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Abstract We address sampled–data nonlinear Model Predictive Control (MPC)

schemes, in particular we address methods to efficiently and accurately solve the

underlying continuous-time optimal control problems (OCP). In nonlinear OCPs,

the number of discretization points is a major factor affecting the computational

time. Also, the location of these points is a major factor affecting the accuracy of

the solutions. We propose the use of an algorithm that iteratively finds the adequate

time–mesh to satisfy some pre–defined error estimate on the obtained trajectories.

The proposed adaptive time–mesh refinement algorithm provides local mesh resolu-

tion considering a time–dependent stopping criterion, enabling an higher accuracy in

the initial parts of the receding horizon, which are more relevant to MPC. The results

show the advantage of the proposed adaptive mesh strategy, which leads to results

obtained approximately as fast as the ones given by a coarse equidistant–spaced mesh

and as accurate as the ones given by a fine equidistant–spaced mesh.

Keywords Predictive control ⋅ Nonlinear systems ⋅ Optimal control ⋅ Real–time

optimization ⋅Continuous–time systems ⋅Adaptive algorithms ⋅ Time–mesh refine-

ment ⋅ Sampled-data systems

1 Introduction

This article discusses an adaptive time–mesh refinement algorithm to efficiently and

accurately solve optimal control problems (OCP) and proposes its use in Model Pre-

dictive Control (MPC) schemes.

In the last decade, most of the MPC literature has been using discrete–time models

(e.g. [12, 14, 27]). However, some of the earlier theoretical works on nonlinear MPC

used continuous–time models (see [4, 9, 16, 17]). Recently, [13] proposed a multi–
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step MPC scheme, which despite still being a discrete–time scheme, has the opti-

mization and feedback updates done at possibly different time instants. The authors

show that such technique can lower the computational load while maintaining sta-

bility and quantifiable robust performance estimates. In [21], some of the authors

that vastly contributed to spread the use of discrete–time MPC (c.f. [27]) show that a

continuous–time method is significantly more efficient than standard discrete–time

methods when solving constrained linear quadratic problems.

To implement MPC schemes, some form of discretization, or at least a finite para-

meterization, is eventually needed to solve the OCP. Nevertheless, there are several

advantages in maintaining a continuous–time model until later stages. In addition

to being able to obtain more accurate solution to OCPs faster, it might be essencial

in nonlinear systems that can rapidly change behavior in some short time intervals

or even when there is a discontinuity at some critical instant (e.g. impulsive control

[10, 23]). Also, path-following MPC strategies are more complex to implement in

discrete-time than in sampled-data schemes (compare [24, 25] with [3, 28]).

We also argue that the time is ripe to start using continuous–time MPC, even in

applications [8, 28]. Many theoretical questions of using sampled–data systems are

well documented in the literature [5–7, 11, 15, 26] and there are now several ready

available software packages to solve nonlinear OCP [18].

In OCP solvers using direct collocation methods, the control and the state are dis-

cretized in an appropriately chosen mesh of the time interval. Then, the continuous–

time OCP is transcribed into a finite–dimensional nonlinear programming problem

(NLP) which can be solved using widely available software packages [18]. Most

frequently, in the discretization procedure, regular time meshes having equidistant

spacing are used. However, in some cases, these meshes are not the most adequate to

deal with nonlinear behaviours. One way to improve the accuracy of the results, while

maintaining reasonable computational time and memory requirement, is to construct

a mesh having different time steps. The best location for the smaller steps sizes is, in

general, not known a priori, so the mesh is refined iteratively. In a mesh–refinement

procedure the problem is solved, typically, in an initial coarse uniform mesh in order

to capture the basic structure of the solution and of the error. Then, this initial mesh

is repeatedly refined according to a chosen strategy until some stopping criterion is

attained. Several mesh refinement methods employing direct collocation methods

have been described in the recent years [1, 2, 22, 29].

