
 123

22nd International Conference
on Parallel and Distributed Computing
Grenoble, France, August 24–26, 2016, Proceedings

Euro-Par 2016:
Parallel ProcessingLN

CS
 9

83
3

AR
Co

SS
Pierre-François Dutot
Denis Trystram (Eds.)

Lecture Notes in Computer Science 9833

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Pierre-François Dutot • Denis Trystram (Eds.)

Euro-Par 2016:
Parallel Processing
22nd International Conference
on Parallel and Distributed Computing
Grenoble, France, August 24–26, 2016
Proceedings

123

Editors
Pierre-François Dutot
Université Grenoble Alpes
Grenoble
France

Denis Trystram
Université Grenoble Alpes
Grenoble
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-43658-6 ISBN 978-3-319-43659-3 (eBook)
DOI 10.1007/978-3-319-43659-3

Library of Congress Control Number: 2016945998

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is our pleasure and privilege to introduce this new Euro-Par proceedings volume.
Over the years, Euro-Par has become a major event of our well-established parallel and
distributed community. This was the 22nd edition of a successful series of conferences
which started in Stockholm in 1995.

Today, it is evidence that the field of parallelism is still very active. The traditional
topics have been renewed year after year, following the successive generations of
machines (including parallel architectures, algorithms, performance, languages, com-
pilers, runtimes, parallel programming, foundations of parallelism, numerical appli-
cations) and some new topics have emerged (accelerator computing, hierarchical
platforms, clouds, interactive computing, data management analytics). We now face the
challenge of building extreme-scale high-performance computing platforms, which are
the only way to address the hard societal challenges in health, security, or the climate.
All the historical disciplines of parallelism are impacted by such deep changes and by
strong interactions between the various topics (e.g., energy optimization, scalability, or
fault-tolerance issues). Euro-Par keeps the original organization into independent topics
covering all these aspects.

The conference is organized in parallel sessions that reflect the diversity of the
topics. We received 176 full submissions and accepted 47 papers after an 8-week
review period in a full-day Program Committee (PC) meeting involving all the topic
chairs or local chairs, which led to the selective rate of acceptance of less than 27 %.
This high quality is also assessed by three distinguished papers. Most papers received
four reviews while a few received three or five evaluations. Two additional presenta-
tions given by industrial sponsors have been included in the program. We would like to
warmly thank all the Scientific Committee members of the various topics. The team of
chairpersons had the enormous task of bringing many innovative ideas, which finally
led to a very attractive and timely program. The whole evaluation process ran smoothly
thanks to the involvement of each of them.

In addition, we are pleased to present three keynote talks of well-recognized col-
leagues, namely, Susanne Albers (“Energy-Efficient Algorithms”), Walfredo Cirne
(“Improving Cloud Effectiveness”), and Dror Feitelson (“Resampling with Feedback—
A New Paradigm of Using Workload Data for Performance Evaluation”) plus an
invited talk of Arnold Rosenberg (“Scheduling DAGs Opportunistically: The “Dream
and the Reality Circa 2016”). This exciting program was complemented by two days of
dedicated workshops and tutorials on more specialized themes. The huge work of
managing workshops and tutorials was conducted very efficiently by Frédéric Desprez,
always in a positive mood. As with the previous editions, the papers selected in the
various workshops are published in a separate proceedings volume after the conference.

We would like to emphasize that Euro-Par is not only a premium scientific meeting,
but it is also a very social event. The organization of such a conference involves a great
amount of work, completed under the guidance and support of the Steering Committee

members and especially Christian Lengauer and Luc Bougé. However, it was also a
great opportunity for our team in Grenoble to strengthen our internal links in order to
provide the best for participants coming from all over the world. We are sincerly
grateful to Sophie Azzaro and Annie Simon at Inria and to the other members of the
organization team for their constant help.

We would also like to warmly thank our academic institutions and their staff,
namely, Université Grenoble Alpes (and particularly the Institut Universitaire de
Technologie 2), Grenoble Institute of Technology, and Inria for their logistical support
at many levels, as well as our industrial partners.

June 2016 Pierre-François Dutot
Denis Trystram

VI Preface

Organization

Steering Committee

Full Members

Christian Lengauer (Chair) University of Passau, Germany
Luc Bougé (Vice-Chair) ENS Rennes, France
Emmanuel Jeannot LaBRI-Inria, Bordeaux, France
Christos Kaklamanis Computer Technology Institute, Patras, Greece
Paul Kelly Imperial College, London, UK
Thomas Ludwig University of Hamburg, Germany
Emilio Luque Autonomous University of Barcelona, Spain
Tomàs Margalef Autonomous University of Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Rizos Sakellariou University of Manchester, UK
Fernando Silva University of Porto, Portugal
Henk Sips Delft University of Technology, The Netherlands
Domenico Talia University of Calabria, Italy
Jesper Larsson Träff TU Vienna, Austria
Felix Wolf TU Darmstadt, Germany

Honorary Members

Ron Perrott Oxford e-Research Centre, UK
Karl Dieter Reinartz University of Erlangen-Nürnberg, Germany

Observers

Francisco Rivera CiTIUS, Santiago de Compostela, Spain
Denis Trystram Grenoble Institute of Technology, France

Euro-Par 2016 Organization

Chair

Denis Trystram

Proceeding

Pierre-François Dutot

Workshop

Frédéric Desprez

Local Organization

Annie Simon
Sophie Azzaro
Grégory Mounié
Frédéric Wagner

Industrial Chair

Laurent Colombet
Pierre Neyron

Web and Publicity

Christophe Cérin
David Glesser

Program Committee

Topic 1: Support Tools and Environments

Chair

Tomàs Margalef Universitat Autònoma de Barcelona, Spain

Local Chair

Olivier Richard University of Grenoble Alpes, France

Members

Siegfried Benkner University of Vienna, Austria
Joao Cardoso University of Porto and INESC-TEC, Portugal
Michael Gerndt Technical University of Munich, Germany
Martin Schulz Lawrence Livermore National Laboratory, USA
Ana Lucia Varbanescu University of Amsterdam, The Netherlands

Topic 2: Performance and Power Modeling, Prediction, and Evaluation

Chair

Laura Carrington San Diego Supercomputer Center, USA

Local Chair

Arnaud Legrand CNRS/University of Grenoble, France

VIII Organization

Members

Roy Campbell DOD High Performance Computing Modernization
Program, USA

Kirk Cameron Virginia Tech, USA
Marcos Dias de Assucao LIP/ENS Lyon, France
Georg Hager Friedrich-Alexander-Universität, Germany
Sascha Hunold Vienna University of Technology, Austria
Darren Kerbyson Pacific Northwest National Laboratory, USA
Shirley Moore The University of Texas at El Paso, USA

Topic 3: Scheduling and Load Balancing

Chair

Rizos Sakellariou University of Manchester, UK

Local Chair

Fanny Pascual Université Pierre et Marie Curie, France

Members

Luiz Fernando Bittencourt University of Campinas, Brazil
Florina Ciorba University of Basel, Switzerland
Julita Corbalan Barcelona Supercomputing Center, Spain
Ivan Rodero Rutgers University, USA
Krzysztof Rzadca University of Warsaw, Poland
Uwe Schwiegelshohn TU Dortmund, Germany

Topic 4: High-Performance Architectures and Compilers

Chair

Henri Bal Vrije Universiteit, The Netherlands

Local Chair

Sid Touati University of Nice Sophia Antipolis, France

Members

Eduard Ayguadé Technical University of Catalonia, Spain
Pedro Diniz University of South of California, USA
Thomas Fahringer University of Innsbruck, Austria
David Gregg Trinity College, Ireland
Wolfgang Karl Karlsruhe Institut für Technologie, Germany
Hand Vandierendonck Queen’s University Belfast, UK

Organization IX

Topic 5: Parallel and Distributed Data Management and Analytics

Chair

Tom Peterka Argonne National Laboratory, USA

Local Chair

Bruno Raffin Inria, France

Members

Christopher Carothers Rensselaer Polytechnic Institute, USA
Toni Cortes BSC, Spain
Matthieu Dorier Argonne National Laboratory, USA
Wolfgang Frings JSC, Germany
Patrick Martin Queen’s University, Kingston, Canada
Yang-Sae Moon Kangwon National University, Korea

Topic 6: Cluster and Cloud Computing

Chair

Adrien Lèbre Inria, France

Members

Ivona Brandic Vienna University of Technology, Austria
Fabien Hermenier University Nice Sophia Antipolis, France
Peter Pietzuch Imperial College London, UK
Ioan Raicu Illinois Institute of Technology, USA
Xuanhua Shi Huazhong University of Science and Technology,

China
Wenhong Tian University of Electronic Science and Technology

of China, China
Srikumar Venugopal IBM, Ireland

Topic 7: Distributed Systems and Algorithms

Chair

Domenico Talia Università della Calabria, Italy

Local Chair

Stéphane Devismes University of Grenoble Alpes, France

Members

Adriana Iamnitchi University of South Florida, USA
Alexandru Iosup TU Delft, The Netherlands

X Organization

Stefan Schmid TU Berlin/Telekom Innovation Laboratories, Germany
Josef Widder TU Wien, Austria

Topic 8: Parallel and Distributed Programming, Interfaces, Languages

Chair

Philippe O.A. Navaux INF-UFRGS, Brazil

Local Chair

Christian Perez Inria Grenoble, France

Members

Abhinav Bhatele Lawrence Livermore National Laboratory, USA
Alba Cristina De Melo University of Brasilia, Brazil
Raymond Namyst University of Bordeaux - Inria, France
Celso Mendes University of Illinois, USA
Marco Danelutto University of Pisa, Italy
Esteban Meneses Costa Rica Institute of Technology, Costa Rica
Kuan-Ching Li Providence University, Taiwan

Topic 9: Multicore and Manycore Parallelism

Chair

Michela Taufer University of Delaware, USA

Local Chair

Renaud Lachaize University Grenoble Alpes, France

Members

Michela Becchi University of Missouri, USA
Sunita Chandrasekaran University of Delaware, USA
Anne Elster NTNU and University of Texas at Austin, USA
Naoya Maruyama RIKEN, Japan
Dimitrios Nikolopoulos Queen’s University of Belfast, UK
Sabela Ramos Garea ETH Zurich, Switzerland
Guido Juckeland Helmholtz Zentrum Dresden Rossendorf, Germany
Graham Lopez Oak Ridge National Laboratory, USA
Vania Marangozova-Martin Grenoble University, France

Topic 10: Theory and Algorithms for Parallel Computation and Networking

Chair

Klaus Jansen University of Kiel, Germany

Organization XI

Local Chair

Bora Ucar CNRS and ENS Lyon, France

Members

Petra Berenbrink Simon Fraser University, Canada
Christos Kaklamanis University of Patras and CTI Diophantus, Greece
Nicole Megow Technische Universität München, Germany
Erik Saule University of North Carolina at Charlotte, USA
Christian Scheideler Universität Paderborn, Germany
Jiri Sgall Charles University, Czech Republic

Topic 11: Parallel Numerical Methods and Applications

Chair

Matthias Bolten Universität Kassel, Germany

Local Chair

Laurent Philippe FEMTO-ST, France

Members

Peter Arbenz ETH Zurich, Switzerland
El Mostafa Daoudi Université Mohammed Premier-Oujda, Morroco
Maya Neytcheva Uppsala University, Sweden
Marian Vajtersic Universität Salzburg, Austria

Topic 12: Accelerator Computing

Chair

Enrique S. Quintana-Orti Universidad Jaume I, Spain

Local Chair

Samuel Thibault University of Bordeaux, France

Members

Taisuke Arai Boku University of Tsukuba, Japan
Esteban Clua Universidade Federal Fluminense, Brazil
Hatem Ltaief King Abdullah University of Science and Technology,

Saudi Arabia
Jeff Hammond Intel, USA
John Stone University of Illinois at Urbana-Champaign, USA
Robert Strzodka Universität Heidelberg, Germany

XII Organization

Euro-Par 2016 Reviewers

Euro-Par is grateful to all the reviewers for their willingness and their effort in
providing good feedback to authors and topic committees. All external reviewers are
listed and hereby thanked.

Ahmad Abdelfattah
Sangeetha Abdu Jyothi
José Ignacio Aliaga
Pedro Alonso
Karine Altisen
Frederico Alvares De

Oliveira
Damian Alvarez Mallon
Andrew Anderson
José M. Andión
Hartwig Anzt
Mahwish Arif
Olivier Aumage
Ahsan Javed Awan
Marc Baboulin
Jose Badia
Denis Barthou
Cédric Bastoul
Thomas Becker
Vicenç Beltran
Anne Benoit
Josep Lluis Berral-García
Philipp Birken
George Bosilca
Michael Bromberger
François Broquedis
Sebastian Buchwald
Alexandra Carpen-Amarie
Márcio Castro
Eduardo Cesar
Eugenio Cesario
Wei Chang
Vincent Chau
Renjie Chen
Nathanaël Cheriere
Kallia Chronaki
Terry Cojean
Guillaume Colin de

Verdiere

Carmela Comito
Daniel Cordeiro
Helene Coullon
Eduardo Cruz
Daniele D’Agostino
Patrizio Dazzi
Steven Derrien
Frederic Desprez
Javier Diaz-Montes
Kiril Dichev
Matthias Diener
Romain Dolbeau
Ali Dorostkar
Matthieu Dreher
Fernando Duarte
Anaïs Durand
Juan J. Durillo
Yehia Elshater
Joseph Emeras
Christian Engwer
Roberto R. Expósito
Pablo Ezzatti
Thomas L. Falch
Mathieu Faverge
Michael Feldmann
Gianluigi Folino
Tom Friedetzky
Ryan Friese
Stratis Gallopoulos
Thierry Gautier
João Gazolla
Giorgis Georgakoudis
Domingo Gimenez
Robert Gmyr
Jorge

González-Domínguez
Clemens Grelck
Philipp Gschwandtner
Georg Hager

Matthew Hammer
Paul Harvey
Khalid Hasanov
Ahmad Hassan
Timo Heister
Oscar Hernandez
Tetsuya Hoshino
Kuo-Chan Huang
Thomas Huckle
Andra-Ecaterina Hugo
Shadi Ibrahim
Francisco D. Igual
Siddhartha Jana
Tong Jin
Josep Jorba
Herbert Jordan
Hirotsugu Kakugawa
Jeffrey Kelling
Darren Kerbyson
Christoph Kessler
Dounia Khaldi
Shadi Khalifa
Mario Kicherer
Mauricio Kischinhevsky
Peter Kling
Christina Kolb
Ivana Kolingerova
Igor Konnov
Charalampos

Konstantopoulos
Harald Köstler
Alessandro Kraemer
Moritz Kreutzer
Pascal Lafourcade
Felix Land
Bruno Lang
Vincent Lanore
Alexey Lastovetsky
Jonathan Lejeune

Organization XIII

Pierre Lemarinier
Christoph Lenzen
Bo Li
Ruipeng Li
Tonglin Li
Uldis Locans
Bruno Loff
Jay Lofstead
Muthucumaru

Maheswaran
Frederik Mallmann-Trenn
Bo Mao
Mario Donato Marino
Xavier Martorell
Rafael Mayo Gual
Rodrigo Mello
Michael Mercier
Alberto Miranda
Ali Mohammed
Miquel Moreto
Benjamin Moseley
Sotiris Nikoletseas
Ramon Nou
Lucas Nussbaum
Marc Perache

Adrian Perez Dieguez
Andrea Pietracaprina
Wendy Powley
Maria Predari
Thomas Prokosch
Anna Queralt
Flavien Quesnel
Rommel Anatoli

Quintanilla Cruz
Sanjay Rajopadhye
Christophe Rapine
Alfredo Remon-Gomez
Morris Riedel
Jean-Louis Roch
Eduardo Rodrigues
Rafael Rodríguez-Sánchez
Thomas Ropars
Corentin Rossignon
Jonathan

Rouzaud-Cornabas
Iman Sadooghi
Martin Sandrieser
Stephan Schlagkamp
Jette Schumann
Miquel Senar

Alexander Setzer
Manu Shantharam
Anna Sikora
Francesco Silvestri
Harsha Vardhan Simhadri
Anthony Simonet
Piotr Skowron
Yihan Sun
Samuel Thibault
Jesmin Jahan Tithi
Jesper Larsson Träff
Jan Treibig
Paolo Trunfio
Denis Trystram
Blesson Varghese
Eduardo C. Vasconcellos
Sergei Vassilvitskii
Brice Videau
Cheng Wang
Josef Weidendorfer
Kyrill Winkler
Gerhard J. Woeginger
Rengan Xu
Binbin Yong
Peter Zangerl

XIV Organization

Euro-Par 2016 Invited Talks

Resampling with Feedback — A New Paradigm of Using Workload
Data for Performance Evaluation

Dror Feitelson, Hebrew University of Jerusalem, Israel

Reliable performance evaluations require representative workloads. This has led to the
use of accounting logs from production systems as a source for workload data in
simulations. I will survey 20 years of ups and downs in the use of workload logs,
culminating with the idea of resampling with feedback. It all started with the realization
that using workload logs directly suffers from various deficiencies, such as providing
data about only one specific situation, and lack of flexibility, namely the inability to
adjust the workload as needed. Creating workload models solves some of these
problems but creates others, most notably the danger of missing out on important
details that were not recognized in advance, and therefore not included in the model.
Resampling solves many of these deficiencies by combining the best of both worlds.
It is based on partitioning the workload data into basic components (e.g. the jobs
contributed by different users), and then generating new workloads by sampling from
this pool of basic components. This allows analysts to create multiple varied (but
related) workloads from the same original log, all the time retaining much of the
structure that exists in the original workload. However, resampling should not be
applied in an oblivious manner. Rather, the generated workloads need to be adjusted
dynamically to the conditions of the simulated system using a feedback loop. Resam-
pling with feedback is therefore a new way to use workload logs which benefits from
the realism of logs while eliminating many of their drawbacks. In addition, it enables
evaluations of throughput effects that are impossible with static workloads.

Improving Cloud Effectiveness

Walfredo Cirne, Google, USA

Cloud computing has emerged in the last decade as a very cost effective way to do
computing. Consumers avoid the fixed cost and slow deployment of running their own
computers, gaining the ability to massively scale their computational ability.

This talk discusses what is need to make the Cloud even more effective. Part of it is
to further increase the scope of Cloud, by making it better cover the demands of
specialized, large users. The other part is how to make the Cloud more efficient. How
can we manage the data center as to increase its utilization? In particular, we show how
to providing a different SLOs enables us to better utilize our datacenter, as well as the
impact such strategies have in the user experience, from reliability and performance to
scalability and prices.

Energy-Efficient Algorithms

Susanne Albers, Technical University of Munich, Germany

We survey algorithmic techniques for energy savings. So far the algorithms literature
focuses mostly on the system and device level: How can we save energy in a given
computational device? More specifically, (a) power-down mechanisms and (b)
dynamic speed scaling have been explored.

Power-down mechanisms: Consider a single device that is equipped with two
states, an active state and a sleep state. These states have individual power consumption
rates. Moreover, transitions between the states consume energy. We first present simple
algorithms that specify state transitions in idle periods where the device is not in use. In
the offline setting, the length of an idle period is known in advance. In the online
setting, this information is not available.

Furthermore, we review results for the more advanced setting that the device has
several low-power states. Again we show offline and online algorithms. Moreover, we
study the challenging scenario that a large set of parallel devices/processors is given.
The processors are heterogeneous in that each one has an individual set of low-power
states with associated power consumption rates. Over a time horizon the processing
demands vary. We give algorithms for constructing state transition schedules that
minimize the total energy consumed by all the processors.

Dynamic speed scaling: This technique is based on the fact that many modern
microprocessors can run at variable speed. High speeds imply high performance but
also high energy consumption. Low speed levels save energy but the performance
degrades. The general goal is to execute a set of jobs on variable-speed processors so as
to optimize energy and, possibly, a second objective.

We first review basic results for a single processor. We consider classical deadline-
based scheduling where each job is specified by an arrival time, a deadline and a
processing volume. Offline and online strategies are presented. We also study a second
setting where jobs are not labeled with deadlines and, instead, the objective is to
minimize the total cost consisting of job response times and energy. Additionally, we
review results for parallel processing environments where a set of homogeneous or
heterogeneous processors is given. Last not least we address an advanced problem
setting in which dynamic speed scaling and power-down mechanisms are combined.

XVI Euro-Par 2016 Invited Talks

Euro-Par 2016 Topics Overview

Topic 1: Support Tools and Environments

Tomàs Margalef, Olivier Richard, Siegfried Benkner, Joao Cardoso,
Michael Gerndt, Martin Schulz, Ana Lucia Varbanescu

High performance computing systems are becoming more and more complex. They
feature large node counts and each node often contains multicore microprocessors
combined with hardware accelerators and a complex multilevel memory hierarchy
shared among different components of the system. Faced with such complexity,
correctness and the performance of the applications are crucial, yet difficult issues that
are far from being solved.

The Support Tools and Environments Topic focuses on tools and techniques
addressing challenges of parallel and distributed systems related to programmability,
portability, correctness, reliability, scalability, efficiency and energy/power consump-
tion. This year, a diversity of papers proposing interesting and valuable research
contributions was submitted to this topic. As a result of the reviewing process, three
papers were accepted for publication.

We would like to thank all the authors who submitted papers to this topic as well as
the external reviewers, for their contribution to the success of the conference.

Topic 2: Performance and Power Modeling,
Prediction and Evaluation

Laura Carrington, Arnaud Legrand, Roy Campbell, Kirk Cameron,
Marcos Dias de Assucao, Georg Hager, Sascha Hunold, Darren Kerbyson,
Shirley Moore

In recent years, a range of novel methods and tools have been developed for the
evaluation, design, and modeling of parallel and distributed systems and applications.
At the same time, the term ‘performance’ has broadened to also include scalability and
energy efficiency, and touching reliability and robustness in addition to the classic
resource-oriented notions. The aim of this topic is to gather researchers working on
different aspects of performance modeling, evaluation, and prediction, be it for systems
or for applications running on the whole range of parallel and distributed systems (multi-
core and heterogeneous architectures, HPC systems, grid and cloud contexts etc.).
Authors are invited to submit novel research in all areas of performance modeling,
prediction and evaluation, and to help bring together current theory and practice.

This track received 18 submissions, all of which received at least 4 reviews, from
the 10 PC members or from the 8 additional subreviewers. The papers and reviews
were discussed extensively. As a result, four submissions have been accepted (22 %

acceptance rate). This track has thus been particularly selective and we have tried to
provide the authors with the most valuable and constructive feedback.

Topic 3: Scheduling and Load Balancing

Rizos Sakellariou, Fanny Pascual, Luiz Fernando Bittencourt, Florina Ciorba,
Julita Corbalan, Ivan Rodero, Krzysztof Rzadca, Uwe Schwiegelshohn

As parallelism now permeates all levels of modern computer systems, it opens up new
opportunities for improving application performance but, at the same time, it also
increases the complexity of the resource management challenge. In this environment,
the importance of scheduling and load balancing as a key research topic in parallel
computing continues to grow. In addition to long standing problems, hitherto
unexplored scenarios emerge in which scheduling and load balancing may need to be
addressed in the presence of multiple and/or conflicting optimization objectives where,
for instance, energy consumption may have to be traded with performance.

This topic covered all aspects related to scheduling and load balancing on parallel
and distributed machines, from theoretical foundations for modelling and designing
efficient and robust strategies to experimental studies, applications and practical tools
and solutions. This applies to multi-core processors, servers, heterogeneous systems,
HPC clusters as well as distributed systems such as clouds and global computing
platforms. Concrete areas of interest included scheduling algorithms for homogeneous
or heterogeneous platforms, theoretical foundations of scheduling algorithms, robust-
ness of scheduling algorithms, multi-objective scheduling, scheduling at extreme scale,
on-line scheduling, energy awareness in scheduling and load balancing, workload
characterization and modelling, workflow scheduling, performance models for
scheduling and load balancing, and resource management and awareness.

Seven papers were selected for presentation following a rigorous review process
with four independent reviews per paper.

Topic 4: High Performance Architectures and Compilers

Henri Bal, Sid Touati, Eduard Ayguadé, Pedro Diniz, Thomas Fahringer,
David Gregg, Wolfgang Karl, Hand Vandierendonck

This topic deals with hardware architecture design, languages, and compilation for
parallel and high performance systems. The areas of interest range from microproces-
sors to large-scale parallel machines (including multi and many-core, possibly
heterogeneous, processor architectures); from general-purpose to specialised hardware
platforms (e.g., graphic coprocessors, low-power embedded systems); and from
architecture design to compiler technology and language design.

On the compilation side, topics of interest include programmer productivity issues,
concurrent and/or sequential language aspects, vectorisation, program analysis,
program transformation, automatic discovery and/or management of parallelism at all
levels, autotuning and feedback directed compilation, and the interaction between the

XVIII Euro-Par 2016 Topics Overview

compiler and the operating system at large. On the machine architecture side, the scope
spans system architectures, processor architecture and micro-architecture, memory
hierarchy, multi-threading, architectural support for parallelism, and the impact of
emerging hardware technologies.

This track received 12 submissions, all of which received 4 reviews, from the 8 PC
members or from the 25 subreviewers. The papers and reviews were discussed
extensively. As a result, four submissions have been accepted, including one that was
nominated as distinguished paper.

Topic 5: Parallel and Distributed Data Management and Analytics

Tom Peterka, Bruno Raffin, Christopher Carothers, Toni Cortes, Matthieu Dorier,
Wolfgang Frings, Patrick Martin, Yang-Sae Moon

Many areas of science, industry, and commerce are producing extreme-scale data that
must be processed—stored, managed, analyzed—in order to extract useful knowledge.
This topic seeks papers in all aspects of distributed and parallel data management and
data analysis. For example, HPC in situ data analytics, cloud and grid data-intensive
processing, parallel storage systems, and scalable data processing workflows are all in
the scope of this topic.
Focus:

– Parallel, replicated, and highly-available distributed databases
– Data-intensive clouds and grids
– HPC scientific data analytics
– Middleware for processing large-scale data
– Programming models for parallel and distributed data analytics
– Workflow management for data analytics
– Coupling HPC simulations with in situ data analysis
– Parallel data visualization
– Distributed and parallel transaction and query processing and information retrieval
– Internet-scale data-intensive applications
– Sensor network data management
– Cloud and HPC storage architectures and systems
– Parallel data streaming and data stream mining
– Parallel and distributed knowledge discovery and data mining
– New storage hierarchies in distributed data systems based on NVRAM technologies

Thirteen full-length papers were submitted, and each paper received four reviews.
After discussion with the reviewers and track chairs, five papers were selected for
publication. Topics ranged from Spark and MapReduce applications, graph analytics,
coupling tasks in workflows, and kernels for advanced architectures.

Euro-Par 2016 Topics Overview XIX

Topic 6: Cluster and Cloud Computing

Adrien Lebre, Ivona Brandic, Fabien Hermenier, Peter Pietzuch, Ioan Raicu,
Xuanhua Shi, Wenhong Tian, Srikumar Venugopal

The success of Cloud Computing solutions such as the ones provided by Amazon or
Google has driven the advent of the Utility Computing (UC) paradigm. The use of
massive storage and computing resources accessible remotely in a seamless way has
become essential for many applications in various areas. While significant progresses
have been achieved in the past decade, the complete adoption of the UC paradigm is
still facing important challenges. Beyond the scene, most of Cloud Computing
solutions rely on federations of large-scale clusters where well-known but still unsolved
challenges related to performance, reliability and energy efficiency of the infrastruc-
tures should be addressed by research. Moreover, Cloud Computing emphasized the
importance of fundamental capabilities and services that are required to achieve the
goal of user-friendly, security and service guarantees.

Topic 6 sought papers covering many aspects of Cluster and Cloud Computing
dealing with infrastructure layer challenges (performance/energy optimizations,
security enhancements, Edge Computing) as well as how different kinds of applications
(scientific workflows, HPC, mobile) can benefit from such infrastructures.

22 papers have been submitted in Topic 6. Each submission was reviewed by at
least four reviewers. Finally three papers have been selected.

We would like to sincerely thank all the authors for their submissions, the Euro-Par
2016 Organizing Committee for their valuable help and the reviewers for their
excellent review work. All of them have contributed to make this topic and EuroPar an
excellent forum to discuss Cluster and Cloud Computing challenges.

Topic 7: Distributed Systems and Algorithms

Domenico Talia, Stéphane Devismes, Adriana Iamnitchi, Alexandru Iosup,
Stefan Schmid, Josef Widder

Parallel computing is heavily related to the developments and challenges of distributed
systems. Problems including load balancing, asynchrony, failures, malicious and selfish
behavior, long latencies, network partitions, disconnected operations, distributed
computing models and concurrent data structures, and heterogeneity are representative
of typical distributed issues that often appear along the design of parallel applications.

This track of Euro-Par provides a forum for both theoretical and practical research,
of interest to both academia and industry, on distributed computing, distributed
algorithms, distributed systems, distributed data structures, and parallel processing on
distributed systems, in particular in relation to efficient high performance computing.

This year, 10 complete papers have been submitted to this track. After a bidding
phase, each paper has been evaluated by 4 reviewers with high expertise. Overall,
18 experts have been involved into the review process. Finally, despite the high quality
of the submitted papers, only two papers have been accepted for publications.

XX Euro-Par 2016 Topics Overview

The PC chairs, Domenico Talia (Università della Calabria, Italy) and Stéphane
Devismes (Université Grenoble Alpes, France), are very grateful to all researchers that
have participated to the review process and permitted to select two high-quality papers.

Topic 8: Parallel and Distributed Programming,
Interfaces, Languages

Philippe O.A. Navaux, Christian Perez, Abhinav Bhatele, Alba Cristina De Melo,
Raymond Namyst, Celso Mendes, Marco Danelutto, Esteban Meneses,
Kuan-Ching Li

Parallel and distributed applications requires adequate programming abstractions and
models, efficient design tools, parallelization techniques and practices. This topic was
open for presentations of new results and practical experience in this domain. efficient
and effective parallel languages, interfaces, libraries and frameworks, as well as solid
practical and experimental validation. It provides a forum for research on high-
performance, correct, portable, and scalable parallel programs via adequate parallel and
distributed programming model, interface and language support. Contributions that
assess programming abstractions, models and methods for usability, performance
prediction, scalability, self-adaptation, rapid prototyping and fault-tolerance, as needed,
for instance, in dynamic heterogeneous parallel and distributed infrastructures, were
accepted.

All fifteen papers of this topic received three reviews that were further discussed
among all nine PC members. As a result, three strong papers were accepted for the
conference, covering important topics.

Topic 9: Multi- and Many-core Programming

Michela Taufer, Renaud Lachaize, Michela Becchi, Sunita Chandrasekaran,
Anne Elster, Naoya Maruyama, Dimitrios Nikolopoulos, Sabela Ramos Garea,
Guido Juckeland, Graham Lopez, Vania Marangozova-Martin

The intrinsic complexity of emerging many- and multi-core architectures requires the
deployment of software solutions capable of dealing with hybrid and heterogeneous
systems, from multi- and many-core systems to stand-alone systems with large
numbers of cores such as GPUs and accelerators. Proposed software solutions pursue
better programmability, performance portability, and levels of abstraction of these
modern parallel architectures. Deployed approaches tackle challenges in the architec-
tures’ programming models, algorithms, languages, compilers, libraries, runtime and
analysis tools.

The topic on multi- and many-core programming explores these software solutions
and associated approaches, providing the attendees with a common platform for
discussion of the state of the art and future directions in the field. Novel research and
solutions proposed in accepted papers includes: crucial data structures such as
concurrent search trees for supporting fine-grained, high-concurrent data locality in an

Euro-Par 2016 Topics Overview XXI

energy-efficient manner; scheduling strategies for task-based workflows to improve
runtime performance of applications on NUMA architectures; algorithmic improve-
ments based on recursive formulation of triangular matrix-matrix multiplication
(TRMM) and the triangular solve (TRSM) on GPUs; memory management techniques
to map threads and data to increase locality of memory accesses; studies of
relationships between performance and energy in concurrent programs; and runtime
support for energy efficiency in parallel pipelines on heterogeneous multiprocessing
architectures.

Six papers were selected for presentation, one as distinguished paper.

Topic 10: Theory and Algorithms for Parallel Computation
and Networking

Klaus Jansen, Bora Ucar, Petra Berenbrink, Christos Kaklamanis, Nicole Megow,
Erik Saule, Christian Scheideler, Jiri Sgall

Parallel computing is everywhere, on smartphones, laptops; at online shopping sites,
universities, computing centers; behind the search engines. Efficiency and productivity
at these scales and contexts are only possible by scalable parallel algorithms.

Theoretical tools enabling scalability, modeling and understanding parallel
algorithms, and data structures for exploiting parallelism are more important than
ever. Topic 10 addressed this general topic of theory and algorithms for parallel
computation including communication and network algorithms. We have received 14
submissions in very relevant topics including graph algorithms, data structures,
interconnection networks, distributed algorithms, and scientific computing algorithms.

The submissions were evaluated by a committee of eight members from diverse
background and geographical regions. All submissions received at least four reviews.
In most cases, the reviews were equivocal; in two cases the consensus were reached
after a lively discussion. At the end of the PC meeting, three papers were accepted.

We thank the authors who submitted papers and congratulate those whose papers
were accepted. We are grateful to the PC members and the referees who provided us
with carefully written, constructive and informative reviews. We also thank the
conference organizers for answering our questions and smoothly running the PC
meeting that took place in Grenoble.

Topic 11: Parallel Numerical Methods and Applications

Matthias Bolten, Laurent Philippe, Peter Arbenz, El Mostafa Daoudi,
Maya Neytcheva, Marian Vajtersic

A large amount of compute time used on HPC systems is used for numerical
simulations run by scientists from engineering and the sciences. Most of these
simulations rely on the availability of numerical algorithms that on the one hand
provide the accuracy that is needed to answer the scientific questions and that on the
other hand are scalable such that the available computer architecture is used as efficient

XXII Euro-Par 2016 Topics Overview

as possible. The latter implies a challenge for applied mathematicians and computer
scientists, as the fast growth of core numbers and the implications of modern
architectures require a careful algorithmic design and implementation.

The topic covers a wide range of aspects, from algorithms for basic linear algebra
problems to methods for differential equations, dealing with the avoidance of
communication, implementation details, and detection of faults.

Numerous papers have been submitted to this topics from international researchers.
After four reviews for each paper have been received the topic committee proposed a
selection of papers to be presented to the Euro-Par program committee that based on
these suggestions selected four papers for presentation at Euro-Par 2016 in Grenoble.

The selected papers highlight important aspects of parallel numerical algorithms
that are currently under investigation.

The topic committee wishes to thank all authors who contributed to this important
topic by submitting a paper to Euro-Par, as well as all referees for providing the
reviews on time. Further, we like to thank the organizing committee for the effort spent
in order to allow the participants of this year's Euro-Par to present and discuss the latest
results and findings in parallel computing in Grenoble.

Topic 12: Accelerator Computing

Enrique S. Quintana-Orti, Samuel Thibault, Taisuke -Arai- Boku, Esteban Clua,
Hatem Ltaief, Jeff Hammond, John Stone, Robert Strzodka

Different co-processor technology promise today a potential for accelerating large-scale
applications by leveraging their much higher hardware concurrency and/or customiza-
tion. Current examples range from graphics processors (GPUs) to “many-core”
general-purpose processors, such as the Intel Xeon Phi, as well as custom devices,
FPGA-based systems, and streaming data-flow architectures.

This topic aims to explore new avenues for actually realizing this potential,
promoting significant advances and solutions in areas related to accelerators, and in
particular, in architectures, algorithms, languages, compilers, libraries, runtime
systems, coordination of accelerators and CPU, and debugging and profiling tools.

The topic received 16 contributions, and 3 of these were accepted for presentation.

Euro-Par 2016 Topics Overview XXIII

Contents

Invited Papers

Resampling with Feedback — A New Paradigm of Using Workload Data
for Performance Evaluation . 3

Dror G. Feitelson

Scheduling DAGs Opportunistically: The Dream and the Reality Circa
2016 . 22

Arnold L. Rosenberg

Support Tools and Environments

Synchronization Debugging of Hybrid Parallel Programs 37
Olaf Krzikalla, Ralph Müller-Pfefferkorn, and Wolfgang E. Nagel

Nasty-MPI: Debugging Synchronization Errors in MPI-3 One-Sided
Applications . 51

Roger Kowalewski and Karl Fürlinger

Automatic Benchmark Profiling Through Advanced Trace Analysis 63
Alexis Martin and Vania Marangozova-Martin

Performance and Power Modeling, Prediction and Evaluation

Addressing Materials Science Challenges Using GPU-accelerated
POWER8 Nodes . 77

Paul F. Baumeister, Marcel Bornemann, Markus Bühler,
Thorsten Hater, Benjamin Krill, Dirk Pleiter, and Rudolf Zeller

Performance Prediction and Ranking of SpMV Kernels on GPU
Architectures . 90

Christoph Lehnert, Rudolf Berrendorf, Jan P. Ecker,
and Florian Mannuss

The Impact of Voltage-Frequency Scaling for the Matrix-Vector Product
on the IBM POWER8 . 103

Sandra Catalán, A. Cristiano I. Malossi, Costas Bekas,
and Enrique S. Quintana-Ortí

Power Consumption Modeling and Prediction in a Hybrid CPU-GPU-MIC
Supercomputer . 117

Alina Sîrbu and Ozalp Babaoglu

http://dx.doi.org/10.1007/978-3-319-43659-3_1
http://dx.doi.org/10.1007/978-3-319-43659-3_1
http://dx.doi.org/10.1007/978-3-319-43659-3_2
http://dx.doi.org/10.1007/978-3-319-43659-3_2
http://dx.doi.org/10.1007/978-3-319-43659-3_3
http://dx.doi.org/10.1007/978-3-319-43659-3_4
http://dx.doi.org/10.1007/978-3-319-43659-3_4
http://dx.doi.org/10.1007/978-3-319-43659-3_5
http://dx.doi.org/10.1007/978-3-319-43659-3_6
http://dx.doi.org/10.1007/978-3-319-43659-3_6
http://dx.doi.org/10.1007/978-3-319-43659-3_7
http://dx.doi.org/10.1007/978-3-319-43659-3_7
http://dx.doi.org/10.1007/978-3-319-43659-3_8
http://dx.doi.org/10.1007/978-3-319-43659-3_8
http://dx.doi.org/10.1007/978-3-319-43659-3_9
http://dx.doi.org/10.1007/978-3-319-43659-3_9

Scheduling and Load Balancing

Controlling and Assessing Correlations of Cost Matrices in Heterogeneous
Scheduling . 133

Louis-Claude Canon, Pierre-Cyrille Héam, and Laurent Philippe

Penalized Graph Partitioning for Static and Dynamic Load Balancing 146
Tim Kiefer, Dirk Habich, and Wolfgang Lehner

Non-preemptive Scheduling with Setup Times: A PTAS 159
Klaus Jansen and Felix Land

Cuboid Partitioning for Parallel Matrix Multiplication on Heterogeneous
Platforms . 171

Olivier Beaumont, Lionel Eyraud-Dubois, and Thomas Lambert

HeSP: A Simulation Framework for Solving the Task
Scheduling-Partitioning Problem on Heterogeneous Architectures 183

Antón Rey, Francisco D. Igual, and Manuel Prieto-Matías

FPT Approximation Algorithm for Scheduling with Memory Constraints 196
Eric Angel, Cédric Chevalier, Franck Ledoux, Sébastien Morais,
and Damien Regnault

Scheduling MapReduce Jobs Under Multi-round Precedences 209
D. Fotakis, I. Milis, O. Papadigenopoulos, V. Vassalos, and G. Zois

High Performance Architectures and Compilers

Code Bones: Fast and Flexible Code Generation for Dynamic and
Speculative Polyhedral Optimization . 225

Juan Manuel Martinez Caamaño, Willy Wolff, and Philippe Clauss

Piecewise Holistic Autotuning of Compiler and Runtime Parameters 238
Mihail Popov, Chadi Akel, William Jalby, and Pablo de Oliveira Castro

Insights into the Fallback Path of Best-Effort Hardware Transactional
Memory Systems . 251

Ricardo Quislant, Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 264
Florian Wende, Matthias Noack, Thomas Steinke, Michael Klemm,
Chris J. Newburn, and Georg Zitzlsberger

Parallel and Distributed Data Management and Analytics

Lightweight Multi-language Bindings for Apache Spark. 281
Luca Salucci, Daniele Bonetta, and Walter Binder

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-43659-3_10
http://dx.doi.org/10.1007/978-3-319-43659-3_10
http://dx.doi.org/10.1007/978-3-319-43659-3_11
http://dx.doi.org/10.1007/978-3-319-43659-3_12
http://dx.doi.org/10.1007/978-3-319-43659-3_13
http://dx.doi.org/10.1007/978-3-319-43659-3_13
http://dx.doi.org/10.1007/978-3-319-43659-3_14
http://dx.doi.org/10.1007/978-3-319-43659-3_14
http://dx.doi.org/10.1007/978-3-319-43659-3_15
http://dx.doi.org/10.1007/978-3-319-43659-3_16
http://dx.doi.org/10.1007/978-3-319-43659-3_17
http://dx.doi.org/10.1007/978-3-319-43659-3_17
http://dx.doi.org/10.1007/978-3-319-43659-3_18
http://dx.doi.org/10.1007/978-3-319-43659-3_19
http://dx.doi.org/10.1007/978-3-319-43659-3_19
http://dx.doi.org/10.1007/978-3-319-43659-3_20
http://dx.doi.org/10.1007/978-3-319-43659-3_21

Toward a General I/O Arbitration Framework for netCDF Based Big Data
Processing . 293

Jianwei Liao, Balazs Gerofi, Guo-Yuan Lien, Seiya Nishizawa,
Takemasa Miyoshi, Hirofumi Tomita, and Yutaka Ishikawa

High Performance Parallel Summed-Area Table Kernels for Multi-core
and Many-core Systems . 306

Angelos Papatriantafyllou and Dimitris Sacharidis

GraphIn: An Online High Performance Incremental Graph Processing
Framework. 319

Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu,
Theodore L. Willke, Jeffrey Young, Matthew Wolf, and Karsten Schwan

Efficient Large Outer Joins over MapReduce . 334
Long Cheng and Spyros Kotoulas

Cluster and Cloud Computing

Slurm-V: Extending Slurm for Building Efficient HPC Cloud with SR-IOV
and IVShmem . 349

Jie Zhang, Xiaoyi Lu, Sourav Chakraborty,
and Dhabaleswar K. (DK) Panda

An Autonomic Parallel Strategy for the Projection of Ecological Niche
Models in Heterogeneous Computational Environments 363

Fernanda G.O. Passos and Vinod E.F. Rebello

Towards Network-Aware Service Placement in Community Network
Micro-Clouds . 376

Mennan Selimi, Davide Vega, Felix Freitag, and Luís Veiga

Heating as a Cloud-Service, A Position Paper (Industrial Presentation) 389
Yanik Ngoko

Distributed Systems and Algorithms

Design and Verification of Distributed Phasers . 405
Karthik Murthy, Sri Raj Paul, Kuldeep S. Meel, Tiago Cogumbreiro,
and John Mellor-Crummey

Exploring Partial Replication to Improve Lightweight Silent Data
Corruption Detection for HPC Applications . 419

Eduardo Berrocal, Leonardo Bautista-Gomez, Sheng Di, Zhiling Lan,
and Franck Cappello

Contents XXVII

http://dx.doi.org/10.1007/978-3-319-43659-3_22
http://dx.doi.org/10.1007/978-3-319-43659-3_22
http://dx.doi.org/10.1007/978-3-319-43659-3_23
http://dx.doi.org/10.1007/978-3-319-43659-3_23
http://dx.doi.org/10.1007/978-3-319-43659-3_24
http://dx.doi.org/10.1007/978-3-319-43659-3_24
http://dx.doi.org/10.1007/978-3-319-43659-3_25
http://dx.doi.org/10.1007/978-3-319-43659-3_26
http://dx.doi.org/10.1007/978-3-319-43659-3_26
http://dx.doi.org/10.1007/978-3-319-43659-3_27
http://dx.doi.org/10.1007/978-3-319-43659-3_27
http://dx.doi.org/10.1007/978-3-319-43659-3_28
http://dx.doi.org/10.1007/978-3-319-43659-3_28
http://dx.doi.org/10.1007/978-3-319-43659-3_29
http://dx.doi.org/10.1007/978-3-319-43659-3_30
http://dx.doi.org/10.1007/978-3-319-43659-3_31
http://dx.doi.org/10.1007/978-3-319-43659-3_31

Parallel and Distributed Programming, Interfaces, Language

Automatic Verification of Self-consistent MPI Performance Guidelines 433
Sascha Hunold, Alexandra Carpen-Amarie, Felix Donatus Lübbe,
and Jesper Larsson Träff

ParallelME: A Parallel Mobile Engine to Explore Heterogeneity in Mobile
Computing Architectures . 447

Guilherme Andrade, Wilson de Carvalho, Renato Utsch,
Pedro Caldeira, Alberto Alburquerque, Fabricio Ferracioli,
Leonardo Rocha, Michael Frank, Dorgival Guedes,
and Renato Ferreira

CBPQ: High Performance Lock-Free Priority Queue 460
Anastasia Braginsky, Nachshon Cohen, and Erez Petrank

Multicore and Manycore Parallelism

Redesigning Triangular Dense Matrix Computations on GPUs 477
Ali Charara, Hatem Ltaief, and David Keyes

A Sharing-Aware Memory Management Unit for Online Mapping
in Multi-core Architectures . 490

Eduardo H.M. Cruz, Matthias Diener, Laércio L. Pilla,
and Philippe O.A. Navaux

GreenBST: Energy-Efficient Concurrent Search Tree 502
Ibrahim Umar, Otto Anshus, and Phuong Ha

HAP: A Heterogeneity-Conscious Runtime System for Adaptive Pipeline
Parallelism . 518

Jinsu Park and Woongki Baek

Using Data Dependencies to Improve Task-Based Scheduling Strategies on
NUMA Architectures. 531

Philippe Virouleau, François Broquedis, Thierry Gautier,
and Fabrice Rastello

Multicore vs Manycore: The Energy Cost of Concurrency 545
Martin Groen and Vincent Gramoli

Theory and Algorithms for Parallel Computation and Networking

Work-Efficient Parallel Union-Find with Applications to Incremental
Graph Connectivity . 561

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura,
and Kun-Lung Wu

XXVIII Contents

http://dx.doi.org/10.1007/978-3-319-43659-3_32
http://dx.doi.org/10.1007/978-3-319-43659-3_33
http://dx.doi.org/10.1007/978-3-319-43659-3_33
http://dx.doi.org/10.1007/978-3-319-43659-3_34
http://dx.doi.org/10.1007/978-3-319-43659-3_35
http://dx.doi.org/10.1007/978-3-319-43659-3_36
http://dx.doi.org/10.1007/978-3-319-43659-3_36
http://dx.doi.org/10.1007/978-3-319-43659-3_37
http://dx.doi.org/10.1007/978-3-319-43659-3_38
http://dx.doi.org/10.1007/978-3-319-43659-3_38
http://dx.doi.org/10.1007/978-3-319-43659-3_39
http://dx.doi.org/10.1007/978-3-319-43659-3_39
http://dx.doi.org/10.1007/978-3-319-43659-3_40
http://dx.doi.org/10.1007/978-3-319-43659-3_41
http://dx.doi.org/10.1007/978-3-319-43659-3_41

An Efficient Cache-oblivious Parallel Viterbi Algorithm 574
Rezaul Chowdhury, Pramod Ganapathi, Vivek Pradhan,
Jesmin Jahan Tithi, and Yunpeng Xiao

Gradual Stabilization Under s-Dynamics . 588
Karine Altisen, Stéphane Devismes, Anaïs Durand, and Franck Petit

Parallel Numerical Methods and Applications

High Performance Polar Decomposition on Distributed Memory Systems. . . . 605
Dalal Sukkari, Hatem Ltaief, and David Keyes

A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves 617
Weifeng Liu, Ang Li, Jonathan Hogg, Iain S. Duff, and Brian Vinter

Exploiting Task-Parallelism in Message-Passing Sparse Linear System
Solvers Using OmpSs . 631

José I. Aliaga, María Barreda, Matthias Bollhöfer,
and Enrique S. Quintana-Ortí

Lightweight and Accurate Silent Data Corruption Detection in Ordinary
Differential Equation Solvers . 644

Pierre-Louis Guhur, Hong Zhang, Tom Peterka, Emil Constantinescu,
and Franck Cappello

Accelerator Computing

High-Performance Matrix-Matrix Multiplications of Very Small Matrices. . . . 659
Ian Masliah, Ahmad Abdelfattah, A. Haidar, S. Tomov, Marc Baboulin,
J. Falcou, and J. Dongarra

Effective Minimally-Invasive GPU Acceleration of Distributed Sparse
Matrix Factorization . 672

Anshul Gupta, Natalia Gimelshein, Seid Koric, and Steven Rennich

Automatic OpenCL Task Adaptation for Heterogeneous Architectures 684
Pierre Huchant, Marie-Christine Counilh, and Denis Barthou

Author Index . 697

Contents XXIX

http://dx.doi.org/10.1007/978-3-319-43659-3_42
http://dx.doi.org/10.1007/978-3-319-43659-3_43
http://dx.doi.org/10.1007/978-3-319-43659-3_43
http://dx.doi.org/10.1007/978-3-319-43659-3_44
http://dx.doi.org/10.1007/978-3-319-43659-3_45
http://dx.doi.org/10.1007/978-3-319-43659-3_46
http://dx.doi.org/10.1007/978-3-319-43659-3_46
http://dx.doi.org/10.1007/978-3-319-43659-3_47
http://dx.doi.org/10.1007/978-3-319-43659-3_47
http://dx.doi.org/10.1007/978-3-319-43659-3_48
http://dx.doi.org/10.1007/978-3-319-43659-3_49
http://dx.doi.org/10.1007/978-3-319-43659-3_49
http://dx.doi.org/10.1007/978-3-319-43659-3_50

Invited Papers

Resampling with Feedback —
A New Paradigm of Using Workload Data

for Performance Evaluation

Dror G. Feitelson(B)

School of Computer Science and Engineering,
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

feit@cs.huji.ac.il

Abstract. Reliable performance evaluations require representative
workloads. This has led to the use of accounting logs from production
systems as a source for workload data in simulations. But using such logs
directly suffers from various deficiencies, such as providing data about
only one specific situation, and lack of flexibility, namely the inability to
adjust the workload as needed. Creating workload models solves some of
these problems but creates others, most notably the danger of missing out
on important details that were not recognized in advance, and therefore
not included in the model. Resampling solves many of these deficiencies
by combining the best of both worlds. It is based on partitioning real
workloads into basic components (e.g. the jobs contributed by different
users), and then generating new workloads by sampling from this pool of
basic components. The generated workloads are adjusted dynamically to
the conditions of the simulated system using a feedback loop, which may
adjust the throughput. Using this methodology analysts can create mul-
tiple varied (but related) workloads from the same original log, all the
time retaining much of the structure that exists in the original workload.
Resampling with feedback thus provides a new way to use workload logs
which benefits from the realism of logs while eliminating many of their
drawbacks. In addition, it enables evaluations of throughput effects that
are impossible with static workloads.

This paper was written to accompany a keynote address at EuroPar
2016. It summarizes my and my students’ work and reflects a personal
view. The goal is to show the big picture and the building and interplay
of ideas, at the possible expense of not providing a full overview of and
comparison with related work.

1 Introduction

Performance evaluation is a basic element of experimental computer science. It is
used to compare design alternatives when building new systems, to tune parame-
ter values of existing systems, and to assess capacity requirements when setting
up systems for production use. Lack of adequate performance evaluations can
lead to bad decisions, which imply either not being able to accomplish mission

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 3–21, 2016.
DOI: 10.1007/978-3-319-43659-3 1

4 D.G. Feitelson

objectives or inefficient use of resources. A good evaluation study, on the other
hand, can be instrumental in the design and realization of an efficient and useful
system.

