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Introduction

Mariya I. Soskova

What is the relevance of computation to the physical universe?
Our theories do deliver computational descriptions, but the gaps
and discontinuities in our grasp suggest a need for continued
discourse between researchers from different disciplines.

Barry Cooper, 2014

Abstract In this introduction we briefly describe the history and motivation that
lead to the workshop “The Incomputable” and to the idea for a book reflecting the
main theme of the workshop - the mathematical theory of incomputability and its
relevance for the real world. We explain the structure and content of the resulting
book and clarify the relationship between the different chapters.

The first recorded use of the term “incomputable” known to the Oxford English
dictionary is from 1606 in a book bound in the skin of a Jesuit priest, Henry
Garnet, which describes his trial and execution for complicity in the gunpowder
plot. From context, it was almost certainly a misprint for “incompatible”, though
the word is recorded in the seventeenth century as being used to mean “too large
to be reckoned”. Since then the meaning of this term has been shifting from being
“too large” to “too complex”. By 1936, the term had been transformed into a robust
mathematical notion through the work of Church [2] and Turing [11]. However, the
implications of incomputability for the physical world presented a difficult problem,
one that far too few attempted to battle. A gap was forming, separating classically
trained abstract thinkers from the practical scientist searching for explanations of
the workings of the world.

Barry Cooper was my advisor, mentor, and friend. Both he and I ventured into the
scientific world through the abstract and rigorous land of mathematics in the form
of classical computability theory. By the time I met him, however, he had become
more and more discontented by the isolation of this field from practical, as he called
it “real world”, science. For many years he devoted his energy to changing this.

M.I. Soskova (P<)
Department of Mathematical Logic and Applications, Sofia University, Sofia, Bulgaria
e-mail: msoskova@fmi.uni-sofia.bg
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The conference series Computability in Europe is one example of the success of
his efforts. It started in 2005 with its first event held in Amsterdam. It was co-chaired
by Barry and it was the first conference that I attended in my scientific carrier. The
motto was “New Computational Paradigms”, explained by the organizers as follows:

These include prominently connections between computation and physical systems but
also higher mathematical models of computation. The researchers from the different
communities will exchange ideas, approaches and techniques in their respective work,
thereby generating a wider community for work on computational issues that allows
uniform approaches to diverse areas, the transformation of theoretical ideas into applicable
projects, and general cross-fertilization transcending disciplinary borders.

Since then, the conference CiE has been held annually all over Europe and has been
breaking the walls of the rigid classical use of the term “computability” and extend-
ing it to a much wider area of research. The list of topics included in the conference
grew with every year: classical computability, proof theory, computable structures,
proof complexity, constructive mathematics, algorithms, neural networks, quantum
computation, natural computation, molecular computation, computational learning,
and bioinformatics. The community grew into an association with a scientific
journal and a book series, to which this book belongs.

The year 2012 marked a special milestone in the development of the community
of computability theorists in Europe: we celebrated the centenary of the birth of
Alan Turing, the man who showed through his work that a researcher need not be
constrained only to the world of the abstract or the world of the applied. The year
quickly came to be known as the “Alan Turing Year”. Barry Cooper was the chair
of Turing Centenary Advisory Committee, coordinating the year-long celebration.
From all over, researchers whose work related to that of Alan Turing gathered
in the United Kingdom, and Cambridge in particular. The Isaac Newton Institute
for mathematical sciences hosted the six-month program “Syntax and Semantics:
A Legacy of Alan Turing”. Cambridge was the venue for the annual conference
Computability in Europe, which was co-chaired by Barry, and with more than 400
participants was by far the largest in the series.

One of the special events envisioned by Barry Cooper for this year was the
workshop “The Incomputable”, celebrating Turing’s unique impact on mathematics,
computing, computer science, informatics, morphogenesis, philosophy, and the
wider scientific world. The workshop was unique in its focus on the mathematical
theory of incomputability and its relevance for the real world. Barry considered this
to be a core aspect of Turing’s scientific legacy, and this meeting attempted for the
first time to reunite (in)computability theory and “big science”. Barry had a vision
for this workshop and I was thrilled when he shared it with me and asked me to
join him as an organizer. The aim was to bring together mathematicians working
on the abstract theory of incomputability and randomness with other scientists,
philosophers, and computer scientists dealing with the incomputability phenomenon
in the real world in order to establish new collaborations around a number of “big
questions”:

* Challenging Turing: Extended Models of Computation. There is growing evi-
dence from computer science, physics, biology, and the humanities that not all
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features of the real world are captured by classical models of computability.
Quantum physics, in particular, presents challenges even to the classical logic
we use to reason about the world. To what extent is the classical model flexible,
and can it be adapted to different settings? To what extent can we develop a new
form of logic and new computational paradigms based on and meant to describe
natural processes?

e The Search for “Natural” Examples of Incomputable Objects. In 1970, Yuri
Matiyasevich [6] put the finishing touches on a remarkable proof [3], many years
in the making, that the sort of arithmetical questions a school student might ask
lead directly to a rich diversity of incomputable sets. The negative solution to
Hilbert’s Tenth Problem, collectively due to Martin Davis, Matiyasevich, Hilary
Putnam, and Julia Robinson, demonstrated that the incomputable sets which
can be abstractly enumerated by recursion-theoretic techniques are not artificial
at all—they arise naturally as solution sets of Diophantine equations. Can one
discover a specific natural set, ideally a computably enumerable set, that is
incomputable but not computably equivalent to the halting set of a universal
Turing machine? How does this play out in the physical world? Can we find
new mathematical techniques for identifying incomputability, or discover new
results explaining the obstacles we encounter?

* Mind, Matter and Computation. Turing’s seminal role in artificial intelli-
gence [12], for instance, his formulation of the “imitation game”, later known as
the “Turing test”, has given rise to many fundamental questions in philosophy
that remain unanswered. To what extent can machines simulate the human
brain, to what extent are our decisions and actions automated? What is the
relevance of the algorithmic world to the real world and how is the notion of
computability reflected in modern philosophy? What are the consequences of
quantum phenomena for the construction of an artificial brain?

* The Nature of Information: Complexity and Randomness. There are two ways
related to incomputability in which information can be difficult to extract and
process. In complexity theory, the focus is more on what is realistically possible
in the way of information processing. The area has its origins in cryptology,
the workings of which were blatantly present in Turing’s mind from his time in
Bletchley Park, working on the Bombe. The area has since developed into a rich
and diverse theory; still there are basic issues that remain a mystery. For example,
is there a difference between the efficiency of non-deterministic and deterministic
computation? In the mathematical theory of effective randomness, the focus is
on incompressibility and unpredictability. Randomness plays well both with the
Turing world of incomputability and the practical world of complexity. What is
the significance of the new definable classes emerging from computability theory
and the study of effective randomness? What does effective randomness tell us
about quantum randomness? Is quantum randomness really random, or merely
incomputable?

e The Mathematics of Emergence and Morphogenesis. One of the less familiar,
but most innovative, of Turing’s contributions was his successful mathematical
modeling of the emergence of various patterns in nature using mathematical
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equations [13]. This key innovation now forms the basis of an active and
important research field for biologists. There are still general questions con-
cerning both the computational content of emergence, and the nature of good
mathematical models applicable in different environments. Does emergence exist
as something new in nature, and is it something which transcends classical
models of computation?

There are many more important questions, of course, but we chose these five
themes as guiding, when we designed the program of the workshop. And soon it
was June 2012 and all of our planning triumphed into one of the most exciting
and intellectually challenging event that I had ever attended, fully embodying Barry
Cooper’s vision. It was during that time, that a new goal emerged for us: to collect
the numerous exciting ideas that were being discussed and capture the essence of
this gathering in a book of chapters—the idea for this book was born. Since then
we have been working to make this idea a reality. The chapters that we collected
draw on the spectrum of invited speakers from the workshop (Fig.1). They are
organized into five parts, corresponding to the five “big question” themes that we
started out with.

While this book was taking its shape, we were sad to lose one of the members
in our community, my father Ivan Soskov. It was Barry’s idea to ask my father’s
advisor and most recent student to collaborate on a tribute to his work. I am
grateful to him and the authors Hristo Ganchev and Dimiter Skordev for this
contribution. Ivan Soskov would have been a perfect fit for contributing an article
on the abstract alternatives to Turing’s model of computation, meant to bring the
notion of computability to abstract structures, not restricted to the domain of the
natural numbers, as this is the area that motivated most of his work. We begin

L

Fig. 1 The Incomputable, June 12-15 2012, Chicheley Hall
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Part I, Challenging Turing: Extended Models of Computation, with the story of
Ivan Soskov’s work and life in computability which still conveys these ideas, even
though it is related by a different storyteller. Next we explore the possibilities of a
new logic system meant to capture the workings of the quantum world in a more
accurate way. Kate Clements, Fay Dowker and Petros Wallden provide us with one
such possible system and investigate the conditions under which it coincides with
its classical predecessor. Finally, Bob Coecke argues for a paradigmatic shift from
reductionism to “togetherness”, exploring the relationship between the quantum
physics and natural language that this gives rise to.

In Part II, The Search for “Natural” Examples of Incomputable Objects, we are
brought up to speed with the current state of the art of an area that originated from
Post’s program [7]. The goal of this program was to find a natural combinatorial
property of sets that isolates an incomputable computably enumerable set that is
not equivalent to the halting problem. Post’s program was a driving force in the
development of classical computability theory, motivating the invention of some of
the fundamental methods used today. It gave rise to the study of the lattice of c.e.
sets under inclusion. Peter Cholak describes the main directions in this field that
have been the focus of investigations in recent years. Seth Lloyd moves is swiftly to
the real world setting, where he explores incomputable problems that arise when one
considers physical law. He finds incomputability in the form of the energy spectrum
of certain quantum systems, in the system Hamiltonian with respect to a particular
sector and in general in the problem of determining the best expression of physical
laws. Vela Velupillai explores the natural occurrence of incomputability in yet a
different setting: economics. Computable economics is a growing field of research to
which he has major scientific contribution. Particularly noteworthy is his attempt to
construct a mathematical model of economic theory (both micro and macro theory)
using methods from computability theory and constructive mathematics. This leads
to the reappearance of incomputability and we are given many examples: the excess
demand functions, the rational expectations equilibria, all explained and discussed
in detail.

Part IlI, Mind, Matter and Computation, is devoted to understanding the right
model of the universe and human life. Vlatko Vedral explores the fundamental
role of quantum physics in living systems: in describing the state of every atom
on earth, tin explaining DNA replication, and even in photosynthesis. The chapter
concludes with an exploration of the possibility that quantum computers can be used
to simulate life in a way that goes beyond the classical approach. In the next chapter
Mark Bishop revisits “digital philosophy”—the belief in the algorithmic nature of
the universe, governed my deterministic laws. This philosophy has been essential to
the works of Konrad Zuse [15], Stephen Wolfram [14], Jiirgen Schmidhuber [8]
and Nobel laureate Gerard 't Hooft [10]. These authors see the universe is a
digital computer and insist that the probabilistic nature of quantum physics does
not contradict its algorithmic nature. Mark Bishop argues that “digital philosophy”
is not the correct view of the world as it leads to panpsychism, the view that
consciousness is a universal feature of all things.
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Antonina Kolokolova is the first contributor to Part IV, The Nature of In-
formation: Complexity and Randomness. She gives us an account of the many
years of work that has been put into solving the famous P vs NP problem in
complexity theory and describes a rich structure of complexity classes that has been
discovered through this work. She explores the possibility of an intrinsic reason
for our failure to overcome this long-standing barrier. Cristian Calude explains
the connection between complexity and randomness, in particular with relation
to cryptography. He discusses the practical disadvantages that we have by being
limited to pseudo-randomness: strings generated by fully deterministic programs,
that appear to have the statistical properties of true random strings. A possible
solution to this is suggested by quantum randomness, and Calude explores the
extent to which quantum randomness can be proven to be better than pseudo-
randomness. The final chapter in this part is devoted to the mathematical concept
of algorithmic complexity and randomness. Algorithmic randomness is a topic that
goes back to works of Andrey Kolmogorov [4], Per Martin-Lof [5], Claus-Peter
Schnorr [9], Gregory Chaitin [1] from the late 1960s and early 1070s. The reinvoked
interest in this field comes from the nontrivial interplay between randomness and
degree theory. Methods from algorithmic randomness lead to the discovery of a rich
world of classes of Turing degrees, defined through their combinatorial properties.
Of particular interest is a class that suggests a connection between information
content and computational power: the degrees of K-trivial sets. A K-trivial set
can be described as a set that is weak as an oracle, close to being computable, or
equivalently as a set whose initial segments are easy to compress, i.e. a set that is as
far from random as possible. Andre Nies explores a new method for characterizing
sets that are close to computable via a new mathematical theory of cost functions.
His work gives us new tools to characterize and explore the intriguing class of the
K-trivials.

In Part V, The Mathematics of Emergence and Morphogenesis, we learn about
Turing’s original work on morphogenesis, how it has been developed by his aca-
demic successors and what are the future goals in the area through a detailed account
provided to us by Thomas Woolley, Ruth Baker and Philip Maini. Morphogenesis
is the fundamental biological process that causes an organism to develop its shape.
It is the process which determines the spots on the body of a cow and the shape and
distribution of the leaves on a daisy. Turing’s ideas on morphogenesis are perhaps
the ones that most clearly illuminate the fact that computation and mathematics are
present in natural processes. Barry Cooper was deeply impressed by these ideas. In
a description of the book “Alan Turing: His Work and Impact”, of which he was an
editor, he remembers:

When I arriving in Manchester as a research student in 1968, I found Turing’s only PhD
student, Professor Robin Gandy, giving lectures on Turing’s work on the emergence of
Fibonacci sequences in sunflowers. I was mystified. Now, when so many people are seeking
out form beyond form, computation beyond computation, and structure beyond chaos—
investigating randomness, human creativity, emergent patterns in nature—we can only
wonder that Turing was there before us. So much of what Alan Turing pondered and brought
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into the light of day—techniques, concepts, speculations—is still valid in our everyday
investigations.

The final chapter in this book is a special one. Aaron Sloman reports on his “Meta-
Morphogenesis project”. This project takes the ideas from Turing’s original paper
and transforms them to a whole new plane of topics: the evolution of biological
and human intelligence. The idea for this project was born when Barry Cooper
asked Aaron Sloman to contribute to the book “Alan Turing: His Work and Impact”
with a chapter related to Turing’s work on morphogenesis. Aaron Sloman, whose
prior work was most significantly in artificial intelligence, responded to Barry’s
challenge with this novel idea and has been working on it ever since, motivated
by his intuition that this project can lead to answers to fundamental questions: about
the nature of mathematics, language, mind, science, life and on how to overcome
current limitations of artificial intelligence.

Barry’s 72nd birthday was blackened by devastating news: he was told that he is
terminally ill with only a very short time to live. He generously devoted all this time
to his family and friends, to his students, to his numerous projects, to mathematics.
The disease was unexpected and unexpectedly treacherous. Less than 3 weeks later
Barry Cooper passed away and we lost a great thinker. One of the very last emails
that Barry and I exchanged was about this book. We had reached the stage when we
had to put the final touches on our project: write an introduction and decide on an
image for the cover. Unfortunately, these two final tasks were left to me and though
my attempt to honor Barry’s vision must prove inadequate, I hope I have conveyed
some semblance of it. I will miss him for the rest of my life.
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Part I
Challenging Turing: Extended
Models of Computation



Ivan Soskov: A Life in Computability

Hristo Ganchev and Dimiter Skordev

Abstract On May 5, 2013, the Bulgarian logic community lost one of its prominent
members—Ivan Nikolaev Soskov. In this paper we shall give a glimpse of his
scientific achievements.

1 Introduction

Ivan Soskov (1954-2013) was born in the town of Stara Zagora, Bulgaria. After
graduating from the Bulgarian National High School for Mathematics, Ivan Soskov
continued his education at the Mathematical Faculty of Sofia University. In 1979 he
obtained his M.Sc. degree and 4 years later his Ph.D. degree under the supervision

H. Ganchev (1<) ¢ D. Skordev

Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd.,
1164 Sofia, Bulgaria

e-mail: ganchev @fmi.uni-sofia.bg; skordev@fmi.uni-sofia.bg
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of Prof. Dimiter Skordev.! In 2001 Ivan Soskov defended a habilitation thesis
and became a Doctor of Mathematical Sciences. In 1984 he became Assistant
Professor and in 1991 he was promoted to Associate Professor at the Department
of Mathematical Logic. From 1991 to 1993 he was an Adjunct Professor at UCLA
in the programme PIC (Programming in Computing). He became full professor in
2004. From 2000 to 2007 he was head of the Department of Mathematical Logic
and from 2007 until his last days he was the Dean of the Faculty of Mathematics
and Informatics.

Ivan Soskov was an established scientist of international stature. He trained and
educated a large number of Ph.D. and M.Sc. students and established himself as the
undisputed leader of the Bulgarian school in the field of Abstract Computability. He
has left us a great scientific legacy which will continue to inspire and guide us in the
future.

Soskov’s scientific interests lay in the field of classical computability theory. He
started his career investigating the models of computation in abstract structures. The
main problem he was interested in was the clarification of the connections between
two basic approaches to abstract computability: the internal approach, based on
specific models of computation, and the external approach, which defines the
computable functions through invariance relative to all enumerations of a structure.
Towards the end of the last century I. Soskov started his work in degree theory. His
main motivation came from the ideological connections between one of the models
of abstract computability, called search computability, and enumeration reducibility.
In his works Soskov and his students developed the theory of regular enumerations
and applied it to the enumeration degrees, obtaining a series of new results, mainly
in relation to the enumeration jump.

In 2006 Soskov initiated the study of uniform reducibility between sequences
of sets and the induced structure of the w-enumeration degrees. With his students
he obtained many results, providing substantial proof that the structure of the w-
degrees is a natural extension of the structure of the enumeration degrees, where the
jump operator has interesting properties and where new degrees appear, which turn
out to be extremely useful for the characterization of certain classes of enumeration
degrees. The connection between enumeration degrees and abstract models of
computability led to a new direction in the field of computable model theory. In the
last few years of his life Soskov obtained various results concerning the properties
of the spectra of structures as sets of enumeration degrees, among them two jump
inversion theorems.

'He wrote: “In the academic year 1978/1979, as a supervisor of Ivan Soskov’s master thesis, I had
the chance to be a witness of his first research steps in the theory of computability. My role was
rather easy thanks to Ivan’s great ingenuity and strong intuition. Several years later, in 1983, Ivan
Soskov defended his remarkable PhD dissertation on computability in partial algebraic systems.
Although I was indicated as his supervisor again, actually no help of mine was needed at all in the
creation of this dissertation. Everything in it, including also the choice of its subject and the form
of the presentation, was a deed of Ivan only.”
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2 Ivan Soskov’s Work on Computability on First-Order
Structures

As it is known, classical computability theory concerns mainly algorithmic com-
putability of functions and predicates in the set @ of the natural numbers. No serious
doubts exist today that the partial recursiveness notion gives a proper mathematical
description of the class of algorithmically computable functions and predicates in @
(the predicates can be regarded as functions whose values belong to the two-element
set {0, 1}). One can regard as clarified also the relative computability of functions
and predicates in w with respect to some given everywhere defined functions that are
not required to be algorithmically computable—the mathematical description in this
case is done by the notion of relative partial recursiveness. The situation is similar
with the computability of functions and predicates in certain other commonly used
sets of constructive objects, such as the set of words over a finite alphabet.

Even in w, however, the situation is not so simple when one considers com-
putability in some given partial functions—the notion of relative computability then
splits into two, corresponding to computability respectively by using deterministic
computational procedures and by using arbitrary ones (if the given functions are
total then the two notions coincide, thanks to the possibility of an algorithmic
sequential search in w). The first of these two notions can be mathematically
described as relative p-recursiveness. Namely, a partial function ¢ is called -
recursive in some given partial functions 6,...,6, if ¢ can be obtained from
01,...,0, and basic primitive recursive functions by means of finitely many
applications of substitution, primitive recursion and the minimization operation u.
The other notion can be described as enumeration reducibility of the graph of ¢ to
the graphs of 61, ..., 6, (we usually omit “the graph of” and “the graphs of”’). The
reducibility in question is usually described in the following intuitive way: a set A
is said to be enumeration reducible (or more briefly e-reducible) to the n-tuple of

sets By,....B,, where A C ', B C o/',...,B, C o, if there is an algorithm
transforming in arbitrary n-tuple of enumerations of By, ..., B, into an enumeration
of A. The precise definition says that A is enumeration reducible to By, ..., B, if

there exists a recursively enumerable subset W of ', such that A consists of all
(x1,...,x;) satisfying the condition

Elul...Elun((xl,...,x,-,ul,...,un) € W&D,&f‘) CB & ---&Dfi,i") an),

where D,(/ ) is the uth finite subset of @/ in an effective enumeration of the family of
all finite subsets of w/.

The situation is even more complicated when computability on an arbitrary
first-order structure 2 is considered. If its universe is denumerable then the so-
called external approach to computability on 2 is possible. Namely, one could
try to reduce it to computability in @ by means of using enumerations of the
universe. In the other approach, which does not need enumerability of the universe,
computability on 2l is regarded as one which is relative with respect to the primitive
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functions and predicates of 2, i.e. achievable by computational procedures using
them (this approach is named internal). Now, however, even with everywhere
defined primitive functions and predicates, the execution of non-deterministic
computational procedures is not necessarily always reducible to the execution of
deterministic ones. In addition, also the admissible degree of indeterminism may be
different—for example, choosing an arbitrary element of the universe of 2l could
be, in general, not reducible to choices of natural numbers. And also there are no
reasons to necessarily want the equality predicate to be computable.

Since computability on first-order structures is a notion, which is important from
the point of view of theoretical computer science, research aiming at clarifying
it has been done for more than half a century. Nevertheless, there are still too
many questions to be answered. Ivan Soskov was one of the active and successful
researchers in this area.

2.1 Ivan Soskov’s Research on First-Order Computability
Done in the Frame of the Internal Approach

A substantial part of Soskov’s research of this kind concerns the notion of absolute
prime computability introduced by Y.N. Moschovakis in [22]. If B is a set then any
partial function or predicate of several arguments on B can be regarded as a partial
unary function in the extension B* of B defined by Moschovakis as follows: B* is
the closure of the set B = B U {0} under the formation of ordered pairs assuming
that O is an object not in B and the set-theoretic operation representing ordered
pairs is chosen so that no element of B’ is an ordered pair. The natural numbers
0,1,2,... can be identified with the elements 0, (0, 0), (0, (0,0)), ... of B*%2 and
then the predicates should be regarded as functions with values in the two-element
set {0, (0,0)}.* For any partial multivalued (p.m.v.) functions ¢y, ..., ¢, ¥ in B,
Moschovakis defines what it means for i to be absolutely prime computable in
@1, ..., @ This notion is a particular instance of a slightly more general one whose
definition in [22] uses an encoding of certain p.m.v. functions in B* by means of 11
schemata. The following simpler characterization of absolute prime computability
was given later in [32, 33]: ¥ is absolutely prime computable in ¢y, ..., ¢; iff ¥
can be generated from ¢, ..., ¢, 7,8 by means of the operations composition,
combination and iteration, where 7 and § are the total single-valued functions in B*
defined as in [22] (namely 7 (v) = t and §(v) = uif v = (t,u), 7(0) = §(0) = O,
7 (v) = 8(v) = (0,0) if v € B), and, for any p.m.v. functions 6 and y in B*,

20r with the elements 0, (0, 0), ((0,0),0), ..., as it is in [22].

3There are situations when the identification in question could cause problems. This can happen
when the authentic natural numbers or at least some of them belong to B. In such situations, it
would be appropriate, for instance, to denote the elements 0, (0, 0), (0, (0,0)), ... and their set by
0,1,2,... and w, respectively.
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(a) the composition of # and y is the p.m.v. function t defined by the equivalence
v e t(s) & Ju(ue x(s) &v e b(u)),
(b) the combination of 8 and y is the p.m.v. function t defined by the equivalence
vert(s) < Iu(itebs)&uec yis) &v = (t,u)),

(c) the iteration of 6 controlled by y is the p.m.v. function v defined by the
equivalence

vet(s) & I, t,... twlto=s&t, =0

&Vili<m = ;€ y ' (B*\B°) & tiy1 € 0(1)) & 1,, € x~1(BY))).

Obviously, the composition and the combination of any two single-valued, functions
is single-valued again, and it is easy to check that the same is true also for their
iteration. Of course, if 6 and y are single-valued, then all e-symbols in (a), (b) and
(c) except for the ones in front of y~! can be replaced with equality symbols.*

Ivan Soskov took his first research steps in his Master’s thesis [35]. Suppose
a partial structure 2( with universe B is given. Let us call prime computable in 2
the partial functions in B which are absolutely prime computable in the primitive
functions and predicates of 2( (intuitively, the functions prime computable in
are those which can be computed by deterministic programs using the primitive
functions and predicates of (). Soskov indicates that any equivalence relation ~ on
the set B can be extended to an equivalence relation &~ on B* in a natural way. Under
certain natural assumptions about concordance of ~ with the primitive functions and
predicates of 2, Soskov proves that any partial function on B prime computable in 2
is representable in 2 by some term on any equivalence class under ~ which contains
at least an element of the function’s domain. By applying this (with the universal
relation in B as ~) to the particular case when %[ has no primitive predicates, Soskov
gives a rigorous proof of the following intuitively plausible statement: if 2 has no
primitive predicates, then any partial function on B that is prime computable in
and has a non-empty domain can be represented in 2 by some term.

Again in [35], a characterization of the prime computable functions is given for
any of the structures with universe @ which have no primitive functions and predi-
cates besides the successor function §, the predecessor function P and the equality
to O predicate Z. A smart diagonalization is used to define a recursive function
¢ : w — {0, 1} such that all partial recursive functions are prime computable in

“4The iteration defined in the way above is a particular instance of the iteration in so-called iterative
combinatory spaces from [32, 33], where an algebraic generalization of a part of the theory of
computability is given. The absolute prime computability is actually the instance of the considered
generalized notion of computability in a specific kind of iterative combinatory space.
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the partial structure (w;P,S | ¢7'(0),S } ¢~'(1);Z), but the function S is not
computable in it by means of a standard program (this example is published in [37]).

Several years later, in his Ph.D. thesis [40], Ivan Soskov proves that the functions
prime computable in a partial structure are exactly the ones computable in it by
means of standard programs with counters and a stack, the stack being superfluous in
the case when the primitive functions of the structure are unary. Hence the statement
in the above-mentioned example cannot be strengthened by replacing “a standard
program” with “a standard program with counters”.

In [36], a normal form theorem using the p-operation is proved by Soskov
for the functions prime computable in a total first-order structure. This result is
applied to show the equivalence of prime computability in total structures with
computability by means of Ershov’s recursively enumerable determinants [4]—
a notion similar to computability by means of Friedman’s effective definitional
schemes [6] and equivalent to it over total structures (the term “computability in
the sense of Friedman-Ershov” is used in [36]).°

In Soskov’s papers [38, 39, 42] and in his Ph.D. thesis [40], partial structures
are considered and additional arguments ranging over @ are admitted in the partial
functions in B (assuming that w is identified with the set {0, (0, 0), (0, (0,0)),...}).
The set of all partial functions from @” x B/ to B is denoted by F,.;. Of course, all
functions from F,; can be regarded as partial unary functions in B*. The normal
form theorem from [36] is generalized for them. For functions belonging to o, the
notion of computability by means of Ershov’s recursively enumerable determinants
makes sense also in the case of partial structures, and this computability is
equivalent to computability by means of Shepherdson’s recursively enumerable
definitional schemes (REDS) introduced in [31] (they are a slight generalization of
the effectively definable schemes of Friedman [6]). Prime computability of such a
function v in a partial structure 2 implies the REDS-computability of vy in 2, but, in
general, not vice versa. Soskov gives a characterization of the REDS-computability
by introducing another notion of computability in . A function ¢ € F, is called
computable in 2 if a function ¥ € F,4; exists such that ¥ is prime computable

3The following intuitive description of Friedman’s schemes (applicable also to Ershov’s determi-
nants) is given by Shepherdson in [31]: “Friedman’s effective definitional schemes are essentially
definitions by infinitely many cases, where the cases are given by atomic formulae and their
negations and the definition has r.e. structure”. As indicated there on p. 458, a result of Gordon
(announced in an abstract of his) shows that, over a total structure, the computability by means of
such schemes is equivalent to absolute prime computability (a detailed presentation of the result
in question can be found in [15]). Unfortunately, Shepherdson’s and Gordon’s papers remained
unnoticed by the logicians in Sofia quite a long time (the first publication of Soskov containing a
reference to Shepherdson’s paper is [42]; the first reference to Gordon’s result is also in [42], but
only his abstract is indicated there). This great delay was due to insufficient international contacts
of the Sofia logic group at that time (especially before the several summer schools in mathematical
logic organized in Bulgaria from 1983 on). An additional reason for missing these papers is that,
at the time in question, the interests of the supervisor of Ivan Soskov’s Ph.D. thesis were mainly in
generalization of the theory of computability and in examples of this generalization different from
the ones corresponding to the situation from [22].
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in 2, and for every xi,...,x, € o and every si,...,s;,t € B, the following
equivalence holds:

(X1, Xy ST, 8) =1 TP (@ X, X ST, 8) = 1)

(intuitively, this corresponds to computability by means of parallel procedures).
Clearly, prime computability in 2l implies computability in 2. The converse
implication is not generally true, but it holds at least in the case when 2l is total. The
functions computable in 2 are shown to be exactly the ones which are absolutely
prime computable in the primitive functions and predicates of 2 and the p.m.v.
function whose graph is w?. The functions from j Which are computable in 2 are
shown to be exactly the ones computable in 2 by means of REDS (as indicated in
[42], the functions from Fg; which are prime computable in 2l are exactly the ones
computable in 2 by means of tree-like REDS in the sense of [31]).

A function from F,; is called search computable in 2L if it is absolutely search
computable in the sense of [22] in the primitive functions and predicates of 2 (this is
equivalent to absolute prime computability of the function in the primitive functions
and predicates of 2 and the multiple-valued function whose graph is (B*)?). The
functions computable in 2 are search computable in 2(, but the converse is not
generally true. In [40, 42] the following example of a structure 2(, is given in
which not every search computable function from F ; is computable and not every
computable function Fy; is prime computable: 2, = (w; P; T1, T,), where P is the
predecessor function, dom(7;) = {0}, dom(7») = {1}, T1(0) = T»(1) = true. The
function S is search computable in 2(, without being computable in 2,, and the
restriction of the identity function in w to the set of the even numbers is computable
in 2, without being prime computable in 2.

In [39, 40], a partial structure with universe w is called complete if any partial
recursive function is computable in this structure. A necessary and sufficient
condition for completeness is given in the spirit of [25]. A simplification of this
condition is given for the case of partial recursiveness of the primitive functions
and predicates. A partial structure with universe w is called complete with respect
to prime computability if any partial recursive function is prime computable in this
structure. Completeness with respect to other kinds of computability is defined in a
similar way. The following three examples are announced in [39] and presented in
detail in [40]: 2, = (@;S,P;T1,T2), 2, = (w;¢;E), A; = (w; 01, 62;Z), where
T) and T, are as in the partial structure 2{, from the previous paragraph, E is the
equality predicate,

s+ 1ifr = (s + 1) = 2Mloga6+D]
(/)(s, l) = % 0 ( )
otherwise,
s=lifscd s+lifsea
9 = ’ 9 = ’
1(6) { s 4 1 otherwise, 2(5) s=1 otherwise,
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where

_ 2 2+1 .._1Jo0 ifs =0,
A={s[F(@ =s <2 fands =1 =10 0 e

It is shown that:

(a) 2, is complete without being complete with respect to prime computability;

(b) A, is complete with respect to prime computability without being complete
with respect to computability by means of standard programs with counters;

(c) A5 is complete with respect to computability by means of standard programs
with counters without being complete with respect to computability by means
of standard programs.®

(The partial structure 2, could be used as an example showing that, in general,
completeness with respect to search computability does not imply completeness.
Soskov does not mention this, maybe since there are much simpler examples for the
same thing—for instance, the structure without primitive functions which has as its
only primitive predicate the total binary one whose truth set is {(s,#) |t = s = 1}.)

The paper [41] makes use of the notions of iterative combinatory space and
of recursiveness in such spaces from [32] (cf. also [33]). So-called functional
combinatory spaces are considered in the paper (they are one of the simple examples
for the notion of iterative combinatory space). Let M be an infinite set and F be the
partially ordered semigroup of all partial mappings of M into M with multiplication
defined as composition (namely ¢y = As.@(¥(s))) and the extension relation as
partial ordering. Leta,b € M, a # b,J : M> — M, D,L,R € F, rng(D) = {a, b},
D(a) = a,D(b) = b, L(J(s,1)) = sand R(J(s, 1)) = tforall s,t € M.” LetI = idy,
C be the set of all total constant mappings of M into M, T and F' be the elements of
C with values a and b, respectively; and let IT : F? - F,X: F?® — F bedefined
in the following way:

_ _ [0 i D) = a.
e ¥)0) = /@6 ¥ ). S o) =) 10 00—

Then the 9-tuple

(F,,C,TI,L,R, X, T,F) (1)

%Since computability by means of standard programs with counters is equivalent to prime
computability in the case of unary primitive functions, the conclusion from the third of these
examples can be made also from the example in [35, 37]. An improvement, however, is the fact
that 2(; is a total structure, whereas the example in [35, 37] makes use of a partial structure.

TFor instance, M can be the Moschovakis’ extension B* from [22] of a set B, and then we can take
a=0,b=1(0,0),J(s,1) = (s,1), D = idg4py, L = w,R = 6.
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is an iterative combinatory space. According to the general definition from [32, 33],
if ¢, x € F then the iteration of ¢ controlled by y in (1) is the least fixed point
in F of the mapping 0 +— X(x,I,0¢). If 0,...,6, € F then the elements
of F recursive in {6,...,6,} are those which can be obtained from elements
of {01,...,0,,L,R, T,F} by finitely many applications of multiplication, IT and
iteration. The main result in [41] reads as follows: an element of F is recursive in
{61,...,0,}iff it is prime computable in the partial structure

(M;elv"'79}17]7L5R5T7F;D)7
where

D(s) = true %f D(s) = a,
false if D(s) = b.

An extension of the notion of a Horn program is given in the paper [46], namely
predicate symbols can be used as parameters which correspond to arbitrary subsets
of the corresponding Cartesian degrees of the domain of a structure. Intuitively,
these subsets are treated as effectively enumerable rather than semi-computable ones
(although effective enumerability and semi-computability are equivalent in the case
of computability on the natural numbers, the semi-computable sets are a proper
subclass of the effectively enumerable ones in the general case). For the operators
defined by means of such programs, a version of the first recursion theorem is
proved.

2.2 Ivan Soskov’s Results on the External Approach
to Computability on First-Order Structures

In the computational practice, the operations with arbitrary objects are usually
performed by using their representations or possibly approximations by some
appropriate kinds of constructive objects. The description of computability on
denumerable first-order structures by using a constructive representation of their
elements can be considered as the main intuitive aspect of Soskov’s papers
[43, 44, 49] (as well as of the abstract [48] of the last of them), of the joint paper [65]
with Alexandra Soskova and of Soskov’s Dr. Hab. thesis [55]. It plays an essential
role also in the technical report [45] and in the paper [47].

In theoretical studies, one always could use natural numbers as representing
constructive objects. This leads to studying computability on a first-order structure
whose elements are enumerated in some way (with the reasonable requirement that
every element of the structure has at least one number and different elements have
different numbers, and this, of course, sets the limitation for the universe of the
structure to be a denumerable set). Such an enumeration approach to computability
for objects other than the natural numbers has been used for quite a long time
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(for instance, computability on the set of the words over a finite alphabet is often
reduced in such a way to computability on w). Let o be a partial mapping of w
onto a denumerable set B. An m-argument partial function ¢ on w will be called an
a-quasiassociate of an m-argument partial function 6 on B if

Ola(x1),....a(xm) = alpx, ... xn))

for all x;,...,x, € dom(x) (where the equality symbol means full equality, i.e.
if one of the expressions on the two sides of it makes sense, then the other one
also does, and they have one and the same value); the function ¢ will be called
an «-associate of the function 6 if ¢ is an o-quasiassociate of 6 and dom(w) is
closed with respect to ¢. An m-argument partial predicate y on w will be called an
a-associate of an m-argument partial predicate = on B if

m(a(x1), ... () = X (1. ... X)

forall xi, ..., x, € dom(x) (under the same interpretation of the equality symbol as
above). A partial function or predicate on B will be called computable with respect
to o if there exists a partial recursive a-associate of it. Suppose now that B is the
universe of some partial first-order structure

Ql:(B;@l,...,é,,;m,...,nk), (2)
where 0, ..., 0, are partial functions in B, and 7, ..., are partial predicates
on B. If we are interested in computability on 2, then it seems natural to require
that 6,,...,6,,m,...,m be computable with respect to «. Let us say that « is

an effective enumeration of 2 if this requirement is satisfied. Unfortunately, it may
happen that the structure [ admits no effective enumeration,® and, on the other hand,
if 2 admits effective enumerations, then the considered computability of functions
and predicates on B may depend on our choice among these enumerations. The
second of these problems can be overcome by calling a function or predicate on B
computable in 2 if it is computable with respect to any effective enumeration of 2
(such a computability notion was essentially suggested by the second author in 1977
under the name admissibility). There are cases when this notion deserves attention,
but this is not so in general—for instance, if 2l admits no effective enumeration, then
all functions and predicates on B trivially turn out computable in 2.

A much more promising enumeration approach to computability on first-order
structures originates from Lacombe’s paper [18]. The case considered there, up to
minor details, is the one when «, 6y, ..., 6,; 7y, ..., m; are total and « is injective.
In this case, any function and any predicate on B has exactly one a-associate. A total
function or predicate on B is called V-recursive in 2l if its ar-associate is recursive in

8Tn the paper [65] by Alexandra Soskova, and Ivan Soskov a characterization is given of the
structures which have effective enumerations.
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the a-associates of 0y, ...,6,,71,...,m whenever « is an injective mapping of w
onto B. By a result of Moschovakis proved in [23], V-recursiveness in 2l turns out
equivalent to search computability in 6,,...,6,, 71, ..., 7, the equality predicate
on B and constants from B.

First of all, let us note that a total enumeration o of B is injective iff the equality
predicate on w is an a-associate for the equality predicate on B. Therefore it is
natural to attempt avoiding the presence of the equality predicate on B in the above-
mentioned Moschovakis’s result by omitting the requirement about injectivity of
a in the definition of V-recursiveness. Unfortunately, some complications arise
without this requirement, since the «-associate of a function on B can be no longer
unique. One could try to solve this problem by considering enumerations o of B
together with chosen «-associates for 6y, ..., 6,. Soskov makes this step, and he
additionally allows « to be partial. Then the a-associates of the predicates on B
can also be no longer unique, and therefore «-associates of my, . .., m; also must be
assumed to be chosen. In [48-50, 55, 65], a notion of enumeration is used whose
definition can be formulated as follows.

Definition 2.1 An enumeration of the partial structure (2) is any ordered pair
(a,B), where « is a partial mapping of w onto B, and 8 = (®; @1, . . ., @uiX1s-- - » Xk)
is a partial structure such that:

(a) ¢;is an a-associate of 9; fori = 1,...,n;
(b) yx;isana-associate of 7r; forj=1,... k.

The enumeration («, 8) is called fotal if dom(«) = w.

Remark 2.2 The enumeration notion considered in [43] is somewhat different:
we can get it from the above one by replacing “g; is an a-associate of 6;” with
“@; is an w«-quasiassociate of 6;” and adding the requirement that dom(w) is
enumeration reducible to the graphs of ¢1, ..., @,, X1, ..., X; still, the main result
of [43], as seen from its proof, remains valid if adding the enumeration reducibility
requirement is the only change. Making only this change gives the definition used in
[47]. As to the definition in [44, 45], it can be obtained from the above-formulated
one by adding the requirement the primitive functions and predicates of B are
always defined when some of their arguments do not belong to dom(e).

A p.m.v. function 6 in B is called admissible in an enumeration (o, 28) of 2 if
6 has an «-associate which is enumeration reducible to the primitive functions and
predicates of ‘B (under a natural extension of the notion of a-associate to multiple-
valued functions). The main result in [43] is that a p.m.v. function 6 in B is search
computablein 0y, ..., 6,, 7, ..., 7 and constants from B iff 6 is admissible in any
enumeration of 2 in the sense of [43]. The main result in [45, 48, 49] concerns
computability by means of recursively enumerable definitional schemes (REDS)
of Shepherdson [31]. Namely, it is shown that a p.m.v. function 6 in B is REDS
computable in 0y,...,60,,m,..., 7 and constants from B iff 8 is admissible in
any enumeration of 2 (of course, the sense of this statement depends on the notion
of enumeration—since the definition of this notion in [45] contains an additional
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requirement, the “if’part of the statement in [45] is actually somewhat stronger than
the one in [48, 49]).

An analog of the results from [43] and [49] which concerns operators is proved
in [50]. An operator I' transforming p.m.v. functions in the universe of 2 into
such ones is called admissible in an enumeration (o, ) of 2l if there exists an
enumeration operator A such that, whenever § € dom(I") and ¢ is an «-associate
of 0, the application of A to ¢ and the primitive functions and predicates of B
produces an a-associate of I'(f). Under the natural definitions of the notions of
search computable operator in 2l and REDS-computable operator in 2, it is proved
that:

(a) an operator in 2 is search computable iff it is admissible in any enumeration
(,*B) of A such that dom(«) is enumeration reducible to the graphs of the
primitive functions and predicates of ‘B;

(b) an operator in 2 is REDS-computable iff it is admissible in any enumeration
of 2.

In the papers [43, 47], certain sets are called weak admissible in an enumeration
(o, B) of a partial structure 2(. These are the sets of the form

{(@(x1),...,0(x)) | (x1,...,x,) € WNdom" ()},

where n € @ and W is a subset of @" enumeration reducible to the graphs of the
primitive functions and predicates of B. In the case when the primitive predicates
of 2 admit only the value true, the sets definable by means of logic programs in
are studied in [47], and it is proved that they coincide with the sets which are weak
admissible in any enumeration of 2 in the sense of [47].

In the dissertation [55], another characterization is given of the search com-
putability in 6y,...,6,,m,..., 7 and constants from B; namely, it is shown to
be equivalent to admissibility in any total enumeration of 2( (thus admissibility
in any total enumeration of 2 turns out to be equivalent to admissibility in any
enumeration of 2 in the sense of [43]). This is actually shown for a wider class
of p.m.v. functions; namely, additional arguments ranging over w and function
values in w are also allowed, the notion of «-associate being generalized in a
natural way (a generalization in this direction is given also for the characterization
of REDS-computability from [48, 49]). Similarly, the sets definable by means of
logic programs in 2 are shown to be the ones which are weak admissible in
any total enumeration of 2. A characterization in a similar spirit is given in the
dissertation also of the prime computability in 2. Let a p.m.v. function 6 be called
w-admissible in an enumeration (o, 8) of 2 if 6 has an «-associate which is u-
recursive in the primitive functions and predicates of B. Soskov proves that 6
is prime computable in 6y,...,6,,7,..., 7 and constants from B iff 0 is u-
admissible in any enumeration of 2 (the result is published in [44], where the “if”
part of the statement is somewhat stronger due to the additional requirement in the
definition of enumeration). He introduces also a new computability notion called
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sequential definability in 2 and proves that a function is p-admissible in any total
enumeration of 2 iff it is single-valued and sequentially definable in 2.

The difficult part of the proofs of these results is the direction from admissibility
or p-admissibility to the corresponding kind of computability. It uses rather
complicated Cohen-type forcing constructions and goes through certain normal
form theorems of the admissible functions and sets. These constructions find their
applications also in the proofs of other results of Soskov.

Some applications of the results to other problems, e.g. to completeness of partial
structures with universe w, are given in [55, Chap. 6].

In [45, 51] and [55, Chap. 8], applications are given to certain classifications of
the concepts of computability on abstract first-order structures and to programming
languages with maximal expressive power within certain classes of such ones. For
instance, if A is a class of structures which is closed under homomorphic preimages,
then, after the necessary definitions are formulated, a universality is shown of
search computability for the class of the effective computabilities over .4 which are
invariant under homomorphisms. Further, a programming language whose programs
are codes of recursively enumerable sets of existential conditional expressions is
shown to be universal for the class of the effective programming languages over .4
which are invariant under homomorphisms.

In [52] and [55, Chap. 9], an external characterization of the inductive sets on
abstract structures is presented. The main result is an abstract version of the classical
Suslin-Kleene characterization of the hyperarithmetical sets. Let 2 be a structure
with a countable universe B and with primitive predicates only. A subset A of B" is
called relatively intrinsically H% on 2 if, for any bijection « : @ — B, the set

{(x1,...,x) € 0" | (axy),...,0(x,)) € A} 3)

is H% relative to the diagram of the structure o' (2(). Soskov proves that a subset of
B" is relatively intrinsically I1{ on the structure 2 iff it is inductively definable on
the least acceptable extension 2* of 2. This external approach to the definition of
the inductive sets leads very fast to some of the central results presented in [24] and
allows us to transfer some results of the classical recursion theory to the abstract
case. In particular, a hierarchy for the hyperelementary sets is obtained which is
similar to the classical Suslin-Kleene hierarchy.

In [53] and [55, Chap. 10], an effective version of the external approach is
considered. Let again 2 be a structure with a countable universe B and with primitive
predicates only. A subset A of B" is called relatively intrinsically hyperarithmetical
on 2 if, for any bijection @ : @ — B, the set (3) is hyperarithmetical relative to
the diagram of the structure o~ !(2A). In the case when a bijection & : @ — B
exists such that the diagram of o~ !(2() is a recursive set, a subset A of B" is called
intrinsically hyperarithmetical on 2l if the set (3) is a hyperarithmetical set for any
such a. Soskov proves that the intrinsically hyperarithmetical sets coincide with the
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relatively intrinsically hyperarithmetical sets in this case.’ As a side effect of the
proof, an effective version is obtained of Kueker’s theorem on definability by means
of infinitary formulas.

Let us note that results and ideas from [52, 53] are substantially used in the
paper [14] of Goncharov, Harizanov, Knight and Shore, where several additions are
made to results from [52]. For instance, an analog of intrinsically H% sets is proved
there for the coincidence of intrinsical hyperarithmeticity and relative intrinsical
hyperarithmeticity on a recursive structure.

The technique developed in [52] is applied in [54] also to a problem of degree
theory. An essential strengthening is achieved there of the result of McEvoy and
Cooper from [20] about the existence of a pair of sets which is minimal both with
respect to Turing reducibility and with respect to enumeration reducibility. Namely,
Soskov proves that, for any set A of natural numbers which is not I}, a set B
of natural numbers exists such that A and B form a pair which is minimal with
respect to each of the following four reducibilities: Turing reducibility, enumeration
reducibility, hyperarithmetical reducibility and the hyperenumeration reducibility
introduced and studied by Sanchis in [28, 29].

3 Enumeration Degrees

The enumeration reducibility is a positive reducibility between sets of natural
numbers first introduced formally by Friedberg and Rogers. Intuitively, a set A is
said to be enumeration reducible (or more briefly e-reducible) to the set B, denoted
by A <. B, if there is an algorithm transforming every enumeration of B into an
enumeration of A. The precise definition (as already discussed in Sect. 2) says that
A <, B iff there is a c.e. set W such that A = W(B), where W(B) denotes the set
{x | u({x,u) € W & D, C B)}. The relation <, is a preorder that gives rise to
a nontrivial equivalence relation, whose equivalence classes are called enumeration
degrees. After the factorization, the preorder <, transforms into a partial order on
the set of enumeration degrees. The respective structure is denoted by D,.

Enumeration reducibility is connected to Turing reducibility by the following
equivalences:

Aisce.inB < A<,B®B (@)
A<rB < A®A=<,B®B. Q)

°Tt is known that a replacement of “hyperarithmetical” with “recursively enumerable” in this
statement makes it refutable by counter-examples (enumeration reducibility and recursive enumer-
ability being the corresponding replacements of relative hyperarithmeticity and hyperarithmeticity,
respectively, in the above definitions).
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The second equivalence means that the mapping ¢ : Dr —> D, acting by the
rule t(dr(A)) = d.(A @ A) is an embedding of the structure of the Turing degrees
into the structure of the enumeration degrees. A set, say X, is said to be total if
X <. X. Note that if a set is total, then it is enumeration-equivalent to the graph of
its characteristic function. Examples of total sets are the graphs of total functions as
well as the sets of the form A @ A for an arbitrary set A. Thus the range of ¢ coincides
with the enumeration degrees of the total sets.

The enumeration jump operator J, is defined by Cooper and McEvoy [3, 19] by
setting J,(A) = E4 @ E4, where Ey = {(x,i) | x € W;(A)}.'” The jump operator is
monotone with respect to e-reducibility and hence it gives rise to a jump operation
on enumeration degrees. Clearly, J.(A) is a total set and hence its degree is in the
range of . Moreover, J,(A) =, A’ ® A’ (where A’ denotes the halting set relative to
A), so the jump operation on e-degrees agrees with the jump operation on 7-degrees
and the embedding ¢.

One of the most natural questions about the jump operation is about the range
of the jump operation. It is well known (Friedberg [5]) that the range of the
jump operation on the Turing degrees is the upper cone with least element Ot’.
Transferring this to the enumeration degrees we obtain that every total degree greater
than or equal to 0, is the jump of a total degree. Further, a result by McEvoy shows
that each total degree above 0, is the jump of a nontotal degree, so that total and
nontotal degrees play similar roles with respect to the jump operation. However,
neither of these results settles the problem about what the range is of the jump
operator restricted to an upper cone of enumeration degrees (note that no result
about Turing degrees can be directly applied to settle the problem since it would
not be applicable to the upper cones that have a nontotal degree for least element).
In a series of papers, Soskov and his students Baleva and Kovachev investigate the
behaviour of the jump operation on arbitrary upper cones of enumeration degrees.

In order to illustrate the obtained results, let us consider the following problem:
Let q be a total enumeration degree in the upper cone having a" as least element
for some degree a.'' Does there exist an enumeration degree f such that a < f and
£ = q? In order to give an affirmative solution, it is enough to prove that for an
arbitrary set Y and a total set Z,

J(Y) <. Z = IX(Y <. X & J.(X) =, Z & X is total). (6)

Indeed, let us suppose that q is greater than or equal to a” for some degree a (the
assumption n = 2 does not affect the generality of the reasoning). Then according
to (6) there is a degree x > a’, such that X'’ = q. Applying (6) once more we obtain
adegree f > a such that f = x, so that f” = q as desired.

10In the original definition, J,(A) = K, @ Kj, where K4 = {x | x € W,(A)}. This however is
enumeration equivalent to the definition we use here.

! As usual for arbitrary x, x*” denotes the result of the nth iteration of the jump operation on x.
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The formula (6) can be proven using the following simple forcing argument. Let
us fix a set Y and a total set Z such that J,(Y) <, Z. We shall build X as the graph
of a function f : @ — w such that f[2w + 1] = Y. This directly implies that X is a
total set and ¥ <, X. Let us call a finite string of natural numbers, say z, Y-regular
if T has even length and for every odd x < lh(t), 7(x) € Y. In order to satisfy
the main claim of the theorem, it is enough to consider the monotone sequence
) C 1 C-+- C 1 C ... of Y-regular finite parts such that for every natural s, 7,
is the least Y-regular finite part 7 extending t, such that

(1) t(lh(zy)) and z(lh(zs) 4 1) are respectively the sth elements of Z and Y,
(2) either t € W(Y) or there is no Y-regular extension of 7 in W, (Y).

Since {t € w=* | 7 is Y-regular} <, Y, the above sequence is computable in Z.
Setting X to be the graph of the functionf = | J, 7;, we have J.(Y) & X =, J.(X) <,
Z. The reducibility Z <, J,(X) follows from the fact that the sequence {z,};<, can
be computed in J.(Y) & X.

The existence of jump inverts gives rise to the question about their distribution.
For example, we might consider whether, if given a degree a and a total degree
q > a/, there is a least f > a such that f' = q, i.e. is there a least jump invert of q
above a. The answer to this question is negative, since for arbitrary sets Y, C and a
total set Z such that C @ C <, Z we have

J(V)<cZ& C £, ¥V = IX(Y <, X & C £ X & J(X) =, Z & X is total).

(N
In order to prove (7) we modify the proof of (6) in the following way. We consider
the sequence 79 C 71 C --- C 1 C of Y-regular finite parts such that for every

natural s,
(1) 2541 is the least Y-regular finite part 7 extending 7, such that

(a) t(lh(ty)) and 7(lh(zys) + 1) are respectively the sth elements of Z and Y,
(b) either t € W(Y) or there is no Y-regular extension of t in W (Y);

(2) Tog42 is the least Y-regular T extending to,+1, such that either t(lh(tp4+1)) & C
and 7 I+ Th(toe41) € Ws(X), or t(lh(t2541)) € C and 7 I+ Th(to541) &€ Wi(X).

For arbitrary Y-regular finite part p the set {a | 3z (7 is Y-regular, t(lh(p) = a, 7t |-
Ih(p) € W,(X))} is e-reducible to Y and hence is not equal to C. Since J.(Y) <, Z
and C & C <, Z the sequence {t,};<, iS computable in Z. As in our reasoning
for (6), setting X to be the graph of the function f = Us 7,, we have Y <, X and
J.(Y)®X =, J.(X) =. Z. Now assume that C <, X. Then f~'(C) <. X and hence
F1(C) = W,(X) for some natural s. But according to the construction, we have that

lh(t25+1) € f(C) &= tast2(In(t511)) € C = Th(ta541) & Wi(X).

This is clearly impossible, and hence C £, X.
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The results so far can be extended to arbitrary finite iterations of the jump
operation. We can even require that the jump invert f have some additional
properties. For instance, in addition to f" = q and f > a, we may require that
O > a, for a given sequence of degrees aj, a,..., a,—;. It is clear that in order

for such an f to exist, the degrees aj, a,,. .., a,—| must satisfy certain properties. An

obvious necessary condition is agn_i) < qfor1 <i < n— 1. Before arguing that

this condition is also sufficient, we introduce a notation (due to Soskov [56]) that is
closely connected to this condition. Let A = (Ao, Aq,...,A,—1) be a sequence of
sets of natural numbers. Note that for arbitrary set Q, the condition

J(A) <, Qfori <n
is equivalent to the inequality
Je(Je(- . -Je(Je(Je(AO) GBAI) @AZ) e ) 2] An—l) =e Q (8)

In order to obtain the term on the left-hand side, we define the sequence Py(.A),
Pi(A),...,P,(A) in the following inductive way:

Py(A) = Ao;
Piy1(A) = J(Pi(A) At

Now inequality (8) takes the form J,(P,—;(A)) <. O.
Let A = (Ag,Aq,...A,—1) and Q be given and let us furthermore suppose that
Jo(Pyr—1(A)) <. Q. Then we can build a total set F' such that

JOF) = ©:
Pi(A) <, JO(F) fori < n;
JIV(F) =, J(Pimi(A) @ F

in the following way.
Use (6) to build a total F,,—; such that

Je(Fn—l) =e Je(Pn—l(A)) ©® Fn— = Q,
Pn—l(A) <e Fp1.

Then apply (6) again to obtain F,_,, such that

Je(Fn—Z) =e Je(Pn—Z(A)) 2] Fn—2 =e Fn—lv
Pn—Z(A) =e Fn—27
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and note that J* (Fr—2) =¢ Jo.(Py—1(A)) & F =, Q. Proceed in this way until a total
set Fy with

Pi(A) <, F foralli<n—1,
TV (Fo) =, J.(Pi(A) & Fo,
J(Fo) =, Q

is obtained.

If we further assume that a set C, such that C £, P;(A) and C® C <, J.(P;(A)),
is given, then at the appropriate step we can use (7) instead of (6) in order to obtain
Fo, so that C Z, J(Fp).

In [56] Soskov proves the following theorem, which is a bit more general than
the result we have just presented.

Theorem 3.1 Let A = (Ag,Ay,...,Au—1) n > 1, and let Q be a total set, such that
Jo(Pr—1(A)) <. Q. Then the enumeration degree of Q contains the nth jump of a
total set F such that P;(A) <, éi)(F) and FU*Y =, J,(P;(A)) & F. Moreover, for
any i < n and any set C such that C £, P;(A) and C & C <, Q, F can be chosen
so that C %, FO,

Instead of using our backwards argument, Soskov constructs directly the set F
using a forcing argument in order to control the behaviour of its ith jump. This
approach has two advantages. Firstly, this allows him to relax the condition C® C <
J.(Pi(A)) to the more general C & C <, Q. Secondly, and more importantly, the
construction presented in [56] can be extended to arbitrary transfinite computable
iterations of the jump operator. Indeed, in [61] Soskov and Baleva give the following
generalisation of Theorem 3.1:

Theorem 3.2 Let o be a computable ordinal and suppose that we have fixed an
ordinal notation in O for a. Let A be a sequence of sets of natural numbers with
length a. Let Q be a total set such that Py, (A) <., Q. Then there is a total set F such
that

(1) Apg <. Jiﬂ)(F) uniformly in B < a;

2) JPYV(F) =, 1.(Ps(A)) & F uniformly in < a;

(3) Jf,ﬂ)(F) =, P_g(A) & F for every limit f < «;

(4) J(F) = Q.

Moreover, if C is a set such that C £, Pg(A) for some B < o and C® C <, Q, then
F can be chosen so that C £, éﬂ)(F).

We need to give some explanation of the notions and notations used in the
formulation of the theorem. We start with the transfinite iteration of the jump
operator. For simplicity, let us consider the least limit ordinal w. The idea is to

define the w-iteration Jéw) of J, so that Jéw) (X) is the least set with respect to <,
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such that J"” X) <. Jéw)(X) uniformly in n < ® and X. This yields that we
have to set Jéw)(X) = {{x,n) | x € Jé")(X)}. Having defined I we define
JET™ by simply setting JT™(X) = JI () (X)). Thus we have defined J*”
for every ordinal 8 < w - 2. Now the most natural definition of Jéw'z) would be

2’”‘2’()() ={xpB)|B<w-2&xc¢€ Jéﬁ)(X)}. However, the pairing function
(-,-) is a function from w x @ onto @ and hence the term (x, 8) is undefined for
B > w. In order to overcome this problem, we use ordinal notations instead of the
ordinals themselves. The system of ordinal notations O is a partially ordered subset
of @ such that for every computable ordinal ¢ there is an element n, of O, called
a notation for «, such that the set {m € w | m <o ny} partially ordered by <¢ is
isomorphic to «. Further, there are computable functions pp and go, such that for
any ordinal & and every notation ny, € O of o, if @ = B + 1, then pp(ny) <o ny
is an O-notation for B and if « is a limit ordinal then go(ny) is the index of a
computable function f such that f(0) <o f(1) <o - <0 f(5) <0 -+ <O ng is
a sequence of O-notations of ordinals ¢p < o] < -+ < @y < --- < « such that
o = lim «. Thus having fixed an O-notation n, of an ordinal ¢, we can identify all
ordinals 8 < « with their O-notations less than n, with respect to <¢. Moreover if
B < « is a limit ordinal, we shall refer to the sequence yielded by the function g
as {B(n)}n<o-

We are ready to give the formal definitions needed for the formulation of
Theorem 3.2. Let o be a computable ordinal and fix an O-notation for o. We
define J (X) for an arbitrary set X and ordinal 8 < « by the following transfinite
induction:

JOX) = X:
JED(X) = J.0P X))
JP(X) = {{x,n) | x € JPM(X)}, if B is a limit ordinal.

Further, let a A = {Ag}g<« be a sequence of sets of natural numbers. We define
the sequence {Pg(A)}g<« With the following transfinite induction on 8 < a:

Po(A) =Ao:
Ppi1(A) =Jo(Pp(A) @ Apg+1;
Pg(A) =P_g(A) @ Ag, if B is a limit ordinal,
where P.g = {{x,n) | x € Pg)(A)}.
The technique developed by Soskov and Baleva for the construction of the set F

in Theorem 3.2 is further developed by Soskov and Kovachev [62] in order to prove
the following theorem.
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Theorem 3.3 Let o be a computable ordinal and suppose that we have fixed an
ordinal notation in O of a. Let A = {Ag}g<o and C = {Cg}pg<a be two sequences of
length o such that Cg is not uniformly e-reducible to Pg(A) i.e. for every computable
function f, there is a B < «, such that Cg # Wyp)(Pg(A)). Then there is a total

set F such that Ag is uniformly e-reducible to Jiﬂ) (F), but Cg is not uniformly e-
reducible to Jf,ﬂ) (F).

Strictly speaking, this is not a real jump inversion theorem, since we do not
require the o-jump of F to be a specific set Q. Nevertheless, this theorem is much
stronger than Theorem 3.2 in its omitting part. In fact, using Theorem 3.2 we could
obtain that Cg is not uniformly e-reducible to Jf,ﬂ ) (F) only in the case when there
is a particular B < « such that Cg £, Pg(A). On the other hand, Theorem 3.3
allows us to omit even sequences for which Cg <, Pg(A) for every 8 < «, but not
uniformly in . In order to see that this strengthening is not trivial, let us consider
the ordinal w and an arbitrary sequence A = {A,},<, With length w. Let us consider
the class Z of all sequences of length @ consisting entirely of c.e. sets (or even finite
sets). Clearly, Z contains continuum many sequences. On the other hand, since there
are only countably many computable functions, there can be only countably many
sequences B = {B,},<, for which B, <, P,(A) uniformly in n. Thus there must be
a sequence C € Z such that C, is not uniformly e-reducible to P, (A) (in fact there
are continuum many such sequences). Now, in contrast to Theorem 3.2, Theorem 3.3
gives us a total set F' for which A,, is uniformly e-reducible to Jé") (F), but C,, is not
uniformly e-reducible to J\" (F).

Theorem 3.3 is the base for the w-enumeration reducibility, to which the next
section, is dedicated.

4 w-Enumeration Degrees

Selman’s theorem [30] allows us to consider enumeration reducibility as a reducibil-
ity generated by the weak or Muchnik reducibility between mass problems. Recall
that a mass problem is an arbitrary set (possibly empty) of total functions from
o to w. Given two mass problems M and M,, we say that M is weakly (or
Muchnik) reducible to M,, denoted by M; <,, My, if for every f € M, there is
ag € Mj, such that g <y f. Note that if M, and M, are upwards closed with
respect to Turing reducibility, then M; <,, M, iff M, € M;. Now, given a set of
natural numbers A, let M, denote the mass problem of all functions in which A is
computably enumerable, i.e. My = {f € w® | A is c.e. in f}. The mass problem
M is upwards closed with respect to Turing reducibility. According to Selman’s
theorem for arbitrary sets A and B,

A<,B < Vfew’Bisce.inf = Aisc.e.inf),
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and hence
A<,B & My <, M.

Following these lines, Soskov [58] considers the following class of mass
problems. Let us denote by S,, the set of all denumerable sequences of sets of natural
numbers. Given a sequence A = {A, },<w, let M 4 be the mass problem

My ={f €w®|A,isce.inf™ uniformly in n}. ©)]

Informally, M 4 is the mass problem of all functions that encode uniformly the
nth element of A in their nth Turing jump. Now Soskov defines the w-enumeration
reducibility between two elements of S, by setting

A<, B & My <, Mg. (10)

Clearly, the relation <, is a preorder on S, and hence it gives rise to an
equivalence relation. The equivalence classes under this relation are called w-
enumeration degrees. The partially ordered structure of the w-enumeration degrees
is denoted by D,,. It has a least element 0, consisting of all sequences that are
w-enumeration reducible to the sequence @, = {@},«,. Further, for any two
sequences A = {A,}n<, and B = {B,},<w, the sequence A & B = {A, & Bu}n<w
is such that M e = M4 N Mg, so the w-enumeration degree d,, (A @ B) is
the least upper bound of d,, (A) and d,, (B). Thus, like Dy and D,, D,, is an upper
semi-lattice with least element.

The connection between D, and D, goes much further. For any set A let us
denote by A 1 w the sequence (A, @, &, . ..). Note that My, = My, so that for
any two sets A and B,

A<,B <— Alw=<,Bto.

This means that the mapping « : D, — D,, acting by the rule k¥ (d.(A)) = d, (A 1 w)
is a well-defined embedding of D, into D,. Thus D, may be considered as an
extension of the Turing and the enumeration degrees.

Although we refer to <, as a reducibility relation, its definition (10) does not
give us an actual procedure for calculating the smaller from the bigger term. This,
however, is provided by Theorem 3.3. According to it, for every two sequences
A, B e S,,if A, is not uniformly e-reducible to P, (), then there is an f witnessing
that Mp € M 4. On the other hand, if A, is uniformly e-reducible to P, (B), then
clearly Mp € M 4. Since the mass problems of the form M 4 are upwards closed
with respect to <r, we have

A<, B < A, <, P,(B) uniformly in n.
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Besides the definition of the w-enumeration reducibility, the w-enumeration
degrees and their basic properties, there are two more important items included
in the first paper on the subject. The first one is that, like the structure of the
enumeration degrees, D,, is downwards dense. This is proved in two steps: the
first one is to show that the w-enumeration degrees lying beneath « (0,’) are dense.
The second one is to build a computable function f such that for every sequence
A = {A,} 1< either the sequence {W;(,)(P,(A))} is not w-enumeration-equivalent
to A or its w-enumeration degree is less than or equal to «(0,).

The second important thing is the definition of the jump operator on S,: The
Jjump of a sequence

A= (Ao, A1,...,Ay,..) €S,
is the sequence
A = (Pi(A),Ar, A3, ..., Ay, ).
A simple application of Theorem 3.1 shows that

Ma = {f | f € Mu}. Y

From here it follows that the jump operator is monotone and hence it induces a
jump operation on the w-enumeration degrees. The equivalence (11) further implies
that the jump operation on D, agrees with the jump operation on D, and the
embedding k.

It turns out that the w-enumeration degrees behave in an unusual way with respect
to the considered jump operation. In [8] Soskov and Ganchev prove the following
strong jump inversion theorem:

Theorem 4.1 For every a,b € D, and every natural n with a"™ < b, the system
X > a
< — (12)

has a least solution.

Note that according to Theorem 3.1 the system (12) can have a least solution in D,
(or D7) iff b = a™, so D, is quite different with respect to its jump operation from
the classical degree structures.

Theorem 4.1 allows us to consider for every natural n and every a € D, an
operation /” defined on the upper cone with least element a® such that I”(b) is
the least solution of (12). Using these operations Soskov and Ganchev [8] manage
to prove that the range of the embedding « is first-order definable in the poset of
the w-enumeration degrees augmented by the jump operation, D,,’, and that the
automorphism groups Aut(D,,") and Aut(D,) are isomorphic.
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The least jump invert operations play also an important role in the local theory
of the w-enumeration degrees, i.e. the poset G, = {a € D, | a < 0,}. For every
natural n, let us set 0, = Igw (Ow(”“)), i.e. 0, denotes least w-enumeration degree,

such that 0, = 0, "V, Clearly, 0,""t") = 0,4+, so that
0, =00>0,>-->0,>... (13)

is a sequence of degrees in G,. Furthermore, for each natural n, o, is the least
element of H,—the collection of all high-n w-enumeration degrees. Since for
each n there is a Turing, and hence an enumeration and hence an w-enumeration
degree which is high-n 4- 1 but not high-n, the sequence (13) is strictly decreasing.
Nevertheless, it does not converge to the least degree 0,. In fact, the set AZ =
{x | Vn(x < 0,)} is a countable ideal. The elements of AZ are referred to as
almost zero (or simply a.z.) degrees. The reason for this is that a degree a is a.z.
iff there is a sequence {A,},<, € a with A, <, Jé")(Q) for every natural n. Note
that {A,},<w € 0, iff A, <e Ji") () uniformly in n, so the only difference between
a sequence generating the zero degree and a sequence generating a non-zero a.z.
degree is the uniformity condition.

Surprisingly, the a.z. degrees in G, are intermediate, i.e. are neither low-n nor
high-n for any n. Moreover, Soskov and Ganchev proved that a degree in G, is
intermediate iff it does majorise a non-zero a.z. degree, but does not majorise every
a.z. degree. In particular, a degree in G, is high-n for some »n iff it majorises every
a.z. degree, whereas a degree in G, is low-n for some n iff it majorises no non-zero
a.z. degree.

Besides defining the high-n and the a.z. degrees, the degrees o,, are also connected
with the low-n degrees. In fact, a simple argument shows that a degree in G, is
low-n iff it forms a minimal pair with o,. Further, the degrees o, supply intervals
isomorphic to jump intervals of enumeration and w-enumeration degrees. More
precisely, for every natural n,

Dw [0n+ls On] = De[oe(n)s Oe(n+l)]s (14‘)

Dy [00. 04] = Dy [0, 0, V] (15)

It turns out that each of the degrees o, is first-order definable in the poset G,
(Ganchev and M. Soskova [9]), so that each of the jump classes L, and H, is first
order definable in G,, for every natural n. The key tool for this definability result is

the Kalimullin pairs in G,. According to the definition, the pair {a,b} € G, is a
Kalimullin pair (or simply a K-pair) in G, if

Vx € G,(x=(xVa)A(xVDh)).

Kalimullin pairs were first introduced by Kalimullin [16] for the structure of the
enumeration degrees. He considered pairs {a, b} of enumeration degrees such that

VxeD,(x = (xVa)A (xVDb)). (16)
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The property making such pairs very useful is that a pair {a,b} € D, has the
property (16) if and only if there are sets A € a, B € b and a c.e. set W, such that

AXBCW&AXBCW. a7

In order to illustrate how this property is used note that if B is not c.e., then
A = {x | Jy € B({x,y) € W)}, and, symmetrically, A = {x | Iy € B({x,y) € W)}.
Thusif Bisnotc.e.,thenA <, B® W and A <, B ® W. From here it follows that
if a, b and ¢ are non-zero enumeration degrees, such that each of the pairs {a, b},
{b, ¢} and {c, a} is a K-pair, thena Vv b Vv ¢ < 0,/. On the other, hand there is a triple
a, b and c like above such thata v b v ¢ = 0, (Kalimullin [16]), so that 0,” is the
largest degree, which is the join of a triple of KC-pairs.

A further investigation of the [C-pairs in D, revealed their usefulness in a series of
definability results in the local structure of the enumeration degrees G, (Ganchev and
M. Soskova [10-13]). The two most important ones are the first-order definabilities
in G, of a standard model of arithmetic and of the total degrees.

