
Gradual Stabilization Under τ -Dynamics

Karine Altisen1, Stéphane Devismes1, Anäıs Durand1(B), and Franck Petit2

1 VERIMAG UMR 5104, Université Grenoble Alpes, Saint-Martin-d’Hères, France
anais.durand@imag.fr

2 LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, Paris, France

Abstract. In this paper, we introduce the notion of gradually stabilizing
algorithm as any self-stabilizing algorithm with the following additional
feature: if at most τ dynamic steps occur starting from a legitimate
configuration, it first quickly recovers to a configuration from which a
minimum quality of service is satisfied and then gradually converges to
stronger and stronger safety guarantees until reaching a legitimate config-
uration again. We illustrate this new property by proposing a gradually
stabilizing unison algorithm.

1 Introduction

Self-stabilization [10] is a general paradigm to enable the design of distributed
systems tolerating any finite number of transient faults. Consider the first con-
figuration after all transient faults cease. This configuration is arbitrary, but
no other transient faults will ever occur from this configuration. By abuse of
language, this configuration is referred to as arbitrary initial configuration of
the system in the literature. Then, a self-stabilizing algorithm (provided that
faults have not corrupted its code) guarantees that starting from an arbitrary
initial configuration, the system recovers within finite time, without any external
intervention, to a so-called legitimate configuration from which its specification
is satisfied. Thus, self-stabilization makes no hypotheses on the nature (e.g.,
memory corruptions, topological changes) of transient faults, and the system
recovers from the effects of those faults in a unified manner. Such versatility
comes at a price, e.g., after transient faults cease, there is a finite period of
time, called stabilization phase, during which safety properties of the system
may be violated. Hence, self-stabilizing algorithms are mainly compared accord-
ing to their stabilization time, i.e., the maximum duration of the stabilization
phase. Many problem specifications induce a significant stabilization time, e.g.,
in the context of synchronization tasks [3] and more generally for specifications
of non-static problems [13], such as broadcast, the lower bound is Ω(D) rounds,
where D is the diameter of the network. By definition, the stabilization time is
impacted by worst case scenarios, but, in many cases, transient faults are sparse
and their effect may be superficial. Recent research thus focuses on proposing
self-stabilizing algorithms that also ensure drastically smaller convergence times
in favorable cases.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 588–602, 2016.
DOI: 10.1007/978-3-319-43659-3 43



Gradual Stabilization Under τ -Dynamics 589

Defining the number of faults hitting a network using some kind of Hamming
distance (minimal number of processes whose state must be changed in order
to recover a legitimate configuration), variants of self-stabilization have been
defined. A time-adaptive self-stabilizing algorithm [21] additionally guarantees a
convergence time in O(k) time units when the initial configuration is at distance
at most k from a legitimate configuration. Fault containing self-stabilizing algo-
rithms [14] ensure that when few faults hit the system, the faults are both spa-
tially and temporally contained. “Spatially” means that those faults cannot be
propagated further than a preset radius around the corrupted processes. “Tem-
porally” means quick stabilization when few faults occur. Some other approaches
consist in providing convergence times tailored by the type of transient faults, e.g.,
a superstabilizing algorithm [11] is self-stabilizing and has two additional proper-
ties when transient faults are limited to a single topological change: after adding
or removing one link or process in the network, it recovers fast (typically O(1)
rounds), and a safety predicate, so-called passage, should be satisfied meanwhile.

Contributions. We introduce the notion of gradually stabilizing algorithm as
any self-stabilizing algorithm achieving the following additional feature. If at
most τ dynamic steps1 occur starting from a legitimate configuration, a grad-
ually stabilizing algorithm first quickly recovers to a configuration from which
a specification offering a minimum quality of service is satisfied. It then gradu-
ally converges to specifications offering stronger and stronger safety guarantees
until reaching a configuration from which its initial (strong) specification is sat-
isfied again, and where it is ready to achieve another gradual convergence in
case of up to τ new dynamic steps. Of course, this property makes sense only if
convergence to every intermediate weaker specification is fast.

We illustrate this new property by considering three variants of a synchro-
nization problem respectively called strong, weak, and partial (asynchronous)
unison. In these problems, each process maintains a local clock. We restrict
our study to periodic clocks, i.e., clocks are integer variables whose domain is
{0, . . . , α − 1}, where α ≥ 2 is called the period. Each process should regularly
increment its clock modulo α (liveness) while fulfilling some safety requirements.
The safety of strong unison requires that at most two consecutive clock values
exist in each configuration of the system. Weak unison only requires that the dif-
ference between clocks of every two neighbors is at most one increment. Finally,
we define partial unison as a specification dedicated to dynamic systems which
enforces the difference between clocks to remain at most one increment, but only
for neighboring processes that do not appear during the dynamic steps.

We propose a self-stabilizing strong unison algorithm which works with any
period α > 4 in any anonymous connected network. It assumes the knowledge
of two values μ and β, where μ is any upper bound on n — the (initial) number
of processes, α should divide β, and β > μ2. Our algorithm is designed in
the locally shared memory model and assumes the distributed unfair daemon,
the most general daemon of the model. Its stabilization time is at most n +
(μ + 1)D + 1 rounds, where D is the diameter of the network. We then slightly
1 N.b., a dynamic step is a step containing topological changes.