In this paper, we adapt and apply to an MPC context an adaptive time–mesh refine-

ment algorithm to solve nonlinear OCP [20]. The algorithm computes iteratively an

adequate time-mesh that satisfies some pre–defined error estimates on the obtained

trajectories. The refinement method used here (a) permits several levels of refine-

ment, obtaining a multi–level time–mesh in a single iteration. (b) it also permits

different refinement criteria – the relative error of the primal variables, the relative

error of the dual variables or a combination of both; (c) it considers distinct crite-

ria for refining the mesh and for stopping the refinement procedure – the refinement

strategy can be driven by the information given by the dual variables and it can be

stopped according to the information given by the primal variables. As described in

[20], there are advantages in choosing the error of the adjoint multipliers as a refine-
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ment criterion. To decrease the overall computational time, the solution computed in

the previous iteration is used as a warm start in the next one, which proved to be of

major importance to improve computational efficiency. This adaptive strategy leads

to results with higher accuracy and yet with lower overall computational time, when

compared to results obtained by meshes having equidistant spacing, as is the case

when using discrete–time models from the beginning.

In MPC context, the prediction can be interpreted in the sense of planning. When

we make plans for the future, we establish planning strategies with detail level

depending on the prediction horizon. Combining this idea with the refinement strat-

egy, we obtain an adaptive time–mesh refinement algorithm which generates meshes

with higher concentration of node points in the beginning of the prediction horizon

and less concentration of node points in the end of the same interval, enforcing the

idea of having more nodes point where they are needed and keeping a low overall

number of node points. This is an important issue, because we want to increase the

accuracy of the solution without compromising CPU times.

2 The Adaptive Mesh Refinement Algorithm for Optimal
Control Problems

Let us consider the optimal control problem:

(t0, tf ) ∶ Minimise
∫

tf

t0
L (t, 𝐱(t),𝐮(t)) dt + G

(
𝐱(tf )

)
(1)

subject to �̇�(t) = 𝐟 (t, 𝐱(t),𝐮(t)) a.e. t ∈
[
t0, tf

]
, (2)

𝐱(t0) = 𝐱0 , (3)

𝐱(tf ) ∈ 𝕏1 ⊂ ℝn
, (4)

𝐱(t) ∈ 𝕏 ⊂ ℝn
a.e. t ∈

[
t0, tf

]
, (5)

𝐮(t) ∈ 𝕌 ⊂ ℝm
a.e. t ∈

[
t0, tf

]
, (6)

where 𝐱 ∶
[
t0, tf

]
→ ℝn

is the state, 𝐮 ∶
[
t0, tf

]
→ ℝm

is the control and t ∈
[
t0, tf

]
is

time. The functions involved comprise the running cost L ∶
[
t0, tf

]
×ℝn ×ℝm → ℝ,

the terminal cost G ∶ ℝn → ℝ and the system dynamics 𝐟 ∶
[
t0, tf

]
×ℝn ×ℝm →

ℝn
.

As stated in [19, 20], the adaptive mesh refinement process starts by discretizing

the time interval [t0, tf ] in a coarse mesh used to solve the NLP problem associated

to the OCP in order to catch the main structure of the solution. According to some

refinement criteria, the mesh is divided in K ∈ ℕ mesh intervals

k = [𝜏k−1, 𝜏k[ , k = 1,… ,K,
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Fig. 1 Illustration of the

multi–level adaptive

time–mesh refinement

strategy

t0 tftime

lo
g(

ε)

level j = 1

level j = m

where (𝜏0,… , 𝜏K) coincide with nodes. These mesh intervals k form a partition of

the time interval while the mesh nodes have the property 𝜏0 < 𝜏1 < … < 𝜏K .

The subintervals k that verify the refinement criteria are refined taking into

account different levels of refinement in a single iteration, i.e., they are divided into

smaller subintervals according to user–defined levels of refinement

�̄� =,
[
𝜀1, 𝜀2, … , 𝜀m

]
. The procedure is repeated until the stopping criterion is

achieved. A subinterval k,j is at the jth level of refinement if

Sk,j =
{
t ∈ Sk ∶ 𝜀(t) ∈

[
𝜀j, 𝜀j+1

[}
(7)

for j = 1,… ,m. This procedure adds more node points to the subintervals in higher

levels of refinement, corresponding to higher errors, and it adds less node points to

those in lower refinement levels (Fig. 1). By defining several levels of refinement,

we get a multi–level time–mesh in a single iteration.

