
Chapter 15
Environment Adaption for Companion-Systems

Stephan Reuter, Alexander Scheel, Thomas Geier, and Klaus Dietmayer

Abstract One of the key characteristics of a Companion-System is the adaptation
of its functionality to the user’s preferences and the environment. On the one hand, a
dynamic environment model facilitates the adaption of output modalities in human
computer interaction (HCI) to the current situation. On the other hand, continuous
tracking of users in the proximity of the system allows for resuming a previously
interrupted interaction. Thus, an environment perception system based on a robust
multi-object tracking algorithm is required to provide these functionalities. In
typical Companion-System applications, persons in the proximity are closely
spaced, which leads to statistical dependencies in their behavior. The multi-object
Bayes filter allows for modeling these statistical dependencies by representing the
multi-object state using random finite sets. Based on the social force model and
the knowledge base of the companion system, an approach to modeling object
interactions is presented. In this work, the interaction model is incorporated into
the prediction step of the sequential Monte Carlo (SMC) of the multi-object Bayes
filter. Further, an alternative implementation of the multi-object Bayes filter based
on labeled random finite sets is outlined.

15.1 Introduction

In addition to adapting the system behavior to the user’s preferences and its cogni-
tive state, a Companion-System is expected to adapt to the current environment. An
intuitive example is the adaptation of the system’s input and output modalities. For
example, audio output should not be used for providing confidential information if
other persons are in the proximity of the Companion-System. Further, the presence
of other persons typically increases the uncertainty of speech and gesture input.
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To realize these capabilities, the Companion-System requires an exact model of its
environment including all persons in its proximity.

The environment model is realized using a multi-object tracking system which
jointly estimates the number of persons as well as the current state of the individual
persons. The continuous tracking of the persons in the proximity of the Companion-
System additionally facilitates the resumption of previously interrupted interactions.
Standard multi-object tracking approaches like the Joint Probabilistic Data Associ-
ation (JPDA) [1] filter, the Joint Integrated Probabilistic Data Association (JIPDA)
filter [16], and Multiple Hypotheses Tracking (MHT) [18] are bottom-up approaches
which extend the Kalman filter [7] to facilitate the tracking of multiple objects.
During the last decade, approximations of the Multi-Object Bayes filter [11] became
very popular in multi-object tracking applications. The representation of the multi-
object state using random finite sets (RFSs) naturally represents the uncertainty
in the number of objects as well as in their individual states. Hence, a realization
of an RFS delivers an estimate for the number of persons in the proximity of the
Companion-System. Since the number of objects in each realization is fixed, an
RFS allows for the incorporation of dependencies between the objects, which is not
possible in standard multi-object tracking approaches. Especially in crowded envi-
ronments, the modeling of statistical dependencies between the objects is required
since the presence of other objects physically restricts the possible movements of
the considered object. A popular approach to modeling the interactions of persons
is the Social Force Model [5], which is widely used for the simulation of evacuation
scenarios.

This chapter is outlined as follows: First, the basics of random finite sets
and multi-object tracking are introduced. In Sect. 15.3, a sequential Monte Carlo
implementation of the multi-object Bayes filter as well as possibilities to integrate
object interactions in the filtering algorithm are presented. Finally, an accurate
and efficient approximation of the multi-object Bayes filter, the labeled multi-
Bernoulli filter, is introduced and the differences with the sequential Monte Carlo
implementation of the multi-object Bayes filter are illustrated.

15.2 Random Finite Sets and the Multi-object Bayes Filter

Random vectors are typically used to represent the state of an object in single-object
tracking. A commonly used approach to applying random vectors for multi-object
tracking is to stack the vectors of the individual objects. However, a drawback of
this approach is the missing representation of the uncertainty about the number of
objects and the ordering of the stacked vectors. In contrast, a random finite set (RFS)

X D fx.1/; : : : ; x.n/g (15.1)

comprises a random number n � 0 of unordered points whose states are represented
by random vectors x.1/; : : : ; x.n/. Hence, an RFS X implicitly captures the uncer-
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tainty in the number of objects of the multi-object state. Similarly to single-object
tracking, the state of the individual objects is represented using random vectors. Due
to the varying number of objects in the sensor’s field of view and the possibility of
missed detections and false alarms, the measurement process typically returns a
random number of measurements. Further, the values of the measurements are also
random. Consequently, an RFS

Z D fz.1/; : : : ; z.m/g (15.2)

is well suited to represent the uncertainty of the measurement process, where z.i/

denotes a single measurement. Finite set statistics (FISST) facilitates calculations
with RFSs using the notion of integration and density in a way which is consistent
with point process theory. Hence, FISST provides a mathematically well-founded
way to extend the well-known single-object Bayes filter to multi-object tracking
applications using RFSs—the multi-object Bayes Filter [11]. By filtering a finite
set-valued random variable over time, the estimate obtained by the multi-object
Bayes filter captures the uncertainty in number of objects in addition to the state
uncertainty of the individual objects. Similarly to the single-object Bayes filter,
the multi-object Bayes filter comprises a prediction and an update step, which are
outlined in the following. For additional details as well as the derivations, the reader
is referred to [11].

