
Chapter 18
Automated Analysis of Head Pose, Facial
Expression and Affect

Robert Niese, Ayoub Al-Hamadi, and Heiko Neumann

Abstract Automated analysis of facial expressions is a well-investigated research
area in the field of computer vision, with impending applications such as human-
computer interaction (HCI). The conducted work proposes new methods for the
automated evaluation of facial expression in image sequences of color and depth
data. In particular, we present the main components of our system, i.e. accurate
estimation of the observed person’s head pose, followed by facial feature extraction
and, third, by classification. Through the application of dimensional affect models,
we overcome the use of strict categories, i.e. basic emotions, which are focused
on by most state-of-the-art facial expression recognition techniques. This is of
importance as in most HCI applications classical basic emotions are only occurring
sparsely, and hence are often inadequate to guide the dialog with the user. To resolve
this issue we suggest the mapping to the so-called “Circumplex model of affect",
which enables us to determine the current affective state of the user, which can
then be used in the interaction. Especially, the output of the proposed machine
vision-based recognition method gives insight to the observed person’s arousal and
valence states. In this chapter, we give comprehensive information on the approach
and experimental evaluation.

18.1 Introduction

In contemporary human-computer interaction (HCI), machine-based vision increas-
ingly gains pace, whereas, besides gesture control, analysis of faces is an important
application area. In that field, not only person identification is focused on, but
also the deciphering of non-verbal communication through facial expression, as
this can provide feedback about user behavior [17]. In automated camera-based
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Fig. 18.1 Processing chain of the three main modules

facial expression analysis mostly fixed emotion categories have been utilized in the
past, as described by Ekman [6]. However, due to the rare occurrence of classic
basic emotions in HCI applications, usually this strategy is of limited use. For that
reason, several groups have attempted to map visual and audio-visual utterances,
predominantly facial expressions to dimensional emotion-models, like the Circum-
plex Model of Affect [19], by inferring Valence-Arousal (V-A) parameters. Having
these affective user state parameters, the course of the interaction can generally
be guided more intuitively, i.e. the machine can provide help to a puzzled user. In
the dimensional emotion model, the parameters represent states from negative to
positive for valence and calm to aroused for arousal. It has also been shown that the
V-A transformation can be disturbed by inaccuracies in the image-based processing
[14]. In the presented concept, we focus on this problem through hierarchical
analysis. Further, we derive the intensity of a particular expression state, which
provides a useful parameter for interaction, i.e. a user with high arousal can be given
a different response.

In the following three sections, we present the components of our system as
depicted in Fig. 18.1. The first one is used to determine the observed person’s
head pose, followed by facial feature processing and, third, by classification. In our
concept, these are successive modules, which can also be substituted by alternative
approaches, i.e. a different pose estimator, feature set, or classification strategy, in
order to adapt to a particular application. The evaluation of the presented methods is
based on a tilt sensor for the pose, analysis of a 3-D database for facial expressions
of emotion, as well as online examples, as shown at the end each section.

18.2 ICP-Based Face Pose Estimation

Automated analysis of image content requires precise knowledge about the arrange-
ment in the captured scene. This does not only include detection and recognition of
the interesting objects, but also the determination of their orientation. This general
principle also holds for automated analysis of human subjects observed by a camera
system, and of course, it is easy to see that the evaluation of a rotated face differs
much from a frontal one. Driven by the availability of depth sensors at affordable
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prices, e.g. Microsoft Kinect, ASUS WAVI Xtion or SoftKinetic, in the recent
few years numerous market-feasible applications have been developed for human-
machine interaction, mostly for gesture recognition in real time. It has been shown
that by using active depth sensors, many problems can be tackled, e.g. illumination
changes, strong rotation, occlusion and difficult background. This gives motivation
for the presented face pose estimation approach. Fanelli et al. [8] have presented
an efficient, but training-intensive depth-based head pose estimation that uses the
Discriminative Regression Forest technique. In contrast, our approach achieves a
high accuracy and robustness and can handle strong rotations even without excessive
training [15]. It is based on an extended variant of the Iterative Closest Point (ICP)
registration algorithm, which was originally introduced by Besl and McKay [2].
In the applied ICP approach a user-adapted face model is registered with measured
point cloud data. The adaptation is carried out only once in an initialization step. The
important processing steps and the used parametrization are given in the following.

18.2.1 Acquisition of 3-D Scene Data

In the first processing step the camera’s depth and color data is captured using
the software frameworks OpenCV/OpenNI [3]. Under the assumption of a pinhole
camera model and a given camera constant, we compute point cloudW (18.1) of the
scene from the depth image [15]. Further, we define a box as the operating volume
V (18.2) that limits the amount of point cloud data and excludes the background
(Fig. 18.2). The parametrization depends upon the experimental setup, e.g. we have
mounted the camera on top of the monitor.