As far as the poset G, is concerned, there is still no full characterization of the -
pairs similar to (17). The partial results so far show that we can distinguish between
two kinds of Kallimulin pairs in G,. The first kind is the one inherited from the
Kalimullin pairs in D,. They have the form {fj (x(a)), I («(b))}, where {a,b} C
D, is a K-pair relative to the cone of the enumeration degrees above 0, These are
the KC-pairs in G, that play the key role in defining the degrees o,,.

The second kind consists of the Kallimulin pairs consisting of two a.z. -
enumeration degrees. In order to obtain a characterization of the sequences gen-
erating such pairs, Soskov and M. Soskova [63] take the following line of thought.

Let us fix a non-zero a.z. a and a sequence {A,},<, € a. Recall that this
implies that A, <, Jé") (@) for every n, but not uniformly in n. Consider a sequence
i0, i1y .-, In, ... such that, for every n, A, = W,, (Ji")(Q)). It is clear that i, cannot
be computed in Jé")(Q) uniformly in n. However, it could be the case that i, can
be computed in Jé"H)(@) uniformly in n. The latter is equivalent to the sequence
T = {{in}}n<w being w-enumeration reducible to &,,/, i.e. d,,(Z) being a non-zero
a.z. degree in G,,. If this is the case Soskov and M. Soskova call a a super a.z. degree.
In other words, a degree a is super a.z. iff there is a sequence {A, },<» € a such that
we can compute uniformly in J'*" (@) an index i, such that 4, = W; (J”(2)).

It turns out [63] that super a.z. degrees exist, but not all a.z. degrees are super
a.z. Moreover, every degree majorised by a super a.z. degree is a super a.z. degree,
and the l.u.b of two super a.z. degrees is again a super a.z. degree. Thus the super
a.z. degrees form a proper subideal of the a.z. degrees.

The K-pairs of super a.z. degrees admit a characterization very close to the one
for the KC-pairs of enumeration degrees. In fact, a pair {a, b} of super a.z. degrees is
a IC-pair if and only if there are sequences {A, },<» € a, {By}1<» € band {R,},<, €
0, such that

VnewlA, xB, CR, & A, xB, CR,).
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This characterization gives the tool needed for the construction of non-zero X-pairs
of super a.z. degrees. In fact, using a priority argument Soskov and M. Soskova
prove that each interval of super a.z. degrees contains an independent JC-system, i.e.
a sequence of degrees generated by a sequence of sequences Ay, Aj.,..., A,,...such
that {d, (A4,),d, (@n# A,)} is a K-pair for each i € w. As shown by Ganchev and
Soskova [10], the existence of an independent /C-system in a given interval suffices
for every countable distributive lattice to be embedded in that interval. Thus every
countable distributive lattice is embeddable in each interval of super a.z. degrees,
showing the high structural complexity of the ideal of the super a.z. degrees.

A similar but weaker result has been proven by Soskov and M. Soskova [68]
for the whole structure G,,. Using once again a priority argument on sequences of
sets of natural numbers, they prove that each interval in G, contains an independent
system, i.e. a sequence of degrees generated by a sequence of sequences Ay, Aj,. ..,
A,,...such that 4; £, @n# A, for each i € w. The existence of an independent
system guarantees the embeddability of every countable partial order (Sacks [27]).
Thus every partial order is embeddable in every interval in G,. In particular,
since Dy[01,00] = D,[0.,0,/] = G. (see (14)), every countable partial order is
embeddable in every interval in the local structure of the enumeration degrees. '

The results so far reveal that the poset of the w-enumeration degrees is a very rich
and interesting extension of the poset of the enumeration degrees. The two structures
are closely connected, but are very different with respect to the behavior of the
respective jump operations. In fact, the least jump invert theorem makes D,, far more
well-arranged than its enumeration counterpart. Further, the local substructure G,
of the w-enumeration degrees exhibits richness unmatched by the local structures
of the enumeration and of the Turing degrees. However, the definition of the w-
enumeration reducibility is not motivated by a natural computation procedure. In
fact, its main motivations are Selman’s theorem for enumeration reducibility and the
Soskov—Kovachev jump inversion theorem (Theorem 3.3). This poses two natural
questions: Firstly, why use the relation c.e. in in the definition of the mass problem
M 4 associated to the sequence A (see (9))? The answer is that there is no particular
reason for using this specific relation. We could use any known reducibility relation,
provided that we can prove for it a theorem analogous to Theorem 3.3. As a result,
we would obtain a degree structure, which would be situated somewhere between
the degree structure defined by the original relation and the poset of the Muchnik
degrees. This intermediate structure will inherit features from both the small and the
big structures. Most probably the least jump inversion theorem will be valid in the
new structure and it will have a very rich local structure. Indeed, in a recent paper,
Ganchev and Sariev [7] have substituted the relation c.e. in with the relation Turing
reducible to. The resulting reducibility relation between sequences, called w-Turing
reducibility, induces a poset of degrees D, 7, which is an extension of the poset Dr
of the Turing degrees. The behavior of D, 7 with respect to Dy is very similar to
the behavior of D, with respect to D,. Indeed, D, r contains a definable copy of

12This result was first proven by Bianchini [1].
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Dr and has a local structure very similar to the structure of G, described above.
All these are in fact properties inherited from the poset of the Muchnik degrees. As
for the properties inherited from Dy, D, r features minimal degrees, which do not
appear in the structure of the w-enumeration degrees.

The second natural question arising from the definition of the w-enumeration
reducibility is about why we consider sequences with length @. Here the answer
is a bit more complicated. The main reason for considering sequences of length
o, instead of sequences with arbitrary computable length, is the ordinal notations
described in the previous section. Recall that in order to work with infinite ordinals
less than or equal to a computable ordinal @ > w, we must fix an ordinal notation in
O for «. All ordinals greater than or equal to w have denumerably many notations
in O, so that we have infinitely many choices for the ordinal notation of «. Thus in
order to define a reducibility relation on the set S = {{Ag}g<a | VB < a(Ap C
)}, we must first fix an ordinal notation n, € O for «, thus fixing ordinal notations
ng for every ordinal B < . Then to every sequence A = {Ag}p<y in Sy, we
associate the mass problem My = {f € w® | Ag is c.e. in £ uniformly in
B < a}, and for every A, B € S,, we set

A<y B <= Mg c M},

Thus we define a preorder relation on S, that, of course, gives rise to a degree
structure Dy . However, we would like to define a degree structure D,, not dependent
on the choice of the ordinal notation of «. Clearly, this is trivially possible if for
every notation k, € O of o, we have

A< B &= A<k p, (18)

However, most probably the above equivalence is not true. Indeed, note that for the
sequence N = {{ng}}p, of the notations of the ordinals f < « yielded by nq, the
mass problem M coincides with @®. Thus a necessary condition for (18) is the
equality

= (19)

for every sequence XC = {{kg}} g consisting of the notations of the ordinals 8 < o
yielded by a notation k, for «. A simple argument shows that this condition is also
sufficient.

Equality (19) means that kg can be computed in @) uniformly in 8 < «.
However, the best result so far (Spector) shows that in order to compute kg, we must
use oracle @#+2) which is two Turing jumps above the one that we need.

Question 4.2 (Soskov) Prove either equivalence (18) or Dy == ij;*.
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5 Degree Spectra

Another reducibility, inherited from the Muchnik reducibility, Soskov was par-
ticularly interested in was the reducibility between abstract countable structures
induced by their degree spectra. The degree spectrum of an abstract countable
structure has been introduced by Richter [26] in order to measure its computability
power. Suppose that 2l is a countable structure over a computable, possibly infinite,
language L. A presentation of 2 is just an isomorphic copy of 2 with domain w
(or an initial segment of w). The degree of a given presentation of 2 is the Turing
degree of the join of its relations and the graphs of its operations (if £ is infinite
we take the uniform join of the relations and the graphs of the operations). Finally,
the spectrum Sp(2() of 2 is the collection of the degrees of its presentations. More
formally, if 2l = (A; Ry, Ry, ...) (here, for simplicity, we take a purely relational
denumerable structure), then

SpR) = {dr(f~"(A)) | f is a bijection from w onto A}, (20)

where f~1(21) stands for the set f~'(Ro) ® f~'(R)) & ---. A structure is said to
have a degree if its spectrum has a least element. A result by Richter [26] is that
the spectrum of every linear order contains a minimal pair, so if a linear order has a
degree, it must be Oz. On the other hand, there are continuum many non-isomorphic
countable linear orders so that there must be a linear order that does not have a
degree. Thus, in general, we need the whole spectrum of a structure in order to
characterize its effective complexity.

Clearly, considering the spectrum of 2( is equivalent to considering the mass
problem

My = {g € 0” | dr(g) € Sp(A)}

and hence the spectra of structures induce a reducibility relation between abstract
structures through Muchnik reducibility. More precisely, given abstract structures
2 and B, we say that 2 <,, B iff My <,, M. In general, the mass problem
Mg is upwards closed with respect to Turing reducibility, as according to a result
by Knight [17], if 2 is not trivial,'> then My consists of all functions g that can
compute a presentation of 2(. Thus for every two nontrivial structures 2 and ‘B, we
have that

A<, B < Sp(B) < SpQ).

I3A structure is called trivial if there are finitely many elements, such that every permutation of
the domain leaving these elements fixed is an automorphism. For example any complete graph is a
trivial structure.
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5.1 Enumeration Spectra

In his first paper on the subject of degree spectra [57], Soskov proposes two slight
modifications in the definition of the spectrum (20). The first one is to consider
surjective mappings from the set of the natural numbers onto the domain of the
structure, instead of bijective ones. In other words, we substitute the bijections with
enumerations of the structure. Having taken this first step, it is more natural to work
with the enumeration reducibility instead of the Turing reducibility. Thus we come
to the definition of the degree spectrum of an abstract structure proposed by Soskov
in [57]: Given an abstract structure 2, its degree spectrum (which we shall refer to
as enumeration spectrum) is the set

Spe(Q) = {d.(f'Q)) vd.(f (=) Vdo(f 1 (#)) | f is an enumeration of 2A}.

Clearly, the enumeration spectrum differs from the spectrum of an abstract
structure. More precisely, in general the enumeration spectrum is not the image
of the spectrum under the natural embedding ¢. This is due to the fact, that when
using Turing reducibility, we have information of both the positive and the nega-
tive information contained in the relations of the structure, whereas enumeration
reducibility takes care only of the positive information. Thus, it may be the case
that the enumeration spectrum contains non-total degrees, i.e. degrees that are not
images of Turing degrees under the embedding . This, in fact, is the case with any
structure of the form 2{p = (w; Rp) where Rp is a unary predicate corresponding to a
set P with non-total enumeration degree. Indeed, if we consider the identity mapping
from w onto w, we obtain that d.(P) € Sp.(2), so that Sp. () # t(Sp(2)).

On the other hand, the enumeration spectrum is not obliged to contain a non-total
degree. In fact, the relations in the structure could be such that we could determine
the negative information by asking questions only about the positive information.
This, for example, is the case for any purely operational structure (a structure
without relations). To be more precise, let us consider a group & = (G; +¢). Let f
be an enumeration of &. We have that

3.2 € (+6) = f) +6f() () =
W (2 #7 &f() +6f(y) =f()) & T (z#7 & (x.y.7) €f(+0)).

so that f~!(4¢), which is in fact f~!(®), is a total set and hence d,(f~'(®)) is a
total degree. Thus the enumeration spectrum of & consists entirely of total degrees.
Soskov refers to structures with this property as total structures.

The first observation Soskov made about the enumeration spectrum is that it is
always upwards closed with respect to total enumeration degrees, i.e. if a € Sp,(2()
and b is a total enumeration degree with a < b, then b € Sp,.(2(). Recall that the
total degrees are the enumeration degrees corresponding to the Turing degrees under
the natural embedding ¢, so that with respect to the enumeration spectrum there is
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no difference between trivial and non-trivial structures. Secondly, the enumeration
spectrum does not affect the notion of degree of a structure, since for every abstract
structure 2 and any enumeration f of 2 there is a bijective enumeration 4 of 2, such
that A~' (1) <, f~'(2A). These two results imply that, in general, the total degrees
corresponding to the Turing degrees in the spectrum of a structure are contained
in its enumeration spectrum, and, moreover in the particular case of non-trivial
structures, we have

t(Sp(RA)) = {x € Sp.(A) | xis total}.

Next, Soskov introduced the notion of co-spectrum of a structure by setting it
to be the set of all enumeration degrees that are lower bounds for the enumeration
spectrum of the structure, i.e.

CoSp.() = {x € D, | Ya € Sp.(A)(x < a)!.

Clearly, the co-spectrum of any structure is a countable ideal of enumeration
degrees. Moreover, it is exactly the ideal of the lower bounds of the total degrees
corresponding to the Turing degrees in the spectrum of the structure.

More interesting questions are what properties the co-spectrum has with respect
to the (enumeration) spectrum and what countable ideals of enumeration degrees
are co-spectra of abstract structures. It turns out that the co-spectra behave similarly
to the ordinary ideals of enumeration degrees. In fact, Soskov [57] proved that, for
every structure 2, there are total degrees a and b in the enumeration spectrum of 2,
such that for every enumeration degree X,

x € CoSp,(A) <= x<a&x=<bh.

In other words, the enumeration spectrum of 2 contains a minimal pair of total
degrees for the co-spectrum of 2. Further, for every abstract structure, there is an
enumeration degree separating the total degrees contained in the enumeration spec-
trum of the structure from the ones contained in the co-spectrum. More precisely,
for any abstract structure 2, there is an enumeration degree q ¢ CoSp.(2l), such
that for any total degree x, if x is comparable with q, then either x € Sp.(2)
or x € CoSp.(2) (compare this to the result of Slaman and Sorbi [34] about the
existence of quasi-minimal degrees over every ideal of enumeration degrees).

The existence of a degree separating the total degrees in the enumeration
spectrum from the ones in the co-spectrum, as noticed by Soskov, implies that if
an abstract structure does not have a degree, then its enumeration spectrum cannot
be the union of countably many upper cones with total degrees as least elements.
Indeed, suppose that by, by, ..., b,...are total degrees and 2l is an abstract structure
with Sp.(2) = {x | b, < x for some natural n}. Let q be a degree separating the
spectrum of 2 from its co-spectrum. Now assume that b, < ¢ for no natural n. Then
there is a total degree, X, such that q < x and b,, £ x for any natural n. But the first
one implies that x € Sp.(2l), whereas the second one implies that x ¢ Sp,(2l), which



40 H. Ganchev and D. Skordev

is a contradiction. Thus b, < q for some n, and hence b,, lies in the co-spectrum of
2A. Thus b, is the least element of the spectrum and hence the degree of 2.

It turns out that the similarities between the co-spectra and the ordinary countable
ideals of enumeration degrees are not accidental. In fact, Soskov [57] showed that
every countable ideal of enumeration degrees is the co-spectrum of an abstract
structure. With this we may consider the problem of the characterization of the co-
spectra of abstract structures closed.

5.2 Joint Spectra

In [66] Soskov and A. Soskova propose a generalisation of the notions of enumera-
tion degree spectra and co-spectra of abstract structures. This generalisation mimics
the concepts invented by Soskov in his jump inversion theorems (see Sect.3).

—_—
Suppose that instead of one abstract structure we are a given a sequence 21 =
(Ao, Ay, ..., 2, for some natural number n. We define the joint (enumeration)

—
spectrum of 2 to be

Sp(A) = {x € D, | Yk < n (x* € Spo(A)))} @1

and, respectively, the joint co-spectrum to be

— —
CoSp(RA) = {x € D, | Va € Sp(2A)(x < a)}. 22)

It turns out that similarly to the enumeration spectrum of an abstract structure, the
joint spectrum of a sequence of structures is upwards closed with respect to total
enumeration degrees. Further, as shown by A. Soskova [64], the joint spectrum of
any sequence of structures contains a minimal pair for the joint co-spectrum and,
moreover, there is a degree separating the total degrees in the joint spectrum from
the ones in the joint co-spectrum of the sequence.

Clearly, definitions (21) and (22) can be extended to sequences with arbitrary
computable length. However, in this way we cannot capture the notion of uniformity
that turned out to be important in the case of the w-enumeration degrees. In
order to overcome this obstacle, Soskov [59] proposes another definition for the

joint spectrum for sequences of length w. Let §l) be a sequence of length @ of

denumerable abstract structures. Define the joint spectrum JSp(§l>) of §l> to be
the collection of all Turing degrees containing a set, say B, for which there are
enumerations fo, fi, ..., fu, - .. of 2o, Ay,..., A, ... respectively, such thatfn_l(an)
is c.e. in B™ uniformly in n.

Note that the definition of the joint spectrum of sequences of length w is an
extension of the definition of the joint spectrum for finite sequences. Indeed, let

A= Aoy, %) and let A 1 @ = (Adies, where A = (0, =) for k > n.
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Then
— —1 — .
JSp(A 1t w) ={t (x) | x € Sp(A) & x is total}.

—

The definition of JSp(2l) is very similar to the definition of the mass problems
associated to the sequences of sets of natural numbers in the definition of the w-
enumeration reducibility. In fact, as proven by Soskov [59], for every sequence .A

N

of sets of natural numbers, there is a sequence of structures 2{, such that

—
JSp(2A) = {dr(B) | B € Maj.

As we shall see later, this will imply that the structure of the w-enumeration degrees
is embeddable in the structure of spectra of abstract structures.

5.3 Jump Spectra

Recall that a structure is said to have a degree if its spectrum has a least element.
There are a lot of examples of structures not having a degree. For instance, Coles
et al. [2] show that there are subgroups of the additive group of the rational
numbers such that their spectrum does not have a least element. Indeed, in order
to characterize the spectrum of a subgroup & of the additive group of the rational
numbers, it is enough to fix a non-zero element a of & and consider the set

Sa(®) = {(pi.k) | Ix € B(pf.x = a)}.

where po, pi,..., Pns--.1s the list of all prime numbers. It turns out that the
spectrum of & is the collection of all Turing degrees in which S,(®) is computably
enumerable. Thus G has a degree if and only if the set S,(®) is total. On the other
hand, for every set, there is a subgroup & of the additive group of the rational
numbers such that the set S,(®) is enumeration-equivalent to the given set. Hence
if we choose the set so that its enumeration degree is not total, then the respective
group & would not have a degree. On the other hand, the characterization of the
spectrum of & and Theorem 3.1 imply that the Turing degree corresponding to the
jump of the enumeration degree of S,(®) is the least among all the jumps of the
degrees in Sp(®). This makes it natural to consider the so-called jump spectrum of
a structure, which is the set

Sp) = {x"| x € Sp(W)}.
A structure is said to have a jump degree if its jump spectrum has a least element.

Thus every subgroup of the additive group of the rational numbers has a jump degree
although it might not have a degree.
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A natural question arising immediately is: Is every jump spectrum a spectrum
of a structure? An affirmative answer has been given independently by Soskov and
Soskova [67] and Montalban [21]. The idea realized by Soskov and Soskova is when
given an abstract structure 2, to first consider its Moschovakis extension 20* (see
Sect.2.1). The structure 20* is not trivial, so its spectrum may be not equal to the
spectrum of 2. However, 2 =,, 2*, so that the Moschovakis extension does not
affect the reducibility we care about. Moreover, if the structure 2l is not trivial then
Sp(R) = Sp(A*). Now the jump 21" of the structure 2/ is defined to be the structure
A* augmented by an universal semi-search computable predicate. This turns out to
be sufficient for Sp(21*)" = Sp(2’). Thus the jump spectrum of a nontrivial structure
is the spectrum of a structure. In general, we have that jump spectrum of every
structure is Muchnik-equivalent to the spectrum of some structure.

Following the lines of the usual investigation concerning a jump operation, the
next natural question we need to consider is what can we say about inverting the
jump. More precisely, we would like to see whether, given a structure B with
Sp(B) € {x € Dr | x > 04}, there is a structure A with A" =, B. Using
the technique of Marker extension, Soskov and Soskova [67] manage to prove a
far more general result. Namely, for every two abstract structures B and € with
¢’ <, B, there is a structure 2 such that € <,, A and A’ =,, B.

Clearly, the jump inversion can be iterated finitely many times provided that the
spectrum of the structure is contained in the degrees above an appropriate jump of
the zero degree. As an application, we can easily provide examples of structures
having (n + 1)-jump degree but not having a k-jump degree for any k£ < n. Indeed,
recall that for any subgroup & of the additive group of the rational numbers, &
always has a jump degree, whereas it has a degree if and only if d,(S,(®)) is total
and for any set A there is a subgroup & of the additive group of the rational numbers
such that S,(®) =, A. Now, let us fix a natural number n and a set A, such that
d.(A) is not total and d.(A) > 0. Let us consider a group & with S,(8) =, A.
Then & does not have a degree and Sp(8) € {x € Dr | x > O(T")}. Now the jump
inversion theorem provides us a sequence of structures 2y = &, 2A,..., 2, with
Ar = Aer1’. Since Ay does not have a degree, clearly neither of the structures 2;
has a degree. Thus 21, is the desired structure having (n + 1)-jump degree, but not
having a k-degree for any k < n.

The next natural question one might consider is, can we invert arbitrary com-
putable jumps as in the case of Turing and enumeration degrees? More precisely,
given a computable ordinal, say «, and a structure, say ‘B, having a spectrum that
is contained in the degrees that are above the a-jump of the zero degree, is there
a structure 2l such that Sp(B) = {x@ | x € Sp(A)}? This time the answer turns
out to be negative. In fact, jump inversion fails for the first limit ordinal, @. In order
to prove this, Soskov considers what he calls the w-co-spectrum of a structure. The
w-co-spectrum of a structure is simply the set of enumeration degrees

CoSpu(2) = {y € D, | ¥x € Sp)(y < 1(x”))}.
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Now given a structure B, if there is a structure 2 with Sp(B) = {x© | x € Sp(A)},
then it would be the case CoSp(B) = CoSp,,(2l). Recall that any countable ideal can
be a co-spectrum of a structure, so if we have w-jump inversion, then any countable
ideal containing 0’ would be the w-co-spectrum of a structure. But this turns out to
be impossible since Soskov proved [60] that for every structure 2 the total degrees
are upwards dense in its w-co-spectrum, i.e. for every a € CoSp,, (), there is a total
b € CoSp,, (%) such that a < b. Hence a principal ideal having a non-total degree as
top element cannot be the w-co-spectrum of a structure, and hence w-jump inversion
is impossible in general.

In his last paper [59] Soskov makes a thorough investigation of the Marker
extension used for the proof of the jump inversion theorem. These investigations
revealed that the Marker extension can be used to prove the following very general

—
result: For every sequence B = {8, },,, there is a structure 2 such that

—>
Sp(A) = JSp(B). 23)

First of all recall, that for every sequence A of sets of natural numbers, there is a

—_—
sequence ‘5, such that

M = {X | dr(X) € JSp(B)}.

This, together with (23), implies that we can associate a structure 2 4 with every
sequence .4, so that

Ma ={X|dr(X) € Sp(A4)}-
Thus we have that
A<y B & Aa <, As,
and hence the structure of the w-enumeration degrees is embeddable in the structure
of spectra of structures.

Secondly, (23) provides a least jump inversion theorem for the structure of
spectra of structures. Indeed, suppose that % is such that Sp(*8) C {x € Dy |

x > 0%}. Consider the sequence %) = {B,}n<w, Where B, = B and B, = (w; =)
forn # 1. Then
%
JSp(5B) = {x € Dr | X' € Sp(B)}.

Now let 2 be such that Sp(2) = JSp(%)). Then clearly 2 =,, B and, for every ¢
with ¢’ =, B, we have 2 <,, €.
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Finally, analyzing the Wehner construction of a structure with a spectrum

—
consisting of all non-low Turing degrees, Soskov constructs a sequence ‘5 such that

JSp(B) = {x € Dr | Ynx™ # 0™},

Using once again (23), we obtain a structure 2l whose spectrum is the collection of
all Turing degrees, which are low-n for no natural n.
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Physical Logic

Kate Clements, Fay Dowker, and Petros Wallden

Abstract In R. D. Sorkin’s framework for logic in physics a clear separation is
made between the collection of unasserted propositions about the physical world
and the affirmation or denial of these propositions by the physical world. The
unasserted propositions form a Boolean algebra because they correspond to subsets
of an underlying set of spacetime histories. Physical rules of inference apply not to
the propositions in themselves but to the affirmation and denial of these propositions
by the actual world. This physical logic may or may not respect the propositions’
underlying Boolean structure. We prove that this logic is Boolean if and only if
the following three axioms hold: (i) The world is affirmed, (ii) Modus Ponens and
(iii) If a proposition is denied then its negation, or complement, is affirmed. When a
physical system is governed by a dynamical law in the form of a quantum measure
with the rule that events of zero measure are denied, the axioms (i)—(iii) prove to be
too rigid and need to be modified. One promising scheme for quantum mechanics
as quantum measure theory corresponds to replacing axiom (iii) with axiom (iv).
Nature is as fine grained as the dynamics allows.

1 Introduction

The view that the mode of reasoning we use for classical physics is not appropriate
when discussing a quantum system is widespread, if not mainstream. For example,
in the Quantum Mechanics volume of his Lectures on Physics, R. P. Feynman refers
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to “the logical tightrope on which we must walk if we wish to describe nature
successfully” [1]. In order to investigate the nature of this “tightrope” further, in
a systematic way, we need a framework for logic that is relevant for physics (rather
than, say, mathematics or language) and within which the logic used for classical
physics can be identified, characterised, assessed and, if necessary, replaced.
Recently, a unifying foundation for physical theories with spacetime character—
Generalised Measure Theory (GMT)—which provides just such a framework has
been set out [2-5]. The key to the clarity that this formalism brings to the study
of deductive inference in physics is the distinction it makes between the assertion
of propositions about the physical world and the propositions themselves, the latter
corresponding merely to questions waiting to be answered [6, 7]. Identifying the
answers to the questions as the physical content of the theory, as explained below,
makes it a small step to consider the possibility of non-standard rules of inference;
to do so is to open a new window on the variety of antinomies with which quantum
mechanics is so infamously plagued (or blessed) [4, 8—11].

We begin in Sect.2 by identifying three basic structures that constitute a
general framework for reasoning about the physical world. Taking the revolution
of relativity seriously, we assume that the physical theory has a spacetime character
in the sense that it is based on a set of spacetime histories which represent the finest
grained descriptions of the system conceivable within the theory. In Sect. 3 we give
names to certain rules of inference and situate classical, Boolean rules of inference
within this framework. In Sect. 4 we investigate which rules are implied by which
others, abstractly, by mathematical manipulation alone, setting aside the question of
which might be necessary or desirable for physics. We focus on the rule of inference
known as modus ponendo ponens (modus ponens for short), the basis for deductive
proof without which the ability to reason at all might seem to be compromised
from the outset.! We will show that—on the mildest conceivable assumption that
something happens in the world—modus ponens implies Boolean logic if it is
supplemented by the rule “If a proposition is denied by the physical world, then
its negation is affirmed.” These results are independent of whether the theory is
classical, quantum or transquantum in Sorkin’s hierarchy of physical theories [2].
We will show that one currently favoured scheme for interpreting quantum theory,
the multiplicative scheme, coincides with the adoption of modus ponens, together
with a condition of finest grainedness.

2 The Threefold Structure

The details of any logical scheme for physics—in particular, the events about
which it is intended to reason—will plainly depend on the system one has in mind.
Nonetheless, one can describe a class of schemes rather generally in terms of three

"Lewis Carroll gives in [12] a witty account of the implications of a failure to take up modus
ponens explicitly as a rule of inference.
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components [5]:

(i) the set, 2, of all questions that can be asked about the system;
(ii) the set, S, of possible answers to those questions; and
(iii) a collection, 2*, of answering maps ¢ : 2A — S, exactly one of which
corresponds to the physical world.

While such a framework may not be the most general that could be conceived, it is
broad enough to encompass all classical theories, including stochastic theories such
as Brownian motion. In such a classical physical theory 2 is a Boolean algebra, S =
Z; = {0,1} and ¢ is a homomorphism from 2 into Z,, as we describe below. To
make the framework general enough to include quantum theories one might consider
altering any or all of these three classical ingredients. It is remarkable that the only
change that appears to be necessary in order to accommodate quantum theories in a
spacetime approach based on the Dirac—Feynman path integral is to free ¢ from the
constraint that it be a homomorphism [4, 5, 7]. We will assume the following about
the three components.

(i) 2 is a Boolean algebra, which we refer to as the event algebra. The elements
of 2 are equivalently and interchangeably referred to as propositions or events,
where it is understood that these terms refer to unasserted propositions. An
event A can also be thought of as corresponding to the question, “Does A
happen?”. The elements of 2 are subsets of the set, €2, of spacetime histories of
the physical system. For instance, in Brownian motion €2 is the set of Wiener
paths. Use of the term ‘event’ to refer to a subset of €2 is standard for stochastic
processes. In the quantal case, 2 is the set of histories summed over in the
path integral, for example the particle trajectories in non-relativistic quantum
mechanics. An example of an event in that case is the set of all trajectories in
which the particle passes through some specified region of spacetime.

The Boolean operations of meet A and join Vv are identified with the set
operations of intersection M and union U, respectively. A note of warning:
using in this context the words and and or to denote the algebra elements that
result from these set operations can lead to ambiguity. In this paper we will try
to eliminate the ambiguity by the use of single inverted commas, so that ‘A or
B’ denotes the event A v B; ‘A and B’, the event A A B.

The zero element @ € 2{ is the empty set and the unit element 1 € A is
itself. The operations of multiplication and addition of algebra elements are,
respectively,

AB:=ANB, VA,Be;
A+ B:=(A\B)U(B\A), VA, Be 2.

With these operations, 2{ is an algebra in the sense of being a vector space over
the finite field Z,. A useful expression of the subset property is: A € B &
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AB = A. We have, for all A in 2,

AA = A; (D
A+ A= 0; and (2)
—A=Q\A=1+A. 3)

The event 1 4+ A may be referred to as —A, as the complement of A, or, again
with single inverted commas, as ‘not A”.%

(ii) Together with the algebra of questions comes the space of potential answers
that the physical system can provide to those questions. Whilst one can
envisage any number of generalisations, with intermediate truth values for
example, we follow Sorkin and keep as the answer space that of classical
logic, namely the Boolean algebra Z, = {0, 1} = {false, true} = {no, yes}.
To answer the question A € 2 with 1 (0) is to assert that the event A does (does
not) happen; equivalently, we say that A is affirmed (denied).

(iii) Finally, one has the set A* of allowed answering maps, also called co-events,’
¢ : A — 7Z,. We assume that a co-event is a non-constant map: ¢ 7# 0 and
¢ # 1. That is, a co-event must affirm at least one event and deny at least
one event. To specify a co-event is to answer every physical question about
the system, and thus to give as complete an account of what happens as one’s
theory permits. The physical world corresponds to exactly one co-event from
2A*. In other words, the physical world provides (or is equivalent to) a definite
answer to every question and 2A* is the set of possible physical worlds.

This threefold structure of event algebra 2, answer space Z, and collection of
answering maps or co-events ¢ : 2 — Z, makes sense out of possibilities that seem
otherwise non-sensical [6]. The threefold structure is appropriate to physics, where
perfectly sensible, meaningful events are not in themselves true or false (unlike, for
example, and in one view, mathematical statements). Each event will either happen
or not in the physical world, but which it is contingent.

It seems an appropriate point to note that the threefold structure is also apparent
in the framework for interpreting quantum physics that has come commonly to be
known as “Quantum Logic.” There are major differences with Sorkin’s framework,
however. In place of the Boolean algebra of propositions there is in Quantum Logic
an orthocomplemented lattice of subspaces of a Hilbert space. In place of the set
of yes/no answers Z,, there is the set of probabilities, real numbers between 0 and
1. And in place of the co-event, there is the state which maps each subspace of
Hilbert space to a probability. Thus, at the very outset, the space of propositions
in Quantum Logic has a non-Boolean character due to the focus on Hilbert space
as the arena for the physics. Quantum Logic sprang from a canonical approach to

2See [6] for a discussion of the ambiguity in the phrase “not A”.
3The notation 21* reflects the nature of the co-event space as dual to the event algebra.



Physical Logic 51

quantum theory in which Hilbert space is fundamental. Hilbert space has no place in
classical physics, hence the starting point—the set of unasserted propositions—for
Quantum Logic is different than in classical physics. In contrast, in a path integral
approach to quantum physics as adopted by Sorkin, the axiomatic basis is a set of
spacetime histories just as it is in classical physics and therefore the structure of the
set of unasserted propositions is the same in both classical and quantum physics:
this is a unifying framework.

3 Rules of Inference

If we somehow came to know the co-event that corresponds to the whole universe,
then there would be no need for rules of inference: we would know everything
already. Rules of inference are needed because our knowledge is partial and limited
and to extend that knowledge further we need to be able to deduce new facts from
established ones. As stressed by Sorkin, in this view dynamical laws in physics are
rules of inference [7]: using the laws of gravity, we can infer from the position of
the moon tonight its position yesterday and its position tomorrow.

For the purposes of this paper we call any condition restricting the collection of
allowed co-events a rule of inference.* One could begin by considering the set of all
non-constant maps from 2l into Z,; a rule of inference is then any axiom that reduces
this set. One axiom that has been suggested [4, 5] is that of preclusion, the axiom
that an event of zero measure is denied. Explicitly, if p is the (classical, quantum or
transquantum) measure on the event algebra, encoding both the dynamics and the
initial conditions for the system, then u(A) = 0 = ¢(A) = 0. We will return to
preclusion in a later Section; for the time being, our attention will focus on rather
more structural axioms.

First, let us define some properties of co-events that it might be desirable. In all
the following definitions, ¢ is a co-event and we recall that ¢ is assumed not to
be the zero map or unit map. We begin with properties that reflect the algebraic
structure of 2/ itself.

Definition 1 ¢ is zero-preserving if

$(@) =0. “)

Definition 2 ¢ is unital if

(1) =1. (5)

One could call this condition “the world is affirmed.”

4 An alternative is to call any condition on the allowed co-events a dynamical law.
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Definition 3 ¢ is multiplicative if
¢(AB) = ¢p(A)¢p(B), VA,Be . 6)
Definition 4 ¢ is additive or linear if
¢(A+B)=¢A)+¢(B), VA, Be. @)

A further set of conditions is motivated directly as the formalisation of the rules
of inference that we use in classical reasoning. As mentioned in the introduction,
arguably the most desirable among these is modus ponens, commonly stated thus:

MP: If A implies B and A, then B.

However, it is now easy to appreciate why care must be taken in distinguishing
(mere unasserted) events from statements about the physical world, i.e. affirmed or
denied events. The rules of inference we are interested in here are those that tell us
how to deduce statements about what happens in the physical world from other such
statements. To render modus ponens fully in terms of the threefold framework for
physics, we re-express it as

MP: If ‘A implies B’ is affirmed and A is affirmed, then B is affirmed,

where ‘A implies B’ is an event, an element of 2 which we denote symbolically as
A — B := —(A A (—B)). We have,

A—-B=14+A1+DB)
=14+A+AB, €]
which small manipulation shows, incidentally, how much easier it is to work with

the arithmetic form of the operations than with A, v and —. The condition of modus
ponens is then:

Definition 5 ¢ is MP if
pA—=B)=1,¢A)=1 = ¢B)=1, VA Be. ©)]

Distinct from MP and from each other are the two strains of “proof by
contradiction,” which we shall call C1 and C2. In words, we can state them as
follows:

Cl: If event A is affirmed, then its complement is denied.

C2: If event A is denied, then its complement is affirmed



Physical Logic 53

We point out that C1 and C2 are referred to as the law of contradiction and the law
of the excluded middle, respectively, in [13].°> These two conditions are distinct and
C2 turns out to play a more important role in our analysis. As we will see in the next
few sections, C2 is independent of MP and multiplicativity, while C1 is essentially
implied by these conditions.

The formal definitions of conditions C1 and C2 on co-events are:

Definition 6 ¢ is C1 if
pA)=1 = ¢(14+A) =0, VAel (10)
Definition 7 ¢ is C2 if

pA) =0 = p(1+A) =1, VAeql (11)

3.1 An Example: Classical Physics, Classical Logic

In classical physics we use classical logic because, in classical physics, One History
Happens. Indeed, the rules of inference known collectively as classical, Boolean
logic follow from the axiom that the physical world corresponds to exactly one
history in €2 [5]. In a later section we will give a list of equivalent forms of this axiom
in the case of finite 2; here, we note only that if the physical world corresponds to
history y € €2 then all physical questions can be answered. In other words, y gives
rise to a co-event y* : A — 7, as

1 ifyeA
y*(A) = ves (12)
0 otherwise,

VA e.

It can be shown that such a y* is both multiplicative and additive, i.e. it is a
homomorphism from 2{ into Z,. It is easy to see that y* is zero-preserving and
unital, and one can further use its homomorphicity to prove it is C1, C2 and MP. For
example, we have:

Lemma 1 [fco-event ¢ is additive and unital then it is zero-preserving, C1 and C2.

SNote also that at the level of the Boolean algebra of events we always have =—A = A and,
moreover, if “the law of the excluded middle” is taken to mean that every event is either affirmed
or denied then our framework respects it by fiat because that is just the statement that ¢ is a map
to Z, [6]. This illustrates how careful one must be to be clear.
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Proof Let ¢ be additive and unital. Then

l=¢(1)=¢dp(1+A+A) =¢0(1+A)+¢A4), YA,
which implies that exactly one of ¢ (1 + A) and ¢(A) is equal to 1. So ¢ is C1 and
C2,and ¢ (@) = 0. O

If One History Happens, as in classical physics, the physical world fully respects
the Boolean structure of the event algebra, and the logical connectives and, or, not
and so forth may be used carelessly, without the need to specify whether they refer
to asserted or to unasserted propositions. One doesn’t have to mind one’s logical Ps
and Qs over (potentially ambiguous) statements such as “A or B happens” when ¢
is a homomorphism:

Lemma 2 If co-event ¢ is a homomorphism then p(AV B) =1 < ¢(A) =1
or¢p(B) = 1.

Proof

p(AVB) =1
— ¢(AB+A+B) =1
— ¢(A)p(B) + ¢(A) +¢(B) =1
— (¢A) + D(¢(B)+ 1) =0.

|

So no ambiguity arises because ‘A or B’ happens if and only if A happens or B
happens.

4 Results

Theorem 1 The following conditions on a co-event ¢ are equivalent:

(i) ¢ is MP and unital;
(ii) ¢ (1) :={A e A| p(A) = 1} is a filter®;
(iii) ¢ is multiplicative.
Proof (1) = (ii)
Let ¢ be MP and unital.

%We assume a filter is non-empty and not equal to the whole of 2.
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First, we show that the superset of an affirmed event is affirmed. Let ¢p(A) = 1
and B be such that AB = A. Then

H(A— B) = p(1+A+A)

=¢()
=1

by unitality. By MP it follows that ¢ (B) = 1.

Now we show that the intersection of two affirmed events is also affirmed. Let
¢(C) = ¢(D) = 1. We have that D(C — CD) = D(1 + C + CD) = D, and so
¢(D(C — CD)) = 1. By the first part of the proof, this implies that ¢ (C — CD) =
1, so that by MP, ¢ (CD) = 1.

Finally, ¢ is unital, so ¢~'(1) is non-empty and ¢ # 1 so ¢~'(1) is not equal
to 2A.

(1) = (iii)

Let $~'(1) be a filter and A, B € . Then there are two cases to check.

(a) If ¢(A) = ¢(B) = 1 then the filter property implies that ¢ (AB) = 1.

(b) Assume without loss of generality that ¢(A) = 0. Since A is a superset of AB,
we must therefore have that ¢(AB) = 0; otherwise, the filter property would
lead to the conclusion that ¢ (A) = 1, a contradiction.

So ¢ is multiplicative.
(iii) = (1)
Let ¢ be multiplicative. Since ¢ # 0, IX € A s.t. $(X) = 1. Then,

I=¢X) =¢1-X) =¢MoX) = ¢(1),

SO ¢ is unital.

Now suppose ¢p(A) = ¢p(A — B) = 1. We have that A(A — B) = A(1 + A +
AB) = AB, and thus ¢(AB) = ¢(A)¢p(A — B) = 1. It follows that ¢ (A)¢(B) = 1,
so that ¢(B) = 1. So ¢ is MP. O

Note, however, the following.

Remark MP alone is not enough to guarantee multiplicativity, as shown by the
following example. Consider the event algebra 24 = {#, 1}, and the co-event

¢@) =1
¢(1) =0.
MP is trivially satisfied: (@ — 1) = ¢(1 + 0 + J) = ¢ (1) = 0, while p(1 —

P)=¢d(A+1+0)=¢(@) = 1,but ¢(1) = 0. So there is no pair of events A and
B such that ¢(A — B), ¢(A) = 1, i.e. for which we even need to check whether
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¢ (B) = 1. Multiplicativity fails, however:

p@-1) =¢(@) =1
#¢@)p(1) =1-0=0.

Neither does MP together with zero-preservation guarantee multiplicativity, as
demonstrated again by an example. Consider this time the four-element event
algebra 24 = {0,A,B,1}, where B = 1 + A, and the following zero-preserving
co-event:

(@) = ¢(B) = ¢(1) = 0;

¢A) = 1.

MP is trivially satisfied by an argument similar to that above, but ¢ is not
multiplicative, since

p(A-1) =¢(A) =1
# pA)p(1) = 1-0=0.
Having established the relation between multiplicativity of a co-event and the

pillar of classical inference—MP—what can be said of the proofs by contradiction?
From the proof of Theorem 1 we know that a multiplicative ¢ is unital. It is also C1:

Lemma 3 [f ¢ is a multiplicative co-event then ¢ is zero-preserving and C1.

Proof Let ¢ be multiplicative. ¢p # 1,50 3A € A s.t. ¢ (A) = 0. Thus

(@) =¢ (A1 +A)) = ¢pA)p(1+A) =0.

Now let ¢(B) = 1 for some B € 2. Then

0=¢@) =¢(B(A+B) =¢B)1+B)
= ¢(1+B)=0.

Corollary 1 Ifthe co-event ¢ is MP and unital then it is CI.

It was shown in the previous section that if a co-event ¢ is a homomorphism
then it is MP, C1 and C2. Conversely, we can ask: what conditions imply that ¢ is a
homomorphism?

Theorem 2 [f co-event ¢ is unital, MP and C2 then it is a homomorphism.

Proof Let ¢ be unital, MP and C2. By Theorem 1 ¢ is multiplicative, and by
Lemma 3 itis C1.
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We need to show that ¢ is additive. C1 and C2 imply ¢(X) + ¢(1 + X) = 1 for
allX e 2A. LetA,B € 2.
¢p(A+B)+¢(1+A+B)=1 and ¢(AB)+¢(1+AB) =1

= [p(A+B)+¢(1+A+B)][¢p(AB) + ¢(1 + AB)] =1

= ¢(A+ B)¢p(AB) + ¢(A+ B)p(1 + AB) + ¢(1 + A + B)p(AB)
+¢(1+A+B)p(1+AB) =1

=¢(A+BAB)+¢p((A+B)(1+AB)) + ¢ (1 + A+ B)AB)
+¢o(1+A+B)(A+AB) =1

=>¢0)+¢(A+B)+¢(AB)+dp(1+A+B+AB) =1

=0+¢(A+B)+9(AB)+¢d(1+A)(1+B) =1

=>¢A+B)+¢(AB)+¢(1+A)p(1+B) =1

= ¢(A+ B) + ¢(AB) + (1 + ¢(A))(1 + ¢(B)) = 1

=>¢A+B)+¢AB)+ 1+ ¢(A) +¢(B) +¢d(AB) =1

= ¢(A+ B) = ¢(A) + ¢(B).

|

Since zero-preservation and C2 imply unitality we can replace the condition of
unitality by that of zero-preservation:

Corollary 2 If co-event ¢ is zero-preserving, MP and C2 then it is a homomor-
phism.

Theorem 2 establishes that, as long as ¢ (1) = 1 (the world is affirmed), modus
ponens needs the addition of only the rule C2 to lead to classical logic.

5 A Unifying Proposal

5.1 Classical Physics Revisited

We mentioned that when One History Happens, the corresponding co-event is a
homomorphism. What about the converse? When the set of spacetime histories €2
is finite, the event algebra 2 is the power set 2 of Q, and in this case the Stone
representation theorem tells us that the set of (non-zero) homomorphisms from 2 to
Zs is isomorphic to 2. Thus, the axiom that exactly one history from €2 corresponds
to the physical world is equivalent—in the finite case—to the assumption that the
co-event that corresponds to the physical world is a homomorphism. This is just one
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of the possible equivalent reformulations of the One History Happens axiom that
defines classical physics; we provide a partial list below. Before doing so we must
first introduce classical dynamics as a rule of inference. The dynamics are encoded
in a probability measure ., a non-negative real function p : 2l — R which satisfies
the Kolmogorov sum rules and p(1) = 1. We call an event in 2( where u(4) = 0
a null event. Classical dynamical law requires that the history that corresponds to
the physical world not be an element of any null event: a null event cannot happen.
The co-event ¢ that corresponds to the physical world is therefore required to be
preclusive, where:

Definition 8 A co-event ¢ is preclusive if
HA)=0=¢A) =0, VAe. 13)

We will also make use of the following definitions:
Definition 9 A filter F C A is preclusive if none of its elements are null.
Definition 10 An eventA € 2 is stymied if it is a subset of a null event.

The physical world in a classical theory when €2 is finite is then described
equivalently by any of the following.

(1) A single history, an element of €2, which is not an element of any null event.
(i) A minimal non-empty non-stymied event (ordered by inclusion).
(iii) A preclusive ultrafilter on 2.
(iv) A maximal preclusive filter (ordered by inclusion).
(v) A preclusive homomorphism ¢ : % — Z,.
(vi) A preclusive co-event for which all classical, Boolean rules of inference hold.
(vii) A preclusive, unital, MP, C2 co-event.
(viii) A minimal preclusive, multiplicative co-event, where minimality is in the
order

1 2 ¢ if ;r(A) =1= ¢1(4) =1. (14)

(ix) A minimal preclusive, unital, MP co-event, where again minimality is in the
order (14).

The equivalence of item (vii) is the import of Theorem 2. The final two items,
(viii) and (ix), introduce the concept of minimality, which is a finest grainedness
condition or a Principle of Maximal Detail: nature affirms as many events as
possible without violating preclusion. That the conditions in (viii) imply that ¢ is a
homomorphism is proved by Sorkin [6, 7]. That (viii) and (ix) are equivalent is the
import of Theorem 1.

In a classical theory one is free to consider any or all of these as corresponding
to the physical world, since each is equivalent to a single history y € Q.



Physical Logic 59
5.2 Quantum Measure Theory

Quantum theories find their place in the framework of GMT at the second level
of a countably infinite hierarchy of theories labelled by the amount of interference
there is between histories [2]. A quantum measure theory has the threefold structure
described in Sect.?2, just as a classical theory does, and it too is based on a set
Q of spacetime histories—the histories summed over in the path integral for the
theory. The departure from a classical theory is encoded in the nature of the
measure i which is in general no longer a probability measure. Indeed, given by
the path integral, a quantal u does not satisfy the Kolmogorov sum rule but, rather,
a quadratic analogue of it [2-4]. The existence of interference between histories
means that there are quantum measure systems for which the union of all the null
events is the whole of 2. Examples are the three-slit experiment [4], the Kochen—
Specker antinomy [8, 9, 14, 15] and the inequality-free version of Bell’s theorem due
to Greenberger et al. [16, 17] and Mermin [11, 18, 19]. The condition of preclusion
therefore runs into conflict with the proposal that the physical world corresponds to
a single history since if every history is an element of some null event there is no
history that can happen: reductio ad absurdum.

Choosing to uphold preclusion as a dynamical law means therefore that, of the
above list of nine equivalent descriptions of a classical physical world, (i) fails in
the quantal setting, and so do (iii), (v), (vi) and (vii). However, the other four—
(i1), (iv), (viii) and (ix)—survive and remain mutually equivalent for a finite quantal
measure theory. That (ii), (iv) and (viii) are equivalent can be shown using the fact
that a multiplicative co-event ¢ defines and is defined by its support, F(¢) € 2, the
intersection of all those events that are affirmed by ¢:

F¢):== () S. (15)
se¢=1(1)

Adopting (viii) as the axiom for the possible co-events of a theory gives the
resulting scheme its name: the multiplicative scheme. The multiplicative scheme is
a unifying proposal: whether classical or quantum, the physical world is a minimal
preclusive multiplicative co-event [5]. What we have shown here is that it could just
as well be dubbed the “modus ponens scheme”.

6 Final Words

With hindsight, we can see that the belief that the geometry of physical space was
fixed and Euclidean came about because deviations from Euclidean geometry at
non-relativistic speeds and small curvatures are difficult to detect. In a similar vein,
Sorkin suggests, the need for deviations from classical rules of inference about
physical events lay undetected until the discovery of quantum phenomena (see
however [6]). That’s all very well, but it could seem much harder to wean ourselves
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off the structure of classical logic than to give up Euclidean geometry. To those who
feel that classical rules of inference are essential to science, this reassurance can be
offered: in GMT, classical rules of inference are used to reason about the co-events
themselves, because a single co-event corresponds to the physical world.

Moreover, in the multiplicative scheme (to the extent that the finite system case
is a good guide to the more general, infinite case) each co-event can be equivalently
understood in terms of its support—a subset of €2. In Hartle’s Generalised Quantum
Mechanics [20, 21], this subset would be called a coarse-grained history; the
proposal of the multiplicative scheme is to describe the physical world as a single
coarse-grained history. The altered rules of inference in the multiplicative scheme
for GMT are no more of a conceptual leap than this: the physical world is not as
fine grained as it might have been, and there are some details which are missing,
ontologically. Furthermore, the results reported here reveal the alteration of logic in
the multiplicative scheme to be the mildest possible modification: keeping MP and
relinquishing only C2. Relinquishing C2 in physics means allowing the possibility
that an electron is not inside a box and not outside it either. Another example
is accepting the possibility that a photon in a double slit experiment does not
pass through the left slit and does not pass through the right slit. At the level
of electrons and photons, such a non-classical state of affairs is not too hard to
swallow; indeed, very many, very similar statements are commonly made about the
microscopic details of quantum systems. The multiplicative scheme for GMT is a
proposal for making precise the nature of Feynman’s “logical tightrope” and raises
the important question: “Are violations of classical logic confined to the microscopic
realm?” Answering this question becomes a matter of calculation within any given
theory [7].
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From Quantum Foundations via Natural
Language Meaning to a Theory of Everything

Bob Coecke

Abstract In this paper we argue for a paradigmatic shift from ‘reductionism’ to
‘togetherness’. In particular, we show how interaction between systems in quantum
theory naturally carries over to modelling how word meanings interact in natural
language. Since meaning in natural language, depending on the subject domain,
encompasses discussions within any scientific discipline, we obtain a template for
theories such as social interaction, animal behaviour, and many others.

1 ... in the Beginning Was ®

No, physicists! ... the symbol ® above does not stand for the operation that
turns two Hilbert spaces into the smallest Hilbert space in which the two given
ones bilinearly embed. No, category-theoreticians! ... nor does it stand for the
composition operation that turns any pair of objects (and morphisms) in a monoidal
category into another object that is the symbol ® a horrendous bunch of conditions
that guaranty coherence with the remainder of the structure. Instead, this is what it
means:

® = “togetherness”

More specifically, it represents the togetherness of foo; and foo, without giving any
specification of who/what foo; and foo, actually are. Differently put, it’s the new
stuff that emerges when foo; and foo, get together. If they don’t like each other at
all, this may be a fight. If they do like each other a lot, this may be a marriage, and
a bit later, babies. Note that togetherness is vital for the emergence to actually take
place, given that it is quite hard to either have a fight, a wedding, or a baby if there
is nobody else around.

It is of course true that in von Neumann’s formalisation of quantum theory the
tensor product of Hilbert spaces (also denoted by ®) plays this role [39], giving
rise to the emergent phenomenon of entanglement [20, 36]. And more generally, in
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category theory one can axiomatise composition of objects (again denoted by ®)
within a symmetric monoidal category [5], giving rise to elements that don’t simply
arise by pairing, just like in the case of the Hilbert space tensor product.

However, in the case of von Neumann’s formalisation of quantum theory, we are
talking about a formalisation which, despite being widely used, its creator himself
didn’t even like [33]. Moreover, in this formalism, ® only arises as a secondary
construct, requiring a detailed description of foo; and foo,, whose togetherness
it describes. What we are after is a ‘foo-less’ conception of ®. The composition
operation ® in symmetric monoidal categories heads in that direction. However,
by making an unnecessary commitment to set theory, it makes things unnecessarily
complicated [14]. Moreover, while this operation is general enough to accommodate
togetherness, it doesn’t really tell us anything about it.

The title of this section is a metaphor aimed at confronting the complete disregard
that the concept of togetherness has suffered in the sciences, and especially, in
physics, where all of the effort has been on describing the individual, typically by
breaking its description down to that of even smaller individuals. While, without
any doubt, this has been a useful endeavour, it unfortunately has evolved into a rigid
doctrine, leaving no space for anything else. The most extreme manifestation of this
dogma is the use of the term ‘theory of everything’ in particle physics. We will
provide an alternative conceptual template for a theory of everything, supported not
only by scientific examples, but also by everyday ones.

Biology evolved from chopping up individual animals in laboratories, to con-
sidering them in the context of other animals and varying environments. The
result is the theory of evolution of species. Similarly, our current (still very poor)
understanding of the human brain makes it clear that the human brain should not
be studied as something in isolation, but as something that fundamentally requires
interaction with other brains [30]. In contemporary audio equipment, music consists
of nothing but strings of Os and 1s. Instead, the entities that truly make up music are
pitch, sound, rhythm, chord progression, crescendo, and so on. And in particular,
music is not just a bag of these, since their intricate interaction is even more
important than these constituents themselves. The same is true for film, where it
isn’t even that clear what it is made up from, but it does include such things as
(easily replaceable) actors, decors, and cameras, which all are part of a soup stirred
by a director. But again, in contemporary video equipment, it is nothing but a string
of Os and 1s.

In fact, everything that goes on in pretty much all modern devices is nothing but
Os and 1s. While it was Turing’s brilliance to realise that this could in fact be done,
and provided a foundation for the theory of computability [38], this is in fact the only
place where the Os and 1s are truly meaningful, in the form of a Turing machine.
Elsewhere, it is nothing but a (universal) representation, with no conceptual qualities
regarding the subject matter.
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2 Formalising Togetherness 1: Not There Yet

So, how does one go about formalising the concept of togetherness? While we don’t
want an explicit description of the foo involved, we do need some kind of means
for identifying foo. Therefore, we simply give each foo a name, say A, B, C,....
Then, A ® B represents the togetherness of A and B. We also don’t want an explicit
description of A ® B, so how can we say anything about ® without explicitly
describing A, Band A ® B?

Well, rather than describing these systems themselves, we could describe their
relationships. For example, in a certain theory togetherness could obey the following
equation:

AQRQA=A

That is, togetherness of two copies of something is exactly the same as a single
copy, or in simpler terms, one is as good as two. For example, if one is in need of a
plumber to fix a pipe, one only needs one. The only thing a second plumber would
contribute is a bill for the time he wasted coming to your house. Obviously, this is
not the kind of togetherness that we are really interested in, given that this kind adds
nothing at all.

A tiny bit more interesting is the case that two is as good as three:

ARARA=AQA,
e.g. when something needs to be carried on a staircase, but there really is only space
for two people to be involved. Or, when A is female and A is male, and the goal is
reproduction, we have:
ARAQA=A®A
(ignoring testosterone-induced scuffles and the benefits of natural selection.)
We really won’t get very far in this manner. One way in which things can be
improved is by replacing equations by inequalities. For example, while
A=B
simply means that one of the two is redundant,
A<B

can mean that from A we can produce B, and

A®B=<C
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can mean that from A and B together we can produce C, and
ARC=B®C

can mean that in the presence of C from A we can produce B, i.e. that C is a catalyst.

What we have now is a so-called resource theory, that is, a theory which captures
how stuff we care about can be interconverted [19]. Resource theories allow for
quantitative analysis, for example, in terms of a conversion rate:

rA—B) :=supl" |A®..®A<B®...®B
n - _— - - _— -

So evidently we have some genuine substance now. !

3 Formalising Togetherness 2: That’s Better

But we can still do a lot better. What a resource theory fails to capture (on purpose,
in fact) is the actual process that converts one resource into another one. So let’s fix
that problem, and explicitly account for processes.

In terms of togetherness, this means that we bring the fun foo; and foo, can have
together explicitly in the picture. Let

f:A—>B

denote some process that transforms A into B. Then, given two such processes f
and f, we can also consider their togetherness:

f1®f:AI®A — B QB
Moreover, some processes can be sequentially chained:
gof:A—->B—C
We say ‘some’, since f has to produce B in order for
g:B—>C
to take place.
'In fact, resource theories are currently a very active area of research in the quantum information

and quantum foundations communities, e.g. the resource theories of entanglement [23], symmetry
[21], and athermality [7].
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Now, here one may end up in a bit of a mess if one isn’t clever. In particular, with
a bit of thinking one quickly realises that one wants some equations to be obeyed,
for example,

(i®L)R®AL =@ (28ff) (1

ho(gof)=(hog)of, 2

and a bit more sophisticated:

(g1 ®g)o(fi®f2) =(g10/1) ®(g20/2) 3)

There may even be some more equations that one wants to have, but which ones?
This turns out to be a very difficult problem. Too difficult in the light of our limited
existence in this world. The origin of this problem is that we treat ®, and also o, as
algebraic connectives, and that algebra has its roots in set theory. The larger-than-
life problem can be avoided in a manner that is as elegant as it is simple.

To state that things are together, we just write them down together:

A B
There really is no reason to adjoin the symbol ® between them. Now, this A and B

will play the role of an input or an output of processes transforming them. Therefore,
it will be useful to represent them by a wire:

Then, a process transforming A into B can be represented by a box:

Togetherness of processes now becomes
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and chaining processes becomes:

In particular, Egs. (1)—(3) become:

Hea - e

That is, all equations have become tautologies!”

4 Anti-Cartesian Togetherness
One important kind of processes are states:

%

These are depicted without any inputs, where ‘no wire’ can be read as ‘nothing’
(or ‘no-foo”).> The opposite notion is that of an effect, that is, a process without an

output

2 A more extensive discussion of this bit of magic can be found in [12-14].

3That we use triangles for these rather than boxes is inspired by the Dirac notation which is used
in quantum theory. Please consult [10, 13, 14] for a discussion.
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borrowing terminology from quantum theory.*
We can now identify those theories in which togetherness doesn’t yield anything
new. Life in such a world is pretty lonely. ..

Definition 4.1 A theory of togetherness is Cartesian if each state

L
VY

So Cartesianness means that all possible realisations of two foos can be achieved
by pairing realisations of the individual foos involved. In short, a whole can be
described in term of its parts, rendering togetherness a void concept. So very lonely
and indeed. . . But, wait a minute. Why is it then the case that so much of traditional
mathematics follows this Cartesian template, and that even category theory for a
long time has followed a strict Cartesian stance? Beats me. Seriously. .. beats me!

Anyway, an obvious consequence of this is that for those areas where togeth-
erness is a genuinely non-trivial concept, traditional mathematical structures aren’t
always that useful. That is maybe why social sciences don’t make much use of any
kind of modern pure mathematics.

And now for something completely different:

decomposes as follows:

Definition 4.2 A theory of togetherness is anti-Cartesian if for each A there exists
A*, a special state U and a special effect N,

A¥ |A
and %
A A*

which are such that the following equation holds:

“

The reason for ‘anti’ in the name of this kind of togetherness is the fact that when
a theory of togetherness is both cartesian and anti-Cartesian, then it is nothing but

4Examples of these include ‘tests’ [13].
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a theory of absolute death, i.e. it describes a world in which nothing ever happens.
Indeed, we have:

That is, the identity is a constant process, always outputting the state U,, indepen-
dently of what the input is. And if that isn’t weird enough, any arbitrary process f
does the same:

Therefore, any anti-Cartesian theory of togetherness that involves some aspect of
change cannot be Cartesian, and hence will have interesting stuff emerging from
togetherness.’

5 Example 1: Quantum Theory

Anti-Cartesian togetherness is a very particular alternative to Cartesian togetherness
(contra any theory that fails to be Cartesian). So one may wonder whether there are
any interesting examples. And yes, there are! One example is quantum entanglement
in quantum theory. That is in fact where the author’s interest in anti-Cartesian
togetherness started [1, 9, 10].° As shown in these papers, Eq.(4) pretty much
embodies the phenomenon of quantum teleportation [6]. The full-blown description
of quantum teleportation goes as follows [13, 15, 16]:

SMany more properties of anti-cartesian togetherness can be found in [13].
SIndependently, similar insights appeared in [3, 26].
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It is not important to fully understand the details here. What is important is to note
that the bit of this diagram corresponding to Eq. (4) is the bold wire which zig-zags
through it:

The thin wires and the boxes labelled U are related to the fact that quantum
theory is non-deterministic. By conditioning on particular measurement outcomes,
teleportation simplifies to [13]:
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Equality of the left-hand side and of the right-hand side follows directly from
Eq. (4). While in this picture we eliminated quantum non-determinism by condi-
tioning on a measurement outcome, there still is something very ‘quantum’ going
on here: Alice’s (conditioned) measurement is nothing like a passive observation,
but a highly non-trivial intervention that makes Alice’s state p appear at Bob’s side:

Let’s analyse more carefully what’s going on here by explicitly distinguishing
between the top layer and the bottom layer of this diagram:

The bottom part,

consists of the state p together with a special U-state, while the top part,

M |

includes the corresponding N-effect, as well as an output. By making the bottom
part and the top part interact, and, in particular, the U and the N, the state p ends up
at the output of the top part.

A more sophisticated variation on the same theme makes it much clearer what is
going on here. Using Eq. (4), the diagram:
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®
o where 0 7 =

N/ \/

The grey dot labeled 7 is some (at this point not important) unitary quantum
operation [13]. Let us again consider the bottom and top parts:

reduces to

The top part is a far more sophisticated measurement, consisting mainly of Ns.
Also, the bottom part is a lot more sophisticated, involving many Us. These now
cause a highly non-trivial interaction of the three states p, o’ and p”. Why we
have chosen this particular example will become clear in the next section. What
is important to note is that the overall state and overall effect have to be chosen in
a very particular way to create the desired interaction, similarly to an old-fashion
telephone switchboard that has to be connected in a very precise manner in order to
realise the right connection.

6 Example 2: Natural Language Meaning

Another example of anti-Cartesian togetherness is the manner in which word
meanings interact in natural language! Given that logic originated in natural
language when Aristotle analysed arguments involving ‘and’, ‘if... then’, ‘or’, etc.,
anti-Cartesianness can be conceived as some new kind of logic!” So what are U and
N in this context?

In order to understand what N is, we need to understand the mathematics of
grammar. The study of the mathematical structure of grammar has indicated that
the fundamental things making up sentences are not the words, but some atomic
grammatical types, such as the noun-type and the sentence-type [2, 4, 27]. The

7 A more detailed discussion is in [11].
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transitive verb-type is not an atomic grammatical type, but a composite made up
of two noun-types and one sentence-type. Hence, particularly interesting here is the
fact that atomic doesn’t really mean smallest. ..

On the other hand, just like in particle physics where we have particles and anti-
particles, the atomic types include types as well as anti-types. But unlike in particle
physics, there are two kinds of anti-types, namely left ones and right ones. This
makes language even more non-commutative than quantum theory!

All of this becomes much clearer when considering an example. Let n denote the
atomic noun-type and let ~'n and n~! be the corresponding anti-types. Let s denote
the atomic sentence-type. Then the non-atomic transitive verb-type is ~'n-s-n~!.
Intuitively, it is easy to understand why. Consider a transitive verb, like ‘hate’. Then,
simply saying ‘hate’ doesn’t convey any useful information, until, we also specify
‘who’ hates ‘whom’. That’s exactly the role of the anti-types: they specify that in
order to form a meaningful sentence, a noun is needed on the left, and a noun is
needed on the right:

Alice hates Bob
—_—— —— ——

n —lp.sn—! n

Then, n and ~'n cancel out, and so do n~! and n. What remains is s, confirming that
‘Alice hates Bob’ is a grammatically well-typed sentence. We can now depict the
cancelations as

CN O

n msn' n
and bingo, we have found N!

While the mathematics of sentence structure has been explored now for some 80
years, the fact that Ns can account for grammatical structure is merely a 15-year-old
idea [28]. So what are the Us? That evolves an even more recent story in which
we were involved and, in fact, for which we took inspiration from the story of the
previous section [8]. While Ns are about grammar, Us are about meaning.

The distributional paradigm for natural language meaning states that meaning
can be represented by vectors in a vector space [37]. Until recently, grammatical
structure was essentially ignored in doing so, and, in particular, there was no theory
for how to compute the meaning of a sentence given the meanings of its words. Our
new compositional distributional model of meaning of [17] does exactly that.®

In order to explain how this compositional distributional model of meaning
works, let’s get back to our example. Since we have grammatical types around,

8... and has meanwhile outperformed other attempts in several benchmark natural language

processing (NLP) tasks [22, 25].
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the meaning vectors should respect grammatical structure, that is, the vectors
representing compound types should themselves live in compound vector spaces.
So the string of vectors representing the word meanings of our example would look
as follows:

Now we want to put forward a new hypothesis:
Grammar is all about how word meanings interact.

Inspired by the previous section, this can be realised as follows:

AARNE
& &

where the N-s are now interpreted in exactly the same manner as in the previous
section. And here is a more sophisticated example:

where the r-labeled grey circle should now be conceived as negating meaning [17].
The grammatical structure is here:

(o) () ()

nSjO'O’_}jO’O’jTL

It is simply taken from a textbook such as [29]; the meanings of Alice, likes and Bob
can be automatically generated from some corpus, while the meanings of does and
not are just cleverly chosen to be [17, 32]:

e
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In the previous section we already saw that in this way we obtain:

Q)
& &

This indeed captures the intended meaning:
not (like (Alice, Bob))

where we can think of /ike as being a predicate and not as being itself.

So an interesting new aspect of the last example is that some of the meaning
vectors of words are simply cleverly chosen and, in particular, involve Us. Hence,
we genuinely exploit full-blown anti-Cartesianess. What anti-Cartesianess does here
is make sure that the transitive verb likes ‘receives’ Alice as its object. Note also
how not does pretty much the same as does, guiding word meanings through the
sentence, with, of course, one very important additional task: negating the sentence
meaning.

The cautious reader must of course have noticed that in the previous section
we used thick wires, while here we use thin ones. Also, the dots in the full-blown
description of quantum teleportation, which represent classical data operations, have
vanished in this section. Meanwhile, thick wires as well as the dots have acquired
a vary natural role in a more refined model of natural language meaning. The dots
allow us to cleverly choose the meanings of relative pronouns [34, 35]:

Thick wires (representing density matrices, rather than vectors [13]) allow us to
encode word ambiguity as mixedness [24, 31]. For example, the different meanings
of the word queen (a rock band, a person, a bee, a chess piece, or a drag queen).
Mixedness vanishes when providing a sufficient string of words that disambiguates

that meaning, e.g.,
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we need more disambiguating words, since queen can still refer to a person, a rock
band, or a drag queen.

while in the case of

7 Meaning is Everything

The distributional model of meaning [37] is very useful in that it allows for
automation, given a substantially large corpus of text. However, from a conceptual
point of view it is far from ideal. So one may ask the question:

What is meaning?

One may try to play around with a variety of mathematical structures. The method
introduced in [17] doesn’t really depend on how one models meaning, as long as we
stick to anti-Cartesian togetherness, or something sufficiently closely related [18].
It is an entertaining exercise to play around with the idea of what possibly could
be the ultimate mathematical structure that captures meaning in natural language,
until one realises that meaning in natural language truly encompasses everything.
Indeed, we use language to talk about everything, e.g. logic, life, biology, physics,
social behaviours, and politics, so the ultimate model of meaning should encompass
all of these fields. So, a theory of meaning in natural language is actually a theory of
everything! Can we make sense of the template introduced in the previous section
for meaning in natural language as one for ... everything?

Let us first investigate whether the general distributional paradigm can be
specialised to the variety of subject domains mentioned above. The manner in which
the distributional model works is that meanings are assigned relative to a fixed
chosen set of context words. The meaning vector of any word then arises by counting
the number of occurrences of that word in the close neighbourhood of each of the
context words within a large corpus of text. One can think of the context words as
attributes, and the relative frequencies as the relevance of an attribute for the word.
Simply by specialising the context words and the corpus, one can specialise to a
certain subject domain. For example, if one is interested in social behaviours then
the corpus could consist of social networking sites, and the context words could be
chosen accordingly. This pragmatic approach allows for quantitative analysis, just
like the compositional distributional model of [17].
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Here’s another example:

Here the meaning of “prey” could include specification of the available “prey” and
then the meaning of the sentence would capture the survival success of the lion,
given the nature of the available prey. All together, the resulting meaning is the result
of the interaction between a particular hunter, a particular prey, and the intricacies
of the hunting process, which may depend on the particular environment in which it
is taking place. It should be clear that again this situation is radically non-Cartesian.
Of course, if we now consider the example of quantum theory from two sections
ago, the analogues to grammatical types are system types, i.e. specifications of
the kinds (including quantitie) of systems that are involved. So it makes sense to
refine the grammatical types according to the subject domain. Just like nouns in
physics would involve specification of the kinds of systems involved, in biology, for
example, this could involve specification of species, population size, environment,
availability of food, etc. Correspondingly, the top part would not just be restricted
to grammatical interaction, but also include domain-specific interaction, just like in
the case of quantum theory. All together, what we obtain is the following picture:

as a (very rough) template for a theory of everything.

Acknowledgements The extrapolation of meaning beyond natural language was prompted by my
having to give a course in a workshop on Logics for Social Behaviour, organised by Alexander
Kurz and Alessandra Palmigiano at the Lorentz Center in Leiden. The referee provided useful
feedback—I learned a new word: ‘foo’.
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Some Recent Research Directions
in the Computably Enumerable Sets

Peter A. Cholak

Abstract As suggested by the title, this paper is a survey of recent results and
questions on the collection of computably enumerable sets under inclusion. This
is not a broad survey but one focused on the author’s and a few others’ current
research.
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There are many equivalent ways to define a computably enumerable or c.e.
set. The one that we prefer is the domain of a Turing machine or the set of balls
accepted by a Turing machine. Perhaps this definition is the main reason that this
paper is included in this volume and the corresponding talk in the “Incomputable”
conference. The c.e. sets are also the sets which are £¥ definable in arithmetic.

