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Multimodal Affect Recognition in the Context
of Human-Computer Interaction
for Companion-Systems
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Abstract In general, humans interact with each other using multiple modalities.
The main channels are speech, facial expressions, and gesture. But also bio-
physiological data such as biopotentials can convey valuable information which
can be used to interpret the communication in a dedicated way. A Companion-
System can use these modalities to perform an efficient human-computer interaction
(HCI). To do so, the multiple sources need to be analyzed and combined in
technical systems. However, so far only few studies have been published dealing
with the fusion of three or even more such modalities. This chapter addresses the
necessary processing steps in the development of a multimodal system applying
fusion approaches.
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ATLAS and ikannotate are presented which are designed for the pre-analyzing
of multimodal data streams and the labeling of relevant parts. ATLAS allows us
to display raw data, extracted features and even outputs of pre-trained classifier
modules. Further, the tool integrates annotation, transcription and an active learning
module. Ikannotate can be directly used for transcription and guided step-wise
emotional annotation of multimodal data. The tool includes the three mainly used
annotation paradigms, namely the basic emotions, the Geneva emotion wheel and
the self-assessment manikins (SAMs). Furthermore, annotators using ikannotate can
assign an uncertainty to samples.

Classifier architectures need to realize a fusion system in which the multiple
modalities are combined. A large number of machine learning approaches were
evaluated, such as data, feature, score and decision-level fusion schemes, but also
temporal fusion architectures and partially supervised learning.

The proposed methods are evaluated on either multimodal benchmark corpora or
on the datasets of the Transregional Collaborative Research Centre SFB/TRR 62,
i.e. Last Minute Corpus and the EmoRec Dataset. Furthermore, we present results
which were achieved in international challenges.

19.1 Introduction

Successful human-computer interaction (HCI) requires that the computer be able
to consider and fulfill different sub-tasks [8] such as perceptual, actuatoric, and
cognitive functionalities. In this chapter, we focus on the perceptual sub-system of
the computer where pattern recognition methods and machine learning technologies
are utilized to perceive the user and to infer the user’s affective state [18] which is
reflected and represented by perceptible user emotions.

Computers are endowed with various types of sensors to achieve multimodal
recognition of affects. These sensors can comprise cameras and microphones to per-
ceive the user’s activities in front of the system; laser scanners for localization and
tracking of the user; more complex sensors such as eye-tracking devices for detailed
gaze analysis; or sensors to observe the user’s bio-potentials, e.g. skin conductance
(SCR), respiration, electro-cardiogram (ECG), or electroencephalography (EEG).
Collecting the raw data in real-time is just the first part of the overall process. In the
next step, task-relevant patterns must be identified to enable the system to perform
appropriate actions. This process of transferring raw data into a number of classes
or categories is known as pattern recognition. The idea of pattern recognition is
to follow the principle of learning by example, utilizing general machine learning
algorithms to design classifiers.

Considering the achievements in multimodal disposition recognition we empha-
size four main hypotheses being considered in this chapter:

1. The training of multimodal classifiers can benefit from datasets annotated using
all available modalities.
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2. The training of multimodal classifiers can be conducted in a semi-automatic way
without a complete labeling of the training material.

3. Classification performance can be improved by considering the temporal evolu-
tion of the observed features.

4. Recognition performance can be improved by applying a multimodal classifica-
tion approach including a temporal fusion.

Basics in Pattern Recognition In HCI scenarios, technical systems have to
combine information from different modalities. This is usually achieved by so-
called multiple classifier systems (MCSs) which integrate several classifiers to solve
a specific classification problem. The main goal is to obtain a combined output that
provides a more accurate and robust classification. In a typical MCS scenario, a
complex high-dimensional classification problem is decomposed into smaller sub-
problems for which improved solutions can be achieved.

In MCS, it is assumed that the raw data X originates from an underlying source,
but each classifier receives different subsets of X, e.g. X is applied to multiple types
of feature extractors F1; : : : ;FN computing multiple views F1.X/; : : : ;FN.X/ of
the same raw input data X. Feature vectors Fj.X/ are used as the input to the jth
classifier, computing an estimate yj of the class membership of Fj.X/. This output
yj might be a crisp class label or a vector of class memberships, e.g. estimates
of posterior probabilities. Based on the multiple classifier outputs y1; : : : ; yN , the
combiner produces the final decision y. Combiners can be grouped into fixed trans-
formations of the classifier outputs y1; : : : ; yN and trainable mappings. Examples
of fixed combining rules are voting, (weighted) averaging and multiplying. By
means of an additional optimization procedure, trainable mappings can be realized
using the classifier decisions as the inputs to a classifier which performs the final
combination. Popular members of this group are artificial neural networks, decision
templates and support vector machines [28].

Training a classifier based on vector-valued data can be achieved by computing
gradients of error functions with respect to the parameters of some predefined
classifier model, such as a multilayer feed forward neural network or a kernel
machine. Usually, the raw data comes as a continuous stream of data, e.g. video,
audio streams, or waveforms of bio-potentials, and for some tasks the temporal
structure of the data might be of importance. Classifier training based on sequential
data is much more complex. The structure of the underlying classifier model must
be able to process input sequences of different lengths, in particular. In contrast
to constant length vectors, sequences may have different lengths even when they
represent the same class, e.g. spoken words in speech recognition. Classifier models
that often come into play in this context are hidden Markov models (HMMs) and
recurrent neural networks (RNNs).
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19.2 Machine Learning Framework for Emotion Recognition

A quite important channel of communication between humans is speech, which
further allows the transfer of emotional states via content, prosody or paralinguistic
cues, which results also in audio-based emotion classification. Another important
channel is given by visual perception, which is used by humans to convey their
emotional states using facial expressions or body poses. Video-based emotion recog-
nition focuses mainly on the extraction and recognition of emotional information
from facial expressions. Attempts have been made to classify emotional states
from body and head gestures, as well as from the combination of different visual
modalities, such as facial expressions and body gestures which were captured by two
separate cameras [16]. Furthermore, emotion recognition can be based on psycho-
physiological measurements, e.g. SCR, respiration, ECG, electromyography, or
EEG. In contrast to speech, gestures and facial expressions, psycho-physiological
measurements are directly generated in the (human) autonomic nervous system and
cannot be imitated [24].

