
Chapter 9
Assistive and Adaptive Dialog Management

Florian Nielsen and Wolfgang Minker

Abstract One of the most important challenges in the field of human-computer
interaction is maintaining and enhancing the willingness of the user to interact with
the technical system. This willingness to cooperate provides a solid basis which is
required for a collaborative human-computer dialog. For the dialogmanagement this
means that a Companion-System adapts the course and content of human-computer
dialogs to the user and assists during the interaction through individualized help and
explanation. In this chapter we elucidate our dialog management approach, which
provides user- and situation-adaptive dialogs, and our explanation management
approach, which enables the system to provide assistance and clarification for the
user during run-time.

9.1 Introduction

The usual task of the dialog management (DM) is to control the structure, content,
and flow of the dialog between human and computer. It communicates with
the application and gathers from as well as provides to the user all necessary
information, which is needed to accomplish a specific task in cooperation with
a technical system. As an individual cognitive technical system should be able
to adapt to a user’s capabilities, preferences, and current goals and take into
account the situation and emotional state, the dialog management is one of the
most influential components to foster the realization of these system properties.
These features and properties qualify a system as a so-called Companion-System
(cf. Chap. 1). Companion-Systems are by definition “continually available, co-
operative, reliable and trustworthy assistants which adapt to a user’s capabilities,
preferences, requirements, and current needs” [23].

From this Companion-System definition the authors derived those user charac-
teristics (see Fig. 9.1) which are most important for the use in a dialog management
component, fostering the realization of the Companion-properties. Here, emotional
state is exchanged with affective state, because state-of-the-art research focuses on

F. Nielsen (�) • W. Minker
Institute of Communications Engineering, Ulm University, Ulm, Germany
e-mail: florian.nothdurft@alumni.uni-ulm.de; wolfgang.minker@uni-ulm.de

© Springer International Publishing AG 2017
S. Biundo, A. Wendemuth (eds.), Companion Technology, Cognitive Technologies,
DOI 10.1007/978-3-319-43665-4_9

167

mailto:florian.nothdurft@alumni.uni-ulm.de
mailto:wolfgang.minker@uni-ulm.de


168 F. Nielsen and W. Minker

Fig. 9.1 The main user characteristics: A user’s capabilities represent, for example, the user’s
knowledge or handicaps. User needs are derived from the user’s current goals while the situation
describes the user’s present environment. Preferences are user made or learned adaptation criteria,
and the affective state represents emotions as well as dispositions towards the technical system

recognizing and reacting not only to a user’s primary emotions, but also to a user’s
disposition towards a technical system. Those dispositions are secondary emotions
and can describe a user’s stance towards a system better, by using terms like
confusion, interest or frustration, rather than primary emotions like anger, sadness
or joy [19]. Systems adapting their functionalities to users’ general characteristics
(e.g. capabilities or preferences), users’ affective states or the present situation
may help to lead to a cooperative and effective dialog between man and machine.
Adapting the human-computer interaction (HCI) to the individual user does yield
possible advantages. For example, the DM may adapt the flow of a dialog between
human and machine to the user (e.g. to the user’s knowledge) and by that help
to prevent overextension or mental overload. However, individual systems that
act upon implicit user information and adapt their system behavior accordingly
may confuse or disturb the user’s perception of the system. Especially proactive
behavior (e.g. reacting autonomously to the user’s affective state) might not be
understandable to the user, or in other words incongruent to the user’s mental model
of the system. One of the main aspects in Companion-Systems is their ability to
evolve the capabilities of solving problems collaboratively with the user. However,
solving complex problems together with a Companion-System is only feasible if the
human user interprets and understands the machine correctly.

These situations are critical and may have a negative impact on the human-
computer trust (HCT) relationship [12]. The main problem is that if the user does not
trust the system and its actions, advice or instructions, the way of interaction may
change up to complete abortion of future interaction [18]. Glass et al. [6] observed
that the capabilities to provide explanations in adaptive agents can reduce most of
the trust concerns identified by the user. In addition, several other studies showed
that explanations are a way to prevent the decrease of trust (e.g. [3, 4]). Therefore, a
Companion-System should also be able to integrate explanations about the system’s
proactive behavior instantaneously in the dialog. This means that, depending on
the current user model and situation, the Companion-System should be able to
induce the appropriate kind of explanation to increase the chances of a successful
and trustworthy HCI. Therefore, in the following we will elucidate how the DM
may adapt the flow and structure of the HCI using explanations to individual user



9 Assistive and Adaptive Dialog Management 169

characteristics, but also why and how a dialog system may cope with problems
resulting from misunderstood system behavior.

The chapter is structured as follows. In Sect. 9.2 we provide introductory infor-
mation on dialog management approaches. Section 9.3 describes the general concept
and design ideas, including requirements for the user’s knowledge and mental
model. In Sect. 9.4 the implementation of the adaptive and assistive capabilities
of the DM in a rule-based and probabilistic fashion is described, followed by the
conclusion in Sect. 9.5.

9.2 Background

In the past decades several approaches to the DM task have been developed that
can be classified in four basic categories [9]. First of all, basic finite-state-machine
approaches (e.g. [25]), where a set of states is defined with a set of moves for
each state which transitions to a new state in the automaton. Second, frame-
based approaches (e.g. [8]), where the DM is monitoring the current so-called
frame, which is specified by a set of needed information (slots), the context for
the utterance interpretation and the context for the dialog progress. This is more
advanced, since it allows for mixed-initiative interaction and allows multiple paths
to acquire the information. Thirdly, stochastic-based approaches (e.g. [24]), which
apply reinforcement learning techniques to the DM by determining the best policy
or choice of actions from all available actions a system can take in a dialog, which
will optimize the system’s performance as measured by a utility function, such as
the user’s evaluation of the system [11]. The last main group of approaches is agent-
based approaches (e.g. [14]) where the dialog is controlled by several intelligent
agents capable of reasoning about themselves (e.g. in the BDI (beliefs, desires,
intentions) approach [20]) using Artificial Intelligence techniques. The agent-based
approach subsumes plan-based dialog models, where preconditions, actions and
effects are used to control the ongoing dialog. Here, the structure of the dialog (i.e.
the flow) is determined at run-time by the different agents using the current world
state and the goals left to achieve. Thus, the agent-based approach is the closest to
the one used here.