W D fp1; : : : ;png;pi 2 R
3 (18.1)

V D fpmin;pmaxg; (18.2)

with pmin D .�0:5; �0:5; 0:5/; pmax D .0:5; 0:5; 1:0/ in meters.

Fig. 18.2 Captured scene. (a) Image and pose encoded in a coordinate system (RGB ' XYZ) in
the centroid of the head, (b) depth map, (c) point cloud W and volume V
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Fig. 18.3 Creation of ICP model. (a) Generic model G, (b) Point clouds O1 and O2 of left and
right sides, (c) fused point cloud O�, (d) ICP fitting model M containing n D 500 vertices aj and
normals bj

18.2.2 Creation of User-Specific ICP Fitting Model

In this work, we apply a generic geometrical face modelG (18.3) for the creation of
user-specific ICP fitting models, which present the basis for pose estimation. There
are several techniques for the creation of 3-D face models; the easiest way is a face
scanner [10]. During processing, model G represents a smoothed coarse geometric
average of ten evaluated subjects [15] (Fig. 18.3a). Thus, model G represents a
general face shape and consists of a set of vertices ai, normal vectors bi and triangle
indices wj. That enables the model to serve for rough pose estimation of up to ˙40ı
rotation angles when dealing with unknown faces.

G D .fa1; : : : ; ang; fb1; : : : ;bng; fw1; : : : ;wmg/; aj;bj 2 R
3;wk 2 N (18.3)

However, in order to achieve accurate results, especially for large rotation angles,
it is beneficial to adapt the model shape and size as close as possible to the actual
face. It is to be noted that transient face shape changes that may occur due to facial
expression can be neglected at this point, as it has been shown in experiments
that these changes do not have relevant influence on the pose estimation with the
presented approach [15].

For the creation of the person-specific accurate ICP model, several point clouds
Oi of the respective person are combined from different views, ideally from the left
and right sides (˙25ı rotation) (Fig. 18.3b). For the determination of the points Oi

the generic modelG is approximated to the captured point cloudW (18.1) by using
the ICP algorithm as presented in this chapter. Next, all measuring points are used
that have a Euclidean minimum distance to model G. The combination of all point
clouds Oi is done by utilizing the measured poses of the generic model. Hence,
the different measurements are realigned to a common orientation O� in the same
coordinate system (Fig. 18.3c). Subsequently, the points are triangulated to a mesh,
which provides normal vectors for each vertex.

For the reduction of computational cost, while keeping high accuracy it has been
proven suitable to sub-sample the triangle mesh to n D 500 vertices, in order to
create the ICP fitting model M (18.4) [15]. The model consists of a set of vertices
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aj and normal vectors bj (Fig. 18.3d).

M D .fa1; : : : ; ang; fb1; : : : ;bng/; aj;bj 2 R
3; n D 500 (18.4)

18.2.3 ICP-Based Pose Estimation Using a Normal Vector
Constraint

Estimation of rigid body pose usually refers to the determination of six unknown
parameters, i.e. three translations and three rotations, which in the following are
referred to as pose vector t.

t D .tx ty tz t! t� t�/T; ti 2 R (18.5)

Generally, the determination of the pose from image data is an optimization
problem, which is mostly solved iteratively on the basis of an error measure.
Differences between the pose estimation methods arise in the definition of the
error measure, the kind of utilized model and image features and the type of
correspondences. In the case of captured 3-D scenes and unknown correspondences
between model and world data, the Iterative Closest Point (ICP) algorithm offers
opportunities for a quick and accurate solution. In general, in the ICP approach
correspondences are determined between two basically n-dimensional data sets, like
point clouds or geometrical descriptions, while reducing a global distance measure
and approximating the pose parameters.

Accordingly, the computation of the head pose is carried out by aligning the
3-D model M (18.4) respectively G (18.3) with respect to point cloud W (18.1).
The error function e.t/ (18.6) represents the quality of the current pose t. The total
error results from the sum of all squared distances dj between the model vertices
aj and the plane, which contains the spatially closest measuring point pi in point
cloud W. Further, this plane is oriented orthogonally to the model’s normal vector
bj (Fig. 18.4).

e.t/ D
X

j

.dj.t//2 ! min; dj.t/ D .aj.t/ � pi/ � bj; (18.6)

with t 2 R
6; aj;bj;pi; 2 R

3; dj 2 R.