In the prediction or time update step, the multi-object posterior density at
time k is predicted to the time of the next measurement. In contrast to single-
object tracking, where a prediction of the object’s state x to the time of the next
measurement using a Markov density fC.xCjx/ is sufficient, the motion models
required for multi-object tracking are far more complex. In addition to the state
transition of the individual objects, the multi-object motion model is required
to handle object appearance and disappearance. In some applications, it may
even be necessary to incorporate object spawning, i.e. that an already existing
object originates a new object. Since spawning is not relevant for the environment
perception of a Companion-System, it is neglected in the following.

The standard multi-object motion model introduced by Mahler [11] comprises
the following assumptions:

• an object survives during the transition to the time of the next measurement with
probability pS.x/,

• each object is assumed to move independently of other objects in the scene based
on a Markov transition density fC.xCjx/,

• new-born objects follow a Poisson distributed birth density �B.X/ which is
statistically independent of the persisting objects.

Based on these assumptions, the multi-object Markov density is given by

fC.XCjX/ D �B.XC/�C.;jX/
X

�

Y

iW�.i/>0

pS.x
.i// � fC.x.�.i//

C jx.i//

.1 � pS.x
.i/// � �BpB.x.�.i//

C /
: (15.3)
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Here, the state-dependent survival probability is denoted by pS.�/ and the expected
number of new-born objects �B as well as the probability density pB.�/ are param-
eters of the birth model. The sum in (15.3) includes all possible associations � W
f1; : : : ; n0g ! f0; 1; : : : ; ng; the association �.i/ D 0 represents the disappearance
of object i and �.i/ > 0 implies the persistence of object i. The probabilities of all
objects being new-born and of the disappearance of all objects are given by

�B.XC/ D e��B

nY

iD1

�BpB.x.i/
C / (15.4)

and

�C.;jX/ D
n0Y

iD1

�
1 � pS.x

.i//
�

: (15.5)

Observe that the contribution of a state vector x.i/ to (15.4) and (15.5) is canceled
out for all associations �.i/ > 0 by the denominator of the product in (15.3).

Using the Chapman-Kolmogorov equation and the multi-object Markov den-
sity (15.3), the prediction of the multi-object Bayes filter to the time of the next
measurement is given by

�C.XC/ D
Z

f .XCjX/�.X/ıX; (15.6)

where �.X/ is the prior multi-object density. Observe that the Markov assumption
used in (15.6) implies that the multi-object posterior density �.X/ captures the
entire information about the multi-object state at a time k. The integral in (15.6)
is a set integral which integrates over all possible cardinalities.

The update step of the multi-object Bayes filter is based on a multi-object
likelihood function g.ZjXC/ incorporating the single-object likelihood function
g.zjxC/, the field of view (FOV) of the sensor, the detection probability, and the
false alarm rate. Here, the single-object likelihood function g.zjxC/ provides the
likelihood that a measurement z has been generated by object xC based on the spatial
distance and the corresponding uncertainties. Further, the state-dependent detection
probability incorporates the handling of the sensor’s FOV. The standard multi-
object measurement model [11] is illustrated by Fig. 15.1 and uses the following
assumptions:

• A measurement is generated by at most one object and each object is observed
by the sensor according to a single-object spatial likelihood function g.zjxC/,

• Each object gives rise to a measurement according to the state dependent
detection probability pD.xC/ and it is not detected with probability 1 � pD.xC/,

• The sensor delivers Poisson-distributed false alarms with mean number of �c

measurements. The false alarms follow the spatial distribution c.z/ which is



15 Environment Adaption for Companion-Systems 305

Fig. 15.1 Illustration of the events represented by the multi-object likelihood function: object
detections (red rectangles), missed detections (no measurement for partially occluded person on
the right side), false alarms (red dashed rectangles)

usually modeled by a uniform distribution over the sensor’s FOV. Further, the
object detection process and the false alarm process are assumed to be statisti-
cally independent and the measurements have to be conditionally independent of
the objects’ states.