9.3 Concept and Design

For an individual Companion-System, the DM integrates into a complex architec-
ture and splits its responsibilities with the planning framework (PF). Due to the fact
that DM and PF are closely linked together, a dialog management approach related
to the planning approach used in the PF was chosen. This means that, as already
described in Chap. 7, the course of plan steps representing the solution for the given
planning problem is generated and executed by the planning-framework (i.e. the



170 F. Nielsen and W. Minker

plan generation and plan execution components). In case that the proposed plan
steps require user interaction, plan steps are passed from the plan execution to the
DM. The main purpose of this component is to decompose and refine the plan step
(if necessary) into a user-adaptive dialog. If the dialog for the passed-on plan step
requires adaptation to the individual user, the structure and the content of the dialog
can be adapted. Therefore, our combination of DM and PF is closely related to the
split into task level and dialog level used in agent-based approaches.

During this work two different approaches were used. First, a rule-based
approaches using preconditions, thresholds and predefined rules to adapt the
structure and flow of the dialog. Second, a hybrid approach using rule-based
approaches for the task-oriented part of the interaction, and a probabilistic approach
for dealing with adaptivity to user and situation characteristics based on uncertain
or noisy information sources (e.g. user knowledge, user understanding or affective
user states) (cf. Sect. 9.4.3). The framework for the integration of user- and situation-
adaptive dialogmanagement capabilities was a cognitive knowledge-based technical
system, which extends the architectures of classic unimodal (e.g. spoken dialog
systems) or multimodal dialog systems. This system [7] can be called a prototypical
Companion-System [2]. To be able to provide Companion-functionalities in a
completely individualized way, several interacting components (see Fig. 9.2) are
necessary. The main differences with a classic architecture are the underlying
knowledge base, and the cognitive capabilities by the use of a sensor system, and
that the dialog management and the planning framework share the tasks of planning,
controlling and structuring the HCI.

9.3.1 Required User Model

As already mentioned, the following adaptation criteria are needed for the integra-
tion of the desired explanation capabilities and stored in the user model: the general
user knowledge, the fine-grained user knowledge and the user’s mental model.

Fig. 9.2 This figure shows the prototypical Companion-System. This system serves as framework
for the modules developed or extended: explanation and dialog management. Embedded between
the planning framework, interaction management, and the underlying knowledge base, they control
the user-adaptive dialog between human and machine



9 Assistive and Adaptive Dialog Management 171

9.3.1.1 General and Fine-Grained User Knowledge

One of the first design decisions was to model user knowledge in a fine-grained
way, using the same level of detail as used in the domain model of planning and
dialog. For example, in the example domain used here, the task represented as
relation connect(TV, Receiver, HDMI) models the knowledge of the action connect
as well as the concepts TV, Receiver, andHDMI. Additionally, we draw a distinction
between declarative knowledge and procedural knowledge. The former can be used
to describe the being of things (i.e. appearance, purpose). Possessing declarative
knowledge about something does not necessarily mean begin able to use this
knowledge for a task or action. In comparison to that, procedural knowledge can be
applied to a task. Procedural knowledge provides the knowledge on how to execute
a task or on how to solve a problem (Fig. 9.3).

Those knowledge constituents are modelled as probability distributions over a
five-step knowledge scale ranging from novice to expert for every constituent (see
Fig. 9.7). This means that knowledge is modelled in small pieces instead of in only
one general level. This helps the model to allow for a more realistic and exact
individualization and adaptation to the user. Though we concentrate on a fine-
grained knowledge representation, we also build a mean overall knowledge value
for coarse adaptations of the dialog flow (cf. Fig. 9.4). This means that a mean of all
domain knowledge constituents is calculated, representing the overall knowledge
of the user. Hence, the categorization into groups or levels of expertise is based
not only on a general assumption, but also on a more thoroughly combination
of all domain elements. The development of the user’s knowledge is based on
observations made during the interaction and on past interaction episodes (cf.
Fig. 9.5). Therefore, the knowledge levels are system-made assumptions about the
user, requiring a probabilistic representation. Occurring events during the HCI
influence the probability distribution of relevant contained knowledge objects.

Plan Step / Dialogue Goal

Knowledge Model

connect

connect connect

tv

tv tv

receiver

receiver receiver

hdmi

hdmi hdmi

Fig. 9.3 The relation coming from either the dialog goal or the plan step directly can be analyzed
separately by the explanation management, because they are stored in a fine-grained way in the
User’s Knowledge Model. Here, the magnifying glass represents declarative knowledge elements
and the cogwheel procedural knowledge elements



172 F. Nielsen and W. Minker

Knowledge Model

connect connect

tv tv

receiver receiver

hdmi hdmi

Overall domain knowledge

Fig. 9.4 The user’s overall knowledge of a domain is used for the coarse adaptation of the dialog
flow. It consists of a combination of all domain elements and therefore represents the mean domain
knowledge

connect

tv

receiver

hdmi

connect

tv

receiver

hdmi

Knowledge Model

Fig. 9.5 The fine-grained user’s knowledge evolves over time. This means that in a first step user
interactions or other observations are processed. This may then influence the knowledge model and
its constituents. The changed knowledge model may subsequently lead to adaptation and influence
the HCI

These events may be, for example, given explanations, failed actions or, plainly
elapsed time. Contained means, for example, not only tasks the user executed,
but also entities that were used for this task and whether the task completion was
successful.