Fig. 18.4 Model fitting principle. Minimization of orthogonal model to point cloud distance dj.
Consider model M with vertex aj: searched for is the next point pi in point cloud W lying in a
plane perpendicular to bj
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Algorithmically, the ICP method applied is as follows:

• Initialization or reset of pose vector tŒ0� if necessary.
• Let W (18.1) be a cloud of points pi and M (18.4) an ICP model with vertices aj

and associated normals bj.
• Repeat for k D 1 : : : kmax or until convergence:

– Determine a set of closest correspondences S
S D Sm

jD1.aj.t
k/; fcp.W; aj.tk///

with fcp returning the closest point pi in W to any point aj.
– Compute the new pose vector tŒkC1�, which minimizes the fitting error function

e.t/ (18.6) with respect to all pairs S.

In order to efficiently find the corresponding model points aj and measuring
points in W we use function fcp, which applies a kd-search tree [1]. When
determining the correspondence, parameter dmax defines the maximum allowed
distance between model and target points. In this way, a robust out-of-plane rotation
is ensured also for large angles, because all target points that are farther away will
have no influence on the computation. In particular, we use the empirical threshold
dmax D 10mm (Fig. 18.5).

The optimization of pose vector t in error function e.t/ (18.6) is carried out
iteratively on the basis of least-squares minimization. The elementary matrices for
model rotation contain sine and cosine functions, which we need to linearize in order
to solve the system of equations for the minimization. This is accomplished using
Taylor series approximation. Then, the model vertex coordinates are differentiated
with respect to the components of the pose vector. The derivatives @aj=@t are
computed analytically, which can be done easily in the case of translations and
rotations. Thus, for each 3-D model point aj we can form three equations (18.7),

Fig. 18.5 Correspondence search. The red lines show associated model and measurement points.
(a) Image with pose (XYZ-axes in RGB) and model in light blue plus correspondences in red; (b)
model points of the turned-away face half exceed the maximum distance dmax and are no longer
associated
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which leads to a highly overdetermined system of equations. That itself leads to
tolerance against noise and robustness of the computed pose vector.

aj.t/ C @aj=@t � �t D pi (18.7)

The ICP approach stops if error function e.t/ goes below a threshold, or if a
given number of iterations has been reached. As shown in comprehensive tests, the
computed pose vector t accurately represents the actual orientation of the face. For
the initialization and reset of the pose vector, it is assumed that the face is located in
the upper half of the point cloud, which is generally the case if the camera is aligned
properly. With respect to the x- and z-coordinates, we use the centroid of the point
cloud, while the rotation angles are set to zero.

Also, in the beginning, and after reset, we apply n D 20 iterations, which leads
to convergence in most cases. This can be observed through a small value of error
function e.t/. After initialization, n D 5 iterations are applied, or less, if the error
goes below threshold ferr D 20. Reset of the pose is triggered by the error function
exceeding the threshold ferr D 40. That is a hint of misalignment, which can
happen if the face is fully occluded. Further, reset is carried out if the number of
corresponding model and target points is too low for a reliable computation, i.e.
ncorr < 250. This can happen if no face is in the measurement volume.

Using these error measures, quick and robust pose estimation processing is
assured. Alternatively, if it is available, one can also utilize the grayscale image
corresponding to the depth map, e.g. for Haar-like feature-based face detection using
Adaboost [21]. This way, one can set the initial XY-translation of the 3-D model
w.r.t. the image face position, or detect if several or no faces are in the image.

18.2.4 Evaluation of Head Pose Estimation

As initially stated, our pose estimation procedure is essential for automated face
analysis. Thus, in order to get a qualitative statement, we have made an evaluation
on the basis of the exact tilt sensor 3DM-GX3 of the company MicroStrain, which
provides ground truth rotation parameters at high accuracy (Fig. 18.6).

Fig. 18.6 Pose validation using a dummy head model with tilt sensor. The pose is displayed as
coordinate system in RGB, the ground truth in yellow and the 3-D ICP model in light blue
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Table 18.1 Evaluation: rotation and tilt sensor displacement in degrees

Rotation Maximum absolute values in degrees Ground truth displacement in degrees

axis Estimation Tilt sensor (ground truth) Mean � Std. deviation Maximum

rx 51 50 2 2 6

ry 108 110 3 3 11

rz 115 116 2 2 4

Fig. 18.7 (a) Occlusion tolerance, (b) application of an additional head model for ongoing facial
feature extraction and analysis, (c) 3-D point cloud with head model and the determined pose

The estimated pose accuracy has been determined as the ground truth deviation
in a series of 10,000 measured sample frames, including rotations of the three axes.
Table 18.1 shows the resulting relevant results of the analysis. For the measured
data, the tilt sensor has returned a maximum absolute rotation of frx ry rzg={50ı
110ı 116ı}. The first two columns show the computedmaximum absolute rotations,
the next two the mean pose sensor displacement with corresponding standard
deviations, all in degrees. The last column provides the measured maximum ground
truth deviations, which have occurred at strong rotations, i.e. for yaw of more than
90ı, only. For all rotation angles, the mean deviation is less than 3ı.