In multi-object tracking, the track-to-measurement association, i.e. which mea-
surement belongs to which target, is ambiguous in most scenarios due to the spatial
uncertainty of the objects’ states and the measurements. Further, the possibility of
missed detections and false alarms additionally increases the ambiguity. To handle
these ambiguities, the multi-object likelihood function averages over all possible
association hypotheses, which is the best one can do if no prior knowledge about
the track-to-measurement association is available. Similarly to the multi-object
Markov density, the association hypotheses for n objects and m measurements
are represented by � W f1; : : : ; ng ! f0; 1; : : : ;mg, where the measurement ‘0’
covers possible missed detections of some of the objects. The assumption that a
measurement belongs to at most one of the objects is ensured by �.i/ D �. j/ > 0

if and only if i D j, which uniquely assigns a measurement z�.i/ to an object i. The
missed detection of an object is represented by �.i/ D 0.
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Using the associations � , the multi-object likelihood function covering missed
detections and false alarms is given by

g.ZjXC/ D �C.Z/�.;jXC/
X

�

Y

iW�.i/>0

pD
�
x.i/

C
� � g�z�.i/jx.i/

C
�

�
1 � pD

�
x.i/

C
�� � �cc

�
z�.i/

� ; (15.7)

where pD.�/ denotes the state-dependent detection probability and g.�j�/ is the single-
object likelihood function representing the likelihood of a measurement z�.i/ given

an object with predicted state x.i/
C . The expected number of false alarms �c and the

spatial distribution c.�/ are the parameters of the Poisson clutter process. The factor

�.;jXC/ D
nY

iD1

�
1 � pD

�
x.i/

C
��

(15.8)

denotes the probability that none of the objects has been detected by the sensor at
the current time step and

�C.Z/ D e��c
Y

z2Z

�cc.z/ (15.9)

is the probability that all measurements z 2 Z are originated by the clutter process.
Using (15.7), the multi-object posterior density after integrating the current set

of measurements is calculated using the multi-object Bayes filter update,

�.XjZ/ D g.ZjX/�.X/R
g.ZjX/�.X/ıX

: (15.10)

The recursive update of the multi-object posterior density is consequently realized
by applying (15.6) and (15.10) each time a new measurement is obtained. Similarly
to the single-object Bayes filter, an analytical implementation of the multi-object
Bayes filter is not possible in general. However, the multi-object Bayes filter
facilitates an approximation using sequential Monte-Carlo (SMC) methods as well
as a closed-form implementation using ı-generalized labeled multi-Bernoulli (ı-
GLMB) RFSs which are presented in detail in Sects. 15.3 and 15.4.

Further approximations of the multi-object Bayes filter, which will not be
discussed in in this chapter, are the probability hypothesis density (PHD) filter
[9], the cardinalized probability hypothesis density (CPHD) filter [10], and the
cardinality balanced multi-target multi-Bernoulli (CB-MeMBer) filter [32]. While
the PHD and CPHD filters approximate the multi-object posterior by the first
statistical moment (and the cardinality distribution in case of the CPHD filter), the
CB-MeMBer filter approximates the posterior using a Multi-Bernoulli distribution.
Further details as well as implementations of these filters using Gaussian mixture
(GM) and SMC methods are given in [10, 28, 30–33].
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15.3 SMC Implementation of the Multi-object Bayes Filter
and Modeling of Object Interactions

In typical applications of Companion-Systems, a high number of humans in the
proximity is expected. Obviously, the movement of the individual persons is
restricted in these scenarios by the presence of other persons, leading to statistical
dependencies in their movements. In the following, the sequential Monte-Carlo
(SMC) implementation of the multi-object Bayes filter incorporating object inter-
actions is presented. For further details, the reader is referred to [19, 20, 22] as well
as [8, 11, 26, 30].

In the SMC implementation of the single-object Bayer filter, vector-valued
particles x.i/ 2 R

n are typically used to approximate the spatial distribution p.x/.
For the sequential Monte-Carlo multi-object Bayes (SMC-MOB) filter, each multi-
object particle has to be a sample of a random finite set and is consequently given
by a set of state vectors

X.i/ ,
˚
x.1/; : : : ; x.n/

�
; (15.11)

where the number of objects n as well as the state vectors x. j/ are random. In the
following, the state vectors x. j/ of the multi-object particle X.i/ are conveniently
called “particles”. Using the � multi-object particles, the multi-object probability
density is approximated by

�.X/ Š
�X

iD1

w.i/ � ıX.i/.X/: (15.12)