It is widely accepted that the performance of a computer system depends on
its design and implementation. This is why performance evaluations can be used
to judge designs and assess implementations. But performance also depends on
the workload to which the system is subjected. Evaluating a system with the
wrong workload will most probably lead to erroneous results, that cannot be
relied upon [9,15]. It is therefore imperative to use representative and reliable
workloads to drive performance evaluation studies. However, workloads can have
complicated structures and distributions, so workload characterization can be a
hard task to perform [4].

The problem is exacerbated by the fact that workloads may interact with the
system and even with the performance metrics in non-trivial ways [11,12]. Thus
it may not be enough to use a workload model that is generally correct, and it
may be important to get minute details correct too. But it is not always clear
in advance which details are the important ones. This suggests that workload
should be comprehensive and include all possible attributes [22].

In the field of parallel job scheduling, the workload is the sequence of jobs
submitted to the system. Early research in this field, in the 1980s, lacked data
on which to base workloads. Instead studies were based on what were thought to
be reasonable assumptions, or compared possible distributions — for example, a
uniform distribution of job sizes, a distribution over powers of 2, and a harmonic
distribution [19,20]. But it was not known which of these is the most realistic.

Since the mid 1990s workload logs became available (starting with [18]) and
were collected in the Parallel Workloads Archive [24,29]. This enabled the sub-
stitution of assumptions with hard data [14]. In particular, using logged data to
drive simulations became the norm in evaluations of parallel job schedulers. But
experience with this methodology exposed problems, especially in the context of
matching the workload to the simulated system. This is described below in Sect. 3.

The suggested solution to these problems is to use resampling with feedback,
as described in Sect. 4. The idea is to partition the workload into basic compo-
nents, and sample from this pool of components to create multiple alternative
workloads [42]. At the same time, feedback from the simulated system is used
to pace the workload generation process as would occur in reality [30,32,44].
The resulting methodology enables evaluations that are not possible when using
logs as they were recorded. And it applies to any system type, not only to the
context of parallel job scheduling.

2 Background

Our discussion is couched in the domain of parallel job scheduling. Parallel jobs
are composed of multiple interacting processes which run on distinct processors.
They can therefore be modeled as rectangles in processors × time space, where

Resampling with Feedback 5

the height of the rectangle represents the number of processors used, and its
width represents the duration of use.

Scheduling parallel jobs is the decision of when each job will run. The simplest
scheduling algorithm is First-Come-First-Serve (FCFS), which simply schedules
the jobs in the order that they are submitted to the system (Fig. 1). An alter-
native is EASY, named after the Extensible Argonne Scheduling sYstem which
introduced it [26,28]. The idea here is to optimize the schedule by taking small
jobs from the back of the queue, and using them to fill in holes that were left in
the schedule, an operation known as backfilling. This reduces fragmentation and
improves throughput.

doirep daol hgihdoirep daol wol
future arrivals

unknown

The workload

queued jobsSchedule generated by FCFS

Schedule generated by EASY queued jobs

T

jobs numbered in order of arrival

(backfilled jobs shaded)

1

2

3

4

5

6

10

12

15

8

7

12

14

13 14
1

2

3

4

5

6

7

1

2

3

4

5

6

7

12

14

16

17

18
19

8

8

18

19

15
16

17
19

18

10

9

16

9 13

17

11

11

11

10

9
15

13

av
ai

la
bl

e
pr

oc
es

so
rs

av
ai

la
bl

e
pr

oc
es

so
rs

Fig. 1. Illustration of a sequence of parallel jobs (the workload) and how it would be
scheduled by FCFS and EASY up to time T .

But note that the utility of backfilling depends on the workload. For example,
if all the jobs require more than half the processors, two jobs can never run at
the same time, and backfilling cannot be used. Thus if EASY is evaluated with
such a workload, the result would be that the backfilling optimization is useless,
but if real workloads actually do include many small jobs then this conclusion
would be wrong. Therefore workloads used in evaluations must be representative
of real workloads. Our work is about how to achieve this goal.

6 D.G. Feitelson

3 Using Workload Logs and Models to Drive Simulations

There are two common ways to use a measured workload to analyze or evaluate
a system design: (1) use the logged workload directly to drive a simulation, or (2)
create a model from the log and use the model for either analysis or simulation.
As we’ll show, both have deficiencies that may lead to problems in evaluations.
The idea of resampling can be thought of as combining the two in order to enjoy
the best of both worlds.

3.1 Workload Modeling

Workload models have a number of advantages over logs. Some of the most
salient ones are [15, Sect. 1.3.2]:

– The modeler has full knowledge of workload characteristics. For example, it
is easy to know which workload parameters are correlated with each other
because this information is part of the model. Such knowledge increases our
understanding, and can lead to new designs based on this understanding.
Workload logs, on the other hand, may include unknown features that never-
theless have a significant influence on the results. These cannot be exploited
and may lead to confusion.

– It is possible to change model parameters one at a time, in order to investi-
gate the influence of each one, while keeping other parameters constant. This
allows for direct measurement of system sensitivity to the different parame-
ters. In particular, it is typically easy to check different load levels. It is also
possible to select model parameters that are expected to match the specific
workload at a given site.

– A model is not affected by policies and constraints that are particular to the
site where a log was recorded. For example, if a site configures its job queues
with a maximum allowed duration of 4 h, it forces users to break long jobs
into multiple short jobs. Thus, the observed distribution of durations in a log
will be different from the “natural” distribution users would have generated
under a different policy, and the log — despite being “real” — is actually
unrepresentative.

– Logs may be polluted by bogus data. For example, a log may include records
of jobs that were killed because they exceeded their resource bounds. Such
jobs impose a transient load on the system, and influence the arrival process.
However, they may be replicated a number of times before completing suc-
cessfully, and only the successful run represents “real” work. In a model, such
jobs can be avoided (but they can also be modeled explicitly if so desired).

– Models have better statistical properties: they are usually stationary, so eval-
uation results converge faster [8], and they allow multiple statistically equiv-
alent simulations to be run so as to support the calculation of confidence
intervals. Logs, on the other hand, provide only a single data point, which
may be based on an unknown mixture of conditions.

Resampling with Feedback 7

These advantages have led to the creation and use of several workload models
(e.g. [2,3,25,27]), and even a quest for a general, parameterized workload model
that can serve as a canonical workload in all evaluations [21].

3.2 Problems with Models

But models include only what you know about in advance, and decide to incor-
porate in the model. Over the years several examples of important attributes
that were missed have been uncovered.

Perhaps the most interesting feature of parallel job workloads — in terms of
its unexpected importance — is user runtime estimates. Many schedulers (includ-
ing EASY) require users to provide estimates of job runtime when submitting a
job; these estimates are then used by the scheduler to plan ahead. But simula-
tions often assumed that perfect estimates are available. This turned out to be
wrong on two counts: first, estimates are actually very inaccurate (Fig. 2) [28],
and second, it actually matters [12,38]. In retrospect we can now fully under-
stand the interactions between estimates and other features of the workload, and
the conditions under which one scheduler is better than the other. We can also
model realistic (inaccurate) estimates [35]. But the more important result is the
demonstration that performance evaluation results may be swayed by innocent-
looking workload details, and that a very detailed analysis is required in order
to uncover such situations.

OK jobs
<90sec jobs

killed jobs

0 10 20 30 40 50 60 70 80 90 100 110

percent of requested time used

0

1000

2000

3000

4000

5000

6000

7000

nu
m

be
r

of
 jo

bs

OK jobs
<90sec jobs

killed jobs

0 10 20 30 40 50 60 70 80 90 100 110

percent of requested time used

0

1000

2000

3000

4000

nu
m

be
r

of
 jo

bs

Fig. 2. Histograms of user runtime estimates as a fraction of the actual runtimes, from
logs from the CTC and KTH SP2 machines [28]. The peak at 100 % is jobs killed
because they exceeded their estimate; for other jobs except the very shortest ones the
histogram is flat. (Color figure online)

Another example is that real workloads are obviously non-stationary: they
have daily, weekly, and even yearly cycles. In many cases this is ignored in per-
formance evaluations, with the justification that only the high load at prime
time is of interest. While this is reasonable in the context of network communi-
cation, where the individual workload items (packets) are very small, it is very
dubious in the context of parallel jobs, that may run for many hours. And in fact

8 D.G. Feitelson

we have found that optimizing schedulers may actually depend on the existence
of the daily cycle, because they try to delay non-critical jobs submitted during
prime time and execute them at night [22]. If there is no daily cycle there is no
non-prime time, and thus no alternative to executing these jobs at once.

Yet another effect that is prevalent in logs but usually absent from models is
locality [13]. The locality properties of real workloads are especially important
for the evaluation of adaptive and predictive systems (for example, it may be
possible to predict job runtimes and compensate for inaccurate estimates [36]).
Such features are becoming more commonplace with the advent of self-tuning
and self-management. The idea is that the system should be able to react to
changing conditions, without having to be reconfigured by a human operator
[17]. But in order to study such systems, we need workloads with changing
conditions as in real workload logs. A model based on random sampling from a
distribution will not do, as it creates a stationary workload. This can be solved by
employing “localized sampling” from the distribution [13], but a better solution
is to use user-based modeling (or resampling, as described below).

3.3 Using Logs Directly

The perception that workload models may be over-simplified and unjustified
has led many researchers to prefer real workload logs. The advantage of using a
traced log directly as the input to a simulation is that it is the most “real” test
of the simulated system: the workload reflects a real workload precisely, with
all its complexities, even if they are not known to the person performing the
analysis [9,15].

The first such log to be made available came from the iPSC/860 hypercube
machine installed at NASA Ames Research Center, and included all jobs exe-
cuted on the system in the fourth quarter of 1993 [18]. Over the years many
additional logs have been collected in the Parallel Workloads Archive [24,29].
This resource is widely used, and as of the middle of 2016 a Google Scholar
search for the archive’s URL (www.cs.huji.ac.il/labs/parallel/workload) led to
nearly one thousand hits.

Contributing to the popularity of the Parallel Workloads Archive is the fact
that each log is accompanied by copious metadata concerning the system and
the logged data. In addition, all the logs are converted to a “standard workload
format” [1]. Thus if a simulator can read this format, it can immediately run
simulations using all the logs in the archive.

3.4 Drawbacks of Using Logs

While using logs “as is” avoids the problems associated with models, logs too
have their drawbacks. The most noticeable ones are as follows:

– Each log reflects only one specific workload, and can only provide a single data
point to the evaluation. But evaluations often require multiple simulations
with related workloads. For example, the calculation of confidence intervals

www.cs.huji.ac.il/labs/parallel/workload

Resampling with Feedback 9

is best done by running multiple simulations with distinct but statistically
identical workloads. This is easy with a workload model but impossible with
a log.

– More specifically, it is not possible to manipulate logs to adjust the workload
to the simulated system and conditions, and even when it is possible, it can
be problematic. In particular, it is often desirable to evaluate the performance
of a system under different load conditions, e.g. to check its stability or the
maximal load it can handle before saturating. Thus a single load condition
(as provided by a log) is not enough, and we need a tunable parameter that
allows for the generation of different load conditions.
In log-based simulations it is common practice to increase the load on the
system by reducing the average interarrival time. For example, if a log rep-
resents a load of 70 % of system capacity, multiplying all interarrival times
by a factor of 7/8 = 0.875 will increase the load to 80 %. But this practice
has the undesirable consequence of shrinking the daily load cycle as well. The
alternative of increasing the runtime to increase the load is not much better:
jobs that originally came one after the other, and maybe even depended on
each other, may now overlap. And increasing the number of processors to
increase load is even worse. For example, if job sizes tend to be powers of 2
(which they are) then they pack well together. Increasing them by say 10 %
is not always possible (a 4-processor job can only be increased in increments
of 25 %), and when possible it has detrimental effects on the packing of the
jobs onto processors.

– Another drawback is the need for workload cleaning. Real workloads some-
times include unrepresentative activity, like huge short-lived surges of activ-
ity by individual users (flurries, Fig. 3). While the existence of flurries is not
uncommon (many logs exhibit them up to a few times a year), they are very
different from the normal workload between them, and also different from
each other. They should therefore be removed from the workload logs before
they are analyzed and used in simulations [23,37].

LANL CM−5

N D J
1995

F M A M J J A S O N D J
1996

F M A M J J A S

jo
bs

 p
er

 w
ee

k

0

2000

4000

6000

8000

10000

12000
user 50
user 31
user 38
210 others

SDSC SP2

J
1998

J A S O N D J
1999

F M A M J J A S O N D J
2000

F M A

jo
bs

 p
er

 w
ee

k

0

1000

2000

3000

4000

5000

6000

7000
user 374
427 others

Fig. 3. Arrivals per week on two parallel supercomputers, showing flurries of activity
due to single users [23,37]. (Color figure online)

10 D.G. Feitelson

At a deeper level, we find that logged workloads actually contain a “signa-
ture” of the logged system. In other words, there is no such thing as a “real”
workload which is the right one for general use: every workload observed on a
real system is the result of the interaction between that particular system and its
users. If the system behaves differently, the users change their behavior as well.

This has grave implications. It means that using a workload from one system
to evaluate a different system is wrong, because the workload will not fit the sim-
ulation conditions [30,31]. We demonstrated this using a pair of cross-simulations
of two different schedulers. The first is the well known FCFS scheduler, which
is inefficient and leads to wasted resources as processors are left idle until the
first queued job can run. The second is the optimizing EASY scheduler, which
optimizes the schedule by taking small jobs from down the queue and backfill-
ing them into holes left between earlier jobs. This allows EASY to sustain a
heavier load. And indeed, simulation of FCFS using a workload generated by
an EASY simulation (using the same underlying system) led to system satura-
tion and overloading: FCFS could not handle the load that was generated when
users interacted with EASY. Conversely, simulation of EASY using a workload
generated by a FCFS simulation failed to show that EASY had any advantage,
because the workload was not challenging enough.

Taken together, all these problems seem to imply that workload logs are
actually not any better than workload models. Resampling and feedback are
designed to solve the problems and facilitate reliable evaluations.

4 Resampling and Feedback

The root cause of many of the problems with using logs is that a log represents
unique conditions that were in effect when it was recorded, and may not be
suitable for the desired evaluation. At the same time logs contain significant
structure that we want to retain. Resampling is a way to provide flexibility
while preserving the structure. And feedback adds just the necessary level of
adjustment to the conditions that hold during the evaluation.

4.1 Before Resampling: Input Shaking and User-Based Modeling

The idea of resampling grew out of the ideas of input shaking and user-based
modeling.

Input shaking was also an innovative use of logs in simulations [39]. The idea
was to “shake” the job stream, meaning that in general the workload remained
the same as in the log, but some of the jobs were adjusted to a small degree.
For example, their arrival time could be changed by a small random amount.
This enabled many simulations with similar but not identical workloads, and
facilitated the identification of situations where the original results were actually
due to some artifact and therefore not representative.

User-based modeling is a generative approach to creating workloads, which
was first proposed as a mechanism to generate locality of sampling [10]. The

Resampling with Feedback 11

idea was to view the workload as being composed from the activities of many
individual users, each of which submits jobs with different characteristics [4,7].
Since the community of active users changes over time, the number of active
users in a given week — and the number of different programs they run —
will be relatively small. The short-term workload will therefore tend to include
repetitions of similar jobs, and will consequently tend to have more locality and
be more predictable. But over a longer period this will change, because the set
of active users has changed.

The essence of user-based modeling is an attempt to capture this structure
using a multi-level model of the user population and the behavior of individual
users. The top level is a model of the user population, including the arrival of
new users and the departure of previous users. The second level models the
activity of individual users as a sequence of sessions synchronized with the time
of day (again based on data extracted from logs [41]). The lowest level includes
repetitions of jobs within each session.

Note, however, that user-based modeling is not easy, as we typically do not
have any explicit information about a user’s motivation and considerations. But
still some information can be gleaned by analyzing logs. For example, the ques-
tion of what annoys users more and causes them to abort their interactive work
has been investigated by tabulating the probability to submit another job as a
function of the previous job’s response time or its slowdown [31]. The result was
that response time was the more meaningful metric (Fig. 4).

response time [s]
1 10 100 1000 10K 100Kav

er
ag

e
su

bs
eq

ue
nt

 th
in

k
tim

e

1000

10K

slowdown
1 10 100 1000 10Kav

er
ag

e
su

bs
eq

ue
nt

 th
in

k
tim

e

1000

10K

SDSC Paragon
CTC SP2
KTH SP2
SDSC SP2
LANL O2K
SDSC Blue
HPC2N cluster
SDSC DataStar

Fig. 4. A job’s performance as measured by the response time is a better predictor
of subsequent behavior (think time till the next job) than the job’s slowdown. (Color
figure online)

Remarkably, user-based modeling makes significant progress towards solving
the problems outlined above:

– The workload will naturally have locality provided that the job models of
different users are different from each other. During the tenure of each set of
users the job stream will reflect the behavior of those users.

12 D.G. Feitelson

– The load on the system can be modified by changing the number of active
users, or in other words, by changing parameters of the user population model.
More users would generate higher load, but do it “in the right way”.

– The generated workload can include non-stationary elements such as a daily
cycle, by virtue of the model of when users engage in sessions of activity [32].

– As a special case, unique events such as workload flurries can be included or
excluded at will, by including or excluding users with such unique behaviors.

– By using heavy-tailed session durations (and inter-session breaks) one can
generate self similarity [40], which has been found in many types of workloads
including parallel jobs [34].

But on the other hand, maybe all this modeling is too far removed from the
original log data? Resampling was designed to retain the original data as much
as possible, and modify only whatever is needed for a specific purpose.

4.2 Resampling from a Log

Resampling is a powerful technique for statistical reasoning in situations where
not enough empirical data is available [5,6]. The idea is to use the available
data sample as an approximation of the underlying population, and resample
from it. Applying this to workloads, we partition a workload log into its basic
components and re-group them in different ways to achieve the desired effects.
In the context of parallel job scheduling, we suggest that the resampling be
done at the level of users. Thus we first partition the workload into individual
subtraces for the different users, including all the jobs submitted by each user
throughout the logging period. We then sample from this pool of users to create
a new workload [42].

When looking at individual user traces, we find that some of then are active
throughout much of the log’s duration, while others are active only during a rel-
atively short interval (a few weeks or months). We therefore distinguish between
long-term users and temporary users (Fig. 5), and use them differently in the
resampling. Users whose entire activity is too close to either end of the log are
excluded.

Given the pools of temporary and long-term users, the resampling and gen-
eration of a new workload is done as follows:

– Initialization: We initialize the active users set with some temporary users
and some long-term users. The defaults are the number of long-term users
in the original log, and the average number of temporary users present in a
single week of the original log. Users are not started with their first job from
the trace, because we are trying to emulate a workload that was recorded over
an arbitrary timespan, and there is no reason to assume that the beginning
of the logging period should coincide with the beginning of a user’s activity.
Therefore each user is started in some arbitrary week of his traced activity.
However, care is taken that jobs start on the same day of the week and time
of the day in the simulation as in the original log.

Resampling with Feedback 13

original trace

generated trace

user pools

4 wk 4 wk

long term temporary

?

?

2

1

2

2 2

3

3

3

3

4

4

4

4

5

5

5 5

6

6

6

6

3

7

7

8

9 10

11

12

13

8

9

9

9

10

10

10

11

11

11

7

8

8

8

Fig. 5. Conceptual framework of dividing users into long-term and temporary, and
reusing them in a generated workload [42]. Each rectangle represents the full extent of
activity by a certain user.

– Temporary users: In each new week of the simulation, a certain number
of new temporary users are added (and a similar number are expected to
leave, on average). The exact number is randomized around the target num-
ber, which defaults to the average rate at which temporary users arrived in
the original log. The selected users are started from their first traced jobs.
A user can be selected from the pool multiple times, but care is taken not to
select the same user twice in the same week.

– Long-term users: The population of long-term users is constant and consists
of those chosen in the initialization. When the traced activity of a long-term
user is finished, it is simply regenerated after a certain interval. Naturally the
regenerations are also synchronized correctly with the time and day.

Each active user submits jobs to the system exactly as in the log (except that
their timing may vary to reflect feedback as explained below). The flow of the
simulation is shown in Fig. 6.

4.3 Adding Feedback

Computer systems are not closed systems. Rather, they interact with their envi-
ronment, and in particular with their users. We therefore suggest that it is not
enough to simulate the computer system in isolation — we should also simulate
the system’s environment, namely the users who interact with the system, cre-
ate its input, and wait for its response [30]. With resampling we introduce this
explicitly by including a changing user community in the simulation. It is these
(simulated) users who create the (simulated) jobs submitted to the (simulated)
system.

14 D.G. Feitelson

jobs
queue

waiting
simulated
scheduler

machine
parallel

the simulated system

think time
long term users

user arrivals
new temporary

temporary users think time

temporary users
finished

Fig. 6. Queueing model of long term and temporary users in the simulation, leading
to a semi-open system [44].

The fact that jobs are submitted by simulated users might seem innocuous
at first, but in fact it has grave implications. When users wait for the system
before deciding that to do next they introduce a feedback loop (Fig. 7). And such
feedback implies a pacing of the workload — it is a stabilizing negative feedback,
where extra load causes the generation of additional load to be throttled [16].
This reduces the risk of system saturation.

simulated system

scheduler

wait queue

parallel
machine

user

S

W

session

S

W

session

away

away

jobs

jobs

feedback

performance
results

Fig. 7. Illustration of a user-based simulation with feedback. When users are in session,
they alternate between submitting jobs (S) and waiting for feedback regarding previous
jobs (W).

The problem with modeling the effect of feedback is that accounting logs
used as data sources do not include explicit information regarding the depen-
dencies between jobs. We therefore need to identify user sessions and extract
dependencies between the jobs in each session [30,43]. These dependencies are

Resampling with Feedback 15

then used during the simulation to pace the job submittal rate. Additional jobs
will be submitted (by the simulated users) only after the jobs that they depend
on have terminated (on the simulated system).

In other words, when we want to evaluate a new scheduling policy using a rep-
resentative workload, the workload should reflect the user-level logic and not just
parrot a previous workload. This logic is embodied in the dependencies between
jobs. We argue that it is more important to preserve the logic of the users’ behavior
than to repeat the exact timestamps that appear in the original log.

The way to integrate such considerations into log-driven simulations is by
manipulating the timing of job arrivals. In other words, the sequence of jobs
submitted by each user stays the same, but the submittal times are changed
[43]. Specifically, each job’s submit time is adjusted to reflect feedback from the
system performance to the user’s behavior.

However, a job cannot arrive immediately when all its constraints are
removed. Rather, its arrival should reflect reasonable user behavior (for exam-
ple, users often go to sleep at night). One possible model of user behavior is the
“fluid” user model. The idea of this model is to retain the original session times
of the users, but allow jobs to flow from one session to another according to the
feedback. To do that, we keep each session’s start and end timestamps from the
original log. The think times between successive jobs are also retained from the
original log. But if a job’s execution is delayed in the simulation, leading to the
next arrival falling beyond the end of the session, the next job will be delayed
even more and arrive only at the beginning of the next session [43]. Contrariwise,
if jobs terminate sooner in the simulation, jobs that were submitted originally
in the next session may flow forward to occur in the current one.

4.4 Applications and Benefits

So what can we do with this new tool of workload resampling with feedback? Here
are some results that would be hard or impossible to achieve with conventional
simulations that just replay an existing log.

The first and foremost is to validate simulation results. Simulating with a
given log provides a single data point. But with resampling we can get a distri-
bution based on statistically similar workloads. In most cases this distribution
is centered on the value which is obtained using a conventional simulation, and
the result is verified (Fig. 8). But in some cases (e.g. the Blue log on the right)
the distribution is shifted, indicating a mismatch between the behavior of the
users in the original log and the expected behavior in the simulated system.

Using results from resampling and feedback for verification hinges on the
claim that such simulations are more valid to begin with. As noted above, using a
log to drive a simulation suffers from the possible mismatch between the behavior
of the users in the logged system and the behavior that would be appropriate for
the simulated system. In particular, if the simulated system is more powerful,
the users would be expected to submit more jobs, and vice versa. In simulations
with feedback this indeed happens automatically, as demonstrated in Fig. 9.

16 D.G. Feitelson

0 1 2 3
x 10

4

0

50

100

150

200

250

wait time

ex
pe

rim
en

ts
 n

um
be

r

0 2 4 6
x 10

4

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

0 0.5 1 1.5 2
x 10

5

0

100

200

300

wait time

ex
pe

rim
en

ts
 n

um
be

r

Fig. 8. Histograms of the average waiting time in a thousand simulations of EASY on
resampled workloads, compared to a simulation using the original logs (vertical line).
Left to right: CTC SP2, SDSC Datastar, and Blue Horizon logs. (Color figure online)

7.5 8 8.5 9 9.5
x 10

4

0

10

20

30

jobs number

ex
pe

rim
en

ts
 n

um
be

r

SDSC−DS

FCFS
EASY

6.0 6.5 7.0 7.5
x 10

4

0

10

20

30

jobs number

ex
pe

rim
en

ts
 n

um
be

r

Intrepid

FCFS
EASY

7 8 9 10
x 10

4

0

10

20

30

jobs number

ex
pe

rim
en

ts
 n

um
be

r

SDSC−DS

FCFS
EASY

6 7 8 9
x 10

4

0

5

10

15

jobs number

ex
pe

rim
en

ts
 n

um
be

r

Intrepid

FCFS
EASY

Fig. 9. Histograms of the throughput achieved in one hundred simulations of the EASY
and FCFS schedulers using the SDSC DataStar and Intrepid logs [44]. Top: in sim-
ulation without feedback the throughput is determined by the input, and a better
scheduler has no effect. Bottom: in simulation with feedback EASY is seen to support
a higher throughput than FCFS. Vertical line represents the throughput in the original
log. (Color figure online)

Other benefits are more technical in nature. One of them is the ability to
extend a log and create a longer workload, with more jobs in total, so as to
facilitate better convergence of the results and reduce the detrimental effects of
the initial “warmup” period. This is easy to achieve: we just continue resampling
on and on for as long as we wish.

Resampling with Feedback 17

We can also change the load on the system (as has been noted above) by
increasing or decreasing the number of active users. This is done by changing the
number of long-term users in the initialization, and the number of new temporary
users which arrive in each simulated week. Such a manipulation facilitates the
study of how the system responds to load, and enables the generation of response
curves similar to those obtained from queueing analyses.

However, note that increasing the load on the system is at odds with the
throttling effect that comes with feedback. As the load increases, the system will
naturally take longer to process each job. Simulated users who are waiting for a
job to terminate before submitting their next job will therefore be delayed. So
having more users will eventually cause each of these users to produce additional
work at a slower rate, and the load will cease to increase! This is good because
it is assumed that such an effect exists in real systems, where users abandon the
system if it is too slow. But it frustrates our attempt to control the load and
increase it at will.

Nevertheless, adding users to increase the load has two additional benefits.
One is the ability to make low-load logs usable. Some logs were recorded on
very low-load systems, with a utilization of only 25 % or capacity or so. These
workloads are not interesting as they do not tax the system to any appreciable
degree. But by using resampling to increase their load they become interesting.

The other and more important benefit is the ability to measure the maximal
load that can be sustained before the system saturates. Resampling and user-
based modeling support the use of throughput as a performance metric, because
the users become part of the simulation. But every system has a maximal capac-
ity, and if the load exceeds this capacity the system saturates. Identifying this
maximal capacity is an important part of a performance evaluation. Likewise, if
we add system abandonment to the user behavior model, we can add the metric
of number of frustrated users.

In a related vein, simulations based on resampling and feedback can be used
to evaluate adaptive systems that are designed to enhance throughput (and thus
productivity) rather than response time [32,44]. For example, we can design a
scheduler that prioritizes jobs based on the elapsed time since the same user’s
previous job has terminated. The idea is that if this interval is short, there is
a good chance that the user is waiting for this job. Therefore prioritizing the
awaited job will enhance the productivity of this user. Trying to evaluate this
idea with conventional workloads and simulations is useless — such simulations
cannot evaluate productivity, and might even show that average response time
is actually increased. But with a dynamic user-based simulation we can do away
with such averages, and focus on the users and the service they receive.

Finally, we note that once we partition the workload into individual users we
can also look and different user classes in isolation. One example noted before is
the workload flurries occasionally produced by some users. We can then evaluate
the effect of such flurries by oversampling these users, and thus causing more
and more flurries to occur.

18 D.G. Feitelson

5 Conclusions

Resampling with feedback provides a new way to use workload logs in simu-
lations, enabling the generation of varied and dynamically adjusted workloads
that are specifically suited to evaluate the simulated system. This combines the
realism of real log data with the flexibility of models. Basing the simulations as
closely as possible on real logs reflects the importance of using hard data rather
than assumptions. Adjusting the workload to the specific conditions during the
simulation reflects the importance of the interaction between the users and the
system. Without this, evaluation results are of unknown relevance, and might
pertain to only irrelevant situations which do not occur in practice.

Particularly, by applying resampling and feedback to real workloads we
achieve the following:

– Retain the all important (but possibly unknown) details of the workload as
they exist in logs recorded from production systems, with as little modifica-
tions as possible.

– Enable evaluations of throughput and user satisfaction in addition to (or
instead of) being limited to the response time and slowdown metrics. This
also leads to natural support for assessing the saturation limit of the system.

– Provide a new interpretation of the goal of “comparing alternatives under
equivalent conditions”: this is not to process exactly the same job stream, but
rather to face the same workload generation process (users). This acknowl-
edges the realization that there is no such thing as a generally correct work-
load — rather, the workload depends on system.

Workload manipulations such as those embodied in resampling with feed-
back are important tools in the performance analyst’s toolbox, that have not
received due attention in terms of methodological research. As a result, inap-
propriate manipulations are sometimes used, which in turn has led to some con-
troversy regarding whether any manipulations of real workloads are legitimate.
By increasing our understanding of resampling-based manipulations we hope to
bolster the use of this important tool, allowing new types of manipulations to
be applied to workload logs, and enabling researchers to achieve better control
over their properties, as needed for different evaluation scenarios.

Naturally, there are many opportunities for additional research regarding
resampling and feedback. One element that is still largely missing is the user
population model, and especially the issue of leaving the system when perfor-
mance is inadequate. Another is the distribution of user types and behaviors.
Resolving these issues requires not only deep analysis of workload logs, but also
a collaboration with researchers in psychology and cognition [33]. After all, com-
puter systems are used by humans.

Acknowledgments. The work described here was by and large performed by several
outstanding students, especially Edi Shmueli, Netanel Zakay, and Dan Tsafrir. Our
work was supported by the Israel Science Foundation (grants no. 219/99 and 167/03)
and the Ministry of Science and Technology, Israel.

Resampling with Feedback 19

References

1. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T.,
Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the eval-
uation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP
1999. LNCS, vol. 1659, pp. 67–90. Springer, Heidelberg (1999). doi:10.1007/
3-540-47954-6 4

2. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload.
In: 4th Workshop on Workload Characterization, pp. 140–148, December 2001.
doi:10.1109/WWC.2001.990753

3. Downey, A.B.: A parallel workload model and its implications for processor allo-
cation. Cluster Comput. 1(1), 133–145 (1998). doi:10.1023/A:1019077214124

4. Downey, A.B., Feitelson, D.G.: The elusive goal of workload characterization. Per-
form. Eval. Rev. 26(4), 14–29 (1999). doi:10.1145/309746.309750

5. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Statist. 7(1),
1–26 (1979). doi:10.1214/aos/1176344552

6. Efron, B., Gong, G.: A leisurely look at the bootstrap, the jackknife, and cross-
validation. Am. Stat. 37(1), 36–48 (1983). doi:10.2307/2685844

7. Feitelson, D.G.: Memory usage in the LANL CM-5 workload. In: Feitelson, D.G.,
Rudolph, L. (eds.) JSSPP 1997. LNCS, vol. 1291, pp. 78–94. Springer, Heidelberg
(1997). doi:10.1007/3-540-63574-2 17

8. Feitelson, D.G.: Metrics for parallel job scheduling and their convergence. In: Feitel-
son, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 188–205. Springer,
Heidelberg (2001). doi:10.1007/3-540-45540-X 11

9. Feitelson, D.G.: The forgotten factor: facts; on performance evaluation and
its dependence on workloads. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par
2002. LNCS, vol. 2400, pp. 49–60. Springer, Heidelberg (2002). doi:10.1007/
3-540-45706-2 4

10. Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa,
M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer,
Heidelberg (2002). doi:10.1007/3-540-45798-4 6

11. Feitelson, D.G.: Metric and workload effects on computer systems evaluation. Com-
puter 36(9), 18–25 (2003). doi:10.1109/MC.2003.1231190

12. Feitelson, D.G.: Experimental analysis of the root causes of performance evaluation
results: a backfilling case study. IEEE Trans. Parallel Distrib. Syst. 16(2), 175–182
(2005). doi:10.1109/TPDS.2005.18

13. Feitelson, D.G.: Locality of sampling and diversity in parallel system workloads. In:
21st International Conference on Supercomputing, pp. 53–63, June 2007. doi:10.
1145/1274971.1274982

14. Feitelson, D.G.: Looking at data. In: 22nd International Parallel & Distributed
Processing Symposium, April 2008. doi:10.1109/IPDPS.2008.4536092

15. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evalua-
tion. Cambridge University Press, Cambridge (2015)

16. Feitelson, D.G., Mu’alem, A.W.: On the definition of “on-line” in job scheduling
problems. SIGACT News 36(1), 122–131 (2005). doi:10.1145/1052796.1052797

17. Feitelson, D.G., Naaman, M.: Self-tuning systems. IEEE Softw. 16(2), 52–60
(1999). doi:10.1109/52.754053

18. Feitelson, D.G., Nitzberg, B.: Job characteristics of a production parallel scientific
workload on the NASA Ames iPSC/860. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg (1995). doi:10.
1007/3-540-60153-8 38

http://dx.doi.org/10.1007/3-540-47954-6_4
http://dx.doi.org/10.1007/3-540-47954-6_4
http://dx.doi.org/10.1109/WWC.2001.990753
http://dx.doi.org/10.1023/A:1019077214124
http://dx.doi.org/10.1145/309746.309750
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.2307/2685844
http://dx.doi.org/10.1007/3-540-63574-2_17
http://dx.doi.org/10.1007/3-540-45540-X_11
http://dx.doi.org/10.1007/3-540-45706-2_4
http://dx.doi.org/10.1007/3-540-45706-2_4
http://dx.doi.org/10.1007/3-540-45798-4_6
http://dx.doi.org/10.1109/MC.2003.1231190
http://dx.doi.org/10.1109/TPDS.2005.18
http://dx.doi.org/10.1145/1274971.1274982
http://dx.doi.org/10.1145/1274971.1274982
http://dx.doi.org/10.1109/IPDPS.2008.4536092
http://dx.doi.org/10.1145/1052796.1052797
http://dx.doi.org/10.1109/52.754053
http://dx.doi.org/10.1007/3-540-60153-8_38
http://dx.doi.org/10.1007/3-540-60153-8_38

20 D.G. Feitelson

19. Feitelson, D.G., Rudolph, L.: Distributed hierarchical control for parallel process-
ing. Computer 23(5), 65–77 (1990). doi:10.1109/2.53356

20. Feitelson, D.G., Rudolph, L.: Evaluation of design choices for gang scheduling using
distributed hierarchical control. J. Parallel Distrib. Comput. 35(1), 18–34 (1996).
doi:10.1006/jpdc.1996.0064

21. Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459, pp. 1–24.
Springer, Heidelberg (1998). doi:10.1007/BFb0053978

22. Feitelson, D.G., Shmueli, E.: A case for conservative workload modeling: parallel
job scheduling with daily cycles of activity. In: 17th Modeling, Analysis & Simula-
tion of Computer and Telecommunication Systems, September 2009. doi:10.1109/
MAS-COT.2009.5366139

23. Feitelson, D.G., Tsafrir, D.: Workload sanitation for performance evaluation. In:
IEEE International Symposium on Performance Analysis of Systems & Software,
pp. 221–230, March 2006. doi:10.1109/ISPASS.2006.1620806

24. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with using the Parallel Work-
loads Archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014). doi:10.1016/
j.jpdc.2014.06.013

25. Jann, J., Pattnaik, P., Franke, H., Wang, F., Skovira, J., Riodan, J.: Modeling of
workload in MPPs. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1997. LNCS,
vol. 1291, pp. 95–116. Springer, Heidelberg (1997). doi:10.1007/3-540-63574-2 18

26. Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph,
L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995).
doi:10.1007/3-540-60153-8 35

27. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling
the characteristics of rigid jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003). doi:10.1016/S0743-7315(03)00108-4

28. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001). doi:10.1109/71.932708

29. Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/
30. Shmueli, E., Feitelson, D.G.: Using site-level modeling to evaluate the performance

of parallel system schedulers. In 14th Modeling, Analysis & Simulation of Com-
puter and Telecommunication Systems, pp. 167–176, September 2006. doi:10.1109/
MAS-COTS.2006.50

31. Shmueli, E., Feitelson, D.G.: Uncovering the effect of system performance on user
behavior from traces of parallel systems. In 15th Modeling, Analysis & Simulation
of Computer and Telecommunication Systems, pp. 274–280, October 2007. doi:10.
1109/MAS-COTS.2007.67

32. Shmueli, E., Feitelson, D.G.: On simulation and design of parallel-systems sched-
ulers: are we doing the right thing? IEEE Trans. Parallel Distrib. Syst. 20(7),
983–996 (2009). doi:10.1109/TPDS.2008.152

33. Snir, M.: Computer and information science and engineering: one discipline, many
specialties. Comm. ACM 54(3), 38–43 (2011). doi:10.1145/1897852.1897867

34. Talby, D., Feitelson, D.G., Raveh, A.: Comparing logs and models of parallel work-
loads using the co-plot method. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999.
LNCS, vol. 1659, p. 43. Springer, Heidelberg (1999). doi:10.1007/3-540-47954-6 3

35. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Modeling user runtime estimates. In: Feit-
elson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005.
LNCS, vol. 3834, pp. 1–35. Springer, Heidelberg (2005). doi:10.1007/11605300 1

http://dx.doi.org/10.1109/2.53356
http://dx.doi.org/10.1006/jpdc.1996.0064
http://dx.doi.org/10.1007/BFb0053978
http://dx.doi.org/10.1109/MAS-COT.2009.5366139
http://dx.doi.org/10.1109/MAS-COT.2009.5366139
http://dx.doi.org/10.1109/ISPASS.2006.1620806
http://dx.doi.org/10.1016/j.jpdc.2014.06.013
http://dx.doi.org/10.1016/j.jpdc.2014.06.013
http://dx.doi.org/10.1007/3-540-63574-2_18
http://dx.doi.org/10.1007/3-540-60153-8_35
http://dx.doi.org/10.1016/S0743-7315(03)00108-4
http://dx.doi.org/10.1109/71.932708
http://www.cs.huji.ac.il/labs/parallel/workload/
http://dx.doi.org/10.1109/MAS-COTS.2006.50
http://dx.doi.org/10.1109/MAS-COTS.2006.50
http://dx.doi.org/10.1109/MAS-COTS.2007.67
http://dx.doi.org/10.1109/MAS-COTS.2007.67
http://dx.doi.org/10.1109/TPDS.2008.152
http://dx.doi.org/10.1145/1897852.1897867
http://dx.doi.org/10.1007/3-540-47954-6_3
http://dx.doi.org/10.1007/11605300_1

Resampling with Feedback 21

36. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated pre-
dictions rather than user runtime estimates. IEEE Trans. Parallel Distrib. Syst.
18(6), 789–803 (2007). doi:10.1109/TPDS.2007.70606

37. Tsafrir, D., Feitelson, D.G.: Instability in parallel job scheduling simulation: the
role of workload flurries. In: 20th International Parallel & Distributed Processing
Symposium, April 2006. doi:10.1109/IPDPS.2006.1639311

38. Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling: Solving the mystery of
why increased inaccuracy may help. In: IEEE International Symposium on Work-
load Characterization, pp. 131–141, October 2006. doi:10.1109/IISWC.2006.302737

39. Tsafrir, D., Ouaknine, K., Feitelson, D.G.: Reducing performance evaluation sensi-
tivity and variability by input shaking. In: 15th Modelling, Analysis & Simulation
of Computer and Telecommunication Systems, pp. 231–237, October 2007. doi:10.
1109/MAS-COTS.2007.58

40. Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V.: Self-similarity through
high-variability: statistical analysis of Ethernet LAN traffic at the source level. In:
ACM SIGCOMM Conference, pp. 100–113 (1995)

41. Zakay, N., Feitelson, D.G.: On identifying user session boundaries in parallel work-
load logs. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 216–234. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-35867-8 12

42. Zakay, N., Feitelson, D.G.: Workload resampling for performance evaluation of
parallel job schedulers. Concurrency Comput. - Pract. Exp. 26(12), 2079–2105
(2014). doi:10.1002/cpe.3240

43. Zakay, N., Feitelson, D.G.: Preserving user behavior characteristics in trace-based
simulation of parallel job scheduling. In: 22nd Modelling, Analysis & Simulation
of Computer and Telecommunication Systems, pp. 51–60, September 2014. doi:10.
1109/MAS-COTS.2014.15

44. Zakay, N., Feitelson, D.G.: Semi-open trace based simulation for reliable evaluation
of job throughput and user productivity. In: 7th IEEE International Conference
on Cloud Computing Technology and Science, pp. 413–421, November 2015. 10.
1109/CloudCom.2015.35

http://dx.doi.org/10.1109/TPDS.2007.70606
http://dx.doi.org/10.1109/IPDPS.2006.1639311
http://dx.doi.org/10.1109/IISWC.2006.302737
http://dx.doi.org/10.1109/MAS-COTS.2007.58
http://dx.doi.org/10.1109/MAS-COTS.2007.58
http://dx.doi.org/10.1007/978-3-642-35867-8_12
http://dx.doi.org/10.1007/978-3-642-35867-8_12
http://dx.doi.org/10.1002/cpe.3240
http://dx.doi.org/10.1109/MAS-COTS.2014.15
http://dx.doi.org/10.1109/MAS-COTS.2014.15
http://dx.doi.org/10.1109/CloudCom.2015.35
http://dx.doi.org/10.1109/CloudCom.2015.35

Scheduling DAGs Opportunistically:
The Dream and the Reality Circa 2016

Arnold L. Rosenberg(B)

Computer Science, Northeastern University, Boston, MA, USA
rsnbrg@ccs.neu.edu

Abstract. A broad-brush tour of a platform-oblivious approach to
scheduling dag-structured computations on platforms whose resources
can change dynamically, both in availability and efficiency. The main
focus is on the IC-scheduling and Area-oriented scheduling paradigms—
the motivation, the dream, the implementation, and initial work on eval-
uation.

Keywords: Area-oriented dag-scheduling · Dynamically changing plat-
forms · IC-dag-scheduling · Opportunistic dag-scheduling

1 Prehistory

Early this century, Fran Berman, then-director of the San Diego Supercomput-
ing Center (SDSC), gave a distinguished lecture at my then-home institution,
UMass-Amherst. During a subsequent one-on-one, Fran educated me about a
Grid-consortium that SDSC participated in, jointly with several kindred cen-
ters. The consortium “contract” allowed any member institution to submit com-
puting jobs to any other. There was a guarantee that submitted jobs would be
completed—but not when. When I asked what kind of computations SDSC per-
formed using this paradigm, I was shocked to learn that the computations had
dependencies among subcomputations that constrained the order in which work
could be done. (As I recall, these were wavefont-structured dependencies.) I asked
Fran how her team coped with the possibility that work could grind to a halt
pending the completion of jobs that had been deployed within the consortium but
not yet completed. Fran responded that they used heuristics that seemed to work
well—but that she did not know of any mathematical setting that would allow one
to think about this situation rigorously. The challenge was irresistible!

2 The Dream of Opportunistic Scheduling

2.1 An Informal Overview

Many modern computing platforms—notably including clouds [26,27], desktop
grids [2], and volunteer-computing projects [11,15]—exhibit extreme levels of
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 22–33, 2016.
DOI: 10.1007/978-3-319-43659-3 2

Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 23

dynamic heterogeneity. The availability and relative efficiencies of such platforms’
computing resources can change at unexpected times and in unexpected ways.
Scheduling a computation for efficient execution on such a platform can be quite
challenging, particularly when there are dependencies among the computation’s
constituent chores1 (jobs, tasks, etc.). We wanted to take up this challenge for
the traditional scheduling setting of computations whose dependencies had the
structure of dags (directed acyclic graphs).

The nodes of a computation-dag G represent chores to be executed; G’s arcs
(directed edges) represent inter-chore dependencies that constrain the order in
which chores can be executed. Specifically, a node v cannot be executed until
all of its parents have been: these are the nodes that have arcs into v. Once
all of v’s parents have been executed, v becomes eligible (for execution) and
remains so until it is executed. G has one or more sources—nodes that have
no parents, hence are immediately eligible—and one or more sinks—nodes that
have no “children.” Clearly, executing a non-sink renders new nodes eligible. The
execution of G terminates once all nodes have been executed.

2.2 Opportunistic dag-Execution via Platform-Oblivious Scheduling

Recent studies have proposed seeking high performance and low cost within
platforms that are dynamically heterogeneous and/or elastic by scheduling com-
putations in a platform-oblivious manner. One compensates for ignoring platform
details by carefully exploiting the detailed characteristics of one’s computation.
The central thesis motivating this approach is that, particularly with the targeted
platforms, one always benefits computationally with dag-structured workflows
by enhancing the likelihood of having as many eligible chores as possible. Such
scheduling enhances the likelihood of having work available as (advantageous)
resources become available, hence being able to exploit resources opportunisti-
cally. Platform-oblivious scheduling can be advantageous for the targeted plat-
forms because it exploits unchanging, perfectly-known characteristics of one’s
computation rather than attempting to adapt to characteristics of the platform,
which are at best imperfectly known and, indeed, may change dynamically.

As we have pursued the dream of high-performing platform-oblivious sched-
ules, we have found it technically advantageous to follow the lead of work-centric
systems such as CHARM++ [14], by refining input dags before scheduling.
We thereby can focus on scheduling fine-grained dags whose chores are all of
(roughly) equal complexity. This focus extrapolates easily to dags that represent
heterogeneous workloads: one simply models large chores as chains of “unit-size”
ones with sequential dependencies, in the manner discussed in [9].

3 The Reality

3.1 Formalizing the Dream

A schedule Σ for a dag G is a topological sort [10] of G, i.e., a linear ordering of G’s
nodes in which all parents of each node v lie to the left of v. The schedule prescribes
1 We use the granularity-neutral “chore” for the units that form the computation.

24 A.L. Rosenberg

the order in which G’s nodes are selected for execution. For any schedule Σ for G
and any integer T ∈ [0..NG],2 EΣ(T) denotes the number of nodes of G that are
eligible for execution at step T when Σ executes G.

A. ICO Quality and Optimality [21]. Our first quality measure for
dag-schedules embodies the strictest possible interpretation of “eligible-node
enhancement.” We measure the IC quality of an execution of G by the num-
ber of nodes that are eligible after each node-execution—the more, the better.
(Note that we measure time in an event-driven manner, as the number of nodes
that have been executed to that point.) Our goal is to execute G’s nodes in an
order that maximizes the production rate of eligible nodes at every step of the
execution, i.e., to craft a schedule Σ� such that

(∀t) EΣ�(t) = max
Σ a schedule for G

{EΣ(t)}. (1)

A schedule for G that achieves this demanding goal is IC optimal (ICO, for
short).

In Sect. 3.2.A, we discuss ICO schedules for many classes of significant “real”
computations—surprisingly many, given the strictness of the condition in Eq. 1.

B. AREA Quality and Optimality [3]. As we detail in Sect. 3.2.A, the
demands of Eq. 1 are so stringent that many dags do not admit ICO sched-
ules. This led us to weaken the IC-scheduling paradigm in [3], by introducing
the Area-oriented dag-scheduling paradigm.

Let Σ be a schedule for dag G. The Area, Area(Σ), of Σ, is the sum

Area(Σ) = EΣ(0) + EΣ(1) + · · · + EΣ(NG).

Note that schedule Σ’s normalized Area—obtained by dividing AREA(Σ) by
the number of nodes in G—is the average number of nodes that are eligible as
Σ executes G. (The term Area is by analogy with Riemann sums approximating
integrals.) Our goal is to find, for each dag G, an Area-maximal schedule, i.e.,
a schedule Σ� for G such that

Area(Σ�) = max
Σ a schedule for G

Area(Σ). (2)

A schedule for G that achieves this goal is Area-optimal (A-O, for short).
Easily, every dag admits an A-O schedule. Importantly for our dream, the A-

O scheduling paradigm is a strict extension of the ICO paradigm, in the following
sense.

Theorem 1 ([3]). If dag G admits an ICO schedule Σ, then every ICO sched-
ule for G is A-O, and vice versa.

2 [a..b] denotes the set of integers {a, a + 1, . . . , b}.

Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 25

C. Optimal Schedules via dag-duality. An important “meta-scheduling”
contribution appears in [6] for ICO scheduling and in [3] for A-O scheduling. In
both cases, one finds an algorithm that converts an optimal ICO (resp., A-O)
schedule for a dag G to an optimal ICO (resp., A-O) schedule for G’s dual dag
̂G. ̂G is obtained from G by reversing all of G’s arcs (e.g., the evolving mesh and
reduction-mesh in Fig. 1(a) are dual to each other, as are the expansion-tree and
reduction-tree in Fig. 1(b)).

3.2 Finding High-Quality Schedules

A. Schedules with High ICO Quality. The stringent demands of IC-
optimality—the maximum number of eligible nodes at every step of a dag-
execution; cf. Eq. 1—raises the specter that ICO schedules exist only for a very
constrained class of dags. Our first goal was to refute this possibility. We derived
the following results.

(1) ICO schedules for specific families of dags and computations. In [6,21,22], we
developed ICO scheduling strategies for many familiar classes of dags, including

– evolving meshes and reduction-meshes; see Fig. 1(a)
– expansion-trees and reduction-trees; see Fig. 1(b)
– butterfly-structured, convolutional dags; see Fig. 1(c, right).

(a)

(b) λ

0

01

1

111000

001

0001

100

1010

101

1011

000

0000

0100 10 11

101100

1

10111010

001000

0000 0001

0

λ

(c)
000 001

000 001

000

000

000

000

100

010 011 100 101 110 111

111011101110010

010 001 011 100 110 101 111

010 001 011 100 110 101 111

100 001 101 010 110 011 111

100 001 101 010 110 011 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Fig. 1. Familiar dags that admit ICO schedules

In [5], we expanded the abstract, dag-oriented, perspective of the preceding
sources, to develop ICO scheduling strategies for many familiar classes of com-
putations, including

26 A.L. Rosenberg

– convolutions—e.g., the Fast Fourier Transform, polynomial multiplication
– expansion-reductions—e.g., numerical integration, comparator-based sorting
– many “named” computations—e.g., Discrete Laplace Transform, matrix

multiply.

(2) ICO schedules via dag decomposition. Careful analysis of our ad hoc sched-
ules enabled us, in [19], to develop efficient—i.e., quadratic-time—algorithms
that produce ICO schedules for a broad range of dags, based on structural
decomposition. When the strategy succeeds in decomposing a dag G in the
prescribed manner, one can “read off” an ICO schedule for G from the decom-
position. The strategy has two major steps.

Step 1. Select a set of bipartite3“building-block” dags that admit ICO schedules.

CLIQUE:

Edges represent upward arcs

:EVITCUDER:EVISNAPXE

CYCLIC:

Fig. 2. A sampler of small instances of useful bipartite “building-block” dags.