There is a computable or effective listing, {M,|e € w}, of all Turing machines.
This gives us a listing of all c.e. sets: x is in W, at stage s iff M, with input x accepts
by stage s. This enumeration of all c.e. sets is very dynamic. We can think of balls x
as flowing from one c.e. set into another. Since they are sets, we can partially order
them by inclusion, C, and consider them as models, £ = ({W,|e € w}, C). All sets
(not just c.e. sets) are partially ordered by Turing reducibility, where A <y B iff
there is a Turing machine that can compute A given an oracle for B.

Broadly, our goal is to study the structure £ and learn what we can about
the interplay between definability (in the language of inclusion C), the dynamic
properties of c.e. sets and their Turing degrees. A very rich relationship between
these three notions has been discovered over the years. We cannot hope to
completely cover this history in this short paper. But, we hope that we will cover
enough of it to show the reader that the interplay between these three notions on c.e.
sets is, and will continue to be, a very interesting subject of research.

We are assuming that the reader has a background in computability theory as
found in the first few chapters of [26]. All unknown notation also follows [26].
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1 Friedberg Splits

The first result in this vein was [15]: every noncomputable c.e. set has a Friedberg
split. Let us first understand the result and then explore why we feel it relates to the
interplay of definability, Turing degrees and dynamic properties of c.e. sets.

Definition 1.1 Ay L A; = A is a Friedberg split of A iff, for all W (all sets in this
paper are always c.e.), if W — A is not a c.e. set, neither are W — A;.

The following definition depends on the chosen enumeration of all c.e. sets. We
use the enumeration given to us in the second paragraph of this paper, x € W, iff
M, with input x accepts by stage s, but with the convention that if x € W,, then
e,x < s and, for all stages s, there is at most one pair e, x where x enters W, at stage
s. Some details on how we can effectively achieve this type of enumeration can be
found in [26, Exercise 1.3.11]. Moreover, when given a c.e. set, we are given the
index of this c.e. set in terms of our enumeration of all c.e. sets. At times we will
have to appeal to Kleene’s Recursion Theorem to get this index.

Definition 1.2 Forc.e.setsA = W, and B = W,,
A\B = {x|3s[x € W, s — W, )]}

andA \( B =A\BNB.

By the above definition, A\B is a c.e. set. A\B is the set of balls that enter A
before they enter B. If x € A\B then x may or may not enter B, and if x does enter B,
it only does so after x enters A (in terms of our enumeration). Since the intersection
of two c.e. sets is c.e, A \( Bis ac.e. set. A \| B is the c.e. set of balls x that first
enter A and then enter B (under the above enumeration).

Note that W\A = (W — A) LI (W N\ A) (U is the disjoint union). Since W\A is a
c.e.set, if W —A is not a c.e. set then W | A must be infinite. (This happens for all
enumerations.) Hence infinitely many balls from W must flow into A.

Lemma 1.3 (Friedberg) Assume A = Ao U Ay, and, for all e, if W, \( A is infinite
then both W, \( Ay and W, \( A are infinite. Then Ay U A, is a Friedberg split of
A. Moreover; if A is not computable, neither are Ao and Ay.

Proof Assumethat W—Aisnotac.e.setbutX = W—Apisac.e.set. X—A = W—A
isnotac.e. set. So X \( A is infinite and therefore X \| Ay is infinite. Contradiction.

If Ap is computable then X = Ay is a c.e. set and if A is not computable then
X — A cannot be a c.e. set. So use the same reasoning as above to show X \( A is
infinite for a contradiction. O

Friedberg more or less invented the priority method to split every c.e. set into two
disjoint c.e. sets while meeting the hypothesis of the lemma above. The main idea
of Friedberg’s construction is to add a ball x to one of Ag or A| when it enters A at
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stage s, but which set x enters is determined by priority. Let
if W, \( A is infinite then |W, \  A;| > k. Peik

We say x meets (P,;x) at stage s if |W, \( A;| < k by stage s — 1 and if |W, N\
A;| > k by stage s if we add x to A;. Find the highest (e, i, k) that x can meet and add
x to A; at stage s. It is not hard to show that all the (P, ;) are met.

It is clear that the existence of a Friedberg split is very dynamic. Let’s see why it
is also a definable property. But, first, we need to understand what we can say about
& with inclusion. We are not going to go through the details, but we can define
union, intersection, disjoint union, the empty set and the whole set. We can say that
a set is complemented. A very early result shows that if A and A are both c.e. then A
is computable. So it is definable if a c.e. set is computable. Inside every computable
set, we can repeat the construction of the halting set. So a c.e. set X is finite iff every
subset of X is computable. Hence W — A is a c.e. set iff there is a c.e. set X disjoint
from A such that WU A = X LI A. So saying that Ag LI A; = A is a Friedberg split
and A is not computable is definable.

Friedberg’s result answers a question of Myhill, “Is every non-recursive, re-
cursively enumerable set the union of two disjoint non-recursive, recursively
enumerable sets?” The question of Myhill was asked in print in the Journal of
Symbolic Logic in June 1956, Volume 21, Number 2 on page 215 in the “Problems”
section. This question was the eighth problem appearing in this section. The
question about the existence of maximal sets, also answered by Friedberg, was ninth.
This author does not know how many questions were asked or when this section was
dropped. Myhill also reviewed [15] for the AMS, but the review left no clues why
he asked the question in the first place.

The big question in computability theory in the 1950s was “Does there exist an
incomplete noncomputable c.e. set”? Kleene and Post [20] showed that there are
a pair of incomparable Turing degrees below 0'. We feel that after Kleene-Post,
Myhill’s question is very natural. So we can claim that the existence of a Friedberg
split for every c.e. set A fits into our theme, the interplay of definability, dynamic
properties and Turing degree on the c.e. sets.

2 Recent Work and Questions on Friedberg Splits

Given a c.e. set, one can uniformly find a Friedberg split. It is known that there are
other types of splits. One wonders if any of these non-Friedberg splits can be done
uniformly. It is also known that for some c.e. sets the only nontrivial splits (A =
Ap LUA; and the Ap and A; are not computable) are Friedberg. So one cannot hope
to get a uniform procedure which always provides a nontrivial non-Friedberg split
of every noncomputable c.e. set. But it would be nice to find a computable function
f(e) = (eo, e1) such that, for all e, if W, is noncomputable then W,, LI W, = W, is
a nontrivial split of W, and, for every c.e. set A, if A has a nontrivial non-Friedberg
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split and A = W, (so W, is any enumeration of A), then W,, U W,, = W, is a
nontrivial non-Friedberg split. So, if A has a nontrivial non-Friedberg split and W,
is any enumeration of A, f always gives out a nontrivial non-Friedberg split. In work
yet to appear, the author has shown that such a computable f cannot exist.

Let P be a property in £. We say that A is hemi-P iff there are c.e. sets B and C
such that A LI B = C and C has P. We can also define Friedberg-P iff there are c.e.
sets B and C such that A LI B = C is a Friedberg split and C has P. If P is definable
then hemi-P and Friedberg-P are also definable. One can get lots of mileage from
the hemi-P; see [10] and [11]. Most of these results are about properties P where
every nontrivial split of a set with P is Friedberg. We feel that one should be using
Friedberg-P rather than hemi-P. To that end, we ask the following:

Question 2.4 Is there a definable P such that the Friedberg splits are a proper
subclass of the nontrivial splits?

We feel that the Friedberg splits are very special and they should not be able to
always cover all the nontrivial splits of every definable property.

3 All Orbits Nice? No!

As we mentioned earlier, Friedberg also constructed a maximal set answering
another question of Myhill. A maximal set, M, is a c.e. set such that for every
superset X either X =* M (=* is equal modulo finite) or W =* w. Being maximal
is definable. Friedberg’s construction of a maximal set is very dynamic. Martin [23]
showed that all maximal sets must be high. A further result of [23] shows that a
c.e. degree is high iff it contains a maximal set. A remarkable result of [24] shows
that the maximal sets form an orbit, even an orbit under automorphisms computable
from 0" or A}-automorphisms.

The result of Soare gives rise to the question, are all orbits as nice as the orbit of
the maximal sets? We can go more into the formality of the question, but that was
dealt with already in another survey paper [6]. To tell if two c.e. sets, A and B, are
in the same orbit, it is enough to show if there is an automorphism @ of £ taking the
one to the other, ®(A) = B (we write this as A is automorphic to B). Hence it is |
to tell whether two sets are in the same orbit. The following theorem says that is the
best that we can do and hence not all orbits are as nice as the orbits of maximal sets.
The theorem has a number of interesting corollaries.

Theorem 3.1 (Cholak et al. [7]) There is a c.e. set A such that the index set {i :
W; ~ A} is Z{-complete.

Corollary 3.2 (Cholak et al. [7]) Not all orbits are elementarily definable; there
is no arithmetic description of all orbits of £.

Corollary 3.3 (Cholak et al. [7]) The Scott rank of € is a)ICK + 1.
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Theorem 3.4 (Cholak et al. [7]) For all finite « > 8, there is a properly A2 orbit.

These results were completely explored in the survey [6]. So we will focus on
some more recent work. In the work leading to the above theorems, Cholak and
Harrington also showed that:

Theorem 3.5 (Cholak and Harrington [4]) Two simple sets are automorphic iff
they are Ag automorphic. A set A is simple iff for every (c.e.) set B, if AN B is empty
then B is finite.

Recently Harrington improved this result to show:

Theorem 3.6 (Harrington 2012, Private Email) The complexity of the L, .
formula describing the orbit of any simple set is very low (close to 6).

That leads us to make the following conjecture:

Conjecture 3.7 We can build the above orbits in Theorem 3.4 to have complexity
close to « in terms of the £, ,, formula describing the orbit.

4 Complete Sets

Perhaps the biggest questions on the c.e. sets are the following:
Question 4.1 (Completeness) Which c.e. sets are automorphic to complete sets?

The Motivation for this question dates back to Post. Post was trying to use
properties of the complement of a c.e. set to show that the set was not complete.
In the structure &, all the sets in the same orbit have the same definable properties.

By Harrington and Robert [16—18], we know that not every c.e. set is automor-
phic to a complete set and, furthermore, there is a dichotomy between the “prompt”
sets and the “tardy” (nonprompt) sets, with the “prompt” sets being automorphic to
complete sets. We will explore this dichotomy in more detail, but more definitions
are needed:

Definition 4.2 X = (W, — W)U (Wo, — W, )U...(W,,,_, —W,,,) ift X is 2n-c.e.,
and X is 2n + 1-c.e. iff X = Y U W,, where Y is 2n-c.e.
Definition 4.3 Let X7 be the eth n-ce. set. A is almost prompt iff there is a

computable nondecreasing function p(s) such that, for all e and n, if X] =
A then (Fx)(Is)[x € X7, and x € Ap(y)].

Theorem 4.4 (Harrington and Soare [17]) Each almost prompt set is are auto-
morphic to some complete set.

Definition 4.5 D is 2-tardy iff for every computable nondecreasing function p(s)
there is an e such that X> = D and (Vx)(Vs)[if x € X2, then x & Djy(y)]
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Theorem 4.6 (Harrington and Soare [16]) There are £ definable properties Q(D)
and P(D, C) such that

(1) Q(D) implies that D is 2-tardy and hence the orbit of D does not contain a
complete set;

(2) for D, if there is a C such that P(D, C) and D is 2-tardy, then Q(D) (and D is
high).

The 2-tardy sets are not almost prompt and the fact they are not almost prompt
is witnessed by e = 2. It would be nice if the above theorem implied that being 2-
tardy was definable. But it says with an extra definable condition that being 2-tardy
is definable.

Harrington and Soare [16] ask if each 3-tardy set is computable by some 2-tardy
set. They also ask if all low, simple sets are almost prompt (this is the case if A is
low). With Gerdes and Lange, Cholak answered these negatively:

Theorem 4.7 (Cholak et al. [8]) There exists a properly 3-tardy B such that there
is no 2-tardy A such that B <t A. Moreover, B can be built below any prompt degree.

Theorem 4.8 (Cholak et al. [8]) There is a low,, simple 2-tardy set.

Moreover, with Gerdes and Lange, Cholak showed that there are definable
(first-order) properties Q,(A) such that if Q,(A), then A is n-tardy and there is a
properly n-tardy set A such that Q,,(A) holds. Thus the collection of all c.e. sets not
automorphic to a complete set breaks up into infinitely many orbits.

But, even with the work above, the main question about completeness and a few
others remain open. These open questions are of a more degree-theoretic flavor. The
main questions still open are:

Question 4.9 (Completeness) Which c.e. sets are automorphic to complete sets?

Question 4.10 (Cone Avoidgnce ) Given an incomplete c.e. degree d and an incom-
plete c.e. set A, is there an A automorphic to A such thatd €7 A?

It is unclear whether these questions have concrete answers. Thus the following
seems reasonable.

Question 4.11 Are these arithmetical questions?

Let us consider how we might approach these questions. One possible attempt
would be to modify the proof of Theorem 3.1 to add degree-theoretic concerns.
Since the coding comes from how A interacts with the sets disjoint from it, we
should have reasonable degree-theoretic control over A. The best we have been
able to do so far is alter Theorem 3.1 so that the set constructed has hemimaximal
degree and everything in its orbit also has hemimaximal degree. However, what is
open is whether the orbit of any set constructed via Theorem 3.1 must contain a
representative of every hemimaximal degree or only have hemimaximal degrees. If
the infinite join of hemimaximal degrees is hemimaximal then the degrees of the
sets in these orbits only contain the hemimaximal degrees. But, it is open whether
the infinite join of hemimaximal degrees is hemimaximal.
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5 Tardy Sets

As mentioned above, there are some recent results on n-tardy and very tardy sets (a
set is very tardy iff it is not almost prompt). But there are several open questions
related to this work. For example, is there a (first-order) property O such that if
Qoo(A) holds, then A is very tardy (or n-tardy, for some n)? Could we define Qoo
such that 0,(A) = Qo(A)? How do hemi-Q and Q3 compare? But the big open
questions here are the following:

Question 5.12 1s the set B constructed in Theorem 4.7 automorphic to a complete
set? If not, does Q3(B) hold?

It would be very interesting if both of the above questions have a negative answer.
Not a lot about the degree-theoretic properties of the n-tardies is known. The
main question here is whether Theorem 4.7 can be improved to » other than 2.

Question 5.13 For which n are there (n + 1)-tardies which are not computed by
n-tardies?

But there are many other approachable questions. For example, how do the
following sets of degrees compare:

* the hemimaximal degrees?

* the tardy degrees?

 for each n, {d : there is an n-tardy D such thatd <y D}?

e {d: there is a 2-tardy D such that Q(D) and d <y D}?

e {d:thereis an A € d which is not automorphic to a complete set}?

Does every almost prompt set compute a 3-tardy? Or a very tardy? Harrington and
Soare [18] show there is a maximal 2-tardy set. So there are 2-tardy sets which are
automorphic to complete sets. Is there a non-high, nonhemimaximal, 2-tardy set
which is automorphic to a complete set?

6 Cone Avoidance, Question 4.10

The above prompt vs. tardy dichotomy gives rise to a reasonable way to address
Question 4.10. An old result of [1] and, independently [17] says that every c.e.
set is automorphic to a high set. Hence, a positive answer to both the following
questions would answer the cone avoidance question but not the completeness
question. These questions seem reasonable as we know how to work with high
degrees and automorphisms; see [1],

Question 6.14 Let A be incomplete. If the orbit of A contains a set of high prompt
degree, must the orbit of A contain a set from all high prompt degrees?

Question 6.15 1f the orbit of A contains a set of high tardy degree, must the orbit of
A contain a set from all high tardy degrees?
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Similarly, we know how to work with prompt degrees and automorphisms; see
[5] and [17]. We should be able to combine the two. No one has yet explored how
to work with automorphisms and tardy degrees.

7 ‘D-Maximal Sets

In the above sections we have mentioned maximal and hemimaximal sets several
times. It turns out that maximal and hemimaximal sets are both D-maximal.

Definition 7.1 D(A) = {B : AW(B C AU Wand W N A = 0)} under inclusion.
Let Ep(a) be £ modulo D(A).

D(A) is the ideal of c.e. sets of the formA U D, where A CAand DN A = 0.

Definition 7.2 A is D-hhsimple iff Epa) is a £ Boolean algebra. A is D-maximal
iff Ep(a) is the trivial Boolean algebra iff for all c.e. sets B, there is a c.e. set D
disjoint from A such that either BC AUDorBUDUA = w.

Maximal sets and hemimaximal sets are D-maximal. Plus, there are many other
examples of D-maximal sets. In fact, with the exception of the creative sets, all
known elementary definable orbits are orbits of D-maximal sets. In the lead up to
Theorem 3.1, Cholak and Harrington were able to show:

Theorem 7.3 (Cholak and Harrington [3]) If A is D-hhsimple and A and A are
in the same orbit, then Epa) =0 Ep4)-

So it is an arithmetic question to ask whether the orbit of a D-maximal set
contains a complete set. But the question remains, does the orbit of every D-
maximal set contain a complete set? It was hoped that the structural properties of
D-maximal sets would be sufficient to allow us to answer this question.

Cholak et al. [9] have completed a classification of all D-maximal sets. The idea
is to look at how D(A) is generated. For example, for a hemimaximal set Ay, D(Ay)
is generated by A;, where Ag U A; is maximal. There are ten different ways that
D(A) can be generated. Seven were previously known and all these orbits contain
complete and incomplete sets. Work from Herrmann and Kummer [19] shows that
these seven types are not enough to provide a characterization of all D-maximal sets.
Cholak, Gerdes, and Lange construct three more types and show that these ten types
provide a characterization of all D-maximal sets. We have constructed three new
types of D-maximal sets; for example, a D-maximal set where D(A) is generated
by infinitely many not disjoint c.e sets. We show these three types, plus another, split
into infinitely many different orbits. We can build examples of these sets which are
incomplete or complete. But, it is open whether each such orbit contains a complete
set. So, the structural properties of D-maximal sets were not enough to determine if
each D-maximal set is automorphic to a complete set.
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It is possible that one could provide a similar characterization of the D-hhsimple
sets. One should fix a Eg Boolean algebra, B, and characterize the D-hhsimple sets,
A, where Epy = B. It would be surprising if, for some B, the characterization
would allow us to determine if every orbit of these sets contains a complete set.

8 Lowness

Following his result that the maximal sets form an orbit [25] showed that the low
sets resemble computable sets. A set A is low,, iff 0" =7 A®™. We know that
noncomputable low sets cannot have a computable set in their orbit, so the best
that Soare was able to do is the following:

Definition 8.1 L£(A) are the c.e. supersets of A under inclusion. F is the filter of
finite sets. £L*(A) is L(A) modulo F.

Theorem 8.2 (Soare [25]) If A is low then L*(A) ~ L*(0).

In 1990, Soare conjectured that this can be improved to low,. Since then there
have been a number of related results but this conjecture remains open. To move
forward, some definitions are needed:

Definition 8.3 A is semilow iff {i|[W; N A # @} is computable from 0. A is
semilow 5 iff {i|W; N Ais finite} <; 0”. A is semilow, iff {i|W; N A is finite} is
computable from 0”.

Semilow implies semilow 5 implies semilows, if A is low then A is semilow, and
low, implies semilow, (details can be found in [22] and [1]). Soare [25] actually
showed that if A is semilow then £*(A) &~ L*(0). Maass [22] improved this to
when A is semilow s.

In Maass proof, semilow; sness is used in two ways: A c.e. set, W, is well-
resided outside A iff W N A is infinite. Semilow, 5 makes determining which sets
are well-resided outside A a Hg question. The second use of semilow; 5 was to
capture finitely many elements of W N A. For that, Maass showed that semilow 5
implies the outer splitting property:

Definition 8.4 A has the outer splitting property iff there are computable functions
f,h such that, for all e, W, = Wy U Wy, Wpe) N A is finite, and if W, N A is
infinite then Wy N A is nonempty.

Cholak used these ideas to show the following:

Theorem 8.5 (Cholak [1]) IfA has the outer splitting property and A is semilow,,
then L*(A) ~ L*(9).

It is known that there is a low, set which does not have the outer splitting
property; see [12, Theorem 4.6]. So to prove that if A is low, then £*(A) ~ L*(¥)
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will require a different technique. However [21] showed that every low, set has
a maximal superset using the technique of true stages. Perhaps the true stages
technique can be used to show Soare’s conjecture.

Recently, there has been a result by Epstein.

Theorem 8.6 (Epstein [13] and [14]) There is a properly low, degree d such that
if A <r d then A is automorphic to a low set.

Epstein’s result shows that there is no collection of c.e. sets which is closed under
automorphisms and contains at least one set of every nonlow degree. Related results
were discussed in [2].

This theorem does have a nice yet unmentioned corollary: The collection of all
sets A such that A is semilow (these sets are called speedable) is not definable. By
Downey et al. [12, Theorem 4.5], every nonlow c.e. degree contains a set A such
that A is not semilow| 5 and hence not semilow. So there is such a set A in d. A is

automorphic to a low set A. Since A is low, A is semilow.
Esptein’s result leads us wonder if the above results can be improved as follows:

Conjecture 8.7 (Soare) Every semilow set is (effectively) automorphic to a low set.

Conjecture 8.8 (Cholak and Epstein) Every set A such that A has the outer splitting
property and A is semilow; is automorphic to a low, set.

Cholak and Epstein are currently working on a proof of the latter conjecture and
some related results. Hopefully, a draft will be available soon.
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Uncomputability and Physical Law

Seth Lloyd

Abstract This paper investigates the role that uncomputability plays in the laws of
physics. While uncomputability might seem like an abstract mathematical concept,
many questions in physics involve uncomputability. In particular, the form of
the energy spectrum of quantum systems capable of universal computation is
uncomputable: to answer whether a Hamiltonian system is gapped or gapless in
a particular sector requires one to solve the Halting problem. Finally, the problem of
determining the most concise expression of physical laws requires one to determine
the algorithmic complexity of those laws, and so, the answer to this problem is
uncomputable.

Computers can do so much that it’s easy to forget that they were invented for
what they could not do. In his 1937 paper, “On Computable Numbers, with an
Application to the Entscheidungsproblem,” Alan Turing defined the notion of a
universal digital computer (a Turing machine), which became the conceptual basis
for the contemporary electronic computer [1]. Turing’s goal was to show that there
were tasks that even the most powerful computing machine could not perform.
In particular, Turing showed that no Turing machine could solve the problem of
whether a given Turing machine would halt and give an output when programmed
with a given input. In creating a computational analogue to Godel’s incompleteness
theorem [2], Turing introduced the concept of uncomputability.

Although Turing’s machine was an abstract mathematical construct, his ideas
soon found implementation as physical devices [3]. At the end of the 1930s, Konrad
Zuse in Germany began building digital computers, first mechanical (the Z-1),
and then electrical (the Z-3), and Claude Shannon’s 1937 Master’s thesis showed
how digital computers could be constructed using electronic switching circuits
[4], a development that presaged the construction of the British code-breaking
electronic computer, the Colossus, and the American Mark I. Since computers
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are physical systems, Turing’s uncomputability results show that there are well-
formulated questions that can be asked about physical systems whose answers are
uncomputable.

That is, there are questions that we can ask about the physical behavior of the
universe whose answers are not resolvable by any finite computation. In this chapter,
I will investigate the question of how such questions permeate the fabric of physical
law. I will show that answers to some of the most basic questions concerning
physical law are in fact uncomputable. In particular, one of the primary driving
forces of science in general and of physics in particular is to create the most succinct
formulation of the natural laws. However, straightforward results from algorithmic
information theory imply that the most concise formulation of the fundamental laws
of nature is in fact uncomputable.

Many physical systems are capable of universal computation: indeed, it is
difficult to find an extended system with nonlinear interactions that is not capable
of universal computation given proper initial conditions and inputs [5-8]. For
such systems, there are always questions that one can ask about their physical
dynamics whose answers are uncomputable. One might hope that such questions are
sufficiently esoteric that they do not overlap with the usual questions that physicists
ask of their systems. I will show that even the answers to such basic questions
are often uncomputable. In particular, consider the commonly asked question of
whether a physical system has an energy gap—so that its energy spectrum is discrete
in the vicinity of its ground state—or whether it is gapless—so that the spectrum is
continuous. If the system is capable of universal computation, then the answer to
the question of whether it has an energy gap or not is uncomputable.

The uncomputability of the answers to common and basic questions of physics
might seem to be a serious hindrance to doing science. To the contrary, the
underlying uncomputability of physical law simply puts physicists in the same
position that mathematicians have occupied for some time: many quantities of
interest can be computed, but not all. For example, even though the most concise
formulation of the underlying laws of physics is uncomputable, short and elegant
formulations of physical laws certainly exist. Not knowing in advance whether or
not the quantity that one is trying to compute is uncomputable reflects the shared
experience of all scientists: one never knows when the path of one’s research will
become impassible. The underlying uncomputability of physical law simply adds
zest and danger to an already exciting quest.

1 The Halting Problem

We start by reviewing the origins of uncomputability. Like Goédel’s incompleteness
theorem [2], Turing’s halting problem has its origins in the paradoxes of self-
reference. Godel’s theorem can be thought of as a mathematization of the Cretan
liar paradox. The sixth-century BC Cretan philosopher Epimenides is said to have
declared that all Cretans are liars. (As Saint Paul says of the Cretans in his letter
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to Titus 1:12: ‘One of themselves, even a prophet of their own, said, The Cretans
are alway liars, evil beasts, slow bellies. This witness is true.”) More concisely, the
fourth-century BC Miletian philosopher Eubulides, stated the paradox as ‘A man
says, “What I am saying is a lie.”” The paradox arises because if the man is telling
the truth, then he is lying, while if he is lying, then he is telling the truth.

Potential resolutions of this paradox had been discussed for more than two
millenia by the time that Kurt Godel constructed his mathematical elaboration of
the paradox in 1931. Godel developed a method for assigning a natural number
or ‘Godel number’ to each well-formed statement or formula in a mathematical
theory or formal language. He then constructed theories that contained statements
that were versions of the liar paradox (‘this statement cannot be proved to be true’)
and used Godel numbering to prove that such a theory must be either inconsistent
(false statements can be proved to be true) or incomplete: there exist statements that
are true but that cannot be proved to be true within the theory.

Godel’s original incompleteness theorems were based on formal language theory.
Turing’s contribution was to re-express these theorems in terms of a mechanistic
theory of computation. The Turing machine is an abstract computing machine that
is based on how a mathematician calculates. Turing noted that mathematicians think,
write down formulae on sheets of paper, return to earlier sheets to look at and
potentially change the formulae there, and pick up new sheets of paper on which
to write. A Turing machine consists of a ‘head,” a system with a finite number of
discrete states that is analogues to the mathematician, and a ‘tape,” a set of squares
each of which can either be blank or contain one of finite number of symbols,
analogous to the mathematician’s sheets of paper. The tape originally contains a
finite number of non-blank squares, the program, which specify the computation to
be performed. The head is prepared in a special ‘start’ state and placed at a specified
square on the tape. Then as a function of the symbol on the square and of its own
internal state, the head can alter the symbol, change its own internal state, and move
to the square on the left or right. The machine starts out, and like a mathematician,
the head reads symbols, changes them, moves on to different squares/sheets of
paper, writes and erases symbols there, and moves on. The computation halts when
the head enters a special ‘stop’ state, at which point the tape contains the output
to the computation. If the head never enters the stop state, then computation never
halts.

Turing’s definition of an abstract computing machine is both simple and subtle.
It is simple because the components (head and squares of tape) are all discrete
and finite, and the computational dynamics are finitely specified. In fact, a Turing
machine whose head has only two states and whose squares have only three states
can be universal in the sense that it can simulate any other Turing machine. The
definition is subtle because the computation can potentially continue forever, so that
the number of squares of tape covered with symbols can increase without bound.
One of the simplest questions that one can ask about a Turing machine is whether the
machine, given a particular input, will ever halt and give an output, or whether it will
continue to compute forever. Turing showed that no Turing machine can compute
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the answer to this question for all Turing machines and for all inputs: the answer
to the question of whether a given Turing machine will halt on a given input is
uncomputable.

Like the proof of Godel’s incompleteness theorems, Turing’s proof of the halting
problem relies on the capacity of Turing machines for self-reference. Because of
their finite nature, one can construct a Godel numbering for the set of Turing
machines. Similarly, each input for a Turing machine can be mapped to a natural
number. Turing showed that a Turing machine that computes whether a generic
Turing machine halts given a particular input cannot exist. The self-referential part
of the proof consists of examining what happens when this putative Turing machine
evaluates what happens when a Turing machine is given its own description as input.
If such a Turing machine exists, then we can define another Turing machine that
halts only if it doesn’t halt, and fails to halt only if it halts, a computational analogue
to the Cretan liar paradox (Saint Paul: ‘damned slow-bellied Turing machines’).

The only assumption that led to this self-contradiction is the existence of a Turing
machine that calculates whether Turing machines halt or not. Accordingly, such
a Turing machine does not exist: the question of whether a Turing machine halts
or not given a particular input is uncomputable. This doesn’t mean that one can’t
compute some of the time whether Turing machines halt or not: indeed, you can
just let a particular Turing machine run, and see what happens. Sometimes it will
halt and sometimes it won’t. The fact that it hasn’t halted yet even after a very long
time makes it unlikely to halt, but it doesn’t mean that it won’t halt someday. To
paraphrase Abraham Lincoln, you can tell whether some Turing machines halt all
the time, and you can tell whether all Turing machines halt some of the time, but
you can’t tell whether all Turing machines halt all of the time.

2 The Halting Problem and the Energy Spectrum
of Physical Systems

At first it might seem that the halting problem, because of its abstract and
paradoxical nature, might find little application in the description of physical
systems. I will now show, to the contrary, that the halting problem arises in the
computation of basic features of many physical systems. The key point to keep in
mind is that even quite simple physical systems can be capable of universal digital
computation. For example, the Ising model is perhaps the simplest model of a set of
coupled spins, atoms, quantum dots, or general two-level quantum systems (qubits).
Arbitrary logical circuits can effectively be written into the ground state of the
inhomogeneous Ising model, showing that the Ising model is capable of universal
computation in the limit that the number of spins goes to infinity [7]. When time-
varying fields such as the electromagnetic field are added, the number of systems
capable of universal computation expands significantly: almost any set of interacting
quantum systems is capable of universal computation when subject to a global time-
varying field [8].



Uncomputability and Physical Law 99

The ubiquity of computing systems means that the answers to many physical
questions are in fact uncomputable. One of the most useful questions that one can
ask of a physical system is what are the possible values for the system’s energy,
i.e., what is the system’s spectrum. A system’s spectrum determines many if not
most of the features of the system’s dynamics and thermodynamics. In particular,
an important question to ask is whether a system’s spectrum is discrete, consisting
of well-separated values for the energy, or continuous.

For example, if there is a gap between the lowest or ‘ground state’ energy and
the next lowest or ‘first excited state’ energy, then the spectrum is discrete and the
system is said to possess an energy gap. By contrast, if the spectrum is continuous
in the vicinity of the ground state, then the system is said to be gapless. Gapped
and gapless systems exhibit significantly different dynamic and thermodynamic
behavior. In a gapped system, for example, the fundamental excitations or particles
are massive, while in a gapless system they are massless. In a gapped system, the
entropy goes to zero as the temperature goes to zero, while for a gapless system, the
entropy remains finite, leading to significantly different thermodynamic behavior in
the low temperature limit.

As will now be seen, if a physical system is capable of universal computation,
the answer to the question of whether a particular part of its spectrum is discrete
or continuous is uncomputable. In 1986, the Richard Feynman exhibited a sim-
ple quantum system whose whose dynamics encodes universal computation [9].
Feynman’s system consists of a set of two-level quantum systems (qubits) coupled
to a clock. The computation is encoded as a sequence of interactions between qubits.
Every time an interaction is performed, the clock ‘ticks’ or increments by 1. In
a computation that halts, the computer starts in the initial program state and then
explores a finite set of states. In a computation that doesn’t halt, the clock keeps
on ticking forever, and the computer explores an infinite set of states. In 1992,
I showed that this feature of Feynman’s quantum computer implied that halting
programs correspond to discrete sectors of the system’s energy spectrum, while
non-halting programs correspond to continuous sectors of the system’s spectrum
[10]. In particular, when the system has been programmed to perform a particular
computation, the question of whether its spectrum has a gap or not is equivalent to
the question of whether the computer halts or not.

More precisely, a non-halting computer whose clock keeps ticking forever
corresponds to a physical system that goes through a countably infinite sequence
of distinguishable states. Such a system by necessity has a continuum of energy
eigenstates. Qualitatively, the derivation of this continuum comes because the
energy eigenstates are essentially the Fourier transforms of the clock states. But
the Fourier transform of a function over an infinite discrete set (labels of different
clock states explored by the computation) is a function over a continuous, bounded
set (energy eigenvalues). So for a non-halting program, the spectrum is continuous.
Similarly, a halting computer that only explores a finite set of distinguishable states
has a discrete spectrum, because the Fourier transform of a function over a finite,
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discrete set (labels of the clock states) is also a function over a finite discrete set
(energy eigenvalues). So for a halting program, the spectrum is discrete. The reader
is referred to [10, 11] for the details of the derivation.

Although the derivation in [10] was given specifically for Feynman’s quantum
computer, the generic nature of the argument implies that the answer to the question
of whether any quantum system capable of universal computation is gapped or
gapless is generically uncomputable. If the computation never halts, then the system
goes through a countably infinite sequence of computational states and the spectrum
is continuous. If the computation halts, then the system goes through a finite
sequence of computational states and the spectrum is discrete. But since many if not
most infinite quantum systems that evolve according to nonlinear interactions are
capable of universal computation, this implies that uncomputability is ubiquitous in
physical law.

3 The Theory of Everything is Uncomputable

As just shown, relatively prosaic aspects of physical systems, such as whether a
system has an energy gap or not, are uncomputable. As will now be seen, grander
aspirations of physics are also uncomputable. In particular, one of the long-term
goals of elementary particle physics is to construct ‘the theory of everything’—the
most concise unified theoretical description of all the laws of physics, including
the interactions between elementary particles and gravitational interactions. But the
most concise description of any set of physical laws is in general uncomputable.

The reason stems from the theory of algorithmic information [12-14]. The
algorithmic information content of a string of bits is the length of the shortest
computer program that can produce that string as output. In other words, the
algorithmic information content of a bit string is the most concise description
of that string that can be written in a particular computer language. The idea of
algorithmic information was first defined by Solomonoff [12] in order to construct
a computational version of Ockham’s razor, which urges us to find the most
parsimonious explanation for a given phenomenon. (William of Ockham: Numquam
ponenda est pluralitas sine necessitate—plurality should never be posited without
necessity—and Frustra fit per plura quod potest fieri per pauciora—it is futile to do
with more things what can be done with fewer.) Kolmogorov [13] and Chaitin [14]
independently arrived at the concept of algorithmic information.

Algorithmic information is an elegant concept which makes precise the notion
of the most concise description. In aiming for a theory of everything, physicists are
trying to find the most concise description of the set of laws that govern our observed
universe. The problem is that this most concise description is uncomputable. The
uncomputability of algorithmic information stems from Berry’s paradox. Like all
the paradoxes discussed here, Berry’s paradox arises from the capacity for self-
reference.
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The English language can be used to specify numbers, e.g., ‘the smallest natural
number that can expressed as the sum of two distinct prime numbers.” Any natural
number can be defined in English, and amongst all English specifications for a given
number, there is some specification that has the smallest number of words. Berry’s
paradox can be expressed as the following phrase: ‘the smallest natural number that
requires more than twelve words to specify.” Does this phrase specify a number? If
it does, then that number can be specified in twelve words, in contradiction to the
statement that it cannot be specified in twelve words or less.

The theory of computation makes Berry’s paradox precise. The shortest descrip-
tion of a number is given by the shortest program on a given universal Turing
machine that produces that number as output. Suppose that algorithmic information
is computable. Then there is some program for the same Turing machine which,
given a number as input, outputs the length of the shortest program that produces
that number. Suppose that this program that computes algorithmic information
content has length £. Now look at the algorithmic version of Berry’s phrase:
‘The smallest number whose algorithmic information content is greater than £
plus a billion.” Does this phrase specify a number? If algorithmic information
is computable, then the answer is Yes. A program can compute that number
by going through all natural numbers in ascending order, and computing their
algorithmic information content. When the program reaches the smallest number
whose algorithmic information content is greater than £ plus a billion, it outputs
this number and halts. The length of this program is the length of subroutine that
computes algorithmic information content, i.e., £, plus the length of the additional
code needed to check whether the algorithmic information content of a number is
greater than £ plus a billion, and if not, increment the number and check again. But
the length of this additional code is far less than a billion symbols, and so the length
of the program to produce the number in the algorithmic version of Berry’s phrase
is far less than £ plus a billion. So the algorithmic information content of the number
in Berry’s phase is also less than £ plus a billion, in contradiction to the phrase itself.
Paradox!

As in the halting problem, the apparent paradox can be resolved by the concept
of uncomputability. The only assumption that went into the algorithmic version
of Berry’s argument was that algorithmic information content is computable. This
assumption lead to a contradiction. By the principle of reductio ad absurdum,
the only conclusion is that algorithmic information content is uncomputable. The
shortest description of a natural number or bit string cannot in general be computed.

The uncomputability of shortest descriptions holds for any bit string, including
the hypothetical bit string that describes the physical theory of everything. Physical
laws are mathematical specifications of the behavior of physical systems: they
provide formulae that tell how measurable quantities change over time. Such
quantities include the position and momentum of a particle falling under the force
of gravity, the strength of the electromagnetic field in the vicinity of a capacitor,
the state of an electron in a hydrogen atom, etc. Physical laws consist of equations
that govern the behavior of physical systems, and those equations in turn can be
expressed algorithmically.
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There is a subtlety here. Many physical laws describe the behavior of continuous
quantities. Algorithmic representations of the equations governing continuous
quantities necessarily involve a discretization: for example, using a finite number
of bits to represent floating-point variables. The concept of computability can be
extended to the computability of continuous quantities as well [15]. It is important
to verify that the number of bits needed to approximate continuous behavior to
a desired degree of accuracy remains finite. For the known laws of physics, such
discrete approximations of continuous behavior seem to be adequate in the regimes
to which those laws apply. The places where discrete approximation to continuous
laws break down—e.g. the singularities in the center of black holes—are also the
places where the laws themselves are thought to break down.

The uncomputability of algorithmic information content implies that the most
concise expression of Maxwell’s equations or the standard model for elementary
particles is uncomputable. Since Maxwell’s equations are already concise—they
are frequently seen on the back of a tee shirt—few scientists are working on making
them even more terse. (Note, however, that terser the expression of Maxwell’s equa-
tions, the more difficult they are to ‘unpack’: in all fairness, to assess the algorithmic
information content of a physical law, one should also count the length of the extra
computer code needed to calculate the predictions of Maxwell’s equations.) In cases
where the underlying physical law that characterizes some phenomenon is unknown,
however, as is currently the case for high T superconductivity, uncomputability can
be a thorny problem: finding even one concise theory, let alone the most concise one,
could be uncomputable.

Uncomputability afflicts all sciences, not just physics. A simplified but useful
picture of the goal of scientific research is that scientists obtain large amounts of
data about the world via observation and experiment, and then try to find regularities
and patterns in that data. But a regularity or pattern is nothing more or less than a
method for compressing the data: if a particular pattern shows up in many places in
a data set, then we can create a compressed version of the data by describing the
pattern only once, and then specifying the different places that the pattern shows
up. The most compressed version of the data is in some sense the ultimate scientific
description. There is a sense in which the goal of all science is finding theories that
provide ever more concise descriptions of data.

4 Computational Complexity and Physical Law

What makes a good physical law? Being concise and easily expressed is only one
criterion. A second criterion is that the predictions of the law be readily evaluated.
If a law is concisely expressed but its predictions can only be revealed by a
computation that takes the age of the universe, then the law is not very useful.
Phrased in the language of computational complexity, if a physical law is expressed
in terms of equations that predict the future given a description of the past, ideally
those predictions can be obtained in time polynomial in the description of the past
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state. For example, the laws of classical mechanics and field theory are described
in terms of ordinary and partial differential equations that are readily encoded and
evaluated on a digital computer.

There is no guarantee that easily evaluated laws exist for all phenomena.
For example, no classical computer algorithm currently exists that can predict
the future behavior of a complex quantum system. The obstacles to efficient
classical simulation of quantum systems are the counterintuitive aspects of quantum
mechanics, such as quantum superposition and entanglement, which evidently
require exponential amounts of memory space to represent on a classical computer.
It seems to be as hard for classical computers to simulate quantum weirdness as it is
for human beings to comprehend it.

Embryonic quantum computers exist, however, and are capable of simulating
complex quantum systems in principle [16]. Indeed, the largest-scale quantum
computations to date have been performed by specialized quantum information
processors that simulate different aspects of quantum systems. In [17] Cory
simulated the propagation of spin waves in a sample of O(10'®) fluorine spins.
More recently, the D-Wave adiabatic quantum computer has found the ground state
of Ising models using 512 superconducting quantum bits [18]. If we expand the
set of computational devices that we use to define computational complexity, then
the consequences of the known laws of physics can in principle be elaborated in
polynomical time on classical and quantum computers.

If we restrict our attention to laws whose consequences can be evaluated in
polynomial time, then the problem of finding concise expressions of physical laws is
no longer uncomputable. The obstacle to finding the shortest program that produces
a particular data string is essentially the halting problem. If we could tell that a
program never halts, then we could find the shortest program to produce the data by
going through all potential programs in ascending order, eliminating as we go along
all non-halting programs from the set of programs that could potentially reproduce
the data. That is, a halting oracle would allow us to find the shortest program in
finite time.

In the case where we restrict our attention to programs that halt in time bounded
by some polynomial in the length of the inputs, by contrast, if the program
hasn’t halted and reproduced the data by the prescribed time, we eliminate it
from consideration and move on to the next potential program. This construction
shows that the problem of finding the shortest easily evaluated program is in the
computational complexity class NP: one can check in polynomial time whether a
given program will reproduce the data. Indeed, the problem of finding the shortest
program to produce the data is NP-complete: it is a variant of the NP-complete
problem of finding if there is any program within a specified subset of programs
that gives a particular output. If we restrict our attention to physical laws whose
predictions can be readily evaluated, then the problem of finding the most concise
law to explain a particular data set is no longer uncomputable; it is merely NP
complete. Probably exponentially hard is better than probably impossible, however.
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Similarly, in the case of evaluating the energy gap of a physical system capable
of computation, if the system runs for time 7, then the gap is no greater than 1/n?.
Accordingly, the problem of finding out whether the gap is smaller than some bound
€ is also NP-hard.

5 Discussion

This chapter reviewed how uncomputability impacts the laws of physics. Although
uncomputability as in the halting problem arises from seemingly esoteric logical
paradoxes, I showed that common and basic questions in physics have answers that
are uncomputable. Many physical systems are capable of universal computation;
to solve the question of whether such a system has a discrete or continuous
spectrum in a particular regime, or whether it is gapped or gapless, requires one
to solve the halting problem. At a more general level, one can think of all the
scientific laws as providing concise, easily unpacked descriptions of observational
and experimental data. The problem of finding the most concise description of a
data set is uncomputable in general, and the problem of finding the most concise
description whose predictions are easily evaluated is NP-complete. Science is hard,
and sometimes impossible. But that doesn’t mean we shouldn’t do it.
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Algorithmic Economics: Incomputability,
Undecidability and Unsolvability in Economics

K. Vela Velupillai

Dedicated to Martin Davis for introducing me to ‘the pleasures
of the illicit’. Preface to Davis [6].

Abstract Economic theory, like any theoretical subject where formalised deduction
is routinely practised, is subject to recursive, or algorithmic, incomputabilities,
undecidabilities and unsolvabilities. Some examples from core areas of economic
theory, micro, macro and game theory are discussed in this paper. Some background
of the nature of the problems that arise in economic decision-theoretic contexts is
given before the presentation of results, albeit largely in a sketchy form.

Being unfamiliar with what counts as a problem in economics I am astounded that
decidability and other foundational problems should turn up here. Quantum mechanics is
pretty OK; there are problems, true, but there are also lots of very precise predictions. I
have not noticed anyone in the field went into the foundations of mathematics to get things
going. Why do these matters turn up in economics?

Paul Feyerabend, Letter to the author, ‘02/04/92’ (4th February, 1992); italics added.

1 By Way of a Prologue on Theses'

The last of the original three [i.e., A-definability, General Recursiveness and Turing
Machines] equivalent exact definitions of effective calculability is computability by a Turing
Machine. I assume my readers are familiar with the concept of a Turing Machine .. ..

In a conversation at San Juan on October 31, 1979, [Martin] Davis expressed to me
the opinion that the equivalence between Godel’s definition of general recursiveness and

The paradigmatic example of which is, of course, the Church-Turing Thesis, but there are
two others I should mention in this prologue: Brattka’s Thesis [4] and what I have called the
Kolmogorov-Chaitin-Solomonoff Thesis [41]. 1 should have added the name of Per Martin-L&f to
the latter trio.
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mine ... and my normal form theorem, were considerations that combined with Turing’s
arguments to convince Godel of the Church-Turing thesis.
Kleene [17], pp. 61-62; italics added.

‘Why do these matters’ of (in)computability, (un)decidability and (un)solvability
‘turn up’ in economics, as Paul Feyerabend posed it in his letter to me.” I think,
however, Feyerabend is not quite correct about ‘not... anyone in the field [of
quantum mechanics going] into the foundations of mathematics to get things going.’
Svozil [32], with copious references to the pre-1992 results, Finkelstein [11] and
Penrose [20, 21] are obvious counterexamples to this view. I would like to add,
further, notwithstanding the general focus of this paper, ‘there are lots of very
precise predictions’ in economics, even if not founded on orthodox economic theory.

Today, or 2 decades later, if it is possible to give a guarded, more than even
unequivocal, answer, it is because the concepts and foundations of economic theory
have increasingly been given a computational basis, founded on computability
theory, constructive mathematics and even intuitionistic, logic-based smooth in-
finitesimal analysis (thus dispensing with any use of the tertium non datur in
proofs involving uncountable infinities). Even classic economic problems invoke
computer aided proofs—for example, in the travelling salesperson’s problem or in
the use of the Poincaré-Bendixson theorem for proving the existence of fluctuations
in macrodynamical models, algorithmic procedures are routinely invoked. Even
in the domain of classical game theory, as in Euwe’s [9] demonstration of the
‘existence’ of a min-max solution to a two-person game and Rabin’s pioneering
work on arithmetical games [23], foundational issues of a mathematical nature arise
in economic settings.

In other writings, for example, Velupillai [43], p. 34, I am on record as saying:

The three ‘crown jewels’ of the mathematical economics of the second half of the twentieth
century are undoubtedly the proof of the existence of a Walrasian Exchange Equilibrium and
the mathematically rigorous demonstration of the validity of the two fundamental theorems
of welfare economics.

Unfortunately, in orthodox mathematical economics these important theorems
are proved non-computationally.? For example, in Brainard and Scarf [3], p. 58, we
read:

But we know of no argument for the existence of equilibrium prices in this restricted model
that does not require the full use of Brouwer’s fixed point theorem. Of course fixed point
theorems were not available to Fisher. .. .

This claim was made as late as only about 10 years ago, despite Smale’s
important point made 30 years before Brained and Scarf (op. cit.) in Smale [29],

2Cited above, on the title page.

3By ‘computational’ I mean either computable or constructable, i.e., algorithmic; hence, ‘non-
computationally’ is supposed to mean ‘non-algorithmically’. The above statement applies also to
all standard results of orthodox game theory, despite occasional assertions to the contrary. Euwe,
as mentioned above, is the exception.
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p- 290 (italics added):

The existence theory of the static approach is deeply rooted to the use of mathematics of
fixed point theory. Thus one step in the liberation from the static point of view would be to
use a mathematics of a different kind.

I think it is fair to say that for the main existence problem in the theory of economic
equilibria, one can now bypass the fixed point approach and attack the equations directly to
give the existence of solutions, with a simpler kind of mathematics and even mathematics
with dynamic and algorithmic overtones.

As for the two fundamental theorems of welfare economics non-constructive
and non-algorithmic versions of the Hahn-Banach Theorem(s) are invoked in the
proofs (particularly of the more important second fundamental theorem of welfare
economics).

I need to add here* that very little work in economics in the mathematical mode
is done with models of computable reals; nor are—to the best of my knowledge—
algorithms in economics specified in terms of interval analysis. Of course, neither
smooth infinitesimal analysis nor constructive formalisms are routine in economics
(Bridges [5] is a noble exception), despite claims to the contrary (e.g., [18]).

In this paper there is an attempt to use a ‘simpler kind of mathematics and
even with dynamic and algorithmic overtones’, even if the results appear to be
‘negative’ solutions; it must be remembered that there are obvious positive aspects
to negative solutions—one doesn’t attempt to analyse the impossible, or construct
the infeasible, and so on (hence the importance of theses, which is, after all, what
the second ‘law’> of thermodynamics is).

Computable General Equilibrium® theory, computational economics, agent-
based computational models, and algorithmic game theory are some of the frontier
topics in core areas of economic theory and applied economics. There is even a
journal with the title Computational Economics.”

4T am greatly indebted to an anonymous referee for raising the relevance of this point here. I
have dealt with the issue in many of my writings on algorithmic economics in the last decade or
so. The trouble in economics is that reals or approximations are used in blind and ad hoc ways.
Even the approximations involved in either discretising continuous dynamical systems—however
elementary, though nonlinear—or computing approximate Nash or Arrow-Debreu-Walrasian
equilibria are done carelessly.

STt must be remembered that Emil Post referred to ‘theses’ as ‘natural laws’.

5The foundations on which the much vaunted recursive competitive equilibrium (RCE) is based,
from which, via, real business cycle (RBC) theory, the frontier, fashionable models of dynamic
stochastic general equilibrium (DSGE) framework is carved out. None of these models are
computable or recursive in any of the formal senses of computability theory, or in any version
of constructive mathematics. In Velupillai [44] T discuss the non-algorithmic aspects of these
problems in greater detail, from either a computable or a constructive point of view.

7One of whose associate editors once wrote me—when inviting me to organize a session in the
annual event sponsored by the journal—that ‘we compute the uncomputable’. He was, with some
seriousness, referring to the fact that the overwhelming majority of computational economists
are blissfully ignorant of the computability theory underpinnings of whatever it is they compute.
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However, very few in economics seem to pay attention to the notion of a thesis—
such as the Church-Turing Thesis—and therefore do not pay sufficient attention
to the importance of tying a concept developed by human intuition to a formal
notion that is claimed to encapsulate that intuitive notion exactly.® That the Church-
Turing Thesis is a result of this kind of identification, between the intuitive notion
of effective calculability and the formal notions of—independently developed—
general recursiveness, A-definability and Turing Machines is not fully appreciated
by the mathematical economics community.

As a result of this particular kind of disinterest, economic theory in its math-
ematical mode forces economic concepts to conform to independently developed
mathematical notions, such as continuity, compactness, and so on. It is—to the best
of my knowledge—never acknowledged that there are intuitive notions of continuity
which cannot be encapsulated by, for example, the concept of a topological space
([131, p. 73).

A thesis is not a theorem. The Church-Turing Thesis came about, as suggested
above, as a result of trying to find a formal encapsulation of the intuitive notion
of effective calculability. What is the difference between a Thesis and a Theorem?
Perhaps one illuminating way to try to answer this question is to reflect on
‘an imaginary interview between a modern mathematician [Professor X] and...
Descartes’, as devised by Rosser [24], pp. 2-3, to illustrate the importance of the
open-ended nature of any claimed exact equivalence between an intuitive concept
and a formal notion:

... Descartes raised one difficulty which Professor X° had not foreseen. Descartes put it as
follows:

‘I have here an important concept which I call continuity. At present my notion of it is
rather vague, not sufficiently vague that I cannot decide which curves are continuous, but
too vague to permit careful proofs. You are proposing a precise definition'® of this same
notion. However, since my definition is too vague to be the basis for a careful proof, how
are we going to verify that my vague definition and your precise definition are definitions
of the same thing?

If by ‘verify’ Descartes meant ‘prove,” it obviously could not be done, since his
definition was too vague for proof. If by ‘verify’ Descartes meant ‘decide,’ then it might be
done, since his definition was not too vague for purposes of coming to decisions. Actually,
Descartes and Professor X did finally decide that the two definitions were equivalent, and
arrived at the decision as follows. Descartes had drawn a large number of curves and
classified them into continuous and discontinuous, using his vague definition of continuity.
He and Professor X checked through all these curves and classified them into continuous

Nor are they seriously interested in the link between dynamical systems, numerical analysis—
sometimes referred to as ‘scientific computing’—and computability theory (cf. [31]).

81 use this word in the precise sense in which it is invoked by Kleene, in the quote above.

Rosser’s explanation for this particular ‘christening’ of the ‘modern mathematician’ was
(ibid, p. 1):

[I]n the classic tradition of mathematics we shall refer to him as Professor X.

10The ‘proposal’ by Professor X was the familiar ‘e-8* definition of continuity.
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and discontinuous using the €-8 definition of continuity. Both definitions gave the same
classification. As these were all the interesting curves that either of them had been able to
think of, the evidence seemed ‘conclusive’ that the two definitions were equivalent.

How did they come to this conclusion? By comparing the classifications into
continuous and discontinuous all those ‘interesting curves’ both of them could
‘think of’, using their own respective definitions—the intuitive and the (so-called)
precise—and finding they resulted in identical characterisations. Thus, ‘the evidence
seemed “conclusive” that the two definitions were equivalent’ (ibid, p. 3). The
evidence for equivalence can only ‘seem’ conclusive.

Any and every computation that is implementable by a Turing Machine answers
all such questions of the ‘equivalence’ between ‘intuitive’ notions of effective
calculability and formal definitions of computability unambiguously: every model
of computation thus far formally defined (going beyond the triple noted by
Kleene, above)—Turing Machines, Post’s Machine, Church’s A-Calculus, Gen-
eral Recursiveness, the Shepherdson-Sturgis Register Machines, etc.,—is formally
equivalent to any other.!" But this kind of categorical assertion requires me to
assume a framework in which the Church-Turing Thesis is assumed. This is not
so, for example, in Brouwerian constructive mathematics, where, nevertheless, all
functions are continuous; ditto for smooth infinitesimal analysis, which is founded
upon a kind of intuitionistic logic.

As summarised by the classic and original definition of this concept by Kleene
[16], pp. 300-301:

* Any general recursive function (predicate) is effectively calculable.

» Every effectively calculable function (effectively decidable predicate) is general
recursive.

e The Church-Turing Thesis is also implicit in the conception of a computing
machine formulated by Turing and Post.

And Kleene went on (ibid, pp. 317-318; italics added):

Since our original notion of effective calculability of a function (or of effective decidability
of a predicate) is a somewhat vague intuitive one, the thesis cannot be proved.

The intuitive notion however is real, in that it vouchsafes as effectively calculable many
particular functions, . ..and on the other hand enables us to recognize that our knowledge
about many other functions is insufficient to place them in the category of effectively
calculable functions."

Tt is, of course, this that was stressed by Godel when he finally accepted the content of the
Church-Turing Thesis ([14], p. 84; italics added):

It seems to me that [the] importance [of Turing’s computability] is largely due to the fact
that with this concept one has for the first time succeeded in giving an absolute definition
of an interesting epistemological notion, i.e., one not depending on the formalism chosen.

121t is, surely, the method adopted by Ramanujan, a further step down the line of mathematical
reasoning:
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Once economic theoretical concepts are underpinned by computability or con-
structive theoretical formalisations, and once computation is itself considered on
a reasonably equivalent footing with traditional analytical methods, it is inevitable
that decidability,'? computability and solvability issues—almost all in a recursive
sense—will rise to the forefront.

The computable approach to the mathematisation of economics enables us to
recognize that our knowledge about relevant functions is insufficient to place them
in the category of effectively calculable functions. This ‘insufficiency’ and its
formal ‘recognition’ is what enables one to derive undecidable, incomputable and
unsolvable problems in economics—but also to find ways to decide the undecidable,
compute the incomputable and solve the unsolvable.

2 A Menu of Undecidable, Uncomputable and Unsolvable
Problems in Economics

Indeed virtually any ‘interesting’ question about dynamical systems is — in general —
undecidable.

This does not imply that it cannot be answered for a specific system of interest: . . . [I]t
does demonstrate the absence of any general formal technique.

Stewart [30], p. 664; italics added.

2.1 The Undecidability of the Excess Demand Function

On 21st July 1986, Arrow [1] wrote as follows to Alain Lewis (Arrow Papers, Box
23; italics added):

[Tlhe claim the excess demands are not computable is a much profounder question for
economics than the claim that equilibria are not computable. The former challenges
economic theory itself; if we assume that human beings have calculating capacities not
exceeding those of Turing machines, then the non-computability of optimal demands is a
serious challenge to the theory that individuals choose demands optimally.

[T]f a significant piece of reasoning occurred somewhere, and the total mixture of evidence
and intuition gave [Ramanujan] certainty, he looked no further.
Hardy [15], p. 147, italics in the original.

3The ‘duality’ between effective calculability—i.e., computability—and effective undecidability,
made explicit by the Church-Turing Thesis is described with characteristic and concise elegance
by Rézsa Péter ([22], p. 254; italics in the original):

One of the most important applications of the [Church-Turing] thesis, making precise the
concept of effectivity, is the proof of the effective undecidability of certain problems.
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That “the excess demands are not computable”—in the dual, undecidable, form
suggested by Rézsa Péter (op. cit.)—can be shown using one of Turing’s enduring
results—the Unsolvability of the Halting Problem for Turing Machines.'* On the
other hand, it can also be proved without appealing to this result (although the phrase
‘not exceeding those of Turing machines’ is not unambiguous).

To prove that the excess demand functions are effectively undecidable, it seems
easiest to start from one half of the celebrated Uzawa Equivalence Theorem [40].
This half of the theorem shows that the Walrasian Equilibrium Existence Theorem
(WEET) implies the Brouwer fix point theorem, and the finesse in the proof is
to show the feasibility of devising a continuous excess demand function, X(p),
satisfying Walras’ Law (and homogeneity) from an arbitrary continuous function,
say f(.): S — S, such that the equilibrium price vector implied by X(p) is also the
fix point for f(.), from which it is ‘constructed’. The key step in proceeding from a
given, arbitrary f(.): S — S to an excess demand function X(p) is the definition of an
appropriate scalar:

i=1

Pifi[ P :|
27 3 _p-f(p)

n(p) = n 2 (H
) Ipl
Z Pi
i=1
where:
Mp) =) pi )
i=1
From (1) and (2), the following excess demand function, X(p), is defined:
xi(p) =fi ( P ) —pin(p) 3)
Mp)

14The anonymous referee has pointed out, most perceptively, that “there are many ‘specific’ Turing
machines for which the associated Halting problem ‘is’ [algorithmically] decidable.” Absolutely
true—a result known for at least the past 4 or 5 decades. It is fairly ‘easy’ to establish criteria
for the solvability of the Halting problem, thereby also showing that the relevant Turing Machine
is not universal. For simplicity, in the above discussion I shall work only with Turing Machines
that do not satisfy any of the known criteria for the ‘solvability of the Halting problem.’ I have to
add two caveats to this in the context of the problem of the computability of the excess demand
function. First of all, the claims in orthodox theory for the validity of the excess demand function
are ‘universal’, essentially, that one is working with Universal Turing Machines. Secondly, the
kinds of functions that should be used as the excess demand function should be constructive or, at
least, of the smooth infinitesimal type.
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i.e.,

X(p) =f(p)— n(pp 4

It is simple to show that (3) [or (4)] satisfies:

(i) X(p) is continuous for all prices, p € S;
(i) X(p) is homogeneous of degree 0;
(iii) p*X(p)=0, Vp €8S, i.e., Walras’ Law holds:

Ypixi(p) =0, VpeS&Vi=1...n 5)

Hence, 3p" s.t. X(p*) <0 (with equality unless p* = 0). Elementary logic and
economics then imply that f(p*) =p*. I claim that the procedure that leads to the
definition of (3) [or, equivalently, (4)] to determine p* is provably undecidable.
In other words, the crucial scalar in (1) cannot be defined recursion theoretically
to effectivize a sequence of projections that would ensure convergence to the
equilibrium price vector.

Theorem 1 X(p*), as defined in (3) [or (4)] above, is undecidable, i.e., cannot be
determined algorithmically.

Proof Suppose, contrariwise, there is an algorithm which, given an arbitrary f{(.):
S — S, determines X(p*). This means, therefore, in view of (i)—(iii) above, that the
given algorithm determines the equilibrium p* implied by WEET. In other words,
given the arbitrary initial conditions p €S and f(.): § — S, the assumption of the
existence of an algorithm to determine X(p") implies that its halting configurations
are decidable. But this violates the undecidability of the Halting Problem
for Turing Machines. Hence, the assumption that there exists an algorithm to
determine—i.e., to construct—X( p*) is untenable.

Remark 1 Alas, the proof is uncompromisingly non-constructive—i.e., the propo-
sition is itself established by means of appeals to noneffective methods. This
is, I believe, an accurate reflection of a perceptive observation made by Davis,
Matiyasevic and Robinson [8], p. 340:

[TThese [reductio ad absurdum and other noneffective methods] may well be the best
available to us because universal methods for giving all solutions do not exist.

This is a strengthening of the point made by Stewart (op.cit) on the absence
of ‘general formal techniques’, that to find all solutions to any given problem
(or any solution to all given problems of a given type) leads to undecidabilities,
incompatibilities or unsolvabilities. Modesty and humility when posing solvable
problems, decidable issues and computable entities are virtues.
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2.2 Uncomputability of Rational Expectations Equilibria

There are two crucial aspects to the notion of rational expectations equilibrium
(henceforth, REE): an individual optimization problem, subject to perceived con-
straints, and a system-wide, autonomous set of constraints imposing consistency
across the collection of the perceived constraints of the individuals. The latter would
be, in a most general sense, the accounting constraint, generated autonomously, by
the logic of the macroeconomic system. In a representative agent framework the
determination of REESs entails the solution of a general fix point problem. Suppose
the representative agent’s perceived law of motion of the macroeconomic system
(as a function of state variables and exogenous ‘disturbances’) as a whole is given
by H."

The system-wide autonomous set of constraints, implied, partially at least, by the
optimal decisions based on perceived constraints by the agents, on the other hand,
implies an actual law of motion given by, say, H. The search for fixed points of a
mapping, T, linking the individually perceived macroeconomic law of motion, H,
and the actual law of motion, HY, is assumed to be given by a general functional
relationship subject to the standard mathematical assumptions:

H’ = T(H). (6)
Thus, the fixed-points of H of T,ina space of functions, determine REES:
H* =T (H"). )

Suppose T: H — H is arecursive operator (or a recursive program I"). Then there
is a computable function f; that is a least fixed point of T:

T =f.- 8)
If T(g) =g. thenf, C g. )

This result can be used directly to show that there is a (recursive) program that, under
any input, outputs exactly itself. It is this program that acts as the relevant reaction
or response function, 7T, for an economy in REE. However, finding this particular
recursive program by specifying a dynamical system leads to the noneffectivity
of REE in a dynamic context.'® Hence, the need for learning processes to find

I5Readers familiar with the literature will recognise that the notation H reflects the fact that, in the
underlying optimisation problem, a Hamiltonian function has to be formed.

16Proving the noncomputability of a static REE is as trivial as proving the uncomputability of a
Walrasian or a Nash equilibrium.
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this program unless the theorem is utilized in its constructive version. Thus, the
uncomputability of REE.

Theorem 2 No dynamical system can effectively generate the recursive program I .

Proof A trivial application of Rice’s Theorem—in the sense that any nontrivial
property of a dynamical system—yviewed algorithmically—is undecidable. The
intended interpretation is that only the properties of the empty set and the universal
set can be effectively generated.

Remark 2 Given the way Rice’s Theorem is proved, the same remarks as above, in
Remark 1, apply.

2.3 Algorithmically Unsolvable Problems in Economics

No mathematical method can be useful for any problem if it involves much calculation.
Turing [38], p. 9; italics added.

Although it is easy to illustrate unsolvability of economic problems in the same
vein as in the previous two subsections, I shall not take that approach. Instead, this
subsection will be an introduction to Herbert Simon’s vision on Human Problem
Solving [19], in the light of Turing’s approach to Solvable and Unsolvable Problems
[38].

Turing’s fundamental work on Solvable and Unsolvable Problems [38], In-
telligent Machinery [35] and Computing Machinery and Intelligence [36] had a
profound effect on the work of Herbert Simon, the only man to win both the
ACM Turing Prize and the Nobel Memorial Prize in Economics, particularly in
defining boundedly rational economic agents as information processing systems
(IPSs) solving decision problems.!”

A comparison of Turing’s classic formulation of Solvable and Unsolvable
Problems and Simon’s variation on that theme, as Human Problem Solving [19],
would be an interesting exercise, but it must be left for a different occasion. This is
partly because the human problem solver in the world of Simon needs to be defined
in the same way Turing’s approach to Solvable and Unsolvable Problems was built
on the foundations he had established in his classic of 1936-1937.

It is little realised that four of what I call the Six Turing Classics—On Com-
putable Numbers [33], Systems of Logic Based on Ordinals [34]; Proposal for
Development in the Mathematics Division of an Automatic Computing Engine
(ACE) of 1946, published in Turing [39]; Computing Machinery and Intelligence
[36]; The Chemical Basis of Morphogenesis [37]; and Solvable and Unsolvable

In the precise sense in which this is given content in mathematical logic, metamathematics,
computability theory and model theory.
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Problems [38]—should be read together to glean Turing’s Philosophy'® of Mind.
Simon, as one of the acknowledged founding fathers of computational cognitive
science was deeply indebted to Turing in the way he tried to fashion what I have
called Computable Economics [41]. It was not for nothing that Simon warmly
acknowledged—and admonished—Turing in his essay in a volume ‘memorializing
Turing’ [27], p. 81, titled Machine as Mind":

If we hurry, we can catch up to Turing on the path he pointed out to us so many years ago.

Simon was on that path for almost the whole of his research life.

Building a Brain, in the context of economic decision making, meant building
a mechanism for encapsulating human intelligence, underpinned by rational be-
haviour in economic contexts. This was successfully achieved by Herbert Simon’s
lifelong research program on computational behavioural economics.?

From the early 1950s Simon had empirically investigated evidence on human
problem solving and had organised that evidence within an explicit framework of a
theory of sequential information processing by a Turing Machine. This resulted in
([26], p. x; italics added):

[A] general theory of human cognition, not limited to problem solving, [and] a methodology
for expressing theories of cognition as programs [for digital computers] and for using
[digital] computers [in general, Turing Machines] to simulate human thinking.

This was the first step in replacing the traditional Rational Economic Man with
the computationally underpinned Thinking, i.e., Intelligent Man. The next step was
to stress two empirical facts (ibid, p. x; italics added):

i. “There exists a basic repertory of mechanisms and processes that Thinking Man
uses in all the domains in which he exhibits intelligent behaviour.”

ii. “The models we build initially for the several domains must all be assembled
from this same basic repertory, and common principles of architecture must be
followed throughout.”

18Remembering Feferman’s [10], p. 79 cautionary note that ‘Turing never tried to develop an
overall philosophy of mathematics . ..’, but not forgetting that his above-mentioned works were
decisive in the resurrection of a particular vein of research in the philosophy of the mind,
particularly in its cognitive, neuroscientific versions pioneered by Simon.

To which he added the caveat (ibid, p. 81):

I speak of ‘mind’ and not ‘brain’. By mind I mean a system [a mechanism] that produces
thought . .. .

I have always interpreted this notion of ‘mechanism’ with Gandy’s Principles for Mechanisms
[12] in mind [sic].
20T refer to this variant of behavioural economics, which is underpinned by a basis in computational
complexity theory, as classical behavioural economics, to distinguish it from currently orthodox
behavioural economics, sometimes referred to as modern behavioural economics, which has no
computational basis whatsoever.
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It is easy to substantiate the claim that the basic repertory of mechanisms and
processes are those that define, in the limit, a Turing Machine formalisation of the
Intelligent Man when placed in the decision-making, problem-solving context of
economics (cf. [42]).

However, the unsolvability of a problem, implied in any Turing Machine
formalization of decision processes, did not really stop people from looking for a
solution for it, particularly not Herbert Simon. Sipser (1997) admirably summarises
the pros and cons of proving the unsolvability of a problem, and then coming to
terms with it:

After all, showing that a problem is unsolvable doesn’t appear to be any use if you have
to solve it. You need to study this phenomenon for two reasons. First, knowing when a
problem is algorithmically unsolvable is useful because then you realize that the problem
must be simplified or altered before you can find an algorithmic solution. Like any tool,
computers have capabilities and limitations that must be appreciated if they are to be used
well. The second reason is cultural. Even if you deal with problems that clearly are solvable,
a glimpse of the unsolvable can stimulate your imagination and help you gain an important
perspective on computation.
Sipser [28], p. 151, italics added.

This was quintessentially the vision and method adopted by Simon in framing
decision problems to be solved by boundedly rational agents, satisficing in the face
of computationally complex search spaces.

The formal decision problem framework for a boundedly rational information
processing system can be constructed in one of the following ways: systems of
linear Diophantine inequalities, systems of linear equations in non-negative integer
variables, integer programming. Solving the aforementioned three problems are
equivalent in the sense that the method of solving one problem provides a method
to solve the other two as well. The Integer Linear Programming (ILP) problem and
SAT can be translated both ways, i.e., one can be transformed into another.

In Velupillai [42], it is demonstrated that the SAT problem is the meeting ground
of Diophantine problem solving and satisficing search; in turn, this connection leads
to the conclusion that bounded rationality is the superset of orthodox rationality,
which had been Simon’s point all along.

Quite apart from the positive aspects of taking a Simonian approach to Human
Problem Solving, in its analogy with Turing’s way of discussing Solvable and
Unsolvable Problems, the felicity of being able to show that orthodox optimization,
by what Simon referred to as the Olympian rational agent, is a special case*' of
boundedly rational agents, satisficing in a computationally underpinned behavioural
decision-making context, is, surely, a vindication of the computable approach to
economics!

2 the same sense in which the reals are ‘constructed’ from the integers and, then, the rational
numbers.
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3 Beyond Computable Economics

Most mathematicians are so deeply immersed in the classical tradition that the idea of
abandoning classical logic and mathematics for a constructive approach seems very strange.
Those of us interested in approaching mathematics constructively usually need to spend
a great deal of time and energy justifying our interest, and we are often dismissed as
cranks. ...