Robust handling of occlusion is a further concern of the presented work. Due to
the characteristics of the measured 3-D data, pose estimation of partially occluded
heads is still possible using temporal coherence (Fig. 18.7a). That means the model
is fitted step by step up to large rotation angles. The processing speed is high and
reaches the maximum possible frame rate (30Hz) of the used camera’s USB port at
VGA resolution on an Intel Core i7 PC.

18.2.5 Summary of Pose Estimation

The presented 3-D data-based pose estimation procedure has been shown to perform
robustly and accurately in a wide range of head poses. This is achieved through the
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use of a model normal constraint in conjunctionwith an ICP algorithm. In particular,
the method constitutes a solid basis for the application of 3-D head models for
further analysis (Fig. 18.7b/c). Also, in experiments with real persons, we have
evaluated that there is only a minimal effect on face pose accuracy related to facial
expression, which is due to the fact that the pose model covers the whole of the face.
This makes it an ideal basis for subsequent face analysis, which is presented in the
following Sect. 18.3.

18.3 Facial Feature Processing

In image-based analysis of faces, one can discern at least three categories of
commonly used features, such as holistic vs. geometric analytic, two- vs. three-
dimensional, i.e. image- or volume-based and temporal vs. static features [17].
In this categorization, almost all face recognition approaches apply holistic, 2-D
image-based, static features, whereas in facial expression analysis there are analytic
geometric region-based and dynamic features commonly used. In our work, apart
from the 3-D depth image-based pose estimation, which is done in the first step,
we apply a combination of 2-D image and 3-D model data for the processing of
geometric features.

18.3.1 Face Model

In the presented method, facial feature processing and evaluation are based on a
geometric 3-D face model, which utilizes the Facegen Photofit routine [7]. This is a
morphable model, which is adapted to a frontal face image using facial landmarks.
These are quickly and reliably found using the IntraFace detector by Xiong et al.
[23] in conjunction with gradient data and the active contour model algorithm of
Cootes [5] (Fig. 18.8a/b).

In order to set the appropriate size of the Facegen-based model, we apply scaling
in X- and Y-direction by utilizing point cloud data derived from the depth image and
the ICP algorithm of Sect. 18.2 with scaling as free model parameter (Fig. 18.8c/d).

For the conducted face processing we use a rigid 3-D surface mesh description
of the adapted Facegen model, which is denoted by S (18.8).

S D .fv1; : : : ; vng; fw1; : : : ;wmg/; vi 2 R
3; wj 2 N; (18.8)

with vi as mesh vertices and wj as triangle indices.
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Fig. 18.8 Face model adaptation, (a) frontal face gradient image with detected landmark points,
(b) reconstructed 3-D model S, (c) depth image encoded in cyclic rainbow colors with scaled model
at pose, (d) point cloud with scaled model

18.3.2 Facial Expression-Related Features

In the presented concept, geometric features represent the facial expression at frame
t through a set of distances and angles. These parameters result from an evaluation
of relevant facial feature points.

18.3.2.1 Feature Points

Evaluation of feature points is a general technique in face and facial expression
analysis. The Facial Animation Parameter (FAP) System [16], which was developed
in the context of the MPEG-4 standard, has inspired the selection of facial points in
our method. In the FAP 88 feature points were defined for the simulation of facial
expression. In experiments, we found that a subset of eight relevant points suffices
for the recognition of facial expression (Fig. 18.9). For this purpose we use point set
Pf (18.9). The model-based computation of feature points requires the detection of
the corresponding image points beforehand.

Pf D fple;pre;pleb;preb;plm;prm;pul;pllg; pi 2 R
3; (18.9)

with le=re as left and right eye, leb=reb as eyebrow and mouth points (see
Fig. 18.9c).