590 K. Altisen et al.

modify this algorithm to make it gradually stabilizing after one dynamic step. In
particular, the parameter μ should be now at least n+#J , where #J is an upper
bound on the number of processes that join the system during a dynamic step.
This new version is gradually stabilizing because after one dynamic step from a
configuration which is legitimate for strong unison, it immediately satisfies the
specification of partial unison, then converges to the specification of weak unison
in at most one round, and finally retrieves, after at most (μ+1)D1+1 additional
rounds (where D1 is the diameter of the network after the dynamic step), a
configuration from which the specification of strong unison is satisfied and where
it is ready to achieve gradual convergence again in case of another dynamic
step. This result holds considering dynamic steps which may contain several
link and/or process additions and/or removals, however we assume that after a
dynamic step, the network stays connected and, if α > 4, every new process is
linked to at least one process already in the system before the dynamic step. We
show that this condition, called UnderLocalControl, is necessary to obtain gradual
convergence. However, notice that if the system suffers from arbitrary other kinds
of transient fault including, e.g., several dynamic steps that do not satisfy the
UnderLocalControl condition, our algorithm still converges to strong unison, yet
without intermediate safety guarantees during the stabilization phase.

Related Work. Gradual stabilization is related to two other stronger forms
of self-stabilization: safe-converging self-stabilization [19] and superstabilization
[11]. The goal of a safely converging self-stabilizing algorithm is to first quickly
(O(1) rounds is the usual rule) converge from an arbitrary configuration to a fea-
sible legitimate configuration, where a minimum quality of service is guaranteed.
Once such a feasible legitimate configuration is reached, the system continues
to converge to an optimal legitimate configuration, where more stringent condi-
tions are required. Hence, the aim of safe-converging self-stabilization is also to
ensure a gradual convergence, but only for two specifications. However, such a
gradual convergence is stronger than ours as it should be ensured after any step
of transient faults,2 while our gradual convergence applies after dynamic steps
only. Safe convergence is especially interesting for self-stabilizing algorithms that
compute optimized data structures, e.g., minimal dominating sets [19], minimal
(f, g)-alliances [8]. However, to the best of our knowledge, no safe-converging
algorithm for non-static problems, such as unison, has been proposed until now.

In superstabilization, like in our approach, fast convergence and the pas-
sage predicate should be ensured only if the system was in a legitimate con-
figuration before the topological change occurs. In contrast with our approach,
superstabilization ensures fast convergence to the original specification. However,
this strong property only considers one dynamic step with only one topologi-
cal event. Again, superstabilization has been especially studied in the context
of static problems, e.g., spanning tree construction [4,5,11], and coloring [11].
However, there exist few superstabilizing algorithms for non-static problems in
particular topologies, e.g., mutual exclusion in rings [16,20].

2 Such transient faults may include topological changes, but not only.



Gradual Stabilization Under τ -Dynamics 591

We use the general term unison to name several close problems also known
in the literature as phase or barrier synchronization problems. There exist
many self-stabilizing algorithms for strong or weak unison problems, e.g.,
[2,6,7,15,17,18,22,23]. However, to the best of our knowledge, until now there
was no self-stabilizing solution for such problems addressing specific conver-
gence properties in case of topological changes, in particular no superstabilizing
one. Self-stabilizing strong unison was first considered in synchronous anony-
mous networks. Particular topologies were considered in [17] (rings) and [22]
(trees). Gouda and Herman [15] proposed a self-stabilizing algorithm for strong
unison working in anonymous synchronous systems of arbitrary connected topol-
ogy. However, they considered unbounded clocks. A solution working with the
same settings, yet implementing bounded clocks, is proposed in [2]. In [23], an
asynchronous self-stabilizing strong unison algorithm is proposed for arbitrary
connected rooted networks.

Johnen et al. investigated asynchronous self-stabilizing weak unison in ori-
ented trees in [18]. The first self-stabilizing asynchronous weak unison for general
graphs was proposed by Couvreur et al. [9]. However, no complexity analysis was
given. Another solution which stabilizes in O(n) rounds has been proposed by
Boulinier et al. in [7]. Finally, Boulinier proposed in his PhD thesis a parametric
solution which generalizes both the solutions of [9] and [7]. In particular, the
complexity analysis of this latter algorithm reveals an upper bound in O(D.n)
rounds on the stabilization time of the Couvreur et al.’ algorithm.

Roadmap. In the next section, we define the computational model used in this
paper. In Sect. 3, we recall the formal definition of self-stabilization, and intro-
duce the notion of gradual stabilization. In Sect. 4, we show that condition Under-

LocalControl is necessary to obtain a gradually stabilizing solution. We present
our self-stabilizing strong unison algorithm in Sect. 5. The gradually stabiliz-
ing variant of this latter algorithm is proposed in Sect. 6. We make concluding
remarks in Sect. 7.

Due to the lack of space, proofs are omitted, see the report online [1] for
details.