15.3.1 Prediction

The prediction step of the SMC-MOB filter has to predict each multi-object particle
according to the multi-object Markov density (15.3), incorporating the motion of
persisting objects as well as object appearance and disappearance. Consequently, the
prediction of a multi-object particle is obtained by the union of the set of surviving
particles X.i/

C;S and the set of new-born particles X.i/
B :

X.i/
C D X.i/

C;S [ X.i/
B : (15.13)

The set of persisting particles of a multi-object particle X.i/ D fx.1/; : : : ; x.n/g
is obtained by a multi-Bernoulli distribution using the persistence probability
pS.x

. j// as a parameter. Since a multi-Bernoulli distribution is the union of several
independent Bernoulli distributions, the persistence of each object is assumed to
be statistically independent of other objects. Thus, the persistence of a subset
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fx.1/; : : : ; x.n0/g has a probability of

�
�˚

x.1/; : : : ; x.n0/
�ˇ̌

X.i/
�

D
Y

x2X.i/

�
1 � pS.x/

� �
Y

Qx2fx.1/;:::;x.n0/g
pS.Qx/

1 � pS.Qx/ : (15.14)

Instead of drawing the persisting particles directly using (15.14), the inde-
pendence of the M Bernoulli distributions within the multi-Bernoulli distribution
facilitates sampling the persistence of each particle independently. This can be
realized by drawing a uniformly distributed random number �. j/ for each particle
in X.i/. Consequently, the set of persisting particles follows

X.i/
S D ˚

x W �. j/ < pS.x
. j// 8 j D 1; : : : ; jX.i/j� : (15.15)

Hence, a particle only persists if its state-dependent survival probability is greater
than the drawn random number. Finally, the j D 1; : : : ; n0 persisting particles have
to be predicted to the time of the next measurement using a single-object Markov
transition density,

x. j/
C � fC

��jx. j/
�

; (15.16)

in order to obtain the predicted set of surviving particles:

X.i/
C;S D

n
x.1/

C ; : : : ; x.n0/
C
o

: (15.17)

The birth process is utilized to obtain the set of new-born particles X.i/
B .

Therefore, the number of appearing objects nB is sampled from a Poisson-distributed
cardinality distribution �B.n/ with an expectation value of �B. The state of the new-
born particles is obtained by sampling from the spatial distribution pB of new-born
objects:

x. j/
C � pB.�/ 8 j D 1; : : : ; nB: (15.18)

15.3.2 Update

In the update step of the SMC-MOB, the weight of each multi-object particle
has to be updated using the multi-object likelihood function (15.7). The usage
of a hypotheses tree [12–14] facilitates an intuitive representation of all valid
association hypotheses. An example of a hypotheses tree is illustrated by Fig. 15.2
for a scenario with two objects and two measurements. A complete association
hypothesis for a multi-object particle corresponds to the path from the root of the
tree to a leaf. Since different cardinalities are represented by additional hypotheses
trees and the assignment of measurements to the clutter source is realized by the
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t2 ↔t2 ↔ z2 t2 ↔ z1 t2 ↔ t2 ↔ z1 t2 ↔ z2 t2 ↔

t1 ↔ z1 t1 ↔ z2 t1 ↔ 0/

0/ 0/ 0/

Fig. 15.2 Hypotheses tree for a scenario with two objects, t1 and t2, and two measurements, z1

and z2. Each node represents an association of the object ti to measurement zj (i.e., �.i/ D j ) or
the missed detection ; (i.e., �.i/ D 0)

factor �C.Z/, the hypotheses tree for the SMC-MOB filter is less complex than
the one for the joint integrated probabilistic data association (JIPDA) algorithm
in [12, 14]. The likelihood of an association �.i/ corresponds to an edge of the
hypotheses tree. The value of each summand of (15.7) is calculated by multiplying
the edge likelihoods from the root of the tree to the corresponding leaf. The
likelihood of the measurement Z for the multi-object particle X.i/

C is obtained by
accumulating the likelihoods for all paths and a subsequent multiplication with the
clutter factor �C.Z/ and the missed detection factor �.;jX.i/

C /. Similarly to [12, 14],
the likelihoods for all track-to-measurement assignments are calculated a priori and
stored in a lookup table. The implementation of the hypotheses tree using recursion
is straightforward.

The update step of the SMC-MOB filter does not affect the state of the multi-
object particles, i.e. the posterior multi-object particles are identical to the predicted
ones:

X.i/ , X.i/
C : (15.19)

However, the weights of the multi-object particles are updated using the multi-object
likelihood function:

w.i/ ,
�
�

ZjX.i/
C
�

�X

eD1

�
�

ZjX.e/
C
� : (15.20)

Here, the denominator is a normalizing constant which ensures that the weights still
sum up to 1 after the update.