18.3.2.2 Extraction and Transformation of Image Feature Points

For the detection of facial points in the image, we apply a Haar-like feature-based
Adaboost face detector in the first step in order to find the face and constrain the
facial feature search space [21]. Then we apply the IntraFace detector [23] for
feature point finding. To solve non-linear least-squares (NLS) functions, which are
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Fig. 18.9 (a) Face model S with features, (b) feature points p with distances di and (c) angles ˛j,
in the mouth region

taken for feature point detection, the IntraFace method uses the fast and accurate
Supervised Descent Method (SDM) approach. This way facial expression relevant
points are detected in the input image in a reliable and fast manner, until out-of-plane
rotations up to 25ı. In the following, these points are referred to as set If (18.10).

If D file; ire; ileb; ireb; ilm; irm; iul; illg; ii 2 R
2 (18.10)

The 3-D transformation of image feature points requires knowledge about the
underlying camera system and on the other side about the depth of the captured
scene. In the case of the applied Kinect camera system, depth information is
available. However, as the depth map occasionally contains artifacts, such as holes,
a different and more general solution is preferred here, which can be applied to an
arbitrary camera system. We infer depth information by measuring the distance d
from the camera in the scene at the respective pixel raster coordinate in 3-D to the
face model using a raycasting algorithm [9]. The model is oriented in the current
estimated pose (Sect. 18.2). These transformation steps require information about
the camera model K, and thus about intrinsic and extrinsic camera parameters,
which are determined through calibration [12]. In this way we can easily define
the transformation function k (18.11) that converts 3-D scene points w to image
points i and the other way around as k�1 (18.12). Using this transformation the 3-D
feature point set P (18.9) is determined.

i D k.w;K/; (18.11)

with i 2 R
2;w 2 R

3, camera model K.

w D k�1.i; d;K/; (18.12)

with i 2 R
2;w 2 R

3, depth parameter d 2 R and camera modelK.
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18.3.2.3 Feature Definition

The appearance of faces showing expressions differs from the neutral ones in a
more or less accentuated way. Strong expressions can, of course, be recognized
more easily than weak ones with subtle changes only. Instead of holistic approaches
that evaluate the whole of the face at once, we determine expression features from
the facial feature points and compare these to the neutral face, which is captured
beforehand. It is commonly recognized that the recognition performs better if
this neutral information is given [20]. In order to make this kind of comparison
more practical, there are already strategies available to overcome this sometimes
impossible initialization step, by using Point Distribution Models (PDMs), and thus,
to also handle unknown faces [20].

The transition from 2-D image to 3-D facial expression features offers clear
advantages, in particular, independence from the face pose. This property is utilized
in the evaluation of 3-D feature point set Pf and the inference of the raw feature
vector f (18.13). The feature vector for the neutral facial expression fneutral is
equivalent to f and kept for each subject for further processing. The vector’s
values are seven distances di (18.14) distributed across the face and four angles
˛j (18.15), which contain distinct information about the current mouth shape and
the facial expression as a whole (Fig. 18.9). In particular, raising and lowering of the
eyebrows is captured through the parameters d1 and d2, mouth movements through
the distance between mouth corners and eye centers d3 and d4. Additionally, the
current mouth width, height and eyebrow distance are encoded in d5, d6 and d7.

f D .d1 : : : d7 ˛1 : : : ˛4/
T; di; ˛j 2 R; f 2 R

11; (18.13)

with the definition of distances di as

d1 D jjpreb � prejj d2 D jjpleb � plejj (18.14)

d3 D jjpre � prmjj d4 D jjple � plmjj
d5 D jjprm � plmjj d6 D jjpul � plljj
d7 D jjpreb � plebjj

and angles ˛j as

˛1 D arccos

�
v1 � v2

kv1k � kv2k
�

˛2 D arccos

�
v2 � v3

kv2k � kv3k
�

(18.15)

˛3 D arccos

� �v2 � v4
kv2k � kv4k

�
˛4 D arccos

� �v2 � v5
kv2k � kv5k

�
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with

v1 D prm � pul; v2 D pll � pul; v3 D plm � pul;

v4 D prm � pll; v5 D plm � pll; vi;pj 2 R
3

18.3.2.4 Feature Normalization

In order to evaluate the facial expression captured at frame t represented by feature
vector f (18.13), we make a comparison with the neutral face, which is provided
through fneutral as explained above. For this purpose we introduce the operator #
(18.16) for component-wise division of two feature vectors a and b.

a # b D .a1=b1 a2=b2 : : : an=bn/
T 2 R

n; a;b 2 R
n (18.16)

fratio.t/ D f.t/ # fneutral; fratio; f; fneutral 2 R
11; t 2 Z (18.17)

The ratios of fratio.t/ (18.16) usually have large deviations between different
persons and facial expressions. Thus, we apply feature normalization. For all vector
components of fratio.t/, we have determined the statistical parameters mean and
standard deviation as well as the minimum and maximum, cmin and cmax (18.18),
across a representative set of example data. Feature vector f.t/ (18.19) is the
normalization result, which is computed for the empirical confidence interval of 2� .