3 The Model Predictive Control Framework

Consider a sampling step 𝛿 > 0, the prediction horizon T and a sequence of sam-

pling instants {ti}i≥0 with ti+1 = ti + 𝛿. The sampled-data MPC algorithm follows

the receding horizon strategy [9]:

1. Measure state of the plant 𝐱ti ;
2. Determine �̄� ∶

[
ti, ti + T

]
→ ℝm

solution to the OCP (ti, ti + T) (1)-(6).

3. Apply the control 𝐮∗(t) ∶= �̄�(t) to the plant in the interval t ∈
[
ti, ti + 𝛿

]
, disre-

garding the remaining control �̄�(t), t > ti + 𝛿;

4. Repeat this procedure for the next sampling time instant ti + 𝛿.

We extend the adaptive time–mesh refinement algorithm described in [20] in

order to allow different refinement levels according to some partition of the time

domain. This extension is of relevance in the MPC context, since it is desirable to

have a solution with higher accuracy in the initial part of the horizon.
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Motivation. The time interval t ∈
[
t0, tf

]
, the prediction horizon T , and the sampling

step 𝛿 > 0, satisfy 𝛿 << T << tf − t0. When applying the MPC procedure to solve an

OCP, at each time instant ti we compute the solution in
[
ti, ti + T

]
but we just imple-

ment the open–loop control until ti + 𝛿. Therefore, taking into account the planning

strategy discussed above, it would be an improvement if we have an adaptive time–

mesh able to cope this feature, i.e., a time–mesh that is highly refined in the lower

limit of the time interval
[
ti, ti + T

]
and it is coarser in the upper limit of the same

interval. Then, we would implement the control on the time interval
[
ti, ti + 𝛿

]
com-

puted with high accuracy in a refined mesh. For the remaining time interval we have

an estimate of the solution.

Time–Mesh Refinement Algorithm. In this extension, we also consider a time–

dependent stopping criterion for the mesh refinement algorithm with different lev-

els �̄�𝐱(t). Instead of having a fixed stopping criterion 𝜀

max

𝐱 , now we have a time–

dependent �̄�𝐱(t) stopping criterion which sets different levels of accuracy for the

solution, along the time domain. For example, the time–dependent levels of refine-

ment can be defined as

�̄�𝐱(t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜀

max

𝐱 , t ∈
[
ti, ti + 𝛽1T

]

𝛼1𝜀
max

𝐱 , t ∈
]
ti + 𝛽1T , ti + 𝛽2T

]

…
𝛼j𝜀

max

𝐱 , t ∈
]
ti + 𝛽jT , ti + T

]

where 1 < 𝛼1 < ⋯ < 𝛼j ≤ 𝜀

max

𝐱 and 0 < 𝛽1 < 𝛽2 < ⋯ < 𝛽j < 1 are user–defined

scalars.

This procedure adds more node points to the subintervals that are in lower levels

of the stopping criterion for the refinement procedure, corresponding to time instants

close to the initial time as illustrated in Fig. 2.

Refinement and Stopping Criteria. In order to proceed with the mesh refinement

strategy, we have to define some refinement criteria and a stopping criterion. We

consider as refinement criteria: the estimate of the relative error of the adjoint

Fig. 2 Illustration of the

extended (time–dependent)

time–mesh refinement

strategy

t0 tftime

lo
g(

ε(
t)
)

level 1

level j
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Fig. 3 Time–mesh

refinement algorithm for

MPC

0 Tti ti + δ ti + 2δ

δ

past

current time

prediction horizon

x̄ x∗

past feedback u∗ optimal control sequence

multipliers (dual variables). For the stopping criterion, we consider a threshold for

the relative error of the trajectory ||||𝜀𝐱||||∞.

Warm Start. Since we are solving a sequence of open–loop OCPs, to decrease the

CPU time, when going from the problem in
[
ti, ti + T

]
to the one in

[
ti + 𝛿, ti + T

+𝛿], the solution of the previous is used as a warm start for the problem. To create

this warm start, the solution obtained in
[
ti, ti + T

]
is projected in the new mesh in[

ti + 𝛿, ti + T + 𝛿

]
using the cubic Hermite interpolation.