The chosen “building blocks” will be the atomic computations in the sched-
ule. The sample repertoire in Fig. 2 fits both needs that are salient for our
strategy. (a) The illustrated dags are reminiscent of pieces of the interchore
dependency-dags for a broad range of significant computations. (b) These dags
admit ICO schedules. Indeed, any schedule for these dags that executes all
sources sequentially is an ICO schedule.

Step 2. Establish �-priorities among the building-block dags.
For i = 1, 2, let dag Gi admit an IC-optimal schedule Σi. We say that G1

has �-priority over G2—denoted G1 � G2—precisely when the following recipe
produces an ICO schedule for executing both G1 and G2 (i.e., for executing the
sum of G1 and G2):

First: Execute G1 by following schedule Σ1.

Then: Execute G2 by following schedule Σ2.
One verifies that relation � is transitive and efficiently tested [7].
The next ingredient in our strategy focuses on creating complex computation-

dags by composing simple computation-dags. One composes dag G1 with dag
G2 by merging/identifying some k sources of G2 with some k sinks of G1: the
resulting dag is composite of type G1 ⇑ G2. (Easily, dag-composition composes

3 A bipartite dag’s nodes are partitioned into sets X and Y , with every arc going
from X to Y .

Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 27

the function specified by G1 with the one specified by G2.) The following sample
composition illustrates dag-composition and its associativity.

We can now announce the major contribution of our decomposition-based
strategy.

Theorem 2 ([19]). Focus on a dag G that is composite of type G1 ⇑ G2 ⇑ · · · ⇑
Gn. Say that

— each dag Gi admits the IC-optimal schedule Σi;
— G1 � G2 � · · · � Gn.

Then, the following schedule for G is IC optimal:
Use the schedules {Σi} to execute the dags {Gi} seriatim, in order of �-

priority.

Efficient algorithms implement Theorem 2 on a large variety of “well-
structured” dags. In particular, the two core processes in the theorem are com-
putationally efficient:

— “parsing” dag G into G1, . . . ,Gn (when such a parsing exists)
— testing �-priorities among the Gi.
Two clarifications will help illuminate Theorem 2.

1. A dag can have very nonlinear structure, even though it is composed from
small dags that obey a linear chain of �-priorities.
Butterfly dags provide an example. Every butterfly dag B is composed from
many copies of the bipartite butterfly dag B2: symbolically, B is composite
of type B2 ⇑ B2 ⇑ · · · ⇑ B2 (see Fig. 1(c)). One verifies easily that B2 has “self
�-priority”—i.e., B2 � B2—so that B admits a linear chain of �-priorities:
B2 � · · · � B2.

2. Many dags that admit ICO schedules are quite nonuniform in a graph-
structure sense:

The “well-structuredness” exploited in Theorem 2 is algebraic in nature, in
terms of composition and �-priority.

(3) A weakness in the IC-scheduling paradigm. Using Theorem 2 and ad hoc
techniques, we developed ICO—i.e., optimal eligible-node-enhancing—schedules
for many popular families of dags, including “butterflies,” “meshes,” “trees.”

28 A.L. Rosenberg

But, with little difficulty, we also discovered “cousins” of these “well-structured”
dags that do not admit any ICO schedule [19]. This deficiency in the IC-
scheduling paradigm—the existence of unoptimizable schedules—led us to seek
“weakened” versions of the paradigm that would algorithmically produce sched-
ules for every input dag, that were optimizable according to a quality metric that
correlated with computational performance. We discovered two such paradigms.

1. A batched notion of ICO quality is introduced in [17]. The underlying idea is
to execute a dag by choosing successive subsets of the then-eligible nodes.

2. An averaged notion of ICO quality underlies the Area quality metric of
Sect. 3.1.B and [3]. The underlying quest is for schedules that maximize the
average number of nodes that are eligible at each step of a dag-execution.

Both the batched-ICO and Area quality measures admit optimal schedules for
every dag—but the general versions of both optimization problems are NP-
Complete [17,20]. In the case of the Area measure, we were able to craft two
readily computable associated heuristics (ao and sidney) that are (empirically)
computationally beneficial—as discussed at length in Sect. 3.2.B. Regrettably, we
have not yet succeeded in finding such an associated heuristic for the batched
version of the IC-scheduling paradigm. We leave the attractive challenges related
to the batched paradigm to the interested reader.

B. Schedules with High AREA Quality. In contrast to the IC-scheduling
paradigm, our major accomplishments with Area-oriented scheduling involved
heuristics inspired by the paradigm. We begin our discussion with theoretical
developments.

(1) A-O schedulers for specific dag-families. In [3], we developed A-O schedulers
for several classes of dags, including

– monotonic tree-dags: each dag is either an expansion-tree—a dag having one
source, in which each nonsource has one parent—or the dual of an expansion-
tree.

– expansion-reduction dags: each dag is obtained by composing a k-sink
expansion-tree with a k-source reduction-tree. (Imagine, e.g., that we match
up the sources of the righthand tree in Fig. 1(b) with the sinks/leaves of the
lefthand tree.)

– compositions of bipartite cycle- and clique-dags. (The “building-block” dags
of Fig. 2(bottom) exemplify the cycles and cliques; the butterfly-dag of
Fig. 1(c) exemplifies the end product.)

Among the family-specific A-O schedulers that we developed, one stands out for
its dag-scheduling consequences. This is the efficient algorithm developed in [8],
that produces A-O schedules for series-parallel dags (SP-dags, for short). (SP-
dags have a rich history in the design of logic circuits. More recently, they have
been used to model multi-threaded parallel computations; cf. [1].) This algorithm
decomposes an input SP-dag G according to the following recursive recipe for

Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 29

generating SP-dags, and then it “reads off” an A-O schedule from the resulting
“parse” of G.

A (2-terminal) series-parallel dag G(SP-dag) is produced by a sequence of
the following operations.

1. Create. Form a dag G that has:
(a.) two nodes, a source s and a target t, which are jointly G’s terminals,
(b.) one arc, (s → t), directed from s to t.

2. Compose. SP-dags, G′ with terminals s′, t′, and G′′, with terminals s′′, t′′.
(a.) Parallel composition. Form the SP-dag G = G′ ⇑ G′′ from G′ and G′′ by

merging s′ with s′′ to form a new source s and t′ with t′′ to form a new
target t.

(b.) Series composition. Form the SP-dag G = (G′ → G′′) from G′ and G′′ by
merging t′ with s′′. G has the single source s′ and the single target t′′.

(2) The NP-completeness of AREA-maximization. After we developed the ICO
schedules for specific dag-families discussed in Sect. 3.2.A(1), we were able to
detect commonalities in reasoning that ultimately culminated in a proof for The-
orem 2. In contrast, we found that our A-O schedules for specific dag-families
discussed in Sect. 3.2.B(1) relied in a fundamental way on the specific struc-
tures of the specific dag-families. We were, therefore, not surprised to learn, in
[20], that the general problem of computing A-O schedules is NP-complete. The
proof in [20] reduces the 0–1 Minimum Weighted-Completion-Time Problem for
bipartite dags, which is known to be NP-complete [25], to the A-O scheduling
problem. This result shifted our focus entirely to the development of schedul-
ing heuristics that (empirically) produced schedules with large Areas. We now
describe the main heuristics that we have developed.

(3) Area-oriented scheduling heuristics. We have developed three scheduling
heuristics that are “Area-centric,” in the sense that they exploit Area-related
structural properties of the dag being scheduled.

(a) Heuristic d-g [3]. The dynamic-greedy scheduling heuristic d-g crafts a sched-
ule for a dag G by organizing G’s eligible chores in a list structure that is (par-
tially) ordered by chores’ yields, with ties broken randomly. The yield v(t) of
eligible chore v at step t is the number of non-eligible chores that would be
rendered eligible if v were executed now. The yield of a chore u can change at
each step, and the execution of u can change the yields of many other chores,
specifically, those that share children with u. Thus, in contrast with our other
schedulers, the schedules produced by d-g change at each step—which gives d-g
time-complexity commensurate with our other heuristics.

Note. d-g’s successive choices of the next node to execute are locally optimal—
except for its (nonexistent) tie-breaking mechanism.

(b) Heuristic ao [8]. The Area-oriented scheduling heuristic ao builds on
two facts: (i) We have access to an efficient A-O scheduler for SP-dags;
cf. Section 3.2.B(1). (ii) Every dag G can be transformed efficiently to an SP-
dag σ(G) that retains both G’s inter-chore dependencies and (roughly) its degree

30 A.L. Rosenberg

of inherent parallelism. Several sources describe “SP-izing” transformations; a
perspicuous version from [12] is invoked in [8]. Heuristic ao produces a high-Area
schedule for a dag G in three steps.

Step 1. Transform G to an SP-dag σ(G), using an algorithm from [12].

Step 2. Produce an A-O schedule ˜Σ for σ(G), via the algorithm in [8].

Step 3. “Filter” schedule ˜Σ to remove the “auxiliary” nodes added when SP-
izing G.

(c) Heuristic sidney. The sidney scheduling heuristic of [20] inherits both its
name and its algorithmic underpinnings from a sophisticated dag-decomposition
scheme from [23]. It schedules an input dag G in four steps.

Step 1. Transform G to its associated 0–1 version G0,1.

The nodes of G0,1 are obtained by splitting each node v of G into two nodes, v0
and v1. Give each node of G0,1 that has a 0 subscript (the 0 nodes) a processing
time of 0 and a weight of 1; give each node of G0,1 that has a 1 subscript (the
1-nodes) a processing time of 1 and a weight of 0. Finally, give G0,1 an arc
(u1 → v0) for each arc (u → v) of G and an arc (u0 → u1) for each node u
of G.

Step 2. Use a max-flow computation to perform a Sidney decomposition of G0,1,
via the algorithm in [23].

Step 3. Say that the decomposition of G0,1 produces dags G1, . . . ,Gk.

a. Remove all 0-nodes from every Gi.

b. Use heuristic d-g to produce a schedule Σi for each Gi.

Step 4. Output schedule Σ
def= Σ1 · · · Σk, the concatenation of the k

subschedules.
At the cost of somewhat more computation than needed for heuristics d-g

and ao, sidney empirically produces schedules whose Areas are within 85 % of
maximal [20].

3.3 The Benefits of Opportunistic Scheduling

A. Benefits Exposed via Simulation Experiments. Simulation-based stud-
ies of the opportunistic scheduling paradigms we have discussed appear in
[3,4,13,16,24]. Rather than reproduce material that appears in great detail in
those sources, I have decided to summarize here the major messages of those
studies.

B1. One observes in all of the cited sources that there are two circumstances
under which all (oblivious) scheduling paradigms are essentially equivalent in
performance.

(a) When computing resources are plentiful, then the inherently sequential
critical path of a dag is the only constraint on the speed of executing the dag.

Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 31

(b) When computing resources are really meager, then there are no opportu-
nities for efficiency-enhancing concurrency.

B2. One observes in [13,16] situations where ICO schedules outperform a
variety of platform-oblivious competitor-schedules by as much a 10–20%. The
tested workloads in [16] were real scientific computations; the ones in [13]
were synthetic, but with structures that approximated those of real scientific
computations.

B3. Since the Area quality-metric is a weakening of IC-quality, it is not surprising
that the benefits of A-O schedules observed in [3] are more modest than those
observed in the IC-frameworks of [13,16]. That said, one still often observes A-
O schedules outperforming a variety of platform-oblivious competitor-schedules
by double-digit percentages. Indeed, the same type of performance is observed
even in [4] with heuristic ao. One observes that A-O schedules outperform those
produced by heuristic ao, but only by percentages that may not justify the
computational cost of producing the A-O schedule.

B4. The experiments in [4] suggest that the schedules produced by heuristic ao
perform best when computing resources become available according to distribu-
tions that have low variances.

B5. The experimental settings in [3,4] (involving, respectively, A-O schedules
and schedules produced by heuristic ao) posit that computing resources become
available according to low-variance distributions. It is observed experimentally
in [4] that, within such settings, the Areas of generated schedules inversely track
the makespans of the schedules’ dag-executions—i.e., larger Areas correlate with
smaller makespans.

B6. In contrast to heuristic ao, the very high-Area schedules produced by
heuristic sidney seem to favor situations wherein the distributions governing
computing-resource availability do not have low variances [20]. This suggests
that sidney’s schedules may be desirable in settings such as enterprise clouds,
where the user can tailor the purchase of computing resources based on the
varying numbers of eligible nodes produced over time by one’s dag-schedule.

B7. The experiments reported in [24] seem to validate Observations 4 and 6:
schedules produced by heuristic ao are observed to perform very well in “single-
instance” enterprise clouds, wherein there is a single block of computing resources
that are available at any moment. In fact, the static heuristic ao i sobserved to
compete well with dynamic competitor schedules.

B. Two Major Open Issues. We close with a two open issues regarding
opportunistic dag-scheduling. The benefits we have already uncovered—and
enumerated in this section—explain our belief in the potential significance of
success in addressing these issues.

Q1. The discovery in [19] that many dags do not admit ICO schedules led to
three weakened version of IC-scheduling: batched IC-scheduling [18], a version

32 A.L. Rosenberg

based on weakening the �-priority relation of Theorem 2 [16], and Area-oriented
scheduling [3]. Of these alternatives, only Area-oriented scheduling has been
studied in any detail. The other alternatives certainly deserve more attention
than they have received.

Q2. Our study of opportunistic dag-scheduling began with a focus on dynami-
cally heterogeneous computing platforms—and it has largely retained that focus.
The benefits of eligible-node-enhancing dag-schedules should be significant also
in other domains:

(a) Opportunistic dag-schedulers may be valuable when pursuing cost-
effective computing within an enterprise cloud. Having access to large numbers
of eligible nodes should alow a user to maximally exploit available cost-effective
resources. This benefit is hinted at in [24], but it deserves careful study.

(b) In a similar vein, opportunistic dag-schedulers may be beneficial in
power-aware computing environments. Their schedules may enable one to max-
imally exploit low-power resources as they become available. This possibility,
too, deserves careful study.

Acknowledgments. It is a pleasure to acknowledge the invaluable contributions of
my collaborators on the work discussed here: Gennaro Cordasco, Rosario De Chiara,
Ian Foster, Robert Hall, Greg Malewicz, Rajmohan Rajaraman, Scott Roche, Mark
Sims, Michela Taufer, Arun Venkataramani, Mike Wilde, Matt Yurkewych. Our work
on opportunistic dag-scheduling has been supported in part by several grants from the
US National Science Foundation, most recently Grant CSR-1217981.

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: 5th ACM SIGPLAN Sym-
posium on Principles and Practices of Parallel Programming (PPoPP 1995) (1995)

2. Casanova, H., Dufossé, F., Robert, Y., Vivien, F.: Scheduling parallel iterative
applications on volatile resources. In: 25th IEEE International Parallel and Dis-
tributed Processing Symposium (2011)

3. Cordasco, G., De Chiara, R., Rosenberg, A.L.: On scheduling DAGs for volatile
computing platforms: area-maximizing schedules. J. Parallel Distrib. Comput.
72(10), 1347–1360 (2012)

4. Cordasco, G., De Chiara, R., Rosenberg, A.L.: An AREA-oriented heuristic for
scheduling DAGs on volatile computing platforms. IEEE Trans. Parallel Distrib.
Syst. 26(8), 2164–2177 (2015)

5. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Applying IC-scheduling theory to
some familiar classes of computations. In: Workshop on Large-Scale, Volatile Desk-
top Grids (PCGrid 2007) (2007)

6. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Advances in IC-scheduling theory:
scheduling expansive and reductive DAGs and scheduling DAGs via duality. IEEE
Trans. Parallel Distrib. Syst. 18, 1607–1617 (2007)

7. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Extending IC-scheduling via the
Sweep algorithm. J. Parallel Distrib. Comput. 70, 201–211 (2010)

Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 33

8. Cordasco, G., Rosenberg, A.L.: On scheduling series-parallel DAGs to maximize
AREA. Int. J. Found. Comput. Sci. 25(5), 597–621 (2014)

9. Cordasco, G., Rosenberg, A.L., Sims, M.: On clustering DAGs for task-hungry
computing platforms. Cent. Eur. J. Comput. Sci. 1, 19–35 (2011)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (1999)

11. Estrada, T., Taufer, M., Reed, K.: Modeling job lifespan delays in volunteer com-
puting projects. In: 9th IEEE International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid) (2009)

12. González-Escribano, A., van Gemund, A.J.C., Cardeñoso-Payo, V.: Mapping
unstructured applications into nested parallelism. In: Palma, J.M.L.M., Sousa,
A.A., Dongarra, J., Hernández, V. (eds.) VECPAR 2002. LNCS, vol. 2565, pp.
407–420. Springer, Heidelberg (2003)

13. Hall, R., Rosenberg, A.L., Venkataramani, A.: A comparison of DAG-scheduling
strategies for internet-based computing. In: 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2007)

14. Kale, L.V., Bhatele, A. (eds.): Parallel Science and Engineering Applications: The
Charm++ Approach. New York, Taylor & Francis Group, CRC Press (2013)

15. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home:
massively distributed computing for SETI. In: Dubois, P.F (ed.) Computing in
Science and Engineering. IEEE Computer Society Press (2000)

16. Malewicz, G., Foster, I., Rosenberg, A.L., Wilde, M.: A tool for prioritizing DAG-
Man jobs and its evaluation. J. Grid Comput. 5, 197–212 (2007)

17. Malewicz, G., Rosenberg, A.L.: Batch-scheduling dags for internet-based comput-
ing. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
262–271. Springer, Heidelberg (2005)

18. Malewicz, G., Rosenberg, A.L.: A pebble game for internet-based computing. In:
Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science.
LNCS, vol. 3895, pp. 291–312. Springer, Heidelberg (2006)

19. Malewicz, G., Rosenberg, A.L., Yurkewych, M.: Toward a theory for scheduling
DAGs in internet-based computing. IEEE Trans. Comput. 55, 757–768 (2006)

20. Roche, S.T., Rosenberg, A.L., Rajaraman, R.: On constructing DAG-schedules
with large AREAs. Concurrency Comput. Pract. Experience 27(16), 4107–4121
(2015)

21. Rosenberg, A.L.: On scheduling mesh-structured computations for internet-based
computing. IEEE Trans. Comput. 53, 1176–1186 (2004)

22. Rosenberg, A.L., Yurkewych, M.: Guidelines for scheduling some common
computation-DAGs for internet-based computing. IEEE Trans. Comput. 54,
428–438 (2005)

23. Sidney, J.B.: Decomposition algorithms for single-machine sequencing with prece-
dence relations and deferral costs. Oper. Res. 23(2), 283–298 (1975)

24. Taufer, M., Rosenberg, A.L.: Scheduling DAG-based workflows on single cloud
instances: high performance and cost effectiveness with a static scheduler. Int. J.
High Perform. Comput. Appl. (2015). doi:10.1177/1094342015594518

25. Woeginger, G.J.: On the approximability of average completion time scheduling
under precedence constraints. Discrete Appl. Math. 131(1), 237–252 (2003)

26. Yao, S., Lee, H.-H.S.: Using mathematical modeling in provisioning a heterogeneous
cloud computing environment. IEEE Comput. 44, 55–62 (2011)

27. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapRe-
duce performance in heterogeneous environments. In: 7th USENIX Symposium on
Operating System Design and Implementation (2008)

http://dx.doi.org/10.1177/1094342015594518

Support Tools and Environments

Synchronization Debugging
of Hybrid Parallel Programs

Olaf Krzikalla(B), Ralph Müller-Pfefferkorn, and Wolfgang E. Nagel

Technische Universität, Dresden, Germany
{olaf.krzikalla,ralph.mueller-pfefferkorn,wolfgang.nagel}@tu-dresden.de

Abstract. In this paper we address the problem of locating race condi-
tions among synchronization primitives in execution traces of hybrid par-
allel programs. In hybrid parallel programs collective and point-to-point
synchronization can’t be analyzed separately. We introduce a model
for synchronization primitives and formally define synchronization races
with respect to the model. Based on these concepts we present an algo-
rithm which accurately detects synchronization races and yields a task
graph of the execution trace. The task graph represents the guaranteed
ordering of events across thread and process boundaries. It is an essen-
tial core element for the further analysis (e.g. a data race detection) of
a program.

Depending on the synchronization model task graph construction can
be an NP-hard problem. Our model allows to construct an algorithm with
sub-quadratic time complexity. Thus programs adhering to the principles
of our model are provable against race conditions. Therefore we argue,
that our model should be used as a foundation for the design and imple-
mentation of synchronization functions.

1 Introduction

Exascale systems are expected to exhibit a hybrid architecture. Even contem-
porary systems are clusters of shared memory nodes. On such systems several
levels of parallelism exist, e.g., the node level, the core level, and the SIMD
level. In this paper we consider a thread the smallest execution element of a
program parallelization. A process consists of a number of threads, with each
thread able to call distributed synchronization and communication functions. A
hybrid program in turn consists of a set of such processes.

Hybrid programs raise new challenges to debugging and correctness tools.
Consider two processes each executing a barrier call twice (Fig. 1a). A tool ana-
lyzing the execution traces of the two processes can enumerate the barrier calls
of each process and by this means compute the matching barrier calls. Iden-
tifying the relation between barrier calls becomes difficult in the presence of
a hybrid parallel execution (Fig. 1b). Let’s assume process 1 consists of two
threads each executing the barrier once. Thread 2 sends a message to thread 1
in-between the two barrier executions. Thread 1 waits for that message before it
executes its barrier. Thus the execution order of the two barriers is determined.
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 37–50, 2016.
DOI: 10.1007/978-3-319-43659-3 3

38 O. Krzikalla et al.

However, in order to compute the order it is necessary to take the point-to-point
synchronization into account, which happens between thread 2 and thread 1.
Without that point-to-point synchronization a synchronization race would arise.
It would be undetermined, whether the first barrier call of process 2 matches
the barrier call of thread 1 or of thread 2. In practice a concurrent call to the
same barrier is often forbidden (e.g. by MPI or GASPI [1,7]). Due to its non-
deterministic nature such an error could cause an untimely program abortion.
The other side of the problem is illustrated in Fig. 1c. In this case two point-to-
point and one collective synchronization occur. Due to the barrier the first wait
at process 2 will wait for the post of thread 1 leading to a determined execution
order again. But it is also necessary to take the collective synchronization into
account in order to compute the order of point-to-point synchronizations. The
conclusion is that an algorithm computing the order of events on the basis of a
hybrid parallel program trace cannot handle point-to-point and collective syn-
chronization in two independent steps. Only a consolidated computation of both
types of synchronization can yield a task graph, which represents the guaranteed
ordering of events.

Process 2

B1 B2

Process 1

(a) (b) (c)

Process 1

Process 2

B1 B2

Thread 2

Thread 1
Process 1

Thread 1

Thread 2

Process 2

Fig. 1. Interaction of collective and point-to-point synchronization in hybrid parallel
program executions

In the following we will introduce a model, which can be used to describe
both point-to-point and collective synchronization. Based on that model we for-
mally explore how races can be detected and how a task graph of a given pro-
gram trace can be efficiently constructed. Our work is novel as it unifies the
handling of point-to-point and collective synchronizations. The major result of
our work is an algorithm to analyze the synchronization operations of the trace
of an application’s execution to compute its guaranteed orderings. The algo-
rithm requires O(|T |2) time, where |T | is the number of traced synchronization
operations. The algorithm reports synchronization races, which are sequences of
synchronization operations leading to a non-deterministic program behavior. In
addition we present an important optimization, which decreases the time com-
plexity of the algorithm down to sub-quadratic and makes it highly scalable.
We have implemented and evaluated our concept as a tool capable of analyzing
hybrid GASPI/OpenMP/Pthreads programs. The task graphs generated by the
tool visualize the synchronization relations among the threads and processes in
terms of necessity.

Synchronization Debugging of Hybrid Parallel Programs 39

2 Model

We derive our model from the classic point-to-point or event-style synchroniza-
tion model [6] and extend it, that it can handle collective synchronization too.
The basic concept is the event. An event has two states: posted and cleared. In
the classic model three operations can be performed on an event: POST sets the
state of the event to posted ; WAIT suspends the calling thread until the state
of the event is posted ; and CLEAR sets the state of the event to cleared.

Typically, point-to-point synchronizations use simple flags as events. These
flags are shared among the threads of a process. Events of collective primitives
are handled similar. Every executing element (i.e. a thread or a process) par-
ticipating in a collective has its own event. A thread being part of an OpenMP
barrier has a thread-local event for that barrier. A process participating in an
MPI barrier shares the corresponding event among its threads. When a blocking
collective is entered by a thread, a POST operation is performed on the corre-
sponding event first. Afterward, a WAIT operation waits until all participating
executing elements have entered the collective and set their respective events to
posted. Finally, a CLEAR operation is performed before the execution returns
from the collective.

In a blocking collective the three primitives POST , WAIT and CLEAR are
tied together and executed in that order. In a non-blocking collective (e.g. a
split-phase barrier [4]) the POST operation is swapped out to a dedicated enter
routine (e.g. upc notify). WAIT and CLEAR remain tied together in one rou-
tine (e.g. upc wait).

The coupling of WAIT and CLEAR is important. In our model it is not only
used for collective but also for point-to-point synchronization. Thus we reduce
the classic model to two principal operations:

– post(e) or P : sets the state of the event e to posted.
– wait(e) or W : suspends the executing thread until the state of the event

e is posted. If e belongs to a collective, then W waits until all participating
elements have set their respective events to posted. Upon exiting the state of
e is set to cleared.

Performing WAIT and CLEAR in one operation is a common practice.
It is used on a regular basis in collective synchronization. Another example
is the GASPI standard, which resembles the WAIT ,CLEAR sequence in the
gaspi notify reset function. This function resets an event and returns its
former state. A caller can choose the further execution path by means of the
function result.

A program execution P = 〈E,≺〉 represents a particular execution of a paral-
lel program. E is a finite set of tasks and ≺ is the happens-before relation defined
over E [9]. P constitutes a directed acyclic graph with E being the nodes and ≺
being the edges. We assume a trace of a program as input representing a partial
task graph PT =

〈

E,≺T
〉

. A task in E can be either a post(e) or a wait(e)
operation. The event e is part of the input and contains information about the
synchronization type. The ≺T relation denotes the execution order of the tasks

40 O. Krzikalla et al.

in a thread. It is implicitly given by the input trace. The challenge is to com-
pute the ≺S relations, which are induced among threads by the synchronization
tasks. If this computation leads to a uniquely determined program execution
P =

〈

E,≺T ∪ ≺S
〉

, then the input trace PT is free of synchronization races.

3 Synchronization Races

Parallel programs can exhibit various forms of non-deterministic behavior, which
is caused by race conditions at different levels. Value non-determinacies are the
most fundamental race conditions – data races. Data races are generally con-
sidered a programming error. However, there are also benign and even intended
data races, for example to implement synchronization operations.

Static non-determinacy is a property of the program control flow, which is
typically intended and built in the source code. An example are programs where
the threads adjust their execution according to the content of received mes-
sages (where content may refer to the sender, the message type or the actual
data). Stencil codes are representative: halos are processed in the order, in which
they are received from neighboring threads. Another form of non-determinacy
is mutual exclusion, where two or more synchronization operations intentionally
race toward the acquisition of the same resource. Unlike point-to-point synchro-
nization mutual exclusion does not establish directed synchronization relations.

Our notion of synchronization races lead to a form of non-determinacy, which
conceptually differs from other forms of non-determinacy. A synchronization race
can only occur among point-to-point synchronization operations accessing the
same event. In Fig. 2a process 2 issues a P operation, but it is unclear, whether
thread 1, thread 2, or both will perceive the posted event and reset it. This
depends on the point in time, at which the execution of thread 1 and thread
2 reaches the respective W operations. Figure 2b depicts a race of two posts
toward the same wait. If process 1 has entered the wait operation before process
2 executes P1, then process 1 can proceed after P1 and eventually the state of
the event is posted after the execution of P2. However, if process 1 doesn’t enter
W before process 2 has executed P2, then the state of the event is eventually
cleared. Figure 2c is an extension of Fig. 2b. At first glance the execution order
seems well defined, since P1≺W1 and P2≺W2. But if process 2 has executed P1

and P2 before process 1 enters W1, then the second post gets lost and process 1
will be stuck in the second wait. This may lead to an unpredictable dead-lock.

We formally define a synchronization race as a specific global program state.
A global program state can be seen as a frontier drawn across all threads in
between tasks of a task graph [3]. All tasks before the frontier were already
executed. Tasks immediately after the frontier are just about to be executed.
We call such tasks active. A consistent global state is an execution point, at
which all threads could have simultaneously arrived.

Definition 1. A synchronization race exists in a program execution P, iff a
consistent global state exists such that a wait task on an event e is active and

Synchronization Debugging of Hybrid Parallel Programs 41

Process 1

P (e)

W2(e)

W1(e)

Process 2

Thread 2

Thread 1

P1(e) P2(e)

W (e)

Process 2

Process 1

P1(e) P2(e)

W1(e) W2(e)

Process 2

Process 1

(a) (b) (c)

Fig. 2. Different types of synchronization races

1. another wait task on e is active or
2. at least two post tasks on e exist before the frontier and none of them is

connected to a wait task before the frontier.

A frontier of a consistent global state can only be crossed by arrows toward
the direction of the program execution. Thus a task after a consistent frontier
can never happen before a task before the frontier. Figure 3a resembles Fig. 2c
and illustrates the concept. The frontier belongs to a consistent global state – all
arrows cross the frontier onward. This case constitutes a synchronization race
by Definition 1: W1 is active, P1 and P2 are before the frontier and none of them
has triggered a wait before the frontier. On the contrary the frontier in Fig. 3b
is not consistent any more, since it is crossed by an arrow backwards from P (x)
to W (x). In this case it is indeed not possible to construct a consistent frontier
such that a synchronization race could be constituted according to Definition 1.
Figure 3c applies the frontier concept to a collective synchronization operation
in a hybrid environment. The shown frontier separates the enter and leave events
(post and wait operations resp.) of the barrier calls B1 and B2. Thus WB1 at
thread 2 and WB2 at thread 1 are both active. But this frontier is not consistent,
since it is crossed by an arrow backwards due to a point-to-point synchronization
from thread 2 to thread 1. Again, a construction of a consistent frontier fulfilling
all requirements of Definition 1 is not possible.

The examples give us a hint, how synchronization races can be detected. If
P (e) happens after W (e), then these two tasks can never form a synchronization
race.

Theorem 1. Let P be a post task triggering a wait task W ; Pr another post
task on the same event; and Pr ⊀ P . A synchronization race exists between W
and Pr, iff W ⊀ Pr.

Proof. According to Definition 1, pt.2 we try to construct a consistent frontier
such that W is active and both P and Pr are located before the frontier.

⇒: Since W is active, it lies after the frontier. If W≺Pr, then Pr lies after
the frontier too. Thus it is not possible to construct a consistent frontier with Pr

being located before the frontier. The conditions of Definition 1 can’t be met.
⇐: Let Next(Pr) be the event immediately following Pr. We place the frontier

between Pr and Next(Pr), so that any wait triggered by Pr is after the frontier.

42 O. Krzikalla et al.

Furthermore we place the frontier so that W is active. This step requires no shift
of the already placed frontier, sinceW ⊀ Pr. If P is already before the frontier, the
conditions of Definition 1 are met: W is active, P and Pr lie before the frontier and
are not connected to a wait before the frontier. Otherwise we place the frontier so
that P lies before it. Again, this step requires no shift of already placed frontiers to
preserve consistency: W ⊀ P since P triggers W , but also Pr ⊀ P by assumption.
Thus the conditions of Definition 1 are met again. �

Definition 1 requires that the sequence of wait operations on a particular
event is totally ordered in a race-free task graph. Theorem 1 reveals how we can
check this property: whenever a post task P is encountered it is checked against
the last wait task W on the same event that has been triggered. If W ⊀ P then
a synchronization race has been found.

P1(e) P2(e)

W1(e) W2(e)

Process 2

Process 1

P1(e) P2(e)

W1(e)P (x) W2(e)

W (x)

Process 2

Process 1

(a) (b) (c)

Process 1

Process 2

B1 B2

Thread 2

Thread 1

Fig. 3. Frontiers of consistent (a) and non-consistent (b,c) global program states

We can also prove, that Definition 1 is feasible to identify nondeterminism
in a program execution.

Theorem 2. If a program execution P has no synchronization races, then P is
deterministic.

Proof. We assume a program execution P = 〈E,≺〉 free of synchronization races.
If P is non-deterministic, then another execution Ṗ = 〈Ė, ≺̇〉 with the same input
could exhibit the same synchronization events and relations up to some point,
after which they differ. Let W be the first wait event at which P and Ṗ differ.
We distinguish two cases:

1. Let P1 and P2 be different post events, which trigger W in P and Ṗ respec-
tively. Then W ⊀ P1, since P1 triggers W in P. In addition W ⊀ P2 in P,
since P2 triggers W in Ṗ and all events and relations before W are the same
in P and Ṗ. Hence we can construct a consistent frontier in P, such that
W is active and P1 and P2 are both before the frontier. W.l.o.g. we assume
P1 ⊀ P2 in P, since P1≺P2 ∧ P2≺P1 cannot hold. Then the conditions of
Theorem 1 are met with P = P2 and Pr = P1. But this contradicts the initial
assumption, that P is free of synchronization races.

Synchronization Debugging of Hybrid Parallel Programs 43

2. W.l.o.g. we assume that W is not triggered in P, but triggered in Ṗ by P .
Then there is a task Wx, which has cleared the event posted by P before W
in P. Thus W ⊀ Wx in P, since Wx is executed, but W is not triggered.
If Wx≺W in P, then Wx would be included in the set of events, which are
the same in P and Ṗ. Then Wx≺W in Ṗ and Wx would be triggered in Ṗ
by P . But P has triggered W in Ṗ too, which is not possible if Wx≺W .
Thus Wx ⊀ W in P. The conditions of Definition 1, pt.1 are met. Again this
contradicts the initial assumption, that P is free of synchronization races. �

Theorem 2 is literally taken from [12]. We have adapted the proof to our
model and extended it in order to deal with the possibility of concurrent wait
tasks in hybrid parallel programs. Theorem 2 implies, that exactly one resulting
task graph P exists for a race-free input trace PT . Moreover, no race-free task
graph P can exist for an input trace containing synchronization races.

Unlike other non-determinacies we consider synchronization non-determinacy
always a programming error. In the case covered by Theorem 1 both P and Pr

might be executed before W . As a result one of these post events is lost, a
subsequent wait might never trigger, and at least one thread never finishes. But
even in the case, that superfluous post events prevent such a kind of deadlock,
no reliable happens-before relation is established. We only have P≺W ∨Pr≺W ,
but this also means, that anyone of P or Pr may happen after W . This behavior
contradicts the notion of point-to-point synchronization, whose purpose is to
create happens-before relations.

4 The Replay Algorithm

The following algorithm to analyze synchronization operations is based on a
replay approach. It performs a mock-up execution of the traced input tasks. Due
to Theorem 2 our algorithm can replay the tasks in any order, which preserves
the semantics of the synchronization primitives. During the replay the algorithm
checks for the occurrence of synchronization races according to Theorem 1. If no
races are found, the result is a race-free task graph P. This graph contains all
happens-before relations induced by the traced synchronization primitives.

Listing 1 is a condensed version of our actual implementation, which demon-
strates the unified handling of blocking collective and point-to-point operations.
The function replay tasks replays the traced tasks of one thread consecutively
until there are no more traced events or an untriggered wait is encountered.
Depending on the type of the processed task T the variable e (line 3) denotes
the flag number (point-to-point operation), the process group (GASPI collec-
tive) or the thread team (OpenMP barrier). Also depending on the type of T
the index r (line 4) denotes the particular position of the thread of T inside e.
This index is always 0 for point-to-point operations, it refers to a process index
for a GASPI collective, and to the thread index for an OpenMP barrier. Every
event is assigned a data structure PWP. PWP.Wait stores the active wait task,
PWP.PreviousWait stores the last wait task that has been triggered. PWP.Post

44 O. Krzikalla et al.

stores an already replayed post task, which hasn’t been connected to one or more
wait tasks yet. Race conditions are checked at line 8 (Definition 1, pt.2), at line
10 (Theorem 1) and at line 14 (Definition 1, pt.1). The lines 18–26 handle trig-
gered wait tasks. If all members of a synchronization operation (a point-to-point
operation has only one member) have set their respective events to posted, then
a happens-before relation is added from the respective post tasks to all active
wait tasks (line 20). At line 25 the execution of formerly suspended threads is
resumed. If the current task is a wait task, then the thread is suspended at
line 27. Note however, that by this time the thread might be already further
processed at line 25. If the current task is a post task, then the replay of the
thread just proceeds (line 28). The handling of non-blocking collectives is omit-
ted for brevity. They require a special handling, since it is not possible to wait
until all wait tasks of such a collective are encountered (line 18).

1 function replay_tasks (Task T) {
2 while T != nil {
3 let e = event of T
4 let r = index of T in e
5 let PWP = map[e]
6 switch type (T) {
7 case Post:
8 if PWP[r].Post != nil
9 abort and report post/post race

10 if PWP[r].PreviousWait != nil and not PWP[r].PreviousWait ≺ T
11 abort and report wait/post race
12 PWP[r].Post = T
13 case Wait:
14 if PWP[r].Wait != nil
15 abort and report wait/wait race
16 PWP[r].Wait = T
17 }
18 if (∀ x: PWP[x].Post != nil and PWP[x].Wait != nil) {
19 ∀ x: ∀ y:
20 add PWP[x].Post ≺ PWP[y].Wait
21 ∀ x:
22 PWP[x].PreviousWait = PWP[x].Wait
23 PWP[x].Post = PWP[x].Wait = nil
24 ∀ x:
25 replay_tasks(next_Task(PWP[x].PreviousWait))
26 }
27 if (type (T) == Wait) return
28 T = next_Task(T)
29 }
30 }

Listing 1. The replay algorithm

The performance-critical part of our algorithm is the reachability test at line
10, which we have implemented using depth-first-search (DFS). Therefore the
complexity of the algorithm is O(|T |2) with |T | being the total number of tasks.
However we have optimized the reachability test by leveraging the fact, that the
replay order of the tasks is topological sorted. Albeit the worst case complexity
would remain O(|T |2), in practice large portions of the search space are cut
off reducing the complexity of our replay algorithm to sub-quadratic time. In
addition, the topological sorting helps in further analysis tasks (e.g. data race
detection), which perform reachability tests too.

Synchronization Debugging of Hybrid Parallel Programs 45

Since the replay order of tasks doesn’t matter due to Theorem 2, the algo-
rithm can be easily parallelized. The function replay tasks can be executed
in parallel for tasks of multiple threads. The access to the PWP map must be
synchronized. Instead of the recursive call at line 27 a queue should be used,
from which analysis threads fetch tasks, which are ready to be replayed.

5 Practical Evaluation

We have implemented the replay algorithm in a tool capable of analyzing post-
mortem execution traces of hybrid programs using GASPI on the process level
and OpenMP/Pthreads at the thread level. The tool combines this work with
the model introduced in [8] in order to obtain task graphs of GASPI programs.
The execution traces are generated by recording function enter and function
leave events, their respective arguments, and return values using the dynamic
binary instrumentation framework Pin [11]. Thus, the analysis doesn’t require a
recompilation of the source code.

With our replay algorithm we are able to generate a task graph of a GASPI
program run out of an execution trace. Since such a task graph contains the
happens-before relations in terms of necessity, it reveals the logic connections
among the threads. As such, our algorithm opens up a complete new perspec-
tive to a parallel program. A programmer can visualize, understand and also
easily teach the interactions of the asynchronous weak synchronization opera-
tions exhibited by a GASPI program.

In the following figures the time line is top-down and ranks are ordered from
left to right (starting with rank 0). Collective synchronization is not visualized
for clarity. Figure 4 depicts a detail of a task graph visualizing an one-sided
broadcast implemented as a binary tree. Rank 0 sends the data to Rank 1,2,4,
and 8 via the asynchronous one-sided gaspi write notify function. After rank
2,4, and 8 have received the data, they redistribute it.

Fig. 4. Asynchronous one-sided broadcasting in a binary tree

Figure 5 shows two iterations of an one-dimensional halo-exchange code in a
ring of 4 processes. The code uses double-buffering and switches back and forth

46 O. Krzikalla et al.

between two data segments. A particular event e is defined by its rank r, its
segment s and its flag number f. The notify reset nodes enclosed in the two
dotted rectangles are a case of static non-determinism. In the first iteration rank
0 receives its data first from rank 3 and then from rank 1. In the second iteration
the receiving order changes, now rank 0 receives its data first from rank 1 and
from rank 3 afterward. The dashed red line marks the happens-before relation
between a wait operation (notify reset) and a subsequent asynchronous post
operation (issued by write notify) on the same event (rank 1, segment 0, flag
number 0). Thus the requirement imposed by Theorem 1 holds. During the con-
struction of the task graph the replay algorithm has checked this requirement for
all post/wait chains on all events. The program run doesn’t contain any synchro-
nization races. Thus, while the program itself is statically non-deterministic, the
analyzed program run doesn’t contain any problematic non-determinacies with
respect to Theorem 2.

Fig. 5. Synchronization relations of an one-dimensional halo-exchange code (Color
figure online)

The examination of the complexity of the replay algorithm is shown in Fig. 6
for the two applications described above. The diagrams depict the number of
node visits (#VISITS) performed by the DFS in relation to the number of
replayed synchronization tasks (#TASKS). For both use-cases the topological
sorting results in a linear complexity with respect to #TASKS. The gradient
increases with the number of threads |t|. The halo-exchange code doesn’t con-
tain a collective operation in its main computational loop. The complexity is
O(|T |∗|t|). The binary broadcast code performs number of collective operations.
The additional edges thus introduced raise the complexity to O(|T | ∗ |t|2). How-
ever, the influence of |t| can be mitigated by the already outlined parallelization,
since more threads allow more tasks to be replayed in parallel.

Synchronization Debugging of Hybrid Parallel Programs 47

tsacdaorByraniBegnahcxe-olaH

 0

 40M

 80M

 120M

 160M

 200M

0 0 , 5M 1 , 0M 1 , 5M

#
 V

IS
IT

S

TASKS

256 Threads

128 Threads

64 Threads

 0

 100M

 200M

 300M

 400M

 500M

0 5 0K 1 0 0K 1 5 0K

#
 V

IS
IT

S

TASKS

256 Threads

128 Threads

64 Threads

Fig. 6. Actual complexity of the task graph generation

Fig. 7. Synchronization race

Figure 7 depicts the task graph of a program, which sometimes got stuck.
The analyzed execution trace was recorded of a successful program run. Nev-
ertheless, our replay algorithm revealed a post/post collision and marked the
corresponding nodes in the output graph. The problem was introduced by a pro-
gram optimization, where a collective reduction in the initialization phase was
replaced by a more efficient binary broadcast routine similar to the one depicted
in Fig. 4. That routine was taken from another program, where it had worked.
The problem was, that the flag range used by the initialization routine over-
lapped with the flag range of the worker phase. The first marked notify reset
node at rank 3 was meant to receive the notification from rank 0. However, it
could also receive a notification from rank 2, which already belongs to the worker
phase. In such a case our tool marks the colliding notifications and connects them
with the notify reset node. If the replay algorithm finishes, it also marks still
untriggered wait operations, e.g. the second notify reset node at rank 3. With
this information we could fix the bug by assigning different numbers to the flags
of the initialization routine. This removed the overlap and freed the program of
synchronization races.

48 O. Krzikalla et al.

6 Related Work

Race conditions are difficult to detect due to their irreproducible characteristics.
Hence research on synchronization and concurrency has always been an impor-
tant aspect for the HPC community. However, according to our knowledge no
work has proposed a combined approach for the analysis of point-to-point and
collective synchronization yet.

The problem of barrier matching has been studied for message-passing sys-
tems [18], PGAS systems [16] and shared-memory systems [10]. The analysis of
split-phase barriers and data race detection has been combined in [15] for UPC
programs. The problem of computing all guaranteed orderings in a program trace
using the POST , WAIT , CLEAR model is NP-hard [14]. Two algorithms have
been proposed to solve this problem [5]. The closest common ancestor algorithm
works in polynomial time, but may miss out on some of the guaranteed ordering.
The exhaustive-pairing algorithm computes the ordering accurately, but works
in exponential time. For programs without CLEAR operations it is possible to
construct algorithms with O(np) complexity where n is the number of events and
p is the number of processes [13,17]. However, the relinquishment of the CLEAR
operation entails the problem that events are not reusable. A discussion about
the consequences of the CLEAR operation can be found in [2].

An efficient algorithm to locate synchronization errors in pure MPI programs
is described in [12]. While this approach does not handle collective synchro-
nization, the theoretical background presented there is similar to our approach.
Theorem 2 appears in our work in a more generalized context.

7 Conclusion

This paper makes two important contributions. First, we have extended the
event-style synchronization model to collectives. By doing so we are able to
handle point-to-point and collective synchronization in a unified manner. This
enables us to reason about the execution order of events in hybrid parallel pro-
grams. Second, we have condensed the event-style synchronization paradigm to
two operations – post and wait. Our wait operation is a concatenation of the
classic WAIT and CLEAR operations. This simplification has the important
effect, that task graph construction is not NP-hard any more. Thus programs
using our synchronization paradigm are testable for race conditions of various
kinds. Our paradigm is used by the collective and the point-to-point synchro-
nization routines defined by the GASPI standard. Even MPI Send and MPI Recv
can be regarded as post and wait respectively.

Our model does not require an atomic coupling of WAIT and CLEAR. A
programmer could also manually perform a CLEAR after a WAIT . For instance,
the OpenShmem function shmem int wait forces a thread to wait until an integer
is no longer equal to a certain value. One could reset the respective integer to that
value as soon as shmem int wait has returned and thus achieve the functionality
required by our model. A function shmem int wait and clear would lead to

Synchronization Debugging of Hybrid Parallel Programs 49

programs, which are implicitly testable against race conditions. That’s why we
think, that our work should be considered, whenever decisions have to be made
during the design of parallel programming APIs. Point-to-point synchronization
using post and wait makes the reasoning about the correctness of programs
easier than the POST , WAIT , CLEAR paradigm.

While we have introduced the algorithm in the context of post-mortem
analysis, an adaption to an on-the-fly approach is possible. As discussed in
Sect. 3 tasks can be replayed in the order of their delivery. On-the-fly techniques
can cope with much longer program runs than post-mortem techniques, since
tasks can be discarded once they are evaluated. An interesting research topic
is the question, which tasks can be discarded so that the test of Theorem 1
(PWP[r].PreviousWait ≺ T) on line 10 of Listing 1 is not affected.

References

1. GASPI - Global Adress Space Programming Interface (2011). http://www.gaspi.de.
Accessed 29 Jan 2015

2. Callahan, D., Kennedy, K., Subhlok, J.: Analysis of event synchronization in a
parallel programming tool. In: ACM SIGPLAN Notices, vol. 25, pp. 21–30. ACM
(1990)

3. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. (TOCS) 3(1), 63–75 (1985)

4. El-Ghazawi, T., Carlson, W., Sterling, T., Yelick, K.: UPC: Distributed Shared
Memory Programming. Wiley Series on Parallel and Distributed Computing.
Wiley, New York (2005)

5. Emrath, P., Ghosh, S., Padua, D.: Detecting nondeterminacy in parallel programs.
IEEE Softw. 9(1), 69–77 (1992)

6. Emrath, P.A., Ghosh, S., Padua, D.A.: Event synchronization analysis for debug-
ging parallel programs. In: Proceedings of Supercomputing 1989, pp. 580–588
(1989)

7. Grünewald, D., Simmendinger, C.: The GASPI API specification and its implemen-
tation GPI 2.0. In: 7th International Conference on PGAS Programming Models,
vol. 243 (2013)

8. Krzikalla, O., Knüpfer, A., Müller-Pfefferkorn, R., Nagel, W.E.: On the modelling
of one-sided communication systems. In: Proceedings of the 7th International Con-
ference on PGAS Programming Models, Edinburgh, UK, October 2013, pp. 41–53
(2013)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

10. Lin, Y.: Static nonconcurrency analysis of OpenMP programs. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005
and IWOMP 2006. LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008)

11. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. SIGPLAN Not. 40(6), 190–200 (2005)

12. Netzer, R.H., Brennan, T.W., Damodaran-Kamal, S.K.: Debugging race conditions
in message-passing programs. In: Proceedings of the SIGMETRICS Symposium on
Parallel and Distributed Tools, pp. 31–40. ACM (1996)

http://www.gaspi.de

50 O. Krzikalla et al.

13. Netzer, R.H., Ghosh, S., et al.: Efficient race condition detection for shared-memory
programs with Post/Wait synchronization. University of Wisconsin-Madison, Com-
puter Sciences Department (1992)

14. Netzer, R.H., Miller, B.P.: On the complexity of event ordering for shared-memory
parallel program executions. In: Proceedings of the 1990 International Conference
on Parallel Processing, pp. 93–97 (1990)

15. Park, C.S., Sen, K., Hargrove, P., Iancu, C.: Efficient data race detection for distrib-
uted memory parallel programs. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
51:1–51:12. ACM, New York (2011)

16. Pophale, S., Hernandez, O., Poole, S., Chapman, B.M.: Extending the OpenSH-
MEM analyzer to perform synchronization and multi-valued analysis. In: Poole,
S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol. 8356, pp.
134–148. Springer, Heidelberg (2014)

17. Ramanujam, J., Mathew, A.: Analysis of event synchronization in parallel pro-
grams. In: Pingali, K.K., Gelernter, D., Padua, D.A., Banerjee, U., Nicolau, A.
(eds.) LCPC 1994. LNCS, vol. 892, pp. 300–315. Springer, Heidelberg (1995)

18. Zhang, Y., Duesterwald, E.: Barrier matching for programs with textually
unaligned barriers. In: Proceedings of the 12th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 194–204. ACM (2007)

Nasty-MPI: Debugging Synchronization Errors
in MPI-3 One-Sided Applications

Roger Kowalewski(B) and Karl Fürlinger

MNM-Team, Ludwig-Maximilians-Universität München,
Oettingenstr. 67, Munich, Germany

{kowalewski,fuerling}@mnm-team.org

Abstract. The Message Passing Interface (MPI) specifies a one-sided
interface for Remote Memory Access (RMA), which allows one process to
specify all communication parameters for both the sending and receiv-
ing side by providing support for asynchronous reads and updates of
distributed shared data. While MPI RMA communication can be highly
efficient, proper synchronization of possibly conflicting accesses to shared
data is a challenging task.

This paper presents a novel debugging tool that supports developers
in finding latent synchronization errors. It dynamically intercepts RMA
calls and reschedules them into pessimistic executions which are valid in
terms of the MPI-3 standard. Given an application with a latent synchro-
nization error, we force a manifestation of this error which can easily be
detected with the help of program invariants. An experimental evalua-
tion shows that the tool can uncover synchronization errors which would
otherwise likely go unnoticed for a wide range of scenarios.

Keywords: Bug detection · MPI · One-sided communication

1 Introduction

Modern remote direct memory access (RDMA) network interconnects leverage
efficient MPI one-sided communication, also known as MPI RMA (remote mem-
ory access), as an important communication paradigm. In contrast to traditional
message passing, RMA conceptually decouples data transfer and synchroniza-
tion, enabling superior performance potential [2]. Furthermore, while message
passing is natural for some problems, it can be cumbersome to use for applica-
tions with irregular communication patterns. However, the non-blocking nature
of MPI RMA poses several challenges. Programmers must understand the com-
plex synchronization model to maintain memory consistency between possibly
conflicting asynchronous data accesses. Latent synchronization bugs may lead to
an erroneous state manifested during one execution that may not be triggered
during another execution due to the underlying MPI library, network intercon-
nect facilities, thread interleaving, etc. Often, errors remain unnoticed for a long
period of time and only occur in large-scale scenarios [1] or after porting the
application to a different HPC platform [3].
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 51–62, 2016.
DOI: 10.1007/978-3-319-43659-3 4

52 R. Kowalewski and K. Fürlinger

As an example, MPI RMA provides only weak ordering guarantees. In
Fig. 1b, a MPI Put modifies a remote memory buffer x which is subsequently
accessed by a MPI Get call. Due to the non-blocking semantics, both RMA
calls may complete in any order. Furthermore, they are non-atomic allowing
the MPI Get to fetch a partially written value by the preceding MPI Put. While
this semantic flexibility is a major strength of MPI and necessary to achieve high
performance, it complicates the task to write portable and correct programs.