9.3.1.2 User’s Mental Model

Our main interest in mental models is the consequence that they are built by the
user and only imitate the perceived system behavior. This means that the perceived
mental model may not correspond to the real-world model and may therefore be



9 Assistive and Adaptive Dialog Management 173

incorrect. This process of adapting existent mental models or “fine-tuning” them is
very important. Whenever some feedback is observed which is incongruent to the
present mental model, the model has to be adapted. Additionally, these situations
are those in which the user does not understand the system behavior, because of
incongruent models, and the risk increases that the user’s perception of the system’s
trust components (e.g. understandability, reliability) might be impaired. To foster
effective mental model correction it showed that transparency explanations worked
best [17]. However, as mental models cannot be directly observed we are left to
estimate whether incongruence in mental and actual system models is present.
However, is we look for situations in which not only the mental model incorrect,
but also the receptor is not sure whether the mental model applies.

Therefore, due to the lack of direct observability, the mental model is hard to
build. However, what can be used, in order to estimate a mental model, is affect
recognition combined with context information like the interaction history and
current state of the dialog. For this we are keeping track of the HCI in a so-called
dialog history. This history records the decisions and actions of the user and the
technical system. The history is used to note when, for example, something was
explained to the user, when the user executed a task or requested help from the
system. Here, information of specific system actions or decisions that have been
performed in the past is stored in the history as well. For example, the estimated
mental model includes whether explanations were given for system decisions
or tasks and whether the transparency on decisions was upheld by providing
information on the reasoning process that led to the decision.

9.3.2 Consequences for the Design

While the description of the underlying architecture already gave some hints on
where the main adaptation criteria, derived from the design requirement, are applied,
this section will elucidate the theoretical intent behind these design decisions.
Where, why and how those criteria (general user knowledge, fine-grained user
knowledge, and user’s mental model) may be used in the present system will be
described in the following.

9.3.2.1 General User Knowledge

This model represents the user’s general knowledge about a domain or sub-domain.
Therefore, it is an arithmetic mean of user’s knowledge about a specific topic, for
example, the user’s knowledge about cooking, technical systems or cars. Analogous
to human-human interaction (HHI), a person’s knowledge is based on the subjective
opinions and objective criteria of another party. Humans tend to assign competencies
to other persons, like “he is a good cook”, “she knows how to repair cars” or
“he knows everything about computers”. However, we do not only assign abstract



174 F. Nielsen and W. Minker

competencies like that, but also very specific competencies, like “she makes a
great lasagna”, “he knows everything about Linux”, or “she can change the tires
of her VW Golf”. Now, if a human seeks help or clarification, the most important
classification criteria are the abstract ones. However, if the human already possesses
a certain amount of knowledge in that domain, the more specific competencies tend
to become more important. This process of selecting the most competent help for
the user’s current situation gets more and more complex the more specific his or her
problem and existing knowledge in the domain is. Transferred to technical systems,
this means that a user’s general knowledge is suitable for a coarse adaptation of
the dialog flow and structuring of HCI. However, if more specific competencies in
a domain are required, a more fine-grained estimation of the user’s knowledge is
needed for an effective and sound HCI.

Therefore, in our present architecture, the dialog management and its guard-
based dialog model are suitable for adapting to a user’s general knowledge. The
dialog model is able to adapt to guards, which control the flow of the dialog. The
drawback of increasing complexity for higher numbers of guards is not relevant if
the user’s general knowledge is regarded as one of only a small number of sub-
concepts.

9.3.2.2 Fine-Grained User Knowledge

As already explained in the former paragraph, a detailed estimation of the user’s
knowledge is needed to assist the user in a more specific and more effective manner.
Since the guard-based dialog model is not suitable for a fine-grained adaptation to
the user’s knowledge model, an automatic solution not based on predefined dialog
paths seems preferable. Hence, an automatic, proactive augmentation of the already
roughly adapted dialog has to be done. Analogously to HHI, where, for example,
“chef apprentices” get, on top of their already adapted instructions, more detailed
information based on their specific competencies (e.g. “cut the chicken filet in
this direction”), in HCI this has to be done as well. While observing the user’s
behavior and interaction history, one has to decide whether additional clarification or
instruction is needed in order to achieve the desired goal. In the present architecture
the explanation management has the purpose of dealing with these kinds of
adaptations at run-time. It observes the ongoing dialog and decides based upon the
history of interaction and the upcoming dialogs whether additional explanations are
needed to match the user’s fine-grained knowledge model. Therefore, dialogs have
to be modelled in a way that they can be assessed in terms of required knowledge.
For example, the task “prepare the béchamel sauce” requires knowledge about
béchamel sauce in general, as well as knowledge about the ingredients and of course
about the procedure for preparing it. In order to enable the system to assess the
requirements, the knowledge constituents have to be modelled for the dialogs.



9 Assistive and Adaptive Dialog Management 175

9.3.2.3 User’s Mental Model

The user’s mental model cannot be observed directly. As explained before, only
symptoms rather than the disease combined with present context information can be
used to estimate whether the user’s mental model and the actual system behavior do
align. Hence, affective states that indicate, for example, frustration or confusion
have to be used in combination with information on the dialog history and the
surroundings to estimate mental model incongruences. However, the recognition
of affective user states is error-prone and burdened with uncertainty, especially
considering non-acted data. Thus, to treat the uncertainty-based affective states in a
proper way, a probabilistic model is needed.

The main idea of the probabilistic model is the integration of proper uncertainty
treatment for information based on uncertain observations. Apart from factors like
uncertain environments and decision-making, incorporating mental model adaptiv-
ity directly into the guard-based DM is not good idea. Modelling the incongruence
of mental models as a guard variable would be possible, but predefining the
adaptations is not.