The MCS approach is very promising for improving the system’s overall classi-
fication performance. The individual classifier outputs of the classifier ensemble,
which is based on different feature views or modalities, need to be accurate
and diverse. While high accuracy is an obvious requirement for members of the
ensemble, the concept of classifier diversity is less intuitive to grasp. Members of an
ensemble can be regarded as being diverse if the corresponding classifiers disagree
on a set of misclassified data [50]. In our work on multimodal emotion recognition,
ensemble members have been trained on various types of features extracted mainly
from the user’s voice and the facial region (e.g. fundamental frequency, Mel-
Frequency Cepstral Coefficients (MFCCs), modulation spectrum from the audio
signal and form and motion patterns from the video channel) [10, 44]. Besides these
more external physical expressions, human emotions (initially studied in human-
human interactions) consist of feelings, thoughts and many other types of internal
(physiological) processes. Therefore, measuring physiological parameters, such as
skin conductivity, heart rate, respiration, or brain activity from EEG, is the first
step to studying the automatic recognition of these internal emotional states. The
numerical evaluation showed that MCS using fixed and trainable fusion mappings
applied to multimodal emotional data can outperform unimodal classifiers. Even
in unimodal applications the overall recognition performance increases in many
cases by combining outputs of multiple classifiers trained on different features
views [39, 50].

Research in facial expression and that in speech-based emotion recognition [35]
are usually performed independently from each other. However, in almost all prac-
tical applications, people speak and exhibit facial expressions at the same time, and
consequently both modalities should be used to perform robust affect recognition.
Therefore, multimodal, and in particular audio-visual, emotion recognition has been
emerging as a fruitful research topic in recent times [56]. Approaches applyingMCS
to the classification of human emotions are presented in [6, 42, 45, 49, 58].
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19.3 Data Acquisition and Benchmark Data

19.3.1 Survey of Relevant Benchmark Data Sets

In the beginning of affect recognition and, especially emotion or disposition
recognition, data sets with acted material were mainly used to create controlled
conditions and a setting that allows automated recognition which is not further
impeded by difficulties in the extraction process. This results in high quality-data
and, further, provides a kind of ground truth in the assigned labels. Such ground
truth is important for the validation of recognition systems. For this, the participants
of the recording were either actors or naïve speakers who were asked to react in a
specific manner. Therefore, a predefined situation is created fixing intended labels
by design. In general, it can be assumed that acted material is quite expressive in the
shown affects [1]. Such a way of generating corpora was quite similar throughout all
modalities (cf. e.g. [59]) since the focus could be set on the development of suitable
classifiers and methods. Prominent examples of acted corpora include the Cohn-
Kanade facial expression dataset [23], the Berlin database of emotional speech [4]
and the Eight-Emotion Sentics Data for biophysiology [17]. To foster the evolution
in the various fields, several researchers proposed and conducted challenges. The
most prominent are the AVEC challenges—providing audio-visual data sets for
various sub-tasks in the emotion recognition, usually concerned with near real-
life situations—[56] and the (so-called) EmotiW challenges [7] that emulate a
challenging in-the-wild setting using emotional snippets from movies.

On the other hand, the question arises: Why shall we consider data sets
containing naïve material? For automatic emotion recognition from speech, Batliner
et al. [1] discussed the importance of real-life material in detail. This is of interest
since it can be assumed that dispositions or affects are expressed in a subtle manner,
especially in real-life interactions. Therefore, the research community has to push
towards non-acted corpora. In [1] three types are distinguished between based on
emotional classes, namely acted, read, and real-life. Besides the characteristic of the
data recording, the contained dispositional or affective classes have to be considered
(cf. e.g. [55]). The novel shift towards more real-life scenarios is considered in both
corpora recorded by the authors and various other research groups.

Prominent naturalistic corpora include the PIT corpus [54], which is conducted
as a computer-assisted multi-party dialog, and the RECOLA corpus [38], in which
pairs of participants are collaborating to solve a survival task in a Wizard-of-Oz
setting. Another notable corpus is the MAHNOB-HCI [53] dataset. The unique part
about this data collection is that a multitude of modalities has been recorded: Audio,
video, bio-physiology but also EEG and eye gaze, have been recorded.

Besides the mentioned data sets, a strong focus of this work lies on two corpora
providing naturalistic interactions with a technical system: the Last Minute Corpus
(LMC) (cf. Chap. 13) and the EmoRec corpus [58].
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19.3.2 Annotation of Emotional Data

To conduct the emotional labelling, the annotators should be supported by a tool
assisting them. Several tools exist to support the literal transcription, for instance
EXMARaLDA [46] or Folker [45], but for emotional labelling such tools are rare.
For content analysis of videos, the tool Anvil [25] can be used.

19.3.2.1 ATLAS

The freely available ATLAS annotation, labelling and data investigation tool devel-
oped at the University of Ulm [31] was designed to assign blocked labels to affective
material. In the current version of the ongoing project, it is extended to support fuzzy
and fully continuous labelling techniques. Contrary to most other annotation tools,
ATLAS is not limited to a maximum number of data streams or specific annotation
paradigms. It is possible to depict various recorded raw data like audio, video or, in
general, digital sampled values (e.g. bio-physiological signals). Additional extracted
features, crisp and probabilistic results of classification procedures and mixed types
of labels can be displayed in order to support researchers in obtaining a better
understanding of their data, algorithms and results. Synchronous playback of all
streams and information is possible.

The presentation complexity of the UI is adaptive to the user’s needs. That
means that an expert researcher is able to visualize a large amount of detailed
information and investigate it at once (see Fig. 19.1), while complex details can also
be hidden from unexperienced users to prevent them from being confused. ATLAS
is platform-independent and it provides an interface to many common data formats,
like MATLAB files. In the case of large datasets a client-server-based distributed
annotation structure is implemented, in order to divide computational cost and to
give the possibility to annotate with multiple raters at the same time. The annotation
supports generic predefined structures that can be tailored to the researchers’ needs.

Fig. 19.1 Overview of the adaptive ATLAS UI (expert mode shown). Labels, acoustic properties
and physiological raw data are depicted on the left. Video and infrared and depth information
coupled with their corresponding extracted body data are shown in the center. On the right, some
additional control and detail information windows are presented
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Thus ATLAS is not restricted to specific existing emotional models. This leads to
the fact that ATLAS is also usable outside the core affective computing community.

Finally, ATLAS includes active learning techniques to provide assistance to the
researchers and raters. Externally extracted features can be combinedwith annotated
labels in order to train a classifier. This classifier then suggests additional labels
of instances which seem to be most certain, which can be either accepted or
rejected by the rater. This information is added to the training information of the
next iteration steps. Active learning and semi-supervised learning techniques can
improve annotation speed dramatically. As a practicable application of this active
learning approach a speaker segmentation tool is available to segment silence and
different voices in a quick way.