[T]he crux of the insistence by intuitionists (and, presumably, by other strict construc-
tivists as well) that nonconstructive classical mathematics is meaningless is their view that
it is not meaningful to talk about completing a computation process requiring an infinite
number of steps.

Seldin [25]; p. 105.

Those of us who take a computable approach to economic theory face the same
problems, The mind boggles at the thought of one who is not only a computable
economist, but who also endorses a constructive and non-standard analytic approach
to the mathematisation of economic theory.

What, ‘exactly’, is a computation? The lucid, elementary, answer to this question,
entirely in terms of computability theory and Turing Machines, was given by Martin
Davis in a masterly exposition almost three and a half decades ago [7]. Here I
am interested in an answer that links the triad of computation, simulation and
dynamics in an epistemological way. This is because I believe simulation provides
the epistemological cement between a computation and the dynamical system that
is implemented during a computation—by means of an algorithm, for example.

I shall assume the following theses, in the spirit of the Church-Turing thesis with
which I began this paper, so that I can answer the question ‘“What is a computation?’
in an epistemologically meaningful sense.

Thesis 1 Every computation is a dynamical system
Thesis 2 Every simulation of a dynamical system is a computation

Analogously, then: What can we know about, what must we do with and what
can we hope for from a computation that is, by the above claim, a dynamical
system? This, in turn, means what can we know about, what must we do with
and what can we hope for from studying the behaviour of a dynamical process
during a computation? Since, however, not everything can be computed, it follows
that not every question about a dynamical system can be answered unambiguously.
But by the second of the above claims, I have expressed an ‘identity’ between a
simulation and a computation, via the intermediation of a dynamical system, which
implies that not everything can be learned about the behaviour of a dynamical
system by simulating it on (even) an ideal device that can compute anything that
is theoretically computable (i.e., a Turing Machine, assuming the Church-Turing
Thesis). Above all, we cannot distinguish, in any meaningful sense—i.e., in an
algorithmically decidable sense—between what can be known or learned and that
which lies ‘beyond’ this undecidable indefinable, border, on one side of which we
live our scientific lives.
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It is humility in the face of this epistemological barrier that one learns to cultivate
when approaching the decision problems of economics on the basis of computability
theory.

With this as a starting point, the next step beyond Computable Economics is
towards Constructive Economics and Intuitionistic Logic—towards an Intuitionisti-
cally Constructive Economics,* to untie oneself from the bondage of classical logic,
too.

It is, therefore, appropriate to end this exercise with Jeremy Avigad’s perceptive,
yet pungent, reflection ([2], pp. 64—65; italics added):

[The] adoption of the infinitary, nonconstructive, set theoretic, algebraic, and structural
methods that are characteristic to modern mathematics [ ...] were controversial, however.
At issue was not just whether they are consistent, but, more pointedly, whether they are
meaningful and appropriate to mathematics. After all, if one views mathematics as an
essentially computational science, then arguments without computational content, whatever
their heuristic value, are not properly mathematical . .. [At] the bare minimum, we wish to
know that the universal assertions we derive in the system will not be contradicted by our
experiences, and the existential predictions will be borne out by calculation. This is exactly
what Hilbert’s program was designed to do.

And it is precisely in that particular aim Hilbert’s Program failed; yet mathemat-
ical economics, in all its orthodox modes, adheres to it with unreflective passion.
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Turing aficionado for inviting me, an outsider and an outlier par excellence, to contribute to
the Proceedings of the Turing Centennial conference, held at Chicheley Hall, in June 2012. The
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Is Quantum Physics Relevant for Life?

Vlatko Vedral

Abstract In this paper I explore the possibility that quantum physics might play
a fundamental role in living systems. The first part explains how thermodynamical
insights may be used to derive a characterization of life as a physical phenomenon.
In this case, quantum mechanics is used to describe the state of every atom on earth,
providing an estimate of the entropy required for life to exist. In the second part,
I argue that quantum mechanics, according to Per-Olov Lowdin, can lead to an
explanation of DNA replication in terms of energy consumption. The third part
describes two modern developments, photosynthesis and magneto-reception, both
of which rely on quantum physics to explain their efficiency. The fourth part asks
whether quantum computers can be used to simulate life in a way that goes beyond
the classical approach. Finally, the fifth part suggests a new approach to physics in
terms of possible and impossible processes that are based on observations of the
natural world.

... living matter, while not eluding the ‘laws of physics’ as established up to date, is likely
to involve ‘other laws of physics’ hitherto unknown, which however, once they have been
revealed, will form just as integral a part of science as the former—Erwin Schrodinger
(quote from What is Life?)
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1 Review of Schrodinger

After revolutionizing physics, Erwin Schrodinger turned to biology. In 1944 he
wrote a highly influential book, called What is Life? [1], that discussed the physical
basis of biological processes. From the present perspective he got an astonishing
number of things right. He basically anticipated the stable encoding of biological
genetic information, and he guessed that crystals form the basis for encoding
(Watson and Crick later showed DNA has a periodic crystalline-like structure). He
also understood the thermodynamical underpinnings of living processes that have
since become the bread and butter of biology.

Fundamentally, however, in his treatment of biology using the laws of physics,
Schrodinger, follows Ludwig Boltzmann. Here the first and the second laws of
thermodynamics drive biological processes. The first law stipulates that the overall
energy has to be conserved in all processes, though it can transform from heat (a
disordered form of energy) to work (a useful form of energy). The second law says
that the overall disorder (as quantified by entropy) has to increase in a closed system,
but of course this does not prohibit one part of the system from becoming more
ordered at the expense of the rest, which becomes even more disordered. The key
is how to get as much useful energy (work) as possible within the constraints of the
second law, namely that the overall disorder has to increase. The trick is to make
the rest even more disordered, i.e. of higher entropy, and then to exploit the entropy
difference. This is the trick that life pulls.

Boltzmann expressed the thermodynamically driven logic beautifully in the late
nineteenth century when he said: “The general struggle for existence of living
beings is therefore not a fight for energy, which is plentiful in the form of heat,
unfortunately untransformably, in every body. Rather, it is a struggle for entropy that
becomes available through the flow of energy from the hot Sun to the cold Earth.
To make the fullest use of this energy, the plants spread out the immeasurable areas
of their leaves and harness the Sun’s energy by a process as yet unexplored, before
it sinks down to the temperature level of our Earth, to drive chemical syntheses of
which one has no inkling as yet in our laboratories [2].”

According to this view all living systems are actually Maxwell’s demons. This
is not in the original sense that Maxwell meant, namely that demons can violate
the second law, but in the sense that we all try to maximize the information about
energy to utilize it to minimize entropy and therefore extract useful work. This view
of life is beautifully articulated by the French biologist and Nobel Laureate Jacques
Monod in his classic Chance and Necessity [3]. Monod even goes on to say: “. . . itis
legitimate to view the irreversibility of evolution as an expression of the second law
in the biosphere”. In animals, the key energy generating processes take place in the
mitochondria, which converts food into useful energy; plants rely on photosynthesis
instead of food. We can almost take the fact that living systems “strive” to convert
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heat into useful work as a defining feature that discriminates life from inanimate
matter.'

This is why biologists tend to think about all living processes as driven by
entropic forces. This force is fictitious (i.e. not fundamental, like the electromagnetic
one) and it captures the fact that life maintains itself at an entropy value lower than
that of the environment. The entropy gradient that drives all life is, of course, given
by the temperature difference between the Sun and the Earth.

Another physicist, Leon Brillouin, has called this the neg-entropy (“neg” is short
for negative) principle [4]. Life operates far from equilibrium with its environment,
which is characterized by the maximum entropy. To maintain itself far from
equilibrium life needs to import negative entropy from the environment. This is why
we eat food which is highly structured, either in the form of plants (which use the
Earth-Sun neg-entropy to develop their own structure through processes involving
carbon dioxide and water) or animals (which eat plants to maintain low entropy).
We utilize the chemical energy stored in the bonds between atoms that make up our
food.

The neg-entropy provided by the Sun-Earth temperature difference can be
estimated to be 10 to the power of 37 times the Boltzmann constant per second.
This is a huge amount. How much neg-entropy is required to create life? We will
assume that to turn lifeless Earth into present Earth, it is necessary to pluck every
atom required for the biomass from the atmosphere and place it into its exact
present-day quantum state. These assumptions maximize the entropy of dead-Earth
and minimize that of Earth, so the difference between the two entropies grossly
overestimates the entropy reduction needed for life. A simple calculation shows that
the entropy difference required is about 10 to the power of 44 times the Boltzmann
constant. This suggests that, in principle, about an hour (10 to the power of 44-37)
of Sun-Earth motion should give us enough entropy to create all life!

Of course it took much longer for life to evolve because the conditions were not
right and the whole process is random. Living systems are by no means perfect work
engines, and so on, but the bottom line is that the Sun-Earth temperature difference
is enough to maintain life. On top of this, we have all the entropy generated by life,
such as culture, industry, big cities and so on.?> Anything that would require more
than 10-53 units of entropy (a unit of entropy is k times T where k is Boltzmann’s
constant and T is the temperature) would take longer than the age of universe.’

' Though, of course, there are always grey areas. Man-made machines, like cars, also convert energy
(fuel) into work, but they don’t really strive to do it independently of us. On the other hand, we
ourselves are not independent of the external factors either, so the whole issue regarding how to
define life is not that easy.

2Culture, industry and other human inventions can of course help us handle energy more efficiently.
3Note that the particular way in which the organisms on Earth extract energy puts more severe
limitations on the sustainability of life. For instance, it’s only plants that utilize the Sun’s energy
directly. Herbivores obtain it by eating plants and carnivores by eating herbivores (and plants). The
more removed an organism is from direct sunlight utilization, the less efficient is its extraction.
Isaac Asimov in “Life and Energy” has estimated that the Sun-Earth system can sustain at best 1.5
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That said, the interesting point is that Schrodinger goes beyond all this to
anticipate that we might need other laws of physics to fully understand life. By
this he most likely would have meant quantum physics (though at the end of the
article we will explore other possibilities). This would mean that thermodynamics,
designed to be oblivious to the underlying macroscopic theory, is not sufficient to
explain how life operates, or indeed, how it starts.

On the one hand, finding quantum effects in biology might not be thought too
surprising. After all, quantum physics has been successful for over 100 years now
and no experimental deviation has ever been observed. Moreover, quantum physics
is important in understanding not only atomic and subatomic particles, but also
molecules, as well as macroscopic systems such as various solids and systems
as large as neutron stars. On the other hand, however, living systems are warm
and wet and we know that these two conditions are usually adverse to quantum
physics. Large systems that strongly interact with the environment are typically well
described with classical physics. So how much evidence is there really for quantum
effects in biology?

2 Lowdin and Quantum DNA

The first person to take Schrodinger’s suggestion seriously was a Swedish con-
densed matter physicist, Per-Olov Lowdin [5]. In the abstract on his 1964 paper
on the mechanisms behind DNA mutations, he even coins the phrase “quantum
biology”. The main quantum contribution he had in mind was proton tunneling and
its role in DNA replication and genetic mutations.* If tunneling is really fundamental
to DNA replication and mutations, then of course quantum physics is crucial for life
(as tunneling cannot occur in classical physics). The key in DNA replication is the
matching between different base pairs on two different strands of the DNA and the
position of protons required for base pairing. If protons tunnel to a different spatial
location, then a mismatch in the pairs can occur, which effectively constitutes a
genetic mutation.

The main idea behind biological quantum tunneling is that a certain process
can still take place in quantum physics even if there is not enough energy for it
under classical physics. So, even if the energy due to temperature is not sufficient
to make certain molecules pair up, quantum physics tells us that there is a chance
a process can still take place. Fifty years have passed since Lowdin’s proposal,
but no conclusive evidence is available to prove that protons tunnel in DNA and
that this has an impact on DNA replication. But that it not a reason to despair, as

trillion humans (eating algae directly!). We are still far away from this, but the bound assumes that
we have the relevant technology to do this too.

“Tt was already known that the explanation of chemical bonding itself lies in quantum physics. The
tunneling is an additional feature.
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we have other evidence that quantum physics might be at work in other biological
phenomena.

3 Recent Quantum Biology Experiments

Photosynthesis is the name of the mechanism by which plants absorb, store, and
use this light energy from the Sun. Here, basically the solar energy is used to utilize
carbon dioxide and water to build various plant structures such as roots, branches
and leaves. Recent fascinating experiments by the group of Graham Fleming at
the University of Berkeley, California, suggest that quantum effects might matter
in photosynthesis [7]. Furthermore, they point out a close connection between the
photosynthetic energy transfer and certain types of quantum computations. In other
words, plants are so much more efficient than what we expected that there must be
some underlying quantum information processing.

Plants are fiendishly efficient (90-99 %) at channeling the light absorbed by
antennas in their leaves to energy storage sites. The best man-made photocells barely
achieve a 20 % efficiency.

So there is an enormous difference, but how do plants do it? The complete answer
is not entirely clear but the overall picture is this. When sunlight hits a surface that
is not designed to carefully absorb and store it, the energy is usually dissipated to
heat within the surface. Either way, it is lost as far as any subsequent useful work
is concerned. The dissipation within the surface happens because each atom in the
surface acts independently of other atoms.

When radiation is absorbed in this incoherent way, then all its useful properties
vanish. What is needed is that atoms and molecules in the surface act in unison.
And this is a feat that all green plants manage to achieve. In order to understand
how this happens, it is helpful to think of each molecule as a small vibrating string.
All molecules vibrate as they interact with one another, transferring energy between
them. When they are hit by light, they change their vibration and dynamics and
end up in the most stable configuration. The crux is that if the vibrations are not
quantum, then they cannot find the reliable configuration as efficiently (at best with
50 % efficiency).

Fleming’s experiments were initially performed at low temperature (77 K, while
plants normally operate at 300 K) but the subsequent studies indicated this behavior
persists at room temperature (though the experiments have never been done using
sunlight). Therefore, it is not entirely clear if any quantum effects can survive under
fully realistic conditions. However, even the fact that there exists a real possibility
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that a quantum computation® has been implemented by living systems has made for
a very exciting and growing area of research.

Magneto-reception is the other instance where animals might be utilizing
quantum physics. European robins are crafty little creatures. Each year they make
a round trip from the cold Scandinavian Peninsula to the warm equatorial planes
of Africa, a hazardous trip of about 4000 miles each way. Armed with only their
internal sense of direction, these diligent birds regularly make the journey without
any fuss.

When faced with a similar challenge, what do we humans do? Ferdinand
Magellan (the late fifteenth-century Portuguese explorer), for instance, had the same
problem—and solved it. He worked out what a useful contribution a compass could
make to his journey: he showed how the Earth’s magnetic field—to which the
compass is sensitive—could be used as a stable reference system to circumnavigate
the Earth. So now, when we start in Europe and use a compass to follow the
southward direction of the Earth’s magnetic field, we are confident we will
eventually find ourselves in Africa. But while a compass may guide us humans,
it’s not at all clear how robins find their way so unerringly and consistently. Do they
also have a kind of inbuilt compass? Evidence suggests that there is some kind of
internal guidance mechanism, but not of the type Magellan used.

Wolfgang Wiltschko, a biologist at the University of Frankfurt, came up with
the first evidence of this guidance mechanism in the early 1970s [6]. He caught
robins on their flight path from Scandinavia to Africa and put them in different
artificial magnetic fields to test their behavior.® One of Wiltschko’s key insights
was to interchange the direction of the North and South and then observe how the
robins reacted to this. Much to his surprise, nothing happened! Robins simply did
not notice the reversal of the magnetic field. This is very telling: if you did this swap
with a compass, its needle would follow the external field, make a U-turn, and point
in the opposite direction to its original one. The human traveler would be totally
confused. But somehow, the robins proved to be impermeable to the change.

Wiltschko’s experiments went on to show that although robins cannot tell
magnetic North from magnetic South, they are able to estimate the angle the
magnetic field makes with Earth’s surface. And this is really all they needed in
order to navigate themselves. In a separate experiment, Wiltschko covered robins’
eyes and discovered that they were unable to detect the magnetic field at all. He
concluded that, without light, the robins cannot even ‘see’ the magnetic field,
whereas of course a compass works perfectly well in the dark. This was a significant
breakthrough in our understanding of the birds’ navigation mechanism. The now

SQuantum computation is a more powerful form of computation than the current one that fully
relies on the laws of quantum physics, both in order to encode information as well as to process it.
In the case of photosynthesis, the information that is conveyed is simply the energy of photons, and
the vibrations are a form of quantum computation that transfers this information to the appropriate
reaction centre where chemistry takes over to generate energy.

%Note to reader: no robins were injured or suffered any obvious side effects in the making of this
experiment!
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widely accepted explanation to Wiltschko’s result was proposed by Klaus Schulten
of Maryland and developed by Thorsten Ritz of the University of Southern Florida.

The main idea behind the proposal is that light excites electrons in the molecules
of the retina of the robin. The key, however, is that the excitation also causes the
electron to become ‘super correlated’ with another electron in the same molecule.
This super-correlation, which is a purely quantum mechanical effect, manifests itself
in the form that whatever is happening to one electron somehow affects the other—
they become inseparable ‘twins’. Given that each of these twinned electrons is
under the influence of the earth’s magnetic field, the field can be adjusted to affect
the relative degree of ‘super-correlation’. So by picking up on the relative degree
of ‘super-correlation’ (and relating this to the variation in the magnetic field) the
birds somehow form an image of the magnetic field in their mind, and then use
this to orient and navigate themselves. As a physicist, Ritz already knew a great
deal about this super-correlation phenomenon: it had been proven many times in
quantum physics under the name of ‘quantum entanglement’, or just ‘entanglement’
for short. It is this same entanglement that scientists are trying to exploit to build a
new type of superfast quantum computer.

Our very simple model suggests that the computation performed by these robins
is as powerful (in the sense that entanglement lasts longer) as any similar quantum
computation we can currently perform!” If this is corroborated by further evidence,
its implications would be truly remarkable. For one, this would make quantum
computation yet another technology discovered by Nature long before any of us
humans thought it possible. While Nature continues to humble us, it also brings
new hope: the realization of a large-scale usable quantum computer is possibly not
as distant as we once thought. All we need to do is perhaps find a way of better
replicating what already exists out there in the natural world.

4 Simulating Life with Quantum Computers

A fascinating possibility is now emerging in which we try to reverse-engineer living
processes and simulate them on computers. This is not just like in John Conway’s
“game of life” where a cellular automata algorithm generates replicating patterns
on the computer screen based on a simple underlying algorithm (whose code is only
a few lines long). Instead, we can now start to think about simulating biological
processes, such as energy flow, in greater detail using the new quantum technology.
After all, if living systems are those that strive to get useful work out of heat, then
the game of life misses the point: none of its structures can even be thought of or
become alive! Do we need to breathe in the “striving” component into inanimate

"More specifically, robins can keep electrons entangled up to 100 s, while we humans can manage
just about the same (at room temperature).
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structures or will a faithful simulation of life automatically be living? This is a deep
question and we are no nearer to addressing it than Schrodinger was.

We are now already using quantum computers of up to 20 qubits to simulate
and understand properties of solids. But solids are inanimate. Could it be that
as our simulations become more and more intricate we could faithfully simulate
living processes with quantum computers to recreate life? And could this artificial,
computational simulation really become alive? Oxford University’s newest research
college, the Oxford Martin School, is currently funding the first steps towards such
a program and aims to develop future quantum technologies inspired by the design
of natural systems [8].

5 Conclusions

Let us briefly return to Schrodinger. When he mentions “other laws of physics”,
could that have meant that we may need to go beyond quantum physics to
understand life? Could indeed biology teach us something about the underlying
laws of physics? This idea is radical and most physicists would probably reject it.
After all, we think of physics as underlying chemistry and chemistry as underlying
biology. The arrow of causation works from small (physical systems) to large
(biological) systems. But could biology still tell us something about physics?

My colleague at Oxford, David Deutsch, is not inspired by biology, but he still
thinks we should take things much further as far as physics is concerned. His
ideas, though, curiously seem to resonate with Schrédinger’s. Not only should
any future physics conform to thermodynamics, but the whole of physics should
be constructed in its image. The idea is to generalise the logic of the second law
as it was stringently formulated by the German-Greek mathematician Constantino
Caratheodory in 1909: in the vicinity of any state of a physical system, there are
other states that cannot physically be reached if we forbid any exchange of heat
with the environment.

As an illustration, we can think of the experiments of James Joule, a Mancunian
brewer whose name lives on in the standard unit of energy. In the nineteenth century,
he studied the properties of thermally isolated beer. The beer was sealed in a tub
containing a paddle-wheel that was connected to weights falling under gravity
outside the tub. The rotation of the paddle warmed the beer, increasing the disorder
of its molecules and therefore its entropy. But however hard we might try, we simply
cannot use Joule’s set-up to decrease the beer’s temperature, even by a tiny fraction.
Cooler beer is, in this instance, a state beyond the reach of physics.

The question is whether we can express the whole of physics simply by
stipulating which processes are possible and which are not. This is very different
from how physics is usually phrased, in both the classical and quantum regimes, in
terms of states of systems and equations that describe how those states change in
time. The blind alleys down which this approach can lead are easiest to understand
in classical physics, where the dynamical equations we derive allow a whole host
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of processes that patently do not occur—the ones we have to conjure up the laws of
thermodynamics expressly to forbid. But this is even more so in quantum physics,
where modifications of the basic laws lead to even greater contradictions. The
most famous example is perhaps the American Physics Nobel Laureate Steven
Weinberg’s modification of the basic quantum equation of motion, the Schrodinger
equation, which was subsequently shown by the Swiss physicist Nicolas Gisin to
lead to communications faster than the speed of light (impossible).

Reversing the logic allows us again to let our observations of the natural world
take the lead in deriving our theories. We observe the prohibitions that nature
puts in place—be it decreasing entropy, getting energy from nothing, travelling
faster than light or whatever. The ultimately “correct” theory of physics—the
logically tightest—would be the one from which the smallest deviation would give
us something that breaks those commandments. If this is indeed how physics is
to proceed—and this is a big “if’—then there might indeed be something in the
existence of biological systems and their processes that can teach us about the basic
fundamental principles of physics.®
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Trouble with Computation: A Refutation
of Digital Ontology

J. Mark Bishop

Abstract One of the questions that have defined and simultaneously divided
philosophy is the question of the absolute nature of reality. Whether we have the
right to ask the very question; whether we can know reality or merely be content
with the epistemic conditions that make its experience possible. One response to
this question, currently enjoying something of a renaissance, can be found in so-
called ‘digital philosophy’—the view that nature is ultimately discrete, it can be
modelled digitally, its evolution is the computable output of an elegant algorithmic
process, and its laws are deterministic. However, if digital philosophy presents an
accurate description of the universe, then it follows that the ultimate nature of all
phenomena exhibited in and by the universe must ultimately at their root be both
digital and explicable in digital terms; clearly, under this view, the final explanation
of consciousness must also be digital. Digital ontology so defined thus has resonance
with those versed in science and science fiction who periodically reignite the hope
that a computer system will one day be conscious purely by virtue of its execution
of an appropriate program. In this paper I highlight a contrasting argument which
reveals a trouble with computation whereby computational explanations of mind,
and digital ontology, lead inexorably to panpsychism. (Panpsychism: the belief that
the physical universe is composed of elements each of which is conscious.)

1 Digital Philosophy

In “The Philosophy of Information’ [8] Luciano Floridi characterises ‘digital
philosophy’ as a strand of thought, proposing the following four theses: (1)
nature is ultimately discrete; (2) it can be modelled digitally; (3) its evolution
is the computable output of an elegant algorithmic process, and (4) its laws are
deterministic. By insisting that ‘reality can be decomposed into ultimate, discrete
indivisibilia’ the first two of these theses give away the underlying neo-Pythagorean
nature of digital philosophy, because for Pythagoras ontology itself was defined as
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“that which is countable’; as Robert Lawlor, in ‘Pythagorean number as form, color
and light’, writes [10]:

Plato’s monadic ontology implies that every number presupposes a definite and discrete
unit taken from a limitless, homogeneous field. Contemplation of it thus provides access
to the contemplation not only a limit, but also of the limitless. These extremes are the
fundamental tension and Pythagorean thought, rather than the terms “Being” and “Non-
Being”. In Pythagoreanism, Being is limited and countable (perceivable); Non-Being is
limitless and uncountable; Being and Non-Being can only be linguistically considered in
terms of the limited and the limitless, and thus take on a particular conceptual tonality.
Non-Being (the limitless) is not an opposite to Being (limit), but is only other than Being.
In numerical practise, the relationship between the limited and the limitless, or between
Being and Non-Being, is not fixed.'

Floridi [7, 8] suggests that the third thesis effectively ‘interprets the neo-
Pythagorean ontology in computational terms: the ultimate, discrete indivisibilia
are actually computable digits, while elegance and Ockham’s razor inclines digital
ontologists to favour an algorithmic theory as simple as possible’ and ‘the position
that unifies most supporters of digital ontology is summarised in what is known as
Zuse’s Thesis’:

.. the universe is being deterministically computed on some sort of giant but discrete
computer [21].

Thus, for Floridi (ibid), most digital ontologists tend to subscribe to a form of
pancomputationalism:?

The overall perspective, emerging from digital ontology, is one of a metaphysical monism:
ultimately, the physical universe is a gigantic digital computer. It is fundamentally
composed of digits, instead of matter or energy, with material objects as a complex
secondary manifestation, while dynamic processes are some kind of computational state
transitions. There are no digitally irreducible infinities, infinitesimals, continuities, or
locally determined random variables. In short, the ultimate nature of reality is not smooth
and random but grainy and deterministic.

And in the context of such digital ontology, two fundamental questions arise
(ibid):

1. whether the physical universe might be adequately modelled digitally and computation-
ally, independently of whether it is actually digital and computational in itself; and

"Lawlor (ibid) subsequently unfolds, “Pythagorean ontology begins with a homogeneous field of
imperishable monadic units [my emphasis] analogous to the cosmic ether of Western Science and
to the mythic image of creation arising from a vast undifferentiated vibratory ocean. This primary
beginning has also been alluded to as a universal consciousness, that is, as pure Unity infinitely
replicating itself as monadic units. The epistemology, or knowledge of this world, however, is
dependent form (eidos). The word eidos also translates as idea. Creation only becomes manifest
through both ontos and episteme, being and knowledge of being, and knowledge of being arises
from the contemplation of the laws of organisation which we experience as form.”

2 Albeit digital ontology and pancomputationalism are distinct positions, for example Wheeler [20]
supports the former but not the latter; processes in Wheeler’s universe may not be reducible to
mere computational state transitions.
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2. whether the ultimate nature of the physical universe might be actually digital and
computational in itself, independently of how it can be effectively or adequately
modelled.

Considering these two questions, Floridi (ibid) claims that the first is an ‘empirico-
mathematical’ question that, so far, remains unsettled whilst the second is a
metaphysical question that, by an ingenious thought experiment, he endeavours to
show is ill posed and hence, when answered, misapplied:

The first step [of the thought experiment] consists in arguing that, even assuming that reality
in itself is indeed digital or analogue, an epistemic agent, confronted by what appears to be
an (at least partly) analogue world of experience, could not establish whether its source
(that is, reality in itself as the source of the agent’s experience or knowledge) is digital (or
analogue).

One could object, however, that this first, epistemological step is merely negative, for it
establishes, at best, only the unknowability of the intrinsically digital (or analogue) nature
of reality lying behind the world of experience, not that reality in itself is not digital
(or analogue). Independently of the epistemic access enjoyed by an agent, the objection
continues, logic dictates that reality must be assumed to be digital/discrete (grainy) or
continuous/analogue (smooth).

So the second step is more positive and ontological. It consists in showing that the initial
concession, made in the first step, can be withdrawn: the intrinsic nature of reality does not
have to be digital or analogue because the dichotomy might well be misapplied. Reality
is experienced, conceptualised and known as digital or analogue depending on the level
of abstraction (LoA) assumed by the epistemic agent when interacting with it. Digital and
analogue are features of the LoA modelling the system, not of the modelled system in itself.

In a recent paper [14] Chryssa Sdrolia and I argue that while we sympathise with
Floridi’s criticism ‘against’ digital philosophy, we express doubt about the validity
of the thought experiment he introduces against it; alternatively, in this paper I revisit
an argument I first framed in 2002 [1] in the context of [so-called] ‘Strong Artificial
Intelligence’? revealing trouble at the heart of computation—a trouble that prompts
the rejection of both Zuse (pancomputationalist) digital ontology and any purely
computational explanation of mind.

2 Dancing with Pixies

Many people hold the view that ‘there is a crucial barrier between computer models
of minds and real minds: the barrier of consciousness’ and thus that computational
connectionist simulations of mind (e.g. the huge, hi-fidelity simulation of the brain

3The notion of a ‘strong computational explanation of mind’ derives from Searle, who in [15]
famously defined ‘Strong Artificial Intelligence’ as follows: “the computer is not merely a tool
in the study of the mind; rather the appropriately programmed computer really is a mind, in the
sense that computers given the right programs can be literally said to understand and have other
cognitive states.” In this ‘strong view’, a computational explanation of mind explains all aspects of
mind, including phenomenal consciousness; for discussion of Searle’s position on Strong Al and
the ‘Chinese room’, see [12].
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currently being instantiated in Henry Markram’s EU-funded €1.19 billion ‘Human
Brain Project’) and ‘phenomenal [conscious] experiences’ are conceptually distinct
(e.g.[2, 12, 15, 18]).

But is consciousness a prerequisite for genuine cognition and the realisation of
mental states? Certainly Searle believes so, “the study of the mind is the study
of consciousness, in much the same sense that biology is the study of life” [17],
and this observation leads him to postulate a ‘connection principle’ whereby,
“...any mental state must be, at least in principle, capable of being brought
to conscious awareness”. Hence, if computational machines are not capable of
enjoying consciousness, they are incapable of carrying genuine mental states and
computational connectionist projects must ultimately fail as an adequate model for
cognition.

In the following I briefly review a simple reductio ad absurdum argument that
suggests there may be problems in granting phenomenal (conscious) experience
to any computational system purely by virtue of its execution of a particular
program; if correct the argument suggests either that strong computational accounts
of consciousness (and a fortiori all computational connectionist accounts) must fail
or that panpsychism is true.

The argument—the dancing with pixies reductio—derives from ideas originally
outlined by Hilary Putnam [13], Tim Maudlin [11], and John Searle [16] and
subsequently criticised by David Chalmers [4], Colin Klein [9] and Ron Chrisley
[5, 6] amongst others.*

In what follows, instead of seeking to justify Putnam’s claim that “every
open system> implements every Finite State Automaton” (FSA) and hence that
“psychological states of the brain cannot be functional states of a computer”,
I will simply establish the weaker result that, over a finite time window, every
open physical system (OPS) implements the execution trace—the series of state
transitions - defined by FSA Q acting on specified input (I).

That this result leads to panpsychism is clear as, equating FSA Q (I) to a
specific computational system that is claimed to instantiate phenomenal states
as it executes, and following Putnam’s procedure, identical computational (and
exhypothesi phenomenal) state transitions can be found (dancing) in every open
physical system.

“For comprehensive early discussion of these themes see Stevan Harnad (ed) ‘What is Computa-
tion?’; the November 1994 special issue of ‘Minds and Machines’ journal (volume 4: 4); ISSN:
0924-6495.

5In the context of this discussion an open system is a system which can exchange energy [and/or
matter] with its surroundings.



Trouble with Computation: A Refutation of Digital Ontology 137
2.1 The Dancing with Pixies (DwP) Reductio. . .

In his 1950 paper, ‘Computing Machinery and Intelligence’, Turing [19] defined
Discrete State Machines (DSMs) as “machines that move in sudden jumps or
clicks from one quite definite state to another”, and explained that modern digital
computers fall within the class of them. An example DSM from Turing is one
that cycles through three computational states (Q;, O, Q3) at discrete clock clicks.
Such a device, which cycles through a linear series of state transitions ‘like
clockwork’, may be implemented by a simple wheel-machine that revolves through
120° intervals (see Fig. 1).

By labelling the three discrete positions of the wheel (A, B, C) we can map
computational states of the DSM (Q;, 0>, O3) to the physical positions of the wheel
(A, B, C) such that, for example, (A = Q;;B = 02;C = (Q3). Clearly this
mapping is observer relative: position A could map to Q> or Q3 and, with other states
appropriately assigned, the machine’s function would be unchanged. In general, we
can generate the behaviour of any k-state (input-less) DSM, f(Q) = Q’, by a k-state
wheel-machine (e.g. a suitably large digital counter) and a function that maps each
‘wheel-machine/counter’ state C, to each computational state 0, as required.

In addition, Turing’s wheel-machine may be configured such that whenever it
enters a particular position [computational state] a lamp can be made to switch on
and furthermore, the machine may be paused in any of its k [discrete] positions by
the application of a brake mechanism. Input to the machine is thus the state of the
brake (I = ON|OFF) and its output (Z) the state of the lamp. The operation of
Turing’s DSM with input is thus described by a series of contingent branching state
transitions, which map from current state to next state f(Q,1) = @, and define
output (in the Moore form) f(Q') = Z.

a,
Previous Machine State
4, 9> 93
Input [ /] ¥, 93 92 94
[Brake State] j, q, g, q;
az
z Machine State q, g, g,
Brake {/, i, }

Output [lamp] State 0,0, 0,

Fig. 1 Turing’s ‘Discrete State Wheel Machine’
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However over any finite time interval fully specifying the input to the device®
entails that such contingent behaviour reverts to a mere linear-series of modal state
transitions; f(Q) = Q.

For example, if Turing’s three state DSM starts in Q; and the brake is OFF for
two consecutive clock-ticks, its behaviour, (execution trace), is fully described by
the sequence of state transitions (01 = Q> = (Q3); alternatively, if the machine is
initially in state Q3 and the brake is OFF for one clock-tick and ON for the next, its
will transit the following states (O3 = Q1 = Q)).

Hence, over a finite time window, if the input to a DSM is specified, we
can trivially map from each wheel-machine (digital counter) state C, to each
computational state Q,, as required. Furthermore, in Bishop [3] I demonstrate,
following Putnam [13], how to map the computational state transition sequence of
any such DSM onto the [non-repeating] internal states instantiated by any open
physical system (such as a rock):

Discussed in a brief appendix to Hilary Putnam’s 1988 book ‘Representation and Reality’
is a short argument that endeavours to prove that every open physical system is a realisation
of every abstract Finite State Automaton and hence that functionalism fails to provide an
adequate foundation for the study of the mind.

Central to Putnam’s argument is the observation that every open physical system, S, is in
different ‘maximal’ states’ at every discrete instant and hence can be characterised by a
discrete series of non-cyclic natural state transitions, [sq, s> .. s; .. s,]. Putnam argues for
this on the basis that every such open system, S, is continually exposed to electromagnetic
and gravitational signals from, say, a natural clock. Hence by quantizing these natural states
appropriately, every open physical system can by considered as a generator of discrete non-
repeating modal state sequences, [s;, 55 .. Soo].?

Thus, considering Turing’s input-less three state DSM Q and an open physical
system S, (where S = {5y, 2, 53, S4, S5, S¢} over time interval [t .. fs]), using
Putnam’s mapping it is trivial to observe that if we map DSM state [Q;] to
the disjunction of open physical system states, [s; v s4], DSM state [Q>] to the
disjunction of OPS states, [s, v s5] and DSM state [Q3] to the disjunction of OPS
states, [s3 v 6], then the open physical system, S, will fully implement Q as the OPS
transits states [s; .. s¢] over the interval [ .. t].

Furthermore, given any OPS state, s, (s € {s1, 52, 53, 54, S5, S6}), say § = s4 at
time [¢], (in which case by application of Putnam’s mapping we note that the DSM
is in computational state [Q,]), we can predict that the OPS will modally enter state

6 As might happen if we present exactly the same input to a robot on repeated experimental trials;
in which case, ceteris paribus, the computationalist is committed to saying the ‘experience’ of the
robot will remain the same during each experimental trial.

7A ‘maximal’ state is a total state of the system, specifying the system’s physical makeup in
absolute detail.

8Chalmers [4] observes, “Even if it [the claim that ‘every open physical system is a realisation of
every abstract Finite State Automaton’] does not hold across the board (arguably, signals from a
number of sources might cancel each other’s effects, leading to a cycle in behaviour), the more
limited result that every non-cyclic system implements every finite-state automaton would still be
a strong one.”
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s = s5 and hence, by a further application of Putnam’s mapping, observe that the
DSM entered computational state [Q>] at time [ + 1] etc.

Now, returning to a putative conscious robot: at the heart of such a beast there
is a computational system—typically a microprocessor, with finite memory and
peripherals; such a system is a DSM. Thus, with input to the robot fully specified
over some finite time interval, we can map its execution trace onto the state evolution
of any digital counter or, after Putnam, any open physical system.

Thus, if the control program of a robot genuinely instantiates phenomenal
experience as it executes, then so must the state evolution of any OPS, in which
case we are inexorably led to a panpsychist worldview whereby disembodied
phenomenal consciousnesses [aka ‘pixies’] are found in every open physical system.

NB. For detailed analysis of the above DwP reductio, including discussion of the
key objections to it, see Bishop [2, 3].

3 Conclusion: Refuting Digital Ontology

In Sect.1 I highlighted two fundamental questions related to digital ontology:
the first of these asks if, irrespective of its ultimate nature, the universe can be
adequately modelled digitally and computationally’ and the second enquires if the
ultimate nature of reality is digital, and the universe is a computational system
equivalent to a Turing Machine. Computationally, sensu stricto, it is apparent
that the latter ontological case—if digital ontology (so defined) is true—implies
the former epistemic (‘empirico-mathematical’) case; as Floridi [7, 8] observes,
“the empirico-mathematical and the metaphysical position with respect to digital
ontology are compatible and complimentary”. Furthermore, exhypothesi, as the
existence of humans and human consciousness is a fundamental component of our
world, if true, both questions imply that there must exist at least one Turing machine
computation that will instantiate human [phenomenal] consciousness.

Conversely, the DwP reductio ad absurdum implies that if phenomenal con-
sciousness is instantiated by the mere execution of a computer program, then a
vicious form of panpsychism holds, whereby every possible conscious experience
can be found in every open physical system. However, against the backdrop of our
immense scientific knowledge of the closed physical world, and the corresponding
widespread desire to explain everything ultimately in physical terms, such panpsy-
chism has come to seem an implausible worldview; hence I conclude that we should
reject both digital ontology and strong computational explanations of mind.

Acknowledgements The central argument presented herein was developed under the aegis of
the Templeton project 21853, Cognition as Communication and Interaction. Some Troubles with

°By adequate here I imply that all relevant properties and functions of the universe can be so
instantiated which, exhypothesi, includes human phenomenal consciousness.
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computation were first aired at the Newton Institute workshop on ‘The Incomputable’, held at the
Kavli Royal Society International Centre at Chicheley Hall (12-15 June 2012). Some elements of
this paper have been extracted from Sdrolia, C. & Bishop, J.M., (2014), Rethinking Construction.
On Luciano Floridi’s ‘Against digital Ontology’, Minds and Machines 24(1), and Bishop, J.M.,
(2014), History and Philosophy of Neural Networks, in Ishibuchi, H., (ed), Computational
Intelligence, UNESCO Encyclopaedia of Life Support Systems (EOLSS).
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Part IV
The Nature of Information: Complexity
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Complexity Barriers as Independence

Antonina Kolokolova

Abstract After many years of effort, the main questions of complexity theory
remain unresolved, even though the concepts involved are simple. Understanding
the main idea behind the statement of the “P vs. NP” problem does not require
much background (“is it easier to check answers than to produce them?”). Yet,
we are as far from resolving it as ever. Much work has been done to unravel the
intricate structure in the complexity world, the “complexity zoo”, contains hosts of
inhabitants. But the main questions are still elusive.

So a natural question comes to mind: is there any intrinsic reason why this is still
unknown? Is there any rationale why the proofs are out of our reach? Maybe we
are not using the right techniques—or maybe we are not pushing our techniques far
enough? After trying to prove a statement and failing, we try to prove its negation;
after failing at that as well, we resort to looking for an explanation that might give
us a hint about why our attempts are failing. Indeed, in the world of computational
complexity there have been several results of this nature: results that state that
current techniques are, in a precise mathematical sense, insufficient to resolve the
main open problems. We call these results “barriers”.

A pessimistic view of the barrier results would be that the questions are hard,
intrinsically hard. But there is a more optimistic way of interpreting them. The
fact that certain classes of proof techniques, ones that have specific properties, are
eliminated gives us a direction in which to search for new techniques. It gives us
a method for discovering ways of approaching questions in places where we might
not have been looking, if not for the barrier results.

In this paper, we will focus on three major complexity barriers: Relativization
(Baker et al., SIAM J Comput 4(4):431-442, 1975), Algebrization (Aaronson and
Wigderson, ACM Trans Comput Theory 1(1), 2009), and Natural Proofs (Razborov
and Rudich, J Comput Syst Sci 55:24-35, 1997). Interestingly enough, all three of
those can be recast in the framework of independence of a theory of logic. That is,
theories can be constructed which formalize (almost) all known techniques, yet for
which the main open questions of complexity theory are independent.
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1 Introduction

Complexity theory evolved from computability theory by restricting the notions of
computable to computable efficiently. The main objects of complexity theory can be
viewed as “scaled down” versions of basic objects of computability theory; here,
“scaling down” amounts to limiting computational resources, such as bounding
quantifiers to make quantified objects “small” and requiring all computation to be
“efficient”.

There are problems which are known to be decidable (that is, there is an
algorithm producing a definite answer for every input), but for which the time to
compute the answers is immense, exceeding the number of atoms in the universe
even for relatively small inputs. Here we assume the customary way of measuring
the computational complexity of a problem as a function of the input size. To
make the notion of “computable” more realistic, it is natural to put a bound on
the computational resources allotted to compute the answer: time for how long the
computation is allowed to run (treated here as the length of the computation, that
is, the number of steps of the algorithm), or amount of memory the algorithm is
allowed to use. We bound the running time (memory) on all possible inputs of a
given length, which is the worst-case complexity measure.

Intuitively, checking whether an input string is a palindrome is a simpler problem
than deciding whether the input is a true statement of Presburger arithmetic, though
the latter also has an algorithm producing an answer for every input. And in
general, a scaled-down version of a problem of finding a solution out of infinitely
many possibilities (i.e., finding an accepting computation of a Turing machine) can
be formulated as finding a small solution (comparable to the size of the input)
significantly faster than by brute-force search over all small answers.

1.1 The Early History of Efficient Time-Bounded Computation

What would be a reasonable bound on the length of computation which would make
it “efficient”? In his 1956 letter to von Neumann,' Godel asks whether there is an
algorithm that, given an n-bit long encoding of a formula, can find a short proof in
k - nor k - n steps, where k is a number (providing the k - n as a lower bound on
such a computation); thus, here, “efficient” is kn or kn?. There is a problem though
with defining “efficient” as linear (or quadratic) in the length of the input: it is too
model-dependent. For example, any single-tape Turing machine needs roughly n>
time to decide if an n-bit string is a palindrome, whereas there is a two-tape Turing
machine which accomplishes this task in about 2n time.

I'This letter, though it outlines many of the central concepts of complexity theory, was only
discovered in 1988, well after these concepts were defined independently.
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A few more papers in the early 1960s dealt with the notions of efficient compu-
tation and computational difficulty of problems. Hartmanis and Stearns [31, 32]
introduced time and space complexity classes and proved, using computability-
theoretic techniques, that giving a Turing machine more time or space allows it
to solve more problems (when time and space bounds are computable functions).
Edmonds [22] discussed the notion of efficient algorithms in the paper where
he provided a better than brute-force search algorithm for finding a maximum
matching in a general graph. And in his talk at the International Congress on Logic
Methodology and Philosophy of Science in 1964, Cobham [16] formulated the
notion of efficient computation that became the standard in complexity theory: the
number of steps of a computation should be bounded by some fixed polynomial
function of the length of an input. There, Cobham also presented a recursion-
theoretic characterization of polynomial time which we will discuss at greater length
later in this paper.’

As the class of recursive (decidable) languages scales down to the class of
polynomial-time computable languages (which we will denote by P), the recursively
enumerable (semi-decidable) languages become NP, non-deterministic polynomial-
time computable languages. That is, this is a class of languages such that for every
string in the language there is a certificate (of size at most polynomial in the length
of the input) which can be verified by a (polynomial-time) computable predicate.
Rather than asking for the existence of a finite computation that can be computably
verified, we ask for the existence of a polynomial-length witness which can be
checked in time polynomial in the length n of the input string. Note that there
are only exponentially many strings of length polynomial in n, so finding such a
witness is always computable in exponential time (EXP): just try all possible small
witnesses and see if one of them works.

Is trying all possible witnesses necessary, or is it always possible to do signif-
icantly better? This question is sometimes referred to as the problem of avoiding
exhaustive search, also known as a “perebor problem” (mpobsiema mnepebopa)
in Russian-language literature. This question was formalized as the “P vs. NP”
question in the seminal paper of Stephen Cook [17] in which the notion of NP-
completeness was first presented; independently, very similar notions have been
formulated by Leonid Levin [44]. Unlikely as it seems, this question is wide open:
though we know from the Hartmanis-Stearns paper [32] that P & EXP, that is, there
are languages computable in exponential time but not in polynomial time, and that
P € NP < EXP, we are still not able to rule out either of these two inclusions
being equalities.

2This paragraph is by no means intended to give a full history of development of these concepts.
There are numerous books and surveys that address this much better. My main goal is to
give a quick introduction to how complexity classes came from the corresponding classes in
computability theory, and motivate why we focus on polynomial-time computation.
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1.2 Bounding Other Resources

There are many more beasts of the complexity zoo roaming in this range between
P and EXP. Probably the most notable one is PSPACE, the class of languages
computable by algorithms using only the amount of memory polynomial in the
size of the input. The canonical complete problem for this class is True Quantified
Boolean Formulae (TQBF) with arbitrary nesting depth of quantifiers; a number of
other PSPACE-complete problems ask if there is a winning strategy in a two-player
game: there, the alternating quantifiers code alternating moves by the two players.

Naturally, P € PSPACE, since even when visiting a different memory location
at every time step, there are only polynomially many locations that can be touched.
Similarly, NP € PSPACE: notice that the algorithm that checks all possible
witnesses can be implemented with only the polynomial amount of memory: each
check takes polynomial time (and thus polynomial space), and the counter to
keep track of the witnesses is bounded by the length of the largest witness. Also,
PSPACE < EXP, since for a given language L and its input, there are exponentially
many possible configurations (say, of the tape of a Turing machine deciding this
language with polynomial amount of space). Then the question of whether this
Turing machine accepts becomes a reachability question: is there a path from the
start configuration to some accepting configuration in the configuration graph of
this computation, where there is an edge from one configuration to another if the
latter can be obtained from the former by a single transition? Since reachability
for polynomial-size graphs can be tested in polynomial time using numerous
algorithms starting from depth first search or breadth first search, reachability
for exponential-size graphs such as this configuration graph can be decided in
exponential time. Note that this also works for non-deterministic settings, as when
there are multiple possible transitions out of a given configuration, so even non-
deterministic polynomial-space computable languages can be computed in EXP. It
turns out that, for polynomial space, non-determinism does not help: a classic result
of Savich [53] shows that non-deterministic polynomial-space computation can be
simulated by a deterministic computation with only polynomial overhead. Thus,
P € NP C PSPACE = NPSPACE C EXP, where only the first and last classes
are known to be distinct.

2 The First Barrier: Relativization

Hartmanis and Stearns [31, 32] were the first to define a notion of a complexity
class (as a class of recursive sequences computable by a multi-tape Turing machine
within a specified time bound given as a function of the input size). With this
definition, they showed that such complexity classes form a strict hierarchy: given
more time, Turing machines can compute more complex languages. The main
tools they used were the familiar methods from computability theory: simulation
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and diagonalization. Essentially, they showed how, given a computable function
T(n), to construct a language computable in time (7'(n))?> which differs from any
language computable in time 7'(n). The quadratic time bound was later improved to
T(n)log T(n) by Hennie and Stearns [34]; subsequently, hierarchy theorems were
proven for non-deterministic computation [18] and space complexity [55].

The proofs of these hierarchy theorems, as is usually the case with proofs based
on diagonalization, have a property which makes the results stronger: they are
insensitive to the presence of oracles. More precisely, an “oracle”, introduced by
Turing [59], is just a language, and an oracle Turing machine for a given oracle
can query whether a given string is in the language in constant (unit) time. This
immediately allows oracle Turing machines to compute incomputable languages by
taking the language in question as an oracle (e.g., oracle Turing machines can decide
the Halting problem by a single query to the language of all positive instances of the
Halting problem). Thus, any language can be decided by a Turing machine with an
oracle to this language, trivially. However, there is no language powerful enough so
that with this language as an, oracle Turing machines can decide everything. And
the proof of this is the same as the standard diagonalization proof of existence of
undecidable languages: the list of all Turing machines with an access to the same or-
acle is countable. Therefore, replacing the list of all Turing machines with the list of
all Turing machines with an oracle A does not change the proof. We will call proofs
which have this property, insensitivity to the presence of oracles, relativizable.

The Hartmanis-Stearns proof of the hierarchy theorem uses just the diagonaliza-
tion and so is relativizable. Given an oracle, there is a hierarchy of time and space
complexity classes with respect to this oracle. However, when types of resources are
mixed, the situation gets more complicated, leading to the first barrier that we will
consider, the relativization barrier.

2.1 Relativization: The Baker, Gill, and Solovay Theorem

If there is a purely diagonalization-based proof of P # NP, then this proof should
be insensitive to the presence of oracles. So, P with an oracle A (denoted by P*)
should not be equal to NP* for any oracle A. However, Baker, Gill and Solovay in
their 1975 paper presented oracles A and B such that, with respect to A, P = NP,
and with respect to B, P # NP.? Thus, in particular, neither the proof of P = NP
nor of P £ NP can be done using relativizing techniques such as diagonalization.
The first oracle, A, for which PA = NP, is chosen to be a language powerful
enough that it can be used to solve problems in both P and NP, and in a class with
good closure properties. In particular, A can be any language that is complete for

3According to Baker, Gill and Solovay, an oracle for which P = NP was independently
constructed by Meyer and Fischer, and also by H. B. Hunt III; however, they did not use the
oracle described here. For P # NP, they attributed some constructions to Ladner, and some again
to Meyer/Fischer.
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PSPACE. It is possible to decide languages in NP* in NPSPACE by simulating
all polynomially many queries in PSPACE for each non-deterministic branch of
computation. Note that, since PSPACE = NPSPACE by Savitch’s theorem, NP*
is already in PSPACE. Finally, PSPACE C P4, as every language in PSPACE
can be decided by a reduction to A (in polynomial time) by definition of its
completeness. Therefore, P4 = NPA.

The oracle B for which P and NP are separate is constructed in [11] using
diagonalization ideas. Consider, for a given set B, a language L(B) which contains
all strings of a given length if there is a string of that length in B, and no strings of
that length otherwise (that is, L(B) = {x|3y € B (|x| = |y|)}). This language is in
NP2, because it is possible, given x, to check if any y of the same length is in B,
checking one such y on any computation path. The interesting part is to construct B
such that L(B) ¢ P5.

The set of strings which could potentially be in the oracle is divided into blocks
by size, where each block is designed to fool the ith polynomial-time Turing
machine M;. Consider the behaviour of M; on the string 0", for n exponentially
increasing at each step and such that 2" is larger than the limit on M;’s running
time. If M; accepts 0", then ith block will contain no strings (so for all x such that
|x| = n, x ¢ L(B), yet M; accepts 0"). Otherwise, it will contain one string, which
is the smallest string of length n not queried by M; on 0%; it exists because 2" is
larger than M;’s running time. Since M; does not query this string, its presence or
absence in B will not affect M;’s not accepting 0”. But if M; were deciding L(B), it
would have to accept all strings of length n, including 0”. Finally, because each # is
chosen to be exponentially larger than the n from the previous stage, but all M; run
in polynomial time, no previous M; can query strings of length 7, so adding strings
of length n does not change their behavior.

In the same paper, Baker, Gill and Solovay construct a number of oracles
corresponding to various scenarios of relationships between these classes. Is NP
closed under complementation when it is not P? For both there is an oracle with
respect to which this scenario is true. If not, then is P the subset of NP closed
under intersection? Again, for both of them an oracle world making it true can
be constructed. A number of subsequent results showed that for a vast majority
of complexity questions there are contrary relativizations: existence of one-way
functions, power of probabilistic algorithms (BPP vs. P), interactive games (IP vs.
PSPACE), etc.

This surprising result can be immediately recast to show, for example, that with
respect to some oracle C, P vs. NP is independent of the axioms of ZFC (or
other axiomatizable consistent formal theories). More specifically, Hartmanis and
Hopcroft [30] construct a recursive set C using the [11] oracles A and B as follows.
Let C be the language £(M) of a Turing machine M which accepts x if there exists
either a proof of P£™ = NP*™ among the first x proofs in the theory and x € B,
or a proof of P£® £ NP*™ among the first x proofs in the theory and x € A. The
existence of such an M comes from the recursion theorem. Let C = £(M). But now
C is essentially A, except for the finite part, if there is a proof of P¢ # NP, and
essentially B if there is a proof of P€ = NP€, contradicting the [11] theorem that
the opposite is true for oracles A and B.
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2.2 Polynomial Time as a Black Box: The Recursion-Theoretic
Definition

Hartmanis and Hopcroft use results from [11] to define a complexity-theoretic
problem independent of Zermelo-Fraenkel set theory. A different logic question
that the relativization barrier inspires is whether it itself can be restated as an
independence result. It does have a similar flavour: no technique with a certain
property can be used to resolve questions. Thus, intuitively, a theory formalizing
the reasoning having this property would only prove relativizing results, and all
non-relativizing results would be independent from it. This intuition has been made
precise in the unpublished manuscript* by Arora, Impagliazzo and Vazirani [6].

But which property would such a theory formalize? One way to summarize the
techniques that give relativizing results is to say that they treat computation as a
black box. Such techniques rely on the closure properties of the corresponding
classes of functions, and on properties such as the existence of a universal function
for a class (useful for simulation). However, they do not consider the inner workings
of a model of computation such as a Turing machine: in most such results, a
Turing machine can be readily replaced with a Random Access Machine or a
recursion-theoretic characterization of the corresponding function class. Consider,
for example, the difference between lambda calculus and the Turing machine
models. In the former framework, the only information about the functions is their
recursive definition. So they are, computationally, black boxes. There is no extra
information. But in the Turing machine computation, there is a lot of additional
information: for example, subsequent steps of computation only affect a small
number of adjacent cells.

So, a theory formalizing only relativizing techniques can be based on reasoning
that only works with some generic recursion-theoretic definition of a class of
functions in a complexity class. And in [6], Arora, Impagliazzo and Vazirani
explored that idea by building upon Cobham’s [16] definition of polynomial-time
computable functions.

Definition 2.1 Let FP’ be a class of functions satisfying the following properties:

1. FP' contains basic functions’: constant, addition, subtraction, length |x|,
BIT(x, ), projection, multiplication and the “smash” function 2l

4This paper has never been published, although it is mentioned in a number of published works.
The standard graduate complexity theory textbook by Arora and Barak [4] devotes a page to
it; Fortnow discusses it in his 1994 [23] paper. Most publications on the algebrization barrier,
including [2], reference [6] and the follow-up paper [36], rely heavily on the results of [6] to
formalize algebrization; it is mentioned in a number of other publications by Aaronson. Sometimes
this manuscript is dated 1993 and/or cited with a title “On the role of the Cook-Levin theorem in
complexity theory”.

SIn fact, successors so, s; and smash are sufficient.
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2. FP' is closed under function composition f o g and pairing (f(x),g(x)) of
functions.

3. FP' is closed under the limited recursion on notation: for functions g, hy, h; €
FP' and constants c, d,

f(x,0) = g(x) (1)
S, 2k) = ho(x, k, f(x, k) fe,2k+ 1) = hi(x, k, f(x, k) (2)
| £ k)| < clx]? 3)

Here, c|x|¢ provides a polynomial bound on the length of the output of f(x, k) to
avoid using repeated squaring to define exponentiation. In this case, we use a true
polynomial bound rather than a function from FP’.

Cobham’s celebrated result states that the class FP of polynomial-time com-
putable functions is the minimal class FP’ satisfying Definition 2.1. But what can
be said about classes FP’' satisfying these axioms which are not minimal? Such
classes might contain, in addition to polynomial-time functions, spurious functions
of arbitrary complexity and their closure under polynomial-time operations. This
already becomes reminiscent of the idea of an oracle: indeed, adding a characteristic
function of an oracle to FP and closing under the operations (composition, pairing,
limited recursion on notation) gives an FP’ satisfying the definition.

Suppose now that FP’ is a class satisfying the definition. Can it be viewed as
FP? for some oracle O? First of all, if the spurious functions produce a huge (non-
polynomial length) output, then they would not fit into the oracle framework: an
oracle polynomial-time Turing machine gets one bit of information from each query
to the oracle, and has only a polynomial in input length amount of time to write
its answer on the tape. But what if every function in FP’' produces an output of
polynomial length, in the same manner as the output of the function in the limited
recursion on notation is polynomially bounded? Then, an oracle can be constructed
with the use of one more device: a universal function for FP'. This universal
function, U(i, t,x), is defined to compute f;(x) within the time bound ¢, for every
f; € FP'. Note that without the time bound there is no universal function for FP that
would be in FP, even for the actual class of polynomial-time computable functions:
there is no specific polynomial that can bound the running time of every polynomial-
time function by the time hierarchy theorem. However, for every polynomial-time
function, there is a bound 2/ for some constant ¢ depending on the function which
would allow the universal function to be computed within the time polynomial in
its parameters. Now, provided U(i, 1, x) is in FP’ and is a universal function for FP’,
an oracle O that on a query (i, , x,j) outputs the jth bit of U(i, , x) is sufficient to
compute all functions in FP' in FP9.
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2.3 Relativization as Independence: The Arora, Impagliazzo
and Vazirani [6] Framework

Let T be a theory (for example, the Peano Arithmetic). Rather than reasoning about
the actual polynomial-time functions in 7, we would like to reason about functions
in FP' given by the recursive definition above: this will be essentially the only
information about these functions given to the theory. The question now becomes:
what kind of results can be proven in 7 given only this limited information about
FP'? Tt does not matter too much what is the reasoning power of T itself: we can
take T to be as powerful as needed to formalize the combinatorial arguments a proof
might require. The main restriction is the black-box view of FP’ functions.

More precisely, define RCT (for “relativized complexity theory”) to be T (Peano
Arithmetic) augmented with function symbols f, f>, . . . satisfying the axioms from
Definition 2.1, together with two more axioms discussed above, one bounding the
length of FP' functions and another giving the existence of a universal function for
FP'.

Vf € FP'3c,dVx |f(x)| < c|x|? (Axiom Length)
AU € FPVf € FP'3i,cVx  f(x) = Ui, 2" x) (Axiom U)

The resulting theory can be viewed as a two-sorted theory, with a number sort
and a function sort. Functions here are defined over integers; multiple arguments
can be represented using pairing. The notation f(x) is a shortcut for Apply(f, x); the
latter notation allows for the theory to remain first-order with the introduction of the
function symbols.

Recall that a standard model of a theory of arithmetic interprets number variables
as natural numbers, and function and relation symbols as functions and relations
over natural numbers, with symbols such as 4, X, 0 getting their usual meaning. A
standard model of RCT can be fully described by interpretations of all symbols in
T together with interpretations of all f; € FP’. Thus, interpreting Peano Arithmetic
symbols in the usual manner, a standard model of RCT can be viewed as a set
of interpretations of functions in FP’. This, together with the discussion above,
gives the following correspondence: any standard model with FP’ a set of additional
functions satisfies RCT if and only if there is a set O C N such that FP' = FPO.

For the proof, it is enough to consider the same arguments as above for encoding
“spurious functions” as an oracle by the O(i,t,x,j) = jth bit of U(i,,x) for one
direction, and adding a characteristic function of O as a “spurious function” to FP
to obtain FP’ as the closure for the other.

In this framework, the results from [11] become statements about independence:
there exist two models of RCT, corresponding to FP4 and FP?, which give contrary
relativizations of the P vs. NP question. On the other hand, by assumption about the
power of the underlying theory, proofs of theorems such as the Hartmanis/Stearns
hierarchy theorem [32] are formalizable in RCT.
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3 Non-relativizing Results and the Next Barrier

The result of Baker, Gill, and Solovay [11] shows that we cannot rely on the
simulation and diagonalization techniques alone to resolve major complexity
questions. But what other options are there? What other techniques can be used
that avoid this barrier? Intuitively, these have to be techniques that look at the
computation more closely than in the black-box way, techniques that analyse
intrinsic properties of computation of specific computational models. Thus, the
choice of the computational model will matter for approaching these problems.

Already, Stockmeyer [56] has talked about the significance of a representation
of a machine model for complexity-theoretic results. The convenience of various
representations for complexity results, even as differences between different ways to
write a configuration of a Turing machine, has been studied on its own, in particular
in [60].

After [11] appeared, a targeted search for non-relativizing results ensued. But
even before, there were results in complexity theory that avoided the relativization
barrier, the prime example being the Cook-Levin theorem. A number of important
non-relativizing results came in the early 1990s, mainly in the setting of computation
recast as “proof checking”, including the IP = PSPACE proof of [45, 54]
(especially surprising since even with respect to a random oracle, IP # PSPACE
with probability 1 [15]) and the PCP theorem [5, 7].

3.1 Interactive Proof Systems

Both the IP = PSPACE and the PCP theorem view, though in a somewhat different
manner, solving a decision problem as a dialogue between a resource-bounded
verifier and a powerful prover. In that setting, NP can be viewed as a class of
problems where it is possible to verify in polynomial time that a given proof (i.e.,
a solution) is correct; for an input not in the language, no alleged proof will pass
the scrutiny of the verifier. Interactive proofs generalize this in two ways. First,
they allow for multiple rounds of interaction, with the verifier asking the prover for
more and more answers to its questions. Alone, this generalization does not give
extra power: the resulting class of problems is still NP, as the whole protocol of the
interaction, being of polynomial length, can serve as a proof. More importantly, the
verifier is allowed to use randomness; but then it may make mistakes. However, as
long as the probability of the verifier making a mistake is less than 1/3, we consider
the interaction to be successful.

Definition 3.1 A language L is in the class IP if there exists a verifier such that, on
every input x,

* if x € L, then there is a prover (interaction strategy) that can convince the verifier
with probability > 2/3 (over the verifier’s randomness),
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e if x ¢ L, no prover can convince the verifier that it is in the language with
probability > 1/3.

Here, the constant 1/3 is not essential: any 1/2 — ¢ would do, for € within an
inverse polynomial of the length of the input, the reason being that repeating the
protocol with a different choice of randomness decreases the error probability.

A classic example of a problem with a natural interactive proof protocol is
the graph (non-)isomorphism: checking whether two graphs are the same up to
permutations of the vertices. In the graph non-isomorphism problem, the input
consists of encodings of two graphs, G, G2, and the algorithm should accept if
G, and G; are not isomorphic. This problem is not known to be in P, but neither is
it believed to be NP-complete.® To see that its complement, graph isomorphism, is
in NP, note that giving a permutation of vertices of G; that makes it G, is sufficient
for the certificate, with the verifier checking that all the edges now match. Now,
suppose the verifier randomly picks one of Gy, G, permutes its vertices to obtain
a new graph G3, and then sends G3 to the prover, asking to identify whether Gj is
a permuted version of Gy or of G,. The protocol, due to [27], is described below;
there, r denotes the verifier’s random bits.

Verifier(r, G, Gy) Prover(Gy, Gy)

pick i} € {1,2} randomly

permute Gy, to get G3

G3
_
find j; such that G;, =~ G;
J
e
if j; # i reject
else pick i € {1,2}
compute G4 = G,
Gy
_
find j, such that G;, = G,
J2
-

if j, # ip reject

else accept

5The recent breakthrough result by Babai [9] puts Graph Isomorphism in quasi-polynomial time
(i.e., time nPoY 196 which is tantalizingly close to polynomial time.
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If the two graphs are isomorphic, then G3 could have come from either of them,
so there is 1/2 chance that the prover answers correctly. However, if G| and G, are
different, then, being computationally powerful, the prover can say with certainty
which of G, G, the verifier picked. Thus, if the graphs are non-isomorphic,
the prover answers correctly with probability 1, and if they are isomorphic, with
probability 1/2. Now, as 1/2 is not good enough for our definition of IP, suppose
the verifier repeats this procedure by picking a graph and permuting the vertices
twice with independent randomness. This creates two graphs, G3 and G4, and the
verifier then asks the prover for the origin of each. If G|, G, are isomorphic, then
the probability that the prover is correct in both cases is only 1/4. Note that here it
is not necessary to use multiple rounds of interaction: even though the verifier can
ask about G3, receive the answer, and then ask about Gy, it is just as easy to send G3
and Gy to the prover simultaneously.

Interactive proofs can be simulated in PSPACE: since each interaction protocol
is of polynomial length, it is possible to go over all such protocols for a given input
x and a given verifier, and find the answers given by the best prover. With those, it
is possible to count in PSPACE the fraction of random strings for which the verifier
accepts or rejects.

3.2 Power of IP in Oracle Worlds

The main non-relativizing result that we will discuss is IP = PSPACE. However,
there are oracles (and, in fact, nearly all oracles are such) for which the inclusion
of IP in PSPACE is strict. The construction of the first such oracle goes back to
Fortnow and Sipser [25]; they present an oracle C with respect to which there is
a language in CONP (the class of languages with complements in NP), but not in
IP. Guided by this result, they conjecture that IP does not contain CONP, and that
proving such a result would require non-relativizing techniques—as with respect to
the oracle A, for which PA = NP, IP contains CONP since it contains P. The IP =
PSPACE result shows that this intuition is misleading, as PSPACE is believed to be
so much more powerful than CONP, containing all of the polynomial-time hierarchy,
and more.

The idea behind Fortnow/Sipser’s oracle construction is similar to that behind
the construction of the oracle B from [11], for which P® # NP2. As for B, the
oracle C is constructed using diagonalization ideas. A language L(C) will contain
all strings 1" for which all strings of length n are in C, that is, L(C) = {1" | Vx, |x| =
n,x € C}. It is easy to see that this language is in CONPC, as it is enough to ask the
oracle for all strings of length n, and accept if all answers are “yes”. Now, as for
the construction of B from [11], the oracle C is constructed in blocks, where the
ith block is constructed to fool the ith potential verifier V;. Assume that the running
time of V; is within n' for all i; then V; cannot pose queries longer than n'. Let N; be
the length on which V; will be forced to accept or reject incorrectly with probability
higher than 2 /3 (there, N; should be large enough so that Nf:ll < Nj,and 2V > 3ND).
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First, put into C all strings that V; asks the oracle about. If there are no provers
that make V; accept 1V with probability at least 2/3, then put all the remaining
strings of length N; into C, in which case 1V € L(C) and V; cannot be convinced of
that. Also, put into C all strings V; would ever ask about for any other provers other
than ones considered in previous blocks.

Now, suppose that there is a prover P that will make V; accept 1" with probability
at least 2 /3. One cannot guarantee that there is a string of length N; that has not been
queried by V; for any choice of V;’s random bits; however, one can argue that a string
x that is queried the least appears in less than 1/3 possible computation paths, as N;
was chosen to be such that 2% > 3N!. Remove x from C; this will be the only
string queried by V; over all possible interactions with P that are not in C. Now,
even if querying this string makes V; reject, it will affect less than 1/3 of possible
computation paths of V; on 1V. So V; will still accept 1V with probability greater
than 1/3, completing the proof.

Even though there is an oracle with respect to which IP is quite weak, one could
say that this is an outlier, and maybe in general the power of IP with respect to
an arbitrarily picked oracle will be more in sync with its power in the real world.
This intuition, that behaviour with respect to a random oracle was indicative of
the situation in the real world, became known as the random oracle hypothesis,
following the result from Bennett and Gill [13] that P4 # NP* with probability
1 over oracles A. There, a random oracle is constructed by putting each string x in
the oracle with probability 1/2. However, a 1994 paper by Chang, Chor, Goldreich,
Hartmanis, Héstad, Ranjan and Rohatgi, titled “Random oracle hypothesis is false”
[15], shows that with respect to a randomly chosen oracle A, CON pA < IP4, and so
the behavior of IP for the oracle C of [25] is typical rather than exceptional.

1V

3.3 Arithmetization

Many of these new non-relativizing results rely on a technique called arithmetiza-
tion. In arithmetization, a Boolean formula is interpreted as a polynomial, which for
0/1 values of variables (corresponding to false/true in the Boolean case) evaluate
to 0 or 1. However, one can evaluate this polynomial on any integers or elements
of a given finite field, and obtain a host of values giving more information about
the structure of the formula. More precisely, to convert a Boolean formula such as
(X V y) A z to a polynomial, the conjunction A is interpreted as multiplication, and
negation x as (1 — x). Then, (x Vv y) is converted, as (x A y),to 1 — (1 —x)(1 —y) =
x+y—x-y.So the formula (x V y) A z becomes a three-variate polynomial
(1—=x-(1—y))-z. It can be checked that a formula resulting from this transformation
indeed evaluates to 0/1 values when inputs are Os and 1s, and it evaluates to 1 exactly
when the original formula is true.

Arithmetization is a powerful algorithmic technique: for example, if the resulting
polynomial is multilinear (that is, no variable occurs with degree more than
1), then counting the fraction of assignments of this formula that are satisfying
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can be done by evaluating this polynomial with every variable set to 1/2 [41].
In converting a formula to a polynomial, though, both A and V translations
involve multiplication; thus, resulting polynomials, though of polynomial degree
and described by polynomial-size circuits, are quite unlikely to be multilinear. One
can always create a multilinear polynomial of a formula by taking a sum over terms
corresponding to each satisfying assignment or taking a Fourier representation, but
such a sum is likely to have more than a polynomial number of coefficients.

3.4 IP Protocol for Counting Satisfying Assignments

In general, counting the number of satisfying assignments is believed to be a
harder problem than determining whether a formula is satisfiable. In fact, this
problem (and, equivalently, computing the Permanent of a Boolean matrix) is at
least as hard as any other problem in the polynomial-time hierarchy. The latter is
the celebrated theorem by Toda [58]; see [24] for a short proof. The problem of
counting the number of satisfying assignments, sometimes referred to as #SAT, is
in PSPACE, and the technique for proving that it can be done using interactive
proofs is very similar, except for a few details, to that for proving IP = PSPACE.
Historically, this was one of the results leading the proof that IP = PSPACE;
a quite entertaining account of the history of this result is presented in Babai’s
“E-mail and the unexpected power of interaction” [8].