After several measurement updates, the weights typically tend to concentrate
on one or only a few multi-object particles since the prediction step increases the
variance of the particles and the update does not decrease the variance. Hence,
standard resampling approaches used for SMC implementation of the single-object
Bayes have to be applied [25, 27].
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15.3.3 Modeling Object Interactions

The standard multi-object motion model given by (15.7) assumes that the motion of
each object depends only on its current state and the assumed motion model, i.e. the
objects are considered to be statistically independent. Especially in scenarios with
closely spaced objects, this assumption leads to physically impossible multi-object
states after prediction. In the context of a Companion-System, typical examples of
these impossible states are multi-object particles

In order to avoid invalid multi-object states, an appropriate model for human
motion is required. In [6], Henderson observed correlations between fluid dynamics
and human motion. However, this approach facilitates only a macroscopic formu-
lation which, e.g., delivers the mean velocity of a group of people. In contrast, the
Social Force Model proposed by Helbing and Molnar [5] uses a microscopic model
to represent human motion where changes of the individual behaviors due to the
current environment are modeled by attractive and repellent force vectors. Repellent
forces are typically used to avoid collisions with other persons as well as static
obstacles. Attractive forces are used to model the destination of a person. Further,
the model is based on the knowledge that each person tries to reach its destination
on the shortest path while moving with its desired velocity.

In addition to scenarios with closely spaced objects, the incorporation of object
interaction is also recommended for scenarios with occlusions or in the case of
low measurement rates. In Sect. 15.3.3.1, an approach based on the incorporation
of physical constraints is proposed which avoids collisions of the persons and may
be realized without any additional information. Further, Sect. 15.3.3.2 outlines the
possibilities to improve the tracking results by using the information available in the
Companion-Systems knowledge base.

15.3.3.1 Set-Based Weight Adaption

In order to obtain only valid predicted multi-object states, an incorporation of object
inter-dependencies in the transition densities is required. Since the computation
of such transition densities is computationally demanding, the proposed method
predicts all objects within a multi-object particle independently, and a subsequent
weight adaption of the multi-object particles is applied to remove invalid ones.

The weight adaption is based on the repellent forces used in the social force
model, which are modeled using exponential functions [17]. In the case of circular
objects with radius rp, the likelihood that a multi-object particle comprises two
objects s and t follows

�d.x
.s/; x.t// D

(
0 if d.x.s/; x.t// < 2rp

1 � exp
�
� .d.x.s/;x.t//�2rp/2

2	2
d

�
otherwise;

(15.21)
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where d.x.s/; x.t// denotes their Euclidean distance. Obviously, a likelihood of 0 is
assigned if two objects are overlapping and the exponential function facilitates a
smooth transition of the likelihood function for all distances up to the preferred inter-
object distance. Afterwards, the weight of the multi-object particle X.i/ is adapted
using the minimum likelihood of all possible pairings .s; t/:

ew.i/
C D min

sD1;:::;jX.i/j

 
min

tD1;:::;jX.i/j;t¤s

�
�d.x

.s/; x.t//
�
!

� w.i/
C : (15.22)

The weight of a multi-object particle is set to 0 if any two of its objects are colliding.
In contrast, the weight of the multi-object particle is unchanged if the distances
between all of its objects are higher than the preferred distance.

15.3.3.2 Integration of Destinations Using Knowledge Base

A Companion-System comprises a multitude of different components, each of
which can potentially produce and/or consume information (see Fig. 15.3). As
decision making and inference across different modules has to be kept consistent,
a central probabilistic knowledge base (KB) is tasked with maintaining a global
filtered probabilistic belief state XKB. Consistency requires that the local belief
state XC of a component C correspond to the marginalization of XKB over the
variables not included in C. To achieve this global synchronization, probabilistic
state information may flow bidirectionally between the KB and the interfacing
modules. By maintaining a globally consistent belief state, the knowledge base
provides mutual abstraction between all interfacing components, such that every
module has to deal only with its local view of the global state. Such joint treatment
of belief across components fosters synergistic effects, which may also improve the
state prediction of multi-object trackers. Information originating from high-level
components can be used to improve track continuity—in particular in situations

Probablilistic
Knowledge BasePlanning Dialogue

Management

MOB Filter

Sensor

Classifier

Sensor

. . .