19.3.2.2 ikannotate

The tool interdisciplinary knowledge-based annotation tool for aided transcription
of emotions (ikannotate) [2] is hosted at the Otto von Guericke University Magde-
burg (cf. http://ikannotate.cognitive-systems-magdeburg.de). The particular focus
of ikannotate is the support of a literal transcription enhanced with phonetic
annotations and an emotional labelling using different methods. Both steps are
pursued in one tool that provides a more convenient way of data processing. Further,
both tools, ikannotate and ATLAS, complement each other.

As stated in [2], ikannotate’s first release (in 2011) was focused on audio material
only. Besides audio processing, the latest version integrates modules which allow
a labelling based on visual information, as well. Additionally, several support
functions are implemented in ikannotate, helping to enrich the labelling or the post-
processing. These are, for instance, tagging of dispositionally colored words in the
utterance, assigning of uncertainty levels for the labelling, and modules for post-
processing like feature extraction.

Enhanced Literal Transcription As it is known from [51], literal transcription
is reasonably done on the utterance level since emotions and dispositions change
slowly and, thus, one utterance covers one affective state. Therefore, ikannotate uses
utterances as basic units in transcription. Generally, transcription is done by well-
trained experts using tools like Folker [45] or common text editors. Enriching the
transcript with prosodic or phonetic annotation usually demands expert knowledge
since the utilized annotation paradigms are quite complex. ikannotate combines
transcription and annotation, and further allows even non-experts to handle audio
material properly since the annotator is supported by the tool in both steps.

Necessary information for transcription like start and end times are set by click
events. The dialogue structure can be examined by corresponding tabs, and the text
input is focused on the current utterance. The annotation is supported by click events
as well. Thus, internal complexity of transcription methods in terms of symbols
is avoided and annotation is made possible for non-expert users. In ikannotate

http://ikannotate.cognitive-systems-magdeburg.de
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the Gesprächsanalytisches Transkriptionssystem (dialogue analytic transcription
system) is implemented (cf. [2]) including the corresponding features.

Emotional Labelling Another important step in the pre-processing of audio
material is the assignment of emotional labels. For this the labeller is assisted by
ikannotate as well. The tool supports three emotional labelling paradigms: (1) list
of emotions (particular emotional phrases are combined in various lists as discussed
in Chap. 21), (2) Geneva Wheel of Emotions (GEW) as proposed by Scherer [41],
and (3) Self-Assessment Manikins (SAMs) according to [29].

19.4 Context-Aware Temporal Information Fusion
Architectures for Multimodal Affect Recognition

Modern fusion architectures for affect recognition have to implement numerous
features to take into account the characteristics of emotions. Information about
emotions can be gathered from different origins such as multimodality, temporality
or the context [15]. Emotions are inherently conveyed by humans using multiple
channels [36] which complement each other. The most prominent ones are the
auditory and visual channels. Furthermore, emotional analysis can be grouped into
categories of different temporal granularities, like expression, attitude, mood, and
trait [5]. Thus, affective recognition results have to be temporally combined using
a suitable fusion technique. In most cases, and especially in the context of HCI,
emotions are related to events or entities in the world [43]. The recognition of this
relation is not only crucial to enhance the performance of the classifier system,
but it is also of central importance for the further processing in the Companion-
System. Therefore, affective fusion architectures should incorporate additional user
or environmental context.

19.4.1 Fusion of Time-Windowed Features

Audio and video provide a less invasive way to obtain user data for the estimation
of affective user states compared to directly user-attached or implanted biometric
sensors. However, information on speech, facial expressions, and hand and body
gestures [27, 37, 44] is often superimposed by noise and signals unrelated to the
affective state to be detected. For instance, facial expression detectors have to cope
with problems when a subject turns away, when feature extraction is hampered by
wearing glasses, or when mouth movement caused by spoken utterances overlays
facial expression. In addition, the target class of the affective user state may be
characterized by a vast variety of facial appearances, which makes affective state
recognition out of facial expression even more complicated.
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Since audio and video are functions over time, we obtain time series of features
and intermediate classifier decisions. It is obvious that temporal dependencies
between different states exist and that the previous user states have an influence
on the current state. We exploited these dependencies by considering the dynamic
properties of features [33, 44].

Our investigations showed that linear classifiers often outperform non-linear
classifiers [11, 37], since more restrictive classifier functions can be more robust
against noise and overfitting in case of training data shortage. Using ensembles
of classifiers and exploiting the temporal characteristics of features improved the
results significantly. While ensemble learning approaches helped to capture the
variety of the target class [3, 12], a time window of features has been applied to
consider the dynamics of affective states [37].

The proposed approaches have been examined on the LAST MINUTE corpus
(cf. Chap. 13) providing non-acted data of a Wizard-of-Oz setting. In this example,
two selected affective user states—namely the normal (Baseline) and the stressed
(Challenge) user states—had to be classified by analysing video data of the face. The
screenplay of the LAST MINUTE experiment defines the time periods of induced
affective state classes to be detected. An extra annotation of ground truth is therefore
not required for training data generation because it is directly given by the start and
end instants of the events specified in the screenplay. We must be aware that the
subject can only be assumed to be in the desired affective state. In reality we try to
detect the event according to the screenplay of the experiment and not necessarily
the actual affective state.

Figure 19.2 (left) shows the time series of facial measurements creating feature
channels for classification. In this case, 13 normalized geometric distances between
significant facial points and additionally the eye blink frequency have been collected
in a temporal window as input for a linear classifier. The classifier weights for the
time series of feature data have been determined in a similar way as for matched

Fig. 19.2 Left: Time channels of features are collected in a time window providing the input
for user state estimation, in this case 13 geometric features and the eye blink frequency in a
time window of 0.6 s. Right: Output of linear classification (leave-one-out cross-validation) for
six (anonymized) subjects in Baseline (dark) and Challenge (bright) periods and the ground truth
defined by the screenplay of the experiment. Subject ID-related accuracies: E35: 61%, E41: 85%,
E51: 77%, E59: 33%, E61: 57%, E71: 80%
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filters or deconvolution [26, 34]. Applying a simple threshold to the filter output
gives the decision of this linear two-class classifier. The length of the time window,
which has been determined for best classification results using leave-one-out cross-
validation, comprises 15 frames (0.6 s). A detailed evaluation of the influence of the
window size is given in [37].