Theorem 3.2 ([45]) #SAT < IP.

Proof To simplify the notation, let us use a decision version #SATp of #SAT, where,
given a formula ¢ and a number K, the goal is to check whether K is the number
of satisfying assignments of ¢. To show that #SAT), is in the class IP of problems
that have interactive proofs, we will explicitly exhibit an interactive proof protocol
for it. That is, we will describe which protocol the verifier should follow to check
if an alleged proof presented by the prover is correct; if presented with a correct
proof in the format it expects, the verifier will accept with probability 1, and for any
incorrect proof, it will reject with probability significantly higher than 2 /3.

The number of satisfying assignments of a formula ¢ (xy, . .., x,) is equal to the
sum, over all possible assignments, of the polynomial p(x,...,x,) obtained by
arithmetizing ¢. Thus computing the number of satisfying assignments amounts
to computing

Z Z Z pxr, ..., x).

x1€40,1} x2€{0,1} x,€{0,1}

For example, if the original formulais ¢ = (x; vV —x,), then the resulting polynomial
is 1 — (1 —x1)x; = 1 —xp 4 x1x2, and the number of satisfying assignments of ¢ is

Z Z 1 —x +x1x0 = 3.

x1€{0,1} x,€{0,1}
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The first key idea of the protocol is checking the value of the sum one variable at a
time: setting

pi1(x1) = Z Z p(x1, ..., X)),

»ne{0,1}  x,€{0.1}

if p; is correct then it is sufficient to compute p;(0) 4+ p;(1) to obtain the answer.
The second idea is recursing on evaluating the sum with a random number inserted
in place of x;. More specifically, the protocol proceeds as follows.

1. Verifier asks for the coefficients of the univariate polynomial

pi1(x) = Z Z pxr, ..., xn).

x»nef{0,1}  x,€{0,1}

2. Prover sends the (alleged) coefficients of ¢; o, . .. ¢1 , of p; to Verifier.

3. Verifier checks that K = p;(0) 4 p;(1). If not, it rejects as it knows that Prover
must have been lying.

4. Verifier picks a random number 0 < a; < 2" and sends it to Prover.

5. Now, repeat the following from i = 2 to i = n, or until Verifier rejects.

(a) Prover sends the alleged coefficients of

pi(xi): Z Z P(al,---,ai—l,xi,---,xn)-

Hp €0} xe0.1)

Note that p; is a univariate polynomial in x;.
(b) Verifier checks that p;_i(ai—1) = pi(0) + p;(1). If not, reject.
(c) Verifier picks a random 0 < a; < 2" and sends it to Prover.

6. Prover sends the alleged number ¢ = p(ay, ..., a,)
7. Verifier checks that p(ay, . .., a,) = c.If not, reject. If so, then Verifier concludes
that K is indeed the correct number of assignments of ¢.

As an example, suppose that ¢ = (x; V —xp), with K = 3 assignments, and
p(x1,x2) = 1—x+x1x,. Here, p1(x;) = 14x1, and so the correct prover sends back
co = 1, ¢ = 1. Now, the verifier checks that p;(0) 4+ p;(1) = 1 + 2 = 3; this check
passes. Then the verifier picks a number a;; for example, a; = 6, and sends that
to the prover. The prover now has to compute the coefficients of p2(x2) = 1 + 5x;
and send them to the verifier. The verifier checks that p;(6) = p2(0) + p2(1) = 7.
It then picks another number, say a, = 4, and sends it to the prover. The prover
then computes p(a;, ay) = 21, and sends 21 to the verifier. Now, the verifier checks
that p(a;,a;) = 21, and concludes that 3 is indeed the number of the satisfying
assignments to ¢.

If the prover always produces the correct coefficients and K is the correct number
of assignments, then it is clear that the verifier will accept. To show that the
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probability of accepting an incorrect value is small, note that two distinct univariate
polynomials of degree d 4+ 1 may agree on at most d values of the variable, and the
probability of randomly picking one of these d values is at most d/2". This is the
probability that any check p;—;(a;—1) = p;(0) + p;(1) passes incorrectly. Thus, if K
is wrong, then the probability that the verifier rejects is at least (1 — d/2")", which
is much larger than 2/3. O

3.5 IP =PSPACE

A very similar protocol can be used to check whether a quantified Boolean formula
® = Vx 13, Vs ... Ox,¢(x) is true: here, Q is either V or 3, depending on n. There,
existential quantifiers correspond to a sum, and universal quantifiers to a product
of the values of the arithmetized formula under them. For example, suppose that
® = Vx; I Va3 (x1 vV —x2) A (—xp V —x3). Then the polynomial py for the formula
(x1 V=) A (—x1 vV —x3) is (1 —xp + —x1x2) (1 — x1x3). Now, given Boolean values
for x; and x;, the formula Vx3(x; V —x;) A (—x] V —x3) is true when polynomial
Do (x1,x2,0) - py(x1,x2, 1) = (1 —x2 + x1x2)(1 — x2 + x1x2) - (1 — x1) is 1; false
corresponds to 0. Proceeding in this manner, we obtain an arithmetic expression
which is equal to 1 iff ® is true, and to O iff ® is false.

Note that the universal quantifier created a product of polynomials, thus doubling
the degree. If there are n universal quantifiers, then the resulting degree can
be exponential in the number of variables; thus the protocol above would need
exponentially many coefficients to describe such a polynomial. To get around this
problem, intermediate polynomials can be converted into a multilinear form by
noticing that

p(—xlv"'7-xi—lv-xi7-xi+lv"'7-xn) :-xi'p(-xls---s-xi—ls I,Xi+1,...,xn)+

+(=x) - plxr, .o Xim1,0, X401, ..., Xn)

over Boolean values of x;.

With this modification, essentially the same protocol can be used to check if ®
is true, except the verifier would check if the sum p;,—i(a;=;) = pi(0) + p;(1) is
right when x; is existentially quantified, and if the product p;—i(a;—1) = p;(0)p;(1)
is correct for a universally quantified x;.

3.6 Algebrization Barrier

Although there are results on the complexity of oracles with respect to which IP =
PSPACE holds soon after the results themselves have been proven (for example,
[23]), the barrier itself was defined in 2008 by Aaronson and Wigderson [2]. There,
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the main idea was to allow access not just to an oracle A as a language, but also its
algebraic extension A: here, A is a low-degree polynomial which agrees with A on
Boolean inputs. We view an oracle access for a formula or a polynomial as having
operations of the form A(by, ..., by), where by, ..., by form a query.

Aaronson and Wigderson deﬁne an inclusion of complexity classes C; € C; (for

example, PSPACE” C IP*) to be algebrizing when C* C C4 no matter how A is
chosen, as long as it is a low-degree polynomial extension of A As for separations,
C| ¢ C, is algebrizing whenever, again for any polynomial extension A, cl ¢ C.
That is, an inclusion in their setting algebrizes if C, can simulate C{ with a little
more powerful access to the oracle A; and a separation algebrizes if a more powerful
access to A for C; makes it impossible to simulate C; in C, with the conventional
access.

With these definitions, they show that algebrization indeed provides a pretty
precise boundary of the current techniques: most known non-relativizing results
algebrize, and most open questions do not. In particular, the proof of PSPACE* <

IP* uses the same protocol as the original proof, with the verifier relying on the
oracle access to A to evaluate py(ai, . . ., a,). However, questions such as P vs. NP
do not algebrize: an oracle A and its algebraic extension A can be constructed for

which NP4 € PA, whereas for a different B with its extension B, NP? ¢ PE.A
number of other open questions are similarly non-algebrizing. The main tool used
for proving such independence results is communication complexity.

But these results need a different kind of oracle on the two sides of an inclusion
or a separation. For what kinds of oracles would it be possible to use the same
language as an oracle on both sides? In 1994, Fortnow [23] showed how to construct
a language that encodes its algebraic extension, and proved that with respect to
these kinds of languages, IP = PSPACE. He constructs such a “self-algebrizing”
language inductively. (A multilinear extension of TQBF* gives another example
of a language that encodes its own algebraic structure.) Let L be a language, and
let L be the unique multilinear extension of L. Start by setting A(0, x1,...,x,) =
L(xi,...,x,). Now, ifi(xl, ey Xn) > 0,put (1,xq,...,x,) inA. Finally, Vi> 0, set
A(i+ 2,x1,...,x,) to be the zth bit ofL(xl, ey Xp)- Thus a value of L(xl, cesXn)
could be obtained by using A as an oracle.

Though IP = PSPACE with respect to any oracle of this form, it is not clear
whether there are such oracles giving differing outcomes for major open questions
such as P vs. NP.

3.7 Axiomatizing Algebrization

To create a theory capturing algebrizing techniques, we start with the theory RCT for
relativizing techniques, and use additional axioms to keep only the standard models
with enough algebraic structure [36]. To achieve this goal, we add an axiom stating
that NP is a class of languages that have solutions verifiable by polynomial-time
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computable low-degree polynomials in polynomially many variables. There, the
“polynomial-time computable” is in the setting of RCT, that is, functions definable
by Cobham axioms without minimality. We call the resulting theory ACT, for
“algebraic complexity theory”.

Now, the models of ACT can still contain spurious functions interpreted as
polynomial-time, as long as they are closed under polynomial-time operations.
However, now such functions used as polynomial-time verifiers have to be repre-
sentable by low-degree polynomials. Alternatively, we can add an axiom redefining
polynomial time, by stating that every polynomial-time function has a unique
polynomial-time computable witness.

For example, consider the classic NP-complete problem Independent Set: given
a graph and a number k, check if there are k vertices in the graph such that there are
no edges between any of these k vertices; this set of vertices is an independent set
in the graph. Let input variables x;; be 1 if there is an edge between vertices i and
J» and be 0 otherwise. Let witness variables y; be 1 iff vertex i is in the independent
set, and 0 otherwise. Now, the polynomial

fCoy) =0y +yi +y—3) - ILa(Z_,yi — 1)

will be non-zero if and only if there is an independent set of size at least k in the
graph. There, the first product will be 0 if there is an edge between two vertices i, j
for which y; = y; = 1, and the second product is 0 if there are only # < k variables
y; that are 1.

This view of computation is less black-box than the original Cobham axioms:
we do require polynomial-time functions to have some structure. However, there are
still abitrarily powerful functions that could show up in models of ACT. In particular,
a characteristic function for any of the oracles built using Fortnow’s construction
described above, the “self-algebrizing oracles”, would be a function with respect
to which this axiom is satisfied, that is, NP has witnesses definable by low-degree
polynomial-time computable polynomial families.

Now, this theory is clearly more powerful than RCT. It is possible to show
that nearly all results that algebrize in the sense of [2] are provable in ACT, and
open questions that require non-algebrizing techniques are independent of ACT. In
particular, IP = PSPACE is provable in ACT, and P vs. NP is independent of it.

One notable exception is MIP = NEXP by Babai, Fortnow and Lund [10]:
when a randomized polynomial-time verifier is allowed to interact with several
provers that do not talk to each other, it becomes possible to solve not just PSPACE
problems, but ones as hard as non-deterministic exponential time. This equality is
also independent of ACT, even though Aaronson and Wigderson show in [2] that
a version of this statement algebrizes. However, they only allow a NEXP Turing
machine to asking oracle queries of polynomial length, to make it “more fair” for
MIP, where the verifier cannot possibly ask longer queries. But such a restriction
makes NEXP* much too weak [35]. Consider an oracle A = {(M,x,1) | M
is a non-deterministic Turing machine and M* accepts x on some path with all
oracle queries shorter than ¢}. With respect to this oracle, NEXP* = P4 when
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NEXP* is restricted to ask only polynomially long queries. This goes against the
time hierarchy theorem, which relativizes.

This axiomatic approach is one example where considering a complexity barrier
from the logic viewpoint, as an independence of a logic theory, allows for a more
convenient setting. Moreover, with the closure under logic operations, it becomes
possible to argue about composite statements such as “BPP = P and P # NP”:
this statement is independent of ACT, as well.

4 Efficient Reasoning, Circuits and Natural Proofs

4.1 Bounded Arithmetic

Before, we talked about creating specific theories of arithmetic to formalize
polynomial-time computation and its relativizations. However, there is an area of
mathematical logic that is specifically developed to study the reasoning correspond-
ing to efficient computation, such as reasoning with polynomial-time definable
concepts. Starting with Parikh’s [46] fragment of Peano Arithmetic, where induction
is limited to bounded formulas, followed by Cook’s equational theory PV [19] and
then Buss’ theories [14], bounded arithmetic (term coined by Buss) became one of
the standard ways to work with complexity theory concepts in the logic framework.
By contrast with RCT and ACT described above, the polynomial-time computable
objects are now indeed polynomial-time, and, moreover, the reasoning power of
bounded arithmetic theories is severely restricted by allowing only reasoning with
such “efficient” concepts.

This is accomplished by restricting, for example, the induction axiom of Peano
Arithmetic to formulas where all quantifiers are bounded by terms in the language.
The resulting theory, /Ay, captures the linear-time hierarchy, but a number of theo-
ries with richer language (including x#y = 201y capture exactly polynomial-time
computable functions. Another way is to construct two-sorted theories operating on
strings as well as numbers, and lengths of strings, as well as values of numbers,
bounded by the term. In this case, there is no need to introduce # in the language.
There is a direct correspondence between these theories and Buss’ hierarchies
via “RSUV isomorphism” [48, 57]. One advantage of such a characterization is
that “reasoning with concepts from a class C” is easy to state using finite model
theory characterizations of the corresponding class [21, 42]: for example, induction
over Gridel’s second-order Horn formulas [28] gives a theory of polynomial-time
reasoning [20].

We will skip the formal definitions; see Krajicek [43], Buss [14], Pudldk and
Hajek [29], and Cook and Nguyen [21] for more information.

These theories are too weak to prove the totality of exponentiation, that is, that
for every x there exists y = 2*. And overall, independence results for them mean
“not provable with computationally easy reasoning”. For example, in Buss’ theory
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Si, which operates with NP-definable predicates and has induction on the length of
a number, any bounded existential statement ¢ for which S; proves that ¢ € NP N
CONP can be witnessed in polynomial time. This result, which is known as Buss’
witnessing theorem, immediately implies that S} cannot prove that P  NPNcoNP.

So what kinds of results, in particular complexity results, can be proven using that
kind of limited reasoning? It is possible that these theories, or just slight extensions
of them, are sufficient to formalize the known complexity results: see, for example,
[49], Krajicek [43], Cook and Nguyen [21] or Pudldk [47]. Some of the more recent
results about provability and unprovability of complexity-theoretic statements in
bounded arithmetic are due to Jerabek (formalizing probabilistic reasoning and
pseudorandomness in an extension of Si with a dual weak pigeonhole principle)
[37-40]; many other related results are in the works of Krajicek, Cook, Buss,
Razborov, and others.

One may ask whether independence of P vs. NP from a very strong classical
theory, such as ZFC or Peano arithmetic, is a possibility that should be considered
instead of focusing on these very restrictive theories. A possible reason why this
is quite unlikely is given by Ben-David and Halevi [12]. They show that if P vs.
NP is independent of Peano arithmetic augmented with all T1; sentences true in
the standard model, then NP is “essentially polynomial-time”, as there exists a
deterministic algorithm for SAT that makes few mistakes, with complexity n/®,
where f(n) is a very slow growing function. An expository paper by Aaronson [1]
contains an excellent discussion of this subject.

4.2 Circuit Lower Bounds

The 1990s saw a flurry of beautiful results in another area of computational
complexity theory: circuit complexity. There, the requirement that there be a single
Turing machine solving a problem for all input lengths in bounded time is relaxed
to consider a family of computational devices solving the problem, one for each
input size, with the sizes of the devices growing only slowly (polynomially) with
the number of input bits. The setting is often referred to as non-uniform. Non-
uniformity does make for a much more powerful model: for example, the unary
Halting Problem, asking if the nth Turing machine halts on blank input, with n
encoded in unary or as |x|, is trivially solvable in this model using only constant
size devices.

In particular, devices that we will consider here are Boolean circuits: acyclic
graphs with inputs as sources, a single output as a sink, and every node (gate)
computing a Boolean function over values of gates with edges coming into it. In
the most basic case, the Boolean functions at gates are AND, OR and NOT. For
example, this circuit computes the majority of three bits.
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%ﬁ
(n)

x1 x2

As time and space are in the uniform setting, in the circuit setting the main
resources are size (the number of gates) and depth (the length of the longest path
from the inputs to the output). A class of languages computed by a family of
polynomial-size circuits is denoted by P/poly; this is a non-uniform analogue of
P. Trivially, P C P/poly, but whether NP C P/poly is a major open question: a
negative answer would be a stronger result than P # NP.

However, restricting the depth of the circuits to be constant (here, we are
assuming that gates can have arbitrary fan-in) gives a complexity class AC’
for which the lower bounds are known. In particular, the function PARITY (x),
outputting 1 iff the number of s in binary string x is odd, is not ACO-computable
[3, 26, 33]. Even allowing parity or modulo a prime gates to appear in these circuits
results in a class with strong lower bounds. But how complex is the reasoning needed
to prove those statements? And could these techniques be extended to argue about

NP vs. P/poly?

4.3 Natural Proofs

These questions fascinated researchers in proof complexity for many years, with a
number of interesting results proven. But focusing on complexity barriers, let us turn
to a series of papers by Razborov [49-51] that have tried to address these questions,
using extensively the framework of bounded arithmetic. By far the most well known
of them is a pure complexity paper, though: “Natural proofs” by Razborov and
Rudich [51]. Introducing the notion of “natural” proofs, they come to a somewhat
discouraging conclusion that the circuit lower bound proofs known at the time are
“natural”, and such proofs cannot resolve NP vs. P/poly, albeit under a believable
cryptographic conjecture.

Intuitively, if a proof of a lower bound for a given complexity class is “natural
enough” it would contain an algorithm to distinguish easy problems that are in this
class from hard problems that are not, based on whether or not a problem possesses
a given “natural” property. Note that, in particular, algorithms from the class for
which there is a natural proof would not be able to generate distributions of strings
computationally indistinguishable from random (uniform).
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Definition 4.1 A property (set) F of Boolean functions is natural if it (or its subset)
satisfies three conditions:

1. Usefulness: functions in F are infinitely often not in a complexity class C (that
is, F can be used to prove lower bounds on C).

2. Largeness: A large fraction of all functions are in F.

3. Constructivity: Given a truth table of a function f, it is computationally easy to
check whether f € F. If it can be checked in a class C’, we say that a proof is
C’-natural.

For example, the proof that PARITY (x) is not in AC° [26] works by showing
that any function in AC? becomes constant if enough of its input variables are set
(with high probability over the choice of the subset of variables). The PARITY (x)
function, however, does not become constant even if one bit is left unset, and thus
PARITY(x) ¢ AC’. So the natural property F is that a function does not become
constant under any restriction of a large enough fraction of its input variables. This
property is useful against AC’, as functions in AC do not have it. It has largeness
by the counting argument (most functions on n — k variables are not constant). And
it has constructivity, even ACO-construCtivity: given a truth table of a function on n
variables, which is of length 2", a depth-3 circuit of size 20 can check whether
this truth table satisfies the property: just consider all possible restrictions of n — k
variables (roughly 2° of them), and check that not all input bits corresponding to
this restriction are the same.

Razborov and Rudich proceed to show that a number of circuit lower bound
proofs are indeed natural. The main result of [51] states, though, that there is no
P/poly-natural proof useful against P/poly, provided that there is an exponentially
hard pseudo-random generator computable in P/poly. Pseudo-random generators
are functions PRG: {0, 1}* — {0, 1}%*; such PRGs are s-hard if s is the minimal
size of a circuit that can distinguish a random 2k bit string from the output of a k-bit
generator with probability > 1/s. The main idea of the proof is to use the P/poly-
computable check from the constructivity property to distinguish between the PRG
output and the random string for any given P/poly-computable PRG.

It is believed that PRGs based on factoring or the discrete logarithm problem
(solving b* = g over a finite group) are exponentially hard. With that, Razborov
and Rudich also show unconditionally that there is no P/poly-natural proof that the
discrete logarithm problem requires exponential size circuits.

4.4 Natural Proof as Independence in Bounded Arithmetic

The formalization of the notion of natural proofs as independence in bounded
arithmetic was presented by Razborov in [49]. The theories he considers are
extensions of Buss’ Sé; there are technical details in allowing these theories to talk
about functions. The connection between natural proofs and these theories is not as
tight as for the RCT/ACT, though.
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Recall that the language of Buss’ Si is the language of arithmetic plus x#y =
2Kl and it is axiomatized by the basic axioms describing the operators together
with induction on the length of the number. The formulas allowed in the induction
are of the form Ix < #(n)¢ (x, n), where all quantifiers in ¢ are bounded by a term
in the lengths of the input variables n (“strictly bounded” quantifiers) in length.
Generally, theories Sé allow up to i alternations of bounded (rather than strictly
bounded) quantifiers in the induction.

In Razborov’s setting, there is a free relational variable y added to the theories.
This variable is interpreted as encoding a Boolean circuit. There are bounded
existential formulas defining various properties of the circuit encoded by y: its
type, its size, the function it computes, etc. With an extension of these definitions,
he proves that S%(y) cannot disprove that y encodes a circuit of superpolynomial
size, under the same assumption as for natural proofs of existence of strong
PRGs. For weaker systems, he proves similar statements under weaker assumptions,
for some even unconditionally. The proofs rely on a communication complexity
characterization of the circuit size. However, this is not quite the same setting as
proving lower bounds in S; itself, rather than arguing about a given circuit y.

5 Conclusion: Avoiding Barriers

One can look at complexity barriers from either the pessimistic or the optimistic
viewpoint. A pessimist would say that the results beyond the barriers, non-
relativizing and non-algebrizing results, are intrinsically hard to prove. Surely, it
shows just how formidable a problem is when one can prove that “nearly all current
techniques” are inadequate for resolving it. And even though there is some truth to
this viewpoint, and barrier results historically came from trying to understand the
failed attempts to resolve these open problems, there is a bright side to the barriers.

The optimistic view of the barrier results is finding precise properties of
techniques that would make it possible to resolve the open problems. For example,
relativization tells us that it is fruitless to treat computation as a black box, and
representation matters. Algebrization tells us that representing polynomial-time
functions by low-degree polynomials, powerful as it is, is not enough to lead us
all the way to resolving P vs. NP. However, it does tell us where to look: the less
“black-box” our view of computation, the more we can show about it. Besides, the
barriers do not tell us to throw out relativizing and algebrizing techniques altogether;
they just point out that any meaningful approach to resolving open problems should
use at least some non-relativizing and non-algebrizing component.

And indeed, there are already such components known to us. The MIP = NEXP
result mentioned above relies on verifying computations by 3CNF formulas in a
different way than by treating these formulas as polynomials. The PCP theorem,
stating that any language in NP has proofs that can be verified using O(logn)
randomness and examining just a constant number of bits of the proof, uses an
especially fine-grained view of a computational process, and is neither algebrizing
in the sense of [2] nor provable in ACT.



166 A. Kolokolova

Besides, proving a relativizing result can be more useful, in the sense that it
automatically generalizes for any oracle. In particular, sometimes it is convenient to
consider circuits with SAT or TOBF oracle gates, and any relativizing result about
the respective family of circuits generalizes to the circuits with such gates.

In the case of natural proofs, we know the techniques providing proofs that are
not natural, most notably diagonalization and counting arguments. Moreover, there
are results proved using techniques that avoid both barriers, such as Santhanam’s
proof that PromiseMA does not have circuits of size n* for a fixed k [52]. And a
recent result by Williams [61] that there are problems in NEXP not solvable by
bounded-depth circuits with arbitrary mod d gates uses both a non-relativizing
element and a non-naturalizing element (diagonalization) to avoid both barriers
simultaneously.

Viewing complexity barriers as independent of logic theories allows us to make
precise what exactly the barriers capture. It is a very natural setting, and a convenient
way to specify what exactly is meant by classes of techniques such as relativizing
techniques. Besides, we can always hope that the formidable machinery of logic will
come to our service if only we phrase the right questions in the right framework.
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Quantum Randomness: From Practice
to Theory and Back

Cristian S. Calude

Phenomena that we cannot
predict must be judged random.
P. Suppes

Abstract There is a huge demand for “random” bits. Random number generators
use software or physical processes to produce “random” bits. While it is known
that programs cannot produce high-quality randomness—their bits are pseudo-
random—other methods claim to produce “true” or “perfect” random sequences.
Such claims are made for quantum random generators, but, if true, can they be
proved? This paper discusses this problem—which is important not only philosoph-
ically, but also from a practical point of view.

1 ‘‘Babylon Is Nothing but an Infinite Game of Chance”

A mythical Babylon in which everything is dictated by a universal lottery is
sketched in The Lottery in Babylon [8], a short story published in 1941 (first
English translation in 1962) by Jorge Luis Borges. A normally operated lottery—
with tickets, winners, losers, and money rewards—starts adding punishments to
rewards and finally evolves into an all-encompassing “Company” whose decisions
are mandatory for all but a small elite. The Company acts at random and in secrecy.
Most Babylonians have two only options: to accept the all-knowing, all-powerful,
but mysterious Company, or to deny its very existence (no such Company). While
various possible philosophical interpretations of the story have been discussed, there
is a large consensus that the Company symbolises the power and pervasiveness of
randomness. Indeed, randomness is the very stuff of life, impinging on everything,
fortunes and misfortunes, from the beginning to the end. It causes fear and anxiety,
but also makes for fun; and, most interestingly, it provides efficient tools used since
ancient Athens.
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2 A Case Study: Security

It is difficult to deny that security is one of the key issue of our time. Here is an
example related to the NSA scandal (June 2013)! presented in [18]. The CNN
report, significantly sub-titled “Tapping the strange science of quantum mechanics,
physicists are creating new data security protocols that even the NSA can’t crack”,
starts with ... Snowden.

The news out of Moscow of late has been dominated by Edward Snowden, the American
leaker of secret state documents who is currently seeking temporary asylum in Russia.
Meanwhile, across town and to much less fanfare, Dr. Nicolas Gisin found himself
explaining last week the solution to the very problems of data security and privacy intrusion
Snowden brought to light in exposing the vast reach of the National Security Agency’s data
collection tools: data encryption that is unbreakable now and will remain unbreakable in
the future.”

According to Wikipedia, “Cryptography is the practice and study of techniques
for secure communication in the presence of third parties (called adversaries)”.
A cryptosystem is a suite of algorithms used to implement a particular form
of encryption and decryption. Modern cryptography is dominated by three main
approaches: (a) the information-theoretic approach, in which the adversary should
have not enough information to break a cryptosystem, (b) the complexity-theoretic
approach, in which the adversary should have not enough computational power to
break a cryptosystem and (c) the quantum physics approach, in which the adversary
would need to break some physical laws to break a cryptosystem. The third approach
is called quantum cryptography; by contrast, the first two approaches are referred to
as classical cryptography.

Cryptographic algorithms require a method of generating a secret key from
“random” bits. The encryption algorithm uses the key to encrypt and decrypt
messages, which are sent over unsecured communication channels. The strength
of the system ultimately depends on the strength of the key used, i.e. on the
difficulty for an eavesdropper to guess or calculate it. Vulnerabilities of classical
cryptography are well documented, but quantum cryptography was (and, as we will
see below, continues to be) believed to be unbreakable: Heisenberg’s Uncertainty
Principle guarantees that an adversary cannot look into the series of photons which
transmit the key without either changing or destroying them. The difference between
classical and quantum cryptography rests on keys: classical keys are vulnerable,
but keys formed with quantum random bits have been claimed to be unbreak-
able because quantum randomness is true randomness (see [31]). In the words

'Borges names “Qaphqa”, an obvious code for Kafka, the “sacred latrine” allowing access to the
Company.
My Italics.
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from [18]:

“It sounds like there’s some quantum magic in this new technology, but of course it’s not
magic, it’s just very modern science”, Gisin says. But next to classical communication and
encryption methods, it might as well be magic. Classical cryptography generally relies on
algorithms to randomly generate encryption and decryption keys enabling the sender to
essentially scramble a message and a receiver to unscramble it at the other end. If a third-
party ...obtains a copy of the key, that person can make a copy of the transmission and
decipher it, or—with enough time and computing power—use powerful algorithms to break
the decryption key. (This is what the NSA and other agencies around the world are allegedly
up to.) But Gisin’s quantum magic taps some of the stranger known phenomena of the
quantum world to transmit encryption keys that cannot be copied, stolen, or broken without
rendering the key useless.

The primary quantum tool at work in ID Quantique’s quantum communication scheme is
known as “entanglement”, a phenomenon in which two particles—in this case individual
photons—are placed in a correlated state. Under the rules of quantum mechanics, these two
entangled photons are inextricably linked; a change to the state of one photon will affect the
state of the other, regardless of whether they are right next to each other, in different rooms,
or on opposite sides of the planet. One of these entangled photons is sent from sender
to receiver, so each possesses a photon. These photons are not encoded with any useful
information—that information is encoded using normal classical encryption methods—
but with a decryption key created by a random number generator. (True random number’
generators represent another technology enabled by quantum physics—more on that in a
moment.)

The above quote contains errors and misleading statements, but we reproduce it
here as it is illustrative of the way quantum cryptography is presented to the public.
Really, how good is this technology?

Gruska [25] offers a cautious answer from a theoretical point of view:

Goals of quantum cryptography have been very ambitious. Indeed, some protocols of quan-
tum cryptography provably achieve so-called unconditional secrecy, a synonym for absolute
secrecy, also in the presence of eavesdroppers endowed with unlimited computational power
and limited only by the laws of nature, or even only by foreseeable laws of nature not
contradicting the non-signaling principle of relativity.

An answer from a practical point of view appears in [18]:

“Security experts didn’t learn anything from this Snowden story, it was already obvious
that it is so easy to monitor all the information passing through the Internet”, Gisin says.
“No security expert can pretend to be surprised by his revelation. And I’'m not a national
security expert, but I don’t think the Americans are the only ones who are doing this—the
Russians are doing it, the Chinese are doing it, everybody is spying on the others and that’s
always been the case and it always will be. One way to be a step ahead of the others is to
use quantum cryptography, because for sure the programs that the Americans and others
are using will not be able to crack it.*

3My Ttalics.
4My Italics.
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3 True Randomness

The “magic” of the quantum technology capable of producing unbreakable security
depends on the possibility of producing true random bits. What does “true ran-
domness™ mean? The concept is not formally defined, but a common meaning
is the lack of any possible correlations. Is this indeed theoretically possible? The
answer is negative: there is no true randomness, irrespective of the method used to
produce it. The British mathematician and logician Frank P. Ramsey was the first
to demonstrate it in his study of conditions under which order must appear (see
[24, 32]); other proofs have been given in the framework of algorithmic information
theory [9].

We will illustrate Ramsey’s theory later in this section. For now, let’s ask a
more pragmatic question: Are these mathematical results relevant for the theory
or practice of quantum cryptography? Poor quality randomness is, among other
issues, the cause of various failures of quantum cryptographic systems. After a
natural euphoria period when quantum cryptography was genuinely considered to
be “unbreakable”, scientists started to exercise one of the most important attitudes in
science: skepticism. And, indeed, weaknesses of quantum cryptography have been
discovered; they are not new and they are not a few. Issues were found as early
as 2008 [13], even earlier. In 2010, V. Makarov and his colleagues published the
details of a traceless attack against a class of quantum cryptographic systems [29]
which includes the products commercialised by ID Quantique® (Geneva) (www.
idquantique.com) and MagiQ Technologies (Boston) (http://www.magiqtech.com):
both companies claim to produce true randomness. Recent critical weaknesses
of a new class of quantum cryptographic schemes called “device-independent”
protocols—that rely on public communication between secure laboratories—are
described in [7].

Geneva is only 280 km from Zurich, but the views on quantum cryptography of
ID Quantique and physicist R. Renner, from the Institute of Theoretical Physics in
Zurich, are quite different. Recognising the weaknesses of quantum cryptography,
R. Renner has embarked on a program to evaluate the failure rate of different
quantum cryptography systems. He was quoted in (http://www.sciencedaily.com/
releases/2013/05/130528122435.htm):

The security of Quantum Key Distribution systems is never absolute.

Renner’s work was presented at the 2013 Conference on Lasers and Electro-
Optics (San Jose, California, USA, [14]). Not surprisingly, even before presenting
his guest lecture on June 11, Renner’s main findings made the news: [17, 30] are
two examples. Commenting on the “timeslicing” BB84 protocol, K. Svozil, cited
in [26], said: “The newly proposed [quantum] protocol is ‘breakable’ by middlemen
attacks” in the same way as BB84: “complete secrecy” is an illusion. See also [28].

3 Also called perfect randomness.
SFeatured in Sect. 2.
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Why would some physicists claim that quantum randomness is true randomness?
According to ID Quantique website (www.idquantique.com).

Existing randomness sources can be grouped in two classes: software solutions, which can
only generate pseudo-random bit streams, and physical sources. In the latter, most random
generators rely on classical physics to produce what looks like a random stream of bits. In
reality, determinism is hidden behind complexity. Contrary to classical physics, quantum
physics is fundamentally random. It is the only theory within the fabric of modern physics
that integrates randomness.

Certainly, this statement is not a proper scientific justification. Randomness in
quantum mechanics comes from measurement, which is part of the interpretation
of quantum mechanics. To start with we need to assume that measurement yields a
physically meaningful and unique result. This may seem rather self-evident, but it
is not true of interpretations of quantum mechanics such as the many-worlds, where
measurement is just a process by which the apparatus or experimenter becomes
entangled with the state being “measured”; in such an interpretation it does not
make sense to talk about the unique “result” of a measurement.

If the only basis for claiming that quantum randomness is better than pseudo-
randomness is the fact that the first is true randomness, then the claim is very weak.
After all, experimentally, both types of randomness are far from being perfect [12];
we need much more understanding of randomness to be able to say something non-
trivial about quantum randomness.

Interestingly, Ramsey theory provides arguments for the impossibility of true
randomness resting on the sole fact that any model of randomness has to satisfy
the common intuition that “randomness means no correlations, no patterns”. The
question becomes:

Are there binary (finite) strings or (infinite) sequences with no patterns/correlations?

Ramsey theory answers the above question in the negative; measure-theoretical
arguments have been also found in algorithmic information theory [9]. Here is an
illustration of the Ramsey-type argument.

Lets; - - -5, be a binary string. A monochromatic arithmetic progression of length
k is a substring s;S;4Si42: - * * Si+-(—1)r» 1 < iand i+ (k— 1)t < n, with all characters
equal (0 or 1) for some ¢t > 0. The theorem below states that all binary strings with
sufficient length have monochromatic arithmetic progressions of any given length.
The importance of the theorem lies in the fact that all strings display one of the
simplest types of correlation, without being constant.

Van der Waerden finite theorem. For every natural k there is a natural n > k such that
every string of length n contains a monochromatic arithmetic progression of length k.

The Van der Waerden number, W(k), is the smallest n such that every string of
length n contains a monochromatic arithmetic progression of length k. For example,
W(3) = 9. The string 01100110 contains no arithmetic progression of length
3 because the positions 1, 4, 5, 8 (for 0) and 2, 3, 6, 7 (for 1) do not contain
an arithmetic progression of length 3; hence W(3) > 8. However, both strings
011001100 and 011001101 do: 1, 5,9 for 0 and 3, 6, 9 for 1. In fact, one can easily
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test that every string of length 9 contains three terms of a monochromatic arithmetic
progression, so W(3)=9.

How long should a string be to display a monochromatic arithmetic progression,
2k+9

2
i.e. how big is W(k)? In [22] it was proved that W(k) < 2% , but it was
conjectured to be much smaller in [23]: W(k) < 2K,
The Van der Waerden result is true for infinite binary sequences as well:

Van der Waerden infinite theorem. Every infinite binary sequence contains arbitrarily
long monochromatic arithmetic progressions.

This is one of the many results in Ramsey theory [32]. Graham and Spencer,
well-known experts in this field, subtitled their Scientific American presentation of
Ramsey Theory [24] with a sentence similar in spirit to Renner’s (quoted above):

Complete disorder is an impossibility. Every large set of numbers, points or objects
necessarily contains a highly regular pattern.

The adjective “large” applies to both finite and infinite sets.” The simplest finite
example is the pigeonhole principle: A set of N objects is partitioned into # classes.
Here “large” means N > n. Conclusion: a class contains at least two objects.
Example: “Of three ordinary people, two must have the same sex” (D. J. Kleitmen).
The infinite pigeonhole principle: A set of objects is partitioned into finitely many
classes. Here “large” means that the set is infinite while the number of classes which
is finite. Conclusion: a class is infinite.

Randomness comes from different sources and means different things in different
fields. Algorithmic information theory [9, 19] is a mathematical theory in which,
in contrast to probability theory, the randomness of individual objects is studied.
Given the impossibility of true randomness, the effort is directed towards studying
degrees of randomness. The main point of algorithmic information theory (a point
emphasised from a philosophical point of view in [20]) is:

Randomness means unpredictability with respect to some fixed theory.

The quality of a particular type of randomness depends on the power of the
theory to detect correlations, which determines how difficult predictability is (see
more in [4, 6]). For example, finite automata detect less correlations than Turing
machines. Consequently, finite automata, based unpredictability is weaker than
Turing machine, based unpredictability: there are (many) sequences computable by
Turing machines (hence, predictable, not random) that are unpredictable, random,
for finite automata.

In analogy with the notion of incomputability (see [15]), one can prove that
there is a never-ending hierarchy of stronger (better quality) and stronger forms
of randomness.

7We identify a binary finite string and an infinite sequence with sets of positive integers.
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4 Is Quantum Randomness ‘“Better” Than
Pseudo-Randomness

The intuition confirmed by experimental results reported in [12] suggests that the
quality of quantum randomness is better than that of pseudo-randomness. Is there
any solid basis to compare quantum randomness and pseudo-randomness?

Although in practice only finitely many bits are necessary, to be able to evaluate
and compare the quality of randomness we need to consider infinite sequences of
bits. In [1-5, 5, 6, 10—-12] the first steps in this direction have been made.

Pseudo-random sequences are obviously Turing computable (i.e. they are pro-
duced by an algorithm); they are easily predictable once we know the seed and the
algorithm generating the sequence, so, not surprisingly, their quality of randomness
is low. Is quantum randomness Turing computable?

How can one prove such a result? As we have already observed in the previous
section, we need to make some physical assumptions to base our mathematical
reasoning on. To present these assumptions we need a few notions specific to
quantum mechanics; we will adopt them in the form presented in [1].

In what follows we only consider pure quantum states. Projection operators—
projecting on to the linear subspace spanned by a non-zero vector |y)—will be
denoted by Py, = Iw‘%‘-

We fix a positive integer n. Let O € {Py | |¢) € C"} be a non-empty set of
projection observables in the Hilbert space C", and C € {{Py,P2,...P,} | P; €
O and (i| j) = Ofori # j} be a set of measurement contexts over O. A context C €
C is thus a maximal set of compatible (i.e. they can be simultaneously measured)

projection observables. Let v : {(0,C) | 0 € O,C € Cando € C} % Bbe
a partial function (i.e., it may be undefined for some values in its domain) called
assignment function. For some 0,0’ € O and C, C’ € C we say v(o, C) = v(o’, (')
if v(o, C),v(0’, C') are both defined and have equal values.

Value definiteness corresponds to the notion of predictability in classical de-
terminism: an observable is value definite if v assigns it a definite value—i.e. is
able to predict in advance, independently of measurement, the value obtained via
measurement. Here is the formal definition: an observable o € C is value definite in
the context C under v if v(o, C) is defined; otherwise o is value indefinite in C. If o
is value definite in all contexts C € C for which o € C then we simply say that o is
value definite under v. The set O is value definite under v if every observable o € O
is value definite under v.

Non-contextuality corresponds to the classical notion that the value obtained via
measurement is independent of other compatible observables measured alongside
it. Formally, an observable o € O is non-contextual under v if for all contexts
C,C’ € C with o € C,C" we have v(o, C) = v(o, C’); otherwise, v is contextual.
The set of observables O is non-contextual under v if every observable 0 € O which
is not value indefinite (i.e. value definite in some context) is non-contextual under
v; otherwise, the set of observables O is contextual.

To be in agreement with quantum mechanics we restrict the assignment functions
to admissible ones: v is admissible if the following hold for all C € C: (a) if there
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exists an o € C with v(o, C) = 1, then v(0’, C) = O forall o’ € C\ {o}; (b) if there
exists an o0 € C such that v(o’, C) = 0 for all o’ € C\ {0}, then v(0,C) = 1.

We are now ready to list the physical assumptions. A value indefinite quantum
experiment is an experiment in which a particular value indefinite observable in
a standard (von Neumann type) quantum mechanics is measured, subject to the
following assumptions (A1)—(AS) (for a detailed motivation we refer you to [1]).

We exclude interpretations of quantum mechanics, such as the many-worlds
interpretation, where there is no unique “result” of a measurement.

(A1) Measurement assumption. Measurement yields a physically meaningful and unique
result.

We restrict the set of assignments to those which agree with quantum mechanics.

(A2) Assignment assumption. The assignment function v is a faithful representation of a
realisation ry of a state ), that is, the measurement of observable o in the context C on
the physical state ry yields the result v(o, C) whenever o has a definite value under v.

‘We assume a classical-like behaviour of measurement: the values of variables are
intrinsic and independent of the device used to measure the m.

(A3) Non-contextuality assumption. The set of observables O is non-contextual.

The following assumption reflects another agreement with quantum mechanics.

(A4) Eigenstate assumption. For every (normalised) quantum state V) and faithful
assignment function v, we have v(Py,C) = 1 and v(Pg, C) = 0, for any context C € C,
with Pw,P¢ e C.

The motivation for the next assumption comes from the notion of “element of
physical reality” described by Einstein, Podolsky and Rosen in [21, p. 777]:
If, without in any way disturbing a system, we can predict with certainty (i.e., with

probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality ® [(e.p.r.)] corresponding to this physical quantity.

The last assumption is a weak form of e.p.r. in which prediction is certain (not
only with probability 1) and given by some function which can be proved to be
computable.

(AS) Elements of physical reality (e.p.r.) assumption. If there exists a computable

Sunction f : N X O X C — B such that for infinitely many i > 1, f(i, 0;, C;) = x;, then there
is a definite value associated with o; at each step [i.e., v;(o;, C;) = f(i, 0;, C;)].

To use the e.p.r. assumption we need to prove the existence of a computable
function f such that for infinitely many i > 1, f(i, 0;, C;) = x;.

Can projection observables be value definite and non-contextual? The following
theorem answers this question in the negative.

Kochen-Specker theorem. In a Hilbert space of dimension n > 2 there exists a set of

projection observables O on C" and a set of contexts over O such that there is no admissible
assignment function v under which O is both non-contextual and value definite.

8 An element of physical reality corresponds to the notion of a definite value, possibly contextual.
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The Kochen-Specker theorem [27]—proved almost 50 years ago—is a famous
result showing a contradiction between two basic assumptions of a hypothetical
hidden variable theory intended to reproduce the results of quantum mechanics:
(a) all hidden variables corresponding to quantum mechanical observables have
definite values at any given time, and (b) the values of those variables are intrinsic
and independent of the device used to measure them. The result is important in
the debate on the (in)completeness of quantum mechanics created by the EPR
paradox [21].

Interestingly, the theorem, which is considered a topic in the foundations of
quantum mechanics, with more philosophical flavour and little presence in main-
stream quantum mechanical textbooks, has actually an operational importance.
Indeed, using the assumption (A3), the Kochen-Specker theorem states that some
projection observables have to be value indefinite.

Why should we care about a value indefinite observable? Because a way “to
see” the randomness in quantum mechanics is by measuring such an observable. Of
course, we need to be able to certify that a given observable is value indefinite. Un-
fortunately, the theorem gives no indication which observables are value indefinite.
We know that not all projection observables are value indefinite [1], but can we be
sure that a specific observable is value indefinite observable? The following result
from [1, 5] answers this question in the affirmative:

Localised Kochen-Specker theorem. Assume (A1)~(A4). Let n > 3 and |¢), |¢p) € C"
be unit vectors such that 0 < |(¥|p)| < 1. We can effectively find a finite set of
one-dimensional projection observables O containing Py and Py for which there is no
admissible value assignment function on O such that v(Py) = 1 and Py is value definite.

An operational form of the localised Kochen-Specker theorem capable of
identifying a value indefinite observable is given by:

Operational Kochen-Specker theorem. Assume (A1)-(A4). Consider a quantum system
prepared in the state ) in C3, and let |¢) be any state such that 0 < |{y|¢)| < 1. Then
the projection observable Py = |¢) (| is value indefinite.

The operational Kochen-Specker theorem allows us to identify and then measure
a value indefinite observable, a crucial point in what follows. Consider a system
in which a value indefinite quantum experiment is prepared, measured, rinsed
and repeated ad infinitum. The infinite sequence X = xjx,... obtained by
concatenating the outputs of these measurements is called value indefinite quantum
random sequence, shortly, quantum random sequence. We are now able to give a
mathematical argument showing that quantum randomness produced by a specific
type of experiment is better than pseudo-randomness [1, 5, 11]:

Incomputability theorem. Assume (A1)—(AS) for C3. Then, every quantum random
sequence is Turing incomputable.

In fact, a stronger result is true [1, 5, 11]:

Strong incomputability theorem. Assume (A1)—(A5) for C. Then, every quantum random
sequence is bi-immune, that is, every Turing machine cannot compute exactly more than
finitely many bits of the sequence.
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Bi-immunity ensures that any adversary can be sure of no more than finitely many
exact values—guessed or computed—of any given quantum random sequence. This
is indeed a good certificate of quality for this type of quantum randomness.

Finally, we ask the following natural question: is quantum indeterminacy a
pervasive phenomenon or just an accidental one? The answer was provided in [3]:

Value indefiniteness theorem. Assume (A1)—(A4) for C" for n > 3. The set of value
indefinite observables in C" has constructive Lebesgue measure 1.

The above theorem provides the strongest conceivable form of quantum indeter-
minacy: once a single arbitrary observable is fixed to be value definite, almost (i.e.
with Lebesgue measure 1) all remaining observables are value indefinite.

5 A Quantum Random Number Generator

The theoretical results discussed in the previous section have practical value only
if one can design a quantum random number generator in which a value indefinite
observable is measured, a guarantee for its strong incomputability. In particular, a
quantum random number generator has to act in C" with n > 3 (see [1, 2]).

A quantum random number generator [1] designed in terms of generalised
beam splitters satisfies these requirements; its blueprint is presented in Fig. 1. The
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configuration indicates the preparation and the measurement stages, including filters
blocking |S; : —1) and |S; : +1). (For ideal beam splitters, these filters would
not be required.) The measurement stage (right array) realises a unitary quantum
gate U,, corresponding to the projectors onto the S, state observables for spin state
measurements along the x-axis, in terms of generalised beam splitters. More details
about its implementation and practical issues are presented in [1].

6 Conclusion and Open Questions

The practice of generating and commercialising quantum random bits raises many
questions about the quality of randomness it produces. Based on certain natural
physical hypotheses, we have described a procedure to generate quantum random
bits that provably are not reproducible by any Turing machine, an example of
incomputability in nature (see [16]). In particular, this proves that this type quantum
randomness is superior in quality to pseudo-randomness. A quantum random
generator which produces bi-immune sequences has been described.

This is just the start of a program for better understanding and producing
quantum randomness. Many problems remain open, and here are some of them.
Does a variant of the (strong) incomputability theorem, possibly with additional
physical assumptions, hold true in C?? Does Quantis, the quantum random generator
produced by ID Quantique which operates in C2, produce bi-immune sequences?
Are other physical assumptions sufficient for proving an analogue of the operational
Kochen-Specker theorem? Can other physical assumptions lead to different types of
quantum random generators producing bi-immune sequences? How random is a
sequence produced by an experiment certified by the operational Kochen-Specker
theorem? Is quantum randomness unique or of different forms and qualities?
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Calculus of Cost Functions

André Nies

Abstract Cost functions provide a framework for constructions of sets Turing
below the halting problem that are close to computable. We carry out a systematic
study of cost functions. We relate their algebraic properties to their expressive
strength. We show that the class of additive cost functions describes the K-trivial
sets. We prove a cost function basis theorem, and give a general construction for
building computably enumerable sets that are close to being Turing complete.

1991 Mathematics Subject Classification. Primary: 03F60; Secondary: 03D30

1 Introduction

In the time period from 1986 to 2003, several constructions of computably
enumerable (c.e.) sets appeared. They turned out to be closely related.

(a) Given a Martin-Lof random (ML-random for short) Ag setY,
Kucera [16] built a c.e. incomputable set A <7 Y. His construction is interesting
because in the case Y <7 @, it provides a c.e. set A such that § <7 A <7 @'
without using injury to requirements as in the traditional proofs. (¢’ denotes the
halting problem.)

(b) Kucera and Terwijn [19] built a c.e. incomputable set A that is low for ML-
randomness: every ML-random set is already ML-random relative to A.

(c) A is called K-trivial if K(A },) < K(n) + O(1), where K denotes prefix-free
descriptive string complexity. This means that the initial segment complexity of
A grows as slowly as that of a computable set. Downey et al. [8] gave a very
short construction (almost a “definition”) of a c.e., but incomputable, K-trivial
set.
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The sets in (a) and (b) enjoy a so-called lowness property, which says that the
set is very close to computable. Such properties can be classified according to
various paradigms introduced in [13, 24]. The set in (a) obeys the Turing-below-
many paradigm, which says that A is close to being computable because it is easy
for an oracle set to compute it. A frequent alternative is the weak-as-an-oracle
paradigm: A is weak in a specific sense when used as an oracle set in a Turing
machine computation. An example is the oracle set in (b), which is so weak that it is
useless as an extra computational device when testing for ML-randomness. On the
other hand, K-triviality in (c) is a property stating that the set is far from random:
by the Schnorr-Levin Theorem, for a random set Z the initial segment complexity
grows fast in that K(Z I',) > n — O(1). For background on the properties in (a)—(c),
see [7] and [23, Chap. 5].!

A central point for starting our investigations is the fact that the constructions
in (a)—(c) look very similar. In hindsight this is not surprising: the classes of sets
implicit in (a)—(c) coincide! Let us discuss why.

(b) coincides with (c): Nies [22], with some assistance from Hirschfeldt,
showed that lowness for ML-randomness is the same as K-triviality. For this
he introduced a method now known as the “golden run”.

(a) coincides with (b): The construction in (a) is only interesting if ¥ ¥7 @'.
Hirschfeldt, Nies and Stephan [14] proved that if A is a c.e. set such that A <7 Y
for some ML-random set Y #7 @', then A is K-trivial, confirming the intuition
that sets of the type built by Kucera are close to computable. They asked whether,
conversely, for every K-trivial set A there is an ML-random set Y >7 A with
Y #7 @'. This question became known as the ML-covering problem. Recently,
the question was answered in the affirmative by combining the work of seven
authors in two separate papers. In fact, there is a single ML-random Ag set Y #r
@' that is Turing above all the K-trivials. A summary is given in [2].

The common objective for these constructions is to ensure lowness of A
dynamically by restricting the overall manner in which numbers can be enumerated
into A. This third lowness paradigm has been called inertness in [24]: a set A is
close to computable because it is computably approximable with a small number of
changes.

The idea is implemented as follows. The enumeration of a number x into A at
stage s bears a cost ¢(x, s), a non-negative rational that can be computed from x
and s. We have to enumerate A in such a way that the sum of all costs is finite. A
construction of this type will be called a cost function construction. If we enumerate
at a stage more than one number into A, only the cost for enumerating the least
number is charged.

'We note that the result (c) has a complicated history. Solovay [26] built a A(z) incomputable set A
that is K-trivial. Constructing a c.e. example of such a set was attempted in various sources such
as [4], and in unpublished work of Kummer.
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1.1 Background on Cost Functions

The general theory of cost functions began in [23, Sect.5.3]. It was further
developedin [6, 10, 13]. We use the language of [23, Sect. 5.3] which already allows
for the constructions of Ag sets. The language is enriched by some notation from [6].
We will see that most examples of cost functions are based on randomness-related
concepts.

Definition 1.1 A cost function is a computable function
¢:NxN—->{xeQ: x>0}

Recall that a computable approximation is a computable sequence of finite sets
(As) e such that limg A, (x) exists for each x.

Definition 1.2

(i) Given a computable approximation (A;),cy and a cost function ¢, for s > 0 we
let

c;(As) = c(x,s) where x < s A xisleasts.t. A;_(x) # As(x);

if there is no such x, we let ¢;(A;) = 0. This is the cost of changing A;_; to A;.
We let

C(As)xeN = Z CS(AS)

5s>0

be the total cost of all the A-changes. We will often write ¢(A,) as a shorthand
for ¢(As)sen-
(if) We say that (A;),cy obeys c if ¢(A;) is finite. We denote this by

{As) E e

(iii)) We say that a Ag set A obeys ¢, and write A | ¢, if some computable
approximation of A obeys c.

A cost function ¢ acts like a global restraint, which is successful if the condition
¢{A;) < oo holds. Kucera’s construction mentioned in (a) above needs to be recast
in order to be viewed as a cost function construction [10, 23]. In contrast, (b) and
(c) can be directly seen as cost function constructions. In each of (a)—(c) above, one
defines a cost function ¢ such that any set A obeying ¢ has the lowness property in
question. For, if A |= ¢, then one can enumerate an auxiliary object that has in some
sense a bounded weight.

In (a), this object is a Solovay test that accumulates the errors in an attempted
computation of A with oracle Y. Since Y passes this test, ¥ computes A.

In (b), one is given a E?(A) class V C 2¢ such that the uniform measure AV is
less than 1, and the complement of V consists only of ML-randoms. Using the fact
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that A obeys ¢, one builds a Z(l) class § C 2“ containing 'V such that still AS < 1.
This implies that A is low for ML-randomness.

In (c), one builds a bounded request set (i.e., Kraft-Chaitin set) which shows that
A is K-trivial.

The cost function in (b) is adaptive in the sense that c(x, s) depends on A;_;. In
contrast, the cost functions in (a) and (c) can be defined in advance, independently
of the computable approximation of the set A that is built.

The main existence theorem, which we recall as Theorem 2.7 below, states that
for any cost function ¢ with the limit condition lim, lim inf; ¢(x, s) = 0, there is an
incomputable c.e. set A obeying ¢. The cost functions in (a)—(c) all have the limit
condition. Thus, by the existence theorem, there is an incomputable c.e. set A with
the required lowness property.

Besides providing a unifying picture of these constructions, cost functions have
many other applications. We discuss some of them.

Weak 2-randomness is a notion stronger than ML-randomness: a set Z is weakly
2-random if Z is in no Hg null class. In 2006, Hirschfeldt and Miller gave a
characterization of this notion: an ML-random is weakly 2-random if and only if
it forms a minimal pair with . The implication from left to right is straightforward.
The converse direction relies on a cost function related to the one for Kucera’s result
(a) above. (For details, see, e.g., [23, Theorem 5.3.6].) Their result can be seen as
an instance of the randomness enhancement principle [24]: the ML-random sets get
more random as they lose computational complexity.

The author [22] proved that the single cost function ¢g introduced in [8] (see
Sect. 2.3 below) characterises the K-trivials. As a corollary, he showed that every
K-trivial set A is truth-table below a c.e. K-trivial D. The proof of this corollary uses
the general framework of change sets spelled out in Proposition 2.14 below. While
this is still the only known proof yielding A <y D, Bienvenu et al. [3] have recently
given an alternative proof using Solovay functions in order to obtain the weaker
reduction A <7 D.

In model theory, one asks whether a class of structures can be described by a first-
order theory. Analogously, we ask whether an ideal of the Turing degrees below 0/
is given by obedience to all cost functions of an appropriate type. For instance, the
K-trivials are axiomatized by cx.

Call a cost function ¢ benign if from n one can compute a bound on the number
of disjoint intervals [x, s) such that e(x,s) > 27". Figueira et al. [9] introduced
the property of being strongly jump traceable (s.j.t.), which is an extreme lowness
property of an oracle A, even stronger than being low for K. Roughly speaking, A
is s.j.t. if the jump JA(x) is in T, whenever it is defined, where (T) is a uniformly
c.e. sequence of sets such that any given order function bounds the size of almost
all the 7. Greenberg and Nies [10] showed that the class of benign cost functions
axiomatizes the c.e. strongly jump traceable sets.

Greenberg et al. [13] used cost functions to show that each strongly jump
traceable c.e. set is Turing below each w-c.e. ML-random set. As a main result,
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they also obtained the converse. In fact, they showed that any set that is below each
superlow ML-random set is s.j.t.

The question remained whether a general s.j.t. set is Turing below each w-c.e.
ML-random set. Diamondstone et al. [6] showed that each s.j.t. set A is Turing below
a c.e. s.j.t. set D. To do so, as a main technical result they provided a benign cost
function ¢ such that each set A obeying ¢ is Turing below a c.e. set D which obeys
every cost function that A obeys. In particular, if A is s.j.t., then A |= ¢, so the c.e.
cover D exists and is also s.j.t. by the above-mentioned result of Greenberg and
Nies [10]. This gives an affirmative answer to the question. Note that this answer is
analogous to the result [2] that every K-trivial is below an incomplete random.

1.2 Overview of Our Results

The main purpose of the paper is a systematic study of cost functions and the
sets obeying them. We are guided by the above-mentioned analogy from first-order
model theory: cost functions are like sentences, sets are like models, and obedience
is like satisfaction. So far this analogy has been developed only for cost functions
that are monotonic (that is, non-increasing in the first component, non-decreasing in
the stage component). In Sect. 3 we show that the conjunction of two monotonic cost
functions is given by their sum, and implication ¢ — d is equivalent to d = O(c)
where ¢(x) = sup;, c(x, s) is the limit function.

In Sect. 4 we show that a natural class of cost functions introduced in Nies [24]
characterizes the K-trivial sets: a cost function ¢ is additive if c¢(x,y) + ¢(y,2) =
c(x,z) for all x < y < z. We show that such a cost function is given by
an enumeration of a left-c.e. real, and that implication corresponds to Solovay
reducibility on left-c.e. reals. Additive cost functions have been used prominently in
the solution of the ML-covering problem [2]. The fact that a given K-trivial A obeys
every additive cost function is used to show that A <7 Y for the Turing incomplete
ML-random set constructed by Day and Miller [5].

Section 5 contains some more applications of cost functions to the study of
computational lowness and K-triviality. For instance, strengthening the result in [13]
mentioned above, we show that each c.e. s.j.t. set is below any complex w-c.e. set
Y, namely, a set Y such that there is an order function g with g(n) <* K(Y |,) for
each n. In addition, the use of the reduction is bounded by the identity. Thus, the full
ML-randomness assumed in [13] was too strong a hypothesis. We also discuss the
relationship of cost functions and a weakening of K-triviality.

In the remaining part of the paper we obtain two existence theorems. Section 6
shows that given an arbitrary monotonic cost function ¢, any nonempty H(l) class
contains a Ag set Y that is so low that each c.e. set A <7 Y obeys c. In Sect. 7 we
relativize a cost function ¢ to an oracle set Z, and show that there is a c.e. set D such
that 9" obeys ¢? relative to D. This much harder “dual” cost function construction
can be used to build incomplete c.e. sets that are very close to computing @'. For
instance, if ¢ is the cost function ¢ for K-triviality, then D is LR-complete.
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2 Basics

We provide a formal background, basic facts and examples relating to the discussion
above. We introduce classes of cost functions: monotonic and proper cost functions.
We formally define the limit condition, and give a proof of the existence theorem.

2.1 Some Easy Facts on Cost Functions

Definition 2.1 We say that a cost function ¢ is nonincreasing in the main argument
if

Vx,s[e(x+ 1,s) <c(x,s)].
We say that ¢ is nondecreasing in the stage if ¢(x,s) = 0 forx > s and
Vx,s[e(x,s) <c(x,s+ 1)].

If ¢ has both properties we say that ¢ is monotonic. This means that the cost ¢(x, s)
does not decrease when we enlarge the interval [x, s].

Fact 2.2 Suppose A |= ¢. Then for each € > 0 there is a computable approximation
(As)sen of A such that ¢{Ay)sen < €. O

Proof Suppose (ZX)JEN = c. Given x, consider the modified computable approxi-
mation (A;)sen of A that always outputs the final value A(x) for each x < xj. That
is, Ag(x) = A(x) for x < xg, and A;(x) = Zs(x) for x > x¢. Choosing x, sufficiently
large, we can ensure ¢(A), < €. O

Definition 2.3 Suppose that a cost function ¢(x, f) is non-increasing in the main
argument x. We say that ¢ is proper if Vx3te(x, 1) > 0.

If a cost function that is non-increasing in the main argument is not proper, then
every AY set obeys ¢. Usually we will henceforth assume that a cost function ¢ is
proper. Here is an example of how being proper helps.

Fact 2.4 Suppose that ¢ is a proper cost function and S = c{A;) < 00 is a
computable real. Then A is computable.

Proof Given an input x, compute a stage ¢ such that § = e¢(x,7) > 0 and S —
¢(As) <, < 8. Then A(x) = A,(x). O

A computable enumeration is a computable approximation (B;) .y such that By C
B4 for each s.

Fact 2.5 Suppose ¢ is a monotonic cost function and A = ¢ for a c.e. set A. Then

~

there is a computable enumeration (A,) that obeys c.
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Proof Suppose (A;) = ¢ for a computable approximation (A;) of A. Let (B,) be a
computable enumeration of A. Define (ZY) as follows. Let Xo(x) = 0; fors > 0 let
Xs(x) = Zv_l(x) if PAVS_l(x) = 1; otherwise let PAVS(x) = A,(x), where t > s is least
such that A;(x) = B;(x).

Clearly, (XY) is a computable enumeration of A. If PAVS(x) #* Xv_l(x) then

A;_1(x) = 0 and As(x) = 1. Therefore c(A;) < ¢{A,) < oo. O

2.2 The Limit Condition and the Existence Theorem

For a cost function c, let

c¢(x) = liminfe(x, s). (1)

Definition 2.6 We say that a cost function c¢ satisfies the limit condition if
lim, ¢(x) = 0O; that is, for each e, for almost every x we have

I%s [e(x,s) <27°.

In previous works such as [23], the limit condition was defined in terms of
sup, ¢(x, s), rather than liminf, ¢(x, s). The cost functions previously considered
were usually nondecreasing in the stage component, in which case sup, c(x, s) =
lim inf; c(x, s), and hence the two versions of the limit condition are equivalent. Note
that the limit condition is a Hg condition on cost functions that are nondecreasing
in the stage, and Hg in general.

The basic existence theorem says that a cost function with the limit condition
has a c.e., incomputable model. This was proved by various authors for particular
cost functions. The following version of the proof appeared in [8] for the particular
cost function ¢y defined in Sect.2.3 below, and then in full generality in [23,
Theorem 5.3.10].

Theorem 2.7 Let ¢ be a cost function with the limit condition.

(1) There is a simple set A such that A |= ¢. Moreover, A can be obtained uniformly
in (a computable index for) c.

(ii) If c is nondecreasing in the stage component, then we can make A promptly
simple.

Proof

(1) We meet the usual simplicity requirements:

S.: #W, =00 = W,NA # 0.
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To do so, we define a computable enumeration (A;) .y as follows. Let Ay = 0.
At stage s > 0, for each e < s, if S, has not been met so far and there is an
x > 2e such that x € W, 5 and ¢(x, s) < 27, put x into A;. Declare S, met.

To see that (A;),cy Obeys ¢, note that at most one number is put into A for
the sake of each requirement. Thus ¢(4,) < ), 27¢ = 2.

If W, is infinite, then there is an x > 2e and an s > x such that x € W, ; and
c(x,s) < 27¢, because c satisfies the limit condition. So we meet S,. Clearly,
the construction of A is uniform in an index for the computable function c.

(i1)) Now we meet the prompt simplicity requirements;

PS,: #W, =00 = AsIx[x e W, — W1 A x € A{].

Let Ap = 0. At stage s > 0, for each e < s, if PS, has not been met so far
and there is an x > 2¢ such that x € W, ; — W, and ¢(x, s) < 27¢, put x into
Ay. Declare PS, met.

If W, is infinite, there is an x > 2¢ in W, such that ¢(x,s) < 27¢ for all s > x,
because c satisfies the limit condition and is nondecreasing in the stage component.
We enumerate such an x into A at the stage s > x when x appears in W, if PS, has
not been met yet by stage s. Thus A is promptly simple. O

Theorem 2.7(i) was strengthened in [23, Theorem 5.3.22]. As before, let ¢ be a cost
function with the limit condition. Then for each low c.e. set B, there is a c.e. set A
obeying ¢ such that A £ B. The proof of [23, Theorem 5.3.22] is for the case of the
stronger version of the limit condition lim, sup, ¢(x, s) = 0, but in fact works for the
version given above.

The assumption that B is c.e. is necessary: there is a low set Turing above all the
K-trivial sets by [18], and the K-trivial sets can be characterized as the sets obeying
the cost function ¢ of Sect. 2.3 below.

The following fact implies the converse of Theorem 2.7 in the monotonic case.

Fact 2.8 Let ¢ be a monotonic cost function. If a computable approximation (As) ey
of an incomputable set A obeys ¢, then ¢ satisfies the limit condition.

Proof Suppose the limit condition fails for e. There is an sy such that

> ey =27

s>850 x<§

To compute A, on input n compute s > max(sp, n) such that ¢(n,s) > 27¢. Then
As(n) = A(n). O

Convention 2.9 For a monotonic cost function ¢, we may forthwith assume that
c(x) < oo for each x. For, firstly, if Vx[c(x) = oo], then A = ¢ implies that A is
computable. Thus, we may assume there is an xy such that ¢(x) is finite for all x > x
since c(x) is nonincreasing. Secondly, changing values ¢(x, s) for the finitely many
X < xo does not alter the class of sets A obeying c. So fix some rational g > ¢(x)
and, for x < xo, redefine c(x, s) = ¢ for all s.
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2.3 The Cost Function for K-Triviality

Let K (x) = min{|o|: Us(o) = x} be the value of the prefix-free descriptive string

complexity of x at stage s. We use the conventions K;(x) = oo for x > s and
27 = 0. Let
exles) = Y 2750, )
w=x+1

Sometimes cgx is called the standard cost function, mainly because it was the first
example of a cost function that received attention. Clearly, cx is monotonic. Note
that ¢, (x) = Y, 27K™. Hence cx satisfies the limit condition: given e € N,
since ZW 2K < 1, there is an xo such that

Z 27K < ge,

w>xo

Therefore ¢, (x) < 27¢ for all x > x.

The following example illustrates that in Definition 1.2, obeying ¢4, say, strongly
depends on the chosen enumeration. Clearly, if we enumerate A = N by putting in
X at stage x, then the total cost of changes is zero.

Proposition 2.10 There is a computable enumeration (As),en of N in the order
0,1,2,... (ie., each Ay is an initial segment of N) such that (A;),cn does not
obey cx.

Proof Since K(2/) <™ 2logj, there is an increasing computable function f and a
number jiy such that Vj > jo Ky () <j— 1. Enumerate the set A = N in order, but
so slowly that for each j > jo the elements of (2!, 2/] are enumerated only after
stage f(j), one by one. Each such enumeration costs at least 2~0=1, so the cost for
each interval (271, 2/] is 1. O

Intuitively speaking, an infinite c.e. set A can obey the cost function ¢y only
because during an enumeration of x at stage s one merely pays the current cost
cx (x, s), not the limit cost ¢4 (x).

Fact 2.11 Ifa c.e. set A is infinite, then ) ., €4c(x) = 00.

Proof Let f be a 1-1 computable function with range A. Let L be the bounded
request set {{r, max;<,+1 f(i)): r € N}. Let M be a machine for L according to the
Machine Existence "l_"heorem, also known as the Kraft-Chaitin Theorem. See, e.g.,
[23, Chap. 2] for background. O

In [22] (also see [23, Chap. 5]) it is shown that A is K-trivial iff A |= ex. So far,
the class of K-trivial sets has been the only known natural class that is characterized
by a single cost function. However, recent work with Greenberg and Miller [12]
show that for a c.e. set A, being below both halves Zjy,Z, of some Martin-Lof-
random Z = Zo@Z; is equivalent to obeying the cost function ¢(x, s) = +/Q; — Q..
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2.4 Basic Properties of the Class of Sets Obeying a Cost
Function

In this subsection, unless otherwise stated, cost functions will be monotonic. Recall
from Definition 2.3 that a cost function ¢ is called proper if Vx3re(x,1) > 0.
We investigate the class of models of a proper cost function ¢. We also assume
Convention 2.9 that ¢(x) < oo for each x.

The first two results together show that A |= ¢ implies that A is weak truth-table
below a c.e. set C such that C |= ¢. Recall that a A9 set A is called w-c.e. if there
is a computable approximation (A;) such that the number of changes #{s: A;(x) #
As—1(x)} is computably bounded in x; equivalently, A < @’ (see [23, 1.4.3]).

Fact 2.12 Suppose that ¢ is a proper monotonic cost function. Let A = ¢. Then A is
w-c.e.

Proof Suppose (A;) | c. Let g be the computable function given by g(x) =
pr.e(x,r) > 0. Let Ay(x) = Ag(x) for s < g(x), and As(x) = A,(x) otherwise.
Then the number of times A, (x) can change is bounded by ¢(A,)/c(x, g(x)). O

Let V, denote the eth w-c.e. set (see [23, p.20]).
Fact 2.13 For each cost function ¢, the index set {e: V, |= ¢} is 29.

Proof Let D, denote the nth finite set of numbers. We may view the ith partial
computable function ®; as a (possibly partial) computable approximation (A4;) by
letting A, >~ Dg,; (the symbol = indicates that ‘undefined’ is a possible value).
Saying that ®; is total and a computable approximation of V, is a Hg condition of i
and e. Given that ®; is total, the condition that (4,) = ¢ is 9. O

The change set (see [23, 1.4.2]) for a computable approximation (A),cy of a
AY set A is a ce. set C >7 A defined as follows: if s > 0 and A;_;(x) # A,(x)
we put (x, i) into Cy, where i is least such that (x,i) & C,—;. If A is w-c.e. via this
approximation, then C >, A. The change set can be used to prove the implication of
the Shoenfield Limit Lemma that A € Ag implies A <7 @'; moreover, if A is w-c.e.,
then A <y 9.