For this purpose, we present Nasty-MPI, a runtime debugging tool to support
programmers in finding latent synchronization bugs within their applications.
Like many other tools, it is based on the MPI profiling interface (PMPI) and
can therefore be used with any MPI application. The approach takes the RMA
semantics into account to schedule pessimistic executions of the issued RMA
communications which force a manifestation of latent synchronization bugs.
Because each application may have numerous of such pessimistic executions, we
provide external configuration parameters to control the scheduling process of
Nasty-MPI, enabling easy integration into any environment. Since Nasty-MPI
has no correctness model of the target applications, the only requirement on
programmers is to supply program invariants (e.g., assert statements) which
uncover possibly forced synchronization errors.

Such a tool supports programmers already during early development stages.
We have integrated the concept into the DASH library distribution [6]. DASH is
a C++ template library which adopts hierarchical PGAS1 concepts to important
standard containers (arrays, matrices, etc.) and is published along with extensive
unit test suites to validate the implemented containers and algorithms. Applying
Nasty-MPI improves these unit tests as it significantly increases the chance to
uncover latent synchronization bugs in the low-level MPI RMA communications.

In the reminder of this paper, we first summarize the MPI RMA synchroniza-
tion semantics and present a formalism to model memory consistency in Sect. 2.
Section 3 elaborates the concept and strategies of Nasty-MPI to uncover syn-
chronization bugs. An experimental evaluation in Sect. 4 with small test cases
compares the behavior of applications with latent synchronization bugs on dif-
ferent HPC platforms. It reveals that the presented approach can manifest these
synchronization bugs which would otherwise likely go unnoticed. Finally, Sect. 5
summarizes related work and Sect. 6 concludes the results of this paper.

2 MPI-3 One-Sided Communication

MPI RMA can be applied only on a point-to-point basis, i.e., an origin process
remotely accesses memory on a target process. All communication actions (puts,
gets, accumulates) operate in the context of a window, abstracting the distrib-
uted memory between MPI processes, and are grouped into synchronization
phases, called access epochs. No RMA operation may be issued before opening
an access epoch and no completion guarantees, neither local nor remote, are
available before closing an access epoch.
1 Partitioned global address space.

Nasty-MPI: Debugging Synchronization Errors 53

MPI RMA offers two synchronization modes which are called the active target
and passive target mode. In the scope of this paper, we focus on passive target
mode as only the origin is involved in synchronization, which closely matches the
requirements of one-sided communication. Passive target synchronization relies
on a single lock/unlock model to open and close an access epoch, respectively.
Nevertheless, we can adopt the proposed techniques to the active target mode,
as well as to other one-sided programming models.

2.1 Challenges in MPI RMA

In MPI RMA, all communication primitives and the lock routine to open an
access epoch are, in fact, non-blocking. Thus, memory operations within an
access epoch, whether RMA or native loads/stores, may conflict with each other.
In particular, we have to consider three critical properties:

Completion: RMA communication operations are not guaranteed to com-
plete before the surrounding access epoch is explicitly synchronized. For
example in Fig. 1a, the receive buffer (buf) for the MPI Get is subsequently
accessed by a native load. Both memory accesses conflict, resulting in unde-
fined behavior.
Ordering: In general, MPI provides no ordering guarantees for RMA oper-
ations, i.e., the order in which they are applied within an access epoch is

Fig. 1. Application samples with synchronization bugs.

Fig. 2. Exemplified modifications by Nasty-MPI.

54 R. Kowalewski and K. Fürlinger

unspecified. An exception is made for accumulates directed to the same tar-
get, and with the same operation and basic data type. In Fig. 1b, two RMA
calls read (MPI Put) and write (MPI Get) on a single memory buffer, respec-
tively. Since the operations may complete in any order, they conflict with
each other.
Atomicity: In general, RMA operations are non-atomic, except accumulates,
which guarantee element-wise atomic reads and writes to a single target if
they use the same basic data type. Figure 1c shows an example where an
origin copies an array, consisting of 100 integers, to a target memory. This
MPI Put is non-atomic and may conflict with any memory accesses, operating
concurrently on the target memory location.

These guarantees are crucial in even simple concurrent protocols. Thus, writ-
ing portable and well-defined programs requires properly synchronized memory
accesses on overlapping locations. MPI RMA specifies dedicated synchroniza-
tion primitives for this purpose. Beside the common approach of synchronizing
by distinct access epochs, MPI additionally provides local flush and flush primi-
tives to locally or remotely complete pending RMA operations within an access
epoch. While local completion guarantees consistent memory buffers only on the
origin process, remote completion guarantees memory consistency of the target
memory as well [16].

2.2 Modeling Memory Consistency in MPI RMA

To model and analyze the RMA operations issued by an application, we use a
formalism based on a paper written by the MPI RMA Working Group [10].

Two memory accesses a and b conflict if they target overlapping memory and
are not synchronized by both a happens-before (hb−→) [11] and a consistency edge
(co−→) [10]. The happens-before order may either be the program order, if both
operations occur in a single process, or the synchronization order between two
MPI processes, such as blocking send-receive pairs. A consistency edge between
two operations (i.e., a co−→ b) implies that the memory effects of a may be observed
by b. Consistency edges are established by the RMA synchronization primitives,
as described earlier.

Utilizing this notation, we derive an execution model of all issued RMA
communications in an MPI program P . All executions E over the set of RMA
calls in P may be modeled as a partially ordered happens-before graph, formed
by the transitive closure of hb−→ and co−→ edges. Two executions e1 and e2 in
E are semantically equivalent if they result in the same happens-before graph.
If a and b are not synchronized, they are contained in a parallel region. For
example, Fig. 3 represents a happens-before graph, derived from the program
in Fig. 1b. Since both RMA operations operate on overlapping memory and are
within a parallel region, the program includes a synchronization bug. If we want
to guarantee that both operations remotely complete in program order, one valid
solution is to synchronize by an additional flush, which establishes the required
cohb−−−→ edge, as depicted in Fig. 4.

Nasty-MPI: Debugging Synchronization Errors 55

Fig. 3. Unsynchronized (two execu-
tions).

Fig. 4. Synchronized execution.

The next section explains how we exploit this formalism to uncover latent
synchronization bugs.

3 Forcing Synchronization Errors with Nasty-MPI

This section describes an effective approach to support programmers in debug-
ging MPI programs with improperly synchronized RMA communications. Sup-
pose an MPI program P contains a latent synchronization bug. Given further
that P has a predefined correctness model in the form of included program invari-
ants, as illustrated by the assert statements in Fig. 1b. Based on the presented
memory consistency model we are able to explore different execution paths in the
happens-before graph of P with the objective of finding at least one execution
which forces a manifestation of this bug.

3.1 Conceptual Overview

By exploiting the PMPI interface we intercept all RMA communication actions
at runtime and initially buffer them, instead of handing them over to the MPI
library. This enables to dynamically construct a happens-before graph and, in
particular, tracking all its parallel regions. The approach relies on the RMA com-
pletion semantics, allowing to defer the execution of communication actions to
a matching synchronization call. When the application issues a synchronization
action, it triggers a three-stage rescheduling process:

(1) Completion Stage: We consider only those communication actions which
are necessarily required to complete, as specified by the synchronization
action.

(2) Atomicity Stage: We break non-atomic communication actions into a set
of smaller requests in such a way that the memory semantics are identical.

(3) Reordering Stage: We reorder communication actions which do not con-
ceptually give any ordering guarantees within the synchronized access epoch.

Figure 2 illustrates the rescheduling techniques when applying Nasty-MPI to
the programs in Fig. 1 in the form of source code modifications that are equivalent
to the effects achieved by the dynamic interception and rescheduling process.

56 R. Kowalewski and K. Fürlinger

In Fig. 2a, Nasty-MPI exploits the completion semantics and defers commu-
nication actions to a matching synchronization. Thus, the MPI Get will be issued
to the MPI library after the native load.

Figure 2b demonstrates the reordering technique. Suppose both RMA calls in
Fig. 1b are required to complete as encountered. Since there is no synchronization
to guarantee program order, we may reverse the order. Note the additional flush,
issued by Nasty-MPI to force the reverse order.

The last example depicts how we utilize the atomicity semantics. In Fig. 2c,
we split one single MPI Put into 100 separate MPI Put calls. While both variants
have identical semantics, splitting RMA operations can effectively force errors
which result from non-atomic memory access on overlapping locations.

In the next section, we explain the rescheduling process in more detail and
discuss how the tool uses the full semantic flexibility, given by the MPI standard,
to schedule pessimistic executions.

3.2 Nasty-MPI Rescheduling Process

Suppose Nasty-MPI receives a synchronization action, triggering the reschedul-
ing process on buffered communication actions. The three stages of this
rescheduling process are described in the following.

Completion Stage. Nasty-MPI first distinguishes between local and remote
completion. If the issued synchronization action has remote completion semantics
(i.e., unlock or flush), we filter all buffered RMA calls which are necessarily
required to complete. A synchronization action can complete either all pending
RMA calls within a window or to a specific target rank [16].

In the case of local completion (i.e., flush local), however, all MPI Put calls
remain in the buffer and are not issued to the MPI library. This approach is
allowed, because local completion only guarantees memory consistency of local
buffers. However, because local completion creates a consistency edge between
two consecutive memory access (i.e., a co−→ b), we have to copy the source buffer of
a to keep it internally until remote completion is forced. This approach is applica-
ble to RMA accumulates as well. However, because accumulates are conceptu-
ally ordered under certain conditions [16], we have to make sure that there are
no subsequent correlated accumulates which atomically fetch data from remote
memory. In this case, we are not allowed to further postpone the first accumu-
late operation. This strategy is useful because several experiments revealed that
some MPI libraries do not distinguish between local and remote completion,
i.e., they always apply remote completion.Table 1 lists two parameters for the
completion stage to control, whether Nasty-MPI should apply local completion
semantics (NASTY LOCAL COMPLETION ENABLED) or even bypass the completion
stage (NASTY SKIP COMPLETION STAGE).

Nasty-MPI: Debugging Synchronization Errors 57

Table 1. Nasty-MPI configuration
parameters.

Parameter Options

NASTY SKIP COMPLETION STAGE 0*, 1

NASTY LOCAL COMPLETION ENABLED 0, 1*

NASTY SKIP ATOMICITY STAGE 0, 1*

NASTY SUBMIT ORDER see Table 2

NASTY ADD FLUSH ENABLED 0, 1*

NASTY ADD LATENCY unit32 range**

*default value **default value: 0

Table 2. Options for NASTY

SUBMIT ORDER.

Option Description

random Random (default)

reverse po Reverse program order

put before get Schedule put before get calls

get before put Schedule get before put calls

Atomicity Stage. While fast RMA data transfers (i.e., put, get) are non-
atomic, accumulates guarantee it only on a per element granularity. Thus, we
apply a splitting technique to break a single RMA call into a set of many smaller
RMA calls which have identical memory semantics. We first analyze the count
and datatype parameters which are contained in the signature of each RMA
call. If the count parameter is specified with at least 2 elements (i.e., count
>= 2), we further determine the extent of a single datatype element. Based
on these two parameters, one RMA call can be split into many single-element
calls. For example, in Fig. 1c, count is 100 and the extent of MPI INT is 4 bytes.
This results in 100 MPI Put calls, each having a source buffer which starts at
increasing 4 bytes offsets relative to the original buffer address (see Fig. 2c).

RMA put and get calls can be even split into 1-byte RMA operations. How-
ever, we are restricted by the displacement unit in MPI windows which defines
the minimum size of a single element. Thus, this approach applies only if the
displacement unit is specified with a size of MPI BYTE at window creation.

The atomicity stage may skipped by setting the NASTY SKIP
ATOMICITY STAGE parameter to 1, as listed in Table 1.

Reordering Stage. Passing the first two stages gives a set of RMA calls which
are (a) required to remotely complete; and (b) split into many small RMA calls
in order to explore the minimal completion and atomicity semantics. Before we
hand over these RMA calls to the native MPI library, they are finally reordered.
The only restriction applies to accumulates. We can interleave them with any
other communication action, however, their syntactic order has to be preserved.
The default reordering approach is to randomly shuffle buffered communication
actions. More fine-grained control is provided by the configuration parameter
NASTY SUBMIT ORDER which can be set to any of the options in Table 2. How-
ever, simply reorder RMA operations does not guarantee that the native MPI
library obeys the scheduled order. Similar to Nasty-MPI, MPI libraries are free to
reorder or even apply additional optimizations, such as merging of RMA calls [7].
Thus, we must explicitly force the scheduled ordering. One option is to simulate
communication latency between consecutive communication actions, giving the
MPI library a chance to asynchronously process an RMA operation before the
next call is issued. However, if the MPI library does not facilitate asynchronous

58 R. Kowalewski and K. Fürlinger

progress mechanisms or applies lazy execution, this approach has no effect. An
effective solution is to issue additional flush operations which is semantically
valid, as we modify only parallel regions in the original happens-before graph.

The reordering stage can be further controlled by two parameters in order to
configure the simulation of communication latency (NASTY ADD LATENCY) and to
configure whether Nasty-MPI is allowed to inject additional flush synchroniza-
tions (NASTY ADD FLUSH ENABLED).

4 Experimental Evaluation

The experiments were conducted on two HPC platforms: The NERSC Edison
Cray XC 30 supercomputer [17] and SuperMUC [12] at the Leibniz Supercom-
puting Centre. The Cray machine is interconnected by an Aries network and
provides its own MPI library and compiler, included in Cray’s Message Passing
Toolkit. SuperMUC facilitates a fully non-blocking Infiniband network and sup-
ports three MPI libraries: IBM (v9.1.4), Intel(v5.0) and open MPI(v1.8). The
corresponding compiler is Intel icc (v15.0.4). A prototypical implementation of
Nasty-MPI is publicly accessible on Github2.

4.1 Methodology

All experiments include at least two MPI processes which communicate by
improperly synchronized RMA operations. The correctness model of these appli-
cations is defined by included assert statements in the source code to uncover
the synchronization errors.

Each experiment is evaluated with all MPI libraries in 4 scenarios, which are
based on two parameters. The first parameter determines process locality, i.e.,
the origin and target process reside either on a single node or on two distant
nodes. Process locality is an important property, because MPI libraries may hide
communication latency in MPI RMA calls by utilizing shared memory seman-
tics. The second parameter depends on whether Nasty-MPI is linked to the tar-
get application. If Nasty-MPI is linked, all applications are repeatedly executed
with distinct combinations of the Nasty-MPI configuration parameters, listed in
Table 1. The assumption is that, if Nasty-MPI is not linked, the MPI libraries
can successfully execute the applications, i.e., the assert statements manifest no
errors. In this case, there has to be at least one configuration for Nasty-MPI
which forces a pessimistic execution to uncover the synchronization bug.

4.2 Effectiveness of Nasty-MPI

The first test case is a binary tree broadcast algorithm which was described by
Luecke et al. [13]. The code relies on MPI Get being a blocking MPI call because
there is no synchronization action which actually completes it. The relevant

2 https://github.com/rkowalewski/nasty-MPI.

https://github.com/rkowalewski/nasty-MPI

Nasty-MPI: Debugging Synchronization Errors 59

snippet is shown in Fig. 5. Executing this program setup leads to different results,
depending on the test setup. If the communicating processes, involved in the
MPI Get, reside on distant nodes no MPI library can successfully terminate this
program due to an infinite loop. But the situation changes, if both processes
reside on the same node. While IBM MPI and open MPI again cannot exit from
the polling loop, the implementations of Intel (SuperMUC) and Cray (NERSC
Edison) can complete the RMA call. This demonstrates that process locality
may impact the behavior of RMA communications, depending on the underlying
MPI library. If Nasty-MPI is linked and the completion stage is not skipped
(i.e., NASTY SKIP COMPLETION STAGE = 0), the MPI library does never receive
the MPI Get request, because no synchronization action completes the buffered
RMA call.

Fig. 5. Non-completed MPI Get Fig. 6. Improperly synchronized Acc.

The second test case is an implementation of the MCS lock [15] which can be
implemented using MPI RMA primitives [10]. In the code for acquiring the lock
(Fig. 6), a requesting process issues two RMA calls which are directed to different
targets. For test purposes, we have injected a synchronization error in such a
way that only one target is synchronized. As listed in Table 3, all MPI libraries,
except Intel, can successfully execute this program. This observation confirms
that some MPI libraries always complete all pending RMA calls, regardless of
the synchronization target. In Nasty-MPI, however, only the second RMA call
reaches the native MPI library, while the first MPI Accumulate is rejected in the
completion stage, causing a manifestation of the synchronization bug.

The third test case is a slight modification from the example in Fig. 1b. The
MPI Put modifies a remote memory location x and is only locally completed by a
local flush. All MPI libraries pass the assert statement, i.e., the MPI Get fetches
the modified value by the MPI Put. If Nasty-MPI is linked and the parameter
NASTY LOCAL COMPLETION ENABLED is set to 1, it defers the MPI Get to the unlock
call, leading to a manifestation of the synchronization error.

Program 4 tests the ordering guarantees of the MPI libraries. It requires that
two consecutive remote writes, one MPI Put followed by an MPI Accumulate, are
completed in target memory as encountered by the program order. Still, there is

60 R. Kowalewski and K. Fürlinger

no synchronization action to ensure this order. If the origin and target processes
reside on a single node, all MPI libraries, except Intel, complete both RMA calls
in program order. Nasty-MPI can easily force the synchronization bug by setting
NASTY SUBMIT ORDER to reverse po.

Finally, Nasty-MPI helped to detect a synchronization bug in the DASH
library, while it was applied to a large test suite. The root cause was to pass a
memory buffer, located on the stack frame, to a MPI Put. However, the matching
synchronization call was outside of the method scope, causing the memory buffer
to be invalid if the RMA call is deferred to this synchronization call.

Table 3. Results of the experiments without linking Nasty-MPI.

Edison SuperMUC

No Test Program Cray IBM Intel oMPI

1 Binary Broadcast [13] × � × �
2 MCS lock [15] × × � ×
3 Local completion × × × ×
4 Unordered Put calls × × � ×

� Synchronization error manifested
× Synchronization error not manifested

5 Related Work

There is a large number of approaches for automatic bug detection in two-sided
MPI [4,5,20,21], however, they cannot be applied to one-sided MPI due to the
contrary synchronization model.

A tool, called MC-Checker [3], is closely related to this paper. It can detect
memory consistency errors by profiling both MPI RMA and native memory
accesses, i.e., loads and stores. Based on the MPI semantics, it effectively finds
potential data races even across different origins which concurrently access over-
lapping target memory. However, MC-Checker only covers the MPI-2 standard
which follows different synchronization semantics compared to MPI-3. More-
over, Nasty-MPI follows a different approach, since it forces synchronization
errors, rather than detecting them. MUST [9] focuses on deadlocks and seman-
tic parameter checking, which is not the scope of Nasty-MPI. However, both
tools can complement each other to debug memory consistency and semantic
parameter errors. Scalasca [8] detects inefficient wait states in MPI RMA appli-
cations. Another approach applies model checking [19] for deadlock detection in
MPI RMA programs. Furthermore, there are tools from other PGAS languages.
UPC-Thrill [18] uncovers data races in UPC programs. Significant semantic dif-
ferences between UPC and MPI RMA distinguish this tool from Nasty-MPI.

Nasty-MPI: Debugging Synchronization Errors 61

6 Conclusion and Future Work

This paper discusses the semantic challenges of MPI-3 RMA and presents Nasty-
MPI, a novel approach to support the detection of latent synchronization bugs in
MPI applications. Based on the complex RMA semantics, we apply a systematic
strategy to force latent errors, which may be easily manifested with the help
of program invariants. An experimental evaluation has demonstrated that we
can uncover synchronization errors which would be otherwise go unnoticed for
a wide range of synchronization scenarios. Furthermore, the tool detected a
synchronization bug in the DASH library [6].

We currently evaluate to track native memory accesses by using tools, such
as Pin [14]. This enables to more effectively force synchronization errors between
MPI RMA and native memory accesses. Another challenge are RMA communi-
cations which use complex MPI data types (e.g., structs). Currently, we cannot
apply the full potential of Nasty-MPI to such RMA operations, as it requires to
understand the memory layout of complex MPI data types.

Finally, Nasty-MPI may be used by any programmer who wants to verify the
semantic correctness of a given MPI RMA program.

Acknowledgments. We gratefully acknowledge funding by the German Research
Foundation (DFG) through the German Priority Programme 1648 Software for Exas-
cale Computing (SPPEXA).

References

1. Arnold, D., Ahn, D., de Supinski, B., Lee, G., Miller, B., Schulz, M.: Stack trace
analysis for large scale debugging. In: IEEE International Parallel and Distributed
Processing Symposium, IPDpPS 2007, pp. 1–10, March 2007

2. Bell, C., Bonachea, D., Nishtala, R., Yelick, K.: Optimizing bandwidth limited
problems using one-sided communication and overlap. In: Proceedings of the 20th
International Conference on Parallel and Distributed Processing, IPDPS 2006, p.
84. IEEE Computer Society, Washington, DC (2006)

3. Chen, Z., Dinan, J., Tang, Z., Balaji, P., Zhong, H., Wei, J., Huang, T., Qin, F.:
MC-Checker: detecting memory consistency errors in MPI one-sided applications.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 499–510. IEEE Press (2014)

4. Chen, Z., Li, X., Chen, J.Y., Zhong, H., Qin, F.: SyncChecker: detecting synchro-
nization errors between MPI applications and libraries. In: Proceedings of the 2012
IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS
2012, pp. 342–353. IEEE Computer Society, Washington, DC (2012)

5. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, scalable debugging of MPI Programs with intel message checker.
In: Proceedings of the Second International Workshop on Software Engineering for
High Performance Computing System Applications, SE-HPCS 2005, pp. 78–82,
New York (2005)

6. Fürlinger, K., et al.: DASH: data structures and algorithms with support for hier-
archical locality. In: Lopes, L., et al. (eds.) Euro-Par 2014, Part II. LNCS, vol.
8806, pp. 542–552. Springer, Heidelberg (2014)

62 R. Kowalewski and K. Fürlinger

7. Gropp, W.D., Thakur, R.: An evaluation of implementation options for MPI one-
sided communication. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.)
EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 415–424. Springer, Heidelberg (2005)

8. Hermanns, M.A., Miklosch, M., Böhme, D., Wolf, F.: Understanding the formation
of wait states in applications with one-sided communication. In: Proceedings of the
20th European MPI Users’ Group Meeting, pp. 73–78. ACM (2013)

9. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI runtime
error detection with MUST: advances in deadlock detection. In: Proceedings of
the International Conference on High Performance Computing, Networking, Stor-
age and Analysis, SC 2012, pp. 30:1–30:11. IEEE Computer Society Press, Los
Alamitos (2012)

10. Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W., Underwood,
K.: Remote memory access programming in MPI-3. ACM Trans. Parallel Comput.
2(2), 9:1–9:26 (2015)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

12. Leibniz Supercomputing Centre, Munich, Germany: SuperMUC Petascale System.
https://www.lrz.de/services/compute/supermuc/systemdescription/

13. Luecke, G.R., Spanoyannis, S., Kraeva, M.: The performance and scalability of
SHMEM and MPI-2 one-sided routines on a SGI Origin 2000 and a Cray T3E–
600: performances. Concurr. Comput. Pract. Exper. 16(10), 1037–1060 (2004)

14. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Janapa, V., Hazelwood, R.K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, PLDI 2005, pp. 190–200.
ACM Press (2005)

15. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

16. MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0, September
2012. http://www.mpi-forum.org

17. National Energy Research Center, United States: Edison System Configuration.
https://www.nersc.gov/users/computational-systems/edison/configuration/

18. Park, C.S., Sen, K., Hargrove, P., Iancu, C.: Efficient data race detection for distrib-
uted memory parallel programs. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
51:1–51:12. ACM, New York (2011)

19. Pervez, S., Gopalakrishnan, G.C., Kirby, R.M., Thakur, R., Gropp, W.D.: Formal
verification of programs that use MPI one-sided communication. In: Mohr, B.,
Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192,
pp. 30–39. Springer, Heidelberg (2006)

20. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: a tool for
model checking MPI programs. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPopp 2008, pp. 285–
286. ACM, New York (2008)

21. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with
umpire. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing,
SC 2000. IEEE Computer Society, Washington, DC (2000)

https://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.mpi-forum.org
https://www.nersc.gov/users/computational-systems/edison/configuration/

Automatic Benchmark Profiling Through
Advanced Trace Analysis

Alexis Martin1,2,3(B) and Vania Marangozova-Martin1,2,3(B)

1 CNRS, LIG, 38000 Grenoble, France
2 University Grenoble Alpes, LIG, 38000 Grenoble, France

3 Inria, Grenoble, France
alexis.martin@inria.fr, vania.marangozova-martin@imag.fr

Abstract. Benchmarking has proven to be crucial for the investigation
of system behavior and performances. However, the choice of relevant
benchmarks still remains a challenge. To help the process of comparing
and choosing among benchmarks, we propose a solution for automatic
benchmark profiling. It computes unified profiles reflecting benchmarks’
duration, function repartition, stability, CPU efficiency, parallelization
and memory usage. It identifies the needed system information for pro-
file computation, collects it from execution traces and produces profiles
through automatic and reproducible trace analysis. The paper presents
the design, the implementation and the evaluation of the approach.

1 Introduction

System performance is a major preoccupation during system design and imple-
mentation. Even if some performance aspects may be guaranteed by design using
formal methods [1], all systems undergo a testing phase during which their exe-
cution is evaluated. The evaluation typically consists in quantifying performance
metrics or in checking behavior correction in a set of use cases. In many cases,
system performance evaluation does not only consider absolute measures for per-
formance metrics but is completed by benchmarks. The point is to use well-known
and accepted test programs to compare the target system against competitor
solutions.

Constructing a benchmark is a difficult task [2] as it needs to capture relevant
system behaviors, under realistic workloads and provide interesting performance
metrics. This is why benchmarks evolve with the maturation of a given applica-
tion domain and new benchmarks appear as new system features need to be put
forward. Developers frequently find themselves confronted with the challenge of
choosing the right benchmark among the numerous available. To do so, they
need to understand under which conditions the benchmark is applicable, what
system characteristics it tests, how its different parameters should be configured
and how to interpret the results. In most cases, the choice naturally goes to the

This work is funded by the SoC-Trace FUI project http://soc-trace.minalogic.net.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 63–74, 2016.
DOI: 10.1007/978-3-319-43659-3 5

http://soc-trace.minalogic.net

64 A. Martin and V. Marangozova-Martin

most popular benchmarks. Unfortunately, these are not suitable for all use cases
and an incorrect usage may lead to irrelevant results.

In this paper, we present our solution for automatic profiling of benchmarks.
The profiles characterize the runtime behavior of benchmarks using well defined
metrics and thus help benchmark comparison and developers’ choices. The profile
computation uses information contained in execution traces and is structured as
a deterministic trace analysis workflow. The contributions of the paper can be
summarized as follows:

– definition of unified profiles for benchmarks. We define profiles in terms of exe-
cution duration, function repartition, stability, CPU efficiency, parallelization
and memory usage. These are standard metrics and can be easily understood
and interpreted by developers.

– definition of the tools needed to compute the profiles. We structure the compu-
tation as a reproducible workflow with parallel and streaming features. The
final workflow is automatic and may be easily applied to different benchmarks
or to different configurations of the same benchmark.

– definition of the data needed for profile computation. We use system tracing
and extract useful data in application-agnostic manner. The application source
code is not needed.

– profiling of the Phoronix benchmarks. We use our solution to profile the
Phoronix Test Suite [3]. The results are obtained on different embedded and
desktop platforms.

The paper is organized as follows. Section 2 presents the design ideas behind
our solution. Section 3 discusses our implementation by considering the Phoronix
use case. Section 4 distinguishes our proposal from related work. Finally, Sect. 5
presents the conclusions and the perspectives of this work.

2 Automatic Profiling of Benchmarks

This section presents the benchmark profiles (Sect. 2.1), the needed data for their
computation (Sect. 2.2) and the computation process itself (Sect. 2.3).

2.1 Benchmark Profiles Definition

The profile considered for a benchmark is independent of its semantics and is
composed of the following features:

– Duration. This metric gives the time needed to run the benchmark. It allows
developers to estimate the time-cost of a benchmarking process and to choose
between short and long-running benchmarks.

– CPU Occupation. This metric characterizes the way a benchmark runs on
the target system’s available processors. It gives information about the CPU
usage, as well as about the benchmark’s parallelization.

Automatic Benchmark Profiling Through Advanced Trace Analysis 65

– Kernel vs User Time. This metric gives the time distribution between the
benchmark-specific (user) and kernel operations. It gives initial information
on the parts of the system that are stressed by the benchmark.

– Benchmark Type. The type of a benchmark is defined by the part of the system
which is stressed during the benchmarking process. Namely, we distinguish
between benchmarks that stress the processor (CPU-intensive), the memory
(memory-intensive), the system, the disk, the network or the graphical devices.
The motivation behind this classification is that it is application-agnostic and
may be applied to all kinds of benchmarks.

– Memory Usage. This part of the profile provides information about the mem-
ory footprint of the benchmark, as well as the memory allocation variations.

– Stability. This metric reflects the execution determinism of a benchmark,
namely the possible variations of the above metrics across multiple runs.

2.2 Initial Profile Data

The computation of the above metrics needs detailed data about the execution
of a benchmark. It needs timing information both about the benchmark’s global
execution and about its fine-grained operations. It also needs information about
the number, the type and the scheduling of the different execution events.

To collect this data, we decide to use system tracing and work with a histori-
cal log containing timestamped information about the different execution events.
To ensure minimal system intrusion, we propose to use LTTng [4,5]1 which is a
de facto standard for tracing Linux systems. Indeed, LTTng is capable of tracing
hardware counters, the kernel and user-level operations. Hardware counters are
available through the profiling perf kernel API, while kernel and user opera-
tions are traced with tracepoints. For the kernel, predefined tracepoints refer to
context switches, interruptions, system calls, memory management and I/O.

2.3 Profile Computation

The profile computation is a two-phase process which respectively analyzes the
kernel and the user-level traces.

The analysis of the kernel trace is implemented as a VisTrails [6] workflow. It
thus benefits from its reusability, efficiency and reproducibility features. Indeed,
the workflow takes as input a benchmark trace and automatically computes the
corresponding profile. The same workflow may be reused for the analysis of a
different benchmark or a different configuration of the same benchmark.

The kernel trace analysis workflow follows the standard logic where traces
are first captured and stored, and then analyzed offline (Fig. 1a). The first (top)
step of the workflow imports the kernel trace into a relational database. The
database’s generic trace format may represent not only LTTng traces but also
other formats [7]. This step also reconstructs processes’ states (not active or
active and executing a given function).

1 http://lttng.org.

http://lttng.org

66 A. Martin and V. Marangozova-Martin

(a) Kernel Trace Analysis (b) User Trace Analysis

Fig. 1. Profile computation process

The intermediary steps focus on LTTng tracing. The second step character-
izes LTTng’s tracing overhead in terms of number of traced events and execution
slowdown. The third step filters out LTTng-related events to focus only on the
benchmark’s performances. All computations are done via SQL requests.

The last steps provide execution statistics in terms of number of execution
events and execution duration, categorize the execution events to characterize
the type of the benchmark, compute the repartition between kernel and user
time, analyze the CPU occupation and explore benchmark stability.

For the user-level trace analysis, the trace data is read and streamed to
the analysis treatments that operate in parallel and on-the-fly (Fig. 1b). This
approach is motivated by the fact that the database-oriented store-and-later-
analyze approach does not scale in the case of big execution traces. Indeed,
execution traces may easily size up to several GB and their database import and
subsequent analysis is costly in terms of storage and computation time.

The user-level trace analysis comprises several modules that process the trace
in a pipeline. The first module reads directly the initial trace and transfers it
to the events filtering module. The filtering module forwards to the subsequent
modules only the information related to the benchmark processes. The memory
usage analysis module provides information about the variations in the bench-
mark’s allocated memory, about the size of the allocated chunks of memory and
about the frequency of usage of the memory allocation functions. The trace also
provides information about the hardware counters which are used to quantify
the user-level computations and the memory accesses.

3 Profiling the Phoronix Test Suite

This section details our benchmark profiling in the Phoronix Test Suite case.

3.1 The Phoronix Test Suite

The Phoronix Test Suite (PTS) [3] provides a set of benchmarks targeting differ-
ent aspects of a system. PTS is available on multiple platforms including Linux,
MacOS, Windows, Solaris and BSD.

Automatic Benchmark Profiling Through Advanced Trace Analysis 67

PTS comes with some 200 open-source test programs. It includes hardware
benchmarks typically testing battery consumption, disk performance, processor
efficiency or memory consumption. It also targets diverse environments including
OpenGL, Apache, compilers, games and many others.

PTS provides little information about benchmarks’ logic and internals. Even
if each benchmark is tagged as one of Disk, Graphics, Memory, Network,
Processor and System, supposedly to indicate which system part is tested,
there is no further information on how this tag has been decided or how exactly
the benchmark tests this system part.

The repartition of the benchmarks is highly irregular. If we consider that
PTS benchmarks having the same tag form a benchmark family, the Network
family contains only one test, while the Processor family contains around 80
tests. If, in the first case, a developer has no choice, in the second case, he/she
will need to know more about the benchmarks to choose the most relevant.

Table 1. Tagging LTTng Kernel Tracepoints

Family Events

Processor timer *; hrtimer *; itimer *; power *; irq *; softirq *;

Memory kemem *; mm *

System workqueue *; signal *; sched *; module *;rpm *; lttng *; rcu *;

regulator *; regmap *;regcache *; random *; console *;gpio *;

Graphics v4l2 *; snd *;

Disk scsi *; jbd2 *; block *;

Network udp *; rpc *; sock *; skb *; net *; netif *;napi *;

3.2 Tracing Phoronix with LTTng

By enabling all LTTng kernel tracepoints, we collect information about schedul-
ing decisions, process management (exec, clone, switch and exit function
calls) and kernel usage (syscalls). Associated with each traced event is a hard-
ware (CPU) and a software (PID) provenance context.

To analyze which parts of the target system are tested and thus deduce the
type of a benchmark, we have analyzed the types of kernel events and mapped
them to the PTS family tags. For example, the hmm page aloc and mm page free
are clearly events related to Memory-related activity, while power cpu idle and
htimer expire are related to the Processor. Table 1 gives the mapping between
events and system activity.

User-level tracing is highly dependent of the application to trace and
PTS benchmarks’ are highly heterogenous. To provide a generic tracing solu-
tion, we focus on the interface that is commonly used by all benchmarks, namely
the standard C library (libc). Redefining the LD PRELOAD environment variable
and overloading the libc functions, it is easy to obtain the information about the
memory management functions (malloc, calloc, realloc and free) needed for
the computation of benchmarks’ memory profiles.

68 A. Martin and V. Marangozova-Martin

Another aspect we are interested in is to characterize the user level behavior
of a benchmark in terms of CPU or memory-related activity. To do so, we use the
information provided by hardware performance counters. In particular we use
the Instruction counter, which gives the total number of instructions executed.
We also use the L1-dcache-loads and L1-dcache-stores counters that provide
the total number of L1 cache reads and L1 cache writes. As all data access go
through the L1 cache, the sum of those two values gives the total number of data
related instructions. To get the number of computation related instructions, we
use the difference Instruction− (L1-dcache-stores + L1-dcache-stores).

3.3 Experimental Setup

We have worked with 10 PTS bechmarks, namely compressgzip, ffmpeg,
scimark2, stream, ramspeed, idle, phpbench, pybench, network-loopback
and dbench. The set is part of the PTS recommended benchmarks which are
the most popular ones as determined by the number of downloads and available
results [8]. We have used three benchmarks from the Processor family, three from
the System family, two from Memory, one Disk and one Network benchmark.

Each benchmark is run with its default options as defined by the PTS system
except for the number of runs. Instead of 3 times we run benchmarks 32 times
to ensure statistically reliable results [9]. The score for each benchmark, which
is benchmark-specific, is computed as the mean value of the 32 obtained scores.

The experiments have been run on three different platforms which helped
validate the fact that benchmarks have similar executions, hence profiles, what-
ever the platform. We have used one UDOO board2, one Juno board3 and a
desktop machine. In the following we show results from the UDOO and the
Juno boards. The UDOO has an i.MX 6 4core ARM CPU at 1 GHz, a Cortex-
M3 coprocessor and 1 GB of RAM. It runs the multi-platform Debian kernel for
ARM armmp3.16.The Juno board has one 2core CortexA57 and one 4core Cor-
texA53 processors with 2 GB of RAM. It runs a Debian kernel (4.3.0-1-arm64).

3.4 LTTng Overhead and Benchmark Stability

Our analysis starts with an evaluation of LTTng’s perturbation of the target
system. In terms of execution duration, both for kernel and user traces, LTTng’s
overhead is negligible as it is less that 1%. The only notable exception is the case
of the phpbench benchmark slowed down by 78% by user-level tracing because
of its heavy use of memory operations.

In terms of collected events, LTTng-related events account for 10% to 26%
in kernel traces and between 100K and 200K in user traces. To prevent bias in
statistics metrics computations, these events are filtered out and ignored during
trace analysis. Finally, considering benchmarks’ results, scores from executions
with and without tracing do not differ more than 2.5%.

2 http://www.udoo.org.
3 http://www.arm.com/products/tools/development-boards/.

http://www.udoo.org
http://www.arm.com/products/tools/development-boards/

Automatic Benchmark Profiling Through Advanced Trace Analysis 69

Table 2. Information on Phoronix Benchmarks (UDOO board)

Benchmark Exec.(m) Size(GB) Idle SD User / Kernel ratio

compress-gzip 94 5.18 76 0.03
ffmpeg 221.90 62 62 0.01
scimark2 22.41 0.28 76 0.00
stream 7.00 0.35 33 0.01
ramspeed 2019.25 30.20 24 0.00
idle 1.09 0.01 99 0.60
phpbench 649.72 15.35 75 0.00
pybench 267.71 1.60 75 0.00
dbench 915.72 58.20 0 0.03
network-loopback 90.92 25.50 54 0.00

Table 2 summarizes information about the 32 runs of the considered bench-
marks. Namely we have the global execution time, the corresponding trace size,
the relative time spent in idle mode (idle stands out), the standard deviation
for benchmarks’ duration and the ratio between user and kernel time. There are
important differences, even between benchmarks belonging to the same family.
A simple recommendation to developers would be to use shorter benchmarks.

We have investigated benchmark stability over the 32 runs. Having reverse-
engineered the Phoronix launching process and identified the trace parts about
the 32 distinct runs, we evaluated the stability of the considered profile met-
rics (number of events, execution time, kernel and user time, number of cores).
Considering the benchmark execution time, for example, we have computed the
mean value, the maximum, the minimum and the standard deviation. The latter
is close to zero meaning that the benchmarks are stable. The only exception is
idle whose variation may be explained by its short execution time (6ms). The
analysis of the other parameters shows similar results.

3.5 Benchmark Types

A first simple classification of Phoronix benchmark is to consider the ratio of
kernel versus user operation. Table 2 gives this ratio and shows that there are only
4 benchmarks spending significant time in kernel mode. It is worth noting that
the ratio here is computed over benchmarks’ useful execution time and ignoring
the idle time. For idle, for example, this represents only 1% of its total execution
time. We can conclude that the others are either CPU- or memory intensive.

If we use the classification of kernel events introduced in Sect. 3.2 and use
the number of traced events, we obtain the kernel profiles shown in Fig. 2. We
can clearly see that there is no benchmark testing the graphics subsystem (no
graphics events) and that network-loopback and dbench respectively test the
network and the disk. Indeed, they are the only ones with a significant amount
of respectively Network and Disk events.

If we consider the benchmarks tagged as Memory within Phoronix, stream
has an important kernel activity and its kernel profile confirms the frequent usage

70 A. Martin and V. Marangozova-Martin

Fig. 2. Kernel Operation (UDOO board)

of memory-related functions. However, the profile of scimark2 is different and
to verify whether the benchmark is indeed memory-intensive one should consider
its execution in user mode.

In the Processor family, ffmpeg and scimark2 have the expected kernel
profiles with predominant Processor events. compress-gzip, however, shows
an important memory management activity so the profile computation should
consider the user-level information.

Our analysis of the System Phoronix family made us understand that it
includes various benchmarks testing different software systems (or layers, or
middleware) and it does not necessarily focus on the operating system level. idle
does test the operating system and quantifies the execution time of a program
doing nothing. However, phpbench and pybench, which, by the way, have similar
kernel profiles, respectively test the performances of PHP and Python code.

3.6 CPU Usage and Parallelization

An interesting aspect we have investigated is the way benchmarks use the avail-
able processors. In the case of the UDOO platform, we can see that benchmarks
have quite different parallelization schemes (Fig. 3). The idle benchmark does
not use the CPU, as expected. The pybench benchmark uses only 3 CPU out
of 4. The other benchmarks do use the 4 processors but only dbench, stream

Fig. 3. CPU Usage and Parallelization (UDOO board)

Automatic Benchmark Profiling Through Advanced Trace Analysis 71

and network-loppback are totally balanced. dbench uses the CPUs at 100%,
stream at 68% and network-loppback 45%.

Another interesting observation is that there are two couples with quite sim-
ilar CPU usage profiles. These are scimark2 and phpbench, on one hand, and
compress-gzip and ffmpeg, on the other. However scimark2 and phpbench
belong to the Processor and System family respectively. As for compress-gzip
and ffmpeg, the two being of the Processor family, it may be better to consider
the ffmpeg benchmark which runs longer but makes a more efficient usage of
the platform processors.

Table 3. Maximum Memory and Instructions repartition (Juno board)

Benchmark Memory (KB) Instructions repartition (Compute / Memory)

compress-gzip 138
ffmpeg 5 210
scimark2 16 779
stream 9
ramspeed 3 456 108
idle 2
phpbench 3 225
pybench 1 827
dbench 225 608
network-loopback 1 123

3.7 Memory Usage Profile

User-level tracing yields interesting information about the differences between
benchmarks. The maximum memory allocated by benchmarks, for example, is
quite varying (Table 3). Indeed, only ramspeed with 3.45 GB uses almost all vir-
tual memory available on the UDOO board (4 s). stream and idle are memory
light-weight as they consume respectively 9 KB and 2 KB.

The results from profiling of user-level operations and classifying them into
computational and memory-related are given in the third row of Table 3. These
confirm that the Memory benchmarks, ramspeed and stream do use intensively
the memory as expected. The other benchmarks which reveal to be memory-
intensive are the System ones we have selected, namely phpbench and pybench.
As for idle and network-loopback, these are not representative as the time
spend in user mode is very short (0.6% of the total execution time for idle and
5% for network-loopback).

Figure 4 gives the evolution of the memory usage of benchmarks over time
and shows that there are various behaviors.

4 Related Work

Current benchmark-oriented efforts [3,10,11] focus on the problems of providing
a set of benchmarks which is to be complete, portable and easy to use. Indeed, the

72 A. Martin and V. Marangozova-Martin

(a) dbench (b) ffmpeg (c) pybench

(d) ramspeed (e) scimark2 (f) stream

Fig. 4. Memory usage (bytes) over time (ns). (UDOO board)

goal is to provide benchmarks that cover different performance aspects, support
different platforms and can be automatically downloaded, installed and executed.
However, the classification of benchmarks is ad hoc and there is no detailed
information about their functionality. Our proposal is a step forward as it allows
benchmark comparison through automatic profiling.

Our work is motivated by the need of identifying relevant and representative
benchmarks and is thus related to [12]. The authors use simulation to obtain
source-code-related statistics which are further treated with cluster-based meth-
ods to identify a minimal representative benchmark set. Our solution is com-
plementary as it considers real-world settings, applies to binary programs and,
most of all, automates the analysis. It can benefit from the learning techniques
to identify the representative set of Phoronix benchmarks.

Our proposal can be seen as a profiling tool for benchmarks. However, exist-
ing profiling tools [13–16] typically provide detailed low-level information on a
particular system aspect. Moreover, they are system dependent. Our proposal
is applicable to all types of benchmarks, on different platforms and provides a
macroscopic vision of their behavior.

The major aspects of our profile computation are trace analysis and workflow
management. Concerning trace analysis, most existing tools are system and for-
mat specific [17,18] and limit themselves to time-chart visualizations and basic
statistics. In our work, trace analysis is brought to a higher level of abstraction.
It is based on generic data representation of traces and thus may be applied
to execution traces (hence benchmarks) from different systems. It is not orga-
nized as a set of predefined and thus limited treatments but may be configured
and enriched to better respond to the user needs. Finally, its structuration in

Automatic Benchmark Profiling Through Advanced Trace Analysis 73

terms of a deterministic workflow allows for automation and reproducibility of
the analysis process.

As for workflow-oriented tools [19,20], they focus on formal specification,
automation, optimisation and reproducibility of computations aspects. Generic
trace analysis and especially the problem of huge traces have not been considered.

5 Conclusion and Ongoing Work

We have presented in this paper a workflow-based tool for automatic profiling
of benchmarks. The result is a unified profile which characterizes a benchmark,
allows the comparison among benchmarks and thus facilitates the choices of a
system performance analyst. We have illustrated our approach with the Phoronix
Test Suite and have experimented with embedded and desktop Linux-based
platforms. We have successfully produced the profiles for several benchmarks
exhibiting their different characteristics. Our experimentation puts forward the
fact that the initially provided description is far from sufficient for understanding
the way benchmarks test the target system.

In our work we have taken advantage of workflows’ useful features such as
automation, result caching and reproducibility. However, most workflow systems
do not properly address the data management issues when it comes to manip-
ulating big data sets. In this regard, we have shown that workflow tools should
provide for pipelining, streaming and parallel computations. An ongoing collab-
oration with the VisTrails team brings these features to the VisTrails tool.

The benchmark profiles we provide are easy to compute, to understand, and
to compare. All metrics observed, tools used, and profiles drawn, do not depend
on any specifics of the benchmarks.

A long term research objective would be to provide generic means for reflect-
ing the benchmark specifics into the profile and thus help even more the perfor-
mance evaluation work of an analysis.

References

1. Almeida, J.B., Frade, M.J., Pinto, J.S., de Sousa, S.M.: Rigorous Software Devel-
opment: An Introduction to Program Verification. Springer, London (2011)

2. A Practitioner’s Guide. Cambridge University Press, New York (2000)
3. Phoronix Test Suite. http://www.phoronix-test-suite.com/
4. Desnoyers, M.: Low-Impact Operating System Tracing. PhD thesis (2009)
5. Chen, K.Y., Chang, Y.H., Liao, P.S., Yew, P.C., Cheng, S.W., Chen, T.F.: Selective

Profiling for OS scalability study on multicore systems. In: IEEE 6th International
Conference on Service-Oriented Computing and Applications, pp. 174–181 (2013)

6. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C., Silva, C.T., Vo, H.T.: Vis-
Trails: visualization meets data management. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pp. 745–747 (2006)

7. Pagano, G., et al.: Trace management and analysis for embedded systems. In: IEEE
7th International Symposium on Embedded Multicore Socs, September 2013

http://www.phoronix-test-suite.com/

74 A. Martin and V. Marangozova-Martin

8. Phoronix Test Suite, User Manual. http://www.phoronix-test-suite.com/
documentation/

9. Jain, R.: The Art of Computer Systems Performance Analysis (1991)
10. Industry-Standard Benchmarks for Embedded Systems. http://www.eembc.org/

benchmark/products.php/
11. Future Benchmarks and Performance Tests. http://www.futuremark.com/
12. Joshi, A., Phansalkar, A., Eeckhout, L., John, L.K.: Measuring benchmark similar-

ity using inherent program characteristics. IEEE Trans. Comput. 55(6), 769–782
(2006)

13. Yamamoto, M., Ono, M., Nakashima, K., Hirai, A.: Unified performance profil-
ing of an entire virtualized environment. In: Second International Symposium on
Computing and Networking (CANDAR), pp. 106–115, December 2014

14. Gouigoux, J.-P.: Practical Performance Profiling: Improving the Efficiency of .NET
Code. Red gate books, United Kingdom (2012)

15. Seward, J., Nethercote, N., Weidendorfer, J.: Valgrind 3.3 - Advanced Debugging
and Profiling for GNU/Linux Applications. Network Theory Ltd., Bristol (2008)

16. Janjusic, T., Kartsaklis, C.: Glprof: a Gprof inspired, callgraph-oriented per-object
disseminating memory access multi-cache profiler. In: Procedia Computer Science,
International Conference on Computational Science, ICCS Computational Science
at the Gates of Nature, vol. 51, pp. 1363–1372 (2015)

17. Knüpfer, A., et al.: Score-p: a joint performance measurement run-time infrastruc-
ture for periscope, scalasca, tau, and vampir. In: Tools for High Performance Com-
puting 2011. ZIH, Dresden, pp. 79–91, September 2011

18. Prada-Rojas, C., Santana, M., De-Paoli, S., Raynaud, X.: Summarizing embedded
execution traces through a compact view. In: Conference on System Software, SoC
and Silicon Debug S4D (2010)

19. Cohen-Boulakia, S., Leser, U.: Search, adapt and reuse: the future of scientific
workflows. SIGMOD Records 40(2), 1187–1189 (2011)

20. Qin, J., Fahringer, T.: Scientific Workflows, Programming, Optimization, and Syn-
thesis with ASKALON and AWDL. Springer, Heidelberg (2012). ISBN 978-3-642-
30714-0

http://www.phoronix-test-suite.com/documentation/
http://www.phoronix-test-suite.com/documentation/
http://www.eembc.org/benchmark/products.php/
http://www.eembc.org/benchmark/products.php/
http://www.futuremark.com/

Performance and Power Modeling,
Prediction and Evaluation

Addressing Materials Science Challenges
Using GPU-accelerated POWER8 Nodes

Paul F. Baumeister1(B), Marcel Bornemann2, Markus Bühler3,
Thorsten Hater1, Benjamin Krill3, Dirk Pleiter1, and Rudolf Zeller2

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich 52425, Germany
p.baumeister@fz-juelich.de

2 Institute for Advanced Simulation, Forschungszentrum Jülich,
Jülich 52425, Germany

3 IBM Germany Research and Development, Böblingen 71032, Germany

Abstract. Materials research is an area that is expected to strongly
benefit from the growing performance capabilities of future supercom-
puters towards exascale. Density functional theory (DFT) has become
one of the most important methods for numerical materials science. In
this paper we present results of a performance model based analysis of
a particular, scalable DFT-based application on GPU-accelerated com-
pute nodes with POWER8 processors. These technologies are part of
a future roadmap for pre-exascale architectures. With power consump-
tion becoming a major design constraint, we also determine the energy
required for executing the most performance critical kernel.

