosed by computing the distance between the sample and uniform
distribution, and one can fall back to fixed thresholds.

5 Discussion and Conclusion

Maximum likelihood estimation in beta mixture models suffers from two draw-
backs: the inability to directly use 0/1 observations, and the sensitivity of esti-
mates to ad-hoc parameters introduced to mitigate the first problem. We then
presented an alternative parameter estimation algorithm for mixture models.
The algorithm is based on a hybrid approach between maximum likelihood esti-
mation and the method of moments; it follows the iterative framework of the
EM algorithm. For mixtures of beta distributions, it does not suffer from the
problems introduced by ML-only methods. Our approach is computationally sim-
pler and faster than numerical ML estimation in beta distributions. Although
we established a desirable invariant of the stationary points, other theoretical
properties of the algorithm remain to be investigated. In particular, how can
stationary points be characterized? As we do not have an objective function, we
cannot make statements about “local optima”, and a key open question is how
to rank different stationary points.

With a simulation study based on realistic parameter settings, we showed
that beta mixture modeling is often beneficial when attempting to infer an
underlying SNV state from observed methylation levels, in comparison to the
standard non-adaptive threshold approach. Mixture modeling failed when the
samples were close to a uniform distribution without clearly separated compo-
nents; in practice, we can detect such cases before applying mixture models
and fall back to simple thresholding. Our study was restricted to three compo-
nents, as is appropriate for methylation states. While the algorithm works in
principle for any number of components, our results indicate difficulties if the
components are not easily separable. A comparison of our algorithm with the
EM algorithm (from the betareg package) failed because the EM algorithm did
not converge and exited with errors (however, we did not attempt to provide our
own implementation). Data and Python code can be obtained from the bitbucket
repository https://bitbucket.org/genomeinformatics/betamix.
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