In previous research we showed that especially transparency explanations,
which aim for explaining the system processes, lead to a higher perception of
understandability of the system’s behavior [15]. However, this goal of explanation
cannot be predefined for every situation by the designer. That’s why the adaptivity to
a user’s mental model has to be done during run-time, and for our systems this means
in the explanation management. In Sect. 9.4.3 we explain how the estimated mental
model can trigger explanations. Though we can decide on whether explanations are
needed, the explanation itself has to be generated by the modules responsible for
the decision-making in terms of the dialog and plan, which will be elucidated in the
next section.

9.4 Implementation

As already mentioned, different approaches and facets were developed, which will
be explained in the following. In Sect. 9.4.1 the dialog flow adaptation of a task-
oriented dialog is exemplarily explained on the user’s knowledge level. Section 9.4.2
describes how a fine-grained user knowledge model can be used to provide user-
adaptive assistivity by augmenting a task-oriented dialog in a rule-based way
without interfering in its original dialog approach. How a probabilistic approach can
be used and why such an approach is necessary to integrate explanation capabilities
in a realistic and effective fashion is then explained in Sect. 9.4.3.



176 F. Nielsen and W. Minker

9.4.1 Rule-Based Adaptivity

As described in Sect. 9.3, the generated plan of the planning framework serves
as skeleton of the user-adaptive dialog. The provided plan steps are decomposed
one by one into a hierarchical dialog structure which consists of so-called dialog
goals [16]. Each dialog goal represents a single interaction step between human
and system (e.g. one screen on a device filled with specific information). The term
dialog goal arises from the fact that every step in the interaction pursues a goal.
This goal is, in this case, to achieve one or several of the desired plan step effects.
Therefore, the term dialog goal is to be distinguished from the term goal used in
the PF components. This means that a plan step may be decomposed into several
dialog goals and that for every desired plan step effect a set of similar dialog goals
may exist. These similar dialog goals usually have so-called guardswhich formulate
conditions that need to be fulfilled in order for the dialog goal to be entered at run-
time. These guards may, for example, take into account general user knowledge
levels and therefore help to adapt the dialog to user characteristics stored in the
knowledge base as marginal.

Goals can be arranged in a vertical structure and also in a horizontal structure. In
a vertical structure each goal may yield several sub-goals. In a horizontal structure
each goal may have a fixed successive goal that is next in the dialog. This implies
that the dialog may be roughly structured like a finite state machine, but there is
enough room left to dynamically arrange the sub-goals to satisfy the user’s needs.
Such an arrangement is handled by the way the guards for the goals are defined.
Guards are preconditions protecting the related dialog goal of inappropriate execu-
tion, leading most likely to dialog failure (e.g. due to inadequate user knowledge).
Those roughly made dialog structure adaptations are later augmented by assistive
behavior manifested by additional explanations during run-time, adaptive to the
user’s fine-grained knowledge, which will be explained in Sect. 9.4.2.

During the interaction, the dialog management traverses through its dialog
structure (see Fig. 9.6) to select the path of dialog goals most suitable for the

Fig. 9.6 Dialog Goals may have sub-goals (cf. 2 and 3 for goal 1) or link to the next goal in
the sequence (cf. 6 to 7). More abstract goals (e.g. 1 and 7) are not directly executable, but have
to be refined. The dialog content and flow may change according to predefined variables used as
guards, depicted as G. For example, if one guard of goal number 2 requires expert knowledge, the
resulting sequence of dialog steps, in case of fulfilment, would include a simplified instruction (i.e.
2,6,8,9). Contrary to that, a novice user would receive a more detailed as well as longer sequence
of dialog steps with additional extent of assistance (i.e. 3,4,5,6,8,9). Dialog Goals have effects as
well, describing the effects of execution (depicted as E)



9 Assistive and Adaptive Dialog Management 177

current user. The selection of the next dialog goal is therefore made in a user-
adaptive manner and leads to an individual dialog appropriate for the current user.
In order to conduct the selection of the next appropriate dialog goal, a constraint
solving algorithm is used. Constraint programming has proved to be especially
useful in problems on finite domains where many conditions limit the possible
variable value configurations [5]. It is a technique to find solutions to problems by
backtracking and efficient reasoning. As a dialog in our case is limited to a certain
number of possibilities how the system can traverse through the dialog structure, it
is reasonable to use a finite domain for the variables that constrain the execution
of the dialog goals. These conditions make the dialog model suited for applying a
finite domain constraint-solving mechanism.

The decision about which dialog goals can be executed is based on the values that
variables specified in the guard conditions are allowed to have. Applied to constraint
programming, we consider the conditions in the guards as constraints, and, based on
the current values of the variables, the constraint solver tells which guard conditions
can be fulfilled. Based on this variable configuration we can select a number of
dialog goals which can be executed at a certain time in the dialog. The described
adaptation of the dialog flow is only suitable for roughly customizing the dialog
using the mean user knowledge due to complexity issues. Using the fine-grained
knowledge model would lead rapidly to overly complex dialog structures. This
means that knowledge is here regarded as one mean value for the complete domain
or coarse subdomains. For example, in the sample domain of connecting a new
home theater system, the user’s mean technical knowledge is considered the main
adaptation variable. The dialog content and flow will change if two different users
interact with the system. For example, if the first user is an expert (i.e. has a mean
technical knowledge � 4.5), the sequence of dialog steps should include simplified
instructions, sufficient for an expert. Contrary to that, a novice (i.e. mean technical
knowledge <1.5) should receive a more detailed as well as a longer sequence of
dialog steps with additional extent of assistance. The user variable mean technical
knowledge is designed to be the arithmetic mean of the combination of the user’s
default knowledge model and the evolution of its fine-grained constituents during
past episodes of HCI (see Fig. 9.5).

The mean technical knowledge is used as a guard to formulate conditions
necessary for the execution of the dialog goal. Due to the rule-based DM approach
using links to sub-goals or to proceeding goals, combined with the requirement
to define those links by hand, the overhead vastly explodes in the case of a large
number of guard variables. Therefore, the user knowledge adaptation is only used
for few selected variables, which influence the dialog flow to a great extent.