1 Introduction

Density Functional Theory (DFT) is a key method for addressing challenges in
materials science that require an accurate description of the electronic proper-
ties of a material. The complexity of calculating the full wave function of the
many-electron system is avoided by considering a single-particle picture with an
effective potential [15], giving rise to the Kohn-Sham equation ĤΨ = EΨ. The
solutions can take the form of either a set of eigenstates of the Hamiltonian Ĥ
as realised in wave function based implementations [3,13,21] or the Green func-
tion Ĝ(E) = (E − Ĥ)−1 as proposed by Korringa, Kohn and Rostoker (KKR)
[5,14,16]. Here, the energy E is continued into the complex plane with a non-
vanishing imaginary part in order to prevent the inversion of a singular operator.
A suitable representation allows for casting the problem into a matrix inversion
maintaining high accuracy via a full-potential description. Despite, the matrix
dimension only grows as 16Natom assuming a truncation of angular momenta
beyond � = 3. The screened KKR method allows for finding a short ranged
formulation and, hence, the equivalent operator Ĝ becomes block-sparse [26].
In large systems, where the number of atoms Natom � 1000, the Green func-
tion formulation can be approximated by systematically truncating long-ranged
interactions between well-separated atoms. This reduces the overall complex-
ity of the method from cubic to linear and large systems with 100, 000 atoms
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 77–89, 2016.
DOI: 10.1007/978-3-319-43659-3 6

78 P.F. Baumeister et al.

and more become thus feasible. KKRnano is a DFT application implementing the
original cubic method as well as the linear-scaling approach [23,27]. It has been
proven to scale to massively-parallel architectures leveraging MPI and OpenMP
programming models. Central to its performance is an iterative solver for the
linear system and the application of the block-sparse operator.

Massively-parallel computing resources are required to facilitate high
throughput for medium-sized problems as well as to address large-scale chal-
lenges. The former will, e.g., be required to scan parameter spaces and evalu-
ate high-dimensional phase diagrams. The latter involves problems where large
Natom are required, e.g. when effects that occur at the length-scale of several
nanometers need to be understood and investigated. Ideal atomic geometries can
be analysed using a workstation to run a DFT code that exploits symmetries.
In contrast, realistic samples of a material are hardly ever perfect crystals with
full translational symmetry or isolated molecules in vacuum. Addressing these
challenges requires dealing with broken symmetries, i.e. crystals with impuri-
ties, random alloys or amorphous materials and thus result in calculations with
Natom � 10, 000.

Due to the end of Dennard scaling the level of parallelism in HPC systems will
become even more extreme to offer an increase in the number of floating-point
operations per time unit. In order to minimise power consumption, low-clocked,
but highly parallel compute devices like GPUs have become increasingly popular.
Operating at clock speeds below 1 GHz means that more than 108 floating-point
operations per clock cycle are required to reach a pre-exascale performance level
of about 100 PFlop/s. In case of KKRnano the exploitable parallelism scales with
Natom, enabling exploitation of such massively-parallel architectures.

This article makes the following contributions:

1. We present a performance analysis for highly optimised implementations of
the main kernel of the application KKRnano on both, IBM POWER8 proces-
sors and NVIDIA K40 GPUs.

2. To enable analysis of performance as well as scalability properties a simple
performance model is developed. We use this model to explore scalability
of the application for (not yet existing) large-scale systems based on this
processor and accelerator technologies.

3. Finally, we evaluate energy-to-solution of our implementation with and with-
out GPUs based on power consumption measurements of the system.

In this section and Sect. 2 we provide background on the application domain
and relevant technology. After presenting an analysis of the application’s per-
formance characteristics in Sect. 3, we outline the main features of our imple-
mentation and provide a performance analysis for the kernel on POWER8 and
the GPU in Sect. 4 and 5, respectively. In Sect. 6 we present our performance
model and use it to explore the scalability of the application. We continue with
a power consumption analysis in Sect. 7. Before concluding in Sect. 9, we provide
an overview on related work in Sect. 8.

Addressing Materials Science Challenges 79

2 GPU-accelerated POWER Architectures

We evaluate application performance on commercially available POWER8 824
47 L servers [8], comprising two POWER8 sockets, 256 GiByte of memory and
one NVIDIA K40m GPU per socket.

The POWER8 processors in the considered system are dual-chip modules,
where each module comprises 5 cores, i.e. there are 20 cores per node. Each
core offers two sets of the following instruction pipelines: fixed point, floating-
point, pure load (LU) and a load-store unit (LSU). Instructions are processed
out-of-order to increase instruction level parallelism. The cores support 8-way
Simultaneous Multithreading. For the HPC workloads, as considered here, a
few details are of special interest. The floating point unit, called the Vector
Scalar Unit (VSU), supports two- or four-way SIMD for single-precision and two-
way SIMD for double-precision floating-point instructions. Fused multiply-add
instructions are provided. In case of floating-point instructions, the operands
have to be present in VSU registers; load to these are processed in the LU
exclusively. Further, stores from VSU are issued both to the LSU and the VSU
internally.

Per cycle up to eight double-precision floating-point operations can be per-
formed in the form of two fused multiply-add instructions on 128 bit vector
registers, providing 29 GFlop/s per core or 590 GFlop/s per node at the peak
clock of 3.69 GHz. Each core has a private L1 data cache of 64 kByte, a private
L2 cache of 512 kiByte and a segment of 8 MiByte associated to it in the shared
L3 cache (total 80 MiByte). In concert with a set of external memory buffers
– called the Centaur chip – the POWER8 CPU provides a maximum read and
write bandwidth of 256 GByte/s and 128 GByte/s per socket, respectively. The
memory system can provide up to two 16 Byte loads and one 16 Byte store per
cycle at L1.

Each of the POWER8 sockets is connected to an NVIDIA K40m GPU via an
x16 PCIe GEN3 link. The K40m is based on GK110 GPUs of the Kepler genera-
tion running at 745 MHz. With a total of 15 streaming multi-processors it has a
peak performance of 1430 GFlop/s. Each GPU can either write or read to or from
its 12 GiByte of GDDR5 memory with a nominal bandwidth of 288 GByte/s.

Both compute devices, the POWER8 processor as well as the K40m
GPU, thus offer significantly different hardware performance capabilities. The
POWER8 processor features very high memory bandwidth at moderate floating-
point operations throughput and operates at relatively high clock speed. In con-
strast, the K40m has a much higher concurrency to provide very high floating-
point operation throughput at moderate clock speed and a memory bandwidth
that is relatively small compared to its compute capabilities.

3 Application Performance Characteristics

We focus on a single iteration of the KKR algorithm, comprising the solution
of a linear system locally and, afterwards, setup of a new system for the next

80 P.F. Baumeister et al.

iteration. Solving the local problem is approached using a variant of the Quasi
Minimal Residual (QMR) method, an iterative solver [10]. In the case at hand,
simultaneous solutions of a set of right-hand sides are sought. Given Λ and ω we
have the following problem to solve

Λγ = ω (1)

where the elements Λij are operators describing the interaction between an atom
i with its direct neighbours j. We fix the number of columns to Ncl = 13 entries
from here on, which corresponds to a close packed lattice structure (Ncl=13
for hcp or fcc, while for bcc, Ncl=15 is a good choice). The number of rows
corresponds to the number of atoms in a truncation cluster, we primarily use
Ntr = 1000. The elements of Λ are small dense square matrices over C. The size
of these entries b corresponds to the order to which the expansion in the angular
momentum is truncated, we pick the current default, namely b = 16. Since Λ is
sparse, the operator is compressed in memory by dropping the zero elements in
each row and carrying the appropriate index list. The runtime of the solver is
dominated by the application of the operator Λ, which consumes around 90 % of
the solver’s runtime. KKRnano operates on double-precision complex numbers so
16 Byte are assumed per number and 8 Flop are required to perform a complex
fused multiply-accumulate operation.

The parallelisation strategy of KKRnano foresees one MPI rank per atom,
i.e. the number of tasks per node is given by Natom/Nnode, where Natom and
Nnode are the number of atoms and nodes, respectively. Each task has to solve
Eq. (1) using the iterative solver which does not require any inter-node commu-
nication. After solving the linear system, the operator Λ needs to be updated,
which involves communication with Ntr other tasks. We analyse the relevant
kernel using an information exchange approach [7,19], which models the hard-
ware as a graph of data stores connected by edges representing communication
links or processing pipelines. We choose a simple model for the processor con-
sisting of two data stores, the external main memory and the on-chip memory,
representing register file and caches.

The performance of the overall kernel is driven by accumulating dense matrix
products when applying the operator Λ. In the following we assume that the
solver always performs a fixed number of iterations Niter with two applications
of Λ per iteration. At node level we therefore can characterise the kernel by the
following information exchange functions:

Ifp = 2Niter · Natom

Nnode
· NtrNcl · b3 · 8Flop, (2)

Ild = 2Niter · Natom

Nnode
· NtrNcl · b2 · 16Byte, (3)

Ist = 2Niter · Natom

Nnode
· Ncl · b2 · 16Byte, (4)

where Ifp is the number of floating-point operations required to solve Eq. (1) for
all atoms on one node. Ild and Ist account for the input and output operands

Addressing Materials Science Challenges 81

that need to be loaded and stored, respectively. We furthermore assume that
all other numerical subtasks - which scale as Ntr · b2 - within the solver can
be ignored. No assumptions are made about exploitation of data reuse outside
the complex multiplications. The information exchange functions can be used to
compute the arithmetic intensity

AI =
Ifp

Ist + Ild

Ncl�1� b

4
Flop
Byte

b=16= 4
Flop
Byte

. (5)

Following the roofline performance model approach [25] we thus expect
the maximum attainable performance of the application to be limited by
the throughput of double-precision floating-point operations on the POWER8
processors, while on the K40 GPU the nominal memory bandwidth limits the
attainable performance to 80 % of the nominal floating-point performance. Our
previous investigations showed memory bandwidths on the CPU of more than
280 GByte/s [2], while on the K40 210 GByte/s (ECC active) were achievable,
resulting in the same expected performance for the host and a reduced expecta-
tion of 840 GFlop/s on the K40m.

When the solver is executed on the GPU, additional data transfers are
needed. Before launching the solver, Λ and ω need to be transfered from host to
device. After completion the result vector γ has to be transfered from device to
host. Both vectors are stored as dense arrays of Ntr blocks. Thus, we write for
this sub-task:

Iacc =
Natom

Nnode
(2Ntr + Ncl Ntr) b2 16Byte. (6)

The full vector is required to be present on the device, if even the operator appli-
cation might only utilise a subset, consequently, the full transfer is accounted
for.

After solving Eq. (1), Λ is updated. In the worst case all Ntr pairing atoms are
located on other nodes, i.e. all information needs to be communicated over the
network. This information exchange is captured by by the information exchange
function

Inet =
Natom

Nnode
Ncl Ntr b2 16Byte. (7)

4 Application Performance Analysis on Processor

To simplify adaption of the code, we extracted the performance critical part of
the code in a benchmark, i.e. the 2Niter applications of operator Λ. While the
original code is implemented in Fortran, in case of the benchmark we choose
C++. The benchmark retains only the block sparse operator application from
the original solver, however, this part is reproduced in full. The omission is
limited to parts scaling as b2Ntr in arithmetic operations, compared to b3NtrNcl

for the operator. The reduction to this core can increase the effectiveness of data
caches, due to the smaller working set size and higher temporal locality.

Λ is stored in compressed block sparse row format. The kernel traverses the
per-row index list π to accumulate the required blocks of the result. Multiple rows

82 P.F. Baumeister et al.

are processed in parallel using OpenMP threads. We compute the result vector
in terms of its individual blocks, each corresponding to a row of the operator
Λ. Each row i is processed by one thread which utilises the indices π(i, j) to
compute ωi ← Λijγπ(i,j). The core of the algorithm is the dense matrix product
in Cb×b.

Based on the analysis presented in Sect. 3 we expect the performance of
the benchmark to be limited by the floating-point throughput. To maximize
this throughput it is necessary to exploit 2-way SIMD. These expectations are
confirmed by our observations. To enable the compiler to use SIMD instructions
we changed the data layout. While the original code follows an array-of-structure
design with arrays of complex numbers, the benchmark employs a structure-of-
array separating real and imaginary parts numbers into different arrays.

In Table 1 we show a performance counter analysis for the full solver taken
from the original code as well as our optimised benchmark. The parameters of
both runs have been chosen such that the same number of inner matrix-matrix
multiplications is performed. More specifically, the run was for a single atom
on a single node, i.e. Natom = Nnode = 1. To obtain stable numbers, a single
pinned core per atom was utilised and measured. Furthermore, we have set
Ntr = 1000, Ncl = 13, b = 16 and Niter = 1000. As not all performance counters
can be measured during a single run, Table 1 combines the results obtained from
multiple runs. For each performance counter we have repeated the same run 10
times and use only the minimum value for our analysis.

Table 1. Selected performance counters for the full solver mini-application and the
performance optimized benchmark, which mimics the behaviour of this solver. The
parameters of these runs are discussed in the text. Cycles in which the core is waiting
for completion of a group of finished instructions are marked as completing, those
in which another thread blocked the completion port are marked thread. Stores are
counted twice by the hardware counters, as they are issued to both the LSU and VSU.

kramhcneBrevloSkramhcneBrevloS

Cycles (109) 850 188 Instructions (109) 1718 487
Running 332 116 Branch 11 7
Completing 118 28 Integer 30 88
Thread 16 4 Arithmetic 943 232
Stalled 378 38 Scalar 656 0

VSU 366 24 Vector 7 217
LSU 10 14 (Stores) 280 15

Transfer (GByte) 211 213 Memory 1015 180

Using Eq. (2) we find Ifp = 852 GFlop. The number of floating-point instruc-
tions would be minimized if the application could be mapped to 2-way SIMD
fused multiply-add instructions, i.e. Nvfp = Ifp/4. In practice, we find an over-
head of less than 1 % in the number of arithmetic vector instructions. For the

Addressing Materials Science Challenges 83

original code we observe no vector instructions and the number of scalar arith-
metic instructions Nfp � Ifp/2 due to a lack of fused multiply-add operations,
which is confirmed by an inspection of the assembly. Over the runtime of the
benchmark a total volume of 211 GByte is loaded and stored, while the full
solver transfers 213 GByte. Note that both numbers are slightly lower than the
estimated value from Eqs. 3 and 4, which we attribute to the large L3 cache,
which could in theory hold one full problem set. Thus, the ratio of required
floating point operations to actually transferred bytes is larger than four. The
two programs utilise 1.3 GByte/s and 4.6 GByte/s of memory bandwidth.

Assuming that memory instructions and arithmetic instructions can be per-
fectly overlapped and distributed over at least 2 pipelines, we would expect
that the minimum time-to-solution in units of clock cycles is equal to Nvfp/2 �
Ifp/8 = 106 · 109. In practice, we observe that due to a significant number
of stall cycles the number of clock cycles spent in the solver Δtsolver to be
almost 80 % larger. In summary, using a benchmark version of the applica-
tion kernel, we are able to reach on a single core a floating-point efficiency
εfp = Ifp/(8 · Δtsolver) = 56%.

5 Kernel Acceleration on GPU

We investigate the viability of GPU acceleration for KKRnano by porting the
complete benchmark version of the solver. For the GPU implementation CUDA
is used. The porting efforts are significantly reduced as the block sparse matrix-
vector multiplication can be implemented using the cuSPARSE library.

With GPUs featuring extreme levels of parallelism, the obtained performance
can in practice strongly depend on the level of parallelism of the problem solved
on the GPU. Additionally, kernel launch times can have a non negligible effect. In
Fig. 1 we therefore explore both kernel execution time as well as performance as a
function of Ntr (the other parameters are the same as in the previous section). We
observe that the performance saturates for Ntr � 1000. Maximum performance is
obtained for Ntr = 3000. From Eq. (2) we obtain Ifp = 2.55 TFlop, 8 s to execute
on a single K40. This corresponds to a performance of about 320 GFlop/s, which
is far below the maximum attainable performance as expected from the roofline
model. We analysed the resulting performance using GPU hardware counters and
the NVIDIA profiling tools and observed the bandwidth to the shared memory
being almost fully used. This could indicate that the bandwidth to the shared
memory in the cuSPARSE implementation is the limiter and not the external
memory bandwidth, as it was expected from the analysis in Sect. 3.

In order to improve the resource utilisation on the GPU, we investigated
how performance changes when multiple tasks running on the CPU use the
GPU simultaneous for solving Eq. (1). This is possible using the multi-process
service mps. The performance gain can be quantified by a weak-scaling efficiency
εpar(n) = nΔts/Δtp(n), where Δts is the serial solver execution time for a single
solver instance without mps and Δtp(n) is the time required for n concurrent
calls of the solver. The results for 1 ≤ n ≤ 10 are shown in Fig. 1. The upper

84 P.F. Baumeister et al.

Fig. 1. Benchmark performance results obtained using Niter = 1000 using a single
(left) and multiple tasks for Ntr = 1000 (right) on a single K40m.

limit corresponds to one task per core of the processor, to which the GPU is
attached. A gain of 17 % in efficiency is observed.

6 Performance Model Analysis

To enable an assessment of the performance of KKRnano on not yet existing
larger systems based on GPU-accelerated nodes with POWER8 processors, we
employ a performance modeling approach used in [4], which combines the infor-
mation exchange analysis with semi-empirical performance analysis [12]. For this
we assume that time-to-solution depends linearly on the information exchange.
Furthermore, we assume that arithmetic operations and memory transfers can be
perfectly overlapped. In case the solver is executed on the POWER8 processor,
the performance can be expected to be limited by the floating-point operation
throughput and we thus make the following ansatz:

ΔtCPU
solver = aCPU

0 + aCPU
1,fp Ifp, (8)

where Ifp is defined in Eq. (2). The coefficients aCPU
0 , aCPU

1,fp are determined by
fitting Eq. (8) to timing measurements for different application parameters.

If the solver is executed on the GPU, we assume performance to be limited
by memory bandwidth. Additionally we have to take the time into account that
is required to data transfer from host to device and vice versa. This results in
a slightly more complex ansatz using Ild, Ist and Iacc from Eq. (3), (4) and (6),
respectively:

ΔtGPU
solver = aGPU

0 + aGPU
1,mem(Ild + Ist) + aGPU

1,accIacc. (9)

To determine the model parameters we have performed multiple runs with fixed
Natom = 20, Nnode = 1, Ncl = 13, b = 16, and different Niter as well as Ntr.
The runs are repeated multiple times for the same parameter setting and the
minimal value is used. Error bounds are established by k-fold cross-validation
with k = 100. Due to the size of the problem, the constant terms turned out to
be insignificant and have been ignored.

Addressing Materials Science Challenges 85

The final contribution to our model is the update of the operator Λ, which
requires a local computation of one row (neglected) and assembling the remote
rows into the full operator. Applying the same approach as before we have

Δtupd = c0,net + c1,netInet, (10)

where Inet is defined in Eq. (7). To determine the coefficients c0,net and c1,net

we used the OSU micro-benchmarks [1] to measure the bandwidth between two
POWER8 systems interconnected via a Mellanox EDR Infiniband network. Since
for realistic parameter settings the effect of the constants aCPU

0 , aGPU
0 and c0

is negligible, we focus on the linear term only. In Fig. 2 we show the inverse
values for the coefficients of the linear terms to facilitate comparison with the
bandwidth and throughput parameters of the hardware.

1/aCPU
1 (364.8 ± 0.06)GFlop/s 1/aGPU

1 (152.1 ± 0.002)GByte/s
1/bacc1 (16.2 ± 0.02)GByte/s 1/c1,net (22.7 ± 0.1)GByte/s

Fig. 2. Data points used to determine the model parameters for CPU (left) and GPU
(right) and predictions for Niter = 200, 600, 1000. The parameters are tabulated below
with their respective errors.

The model allows us to assess whether KKRnano, which scales with good
efficiency on a 28-rack Blue Gene/Q system, could scale on a hypothetical sys-
tem comprising nodes that have a similar architecture as the one considered in
this paper. We would need at least 2100 nodes to reach a similar peak perfor-
mance. For an efficient utilization of the resources of a single node, we assume
Natom/Nnode ≥ 20, i.e. Natom ≥ 42000 for Nnode = 2100. This matches the tar-
get problem size of this application area. From the performance model we find
that Δtupd � Δtsolver, even were we to assume much smaller values of 1/c1,net

due to network congestion.

86 P.F. Baumeister et al.

7 Energy Efficiency Analysis

Let us finally consider the energy-to-solution for a single execution of the solver
on the considered architecture. The POWER8 processor provides an on-chip con-
troller (OCC) to measure a set of sensors in the hardware. The data is available out-
of-band via a service processor and can be read out by the Amester tool [9,17].
The measurement granularity depends on the number of sensors, each requires an
additional latency of typically 200 ms. The data is, therefore, gathered in irregular
intervals. We resample it to a set of regular 1 s measurement points. The incoming
data represents the current power consumption of the component corresponding
to the sensor. To calculate the overall energy consumption, we use thresholding
of the data to detect active phases, sum the power consumption measurements Pi

and scale with the measurement interval Δt and the number of detected solver
executions. We do not report all available measurements, only the total of mem-
ory, CPU and GPU values are provided. The sensor for the 12 V domain includes
different I/O devices, including part of the power consumed by the GPUs. We
attribute the values of these sensors fully to the GPU’s power consumption, which
leads to a slight overestimate of the actual value. The power consumed by the cool-
ing fans shows significant variation and no distinguishable correlation with the
workload. The signal was replaced by its average. We utilise a setup close to the

Energy (kJ) Disk IO Memory GPU Fan CPU Total

Power8 1.78 2.90 11.07 1.25 4.09 21.61 42.70
K40 1.33 4.79 7.52 7.19 3.11 9.2 33.13

Fig. 3. Power consumption of the linear solver, CPU (left) and GPU (right). Below, we
report the averaged total energy to solution for the corresponding benchmarks. (Color
figure online)

Addressing Materials Science Challenges 87

configuration used in production runs of KKRnano, that is Ncl = 13, Ntr = 1000,
b = 16 and Niter = 1000 iterations inside the solver. The number of iteration is
chosen as the maximum number allowed in KKRnano, on average numbers are typ-
ically O(100). Per core one instance of the problem is solved, for a total of 20; from
prior analysis we have the requirement of 17 TFlop. The power consumption over
multiple invocations of the CPU and GPU implementations of solver is shown in
Fig. 3. Only about 20 W of additional power is utilised by the memory system, as
the solver is not very memory intensive. We report energy metrics of the full node
in Fig. 3 for the solution of one instance of the problem per socket or GPU respec-
tively. Power consumption is averaged over multiple invocations of the solver. Since
power required for an idle system is quite high, much of the total energy required
for the solution is explained by the base cost. Thus, this metric likely favors fast
implementations of the solver.

8 Related Work

Recent efforts to accelerate DFT methods leveraging GPU-based systems can
be found in literature. GPU acceleration has been achieved for wave function
based DFT methods, e.g. plane wave methods, wavelets, grid and local orbitals
[11,20,22,24]. Closer to this work are projects in the class of linear-scaling meth-
ods like SIESTA or CP2K [6,21]. As node architectures based on POWER8
processors are relatively new and, in particular, the GPU-accelerated versions
not yet widely available, only few performance investigations related to scientific
applications have been published. Applications based on the Lattice Boltzmann
method, a brain simulator as well as an application based on the Finite Differ-
ence Time Domain method are considered [2,4]. The authors of [18] focus on
server workloads as well as big data, analytics, and cloud workloads.

9 Conclusions and Future Work

In this paper we presented results for a highly scalable materials science appli-
cation based on the Density Functional Theory (DFT) method. Typically, most
of the computational resources are spent in an iterative solver. We could demon-
strate that for this kernel a high or at least good floating-point efficiency could
be obtained on the POWER8 processors and K40m GPUs, respectively.

To explore the scalability properties of this application on future systems
based on GPU-accelerated compute nodes with POWER processors, which could
provide a performance of O(10) PFlop/s, we designed a simple performance
model. From this we could conclude that assuming a network technology that is
state-of-the-art as of today a good scalability is achievable. An analysis of the
energy-to-solution for the relevant kernel revealed that, although much higher
floating-point operation efficiency can be obtained on the POWER8 processors,
the energy-to-solution is significantly smaller when using GPUs.

88 P.F. Baumeister et al.

This work leaves multiple opportunities for future work. First, the model
analysis suggests that a specialised implementation of the sparse operator appli-
cation GPU kernel could outperform the cuSPARSE library for this concrete
problem. Second, with the upcoming availability of large scale POWER8 based
systems employing a high performance interconnect, we will investigate the valid-
ity of the developed models. Finally, the application might benefit from a flexible
distribution of work among processor and accelerator, as the application kernel
runs efficiently on both.

Acknowledgements. This work was done in the framework of the POWER Accel-
eration and Design Center. We acknowledge the support from Charles Lefurgy (IBM)
and Willi Homberg (JSC) on performing power consumption measurements using
Amester. Furthermore, we thank Jiri Kraus (NVIDIA) for many helpful discussions.

References

1. OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/
2. Adinetz, A.V., Baumeister, P.F., Böttiger, H., Hater, T., Maurer, T., Pleiter, D.,

Schenck, W., Schifano, S.F.: Performance evaluation of scientific applications on
POWER8. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS 2014.
LNCS, vol. 8966, pp. 24–45. Springer, Heidelberg (2015)

3. Baumeister, P.F.: Real-Space Finite-Difference PAW Method for Large-Scale
Applications on Massively Parallel Computers. Ph.D. thesis, RWTH Aachen (2012)

4. Baumeister, P.F., Hater, T., Kraus, J., Pleiter, D., Wahl, P.: A performance model
for GPU-accelerated FDTD applications. In: 2015 IEEE 22nd International Con-
ference on High Performance Computing (HiPC), pp. 185–193 (2015)

5. Beeby, J.: The density of electrons in a perfect or imperfect lattice. In: Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 302. The Royal Society (1967)

6. Ben, M.D., Hutter, J., VandeVondele, J.: Second-order Møller-Plesset perturbation
theory in the condensed phase. J. Chem. Theory. Comput. 8(11), 4177–4188 (2012)

7. Bilardi, G., Pietracaprina, A., Pucci, G., Schifano, F., Tripiccione, R.: The poten-
tial of on-chip multiprocessing for QCD machines. In: Bader, D.A., Parashar, M.,
Sridhar, V., Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 386–397.
Springer, Heidelberg (2005)

8. Caldeira, A.B., et al.: IBM Power System S824L technical overview and introduc-
tion (2014). redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/redp5139.html

9. Floyd, M., et al.: Introducing the adaptive energy management features of the
POWER7 chip. IEEE Micro 31(2), 60–75 (2011)

10. Freund, R.W., Nachtigal, N.: QMR: a quasi-minimal residual method for non-
Hermitian linear systems. Numer. Math. 60(1), 315–339 (1991)

11. Hakala, S., Havu, V., Enkovaara, J., Nieminen, R.: Parallel electronic structure
calculations using multiple graphics processing units (GPUs). In: Manninen, P.,
Öster, P. (eds.) PARA. LNCS, vol. 7782, pp. 63–76. Springer, Heidelberg (2013)

12. Hoefler, T., Gropp, W., Kramer, W., Snir, M.: Performance modeling for system-
atic performance tuning. In: State of the Practice Reports. SC 2011. ACM (2011)

13. Hutter, J., Iannuzzi, M., Schiffmann, F., VandeVondele, J.: CP2K: atomistic sim-
ulations of condensed matter systems. Comp. Mol. Sci. 4(1), 15–25 (2014)

http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/redp5139.html

Addressing Materials Science Challenges 89

14. Kohn, W., Rostoker, N.: Solution of the Schrödinger equation in periodic lattices
with an application to metallic Lithium. Phys. Rev. 94, 1111–1120 (1954)

15. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140, A1133–A1138 (1965)

16. Korringa, J.: On the calculation of the energy of a Bloch wave in a metal. Physica
13(6), 392–400 (1947)

17. Lefurgy, C., Wang, X., Ware, M.: Server-level power control. In: Fourth Interna-
tional Conference on Autonomic Computing, 2007. ICAC 2007, pp. 4–4, June 2007

18. Mericas, A.E.A.: IBM POWER8 performance features and evaluation. IBM J. Res.
Dev. 59(1), 6:1–6:10 (2015)

19. Pleiter, D.: Parallel computer architectures. In: 45th IFF Spring School 2014
“Computing Solids Models, ab-initio Methods and Supercomputing”, Schriften des
Forschungszentrums Jülich, Reihe Schlüsseltechnologien, vol. 74 (2014)

20. Solcà, R., Kozhevnikov, A., et al.: Efficient implementation of quantum materials
simulations on distributed CPU-GPU systems. In: SC 2015 Conference on Proceed,
pp. 10:1 (2015)

21. Soler, J.M., et al.: The SIESTA method for ab initio order-N materials simulation.
J. Phys.: Condens. Matter 14(11), 2745 (2002)

22. Spiga, F., Girotto, I.: phiGEMM: a CPU-GPU library for porting Quantum
ESPRESSO on hybrid systems. In: 2012 20th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, PDP 2012, pp. 368–375,
February 2012

23. Thiess, A., et al.: Massively parallel density functional calculations for thousands
of atoms: KKRnano. Phys. Rev. B 85, 235103 (2012)

24. Videau, B., Marangozova-Martin, V., Genovese, L., Deutsch, T.: Optimizing 3D
convolutions for wavelet transforms on CPUs with SSE units and GPUs. In: Wolf,
F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 826–837.
Springer, Heidelberg (2013)

25. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

26. Zeller, R., et al.: Theory and convergence properties of the screened Korringa-
Kohn-Rostoker method. Phys. Rev. B 52, 8807–8812 (1995)

27. Zeller, R.: Towards a linear-scaling algorithm for electronic structure calculations
with the tight-binding Korringa-Kohn-Rostoker Green function method. J. Phys.:
Condens. Matter 20(29), 294215 (2008)

Performance Prediction and Ranking
of SpMV Kernels on GPU Architectures

Christoph Lehnert1, Rudolf Berrendorf1(B),
Jan P. Ecker1, and Florian Mannuss2

1 Computer Science Department, Bonn-Rhein-Sieg University of Applied Sciences,
Sankt Augustin, Germany

{christoph.lehnert,rudolf.berrendorf,jan.ecker}@h-brs.de
2 EXPEC Advanced Research Center,

Saudi Arabian Oil Company, Dhahran, Saudi Arabia
florian.mannuss@aramco.com

Abstract. Predicting the runtime of a sparse matrix-vector multiplica-
tion (SpMV) for different sparse matrix formats and thread mappings
allows the dynamic selection of the most appropriate matrix format and
thread mapping for a given matrix. This paper introduces two new gener-
ally applicable performance models for SpMV – for linear and non-linear
relationships – based on machine learning techniques. This approach
supersedes the common manual development of an explicit performance
model for a new architecture or for a new format based on empirical data.
The two new models are compared to an existing explicit performance
model on different GPUs. Results show that the quality of performance
prediction results, the ranking of the alternatives, and the adaptability
to other formats/architectures of the two machine learning techniques is
better than that of the explicit performance model.

Keywords: SpMV · Performance prediction · Linear regression ·
Gradient-boosting · KNN · Instance-based learning

1 Introduction

The sparsematrix-vectormultiplication (SpMV) is themost time-consuming oper-
ation in iterative solvers [14]. Improving the efficiency of these operations is there-
fore important in many application fields [2], and many papers have been published
on different sparse matrix formats and related SpMV implementations. Besides
handling the sparsityas such, some formats try toutilize additional structural prop-
erties of a matrix. For example, work has been done on formats that do not rely
on certain properties of a matrix and are therefore generally applicable, e.g., CSR
[14], SELL-C-σ [8]. Additional research has been conducted on other formats that
take advantage of the matrix structure (e.g., BCSR [7]) and/or a target architec-
ture (e.g., supported formats in the Intel MKL and Nvidia cuSPARSE). Even if
one format and target architecture is fixed, some formats/architectures have addi-
tional parameters, e.g., a slice size in the SELL-C-σ format or grid/block size on
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 90–102, 2016.
DOI: 10.1007/978-3-319-43659-3 7

Performance Prediction and Ranking of SpMV Kernels 91

Graphics Processor Units (GPUs) that need to be optimized for a given matrix or
an architecture.

However no sparse matrix format performs best for all matrices and all
processor architectures. Instead the formats differ significantly in their perfor-
mance between formats for certain matrix structures or when switching between
architectures. Choosing the right data format, parameter values, and possibly
even the target architecture for a given matrix is therefore extremely important.

Simple and fast heuristics have been developed (see related work in Sect. 2)
that try to predict which format or parameter values should be used for a given
matrix based on few parameters than can be efficiently determined with low
overhead. These heuristics have to be adapted to new formats, possibly to new
sparsity patterns, and if possible to new architectures. Instead of manually devel-
oping new heuristics for new configurations, the question is whether it is possible
to develop more general techniques to rank SpMV alternatives through runtime
prediction. These techniques could then be used as a basis for deciding on a
configuration for a given matrix.

This paper investigates three modeling techniques to predict the runtime of
an SpMV operation on a GPU. Based on such predictions, a ranking of alter-
natives is possible that lets a program choose the best ranked alternative or,
dependent on external parameters (prefer architecture X), choose the best ranked
alternative after applying a filter at runtime.

One runtime prediction technique used in this work is based on the work of
Guo et al. [6] and uses special benchmark matrices that determine two para-
meters in a simple linear model specific to some basic matrix formats. These
performance models themselves are specific to a matrix format and are there-
fore not transferable to other formats. The other two newly developed models
proposed in this paper use machine learning techniques and are more general.
These two models differentiate between whether a mostly linear relationship
exists between features and the SpMV runtime (using regression techniques) or
whether non-linear relationships have a non-neglecting influence on the runtime
(then using KNN). The three different approaches are evaluated using a set
of sparse matrices and 5 different matrix formats: 3 basic ones that were used
already in other papers (COO, CSR, ELL [14]) and 2 complex ones not used in
such investigations before (SELL-C-σ [8], ELL-BRO [17]).

The paper is organized as follows. Section 2 gives an overview on related work.
Section 3 introduces the three performance modeling methods. Then Sect. 4 dis-
cusses in detail the evaluation and reliability of the runtime prediction/ranking.
The paper closes with a summary.

2 Related Work

Some papers [1,3,8,9,13] deal with simple explicit heuristics or provide empirical
modeling for a Central Processing Unit (CPU) or GPU. This allows a program
to choose at runtime which matrix format and/or which parameter values to
use. This type of system is mainly used for autotuning. Those papers work with

92 C. Lehnert et al.

empirically derived fixed heuristics that work reasonable well for the supported
simple matrix formats/architectures but need to be adapted for new and more
complex matrix formats and/or architectures.

Xu et al. [18] claim that the SpMV is a memory-bounded problem. They
suggest a prediction concept that estimates the memory access times needed to
load and store the matrix and vector data for the SpMV operation. Although
SpMV is memory bound, there are others factors that influence the runtime of
this operation as well. Li et al. [10] published a probabilistic approach that takes
into account the distribution of non-zero elements in each row of the sparse
matrix. They use the model for the runtime prediction of the (simple) CSR,
COO, ELL and HYB formats. Sedaghati et al. [15] use decision tree algorithms
to select the most suitable format for a specific sparse matrix. Similar to our
work, they use machine learning techniques, but with important differences.
Their matrix formats are those supported by the vendor library and are fairly
regular/simple. We used in addition more complex formats (SELL-C-σ, ELL-
BRO), that have a more complex performance behavior. Additionally we allow a
choice not only between the matrix formats but also between format/architecture
parameter values for a specific format.

Guo et al. [6] uses profiled data for benchmark matrices and a simple 2-
parameter linear model that is discussed and evaluated in detail in Sects. 3.1
and 4. Offline benchmark matrices and a heuristic performance model was also
used in Lee et al. [9] for the CSR matrix format only.

3 Performance Modeling

This work aim to develop performance models that are not explicitly specific
to a certain matrix format or a processor architecture but are more generally
applicable and do not need to be reworked for new configurations. We describe in
more detail below an existing benchmarking-based approach and then introduce
a linear regression technique and the k-nearest neighbors approach.

Table 1 summarizes all features of the platform and matrices we found to
be relevant for predicting performance in any of the described models on GPUs.
Further features were analyzed, but no relevance for the runtime prediction could
be identified. For some formats, there are several format specific parameters that
may also influence the runtime of the SpMV operation. Although we have not
included such format parameters, our work could be extended in that direction.

3.1 Benchmarking-Based Approach

The benchmarking approach we use in this paper is based on the work of
Guo et al. [6]. Their prediction method consists of two major phases. In the
instrumentation phase, platform information is gathered including the number of
available streaming multiprocessors (SMs) and the maximum number of threads
that can be processed by each SM at once. These are used to compute the so-
called strip size. A strip is a maximum submatrix that can be computed by the

Performance Prediction and Ranking of SpMV Kernels 93

Table 1. Platform and matrix features that are relevant for the presented approaches.

Feature Description

blocksize The CUDA blocksize

nRows The number of rows (the dimension of the square matrix)

nnz The overall number of non zeros of the matrix

minNnz The minimum number of non-zero elements per row among all rows

maxNnz The maximum number of non-zero elements per row among all rows

modeNnz The statistic mode of the number of non-zero elements per row among
all rows

medianNnz The median of the number of non-zero elements per row among all rows

minDist The minimum distance between non-zero elements per row among all
rows

maxDist The maximum distance between non-zero elements per row among all
rows

bandwidth The maximum distance of non-zero elements from the diagonal

dispersion The standard deviation of the numbers of non-zero elements among all
rows

density The fraction of the non-zero elements in the total number of array
elements

GPU in one iteration if the full parallelism is used. The number of matrix rows
that fit into a strip is therefore different for each of the used formats. Accord-
ing to Guo et al., one strip can be calculated in one step (simplified); therefore
the number of strips a matrix consists of has a major influence on the runtime.
Another important attribute in this model is the average number of non-zero
elements in the matrix rows. The execution of synthetical special benchmark
matrices is used to determine the relation between the number of strips and the
average number of non-zero elements per row to the execution time. The SpMV
operation is executed on multiple benchmark matrices:

– with a fixed size and an increasing number of non-zeros per row
– with a fixed number of non-zeros per row and an increasing number of strips
– multiple runs of matrices with (different) fixed numbers of non-zeroes per row

and an increasing number of strips (ELL format only)

The information gathered from these SpMV executions is used to create a 2-
parameter linear model [6]. In a program run, this model is parametrized with
the information from the target matrix, and the actual runtime is predicted.
This model is different for every matrix format and for a new matrix format an
appropriate linear relationship has to be explicitly specified.

94 C. Lehnert et al.

3.2 Linear Regression Techniques

Algorithms based on machine learning techniques are used in various scientific
fields. One such machine learning approach is linear regression. It is a technique
that relates a response vector of training instances, for example the measured
SpMV runtimes of several matrices, to the features of the matrix by assuming
that a linear relationship exists. The goal is to determine the relevance of these
predictors and apply linear coefficients to each of them so that the best approx-
imation of the responses for all (training) instances can be obtained. This goal
can be achieved by iteratively refining the linear regression model to minimize
the residual error between the modeled values and the actual responses [12].

Basic Model. In this step, the linear relation for the first training data record
(feature values and SpMV runtime of the first matrix) is established. The second
record is added, and the coefficients that have been identified in the first step are
adjusted until the squared error between the estimations of both instances (by
using the common coefficients) and the actual response is minimal. This process
is repeated for all training data records. The result of this training phase is
a linear model that leads to the best approximated responses for all training
instances. Its particular coefficients ωi can be utilized to predict the result Ttest

for all new test instances with feature values αi. This prediction is obtained by
using Eq. (1) for an instance with m features. A linear intercept ω0 also results
from the procedure described in [12].

Ttest = ω0 + ω1 × α1 + ω2 × α2 + ... + ωm × αm (1)

Model Enhancements. This regression technique is applicable if linear rela-
tions exist between the features. For a SpMV operation, many but not all fea-
tures have such properties. An open question at the beginning of the research
was whether the linear features dominate the runtime or whether a linear model
is not suitable because the influence of non-linear features is too high.

The relationships between the matrix formats are certainly not linear, and
the thread mapping also behaves non-linearly. Therefore in the training phase,
distinct models are generated for different matrix formats and thread mappings.
First investigations have also shown that selecting proper features per format
(and only those) is an essential step. Table 2 presents the selected subset of fea-
tures for each format. Other features did not positively influence the quality of
the predictions. In a next step in the training phase, the feature values were log-
arithmized. These steps had proved to be sufficient to accurately predict SpMV
runtimes for the simple formats COO, CSR and ELL.

Gradient-Boosting. For the more complex matrix formats SELL-C-σ and
ELL-BRO, the prediction quality was less good. To be able to predict with a high
accuracy the SpMV runtimes even in cases where (1) some non-linear relation-
ship exists between the matrix features and SpMV execution times for a specific

Performance Prediction and Ranking of SpMV Kernels 95

Table 2. Features selection for the approaches linear regression/gradient-boosting (LR)
and k-Nearest Neighbors (KNN) and the selected formats.

Feature COO CSR ELL SELL-C-σ ELL-BRO

LR KNN LR KNN LR KNN LR KNN LR KNN

blocksize X X X X X X X X X X

nRows X X X X

nnz X X X X X X X X X

minNnz X X X X X X X

maxNnz X X X X X

modeNnz X X X X

medianNnz X X X X X X

minDist X X X X

maxDist X X X

bandwidth X X X X

dispersion X X X X X X

density X X X X

format or (2) important features for this format have not been identified and can
thus not be represented in the modeling process, a gradient-boosting technique
was chosen as an alternative to the linear regression model. This technique was
then used for the formats SELL-C-σ and ELL-BRO.

Gradient-boosting [5] is also a regression technique. To determine the
responses of completely new instances, a general function is approximated using
all available training samples. Here, the search is for the concrete function that
leads to a minimal estimated error among all training instances. As explained
in detail in [5], gradient-boosting approaches start with a simple and often weak
approximating model that only fits a small number of the training instances and
iteratively refine it by applying the same base learner to the previous intermedi-
ate results. In our approach, the base learner is a regression tree, parametrized
using several factors including its depth and the splitting rules at each non-
terminal node. The model is built by roughly fitting the training instances by
initially using a simple tree. The result is iteratively refined by applying fur-
ther regression trees on the particular residual errors of the prior iteration and
combining the intermediate results to a final complex model.

3.3 k-Nearest Neighbors

The k-Nearest Neighbors (KNN) [11] approach belongs to the instance-based
learning methods that are suitable for both regression and classification tasks.
The general idea behind such techniques is not to determine and store a con-
crete calculated function but to compare a new instance to all training records
or a subset of them. The desired response value for the new instance is then

96 C. Lehnert et al.

retrieved by identifying similar training instances and accounting for their indi-
vidual responses.

The KNN algorithm compares the feature values of the new instance with
those of the training instances. A distance measure is chosen to select the k
training records that are closest to the new instance, presuming that they are
the most similar ones among all training instances. For a regression problem,
the response value is (for example) retrieved by computing the mean of the k
neighbors responses [11].

To successfully use the KNN algorithm, an appropriate distance function as
well as a proper k-value have to be accommodated to different problem areas.
Further enhancements of the KNN technique are the distance-weighted and the
feature-weighted KNN approach. When using the first one, the calculated dis-
tances to the neighbors of a new instance are weighted. While neighbors with a
low distance have a high impact on the calculated value, the impact decreases
the greater the distances are [11]. The second technique applies weights to each
feature.

Model Specifics. We achieved the most accurate runtime predictions by using
k-values of 4 for the COO, CSR, ELL and BRO-ELL formats and 2 for the
SELL-C-σ format. These differences are caused by the provided training sets
per kernel. Using a k-value of 4 for the SELL-C-σ format leads to higher inaccu-
racies for a few test matrices, because only few neighbors for this kernel exists
for those matrices. Taking more neighbors into account diminishes the quality of
the runtime estimations. This problem can be dealt with by providing a bigger
set of training instances with a higher variety of features. As a distance function,
the euclidean distance was used. Manually derived weights were used for the pre-
selected features shown in Table 2. The KNN approach has been shown to be
much more sensitive to the correct selection of features compared to the linear
regression approach. Furthermore, the feature values have been 0-1-normalized
since the data ranges of the features are too different. The distance weighting was
realized by using the inverse of the euclidean distance for computing the neigh-
bors contribution to the calculation of the response variables, i.e., the estimated
runtimes.

4 Evaluation

In this section, all three approaches are evaluated. First the evaluation method-
ology will be explained, followed by the evaluation of the runtime prediction
quality and the ranking quality.

4.1 Evaluation Methodology

The training and evaluation of the prediction approaches requires the measure-
ment of the runtimes of the different SpMV kernels on a GPU. The runtimes do
not include the data transfer times to the GPU. The measurements are performed

Performance Prediction and Ranking of SpMV Kernels 97

on GPUs with two different architectures (Nvidia M2050 and K80). Only one of
the two GPUs of the K80 is used. To minimize measurement inaccuracies and
startup overhead, all SpMV operations are executed 200 times and the median
is always used as the actual runtime.

Table 3. Set of used test matrices with some additional structure information.

Matrix Rows/columns nnz Bandwidth nnz per row

min max mode med

1 Ga41As41H72 268096 18488476 22519 18 702 37 37

2 PR02R 161070 8185136 84250 1 92 66 66

3 Si34H36 97569 5156379 18908 17 494 37 37

4 crankseg 2 63838 14148858 61047 48 3423 195 195

5 nd6k 18000 6897316 16766 130 514 468 416

6 TSOPF RS b2383 38120 16171169 33353 2 983 4 6

7 tmt sym 726713 5080961 1921 3 9 7 7

8 af 1 k101 503625 17550675 859 15 35 35 35

9 af shell1 504855 17588875 4909 20 40 35 35

10 gsm 106857 589446 21758924 588744 12 106 32 32

11 matrix spe1Ref a 900000 18612000 17999 12 21 21 21

12 boneS10 914898 55468422 8969 12 81 81 66

13 atmosmodd 1270432 8814880 21904 4 7 7 7

14 kkt power 2063494 14612663 2046911 1 96 3 3

15 memchip 2707524 14810202 1647939 2 27 4 5

16 Flan 1565 1564794 117406044 20702 24 81 81 81

17 circuit5M dc 3523317 19194193 2832158 1 27 4 5

18 matrix spe10 dpdp a 3506080 50928264 3378961 2 16 16 16

A set of 74 square matrices is used for the training and evaluation process.
Table 3 shows the 18 test matrices that are used as target- or test matrices where
the runtime must be predicted. The other matrices are the training matrices.
The matrices show a wide variety of feature values. All matrices originate from
the University of Florida Sparse Matrix Collection [4] or the SPE Comparative
Solution Project [16]. For the SELL-C-σ format, a fixed C-value of 512 and σ-
value of 2048 are used for all measurements. Likewise for the ELL-BRO format,
a slice size of 256 and symbol size of 64 bit are used.

An exhaustive search on the available formats and valid thread mappings
was performed for each matrix to determine the best achievable runtime for that
matrix and the corresponding format and thread mapping. Only the three basic
formats CSR, ELL and COO are used for the benchmarking-based approach,
while all five formats are used for the two machine learning approaches.

4.2 Prediction Quality

The prediction quality is determined by comparing the predicted runtime with
the actual measured runtime for the same format and same thread mapping.

98 C. Lehnert et al.

This was done with all matrices of Table 3 using all supported formats and a
large set of thread mappings, in total about 8600 test instances for the machine
learning approaches and about 6100 ones for the benchmarking approach. Fig-
ures 1a and b present the divergence between the predicted and measured run-
times over all test instances of all three approaches on the M2050 and K80. They
show that the median divergence of the machine learning approaches is very low
at around 10 %. The average divergence of both these approaches is higher due
to some inaccurate predictions.

Fig. 1. Comparison of the predicted runtimes and the actual measured runtimes.

The median divergence of the linear regression approach is higher compared
to the KNN approach, but its average is significantly better. This difference
is caused by an overall smaller number of predictions with greater inaccuracy.
The few high over- and underestimations of the KNN approach can be found
in a small number of matrices. Examples are matrices nd6k, circuit5M dc and
kkt power. They have in common that some of their features have the smallest
values among all available training instances. The number of rows of matrix nd6k,
for example, is much smaller than those of all training matrices. Since this value
is crucial for estimating the CSR-runtime, training instances with a significantly
higher number of rows may be chosen as the nearest neighbors, resulting in an
imprecise estimation. This problem can be dealt with by extending the training
set and including smaller matrices.

The figures also clearly show that the performance of the benchmarking-
based approach is much worse. The median divergence is about 25 % and the
average accuracy only reaches 65 %. On the newer architecture of the K80, the
benchmarking-based approach performs even worse, which could indicate that
the relatively simple model is less suitable for the newer and more complex
Kepler architecture. In summary, both machine learning approaches deliver a
very high prediction quality with median divergences of around 10 %.

Performance Prediction and Ranking of SpMV Kernels 99

4.3 Ranking Quality

The runtime prediction is used as a tool, for ranking SpMV alternatives for a
given matrix. Even with a inaccurate prediction, correct ranking could still be
possible, e.g., with a continuous over estimation as long as the ranking order is
still correct. The evaluation of the quality of the ranking is done by comparing the
measured runtime of the predicted first ranked configuration with the overall best
measured runtime for that matrix over all configurations (formats and thread
mappings).

Fig. 2. Share of matrices where the divergence between the reached runtime and the
overall best runtime is between certain values.

Figure 2a presents the share of predictions where the divergence is below
5 %, between 5 % and 20 %, and over 20 % for all approaches on the M2050. The
figure shows that the machine learning approaches again deliver in total very
good results, and much better results than the benchmarking-based approach.
For the majority of matrices, the predictions of the machine learning approaches
result in runtimes that are only less than 5 % slower than the best possible
runtimes. There was also no prediction of the linear regression/gradient-boosting
approach, which was more than 20 % slower than the optimal runtime. The real
runtimes of the benchmarking approach are more than 20 % slower than the
optimum in most of the cases.

Figure 2b presents the same comparison for the K80 GPU. The linear regres-
sion on the K80 performs slightly worse than that on the M2050 and the KNN,
and the benchmarking approach perform slightly better than that on the M2050.
A more detailed comparison of the data revealed more details not easily pre-
sentable in plots:

– The benchmarking approach delivers very inconsistent results, and the run-
times for the same matrix on different architectures vary greatly.

– The quality of the predictions for a specific matrix is very consistent for the
linear regression and the KNN approaches and mostly independent of the
used architecture.

100 C. Lehnert et al.

– The KNN approach delivers very good predictions for the majority of matri-
ces, but also some highly inaccurate predictions with up to around 160 %
slower runtimes. The linear regression delivers better average predictions and
no such extreme outliers.

4.4 Other Aspects

Table 4 shows the durations of the training-, modeling- and ranking-phases
for all approaches. The ranking was done for the matrix af 1 k101. While
the benchmarking-based and the pure linear regression and combined linear
regression/gradient-boosting approach each have a quite extensive offline train-
ing phase, the online prediction of a runtime itself is simple and fast (evaluat-
ing a linear function with given coefficients). The KNN approach, however, has
no training phase but a quite complex modeling phase for each single runtime
prediction since the neighbors among all existing training matrices have to be
identified and incorporated into the prediction value.

Table 4. Overhead (in msec). Results obtained by using R-tools are marked with *.

Phase Benchmarking LR LR/Grad. boosting KNN

Training (offline) 2,601,042 130.7* 4,078* -

Modeling & ranking 0.001 0.001 0.013 153.4*

Table 5. SpMV-runtimes (in msec) per format of matrix af 1 k101

Format BRO-ELL SELL-C-σ ELL CSR COO

Runtime (msec) 1.029 1.187 1.362 2.861 7.571

Table 5 shows the measured SpMV execution times for the same matrix
using different formats. A comparison of the two tables shows that the
modeling/ranking-phases for all approaches other than KNN are even faster than
one SpMV execution with the most appropriate kernel for the given matrix.
Besides predicting an adequate format, the approaches can also be used for
selecting a proper thread mapping, simply by calculating the predictions for
a set of reasonable thread mappings. Regarding the prediction overhead, this
process is suitable for the benchmarking-based and linear regression techniques,
whereas the overhead for the KNN approach is quite high.