2 Preliminaries

We consider distributed systems made of anonymous processes. The system ini-
tially contains n > 0 processes and its topology is connected, however it may
suffer from topological changes over time. Each process p can directly communi-
cate with a subset p. N of other processes, its neighbors. In our context, p. N can
vary over time. Communications are assumed to be bidirectional and carried out
by a finite set of locally shared variables: each process can read its own variables
and those of its current neighbors, but can only write into its own variables. The
state of a process is the vector of values of its variables. We denote by S the set
of all possible states of a process. Each process updates its variables according
to a local algorithm. The collection of all local algorithms defines a distributed
algorithm. The local algorithm of p consists of a finite set of actions of the



592 K. Altisen et al.

following form: 〈 label 〉::〈 guard 〉 → 〈 statement 〉. Labels are used to identify
actions in the reasoning. The guard of an action is a Boolean predicate involving
variables of p and its neighbors. The statement is a sequence of assignments on
variables of p. If the guard of some action evaluates to true, the action is said
to be enabled at p. By extension, if at least one action is enabled at p, p is said
to be enabled. An action can be executed only if it is enabled. The execution of
an action consists in executing its statement, atomically. A configuration γi is a
pair (Gi, Vi → S). Gi = (Vi, Ei) is a simple undirected graph, where Vi is the
set of processes that exist in γi and Ei represents the links between processes in
γi. Vi → S is a function which associates a state to any process of Vi. We denote
by C the set of all possible configurations.

Executions. The dynamicity and asynchronism of the system are material-
ized by an adversary, called daemon. To perform a step from a configuration
γi, the daemon can (1) activate processes that are enabled in γi — each acti-
vated process executes one of its enabled actions according to its state and that
of its neighbors in γi, and/or (2) modify the topology. Activation of enabled
processes and/or topology modifications are done atomically, leading to a new
configuration γi+1. The set of all possible steps induces a binary relation �→ over
configurations (empty steps of the form γi �→ γi are excluded). Relation �→ is
partitioned into �→s and �→d. Relation �→s defines all possible static steps con-
sisting in activation of enabled processes only. Relation �→d defines all possible
dynamic steps containing topological changes and possibly process activations.

An execution is a sequence of configurations γ0, γ1, . . . such that G0 is con-
nected and ∀i ≥ 0, γi �→ γi+1. For sake of simplicity, we note G0 = G = (V,E);
we also note D the diameter of G. Moreover, we note Eτ the set of maximal
executions which contain at most τ dynamic steps. The set of all possible execu-
tions is therefore equal to E = ∪τ≥0Eτ . For any subset of configurations X ⊆ C,
we denote by Eτ

X the set of all executions in Eτ that start from a configuration
of X.

Dynamic Steps. Any step γi �→d γi+1 contains a finite number of topological
events and maybe some process activations. Each topological event is of the
following types. (1) A process p can join the system. This event, denoted by
joinp, triggers the atomic execution of a specific action, called bootstrap. This
bootstrap is executed without any communication and initializes the variables of
p to a particular state, called bootstate. We denote by Newk the set of processes
which are in bootstate in γk. When p joins the system in γi �→d γi+1, we have
p ∈ Newi+1, but p /∈ Newi. Until p executes its bootstrap, say in step γx �→ γx+1,
it is still in bootstate. Hence, ∀j ∈ {i + 1, . . . , x}, p ∈ Newj , but p /∈ Newx+1.
We assume that there are at most #J joins during a dynamic step. (2) A process
can also leave the system. (3) Finally, some communication links can appear or
disappear between two different processes.

Daemon. We assume the daemon is distributed and unfair. In a static step,
this daemon must select at least one enabled process. In a dynamic step, it can
select zero, one, or several enabled processes. It has no fairness constraint, i.e.,



Gradual Stabilization Under τ -Dynamics 593

it might never select a process p during any step unless in the case of a static
step from a configuration where p is the only enabled process. Moreover, at each
configuration, it freely chooses between making a static or dynamic step, except
if no more process is enabled; in this latter case, only a dynamic step containing
no process activation can be chosen.

Metrics. We measure the time complexity of our algorithms in rounds [12]. The
first round of an execution e = (γi)i≥0 is the minimal prefix e′ of e in which
every process that is enabled in γ0 either disappears, or executes an action, or
becomes disabled (due to some changes in its neighborhood). Let γj be the last
configuration of e′, the second round of e is the first round of e′′ = (γi)i≥j , and
so on.
Specifications. We define a specification as a predicate over executions. We
denote by SPSU and SPWU the respective specifications for strong and weak unison.
The specification of partial unison, noted SPPU, does not impose any constraint
on processes that join the system until they achieve their bootstrap: the safety
holds as long as clocks of every two neighboring processes not in bootstate differ
from at most one increment.

3 Stabilization

Self-stabilization has been defined by only considering executions free of topo-
logical changes, yet starting from an arbitrary configuration. Indeed, self-
stabilization considers the system immediately after transient faults cease. So,
the system is initially observed from an arbitrary configuration reached after
occurrences of transient faults (including some topological changes maybe), but
from which no faults will ever occur. Below, we recall the definitions of some
notions classically used in self-stabilization for a given distributed algorithm A.
Let X and Y be two subsets of configurations.