Figure 19.2 (right) shows the classification results over time for six selected
subjects together with the screenplay-defined ground truth values. The recognition
accuracy ranges from 33 to 80% for the individual subjects. Depending on such
factors as age, biological gender and individual temper, but also on how the subject
is used to communicate with a technical system, the facial expressiveness obviously
varies a lot by the individual subject. This also holds for the ability of a classifier
to detect a user state out of just facial features. Additionally, the unrestricted setting
in this scenario does not ensure that the subject is really in the desired affective
state (ground truth). Nevertheless, Fig. 19.2 (right) shows that the affective state
recognition is capable of distinguishing the given user states to some extent even
without creating ensembles of individuals.

An overall classification accuracy of 66% has been calculated in this example,
which is quite vague on its own, but may be considered as a typical value for non-
acted experimental data. A combination with other modalities is therefore one way
to aim for higher confidence in the detected user state.

19.4.2 Temporal Multimodal Fusion Architectures

In the multimodal recognition of affective user states in real-world scenarios,
decisions from multiple sources have to be combined. These sources can become
inoperative, e.g. due to sensor malfunctions or a missing signal. This issue can
be addressed by making use of the temporal process of classifier decisions. Two
approaches, namely the Markov fusion network (MFN) and the Kalman filter for
classifier fusion, can be applied to perform temporal multimodal fusion.

19.4.2.1 Markov Fusion Networks

The MFN is a probabilistic model for multimodal and temporal fusion introduced
in [14]. It is based on a Markov network defined over three potential functions.

A number of M � T probability distributions over I classes is provided as input
to the MFN, where M denotes the number of classifiers generating decisions and T
is the number of time steps. The classifiers provide a class distribution for each time
step based on each modality. The class probability distributionm D 1; : : : ;M at time
step t 2 Lm is a vector xmt 2 Œ0; 1�I summing up to 1. Since a classifier decision
might be temporally missing, the setLm contains only the time steps in which class
probability distributions of the classifier m are available. Assuming, without loss
of generality, that the probability distributions are available for all time steps, the
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Fig. 19.3 Graphical model
of the MFN. The sequence of
combined estimates yt is
influenced by the available
decisions Xmt of the source m
and t 2 Lm and adjacent
combined estimates yt�1 and
ytC1

MFN integrates the classifier predictions Xm 2 Œ0; 1�I�T to a combined estimate
Y 2 Œ0; 1�I�T by making use of two main objectives. The first objective states that
the combined estimated probability distributions will be similar to the provided class
probability distributions. The second objective states that the estimated probability
distributions are similar in the temporal proximity.

At first, the MFN defining function enforces the estimates to be similar to the
observed class probability distributions. The second objective is implemented by
temporally connecting the estimates in a Markov chain. The MFN reconstructs
regions without classifier decisions by propagating information along the Markov
chain.

Figure 19.3 depicts the graphical model of an exemplary MFN, which integrates
two sequences of classifier decisions X1 and X2 to a combined estimate Y. The
classifier decisions are connected to the corresponding estimates in each time step.
Whenever a class distribution is unavailable, the input node and the connecting
link are omitted. The estimates themselves are temporally connected by the Markov
chain.

19.4.2.2 Kalman Filter Architectures

The Kalman filter for classifier fusion operates on the same input data as the
MFN [11]. However, the studied implementation was restricted to a two-class
classification problem.

The conventional Kalman filter [22] is a well-known algorithm to enhance the
quality of noisy measurements over time. It is commonly applied in the field of
navigation and object tracking. Instead of calculating a rather simple average of
measurements, the Kalman filter explicitly models the measurement noise. The
modeled uncertainty can significantly enhance the quality of tracking. The Kalman
filter itself is closely related to the HMM, but uses a Markov chain of continuous
latent variables.

In [11] the Kalman filter was first applied to classifier decision fusion over time
and was extended in order to handle missing classifier decisions. The Kalman filter
for classifier fusion approach was tested on the AVEC 2013 challenge data [20]
which is discussed in Sect. 19.5.1.
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19.4.3 Integration of Context Information

The integration of context information is challenging for machine learning [15].
For this, the hierarchical structure of temporal patterns with different complexities
is exploited. For instance, social signals can be decomposed into short-term
behavioral cues [43, 57]. However, since no dataset has been recorded so far with
a hierarchically structured ground truth of affective states, basic research on the
integration of context information was conducted in the field of activity recognition.
Several approaches have been proposed, like conditioned hidden Markov model
(CHMM), unidirectional layered architecture (ULA), and HMM/CHMM using
graph probability densities (HMM/CHMM-GPD).

The CHMM is an extension of the classic HMM, in which the hidden states are
influenced by an additional sequence of causes. These causes can be provided by an
external classifier decision which serves as additional context information [13].

CHMM can be studied as part of the ULA [13], in which each layer recognizes
different classes with increasing complexities. The lowermost layer operates on
features derived from the sensors and recognizes basic entities. The subsequent
layers operate on the output of the preceding layers, which is given by their
probabilistic class predictions. User preferences were recognized in the uppermost
layer using a dynamic Markov logic network (DMLN) which models context
information in the form of probabilistic logical rules. Studies on the baseline
(cf. Sect. 19.4.1) investigate the propagation of context information down to the
lowermost layer in order to influence the CHMM.

19.5 Multimodal Affect Recognition Results

19.5.1 Public Benchmark

AVEC Results The two sub-challenges of the 2013/2014 edition of the AVEC
challenge comprise the two-/three-dimensional continuous affect sub-challenge
and the discrete depression sub-challenge. The dataset contains 150 audio-visual
recordings of participants of a clinical study in an inquiry-response cycle in front
of a consumer notebook. The task was to estimate the continuous label traces
for a test set of 50 videos. Performance was measured using (the magnitude of)
Pearson’s correlation coefficient, averaged over the test videos. For the 2013 edition
of the challenge, a recognition system was developed that combines the input of a
hierarchical classifier (consisting of multiple individual SVR and MLP classifiers)
for the video modality with a diverse set of audio features using a Kalman filter (see
Sect. 19.4.2.2) [20]. The results can be seen in Fig. 19.4 (left). For the 2014 edition,
a slightly different approach has been taken. Based on the annotated trajectories,
prototypical label traces were created using PCA and SVR to highlight difficulties in
the annotation process (i.e. arbitrary starting point and subsequent transient phases
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Fig. 19.4 Average correlation coefficient and RMSE of the affect sub-challenge of the 2013 and
2014 editions of the AVEC challenges. Source: http://sspnet.eu/avec2013/ and http://sspnet.eu/
avec2014/. (a) Challenge results of AVEC 2013. (b) Challenge results of AVEC 2014

in the beginning) and of the performance measures. Combined with a clustering to
reveal participant groups, the approach led to superior results and the win of the
affect sub-challenge. For details the reader is referred to Fig. 19.4 and [21].