9.4.2 Rule-Based Assistivity

Adaptation of structure and flow of the dialog to levels of user characteristics (e.g.
mean technical knowledge) yields only coarse individualization results. Due to the



178 F. Nielsen and W. Minker

effort necessary to design a specific dialog course or flow for every level of user
characteristic and the resulting complexity, it is uneconomical to use the former
approach for more fine-grained adaptation and individualization. Therefore, the
course of interaction steps is adapted and extended for a more individualized dialog
to the individual user’s knowledge during run-time.

The assistive part of the DM, the dialog augmentation, deals with the automatic
extension of the ongoing dialog with additional dialog steps, helping the user to
accomplish tasks ahead. Contrary to the rule-based adaptation, which chose the
most appropriate already predefined dialog path for the user, this approach integrates
independent dialog steps into the running dialog. This means the designer does
not have to cope with the knowledge-based fine-grained individualization, but the
explanation management makes sure that the upcoming dialog steps are conform to
the user model.

As already explained in Sect. 9.3, the course of steps the user has to fulfil in order
to solve the task he wants to accomplish is first planned by the planning framework
and later decomposed further by the DM into so-called dialog steps. Each of these
steps is represented as a relation with the name of the task and its appendant
concepts as its arguments. As our main goal is to prevent task failure we have to
ensure that the upcoming or current tasks and appendant concepts do not exceed the
user’s knowledge. Therefore, prior to sending the dialog steps for presentation to the
multimodal fission (see Chap. 10), they are first sent to the explanation management.
Here, the content of the predefined dialog is analyzed and compared to the user’s
knowledgemodel, stored in the knowledge base as marginal. If the user’s knowledge
is probably not sufficient, the course of the dialog is updated by including additional
dialog steps to better fit the user’s knowledge model. Those additional dialog steps
are meant to explain missing knowledge to the user.

As previously reported, in our knowledge model we distinguish between declar-
ative knowledge and procedural knowledge. For example, in the domain used in the
demonstrator, the task represented as relation connect(TV, Receiver, HDMI) models
the knowledge of the action connect as well as the concepts TV, Receiver andHDMI.
This means that compared to other systems the user’s knowledge is modeled in
small pieces instead of in only one general level. Of course, the resulting model is
very complex, but also more realistic and conforming more to the idea of human
knowledge modelling.

The knowledge constituents are modelled as probability distributions over a
five-step knowledge scale ranging from novice to expert (see Fig. 9.7). As the

Fig. 9.7 In this excerpt of the user’s knowledge model the procedural knowledge of the action
connect and the declarative knowledge of the concept HDMI as well as their respective probability
distributions over the knowledge levels are listed



9 Assistive and Adaptive Dialog Management 179

Fig. 9.8 Here we can see that the original predefined dialog on the left is augmented during run-
time by an additional explanation dialog. The current dialog 1 is completed and before execution
the next dialog is analysed by the explanation management. By checking the knowledge model
it concludes that the user’s knowledge about HDMI is not sufficient and decides to augment the
dialog with an additional explanation dialog

user’s knowledge is based on observations made during the interaction and on past
interaction episodes and the user’s knowledge is based on system-made assumptions
about the user, a probabilistic representation is required. During the interaction
we check if the user’s knowledge for the current dialog step constituents is most
probably high enough. The concepts and the action are analyzed by the explanation
management, and if needed the dialog flow is augmented with additional dialog
steps (see Fig. 9.8). If the user’s knowledge is most probably too low, the explanation
manager generates an additional explanation dialog, which tries to impart the
missing knowledge for the user to execute the dialog step successfully.

The explanation management then selects which type of explanation is the
appropriate one for the current lack of knowledge. As the dialog step consists
of several parts, so does the explanation. Each task and concept are analyzed to
generate a summarized explanation. The explanation management sends the content
of the explanation to the knowledge base to be stored in the information model. This
explanation may consist of pictures, text or text meant to be spoken. Afterwards, a
dialog step is generated, which references the content of the explanation stored in
the informationmodel and sent to the DM to be included in the course of interaction.
The DM will then proceed to send the additional dialog to the multimodal fission
component, which then decides by modality arbitration on which device and how
the content should be presented.

As mentioned earlier, the explanation management not only verifies the dialog
step’s contained knowledge, but also coordinates and processes explicitly stated
explanation requests from the user and generates, if necessary, additional dialog
steps to be included in the ongoing dialog.

One of the main drawbacks of the rule-based approach is the improper treatment
of uncertainty. Though we are using probability distributions to model the user’s
knowledge levels from novice to expert, the processing of events does not meet
all wished for requirements for uncertainty treatment. The development of the
probability distribution is a rather imprecise rule-based approach, only incorporating
explicit human-computer interaction. However, implicit information coming from
the user (e.g. affective states) is an important indicator for the development of



180 F. Nielsen and W. Minker

user knowledge (i.e. did the user understand or not). Obviously, recognizing those
situations cannot be done solely by using information coming from interaction
and its history. Multimodal input such as speech recognition accuracy, facial
expressions or any other sensor information can help to improve the accuracy of
recognizing critical moments in HCI. Especially affective user states like confusion
and frustration can help to reason about understanding or accomplishment of
tasks, instructions, or explanations. However, mapping implicit user information
coming from sensor input to semantic information is usually done by classifiers,
and those classifiers convey a certain amount of probabilistic inaccuracy, which has
to be handled. Therefore, a decision model has to be able to handle probabilistic
information in a suitable manner. How this kind of implicit user information is
integrated to foster consistent and proper uncertainty treatment will be explained
in the next section.