cmin D � � 2�; cmin 2 R
11 (18.18)

cmax D � C 2�; cmax 2 R
11

with � and � as mean and standard deviation for all vector rows.

f.t/ D .fratio � cmin/ # .cmax � cmin/ D .fratio � cmin/ # 4�; f 2 R
11 (18.19)

18.4 Circumplex Model Mapping

In literature, the majority of approaches for facial expression analysis apply discrete
categories, mostly emotions, pain, and sleepiness. However, often fixed categories
are not optimal, as they can be mixed and ambiguous. For that reason, the approach
we apply is influenced by the observation that the affect labels valence and arousal
of the Circumplex Model of Affect lead to a state representation that is continuous
in principle [19]. Thus, no discrete descriptions of the user state are necessary for
classification.
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18.4.1 Multi-Layer Perceptron Based Valence-Arousal
Estimation

In order to appropriate the circumplex model, in our work we use a technical
implementation of the concept from psychology. For this purpose the transformation
of the 11-D feature vector to the 2-D model plane is realized by using mapping
function fmap (18.21) (Fig. 18.10). In our implementation, the circumplex plane is
spanned by six polar coordinates PCi (18.20) of the discrete emotion categories
plus neutral (Fig. 18.11) [14]. Basically, this definition reflects the findings of

Fig. 18.10 Valence-Arousal (V-A) transformation. (a) Depth image with pose and overlaid feature
points, (b) 3-D features in blue, (c) feature plot, (d) artificial neural network with function fmap of
the 11-dimensional feature vector to the V-A space

Fig. 18.11 (a) Circumplex model of affect as introduced by Russel (Source [4]), (b) technical
implementation of the model with polar coordinates PCi (18.20) for the definition of the 2-D model
plane
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psychologist Russel [19].

PCi.rCi I 'Ci/ 2
�

0 l l l l l l
0 10 85 170 200 125 240

�
; l D 0:7; 'Ci in deg; ci 2 1 : : : 7;

(18.20)

with the classes Ci 2 {Neutral, Joy, Surprise, Anger, Disgust, Fear, Sadness},
whereas radius l has been set empirically to l D 0:7.

We apply an artificial neural network (Multi-Layer Perceptron, MLP) [11] with
a sigmoid transfer function and a backpropagation training algorithm to realize the
transformation fmap (18.21) of a feature vector f at a given frame t. In particular,
we apply a network with eleven input and two output neurons plus two hidden
layers with six neurons each. Our hypothesis is that we can infer the 11-D to 2-
D transformation based on the adapted weights of the neural network, which have
been determined through supervised learning. That means, in the training phase each
feature vector is assigned to the polar coordinate of its emotion class Ci (18.20),
which is derived from the Circumplex Model definition [4]. Accordingly, during
classification, each input vector leads to a position in the model plane, which is
supposed to be at a place that corresponds to the presented emotion.

fmap W f.t/ 2 R
11 MLP��!

�
V
A

�
2 R

2; (18.21)

with valence V , arousal A.

18.4.2 Dynamic Integration and Determination of Intensity

The estimation of the current affective state can be considered from the viewpoint
of inverse problems. In the first stage, the current state is estimated by the evaluation
and fusion of optical features using function fmap (18.21), leading to an observation
in the 2-D V-A space. Now, the goal is to find the underlying unknown state at the
current frame t, which is denoted by the variable z.t/. From a mathematical point of
view, this inverse problem is ill-posed in Hadamard’s sense since the reconstruction
is potentially sensitive to noise and not guaranteed to be unambiguous. The solution
is assumed to be within close distance of the observations, as measured by square
norm edata.

edata D kz.t/ � fmap.f.t//k2; z; fmap ! R
2; t 2 Z (18.22)

Further, the potential solution is constrained by applying operator P.z/, in order
to achieve a smoothing of the result. The smoothness property is denoted by the
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first-order derivative of the desired solution, i.e. P.z/ D Pz,1 which is scaled by the
regularization parameter 	, that works as weighting constant. Taken together, the
resulting energy measure is defined as the sum of edata (18.22) and the smoothness
constraint Pz defined above,

E.z/ D
Z

kz.t/ � fmap.f.t//k2 C 	 � Pz2.t/dt ! min: (18.23)

For minimization of Eq. (18.23) we apply the Euler-Lagrange equation to solve
the partial differential system of equations, which leads to state variable z.t/. The
intensity level r (18.24) of the current emotion quantity is inferred from the state
variable while the user state is traced over a temporal period and integrated over
time.

z.t/ D
�
r
ˇ

�
.t/; with r.t/ D

p
a2 C v2; ˇ.t/ D tan�1.v=a/; (18.24)

with a and v as scalar activations in the cardinal dimensions arousal and valence.