EmotiW Results The Emotion Recognition in the Wild challenge [7] focuses
on audio-visual emotion recognition from movie snippets extracted from feature
films. The snippets offer unconstrained movement, difficult lighting and speech
overlapped with music and background noise. To tackle the challenge, the authors
presented an approach that combined basic audio features with feature selection and
achieved, using only a single modality, competitive results in the 2013 edition of the
challenge [32]. Building on this success, in the follow-up challenge the application
of enhanced auto-correlation features for the recognition of emotions from speech
was proposed [30].

19.5.2 Results

Last Minute Corpus The LMC material has the advantage that a fusion of multi-
modal classifications can be combined in the context of more subtle dispositions like
“concentration” and “thinking”. For this, novel characteristics such as self-touching
and eye-blink frequency can be observed. These approaches are pursued based on
the main idea presented in Fig. 19.5 focussing on two situations, namely baseline
(BSL) and weight limit barrier (WLB) [9].

In [52] these novel characteristics are investigated with a focus on the analysis
of facial expressions. For the generation of a visual-based classifier the following
features are considered: mouth deformations, eye-blink, eyebrow movement, and
the general movement of the head (global) as the most prominent and reliably
detectable features for the face as used in [27, 52]. On the one hand, common

http://sspnet.eu/avec2013/
http://sspnet.eu/avec2014/
http://sspnet.eu/avec2014/
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Fig. 19.5 The user, modeled
as a linear system, transmits
emotional signals via various
modalities over several time
steps. These inputs can be
collected and combined for
further processing. The figure
is adapted from [37]

features were used to detect mouth movements and eye-blinks [52]. Further,
extracted visual features of hand gestures are important, from a psychological point
of view, especially “self-touch” and “no-self-touch” when the subject touches his
face. Therefore, using skin color and connected component analysis, the overlap
of hand and face regions can be detected. For analysing purposes, we investigated
13 subjects of the LMC for visual classification due to different illumination, head
positions, and occlusions. According to [37, 52] the processing is as follows: A time
window with the size of ten frames (0.4 s) is considered instead of a decision based
on individual frames, as it is assumed that the bodily response, which is reflected in
changes of the features, is short-time stable.

The visual classification is further combined with an acoustic evaluation. There-
fore, an automatic classification system was trained on the material of the same 13
subjects. For evaluation, we applied a leave-one-subject-out (LOSO) strategy and
used HMMs/GMMs with commonMFCCs with delta and acceleration. This results
in an overall mean of the weighted accuracy of 76:01% (std. dev. 6:45%) for the
two-class problem.

Based on these classifications a fusion was conducted. For this, an MFN with the
following parameters was used: W = 1000, kf = 0.5, kp = 4, kg = 4. The uni-modal
classifiers are the facial expressions, gestural analysis, and the acoustic classifier.
As pointed out in [52], each modality possesses its own distinct characteristic
distribution of decisions over time. The recognition of the emotional state based
on facial expressions requires the subject’s face to be in the view of the camera.
However, in case the subject turns away, a decision may become infeasible. A
similar problem occurs in prosodic analysis since it can be performed only if the
subject produces an utterance. In the given setting, the decisions derived from the
gestural analysis are even more demanding, because they only give evidence for the
class WLB. The classifier based on facial expression provides decision probabilities
for all frames, the acoustic analysis only for 15:9% of the frames and a gestural
analysis only for 9% of the frames. The overall average accuracy is 85:29% (std.
dev. 14:22%).

EmoRec The experimental validation can be divided into uni-modal and multi-
modal approaches since audio, video, and bio-physiology of the user were recorded.
Grounded on the experimental design, a small set of representative experimental
sequences (ESs) is selected for classification. ES 2—the experimental part linked to
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“positive pleasure, low arousal, high dominance” feeling of the user—and ES 5—
referring to “negative pleasure, high arousal, low dominance”—are selected based
on their location as opposing octants in the VAD space. For a more detailed view of
the experimental setting, we refer you to [58].

The video modality is pre-processed as follows: First, face detection is done
based on Viola and Jones’ boosted Haar cascade. Salient facial points are detected
using a constraint local model followed by an alignment procedure based on selected
points. The selected features are: optical flow, motion histograms, pyramids of
histograms of oriented gradients and local binary patterns.

Using the diverse information captured by the different feature sets, different
fusion methods are employed. First, an ensemble of Support Vector Machines
(SVMs) with softmax output was trained on bootstrapped subsets of the training
data for each of the four feature sets. The results of each ensemble were aggregated
by a trainable combiner in the form of a multilayer perceptron. To compensate
for different time resolutions of the features, a common reference time window
of 2 s is used to integrate the per-channel decisions. Finally, in another trainable
fusion mapping the estimates of the individual channels are aggregated into the final
decision. Using this fusion scheme, a final accuracy of 69:2% can be achieved. For
an overview of the results (including other fusion methods), the reader is referred
to Fig. 19.6. More details are given in [19] as these results were obtained only on a
subset of 11 people.

Further results are obtained by analyzing the bio-physiological channels. Since
the recorded modalities are inherently different, each channel has to be individually
preprocessed. For example, to extract information from the blood volume pulse, first
the heartbeats in the form of so-called QRS complexes have to be located. After
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Fig. 19.6 Left: The final results obtained with the fusion architecture with different settings. The
highest median classification rate was 69:2%, achieved with a combination of all channels. Other
channel selections also performed relatively well. Fusing results of the same channel with different
settings (bin and neighbourhood size) did not result in an improvement. Right: Classification error
with standard deviation computed over ten runs. Different cluster techniques are used to augment
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techniques outperform the supervised approach given enough model complexity (here: number of
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additional filtering and detrending, different features are computed for each channel
on suitable time windows. For the heart rate, well-known statistical features such as
the standard deviation, RMSSD, or pNN50 are applied. Additionally, the non-linear
features that approximate entropy, recurrence rate and dimensions of the ellipse in
a Poincaré plot are calculated. Finally, three features based on the power spectrum
density are computed.