Proposition 2.14 ([23], Sect.5.3) Let the cost function ¢ be non-increasing in the
first component. If a computable approximation (A;) ey Of a set A obeys ¢, then its
change set C obeys ¢ as well.

Proof Since x < (x, i) for each x, i, we have

Cs—l(x) 7é Cs(x) — As—1 r)ﬁé Ay rx

for each x, s. Then, since c(x, s) is non-increasing in x, we have ¢(C;) < ¢(A;) < oo.
O
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This yields a limitation on the expressiveness of cost functions. Recall that A is
superlow if A" <, @'.

Corollary 2.15 There is no cost function ¢ monotonic in the first component such
that A = ¢ iff A is superlow.

Proof Otherwise, for each superlow set A there is a c.e. superlow set C >7 A. This
is clearly not the case: for instance, A could be ML-random, and hence of diagonally
non-computable degree, so that any c.e. set C >r A is Turing complete. O

For X € Nlet 2X denote {2x: x € X}. Recall that A @® B =24 U 2B+ 1). We
now show that the class of sets obeying ¢ is closed under @ and closed downward
under a restricted form of weak truth-table reducibility.

Clearly, EE=¢ A F = cimpliesEUF = c.

Proposition 2.16 Let the cost function ¢ be monotonic in the first component. Then
AEc A BEcimpliesA® Bk c.

Proof Let (A;) be a computable approximation of A. By the monotonicity of ¢ we
have ¢(A;) > ¢(24;). Hence 2A k= c. Similarly, 2B+ 1 E¢c. ThusA@BlEec. O

Recall that there are superlow c.e. sets Ag, A; such that Ag@PA; is Turing complete
(see [23, 6.1.4]). Thus the foregoing result yields a stronger form of Corollary 2.15:
no cost function characterizes superlowness within the c.e. sets.

3 Look-Ahead Arguments

This core section of the paper introduces an important type of argument. Suppose
we want to construct a computable approximation of a set A that obeys a given
monotonic cost function. If we can anticipate that A(x) needs to be changed in the
future, we try to change it as early as possible, because earlier changes are cheaper.
Such an argument will be called a look-ahead argument. (Also see the remark before
Fact 2.11.) The main application of this method is to characterize logical properties
of cost functions algebraically.

3.1 Downward Closure Under <7

Recall that A <;r Bif A <,y B, with the use function bounded by the identity. We
now show that the class of models of ¢ is downward closed under <;,r.

Proposition 3.1 Let ¢ be a monotonic cost function. Suppose that B |= ¢ and A =
'8 via a Turing reduction I such that each oracle query on an input x is at most x.
Then A = c.
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Proof Suppose B = ¢ via a computable approximation (Bs);ey. We define a
computable increasing sequence of stages (s(i));en by s(0) = 0 and

s+ 1) = ps > (@) [T by [s] .

In other words, s(i+ 1) is the least stage s greater than s(i) such that at stage s, I'5(n)
is defined for each n < s(i). We will define A (x) for each k € N. Thereafter we
let A;(x) = Ay (x), where k is maximal such that s(k) < s.

Suppose s(i) < x < s(i + 1). For k < i, let Ay (x) = v, where v = T'B(x)[s(i +
2)]. For k > i, let Ay (x) = T'B(x)[s(k + 2)]. (Note that these values are defined.
Taking the T'5(x) value at the large stage s(k + 2) represents the look-ahead.)

Clearly, limg A;(x) = A(x). We show that ¢(A;) < ¢(B;). Suppose that x is least
such that Ay (x) # Asw—1(x). By the use bound on the reduction procedure I,
there is a y < x such that B,(y) # B,—(y) for some ¢, s(k+ 1) < t < s(k+ 2). Then
c(x, s(k)) < c(y, ) by monotonicity of c. Therefore (A;) = c. O

3.2 Conjunction of Cost Functions

In the remainder of this section we characterize conjunction and implication of
monotonic cost functions algebraically. Firstly, we show that a set A is a model
of ¢ and d if and only if A is a model of ¢ 4 d. Then we show that ¢ implies d if and
only if d = O(c).

Theorem 3.2 Let ¢, d be monotonic cost functions. Then

AEcAAEd & AEc+d

Proof <: This implication is trivial.

=: We carry out a look-ahead argument of the type introduced in the proof
of Proposition 3.1. Suppose that (E;)en and (Fy)en are computable approx-
imations of a set A such that (E;) = c¢ and (F,) = d. We may assume that
Ei(x) = Fy(x) = 0 for s < x because changing E(x), say, to 1 at stage x will
not increase the cost as ¢(x, s) = 0 for x > 5. We define a computable increasing

sequence of stages (s(i));en by letting s(0) = 0 and

s(i+1) = ps > sG) [Es soy= Fs Do)

We define Ay (x) for each k € N. Thereafter we let Ag(x) = Ay (x), where k is

maximal such that s(k) < s.

Suppose s(i) < x < s(i + 1). Let A;y)(x) = 0 for k < i. To define Ayy)(x) for
k > i, let j(x) be the least j > i such that v = E(1)(x) = Fy(y1)(x).

ifi <k <jx)

A0 =1"
s(k)(X) = . .
Es+1)(x) = Fygry(x)  ifk > j(x).
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Clearly, lim; A(x) = A(x). To show (¢ + d){A,) < oo, suppose that A (x) 7#
Ask—1(x). The only possible cost if i < k < j(x) is at stage s(i) when v = 1.
Such a cost is bounded by 27*. Now consider a cost if k > j(x). There is a least y
such that E,(y) # E,—i(y) for some 7, s(k) < t < s(k + 1). Then y < x, whence
c(x,s(k)) < c(y,t) by the monotonicity of ¢. Similarly, using (F,) one can bound
the cost of changes due to d. Therefore (¢ + d){A;) < 4 + ¢(E,) + d(F,) <oco. O

3.3 Implication Between Cost Functions

Definition 3.3 For cost functions ¢ and d, we write ¢ — d if A = ¢ implies A = d
for each (A ) set A.

If a cost function ¢ is monotonic in the stage component, then ¢(x) = sup, ¢(x, s).
By Remark 2.9 we may assume c(x) is finite for each x. We will show ¢ — d is
equivalent to d(x) = O(c(x)). In particular, whether or not A |= ¢ only depends on
the limit function c.

Theorem 3.4 Let ¢, d be cost functions that are monotonic in the stage component.
Suppose c¢ satisfies the limit condition in Definition 2.6. Then

¢—d < 3N Vx[Nelx) > d®)].

Proof <=: We carry out yet another look-ahead argument. We define a computable
increasing sequence of stages s(0) < s(1) < ... by s(0) = 0 and

s+ 1) = pus > s(i).Vx < s(i) [Nc(x, s) > d(x, s)].

Suppose A is a AO set with a computable approximation (As) = c. We show that
( ;) E dfor some computable appr0x1mat10n (A ) of A. As usual, we define Av(k) (x)
for each k € N. We then let A, s(x) = Ay (x), where k is maximal such that s(k) < s.

Suppose s(i) < x < s(i + 1). Ik < i+ 1, let Ay (x) = Ay (). Ifk > i + 1,
let Ay (x) = Ay (%)

Given k, suppose that x is least such that Ay(k) (x) # Av(k) 1(x). Let i be the
number such that s(/) < x < s(i + 1). Then k > i + 1. We have A,(x) # A,—;(x) for
some ¢ such that s(k) < ¢ < s(k+1). Since x < s(i+1) < s(k), by the monotonicity
hypothesis this implies Ne(x, £) > Ne(x, s(k)) > d(x, s(k)). So d(zx) < N-c{4;) <
0o. Hence A = d.

=>: Recall from the proof of Fact 2.13 that we view the eth partial computable
function ®, as a (possibly partial) computable approximation (B,), where B, =~
D<I>e(t)~

Suppose that AN Vx [Nc(x) > d(x)] fails. We build a set A = ¢ such that for
no computable approximation ®, of A do we have d &, < 1. This suffices for the
theorem by Fact 2.2. We meet the requirements

R.: @, istotalandapproximates A = &, }~ d.
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The idea is to change A(x) for some fixed x at sufficiently many stages s with
Ne(x,s) < d(x,s), where N is an appropriate large constant. After each change we
wait for recovery from the side of ®,. In this way our c-cost of changes to A remains
bounded, while the opponent’s d-cost of changes to ®, exceeds 1.

For a stage s, we let init;(¢) < s be the largest stage such that R, has been
initialized at that stage (or O if there is no such stage). Waiting for recovery
is implemented as follows. We say that s is e-expansionary if s = inity(e), or
s > init;(e) and, where u is the greatest e-expansionary stage less than s,

At € [u, s) [Pos(®) I A Dos(t) D= Ay Pl

The strategy for R, can only change A(x) at an e-expansionary stage u such that
x < u. In this case it preserves A, |, until the next e-expansionary stage. Then, ®,
also has to change its mind on x: we have

x€®,(u—1) < x & ®,(¢) for some ¢ € [u, s).

We measure the progress of R, at stages s via a quantity a(e). When R, is
initialized at stage s, we set a,(e) to 0. If R, changes A(x) at stage s, we increase
ag(e) by c(x,s). R, is declared satisfied when ay(e) exceeds 2707, where b is the
number of times R, has been initialized.

Construction of (As) and {ag) Let Ag = @. Let ap(e) = 0 for each e.

Stage s > 0. Let e be least such that s is e-expansionary and o,—;(e) < 2777,
where b is the number of times R, has been initialized so far. If e exists, do the
following.

Let x be least such that init,(e) < x < s, e(x, s) < 27°~¢ and

20%ee(x, s) < d(x, s).

If x exists, let A;(x) = 1 — A;_;(x). Also, let A;(y) = 0 forx < y < s. Let
ag(e) = a,—1(e) + c(x, s). Initialize the requirements R; for i > e and let o;(i) = 0.
(This preserves Ay s unless R, itself is later initialized.) We say that R, acts.

Verification If s is a stage such that R, has been initialized b times, then o (e) <
27b=¢+1 Hence the total cost of changes to A due to R, is at most Y, 2707¢t! =
27¢*2, Therefore (A;) = c.

We show that each R, only acts finitely often and is met. Inductively, init,(e)
assumes a final value sy. Let b be the number of times R, has been initialized by
stage s¢.

Since the condition ANVx [Ne(x) > d(x)] fails, there is x > s such that for some
s1 > x we have Vs > s [2°T¢c(x,s) < d(x, s)]. Furthermore, since ¢ satisfies the
limit condition, we may suppose that e(x) < 27°7¢. Choose x least.

If ®, is a computable approximation of A, there are infinitely many e-
expansionary stages s > s;. For each such s, we can choose this x at stage s in
the construction. So we can add at least ¢(x, s1) to «(e). Therefore o, (e) exceeds
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the bound 274~ for some stage t > s, whence R, stops acting at z. Furthermore,
since d is monotonic in the second component and by the initialization due to R,,
between stages sy and  we have caused d ®, to increase by at least 2°F¢q,(e) > 1.
Hence R, is met. |

The foregoing proof uses in an essential way the ability to change A(x), for
the same x, a multiple number of times. If we restrict implication to c.e. sets,
the implication from left to right in Theorem 3.4 fails. For a trivial example, let
c(x,s) = 47" and d(x,s) = 2. Then each c.e. set obeys d, so ¢ — d for c.e. sets.
However, we do not have d(x) = O(c(x)).

We mention that Melnikov and Nies (unpublished, 2010) have obtained a
sufficient algebraic condition for the non-implication of cost functions via a c.e.
set. Informally speaking, the condition d(x) = O(c(x)) fails “badly”.

Proposition 3.5 Let ¢ and d be monotonic cost functions satisfying the limit
condition such that )" . d(x) = oo and, for each N > 0,

> d®)[Ne@) > d)] < oco.

Then there exists a c.e. set A that obeys ¢, but not d.

The hope is that some variant of this will yield an algebraic criterion for cost
function implication restricted to the c.e. sets.

4 Additive Cost Functions

We discuss a class of very simple cost functions introduced in [24]. We show that a
Ag set obeys all of them if and only if it is K-trivial. There is a universal cost function
of this kind, namely ¢(x, s) = 2, — ;. Recall Convention 2.9 that ¢(x) < oo for
each cost function c.

Definition 4.1 ([24]) We say that a cost function c¢ is additive if c¢(x,s) = 0 for
x > s, and for each x <y < z we have

c(x, y) + C(y, Z) - c(x, Z).

Additive cost functions correspond to nondecreasing effective sequences () sen
of non-negative rationals, that is, to effective approximations of left-c.e. reals S.
Given such an approximation, (8) = (f;)sen, let, forx <,

C(p) (-xv S) = ,Bs - ,Bx-

Conversely, given an additive cost function ¢, let §; = ¢(0,s). Clearly, the two
effective transformations are inverses of each other.
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4.1 K-Triviality and the Cost Function c(q)

The standard cost function ¢x introduced in (2) is not additive. We certainly have
cx(x,y) + ex(v,2) < ex(x,z), but by stage z there could be a shorter description
of, say, x 4+ 1 than at stage y, so that the inequality may be proper. On the other
hand, let g be a computable function such that ) 278 < oo; this implies that
K(x) <T g(x). The “analog” of ¢ when we write g(x) instead of K(x), namely
Cex,8) =D 11 27¢W) is an additive cost function.

Also, ¢x is dominated by an additive cost function ¢(qy we introduce next. Let
U be the standard universal prefix-free machine (see, e.g., [23, Chap. 2]). Let (£2)
denote the computable approximation of 2 given by 2, = A dom(Us). (That is,
2, is the Lebesgue measure of the domain of the universal prefix-free machine at
stage s.)

Fact4.2 Foreachx <s, we have cx(x,s5) < ¢(q)(x,s) = Q5 — Q,.

Proof Fix x. We prove the statement by induction on s > x. For s = x, we have
cx(x,s) = 0. Now,

s+1 s
cxc(x, s+ 1) — exc(x, 5) = Z 2~ Ks1(w) _ Z 27K < Qor1 — Q5.
w=x+1 w=x+1

because the difference is due to convergence at stage s of new U-computations. O
Theorem 4.3 Let A be Ag. Then the following are equivalent.

(i) Ais K-trivial.
(ii) A obeys each additive cost function.
(iii) A obeys ¢(q), where Q; = Adom(Uy).

Proof (ii) — (iii) is immediate, and (iii) — (i) follows from Fact 4.2. It remains to
show that (i)—(ii).

Fix some computable approximation (A;),y of A. Let ¢ be an additive cost
function. We may suppose that ¢(0) < 1.

For w > 0, let r,, € N U oo be least such that 27 < ¢(w — 1,w) (where
27%° =0). Then )_, 27" < 1. Hence by the Machine Existence Theorem we have
K(w) <% r, foreach w. This implies 27" = O(27K)) 50" 27 = O(cqe(x))
and hence ¢(x) = ) . c(w—1,w) = O(cq(x)). Thus ¢ — ¢ by Theorem 3.4,
whence the K-trivial set A obeys c. (See [1] for a proof not relying on Theorem 3.4.)

0

Because of Theorem 3.4, we have ¢(q) <> ¢x. That s,

o0
Q-Q .~ Y 27FW,
w=x+1

This can easily be seen directly: for instance, ¢x < ¢(q) by Fact 4.2.



Calculus of Cost Functions 199
4.2 Solovay Reducibility

Let Q; denote the dyadic rationals, and let the variable ¢ range over Q,. Recall
Solovay reducibility on left-c.e. reals: § <y « iff there is a partial computable
¢: QN[0,0) > Q2N[0,B)and N € N such that

Vg <a[f—¢(q) <N —q)].

Informally, it is easier to approximate 8 from the left, than «. See, e.g., [23, 3.2.8]
for background.

We will show that reverse implication of additive cost functions corresponds to
Solovay reducibility on the corresponding left-c.e. reals. Given a left-c.e. real y, we
let the variable (y) range over the nondecreasing effective sequences of rationals
converging to y.

Proposition 4.4 Let a, B be left-c.e. reals. The following are equivalent.

(i) B<sa
(ii) Y{)3(B) [c(a) = c(p)]
(iii) a)I(B) [c(ay — c(p)]-

Proof

(i) —> (ii) Given an effective sequence («), by the definition of <g there is an
effective sequence (B) such that  — . = O(a — a,) for each x. Thus ¢(g) =
O(c(),)- Hence ¢(y) — ¢(p) by Theorem 3.4.

(iii) > (1)  Suppose we are given (o) and (B) such that ¢(5 = O(¢(,)). Define a
partial computable function ¢ by ¢(q) = B, if ¥x—1 < ¢ < &,. Then <5 @ via
0.

|

4.3 The Strength of an Additive Cost Function

Firstly, we make some remarks related to Proposition 4.4. For instance, it implies
that an additive cost function can be weaker than ¢(q) without being obeyed by all
the A9 sets.

Proposition 4.5 There are additive cost functions ¢, d such that ¢(q) — ¢, ¢(q) —
d and ¢, d are incomparable under the implication of cost functions.

Proof Let ¢,d be cost functions corresponding to enumerations of Turing (and
hence Solovay) incomparable left-c.e. reals. Now apply Proposition 4.4. O

Clearly, if B is a computable real then any c.e. set obeys ¢(gy. The intuition we
garner from Proposition 4.4 is that a more complex left-c.e. real f means that the
sets A |= ¢(g) become less complex, and conversely. We give a little more evidence
for this principle: if B is non-computable, we show that a set A |= ¢(gy cannot be
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weak truth-table complete. However, we also build a non-computable 8 and a c.e.
Turing complete set that obeys ¢(g)

Proposition 4.6 Suppose B is a non-computable left-c.e. real and A |= ¢gy. Then
A is not weak truth-table complete.

Proof Assume for a contradiction that A is weak truth-table complete. We can fix a
computable approximation (A) of A such that ¢g) (A,) < 1. We builda c.e. set B. By
the recursion theorem we can suppose we have a weak truth-table reduction I' with
computable use bound g such that B = T'4. We build B so that 8 — Beetry < 27¢,
which implies that 8 is computable.

Let I, = [2°,2°""). If ever a stage s appears such that B — Bye+1) < 27¢, then
we start enumerating into B N1, sufficiently slowly so that A |',,c+1) must change 2
times. To do so, each time we enumerate into B, we wait for a recovery of B = r4
up to 2¢+1_ The A-changes we enforce yield a total cost > 1 for a contradiction.

O

Proposition 4.7 There is a non-computable left-c.e. real B and a c.e. set A |= ¢(p)
such that A is Turing complete.

Proof We build a Turing reduction I" such that @ = T'(A). Let yxs + 1 be the use
of the computation I'? (k)[s]. We view y as a movable marker as usual. The initial
value is y; o = k. Throughout the construction we maintain the invariant

ﬂ_y _ﬂyk.s S 2_k'

Let (¢.) be the usual effective list of partial computable functions. By convention,
at each stage at most one computation ¢, (k) converges newly. To make B non-
computable, it suffices to meet the requirements

Re: ¢e(k) L = B—Bow =27

Strategy for Ry. If ¢y (k) converges newly at stage s, do the following.

1. Enumerate y; ; into A. (This incurs a cost of at most 27k)
2. Let By = Byt +27%.
3. Redefine y; (i > k) to large values in an increasing fashion.

In the construction, we run the strategies for the Ry. If k enters ¢ at stage s, we
enumerate yy s into A.

Clearly each Ry acts at most once, and is met. Therefore 8 is non-computable.
The markers y; reach a limit. Therefore @ = I'(A). Finally, we maintain the stage
invariant, which implies that the total cost of enumerating A is at most 4. O

As pointed out by Turetsky, it can be verified that g is in fact Turing complete.
Next, we note that if we have two computable approximations from the left of
the same real, we obtain additive cost functions with very similar classes of models.
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Proposition 4.8 Ler (o), (B) be left-c.e. approximations of the same real. Suppose
that A |= c¢(y). Then there is B =,, A such that B |= cgy. If A is c.e., then B can be
chosen c.e. as well.

Proof Firstly, suppose that A is c.e. By Fact 2.5, choose a computable enumeration
(As) E ¢o)-

By the hypothesis on the sequences (@) and (B), there is a computable sequence
of stages so < 51 < ... such that |a, — f;| < 27". Let f be a strictly increasing
computable function such that o, < By(y) for each x.

To define B, if x enters A at stage s, let i be greatest such that s; < s. If f(x) < s,
put f(x) into B at stage s;.

Clearly,

O — Oy = Oy, — Oy > O, — ,Bf(x) > ﬂs,' - ,Bf(x) - 2_i

So €(g) (Bs) < Cla) (As) + Zi 27"

Let R be the computable subset of A consisting of those x that are enumerated
early, namely x enters A at a stage s and f(x) > s; where i is greatest such that s; < s.
Clearly, B = f(A — R). Hence B =, A.

The argument can be adapted to the case that A is Ag. Given a computable
approximation (A,) obeying ¢(y), let ¢ be the least s; such that 5; > f(x). For s < ¢,
let By(f(x)) = A:(x). For s > t, let By(f(x)) = Ay, (x), where s; <'s < si4. O

S Randomness, Lowness, and K-Triviality

Benign cost functions were briefly discussed in the introduction.

Definition 5.1 ([10]) A monotonic cost function ¢ is called benign if there is a
computable function g such that for all &,

X0 <X <...<xx A Vi<kle(x;,xi+1) > 27"] implies k < g(n).

Clearly, such a cost function satisfies the limit condition. Indeed, ¢ satisfies the limit
condition if and only if the above holds for some g <7 @'. For example, the cost
function ¢y is benign via g(n) = 2". Each additive cost function is benign where
g(n) = O(2"). For more detail see [10] or [23, Sect. 8.5].

For definitions and background on the extreme lowness property called strong
jump traceability, see [10, 13] or [23, Chap. 8 ]. We will use the main result in [10],
already quoted in the introduction: a c.e. set A is strongly jump traceable iff A obeys
each benign cost function.



202 A. Nies
5.1 A Cost Function Implying Strong Jump Traceability

The following type of cost functions first appeared in [10] and [23, Sect. 5.3]. Let
YAS Ag be ML-random. Fix a computable approximation (Z;) of Z and let ¢z (or,
more accurately, ¢(z)) be the cost function defined as follows. Let ¢z(x,s) = 27*
for each x > s; if x < 5, and e < x is least such that Z;_; (¢) # Z(e), we let

cz(x,s) = max(cz(x,s — 1),27°). 3)

Then A | ¢z implies A <7 Z by the aforementioned result from [10], which is
proved like its variant above.
A Demuth test is a sequence of c.e. open sets (S,;)nen such that

e VmAS,, <27 and there is a function f such that S,, is the E(l) class [Wrum]™;
e f(m) = lim, g(m, s) for a computable function g such that the size of the set
{s: g(m,s) # g(m,s — 1)} is bounded by a computable function A(m).

A set Z passes the test if Z ¢ S, for almost every m. We say that Z is Demuth
random if Z passes each Demuth test. For background on Demuth randomness, see
[23, p. 141].

Proposition 5.2 Suppose Y is a Demuth random Ag setand A = cy. Then A <; Z
for each w-c.e. ML-random set Z.

In particular, A is strongly jump traceable by [13].

Proof Let G5 = [Y; |.], where t < s is greatest such that Z,(e) # Z,_;(e). Let
G. = lim; G}. (Thus, we only update G, when Z(e) changes.) Then (G,).en is a
Demuth test. Since Y passes this test, there is ey such that

Ve > ey Vt[Z(e) # Zi—1(e) > Ts >t Yy [oF Y5 e

We use this fact to define a computable approximation (Z,) of Z as follows: let
Zu(e) = Z(e) for e < ¢g; for e > ¢, let zu (e) = Z(e), where s < u is greatest such
that Ys—l re# Yx [\e-

Note that ¢5(x, s) < cy(x,s) for all x, s. Hence A |= ¢; and therefore A <y Z. 0O

Recall that some Demuth random set is Ag. Kucera and Nies [17] in their main
result strengthened the foregoing proposition in the case of ac.e. set A: if A <r Y
for some Demuth random set Y, then A is strongly jump traceable. Greenberg and
Turetsky [11] obtained the converse of this result: every c.e. strongly jump traceable
is below a Demuth random.

Remark 5.3 For each Ag set Y, we have ¢y(x) = 27F®™ where F is the Ag function
such that

F(x) = min{e: ds > xY(e) # Y,—1(e)}.
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Thus F can be viewed as a modulus function in the sense of [25].

For a computable approximation ®, define the cost function ¢4 as in (3). The
following (together with Rmk. 5.3) implies that any computable approximation ®
of an ML-random Turing incomplete set changes late at small numbers, because the
convergence of 2 to € is slow.

Corollary 5.4 Let Y <7 @ be an ML-random set. Let ® be any computable
approximation of Y. Then ¢o — ¢x and therefore O(co(x)) = ¢(g)(x).

Proof If A |E c¢ then C = ¢, where C > A is the change set of the given
approximation of A as in Proposition 2.14. By [14] (also see [23, 5.1.23]), C and
therefore A are K-trivial. Hence A |= ¢(q). O

5.2 Strongly Jump Traceable Sets and d.n.c. Functions

Recall that we write X <;r Y if X <y Y with use function bounded by the identity.
When building prefix-free machines, we use the terminology of [23, Sect. 2.3], such
as Machine Existence Theorem (also called the Kraft-Chaitin Theorem), bounded
request set, etc.

Theorem 5.5 Suppose an w-c.e. set Y is diagonally noncomputable via a function
that is weak truth-table below Y. Let A be a strongly jump traceable c.e. set. Then
A<pr?Y.

Proof By [15] (also see [23, 4.1.10]), there is an order function A such that
2h(n) <t K(Y |,) for each n. The argument of the present proof goes back to
Kucera’s injury-free solution to Post’s problem (see [23, Sect.4.2]). Our proof is
phrased in the language of cost functions, extending the similar result in [10], where
Y is ML-random (equivalently, the condition above holds with A(n) = |n/2] + 1).

Let (Y,) be a computable approximation via which Y is w-c.e. To help with
building a reduction procedure for A <;r Y, via the Machine Existence Theorem
we give prefix-free descriptions of initial segments Y [.. On input x, if at a stage
s > x e s least such that Y (e) has changed between stages x and s, then we still hope
that ¥, |, is the final version of ¥ [,. So whenever A(x) changes at such a stage
s, we give a description of ¥ |, of length A(e). By hypothesis, A is strongly jump
traceable, and hence obeys each benign cost function. We define an appropriate
benign cost function ¢ so that a set A that obeys ¢ changes little enough that we can
provide all the descriptions needed.

To ensure that A <;7 Y, we define a computation I' (Y |,) with output A(x) at the
least stage t > x such that Y; |, has the final value. If Y satisfies the hypotheses of
the theorem, A(x) cannot change at any stage s > ¢ (for almost all x), for otherwise
Y . would receive a description of length i(e) + O(1), where e is least such that
Y(e) has changed between x and s.
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We give the details. Firstly we give a definition of a cost function ¢ which
generalizes the definition in (3). Let ¢(x,s) = O foreachx > 5. If x < 5, and e < x
is least such that Y, (e) # Y;(e), let

c(x, s) = max(c(x, s — 1),277). 4)

Since Y is w-c.e., ¢ is benign. Thus each strongly jump traceable c.e. set obeys ¢ by
the main result in [10]. So it suffices to show that A |= ¢ implies A <;,r Y for any set
A. Suppose that ¢(A;) < 2“. Enumerate a bounded request set L as follows. When
As—1(x) # Ay(x) and e is least such that e = x or Y,—1(e) # Y;(e) for some ¢t € [x, s),
put the request (u + h(e), Y; |) into L. Then L is indeed a bounded request set.

Let d be a coding constant for L (see [23, Sect. 2.3]). Choose ¢ such that i(e) +
u + d < 2h(e) for each e > ¢y. Choose sy > e such that Y |, is stable from stage
So On.

To show A <;r Y, given an input x > sp, using Y as an oracle, compute t > x
such that ¥; },= Y |,. We claim that A(x) = A,(x). Otherwise A;(x) # A;—;(x) for
some s > t. Let e < x be the largest number such that ¥, },= Y; |, for all r with
t < r <s.If e < x then Y(e) changes in the interval (¢, s] of stages. Hence, by the
choice of t > s, we cause K(y) < 2h(e), wherey = Y, |,= Y |, a contradiction.

O

Example 5.6 For each order function £ and constant d, the class
Ppa={Y: Vn2h(n) <K(Y },) +d}

is T19. Thus, by the foregoing proof, each strongly jump traceable c.e. set is ibT
below each w-c.e. member of Py, 4.

We discuss the foregoing Theorem 5.5, and relate it to results in [10, 13].

1. In [13, Theorem 2.9] it is shown that given a non-empty I1Y class P, each jump
traceable set A Turing below each superlow member of P is already strongly
jump traceable. In particular, this applies to superlow c.e. sets A, since such
sets are jump traceable [21]. For many non-empty I10 classes, such a set is
in fact computable. For instance, it could be a class where any two distinct
members form a minimal pair. In contrast, the nonempty among the I1{ classes
P = P;,4 are examples of where being below each superlow (or w-c.e.) member
characterizes strong jump traceability for c.e. sets.

2. Each superlow set A is weak truth-table below some superlow set Y as in the
hypothesis of Theorem 5.5. For let P be the class of {0, 1}-valued d.n.c. functions.
By [23, 1.8.41], there is a set Z € P such that (Z®A) <4 A’.NowletY = ZDA.
This contrasts with the case of ML-random covers: if a c.e. set A is not K-trivial,
then each ML-random set Turing above A is already Turing above @' by [14].
Thus, in the case of ibT reductions, Theorem 5.5 applies to more oracle sets Y
than [10, Proposition 5.2].
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3. Greenberg and Nies [10, Proposition 5.2] have shown that for each order
function p, each strongly jump traceable c.e. set is Turing below each w-c.e. ML-
random set, via a reduction with use bounded by p. We could also strengthen
Theorem 5.5 to yield such a “p-bounded” Turing reduction.

5.3 A Proper Implication Between Cost Functions

In this subsection we study a weakening of K-triviality using the monotonic cost
function

Cmax (X, 8) = max{27KM: x <y < s}

Note that ¢« satisfies the limit condition, because

K(w) .

Cpax (X) = max{2” X < w}.

Clearly, cpax(x,s) < cx(x,s), whence ¢ — cpax. We will show that this
implication of cost functions is proper. Thus, some set obeys ¢,y that is not K-
trivial.

Firstly, we investigate sets obeying cpax. For a string «, let g(«r) be the longest
prefix of « that ends in 1, and g(o) = @ if there is no such prefix.

Definition 5.7 We say that a set A is weakly K-trivial if
VnlK(g(A 1)) < K(n)].
Clearly, every K-trivial set is weakly K-trivial. By the following, every c.e.
weakly K-trivial set is already K-trivial.
Fact 5.8 IfA is weakly K-trivial and not h-immune, then A is K-trivial.
Proof By the second hypothesis, there is an increasing computable function p such

that [p(n), p(n + 1)) N A # @ for each n. Then

K(A Tpw) =7 KA b)) = Kp(n+ 1) =7 K(p(n)).

This implies that A is K-trivial by [23, Exercise 5.2.9]. O

We say that a computable approximation (A;)en is erasing if for each x and each
s > 0, As(x) # As—1(x) implies A;(y) = O for each y such that x < y < s. For
instance, the computable approximation built in the proof of the implication “="
of Theorem 3.4 is erasing by the construction.

Proposition 5.9 Suppose (A;)sen is an erasing computable approximation of a set
A, and (A;) E Cmax- Then A is weakly K-trivial.
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Proof This is a modification of the usual proof that every set A obeying cx is K-
trivial (see, for instance, [23, Theorem 5.3.10]).

To show that A is weakly K-trivial, one builds a bounded request set W. When at
stage s > 0 we have r = K;(n) < K,—;(n), we put the request (r + 1, g(A |',)) into
W. When A;(x) # As—1(x), let r be the number such that ¢ (x, s) = 27", and put
the request (r + 1, g(A P+1)) into W.

Since the computable approximation (A;)seny Obeys Cpax, the set W is indeed a
bounded request set; since (A;)en is erasing, this bounded request set shows that A
is weakly K-trivial. O

We now prove that ¢x 7 €x. We do so by proving a reformulation that is of
interest by itself.

Theorem 5.10 For every b € N, there is an x such that ¢, (x) > 2"¢
words,

(x). In other

max

Z{Z_K(W): x < w)>2max{2 KM x < w.

By Theorem 3.4, the statement of the foregoing theorem is equivalent to ¢p,x 7
cx. Thus, as remarked above, some set A obeys ¢p,x via an erasing computable
approximation, and does not obey ¢y . By Proposition 5.9 we obtain a separation.

Corollary 5.11 Some weakly K-trivial set fails to be K-trivial.

Melnikov and Nies [20, Proposition 3.7] have given an alternative proof of the
preceding result by constructing a weakly K-trivial set that is Turing complete.

Proof of Theorem 5.10 Assume that there is a b € N such that
Vx[eg(x) < Zbcmax(x)].

To obtain a contradiction, the idea is that ¢y (x, s), which is defined as a sum, can be
made large in many small bits; in contrast, ¢yax (X, 5), which depends on the value
27K for a single w, cannot.

We will define a sequence 0 = xp < x] < ... < xy for a certain number N. When
Xy has been defined for v < N, for a certain stage r > x,, we cause ¢ (xy, 7) to exceed
a fixed quantity proportional to 1/N. We wait until the opponent responds at a stage
s > t with some w > x, such that 275 corresponds to that quantity. Only then do
we define x, 11 = s. For us, the cost ¢gc(x;, x;) will accumulate for i < j, while the
opponent has to provide a new w each time. This means that eventually he will run
out of space in the domain of the prefix-free machine, giving short descriptions of
such w’s.

In the formal construction, we will build a bounded request set L with the purpose
to cause cx (x, s) to be large when it is convenient to us. We may assume by the
recursion theorem that the coding constant for L is given in advance (see [23,
Remark 2.2.21] for this standard argument). Thus, if we put a request (n,y + 1)
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into L at a stage y, there will be a stage ¢t > y such that K,(y + 1) < n+d, and hence
cxc(x, 1) > exelx,y) + 27774,
Letk = 20T+l Let N = 2k,

Construction of L and a Sequence 0 = xo < x| < ... < xy of Numbers

Suppose v < N, and x, has already been defined. Put (k,x, 4+ 1) into L. As
remarked above, we may wait for a stage ¢ > x, such that ¢y (x,, 1) > 2754 Now,
by our assumption, we have ¢4 (x;) < 2°¢,, (x;) for each i < v. Hence we can wait
for a stage s > ¢ such that

max

Vi<viw [xi <w<s A exl(x,s) < Zb_K‘(W)]. (5)

Let x,+1 = s. This ends the construction.

Verification Note that L is indeed a bounded request set. Clearly, we have
e (x;, Xi+1) = 2% 4 foreachi < N.

Claim 5.12 Letr < k. Write R = 2. Suppose p + R < N. Let s = x,+g. Then we
have

X(p+R)
Z min(2_K‘(W), 2—k—b—d+r) > (V + 1)2_k_b_d+r_l. (6)
w=xp+1

For r = k, the right-hand side equals (k 4+1)2~¢+4*D > [ which is a contradiction
because the left-hand side is at most 2 < 1.

We prove the claim by induction on r. To verify the case r = 0, note that
by (5) there is a w € (x,, x,41] such that cgc(x,, Xp41) < 2b=K:W) Since 2% <
cx (Xp, Xp41), We obtain

2h=b=d < =K (where s = Xpt1)-

Thus the left-hand side in the inequality (6) is at least 27% =9, while the right-hand
side equals 27¥ =4~ "and the claim holds for r = 0.

In the following, for i < j < N, we will write 8(x;, x;) for a sum of the type
occurring in (6), where w ranges from x; + 1 to x;.

Suppose inductively the claim has been established for < k. To verify the claim
for r + 1, suppose that p + 2R < N where R = 2" as before. Let s = x,12z. Since
cx (%, xi11) > 2757, we have

C:K(Xp,s) Z 2R2—k—d — 2—k—d+r+l.
By (5), this implies that there is w, x, < w < s, such that

p—k=bdtr+l < p=Kilw), (7)
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Now, in sums of the form 8(x,, x44 r), because of taking the minimum, the “cut-off”
for how much w can contribute is at 2% ~>~4%" Hence we have

S(Xpa xp+2R) > 2—k Thdtr + S(Xpa xp+R) + 8()C[2+Rv xp+2R)-
The additional term 27%~?=9+" ig due to the fact that w contributes at most
27k=b=dHr 10 §(x,, Xp+R) + S(Xptr, Xp+28), but by (7), w contributes 27* b—d=r+1
to 8(x,, xp42r). By the inductive hypothesis, the right-hand side is at least

2—k—b—d+r +2. (r 4 l)z—k—b—d-i—r—l — (r 4 2)2—k—b—d+r,

as required. O

6 A Cost Function-Related Basis Theorem for l'[‘l’ Classes

The following strengthens [13, Theorem 2.6], which relied on the extra assumption
that the T1Y class is contained in the ML-randoms.

Theorem 6.1 Let P be a nonempty H(l) class, and let ¢ be a monotonic cost function
with the limit condition. Then there is a Ag set Y € P such that each c.e. setA <7 Y
obeys c.

Proof We may assume that ¢(x,s) > 27" for each x < s, because any c.e. set that
obeys ¢ also obeys the cost function ¢(x, s) + 27"

Let (A., W, ).en be an effective listing of all pairs consisting of a c.e. set and a
Turing functional. We will define a AY set Y € P via a computable approximation,
Y sen, where Y; is a binary string of length s. We meet the requirements

N.: A, = V. (Y) = A, obeysc.

We use a standard tree construction at the " level. Nodes on the tree 2<* represent
the strategies. Each node « of length e is a strategy for N,. At stage s we define an
approximation §; to the true path. We say that s is an «-stage if o < &;.

Suppose that a strategy « is on the true path. If @0 is on the true path, then
strategy « is able to build a computable enumeration of A, via which A, obeys c. If
al is on the true path, the strategy shows that A, # W,(Y).

Let P? be the given class P. A strategy o has as an environment a H(l) class P“.
It defines P*° = P, but usually lets P*' be a proper refinement of P*.

Let @] = e. The length of agreement for e at a stage ¢ is min{y: A,,(y) #
W, (Y;)}. We say that an «-stage s is «-expansionary if the length of agreement for
e at stage s is larger than at u for all previous a-stages u.

Let wg = n, and

Wi = pv > wie(wi,v) > 47" (8)
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Since ¢ satisfies the limit condition, for each » this sequence breaks off.

Let a = w! be such a value. The basic idea is to certify A, I, which means
to ensure that all X > Y |\,,4+s on P¥ compute A, |,. If A |, changes later, then
also Y |,+4 has to change. Since Y |',+, can only move to the right (as long as « is
not initialized), this type of change for n can only contribute a cost of 4" +127+d —
2—n+d+2'

By [23, p.55], from an index Q for a IT{ class in 2° we can obtain a computable
sequence (Q,)sen of clopen classes such that Q; 2 Q4 and Q = (1), Q,. In the
construction below we will have several indices for I1] classes Q that change over
time. At stage s, as usual, by Q[s] we denote the value of the index at stage s. Thus
(Q[s])s is the clopen approximation of Q[s] at stage s.

Construction of 'Y

Stage 0. Let 8§y = @ and P? = P. Let Yy = 0.

Stage s > 0. Let P? = P.

For each f such that §,_; <; B, we initialize strategy . We let Y; be the leftmost
path on the current approximation to P%-1, i.e., the leftmost string y of length s — 1
such that [y] N (P%—'[s — 1]); # @. For each a, n, if Yy Mia# Y1 s, Where
d = inits(cr), then we declare each existing value w! to be («, n)-unsatisfied.

Substage k, 0 < k < s. Suppose we have already defined « = &, [+. Run
strategy « (defined below) at stage s, which defines an outcome r € {0, 1} and a 1'[(1)
class P*". Let §5(k) = r.

We now describe the strategies o and the procedures 87 they call. To initialize a
strategy o means to cancel the run of this procedure. Let

d = inity(a) = || + thelaststagewhen awasinitialized.

Strategy o at an a-Stage s

(a) If no procedure for « is running, call procedure §¢ with parameter w, where n
is least, and i is chosen least for n, such that w = w! < s is not («, n)-satisfied.
Note that n exists because w), = s and this value is not («, n)-satisfied at the
beginning of stage s. By calling this procedure, we attempt to certify A, |, as
discussed above.

(b) While such a procedure &% is running, give outcome 1.

(This procedure will define the current class P*!.)

(c) Ifaprocedure 82 returns at this stage, goto (d).

(d) If s is x-expansionary, give outcome 0, let P20 — P and continue at (a) at the
next a-stage. Otherwise, give outcome 1, let P*! = P, and stay at (d).

Procedure 8% with Parameter w at a Stage s If n +d > s — 1, let Pl = P,
Otherwise, let

Q=P"nN {X >z \ij ?é Aes rw}v ©)
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where z = Y; ',+4. (Note that each time Y |\, 44 or A, |, has changed, we update
this definition of Q.)

(e) If Qy # 0, let P! = Q. If the definition of P*! has changed since the last
a-stage, then each § such that ¢l < B is initialized.

(f) If Qy = @, declare w to be («, n)-satisfied and return. (A, |, is certified, as
every X € P* extending z computes A, |, via W,. If A, |, changes later, then
necessarily z £ Y.)

Claim 6.2 Suppose a strategy « is no longer initialized after stage so. Then for each
n, a procedure 8% is only called finitely many times after sj.

There are only finitely many values w = wY because ¢ satisfies the limit condition.
Since « is not initialized after so, P* and d = init;(«) do not change. When a run
of 8% is called at a stage s, the strategies § > «1 are initialized; hence init,(8) >
s > n+dforall t > s. So the string Y, |, is the leftmost string of length n + d
on P* at stage s. This string has to move to the right between the stages when 87 is
called with the same parameter w, because w is declared («, n)-unsatisfied before 8%
is called again with parameter w. Thus, procedure 8% can only be called 2" times
with parameter w.

Claim 6.3 (Y;)sen is a computable approximation of a A) set ¥ € P.

Fix k € N. For a stage s, if Y; | is to the left of Y;_; [, then there are o, n with
n + inity(o) < k such that P*[s] # P%[s — 1] because of the action of a procedure
8% at (e) or ().

There are only finitely many pairs «, s such that init;(o) < k. Thus, by Claim 6.2,
there is a stage so such that at all stages s > s¢, for no @ and n with n 4 init;(«) < &,
a procedure 82 is called.

While a procedure 8% is running with a parameter w, it changes the definition of
P! only if A, ', changes (e = |a|), so at most w times. Thus there are only finitely
many s such that Yy [ # Y,—1 .

By the definition of the computable approximation (¥;)sen, we have Y € P. This
completes Claim 6.3.

As usual, we define the true path f by f(k) = liminf; §,(k). By Claim 6.2, each
a < f is only initialized finitely often, because each § such that 81 < « eventually
is stuck with a single run of a procedure Sﬁl.

Claim 6.4 1f e = || and al < f, then A, # W!.

Some procedure &) was called with parameter w, and is eventually stuck at (e)
with the final value A, |,,. Hence the definition Q = P*! eventually stabilizes at
a-stages s. Since Y € Q, this implies A, # W!.

Claim 6.5 If e = || and a0 < f, then A, obeys c.

LetA = A,. We define a computable enumeration (Ap)peN of A via which A obeys c.
Since a0 < f, each procedure 8§ returns. In particular, since ¢ has the limit
condition and by Claims 6.2 and 6.3 each value w = w! becomes permanently
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(o, m)-satisfied. Let d = inity(a). Let s¢ be the least ®0-stage such that s > d, and
let
Spr1 = WS > s, + 2 [sisa0 — stage A

Vn,i(w=w] <s, - wis(a, n) — satisfiedat s)].
As in similar constructions such as [23], for p € N we let
Ap = A, N[0, p).

Consider the situation where p > 0 and x < p is least such that A,, (x) # 12\1,_1 (x).
We call this situation an n-change if n is least such that x < w} < s, for some i.
(Note that n < p 4 1 because ng = p + 1.) Thus (x, 5,) contains no value of the
form wj’.’_l, whence ¢(x, p) < ¢(x,s,) < 47" We are done if we can show there

are at most 2" ¢ many n-changes, for in that case the total cost C(A,,) is bounded by
Zn 4—n+12n+d — O(Zd)

Recall that P* is stable by stage so. Note that Y |',+, can only move to the right
after the first run of 87, as observed in the proof of Claim 6.2.

Consider n-changes at stages p < ¢ via parameters w = w} and w' = w} (where
possibly k < i). Suppose the last run of 8% with parameter w that was started before
Sp+1 has returned at stage ¢ < 5,42, and similarly, the last run of 8% with parameter
w' that was started before 5,41 has returned at stage #'. Let z = ¥; |qq and 2/ =
Yy Mata. We show z <, Z; this implies that there are at most pntd many n-changes.

At stage t, by definition of returning at (f) in the run of 8§, we have Q = 0.
Therefore \Ilfj > Ae, [ for each X on P¢ such that X > z. Now

Ap(x) #* A —1(x),x <wandt < 5,41,

S0 As,,,
Therefore

tw# A; [w. The stage 5,42 is a0-expansionary, and Yy, is on Pe.

Y1 [\n+d <Y rn+d

for some stage r such that ¢ < r < s,4,. Thus, at stage r, the value w' was declared
(o, n)-unsatisfied. Hence a new run of 8% with parameter w' is started after r, which
has returned by stage 5,41 > sp42. Thus r < 7. Soz <; Y1 Mga<c ¥ Muta=cr 7,

whence z <;, 7, as required. This concludes Claim 6.5 and the proof. O

7 A Dual Cost Function Construction

Given a relativizable cost function ¢, let D — WP be the c.e. operator given by the
cost function construction in Theorem 2.7 relative to the oracle D. By pseudo-jump
inversion, there is a c.e. set D such that W2 @ D =7 @', which implies D <7 @'.
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Here, we give a direct construction of a c.e. set D <7 @’ so that the total cost of
@'-changes as measured by ¢? is finite. More precisely, there is a D-computable
enumeration of @’ obeying c”.

If ¢ is sufficiently strong, then the usual cost function construction builds an
incomputable c.e. set A that is close to being computable. The dual cost function
construction then builds a c.e. set D that is close to being Turing complete.

7.1 Preliminaries on Cost Functionals

Firstly we clarify how to relativize cost functions, and the notion of obedience to
a cost function. Secondly we provide some technical details needed for the main
construction.

Definition 7.1

(1) A cost functional is a Turing functional ¢Z(x, t) such that, for each oracle Z,
¢” either is partial, or is a cost function relative to Z. We say that ¢ is non-
increasing in the main argument if this holds for each oracle Z such that ¢Z is
total. Similarly, ¢ is non-decreasing in the stage argument if this holds for each
oracle Z such that ¢Z is total. If both properties hold, we say that ¢ is monotonic.

(ii) Suppose A <7 Z’. Let (A;) be a Z-computable approximation of A.
We write (A,) EZ ¢ if
FA) =X, )
[x <s A cZ(x,5) | Ax isleasts.t. A, 1(x) # As(x)]
is finite. We write A =2 ¢ if {A;) % ¢ for some Z-computable
approximation (A;) of A.

For example, cgc (x,8) => ., <s 27K s a total monotonic cost functional. We
have A =% ¢4 iff A is K-trivial relative to Z.

We may convert a cost functional ¢ into a total cost functional ¢ such that ¢ (x) =
¢ (x) for each x with Yt¢?(x,t) |, and, for each Z, x,t, the computation ¢ (x, f)
converges in 7 steps. Let

¢“(x,s) = ¢Z(x,1), where ¢ < s is largest such that ¢?(x, )[s] | .

Clearly, if ¢ is monotonic in the main/stage argument, then so is €.

Suppose that D is c.e. and we compute ¢ (x, ) via hat computations [25, p. 131]:
the use of a computation ¢?(x, #)[s] | is no larger than the least number entering
D at stage s. Let Np be the set of non-deficiency stages; that is, s € Np iff there
is an x € Dy — D,_; such that Dy }',= D |,. Any hat computation existing at a
non-deficiency stage is final. We have

c?(x) = sup &P (x, s). (10)

SENp
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For, if ¢?(x, t)[so] | with D stable below the use, then ¢”(x, 1) < € (x, s) for each
s € Np. Therefore ¢?(x) < sup,c No ¢Ps(x, ). For the converse inequality, note that
for s € Np, we have ¢Ps(x, s) = ¢”(x, ) for some ¢ < s with D stable below the use.

7.2 The Dual Existence Theorem

Theorem 7.2 Let ¢ be a total cost functional that is nondecreasing in the stage
component and satisfies the limit condition for each oracle. Then there is a Turing
incomplete c.e. set D such that &' =P cP.

Proof We define a cost functional I'?(x, s) that is nondecreasing in the stage. We
will have T'?(x) = ¢P(x) for each x, where I'?(x) = lim, T’ (x, 1), and @' with its
given computable enumeration obeys I'”. Then @’ =P ¢P by the easy direction ‘<’
of Theorem 3.4 relativized to D.

Towards I'?(x) > ¢P(x), when we see a computation ¢ (x, s) = «, we attempt
to ensure that I'P (x,s) > «. To do so, we enumerate relative to D a set G of “wishes”
of the form

p = {xa),

where x € N, « is a nonnegative rational, and u + 1 is the use. We say that p is a
wish about x. If such a wish is enumerated at a stage t and D; |, is stable, then the
wish is granted, namely, I'°(x, ) > a. The converse inequality I'’(x) < ¢ (x) will
hold automatically.

To ensure D <7 @', we enumerate a set F, and meet the requirements

N,: F # @P.

Suppose we have put a wish p = (x, @) into G”. To keep the total I'’-cost of the
given computable enumeration of @' down, when x enters ', we want to remove p
from G” by putting u into D. However, sometimes D is preserved by some N,. This
will generate a preservation cost. N, starts a run at a stage s via some parameter
v, and “hopes” that &' |, is stable. If @’ |, changes after stage s, then this run
of N, is cancelled. On the other hand, if x > v and x enters @', then the ensuing
preservation cost can be afforded. This is so because we choose v such that &2 (v, 5)
is small. Since €” has the limit condition, eventually there is a run N, (v) with such
a low-cost v where @' |, is stable. Then the diagonalization of N, will succeed.

Construction of c.e. Sets F, D and a D-c.e. Set G of Wishes Stage s > 0. We may
suppose that there is a unique n € @, — @_,.

1. Canceling N,’s. Cancel all currently active N, (v) with v > n.

2. Removing wishes. For each p = (x,a)* € GP[s — 1] put in at a stage t < s, if
@ Met17# @4 Prt1 and p is not held by any N, (v), then put u— 1 into Dy, thereby
removing p from G.
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3. Adding wishes. For each x < s, pick a large u (in particular, u ¢ D;) and put a
wish (x,a)* into G, where @ = € (x, s). The set of queries to the oracle D for
this enumeration into G is contained in [0, r) U {u}, where r is the use of ¢?s (x, s)
(which may be much smaller than s). Then, from now on this wish is kept in G
unless (a) D ', changes , or (b) u enters D.

4. Activating N,(v). For each e < s such that NV, is not currently active, see if there
isav,e < v < n,such that

- &P (v,5) <37¢/2,
— v > w for each w such that N;(w) is active for some i < e, and
— ®D )= F 41 where x = (e, v,]0' N[0, v)]),

If so, choose v least and activate N, (v). Put x into F. Let N, hold all wishes for some
y > v that are currently in G”. Declare that such wishes are no longer held by any
N;(w) for i # e. (We also say that N, takes over the wishes.)

Go to stage s, where s’ is larger than any number mentioned so far.

Claim 1 Each requirement N, is activated only finitely often, and met. Hence F' £7
D.

Inductively suppose that N; for i < e is no longer activated after stage 7. Assume
for a contradiction that F = @f . Since ¢ satisfies the limit condition, by (10) there
is a least v such that ¢?(v,s) < 37¢/2 for infinitely many s > #y. Furthermore,
v > w for any w such that some N;(w), i < e, is active at 7. Once N, (v) is activated,
it can only be canceled by a change of @’ |',. Then there is a stage s > fo, € (v, s) <
37¢/2, such that @' }, is stable at s and ®2 }y1= F |41, where x = (e, v, |0’ N
[0,v)]). If some N,(v') for v/ < v is active after (1.) of stage s, then it remains
active, and N, is met. Now suppose otherwise.

Since we do not activate N, (v) in (4) of stage s, some N, (w) is active for w > v.
Say it was activated last at a stage ¢ < s viax = (e, w, |@ N [0,w]|. Then x' =
{e,v,|0', N [0,v)]) was available to activate N,(v) as x' < x and hence ®? } 1=
F }v+1 [f]. Since w was chosen minimal for e at stage ¢, we had ¢” (v, ) > 37¢/2.
On the other hand, ¢”s(v,s) < 37¢/2; hence D, |, # D, |;. When N,(w) became
active at ¢, it tried to preserve D |, by holding all wishes about some y > w that were
in GP[t]. Since N, (w) did not succeed, it was cancelled by a change @', },# @', |,.
Hence N, (w) is not active at stage s, a contradiction. &

We now define I'#(x, t) for an oracle Z (we are interested only in the case Z = D).
Let s be least such that D = Z |,. Output the maximum « such that some wish
{x, )" for u < tisin G”[s].

Claim 2 (i) T'P(x, 1) is nondecreasing in 7. (ii) Vx T'? (x) = ¢ (x).

(i) Suppose ¢ > t. As above, let s be least such that D; |, is stable. Let s” be least
such that Dy |y is stable. Then s’ > s, so a wish as in the definition of I'?(x, £)
above is also in GP[s']. Hence I'P(x,?) > I'°(x, 1).

(ii) Given x, to show that T'°(x) > ¢P(x), pick #, such that @' |,y is stable at
fo. Let s € Np and s > 1. At stage s we put a wish (x,a)" into Gp, where
a = ¢Ps(x, 5). This wish is not removed later, so '’ (x) > «.
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For ' (x) < ¢P(x), note that for each s € Np we have ¢?(x,s) > I'Ps(x, s) by
the removal of a wish in 3(a) of the construction when the reason the wish was there
disappears. <&

Claim 3 The given computable enumeration of @’ obeys I'°.

First we show by induction on stages s that N, holds in total at most 37¢ at the end
of stage s, namely,

37 > Zmax{a: N, holdsawish (x, a)"} (1)

Note that once N, (v) is activated and holds some wishes, it will not hold any
further wishes later, unless it is cancelled by a change of @' |, (in which case the
wishes it holds are removed).

We may assume that N, (v) is activated at (3.) of stage s. Wishes held at stage s
by some N;(w) where i < e will not be taken over by N,(v) because w < v. Now
consider wishes held by an N;(w) where i > e. By inductive hypothesis, the total of
such wishes is at most ) ,_, 3~ = 37¢/2 at the beginning of stage s. The activation
of N.(v) adds at most another 37¢/2 to the sum in (11).

To show that I'?(@';) < oo, note that any contribution to this quantity due to n’s
entering @’ at stage s is because a wish (n, §)* is eventually held by some N, (v). The
total is at most ), 37°. |

The study of non-monotonic cost functions is left for the future. For instance, we
conjecture that there are cost functions ¢, d with the limit condition that for any A9
sets A, B,

A cand B =d = A, B formaminimalpair.

It is not hard to build cost functions ¢, d such that only computable sets obey both
of them. This provides some evidence for the conjecture.
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The Mathematics of Emergence
and Morphogenesis



Turing’s Theory of Morphogenesis: Where We
Started, Where We Are and Where We Want
to Go

Thomas E. Woolley, Ruth E. Baker, and Philip K. Maini

Abstract Over 60 years have passed since Alan Turing first postulated a mech-
anism for biological pattern formation. Although Turing did not have the chance
to extend his theories before his unfortunate death two years later, his work has
not gone unnoticed. Indeed, many researchers have since taken up the gauntlet
and extended his revolutionary and counter-intuitive ideas. Here, we reproduce
the basics of his theory as well as review some of the recent generalisations and
applications that have led our mathematical models to be closer representations of
the biology than ever before. Finally, we take a look to the future and discuss open
questions that not only show that there is still much life in the theory, but also that
the best may be yet to come.

1 Introduction

The initiation and maintenance of biological heterogeneity, known as morphogen-
esis, is an incredibly broad and complex issue. In particular, the mechanisms by
which biological systems maintain robustness, despite being subject to numerous
sources of noise, are shrouded in mystery. Although molecular genetic studies have
led to many advances in determining the active species involved in patterning,
simply identifying genes alone does not help our understanding of the mechanisms
by which structures form. This is where the strengths of mathematical modelling lie.
Not only are models able to complement experimental results by testing hypothetical
relationships, they are also able to predict mechanisms by which populations
interact, thus suggesting further experiments [1].

The patterns we are considering are thought to arise as the consequence
of an observable population, e.g. skin cells, responding to diffusing signalling
populations, known as morphogens, e.g. proteins. Specifically, the morphogens
we consider are simply chemical reactants that do not sense their surroundings
and freely diffuse. Through morphogen diffusion and interactions, non-uniform
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patterns in concentration can emerge. The observable population is then thought
to undergo concentration-dependent differentiation based on this heterogeneous
morphogen distribution, thereby producing a corresponding heterogeneous pattern
in the observable population [2, 3].

Many mathematical frameworks have been postulated to explain how such
patterns arise. Here, we focus on one such paradigm mechanism: Alan Turing’s
diffusion-driven instability [4]. Turing conjectured that diffusion, normally known
as a homogenising process, could destabilise a spatially homogeneous stable
steady state of morphogen concentration. At its simplest, the instability can be
characterised by interactions between two diffusing morphogen populations. There
are two possible types of kinetics that can lead to instability, the better studied being
the type where one of the species acts as an activator and the other behaves as an
inhibitor [5, 6]. These names are derived from the fact that the activator promotes
its own production in a positive feedback loop, which, in turn, is controlled by an
inhibitor in a negative feedback loop. If the reaction domain is small enough such
that the populations are well-mixed everywhere diffusion dominates the system,
i.e. the product of the diffusion rate and reaction time scale is much greater than
the domain size squared, the reactions will simply tend to a homogeneous stable
steady state of concentration. However, as the domain size increases, diffusion can
destabilise the homogeneous steady state. Explicitly, if the inhibitor diffuses faster
than the activator, local growth in the activator is able to occur whilst the inhibitor
prevents activator spreading [7]; thus, once the domain is large enough, spatial
heterogeneity will arise.

Although we will be specifically thinking about Turing’s theory in terms of
biological pattern formation, the mathematical formalism is quite general and can be
used to discuss any situation where the morphogen populations can be considered to
be randomly moving reactive agents. Thus, the ideas of diffusion-driven instability
are not restricted to biology. Indeed, the idea has been applied to such diverse areas
as semiconductor physics [8], hydrodynamics [9] and even astrophysics [10].

2  Where We Started

We will be primarily concerned with multiple biochemical populations, U;, where
i = 1,...,n, which are collectively denoted by the vector U = (Uy,..., U,). Fur-
ther, the populations are identified with chemical concentrations ¢ = (¢1, ..., P,).
These populations are able to diffuse in a spatial domain )V with boundary surface
dV. As the populations diffuse around the domain, individual particles will often
collide with each other, allowing reactions to occur. The reactions that occur are
either motivated through biological observations or are of mathematical interest,
proposed to reflect general aspects of the underlying biology.

The system could be completely described deterministically by Newton’s laws
of motion, treating individual morphogen particles as point masses that can collide
and bounce off one another. In this framework, reactions are defined to occur when
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particles collide with sufficient force. However, due to our ignorance of the initial
positions and velocities of the active and solvent particles and our inability to cope
computationally with the large number of particles involved (which can easily be
of the order of 107 particles and higher [11]), we instead choose to assume that the
discrete populations, U;, are large enough to be approximated by the continuous
chemical concentrations, ¢;, which are described using deterministic differential
equations. Immediately, we see that this assumption has produced an error as the
populations can only physically take integer values, whereas, once we take the
continuum limit, the concentrations can take any continuous value. However, it has
been shown that stochastic influences that arise due to the discrete nature of the
particles scale as the reciprocal of the square root of the population size [12]. Thus,
if in a specific biological application the chemical population of interest can be
justified to be large, then a deterministic description is, in general, valid [13].

Since we are dealing with biochemical species, the populations will not be
able to sense their surroundings and, thus, in the absence of some external force
producing directionality, e.g. an electric field, their movement will be a simple
random walk down concentration gradients, deterministically modelled by Fick’s
Law of Diffusion [14]. This law postulates that the chemicals move from regions
of high concentration to regions of low concentration, with a magnitude that is
proportional to the size of the concentration gradient. Although the framework is
described in the context of molecular particles, it is in fact more general and can be
applied to any system where motility is considered to be governed by an unbiased
random walk [15-17].

The evolution of the concentrations ¢; at positionx € V and time ¢t > 0 is defined
by the coupled system of partial differential equations (PDEs)

A (x, 1)

0 = DV2¢(x.1) + F(¢(x. 1)), )

$x,0) = do(x) VxeV,

G(p(x,1) =0 VxeodVandt >0,

where V2 denotes the Laplacian operator and represents diffusion. The term

F = (Fi($).....Fu(9)) @)

defines the (usually non-linear and highly coupled) interactions between the
populations whilst D = [d;;] is a diagonal matrix of diffusivities that is generally
constant in space and time. The diffusivity constants control how quickly the
chemicals spread throughout the domain. Finally, the functional form of G specifies
how the chemicals behave on the boundary of the spatial domain that we are
considering and ¢ (x) is the initial concentrations of the chemicals [18].
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Numerous different types of boundary conditions are possible: for example,
homogeneous Neumann, or zero-flux boundary conditions, i.e.

G = =0, 3)

where n is the outward pointing normal of d). This simply states that no material
may leave the domain; effectively, the domain is insulated. An alternative type
of boundary condition is known as Dirichlet, or fixed concentration boundary
condition, which, as the name suggests, simply fixes the concentration of the
chemical on the boundary,

G=¢-C=0, )

where C is normally a constant. Other boundary conditions, e.g. reactive boundary
conditions [19] or periodic boundary conditions [20, 21], also can be used although
they are not considered here.

Systems such as Eq.(1) are known as ‘reaction-diffusion’ equations. They are
able to produce a large variety of stationary and temporally varying patterns, such
as stationary gradients, travelling waves and moving fronts [22], even without the
Turing instability. Thus, unless biologically motivated to add further components to
capture relevant dynamics, we concentrate on capturing the maximum amount of
complexity through the simplest forms of reaction-diffusion equations.

2.1 Turing Instability

For clarity the current formulae are quoted for reaction-diffusion systems of two
concentrations (¢, ), with Neumann (zero flux) boundary conditions in a one-
dimensional domain, [0, L]. Extensions to higher dimensions and various other
boundary conditions are possible [18, 23]. In full generality the equations are

¢I‘ = D¢¢xx +f(¢s w)v (5)
wt = DWWXX + g(d)v w)s (6)

where the subscripts x and ¢ denote partial derivatives, and suitable initial conditions
are defined to close the system. Usually the initial conditions are taken simply to be
random perturbations around a spatially uniform steady state, as it is the final pattern
that is evolved that is important, not the initialisation of the system.

The first requirement of a diffusion-driven instability is that there exists a
spatially homogeneous, linearly stable steady state, i.e. there exists (¢, ¥o) such
that f(¢o, ¥o) = g(¢o, Yo) = 0 and all eigenvalues of the Jacobian (evaluated at the
homogeneous steady state),

(N

(0. Vo) = ( i @0, V0) 3, (. vfo))

gﬁ;ga (90, Vo) 5’5, (¢o. Vo)
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have a negative real part. The second requirement is that the steady state becomes
linearly unstable in the presence of diffusion. Note that although we derive
conditions that will allow a reaction-diffusion system to realise a Turing pattern,
as we will see in the biological applications section, the solution domain also has to
be bigger than a critical size in order for the patterns to exist.

To derive necessary conditions for pattern formation to occur, the steady state is
perturbed using functions that also satisfy the boundary conditions. Since we are
using zero flux boundary conditions, we use a Fourier cosine expansion of the form

(@ (x, 1), ¥ (x, 1) = (¢o + P(x, 1), Yo + V¥ (x,1)), where

(?ﬁ)) = Z (Z’”) e*cos (knx) , (8)

m=0 n

and k,, = mw/L, m = 0,1,2, ... . Explicitly, the cosine function allows us to
satisfy the zero flux boundary conditions since at the boundaries of the solution
domain its spatial derivative will take the form of a sine function, which evaluates
to zero when x = 0 or L. Moreover, because the cosine functions, {cos(k,x)}5> ,
form a complete orthogonal set, any solution of the linearised equation system can
be decomposed into a series solution of superpositions.

The growth rate A, informs us about the stability of the homogeneous steady
state with respect to the wave mode, k,,. If the real part of A,, is negative for all m,
then any perturbations will tend to decay exponentially quickly. However, in the case
that the real part of 4,, is positive for any non-zero value of m, our expansion solution
suggests that the amplitude of these modes will grow exponentially quickly and so
the homogeneous steady state is now linearly unstable. Moreover, in the case where
there are multiple cos(k,,x) terms growing, small alterations in the initial conditions
(which are bound to occur, since we are assuming that initial conditions are random
perturbations around the homogeneous steady state) can lead to completely different
final outcomes. Critically, the integer values of m for which A,, has a positive real
part then indicate how many pattern peaks we will see in the final solution. For
example, if As is the only growth rate with positive real part, then we expect that
the system will tend to a solution in which a cos(5wx/L) function is dominant, so
the final pattern will have the corresponding number of peaks. However, if a range
of growth rates is positive, then multiple cosine modes will fight for dominance and
we will be unable to predict with certainty which mode will dominate in the final
solution, because of the initial random perturbations and nonlinear interactions. This
is the robustness problem. When dealing with animal pigmentation patterns, this
dependence on initial conditions can be a useful property; for example zebra stripes
are as individual as fingerprints [24]. However, such variability is problematic
when we apply Turing’s theory to more robust forms of biological development.
Fortunately, as we will see later, this robustness problem is surmountable.

Substituting Eq. (8) into the linearised form of Egs. (5) and (6), we obtain

Am + Dok — f ~fy ) (am)
0 — m o o . 9
( —8¢ Am + Dyky,— gy ) \ b ©)
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This matrix equation has a non-trivial solution ((a,, b,,) # (0, 0)) if and only if the
determinant is zero:

A+ An((Dy +Dy)kz, —fo — gy ) + DDy kiy— ki (D gy + Dy fp) + 8y —fy 8 = 0.
(10)

Letting h(k?) = DyDyk* — k*(Dygy + Dyfs) + fs8y — fy8s» the linear stability of
the homogeneous steady state is now governed by the signs of the real parts of

Aoy = fo + 8y — (Dy + D)k, £ \/(f + gy — (Dy + Dy)k2)? — 4h(k2)
m - 2 .
(11)

First, we consider the linear stability in the case where there is no diffusion, Dy =
Dy = k,, = 0. For the homogeneous steady state to be linearly stable, the real parts
of both eigenvalues need to be negative. Thus

Jo +8y <0, (12)
and
h(O) =f¢g1// _f‘//glﬁ > O (13)

Diffusion is now included and we derive conditions to ensure that at least one
of the eigenvalues has positive real part. Since fy + gy < 0 by inequality (12), it
follows that f + gy — (D + Dy )k2, < 0; thus the real part of A,,— is always negative.
The only way to obtain an instability is if the real part of A, is positive. From (11),
this occurs if (k%) < 0. Explicitly,

DyDyky, — ky(Dggy + Dyfy) + fo8y —fy8p <0, (14)

=k <k, <k, (15)
where
2DyDyk = Dygy + Dyfy + \/(Dd;gw + Dyfy)* — 4Dy Dy (fo8y —fy8s)- (16)
For inequality (15) to be realised, ki needs to be real and positive, implying
Dygy + Dyfs > 0, 17)

(Dygy + Dyfy)* — 4DyDy (f8y — fy8¢) > O. (18)

Since fygy — fyg&y > 0, from inequality (13), these two inequalities yield one
condition,

D¢g¢ + D¢f¢ > 2\/D¢Dw \/(f¢g¢ —f¢g¢) > 0. (19)

Thus inequalities (12), (13), (15) and (19) form the conditions needed for a Turing
instability in a reaction-diffusion system.
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f¢+gw<0,

fogy —fv&s > 0,

Dygy + Dyfy > 2/DyDy\/(f38y —fy84) > 0,

k2 < ("

)2 <KL

Turing’s computer science background ideally suited this problem, as not only
did he possess the mathematical skills to create the theoretical framework, but he
was perfectly situated to numerically simulate the equations and, hence, visualise
coarse-grained versions of the patterns (Fig. 1a, b). Due to the dramatic increase
in computational speed and numerical algorithms, we are able to revisit the
calculations (Fig. Ic, d) and see just how good Turing’s first simulations were.
Clearly, although his simulations were very coarse approximations to the equations,
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Fig. 1 Heterogeneous patterns visualised in (a) one and (b) two dimensions, originally created by
Turing himself. Modern versions of the Turing pattern in (c¢) one and (d) two dimensions. Figures
(a) and (b) is reproduced from [4] by permission of the Royal Society
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the basic patterns are still visible and very close to those we are now able to generate,
illustrating his impressive computational abilities.

3 Where We Are

Turing’s research was ahead of its time and so, for a while, his ideas lay dormant.
However, the fast pace of theoretical, numerical and biological development that
occurred towards the end of the twentieth century meant that it was the perfect time
for Turing’s theory to enjoy a successful renaissance [25, 26]. Here, we review just
a few of the convincing biological applications, as well as some of the theoretical
extensions, illustrating the richness of the original theory.

3.1 Biological Applications

Perhaps the most colourful application is to pigmentation patterns. Importantly, this
is not restricted to coat markings and animal skin. The Turing instability has also
been suggested to be the mechanism behind the patterns on many seashells [27].