18.4.3 Evaluation

The different modules of the proposed concept have been tested with training
and testing data from the BU-4DFE database [24] and exemplary online samples
that were taken with a Kinect camera system. A total amount of about 18,000
data samples from seven classes according to (18.20) has been used for training
and testing the neural network and the dynamic integration. The pose estimation
approach presented in Sect. 18.2 was adapted in order to work with the 3-D data of
the BU-database, i.e. to carry out the required 2-D/3-D transformations, image and
depth data have been generated throughOpenGL rendering [9] with a virtual camera
and specified parameters (Fig. 18.12). Analysis has been conducted by applying
feature extraction and processing plus V-A mapping to the processed BU-4DFE
data (Fig. 18.13).

One motivation of this work is to overcome the use of fixed classification
categories, i.e. basic emotions. However, for the evaluation of the V-A mapping,
it can be reasonable to apply them. In order to get a qualitative statement about the
recognition accuracy, we have analyzed the displacement �.t/ (18.25) between the
calculated angle ˇ.t/ (18.24) and the given orientation of the underlying class 'Ci

in the Circumplex Model’s V-A space (Fig. 18.14a).

�.t/ D jˇ.t/ � 'Ci j 2 R; see Eqs. (18.20), (18.24) (18.25)

1We use here the dot notation to denote temporal derivatives of a function with time as the
independent variable.
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Fig. 18.12 Preprocessing of BU-4DFE data. (a) 3-D model and high-resolution texture image, (b)
textured triangle mesh in 3-D, (c) image projection with defined camera as color and depth image

Fig. 18.13 Feature processing of a BU-sample. (a) Depth and color image with pose as RGB-
coordinate system; further face model S (18.8) is shown as blue trianglemesh along with extracted
features as white lines. (b) 3-D projection of facial features

Fig. 18.14 Evaluation. (a) The method’s accuracy for an exemplary sample f.t/ is determined
using angle �.t/, which reflects the displacement between function z.t/ and the given angle 'Ci

of the associated class Ci in V-A space. (b) Projection of the applied test set from the BU-4DFE
database is shown in light colors with centroid and principal axes for each class. Data with r.t/ <

minr (18.24), i.e. samples with very low expression intensity, are attributed to the neutral class
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Table 18.2 Confusion matrix in percent, t� D 30