Performance Prediction and Ranking of SpMV Kernels 101

5 Summary and Outlook

We developed two new general models for performance prediction and rank-
ing of SpMV kernels on GPUs and compared these to a known explicit linear
model. The two new models both show better prediction and ranking results
than the simple explicit model. The linear regression model is most appropri-
ate if linearity of parameters dominates. This was the case for simple/regular
sparse matrix formats. The gradient-boosting regression technique could also
handle the two more complex formats. If parameters show non-linearity, a KNN
model is more suitable. This model delivers better results for formats with more
complex performance behavior, but it has a higher runtime overhead. Based on
the prediction, we were also able to use ranking to determine the most suitable
format and architecture parameters for a given matrix.

Our high quality results were only available after we fitted the general model
more specifically to the concrete problems; this procedure is common when using
these techniques. The procedure includes the proper selection of relevant fea-
tures and weights and the separation of models with respect to formats and
thread mapping. The approaches themselves are transferable to other formats
and (GPU) architectures.

There are several opportunities to further improve our models. For the lin-
ear regression, we used a least-square/gradient-boosting approach. Here different
regression techniques might deliver an even better quality. For the KNN app-
roach, the weights could be determined by the system itself. Applying the models
to a CPU-based systems would also be of interest.

Acknowledgements. We would like to thank the CMT team at Saudi Aramco
EXPEC ARC for their support and input. Especially we want to thank Ali H. Dogru
for making this research project possible. Additionally we appreciate the discussions
on modeling with Marlis von der Hude and Peter Becker.

References

1. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P.: An efficient two-
dimensional blocking strategy for sparse matrix-vector multiplication on GPUs.
In: Proceedings of the 28th ACM International Conference on Supercomputing
(ICS 2014), pp. 273–282. ACM (2014)

2. Berrendorf, R., Weierstall, M., Mannuss, F.: Program optimization strategies to
improve the performance of SpMV-operations. In: Proceedings of the 8th Inter-
national Conference on Future Computational Technologies and Applications, pp.
34–40 (2016)

3. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In: Proceedings of Principles and Practices of Parallel
Programming (PPoPP 2010), pp. 115–125. ACM, January 2010

4. Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (2010)

5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29, 1189–1232 (2000)

102 C. Lehnert et al.

6. Guo, P., Wang, L., Chen, P.: A performance modeling and optimization analy-
sis tool for sparse matrix-vector multiplication on a GPUs. IEEE Trans. Parallel
Distrib. Syst. 25(5), 1112–1123 (2014)

7. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse matrix
kernels. Int. J. High Perform. Comput. Appl. 18(1), 135–158 (2004)

8. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse
matrix data format for efficient general sparse matrix-vector multiply on modern
processors with wide SIMD units. SIAM J. Sci. Comput. 26(5), C401–C423 (2014)

9. Lee, B.C., Vuduc, R.W., Demmel, J.W., Yelick, K.A.: Performance models for
evaluation and automatic tuning of symmetric spare matrix-vector multiply. In:
Proceedings of the International Conference on Parallel Processing, vol. 1, pp.
169–176. IEEE (2004)

10. Li, K., Yang, W., Li, K.: Performance analysis and optimization for SpMV on
GPU using probalistic modeling. IEEE Trans. Parallel Distrib. Syst. 26(1), 196–
205 (2015)

11. Mitchell, T.M.: Machine Learning, vol. 1. McGraw-Hill, Singapore (1997)
12. Murphy, K.P.: Machine Learning: A Probabilistic Perspective, vol. 1. The MIT

Press, Cambridge (2012)
13. Neelima, B., Reddy, G., Raghavendra, P.: Predicting an optimal sparse matrix

format for SpMV computation on GPU. In: Proceedings of International Parallel
& Distributed Processing Symposium Workshops (IPDPSW 2014), pp. 1427–1436.
IEEE (2014)

14. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM,
Philadelphia (2003)

15. Sedaghati, N., Mu, T., Pouchet, L.N., Parthasarathy, S., Sadayappan, P.: Auto-
matic selection of sparse matrix representation on GPUs. In: Proceedings of the
25th International Conference on Supercomputing (ICS 2015). ACM (2015)

16. Society of Petroleum Engineers. http://www.spe.org/web/csp/: SPE Comparative
Solution Project

17. Tang, W., Tan, W., Ray, R., Wong, Y., Chen, W., Kuo, S., Goh, R., Turner, S.,
Wong, W.: Accelerating sparse matrix-vector multiplication on GPUs using bit-
representation-optimized schemes. In: Proceedings of Intrnational Conference on
High Performance Computing, Networking, Storage and Analysis (SC 2013). ACM
(2013) (article no. 26)

18. Xu, S., Xue, W., Lin, H.X.: Performance modeling and optimization of sparse
matrix-vector multiplication on NVIDIA CUDA platform. J. Supercomput. 63(3),
710–721 (2011)

http://www.spe.org/web/csp/

The Impact of Voltage-Frequency Scaling for the
Matrix-Vector Product on the IBM POWER8

Sandra Catalán1(B), A. Cristiano I. Malossi2,
Costas Bekas2, and Enrique S. Quintana-Ort́ı1

1 Dpto. de Ingenieŕıa y Ciencia de Computadores,
Universidad Jaume I, 12071 Castellón, Spain

{catalans,quintana}@uji.es
2 IBM Research–Zurich, Foundations of Cognitive Solutions,

8803 Rüschlikon, Switzerland
{acm,bek}@zurich.ibm.com

Abstract. The physical limitations of CMOS miniaturization have pro-
moted understanding the interplay between performance and energy into
a primary challenge. In this paper we contribute towards this goal by
assessing the effect of voltage and frequency scaling (VFS) on the energy
consumption of the dense and sparse matrix-vector products. The opti-
mization of the sparse kernel, from the perspective of both performance
and energy efficiency, is especially difficult due to its irregular memory
access pattern, but the potential benefits are remarkable because of its
varied applications.

Our experiments with a small synthetic training set show that it is
possible to build a general classification of sparse matrices that governs
the optimal VFS level from the point of view of energy efficiency. More
importantly, this characterization can be leveraged to tune VFS for a
major portion of the University of Florida Matrix Collection, when exe-
cuted on the IBM Power8, yielding significant gains with respect to a
(power-hungry) configuration that simply favours performance.

Keywords: Energy efficiency · Voltage-frequency scaling · Perfor-
mance prediction · Performance metrics · Matrix-vector product · IBM
POWER8

1 Introduction

The matrix-vector product is an important numerical kernel as well as one of the
7+ dwarfs [3] proposed for the evaluation of parallel programming models and
architectures. In particular, the sparse instance of the matrix-vector multiplica-
tion (SpMV) underlies the HPCG benchmark [8], and is also a crucial kernel for

IBM POWER8: IBM, the IBM logo, and ibm.com are trademarks or registered
trademarks of International Business Machines Corp. in the United States, other
countries, or both. Other product and service names might be trademarks of IBM
or other companies.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 103–116, 2016.
DOI: 10.1007/978-3-319-43659-3 8

http://www.ibm.com

104 S. Catalán et al.

the solution of linear systems and eigenvalue problems arising in many scientific
and engineering applications [21]. Furthermore, the connection between sparse
linear algebra and graph algorithms has been recently exploited by a new class of
algorithms, based among others on SpMV, to tackle the vast volume of informa-
tion that is common in social networks and other data analytic processes [5,14].

In this paper, we perform a complete experimental analysis of a generic imple-
mentation of the matrix-vector product on a current multi-threaded architecture
with support for dynamic voltage-frequency scaling (VFS). Our study focuses on
the energy efficiency using the energy-per-flop metric as reference. This analysis
is timely because even though the matrix-vector product kernel has been exten-
sively analyzed and optimized from the point of view of performance, the number
of studies that investigate its energy consumption is limited. This is especially
relevant since power/energy are factors which constrain the performance of cur-
rent processor designs for the high performance computing systems running the
aforementioned numerical and graph-related applications [9,17].

In particular, this work makes the following specific contributions with
respect to the energy optimization of SpMV:

– We analyze several critical parameters with respect to matrix size, sparsity
degree, and non-zero clustering of the sparse matrix that drive the energy
efficiency of this kernel on a modern multithreaded architecture.

– We derive a simple recipe to optimize VFS for a SpMV operation involving
any given sparse matrix that exploits the aforementioned relevant parameters
from the graph representing the sparse matrix.

– We demonstrate the robustness of our VFS optimization recipe by applying it
to optimize the energy performance of the entire University of Florida Sparse
Matrix Collection (UFMC) [1] on the IBM Power8.

– We evaluate the energy gains that an appropriate adaption of VFS can yield
with respect to an energy-oblivious approach that considers performance as
the only optimization goal.

Our driving motivation is the design of an easy-to-use and widely-applicable
strategy to significantly reduce energy consumption of SpMV without the need
of a per-case analysis. Indeed, finding the optimal VFS for each individual sparse
problem is unrealistic as well as unaffordable in practical production scenarios,
where the sparsity pattern may change from one application to the next, and
time cannot be spent on preliminary fine tuning energy-benchmarks.

The rest of the paper is structured as follows. In Sect. 2 we briefly review
some related works and next, in Sect. 3, we describe the experimental setup. In
Sects. 4 and 5 we analyze the energy consumption of the sparse matrix-vector
kernel with dense and sparse matrices, respectively. We close the paper with a
few concluding remarks in Sect. 6.

2 Related Work

There exists a large volume of work addressing the performance optimization
of SpMV; see, e.g., [5,16,22,23] and the references therein. Among others,

The Impact of Voltage-Frequency Scaling 105

pOSKI [6] is a multithreaded library for SpMV that leverages automatic search
over multiple implementations and sparse data layouts to optimize performance
on multicore processors. Model-driven optimization of SpMV for data-parallel
accelerators has been studied in [7,10].

The number of efforts dedicated to the energy modeling and optimization of
SpMV is significantly more reduced. In [20] we introduced a systematic method-
ology to derive reliable time and power models for algebraic kernels employing
a bottom-up approach. However, the recipe resulted a bit cumbersome to lever-
age, requiring a large number of calibration tests. In [19] we devised a systematic
machine learning algorithm to classify and predict the performance and energy
costs of the SpMV kernel, but did not consider the effect of VFS. The work
in [2] presents an extensive experimental study of the interactions occurring in
the triangle performance-power-energy for the execution of a pivotal numerical
algorithm, the iterative Conjugate Gradient (CG) method, on an ample collec-
tion of parallel multithreaded architectures. However, that work does not pro-
duce a recipe to optimize VFS for any given sparse problem. Other work related
to modeling sparse linear algebra operations can be found in [11,13,18].

3 Experimental Setup

3.1 Hardware

The target platform for our analysis is the IBM Power System S812L. The
POWER8 processor in this system, fabricated on 22 nm silicon, features 2 sock-
ets, each with 6 cores, offering hardware support for up to 8-way simultaneous
multi-threading (SMT) as well as dynamic VFS. Each core in the IBM POWER8
is furnished with a 512-KB L2 cache. Furthermore, the chip contains a shared L3
cache of 8 MB per core, and 16 MB of L4 cache per buffer, with up to 8 buffers
per socket [4]. The server was also equipped with 64 GB of DDR RAM.

Table 1 displays the frequency-voltage configuration pairs and the idle power
dissipated by the system, measured during the execution of a sleep test,1 for
two scenarios: socket+DDR (“SD”) only vs the full server (“Node”). Power
measures were obtained using AMESTER [15]. This tool runs on a separate
server and connects to the service processor of the node in order to obtain
voltage/frequency/power-per-core samples from several sensors, while avoiding
interference with the workload. Using this information, we calculate the time-
per-flop and net power-per-core (without the idle power), yielding the net energy
per-flop-and-core from their product. All energy consumption values reported
next refer to the net energy-per-flop and core.

The codes were compiled using IBM’s mpcc 13.01.0003.0000, with the flags:
-O3 -qprefetch=dscr=0 -qhot -qstrict -qsmp=noauto:omp -qthreaded -qsimd=

auto -qaltivec -q64 -qarch=pwr8. Each test was repeated for at least 60 s,

1 Although the idle power could be determined with higher accuracy by via an extrap-
olation to the power usage with 0 cores, we believe that the sleep-based test provides
enough precision for our purposes.

106 S. Catalán et al.

Table 1. Voltage-frequency pairs and idle power in the IBM POWER8 processor.

Config. Frequency Voltage Idle power, P idle (W)
F (GHz) V (mV) SD Node

C1 2.13 875.0 147.9 358.3
C2 2.53 931.3 151.9 367.7
C3 2.96 987.5 158.1 380.1
C4 3.36 1,037.5 165.3 392.6
C5 3.79 1,093.8 173.2 411.2
C6 4.22 1,187.5 192.6 451.9

and the results average the values from these runs. The experiments targeted a
single “socket” of the IBM POWER8 chip (i.e., 6 cores), with either 1 thread
or 8 threads per core (1-SMT or 8-SMT, respectively), and all threads/cores
collaborating to compute one instance of SpMV.

3.2 Kernel and Implementation

We analyze an implementation of the SpMV y := A · x, with sparse matrix
A ∈ R

n×n and dense vectors x, y ∈ R
n, based on the CSR (compressed sparse

row) storage format [21]. For sparse matrices, CSR offers a fair balance between
compression efficiency (as it is one of the most efficient formats for generic sparse
matrices on cache-based microprocessors) and architecture-independent perfor-
mance (since it does not directly exploit graph characteristics that may emerge
from the specific physical problem) [22]. The CSR data layout employs a real
array for the values of A (A val), and two auxiliary integer arrays (col ind and
row ptr) to maintain (respectively) the column indices of the nonzero entries in
A and the initial/final index of each row of A within the other two arrays [21].
All our experiments employ double precision floating-point arithmetic so that
the values of A, x, y occupy sd = 8 bytes each. Each component of the indexing
integer arrays occupies si = 4 bytes. Therefore, storing an n×n matrix with nz

nonzero entries in this format requires MS = nz(sd + si) + (n + 1)si bytes, and
x, y occupy VS = nsd bytes each.

The implementation of SpMV in CSR format is illustrated in Fig. 1. The
optimization is left to the compiler, except for some minor details omitted for
simplicity. The parallelization strategy distributes the computation of the entries
of y among the threads/cores (via the OpenMP #pragma omp directive before
the outer loop).

In the operation y := A · x, there is no reuse of the entries of A and the only
opportunity to exploit data locality is in the accesses to x, y. In the CSR version
of SpMV, the entries of A val and col ind are streamed from the memory layer
where they reside into the processor register file with unit stride; each entry of y
is loaded into a register once and re-used until it has been completely updated;
and the re-use factor of x depends on the sparsity pattern of A.

The Impact of Voltage-Frequency Scaling 107

1 void SpMV_CSR(int n, int * row_ptr , int * col_ind ,
2 double * A_val , double * x, double * y) {
3 int i, j; double tmp;
4
5 #pragma omp parallel for private (tmp , j) schedule static
6 for (i = 0; i < n; i++) {
7 tmp = 0.0;
8 for (j = row_ptr [i]; j < row_ptr [i+1]; j++)
9 tmp += A_val [j] * x [col_ind[j]];

10 y[i] += tmp;
11 }
12 }

Fig. 1. SpMV based on the CSR format.

4 Tuning VFS for the Dense Matrix-Vector Product

We commence our analysis by considering an n×n dense matrix-vector product
kernel, GeMV, computed via the code in Fig. 1. While a dense matrix can be
more efficiently stored as a conventional 1-D array, in column- or row-major
order, this initial study will offer us some preliminary insights on the energy
behavior of this memory-bound operation. For the following experiments, we
use two square dense matrices, of dimension n= 312 and 30, 512 (with nz = n2

nonzeros). Taking into account the CSR memory layout, and the fact that all
cores collaborate in the execution of the same matrix-vector product, the data
for these two problems respectively requires about 1.15 MB and 10.6 GB. Thus,
the small case easily fits into the on-chip L3 cache (8 MB/core), while the larger
problem can only be stored in the off-chip DDR RAM.

Scaling the voltage and frequency (VFS) can be expected to produce an effect
on performance and power dissipation which, in turn, produces an impact on the
energy consumption. In principle, one could expect that a change of frequency
results in a proportional variation of the GFLOPS (billions of flops per second).
The left-hand side plot in Fig. 2 investigates the behaviour as the frequency is
increased, and the socket is populated with 1 or 8 threads per core (1-SMT
and 8-SMT). To capture the theoretical linear relation between the GFLOPS
and the frequency, both metrics are normalized in the figure with respect to
those observed for C1. On one hand, when operating with the off-chip problem,
the GFLOPS rate attained with 1-SMT stagnates for the two higher frequency
rates while, for 8-SMT, the performance does not vary with the frequency. These
results show scenarios where the DDR bandwidth is saturared for our GeMV
code. On the other hand, the GFLOPS rate grows linearly with the frequency
for the L3 on-chip case, independently of the number of threads.

The analysis from the point of view of power dissipation is more complex.
Concretely, for a given voltage-frequency configuration pair Ca = (Va, Fa), the
power dissipation can be decomposed into its static and dynamic components
which depend, respectively, on V 2

a and V 2
a ·Fa [12]. We can assume that the idle

power (see Table 1) is mostly due to leakage (static power), while a substantial
fraction of the net power is due to the application’s activity (dynamic power).
The right-hand side plot in Fig. 2 compares the experimental net power ratio

108 S. Catalán et al.

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 G
F

LO
P

S

Normalized frequency

Dense matrix-vector product (GEMV)

L3 1-SMT
DDR 1-SMT

L3 8-SMT
DDR 8-SMT

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 1.5 2 2.5 3 3.5 4

N
or

m
al

iz
ed

 n
et

 p
ow

er

Normalized VFS

Dense matrix-vector product (GEMV)

L3 1-SMT
DDR 1-SMT

L3 8-SMT
DDR 8-SMT

Fig. 2. Performance (left) and SD power consumption (right) for GeMV. (Color figure
online)

Table 2. Normalized energy consumption with respect to C1 for 8-SMT and different
VFS levels. Best choices are highlighted in green.

Config. SD Node
L3 DDR L3 DDR

C1 1.00 1.00 1.00 1.00
C2 0.90 1.06 0.87 1.04
C3 0.83 1.11 0.79 1.08
C4 0.79 1.22 0.73 1.16
C5 0.78 1.26 0.70 1.19
C6 0.82 1.43 0.71 1.32

P net
a , normalized with respect to that observed when running in C1, against

the theoretical VFS ratio (V 2
a · Fa)/(V 2

1 · F1) during the execution of GeMV.
Considering only the 8-SMT cases, there is a clear difference between the L3
case, which shows a perfect match between the theory and the experimental
behaviour, and the DDR problem, for which the net power grows at a much
lower pace due to the memory bottleneck.

Table 2 illustrates the combined effect of the variations in performance and
power dissipation on the energy consumption, identifying the best VFS config-
uration depending on the problem dimension. The values there are again nor-
malized with respect to those observed for the configuration C1. Hereafter, we
only report the results obtained with 8-SMT, as they are consistently superior
to those obtained with 1-SMT in both performance and energy efficiency.

The previous experiments reveal that the execution time as well as the power
consumption of GeMV can be accurately modeled when the problem data fits
on-chip. This leads to a straight-forward derivation of energy-related metrics
(such as our target net energy-per-flop) and, as illustrated in Table 2, paves
the road to a direct optimization of VFS from the perspective of energy effi-
ciency. The behavior of performance and power consumption is more difficult
to predict for the DDR problems; however, if the goal is to optimize energy
efficiency, the best strategy for GeMV simply runs this kernel at the lowest
voltage-frequency pair. Compared with this energy-aware VFS configuration,

The Impact of Voltage-Frequency Scaling 109

an execution of GeMV that simply aims to enhance performance consumes sig-
nificantly more energy: 1.43× for SD and 1.32× for the node.

5 Tuning VFS for the Sparse Matrix-Vector Product

Unfortunately, the sparsity exhibited by most real applications generally results
in irregular access patterns (in CSR, to the entries of x), which may render an
imbalanced workload distribution yielding the guidelines derived to adjust VFS
for GeMV in Sect. 4 suboptimal for the sparse case.

In [19], we identified a reduced set of critical structural parameters which
impact the performance, power, and energy consumption of the CSR implemen-
tation of SpMV. These properties were used to generate a small synthetic sparse
benchmark (or training set) which was then employed to build a model that accu-
rately predicts performance and energy consumption of any sparse problem. In
the following, we investigate whether the same approach, based on a synthetic
sparse training set, can produce a strategy to select a (close-to-)optimal VFS
configuration for any sparse problem.

5.1 Training Set

In order to determine an appropriate configuration for SpMV, we leverage the
benchmark introduced in [19], which is characterized by five parameters:

– Number of rows/columns n and nonzeros nz.
– Block size: bs. Many applications lead to sparse matrices where the non-zeros

are clustered into a few compact dense blocks in each row. This parameter
specifies the number of entries in these blocks, and determines the number of
elements of x accessed with unit stride.

– Block density: bd = bs/nzr = bsn/nz ∈ [0, 1] is the inverse of the number of
blocks per row. With bs fixed, bd defines the re-use factor for y.

– Row density: rd = nzr/n ∈ [0, 1] is the number of non-zeros per row relative
to the row size. With nzr fixed, rd is an indicator of the probability of finding
an entry of x already fetched into a higher level of the cache hierarchy during
the computation of a previous entry of y.

For the analysis, we distribute the matrix instances of the training set evenly
in the log2 space comprised by bs ∈ {20, 22, 24, . . . , 214}, bd ∈ {20, 2−2, . . . , 2−14},
and rd ∈ {20, 2−2, . . . , 2−28}. Thus, for a matrix in the training set, the triplet-
coordinates (bs, bd, rd) identify a matrix of dimension n = nzr/rd = bs/(bdrd)
with nz = nnzr nonzeros. As bs ≤ nzr ≤ n, this distribution yields a total of
162 samples only, yet offers enough variability to characterize sparse matrices
from real applications while avoiding a costly calibration.

Figure 3 illustrates a compact representation of the training set, with each
matrix identified by a single point (bs, bd, rd) in the 3-D space. The colors of the
points identify the optimal VFS configuration, from the perspective of energy
consumption, taking into account two scenarios: SD power only or the full node

110 S. Catalán et al.

consumption. The matrix instances in the training set are divided into three
categories, according to the size of the SpMV data (PS = MS + 2VS): “L3”,
“DDR”, and “transition”. The first category includes those instances where the
matrix data occupies less than 18 MB and involve small vectors x, y that easily fit
into the L3 cache; the second category contains those instances requiring more
than 200 MB, which therefore can only reside in the DDR; all the remaining
cases are assigned to the transition category.

Fig. 3. Optimization of SD (left) and node (right) energy consumption via VFS for the
synthetic training set, with matrices in the L3, DDR, and transition categories (top,
middle, and bottom, resp.). Color codes: �: C1; �: C2; �: C3; �: C4; �: C5; �: C6.
(Color figure online)

These results show that, for any scenario/category, there is no single config-
uration that optimizes VFS for all cases in it. For brevity, let us examine the
energy consumed by the SD (scenario) in some detail (left column of plots):

– L3: in most cases, the C5 configuration (�) is optimal.
– DDR: the C1 configuration (�) is possibly the best compromise solution. How-

ever, we can observe that, as the row density rc decreases, the C2 configuration
(�) seems to offer a fair alternative.

– Transition: the figures expose no clear winner in this case.

The plots in Fig. 3 offer a quick glance of the impact of VFS depending on the
scenario (SD or Node) and category (L3, DDR or transition). We next refine

The Impact of Voltage-Frequency Scaling 111

this information to quantify the overhead incurred by an approach that chooses
a single configuration for each scenario/category combination. Consider in par-
ticular a category consisting of s problem instances P = {p1, p2, . . . , ps}, which
are executed under a given VFS configuration Ca and scenario S, resulting in a
range of values for the energy consumption: ES ∈ {ESD, ENode}. Let us denote
by COpt(p, S) the configuration that minimizes energy consumption for a given
problem instance/scenario p/S. With these premises, Table 3 reports the relative
deviation from the energy-optimal VFS configuration for each problem category
and scenario, given (in %) by

100
s

·
s

∑

i=1

(

ES(pi, Ca) − ES(pi, COpt(pi, S))
ES(pi, COpt(pi, S))

)

.

The “L3”, “DDR”, and “Trans(ition)” columns in the table thus show the addi-
tional energy (overhead in %) that is spent if one chooses a single configuration
for all problems in the category, instead of the specific optimal configuration
for each problem instance/scenario. Let us analyze one of the scenarios in more
detail, namely the SD energy consumption. The results in the table reveal that
this excess is acceptable for the instances in the L3 and DDR categories when
choosing C5 (0.9 %) and C1 (2.4 %), respectively, but they also expose a sig-
nificant loss if a single configuration is selected for all cases in the transition
category (15.3 % in the best case, corresponding to C2).

Table 3. Deviation (in %) of energy consumption with respect to the optimal config-
uration for the synthetic training set. Best choices are highlighted in green.

Config. SD Node
L3 DDR Trans. HRD LRD L3 DDR Trans. HRD LRD

C1 26.7 2.4 18.9 23.6 7.1 39.9 3.2 27.4 34.1 10.3
C2 14.7 5.4 15.3 19.8 4.1 24.4 5.0 21.9 28.2 6.1
C3 6.9 11.2 18.9 24.6 4.9 12.3 8.8 22.4 29.8 3.6
C4 2.2 17.2 17.1 18.8 12.8 5.2 13.6 18.7 21.9 10.4
C5 0.9 23.1 17.0 14.9 22.3 0.7 17.1 15.1 14.2 17.1
C6 6.2 38.4 21.9 20.0 26.7 2.2 28.7 15.9 15.0 17.8

Motivated by the blurry behaviour of the instances in the transition cate-
gory, we next analyze these cases in more detail. Table 4 reports the SD energy
consumption for the 21 instances in this problem category, normalized with
respect to the configuration C1. The values in the table show no clear relation
between problem size, defined by n and PS , and the optimal configuration for
these instances. On the other hand, among the remaining three problem para-
meters, only the row density seems to play a role, as high row densities (HRD:
rd > 2−14) favour high frequencies, while low row densities (LRD: rd ≤ 2−14)
benefit more from a lower frequency. This criteria pushes us to split the transi-
tion category into two subcategories, LRD and HRD, yielding the deviations in
the columns labelled as “HRD” and “LRD” of Table 3, which reveal a significant

112 S. Catalán et al.

Table 4. Normalized energy consumption of SD with respect to C1 for 8-SMT and
different VFS levels. Best choices are highlighted in green.

Problem parameters Configuration
n PS bs bd rd C1 C2 C3 C4 C5 C6

(MB) (exponent)

HRD

4,096 48.1 1 -10 -2 1 0.98 1.10 0.71 0.78 0.76
4,096 48.1 4 -8 -2 1 0.79 1.01 1.12 0.70 1.12
4,096 48.1 16 -6 -2 1 1.01 0.76 0.96 0.75 0.77
4,096 48.1 64 -4 -2 1 1.06 1.20 1.04 0.74 0.83
4,096 48.1 256 -2 -2 1 0.91 0.77 0.74 1.08 1.18
4,096 48.1 1,024 0 -2 1 0.82 1.02 0.79 0.83 0.82

16,384 48.3 1 -8 -6 1 0.91 0.92 0.87 0.75 0.83
16,384 48.3 4 -6 -6 1 0.93 0.84 1.05 1.09 1.19
16,384 48.3 16 -4 -6 1 1.09 1.07 1.07 1.16 0.88
16,384 48.3 64 -2 -6 1 0.90 1.15 1.12 0.80 1.10
16,384 48.3 256 0 -6 1 1.04 0.96 1.15 0.94 0.78
65,536 49.2 1 -6 -10 1 0.97 0.91 0.91 1.06 1.00
65,536 49.2 4 -4 -10 1 0.99 1.20 0.84 1.14 1.10
65,536 49.2 16 -2 -10 1 1.11 0.99 0.95 1.16 1.11
65,536 49.2 64 0 -10 1 1.04 1.20 1.03 1.10 1.09

LRD

262,144 53.0 1 -4 -14 1 0.95 0.94 0.93 1.03 1.23
262,144 53.0 4 -2 -14 1 1.08 1.00 1.18 1.23 1.25
262,144 53.0 16 0 -14 1 1.04 1.07 1.03 1.14 1.20

10,485,766 32.0 1 0 -20 1 0.94 0.99 1.04 1.18 1.32
10,485,766 68.0 1 -2 -18 1 0.80 0.92 1.05 1.14 0.93
10,485,766 68.0 4 0 -18 1 1.03 0.94 1.05 1.10 1.17

improvement for the LRD subcategory but no relevant gain for the HRD. To
conclude this analysis of the transition cases, we note that LRD consist of just
6 instances which may be too small to derive a strong conclusion.

5.2 Validation with UFMC

The synthetic benchmark is only a small collection of sparse problems, that aims
to provide a rough approximation of the sparsity patterns present in real applica-
tions, in order to offer some guidance on the energy-optimal VFS configuration.
The motivation for this is that choosing the optimal VFS for each individual
sparse problem can be unrealistic, as that may require to execute each case at
each VFS level to make an appropriate choice. As an alternative, we trade off
accuracy (and, therefore, energy efficiency) for flexibility, by using the classifi-
cation and VFS configuration obtained with synthetic benchmark to dictate the
selection for the real applications.

We validate the energy efficiency that can be attained if we base our VFS
selection for real sparse matrices on the previous problem classification. For this
purpose, we employ 1,202 problem instances from very different real applications
in the set UFMC. Among these, 1,044 cases fit into the L3 cache, 75 can be
classified as DDR cases, and the rest belong to the transition category, with 69
in HRD and 14 only in LRD.

Table 5 displays the relative deviation from the energy-optimal VFS config-
uration and the performance-optimal configuration for the problem instances
in the UFMC. Regarding the energy, when comparing the optimal global VFS

The Impact of Voltage-Frequency Scaling 113

Table 5. Deviation (in %) of energy consumption and performance with respect to
the optimal configuration for the UFMC. Best choices are highlighted in green.

Config. SD energy Node energy Performance
L3 DDR HRD LRD L3 DDR HRD LRD L3 DDR HRD LRD

C1 28.2 1.9 17.2 17.2 41.3 3.6 26.0 34.7 -47.91 -11.63 -37.43 -44.96
C2 15.8 4.9 10.9 10.9 24.8 4.9 16.6 23.4 -38.62 -10.09 -30.59 -37.44
C3 7.1 7.7 7.7 7.4 12.6 5.9 10.8 13.1 -28.39 -6.87 -23.50 -28.17
C4 2.4 11.6 6.5 4.3 5.1 7.9 7.0 7.3 -19.21 -4.15 -17.12 -20.50
C5 0.5 19.1 5.9 2.8 0.5 13.1 3.8 2.9 -9.95 -3.18 -9.14 -11.89
C6 5.1 32.2 11.6 5.2 1.5 22.4 5.8 1.5 -0.01 -0.65 -0.28 0

configuration in the table with those in Table 3, we observe that the training set
did actually offer an appropriate guidance to select the energy-optimal VFS for
the L3, DDR and HRD cases, for both the SD and node scenarios. On the other
hand, the global energy-optimal VFS options for the UFMC problem instances
in the LRD category are C5 (SD) or C6 (node) instead of those pointed out by
the synthetic benchmark. With respect to performance, that when applying the
energy-optimal VFS this metric decreases up to 11.63 %, except for the LRD
cases where it could reach 37.44 %. Again, this is due to the fact that the train-
ing set prediction does not match the energy-optimal VFS for the UFMC cases
that fall into the LRD category. At this point, it is worth reminding that the
synthetic collection included only 6 problem instances in this category, with the
data for five of them occupying in the range of (PS=)53–68 MB. Compared with
this, the UFMC set has 14 instances in the LRD category, but only 4 of this
are in the same PS-dimension range. The fact that the samples in the (synthetic
and real) LRD category are few, and that the problem sizes for the synthetic
set and the UFMC do not overlap, explains the different energy-optimal VFS
configuration determined for each case. However, we emphasize that the LRD
category contains only 14 cases out of 1,202 real problems, which is less than
1.2 %! For the remaining 98.8 % cases, the training set did actually identify a
fair classification into categories as well as offer a good VFS selection.

A final question to investigate is the balance between the energy gains vs the
performance loss that an energy-aware VFS configuration, based on the cate-
gories/VFS levels determined from the previous experimental studies, can yield
compared with a conventional performance-oriented VFS selection that simply
runs all (real) cases at the highest VFS level. Table 6 shows that, when consider-
ing the socket+DDR (SD), an energy-aware VFS configuration can yield savings
between 3.0 % and 21.0 % with respect to the performance-oriented option, and
more reduced if we consider the full node consumption. These savings come at
a certain cost from the perspective of execution time, reporting a loss of the
energy-aware VFS configuration with respect to the performance-oriented case
that is between 9.6 % and 22.7 %.

114 S. Catalán et al.

Table 6. Average energy savings vs performance loss between the energy-optimal
and the performance-optimal VFS configurations for the UFMC (denoted as CE and
CP = C6, respectively). From previous experiments with UFMC, CE = C5 for the
problem instances in the L3 and transition categories, while CE = C1 for the DDR
cases. Performance is measured in time-per-flop.

Metric SD Node

L3 DDR HRD LRD L3 DDR HRD LRD

Energy ratio: CE/CP 1.046 1.210 1.054 1.030 1.011 1.097 1.019 0.995

Performance ratio: CP /CE 1.104 1.227 1.096 1.125 Same as SD scenario

6 Concluding Remarks

Voltage-frequency scaling (VFS) is an energy-oriented technology present in cur-
rent hardware that the operating system/programmer can leverage to adapt
the execution pace of an application without modifying the code. Unfortu-
nately, selecting the energy-optimal VFS configuration is both architecture- and
application-dependent. For the (sparse) matrix-vector product kernel, our work
shows that it is possible to rely on a portable benchmark, consisting of a reduced
number of synthetic sparse matrices, to establish a general classification of the
problems data, (according to criteria related to problem dimension and sparsity
pattern,) and to determine a global energy-optimal VFS configuration for the
matrices in each group. Our experiments on a multicore server equipped with
an IBM POWER8 show a strong dependence between energy consumption and
problem dimension, exposing an interesting trade-off between energy efficiency
and performance for this particular kernel.

Our work also analyzed the energy-delay product, with similar conclusions to
those presented in the paper for the energy efficiency. As part of future work, we
plan to investigate the energy savings that can be attained with a limited loss in
performance as well as prediction of the optimal level of concurrency throttling
from the point of view of energy efficiency.

Acknowledgements. This work was supported by project Exa2Green (under grant
agreement n◦318793) of the Future and Emerging Technologies (FET) programme
within the ICT theme of the Seventh Framework Programme for Research (FP7/2007–
2013) of the European Commission. The researchers from Universidad Jaume I were
supported by project TIN2014-53495-R of the MINECO and FEDER, and the FPU
program of MECD.

References

1. The University of Florida Sparse Matrix Collection, January 2016. http://www.
cise.ufl.edu/research/sparse/matrices/

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

The Impact of Voltage-Frequency Scaling 115

2. Aliaga, J.I., Anzt, H., Castillo, M., Fernández, J., León, G., Pérez, J., Quintana-
Ort́ı, E.S.: Unveiling the performance-energy trade-off in iterative linear system
solvers for multithreaded processors. Concurr. Comput. Pract. Exper. 27(4), 895–
904 (2015)

3. Asanovic, K., et al.: The landscape of parallel computing research: a view from
berkeley. Technical report UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, December 2006

4. Bergner, P., et al.: Performance Optimization and Tuning Techniques for IBM
Power Systems Processors Including IBM POWER8. IBM (2015). IBM Reed Books

5. Buono, D., et al.: Optimizing sparse linear algebra for large-scale graph analytics.
Computer 48(8), 26–34 (2015)

6. Byun, J.-H., Lin, R., Yelick, K.A., Demmel, J.: Autotuning sparse matrix-vector
multiplication for multicore. Technical report UCB/EECS-2012-215, EECS Dept.,
Univ. California, Berkeley (2012)

7. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. In Proceedings of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPopp 2010, pp. 115–126
(2010)

8. Dongarra, J., Heroux, M.A.: Toward a new metric for ranking high performance
computing systems. Sandia report SAND2013-4744, Sandia National Laboratories,
June 2013

9. Duranton, M., De Bosschere, K., Cohen, A., Maebe, J., Munk, H.: HiPEAC vision
2015 (2015). https://www.hipeac.org/publications/vision/

10. Guo, P., Wang, L., Chen, P.: A performance modeling and optimization analysis
tool for sparse matrix-vector multiplication on GPUs. IEEE Trans. Parallel Distrib.
Syst. 25(5), 1112–1123 (2013)

11. Hager, G., Treibig, J., Habich, J., Wellein, G.: Exploring performance and power
properties of modern multi-core chips via simple machine models. Concurr. Com-
put. Pract. Exper. 28(2), 189–210 (2016)

12. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 5th edn. Morgan Kaufmann, Waltham (2012)

13. Karakasis, V., Goumas, G., Koziris, N.: Exploring the performance-energy tradeoffs
in sparse matrix-vector multiplication. In: Workshop on Emerging Supercomputing
Technologies (WEST) - ICS 2011 (2011)

14. Kepner, J., Gilbert, J. (eds.): Graph Algorithms in the Language of Linear Algebra.
SIAM, Philadelphia (2011)

15. Lefurgy, C., Wang, X., Ware, M.: Server-level power control. In: Proceedings of
the 4th IEEE Conference on Autonomic Computing (ICAC 2007), Jacksonville,
Florida, USA, 11–15 June, 2007

16. Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-core processors. In: Proceedings of the 27th Inter-
national Conference on Supercomputing, Eugene, Oregon, USA, pp. 273–282, June
2013

17. Lucas, R.: Top ten Exascale research challenges (2014). http://science.energy.gov/
∼/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf

18. Malkowski, K.: Co-adapting Scientific Applications and Architectures Toward
Energy-efficient High Performance Computing. Ph.D. thesis, University Park, PA,
USA (2008) AI3346339

https://www.hipeac.org/publications/vision/
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140210/Top10reportFEB14.pdf

116 S. Catalán et al.

19. Malossi, A.C.I., Ineichen, Y., Bekas, C., Curioni, A., Quintana-Ort́ı, E.S.: Perfor-
mance and energy-aware characterization of the sparse matrix-vector multiplica-
tion on multithreaded architectures. In Proceedings of 43rd International Confer-
ence on Parallel Processing (ICCP), Minneapolis (MN), USA, pp. 139–148 (2014)

20. Malossi, A.C.I., Ineichen, Y., Bekas, C., Curioni, A., Quintana-Ort́ı, E.S.: System-
atic derivation of time and power models for linear algebra kernels on multicore
architectures. Sustainable Comput. Inf. Syst. 7, 24–40 (2016)

21. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
22. Vuduc, R.: Automatic performance tuning of sparse matrix kernels. Ph.D. disser-

tation, Univ. California, Berkeley, January 2004
23. Williams, S., et al.: Optimization of sparse matrix-vector multiplication on emerg-

ing multicore platforms. Parallel Comput. 35(3), 178–194 (2009)

Power Consumption Modeling and Prediction
in a Hybrid CPU-GPU-MIC Supercomputer

Alina Ŝırbu1,2(B) and Ozalp Babaoglu2

1 Department of Computer Science, University of Pisa, Pisa, Italy
alina.sirbu@unipi.it

2 Department of Computer Science and Engineering,

University of Bologna, Bologna, Italy

Abstract. Power consumption is a major obstacle for High Perfor-
mance Computing (HPC) systems in their quest towards the holy grail
of ExaFLOP performance. Significant advances in power efficiency have
to be made before this goal can be attained and accurate modeling is an
essential step towards power efficiency by optimizing system operating
parameters to match dynamic energy needs. In this paper we present
a study of power consumption by jobs in Eurora, a hybrid CPU-GPU-
MIC system installed at the largest Italian data center. Using data from a
dedicated monitoring framework, we build a data-driven model of power
consumption for each user in the system and use it to predict the power
requirements of future jobs. We are able to achieve good prediction
results for over 80 % of the users in the system. For the remaining users,
we identify possible reasons why prediction performance is not as good.
Possible applications for our predictive modeling results include schedul-
ing optimization, power-aware billing and system-scale power modeling.
All the scripts used for the study have been made available on GitHub.

Keywords: Job power modeling · Job power prediction · High
performance computing · Hybrid system · Support vector regression

1 Introduction

A major impediment for supercomputers from reaching the ExaFLOP target
is power consumption. Energy efficiency of computing systems has to increase
by at least one order of magnitude to achieve this goal [1]. This requires power
optimization at all levels of hardware and software, including computation, net-
working and cooling. Numerous power modeling studies have been conducted in
recent years towards these goals. Models can enable prediction of power usage
under different scenarios, and indicate operating modes that optimize energy
needs. Optimization can be obtained not only at low levels, e.g. through fre-
quency and voltage scaling present in most modern CPUs, but also at higher
levels, e.g. through power-aware scheduling, which has not been extensively
studied.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 117–130, 2016.
DOI: 10.1007/978-3-319-43659-3 9

118 A. Ŝırbu and O. Babaoglu

In this paper, we model power needs of jobs in a hybrid CPU-GPU-MIC
system (Eurora) with the aim of predicting power consumption of future jobs
before they are started. Among other benefits, accurate prediction could enable
development of advanced power-aware schedulers that can optimize power for the
same workload. Eurora is a prototype supercomputer that topped the Green500
list in July 2013 for energy efficiency. It includes an advanced monitoring frame-
work that collects status data in an open-access database [1], which we use to
extract important features that enable prediction of job power consumption.
The prediction problem is formulated as a regression task: given feature values
(independent variables), compute the power consumption for a job (dependent
variable). We divide this task into subproblems corresponding to each compo-
nent type (CPU, GPU, MIC), and use Support Vector Regression (SVR) [16]
for each individual problem. The total job power is then obtained as the sum of
the individual component power consumptions.

This paper makes several contributions to power research for HPC systems.
First, it identifies several features relevant to job power consumption in hybrid
systems, supported by data examples. These include features not previously con-
sidered when modeling power such as application names, same-node resources
used by other jobs and job running times. We model power exclusively through
job-related features and do not require knowledge of CPU frequencies, load or
application code structure to extract the sequence of executed operations. Sec-
ond, we build power consumption models for each user starting from historical
data and employing SVR. Models are shown to have high predictive power for
most users. Third, we perform an analysis of power consumption variability for
the system to provide context for the model error levels, and explain model lim-
itations. Finally, we outline a methodology to implement the prediction frame-
work in real time and discuss application scenarios. We used the Google Big-
Query data analytics service [17] for the initial data analysis phase, while model
training was done using the scikit-learn python package [9]. We have made all
of the scripts used for our study available on GitHub [6].

2 The Eurora System and its Data

Eurora [5] is a prototype HPC system hosted at CINECA (www.cineca.it) that
combines the use of CPUs, GPUs and MICs to achieve higher power efficiency. It
remained in production for over 2 years from2013 to 2015.The systemconsists of 64
nodes, each hosting two 8-core Intel Xeon E5 CPUs and two expansion cards that
can contain either GPU or MIC accelerator modules. There are 3 different classes
of CPUs based on their maximum frequencies: 2.1 GHz (the slow class, denoted as
S and present at 24 nodes), 2.2 GHz (the medium class, denoted as M and present
at 8 nodes) and 3.1 GHz (the fast class, denoted asF and present at 32 nodes). Half
of the nodes mount GPUs (Nvidia Tesla Kepler) while the other half mount Intel
“Knights Corner” MIC (Xeon Phi). All nodes run CentOS Linux. The workload is
handled through the Portable Batch System (PBS).

www.cineca.it

Power Consumption Modeling and Prediction 119

Eurora contains an extensive monitoring subsystem which collects high reso-
lution (5-second intervals) status data from system components, including power
and cooling infrastructures [1]. Log data for the period 31 March 2014 to 11
August 2015 is available (250 GB of data in 328 tables), with several gaps due to
system/monitoring errors or database migration operations. The work reported
in this paper is based on these data for computing power consumption per job
and building a prediction framework for estimating future job power. We lim-
ited our study to the data from 2014 since the system underwent several changes
in 2015 and became more unstable. Workload information provided the num-
ber of resources used by each job on each node at 5-min resolution. Although
this number is known, it is impossible to extract from the data exactly which
CPU/GPU/MIC is being used out of the two available on each node. Power logs
allowed us to compute power consumption for each component (CPUs, GPUs
and MICs) on each node, again every 5 min. Power data is known only at the
level of CPU, GPU and MICs but is not available for the cores.

Combining workload and power data, we computed at 5-min intervals the
overall power usage of a job j as the sum of the power of each component type:

P j = P j
S + P j

M + P j
F + P j

GPU + P j
MIC (1)

Power for each component type is computed by summing over all used nodes.
For example, for the F CPU type, P j

F =
∑

i∈nodes P
j
F (i) where P j

F (i) is the
power used by job j at a fast CPU on node i. If the job does not use node i
or if CPU type F is not present at node i, the corresponding power is assumed
to be 0. Denoting the number of cores used by job j on node i as nj(i) and
that used by other jobs as nother(i), the number of free cores at node i is given
by nidle(i) = 16 − nj(i) − nother(i) (recall that each node contains two 8-core
CPUs). Let PF (i) denote the total power recorded for the fast CPU type at node
i. Then, the power used by job j at a fast CPU on node i is computed based
on the number of cores used by job j in relation to the total number of cores at
the node, the number of cores used by other jobs and the total power recorded
at the node for that CPU type:

P j
F (i) = nj(i)

PF (i) − P̂F × nidle(i)
nj(i) + nother(i)

(2)

where P̂F denotes the average power consumed by a single F type CPU core
when it is idle. We estimate this quantity from the log data by dividing the total
power consumed by an idle CPU of type F by the number of cores (which is
8). The same procedure is repeated for the remaining types M , S, GPUs and
MICs. This procedure may introduce some noise in calculating job power, since
it assumes that when two jobs share the same node, the power usage is evenly
distributed across used components (e.g., cores). It is highly unlikely that this
assumption holds since jobs have different power needs, yet it is necessary in
order to be able to use the entire job set in our study, since many jobs indeed
share nodes with other jobs.

120 A. Ŝırbu and O. Babaoglu

(a) Three jobs with same name and same
number of cores, but allocated on different
classes of CPUs.

(b) Power consumption of a single job
throughout its execution.

(c) Two jobs with same name and same
number of cores, but allocated on different
number of nodes.

(d) One job with variable number of cores
in use by other users on the same nodes.
The job itself uses 16 cores on 4 nodes.

Fig. 1. Power consumption for various jobs.

3 Power Model

3.1 Features

Power consumption of a job can depend on several factors. One is the number of
components of each type used by the job. A job using 16 cores will most likely
use more power than a job using only 8 cores. A related factor is the type of
core being used, with faster class cores using more power than slower class cores
(e.g. Fig. 1a). The structure of the application is also important. A job can have
periods of high power usage and other periods of lower power usage, although
the number of components in use remains the same (e.g. Fig. 1b). These patterns
can be captured by including the runtime as a feature (i.e., the time since the
job started). We also use the job name, a user-defined string, to identify the
application. We performed a textual analysis, using the CountVectorizer class
in the scikit-learn python package [9], checking which n-grams of 2 and 3 letters
are present in the job names. This resulted in a set of numerical features that
count how many times each n-gram appears.

The distribution of resources is also important. Figure 1c shows two jobs
running the same application using 16 cores, however one job is allocated one
node while the other two nodes, causing differences in power. A related factor is
the load of a node that is partially used by a job. Figure 1d shows an example
job using 16 cores on 4 nodes, together with the number of cores used by other
jobs on the same nodes at the same time. We see a negative correlation between
power and cores used by other jobs, so we include the same-node used cores as
features.

Power Consumption Modeling and Prediction 121

To summarize, for each job we extracted the number of components of each
type used (S, M , F , GPU, MIC), runtime, name (occurrence of n-grams of size
2 and 3), number of nodes and same-node components used by other jobs as
regression features, and the power as regression target. These were computed at
5-min intervals, resulting in numerous data points per job. Google BigQuery [17]
was used, enabling analysis of large amounts of data in a reasonable amount of
time.

3.2 Regression Problem and Training Procedure

Since power is measured for each component type, we divided the problem of
predicting power per job into 5 subproblems, corresponding to the terms on the
right side of Eq. 1. Hence, for each user we perform 5 regression analyses, one for
each component type, and then sum the predicted component powers to obtain
an estimate for the global job power. In practice, most users use only 2 or 3
component types, so regression is only performed for those. We use SVR with
Radial Basis Function (RBF) kernels [16]. To simulate the realistic scenario
where power prediction is based on user histories, we train new models on a
monthly basis using all past data, and then apply the models to new data for
the current month. Here we show results for October 2014: models are trained
on data prior to October 1st and then applied to all data recorded in October.

Training consists of two steps. First, SVR meta-parameters have to be opti-
mized for each user and each component type. We use cross-validation to find
optimal values. That is, all past data is divided into a “train” subset and a
“test” subset. We use the first 80 % of the jobs of each user as training data,
and the last 20 % as test data. Then multiple models are trained with a range of
parameter values and the combination that produces the best results on the test
data is selected. Second, a new final model is trained with the optimal parameter
combination, using all past data in training (merging the train and test dataset).
This ensures that all available past information is included in the model.

Table 1. Number of users analyzed for each component type and globally.

Component type S M F GPU MIC Global

Users 21 20 27 9 2 34

Once the final model is available for each user and component type, it can be
applied for one month to new unseen data. Power is predicted for the individual
components and then summed to obtain global job power. To avoid poor predic-
tion due to limited training, we only analyzed those users for which historical
data included at least 1,000 total data points, at least 10 jobs totaling at least
100 time points for each component type, and at least 10 data points to apply
the model to. Table 1 shows the number of users analyzed for each component
type and globally. For all users, a total of 435,079 data points from 22,130 unique

122 A. Ŝırbu and O. Babaoglu

jobs were used to build the model (data before October), which was then applied
to 53,717 new points from 5,039 unique jobs (October data).

3.3 Evaluation

We will compare results of our multiple-SVR model with a simple Enhanced
Average Model (EAM). For each user, the EAM computes the average power used
per component unit (core, GPU, MIC), based on historic data. Then job power
for each component is predicted by multiplying the number of component units
by the average power per unit. For instance, if a job j of user u uses nj

F F cores
and the historical usage for one F core for the user is P̄u

F , then P j
F = nj

F × P̄u
F .

All other terms in Eq. 1 are computed in a similar fashion and then summed
to obtain total job power. This model is an enhanced version of the so called
“average model”, which would compute job power just by averaging historical
data, without taking into account the number of components used. Even so, it
is much simpler than our multiple-SVR approach. Training is straightforward
as it only requires computing averages per user, while application of the model
requires knowing only the number of components used.

The models were evaluated using two standard criteria for regression: the
(mean-)normalized-root-mean-squared-error (NRMSE) and R-squared (R2):

NRMSE =

√

(
∑N

i=1 (Pi − P ∗
i)2)/N

P̄
(3)

R2 = 1 −
∑N

i=1(Pi − P ∗
i)2

∑N
i=1(Pi − P̄)2

(4)

where N is the number of data points considered across the jobs of the user, P ∗
i

and Pi are the predicted and real powers for data point i, respectively, while P̄
is the average of the real power over all N data points.

To provide context for the errors reported, it is important to understand
the natural fluctuations of power consumption at constant load — the noise
levels. Power usage can vary for the same workload on the same node, due
to hardware-related noise, such as variations in the production process which
may generate different electrical behaviors across same-type cores, or adaptive
mechanisms for performance optimization [12]. Additionally, there is software-
related noise, introduced by operating system interference, external interrupts
or shared resource contention [8]. Noise has a negative impact on power model
performance since random fluctuations are not captured by model features, hence
cannot be reproduced through regression. Thus, we cannot expect model errors
to be less than the noise levels. This has been shown to affect performance of
models by reducing the maximum accuracy they can obtain [12].