One prediction that immediately springs from the theory concerns tapered
domains, for example a tail. By rearranging inequality (15), we obtain a bound on m,

Lk_ Lky
<m< : (20)
b4 b4

Since k4 and k_ are constants, this means that as the domain size, L, decreases, the
window of viable wave modes shrinks, eventually disappearing. This means that as
a domain becomes smaller, we should see a simplification of the pattern, e.g. from
peak patterns to homogeneity. This result can be extended to the second dimension,
where spot and stripe patterns are available. Once again, as the domain shrinks,
we would expect a transition from spots to stripes, and finally to homogeneity, if
the domain is small enough (Fig. 2a). This is excellently exemplified on the tail of
the cheetah (Fig. 2b). However, the biological world does not always have respect
for mathematics, as illustrated in Fig. 2c, where we observe that the lemur’s pattern
transition goes from a simple homogeneous colour on the body to a more complex
striped pattern on the tail. Potentially, this means that Turing’s theory does hold for
the lemur’s skin. Alternatively, if Turing’s theory is used to account for the lemur’s
patterns, then we have to postulate either that the parameter values for the body and
the tail are different, causing the difference in pattern, or that the patterns arise from
the highly nonlinear regime of the kinetics, where our linear theory breaks down
and, hence, we can no longer use the above predictions.

Importantly, we are not restricted to stationary domains, and these predictions
were extended by Kondo and Asai [28] to pattern transitions on growing angelfish.
As angelfish age, their bodies grow in size and more stripes are included in the
pattern. Critically, the evolving patterns maintain a near-constant stripe spacing,
which is one of the crucial features of a Turing pattern.
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Fig. 2 (a) Turing pattern on a tapered domain. Pattern transitions on (b) a cheetah and (c) a lemur

Turing patterns have also been postulated to underlie formation of the precursor
patterns of many developmental systems, for example in mice, where it has been
suggested that molar placement can be described by a diffusion-driven instability.
Critically, not only can the normal molar placement be predicted by the model, but,
by altering the model parameters to mimic biological perturbations, fused molar
prepatterns are predicted, thereby reproducing experimental results [29]. Sheth et al.
[30] further showed that Turing systems could underlie mouse digit development.
In particular, experimental perturbations produced paws that did not change in size,
but the number of digits did increase, leading to a reduction in digit spacing. Like
the stripes on the angelfish, this new digit spacing in the treated mice was constant,
consistent with a Turing-like mechanism. Critically, the reduction in wavelength
could be linked to changes of parameters in a general Turing model.

3.2 Theoretical Extensions

As already discussed, growth is an essential and readily observed process in
development that has been identified as an important factor in the production of
spatial heterogeneity since it can fundamentally change the observed dynamics of
patterning mechanisms. Although growth had previously been included in an ad hoc
manner [31], Crampin et al. [32] were the first to rigorously incorporate the effects
of domain growth into the reaction-diffusion framework. This led to the discovery
that uniform exponential domain growth can robustly generate persistent pattern
doubling, even in the face of random initial conditions (Fig. 3a). This insensitivity to
initial conditions is particularly significant in the context of biological development,
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Fig. 3 (a) Deterministic Turing kinetics on an exponentially growing domain. (b) Stochastic
Turing kinetics on an exponentially growing domain. (¢) Stochastic Turing kinetics on an linearly,
apically growing domain. Figure (c) is reproduced with permission from [35]. Copyright 2011
American Physical Society

as not only does heterogeneity need to form, but also, in many cases, it is imperative
that the final pattern be reliably reproducible.

Continuing this idea of robustness, we note that biological systems are frequently
subject to noisy environments, inputs and signalling, not to mention that important
proteins may only appear in very small quantities. Fundamentally, we based the
derived partial differential equation (PDE) framework on the assumption that each
species was present in high concentration, which allowed us to use a continuous
approximation of the chemical concentrations. In order to investigate the Turing
mechanism’s sensitivity to noise, stochastic formulations have been created and
even extended to encompass descriptions of domain growth [33-35]. Although it is
clear that the Turing instability is able to exist (Fig. 3b), even in the face of intrinsic
randomness, we see that uniform domain growth is no longer able to support the
robust peak splitting that Crampin et al. [32] demonstrated in the deterministic
system. However, if growth is localized to one of the boundaries (known as apical
growth), then we see that pattern peaks appear in the domain one at a time, creating
a consistent consecutive increase in the pattern wavenumber (Fig.3c). If apical
domain growth and wavenumber were connected in some form of feedback loop,



Turing’s Theory of Morphogenesis: Where We Started, Where We Are and. . . 229

then, once the desired wavenumber was reached, growth would stop, leaving a stable
pattern of exactly the desired wave mode. Thus, robust pattern generation can be
recovered. It should be noted that noise does not need to be generated explicitly
through stochastic reactions. Turing systems can also be chaotic, thus producing a
deterministic form of noise [36].

A further relaxation of the fundamental assumptions behind the PDE formulation
concerns the reaction rates as being defined by the Law of Mass Action. As
originally stated, the law assumes that reactant products are created at the same
moment that the reaction occurs. However, this may not always be the case. Reaction
delays are particularly important when dealing with the production of important
proteins as a cascade of time-consuming biological processes must occur in order
for a single protein to be produced. Firstly, a linear polymeric ribonucleic acid
(RNA) molecule is produced in a cell nucleus. This RNA molecule is an exact copy
of the relevant gene sequence and is modified into a form called messenger RNA
(mRNA). The mRNA is then transported into the nuclear membrane, where it is used
as a blueprint for protein synthesis. In particular, the process of mRNA translation
involves the polymerization of thousands to millions of amino acids. Given the
complexity of this mechanism, it should not be surprising that a delay occurs
between the initiation of protein translation and the point at which mature proteins
are observed. The exact delay depends both on the length of the sequence being
read and the sequence being created. However, typically the delay ranges from tens
of minutes to as long as several hours [37]. Work has been done on including these
gene-expression delays into both the deterministic and stochastic PDE formulations
of the Turing instability, leading to observations of wildly different outcomes when
compared to the non-delayed equations [38—40]. The potentially most worrying case
is that of kinetic delays causing a catastrophic collapse of the pattern formation
mechanism. Furthermore, such pathological dynamics occur consistently, regardless
of domain growth profiles [41].

4 Computational Extensions

Of course, our simulations on one-dimensional lines and two-dimensional flat
surfaces should always be questioned as to their accuracy in reproducing the effects
of a real surface, which may have high curvatures. For example, pigmentation
patterns are produced on skin surfaces that are stretched over skeletons that have
highly non-trivial geometries. Turing mechanisms have been studied on simple
regular surfaces, e.g. spheres, cones, etc. [42]. However, recent developments in
numerical algorithms have allowed us to push our studies even further, allowing us
to greatly generalise the geometries on which we numerically simulate the reaction-
diffusion systems.

PDEs on surfaces are normally solved using finite element discretisations on a
triangulation of the surface [43] or some other discretisation based on a suitable
parameterisation of the surface [42]. An alternative approach to parameterizing
the surface is to embed it in a higher-dimensional space [44]. The PDEs are then
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Fig. 4 Examples of Turing patterns on general surfaces, computed using the closest point method
[44]

solved in the embedding space, rather than just on the lower dimensional surface.
Embedding methods have the attractive feature of being able to work using standard
Cartesian coordinates and Cartesian grid methods [44]. Thus, it is within this class
that the Closest Point Method was developed and analyzed [45]. Although we will
not go into full details concerning the technique here, we do present the simple
central idea of the embedding, which, as the name suggests, is the construction of
the closest point function.

Definition 1 For a given surface S, the closest point function cp : R? — R? takes
a point x € RY and returns a unique point cp(x) € S C R? which is closest in
Euclidean distance to x. Namely,

cp(x) = min |[x —g]|>. 21
q€S

If more than one ¢ should fit this property, a single one is chosen arbitrarily.

From this definition, equations governing quantities on the surface can be
extended to the embedding space. The equations are then solved more easily in the
regular grid of the embedding space. This solution in the embedded space evaluated
on the original surface will then agree with the solution that would have been
generated if we had simply tried to solve the equation on just the surface. Examples
of the impressive generality of this technique are given in Fig. 4.

5 Where We Want to Go

Now that we better understand the formation of Turing patterns on general two-
dimensional surfaces, it is natural to want to extend to three and higher dimensions.
Indeed, theoretical, experimental and computational work does exist heading in
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this direction [46—49]. However, by going to higher dimensions we start having
problems of pattern degeneracy. In one dimension, we are guaranteed only discrete
peaks. The only degeneracy is in the choice of polarity, i.e. for any pattern mode
that is based on a cos(kx) form, — cos(kx) is also a possible solution with opposite
polarity. In two dimensions, not only can we obtain stripes, spots and labrythine
patterns, but the orientation of these patterns is also variable, because any wave

vector k, which is associated with a critical wave number |k| = \/ K, + k2, = ke,

such that Re(A,(k.)) > 0, defines a growing mode. This means that in the
spatially bounded two-dimensional case a finite number of Fourier modes can have
wave vectors that lie on the critical circle [50]. Thus, spots can be arranged in
rectangular, hexagonal, or rhombic patterns amongst other, more varied templates.
This degeneracy problem becomes even more complex in three dimensions, where
lamellae, prisms, and various other cubic structures all exist, making prediction
even more difficult [51]. Weakly nonlinear theory and equivariant bifurcation theory
[7,51-53] can be used to derive amplitude equations near a critical bifurcation point
that separate the homogeneous and patterned stationary stable states.

However, analysis will only get us so far and thus we are depending more and
more on numerical simulation in order to explore patterning parameter space. This
illustrates the great need for three-dimensional PDE solvers that are not only able
to efficiently approximate the solutions of stiff PDEs with fine spatial resolution,
but also are flexible enough to incorporate various boundary conditions, geometries
and spatial heterogeneities. Further, analogously to the above work, changing
from continuous descriptions of the populations to individual-based stochastic
simulations in three dimensions poses another computationally intensive task. There
has been work done on speeding up stochastic simulation algorithms [54-56];
however, work has only just begun to consider the potential powerful use of parallel
computing, which is a much underexplored territory [57].

Equally, the computational visualisation of Turing patterns in higher dimensions
needs consideration, as the basic planiforms, discussed above, are much more
complicated. Moreover, the ability to compare such visualisations with actual data
is still in its infancy and there are, as yet, few metrics by which a simulation can be
compared to an experiment. Currently, we depend on simply matching the general
pattern and the ability of the kinetics to reproduce experimental perturbations.
However, to rigorously compare such patterns we must be able to develop image
segmentation software that is capable of extracting dominant features of numerical
and experimental results and comparing them using statistical methods.

Importantly, we do not need to extend to a third spatial dimension to find new
problems. There are many still unanswered questions in lower spatial dimensions,
but with more than two chemical species [58]. To suggest that many complex
biological phenomena occur because of the interactions of two chemical species is
misguided, at best. In reality, a single developmental pathway can depend on many
hundreds of gene products interacting through a complex network of non-linear
kinetics. Moreover, living systems have numerous fail-safe mechanisms, such as
multiple redundant pathways, that only activate when there is a problem with the
main network. This means that even if we are able to produce a complete gene
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product interaction map for a given biological phenomenon, the phenomenon may
still occur if the network is disrupted, making conclusions difficult.

Once again, analysis of such large systems can only lead us so far, before
numerical simulations are required [59]. However, we are starting to see new
branches of mathematical biology that seek to deal with these large networks,
either through mass computer parallelisation of data processing [60, 61] or through
rigorously and consistently identifying key features and time scales that allow
the full system to be greatly reduced to a much smaller number of important
species [62—66]. In either approach, efficient numerical algorithms are of paramount
importance, and we hope to see more development in this direction in the future.

A rapidly growing research area is that of synthetic biology [67, 68]. In the
future, no longer will we use mathematics to mimic a natural system’s ability
to produce patterns; instead, we will design tissues and cells that are able to
reproduce mathematical predictions. Further, by utilising the large knowledge
base surrounding the numerous extensions of Turing’s theory, we may be able to
customise such designs in order to produce patterns with specific properties.

6 Discussion

As can be clearly seen, Turing’s theory for the chemical basis of morphogenesis has
been applied to a wide range of patterning phenomena in developmental biology.
The incredible richness in behaviour of the diffusion-driven instability has also
allowed the theory to be extended dramatically from its humble beginnings of two
chemicals deterministically reacting in a simple domain. Indeed, it is testament to
Turing’s genius that, not only did he discover such a counter-intuitive mechanism,
it is still generating new ideas, even after 60 years of research. Importantly,
our progress has significantly benefited from the recent rapid developments in
computational software and hardware. Indeed, with the continued development of
the biological techniques and computational visualisation abilities discussed in the
last section, we could be at the dawn of a new age of Turing’s theory, enabling us to
further strengthen the links between experimental and theoretical researchers.

Acknowledgements TEW would like to thank St John’s College Oxford for its financial support.
This publication is based on work supported by Award No. KUK-C1-013-04, made by King
Abdullah University of Science and Technology (KAUST). The cheetah and lemur photos were
used under the Attribution-ShareAlike 2.0 license and were downloaded from http://www.flickr.
com/photos/53936799 @NO05/ and http://www.flickr.com/photos/ekilby/.


http://www.flickr.com/photos/53936799@N05/
http://www.flickr.com/photos/53936799@N05/
http://www.flickr.com/photos/ekilby/

Turing’s Theory of Morphogenesis: Where We Started, Where We Are and. . . 233

References

1.

2.

(95}

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

C.J. Tomlin, J.D. Axelrod, Biology by numbers: mathematical modelling in developmental
biology. Nat. Rev. Genet. 8(5), 331-340 (2007)

L. Wolpert, Positional information and the spatial pattern of cellular differentiation. J. Theor.
Biol. 25(1), 1-47 (1969)

. L. Wolpert, Positional information revisited. Development 107(Suppl.), 3—12 (1989)
. AM. Turing, The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37-72

(1952)

. A. Gierer, H. Meinhardt, A theory of biological pattern formation. Biol. Cybern. 12(1), 30-39

(1972)

. R. Kapral, K. Showalter, Chemical Waves and Patterns (Kluwer, Dordrecht, 1995)
. P. Borckmans, G. Dewell, A. De wit, D. Walgraef, Turing bifurcations and pattern selection, in

Chemical Waves and Patterns, Chap. 10 (Kluwer, Dordrecht, 1995), pp. 325-363

. Y.I. Balkarei, A.V. Grigor’yants, Y.A. Rzhanov, M.I. Elinson, Regenerative oscillations,

spatial-temporal single pulses and static inhomogeneous structures in optically bistable
semiconductors. Opt. Commun. 66(2-3), 161-166 (1988)

. D.B. White, The planforms and onset of convection with a temperature-dependent viscosity.

J. Fluid Mech. 191(1), 247-286 (1988)

T. Nozakura, S. Ikeuchi, Formation of dissipative structures in galaxies. Astrophys. J. 279,
40-52 (1984)

B. Futcher, G.I. Latter, P. Monardo, C.S. McLaughlin, J.I. Garrels, A sampling of the yeast
proteome. Mol. Cell. Biol. 19(11), 7357 (1999)

N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (North Holland,
Amsterdam, 2007)

S. Cornell, M. Droz, B. Chopard, Role of fluctuations for inhomogeneous reaction-diffusion
phenomena. Phys. Rev. A 44, 48264832 (1991)

A. Fick, On liquid diffusion. Philos. Mag. J. Sci. 10(1), 31-39 (1855)

J.D. Murray, E.A. Stanley, D.L. Brown, On the spatial spread of rabies among foxes. Proc. R.
Soc. Lond. B. Biol. 229(1255), 111-150 (1986)

A. Okubo, P.K. Maini, M.H. Williamson, J.D. Murray, On the spatial spread of the grey squirrel
in Britain. Proc. R. Soc. Lond. B. Biol. 238(1291), 113 (1989)

T.E. Woolley, R.E. Baker, E.A. Gaftney, P.K. Maini, How long can we survive? in Mathemati-
cal Modelling of Zombies, Chap. 6 (University of Ottawa Press, Ottawa, 2014)

J.D. Murray, Mathematical Biology I: An Introduction, vol. 1, 3rd edn. (Springer, Heidelberg,
2003)

R. Erban, S.J. Chapman, Reactive boundary conditions for stochastic simulations of reaction—
diffusion processes. Phys. Biol. 4, 16 (2007)

T.E. Woolley, R.E. Baker, PK. Maini, J.L. Aragén, R.A. Barrio, Analysis of stationary droplets
in a generic Turing reaction-diffusion system. Phys. Rev. E 82(5), 051929 (2010)

T.E. Woolley, Spatiotemporal behaviour of stochastic and continuum models for biological
signalling on stationary and growing domains. Ph.D. thesis, University of Oxford, 2011

R.A. Barrio, R.E. Baker, B. Vaughan Jr, K. Tribuzy, M.R. de Carvalho, R. Bassanezi, P.K.
Maini, Modeling the skin pattern of fishes. Phys. Rev. E 79(3), 31908 (2009)

R. Dillon, PK. Maini, H.G. Othmer, Pattern formation in generalized Turing systems. J. Math.
Biol. 32(4), 345-393 (1994)

J.C.B. Petersen, An identification system for zebra (Equus burchelli, Gray). Afr. J. Ecol. 10(1),
59-63 (1972)

P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaftney, S.S. Lee, Turing’s model for biological
pattern formation and the robustness problem. Interface Focus 2(4), 487—496 (2012)

T.E. Woolley, Mighty morphogenesis, in 50 Visions of Mathematics, Chap. 48 (Oxford
University Press, Oxford, 2014)



234 T.E. Woolley et al.

27. H. Meinhardt, P. Prusinkiewicz, D.R. Fowler, The Algorithmic Beauty of Sea Shells (Springer,
Heidelberg, 2003)

28. S. Kondo, R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus.
Nature 376, 765-768 (1995)

29. S.W. Cho, S. Kwak, T.E. Woolley, M.J. Lee, E.J. Kim, R.E. Baker, H.J. Kim, J.S. Shin,
C. Tickle, P.K. Maini, H.S. Jung, Interactions between Shh, Sostdc1 and Wnt signaling and a
new feedback loop for spatial patterning of the teeth. Development 138, 1807-1816 (2011)

30. R. Sheth, L. Marcon, M.F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe,
M.A. Ros, How genes regulate digit patterning by controlling the wavelength of a Turing-type
mechanism. Science 338(6113), 1476-1480 (2012)

31. P. Arcuri, J.LD. Murray, Pattern sensitivity to boundary and initial conditions in reaction-
diffusion models. J. Math. Biol. 24(2), 141-165 (1986)

32. E.J. Crampin, E.A. Gaffney, P.K. Maini, Reaction and diffusion on growing domains: scenarios
for robust pattern formation. Bull. Math. Biol. 61(6), 1093-1120 (1999)

33. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Power spectra methods for a stochastic
description of diffusion on deterministically growing domains. Phys. Rev. E 84(2), 021915
(2011)

34. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Influence of stochastic domain growth on
pattern nucleation for diffusive systems with internal noise. Phys. Rev. E 84(4), 041905 (2011)

35. T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Stochastic reaction and diffusion on
growing domains: understanding the breakdown of robust pattern formation. Phys. Rev. E
84(4), 046216 (2011)

36. J.L. Aragén, R.A. Barrio, T.E. Woolley, R.E. Baker, P.K. Maini, Nonlinear effects on Turing
patterns: time oscillations and chaos. Phys. Rev. E 86(2), 026201 (2012)

37. C.N. Tennyson, H.J. Klamut, R.G. Worton, The human dystrophin gene requires 16 hours to
be transcribed and is cotranscriptionally spliced. Nat. Genet. 9(2), 184—190 (1995)

38. T.E. Woolley, R.E. Baker, E.A. Gaffney, PK. Maini, S. Seirin-Lee, Effects of intrinsic
stochasticity on delayed reaction-diffusion patterning systems. Phys. Rev. E 85(5), 051914
(2012)

39. E.A. Gaffney, N.A.M. Monk, Gene expression time delays and Turing pattern formation
systems. Bull. Math. Biol. 68(1), 99-130 (2006)

40. S.S. Lee, E.A. Gaffney, Aberrant behaviours of reaction diffusion self-organisation models
on growing domains in the presence of gene expression time delays. Bull. Math. Biol. 72,
2161-2179 (2010)

41. S.S. Lee, E.A. Gaftney, R.E. Baker, The dynamics of Turing patterns for morphogen-regulated
growing domains with cellular response delays. Bull. Math. Biol. 73(11), 2527-2551 (2011)

42. R.G. Plaza, F. Sanchez-Garduno, P. Padilla, R.A. Barrio, P.K. Maini, The effect of growth and
curvature on pattern formation. J. Dyn. Differ. Equ. 16(4), 1093-1121 (2004)

43. K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An
Introduction (Cambridge University Press, Cambridge, 2005)

44. C.B. Macdonald, S.J. Ruuth, The implicit closest point method for the numerical solution of
partial differential equations on surfaces. SIAM J. Sci. Comput. 31(6), 43304350 (2009)

45. S.J. Ruuth, B. Merriman, A simple embedding method for solving partial differential equations
on surfaces. J. Comput. Phys. 227(3), 1943-1961 (2008)

46. T.K. Callahan, E. Knobloch, Bifurcations on the fcc lattice. Phys. Rev. E 53(4), 3559-3562
(1996)

47. T. Leppdnen, M. Karttunen, K. Kaski, R.A. Barrio, L. Zhang, A new dimension to Turing
patterns. Physica D 168, 35-44 (2002)

48. E. Dulos, P. Davies, B. Rudovics, P. De Kepper, From quasi-2D to 3D Turing patterns in
ramped systems. Physica D 98(1), 53-66 (1996)

49. S. Muraki, E.B. Lum, K.-L. Ma, M. Ogata, X. Liu, A PC cluster system for simultaneous in-
teractive volumetric modeling and visualization, in Proceedings of the 2003 IEEE Symposium
on Parallel and Large-Data Visualization and Graphics (2003), p. 13



Turing’s Theory of Morphogenesis: Where We Started, Where We Are and. . . 235

50.

SI.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

S.L. Judd, M. Silber, Simple and superlattice Turing patterns in reaction-diffusion systems:
bifurcation, bistability, and parameter collapse. Physica D 136(1-2), 45-65 (2000)

T.K. Callahan, E. Knobloch, Pattern formation in three-dimensional reaction—diffusion
systems. Physica D 132(3), 339-362 (1999)

T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices. Nonlinearity
10(5), 1179-1216 (1997)

T. Leppédnen, M. Karttunen, R.A. Barrio, K. Kaski, Morphological transitions and bistability
in Turing systems. Phys. Rev. E. 70, 066202 (2004)

D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems.
J. Chem. Phys. 115, 1716 (2001)

M. Rathinam, L.R. Petzold, Y. Cao, D.T. Gillespie, Stiffness in stochastic chemically reacting
systems: the implicit tau-leaping method. J. Chem. Phys. 119(24), 12784—12794 (2003)

Y. Yang, M. Rathinam, Tau leaping of stiff stochastic chemical systems via local central limit
approximation. J. Comput. Phys. 242, 581-606 (2013)

G. Klingbeil, R. Erban, M. Giles, P.K. Maini, STOCHSIMGPU: parallel stochastic simulation
for the Systems Biology Toolbox 2 for Matlab. Bioinformatics 27(8), 1170-1171 (2011)

R.A. Satnoianu, M. Menzinger, P.K. Maini, Turing instabilities in general systems. J. Math.
Biol. 41(6), 493-512 (2000)

V. Klika, R.E. Baker, D. Headon, E.A. Gaffney, The influence of receptor-mediated interactions
on reaction-diffusion mechanisms of cellular self-organisation. B. Math. Biol. 74(4), 935-957
(2012)

J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107-113 (2008)

T. Ideker, T. Galitski, L. Hood, A new approach to decoding life: systems biology. Annu. Rev.
Genomics Hum. Genet. 2(1), 343-372 (2001)

M.W. Covert, B.O. Palsson, Constraints-based models: regulation of gene expression reduces
the steady-state solution space. J. Theor. Biol. 221(3), 309-325 (2003)

O. Cominetti, A. Matzavinos, S. Samarasinghe, D. Kulasiri, S. Liu, PK. Maini, R. Erban,
DifFUZZY: a fuzzy clustering algorithm for complex datasets. Int. J. Comput. Intel. Bioinf.
Syst. Biol. 1(4), 402-417 (2010)

H. Conzelmann, J. Saez-Rodriguez, T. Sauter, E. Bullinger, F. Allgéwer, E.D. Gilles, Reduction
of mathematical models of signal transduction networks: simulation-based approach applied to
EGEF receptor signalling. Syst. Biol. 1(1), 159-169 (2004)

0. Radulescu, A.N. Gorban, A. Zinovyev, A. Lilienbaum, Robust simplifications of multiscale
biochemical networks. BMC Syst. Biol. 2(1), 86 (2008)

L. Marcon, X. Dirego, J. Sharpe, P. Muller, High-throughput mathematical analysis identifies
Turing networks for patterning with equally diffusing signals. eLife 5, 14022 (2016)

W. Weber, J. Stelling, M. Rimann, B. Keller, M. Daoud-El Baba, C.C. Weber, D. Aubel,
M. Fussenegger, A synthetic time-delay circuit in mammalian cells and mice. Proc. Natl.
Acad. Sci. 104(8), 2643-2648 (2007)

E. Fung, W.W. Wong, J.K. Suen, T. Bulter, S. Lee, J.C. Liao, A synthetic gene—metabolic
oscillator. Nature 435(7038), 118-122 (2005)



Construction Kits for Biological Evolution

Aaron Sloman

Abstract This is part of the Turing-inspired Meta-Morphogenesis project, which
aims to identify transitions in information-processing since the earliest proto-
organisms, in order to provide new understanding of varieties of biological intel-
ligence, including the mathematical intelligence that produced Euclid’s Elements.
(Explaining evolution of mathematicians is much harder than explaining evolution
of consciousness!) Transitions depend on “construction kits”, including the initial
“Fundamental Construction Kit” (FCK) based on physics and Derived Construction
Kits (DCKs) produced by evolution, development, learning and culture.

Some construction kits (e.g. Lego, Meccano, plasticine, sand) are concrete using
physical components and relationships. Others (e.g. grammars, proof systems and
programming languages) are abstract, producing abstract entities, e.g. sentences,
proofs, and new abstract construction kits. Mixtures of the two are hybrid Kkits.
Some are meta-construction kits able to create, modify or combine construction
kits. Construction kits are generative: they explain sets of possible construction
processes, and possible products, with mathematical properties and limitations
that are mathematical consequences of properties of the kit and its environment.
Evolution and development both make new construction kits possible. Study of the
FCK and DCKSs can lead us to new answers to old questions, e.g. about the nature of
mathematics, language, mind, science, and life, exposing deep connections between
science and metaphysics. Showing how the FCK makes its derivatives, including all
the processes and products of natural selection, possible is a challenge for science
and philosophy. This is a long-term research programme with a good chance of
being progressive in the sense of Lakatos. Later, this may explain how to overcome
serious current limitations of Al (artificial intelligence), robotics, neuroscience and

psychology.
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1 Background: What Is Science? Beyond Popper
and Lakatos

How is it possible for very varied forms of life to evolve from lifeless matter,
including a mathematical species able to make the discoveries presented in Euclid’s
Elements?' Explaining evolution of mathematical insight is much harder than
explaining evolution of consciousness! (Even insects must be conscious of aspects
of their surroundings.) An outline answer is based on construction kits that make
other things (including new construction kits) possible. The need for science to
include theories that explain how something is possible has not been widely
acknowledged. Explaining how X is possible (e.g. how humans playing chess can
produce a certain board configuration) need not provide a basis for predicting when
X will be realised, so the theory used cannot be falsified by non-occurrence. Popper
[33] labelled such theories “non-scientific’—at best metaphysics. His falsifiability
criterion has been blindly followed by many scientists who ignore the history of
science. E.g. the ancient atomic theory of matter was not falsifiable, but was an early
example of a deep scientific theory. Later, Popper shifted his ground, e.g. in [35],
and expressed great admiration for Darwin’s theory of Natural Selection, despite its
unfalsifiability.

Lakatos [25] extended Popper’s philosophy of science, showing how to evaluate
competing scientific research programmes over time, according to their progress.
He offered criteria for distinguishing “progressive” from ‘“degenerating” research
programmes on the basis of their patterns of development, e.g. whether they
systematically generate questions that lead to new empirical discoveries and new
applications. It is not clear to me whether he understood that his distinction could
also be applied to theories explaining how something is possible. Chapter 2 of [45]?
modified ideas of Popper and Lakatos to accommodate scientific theories about
what is possible, e.g. types of plant, types of animal, types of reproduction, types of
consciousness, types of thinking, types of learning, types of communication, types
of molecule, types of chemical interaction, and types of biological information-
processing. It presented criteria for evaluating theories about things that are possible
and how they are possible, including theories that straddle science and metaphysics.
Insisting on sharp boundaries between science and metaphysics harms both. Each
can be pursued with rigour and openness to specific kinds of criticism. A separate
paper® includes a section entitled “Why allowing non-falsifiable theories doesn’t
make science soft and mushy”, and discusses the general concept of “explaining
possibilities”, its importance in science, the criteria for evaluating such explanations,
and how this notion conflicts with the falsifiability requirement for scientific
theories. Further examples are in [48]. The extremely ambitious Turing-inspired

Uhttp://www.gutenberg.org/ebooks/21076.
Zhttp://www.cs.bham.ac.uk/research/projects/cogaff/crp/#chap2.
3http://www.cs.bham.ac.uk/research/projects/cogaff/misc/explaining-possibility.html.
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Meta-Morphogenesis project, proposed in [57],* depends on these ideas, and will
be a test of their fruitfulness, in a combination of metaphysics and science.

This paper, straddling science and metaphysics, asks: How is it possible for
natural selection, starting on a lifeless planet, to produce billions of enormously
varied organisms, in environments of many kinds, including mathematicians able
to discover and prove geometrical theorems? An outline answer is presented in
terms of construction kits: the Fundamental (physical) Construction Kit (the FCK),
and a variety of “concrete”, “abstract” and “hybrid” Derived Construction Kits
(DCKs), that together are conjectured to explain how evolution is possible, including
evolution of mathematicians. The FCK and its relations to DCKs are crudely
depicted later in Sect. 2.1. Inspired by Kant’s ideas in [18], construction kits are
also offered as providing Biological/Evolutionary foundations for core parts of
mathematics, including parts used by evolution (but not consciously, of course) long
before there were human mathematicians.

Note on “Making Possible” “X makes Y possible” as used here does not imply
that if X does not exist then Y is impossible, only that one route to existence of Y
is via X. Other things can also make Y possible, e.g., an alternative construction kit.
So “makes possible” is a relation of sufficiency, not necessity. The exception is the
case where X is the FCK—the Fundamental Construction Kit—since all concrete
constructions must start from it (in this universe?). If Y is abstract, there need not
be something like the FCK from which it must be derived. The space of abstract
construction kits may not have a fixed “root”. However, the abstract construction kits
that can be thought about by physically implemented thinkers may be constrained
by a future replacement for the Church-Turing thesis, based on later versions of
ideas presented here. Although my questions about explaining possibilities arise in
the overlap between philosophy and science [45, Chap.2], I am not aware of any
philosophical work that explicitly addresses the theses discussed here, though there
seem to be examples of potential overlap, e.g. [7, 69].

2 Fundamental and Derived Construction Kits (FCK, DCK3s)

Natural selection alone cannot explain how evolution happens, for it must have
options to select from. What sorts of mechanisms can produce options that differ
so much in so many ways, allowing evolution to produce microbes, fungi, oaks,
elephants, octopuses, crows, new niches, ecosystems, cultures, etc.? Various sorts
of construction kit, including evolved/derived construction kits, help to explain
the emergence of new options. What explains the possibility of these construction
kits? Ultimately features of fundamental physics including those emphasised by
Schrodinger [37], discussed below. Why did it take so much longer for evolution

“Expanded in http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html.
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to produce baboons than bacteria? Not merely because baboons are more complex,
but also because evolution had to produce more complex construction kits, to make
baboon-building possible.

Construction kits are the “hidden heroes” of evolution. Life as we know it re-
quires construction kits supporting construction of machines with many capabilities,
including growing many types of material, many types of mechanism, many types
of highly functional bodies, immune systems, digestive systems, repair mechanisms,
reproductive machinery, and even mathematicians!

A kit needs more than basic materials. If all the atoms required for making a
loaf of bread could somehow be put into a container, no loaf could emerge. Not
even the best bread-making machine, with paddle and heater, could produce bread
from atoms, since that would require atoms pre-assembled into the right amounts
of flour, sugar, yeast, water, etc. Only different, separate, histories can produce the
molecules and multi-molecule components, e.g. grains of yeast or flour. Likewise,
no fish, reptile, bird, or mammal could be created simply by bringing together
enough atoms of all the required sorts; and no machine, not even an intelligent
human designer, could assemble a functioning airliner, computer, or skyscraper
directly from the required atoms. Why not, and what are the alternatives? We first
state the problem of constructing very complex working machines in very general
terms and indicate some of the variety of strategies produced by evolution, followed
later by conjectured features of a very complex, but still incomplete, explanatory
story.

2.1 Combinatorics of Construction Processes

Reliable construction of a living entity requires: appropriate types of matter,
machines that manipulate matter, physical assembly processes, stores of energy for
use during construction, and usually information, e.g. about which components to
assemble at each stage, how to assemble them, and how to decide in what order to do
so. This requires, at every stage, at least: (1) components available for the remaining
stages, (2) mechanisms capable of assembling the components, (3) mechanisms able
to decide what should happen next.

If there are N types of basic component and a task requires an object of type
O composed of K basic components, the size of a blind exhaustive search for a
sequence of types of basic component to assemble an O is up to NX sequences,
a number that rapidly grows astronomically large as K increases. If, instead of
starting from the N types of basic components, the construction uses M types of pre-
assembled component, each containing P basic components, then an O will require
only K /P pre-assembled parts. The search space for a route to O is reduced in size
to MK/P).,

Compare assembling an essay of length 10,000 characters (a) by systematically
trying elements of a set of about 30 possible characters (including punctuation
and spaces) with (b) choosing from a set of 1000 useful words and phrases, of
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average length 50 characters. In the first case each choice has 30 options but 10,000
choices are required. In the second case there are 1000 options per choice, but far
fewer stages: 200 instead of 10,000. So the size of the (exhaustive) search space is
reduced from 30'%%%° a number with 14,773 digits, to about 1000?*°, a number with
only 602 digits: a very much smaller number. Therefore trying only good pre-built
substructures at each stage of a construction process can make a huge reduction to
the search space for solutions of a given size, though some solutions may be missed.

So, learning from experience by storing useful subsequences can achieve dra-
matic reductions, analogous to a house designer moving from thinking about how to
assemble atoms, to thinking about assembling molecules, then bricks, planks, tiles,
then pre-manufactured house sections. The reduced search space contains fewer
samples from the original possibilities, but the original space has a much larger
proportion of useless options. As sizes of pre-designed components increase so does
the variety of pre-designed options to choose from at each step, though far, far fewer
search steps are required for a working solution: a very much shorter evolutionary
process. The cost may be exclusion of some design options.

This indicates intuitively, but very crudely, how using increasingly large, already
tested useful part-solutions can enormously reduce the search for viable solutions.
The technique is familiar to many programmers, in the use of “memo-functions”
(“memoization”) to reduce computation time, e.g. when computing Fibonacci
numbers. The family of computational search techniques known as “Genetic
Programming™ makes use of related ideas. The use of “crossover” in evolution
(and in Genetic Algorithms) allows parts of each parent’s design specification to be
used in new combinations.

In biological evolution, instead of previous solutions being stored for future re-
use, information about how to build components of previous solutions is stored
in genomes. Evolution, the Great Blind Mathematician, discovered memoization
long before we did. A closely related strategy is to record fragments that cannot be
useful in certain types of problem, in order to prevent wasteful attempts to use such
fragments. Expert mathematicians learn from experience which options are useless
(e.g. dividing by zero). This could be described as “negative-memoization”. Are
innate aversions examples of evolution doing something like that?

Without prior information about useful components and combinations of pre-
built components, random assembly processes can be used. If mechanisms are
available for recording larger structures that have been found to be useful or useless,
the search space for new designs can be shrunk. By doing the searching and
experimentation using information about how to build things rather than directly
recombining the built physical structures themselves, evolution reduces the problem
of recording what has been learnt.

The Fundamental Construction Kit (FCK) provided by the physical universe
made possible all the forms of life that have so far evolved on earth, and also
possible but still unrealised forms of life, in possible types of physical environment.

Shttps://en.wikipedia.org/wiki/Genetic_programming.
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Fig. 1 This is a crude representation of the Fundamental Construction Kit (FCK) (on left) and
(on right) a collection of trajectories from the FCK through the space of possible trajectories to
increasingly complex mechanisms

Fig. 2 Further transitions: a fundamental construction kit (FCK) on /eft gives rise to new evolved
“derived” construction kits, such as the DCK on the right, from which new trajectories can
begin, rapidly producing new more complex designs, e.g. organisms with new morphologies and
new information-processing mechanisms. The shapes and colours (crudely) indicate qualitative
differences between components of old and new construction kits, and related trajectories. A DCK
trajectory uses larger components and is therefore much shorter than the equivalent FCK trajectory

Figure 1 shows how a common initial construction kit can generate many possible
trajectories, in which components of the kit are assembled to produce new instances
(living or non-living). The space of possible trajectories for combining basic
constituents is enormous, but routes can be shortened and search spaces shrunk by
building derived construction kits (DCKs) that assemble larger structures in fewer
steps,® as indicated in Fig. 2.

The history of technology, science and engineering includes many transitions in
which new construction kits are derived from old ones. That includes the science
and technology of digital computation, where new advances used an enormous
variety of discoveries and inventions, including punched cards (used in Jacquard

6 Assembly mechanisms are part of the organism, as illustrated in a video of grass growing itself
from seed (https://www.youtube.com/watch?v=JbiQtfroAYk). In mammals with a placenta, more
of the assembly process is shared between mother and offspring.
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looms), through many types of electronic device, many types of programming
language, many types of external interface (not available on Turing machines!),
many types of operating system, many types of network connection, and many types
of virtual machine, in an enormous variety of applications. Particular inventions
were generalised, using mathematical abstractions, to patterns that could be reused
in new contexts. New applications frequently led to production of new more
powerful tools.

Natural selection did all this on an even larger scale, with far more variety,
probably discovering many obscure problems and solutions still unknown to us.
(An educational moral: teaching only what has been found most useful can discard
future routes to possible major new advances—like depleting a gene pool.)

Biological construction kits derived from the FCK can combine to form new
Derived Construction Kits (DCKs), some specified in genomes, and (very much
later) some discovered or designed by individuals (e.g. during epigenesis; Sect. 2.3)
or by groups, for example new languages. Compared with derivation from the FCK,
the rough calculations above show how DCKs can enormously speed up searching
for new complex entities with new properties and behaviours. See Fig. 2.

DCKs that evolve in different species in different locations may have overlapping
functionality, based on different mechanisms: a form of convergent evolution. E.g.,
mechanisms enabling elephants to learn to use trunk, eyes, and brain to manipulate
food may share features with those enabling primates to learn to use hands, eyes,
and brain to manipulate food. In both cases, competences evolve in response to
structurally similar affordances in the environment. This extends Gibson’s ideas in
[17] to include affordances for a species or a collection of species.’

2.2 Construction Kit Ontologies

A construction kit (and its products) can exist without being described. However,
scientists need to use various forms of language in order to describe the entities they
observe or postulate in explanations, and to formulate new questions to be answered.
So a physicist studying the FCK will need one or more construction kits for defining
concepts, formulating questions, formulating theories and conjectures, constructing
models, etc. Part of the process of science is extending construction kits for theory
formation. Something similar must be done by natural selection: extending useful
genetic information structures that store specifications for useful components.

This relates to claims that have been made about requirements for control systems
and for scientific theories. For example, if a system is to be capable of distinguishing
between N different situations and responding differently to them, it must be capable

"Implications for evolution of vision and language are discussed in http://www.cs.bham.ac.uk/
research/projects/cogaff/talks/#talk111.
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of being in at least N different states (recognition+control states). This is a variant
of Ashby’s “Law of Requisite Variety” [3].

Many thinkers have discussed representational requirements for scientific the-
ories, or for specifications of designs. Chomsky [9] identified requirements for
theories of language, which he labelled observational adequacy (covering the
variety of observed uses of a particular language), descriptive adequacy (covering
the intuitively understood principles that account for the scope of a particular
language) and explanatory adequacy (providing a basis for explaining how any
language can be acquired on the basis of data available to the learner). These
labels were vaguely echoed by McCarthy and Hayes [29], who described a form
of representation as metaphysically adequate if it can express anything that can be
the case, epistemologically adequate if it can express anything that can be known by
humans and future robots, and heuristically adequate if it supports efficient modes
of reasoning and problem solving. (I have simplified all these proposals.)

Requirements can also be specified for powers of biological construction kits.
The fundamental construction kit (FCK) must have the power to make any form of
life that ever existed or will exist possible, using huge search spaces if necessary.
DCKs may meet different requirements, e.g. each supporting fewer types of life
form, but enabling those life forms to be “discovered” in a shorter time by natural
selection, and replicated (relatively) rapidly. Early DCKs may support the simplest
organisms that reproduce by making copies of themselves perhaps as Ganti [15]
described.

At later stages of evolution, DCKs are needed that can construct organisms that
change their properties during development and change their control mechanisms
appropriately as they grow [60]. This requires the ability to produce individuals
whose features are parametrised, with parameters that change over time. More
sophisticated DCKs must be able to produce species with epigenetic mechanisms
that modify their knowledge and their behaviours not merely as required to accom-
modate their own growth but also to cope with changing physical environments,
new predators, new prey and new shared knowledge. A special case of this is
having genetic mechanisms able to support development of a wide enough range
of linguistic competences to match any type of human language developed in any
social or geographical context. However, the phenomenon is far more general than
language development, as discussed in the next section.

2.3 Construction Kits Built During Development (Epigenesis)

Some new construction kits are products of evolution of a species and are initially
shared among only a few members of the species (barring genetic abnormalities),
alongside cross-species construction kits shared between species, such as those
used in mechanisms of reproduction and growth in related species. Evolution
also discovered the benefits of “meta-construction-kits”’: mechanisms that allow
members of a species to build new construction kits during their own development.
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Fig. 3 A construction kit gives rise to very different individuals if the genome interacts with
the environment in increasingly complex ways during development. Precocial species use only
the downward routes on the left, producing preconfigured competences. Competences of altricial
species, using staggered development, may be far more varied. Results of using earlier compe-
tences interact with the genome, producing meta-configured competences on the right

Examples include mechanisms for learning that are initially generic mechanisms
shared across individuals, and developed by individuals on the basis of their own
previously encountered learning experiences, which may be different in different
environments for members of the same species. Human language learning is a
striking example: things learnt at earlier stages make new things learnable that might
not be learnable by an individual transferred from a different environment partway
through learning a different language. This contrast between genetically specified
and individually built capabilities for learning and development was labelled a
difference between “pre-configured” and “meta-configured” competences in [8],
summarised in Fig.3. The meta-configured competences are partly specified in
the genome, but that specification is combined with information abstracted from
individual experiences. Mathematical development and language development in
humans both seem to be special cases of growth of meta-configured competences.
Karmiloff-Smith presented closely related ideas in [19].

Construction kits used for assembly of new organisms that start as seeds or
eggs make possible many different processes in which components are assembled
in parallel, using abilities of the different sub-processes to constrain one another.
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Nobody knows the full variety of ways in which parallel construction processes can
exercise mutual control in developing organisms. One implication of Fig. 3 is that
there are no simple correlations between genes and organism features.

Explaining the many ways in which a genome can orchestrate parallel processes
of growth, development, formation of connections, etc. is a huge challenge. A
framework allowing abstract specifications in a genome to interact with details
of the environment in instantiating complex designs is illustrated schematically in
Fig. 3. An example might be Popper’s proposal in [34] that newly evolved desires
of individual organisms (e.g. desires to reach fruit in taller trees) could indirectly
and gradually, across generations, influence selection of physical characteristics
(e.g. longer necks, abilities to jump higher) that improve success-rates of actions
triggered by those desires. Various kinds of creativity, including mathematical
creativity, might result from such transitions. This generalises Waddington’s “epi-
genetic landscape” metaphor [65], by allowing individual members of a species to
partially construct and repeatedly modify their own epigenetic landscapes instead of
merely following paths in a landscape that is common to the species. Mechanisms
that increase developmental variability may also make new developmental defects
possible (e.g. autism?).

2.4 The Variety of Biological Construction Kits

As products of physical construction kits become more complex, with more ways of
contributing to needs of organisms, and directly or indirectly to reproductive fitness,
they require increasingly sophisticated control mechanisms. New sorts of control
often use new types of information. Processing that information may require new
mechanisms. That may require new construction kits for building new types of
information-processing mechanism. The simplest organisms use only a few types
of (mainly chemical) sensor, providing information about internal physical and
chemical states and the immediate external physical environment. They have very
few behavioural options. They acquire, use and replace fragments of information,
using the same forms of information throughout their life, to control deployment of
a fixed repertoire of capabilities.

More complex organisms acquire information about enduring spatial locations in
extended terrain, including static and changing routes between static and changing
resources and dangers. They need to construct and use far more complex (internal
or external) information stores about their environment, and, in some cases, “meta-
semantic” information about information processing, in themselves and in others,
e.g. conspecifics, predators and prey.

What forms can such information take? Many controlled systems have states
that can be represented by a fixed set of physical measures, often referred to as
“variables”, representing states of sensors, output signals, and internal states of
various sorts. Relationships between such state-components are often represented
mathematically by equations, including differential equations, and constraints (e.g.
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inequalities) specifying restricted, possibly time-varying, ranges of values for the
variables, or magnitude relations between the variables. A system with N variables
(including derivatives) has a state of a fixed dimension, N. The only way to record
new information in such a system is in static or dynamic values for numeric
variables—changing “state vectors”—and possibly alterations in the equations. A
typical example is Powers [36], inspired by Wiener [68] and Ashby [2]. There are
many well-understood special cases, such as simple forms of homeostatic control
using negative feedback. Neural net-based controllers often use large numbers of
variables clustered into strongly interacting sub-groups, groups of groups, etc.

For many structures and processes, a set of numerical values and rates of change
linked by equations (including differential equations) expressing their changing
relationships is an adequate form of representation, but not for all, as implied
by the discussion of types of adequacy in Sect.2.2. That’s why chemists use
structural formulae, e.g. diagrams showing different sorts of bonds between atoms
and collections of diagrams showing how bonds change in chemical reactions.
Linguists, programmers, computer scientists, architects, structural engineers, map
makers and users, mathematicians studying geometry and topology, composers,
and many others, work in domains where structural diagrams, logical expressions,
grammars, programming languages, plan formalisms, and other non-numerical
notations express information about structures and processes that is not usefully
expressed in terms of collections of numbers and equations linking numbers.3

Of course, any information that can be expressed in 2-D written or printed
notation, such as grammatical rules, parse trees, logical proofs, and computer
programs, can also be converted into a large array of numbers by taking a
photograph and digitising it. Although such processes are useful for storing or
transmitting documents, they add so much irrelevant numerical detail that the
original functions are obstructed, such as checking whether an inference is valid,
manipulating a grammatical structure by transforming an active sentence to a
passive one, determining whether two sentences have the same grammatical subject,
removing a bug from a program, or checking whether a geometric construction
proves a theorem—unless the original non-numerical structures are extracted, often
at high cost.

Similarly, collections of numerical values will not always adequately represent
information that is biologically useful for animal decision making, problem solving,
motive formation, learning, etc. Moreover, biological sensors are poor at acquiring
or representing very precise information, and neural states often lack reliability and
stability. (Such flaws can be partly compensated for by using many neurons per
numerical value and averaging.) More importantly, the biological functions, e.g. of

8Examples include: https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Structural _formula
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Euclidean_geometry
https://en.wikipedia.org/wiki/Entity-relationship_model
https://en.wikipedia.org/wiki/Programming_language.
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visual systems, may have little use for absolute measures if their functions are based
on relational information, such as that A is closer to B than to C, A is biting B, A is
keeping B and C apart, A can fit through the gap between B and C, the joint between
A and B is non-rigid, A cannot enter B unless it is reoriented, and many more.
As Schrodinger [37] pointed out, topological structures of molecules can reliably
encode a wide variety of types of genetic information, and may also turn out to
be useful for recording other forms of structural information. Do brains employ
them? Chomsky [9] pointed out that using inappropriate structures in models can
divert attention from important biological phenomena that need to be explained—
see Sect. 2.2, above. Max Clowes, who introduced me to Al in 1969, made similar
points about research in vision around that time.” So a subtask for this project is
to identify types of non-numerical, e.g. relational, information content that are of
biological importance, and the means by which such information can be stored,
transmitted, manipulated, and used, and to explain how the mechanisms performing
those tasks can be built from the FCK, using appropriate DCKs.

2.5 Increasingly Varied Mathematical Structures

Electronic computers made many new forms of control possible, including use of
logic, linguistic formalisms, planning, learning, problem solving, vision, theorem
proving, teaching, map-making, automated circuit design, program verification, and
many more. The world wide web is an extreme case of a control system made up of
millions of constantly changing simpler control systems, interacting in parallel with
each other and with millions of display devices, sensors, mechanical controllers,
humans, and many other things. The types of control mechanism in computer-based
systems now extend far beyond the numerical sorts familiar to control engineers.'?
Organisms also need multiple control systems, not all numerical. A partially
constructed percept, thought, question, plan or terrain description has parts and
relationships, to which new components and relationships can be added and others
removed as construction proceeds and errors are corrected. So the structures
change—unlike a fixed-size collection of variables assigned changing values. Non-
numerical types of mathematics are needed for describing or explaining such
systems, including topology, geometry, graph theory, set theory, logic, formal gram-
mars, and theory of computation. A full understanding of mechanisms and processes
of evolution and development may need new branches of mathematics, including
mathematics of non-numerical structural processes, such as chemical change, or
changing “grammars” for internal records of complex structured information. The
importance of non-numerical information structures has been understood by many

“http://www.cs.bham.ac.uk/research/projects/cogaff/81-95. html#61.

100ften misleadingly labelled “non-linear”—like calling apples, apes and avalanches non-bananas!
http://en.wikipedia.org/wiki/Control_theory http://en.wikipedia.org/wiki/Nonlinear_control.
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mathematicians, logicians, linguists, computer scientists and engineers, but many
scientists still focus only on numerical structures and processes. They sometimes
seek to remedy failures by using statistical methods, which can be spectacularly
successful in restricted contexts, as shown by recent Al successes, whose limitations
I have commented on elsewhere.!!

The FCK need not be able to produce all biological structures and processes
directly, in situations without life, but it must be rich enough to support successive
generations of increasingly powerful DCKs that together suffice to generate all
possible biological organisms evolved so far, and their behavioural and information-
processing abilities. Moreover, the FCK, or DCKs derived from it, must include
abilities to acquire, manipulate, store, and use information structures in DCKs that
can build increasingly complex machines that encode information, including non-
numerical information. Since the 1950s we have also increasingly discovered the
need for new virtual machines as well as physical machines [54, 56].

Large-scale physical processes usually involve a great deal of variability and
unpredictability (e.g. weather patterns), and sub-microscopic indeterminacy is a key
feature of quantum physics; yet, as Schrodinger pointed out in [37], life depends
on very complex objects built from very large numbers of small-scale structures
(molecules) that can preserve their precise chemical structure despite continual
thermal buffetting and other disturbances. Unlike non-living natural structures,
important molecules involved in reproduction and other biological functions are
copied repeatedly, predictably transformed with great precision, and used to create
very large numbers of new molecules required for life, with great, but not absolute,
precision. This is non-statistical structure preservation, which would have been
incomprehensible without quantum mechanics, as explained by Schrodinger. That
feature of the FCK resembles “structure-constraining” properties of construction
kits such as Meccano, TinkerToy and Lego!'? that support structures with more
or less complex, discretely varied topologies, or kits built from digital electronic
components, that also provide extremely reliable preservation and transformations
of precise structures, in contrast with sand, water, mud, treacle, plasticine, and
similar materials. Fortunate children learn how structure-based kits differ from
more or less amorphous construction kits that produce relatively flexible or plastic
structures with non-rigid behaviours—as do many large-scale natural phenomena,
such as snowdrifts, oceans, and weather systems.

Schrodinger’s 1944 book stressed that quantum mechanisms can explain the
structural stability of individual molecules and explained how a set of atoms
in different arrangements can form discrete stable structures with very different
properties (e.g. in propane and isopropane, only the location of the single oxygen
atom differs, but that alters both the topology and the chemical properties of the

E.g. http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html.

2https://en.wikipedia.org/wiki/Meccano, https://en.wikipedia.org/wiki/Tinkertoy and https://en.
wikipedia.org/wiki/Lego.
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molecule).’? He also pointed out the relationship between the number of discrete
changeable elements and information capacity, anticipating [39]. Some complex
molecules with quantum-based structural stability are simultaneously capable of
continuous deformations, e.g. folding, twisting, coming together, moving apart, etc.,
all essential for the role of DNA and other molecules in reproduction, and many
other biochemical processes. This combination of discrete topological structure
(forms of connectivity), used for storing very precise information for extended
periods, and non-discrete spatial flexibility, used in assembling, replicating and
extracting information from large structures, is unlike anything found in digital
computers, although it can to some extent be approximated in digital computer
models of molecular processes.

Highly deterministic, very small-scale, discrete interactions between very com-
plex, multi-stable, enduring molecular structures, combined with continuous defor-
mations (folding, etc.) that alter opportunities for the discrete interactions, may
have hitherto unnoticed roles in brain functions, in addition to their profound
importance for reproduction and growth. Much recent Al and neuroscience uses
statistical properties of complex systems with many continuous scalar quantities
changing randomly in parallel, unlike symbolic mechanisms used in logical and
symbolic Al, though the latter are still far too restricted to model animal minds. The
Meta-Morphogenesis project has extended a set of examples studied four decades
earlier (e.g. in [45]) of types of mathematical discovery and reasoning that use
perceived possibilities and impossibilities for change in geometrical and topological
structures. Further work along these lines may help to reveal biological mechanisms
that enabled the great discoveries by Euclid and his predecessors that are still
unmatched by Al theorem provers (discussed in Sect. 5).

2.6 Thermodynamic Issues

The question sometimes arises whether formation of life from non-living matter
violates the second law of thermodynamics, because life increases the amount
of order or structure in the physical matter on the planet, reducing entropy. The
standard answer is that the law is applicable only to closed systems, and the earth
is not a closed system, since it is constantly affected by solar and other forms of
radiation, asteroid impacts, and other external influences. The law implies only
that our planet could not have generated life forms without energy from non-
living sources, e.g. the sun (though future technologies may reduce or remove
such dependence). Some of the ways in which pre-existing dispositions can harness
external sources of energy to increase local structure are discussed in a collection

3E.g. see James Ashenhurst’s tutorial: http://www.masterorganicchemistry.com/2011/11/10/dont-
be-futyl-learn-the-butyls/.
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of thoughts on entropy, evolution, and construction kits: http://www.cs.bham.ac.uk/
research/projects/cogaff/misc/entropy-evolution.html.'*

Our discussion so far suggests that the FCK has two sorts of components:
(a) a generic framework including space-time and generic constraints on what
can happen in that framework, and (b) components that can be non-uniformly
and dynamically distributed in the framework. The combination makes possible
formation of galaxies, stars, clouds of dust, planets, asteroids, and many other
lifeless entities, as well as supporting forms of life based on derived construction kits
(DCKs) that exist only in special conditions. Some local conditions, e.g. extremely
high pressures, temperatures, and gravitational fields (among others), can mask
some parts of the FCK, i.e. prevent them from functioning. So, even if all sub-atomic
particles required for earthly life exist at the centre of the sun, local factors can rule
out earth-like life forms. Moreover, if the earth had been formed from a cloud of
particles containing no carbon, oxygen, nitrogen, iron, etc., then no DCK able to
support life as we know it could have emerged, since that requires a region of space-
time with a specific manifestation of the FCK, embedded in a larger region that can
contribute additional energy (e.g. solar radiation), and possibly other resources.

As the earth formed, new physical conditions created new DCKs that made
the earliest life forms possible. Ganti [15], usefully summarised in [23] and [14],
presents an analysis of requirements for a minimal life form, the “chemoton”, with
self-maintenance and reproductive capabilities. Perhaps still unknown DCKs made
possible formation of pre-biotic chemical structures, and also the environments
in which a chemoton-like entity could survive and reproduce. Later, conditions
changed in ways that supported more complex life forms, e.g. oxygen-breathing
forms. Perhaps attempts to identify the first life form in order to show how it
could be produced by the FCK are misguided, because several important pre-life
construction kits were necessary: i.e. several DCKs made possible by conditions
on earth were necessary for precursors. Some of the components of the DCKs may
have been more complex than their living products, including components providing
scaffolding for constructing life forms, rather than materials.

2.7 Scaffolding in Construction Kits

An important feature of some construction Kits is that they contain parts that are used
during assembly of products of the kit, but are not included in the products. For
example, Meccano kits include spanners and screwdrivers, used for manipulating
screws and nuts during assembly and disassembly, though they are not normally

“Partly inspired by memories of a talk by Lionel Penrose in Oxford around 1960 about devices
he called droguli—singular drogulus. Such naturally occurring multi-stable physical structures
seem to me to render redundant the apparatus proposed by Deacon in [12] to explain how life
apparently goes against the second law of thermodynamics. See https://en.wikipedia.org/wiki/
Incomplete_Nature.
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included in the models constructed. Similarly, kits for making paper dolls and their
clothing'® may include pencils and scissors, used for preparing patterns and cutting
them out. But the pencils and scissors are not parts of the dolls or their clothing.
When houses are built, many items are used that are not part of the completed
house, including tools and scaffolding frameworks to support incomplete structures.
A loose analogy can be made with the structures used by climbing plants, e.g. rock
faces, trees, or frames provided by humans: these are essential for the plants to
grow to the heights they need but are not parts of the plant. More subtly, rooted
plants that grow vertically make considerable use of the soil penetrated by their
roots to provide not only nutrients but also the stability that makes tall stalks or
trunks possible, including in some cases the ability to resist strong winds most of
the time. The soil forms part of the scaffolding. A mammal uses parts of its mother
as temporary scaffolding while developing in the womb, and continues to use the
mother during suckling and later when fed portions of prey caught by parents. Other
species use eggs with protective shells and food stores. Plants that depend on insects
for fertilization can be thought of as using scaffolding in a general sense.

This concept of scaffolding may be crucial for research into origins of life. As
far as I know, nobody has found candidate non-living chemical substances made
available by the FCK that have the ability spontaneously to assemble themselves
into primitive life forms. It is possible that the search is doomed to fail because
there never were such substances. Perhaps the earliest life forms required not
only materials but also scaffolding—e.g. in the form of complex molecules that
did not form parts of the earliest organisms but played an essential causal role
in assembly processes, bringing together the chemicals needed by the simplest
organisms. Evolution might then have produced new organisms without that reliance
on the original scaffolding. The scaffolding mechanisms might later have ceased to
exist on earth, e.g. because they were consumed and wiped out by the new life forms,
or because physical conditions changed that prevented their formation but did not
destroy the newly independent organisms. A similar suggestion was recently made
by Mathis et al. [27]. So it is quite possible that many evolutionary transitions,
including transitions in information processing, our main concern, depended on
forms of scaffolding that later did not survive and were no longer needed to
maintain what they had helped to produce. So research into evolution of information
processing, our main goal, is inherently partly speculative.

2.8 Biological Construction Kits

How did the FCK generate complex life forms? Is the Darwin-Wallace theory
of natural selection the whole answer, as suggested in [6]? Bell writes: “Living
complexity cannot be explained except through selection and does not require

IShttps://en.wikipedia.org/wiki/Paper_doll.
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any other category of explanation whatsoever.” No: the explanation must include
both selection mechanisms and generative mechanisms, without which selection
processes will not have a supply of new viable options. Moreover, insofar as en-
vironments providing opportunities, challenges and threats are part of the selection
process, the construction kits used by evolution include mechanisms not intrinsically
concerned with life, e.g. volcanoes, earthquakes, asteroid impacts, lunar and solar
tides, and many more.

The idea of evolution producing construction kits is not new, though they are
often referred to as “toolkits”. Coates et al. [10] ask whether there is “a genetic
toolkit for multicellularity” used by complex life-forms. Toolkits and construction
kits normally have users (e.g. humans or other animals), whereas the construction
kits we have been discussing (FCKs and DCKs) do not all need separate users.

Both generative mechanisms and selection mechanisms change during evolution.
Natural selection (blindly) uses the initial enabling mechanisms provided by physics
and chemistry not only to produce new organisms, but also to produce new richer
DCKs, including increasingly complex information-processing mechanisms. Since
the mid 1900s, spectacular changes have also occurred in human-designed comput-
ing mechanisms, including new forms of hardware, new forms of virtual machinery,
and networked social systems all unimagined by early hardware designers. Similar
changes during evolution produced new biological construction kits, e.g. grammars,
planners, and geometrical constructors, not well understood by thinkers familiar
only with physics, chemistry and numerical mathematics.

Biological DCKs produce not only a huge variety of physical forms and physical
behaviours, but also forms of information processing required for increasingly
complex control problems, as organisms become more complex and more intelligent
in coping with their environments, including interacting with predators, prey, mates,
offspring, conspecifics, etc. In humans, that includes abilities to form scientific
theories and discover and prove theorems in topology and geometry, some of which
are also used unwittingly in practical activities.'® I suspect many animals come close
to this in their systematic but unconscious abilities to perform complex actions
that use mathematical features of environments. Abilities used unconsciously in
building nests or in hunting and consuming prey may overlap with topological and
geometrical competences of human mathematicians. (See Sect. 6.2.) For example,
search for videos of weaver birds building nests.

16Such as putting a shirt on a child: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/shirt.
html. I think Piaget noticed some of the requirements.
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3 Concrete (Physical), Abstract and Hybrid Construction
Kits

Products of a construction kit may be concrete, i.e. physical; or abstract, like a
theorem, a sentence, or a symphony; or hybrid, e.g. a written presentation of a
theorem or poem.

Concrete Kits Construction kits for children include physical parts that can be
combined in various ways to produce new physical objects that are not only larger
than the initial components but also have new shapes and new behaviours. Those
are concrete construction kits. The FCK is (arguably?) a concrete construction kit.
Lego, Meccano, twigs, mud, and stones, can all be used in construction kits whose
constructs are physical objects occupying space and time: concrete construction kits.

Abstract Kits There are also non-spatial abstract construction kits, for example
components of languages, such as vocabulary and grammar, or methods of construc-
tion of arguments or proofs. Physical representations of such things, however, can
occupy space and/or time, e.g. a spoken or written sentence, a diagram, or a proof
presented on paper. Using an abstract construction kit, e.g. doing mental arithmetic
or composing poetry in your head, requires use of one or more physical construction
kits, directly or indirectly implementing features of the abstract kit.

There are (deeply confused) fashions emphasising “embodied cognition” and
“symbol grounding” (previously known as “concept empiricism” and demolished
by Immanuel Kant and twentieth century philosophers of science). These fashions
disregard many examples of thinking, perceiving, reasoning and planning that
require abstract construction kits. For example, planning a journey to a conference
does not require physically trying possible actions, like water finding a route
to the sea. Instead, you may use an abstract construction kit able to represent
possible options and ways of combining them. Being able to talk requires use of
a grammar specifying abstract structures that can be assembled using a collection
of grammatical relationships, in order to form new abstract structures with new
properties relevant to various tasks involving information. Sentences allowed by
a grammar for English are abstract objects that can be instantiated physically in
written text, printed text, spoken sounds, Morse code, etc.; so a grammar is an
abstract construction kit whose constructs can have concrete (physical) instances.
The idea of a grammar is not restricted to verbal forms: it can be extended to
many complex structures, e.g. grammars for sign languages, circuit diagrams, maps,
proofs, architectural layouts and even molecules.

A grammar does not fully specify a language: a structurally related semantic
construction kit is required for building possible meanings. Use of a language
depends on language users, for which more complex construction kits are required,
including products of evolution, development and learning. Evolution of various
types of language, including languages used only infernally, is discussed in [52].

In computers, digital circuitry implements abstract construction kits via interme-
diate abstract kits—virtual machines—presumably also required in brains.
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Hybrid Abstract+Concrete Kits These are combinations, e.g. physical chess
board and chess pieces combined with the rules of chess, lines and circular arcs
on a physical surface instantiating Euclidean geometry, puzzles like the mutilated
chess-board puzzle, and many more. A particularly interesting hybrid case is the
use of physical objects (e.g. blocks) to instantiate arithmetic, which may lead to the
discovery of prime numbers when certain attempts at rearrangement fail—and an
explanation of the impossibility is found.!”

In some hybrid construction kits such as games like chess, the concrete (physical)
component may be redundant for some players, e.g. chess experts who can play
without physical pieces on a board. But communication of moves needs physical
mechanisms, as does the expert’s brain (in ways that are not yet understood). Related
abstract structures, states and processes can also be implemented in computers,
which can now play chess better than most humans, without replicating human
brain mechanisms. In contrast, physical components are indispensable in hybrid
construction kits for outdoor games, such as cricket [69]. (I don’t expect to see good
robot cricketers soon.)

Physical computers, programming languages, operating systems and virtual
machines form hybrid construction kits that can make things happen when they
run. A logical system with axioms and inference rules can be thought of as an
abstract kit supporting construction of logical proof sequences, usually combined
with a physical notation for written proofs. A purely logical system cannot have
physical causal powers, whereas its concrete instances can, e.g. teaching a student
to distinguish valid from invalid proofs. Natural selection “discovered” the power of
hybrid construction kits using virtual machinery long before human engineers did.
In particular, biological virtual machines used by animal minds outperform current
engineering designs in some ways, but they also generate much confusion in the
minds of philosophical individuals who are aware that something more than purely
physical machinery is at work, but don’t yet understand how to implement virtual
machines in physical machines [54, 56, 58].

Animal perception, learning, reasoning, and intelligent behaviour require hybrid
construction kits. Scientific study of such kits is still in its infancy. Work done so
far on the Meta-Morphogenesis project suggests that natural selection “discovered”
and used a staggering variety of types of hybrid construction kit that were essential
for reproduction, for developmental processes (including physical development and
learning), for performing complex behaviours, and for social/cultural phenomena.

17A  possibility discussed in http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-
theorems.html#primes. Contributions from observant parents and child-minders are welcome.
Much deeper insights come from extended individual developmental trajectories than from
statistics of snapshots of many individuals.
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3.1 Kits Providing External Sensors and Motors

Some construction kits can be used to make toys with moving parts, e.g. wheels
or grippers, that interact with the environment. A toy car may include a spring,
whose potential energy can be transformed into mechanical energy via gears, axles
and wheels in contact with external surfaces. Further interactions, altering the
direction of motion, may result from collisions with fixed or mobile objects in the
environment or from influence of some control device.

As noted in [45, Chap. 6], the distinction between internal and external compo-
nents is often arbitrary. For example, a music box may play a tune under the control
of a rotating disc with holes or spikes. The disc can be thought of either as part of
the music box or as part of a changing environment.

If a toy train set has rails or tracks used to guide the motion of the train, then
the wheels can be thought of as sensing the environment and causing changes of
direction. This is partly like and partly unlike a toy vehicle that uses an optical
sensor linked to a steering mechanism, so that the vehicle can follow a line painted
on a surface. The railway track provides both information and the forces required
to change direction. A painted line, however, provides only the information, and
other parts of the vehicle have to supply the energy to change direction, e.g. an
internal battery that powers sensors and motors. Evolution uses both sorts, e.g.
wind blowing seeds away from parent plants and a wolf following a scent trail
left by its prey. An unseen wall uses force to stop your forward motion in a
dark room, whereas a visible, or lightly touched, wall provides only information
[55]. More sophisticated kits use sensors, e.g. optical, auditory, tactile, inertial,
or chemical sensors, providing information that internal mechanisms can use to
evaluate and select goals, control actions, interact with conspecifics, predict events
in the environment, evaluate hypotheses, and other functions.

3.2 Mechanisms for Storing, Transforming and Using
Information

Often information is acquired, used, and then lost because it is overwritten, e.g. sen-
sor information in simple servo-control systems with “online intelligence”, where
only the latest sensed state is used for deciding whether to speed something up,
change direction, etc. In more complex control systems, with “offline intelligence”,
sensor information is saved, possibly combined with previously stored information,
and remains available for use on different occasions for different purposes.'®

8Trehub [61] proposed an architecture for vision that allows snapshots from visual saccades to be
integrated in a multi-layer fixation-independent visual memory.
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In the “offline” case, the underlying construction kit needs to be able to support
stores of information that grow with time and can be used for different purposes
at different times. A control decision at one time may need items of information
obtained at several different times and places, for example information about
properties of a material, where it can be found, and how to transport it to where it is
needed. Sensors used online may become faulty or require adjustment. Evolution
may provide mechanisms for testing and adjusting. When used offline, stored
information may need to be checked for falsity caused by the environment changing,
as opposed to sensor faults. The offline/online use of visual information has caused
much confusion among researchers, including muddled attempts to interpret the
difference in terms of “what” and “where” information.!® Contrast Sloman [46].

Ways of acquiring and using information have been discovered and modelled
by Al researchers, psychologists, neuroscientists, biologists and others. However,
evolution has produced many more. Some of them require not additional storage
space but very different sorts of information-processing architectures. A range of
possible architectures is discussed in [45—47, 50, 51], whereas Al engineers typically
seek one architecture for a project. A complex biological architecture may use sub-
architectures that evolved at different times, meeting different needs in different
niches.

This raises the question whether evolution produced “architecture kits” able
to combine evolved information-processing mechanisms in different ways long
before software engineers discovered the need. Such a kit could be particularly
important for species that produce new subsystems, or modify old ones, during
individual development, e.g. during different phases of learning by apes, elephants,
and humans, as described in Sect. 2.3, contradicting the common assumption that a
computational architecture must remain fixed.?’

3.3 Mechanisms for Controlling Position, Motion and Timing

All concrete construction kits (and some hybrid kits) share a deep common feature
insofar as their components, their constructs and their construction processes involve
space and time, both during assembly and while working. Those behaviours include
both relative motion of parts, e.g. wheels rotating, joints changing angles, and also
motion of the whole object relative to other objects, e.g. an ape grasping a berry.
A consequence of spatiality is that objects built from different construction kits can
interact, by changing their spatial relationships (e.g. if one object enters, encircles
or grasps another), applying forces transmitted through space, and using spatial
sensors to gain information used in control. Products of different kits can interact in

Yhttp://en.wikipedia.org/wiki/Two-streams_hypothesis.