9.4.3 Probabilistic Assistivity

The former sections concentrated on the adaptation of the dialog to high-level user
variables such as the user’s mean knowledge or verbal intelligence, and on the
augmentation of the task-oriented dialog with conceptual or procedural explanation
dialogs. However, one of the most important factors in HCI is the user’s affective
state or disposition towards the system. This means that situations in which the
user does not understand the system’s actions or instructions are very critical for a
trustworthy and sound HCI. Incomprehensible, not understandable system behavior
may lead to the loss of trust and in the worst case to the abortion of interaction.

As elucidated in [17], the different goals of explanation are suitable for different
situations in HCI. Therefore, we need to estimate the user’s state and reason about
the interaction state in order to decide upon the most appropriate and most effective
system reaction strategy for the current situation and user. For this, not only explicit,
but also implicit interaction information has to be used. Apart from explicit, data
(e.g. touch, speech, or click), especially implicit data (e.g. affective state, location,
or user profile) can help in estimating the user’s state, for example the user’s mental
model, in a better way.

The main idea of the probabilistic assistivity is the integration of proper
uncertainty treatment for information based on uncertain observations. However,
since decision-making under uncertainty requires complex and elaborate models,
and tends to get unsolvable fast, only the augmentation process is controlled by a
probabilistic model. For the problem representation of when and how to react, a
so-called partially observable Markov decision process (POMDP) was chosen and
formalized in the Relational Dynamic Influence Diagram Language (RDDL) [21].
RDDL is a uniform language which allows an efficient description of POMDPs by
representing its constituents (actions, observations, belief state) with variables. On
the one hand we are using a classic dialog approach as described in Sect. 9.4.1 for
the task-oriented part of the dialog. On the other hand a planner [13] is integrated



9 Assistive and Adaptive Dialog Management 181

Fig. 9.9 The architecture consists of two dialog models, a fission and fusion engine, sensors as
well as the multimodal interface representation to interact with the user. The dialog models can be
separated in a task-oriented dialog model and into a POMDP-based decision tree for explanation
augmentation. This decision tree is generated from a POMDP-model by a planner

to generate from a POMDP a decision tree. This POMDP is used only for the
augmentation of the task-oriented part of the dialog (Fig. 9.9).

9.4.3.1 Dialog Augmentation Process

The task-oriented dialog is modelled in a classic dialog approach. Each dialog
action has several interaction possibilities, each leading to another specified dialog
action. Each of those dialog actions is represented as a POMDP action a as part
of C (communicative function(c)). As already mentioned, only the communicative
function is modelled to reduce the complexity in the POMDP.

The HCI is started using the classic dialog approach and uses the POMDP to
check whether the user’s trust or components of the user’s trust are endangered.
At run-time the next action in the task-oriented dialog is compared to the one
determined by the POMDP (see Fig. 9.10). This means that if the next action in the
task-oriented dialog is not the same as the one planned by the POMDP, the dialog
flow is interrupted, and the ongoing dialog is augmented by the proposed action. For
example, if the user is currently presented a communicative function of type inform
and the decision tree recommends providing a transparency explanation because
the understanding and reliability are probably false, the originally next step in the
dialog is postponed and first the explanation is presented. The other way around, if
the next action in the task-oriented dialog is subsumed by the one scheduled by the
POMDP, the system does not need to intervene. For example, if the next dialog step
is to instruct the user about how to connect amplifier and receiver and the POMDP
would recommend an action of type communicative function instruct, no dialog
augmentation is needed.



182 F. Nielsen and W. Minker

Fig. 9.10 This figure shows the comparison of task-oriented dialog to the POMDP-generated
Decision Tree. If the next action T in the task-oriented dialog does not correspond to the one
endorsed by the POMDP Decision Tree (P), the dialog will be augmented by the POMDP action.
However, if they align, no intervention is necessary, and the planned action T is executed

Fig. 9.11 The proposed decision P of the POMDP model is in this case a learning explanation
request. Hence, the explanation management looks up the matching learning explanation (the
question mark L) for the current topic in the knowledge base and returns the explanation content.
This is then converted to a dialog step (the exclamation mark L), which is then passed to the
interaction management for presentation

While the selection of the explanation is one thing, the integration of the
real explanation is another. The POMDP only tells us whether and what kind of
explanation should be integrated.

9.4.3.2 Explanation Selection

Basically there are four goals of explanation we are interested in covering. The first
two are imparting declarative and procedural knowledge by using conceptual and
learning explanations respectively. These typical explanations realised in contem-
porary systems by tutorials (learning) or plain help texts (conceptual) are usually
explanations defined by experts. When the POMDP recommends integrating one of
these explanations, the content of the explanations is gathered from the database,
converted to a dialog step and integrated into the dialog (see Fig. 9.11). In our



9 Assistive and Adaptive Dialog Management 183

system these explanations are also stored in a predefined way. There are information
fragments available, which can be used for explanations, for all contained concepts
of the used planning and dialog domains. These information fragments can then
be combined to explanation dialog steps, which can then be integrated in the
ongoing dialog flow. For the actions themselves, information fragments exist as
well, representing learning or parts of learning explanations. These fragments are
requested from the explanation management and subsequently processed into dialog
steps and passed to the interaction management.

However, incomprehensible system behavior cannot be explained using these
goals of explanation. Incomprehensible situations are prone to influencing the
relationship between human and technical system negatively [12]. Especially if
the user does not trust the system and its actions, advice or instructions anymore,
the way of interaction may change up to complete abortion of future interaction
[18]. Therefore, not understandable system behavior is critical for a sound and
trustworthy HCI. However, the risk of negative consequences can be reduced by
providing specific types of explanations [6, 10]. The most effective explanation
goals to handle incomprehensible system behavior are transparency and justification
explanations [15, 17]. Hence, these are the other two goals of explanations we want
to handle.