– X is closed under A iff every static step of A starting from a configuration of
X leads to a configuration which is also in X.

– Y converges to X under A iff every execution of E0
Y contains a configuration

of X.
– A stabilizes from Y to a specification SP by X iff X is closed under A, Y

converges to X under A, and every execution of E0
X satisfies SP . In this case,

the convergence time from Y to X in rounds is the maximal number of rounds
to reach a configuration of X over every execution of E0

Y .

A distributed algorithm A is self-stabilizing for a specification SP iff ∃L ⊆ C
such that A stabilizes from C to SP by L. L is said to be a set of legitimate con-
figurations w.r.t. SP , and the convergence time from C to L is called stabilization
time of A.

Gradual Stabilization Under τ-Dynamics. This property is a specialization
of self-stabilization which additionally requires that after at most τ dynamic
steps from a legitimate configuration, the system gradually re-stabilizes to



594 K. Altisen et al.

stronger and stronger specifications, until fully recovering its initial (strong)
specification. For every execution e = (γi)i≥0 ∈ Eτ , we note γfst(e) the first
configuration of e after the last dynamic step. Formally, fst(e) = min{i :
(γj)j≥i ∈ E0}. For any subset E of Eτ , let FC(E) = {γfst(e) : e ∈ E}
be the set of all configurations that can be reached after the last topological
changes in executions of E. Let SP1, SP2, . . . , SPk, be an ordered sequence of
specifications. Let B1, B2, . . . , Bk be (asymptotic) complexity bounds such that
B1 ≤ B2 ≤ · · · ≤ Bk.

A distributed algorithm A is gradually stabilizing under τ -dynamics for (SP1•
B1, SP2 • B2, . . . , SPk • Bk) iff ∃L1, . . . ,Lk ⊆ C such that

1. A stabilizes from C to SPk by Lk.
2. ∀i ∈ {1, . . . , k}, A stabilizes from FC(Eτ

Lk
) to SPi by Li, and the convergence

time in rounds from FC(Eτ
Lk

) to Li is bounded by Bi.

The first point ensures that a gradually stabilizing algorithm is still self-
stabilizing for its strongest specification. Hence, its performances can be also
evaluated at the light of its stabilization time. Indeed, it captures the maximal
convergence time of the gradually stabilizing algorithm after the system suf-
fers from an arbitrary finite number of transient faults, e.g., after more than τ
dynamic steps.

The second point means that after at most τ dynamic steps from a legitimate
configuration w.r.t. the strongest specification SPk, the algorithm gradually con-
verges to every specification SPi with i ∈ {1, . . . , k} in at most Bi rounds. Note
that Bk captures a complexity similar to the fault gap in fault-containing algo-
rithms [14]: assume a period of at most τ dynamic steps starting in a legitimate
configuration Lk; Bk represents the necessary fault-free interval after this period
and before the next period of at most τ dynamic steps so that system becomes
ready to achieve gradual convergence again.

4 Necessary Condition

In this section, we establish that Condition UnderLocalControl is necessary to
allow the design of a deterministic algorithm A which is gradually stabilizing
under 1-dynamics for (SPPU •0, SPWU •1, SPSU •B) (with B ≥ 1) in any arbitrary
anonymous network, assuming the distributed unfair daemon. Below, we assume
the existence of A and denote by LA

SU the set of legitimate configurations of A
w.r.t. specification SPSU.

UnderLocalControl captures a condition on the network dynamics which is nec-
essary to prevent a notable desynchronization of clocks: the network should stay
connected and, if α > 4, every process that joins during the dynamic step γ �→d γ′

should be “under control of” (that is, linked to) at least one process which exists
in both γ and γ′. The definition of UnderLocalControl uses the notion of domi-
nating set of a graph G = (V,E), i.e., any subset D of V such that every node
not in D is adjacent to at least one member of D. Formally, UnderLocalControl

holds iff ∀e ∈ E1
LA

SU
, Gfst(e) is connected, and if α > 4, then Vfst(e) \ Newfst(e) is

a dominating set of Gfst(e).



Gradual Stabilization Under τ -Dynamics 595

Theorem 1. An algorithm A is gradually stabilizing under 1-dynamics for
(SPPU •0, SPWU •1, SPSU •B) in arbitrary anonymous networks under the distrib-
uted unfair daemon only if UnderLocalControl holds.

Fig. 1. Proof outline of Theorem 1. The hachured nodes are in bootstate.