The experimental results based on the individual channels suggest that robust
recognition is only possible to a certain extent, i.e. the recognition rate is only
slightly above chance level (for details, the reader is referred to [40]). To alleviate
this problem, the following means are introduced: A fusion step is introduced to
combine the individual bio-physiological channels and, additionally, a technique
from the field of semi-supervised learning is used to incorporate the additional
data provided by the remaining experimental sequences (i.e. ES 1,3,4,6). In the
procedure, an unsupervised pre-processing step is used as transformation into a
data-driven representation. In Fig. 19.6, the results are summarized. The fusion itself
improves the result to an error rate of about 40%. In addition, the unsupervised pre-
processing step further lowers the error rate to about 35%.

19.5.3 Active Learning in an HCI Scenario

Plausible annotation of multimodal HCI data is an enormous problem due to the fact
of the time-consuming and sensitive annotation process. Furthermore, emotional
reactions are often very sparse, resulting in a large annotation overhead to gather
the interesting moments of a recording. Active learning techniques provide methods
to improve the annotation processes since the annotator is asked to label only the
relevant instances of a given dataset.

The approach of active learning was applied on an interaction data set, described
in Chap. 12 and published in [48]. A number of subjects were recorded while
performing a search task on a screen. They could interact with the system via speech
or touch commands. During the search period, the subjects tended to react just a little
or not at all emotionally. Usually, all expressive reactions occurred when the subject
failed to solve the task. Table 19.1 shows the imbalance of feature instances of the
neutral and emotional behaviors.

Table 19.1 Number of neutral and emotional feature instances, enlisted for each participant

ID 12 15 17 23 26 30 Sum.

#Neutral 3387 3365 4149 3406 3409 4489 22,205

#Emotion 108 135 66 208 429 665 1661

Responsiveness Good Good Moderate Good Moderate Moderate

The last column shows the estimation of the participant’s emotional expressiveness
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For feature extraction, the facial region was located and extracted within each
single frame of a video sequence. Subsequently, each face was divided into a fixed
number of non-overlapping blocks. The Local Binary Pattern operator on Three
Orthogonal Planes (LBP-TOP) [60] was applied to each cuboid consisting of each
block of facial region for an entire sequence to generate the corresponding histogram
of descriptors. These histograms were concatenated to form the feature vector for
each sequence.

The feature vectors were utilized as input for a One Class Support Vector
Machine (OCSVM) [47]. It is an extension of the binary SVM, defining a decision
function that takes the value C1 in a small region capturing most of the instances,
and �1 elsewhere. The instances of the target class are mapped into a Hilbert space
H and subsequently separated from the origin by a hyperplane with maximum
margin. Consequently, data objects are classified either as outliers or as belonging to
the target class. The target class was designated as neutral, because of the extreme
imbalance in the data; therefore the outliers are the sparse emotional moments.

The OCSVM was used for an active learning approach. The initial adjustment of
the classifier pooled all data points. The first step presented the data points, which
were explained least by the model (depending on their distance to the hyperplane),
to an expert to be labeled. The labeling information was utilized to improve the
classifier’s performance. Both steps were applied in a loop several times.

In each iteration, the ten worst data points (outliers) were presented to an
annotator. In the first iteration steps, most of the outliers represented emotional
moments and were labeled accordingly. During the further course, the number of
data points differing from neutral decreased. After 50 iterations (500 data points)
the process was stopped. Figure 19.7 shows this behavior for six participants.

Moreover, a closer look shows that 82:41% of the emotional moments of
participant 12 were identified by labeling just 14% of the entire dataset. The same
observations can be made for participant 15: 74:07% of the outliers were identified
by labeling about 14:3% of the entire dataset.

Fig. 19.7 Number of data
points labeled as emotional
moments in relation to all
emotional moments in the
data set for each iteration
step. As can be seen, about
82:41% of emotional events
could be detected for
participant 12 by labeling just
14% of the data
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In a subsequent experiment a binary SVM was trained on the 500 labeled data
points and achieved a g-mean value1 of about 0:8. To compare this performance
with common methods, the whole data set was manually labeled and classified with
a binary SVM, trained on all data points. The accomplished g-mean was almost
the same. The reason for this is that most of the support vectors lie within the
labeled 500 data points and the remaining points do not contribute to the decision
hyperplane. Hence, the proposed active learning approach generates an effective
classification model while labeling just a small portion of the dataset.

19.6 Conclusion

The multimodal recognition of user affects is a challenging issue which could be
faced by the combination of various modalities. Besides the combination of suitable
modalities and features, effort should be applied to a stringent development and
handling of recognition architectures. In this chapter, we presented an overview of
our work done in the context of affect recognition based on multiple sources. Espe-
cially, the use of active learning approaches and Markov fusion networks provides
an improvement in the processing of naturalistic, affectively afflicted material. The
achieved results are either based on corpora recorded in the authors’ research groups
or on publicly available benchmark data sets. For both categories remarkable results
were obtained, in particular in the benchmark challenges (cf. Sect. 19.5.1). Based on
such achievements, we processed the internally recorded data sets—namely LMC
(cf. Chap. 13) and EmoRec [58]—showing that the discussed recognizer architec-
tures can be applied in naturalistic scenarios. In particular, the use of temporal
and contextual information for multimodal fusion improved the classification (cf.
Hypotheses 2 and 4).

Besides the classification issue, the preprocessing of data should also be
approached multimodally (cf. Hypothesis 3). Therefore, we introduced two
annotation tools assisting during the annotation and labelling. ikannotate mainly
focuses on the annotation and labelling based on audio and video streams.
In addition, ATLAS allows a synchronous handling of audio, video, and bio-
physiological data. Furthermore, it applies active learning techniques to assist
in the labelling process. From the active learning perspective, we can conclude
that the multimodal classifiers can be established without completely annotated
material. The starting point is a small subset which provides reasonable class
information. Iteratively, a classifier can be trained while simultaneously annotating
the material (cf. Hypothesis 1). Finally, we briefly discussed that data which is
recorded synchronously can improve the performance of the classification in terms
of multimodal investigations. As is elaborated on in Chap. 22, there are several

1The g-mean was chosen because of the strong imbalance between the two classes.
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ways of establishing synchronous recordings. For real-world applications, we refer
to Chap. 22.
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Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceedings of LREC. ELRA, Paris
(2012)

10. Glodek, M., Tschechne, S., Layher, G., Schels, M., Brosch, T., Scherer, S., Kächele, M.,
Schmidt, M., Neumann, H., Palm, G., Schwenker, F.: Multiple classifier systems for the
classification of audio-visual emotional states. In: D’Mello, S., Graesser, A., Schuller, B.,
Martin, J.C. (eds.) Proceedings of ACII - Part II, Lecture Notes on Computer Science, vol.
6975, pp. 359–368. Springer, Berlin (2011)