20The BICA society aims to bring together researchers on biologically inspired cognitive architec-
tures. Some examples are here: http://bicasociety.org/cogarch/.
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varied ways, e.g. one being used to assemble or manipulate another, or one providing
energy or information for the other. Contrast the problems of getting software
components available on a computer to interact sensibly: merely locating them
in the same virtual or physical machine will not suffice. Some rule-based systems
are composed of condition-action rules, managed by an interpreter that constantly
checks for satisfaction of conditions. Newly added rules may then be invoked simply
because their conditions become satisfied, though “conflict resolution” mechanisms
may be required if the conditions of more than one rule are satisfied.”!

New concrete kits can be formed by combining two or more kits. In some
cases this will require modification of a kit, e.g. combining Lego and Meccano by
adding pieces with Lego studs or holes alongside Meccano-sized screw holes. In
other cases, mere spatial proximity and contact suffices, e.g. when one construction
kit is used to build a platform and others are used to assemble a house on it.
Products of different biological construction kits may also use complex mixtures
of juxtaposition and adaptation.

Objects that exist in space and/or time often need timing mechanisms. Organisms
use “biological clocks” operating on different time scales controlling repetitive pro-
cesses, including daily cycles, heartbeats, breathing, and wing or limb movements
required for locomotion. More subtly, there are adjustable speeds and adjustable
rates of change: e.g. a bird in flight approaching a perch; an animal running to escape
a predator and having to decelerate as it approaches a tree it needs to climb; a hand
moving to grasp a stationary or moving object, with motion controlled by varying
coordinated changes of joint angles at waist, shoulder, elbow and finger joints so
as to bring the grasping points on the hand into suitable locations relative to the
intended grasping points on the object. (This can be very difficult for robots, when
grasping novel objects in novel situations, if they use ontologies that are too simple.)
There are also biological mechanisms for controlling or varying rates of production
of chemicals (e.g. hormones).

So biological construction kits need many mechanisms able to measure time
intervals and to control rates of repetition or rates of change of parts of the organism.
These kits may be combined with other sorts of construction kit that combine
temporal and spatial control, e.g. changing speed and direction.

3.4 Combining Construction Kits

At the molecular level there is now a vast, and rapidly growing, amount of biological
research on interacting construction kits, for example interactions between different
parts of the reproductive mechanism during development of a fertilised egg,
interactions between invasive viral or bacterial structures and a host organism,

2lour SimAgent toolkit is an example: http://www.cs.bham.ac.uk/research/projects/poplog/
packages/simagent.html [49].
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and interactions with chemicals produced in medical research laboratories. In
computers, the ways of combining different toolkits include the application of
functions to arguments, although both functions and their arguments can be far more
complex than the cases most people encounter when learning arithmetic. A function
could be a compiler, its arguments could be arbitrarily complex programs in a high-
level programming language, and the output of the function might be either a report
on syntactic errors in the input program, or a machine code program ready to run.

Applying functions to arguments is very different from assembling structures in
space-time, where inputs to the process form parts of the output. If computers are
connected via digital-to-analog interfaces linking them to surrounding matter, or if
they are mounted on machines that allow them to move around in space and interact,
that adds a kind of richness that goes beyond application of functions to arguments.

The additional richness is present in the modes of interaction of chemical
structures that include both digital (on/off chemical bonds) and continuous changes
in relationships, as discussed by Turing [64], in the paper on chemistry-based
morphogenesis that inspired this Meta-Morphogenesis project [57].

3.5 Combining Abstract Construction Kits

Section 2.1 showed how a new DCK using combinations of old components
can make some new developments very much quicker to reach—fewer steps are
required, and the total search space for a sequence of steps to a solution may
be dramatically reduced. Combining concrete construction kits uses space-time
occupancy. Combining abstract construction kits is less straightforward. Sets of
letters and numerals are combined to form labels for chess board squares, e.g. “a2”,
“c5”, etc. A human language and a musical notation can form a hybrid system for
writing songs. A computer operating system (e.g. Linux) can be combined with
programming languages (e.g. Lisp, Java). In organisms, as in computers, products
of different kits may share information, e.g. information for sensing, predicting,
explaining or controlling, including information about information [55]. Engi-
neers combining different kinds of functionality find it useful to design re-usable
information-processing architectures that provide frameworks for combining differ-
ent mechanisms and information stores (see footnote 20), especially in large projects
where different teams work on sensors, learning, motor systems, reasoning systems,
motivational systems, various kinds of metacognition, etc., using specialised tools.
The toolkit mentioned in footnote 21 is an example framework. It is often necessary
to support different sorts of virtual machinery interacting simultaneously with one
another and with internal and external physical environments during perception
and motion. This may require new general frameworks for assembling complex
information-processing architectures, accommodating multiple interacting virtual
machines, with different modifications developed at different times [30, 31, 50].
Self-extension is a topic for further research—see footnote 17.
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Creation of new construction kits may start by simply recording parts of
successful assemblies, or, better still, parametrized parts, so that they can easily
be reproduced in modified forms—e.g. as required for organisms that change
size and shape while developing. Eventually, parametrized stored designs may be
combined to form a “meta-construction kit” able to extend, modify or combine
previously created construction kits, as human engineers have recently learnt to
do in software development environments. Evolution needs to be able to create
new meta-construction kits using natural selection. Natural selection, the great
creator/meta-creator, is now spectacularly aided and abetted by its products, espe-
cially humans!

4 Construction Kits Generate Possibilities
and Impossibilities

Explanations of how things are possible (Sect. 1) can refer to construction kits
either manufactured, e.g. Meccano and Lego, or composed of naturally occurring
components, e.g. boulders, mud, or sand. (Not all construction kits have sharp
boundaries.) Each kit makes possible certain types of construct, instances of which
can be built by assembling parts from the kit. Some construction kits use products of
products of biological evolution, e.g. birds’ nests assembled from twigs or leaves.

In some kits, features of components, such as shape, are inherited by constructed
objects. E.g. objects composed only of Lego bricks joined in the “standard” way
have external surfaces that are divisible into faces parallel to the surfaces of the first
brick used. However, if two Lego bricks are joined at a corner only, using only one
stud and one socket, it is possible to have continuous relative rotation (because studs
and sockets are circular), violating that constraint, as Ron Chrisley pointed out in a
conversation. This illustrates the fact that constructed objects can have “emergent”
features none of the components have, e.g. a hinge is a non-rigid object that can be
made from two rigid objects with aligned holes through which a screw is passed.

So, a construction kit that makes some things possible and others impossible can
be extended so as to remove some of the impossibilities, e.g. by adding a hinge to
Lego, or adding new parts from which hinges can be assembled.

4.1 Construction Kits for Making Information Users

Not everything that can play a role in acquisition, storage or transfer of information
has information-processing capabilities. Consider a lump of plasticine or damp
clay that can be deformed under pressure, then retains the deformation. If a coin
is pressed against it the lump will change its shape. Entities with information-
processing capabilities (e.g. archaeologists) can use the depression as a source of
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information about the coin. But the deformed lump of material is not an information
user. If the depression is used to control a process, e.g. making copies of the
coin, or to help a historian years later, then the deformed material is used as a
source of information about the coin. The fact that some part of a brain is changed
by perceptual processes in an organism does not imply that that portion of the
brain is an information user. It may play a role analogous to the lump of clay,
or a footprint in soil. Additional mechanisms are required if the information is to
be used: different mechanisms for different types of use. A photocopier acquires
information from a sheet of paper, but all it can do with the information is produce a
replica (possibly after slight modifications such as changes in contrast, intensity or
magnification). Different mechanisms are required for recognising text, correcting
spelling, analysing the structure of an image, interpreting it as a picture of a 3-D
scene, using information about the scene to guide a robot, building a copy of the
scene, or answering a question about which changes are possible. Thinking up ways
of using the impression as a source of information about the coin is left as an exercise
for the reader.

Biological construction kits for producing information-processing mechanisms
evolved at different times. Sloman [47] discusses the diversity of uses of information
from sensors, including sharing of sensor information between different uses, con-
currently or sequentially. Subsystems can compete for sensors (e.g. concentrating
on the road or admiring the scenery). Information vehicles such as sound or light
provide multi-purpose information about the source or reflector of the sound or light,
e.g. used for deciding whether to flee, or for controlling actions such as grasping or
avoiding the information-source.

Some information-using mechanisms are direct products of biological evolu-
tion, e.g. reflex protective blinking mechanisms. Others are grown by epigenetic
mechanisms influenced by context. For example, humans in different cultures
start with a generic language construction kit (sometimes misleadingly labelled a
“universal grammar”) which is extended and modified to produce locally useful
linguistic mechanisms. Language-specific mechanisms, such as mechanisms for
acquiring, producing, understanding and correcting textual information, must have
evolved long after mechanisms shared between many species that can use visual
information for avoiding obstacles or grasping objects. In some species, diversity
in the construction kits produced by individual genomes, can lead to even greater
diversity in adults, especially if they develop in different physical and cultural
environments using the epigenetic mechanisms suggested in Sect. 2.3 and Fig. 3.

4.2 Different Roles for Information

Despite huge diversity in biological construction kits and the mechanisms in individ-
ual organisms, some themes recur, such as functions of different sorts of information
in control: e.g. information about how things actually are or might be (“belief-
like” information contents), information about how things need to be or might need



262 A. Sloman

to be for the individual information user (“desire-like” information contents), and
information about how to achieve or avoid certain states (“procedural” information
contents). Each type has different subtypes: across species, across members of
a species and across developmental stages in an individual. How a biological
construction kit supports all those requirements depends on the environment, the
animal’s sensors, its needs, the local opportunities, and the individual’s history.
Different mechanisms performing such functions may share a common evolutionary
precursor after which they diverged. Moreover, mechanisms with similar functions
can evolve independently: convergent evolution.

Information relating to targets and how to achieve or maintain them is control
information: the most basic type of biological information, from which all others
are derived. A simple case is a thermostatic control, discussed by McCarthy [28].
It has (at least) two sorts of information: (a) a farget temperature (“desire-like”
information), (b) current temperature (“belief-like” information). A discrepancy
between them causes the thermostat to select between turning a heater on, or off,
or doing nothing. This very simple homeostatic mechanism uses information and
a source of energy to achieve or maintain a target state. There are very many
variants on this schema, based on the type of target (e.g. a measured state or
some complex relationship), the type of control (on, off, or variable, with single
or multiple effectors), and the mechanisms by which targets and control actions
are selected, which may be modified by learning, and may use simple actions or
complex plans.

As Gibson [16] pointed out, acquisition of information often requires cooperation
between processes of sensing and acting. Saccades are visual actions that constantly
select new information samples from the environment (or the optic cone). Uses
of the information vary widely according to context, e.g. controlling grasping,
controlling preparation for a jump, controlling avoidance actions, or sampling text
to be read. A particular sensor can therefore be shared between many control
subsystems [47], and the significance of the sensor state will depend partly on
which subsystems are connected to the sensor at the time and partly on which other
mechanisms receive information from the sensor (which may change dynamically—
a possible cause of some types of “change blindness”).

The study of varieties of use of information in organisms is exploding, and
includes many mechanisms on molecular scales as well as many intermediate levels
of informed control, including sub-cellular levels (e.g. metabolism), physiological
processes of breathing, temperature maintenance, digestion, blood circulation,
control of locomotion, feeding and mating of large animals and coordination in
communities, such as collaborative foraging in insects and trading systems of
humans. Slime moulds include spectacular examples in which modes of acquisition
and use of information change dramatically.??

The earliest organisms must have acquired and used information about things
inside themselves and in their immediate vicinity, e.g. using chemical detectors in

Zhttp://www.theguardian.com/cities/2014/feb/18/slime-mould-rail-road- transport-routes.
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Fig. 4 Between the simplest and most sophisticated organisms there are many intermediate forms
with very different information processing requirements and capabilities

an enclosing membrane. Later, evolution extended those capabilities in dramatic
ways (crudely indicated in Fig.4). In the simplest cases, local information is
used immediately to select between alternative possible actions, as in a heating
control or a trail-following mechanism. Uses of motion in haptic and tactile
sensing and the use of saccades, changing vergence, and other movements in visual
perception all use the interplay between sensing and doing characteristic of “online
intelligence”. But there are cases ignored by Gibson and anti-cognitivists, namely
organisms that exhibit “offline intelligence”, using perceptual information for tasks
other than controlling immediate reactions, for example, reasoning about remote
future possibilities or attempting to explain something observed or working out
that bending a straight piece of wire will enable a basket of food to be lifted
out of a tube as in Fig.4 [67] or correcting a stored generalisation. Doing that
requires use of previously acquired information about the environment, including
particular information about individual objects and their locations or states, general
information about learnt laws or correlations and information about what is and is
not possible. (Compare footnote 11.)

An information-bearing structure (e.g. the impression of a foot, the shape of a
rock) can provide very different information to different information users, or to the
same individual at different times, depending on (a) what kinds of sensors they have,
(b) what sorts of information-processing (storing, analysing, comparing, combining,
synthesizing, retrieving, deriving, using, etc.) mechanisms they have, (c) what sorts
of needs or goals they can serve by using various sorts of information (knowingly or
not), and (d) what information they already have. So, from the fact that changes in
some portion of a brain correlate with changes in some aspect of the environment,
we cannot conclude much about what information about the environment the brain
acquires and uses or how it does that, since typically that will depend on context.

4.3 Motivational Mechanisms

It is often assumed that every information user, U, constantly tries to achieve rewards
or avoid punishments (negative rewards), and that each new item of information, I,
will make some actions more likely for U, and others less likely, on the basis of what
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U has previously learnt about which actions increase positive rewards or decrease
negative rewards under conditions indicated by I. But animals are not restricted to
acting on motives selected by them on the basis of expected rewards. They may
also have motive generators that are simply triggered as “internal reflexes” just as
evolution produces phototropic reactions in plants without giving plants any ability
to anticipate benefits to be gained from light. Some reflexes, instead of directly
triggering behaviour, trigger new motives, which may or may not lead to behaviour,
depending on the importance of other competing motives. For example, a kind
person watching someone fall may acquire a motive to rush to help, which is not
acted on if competing motives are too strong. It is widely believed that all motivation
is reward-based. But a new motive triggered by an internal reflex need not be
associated with some reward. It may be “architecture-based motivation” rather
than “reward-based motivation” [53]. Triggering of architecture-based motives in
playful, intelligent young animals can produce kinds of delayed learning that the
individuals could not possibly anticipate, and therefore cannot be motivated by [19].

Unforeseeable biological benefits of automatically triggered motives include
acquisition of new information by sampling properties of the environment. The new
information may not be immediately usable, but in combination with information
acquired later and genetic tendencies activated later, as indicated in Fig. 3, it may
turn out to be important during hunting, caring for young, or learning a language. A
toddler may have no conception of the later potential uses of information gained
in play, though the ancestors of that individual may have benefited from the
presence of the information-gathering reflexes. In humans this seems to be crucial
for mathematical development.

During evolution, and also during individual development, the sensor mecha-
nisms, the types of information processing, and the uses to which various types of
information are put, become more diverse and more complex, while the information-
processing architectures allow more of the processes to occur in parallel (e.g.
competing, collaborating, invoking, extending, recording, controlling, redirecting,
enriching, training, abstracting, refuting, or terminating). Without understanding
how the architecture grows, which information-processing functions it supports, and
how they diversify and interact, we are likely to reach wrong conclusions about
biological functions of the parts: e.g. over-simplifying the functions of sensory
subsystems, or over-simplifying the variety of concurrent control mechanisms
involved in producing behaviours. Moreover, the architectural knowledge about
how such a system works, like information about the architecture of a computer
operating system, may not be expressible in sets of equations, or statistical learning
mechanisms and relationships. (Ideas about architectures for human information
processing can be found in [24, 30, 31, 40, 50, 59], among many others.)

Construction kits for building information-processing architectures with multiple
sensors and motor subsystems in complex and varied environments differ widely in
the designs they can produce. Understanding that variety is not helped by disputes
about which architecture is best. A more complete discussion would need to survey
the design options and relate them to actual choices made by evolution or by
individuals interacting with their environments.
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5 Mathematics: Some Constructions Exclude or Necessitate
Others

Physical construction kits (e.g. Lego, plasticine, or a combination of paper, scissors
and paste) have parts and materials with physical properties (e.g. rigidity, strength,
flexibility, elasticity, adhesion, etc.), possible relationships between parts and
possible processes that can occur when the parts are in those relationships (e.g.
rotation, bending, twisting and elastic or inelastic resistance to deformation).
Features of a physical construction kit—including the shapes and materials of
the basic components, ways in which the parts can be assembled into larger wholes,
kinds of relationships between parts and the processes that can occur involving
them—explain the possibility of entities that can be constructed and the possibility
of processes, including processes of construction and behaviours of constructs.
Construction kits can also explain necessity and impossibility. A construction kit
with a large initial set of generative powers can be used to build a structure realising
some of the kit’s possibilities, in which some further possibilities are excluded,
namely all extensions that do not include what has so far been constructed. If a
Meccano construction has two parts in a substructure that fixes them a certain
distance apart, then no extension can include a new part that is wider than that
distance in all dimensions and is in the gap. Some extensions to the part-built
structure that were previously possible become impossible unless something is
undone. That example involves a limit produced by a gap size. There are many
more examples of impossibilities that arise from features of the construction kit.
Euclidean geometry includes a construction kit that enables construction of
closed planar polygons (triangles, quadrilaterals, pentagons, etc.), with interior
angles whose sizes can be summed. If the polygon has three sides, i.e. it is a triangle,
then the interior angles must add up to exactly half a rotation. Why? In this case,
no physical properties of a structure (e.g. rigidity or impenetrability of materials)
are involved, only spatial relationships. Figure 5 provides one way to answer the
question, unlike the standard proofs, which use parallel lines. It presents a proof,
found by Mary Pardoe, that internal angles of a planar triangle sum to a straight
line, or 180°. (I am ignoring the question how to verify that the surface is planar.)

VALV, VAN

Fig. 5 The sequence demonstrates how the three-cornered shape has the consequence that
summing the three angles necessarily produces half a rotation (180°). Since the position, size,
orientation, and precise shape of the triangle can be varied without affecting the possibility of
constructing the sequence, this is a proof that generalises to any planar triangle. It nowhere
mentions Euclid’s parallel axiom, used by “standard” proofs. This unpublished proof was reported
to me by Mary Pardoe, a former student who became a mathematics teacher, in the early 1970s
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Most humans are able to look at a physical situation, or a diagram representing a
class of physical situations, and reason about constraints on a class of possibilities
sharing a common feature. This may have evolved from earlier abilities to reason
about changing affordances in the environment (Gibson [17]). Current Al perceptual
and reasoning systems still lack most of these abilities, and neuroscience cannot yet
explain what’s going on (as opposed to where it’s going on?). (See footnote 11.)

These illustrate mathematical properties of construction kits (partly analogous
to mathematical properties of formal deductive systems and Al problem solving
systems). As parts (or instances of parts) of the FCK are combined, structural
relations between components of the kit have two opposed sorts of consequences:
they make some further structures possible (e.g. constructing a circle that passes
through all the vertices of the triangle), and other structures impossible (e.g.
relocating the corners of the triangle so that the angles add up to 370°). These
possibilities and impossibilities are necessary consequences of previous selection
steps. The examples illustrate how a construction kit with mathematical relation-
ships can provide the basis for necessary truths and necessary falsehoods in some
constructions (as argued in Sloman [41, Chap.7]).?®> Being able to think about
and reason about alterations in some limited portion of the environment is a very
common requirement for intelligent action [48]. It seems to be partly shared with
other intelligent species, e.g. squirrels, nest builders, elephants, apes, etc. Since
our examples of making things possible or impossible, or changing ranges of
possibilities, are examples of causation (mathematical causation), this also provides
the basis for a Kantian notion of causation based on mathematical necessity [18],
so that not all uses of the notion of “cause” are Humean (i.e. based on empirical
correlations), even if some are. Compare Sect. 532

Neuroscientific theories about information processing in brains currently omit
the processes involved in such mathematical discoveries, so Al researchers influ-
enced too much by neuroscience may fail to replicate important brain functions.
Progress may require major conceptual advances regarding what the problems are
and what sorts of answers are relevant.

We now consider ways in which evolution itself can be understood as discovering
mathematical proofs—proofs of possibilities.

23Such relationships between possibilities provide a deeper, more natural basis for understanding
modality (necessity, possibility, impossibility) than so-called “possible world semantics”. I doubt
that most normal humans who can think about possibilities and impossibilities base that ability
on thinking about truth in the whole world, past, present and future, and in the set of alternative
worlds.

2*For more on Kantian vs. Humean causation, see the presentations on different sorts of causal
reasoning in humans and other animals by Chappell and Sloman at the Workshop on Natural
and Artificial Cognition (WONAC, Oxford, 2007): http://www.cs.bham.ac.uk/research/projects/
cogaff/talks/wonac. Varieties of causation that do not involve mathematical necessity, but only
probabilities (Hume?) or propensities (Popper), will not be discussed here.
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5.1 Proof-Like Features of Evolution

A subset of the FCK produced fortuitously as a side effect of formation of the earth
supported (a) primitive life forms and (b) processes of evolution that produced more
and more complex forms of life, including new, more complex, derived, DCKs. New
products of natural selection can make more complex products more reachable, as
with toy construction kits and mathematical proofs. However, starting from those
parts will make some designs unreachable except by disassembling some parts.

Moreover, there is not just one sequence: different evolutionary lineages evolving
in parallel can produce different DCKs. According to the “Symbiogenesis” theory,
different DCKs produced independently can sometimes merge to support new forms
of life combining different evolutionary strands.>> Creation of new DCKs in parallel
evolutionary streams with combinable products can hugely reduce part of the search
space for complex designs, at the cost of excluding parts of the search space
reachable from the FCK. For example, use of DCKs in the human genome may
speed up development of language and typical human cognitive competences, while
excluding the possibility of “evolving back” to microbe forms that might be the only
survivors after a cataclysm.

5.2 Euclid’s Construction Kit

An old example, of great significance for science, mathematics, and philosophy,
is the construction kit specified in Euclidean geometry, starting with points, lines,
surfaces and volumes, and methods of constructing new more complex geometrical
configurations using a straight edge for drawing straight lines in a plane surface, and
a pair of compasses for drawing circular arcs. This construction kit makes it possible
to bisect, but not trisect, an arbitrary planar angle. A slight extension, the “Neusis
construction”, known to Archimedes, allows line segments to be translated and
rotated in a plane while preserving their length, and certain incidence relations. This
allows arbitrary angles to be trisected! (See http://www.cs.bham.ac.uk/research/
projects/cogaff/misc/trisect.html.)

The ability of (at least some) humans to discover such things must depend on
evolved information-processing capabilities of brains that are as yet unknown and
not yet replicated in Al reasoning systems. The idea of a space of possibilities
generated by a physical construction kit may be easier for most people to understand
than the comparison with generative powers of grammars, formal systems, or
geometric constructions, though the two must be connected, since grammars and
mathematical systems are abstract construction kits that can be parts of hybrid
construction Kits.

Zhitp://en.wikipedia.org/wiki/Symbiogenesis.
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Concrete construction kits corresponding to grammars can be built out of
physical structures. For example, a collection of small squares with letters and
punctuation marks, and some blanks, can be used to form sequences that correspond
to the words in a lexicon. A cursive (“joined up”) script requires a more complex
physical construction kit. Human sign-languages are far more demanding, since they
involve multiple body parts moving concurrently.

Some challenges for construction kits used by evolution, and also challenges
for artificial intelligence and philosophy, arise from the need to explain both how
natural selection makes use of mathematical properties of construction kits related
to geometry and topology, in producing organisms with spatial structures and
spatial competences, and also how various subsets of those organisms (e.g. nest-
building birds) developed specific topological and geometrical reasoning abilities
used in controlling actions or solving problems; and finally how at least one species
developed abilities to reflect on the nature of those competences and eventually,
through unknown processes of individual development and social interaction, using
unknown representational and reasoning mechanisms, managed to produce the rich,
deep and highly organised body of knowledge published as Euclid’s Elements (see
footnote 1).

There are important aspects of those mathematical competences that, as far as
I know, have not yet been replicated in Artificial Intelligence or Robotics.?® Is
it possible that currently understood forms of digital computation are inadequate
for the tasks, whereas chemistry-based information-processing systems used in
brains are richer, because they combine both discrete and continuous operations, as
discussed in Sect. 2.5? (That’s not a rhetorical question: I don’t know the answer.)

5.3 Mathematical Discoveries Based on Exploring
Construction Kits

Some mathematical discoveries result from observation of naturally occurring
physical construction kits and noticing how constraints on modes of composition of
components generate constraints on resulting constructs. E.g. straight line segments
on a surface can be joined end to end to enclose a finite region, but that is impossible
with only two lines, as noted by Kant [18]. Likewise, flat surfaces can be combined
to enclose a volume, such as a tetrahedron or cube, but it is impossible for only
three flat surfaces to enclose a finite space. It is not clear how humans detect such
impossibilities: no amount of trying and failing can establish impossibility. Kant had
no access to a twentieth-century formal axiomatisation of Euclidean geometry. What
he, and before him Euclid, Archimedes and others had were products of evolution.
What products?

26Several are listed at http://www.cs.bham.ac.uk/research/projects/cogaff/misc/mathstuff.html.
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Many mathematical domains (perhaps all of them) can be thought of as sets
of possibilities generated by construction kits. Physicists and engineers deal with
hybrid concrete and abstract construction kits. The space of possible construction
kits is also an example. As far as I know, this domain has not been explored
systematically by mathematicians, though many special cases have.

In order to understand biological evolution on this planet, we need to understand
the sorts of construction kits made possible by the existence of the physical
universe, and in particular the variety of construction kits inherent in the physics and
chemistry of the materials of which our planet was formed, along with the influences
of its environment (e.g. solar radiation, asteroid impacts). An open research question
is whether a construction kit capable of producing all the non-living structures on
the planet would also suffice for evolution of all the forms of life on this planet, or
whether life and evolution have additional requirements, e.g. cosmic radiation.

5.4 Evolution’s (Blind) Mathematical Discoveries

Insofar as construction kits have mathematical properties, life and mathematics
are closely interconnected, as we have already seen. More complex relationships
arise after evolution of mathematical metacognitive mechanisms. On the way to
achieving those results, natural selection often works as “a blind theorem prover”.
Many of the “theorems” are about new possible structures, processes, organisms,
ecosystems, etc. The proofs that they are possible are implicit in the evolutionary
trajectories that lead to occurrences. Proofs are often thought of as abstract entities
that can be represented physically in different ways (using different formalisms) for
communication, persuasion (including self-persuasion), predicting, explaining and
planning. A physical sequence produced unintentionally, e.g. by natural selection or
by plant growth, that leads to a new sort of entity is a proof that some construction kit
makes that sort of entity possible. The evolutionary or developmental trail answers
the question: how is that sort of thing possible? So biological evolution can be
construed as a “blind theorem prover”, despite there being no intention behind
the proof. Proofs of impossibility (or necessity) raise more complex issues, to be
discussed elsewhere.

These observations seem to support a new kind of “Biological-evolutionary’
foundation for mathematics that is closely related to Immanuel Kant’s philosophy
of mathematics in his Critique of Pure Reason (1781). I attempted to defend
his ideas in Sloman [41]. This answers questions like “How is it possible for
things that make mathematical discoveries to exist?”, an example of explaining
a possibility (see footnote 3). Attempting to go too directly from hypothesized
properties of the primordial construction kit (or the physical universe) to explaining
advanced capabilities such as human self-awareness, without specifying all the
relevant construction kits, including required temporary scaffolding, will fail,
because shortcuts omit essential details of both the problems and the solutions, like
mathematical proofs with gaps.

i
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Many of the “mathematical discoveries” (or inventions?) produced (blindly) by
evolution depend on mathematical properties of physical structures or processes or
problem types, whether they are specific solutions to particular problems (e.g. use of
negative feedback control loops) or new construction kit components that are usable
across a very wide range of different species (e.g. the use of a powerful “genetic
code”, the use of various kinds of learning from experience, the use of new forms
of representation for information, the use of new physical morphologies to support
sensing, or locomotion, or consumption of nutrients, etc.).

These mathematical “discoveries” started happening long before there were
any humans doing mathematics (refuting claims that humans create mathematics).
Many of the discoveries were concerned with what is possible, either absolutely
or under certain conditions, or for a particular sort of construction kit. Other dis-
coveries, closer to what are conventionally thought of as mathematical discoveries,
are concerned with limitations on what is possible, i.e. necessary truths. Some
discoveries are concerned with probabilities derived from statistical learning, but
I think the relative importance of statistical learning in biology has been vastly
overrated because of misinterpretations of evidence (to be discussed elsewhere).
In particular, the discovery that something important is possible does not require
statistical evidence: a single instance suffices. No amount of statistical evidence
can show that something is impossible: structural constraints need to be analysed.
For human evolution, a particularly important subtype of mathematical discovery
was the unwitting discovery and use of mathematical (e.g. topological) structures
in the environment, a discovery process that starts in human children before they
are aware of what they are doing, and in some species without any use of language
for communication. Examples are discussed in the “Toddler Theorems” document
referenced in footnote 17.

6 Varieties of Derived Construction Kit

DCKs may differ (a) at different evolutionary stages within a lineage, (b) across
lineages (e.g. in different coexisting organisms), and (c) during development of
an individual that starts as a single cell and produces mechanisms that support
different kinds of growth, development and information processing at different
stages (Sect.2.3). New construction kits can also be produced by cultures or
ecosystems (e.g. human languages) and applied sciences (e.g. bioengineering,
computer systems engineering). New cases build on what was previously available.
Sometimes separately evolved DCKs are combined, for instance in symbiosis,
sexual reproduction, and individual creative learning.

What sort of kit makes it possible for a child to acquire competence in any one
of the thousands of different human languages (spoken or signed) in the first few
years of life? Children do not merely learn pre-existing languages: they construct
languages that are new for them, constrained by the need to communicate with
conspecifics, as shown dramatically by Nicaraguan deaf children who developed
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a sign language going beyond what their teachers understood [38]. There are also
languages that might have developed but have not (yet). Evolution of human spoken
language may have gone from purely internal languages needed for perception,
intention, etc., through collaborative actions, then (later) signed communication,
then spoken communication, as argued in Sloman [52].

If language acquisition were mainly a matter of learning from expert users,
human languages could not have existed, since initially there were no expert
users to learn from, and learning could not get started. This argument applies to
any competence thought to be based entirely on learning from experts, including
mathematical expertise. So data mining in samples of expert behaviours will never
produce Al systems with human competences—only inferior subsets at best.

The history of computing since the earliest calculators illustrates changes that can
occur when new construction kits are developed. There have not only been changes
in size, speed and memory capacity: there have also been profound qualitative
changes, e.g. in new layers of virtual machinery, such as new sorts of mutually
interacting causal loops linking virtual machine control states with portions of
external environments, as in the use of GPS-based navigation. Long before that,
evolved virtual machines provided semantic contents referring to non-physical
structures and processes, e.g. mathematical problems, rules of games, and mental
contents referring to possible future mental contents (e.g. “What will I see if...?”),
including contents of other minds.

I claim, but will not argue here, that some new machines cannot be fully
described in the language of the FCK even though they are fully implemented
in physical mechanisms. (See Sect.2.2 on ontologies.) We now understand many
key components and many modes of composition that provide platforms on which
human-designed layers of computation can be constructed, including subsystems
closely but not rigidly coupled to the environment (e.g. a hand-held video camera).

Several different “basic” abstract construction kits have been proposed as
sufficient for the forms of (discrete) computation required by mathematicians:
namely Turing machines, Post’s production systems, Church’s Lambda Calculus,
and several more, each capable of generating the others. The Church-Turing
thesis claims that each is sufficient for all forms of computation.?’” There has
been an enormous amount of research in computer science and computer systems
engineering on forms of computation that can be built from such components. One
interpretation of the Church-Turing thesis is that these construction kits generate
all possible forms of information processing. But it is not at all obvious that those
discrete mechanisms suffice for all biological forms of information processing. For
example, chemistry-based forms of computation include both discrete mechanisms
(e.g. forming or releasing chemical bonds) of the sort Schrodinger discussed, and
continuous process, e.g. folding, twisting, etc. used in reproduction and other
processes. Ganti [15] shows how a chemical construction kit can support forms of
biological information processing that don’t depend only on external energy sources

2"For more on this, see http://en.wikipedia.org/wiki/Church-Turing_thesis.
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(a fact that’s also true of battery-powered computers), and can also support growth
and reproduction using internal mechanisms, which human-made computers cannot
do (yet).

There seem to be many different sorts of construction kit that allow different
sorts of information processing to be supported, including some that we don’t
yet understand. In particular, the physical/chemical mechanisms that support the
construction of both physical structures and information-processing mechanisms in
living organisms may have abilities not available in digital computers.?®

6.1 A New Type of Research Project

Very many biological processes and associated materials and mechanisms are not
well understood, though knowledge about them is increasing rapidly. It is hard to
know how many of the derived construction kits have not yet been identified and
studied. I am not aware of any systematic attempt to identify features of the FCK that
suffice to explain the possibility of all known evolved biological DCKs. Researchers
in fundamental physics and cosmology do not normally attempt to ensure that their
theories explain the many materials and process types that have been explored by
natural selection and its products, in addition to known facts about physics and
chemistry. Schroédinger [37] pointed out that a theory of the physical basis of life
should explain such phenomena, though he could not have appreciated some of the
requirements for sophisticated forms of information processing, because, at the time
he wrote, scientists and engineers had not learnt what we now know. Curiously,
although he mentioned the need to explain the occurrence of metamorphosis in
organisms, the example he gave was the transformation from a tadpole to a frog.
He could have given more spectacular examples, such as the transformation of a
caterpillar to a butterfly via an intermediate stage as a chemical soup in an outer
case, from which the butterfly later emerges.>’

Penrose [32] attempted to show how features of quantum physics explain obscure
features of human consciousness, especially mathematical consciousness, but he
ignored all the intermediate products of biological evolution from which animal
mental functions build. Human mathematics, at least the ancient mathematics done
before the advent of modern algebra and logic, seems to build on animal abilities, for
instance abilities to see various types of affordance. The use of diagrams and spatial
models by Penrose could be an example of that. It is unlikely that there are very
abstract human mathematical abilities that somehow grow directly out of quantum

Z8Examples of human mathematical reasoning in geometry and topology that have, until now,
resisted replication on computers are presented in http://www.cs.bham.ac.uk/research/projects/
cogaff/misc/torus.html and http://www.cs.bham.ac.uk/research/projects/cogaft/misc/triangle-sum.
html.

2http://en.wikipedia.org/wiki/Pupa

http://en.wikipedia.org/wiki/Holometabolism
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mechanical aspects of the FCK, without depending on the mostly unknown layers of
perceptual, learning, motivational, planning, and reasoning competences produced
by billions of years of evolution.

Twentieth-century biologists understood some of the achievements of the FCK
in meeting physical and chemical requirements of various forms of life, though they
used different terminology from mine, e.g. Haldane.’* However, the task can never
be finished, since the process of construction of new derived biological construction
kits may continue indefinitely, producing new kits with components and modes of
composition that allow production of increasingly complex types of structure and
behaviour in organisms. That idea is familiar to computer scientists and engineers
since very many new sorts of computational construction kit (new programming
languages, new operating systems, new virtual machines, new development toolkits)
have been developed from old ones in the last half century, making possible new
kinds of computing system that could not previously be built from the original
computing machinery without introducing new intermediate layers, including new
virtual machines that are able to detect and record their own operations, a capability
that is often essential for debugging and extending computing systems. Sloman
[56] discusses the importance of virtual machinery in extending what information-
processing systems can do and the properties they can have, including radical
self-modification while running.

6.2 Construction Kits for Biological Information Processing

Each newly evolved mechanism provides opportunities for yet more control at
higher levels: a recurring process that can repeatedly generate opportunities for
additional mechanisms for (information-based) control of recently evolved mecha-
nisms, for example choosing between competences or “tuning” them dynamically,
often on the basis of their mathematical properties.

Implicit mathematical discovery processes enable production of competences
used in interpretation of sensory information—e.g. locating perceived objects,
events and processes in 2-D or 3-D space and time, deriving coherent wholes
from separate information fragments. Further enhancements may include: new
mechanisms for prediction; for motive generation and selection; for construction,
comparison, selection and control of new plans, with resulting new behaviours.

Many of evolution’s new mathematical discoveries, e.g. use of negative feedback
control loops, were used in new designs producing useful behaviours, e.g. control-
ling temperature, osmotic pressure and other states; use of geometric constraints by
bees whose cooperative behaviours produce hexagonal cells in honeycombs; and
use of new ontologies for separating situations requiring different behaviours, e.g.
manipulating different materials or hunting different kinds of prey.

30http://en.wikipedia.org/wiki/] ._B._S. Haldane
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As a result, construction kits used by evolution produced metacognitive mecha-
nisms enabling individuals to notice and reflect on their own discoveries (enabling
some of them to notice and remove flaws in their reasoning). Such metacognitive
capabilities are required for abilities to communicate discoveries to others, discuss
them, use them in shared practical tasks (e.g. making tools, clothes or weapons,
building shelters, planning routes, discussing what will or will not work, and
why), then later organising them into complex, highly structured bodies of shared
knowledge, such as Euclid’s Elements (footnote 1). I don’t think anyone knows
how long all of this took, what the detailed evolutionary changes were, or how
the required mechanisms of perception, motivation, intention formation, reasoning,
planning and retrospective reflection actually evolved. The brain mechanisms
involved are also mostly unknown.

Explaining how all that could happen, and what it tells us about the nature of
mathematics and biological/evolutionary foundations for mathematical knowledge,
is a long-term goal of the Meta-Morphogenesis project. That includes seeking
unnoticed overlaps between the human competences discovered by metacognitive
mechanisms, and similar competences in animals that lack the metacognition, such
as young humans making and using mathematical discoveries, on which they are
unable to reflect because the required architecture has not yet developed. Other
intelligent species make and use similar “proto-mathematical” discoveries without
the meta-cognitive abilities required to notice what they are doing.

This could stimulate new research in robotics attempting to replicate such
competences. Most of the naturally occurring mathematical abilities have not
yet been replicated in Artificial Intelligence systems or robots, unlike logical,
arithmetical, and algebraic competences that are relatively new to humans and (para-
doxically?) easier to replicate on computers. Examples of topological reasoning
about equivalence classes of closed curves not yet modelled in computers (as far
as [ know) are referenced in footnote 28. Even the ability to reason about alternative
ways of putting a shirt on a child (footnote 16) is still lacking. It is not clear whether
the difficulty of replicating such mathematical reasoning processes is due to the
need for a kind of construction kit that digital computers (e.g. Turing machines)
cannot support, or due to our lack of imagination in using computers to replicate
some of the products of biological evolution, or both! Perhaps there are important
forms of representation or types of information-processing architecture still waiting
to be discovered by Al researchers. Alternatively, the gaps may be connected
with properties of chemistry-based information-processing mechanisms combining
discrete and continuous interactions, or other physical properties that cannot be
replicated exactly (or even approximately) in familiar forms of computation. (This
topic requires more detailed mathematical analysis.)
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6.3 Representational Blind Spots of Many Scientists

Although I cannot follow all the details of writings of physicists, I think it is clear
that most debates regarding what should go into a fundamental theory of matter
ignore most of the biological demands on such a theory. For example, presentations
on dynamics of physical systems make deep use of branches of mathematics
concerned with sets of numerical values, and the ways in which different measurable
or hypothesized physical values do or do not covary, as expressed in (probabilistic
or non-probabilistic) equations of various sorts. But the biological functions of
complex physiological structures, especially structures that change in complexity
as they develop, don’t necessarily have those forms.

Biological mechanisms include: digestive mechanisms; mechanisms for trans-
porting chemicals; mechanisms for detecting and repairing damage or infection;
mechanisms for storing reusable information about an extended structured envir-
onment; mechanisms for creating, storing and using complex percepts, thoughts,
questions, values, preferences, desires, intentions and plans, including plans for
cooperative behaviours; and mechanisms that transform themselves into new mech-
anisms with new structures and functions.

Forms of mathematics used by physicists are not necessarily useful for studying
such biological mechanisms. Logic, grammars and map-like representations are
sometimes more appropriate, though I think little is actually known about the variety
of forms of representation (i.e. encodings of information) used in human and animal
minds and brains. We may need entirely new forms of mathematics for biology, and
therefore for specifying what physicists need to explain.

Many physicists, engineers and mathematicians who move into neuroscience
assume that states and processes in brains need to be expressed as collections
of numerical measures and their derivatives plus equations linking them, a form
of representation that is well supported by widely used tools such as Matlab
but not necessarily best suited for the majority of types of mental content (e.g.
grammatical and semantic structures of thoughts like those expressed here). Related
challenges are posed by attempts to model chemical processes, where complex
molecules form and interact with multiple changing chemical bonds along with
changing geometrical and topological relationships—one of the reasons for the
original invention of symbolic chemical notations now being extended in computer
models of changing interacting molecular structures. (There are many online videos
of computer simulations of chemical reactions including protein folding processes.)

6.4 Representing Rewards, Preferences, Values

It is often assumed that all intelligent decision making uses positive or negative
scalar rewards or utility values that are comparable across options [26]. But careful
attention to consumer magazines, political debates, and the varieties of indecision
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in normal human life shows that reality is far more complex. For example, many
preferences are expressed in rules about how to choose between certain options.
Furthermore, preferences can be highly sensitive to changes in context. A crude
example is the change in preference for type of car after having children. Analysis
of examples in consumer reports led to the conclusion that “better” is a complex,
polymorphic, logical concept with a rich structure that cannot be reduced to simple
comparisons of numerical values [42, 43]. Instead of a linear reward or utility metric,
choices for intelligent individuals or for natural selection involve a complex network
of partial orderings, with “annotated” links between nodes (e.g. “better” qualified
by conditions: “better for”, “better if”’, “better in respect of’). In the Birmingham
CogAff project [50], those ideas informed computational models of simple agents
with complex choices to be made under varying conditions, but the project merely
scratched the surface, as reported in [4, 5, 70, 71]. Most Al/Cognitive Science
models use much shallower notions of motivation.

Despite all the sophistication of modern psychology and neuroscience, I believe
they currently lack the conceptual resources required to describe either functions of
brains in dealing with these matters, including forms of development and learning
required, or the mechanisms implementing those functions. In particular, we lack
deep explanatory theories about mechanisms that led to mathematical discoveries
over thousands of years, including brain mechanisms producing mathematical
conjectures, proofs, counter-examples, proof-revisions, new scientific theories, new
works of art and new styles of art. In part that’s because models considered so
far lack both sufficiently rich forms of information processing (computation) and
sufficiently deep methodologies for identifying what needs to be explained. There
are other unexplained phenomena concerned with artistic creation and enjoyment,
and the mechanisms involved in finding something funny.

7 Computational/Information-Processing Construction Kits

Since the mid-twentieth century, we have been learning about abstract construction
kits whose products are machines that can be used for increasingly complex tasks.
Such construction kits include programming languages, operating systems, software
development tools and environments, and network technology that allows ever more
complex information-processing machines to be constructed by combining simpler
ones. A crucial, but poorly understood, feature of that history is the growing use
of construction kits based on virtual machinery, mentioned in Sect.2. A complete
account of the role of construction kits in biological evolution would need to include
an explanation of how the fundamental construction kit (FCK) provided by the
physical universe could be used by evolution to produce an increasing variety of
types of virtual machinery as well as increasingly varied physical structures and
mechanisms.
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7.1 Infinite, or Potentially Infinite, Generative Power

A construction kit implicitly specifies a large, in some cases infinite, set of
possibilities, though as an instance of the kit is constructed, each addition of a new
component or feature changes the set of possibilities accessible in later steps of
that construction process. For example, as you construct a sentence or phrase in a
language, at each state in the construction there are alternative possible additions
(not necessarily at the end) and each of those additions will alter the set of possible
further additions consistent with the vocabulary and grammar of the language. When
use of language is embedded in a larger activity, such as composing a poem, that
context can modify the constraints that are relevant. Chemistry does something
like that for types of molecule, types of process involving molecular changes, and
types of structure made of multiple molecules. Quantum mechanics added important
constraints to nineteenth-century chemistry, including both the possibility of highly
stable structures (resistant to thermal buffetting) and also locks and keys as in
catalysis. All of that is essential for life as we know it, and also for forms of
information processing produced by evolution (mostly not yet charted).

Research in fundamental physics is a search for the construction kit that has
the generative power to accommodate all the varieties of matter, structure, process,
and causation that can exist in our universe. However, physicists generally seek
only to ensure that their construction kits are capable of accounting for phenomena
observed in the physical sciences, most of which do not include production of
living matter, or processes of evolution, development, learning, and mathematical
discovery found in living organisms. Most do not try to ensure that their fundamental
theories can account for those features also. There are notable exceptions, including
Schrodinger’s 1944 book, but most physicists (understandably) ignore most of the
details of life, including the variety of forms it can take, the variety of environments
coped with, the different ways in which individual organisms cope and change, the
ways in which products of evolution become more complex and more diverse over
time, and the many kinds of information processing and control both in individuals
and in colonies (e.g. ant colonies), societies, and ecosystems.

If cosmologists and other theoretical physicists attempted to account for a
wider range of biological phenomena, including the phenomena discussed here
in connection with the Meta-Morphogenesis project, they would find considerable
explanatory gaps between current physical theories and the diversity of phenomena
of life, not because there is something about life that goes beyond what science can
explain, but because we do not yet have a sufficiently rich theory of the constitution
of the universe, including the Fundamental Construct Kit. In part that seems to be
a consequence of the forms of mathematics known to physicists. The challenge
presented by Anderson [1] discussed in Sect. 10, below, supports this.

It may take many years of research to find out what is missing from current
physics. Collecting phenomena that need to be explained, and trying as hard as
possible to construct defailed explanations of those phenomena, including working
models, is one way to make progress. That may pinpoint gaps in our theories and
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stimulate development of new, more powerful, theories. Compare the profound ways
in which our understanding of possible forms of computation has been extended
by unending attempts to put computation to new uses. Collecting examples of such
challenges helps us assemble tests to be passed by future proposed theories: samples
of possibilities that a deep physical theory needs to be able to explain.

Perhaps the most tendentious proposal here is that an expanded physical theory,
instead of being expressed mainly in terms of equations relating measures, may
need formalisms better suited to specification of a construction kit, perhaps sharing
features of grammars, programming languages, partial orderings, topological rela-
tionships, architectural specifications, and the structural descriptions in chemistry.
The theory will need to use appropriate kinds of mathematics for drawing out
implications of the theories, including explanations of possibilities, both observed
and unobserved, including possible future forms of intelligence. Theories of utility
measures may need to be replaced, or enhanced with new theories of how benefits,
evaluations, comparisons and preferences can be expressed (attempted in [42]).
We must also avoid assuming optimality. Evolution produces designs as diverse as
microbes, cockroaches, elephants and orchids, none of which is optimal or rational
in any simple sense, yet many of them survive and sometimes proliferate, because
they are lucky, at least for a while, as with human decisions, policies, preferences,
cultures, etc.

8 Types and Levels of Explanation of Possibilities

Suppose someone uses a Meccano kit to construct a toy crane, with a jib that can
be moved up and down by turning a handle, and a rotating platform on a fixed base
that allows the direction of the jib to be changed. What’s the difference between
explaining how that is possible and how it was done? First of all, if nobody actually
builds such a crane then there is no actual crane-building to be explained. Yet,
insofar as the Meccano kit makes such cranes possible it makes sense to ask how it
is possible. This has several types of answer, including answers at different levels of
abstraction, with varying generality and economy of specification.

More generally, the question “How is it possible to create X using construction
kit Y?”, or, simply, “How is X possible?”, has several types of answer, including
answers at different levels of abstraction, with varying generality. I’ll assume that a
particular construction kit is referred to either explicitly or implicitly. The following
is not intended to be an exhaustive survey of the possible types of answer. It is
merely a first experimental foray, preparing the ground for future work:

1. Structural conformity: The first type of answer, structural conformity (gram-
maticality), merely identifies the parts and relationships between parts that are
supported by the kit, showing that X (e.g. a crane of the sort in question) could be
composed of such parts arranged in such relationships. An architect’s drawings
for a building, specifying materials, components, and their spatial and functional
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relations, would provide such an explanation of how a proposed building is
possible, including, perhaps, answering questions about how the construction
would make the building resistant to very high winds, or to earthquakes up
to a specified strength. This can be compared with showing that a sentence
is acceptable in a language with a well-defined grammar by showing how the
sentence would be parsed (analysed) in accordance with the grammar of that
language. A parse tree (or graph) also shows how the sentence can be built
up piecemeal from words and other grammatical units by assembling various
substructures and using them to build larger structures. Compare this with using
a chemical diagram to show how a collection of atoms can make up a particular
molecule, e.g. the ring structure of C¢Hg (Benzene).

Some structures are specified in terms of piecewise relations, where the whole
structure cannot possibly exist, because the relations cannot hold simultaneously,
e.g. X is above Y, Y is above Z, Z is above X. It is possible to depict
such objects, e.g. in pictures of impossible objects by Reutersvard, Escher,
Penrose, and others.’! Some logicians and computer scientists have attempted to
design languages in which specifications of impossible entities are necessarily
syntactically ill-formed. This leads to impoverished languages with restricted
practical uses, e.g. strongly typed programming languages. For some purposes
less restricted languages, needing greater care in use, are preferable, including
human languages, as I have tried to show in [44].

2. Process possibility:  The second type of answer demonstrates constructability
by describing a sequence of spatial trajectories by which such a collection
of parts could be assembled. This may include processes of assembly of
temporary scaffolding (Sect.2.7) to hold parts in place before the connections
have been made that make them self-supporting or before the final supporting
structures have been built (as often happens in large engineering projects, such
as bridge construction). Many different possible trajectories can lead to the same
result. Describing (or demonstrating) any such trajectory explains both how that
construction process is possible and how the end result is possible. There may be
several different routes to the same end result.

In some cases, a complex object has type 1 possibility although not type 2.
For example, from a construction kit containing several rings it is possible to
assemble a pile of three rings, but not possible to assemble a chain of three rings
even though each of the parts of the chain is exactly like the parts of the pile.

3. Process abstraction: Some possibilities are described at a level of abstraction
that ignores detailed routes through space, and covers many possible alternatives.
For example, instead of specifying precise trajectories for parts as they are
assembled, an explanation can specify the initial and final state of each trajectory,
where each state-pair may be shared by a vast, or even infinite, collection of
different possible trajectories producing the same end state, e.g. in a continuous
space.

3Thitp://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html.
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In some cases, the possible trajectories for a moved component are all
continuously deformable into one another (i.e. they are topologically equivalent);
for example the many spatial routes by which a cup could be moved from a
location where it rests on a table to a location where it rests on a saucer on
the table, without leaving the volume of space above the table. Those trajectories
form a continuum of possibilities that is too rich to be captured by a parametrized
equation for a line with a number of variables. If trajectories include passing
through holes, or leaving and entering the room via different doors or windows,
then the different possible trajectories will not all be continuously deformable
into one another: there are different equivalence classes of trajectories sharing
common start and end states, for example, the different ways of threading a shoe
lace with the same end result.

The ability to abstract away from detailed differences between trajectories
sharing start and end points, thereby implicitly recognizing invariant features of
an infinite collection of possibilities, is an important aspect of animal intelligence
that I don’t think has been generally understood. Many researchers assume that
intelligence involves finding optimal solutions. So they design mechanisms that
search using an optimisation process, ignoring the possibility of mechanisms that
can find sets of possible solutions (e.g. routes) initially considered as a class of
equivalent options, leaving questions about optimal assembly to be settled later,
if needed. These remarks are closely related to the origins of abilities to reason
about geometry and topology.>?

4. Grouping: Another form of abstraction is related to the difference between 1
and 2. If there is a sub-sequence of assembly processes whose order makes no dif-
ference to the end result, they can be grouped to form an unordered “composite”
move containing an unordered set of moves. If N components are moved from
initial to final states in a sequence of N moves, and it makes no difference in what
order they are moved, merely specifying the set of N possibilities without regard
for order collapses N factorial sets of possible sequences into one composite
move. If N is 15, that will collapse 1,307,674,368,000 different sequences into
one.

Sometimes a subset of moves can be made in parallel. For example someone
with two hands can move two or more objects at a time while transferring
a collection of items from one place to another. Parallelism is particularly
important in many biological processes where different processes occurring in
parallel constrain one another so as to ensure that instead of all the possible
states that could occur by moving or assembling components separately, only
those end states occur that are consistent with parallel constructions. In more
complex cases, the end state may depend on the relative speeds of sub-processes

3llustrated in these discussion notes:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/changing-affordances.html
http://www.cs.bham.ac.uk/research/projects/cogaft/misc/triangle-theorem.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/torus.html.
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and also on continuously changing spatial relationships. This is important in
epigenesis, since all forms of development from a single cell to a multi-celled
structure depend on many mutually constraining processes occurring in parallel.

For some construction kits, certain constructs made of a collection of
subassemblies may require different subassemblies to be constructed in parallel
if completing some too soon could make the required final configuration
unachievable. For example, rings being completed before being joined could
prevent formation of a chain.

5. Iterative or recursive abstraction: Some process types involve unspecified
numbers of parts or steps, although each instance of the type has a definite
number, for example a process of moving chairs by repeatedly carrying a chair
to the next room until there are no chairs left to be carried, or building a
tower from a collection of bricks, where the number of bricks can be varied. A
specification that abstracts from the number can use a notion like “repeat until”,
or a recursive specification: a very old idea in mathematics, such as Euclid’s
algorithm for finding the highest common factor of two numbers. Production
of such a generic specification can demonstrate a large variety of possibilities
inherent in a construction kit in an extremely powerful and economical way.
Many new forms of abstraction of this type have been discovered by computer
scientists developing programming languages, for operating not only on numbers
but many other structures, e.g. trees and graphs.

Evolution may also have “discovered” many cases long before humans existed
by taking advantage of mathematical structures inherent in the construction
kits available and the trajectories by which parts can be assembled into larger
wholes. This may be one of the ways in which evolution produced powerful
new genomes, and reusable genome components that allowed many different
biological assembly processes to result from a single discovery, or a few
discoveries, at a high enough level of abstraction.

Some related abstractions may have resulted from parametrisation: processes
by which details are removed from specifications in genomes and left to be
provided by the context of development of individual organisms, including the
physical or social environment. (See Sect. 2.3 on epigenesis.)

6. Self-assembly: If, unlike construction of a toy Meccano crane or a sentence
or a sorting process, the process to be explained is a self-assembly process, like
many biological processes, then the explanation of how the assembly is possible
will not merely have to specify trajectories through space by which the parts
become assembled, but also:

— what causes each of the movements (e.g. what manipulators are required);

— where the energy required comes from (an internal store, or external supply?);

— whether the process involves pre-specified information about required steps
or required end states, and, if so, what mechanisms can use that information
to control the assembly process;

— how that prior information structure (e.g. specification of a goal state to be
achieved, or plan specifying actions to be taken) came to exist, e.g. whether it
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was in the genome as a result of previous evolutionary transitions, or whether
it was constructed by some planning or problem-solving mechanism in an
individual, or whether it was provided by a communication from an external
source;

— how these abilities can be acquired or improved by learning or reasoning
processes or by random variation (if they can).

7. Use of explicit intentions and plans: None of the explanation types above
presupposes that the possibility being explained has ever been represented
explicitly by the machines or organisms involved. Explaining the possibility of
some structure or process that results from intentions or plans would require
specifying pre-existing information about the end state and in some cases also
intermediate states, namely information that existed before the process began—
information that can be used to control the process (e.g. intentions, instructions,
or sub-goals, and preferences that help with selections between options). It seems
that some of the reproductive mechanisms that depend on parental care make use
of mechanisms that generate intentions and possibly also plans in carers, for
instance intentions to bring food to an infant, intentions to build nests, intentions
to carry an infant to a new nest, intention to migrate to another continent when
the temperature drops, and many more. Use of intentions that can be carried out
in multiple ways selected according to circumstances rather than automatically
triggered reflexes could cover a far wider variety of cases, but would require
provision of greater intelligence in individuals.

Sometimes an explanation of possibility prior to construction is important for
engineering projects where something new is proposed and critics believe that the
object in question could not exist, or could not be brought into existence using
available known materials and techniques. The designer might answer sceptical
critics by combining answers of any of the above types, depending on the reasons
for the scepticism.

Concluding Comment on Explanations of Possibilities Those are all examples of
components of explanations of assembly processes, including self-assembly. In bi-
ological reproduction, growth, repair, development, and learning there are far more
subdivisions to be considered, some of them already studied piecemeal in a variety
of disciplines. In the case of human development, and to a lesser extent development
in other species, there are many additional sub-cases involving construction kits
both for creating information structures and for creating information-processing
mechanisms of many kinds, including perception, learning, motive formation,
motive comparison, intention formation, plan construction, plan execution, language
use, and many more. A subset of cases with further references can be found in [51].

The different answers to “How is it possible to construct this type of object?”
may be correct as far as they go, though some provide more detail than others. More
subtle cases of explanations of possibility include differences between reproduction
via egg-laying and reproduction via parturition, especially when followed by caring
for offspring. The latter allows a parent’s influence to continue during development,
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as does teaching of younger individuals by older ones. This also allows development
of cultures suited to different environments.

To conclude this rather messy section: the investigation of different types of
generality in modes of explanation for possibilities supported by a construction
kit is also relevant to modes of specification of new designs based on the kit.
Finding economical forms of abstraction may have many benefits, including both
reducing search spaces when trying to find a new design and also providing a generic
design that covers a broad range of applications tailored to detailed requirements.
Of particular relevance in a biological context is the need for designs that can be
adjusted over time, e.g. during growth of an organism, or shared across species with
slightly different physical features or environments. Many of the points made here
are also related to structural changes in both computer programming languages and
software design specification languages. Evolution may have beaten us to important
ideas. That these levels of abstraction are possible is a metaphysical feature of the
universe, implied by the generality of the FCK.

9 Alan Turing’s Construction Kits

Turing [62] showed that a rather simple sort of machine, now known as a Turing
machine, could be used to specify an infinite set of constructions with surprisingly
rich mathematical features. The set of possibilities was infinite because a Turing
machine is defined to have an infinite (or indefinitely extendable) linear “tape”
divided into discrete locations in which symbols can be inserted. A feature of a
Turing machine that is not in most other construction kits is that it can be set up
and then started, after which it will modify initial structures and build new ones,
possibly indefinitely, though in some cases the machine will eventually halt.

Another type of construction kit with related properties is Conway’s Game of
Life,* a construction kit that creates changing patterns in 2D regular arrays. Stephen
Wolfram has written a great deal about the diversity of constructions that can be
explored using such cellular automata. Neither a Turing machine nor a Conway
game has any external sensors: once started they run according to their stored rules
and the current (changing) state of the tape or grid cells. In principle, either of them
could be attached to external sensors able to produce changes to the tape of a Turing
machine or the states of some of the cells in the Life array. However, any such
extension would significantly alter the powers of the machine, and theorems about
what such a machine could or could not do would change.

Modern computers use a variant of the Turing machine idea, where each
computer has a finite memory but with the advantage of much more direct access
between the central computer mechanism and the locations in the memory (a
von Neumann architecture). Increasingly, computers have also been provided with

3nhttp://en.wikipedia.org/wiki/Conway.27s.Game.of . Life.
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a variety of external interfaces connected to sensors or motors so that while
running they can acquire information (e.g. from keyboards, buttons, joysticks, mice,
electronic piano keyboards, network connections, and many more) and can also send
signals to external devices. Theorems about disconnected Turing machines may not
apply to machines with rich two-way interfaces connected to the environment.

Turing machines and Game of Life machines can be described as “self-
propelling” because, once set up, they can be left to run according to the general
instructions they have and the initial configuration on the tape or in the array.
But they are not really self-propelling: they have to be implemented in physical
machines with an external power supply. In contrast, Ganti [15] shows how the
use of chemistry as a construction kit provides “self-propulsion” for living things,
though every now and again the chemicals need to be replenished. A battery-driven
computer is a bit like that, but someone else has to make the battery.

Living things make and maintain themselves, at least after being given a kick-
start by their parent or parents. They do need constant, or at least frequent, external
inputs, but, for the simplest organisms, those are only chemicals in the environment
and energy from chemicals or heat energy via radiation, conduction or convection.
John McCarthy pointed out in a conversation that some animals also use externally
supplied mechanical energy, e.g. rising air currents used by birds that soar. Unlike
pollen grains, spores, etc. propagated by wind or water, the birds use internal
information-processing mechanisms to control how the wind energy is used, as does
a human piloting a glider.

9.1 Beyond Turing Machines: Chemistry

Turing also explored other sorts of construction kits, including types of neural nets
and extended versions of Turing machines with “oracles” added. Shortly before his
death (in 1954), he published [64], in which he explored a type of pattern-forming
construction kit in which two chemical substances can diffuse through the body of
an expanding organism and interact strongly wherever they meet. He showed that
that sort of construction kit could generate many of the types of surface pattern
observed on plants and animals. I have been trying to show how that can be seen as
a very simple example of something far more general.

One of the important differences between types of construction kit mentioned
above is the difference between kits supporting only discrete changes, e.g. to a first
approximation Lego and Meccano (ignoring variable length strings and variable
angle joints), and kits supporting continuous variation, e.g. plasticine and mud
(ignoring, for now, the discreteness at the molecular level).

One of the implications of such differences is how they affect abilities to search
for solutions to problems. If only big changes in design are possible, the precise
change needed to solve a problem may be inaccessible (as many who have played
with construction kits will have noticed). On the other hand, if the kit allows
arbitrarily small changes, it will, in principle, permit exhaustive searches in some
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sub-spaces. The exhaustiveness comes at the cost of a very much larger (infinite, or
potentially infinite!) search-space. That feature could be useless, unless the space of
requirements has a structure that allows approximate solutions to be useful. In that
case, a mixture of big jumps to get close to a good solution, followed by small jumps
to home in on a (locally) optimal solution can be very fruitful—a technique that has
been used by Artificial Intelligence researchers, called “simulated annealing”.>*

Wagner [66] claims that the structure of the search space generated by the
molecules making up the genome increases the chance of useful approximate so-
lutions to important problems to be found with relatively little searching (compared
with other search spaces), after which small random changes allow improvements
to be found. I have not yet read the book, but it seems to illustrate the importance for
evolution of the types of construction kit available.* I have not yet had time to check
whether the book discusses uses of abstraction and the evolution of mathematical
and meta-mathematical competences discussed here. Nevertheless, it seems to be
an (unwitting) contribution to the Meta-Morphogenesis project. Recent work by
Jeremy England at MIT?® may turn out also to be relevant.

9.2 Using Properties of a Construction Kit to Explain
Possibilities

A formal axiomatic system can be seen as an abstract construction kit with axioms
and rules that support construction of proofs that end in theorems. The theorems
are formulae that can occur at the end of a proof using only axioms and inference
rules in the system. The kit explains the possibility of some theorems based on the
axioms and rules. The non-theorems of an axiomatic system are formulae for which
no such proof exists. Proving that something is a non-theorem can be difficult, and
requires a proof in a meta-system.

Likewise, a physical construction kit can be used to demonstrate that some
complex physical objects can occur at the end of a construction process. In some
cases there are objects that are describable but cannot occur in a construction using
that kit: e.g. an object whose outer boundary is a surface that is everywhere curved
cannot be produced in a construction based on Lego bricks or a Meccano set, though
one could occur in a construction based on plasticine or soap film.

3*One of many online explanations is at http://www.theprojectspot.com/tutorial-post/simulated-
annealing-algorithm-for-beginners/6.

35 An interview with the author is online at https://www.youtube.com/watch?v=wyQgCMZdv6E.
Shttps://www.quantamagazine.org/20140122-a-new-physics- theory-of-life/
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9.3 Bounded and Unbounded Construction Kits

A rectangular grid of squares combined with the single digit numbers, 0,1,...,9
(strictly numerals representing numbers), allows construction of a set of configura-
tions in which numbers are inserted into the squares subject to various constraints,
e.g. whether some squares can be left blank, whether certain pairs of numbers can be
adjacent, or whether the same number can occur in more than one square. For a given
grid and a given set of constraints, there will be a finite set of possible configurations
(although it may be a very large set). If, in addition to insertion of a number, the
“construction kit” allows extra empty rows or columns to be added to the grid
no matter how large it is, then the set of possible configurations becomes infinite.
Many types of infinite construction kit have been investigated by mathematicians,
logicians, linguists, computer scientists, musicians and other artists.

Analysis of chemistry-based construction kits for information-processing sys-
tems would range over a far larger class of possible systems than Turing machines
(or digital computers), because of the mixture of discrete and continuous changes
possible when molecules interact, e.g. moving together, moving apart, folding, and
twisting, but also locking and unlocking, using catalysts [20]. I don’t know whether
anyone has a deep theory of the scope and limits of chemistry-based information
processing.

Recent discoveries indicate that some biological mechanisms use quantum-
mechanical features of the FCK that we do not yet fully understand, providing
forms of information processing that are very different from what current computers
do. For example a presentation by Seth Lloyd summarises quantum phenomena
used in deep-sea photosynthesis, avian navigation, and odour classification.>” This
may turn out to be the tip of the iceberg of quantum-based information-processing
mechanisms.

There are some unsolved, very hard, partly ill-defined, problems about the variety
of functions of biological vision, e.g. simultaneously interpreting a very large, varied
and changing collection of visual fragments, perceived from constantly varying
viewpoints as you walk through a garden with many unfamiliar flowers, shrubs,
bushes, etc. moving irregularly in a changing breeze. Could some combination
of quantum entanglement and non-local interaction play a role in rapidly and
simultaneously processing a large collection of mutual constraints between mul-
tiple visual fragments? The ideas are not yet ready for publication, but work in
progress is recorded here: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/
quantum-evolution.html.

Some related questions about perception of videos of fairly complex moving
plant structures are raised here: http://www.cs.bham.ac.uk/research/projects/cogaft/
misc/vision/plants/.

3Thttps://www.youtube.com/watch?v=wcXSpXyZVuY
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10 Conclusion: Construction Kits for Meta-Morphogenesis

A useful survey by Keller of previous attempts to show how life and its products
relate to the physical world [21, 22] concluded that attempts so far have not been
successful. Keller ends with the suggestion that the traditional theory of dynamical
systems is inadequate for dealing with constructive processes and needs to be
expanded to include “objects, their internal properties, their construction, and their
dynamics”, i.e. a theory of “Constructive dynamical systems”. This chapter outlines
a project to do that and more, including giving an account of branching layers of new
derived construction kits produced by evolution, development and other processes.
The physical world clearly provides a very powerful (chemistry-based) fundamental
construction kit that, together with natural selection processes and processes within
individuals as they develop, produced an enormous variety of organisms on this
planet, based on additional derived construction kits (DCKs), including concrete,
abstract and hybrid construction kits and, most recently, new sorts of construction
kit used as a toy or an engineering resource.

The idea of a construction kit is offered as a new unifying concept for Philosophy
of mathematics, Philosophy of science, Philosophy of biology, Philosophy of mind
and Metaphysics. The aim is to explain how it is possible for minds to exist
in a material world and to be produced by natural selection and its products.
Related questions have been raised about the nature of mathematics and its role
in life. The ideas are still at an early stage of development and there are probably
many more distinctions to be made, and a need for a more formal, mathematical
presentation of properties of and relationships between construction kits, including
the ways in which new derived construction kits can be related to their predecessors
and their successors. The many new types of computer-based virfual machinery
produced by human engineers since around 1950 provide examples of non-reductive
supervenience (as explained in [56]). They are also useful as relatively simple
examples to be compared with far more complex products of evolution.

In [13], a distinction is made between two “principled” options for the relation-
ship between the basic constituents of the world and their consequences. In the
“Humean” option there is nothing but the distribution of structures and processes
over space and time, though there may be some empirically discernible patterns
in that distribution. The second option is “modal realism”, or “dispositionalism”,
according to which there is something about the primitive stuff and its role in space-
time that constrains what can and cannot exist, and what types of process can and
cannot occur.

I am arguing for a “multi-layer” version of the modal realist option (developing
ideas in [41, 48, 56]).

I suspect that a more complete development of this form of modal realism can
contribute to answering the problem posed in Anderson’s famous paper [1], namely
how we should understand the relationships between different levels of complexity
in the universe (or in scientific theories). The reductionist alternative claims that
when the physics of elementary particles (or some other fundamental physical
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level) has been fully understood, everything else in the universe can be explained
in terms of mathematically derivable consequences of the basic physics. Anderson
contrasts this with the anti-reductionist view that different levels of complexity in
the universe require “entirely new laws, concepts and generalisations” so that, for
example, biology is not applied chemistry and psychology is not applied biology. He
writes: “Surely there are more levels of organization between human ethology and
DNA than there are between DNA and quantum electrodynamics, and each level
can require a whole new conceptual structure”. However, the structural levels are
not merely in the concepts used by scientists, but actually in the world.

We still have much to learn about the powers of the fundamental construction
kit (FCK), including: (1) the details of how those powers came to be used for
life on earth, (2) what sorts of derived construction kit (DCK) were required in
order to make more complex life forms possible, (3) how those construction kits
support “blind” mathematical discovery by evolution, mathematical competences in
humans and other animals and, eventually, meta-mathematical competences, then
meta-meta-mathematical competences, at least in humans, (4) what possibilities the
FCK has that have not yet been realised, (5) whether and how some version of
the FCK could be used to extend the intelligence of current robots, (6) whether
currently used Turing-equivalent forms of computation have at least the same
information-processing potentialities (e.g. abilities to support all the biological
information-processing mechanisms and architectures), and (7) if those forms of
computation lack the potential, then how are biological forms of information
processing different? Don’t expect complete answers soon.

In future, physicists wishing to show the superiority of their theories should
attempt to demonstrate mathematically and experimentally that they can explain
more of the potential of the FCK to support varied construction kits required for,
and produced by, biological evolution than rival theories can. Will that be cheaper
than building bigger, better colliders? Will it be harder?**

End Note

As I was finishing off this paper, I came across a letter Turing wrote to W. Ross
Ashby in 1946 urging Ashby to use Turing’s ACE computer to implement his ideas
about modelling brains. Turing expressed a view that seems to be unfashionable
among Al researchers at present (2015), but accords with the aims of this paper:

In working on the ACE I am more interested in the possibility of producing models of the
actions of the brain than in the practical applications to computing.
http://www.rossashby.info/letters/turing.html

38Here’s a cartoon teasing particle physicists: http://www.smbc-comics.com/?id=3554.
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It would be very interesting to know whether he had ever considered the question
whether digital computers might be incapable of accurately modelling brains
making deep use of chemical processes. He also wrote in [63], “In the nervous
system chemical phenomena are at least as important as electrical.” But he did not
elaborate on the implications of that claim.*
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