Proof Outline. If the graph becomes disconnected after a dynamic step, the
distributed unfair daemon can prevent forever all processes of a given connected
component from incrementing their clocks, hence violating the liveness of SPSU.
Assume, by contradiction, that there is an execution e with α > 4 such that
Gfst(e) is connected but Vfst(e) \ Newfst(e) is not a dominating set. This means
that some process p and all its neighbors have been added during the dynamic
step. First, to satisfy SPWU after at most one round, p and its neighbors should
be enabled to take a clock value immediately after the dynamic step. Let c be the
clock value that p would choose in this case. Then, we build another execution
e′ initiated from a configuration in LA

SU on another graph containing at least
two nodes which are neither p, nor one of its neighbors. As SPSU holds and the
execution can be asynchronous, it is possible for the system to eventually reach
a configuration γT where there are exactly two clock values: (c + 2) mod α and
(c + 3) mod α (see Fig. 1(a)). Then, assume the daemon chooses to execute,
during γT �→d γT+1, the dynamic step which contains no process activation, but
introduces p, its neighborhood, and two links, just as in Fig. 1(b). Then, after
this step, SPPU should be satisfied. Finally, assume that the daemon selects no
process, except p and its neighbors in the next step. As before, p sets its clock to c,
but, as α > 4, whatever be the value chosen by q, there is a difference greater than
one increment between q and at least one of its neighbors (Fig. 1(c)). Henceforth,
the legitimate configurations of SPPU are not closed under A, a contradiction. 
�

5 Self-Stabilizing Strong Unison

In this section, we propose an algorithm which is self-stabilizing for strong unison
in any arbitrary connected anonymous network. This algorithm works for any
period α > 4 and is based on an algorithm previously proposed by Boulinier
in his PhD [6], this latter is self-stabilizing for weak unison and works for any
period β > n2.

Algorithm WU . We first recall the algorithm of Boulinier [6], noted here Algo-
rithm WU . This algorithm being just self-stabilizing, it only considers execu-
tions without any topological change, yet starting from arbitrary configurations.



596 K. Altisen et al.

So, the topology of the network consists in a connected graph G = (V,E) of n
nodes which is fixed all along the execution. Each process p is endowed with a
clock variable p.t ∈ {0, . . . , β − 1}, where β is its period. β should be greater
than n2. The algorithm also uses another constant, noted μ, which should satisfy
n ≤ μ ≤ β

2 . The algorithm uses the notion of delay between two integer values x
and y, defined by the function dβ

(
x, y

)
= min

(
(x − y) mod β, (y − x) mod β

)
.

It also uses the relation �β,μ such that for every two integer values x and y,
x �β,μ y ≡ (

(y − x) mod β
) ≤ μ.

Two actions are used to maintain the clock p.t at each process p. When the
delay between p.t and the clocks of some neighbors is greater than one, but the
maximum delay is not too big (that is, does not exceed μ), then it is possible to
“normally” converge, using Action WU-N below, to a configuration where the
delay between those clocks is at most one by incrementing the clocks of the most
behind processes among p and its neighbors: WU-N ::∀q ∈ p. N , p.t �β,μ q.t →
p.t ← (p.t + 1) mod β

Moreover, once legitimacy is achieved, p can “normally” increment its clock
still using Action WU -N when it is on time or one increment late with all its
neighbors. In contrast, if the delay is too big (that is, the delay between the
clocks of p and one of its neighbors is more than μ) and the clock of p is not
yet reset, then p should reset its clock to 0 using Action WU-R: WU-R::∃q ∈
p. N , dβ

(
p.t, q.t

)
> μ ∧ p.t 	= 0 → p.t ← 0

Fig. 2. From t to c.

Algorithm SU . For this algorithm, we still
assume a non-dynamic context (no topologi-
cal change). Algorithm SU is a straightforward
adaptation of Algorithm WU . More precisely,
Algorithm SU maintains two clocks at each
process p. The first one, p.t ∈ {0, . . . , β − 1},
is called the internal clock and is maintained
exactly as in Algorithm WU . Then, p.t is used
as an internal pulse machine to increment a sec-
ond, yet actual, clock of Algorithm SU p.c ∈
{0, . . . , α − 1}, also called external clock.

Algorithm SU is designed for any period
α > 4. Its actions SU-N and SU-R are iden-
tical to actions WU -N and WU-R of Algorithm WU , except that we add the
computation of the external c-clock in their respective statement.
SU-N :: ∀q ∈ p. N , p.t �β,μ q.t → p.t ← (p.t + 1) mod β; p.c ←

⌊
α
β
p.t
⌋

SU-R :: ∃q ∈ p. N , dβ

(
p.t, q.t

)
> μ ∧ p.t 	= 0 → p.t ← 0; p.c ← 0

Algorithm WU stabilizes to a configuration from which t-clocks regularly
increment while preserving a bounded delay of at most one between two neigh-
boring processes, and so of at most n − 1 between any two processes. Algo-
rithm SU implements the same mechanism to maintain p.t at each process p
and computes p.c from p.t as a normalization operation from clock values in
{0, . . . , β − 1} to {0, . . . , α − 1}: each time the value of p.t is modified, p.c is
updated to

⌊
α
β p.t

⌋
. Hence, we can set β in such way that K = β

α is greater than



Gradual Stabilization Under τ -Dynamics 597

Algorithm 1. DSU , for every process p

Parameters:
α: any positive integer such that α > 4
μ: any positive integer such that μ ≥ n + #J
β: any positive integer such that β > μ2,
and ∃K such that K > μ and β = Kα

Variables: p.c ∈ {0, . . . , α − 1} ∪ {⊥}, p.t ∈ {0, . . . , β − 1} ∪ {⊥}
Predicates:

Lockedp ≡ p.t = ⊥ ∨ ∃q ∈ p. N , q.t = ⊥
NormalStepp ≡ ¬Lockedp ∧ ∀q ∈ p. N , p.t 
β,μ q.t
ResetStepp ≡ ¬Lockedp ∧ (∃q ∈ p. N , dβ

(
p.t, q.t

)
> μ ∧ p.t �= 0

)

JoinStepp ≡ p.t = ⊥
Actions:

DSU-N :: NormalStepp → p.t ← (p.t + 1) mod β; p.c ←
⌊

α
β p.t

⌋

DSU-R :: ResetStepp → p.t ← 0; p.c ← 0

DSU-J :: JoinStepp → p.t ← MinTimep; p.c ←
⌊

α
β p.t

⌋

bootstrap :: joinp → p.t ← ⊥; p.c ← ⊥

or equal to n (here, we choose K > μ ≥ n and β > μ2 for sake of simplicity) to
ensure that, when the delay between any two t-clocks is at most n−1, the delay
between any two c-clocks is at most one, see Fig. 2. The liveness of WU ensures
that every t-clock increments infinitely often, thus so do c-clocks.

Theorem 2. Algorithm SU is self-stabilizing for SPSU in any arbitrary con-
nected anonymous network assuming a distributed unfair daemon. Its stabiliza-
tion time is at most n + (μ + 1)D + 1 rounds.

We have also proven that, once SU has stabilized, every process increments
its c-clock at least once every D + β

α rounds. This result derives from [6] which
states that after stabilization of t-clocks, those ones increment at least once every
D + 1 rounds.

6 Gradual Stabilization Under 1-Dynamics for Strong
Unison

We now propose Algorithm DSU (Algorithm 1), a variant of Algorithm SU .
DSU is still self-stabilizing for strong unison, but also achieves a gradual con-
vergence after one dynamic step. This dynamic step may include several topo-
logical events (i.e. link or process additions or removals). However, according to
Theorem 1, it should satisfy Condition UnderLocalControl. Precisely, after any
dynamic step which fulfills condition UnderLocalControl, DSU maintains clocks
almost synchronized during the convergence to strong unison since it immedi-
ately satisfies partial unison, then converges in at most one round to weak uni-
son, and finally re-stabilizes to strong unison. Remember that, after one dynamic
step, the graph contains at most n+#J processes, by definition, and D1 denotes
the diameter of the new graph.



598 K. Altisen et al.

Fig. 3. Link addition.

We first showed a result allowing to simplify
proofs and explanations: for every closed set of
configurations X, if UnderLocalControl holds, then
∀γi ∈ C, (∃γj ∈ X | γj �→d γi) ⇔ (∃γk ∈
X | γk �→donly

γi), where �→donly
is the relation defin-

ing all dynamic steps containing no process activa-
tion. We apply this result to the set of legitimate
configurations w.r.t. strong unison, noted Ld

SU (n.b., Ld
SU is closed, by definition):

the set of configurations reachable from Ld
SU after one dynamic step (which may

also include process activations) is the same as the one reachable from Ld
SU after

one dynamic step made of topological events only. At the light of this result, we
only consider this latter kind of dynamic steps in the following.

Consider first link additions only. Adding a link (see the dashed link in Fig. 3)
can break the safety of weak unison on internal clocks. Indeed, it may create a
delay greater than one between two new neighboring t-clocks. Nevertheless, the
delay between any two t-clocks remains bounded by n − 1, consequently, no
process will reset its t-clock (Fig. 3 shows a worst case). Moreover, c-clocks still
satisfy strong unison immediately after the link addition. Besides, since incre-
ments are constrained by neighboring clocks, adding links only reinforces those
constraints. Thus, the delay between internal clocks of arbitrary far processes
remains bounded by n − 1, and so strong unison remains satisfied, in all sub-
sequent static steps. Consider again the example in Fig. 3: before the dynamic
step, pn−1 had only to wait until pn−2 increments pn−2 in order to be able to
increment its own t-clock; yet after the step, it also has to wait for p0.

0
0

p0 0
1

p1 0
2

p2

0
1

p3 0
2

p4

Fig. 4. Removals.

Assume now a dynamic step containing only process and
link removals. Due to Condition UnderLocalControl, the net-
work remains connected. Hence, constraints between (still
existing) neighbors are maintained: the delay between t-
clocks of two neighbors remains bounded by one, see the
example in Fig. 4: process p2 and link {p0, p3} are removed.
So, weak unison on t-clocks remains satisfied and so is strong
unison on c-clocks.

Consider now a more complex scenario, where the dynamic step contains link
additions as well as process and/or link removals. Figure 5 shows an example
of such a scenario, where safety of strong unison is violated. As above, the
addition of link {p1, p6} in Fig. 5(b) leads to a delay between t-clocks of these two
(new) neighbors which is greater than one (here 5). However, the removal of link
{p1, p2}, also in Fig. 5(b), relaxes the neighborhood constraint on p2:p2 can now
increment without waiting for p1. Consequently, executing Algorithm SU does
not ensure that the delay between t-clocks of any two arbitrary far processes
remains bounded by n − 1, e.g., after several static steps from Fig. 5(b), the
system can reach Fig. 5(c), where the delay between p1 and p2 is 9 while n−1 = 5.
Since c-clock values are computed from t-clock values, we also cannot guarantee
that there is at most two consecutive c-clock values in the system, e.g., in Fig. 5(c)
we have: p1.c = 1, p6.c = 2, and p2.c = 3.