11. Glodek, M., Reuter, S., Schels, M., Dietmayer, K., Schwenker, F.: Kalman filter based classifier
fusion for affective state recognition. In: Zhou, Z.H., Roli, F., Kittler, J. (eds.) Multiple
Classifier Systems (MCS). Lecture Notes on Computer Science, vol. 7872, pp. 85–94. Springer,
Berlin (2013)

12. Glodek, M., Schels, M., Schwenker, F.: Ensemble Gaussian mixture models for probability
density estimation. Comput. Stat. 27(1), 127–138 (2013)

13. Glodek, M., Geier, T., Biundo, S., Palm, G.: A layered architecture for probabilistic complex
pattern recognition to detect user preferences. J. Biol. Inspired Cognitive Archit. 9, 46–56
(2014)



406 F. Schwenker et al.

14. Glodek, M., Schels, M., Schwenker, F., Palm, G.: Combination of sequential class distributions
from multiple channels using Markov fusion networks. J. Multimodal User Interfaces 8(3),
257–272 (2014)

15. Glodek, M., Honold, F., Geier, T., Krell, G., Nothdurft, F., Reuter, S., Schüssel, F., Hörnle, T.,
Dietmayer, K., Minker, W., Biundo, S., Weber, M., Palm, G., Schwenker, F.: Fusion paradigms
in cognitive technical systems for human-computer interaction. Neurocomputing 161, 17–37
(2015)

16. Gunes, H., Piccardi, M.: Bi-modal emotion recognition from expressive face and body gestures.
J. Netw. Comput. Appl. 30(4), 1334–1345 (2007)

17. Healey, J.: Wearable and automotive systems for affect recognition from physiology. Ph.D.
thesis, MIT (2000)

18. Hudlicka, E.: To feel or not to feel: The role of affect in human-computer interaction. Int. J.
Hum.-Comput. Stud. 59(1-2), 1–32 (2003)

19. Kächele, M., Schwenker, F.: Cascaded fusion of dynamic, spatial, and textural feature sets
for person-independent facial emotion recognition. In: Proceedings of ICPR, pp. 4660–4665
(2014)

20. Kächele, M., Glodek, M., Zharkov, D., Meudt, S., Schwenker, F.: Fusion of audio-visual
features using hierarchical classifier systems for the recognition of affective states and the state
of depression. In: De Marsico, M., Tabbone, A., Fred, A. (eds.) Proceedings of ICPRAM, pp.
671–678. SciTePress, Setúbal (2014)

21. Kächele, M., Schels, M., Schwenker, F.: Inferring depression and affect from application
dependent meta knowledge. In: Proceedings of the 4th International Workshop on Audio/Vi-
sual Emotion Challenge, AVEC ’14, pp. 41–48. ACM, New York (2014)

22. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Fluids Eng. 82(1),
35–45 (1960)

23. Kanade, T., Cohn, J., Tian, Y.: Comprehensive database for facial expression analysis. In:
Automatic Face and Gesture Recognition, 2000, pp. 46–53 (2000)

24. Kim, K., Bang, S., Kim, S.: Emotion recognition system using short-term monitoring of
physiological signals. Med. Biol. Eng. Comput. 42(3), 419–427 (2004)

25. Kipp, M.: Anvil - a generic annotation tool for multimodal dialogue. In: INTERSPEECH-2001,
Aalborg, Denmark, pp. 1367–1370 (2001)

26. Krell, G., Niese, R., Al-Hamadi, A., Michaelis, B.: Suppression of uncertainties at emotional
transitions— facial mimics recognition in video with 3-D model. In: Richard, P., Braz, J. (eds.)
Proceedings of the International Conference on Computer Vision Theory and Applications
(VISAPP), vol. 2, pp. 537–542 (2010)

27. Krell, G., Glodek, M., Panning, A., Siegert, I., Michaelis, B., Wendemuth, A., Schwenker, F.:
Fusion of fragmentary classifier decisions for affective state recognition. In: MPRSS, Lecture
Notes on Artificial Intelligence, vol. 7742, pp. 116–130. Springer, Berlin (2012)

28. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York
(2004)

29. Lang, P.J.: Behavioral Treatment and Bio-Behavioral Assessment: Computer Applications, pp.
119–137. Ablex Publishing, New York (1980)

30. Meudt, S., Schwenker, F.: Enhanced autocorrelation in real world emotion recognition. In:
Proceedings of the 16th International Conference on Multimodal Interaction, ICMI ’14, pp.
502–507. ACM, New York (2014)

31. Meudt, S., Bigalke, L., Schwenker, F.: Atlas – an annotation tool for HCI data utilizing machine
learning methods. In: International Conference on Affective and Pleasurable Design (APD’12),
pp. 5347–5352 (2012)

32. Meudt, S., Zharkov, D., Kächele, M., Schwenker, F.: Multi classifier systems and forward
backward feature selection algorithms to classify emotional coloured speech. In: International
Conference on Multimodal Interaction, ICMI 2013, pp. 551–556. ACM, New York (2013)



19 Multimodal Affect Recognition 407

33. Niese, R., Al-Hamadi, A., Heuer, M., Michaelis, B., Matuszewski, B.: Machine vision based
recognition of emotions using the circumplex model of affect. In: Proceedings of the
International Conference on Multimedia Technology (ICMT), pp. 6424–6427. IEEE, New
York (2011)

34. North, D.O.: An analysis of the factors which determine signal/noise discrimination in pulsed-
carrier systems. Proc. IEEE 51(7), 1016–1027 (1963)

35. Oudeyer, P.: The production and recognition of emotions in speech: features and algorithms.
Int. J. Hum.-Comput. Stud. 59(1-2), 157–183 (2003)

36. Palm, G., Glodek, M.: Towards emotion recognition in human computer interaction. In:
Esposito, A., Squartini, S., Palm, G. (eds.) Neural Nets and Surroundings, vol. 19, pp. 323–
336. Springer, Berlin (2013)

37. Panning, A., Siegert, I., Al-Hamadi, A., Wendemuth, A., Rösner, D., Frommer, J., Krell, G.,
Michaelis, B.: Multimodal affect recognition in spontaneous HCI environment. In: 2012 IEEE
International Conference on Signal Processing, Communication and Computing, pp. 430–435.
IEEE, New York (2012)

38. Ringeval, F., Sonderegger, A., Sauer, J., Lalanne, D.: Introducing the RECOLA multimodal
corpus of remote collaborative and affective interactions. In: 2013 10th IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–8 (2013)