Class P.C1/ P.C2/ P.C3/ P.C4/ P.C5/ P.C6/ P.C7/

C1 89:1 0 0:1 0:4 1 0:1 0:3

C2 3:1 82:2 13:3 0 0 1:4 0

C3 1:4 0 93:1 0:1 0:1 5:3 0

C4 0:8 0:5 0 64:5 31:6 1:2 1:4

C5 6:2 1:6 0:2 37:8 50:4 3:5 0:3

C6 4:7 5 14:4 7:3 5:9 62:6 0:1

C7 6:9 0 1:8 6:5 29:5 0:1 53:2

Table 18.3 Confusion matrix in percent, t� D 60

Class P.C1/ P.C2/ P.C3/ P.C4/ P.C5/ P.C6/ P.C7/

C1 89:1 0 0:1 0:4 1 0:1 0:3

C2 3:0 89:0 6:6 0 0 1:4 0

C3 1:4 0 98:4 0:1 0:1 0 0

C4 0:8 0:5 0 65:7 31:6 0 1:4

C5 6:2 1:6 0:2 37:8 50:7 3:5 0

C6 4:7 5:0 1:4 0 5:9 83:0 0

C7 8:9 0 1:8 6:5 0 0:1 82:8

The neutral class C1 is treated in a different way, i.e. in the recognition step a
sample is considered neutral if r.t/ < minr according to (18.24). The threshold
we have determined empirically and set to minr D 0:25. The image material for
the neutral class has been taken from the first frames of the database videos. Per
definition there is a neutral facial expression at the start of every video. In order
to carry out the evaluation we have split the database into training and testing
samples in a randomized way, such that all the classes are represented equally and
no training sample is taken for testing, which leads to an amount of about 1400
samples per class. In the recognition step, a sample is classified as correct if the
angle � is below threshold t�; otherwise it is attributed to the closest adjacent class
in the model plane (Fig. 18.14). Tables 18.2 and 18.3 show the resulting confusion
matrices for two empirical thresholds t�, i.e. t� D 30ı and 60ı. It becomes
obvious how the recognition rate is increasing along with threshold t�, because
more samples are counted as valid. The confusion among the classes C6(Fear) and
C3(Surprise) as well as C7(Sad) and C5(Disgust) clearly shows this. Further, it can
be seen that the highest recognition rates occur for classes with the strongest feature
distinction, i.e. Surprise and Happy, whereas confusion occurs for the other classes.
The average recognition rates are 70.2 and 79.7% for t� D 30 and t� D 60.
Basically, these recognition rates are in accordance with category-based state-of-
the-art methods for this particular database [22]. Concise inspection of the data
shows that even for the human observer, the presented facial expressions cannot
always be interpreted correctly. In this case, the continuous description of the user’s
facially expressed emotional state in the V-A space can provide more opportunities
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for evaluation, compared to the solely category-based recognition. Figure 18.14b
shows the mapping of all used test samples. Also, here the overlapping of samples
becomes obvious, in particular for the classes disgust and anger, as well as sad and
surprise and fear.

Using a Kinect camera system, we have evaluated the dynamic integration with
the temporal smoothness constraint. Exemplary sequences of presented basic emo-
tions are given in Fig. 18.15. Besides extracted features, the temporally smoothed
V-A space projections are shown, along with the evolution of function z.t/ (18.24),
starting from the neutral state in the center. The examples show that the presented
expressions become clearly separated, which enables evaluation in terms of valence
and arousal of the emotion model.

An example of the smoothing effect of the dynamic temporal constraint is given
in Fig. 18.16, which corresponds to first plot in Fig. 18.15a. Also, the underlying
feature sequence plus category-based classification is shown. It demonstrates the
competitive abilities of the V-A classification approach, which exemplarily shows
the detection of a smile. When it comes to evaluation of intensity, the V-A approach

Fig. 18.15 (a) 3-D facial expression model with features in blue. (b) Plot of the projections of
presented classic basic emotions in the V-A space using the temporal constraint

Valence Valence

V-A Space with raw feature projection With dynamic temporal constraint

Arousal Arousal
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Fig. 18.16 Data processing example with a comparison between affect model and category-based
classification. (a) Valence-Arousal mapping without and with dynamic temporal constraint, (b)
corresponding feature vector along with category-based SVM classification
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Fig. 18.17 Measuring intensity: Presentation of emotions with different intensity. (a) Intensity
function r.t/ (18.24). (b) Note that the respective category-based classification does not provide
information about intensity, which shows the advantage of the V-A space-based evaluation

is superior to category-based recognition, as shown in Fig. 18.17. In this example
emotions of different expression intensities are presented. Here the category-based
classification cannot reflect information about intensity, as the V-A approach does.
Thus, it clearly shows the advantage of the applied mapping, which can provide
information about intensity.

18.4.4 Summary and Conclusion

In this chapter, we present a concept for facial expression analysis based on
image data, which accomplishes the mapping of high-dimensional feature data to
the Circumplex model’s valence-arousal plane, including dynamic integration and
determination of intensity. For feature processing, we apply accurate 3-D depth data-
based pose estimation (Sect. 18.2) and feature normalization (Sect. 18.3). As the
results show, the presented concept provides more information about the affective
state of the user than conventional approaches can deliver when using fixed target
classes, like basic emotions, since these rarely occur in HCI applications and also
can be ambiguous, e.g. when detecting fear and surprise simultaneously. Even
though overlapping may exist after V-A transformation, too, this is not necessarily
a bad property, and it is even unavoidable to a certain degree. Overlapping simply
results from the fact that some emotions are near to each other in the affect model
[19]. As such, it can be useful if the evaluation rather shows a tendency of the user’s
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reaction, i.e. “negtive/positive/aroused or not”, than a particular discrete emotion,
which is unlikely to happen. Thus, for an HCI system, this information can be more
valuable, such that the presented concept has a potential impact on applicability
[14].

In future work, we plan several modifications to the three main parts of
our concept. First, in order to facilitate applicability, we want to generalize the
adaptation of the user-specific models that are used in the processing. Next we
will increase the machine’s perceptive capabilities through the use of advanced
sensor technology, like NIR as well as high-speed cameras, and also apply new
detection algorithms, like the one of [18], which can robustly and quickly provide
a greater number of image features. Further, we also want to acquire and adapt
to new application domains. Moreover, at the moment, we neglect the lower right
part of the circumplex model plane. This part contains states such as sleepiness
and calmness. In future work, we also want to address this quadrant, as it bears
potential for vigilance recognition in medical projects, as well as sleep detection in
automotive applications [13].
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