Gradual Stabilization Under τ -Dynamics 599

(a)
1
11

p1

2
12

p2 2
13

p3 2
14

p4

2
15

p52
16

p6
(b)

1
11

p1

2
12

p2 2
13

p3 2
14

p4

2
15

p52
16

p6
(c)

1
11

p1

3

20

p2 3

19

p3 3

18

p4

2
17

p52
16

p6

Fig. 5. Execution where links are added and removed (μ = 6, α = 7, and β = 42).

Again, in the worst case scenario, after a dynamic step, the delay between
two neighboring t-clocks is bounded by n−1. Moreover, t-clocks being computed
like in Algorithm WU , we can use two of its useful properties (see [6]): (1)
when the delay between every pair of neighboring t-clocks is at most μ with
μ ≥ n, the delay between these clocks remains bounded by μ because processes
never reset; (2) furthermore, from such configurations, the system converges to a
configuration from which the delay between the t-clocks of every two neighbors
is at most one. So, keeping μ ≥ n, processes will not reset after one dynamic step
and the delay between any two neighboring t-clocks will monotonically decrease
from at most n − 1 to at most one. Consequently, the delay between any two
neighboring c-clocks (which are computed from t-clocks) will stay at most one,
i.e., weak unison will be satisfied all along the convergence to strong unison.

Consider now a process p that joins the system. The event joinp occurs and
triggers the specific action bootstrap that sets both the clocks p.t and p.c to a
specific bootstate value, noted ⊥. By definition and from the previous discussion,
the system immediately satisfies partial unison since it only depends on processes
that were in the system before the dynamic step. Now, to ensure that weak
unison holds within a round, we add the action DSU-J which is enabled as
soon as the process is in bootstate. This action initializes the two clocks of p
according to the clock values in its neighborhood. Precisely, the value of p.t can
be chosen among the non-⊥ values in its neighborhood, and such values exist by
Condition UnderLocalControl. We choose to set p.t to the minimum non-⊥ t-clock
value in its neighborhood, using the function MinTimep:

MinTimep = 0 if ∀q ∈ p. N , q.t = ⊥; = min{q.t : q ∈ p. N ∧ q.t �= ⊥}
otherwise.

The value of p.c is then computed according to the value of p.t. Notice that
MinTimep returns 0 when p and all its neighbors have their respective t-clock
equal to ⊥. This ensures that Algorithm DSU remains self-stabilizing (in par-
ticular, if the system starts in a configuration where all t-clocks are equal to
⊥).

To prevent the unfair daemon from blocking the convergence to a configura-
tion containing no ⊥ values, we should also forbid processes with non-⊥ t-clock
values to increment while there are t-clocks with ⊥-values in their neighborhood.
So, we define the predicate Locked which holds for a given process p when either
p.t = ⊥, or at least one of its neighbors q satisfies q.t = ⊥. We then enforce the
guard of both normal and reset actions, so that no Locked process can execute
them. See actions DSU-N and DSU-R. This ensures that t-clocks are initialized
first by Action DSU-J , before any value in their neighborhood increments.



600 K. Altisen et al.

Finally, notice that all the previous explanation relies on the fact that, once
the system recovers from process additions (i.e., once no ⊥ value remains), the
algorithm behaves exactly the same as Algorithm SU . Hence, it has to match
the assumptions made for SU , in particular, the ones on α and β. However the
constraint on μ has to be adapted, since μ should be greater than or equal to
the actual number of processes in the network and this number may increase.
Now, the number of processes added in a dynamic step is bounded by #J . So,
we require μ ≥ n + #J .

We now consider the example execution of Algorithm DSU in Fig. 6. This exe-
cution starts in a configuration legitimate w.r.t. the strong unison, see Fig. 6(a).
Then, one dynamic step happens (step (a)�→(b)), where a process p6 joins the
system. We now try to delay as long as possible the execution of DSU-J by
p6. In configuration (b), p3 and p5, the new neighbors of p6, are locked. They
will remain disabled until p6 executes DSU-J . p1 and p4 execute DSU-N in
(b)�→(c). Then, p4 is disabled because of p5 and p1 executes DSU-N in (c)�→(d).
In configuration (d), p1 is from now on disabled: p1 must wait until p2 and p4
get t-clock value 7. p6 is the only enabled process, so the unfair daemon has no
other choice but selecting p6 to execute DSU-J in the next step.

(a)

0

5

p1 0

6

p2 1
7

p3

0

5

p4 0

5

p5
(b)

0

5

p1 0

6

p2 1
7

p3

0

5

p4 0

5

p5 ⊥
⊥
p6

(c)

0

6

p1 0

6

p2 1
7

p3

0

6

p4 0

5

p5 ⊥
⊥
p6

(d)

1
7

p1 0

6

p2 1
7

p3

0

6

p4 0

5

p5 ⊥
⊥
p6

Fig. 6. Execution where the first step of a new process is delayed (μ = 6, α = 6,
β = 42).