Fig. 15.3 Architecture of a prototypical Companion-System. The central knowledge base main-
tains a filtered belief state. It integrates between lower-level sensor processing modules, like
the multi-object tracker and further classifier, and high-level functionality, including decision
making/planning and routines of the user interface
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featuring occlusions or low measurement rates, where the associations of the tracks
between the individual time steps are ambiguous.

Basically every correlation between the global belief state XKB and the true
location of a certain object/user can be used to improve the association quality. We
can identify several sources of potentially useful information, although a large part
of the model is application-dependent. As human users are supposed to interact with
the system, we can harvest this interaction to gain hints about their true location. A
registered touch event at a stationary device gives a strong indication that a user
instead of a non-user is standing in front of the device. Further, knowledge about
screen content increases the chance that a user will be moving toward the screen
to read the information, even if no touch contact takes place. Besides information
originating from the dialog management, we can also use knowledge obtained
from planning. The planning component maintains a future course of action for
the user [2] to follow. If some actions are known to be connected to a certain
location, we can exploit this knowledge to improve the tracking accuracy. An
exemplary situation happens when the system issues a job to a printer, and the user
is supposed to fetch the produced document. Then this knowledge, in combination
with knowledge of the location of the printer, can be used to disambiguate which
observed object corresponds to the current user.

To exploit such hints on the true user location, one can follow two approaches.
One approach consists of the multi-object tracking algorithm maintaining the track
labels only in cases of high confidence, trying to avoid any wrong associations.
This results in many spawned tracks belonging to the same object in challenging
situations. Then a track to person association can be maintained by the knowledge
base using available background information. The feasibility of this approach
has been demonstrated successfully in an experimental setting [3, 4] using a
probabilistic model formulated with Markov Logic [24]. One major disadvantage
could be identified in the requirement of discretizing the user position, because
of the limitations of the modeling language. The second approach is to improve
the performance of the multi-object tracking algorithm itself by integrating the
hints about current and future positions of human users. The (typically imprecise)
knowledge about future destinations of the user may be used within the Social Force
Model to improve the predicted state of the users, which is expected to significantly
improve the performance in case of long term occlusions.

15.3.4 Real-Time Implementation

An implementation of the SMC-MOB filter requires a very large number of multi-
object particles to obtain a sufficient approximation of the multi-object posterior.
The reason for this is that the dimension of the space of the multi-object particles
is given by the dimension of the state vector times the number of objects in the
scene. The prediction and update steps of the SMC-MOB filter facilitate a massively
parallel implementation since the calculations for each multi-object particle do not
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t2 ↔ z1 t2 ↔t2 ↔ z2 t2 ↔ z1 t2 ↔ z2 t2 ↔ t2 ↔ z1 t2 ↔ z2 t2 ↔

t1 ↔ z1 t1 ↔ z2 t1 ↔ 0/

0/ 0/ 0/

Fig. 15.4 Approximate multi-object likelihood function: compared to Fig. 15.2, two additional
nodes (marked by red dashed lines) have been added which facilitate the assignment of one
measurement to multiple tracks

depend on any other multi-object particle. Consequently, graphics processing units
(GPUs) are well suited for the implementation of the SMC-MOB filter.

Due to the combinatorial complexity and the restrictions concerning recursive
functions on GPUs, an exact computation of the multi-object likelihood function is
only feasible for a limited number of tracks and measurements. The reason for the
complexity is the assumption that a measurement is created by at most one object.
Neglecting this assumption, the multi-object likelihood function simplifies to [19]
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C /
�
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A ; (15.23)

i.e. the multi-object likelihood may be calculated using two for loops and the
computational complexity reduces to O.mn/, where n is the number of objects
and m is the number of measurements. The corresponding hypotheses tree for two
measurements and two tracks is depicted by Fig. 15.4. Obviously, the approximation
leads to two additional nodes in the tree (marked by dashed lines) and the
approximation error is negligible if each measurement has a significant likelihood
for at most one object, i.e. the association hypotheses due to the two additional
nodes have an insignificant contribution to the multi-object likelihood function.
Modeling object interactions as presented in Sect. 15.3.3; the approximation errors
are negligible if the extent of the objects is significantly larger than the standard
deviation of the measurement noise.

In [21, 22], it is shown that the proposed approximation of the multi-object
likelihood function facilitates a real-time capable implementation of the SMC-MOB
filter using a GPU. With a total number of 25,000 multi-object particles, an Nvidia
Tesla C2075 GPU processes the prediction step, the update step and the track
extraction in less than 40 ms for a scenario with up to seven objects.
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15.4 Labeled Multi-Bernoulli Filter

The SMC-MOB filter introduced in the previous section requires a huge number of
multi-object particles since the dimension of the sample space increases linearly
in the number of objects. Since the required number of multi-object particles
for a sufficient state representation grows exponentially with the state dimension,
the maximum number of objects in the scene is limited due to the available
computational resources. Hence, alternative approaches are required to handle large
numbers of objects.