Justifications are the most obvious goal an explanation can pursue in HHI
discussions. The main idea of this goal is to provide support for and increase
confidence in given advice or actions. For example, “you have to eat an apple a
day, because that keeps the doctor away” would be some sort of justification. The
goal of transparency is to increase the user’s understanding of how the interlocutor’s
behavior (e.g. providing advice or instructions) was attained, in terms of the
interlocutor’s inner processes; for example, “I just heard that your car’s exhaust
is rattling, which is a bad sign, therefore you have to bring it to the car repair
shop”. If a technical system can provide these kinds of explanations, it can help
the user to change his perception of the system as a black-box to a system the
user can comprehend. Thereby, the user can build a correct mental model of the
system and its underlying reasoning processes. In general, one can remark that
justifications tend to be abstract explanations, which do not necessarily directly
relate to system behavior or processes. Thus, justifications can be predefined, at
least to a certain degree, by experts. If the user requests why a dialog step ds
(e.g. “connect(TV, Receiver, HDMI)”) has to be done, an explanation prepared
beforehand (e.g. “You have to connect TV and receiver with an HDMI cable to
transmit audio and video signals”) can be presented to the user. Alternatively,
one could provide an explanation based on the hierarchy in the domain, such as
“this has to be done to connect your home theater”, a combination of both, or
even something not related to the structure or dialog concepts, such as “to be
able to watch movies”. The integration of predefined justification explanations
is the same as depicted in Fig. 9.11 for learning and conceptual explanations.
A drawback of using predefined explanations is of course the vast amount of
work necessary to cover all task available in the domain. Additionally, the content
of justifications is limited to information known beforehand to the expert, and



184 F. Nielsen and W. Minker

especially in incomprehensible situations transparency explanations might be the
better option. Transparency explanations are, though, always dependent on the inner
processes of a system and a distinct transformation of those, for the user, to a
comprehensible form. Hence, in contrast to justifications, transparency explanations
have to be generated dynamically during run-time.

While previously conducted experiments (see [15]) showed that providing
transparency explanations is the best way to deal with incomprehensible situations
in HCI, this is also the most complicated way of explanation. Here, this means that
the decision-making processes performed in the planning framework to generate a
plan, in turn leading to the coarse structure of the dialog, might have to be explained
to the user. Fortunately, the PF does include a plan explanationmodule [22], which
focuses on so-called Why explanations, which in this case correspond to some
form of transparency explanations. Their explanations describe, for example, why
a certain plan step p is part of the plan P or the ordering of two plan steps in P.
This module generates a logically sound explanation, which is guaranteed by using
a technique based on formal proofs. Specifically, they use the task in question pe, the
plan P, its decomposition structure, to generate a set˙ of first-order axioms, which
in the end enables a logical interference. Basically, the plan explanation consists of
an explanation on used causal links and their matching preconditions, as well as the
used decomposition methods. However, the generated formal explanation still has
to be transformed by the explanation management, in order to be understandable
for human users. Hence, it is translated by the explanation manager using template-
based natural language generation into human-readable text. This new generated
content is then transmitted to the information model in the knowledge base. The
output the explanation manager generates is in either way a new dialog step, which
references content from the information model and is sent to the DM to be included
in the ongoing interaction.

9.4.4 Intertwining with the Architecture

For information presentation the dialog goal is passed on to the IM (cf. Fig. 9.9)
and by that transferred to an XML-based format called dialog output. Hereby, the
dialog content is composed of multiple information objects referencing so-called
information IDs in the information model. Each information ID can consist of
different types (e.g. text, audio, and pictures) which are selected and combined at
run-time by a fission sub-component to compose the user interface in a user- and
situation-adaptive way (see Chap. 10 for more details).

After the user interaction, the DM receives the interaction results from the
multimodal fusion. The results are then analyzed and if the results are related
to the desired plan step effects implemented by the dialog step, these effects are
transmitted to the knowledge base as observations. Additionally, the plan execution
component is notified that the current plan step has been processed by the dialog
management.



9 Assistive and Adaptive Dialog Management 185

9.5 Conclusion

In this chapter we presented different approaches for a user-adaptive and assistive
dialog management approach. Although some attempts were made to make the rule-
based dialog model more flexible, for example by using so-called dialog widgets,
which implement reusable parts of a dialog (e.g. confirmations) [1], the main
parts of the rule-based dialog are still rigidly predefined finite-state automatons.
Additionally, due to the knowledge base storing information a major part of which
originates from sources prone to uncertainty, another approach using probabilistic
methods was developed. This general probabilistic DM approach contributes to a
more coherent and flexible Companion-System.

The modelling of the user’s knowledge is made in a realistic fashion, considering
the uncertainty of one’s knowledge distribution, though the process of updating the
knowledge over time is currently not. While presenting an explanation to the user
does increase the chances of understanding, it does not guarantee it. Therefore,
the update process of one’s knowledge values should integrate uncertainty as
well, e.g. using information indicating understanding (e.g. user affective states like
engagement, interest, and disposition). Nevertheless, we presented an approach
which may integrate such information in the future and by doing that facilitate
a more individual, co-operative and reliable system that is a trustworthy and
understandable partner for the user.

Acknowledgements This work was done within the Transregional Collaborative Research Centre
SFB/TRR 62 “Companion-Technology for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

1. Bertrand, G., Nothdurft, F., Minker, W.: “What do you want to do next?” Providing the user
with more freedom in adaptive spoken dialogue systems. In: 2012 8th International Conference
on Intelligent Environments (IE), pp. 290–296 (2012)

2. Biundo, S., Wendemuth, A.: Companion-technology for cognitive technical systems. Künstl.
Intell. 30(1), 71–75 (2016). Special Issue on Companion Technologies

3. Cheverst, K., Byun, H.E., Fitton, D., Sas, C., Kray, C., Villar, N.: Exploring issues of user
model transparency and proactive behaviour in an office environment control system. User
Model. User Adap. Inter. 15, 235–273 (2005)