In the case of Eurora, undesired software and hardware variability between
nodes was previously shown to reach up to 20 % (5 % software and up to 15 %
hardware) [8]. Here, we look at within-node variability at constant load for CPUs
and GPUs. Specifically, we computed the coefficient of variation (CV) of power

Power Consumption Modeling and Prediction 123

Fig. 2. Variability of power consumption. The bars represent the coefficient of variation
(CV) of power at fixed load, averaged over all loads, for each node and component type
in the system. (Color figure online)

at various load levels, and averaged over all loads for each component. For MICs,
load information is not available so we could only analyze power at 0 load. The
variability observed may come from different sources, however we evaluate them
together since we are interested only in an overall value to be used as a baseline
for quantifying our errors. Figure 2 shows average CV values for all 64 nodes,
per component type. The M CPUs show on average largest fluctuations, with
most nodes reaching over 20 %. Most S, F and GPU components have average
fluctuations under 20 %. However, some nodes in all categories display much
larger fluctuations, even over 100 %. For MICs (not shown in the figure since
load data is unavailable), idle power fluctuates on average by 10.24 % and we
expect this value to be larger at larger loads. Hence, based on our data analysis
and based on previous studies, in this work we consider NRMSE values < 0.2
(20 %) to be good performance, since they are within the natural fluctuations of
the individual components.

We included here both the R2 and NRMSE evaluation criteria because they
are complementary: the NRMSE looks at overall fit and gives a measure relative
to the mean value, while R2 looks at the general shape of the time series and gives
a measure relative to the variations in the data. Additionally, they are affected
differently by noise. For instance, if the power levels for a user are relatively flat,
and vary only due to noise, the R2 measure becomes irrelevant. This because
R2 looks at the ‘shape’ of the data, which in this case is entirely determined by
local fluctuations, which cannot be reproduced by any model. However, a model
can still capture average behavior which is the best performance possible, but
which will correspond to low R2. In this case the NRMSE provides additional
information, with a NRMSE value similar to the noise level considered a good
performance. Conversely, when a user has highly variable power consumption
for jobs, NRMSE can be large due to a few data points, but the model can still
contain useful information, reflected in the R2 measure. In the following we will
consider NRMSE > 0.2 or R2 > 0.5 to be a very good result.

In our data, the distribution of job power for each user is very heterogeneous,
with users ranging from those having jobs with stable power requirements to
those showing very large differences across jobs and time, justifying the use of

124 A. Ŝırbu and O. Babaoglu

Fig. 3. Distribution of variability of power across jobs and time for each user. Vari-
ability for each user is computed as the normalized entropy of the distribution of job
power levels recorded in time for that user. The plot shows a histogram of all entropies
for the users active in the month of October 2014. (Color figure online)

both NRMSE and R2. Figure 3 shows the distribution of variability in job power
for all users active during the month of October 2014, for each component type.
To quantify the variability for each user, we obtained the distribution of the
power levels for that user, by collecting the data in bins of size 20 W in the range
[0 W, 500 W], and computed the entropy of this distribution, normalized by the
maximum entropy possible (logarithm of the number of bins). The normalized
entropy is a measure of spread of the distribution, with 0 meaning all data fell
into one bin and 1 meaning power levels are uniformly distributed across all
bins. So, a user with 0 entropy has very flat power levels, while a user with high
entropy has very large differences between power levels. As Fig. 3 shows, our
data contains users with a wide range of entropies, hence we are dealing with a
very heterogeneous user population.

4 Model Performance

Once meta-parameters are explored using cross-validation with data prior to
October 1st, 2014, the best meta-parameter combination is selected and a new
final model is trained on all data prior to October. One SVR model is obtained
for each user and each component type, which are then combined into a global
model for each user. Table 2 shows prediction performance for all users (all jobs
concatenated), for each component type, throughout the month of October. For
components S and GPU, both R2 and NRMSE values are very good. For F ,
NRMSE is quite high, however R2 is also very large, so the model contains
useful information. The high NRMSE is due to the fact that one user has jobs
that consume much more power than others (over 3 KW versus under 500 W
for others), so a relatively small error in that user will produce a large overall
NRMSE (due to the fact that the normalizing factor depends on all jobs of all
users). If we remove the user with jobs consuming over 3KW, then we obtain
R2 = 0.89 and NRMSE = 0.26 which are very good considering the noise levels

Power Consumption Modeling and Prediction 125

for the F CPUs shown in Fig. 2. For M CPUs, which showed highest noise in
Fig. 2, performance is somewhat lower. R2 does not reach the 0.5 threshold, albeit
very close, while NRMSE is around 33 %. This shows how power fluctuations can
affect model performance. Even so, the model is better than the average model
(R2 much larger than 0). For the MIC component, the amount of data is more
reduced, which can be one reason for the lower performance. Only two MIC users
exist, one with very good and another with lower prediction performance.

Table 2. Performance of the SVR and EAM for individual components.

S M F GPU MIC

SVR NRMSE 0.13 0.33 0.52 0.15 0.28

SVR R2 0.87 0.47 0.92 0.84 0.34

EAM NRMSE 0.13 0.37 1.34 0.24 0.28

EAM R2 0.87 0.34 0.52 0.59 0.31

If we compare the SVR models with the EAM, for which results are also
shown in Table 2, we note that the SVR has better performance on all component
types except for S. For the S class, the SVR and EAM are comparable, meaning
that jobs using this component are quite predictable and power depends mostly
on the number of components used. Significantly better performance of the SVR
can be seen for the F and GPU components, which are also the most used across
the cluster. This increase in performance means jobs are much more complex and
additional SVR features are important in predicting the power outcome.

While Table 2 shows how the model behaves on the individual components,
it is total job power (global model) that interests us the most. Figure 4 shows the
power time series (predicted and real) for the total job power (i.e., after applying
Eq. 1), using the SVR model. Given the presence of that one user with very high
job power, NRMSE is again large, however R2 is very good. Again, by removing
this user, NRMSE reduces to 21 %, meaning our model has an overall accuracy
of 79 % for all other jobs of October, while R2 stays high at 0.87. Compared to
the EAM (global NRMSE = 0.91 and R2 = 0.53), NRMSE of the SVR is 40 %
that of the EAM, while R2 is improved by 70 %.

Model performance varies also from user to user. Figure 5 plots global model
NRMSE versus R2 for each user, for both the SVR and EAM. In general, the
SVR outperforms the EAM (in the plot, stars are located south-east of the
corresponding circle), however there are a few users for which the EAM is better.
For these, one is better off using the EAM for predictions. Out of a total of 34
users analyzed, 27 have SVR NRMSE ≤ 0.2 or R2 ≥ 0.5, and 7 (20 %) have lower
performance. For the latter, a weak SVR model corresponds also to a weak EAM
model. Poor performance could be due to noise, indicated by the fact that jobs
of these users use partial node resources (i.e., 1 out of 2 MICs or 1 out of 16
cores) or run on nodes with high variability, being thus more prone to noise.

126 A. Ŝırbu and O. Babaoglu

Fig. 4. Global real and predicted total power consumption (components summed
together). For each job, the power was computed at 5-min intervals, with the plot
showing all power values for all users and jobs. The top panel shows all users, while in
the lower panel the first user with high power values was eliminated.

Fig. 5. Global model performance per user, NRMSE vs R2. Circles show performance
for the EAM, while stars show performance for the multiple-SVR model. Each cir-
cle/star corresponds to one separate user. For each user, the two model types (EAM
and SVR) are connected by an edge. For figure readability, data points with very low
negative R2 values have been mapped to −2.0.

5 Related Work

Power monitoring, modeling and optimization have been major research concerns
in recent years. Modern computing units embed advanced control mechanisms

Power Consumption Modeling and Prediction 127

such as the Dynamic Frequency and Voltage Scaling that aim to optimize per-
formance and can affect power levels, making modeling problematic even for
a single computational unit [12]. Several models trying to explain the relation
between frequency, load, hardware counters and power for single units have been
introduced for multicore CPUs [7,14] and GPUs [18]. Model performance ranges
widely depending on the applications running, with errors between 3.65 and
14.4 % for the CPU case, and between 1.7 % and 27.7 % for GPUs. These errors
are only expected to grow when multiple units have to be combined, as is the
case for HPC systems. Our approach is very different in that we are modeling
power consumption per job, not per component. Additionally, our model does
not require direct measures of load and frequency, which are typically not known
in advance, but only workload measures which are known when the job starts.

Some work in modeling job or application power consumption has appeared
recently. Performance counters are used to model application power on three
small scale HPC platforms by [13]. GPU CUDA kernels are analyzed in [11],
again based on job performance counters. These methods are very different from
ours, since they require instrumenting the applications to extract signatures
and performance counters, while we only use the number of resources required,
making it much more straightforward to apply. An approach more similar to
ours was recently introduced in [15] which uses the number of nodes used by
applications as model input, with very good precision (errors between 0 and
5.2 % per application). A more detailed model is introduced in [4] where a Hidden
Markov Model is used to represent job states and transitions. All these methods
build one model per job, while we are trying to explore user patterns as well.
Building one model per user has several advantages including larger training
datasets and greater robustness to inaccurate use of job names by HPC users
(e.g., when the user gives the same job name to different applications, or various
names to the same application). Additionally, unlike other methods, our model
applies to hybrid jobs using CPUs, GPUs and MICs.

On the road towards ExaFLOP performance, special attention has been
given to system-level power consumption by clusters. Recent work at Google [10]
describes the use of Artificial Neural Networks to model Power Usage Effective-
ness using a mixture of workload and cooling features. System-level prediction of
power consumption is also one application of our predictive model. In terms of
power-aware scheduling, another possible application of our models, the authors
in [2,3] introduce a method based on Constraint Programming, to achieve power
capping on Eurora, the same HPC system analyzed here. This could benefit
greatly from power prediction offered by our framework.

6 Discussion and Conclusions

We presented an analysis of historical trace data from Eurora, and evaluated
prediction models for power consumption of jobs. The method is fully data driven
— no assumptions about the model structure nor additional instrumentation
of application code are required. The only application-aware feature is the job

128 A. Ŝırbu and O. Babaoglu

name, making our method easily applicable to any system even when application
code is not available. The power of our prediction derives from user history
rather than from application counters, and our results show that when enough
data is available, high performance can be achieved. We employ a multiple-
SVR model to estimate job power in time. One model per user is trained. An
alternative would have been to build one model per application (job name) but
this would have meant much less training data per model. Additionally, learning
from user profiles can allow for user trends to be captured, maintaining high
quality predictions even if job names are not properly employed by users (e.g.,
using the same name for different applications or many different names for the
same application).

The multiple-SVR approach is compared to an enhanced average model
(EAM) where power depends only on the number of components used. The
SVR outperforms the EAM approach for most users, obtaining good prediction
(error under 20 % or R2 ≤ 0.5) for 80 % of the users analyzed. For the rest of
the users, indications are that performance is affected by noise.

The approach is intended to be used in real time, where predictions are made
as new jobs arrive at the scheduler. Online application consists of training the
model for each user, then applying it to real time data, by employing the proce-
dure outlined in this work. Periodically, the model is updated by incorporating
recent data into the training dataset. We expect monthly model updates to be
sufficient in order to capture changes in job structure. available, prediction can
be improved by training the multiple-SVR model.

In terms of resources, our analysis was performed on a 516-node CentOS
7.0 cluster, with 2 octa-core 2.40 GHz Intel Xeon CPUs per node. Since our
problem is intrinsically parallel, we obtained each model separately on one core.
Running times depended on the user (different amounts of data available) and
on the meta-parameters. Meta-parameter optimization required a total of 185.36
core-hours for all users, with a maximum running time for one optimization
run of 4.66 h. Global model training for all users required at total of 2.92 core-
hours (maximum for one user was 1.7 h), while model application to all the data
of October took only 6.81 min for all users. Consequently, if parallelized on a
multi-core platform, the entire process incurs little overhead, especially given
that the training procedure has to be repeated only once a month. We expect
the method to scale to systems that are much larger than Eurora, since the
analysis is performed separately for each user and can be easily parallelized.

The predictions presented here can be improved through more detailed data
on job characteristics (e.g., exact application names, input datasets and para-
meters) and more detailed power monitoring (e.g., power per core rather than
per CPU), work which we will undertake in the future after obtaining improved
datasets. Furthermore, we plan to use our predictions in several applications to
optimize system functionality. The first is modeling and prediction of system
level power consumption, including networking equipment, IO systems and even
cooling infrastructure, starting from prediction of job power. Secondly, our app-
roach is applicable to power-aware scheduling, where the scheduler can estimate

Power Consumption Modeling and Prediction 129

power usage for various job allocation schemes and select the best among them.
Thirdly, our method can be employed by users to estimate power for their jobs
before submission, which can facilitate better management of resources by the
users, especially in the context of power-aware billing.

Acknowledgments. BigQuery analysis was carried out through a generous Cloud
Credits grant from Google. We are grateful to Prof. L. Benini and Dr. A. Bartolini for
useful discussions regarding the data and to the HPC group at CINECA, in particular
Dr. E. Rossi and Dr. C. Cavazzoni for providing access to the CINECA systems. We
acknowledge the CINECA ISCRA PACNA and PM-HPC awards allowing access to
HPC resources and support. This work was partially funded by the European project
SoBigData Research Infrastructure — Big Data and Social Mining Ecosystem under
the INFRAIA-H2020 program (grant agreement 654024).

References

1. Bartolini, A., et al.: Unveiling eurora-thermal and power characterization of the
most energy-efficient supercomputer in the world. In: DATE 2014 (2014)

2. Borghesi, A., et al.: MS3: a Mediterranean-stile job scheduler for supercomputers-
do less when it’s too hot! In: HPCS 2015, pp. 88–95 (2015)

3. Borghesi, A., Collina, F., Lombardi, M., Milano, M., Benini, L.: Power capping in
high performance computing systems. In: Pesant, G. (ed.) CP 2015. LNCS, vol.
9255, pp. 524–540. Springer, Heidelberg (2015)

4. C. Storlie, C., et al.: Modeling and predicting power consumption of high perfor-
mance computing jobs. arXiv preprint arXiv:14125247 (2014)

5. Cavazzoni, C.: Eurora: a european architecture toward exascale. In: Future HPC
Systems: the Challenges of Power-Constrained Performance. ACM (2012)

6. Ŝırbu, A., Babaoglu, O.: BigQuery and Python scripts. Github (2016). http://
github.com/alinasirbu/eurora job power prediction

7. Dargie, W.: A stochastic model for estimating the power consumption of a proces-
sor. IEEE Trans. Comput. 64(5), 1311–1322 (2015)

8. Fraternali, F., et al.: Quantifying the impact of variability on the energy efficiency
for a next-generation ultra-green supercomputer. In: ISLPED 2014, pp. 295–298
(2014)

9. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

10. Gao, J.: Machine learning applications for data center optimisation. Google White
Paper (2014)

11. Nagasaka, H., et al.: Statistical power modeling of GPU kernels using performance
counters. In: IGCC 2010, pp. 115–122 (2010)

12. McCullough, J.C., et al.: Evaluating the effectiveness of model-based power char-
acterization. In: USENIX ATC 2011, vol. 20 (2011)

13. Witkowski, M., et al.: Practical power consumption estimation for real life HPC
applications. Future Gener. Comput. Syst. 29(1), 208–217 (2013)

14. Gschwandtner, P., et al.: Modeling CPU energy consumption of HPC applications
on the IBM Power7. In: PDP 2014, pp. 536–543 (2014)

15. Shoukourian, H., Wilde, T.: Predicting the energy and power consumption of strong
and weak scaling HPC applications. Supercomp Front Innov. 1(2), 20–41 (2014)

http://arxiv.org/abs/14125247
http://arXiv.org/abs/14125247
http://github.com/alinasirbu/eurora_job_power_prediction
http://github.com/alinasirbu/eurora_job_power_prediction

130 A. Ŝırbu and O. Babaoglu

16. Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf.
Process. Syst. 9, 155–161 (1997)

17. Tigani, J., Naidu, S.: Google BigQuery Analytics. Wiley, Hoboken (2014)
18. Ma, X., et al.: Statistical power consumption analysis and modeling for GPU-based

computing. In: ACM SOSP HotPower 2009 (2009)

Scheduling and Load Balancing

Controlling and Assessing Correlations
of Cost Matrices in Heterogeneous Scheduling

Louis-Claude Canon(B), Pierre-Cyrille Héam, and Laurent Philippe

FEMTO-ST Institute/CNRS – Université de Franche-Comté/UBFC,
25000 Besançon, France

{louis-claude.canon,pierre-cyrille.heam,laurent.philippe}@univ-fcomte.fr

Abstract. This paper considers the problem of allocating independent
tasks to unrelated machines such as to minimize the maximum com-
pletion time. Testing heuristics for this problem requires the generation
of cost matrices that specify the execution time of each task on each
machine. Numerous studies showed that the task and machine hetero-
geneities belong to the properties impacting heuristics performance the
most. This study focuses on orthogonal properties, the average correla-
tions between each pair of rows and each pair of columns, which is a
proximity measure with uniform instances (Uniform instances are par-
ticular unrelated instances in which each execution time is proportional
to the weight of the task and the cycle time of the machine.). Cost matri-
ces generated with a novel generation method show the effect of these
correlations on the performance of several heuristics from the literature.
In particular, EFT performance depends on whether the tasks are more
correlated than the machines and HLPT performs the best when both
correlations are close to one.

1 Introduction

The problem of scheduling tasks on processors is central in parallel comput-
ing science because it supports parts of the grid, computing centers and cloud
systems. Considering static scheduling, the problem is deterministic, although
complex, because all the data are known a priori. In the case of independent
tasks running on a heterogeneous platform and with the objective of minimiz-
ing the total execution time [13,14], the performance1 of any scheduling algo-
rithm depends on the properties of the input cost matrix and generating input
instances is thus a crucial problem in algorithm assessment [5,7]. In a previous
study [8], we have proposed heterogeneity measures and procedures to control
this property when generating cost matrices. In particular, we showed that the
heterogeneity was previously not properly controlled despite having a significant
impact on the relative performance of scheduling heuristics. However, the pro-
posed measures prevent tuning how the machines are related to one another in

1 The performance of any algorithm for this NP-Hard problem is given by the differ-
ence between the obtained total execution time and the minimum one.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 133–145, 2016.
DOI: 10.1007/978-3-319-43659-3 10

134 L.-C. Canon et al.

terms of processing time, i.e., if the execution times are proportional and depend
on a task weight and a machine cycle time.

In this paper, we propose to investigate a continuum of instances between
the uniform case and the unrelated case. The contribution2 is a measure, the
correlation, to explore this continuum, its analysis in existing generation methods
and existing studies (Sect. 3), a new generation method with better correlation
properties (Sect. 4) and its analysis on several heuristics (Sect. 5) and, last, the
confrontation of the correlation to a related measure (Sect. 6).

2 Related Work

The validation of scheduling heuristics in the literature relies mainly on two gen-
eration methods: the range-based and CVB methods. The range-based method
[4,5] generates n vectors of m values that follow a uniform distribution in the
range [1, Rmach] where n is the number of tasks and m the number of machines.
Each row is then multiplied by a random value that follows a uniform distrib-
ution in the range [1, Rtask]. The CVB method is based on the same principle
except it uses more generic parameters and a distinct underlying distribution. In
particular, the parameters consist of two CV3 (Vtask for the task heterogeneity
and Vmach for the machine heterogeneity) and one expected value (μtask for the
tasks). The parameters of the gamma distribution used to generate random val-
ues are derived from the provided parameters. An extension has been proposed
to control the consistency of any generated matrix:4 the rows in a submatrix
containing a fraction a of the initial rows and a fraction b of the initial columns
are sorted.

The shuffling and noise-based methods were later proposed in [7,8]. They
both start with an initial cost matrix that is equivalent to a uniform instance
(any cost is the product of a task weight and a machine cycle time). The former
method randomly alters the costs without changing the sum of the costs on each
row and column. This step introduces some randomness in the instance, which
distinguishes it from a uniform one. The latter relies on a similar principle: it
inserts noise in each cost by multiplying it by a random variable with mean
one. Both methods require the parameters Vtask and Vmach to set the task and
machine heterogeneity. In addition, the amount of noise introduced in the noise-
based method can be adjusted through the parameter Vnoise.

This study focuses on the average correlation between each pair of tasks
or machines in a cost matrix. No existing work explicitly considers this prop-
erty. The closest work is the consistency extension in the range-based and CVB
methods mentioned above. The consistency extension could be used to generate
cost matrices that are close to uniform instances because cost matrices corre-
sponding to uniform instances are consistent. However, this mechanism modifies
2 These results are also available in the companion research report [6].
3 The Coefficient of Variation is the ratio of the standard deviation to the mean.
4 In a consistent cost matrix, any task faster than another task on a given machine

will be consistently faster than this other task on any machine.

Controlling and Assessing Correlations of Cost Matrices 135

the matrix row by row, which makes it asymmetric relatively to the rows and
columns. This prevents its direct usage to control the correlation.

The TMA (Task-Machine Affinity) quantifies the specialization of a platform
[1,2], i.e., whether some machines are particularly efficient for some specific tasks.
This measure proceeds in three steps: first, it normalizes the cost matrix to make
the measure independent from the matrix heterogeneity; second, it performs the
singular value decomposition of the matrix; last, it computes the inverse of the
ratio between the first singular value and the mean of all the other singular
values. The normalization happens on the columns in [2] and on both the rows
and columns in [1]. If there is no affinity between the tasks and the machines (as
with uniform machines), the TMA is close to zero. Oppositely, if the machines
are significantly specialized, the TMA is close to one. Additionally, Khemka
et al. [12] claims that high (resp., low) TMA is associated with low (resp., high)
column correlation. This association is however not general because the TMA
and the correlation can both be close to zero. See Sect. 6 for a more thorough
discussion on the TMA.

The range-based and CVB methods do not cover the entire range of possible
values for the TMA [2]. Khemka et al. [12] propose a method that iteratively
increases the TMA of an existing matrix while keeping the same MPH and TDH.
A method that generates matrices with varying affinities (similar to the TMA)
and which resembles the noise-based method is also proposed in [3]. However, no
formal method has been proposed for generating matrices with a given TMA.

3 Correlation Between Tasks and Processors

As stated previously, the unrelated model is more general than the uniform
model and all uniform instances are therefore unrelated instances. Let U =
({wi}1≤i≤n, {bj}1≤j≤m) be a uniform instance with n tasks and m machines
where wi is the weight of task i and bj the cycle time of machine j. The cor-
responding unrelated instance is E = {ei,j}1≤i≤n,1≤j≤m such that ei,j = wibj
is the execution time of task i on machine j. Our objective is to generate unre-
lated instances that are as close as desired to uniform ones. On the one hand,
all rows are perfectly correlated in a uniform instance and this is also true for
the columns. On the other hand, there is no correlation in an instance generated
with nm independent random values. Thus, we propose to use the correlation to
measure the proximity of an unrelated instance to a uniform one.

Correlations Properties. Let ei,j be the execution time for task i on
machine j. Then, we define the task correlation as follows:

ρtask � 1
n(n − 1)

n
∑

i=1

n
∑

i′=1,i′ �=i

ρri,i′ (1)

where ρri,i′ represents the correlation between row i and row i′ as follows:

136 L.-C. Canon et al.

ρri,i′ �
1
m

∑m
j=1 ei,jei′,j − 1

m

∑m
j=1 ei,j

1
m

∑m
j=1 ei′,j

√

1
m

∑m
j=1 e2i,j −

(

1
m

∑m
j=1 ei,j

)2
√

1
m

∑m
j=1 e2i′,j −

(

1
m

∑m
j=1 ei′,j

)2
(2)

Note that any correlation between row i and itself is 1 and is hence ignored.
Also, since the correlation is symmetric (ρri,i′ = ρri′,i), it is actually sufficient to
only compute half of them. We define the machine correlation, ρmach, analogously
on the columns. These correlations are the average correlations between each pair
of distinct rows or columns. They are inspired by the classic Pearson definition,
but adapted to the case when we deal with two vectors of costs.

There are three special cases when either one or both of these correlations
are one or zero. When ρtask = ρmach = 1, then instances may be uniform ones
and the problem can be equivalent to Q||Cmax [6, Proposition 1]. When ρtask = 1
and ρmach = 0, then a related problem is Q|pi = p|Cmax where each machine
may be represented by a cycle time and all tasks are identical [6, Proposition
2]. Finally, when ρmach = 1 and ρtask = 0, then a related problem is P ||Cmax

where each task may be represented by a weight and all machines are identical
[6, Proposition 3]. For any other cases, we do not have any relation to another
existing problem that is more specific than scheduling unrelated instances.

Correlations of Existing Methods. Table 1 synthesises the analysis of the
asymptotic correlation properties of the range-based, CVB and noise-based
methods [6, Propositions 4 to 9].

Table 1. Summary of the asymptotic correlation properties of existing methods.

Method ρtask ρmach

Range-based [4,5] a2b

{
3
7

if a = 0

b2 + 2
√

3
7
b(1 − b) + 3

7
(1 − b)2 if a = 1

CVB [4,5] a2b

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
V 2
mach(1+1/V 2

task)+1
if a = 0

b2 + 2b(1−b)√
V 2
mach(1+1/V 2

task)+1
if a = 1

+ (1−b)2

V 2
mach(1+1/V 2

task)+1

Noise-based [8] 1
V 2
noise(1+1/V 2

mach)+1
1

V 2
noise(1+1/V 2

task)+1

Correlations in Previous Studies. More than 200 unique settings used for
generating instances were collected from the literature and synthesized in [8]. For
each of them, we computed the correlations using the formulas from Table 1. For
the case when 0 < a < 1, the correlations were measured on a single 1000×1000
cost matrix that was generated with the range-based or the CVB method as done
in [8] (missing consistency values were replaced by 0 and the expected value was
set to one for the CVB method).

Controlling and Assessing Correlations of Cost Matrices 137

Figure 1 depicts the values for the proposed correlation measures. The task
correlation is larger than the machine correlation (i.e., ρtask > ρmach) for only a
few instances. The space of possible values for both correlations has thus been
largely unexplored. Additionally, few instances have high task correlation and
are thus underrepresented.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
ρtask

ρ m
ac

h

(a) Range-based method

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
ρtask

ρ m
ac

h

(b) CVB method

Fig. 1. Correlation properties (ρtask and ρmach) of cost matrices used in the literature.

Two matrices extracted from the SPEC benchmarks on five different
machines are provided in [1]. There are 12 tasks in CINT2006Rate and 17 tasks
in CFP2006Rate. The values for the correlation measures and other measures
from the literature are given in Table 2. The correlations for these two bench-
marks correspond to an area that is not well covered in Fig. 1. This illustrate the
need for a better exploration of the correlation space when assessing scheduling
algorithms.

Table 2. Summary of the properties for two benchmarks (CINT2006Rate and
CFP2006Rate).

Benchmark ρtask ρmach V μtask V μmach μVtask μVmach TDH MPH TMA

CINT2006Rate 0.85 0.73 0.32 0.36 0.37 0.39 0.90 0.82 0.07

CFP2006Rate 0.60 0.67 0.42 0.32 0.48 0.39 0.91 0.83 0.13

4 Controlling the Correlation

Table 1 shows that the correlation properties of existing methods are determined
by a combination of unrelated parameters, which is unsatisfactory. We propose

138 L.-C. Canon et al.

Algorithm 1. Combination-based cost matrix generation with gamma distrib-
ution
Input: n, m, rtask, rmach, μ, V
Output: a n × m cost matrix

1: Vcol ←
√
rtask+

√
1−rtask(

√
rmach+

√
1−rmach)√

rtask
√
1−rmach+

√
1−rtask(

√
rmach+

√
1−rmach)

V {Scale variability}
2: for all 1 ≤ i ≤ n do {Generate base column}
3: ci ← G(1/V 2

col, V
2
col)

4: end for
5: for all 1 ≤ i ≤ n do {Set the correlation between each pair of columns}
6: for all 1 ≤ j ≤ m do
7: ei,j ← √

rmachci +
√

1 − rmach × G(1/V 2
col, V

2
col)

8: end for
9: end for

10: Vrow ← √
1 − rmachVcol {Scale variability}

11: for all 1 ≤ j ≤ m do {Generate base row}
12: rj ← G(1/V 2

row, V 2
row)

13: end for
14: for all 1 ≤ i ≤ n do {Set the correlation between each pair of rows}
15: for all 1 ≤ j ≤ m do
16: ei,j ← √

rtaskrj +
√

1 − rtaskei,j
17: end for
18: end for
19: for all 1 ≤ i ≤ n do {Rescaling}
20: for all 1 ≤ j ≤ m do
21: ei,j ← µei,j√

rtask+
√

1−rtask(
√
rmach+

√
1−rmach)

22: end for
23: end for
24: return {ei,j}1≤i≤n,1≤j≤m

a cost matrix generation method that takes the task and machine correlations as
parameters. This method assumes that both these parameters are distinct from
one.

Algorithm 1 presents the combination-based method. It sets the correla-
tion between two distinct columns (or rows) by computing a linear combina-
tion between a base vector common to all columns (or rows) and a new vector
specific to each column (or row). The algorithm first generates the matrix with
the target machine correlation using a base column (generated on Line 3) and
the linear combination on Line 7. Then, rows are modified such that the task
correlation is as desired using a base row (generated on Line 12) and the linear
combination on Line 16. The base row follows a distribution with a lower stan-
dard deviation, which depends on the machine correlation (Line 10). Using this
specific standard deviation is essential to set the task correlation (see the proof
of Proposition 1). Propositions 1 and 2 show these two steps generate a matrix
with the target correlations for any value of Vcol.

Controlling and Assessing Correlations of Cost Matrices 139

Proposition 1. The task correlation ρtask of a cost matrix generated using the
combination-based method with the parameter rtask converges to rtask as m → ∞.

Proof. Given Lines 7, 16 and 21, any cost, multiplied by 1
µ

(√
rtask

+
√

1 − rtask
(√

rmach +
√

1 − rmach

))

as it does not change ρri,i′ , is: ei,j =√
rtaskrj +

√
1 − rtask

(√
rmachci +

√
1 − rmachG(1/V 2

col, V
2
col)

)

Let’s focus on the first part of the numerator of ρri,i′ (from Eq. 2):
1
m

∑m
j=1 ei,jei′,j = r2task

1
m

∑m
j=1 r2j + 1

m

∑m
j=1

√
rtaskrj

√
1 − rtask

(√
rmachci+√

1 − rmachG(1/V 2
col, V

2
col)

)

+ 1
m

∑m
j=1

√
rtaskrj

√
1 − rtask

(√
rmachci′+√

1 − rmach G(1/V 2
col, V

2
col)

)

+ (1 − rtask) 1
m

∑m
j=1

(√
rmach ci +√

1 − rmachG(1/V 2
col, V

2
col))×

(√
rmachci′ +

√
1 − rmachG(1/V 2

col, V
2
col)

)

.
The first sum converges to rtask(1 + (1 − rmax)V 2

col) as m → ∞ because
rj follows a gamma distribution with expected value one and standard
deviation

√
1 − rmaxVcol. The second sum converges to

√
rtask

√
1 − rtask

(√
rmachci +

√
1 − rmach

)

as m → ∞ and the third sum converges to√
rtask

√
1 − rtask

(√
rmachci′ +

√
1 − rmach

)

as m → ∞. Finally, the last
sum converges to (1 − rtask)

(√
rmachci +

√
1 − rmach

) (√
rmachci′ +

√
1 − rmach

)

as m → ∞. The second part of the numerator of ρri,i′ is simpler
and converges to

(√
rtask+

√
1 − rtask

(√
rmachci +

√
1 − rmach

))

(√
1 − rtask

(√
rmachci′ +

√
1 − rmach

)

+
√

rtask
)

as m → ∞. Therefore, the
numerator of ρri,i′ converges to rtask(1 − rmax)V 2

col as m → ∞.
The denominator of ρri,i′ converges to the product of the standard deviations

of eij and ei′j as m → ∞. The standard deviation of rj (resp., G(1/V 2
col, V

2
col))

is
√

1 − rmachVcol (resp., Vcol). Therefore, the standard deviation of eij is
√

rtask(1 − rmach)V 2
col + (1 − rtask)(1 − rmach)V 2

col.
The correlation between any pair of distinct rows ρri,i′ converges thus to rtask

as m → ∞, which concludes the proof. ��
Proposition 2. The machine correlation ρmach of a cost matrix generated using
the combination-based method with the parameter rmach converges to rmach as
n → ∞.

The proof of Proposition 2 is similar to the proof of Proposition 1 [6, Propo-
sition 14].

Finally, the resulting matrix is scaled on Line 21 to adjust its mean. The
initial scaling of the standard deviation on Line 1 is necessary to ensure that the
final CV (Coefficient of Variation) of the costs is V . The proof of Proposition 3
is more direct than the previous ones [6, Proposition 15].

Proposition 3. When used with the parameters μ and V , the combination-based
method generates costs with expected value μ and CV V .

Note that the correlation parameters may be zero. However, each of them
must be distinct from one. If they are both equal to one, a direct method exists

140 L.-C. Canon et al.

by building the unrelated instance corresponding to a uniform instance. Addi-
tionally, the final cost distribution is a sum of three gamma distributions (two
if either of the correlation parameters is zero and only one if both of them are
zero).

Note that the previous propositions give only convergence results. For a given
generated matrix with finite dimension, the effective correlation properties are
distinct from the asymptotic ones.

5 Impact on Scheduling Heuristics

Controlling the task and machine correlations provides a continuum of unrelated
instances that are arbitrarily close to uniform instances. This section shows how
some heuristics for scheduling unrelated instances are affected by this proximity.

A subset of the heuristics from [7] were used with instances generated using
the combination-based method. The three selected heuristics are based on dis-
tinct principles to emphasize how the correlation properties may have different
effects on the performance. First, we selected EFT [11, E-schedule] [9, Min-
Min], which relies on a greedy principle that schedules first the tasks that have
the smallest duration. The second heuristic is an adaptation of LPT [10] for
unrelated platforms. Since LPT is a heuristic for the Q||Cmax problem, HLPT
performs as the original LPT when machines are uniform (i.e., when the cor-
relations are both equal to 1). HLPT differs from EFT by considering first the
largest tasks instead of the smallest ones based on their minimum cost on any
machine. The last heuristic is BalSuff [8], which iteratively balances an initial
schedule by changing the allocation of the tasks that are on the most loaded
machine. The new machine that will execute it is chosen such as to minimize the
increase in the task duration.

These heuristics perform identically when the task and machine correlations
are arbitrarily close to one and zero, respectively. In particular, sorting the tasks
for HLPT is meaningless because all tasks have similar execution times. With
such instances, the problem is related to the Q|pi = p|Cmax problem (see Sect. 3),
which is polynomial. Therefore, we expect these heuristics to perform well with
these instances.

In the following experiments, we rely on the combination-based method
(Algorithm 1) to generate cost matrices. Instances are generated with n = 100
tasks and m = 30 machines. Without loss of generality, the mean cost μ is one
(scaling a matrix by multiplying each cost by the same constant will have no
impact on the scheduling heuristics). The cost CV is V = 0.3.

For each scenario, we compute the makespan5 of each heuristic. We then
consider the relative difference from the reference makespan: C/Cmin − 1 where
C is the makespan of a given heuristic and Cmin the best makespan we obtained
(we use a genetic algorithm that is initialized with all the solutions obtained
by other heuristics as in [7] because the problem is NP-Complete and finding

5 The makespan is the total execution time and it must be minimized.

Controlling and Assessing Correlations of Cost Matrices 141

the optimal solution would take too much time). The closer to zero, the better
the performance. We assume in this study that the reference makespan closely
approximates the optimal one.

The heat maps on Fig. 2 share the same generation procedure. First, 30
equidistant correlation values are considered between 0.001 and 0.999 using a
probit scale (0.001, 0.002, 0.0039, 0.0071, . . . , 0.37, 0.46, . . . , 0.999). The probit
function is the quantile function of the standard normal distribution. It high-
lights what happens for values that are arbitrarily close to 0 and 1 at the same
time. Then, each pair of values for the task and machine correlations leads to
the generation of 200 cost matrices (for a total of 180 000 instances). The actual
correlations are then measured for each generated cost matrices. Any tile on
the figures corresponds to the average performance obtained with the instances
for which the actual correlation values lie in the range of the tile. Hence, an
instance generated with 0.001 for both correlations may be assigned to another
tile than the bottommost and leftmost one depending on its actual correlations.
Any value outside any tile was discarded when it occurred.

EFT HLPT BalSuff

0.01

0.10

0.50

0.90

0.99 C
om

bination−
based

0.01 0.10 0.50 0.90 0.99 0.01 0.10 0.50 0.90 0.99 0.01 0.10 0.50 0.90 0.99
ρtask

ρ m
ac

h

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Relative difference
to reference

Fig. 2. Heuristic performance with 180 000 instances for the combination-based
method. The cost CV V is set to 0.3. The x- and y-axes are in probit scale between 0.001
and 0.999. Each tile represents on average 200 instances. The contour lines correspond
to the levels in the legend (0, 0.05, 0.1, . . .).

Figure 2 compares the average performance of EFT, HLPT and Balsuff. First,
EFT performance remains mainly unaffected by the task and machine correla-
tions when they are similar. However, its performance is significantly impacted
by them when one correlation is the complement of the other to one (i.e., when
ρtask = 1 − ρmach, which is the other diagonal). In this case, the performance of
EFT is at its poorest on the top-left. It then continuously improves until reach-
ing its best performance on the bottom-right (less than 5 % from the reference
makespan, which is comparable to the other two heuristics for this area). This
is consistent with the previous observation that this last area corresponds to

142 L.-C. Canon et al.

0.01

0.10

0.50

0.90

0.99

C
om

bination−
based

0.010.10 0.50 0.900.99
rtask

r m
ac

h
0.01

0.02

0.03

0.04

0.05
TMA

Fig. 3. TMA of the instances used in Fig. 2.

instances that may be close to Q|pi = p|Cmax instances, for which EFT is opti-
mal. HLPT achieves the best performance when either correlation is close to one.
This is particularly true in the case of the task correlation. HLPT shows how-
ever some difficulties when both correlations are close to zero. Finally, BalSuff
closely follows the reference makespan except when the task correlation reaches
values above 0.5. This is surprising because we could expect any heuristic to
have its best performance in the bottom-right part as for EFT. Despite having
good performance in this area, this is not the case with BalSuff.

6 Relation to TMA

The TMA is a measure based on the singular values of the normalized inverse cost
matrix. We consider the variant in which the normalization is done alternatively
on both the rows and columns [1]. The cost matrix is first inverted before being
normalized with an iterative procedure. Finally, the result corresponds to the
inverse of the ratio between the first singular value and the mean of the other
singular values.

Similarly to the correlation, the TMA measures the affinities between the
tasks and the machines. TMA values equal to zero means machines are uni-
form (no affinity) because only the first singular value is non-zero and the rank
of the cost matrix is one. Oppositely, TMA values equal to one means tasks
and machines have unrelated characteristics (high affinities between tasks and
machines) because the cost matrix is orthogonal.

However, the correspondence with the correlation is not systematic. Let
{ei,j}1≤i≤n,1≤j≤n be a cost matrix where ei,j = ε if i = j and ei,j = wibj
otherwise (with wi the weight of task i and bj the cycle time of machine j). The
TMA of this cost matrix converges to one as ε → 0, which suggests a discrepancy
from any uniform instance. By contrast, both its task and machine correlations
converge to one as n → ∞ and m → ∞ (suggesting a similarity with a uniform
instance). Assuming the number of tasks is greater than the number of machines

Controlling and Assessing Correlations of Cost Matrices 143

(i.e., n > m), each task i must be scheduled on machine i for 1 ≤ i ≤ m. The
problem is thus equivalent to scheduling the last n−m tasks, each of which has a
well-defined weight. This cost matrix corresponds therefore to a uniform instance
as indicated by the correlation properties. This contrived example shows that
changing a few single values may impact the TMA more profoundly than the
correlations. We conclude that the correlations focus on the general consistency
across multiple tasks and machines, whereas the TMA stresses the specialization
of a few machines for some specific tasks.

Figure 3 depicts the TMA of each of the 2 × 302 × 200 instances generated
in Sect. 5. The TMA is strongly associated with the correlations in our settings.
Note that it does not reach large values given that its maximum is one, even
when the correlations are close to zero.

The TMA is also symmetric relatively to the diagonal slices: it is the same
when the task/machine correlations are high/low as when they are low/high.
Therefore, some behaviors may not be seen with the TMA. For instance, EFT
performance varies mainly relatively to the other diagonal (from the top-left to
the bottom-right).

The TMA offers several advantages: its normalization procedure makes it
independent from the heterogeneity and like the correlation, it is associated
to the performance of the selected heuristics. However, it suffers from several
drawbacks. Its value depends on the cost matrix dimension and on the cost CV.
Moreover, its normalization procedure makes derivations of analytical results
difficult. By contrast, the correlation has no such default but it is not independent
from the heterogeneity. Also, the correlation is finer because it consists of two
different values, which allow the characterization of behaviors that cannot be
seen with the TMA (e.g., for EFT). Nevertheless, the TMA may be more relevant
than the correlation in some specific cases. For instance, with small cost matrices,
the TMA is more sensitive to individual values that may impact significantly
the performance. Devising a SVD-based measure that outperforms the TMA
(analytically simpler and independent from the cost matrix dimension and the
cost CV) is left for future work.

7 Conclusion

This paper studies the correlations of cost matrices used to assess heteroge-
neous scheduling algorithms. The task and machine correlations are proposed
to measure the similarity between an unrelated instance in which any cost is
arbitrary (R||Cmax) and the closest uniform instance (Q||Cmax) in which any
cost is proportional to the task weight and machine cycle time. We analyzed
several generation methods from the literature and designed a new one to see
the impact of these properties.

Even though the correlation approximates the distance between uniform and
unrelated instances (a unitary correlation does not imply it corresponds to a
uniform instance), our proposed generation method shows how some heuristics
from the literature are affected. For instance, the closer instances are from the

144 L.-C. Canon et al.

uniform case, the better HLPT, an adaptation of LPT to the unrelated case,
performs. Additionally, the need for two correlations (for the tasks and for the
machines) arise for EFT for which the performance goes from worst to best as the
task and machine correlations go from zero to one and one to zero, respectively.

Although the current study highlights the importance of controlling the cor-
relations in cost matrices, it presents some limitations. Overcoming each of them
is left for future work. First, results were obtained using the gamma distribution
only. However, the proposed method could use other distributions as long as the
mean and standard deviation are preserved. Second, all formal derivations are
in the asymptotic case only. Hence, the proposed results may be less relevant for
small instances. Also, the proposed correlation measures and generation method
assume that the correlations stay the same for each pair of rows and for each
pair of columns: our measures average the correlations and our method is inap-
plicable when the correlations between each pair of rows or each pair of columns
are distinct. Considering two correlation matrices that define the specific corre-
lations between each pair of rows and each pair of columns would require the
design of a finer generation method. Finally, investigating the relation with the
heterogeneous properties would require the design of a method that controls
both the correlation and heterogeneity properties.

Acknowledgments. Computations have been performed on the supercomputer facil-
ities of the Mésocentre de calcul de Franche-Comté.

References

1. Al-Qawasmeh, A.M., Maciejewski, A.A., Roberts, R.G., Siegel, H.J.: Characteriz-
ing task-machine affinity in heterogeneous computing environments. In: IPDPSW
(2011)

2. Al-Qawasmeh, A.M., Maciejewski, A.A., Siegel, H.J.: Characterizing heterogeneous
computing environments using singular value decomposition. In: IPDPSW (2010)

3. Al-Qawasmeh, A.M., Pasricha, S., Maciejewski, A.A., Siegel, H.J.: Power and
thermal-aware workload allocation in heterogeneous data centers. Trans. Comput.
64(2), 477–491 (2013)

4. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D.: Task execution time modeling
for heterogeneous computing systems. In: HCW, pp. 185–199. IEEE (2000)

5. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D., Ali, S.: Representing task and
machine heterogeneities for heterogeneous computing systems. Tamkang J. Sci.
Eng. 3(3), 195–208 (2000)

6. Canon, L.C., Héam, P.C., Philippe, L.: Controlling and Assessing Correlations
of Cost Matrices in Heterogeneous Scheduling. Technical report RR-FEMTO-ST-
1191, FEMTO-ST, February 2016

7. Canon, L.-C., Philippe, L.: On the heterogeneity bias of cost matrices when assess-
ing scheduling algorithms. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par
2015. LNCS, vol. 9233, pp. 109–121. Springer, Heidelberg (2015)

8. Canon, L.C., Philippe, L.: On the Heterogeneity Bias of Cost Matrices when Assess-
ing Scheduling Algorithms. Technical report RR-FEMTO-ST-8663, FEMTO-ST,
March 2015

Controlling and Assessing Correlations of Cost Matrices 145

9. Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M., Halderman, M.,
Hensgen, D., Keith, E., Kidd, T., Kussow, M., Lima, J.D., Mirabile, F., Moore, L.,
Rust, B., Siegel, H.J.: Scheduling resources in multi-user, heterogeneous, comput-
ing environments with SmartNet. In: HCW, pp. 184–199. IEEE (1998)

10. Graham, R.L.: Bounds on multiprocessing timing anomalies. J. appl. math. 17(2),
416–429 (1969)

11. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. J. ACM 24(2), 280–289 (1977)

12. Khemka, B., Friese, R., Pasricha, S., Maciejewski, A.A., Siegel, H.J., Koenig, G.A.,
Powers, S., Hilton, M., Rambharos, R., Poole, S.: Utility maximizing dynamic
resource management in an oversubscribed energy-constrained heterogeneous com-
puting system. Sustain. Comput. Inf. Syst. 5, 14–30 (2014)

13. Luo, P., Lü, K., Shi, Z.: A revisit of fast greedy heuristics for mapping a class
of independent tasks onto heterogeneous computing systems. J. Parallel Distrib.
Comput. 67(6), 695–714 (2007)

14. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic map-
ping of a class of independent tasks onto heterogeneous computing systems. J.
Parallel Distrib. Comput. 59(2), 107–131 (1999)

Penalized Graph Partitioning for Static
and Dynamic Load Balancing

Tim Kiefer, Dirk Habich(B), and Wolfgang Lehner

Dresden Database Systems Group, Technische Universität Dresden,
Dresden, Germany

{tim.kiefer,dirk.habich,wolfgang.lehner}@tu-dresden.de

Abstract. With ubiquitous parallel architectures, the importance of
optimally distributed and thereby balanced work is unprecedented. To
tackle this challenge, graph partitioning algorithms have been success-
fully applied in various application areas. However, there is a mismatch
between solutions found by classic graph partitioning and the behavior
of many real hardware systems. Graph partitioning assumes that indi-
vidual vertex weights add up to partition weights (here, referred to as
linear graph partitioning). This implies that performance scales linearly
with the number of tasks. In reality, performance does usually not scale
linearly with the amount of work due to contention on various resources.
We address this mismatch with our novel penalized graph partitioning
approach in this paper. Furthermore, we experimentally evaluate the
applicability and scalability of our method.

1 Introduction

Modeling problems as graphs and balancing the load of corresponding distributed
algorithms by means of graph partitioning has numerous applications in scientific
computing [10,22,25]. Balanced min-cut (hyper)graph partitioning is appealing
because it balances the load while at the same time minimizing communication
costs. In recent years, graph partitioning was successfully used in other areas
like data management as well [6,9,23]. Taking data management systems as
an example, the possible applications for graph partitioning range from high-
level database-as-a-service architectures [1,19] to low-level parallelism found in
modern multi-socket-multi-core systems [17]. With more parallel architectures
being used, the problem of optimally balancing work gains importance.

However, there is a mismatch between solutions found by classic graph par-
titioning and the behavior of many real hardware systems. Graph partition-
ing assumes that individual vertex weights add up to partition weights (here,
referred to as linear graph partitioning). In the context of distributed systems, the
assumption implies that performance scales linearly with the number of tasks.
In reality however, performance does usually not scale linearly with the amount
of work due to contention on hardware [3], operating system [18], or application
resources [20]. We address this mismatch with penalized graph partitioning, a
special case of non-linear graph partitioning, in this paper. The result is a load
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 146–158, 2016.
DOI: 10.1007/978-3-319-43659-3 11

Penalized Graph Partitioning for Static and Dynamic Load Balancing 147

balancing algorithm that shares the advantages of classic graph partitioning and
that is at the same time considering the non-linear performance of real systems.

1.1 Penalized Performance Model

In this paper, we consider distributed systems where multiple (heterogeneous)
tasks are executed concurrently on the various nodes. In the simplest case, loads
induced by tasks are combined by summing them up to derive a node’s global
load. This method is referred to as the linear model as it models an ideal system
where performance scales linearly with the amount of work that needs to be
done. However, in practice, performance often depends on all kinds of workload
parameters like request rates, request types, and the concurrent execution of
requests. Contention on resources caused by concurrent execution may lead to
performance that does not scale linearly with the amount of work. Therefore, we
propose to use a non-linear model to combine the individual loads. To grasp the
general behavior of complex systems, we assume a simplified penalized resource
consumption model, which is a combination of the linear model and a (possibly
non-linear) penalty function. Up to a certain load or degree of parallelism, the
linear usage assumption often holds because the system is then underutilized and
sufficient resources are available. However, when a certain load level is reached,
contention occurs and the performance does not scale linearly beyond this load
level. The penalty function is used to account for the contention.

While we acknowledge that modeling real systems is a challenging problem
in itself, we assume here that the model, i.e., the penalty function, is given.
Depending on the actual system, low-level and application-level experiments
may be necessary to find a sufficiently accurate system model.

1.2 Motivating Example

To demonstrate the potential of penalized graph partitioning in presence of non-
linear resources, we perform a synthetic partitioning experiment. To run the
experiment, we generate a workload graph that contains 1000 heterogeneous
tasks with weights following a Zipf distribution.1 Each task in the workload
graph is communicating with 0 to 10 other tasks (again Zipf distributed). To
model a system, we use an exponential penalty function and assume that the
underlying resource can execute 16 parallel tasks before the penalty grows with
the square of the cardinality due to contention (Fig. 1a).

The workload in this experiment is partitioned into 32 balanced partitions
using a standard graph partitioning library. Afterward, to estimate the actual
load for each node, the penalty function is applied to each partition based on
the partition cardinality (Fig. 1b). The resulting partition weights are compared
to a second partitioning of the graph that was generated by our novel penalized
graph partitioning algorithm (Fig. 1c).

1 Comparable workloads can be found in actual systems, e.g., database-as-a-service
systems [24].

148 T. Kiefer et al.

The unmodified partitioning algorithm, which is unaware of the contention,
tries to balance the load. The resulting relative weights show that the node with
the highest partition weight receives 3.1 times the load of the node with the
lowest partition weight. In contrast, the penalized partitioning algorithm leads
to partition weights, and hence node utilizations, that are balanced within a
tolerance of 3 %.

Fig. 1. Partitioning experiment (loads normalized to average)

1.3 Related Work

Graph partitioning has been a topic of interest in the scientific computing com-
munity at least since the late 1990s. Early works on the multilevel graph par-
titioning paradigm [13] led to many papers about variations and extensions of
the balanced min-cut partitioning problem, e.g., about multi-constraint partition-
ing [14], incremental update strategies [11], or heterogeneous infrastructures [21].
A rather recent book and a survey provide excellent overviews of the results in the
field [2,4]. To the best of our knowledge, we are the first to consider penalized, i.e.,
non-linear, graph partitioning.

In recent years, graph partitioning was successfully used in data management
applications as well [6,9,23]. These applications will most likely benefit from
penalized graph partitioning due to the complex and often heterogeneous tasks
and the ever-present contention on bottleneck resources.