In [29], Vo and Vo showed that the class of ı-generalized labeled multi-Bernoulli
(ı-GLMB) RFSs is closed under the prediction and update equations of the multi-
object Bayes filter1 for the standard multi-object motion model as well as the
standard multi-object likelihood. Hence, the ı-GLMB filter [29] facilitates an
analytical implementation of the multi-object Bayes filter. Similarly to the SMC-
MOB filter, the number of components required within the ı-GLMB filter is
combinatorial. The labeled multi-Bernoulli (LMB) filter [19, 23] approximates the
ı-GLMB distribution by an LMB distribution which facilitates the tracking of a
huge number of objects due to the application of principled approximations.

15.4.1 Labeled Random Finite Sets

The SMC-MOB filter as well as the PHD, CPHD, and CB-MeMBer filters require
a (typically heuristic) post-processing to extract object tracks out of the estimated
multi-object probability density. The underlying idea of the class of labeled RFSs is
to augment the state by track labels. Thus, filtering a labeled RFS over time delivers
a joint estimate of the number of tracks, their individual positions as well as their
trajectories.

In a labeled RFS, each object’s state x 2 X is augmented by a label ` 2 L,
where L is a discrete label space (e.g., the set of positive integers N). Consequently,
a labeled multi-object state is represented by the set X D fx.1/; : : : ; x.n/g on the
space X � L, where the labeled state vectors are abbreviated using x D .x; `/. In
multi-object tracking applications, it is required that the object labels are distinct,
i.e. a label ` may be assigned to at most one object in each realization. In order to
ensure distinct labels within each realization of a labeled RFS X, the distinct label
indicator [29]


.X/ D ıjXj.jL .X/j/ (15.24)

1Observe that the number of components of the ı-GLMB distribution increases during these steps.
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requires the cardinality of a realization X to be equal to the number of distinct track
labels jL .X/j, where the set of track labels is given by the projection

L .X/ D fL .x/ W x 2 Xg (15.25)

with L .x/ D L ..x; `// D `.

15.4.1.1 Labeled Multi-Bernoulli Random Finite Set

The representation of the uncertainty about object existence is intuitively realized
using a Bernoulli RFS X. With the existence probability r, the Bernoulli RFS is
given by a singleton. Consequently, the RFS X corresponds to the empty set with
probability 1 � r. The probability density of a Bernoulli RFS follows [11, pp. 368]

�.X/ D
(

1 � r; if X D ;;

r � p.x/; if X D fxg; (15.26)

where p.x/ is the spatial distribution of the object on the space X. Obviously, the
cardinality distribution follows a Bernoulli distribution with parameter r. A multi-
Bernoulli distribution X [11] is the union of M independent Bernoulli RFSs X.i/, i.e.
X D [M

iD1X.i/.
By interpreting the component indices of the multi-Bernoulli distribution as track

labels, the LMB RFS [29] is obtained which is completely defined by the parameter
set

� .X/ D f.r.`/; p.`//g`2L : (15.27)

Using the multi-object exponential notation, an LMB RFS is expressed by

� .X/ D 
.X/w.L .X//pX ; (15.28)

where hX D Q
x2X h.x/ and h; D 1. The weights of the realizations are given by

the multi-Bernoulli distribution

w.L/ D
Y

i2L

�
1 � r.i/

�Y

`2L

1L.`/r.`/

1 � r.`/
; (15.29)

and the spatial distributions are p.x; `/ D p.`/.x/. An example for an LMB RFS is
illustrated by the upper part of Fig. 15.5.
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Fig. 15.5 Representation of the multi-object state using LMB and ı-GLMB RFSs. An LMB
RFS can be equivalently rewritten in ı-GLMB form. In contrast, a ı-GLMB RFS can only be
approximated using an LMB RFS

15.4.1.2 ı-Generalized Labeled Multi-Bernoulli Random Finite Set

An LMB RFS facilitates exactly one realization for a given set of track labels due
to the assumption of statistical independence of the tracks. In contrast, a ı-GLMB
RFS provides the possibility of several realizations for each set I of track labels. The
distribution of a ı-GLMB RFS is given by

� .X/ D 
.X/
X

.I;�/2F .L/��

w.I;�/ıI.L .X//
�
p.I;�/

�X
; (15.30)

where � denotes the history of track-to-measurement associations. Thus, the
ı-GLMB RFS is able to represent the ambiguity in the track-to-measurement
association during the filter update using several components or hypotheses for each
set of track labels.