Theorem 3. If UnderLocalControl is satisfied then Algorithm DSU is gradually
stabilizing under 1-dynamics for (SPPU • 0, SPWU • 1, SPSU • (μ + 1)D1 + 2).

After one dynamic step that fulfills Condition UnderLocalControl from any
legitimate configuration w.r.t. strong unison, the system re-stabilizes to strong
unison in at most (μ+1)D1 +2 rounds. Now, in any other cases (e.g., a dynamic
step that does not satisfy UnderLocalControl), the system still recovers to a legiti-
mate configuration within finite time, as the algorithm is self-stabilizing. Never-
theless, in such cases, the stabilization time is slightly bigger: n+#J+(μ+1)D1+2
rounds.

Finally, we have proven [1] that after stabilization to strong unison, every
process increments its c-clock at least once every D1 + β

α rounds, like in Algo-
rithm SU . Moreover, during the convergence from weak to strong unison, the
increments are slower, i.e., the c-clocks are guaranteed to increment at least once
every μD1 + β

α rounds.



Gradual Stabilization Under τ -Dynamics 601

7 Conclusion

The apparent seldomness of superstabilizing solutions for non-static problems,
such as unison, may suggest the difficulty of obtaining such a strong property
and if so, make our notion of gradual stabilization very attractive compared to
merely self-stabilizing solutions. For example, in our unison solution, gradual
stabilization ensures that processes remain “almost” synchronized during the
convergence phase started after one dynamic step satisfying UnderLocalControl.
Hence, it is worth investigating whether this new paradigm can be applied to
other, in particular non-static, problems. Concerning our unison algorithm, the
graceful recovery after one dynamic step comes at the price of slowing down the
clock increments. The question of limiting this drawback remains open. Finally,
it would be interesting to address in future work gradual stabilization for non-
static problems in context of more complex dynamic patterns.

References

1. Altisen, K., Devismes, S., Durand, A., Petit, F.: Gradual stabilization under τ -
dynamics. Technical report (2015). https://hal.archives-ouvertes.fr/hal-01215190

2. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel
Process. Lett. 1, 11–18 (1991)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: STOC, pp. 652–661 (1993)

4. Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)-
approximation algorithm for dynamic steiner trees. Theor. Comput. Sci. 500, 90–
112 (2013)

5. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-free super-
stabilizing spanning tree construction. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010)

6. Boulinier, C.: L’Unisson. Ph.D. thesis, Université de Picardie Jules Vernes, France
(2007)

7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC, pp. 150–159 (2004)

8. Carrier, F., Datta, A.K., Devismes, S., Larmore, L.L., Rivierre, Y.: Self-stabilizing
(f, g)-alliances with safe convergence. J. Parallel Distrib. Comput. 81–82, 11–23
(2015)

9. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract).
In: ICDCS, pp. 486–493 (1992)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

11. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. 1997, 13 (1997)

12. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Trans. Parallel Distrib. Syst. 8(4), 424–440 (1997)

13. Genolini, C., Tixeuil, S.: A lower bound on dynamic k-stabilization in asynchronous
systems. In: SRDS, p. 212 (2002)

14. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing
self-stabilizing distributed protocols. Distrib. Comput. 20(1), 53–73 (2007)

https://hal.archives-ouvertes.fr/hal-01215190


602 K. Altisen et al.

15. Gouda, M.G., Herman, T.: Stabilizing unison. Inf. Process. Lett. 35(4), 171–175
(1990)

16. Herman, T.: Superstabilizing mutual exclusion. Distrib. Comput. 13(1), 1–17
(2000)

17. Huang, S., Liu, T.: Four-state stabilizing phase clock for unidirectional rings of
odd size. Inf. Process. Lett. 65(6), 325–329 (1998)

18. Johnen, C., Alima, L.O., Datta, A.K., Tixeuil, S.: Optimal snap-stabilizing neigh-
borhood synchronizer in tree networks. Parallel Process. Lett. 12(3–4), 327–340
(2002)

19. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm
with safe convergence. In: IPDPS, p. 8 (2006)

20. Katayama, Y., Ueda, E., Fujiwara, H., Masuzawa, T.: A latency optimal super-
stabilizing mutual exclusion protocol in unidirectional rings. J. Parallel Distrib.
Comput. 62(5), 865–884 (2002)

21. Kutten, S., Patt-Shamir, B.: Stabilizing time-adaptive protocols. Theor. Comput.
Sci. 220(1), 93–111 (1999)

22. Nolot, F., Villain, V.: Universal self-stabilizing phase clock protocol with bounded
memory. In: IPCCC, pp. 228–235 (2001)

23. Tzeng, C., Jiang, J., Huang, S.: Size-independent self-stabilizing asynchronous
phase synchronization in general graphs. J. Inf. Sci. Eng. 26(4), 1307–1322 (2010)


	Gradual Stabilization Under -Dynamics
	1 Introduction
	2 Preliminaries
	3 Stabilization
	4 Necessary Condition
	5 Self-Stabilizing Strong Unison
	6 Gradual Stabilization Under 1-Dynamics for Strong Unison
	7 Conclusion
	References