4. Dzindolet, M.: The role of trust in automation reliance. Int. J. Hum. Comput. Stud. 58(6),
697–718 (2003)

5. Fernandez, A.J., Hortala-Gonzalez, T., Saenz-Perez, F., Del Vado-Virseda, R.: Constraint
functional logic programming over finite domains. Theory Pract. Log. Program. 7(5), 537–582
(2007). doi:10.1017/S1471068406002924. http://dx.doi.org/10.1017/S1471068406002924

6. Glass, A., McGuinness, D.L., Wolverton, M.: Toward establishing trust in adaptive agents. In:
IUI ’08: Proceedings of the 13th International Conference on Intelligent User Interfaces, pp.
227–236. ACM, New York (2008)

http://dx.doi.org/10.1017/S1471068406002924


186 F. Nielsen and W. Minker

7. Honold, F., Bercher, P., Richter, F., Nothdurft, F., Geier, T., Barth, R., Hoernle, T., Schüssel,
F., Reuter, S., Rau, M., Bertrand, G., Seegebarth, B., Kurzok, P., Schattenberg, B., Minker, W.,
Weber, M., Biundo, S.: Companion-technology: towards user- and situation-adaptive function-
ality of technical systems. In: 10th International Conference on Intelligent Environments (IE
2014), pp. 378–381. IEEE, New York (2014). doi:10.1109/ie.2014.60

8. Larsson, S., Traum, D.R.: Information state and dialogue management in the trindi dialogue
move engine toolkit. Nat. Lang. Eng. 6(3&4), 323–340 (2000)

9. Lee, C.J., Jung, S.K., Kim, K.D., Lee, D.H., Lee, G.G.B.: Recent approaches to dialog
management for spoken dialog systems. J. Comput. Sci. Eng. 4(1), 1–22 (2010)

10. Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the intelligibility
of context-aware intelligent systems. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’09, pp. 2119–2128. ACM, New York (2009)

11. McTear, M.F.: Spoken dialogue technology: Enabling the conversational user interface. ACM
Comput. Surv. 34(1), 90–169 (2002). doi:10.1145/505282.505285. http://doi.acm.org/10.
1145/505282.505285

12. Muir, B.M.: Trust in automation: Part I. Theoretical issues in the study of trust and human
intervention in automated systems. In: Ergonomics, pp. 1905–1922. Taylor & Francis, London
(1992)

13. Müller, F., Späth, C., Geier, T., Biundo, S.: Exploiting expert knowledge in factored POMDPs.
In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), pp.
606–611 (2012)

14. Nguyen, A., Wobcke, W.: An agent-based approach to dialogue management in personal
assistants. In: Proceedings of the 10th international conference on Intelligent user interfaces,
pp. 137–144. ACM, New York (2005)

15. Nothdurft, F., Minker, W.: Justification and transparency explanations in dialogue systems to
maintain human-computer trust. In: Proceedings of the 4th International Workshop On Spoken
Dialogue Systems (IWSDS). Springer, Berlin (2014)

16. Nothdurft, F., Bertrand, G., Heinroth, T., Minker, W.: GEEDI - guards for emotional and
explanatory dialogues. In: 6th International Conference on Intelligent Environments (IE’10),
pp. 90–95 (2010)

17. Nothdurft, F., Richter, F., Minker, W.: Probabilistic human-computer trust handling. In:
Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and
Dialogue (SIGDIAL), pp. 51–59. Association for Computational Linguistics, Philadelphia, PA
(2014). http://www.aclweb.org/anthology/W14-4307

18. Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Hum. Factors
J. Hum. Factors Ergon. Soc. 39(2), 230–253 (1997)

19. Picard, R.W., Picard, R.: Affective Computing, vol. 252. MIT, Cambridge (1997)
20. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the First

International Conference on Multi-Agent Systems, ICMAS-95, pp. 312–319 (1995)
21. Sanner, S.: Relational dynamic influence diagram language (RDDL): language description

(2010). http://users.cecs.anu.edu.au/ ssanner/IPPC2011/RDDL.pdf
22. Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans more clear to

human users – a formal approach for generating sound explanations. In: Proceedings of the
22nd International Conference on Automated Planning and Scheduling (ICAPS 2012), pp.
225–233 (2012)

23. Wendemuth, A., Biundo, S.: A companion technology for cognitive technical systems. In:
Esposito, A., Vinciarelli, A., Hoffman, R., Müller, V.C. (eds.) Proceedings of the EUCogII-
SSPNET-COST2102 International Conference (2011). Lecture Notes in Computer Science.
Proceedings on Cognitive Behavioural Systems, Dresden (2012)

24. Williams, J.D., Young, S.: Partially observable Markov decision processes for spoken dialog
systems. Comput. Speech Lang. 21(2), 393–422 (2007)

25. Zeigler, B., Bazor, B.: Dialog design for a speech-interactive automation system. In: Second
IEEE Workshop on Interactive Voice Technology for Telecommunications Applications, 1994,
pp. 113–116. IEEE, New York (1994)

http://doi.acm.org/10.1145/505282.505285
http://doi.acm.org/10.1145/505282.505285
http://www.aclweb.org/anthology/W14-4307

	9 Assistive and Adaptive Dialog Management
	9.1 Introduction
	9.2 Background
	9.3 Concept and Design
	9.3.1 Required User Model
	9.3.1.1 General and Fine-Grained User Knowledge
	9.3.1.2 User's Mental Model

	9.3.2 Consequences for the Design
	9.3.2.1 General User Knowledge
	9.3.2.2 Fine-Grained User Knowledge
	9.3.2.3 User's Mental Model


	9.4 Implementation
	9.4.1 Rule-Based Adaptivity
	9.4.2 Rule-Based Assistivity
	9.4.3 Probabilistic Assistivity
	9.4.3.1 Dialog Augmentation Process
	9.4.3.2 Explanation Selection

	9.4.4 Intertwining with the Architecture

	9.5 Conclusion
	References