The difference between an LMB RFS and a ı-GLMB RFS is depicted by
Fig. 15.5 (observe that only a subset of all hypotheses of the ı-GLMB RFS is
shown). While the LMB RFS requires the tracks to be statistically independent,
the ı-GLMB RFS facilitates the representation of statistical dependencies. Since
an LMB RFS is a special case of a ı-GLMB RFS, it can be transformed into the
corresponding ı-GLMB representation. In contrast, a ı-GLMB RFS can only be
approximated by an LMB RFS.
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15.4.2 Implementation of the Labeled Multi-Bernoulli Filter

The labeled multi-Bernoulli (LMB) filter is based on the representation of the multi-
object state using an LMB RFS. A complete cycle of the LMB filter is conceptually
illustrated by Fig. 15.6. In the following, the main ideas behind the LMB filter are
outlined for an implementation using GMs. For additional details, the derivation of
the filter, and SMC implementations, refer to [19, 23].

In the prediction step, the Bernoulli distribution of each track ` is predicted
independently. First, the spatial distribution of the track is predicted using the well-
known Kalman filter equations. In the case of slightly non-linear motion models, the
corresponding equations of the extended Kalman filter (EKF) or unscented Kalman
filter (UKF) have to be applied. The prediction of the track’s existence probability
is realized by multiplying the posterior existence probability with the survival
probability pS. Finally, the tracks of the birth distribution have to be appended to
the predicted LMB RFS.

To reduce the computational complexity of the filter update, the predicted LMB
density is partitioned using a grouping procedure. The grouping procedure returns
groups of closely spaced objects and their associated measurements where the
groups can be assumed to be statistically independent in case of sufficiently large
gating values. Thus, the filter update can be applied to each group independently,
which significantly reduces the computational load [23].

The grouping procedure enables parallel processing of each group during filter
update. The update of each group is performed as follows: After transforming
the LMB RFS of each group to ı-GLMB form, the full ı-GLMB update [29] is
applied, which results in several hypotheses for each set of track labels due to
the ambiguity of the track-to-measurement association. The hypotheses are again
given by the tree in Fig. 15.2, where each path from the root to a leaf represents
a single association hypothesis. In order to reduce computational load, only the k
best association hypotheses are evaluated for large groups using Murty’s algorithm
[15]. After calculating the updated hypotheses, the posterior ı-GLMB density of

Fig. 15.6 LMB filter
schematic
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each group is approximated by an LMB RFS. The approximation matches the first
moment of the ı-GLMB density, i.e. the spatial distribution and the mean value of
the cardinality distribution of the approximation are equivalent while the cardinality
distribution itself differs. Finally, the LMB RFSs of the groups are merged and
the subsequent track management module is extracting track estimates and pruning
tracks with very small existence probabilities.

15.5 Conclusion

This chapter presented two multi-object tracking algorithms based on random finite
sets, which are suitable to track all humans in the proximity of a Companion-
System. The SMC-MOB filter facilitates the integration of object-interactions as
well as the information of a knowledge-base in the filtering algorithm. In contrast,
the LMB filter requires significantly smaller computational resources and is capable
of tracking even huge numbers of objects. The table in Fig. 15.7 summarizes the
differences of the two filters and illustrates that the choice for the most convenient
tracking algorithm strongly depends on the scenarios that should be handled.

The presented multi-object tracking algorithms facilitate an adaption of the Com-
panion-System’s behavior to the current environment. Examples for the adaption are
given in the context of the demonstration scenario 3 (see Chap. 25), e.g., activation

LMB SMC-MOB (approx.)

Approximation Type - parameters of labeled
multi-Bernoulli
distribution

- multi-object particles

Approximations - approximation of
posterior using LMB 
RFS 

- truncation of update 
hypotheses using
Murty‘s algorithm

- exact representation
requires huge amount
of particles

- likelihood
approximation

Complexity
(prediction/update)

- linear / cubic - linear (one per multi-
object particle) / linear

Pros - integrated track
labeling

- reduced complexity due 
to grouping

- tracking huge number
of objects

- modeling of object
interactions

Cons - track coalescence
possible

- number of particles
grows exponentially in 
number of objects

Fig. 15.7 Comparison of LMB and SMC-MOB filters
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of the system or including the group size into the purchase process. Further,
the continuous tracking of the user provides the possibility to resume previously
interrupted interactions. Other possibilities include the adaption of the input and
output modalities to the current situation.
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