Model Predictive Control coupled with the Extended Algorithm. We start the MPC

procedure in the typical way but considering an adaptive mesh refinement strategy.

We descritise the time interval
[
t0, tf

]
and we solve our OCP in open–loop. Then,

we implement the control in the first sampling interval. When starting the next MPC

step, we apply the time–mesh refinement strategy in order to find the best mesh suited

to the solve the OCP in the second sampling interval (Fig. 3). In the MPC algorithm,

step 2 is modified as follows:

2. (a) Select the intervals Sk,j to be refined according to the time–dependent levels

of refinement �̄�𝐱(t) and generate a new time grid;

(b) Determine �̄� ∶
[
ti, ti + T

]
→ ℝm

solution to the OCP (ti, ti + T) (1)–(6), in

the new time-grid;

4 Application: Parking Manoeuvres

In order to apply our MPC strategy, let us consider the car–like system problem with

t ∈ [0, 20], in seconds, 𝐱(t) = (x(t), y(t), 𝜓(t)) and 𝐮(t) = (u(t), c(t)). Aiming mini-

mum energy, this problem (P
CP
) can be stated as:
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Minimise
∫

20

0
u2(t)dt (8)

subject to ẋ(t) = u(t) cos(𝜓(t)) a.e. t ∈ [0, 20]
ẏ(t) = u(t) sin(𝜓(t)) a.e. t ∈ [0, 20] (9)

�̇�(t) = u(t) c(t) a.e. t ∈ [0, 20]
𝐱(0) = 𝐱0 , (10)

𝐱(20) ∈ 𝕏1, (11)

𝐱(t) ∈ 𝕏 , ∀t ∈
[
t0, tf

]
(12)

− 1 ≤ u(t) ≤ 1 a.e. t ∈ [0, 20] (13)

− 0.7 ≤ c(t) ≤ 0.7 a.e. t ∈ [0, 20] (14)

where u(t) is the speed and c(t) is the curvature. The end–point constraints are spec-

ified as

𝐱0 =(x0, y0, 𝜓0) = (1.5, 3.5, 𝜋∕2) (15)

𝕏1 =
{
(x, y, 𝜓) ∶

(
x − xf

)2 +
(
y − yf

)2 +
(
𝜓 − 𝜓f

)2
≤ r2

}
(16)

where r2 = 0.1, and 𝐱f = (xf , yf , 𝜓f ) = (4, 0, 0) is a user–defined target point. More-

over, we define a pathwise state constraint (see Fig. 4) set 𝕏 is the set of points

(x, y, 𝜓) satisfying

⎧
⎪
⎨
⎪
⎩

−M ≤ y ≤ M if x ∈ [x0, x∗]
−b (𝐱) ≤ y ≤ b (𝐱) if x ∈ [x∗, x⋆]

−m ≤ y ≤ m if x ∈ [x⋆, xf ]
(17)

Fig. 4 Pathwise state

constraints (17) for (P
CP
)

x0 x∗ xfx�

y�

−y�

M

−M

m

−m
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where x∗ = 2, x⋆ = 3, y⋆ = −1.5, M = 4 and

b (𝐱) = y⋆ −
√
𝜌
2 − (x − x⋆)2 , 𝜌 = |x⋆ − x∗| .

In order to test the MPC algorithm, we start by introducing some perturbations

on the system dynamics test–plant:

⎧
⎪
⎨
⎪
⎩

ẋ(t) = u(t)
(
1 + 𝛿u

)
cos(𝜓(t))

ẏ(t) = u(t)
(
1 + 𝛿u

)
sin(𝜓(t))

�̇�(t) = u(t)
(
1 + 𝛿u

)
c(t)

(
1 + 𝛿c

)
. (18)

We consider 𝛿 = 2 s which means that we will solve a sequence of 10 open–loop

OCPs and we define 𝛿u = 𝛿c = 0.1. We also set 𝜀
max

𝐱 = 5 × 10−5 and

�̄�𝐱(t) =
⎧
⎪
⎨
⎪
⎩

𝜀

max

𝐱 , t ∈
[
ti, ti + 0.1T

]

10 × 𝜀

max

𝐱 , t ∈
]
ti + 0.1T , ti + 0.3T

]

103 × 𝜀

max

𝐱 , t ∈
]
ti + 0.3T , ti + T

]

This problem is solved considering three meshes:

(a) 𝜋ML: the multi–level time–mesh refinement strategy with MPC;

(b) 𝜋F: equidistant–spaced with the smallest time step of 𝜋ML;

(c) 𝜋C: equidistant–spaced with the largest time step of 𝜋ML.