39. Schels, M., Scherer, S., Glodek, M., Kestler, H., Palm, G., Schwenker, F.: On the discovery of
events in EEG data utilizing information fusion. Comput. Stat. 28(1), 5–18 (2013)

40. Schels, M., Kächele, M., Glodek, M., Hrabal, D., Walter, S., Schwenker, F.: Using unlabeled
data to improve classification of emotional states in human computer interaction. J. Multimodal
User Interfaces 8(1), 5–16 (2014)

41. Scherer, K.R.: What are emotions? and how can they be measured? Soc. Sci. Inf. 44, 695–729
(2005)

42. Scherer, S., Schwenker, F., Palm, G.: Classifier fusion for emotion recognition from speech.
In: Advanced Intelligent Environments, pp. 95–117. Springer, Boston (2009)

43. Scherer, S., Glodek, M., Layher, G., Schels, M., Schmidt, M., Brosch, T., Tschechne, S.,
Schwenker, F., Neumann, H., Palm, G.: A generic framework for the inference of user states in
human computer interaction: how patterns of low level behavioral cues support complex user
states in HCI. J. Multimodal User Interfaces 6(3–4), 117–141 (2012)

44. Scherer, S., Glodek, M., Schwenker, F., Campbell, N., Palm, G.: Spotting laughter in natural
multiparty conversations: a comparison of automatic online and offline approaches using
audiovisual data. ACM Trans. Interactive Intell. Syst. 2(1), 4:1–4:31 (2012)

45. Schmidt, T., Schütte, W.: FOLKER: an annotation tool for efficient transcription of natural,
multi-party interaction. In: Proceedings of the 7th International Conference on Language
Resources and Evaluation (2010)

46. Schmidt, T., Wörner, K.: EXMARaLDA – Creating, analysing and sharing spoken language
corpora for pragmatic research. Pragmatics 19, 565–582 (2009)

47. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J., Platt, J.C.: Support vector
method for novelty detection. In: NIPS, vol. 12, pp. 582–588 (1999)

48. Schüssel, F., Honold, F., Weber, M., Schmidt, M., Bubalo, N., Huckauf, A.: Multimodal
interaction history and its use in error detection and recovery. In: Proceedings of the 16th ACM
International Conference on Multimodal Interaction (ICMI’14), pp. 164–171. ACM, New York
(2014)

49. Schwenker, F., Scherer, S., Magdi, Y.M., Palm, G.: The GMM-SVM supervector approach
for the recognition of the emotional status from speech. In: ICANN (1), Lecture Notes on
Computer Science, vol. 5768, pp. 894–903. Springer, Berlin (2009)

50. Schwenker, F., Scherer, S., Schmidt, M., Schels, M., Glodek, M.: Multiple classifier systems
for the recognition of human emotions. In: Multiple Classifier Systems, Lecture Notes on
Computer Science, vol. 5997, pp. 315–324. Springer, Berlin (2010)



408 F. Schwenker et al.

51. Sezgin, M.C., Gunsel, B., Kurt, G.: Perceptual audio features for emotion detection. EURASIP
J. Audio Speech Music Process. 2012, 1–21 (2012)

52. Siegert, I., Glodek, M., Krell, G.: Using speaker group dependent modelling to improve fusion
of fragmentary classifier decisions. In: Proceedings of the International IEEE Conference on
Cybernetics (CYBCONF), pp. 132–137. IEEE, New York (2013)

53. Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect
recognition and implicit tagging. IEEE Trans. Affect. Comput. 3, 42–55 (2012).

54. Strauß, P.M., Hoffmann, H., Minker, W., Neumann, H., Palm, G., Scherer, S., Schwenker,
F., Traue, H., Walter, W., Weidenbacher, U.: Wizard-of-oz data collection for perception and
interaction in multi-user environments. In: Proceedings of LREC, pp. 2014–2017 (2006)

55. Traue, H.C., Ohl, F., Brechmann, A., Schwenker, F., Kessler, H., Limbrecht, K., Hoffman, H.,
Scherer, S., Kotzyba, M., Scheck, A., Walter, S.: A framework for emotions and dispositions
in man-companion interaction. In: Rojc, M., Campbell, N. (eds.) Converbal Synchrony in
Human-Machine Interaction, pp. 98–140. CRC Press, Boca Raton (2013)

56. Valstar, M., Schuller, B., Smith, K., Almaev, T., Eyben, F., Krajewski, J., Cowie, R., Pantic,
M.: AVEC 2014: 3d dimensional affect and depression recognition challenge. In: Proceedings
of ACM MM, AVEC ’14, pp. 3–10. ACM, New York (2014)

57. Vinciarelli, A., Pantic, M., Bourlard, H., Pentland, A.: Social signal processing: state-of-the-
art and future perspectives of an emerging domain. In: Proceedings of the International ACM
Conference on Multimedia (MM), pp. 1061–1070. ACM, New York, NY (2008)

58. Walter, S., Scherer, S., Schels, M., Glodek, M., Hrabal, D., Schmidt, M., Böck, R., Limbrecht,
K., Traue, H.C., Schwenker, F.: Multimodal emotion classification in naturalistic user behavior.
In: Jacko, J.A. (ed.) Proceedings of the 14th International Conference on Human Computer
Interaction (HCI’11), Lecture Notes on Computer Science, vol. 6763, pp. 603–611. Springer,
Berlin (2011)

59. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods:
audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1),
39–58 (2009)

60. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an
application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928
(2007)


	19 Multimodal Affect Recognition in the Context of Human-Computer Interaction for Companion-Systems
	19.1 Introduction
	19.2 Machine Learning Framework for Emotion Recognition
	19.3 Data Acquisition and Benchmark Data
	19.3.1 Survey of Relevant Benchmark Data Sets
	19.3.2 Annotation of Emotional Data
	19.3.2.1 ATLAS
	19.3.2.2 ikannotate


	19.4 Context-Aware Temporal Information Fusion Architectures for Multimodal Affect Recognition
	19.4.1 Fusion of Time-Windowed Features
	19.4.2 Temporal Multimodal Fusion Architectures
	19.4.2.1 Markov Fusion Networks
	19.4.2.2 Kalman Filter Architectures

	19.4.3 Integration of Context Information

	19.5 Multimodal Affect Recognition Results
	19.5.1 Public Benchmark
	19.5.2 Results
	19.5.3 Active Learning in an HCI Scenario

	19.6 Conclusion
	References