As it can be seen in Fig. 5a, considering the mesh 𝜋ML, the car–like system suc-

cessfully stops when the terminal condition (16) is satisfied without violating any

constraint. The sequence of solutions given by each sampling step on MPC is shown

in Fig. 5b. The predictions are plotted with a dashed line, while the implemented

controls are plotted with a solid line. Each segment is drawn with a different color

representing different MPC sampling times.

The numerical results concerning the three meshes are shown in Table 1, which

shows information about the number of nodes, the smallest time step, the number of

iterations needed to solve the NLP problem, the maximum absolute local errors of

the trajectory, and the CPU times for solving the OCP problem and for computing

the local error as well.

According to Table 1, the mesh 𝜋ML has only 11.4% of the nodes of 𝜋F, neverthe-

less both meshes have maximum absolute local error of the same order of magnitude.

Computing the solution using 𝜋ML takes less than 20% of the time needed to get a

solution using 𝜋F, resulting in significant savings in memory and computational cost.

The mesh 𝜋C is the initial coarse mesh considering equidistant spacing. Without

applying our refinement strategy, the MPC produces a solution with lower accu-

racy, 1.261E
−3

, when compared against the solution obtained via refinement proce-

dure, 4.169E
−5

. Moreover, the CPU time spent to compute solution using 𝜋ML is,

as expected, 50% higher than the one spent to obtain a solution using 𝜋C, however
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Fig. 5 Optimal trajectory for (P
CP
). a MPC trajectory, b Sequence of optimal trajectories

Table 1 Comparing MPC results for the problem (P
CP
)

𝜋j Nj 𝛥tj Ij
|||
|||𝜀

(j)
𝐱
|||
|||∞ CPU time solver (s) 𝜀𝐱

𝜋ML 365
1∕3200 304|13|13|13|13|10|16|5|5|5 4.169E

−5 11.448 5.231
𝜋F 3201

1∕3200 371|34|22|20|18|9|8|7|7|7 3.730E
−5 53.493 31.239

𝜋C 201
1∕200 233|81|13|11|6|6|6|5|5|5 1.261E

−3 8.667 1.960

it is a good trade–off since the accuracy of the solution increases by two orders of

magnitude. In all tests, the procedure gives the optimal solution which is computed

spending a few seconds overall to solve 10 MPC steps.

The use of adaptive mesh refinement algorithm in real time optimization problems

has additional benefits since it is possible to quickly obtain a solution even if the

refinement procedure is interrupted at an early stage.

5 Conclusions

We develop an extended adaptive time–mesh refinement algorithm providing local

mesh resolution refining only where it is required. In this extension, we consider a

time–dependent stopping criterion for the mesh refinement algorithm with differ-

ent levels �̄�(t). In the end, the OCPs are solved within MPC with an adapted mesh

with local mesh resolution which has less nodes in the overall procedure, yet having
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maximum absolute local error of the same order of magnitude when compared

against a refined mesh with equidistant–spacing.

Due to the fast response of the algorithm, it can be used to solve real–time opti-

mization problems. The application demonstrates the advantage of the proposed

adaptive mesh strategy, which leads to results obtained approximately as fast as the

ones given by a coarse equidistant–spacing mesh and as accurate as the ones given

by a fine equidistant–spacing mesh.

With this framework we can use continuous–time plant models directly. The dis-

cretization procedure can be automated and there is no need to select a priori the

adequate time step.

Even if the optimization procedure is forced to stop in an early stage, as might be

the case in real-time, we can still obtain a meaningful solution, although it might be

a less accurate one.
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