1.4 Contributions

Our main contribution in this paper is a load balancing algorithm based on
penalized graph partitioning. In detail, we recap the basics of graph partitioning
(Sect. 2) before we introduce our novel method to partition graphs with penalized
partition weights, i.e., vertex weights that do not sum up linearly to partition
weights (Sect. 3). Thereby, we also propose an extension to the penalized graph
partitioning algorithm to deal with dynamic workloads. Our experimental eval-
uation shows the applicability and scalability of penalized graph partitioning in
Sect. 4 before we conclude the paper in Sect. 5.

Penalized Graph Partitioning for Static and Dynamic Load Balancing 149

2 Graph Partitioning

Given an undirected, weighted graph, the balanced k-way min-cut graph parti-
tioning problem (GPP) refers to finding a k-way partitioning of the graph such
that the total edge cut is minimized and the partitions are balanced within a
given tolerance. The following definitions are used to formalize the problem and
to describe its solution heuristics in detail. In this paper, we limit ourselves to
graphs with a single weight per vertex. Without restriction, penalized graph
partitioning works with multiple vertex weights as well (e.g., based on [14]).

Let G = (V,E,wV , wE) be an undirected, weighted graph with a set of vertices
V , a set of edges E, and weight functions wV and wE . Vertex and edge weights are
positive real numbers: wV : V → R>0 and wE : E → R>0. The weight functions
are naturally extended to sets of vertices and edges:

wV (V ′) :=
∑

v∈V ′
wV (v) for V ′ ⊆ V and wE(E′) :=

∑

e∈E′
wE(e) for E′ ⊆ E.

Let Π = (V1, . . . , Vk) be a partitioning of V into k partitions V1, . . . , Vk such
that: V1∪· · ·∪Vk = V and Vi ∩Vj = ∅ for all i �= j. Given a partitioning, an edge
that connects partitions is called a cut edge and Ec is the set of all cut edges in
a graph. The objective of the GPP is to minimize the total cut wE(Ec), i.e., the
aggregated weight of all cut edges.

A balance constraint demands that all partitions have about equal weights.
Let μ be the average partition weight: μ := wV (V)/k. For a balanced graph
partitioning it must hold that ∀i ∈ {1, . . . , k} : wV (Vi) ≤ (1 + ε) · μ, where
ε ∈ R≥0 is a given imbalance parameter to specify a tolerable degree of imbalance
(depending on the application).

2.1 Partitioning Algorithm

Partitioning a graph into k partitions of roughly equal size such that the total
cut is minimized is NP-complete [12]. Heuristics, especially the multilevel parti-
tioning framework [4,13], are used in practice to solve the problem.

The multilevel graph partitioning framework consists of three phases: (1)
coarsening the graph, (2) finding an initial partitioning of the coarse graph, and
(3) uncoarsening the graph and projecting the coarse solution to the finer graphs.
In the coarsening phase, a series of smaller graphs is derived from the input
graph. Coarsening is commonly implemented by contracting a subset of vertices
and replacing it with a single vertex. Parallel edges are replaced by a single edge
with the accumulated weight of the parallel edges. Contracting vertices like this
implies that a balanced partitioning on the coarse level represents a balanced
partitioning on the fine level with the same total cut. Different strategies exist
to select vertices to be contracted. Finding a matching is a tradeoff between
using heavy edges (and hence reducing the final cut) and keeping uniform vertex
weights (and hence improving partition balance). The coarsening ends when the
coarsest graph is sufficiently small to be initially partitioned.

150 T. Kiefer et al.

Different algorithms exist to find an initial partitioning [4]. Methods for the
initial partitioning are either based on direct k-way partitioning or on recursive
bisection. A simple but effective method to find an initial partitioning is greedy
graph growing. A random start vertex is grown using breadth-first search, adding
the vertex that increases the total cut the least in each step. The search is
stopped as soon as half of the total vertex weight is assigned to the growing
partition. Because the quality of the bisection strongly depends on the randomly
selected start vertex, multiple iterations with different starts are used and the
best solution is kept. The k-way extension of graph-growing starts with k random
vertices and grows them in turns.

The initial partitioning is uncoarsened by repeatedly assigning previously
contracted vertices to the same partition. Each extraction of vertices is followed
by a refinement step to improve the total cut or the balance of the partitions.
For instance, local vertex swapping is a refinement metaheuristic that can be
parametrized with different strategies to select vertices to move [8,15,16].

3 Penalized Graph Partitioning

The idea of our penalized graph partitioning is to introduce a penalized partition
weight and to modify the graph partitioning problem accordingly. We define
the resulting problem as the Penalized Graph Partitioning Problem (P-GPP).
Figure 2 shows an example graph with vertex and edge weights denoted in Fig. 2a.
Solving the GPP leads to the partitioning with the total cut of 3 shown in Fig. 2b.
When the cardinality of a partition is penalized linearly, the solution of the
P-GPP having a total cut of 4 is shown in Fig. 2c. However, when the penalty of a
partition grows with the square of the partition cardinality, the partitioning with
the total cut of 4 shown in Fig. 2d is the solution to the P-GPP. The partitioning
obviously depends on the performance model, i.e., the given penalty function.

Fig. 2. Example of graph partitionings with different penalty functions

Penalized Graph Partitioning for Static and Dynamic Load Balancing 151

3.1 Prerequisites

Let G = (V,E,wV , wE) be an undirected, weighted graph as in Sect. 2. Fur-
thermore, let p be a positive, monotonically increasing penalty function that
penalizes a partition weight based on the partition cardinality:

p : N → R≥0 with p(n1) ≤ p(n2) for n1 ≤ n2.

The vertex weight function is extended to sets V ′ ⊆ V such that it incorporates
the penalty:

wV (V ′) :=
∑

v∈V ′
wV (v) + p(|V ′|).

The example partitioning in Fig. 2c uses a linear penalty function, i.e.,
p(|V |) := |V |. Accordingly, using the definition, the partition weights are

wV (V1) =
∑

v∈V1

wV (v) + p(|V1|) = 5 + 5 = 10 and

wV (V2) =
∑

v∈V2

wV (v) + p(|V2|) = 7 + 3 = 10.

The example partitioning in Fig. 2d uses a square penalty function, i.e., p(|V |) :=
|V |2. Accordingly, the partition weights are wV (V1) = wV (V2) = 22.

Adding penalties to partition weights invalidates some of the assumptions
made in the GPP and its solution algorithms. Most fundamentally, the com-
bined weight of two or more partitions is not equal to the weight of a partition
containing all the vertices. Using the definition and two partitions V1 and V2:

wV (V1 ∪ V2) = wV (V1) + wV (V2) + p(|V1 ∪ V2|) − p(|V1|) − p(|V2|).

For arbitrary penalty functions we must assume that p(|V1 ∪ V2|) �= p(|V1|) +
p(|V2|). It follows that in general wV (V1 ∪ V2) �= wV (V1) + wV (V2). Hence, the
total weight of all vertices is in general not equal to the total weight of all
partitions. We therefore introduce the following definitions of the two weights.
Given a graph and a partitioning, the total vertex weight wV is the penalized
weight of all vertices, i.e.,

wV :=
∑

v∈V

wV (v) + p(|V |).

The total partition weight wΠ on the other hand is the sum of the weights of all
partitions, i.e.,

wΠ :=
k

∑

i=1

wV (Vi).

152 T. Kiefer et al.

Consider the example partitioning in Fig. 2d; using the definition, wV =
12 + 64 = 76 and wΠ = 22 + 22 = 44.

It follows that the total partition weight wΠ of the graph is not constant but
depends on the partitioning, specifically the cardinalities of the partitions. This
observation has implications in all steps of the graph partitioning algorithm, e.g.,
the balance constraint has to use the average total partition weight μ := wΠ/k
instead of the average total vertex weight.

3.2 Penalized Graph Partitioning Algorithm (Static Case)

We propose modifications of the multilevel graph partitioning algorithm to solve
the P-GPP. First, we describe two basic operations that need to reflect partition
penalties. Then, we will detail the necessary modifications to the three building
blocks of the multilevel graph partitioning framework.

During graph partitioning and refinement, it is often necessary to move a
vertex between partitions or to merge partitions. For the sake of computational
efficiency, the weights of the resulting partitions should be computed incremen-
tally instead of from scratch.

Operation 1. When a vertex v is moved from partition V1 to partition V2, the
partition weights of the resulting partitions V ′

1 := V1 \ v and V ′
2 := V2 ∪ v are as

follows:

wV (V ′
1) = wV (V1 \ v) = wV (V1) − wV (v) − p(|V1|) + p(|V1| − 1) and

wV (V ′
2) = wV (V2 ∪ v) = wV (V2) + wV (v) − p(|V2|) + p(|V2| + 1).

Operation 2. When two partitions V1 and V2 are combined, the partition weight
of the resulting partition V ′ := V1 ∪ V2 can be calculated as follows:

wV (V ′) = wV (V1) + wV (V2) + p(|V1| + |V2|) − p(|V1|) − p(|V2|).

To coarsen the graph, a matching of vertices has to be determined and ver-
tices have to be contracted accordingly. The heuristics introduced in Sect. 2.1
can be used to coarsen a graph with penalized partition weights. However, the
vertex weight of the contracted vertex has to correctly incorporate the penalty
to ensure that a balanced partitioning of the coarse graph will lead to a bal-
anced partitioning during the uncoarsening steps. Therefore, contracted vertices
are treated like partitions themselves and the weight of a contracted vertex is
calculated as in Operation 2.

Penalized Graph Partitioning for Static and Dynamic Load Balancing 153

We use a modified version of recursive bisection and greedy region growing to
find an initial k-way partitioning of graphs with penalized partition weights.
In the region growing algorithm, moving a vertex between partitions has to
use Operation 1 to calculate the resulting partition weights. Moreover, the stop
condition of the region growing algorithm has to be modified to account for the
new balance constraint. In the original formulation, the algorithm stopped when
the growing partition reached at least half of the total vertex weight. To achieve
balanced partitions and because the total vertex weight is in general not equal
to the total partition weight, the latter has to be used in the stop condition.
Furthermore, since the total partition weight depends on the partitioning it
repeatedly has to be recalculated after vertices have been moved, again using
Operation 1.

The penalties have to be considered during the uncoarsening and refine-
ment of the graph. Similar to the modifications of the region growing algorithm,
the local vertex swapping method has to use Operation 1 whenever a vertex is
moved between partitions. Furthermore, when vertex swapping is used to bal-
ance a partitioning, the modified balance constraint has to be used. This implies
that stop conditions and checks use the total partition weight instead of the total
vertex weight. Since the total partition weight depends on the partitioning, it
has to be recalculated after a vertex has been moved (Operation 1).

3.3 Incrementally Updating the Partitioning (Dynamic Case)

With dynamic workloads, the partitioning needs to be periodically re-evaluated
to ensure balanced partitions and an optimal total cut. Updating the partitioning
after changes is a tradeoff between the quality of the new partitioning and the
migration costs induced by implementing the new partitioning.

The problem of incrementally updating a partitioning is known as dynamic
load balancing or repartitioning and is a well studied problem for the original
graph partitioning problem [5,7]. In this paper, we adapt an existing hybrid
update strategy for penalized graph partitioning and show in our experimental
evaluation that it performs well in the presence of penalized partition weights.
Whenever the graph changes such that the balance constraint is violated, bal-
ancing and refinement steps based on local vertex swapping try to move vertices
such that the partitioning is balanced again. If no balanced partitioning can
be found using the local search strategy, the graph is partitioned from scratch
and the new partitioning is mapped to the previous partitioning such that the
migration cost is minimized. To prevent the total cut in the graph from slowly
deteriorating, a new partitioning is computed in the background after a certain
number of local refinement operations (even when the partitioning is still bal-
anced). The new partitioning replaces the current one only if the new total cut
justifies the migration overhead.

154 T. Kiefer et al.

4 Experimental Evaluation

METIS is a set of programs for graph partitioning and related tasks based
on multilevel recursive bisection, multilevel k-way partitioning, and multi-
constraint partitioning.2 We modified METIS (v5.1) to support the penalized
graph partitioning methods proposed in this paper (we denote the resulting tool
PenMETIS). Our modifications are based on the serial version of METIS but
can also be incorporated in the parallel version of METIS in the future.

4.1 Scalability Experiments

In this section, we evaluate the overhead that penalized partition weights intro-
duce in the partitioning process. Furthermore, we investigate how penalized
graph partitioning scales with the size of the graph and the number of partitions.
We use a linear penalty function and example graphs from the Walshaw Bench-
mark [26] to analyze penalized graph partitioning. The corresponding Graph
Partitioning Archive3 contains 34 graphs from applications such as finite ele-
ment computation, matrix computation, and VLSI design. The largest graph
(auto) contains 448695 vertices and 3314611 edges and can be considered large
in the context of workload graphs.

Penalized Partitioning Overhead. In this experiment, we investigate the overhead
of penalized partition weights. Figure 3 shows the absolute partitioning times
for all benchmark graphs using METIS and PenMETIS.4 The figure shows
that penalized partitioning introduces only a small overhead. More specifically,
PenMETIS takes on average 28% (42 ms) more time than METIS.

Fig. 3. Partitioning time comparison (64 partitions, 3 % imbalance) (Color figure
online)

2 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.
3 http://staffweb.cms.gre.ac.uk/∼c.walshaw/partition/.
4 We use a fairly moderate AMD Opteron (Istanbul) CPU running at 2.6GHz for this

experiment. As mentioned before, METIS and PenMETIS run single-threaded.

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

Penalized Graph Partitioning for Static and Dynamic Load Balancing 155

Scalability with Graph Size. Figures 4a and b show the execution times of
PenMETIS charted by the number of vertices and by the number of edges.
The charts indicate that the graph partitioning algorithms scale linearly with
both parameters.

Fig. 4. Execution times of PenMETIS depending on the number of vertices |V |, edges
|E| (64 partitions, 3 % imbalance), and partitions k (graph auto) (Color figure online)

Scalability with Partition Count. In a second scalability experiment, we investi-
gate how penalized graph partitioning scales with the number of partitions. In
Fig. 4c, we show partitioning times for METIS and PenMETIS for the largest
benchmark graph (auto) and various partition counts. Beyond 64 partitions, the
partitioning time scales linearly with the number of partitions.

4.2 Incremental Update Experiment

In this experiment, we evaluate the ability of PenMETIS to react to changes in
the workload. We start our experiment with the previously introduced synthetic
workload graph containing 1000 vertices and the same exponential penalty func-
tion (see Sect. 1.2). We additionally generate random edge weights (between 1
and 100) to get a more realistic evaluation of the total cut. The workload graph
is initially partitioned into 32 partitions with an imbalance parameter of 3 %.

To simulate a changing workload, we define two workload graph modifica-
tions. A minor change is implemented by updating the vertex and edge weights
of 1 % of all vertices and all edges (randomly selected). A major change is imple-
mented by updating the vertex and edge weights of 10 % of all vertices and all
edges. The complete experiment consists of 100 workload changes where one
major change follows after every 19 minor changes. Figure 5 shows the results.

After each workload change, the current partitioning is evaluated against
the new workload graph. The update mechanism is triggered when the balance
constraint is violated. The update strategy first tries to regain a balanced par-
titioning by using local refinement strategies. A complete repartitioning is only
triggered when the local refinement fails. In addition, the update strategy repar-
titions the workload graph in the background after every ten changes. However,
the new partitioning is only implemented when it leads to a total cut that is

156 T. Kiefer et al.

Fig. 5. Incremental Update Experiment (32 Partitions, 3% Imbalance)

more than 10 % better than the old cut. The evolution of the graph imbalance
and the total cut are summarized in Figs. 5a and b. The results show that minor
changes eventually and major changes always lead to violations of the balance
constraint. However, in many cases (21 out of 23 in the experiment) the local
refinement algorithm is able to regain a balanced partitioning. A complete repar-
titioning is triggered only in two cases, which in both cases leads to considerably
better total cuts.

We report the sum of all vertex weights of vertices that are moved between
partitions as the total migration cost for an update (Fig. 5c). The figure shows
that partitioning the workload graph from scratch causes considerably higher
migration costs than refining an existing partitioning.

Penalized Graph Partitioning for Static and Dynamic Load Balancing 157

5 Conclusion

In this paper, we presented penalized graph partitioning, a special case of non-
linear graph partitioning. An experimental evaluation showed the applicability
and scalability of penalized graph partitioning as a load balancing mechanism
in the presence of non-linear performance due to contention on resources.

We believe that penalized graph partitioning is a versatile method that can
be applied to many distributed systems. We showed that existing extensions for
basic graph partitioning, specifically for dynamic repartitioning, can be applied
to penalized graph partitioning as well. In the future, we will present results
to show that the same holds for other extensions that deal with, e.g., multiple
resources, heterogeneous infrastructures, or partial allocations. We will also show
that the idea of penalized graph partitioning can be generalized to arbitrary non-
linear performance models.

Acknowledgments. This work is partly funded by the German Research Foundation
(DFG) within the Cluster of Excellence Center for Advancing Electronics Dresden
(Orchestration Path) and under the DFG project LE 1416/22-1.

References

1. Amazon. Amazon Relational Database Service (2015)
2. Bichot, C.-E., Siarry, P. (eds.): Graph Partitioning. Wiley, Hoboken (2011)
3. Blagodurov, S., Zhuravlev, S., Fedorova, A.: Contention-aware scheduling on mul-

ticore systems. ACM Trans. Comput. Syst. 28(4), 8 (2010)
4. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent Advances in

Graph Partitioning. preprint: Computing Research Repository (2013)
5. Catalyurek, U.V., et al.: Hypergraph-based dynamic load balancing for adaptive

scientific computations. In: IPDPS (2007)
6. Curino, C., Jones, E.P.C., Zhang, Y., Madden, S.: Schism: a workload-driven app-

roach to database replication and partitioning. In: VLDB (2010)
7. Devine, K.D., Boman, E.G., Heaphy, R.T., Hendrickson, B.A.: New challenges in

dynamic load balancing. Appl. Numer. Math. 52, 133–152 (2005)
8. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network

partitions. In: DAC (1982)
9. Golab, L., Hadjieleftheriou, M., Karloff, H., Saha, B.: Distributed data placement

to minimize communication costs via graph partitioning. In: SSDBM (2014)
10. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.

Parallel Comput. 26(12), 1519–1534 (2000)
11. Hendrickson, B., Leland, R., Van Driessche, R.: Enhancing data locality by using

terminal propagation. In: HICSS (1996)
12. Hyafil, L., Rivest, R.L.: Graph Partitioning and Constructing Optimal Decision

Trees are Polynomial Complete Problems. Technical report, IRIA (1973)
13. Karypis, G., Kumar, V.: Analysis of multilevel graph partitioning. In: SC (1995)
14. Karypis, G., Kumar, V.: Multilevel Algorithms for Multi-Constraint Graph Parti-

tioning. Technical report, University of Minnesota (1998)
15. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.

J. Parallel Distrib. Comput. 48(1), 71–95 (1998)

158 T. Kiefer et al.

16. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

17. Kissinger, T., et al.: ERIS: a NUMA-aware in-memory storage engine for analytical
workloads. In: ADMS (2014)

18. Li, C., Ding, C., Shen, K.: Quantifying the cost of context switch. In: ExpCS (2007)
19. Microsoft. Microsoft Windows Azure (2015)
20. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-oriented transaction

execution. In: VLDB (2010)
21. Pellegrini, F.: Static mapping by dual recursive bipartitioning of process and archi-

tecture graphs. In: SHPCC (1994)
22. Pothen, A.: Graph Partitioning Algorithms with Applications to Scientific Com-

puting. Technical report, Old Dominion University (1997)
23. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: scalable workload-aware data

placement for transactional workloads. In: EDBT (2013)
24. Schaffner, J., et al.: RTP: Robust tenant placement for elastic in-memory database

clusters. In: SIGMOD (2013)
25. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for dynamic. adaptive

and multi-phase scientific simulations. In: CLUSTER (2001)
26. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multi-

level optimisation approach to graph-partitioning. J. Global Optim. 29(2), 225–241
(2004)

Non-preemptive Scheduling with Setup Times:
A PTAS

Klaus Jansen and Felix Land(B)

Institute of Computer Science, University of Kiel, 24118 Kiel, Germany
{kj,fku}@informatik.uni-kiel.de

Abstract. Consider the following scheduling problem: a set of jobs is to
be processed without preemption on m identical machines. The jobs are
partitioned into classes. Before jobs from a class can be processed on a
machine, a setup is required, whose duration depends on the class. The
objective is to schedule all jobs while minimizing the completion time of
the last job, also known as the makespan.

We present and analyze three polynomial algorithms for this prob-
lem. The first algorithm follows a next-fit strategy and has approximation
ratio 3. The second is a very efficient algorithm with approximation ratio
arbitrarily close to 2. The last algorithm is a polynomial time approxima-
tion scheme.

Keywords: Scheduling · Setup times · Makespan minimization ·
Approximation algorithms · Polynomial time approximation schemes

1 Introduction

Consider the following scheduling problem: we are given a set J of n jobs. Each
job j ∈ J has processing time t(j) ∈ IN. In addition, J is partitioned into c
classes C1, . . . , Cc. Whenever a machine is scheduled to process a job from class k
at the beginning of the schedule or after it processed a job from another class k′ �=
k, a setup of sk time units is required. The goal is to find a non-preemptive
schedule on m identical machines, such that the makespan (the completion time
of the latest job) is minimized. Note that we can group the jobs on each machine
by class without increasing the makespan, and usually assume that schedules
are of this form.

This model is applicable in several contexts, e.g. (1) when machines have to
be configured for each class of produced items, or (2) in cloud computing, when
a significant amount of data that is common for all jobs in a class needs to be
transferred before starting the computation [7].

This work was supported by DFG project JA 612/14-2: Design of Efficient Polyno-
mial Time Approximation Schemes for Scheduling and Related Optimization Prob-
lems.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 159–170, 2016.
DOI: 10.1007/978-3-319-43659-3 12

160 K. Jansen and F. Land

Related Work. The considered problem is a generalization of the scheduling
problem on identical machines, where no setup times are present. It is NP-hard,
so we cannot hope for an exact polynomial time algorithm [4]. A c-approximate
algorithm produces, for each input instance I, a solution with makespan at
most cOPT(I), where OPT(I) denotes the optimum (minimum) makespan.
Scheduling on identical machines is well understood in terms approximability:
it admits a polynomial time approximation scheme (PTAS) [5], i.e. a familiy
{Aε | ε > 0} of algorithms such that Aε is a polynomial time (1+ε)-approximate
algorithm for each ε > 0.

Scheduling with setup times also has been extensively studied for different
machine models and objective functions [1,2]. However, as far we are aware,
the exact problem we consider here is not covered by previous research. We
discuss some results about similar models. Perhaps the closest related work is
due to Mäcker et al. [7]. In their model, all classes have the same setup time, so
our algorithms apply to their model as well. They gave a simple 2-approximate
algorithm, and a (32 + ε)-approximation for arbitrarily small ε > 0. The latter
algorithm further requires that the total processing time of each class is bounded
by γOPT for some constant γ. Monma and Potts [8] consider a model with
class-dependent setup times and preemptions. They designed two algorithms.
The first one has approximation factor 3

2 − 1
4m−4 if m ≤ 4 and 5

3 − 1
n when

m > 3 is a multiple of 3, and requires that the total processing time of each class
including setup is bounded by OPT. Later, Chen [3] presented an algorithm with
improved approximation guarantee 3

2 for this model. Without restrictions on the
value of m, Monma and Potts gave a

(

2 − 1
�m/2�+1

)

-approximation. Schuurman
and Woeginger [9] studied the setting where each class contains exactly one
preemptable job, and developed both a (43 + ε)-approximation, and a PTAS for
the case that all setup times are equal.

Our Contribution. We present three algorithms for our model. The first one is
a simple heuristic that employs a next-fit strategy followed by a repair step. It
has approximation ratio 3 and running time O(n). The second algorithm follows
the dual approximation paradigm and is more careful with the placement of jobs
or setups that are larger than 1

2OPT. It achieves an approximation guarantee
of 2 + ε for arbitrarily small ε > 0 in time O(n log 1

ε). The final algorithm is a
PTAS, improving and generalizing the result by Mäcker et al. [7]. It distinguishes
between large jobs and small jobs. The large jobs are scheduled near-optimally
using a dynamic program. For the small jobs, we distinguish whether the setup
time is large or small compared to the optimum for each class. Small jobs in
classes with small setup time are removed from the instance and are later re-
added using a next-fit algorithm. In classes with large setup time, the small jobs
are glued together such that they become large, and the glued jobs are placed
by the dynamic program as well.

Notation. We consistently use j to denote jobs, i to denote machines, and k to
denote class indices. For a set J ′ ⊆ J , we abbreviate t(J ′) =

∑

j∈J ′ t(j). For
� ∈ IN we denote [�] = {1, . . . , �}.

Non-preemptive Scheduling with Setup Times: A PTAS 161

2 A Linear 3-Approximation

In this section we present a simple heuristic that produces a 3-approximate
solution, i.e. a solution with makespan A(I) such that A(I) ≤ 3OPT(I) for each
instance I.

Theorem 1. There is an algorithm that finds a 3-approximate solution for non-
preemptive scheduling with setup times in time O(n).

First, we need lower bounds on the optimum makespan OPT = OPT(I).
Define the values tmax = max{t(j) | j ∈ J}, smax = max{sk | k ∈ [g]}, and
T =

(∑

j∈J t(j) +
∑c

k=1 sk

)

/m. Obviously we have tmax, smax, T ≤ OPT.
Now, we group the jobs by classes. Let Ck = {jk

1 , . . . , jk
nk

}. Then, beginning
at machine 1, add for each group one setup and then all jobs to the sched-
ule. Whenever the load of the current machine exceeds T , keep the last placed
setup/job and proceed to the next machine. In other words, we add the items

s1, j
1
1 , . . . , j1n1

, s2, j
2
1 , . . . , j2n2

, . . . , sc, j
c
1, . . . , j

c
nc

(1)

using a next-fit strategy with threshold T , see also Fig. 1.

0

T

m

s1

s2

s3

s4

s5

Fig. 1. Example for a next-fit schedule with five classes. The schedule is infeasible
until we insert some required setups in the next step of the algorithm.

Assume that we could not add all jobs and setups in this manner. Then there
is at least the job jc

nc
left unplaced when the last machine’s load exceeds T , and

the total load on all machines it greater than mT . On the other hand, the load
we have to place is exactly

∑

j∈J t(j) +
∑g

k=1 sk = mT , and we have not even
placed all of that, a contradiction.

In the next step, we discard setups that were placed last on a machine.
The makespan of the resulting schedule then is at most T + tmax, but not all
required setups are present. To repair the schedule, we have to add a setup at
the beginning of each machine (unless it already started with a setup). This
increases the makespan to at most T + tmax + smax ≤ 3OPT.

This algorithm can be implemented to run in linear time O(n).

162 K. Jansen and F. Land

3 A 2-Dual Approximation

The algorithm described in this section is a 2-dual approximation algorithm. The
principle of dual approximation algorithms was introduced by Hochbaum and
Shmoys [5]: a c-dual approximation algorithm accepts a number d in addition to
the instance as input. It will output a solution with makespan cd, provided that
a solution with makespan d exists. Otherwise, it may reject the instance.

This can be turned into a (c + ε)-approximate algorithm for an arbitrary
small ε > 0 as follows: First, we obtain a 3-approximation of the optimal
makespan OPT using our algorithm from Sect. 2, i.e. we find a schedule of
makespan d′ ≥ OPT such that d′ ≤ 3OPT, or equivalently, d′/3 ≤ OPT ≤ d′.
Then use binary search on the interval [d′/3, d′] to find a value d such that the
algorithm is successful for d, but rejects for d/(1+ ε

c) in O(log c
ε) iterations. Note

that we must have d/(1+ ε
c) ≤ OPT, because the algorithm cannot reject for val-

ues larger than OPT, so d ≤ (1+ ε
c)OPT. The solution the algorithm produced for

target makespan d then has makespan at most cd ≤ c(1+ ε
c)OPT = (c+ε)OPT,

meeting the claimed approximation guarantee.
In this section, we have c = 2, so we need at most O(log 1

ε) iterations of our
algorithm to obtain a 2 + ε-approximate schedule:

Theorem 2. There is an algorithm that finds a 2 + ε-approximate solution for
non-preemptive scheduling with setup times in time O(n log 1

ε), where ε > 0 is
arbitrarily small.

For notational convenience, we scale the instance such that d = 1 in each
iteration and reorder the classes such that s1 ≤ · · · ≤ sc. Also, for a schedule σ,
we denote by σ(j) the machine on which the job j is scheduled, and by extension
σ(J ′) = {σ(j) | j ∈ J ′} for a set J ′ ⊆ J of jobs.

We first consider the jobs J l = {j ∈ J | t(j) > 1
2} that have processing

time greater than 1
2 . Similarly, let k0 ∈ {1, . . . , c + 1} be the index such that

sk0 > 1
2 ≥ sk0−1, and let s0 = 1 and sc+1 = 0 for the soundness of this definition,

i.e. the classes Ck0 , . . . , Cc have setup times larger than 1
2 . Assume that there is

a feasible schedule with makespan 1 and fix any such schedule σ∗. For k ≥ k0
define mk = |σ∗(Ck)|. The schedule σ∗ has some basic properties:

Lemma 3. (i) The feasible schedule σ∗ schedules Ck on at least |J l ∩
Ck| machines, i.e. |σ∗(Ck)| ≥ |Ck ∩ J l|, for k ∈ [c].

(ii) We have
∑c

k=k0
mk + |J l| ≤ m.

Proof. (i) Assume that |σ∗(Ck)| < |J l ∩ Ck|, then there must be two different
jobs j, j′ ∈ J l ∩ Ck such that σ∗(j) = σ∗(j′). This machine then has load
greater than 1, a contradiction.

(ii) Again, σ∗ cannot assign two items (jobs or setups) with processing time
larger than 1

2 to one machine, so the sets σ∗(Ck), k ≥ k0, and σ∗({j}),
j ∈ J l, are all pairwise disjoint. This implies

c
∑

k=k0

mk + |J l| =
c

∑

k=k0

|σ∗(Ck)| +
∑

j∈J l

|σ∗({j})| ≤ m. (2)

�	

Non-preemptive Scheduling with Setup Times: A PTAS 163

The Algorithm. Consider the following procedure to stepwise construct a sched-
ule σ:

(1) If t(j) + sk > 1 for some k ∈ [c] and j ∈ Ck, report that no schedule with
makespan 1 exists.

(2) For k ≥ k0, schedule all jobs in Ck by using a next-fit strategy with thresh-
old 1 and adding setups as required. If we cannot schedule all jobs on
m machines, report that there is no schedule with makespan 1.

(3) Schedule all remaining jobs in J l on different, unused machines with corre-
sponding setups. Again, report that no schedule with makespan 1 exists if
we fail to place all jobs.

(4) For each class Ck, fill the machines σ(Ck ∩ J l) with jobs from Ck using
next-fit with threshold 1.

(5) Group the remaining jobs by class and, akin to the 3-approximation, schedule
one setup per class and the jobs with next-fit and threshold 1. If this fails
to schedule all jobs, report that no schedule with makespan 1 exists.

(6) Add a setup at the beginning of each machine if required.

Theorem 4. Above algorithm either yields a feasible schedule σ of makespan 2,
or correctly reports that no schedule with makespan 1 exists in time O(n).

In order to prove Theorem 4, assume that a schedule σ∗ with makespan 1
exists, and define mk for k ≥ k0 as before. For simplicity, we also assume that
the algorithm ignores the available number m of machines. We will later show
that, if it requires more than m machines, there is no schedule of makespan 1.
Note that in steps (2) to (5), we report that no schedule of makespan 1 exists
only when the number of machines is insufficient, making this a correct decision.

We first argue that step (1) is also correct: take any job j ∈ Ck. Then σ∗ must
schedule both j and a setup of length sk on one machine, and σ∗ has makespan
at most 1. This also implies that t(j) ≤ 1

2 for j ∈ ⋃c
k=k0

Ck.
Now consider the schedule after step (2).

Claim. Fix one class Ck, k ≥ k0. Step (2) uses at most mk machines to sched-
ule Ck, and the load of these machines is at most 3

2 .

Note that we do not compute the value of mk in step (2) of the algorithm.

Proof. We have t(Ck) ≤ mk(1 − sk), because the schedule σ∗ uses mk machines
with load at most 1 to schedule Ck. Let � be the number of machines the next-
fit procedure in step (2) used to place the jobs Ck. Assume for the sake of
contradiction that � > mk. Then we have � − 1 ≥ mk machines with load at
least 1, of which 1 − sk is due to jobs and sk due to setup. Since we also used
the �-th machine, we have t(Ck) > mk(1 − sk), a contradiction.

Furthermore, step (1) ensured that t(j) ≤ 1
2 for j ∈ Ck, so the load of these

machines is bounded by 3
2 . �	

After step (3), our schedule σ therefore uses at most
∑c

k=k0
mk + |J l| machines.

If this is larger than m, there is no feasible schedule with makespan 1 according to

164 K. Jansen and F. Land

Lemma 3 (ii). In addition, the machines we used to schedule J l have load at most 1,
so the makespan of σ is still bounded by 3

2 .
We now bound the total load of our schedule σ after performing step (5).

Note that the load of two schedules may differ due to a different amount of
setups the schedule requires.

Claim. The total load of σ is at most as large as the total load of σ∗.

Proof. Fix one class Ck and let � and �∗ be the number of setups σ and σ∗

scheduled for Ck, respectively. It is sufficient to show � ≤ �∗.
Case 1: sk > 1

2 , i.e. k ≥ k0 We already proved that we used at most mk = �∗

machines to schedule Ck.
Case 2: sk ≤ 1

2 and Ck ∩ J l = ∅ We place jobs from Ck only in step (5), along
with one setup. Remember that additional required setups are added in the next
step, and should not considered here. Therefore � = 1 ≤ �∗.
Case 3: sk ≤ 1

2 and Ck ∩ J l �= ∅ We either have � = |Ck ∩ J l|, i.e. all jobs
from Ck were placed in step (4). In this case, according to Lemma 3 (i), we have
� = |Ck ∩ J l| ≤ |σ∗(Ck)| = �∗. Otherwise we have � > |Ck ∩ J l|, and we filled
� − 1 machines with jobs from Ck, with a total load of at least (� − 1)(1 − sk).
Therefore (� − 1)(1 − sk) < t(Ck). But σ∗ can only schedule jobs from Ck with
load 1−sk on each machine, so t(Ck) ≤ �∗(1−sk). It follows that (�−1)(1−sk) <
t(Ck) ≤ �∗(1 − sk), which implies � ≤ �∗. �	

If we required more than m machines in step (4) or (5), σ would use at least
m machines of load 1 and at least one additional machine. Thus the total load
of σ would be strictly larger than m, but the total load of σ∗ is at most m, a
contradiction.

Finally, we add at most one setup of length at most 1
2 to each machine in

step (6), increasing the makespan to at most 2.
The running time of each step is again linear in the number of jobs. The

full algorithm, including the computation of the 3-approximate solution and the
binary search requires O(n log 1

ε) operations.

4 A Polynomial Time Approximation Scheme

Our proposed algorithm is a 5ε-dual approximation algorithm. As described in
Sect. 3, we need at most O(log 1

ε) iterations of our algorithm to obtain a 1 + 6ε-
approximate schedule.

Theorem 5. There is a PTAS for non-preemptive scheduling with setup times.

We assume that ε ≤ 1
2 , and further require that 1

ε is integral. Otherwise,
one can e.g. choose the unique value of the form 1

2i in the interval (ε/2, ε) as
new ε. For notational convenience, we scale the instance such that d = 1 and
reorder the classes such that s1 ≤ · · · ≤ sc. Let k0 ∈ {0, . . . , c} be the index such
that sk0 ≤ ε3 < sk0+1, and let s0 = 0 and sc+1 = 2 for the soundness of this
definition.

Non-preemptive Scheduling with Setup Times: A PTAS 165

Our algorithm distinguishes between small and large jobs, which are defined
differently for classes whose setup times are small compared to the target
makespan 1 and classes with larger setup times. We will first describe how to
handle the small jobs for both types of classes in Sects. 4.1 and 4.2. In Sect. 4.3
we then show how the large jobs can be scheduled near-optimally.

4.1 Removing Small Jobs of Classes with sk ≤ ε3

Let J1 =
⋃k0

k=1 Ck be the set of jobs in all classes with sk ≤ ε3. We consider a
job j in J1 small if t(j) ≤ ε and large if t(j) > ε. Let J s

1 = {j ∈ J1 | t(j) ≤ ε}
be the set of all small jobs in J1 and define

Ls =
∑

j∈Js
1

t(j) +
∑

k∈[k0]
Ck⊆Js

1

sk. (3)

Ls is the load of all small jobs plus one setup for each class that contains only
small jobs.

Lemma 6. If there is a schedule for J with makespan at most 1, then there is
a schedule for J \ J s

1 with makespan at most 1 and total load at most m − Ls.

Proof. The schedule for J with makespan 1 has total load at most m. Now
simply remove the jobs in J s

1 from the schedule, and afterwards all setups that
are no longer required. If a class Ck satisfies Ck ⊆ J s

1, all jobs of this class were
removed, and subsequently all setups for this class become superfluous. Because
we assume that classes are nonempty, there has to be at least one setup for
each class. Thus we removed setups of total length at least

∑

k∈[k0]
Ck⊆Js

1

sk, and the
resulting schedule has the desired properties. �	

We will not be able to find a schedule with makespan 1 and total load at
most m − Ls, but in Sects. 4.2 and 4.3 we will show how to find a schedule with
only slightly higher makespan and load. We then can re-add the removed jobs.

Lemma 7. If we have a schedule for J \ J s
1 with makespan at most M ≥ 1 and

total load at most (M − ε − 2ε3)m − Ls, we can compute a schedule for J with
makespan M(1 + ε) in linear time.

Proof. We group the jobs in J s
1 by class, i.e. define Cs

k = Ck ∩ J s
1 for each

k ∈ {1, . . . , k0}. For groups with t(Cs
k) ≤ ε2, we add them all to one arbitrary

machine that already is scheduled to process a large job from the class Ck, if
such a large job exists. Since on each machine there are at most M

ε many large
jobs scheduled, this increases the makespan by at most M

ε ε2 = Mε.
After this step, we consider the other jobs. For each group Cs

k with t(Cs
k) ≤ ε2

and Cs
k = Ck, i.e. for which no large jobs exists, we instead create a con-

tainer job jck containing Ck and one setup. The container job has processing
time t(jck) =

∑

j∈Ck
t(j) + sk. Because ε ≤ 1

2 , we have t(jck) ≤ ε2 + ε3 ≤ ε, so
the container jobs are small.

166 K. Jansen and F. Land

Now we add all container jobs and the remaining jobs from the groups Cs
k

with t(Cs
k) > ε2 in a next-fit manner such that each machine has at least

load M − ε − 2ε3 (and at most M − 2ε3, since all added jobs are small) until we
run out of jobs. The total load of the jobs we added in the first step and this
step is exactly Ls.

Note that we will be able to place all jobs in this way. Assume that there
is a job j we cannot place, then all machines have load at least M − ε − 2ε3,
i.e. the total load is at least (M − ε − 2ε3)m. The original schedule had load at
most (M −ε−2ε3)m−Ls, and the jobs we added caused an additional load of at
most Ls − t(j), making the total load in the schedule less than (M − ε − 2ε3)m.

To get a feasible schedule, we may have to add setups for the jobs from the
classes Ck with t(Cs

k) > ε2 to some machines. Note that these machines have
load at most M − 2ε3. Since we grouped the jobs by class and used a next-fit
strategy, there are jobs from at most 1

ε2 + 2 of these classes on each machine
(1

ε2 classes with load greater ε2 and two classes with partial load at most ε2).
Therefore the setup times generate an additional load of at most ε+2ε3 on each
machine. Since the load was bounded by M −2ε3 before this step, the makespan
of the final schedule will not exceed M + ε ≤ M(1 + ε). �	

4.2 Gluing Small Jobs of Classes with sk > ε3

In this section, we preprocess the jobs from J2 =
⋃c

k=k0+1 Ck = J \ J1. For jobs
in J2, the threshold between large and small will be δ = ε4. Define the set of all
small jobs in J2 as J s

2 = {j ∈ J2 | t(j) ≤ δ}. Again let Cs
k = Ck ∩ J s

2 be the
small jobs of each class Ck, k ∈ {k0 + 1, . . . , c}.

We now greedily glue small jobs in Cs
k together until their total length is at

least δ (and less than 2δ). If some jobs with total length rk < δ remain, we glue
them together anyway and increase the length of the resulting job to δ. Call the
resulting sets of jobs Cg

k . Now define C ′
k = (Ck \ Cs

k) ∪ Cg
k , J ′

2 =
⋃c

k=k0+1 C ′
k,

and J ′ = (J1 \ J s
1) ∪ J ′

2. We now prove that scheduling the glued jobs instead
of the original jobs will not increase the optimum makespan or total work too
much.

Lemma 8. If there is a schedule for the original jobs J with makespan 1 and
total load L, then there is a schedule for the jobs J ′ that has makespan less
than 1 + 2ε and total load L +

∑c
k=k0+1(δ − rk).

Proof. Consider the schedule for the original jobs J and fix one class k > k0.
For each machine i, denote by hi,k the total load the small jobs Cs

k induce on
machine i without setup times and remove these jobs from the schedule.

Now add jobs from Cg
k greedily to each machine i until they exceed the

load hi,k (by at most 2δ). Note that we can always schedule all jobs from Cg
k by

this procedure: if a job cannot be added, the total load of the previously added
jobs must exceed

∑m
i=1 hi,k =

∑

j∈Cs
k
t(j). On the other hand, the total load of

the previously placed jobs must be less than
∑

j∈Cs
k
t(j), provided that we add

the single job whose length was increased last.

Non-preemptive Scheduling with Setup Times: A PTAS 167

Now consider the load of a fixed machine i after jobs from all classes have
been glued and inserted. Since we considered only jobs from classes with setup
times larger than ε3, jobs from at most 1

ε3 classes are scheduled on i. The greedy
procedure exceeded the load hi,k for each of these classes by less than 2δ, which
increases the makespan by less than 1

ε3 2δ = 2ε by the definition of δ.
Finally note that total load increases by exactly

∑c
k=k0+1(δ − rk), because

we increased the size of the last glued job of each class k by δ − rk. �	

4.3 Finding a Schedule for Large Jobs

The set J ′ contains only jobs larger than δ = ε4. We now round the length
of these jobs and the setup times down to the next multiple of U = δ ε

1+2ε , i.e.

t̃(j) = � t(j)
U U and s̃k = � sk

U U . Using rounded times does not hurt us too much:

Lemma 9. (i) If a schedule for J ′ has makespan less than 1 + 2ε and total
load L with the original processing times and setup times, then it has
makespan less than 1 + 2ε and total load at most L − ∑

j∈J ′(t(j) − t̃(j))
with the rounded times.

(ii) If a schedule for J ′
1 has makespan less than 1 + 2ε and total load L with

the rounded times, then this schedule has makespan less than 1 + 3ε + 2ε2

and total load at most L +
∑

j∈J ′(t(j) − t̃(j)) + m(ε2 + ε4) with the original
times.

Proof. (i) This is obvious, because we rounded all times down.
(ii) Since 1

ε is integral, δ = 1+2ε
ε U = (1ε + 2)U is a multiple of U . Also each

job j has t(j) > δ, and because we round down do the next multiple of δ,
we have t̃(j) ≥ δ. Fix any job j, then the realtive increase of its processing
time when undoing the rounding is

t(j) − t̃(j)
t̃(j)

<
U

δ
=

ε

1 + 2ε
< ε. (4)

For any class k we can bound

s̃k > sk − U > ε3 − U = δ

(

1
ε

− ε

1 + 2ε

)

. (5)

Since ε ≤ 1
2 , this is further bounded by

δ

(

1
ε

− ε

1 + 2ε

)

> δ(
1
ε

− ε) ≥ 3
4
ε3 > ε4 = δ, (6)

so the setup times increase by a factor of at most 1+ ε as well. The load of each
machine therefore is less than (1 + 2ε)(1 + ε) = 1 + 3ε + 2ε2.

Now consider the load due to setups. Using (5), we can bound the number
of setups on each machine. Thus, the load on each machine increases by at most

1 + 2ε

δ
(

1
ε − ε

1+2ε

) × U = ε2 +
ε4

1 + 2ε − ε2
≤ ε2 + ε4. (7)

168 K. Jansen and F. Land

Finally, the total load due to jobs increases by exactly
∑

j∈J ′(t(j) − t̃(j)). �	
Finally, we solve the instance with jobs J ′ and rounded times exactly. For this,

we apply dynamic programming over the jobs. Conceptually, we have a set of
feasible schedules for the previously considered jobs, and extend these schedules
by adding the current job j (and its groups setup if necessary) on all machines
where this does not exceed the target makespan. The key observation is, that, in
order to determine where j can be scheduled, we do not need complete knowledge
of the schedule. We only need to know the load of each machine, and whether
it already has the setup for j’s class scheduled. In fact, since machines of the
same load then are indistinguishable, we only need to know how many machines
of each load the schedule has, i.e. we consider two schedules equivalent if the
number of machines for each load is equal. Our dynamic program only considers
the equivalence classes of feasible schedules we are able to construct. Also, the
load of each machine is a multiple of U and less than 1 + 2ε, and thus takes one
of the values 0, U, 2U, . . . ,

⌊

1+2ε
U

⌋

U , i.e. B =
⌊

1+2ε
U

⌋

+1 = O(1
ε5) possible values.

Lemma 10. We can find all feasible schedules (up to equivalence) of J ′ with
rounded times and makespan less than 1 + 2ε in time O(nm2/ε5+2).

Proof. Formally, the state of our dynamic program is a set S of vectors. Each
vector v = (m−

0 ,m+
0 , . . . ,m−

B−1,m
+
B−1) ∈ {0, . . . , m}2B represents one class of

feasible schedules we were able to construct. The components m+
� (m−

�) give the
number of machines with load �U that already have (do not have) the setup for
the current job’s class scheduled. Note that we can have at most m2B + 2B =
O(m2B) vectors in S: the vectors from the set {0, . . . , m−1}2B and the 2B vectors
of the form (0, . . . , 0,m, 0, . . . , 0).

The state is initialized with only the class of the empty schedule, i.e. S =
{(m, 0, . . . , 0)}. To correctly keep track of which machines have which setups, we
order the jobs by class. For the first job of each class, we reset the components
of each vector before placing the job, i.e. we set m−

� ← m−
� + m+

� and m+
� = 0.

This requires time O(cm2B).
For each job j from class Ck, we create a new, initially empty set S′, which

will later hold the vectors corresponding to feasible schedules for all jobs up to
and including j. For this, consider all vectors from S and all of the 2B machine
types to add j to: let v = (m−

0 ,m+
0 , . . . ,m−

B−1,m
+
B−1) ∈ S, � ∈ {0, . . . , B − 1},

and ◦ ∈ {+,−}. Let

�′ =

{

� + t̃(j)
U if ◦ = +

� + t̃(j)+s̃k

U if ◦ = −.
(8)

When �′ < B, adding j to a machine with load �U and with/without setup for Ck

(depending on ◦) leads to a feasible schedule. In this case, we add the vector v̂ =
(m̂−

0 , m̂+
0 , . . . , m̂−

B−1, m̂
+
B−1) to S′ that has m̂◦

� = m◦
� − 1, m̂+

�′ = m+
�′ + 1, and

is identical to v in every other component. After computing all vectors vor the
job j, we replace S by S′ before proceeding to the next job. This step requires
O(2Bm2B) steps for each job.

Non-preemptive Scheduling with Setup Times: A PTAS 169

For all groups and jobs, our dynamic program requires O(cm2B+n2Bm2B) =
O(nm2B) operations, using that ε is a constant.

4.4 Putting it Together

We can start putting everything together for our algorithm.

Lemma 11. If there is a schedule for J with makespan at most 1, then there is
a schedule for J ′ that has makespan at most 1 + 2ε, total load at most

L∗ = m − Ls +
c

∑

k=k0+1

(δ − rk) −
∑

j∈J ′
(t(j) − t̃(j)) (9)

with the rounded times.

Proof. According to Lemma 6, there is a schedule for J \ Js
1 with makespan at

most 1 and total load at most m−Ls. Lemma 8 states that there is a schedule for
J ′ with makespan at most 1+2ε and total load at most m−Ls+

∑g
k=k0+1(δ−rk).

The latter schedule has makespan at most 1 + 2ε and total load at most L∗ by
Lemma 9 (i) with the rounded times.

Note that the load of different feasible schedules do not need to be equal,
because different distributions of classes to machines may require more or less
setup time.

The Algorithm.

(1) Remove the jobs J s
1 from the instance.

(2) Glue the items in J s
2 together and obtain J ′.

(3) Round the processing and setup times for jobs in J ′.
(4) Using our dynamic program, find the schedule for J ′ with makespan at

most 1 + 2ε that has the lowest total load. If no such schedule exists or
its load is greater than L∗, report that no schedule for J with makespan 1
exists.

(5) Undo the rounding and replace the glued jobs with the original jobs.
(6) Add the jobs J s

1 using Lemma 7.

Theorem 12. Above procedure either finds a schedule of makespan 1 + 4ε +
5ε2 + 2ε3 or correctly decides that no schedule of makespan 1 exists.

Proof. The decision to report that no schedule with makespan 1 exists is correct
by Lemma 11. If we found a schedule that has makespan at most 1 + 2ε and
total load at most L∗ with the rounded times, then, according to Lemma 9 (ii),
this schedule has makespan at most M = 1 + 3ε + 2ε2 and total load at most

L∗ +
∑

j∈J ′
(t(j)− t̃(j))+m(ε2 + ε4) = m−Ls +

c
∑

k=k0+1

(δ − rk)+m(ε2 + ε4) (10)

170 K. Jansen and F. Land

with the original times. Replacing the glued jobs by the original small jobs
reduces the load by

∑c
k=k0+1(δ−rk) to (1+ε2+ε4)m−Ls ≤ (M −ε−2ε3)m−Ls.

Therefore, Lemma 7 allows us to add all the removed jobs J s
1, and the makespan

increases by most εM to 1 + 4ε + 5ε2 + 2ε3. �	
The running time of our algorithm is dominated by the dynamic program

with O(nm2/ε5+2) steps. Every other step can be performed in linear time O(n).

5 Conclusion

We presented three algorithms for non-preemptive scheduling with setup costs
on identical machines. The first two algorithms are simple to implement and
extremely fast, and have approximation ratio 3 and 2 + ε, respectively. We also
presented a polynomial time approximation scheme, thus we can approximate
the problem arbitrarily good.

This raises some questions: is there an efficient algorithm with approximation
ratio less than 2? Can we design a faster PTAS, preferably an EPTAS? An
EPTAS has a running time f(1ε) × poly(n), thus avoiding large exponents.

Further research could also consider the model of uniformly related machines,
where machines can have different speeds that affect the processing times.
Note that, without setup times, scheduling on identical and uniformly related
machines admits an EPTAS [6].

References

1. Allahverdi, A., Gupta, J.N., Aldowaisan, T.: A review of scheduling research involv-
ing setup considerations. Omega 27(2), 219–239 (1999)

2. Allahverdi, A., Ng, C., Cheng, T., Kovalyov, M.Y.: A survey of scheduling problems
with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

3. Chen, B.: A better heuristic for preemptive parallel machine scheduling with batch
setup times. SIAM J. Comput. 22(6), 1303–1318 (1993)

4. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Series of Books in the Mathematical Sciences, W. H. Freeman
(1979)

5. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34, 144–162 (1987)

6. Jansen, K.: An EPTAS for scheduling jobs on uniform processors: Using an MILP
relaxation with a constant number of integral variables. SIAM J. Discrete Math.
24(2), 457–485 (2010)

7. Mäcker, A., Malatyali, M., Meyer auf der Heide, F., Riechers, S.: Non-preemptive
scheduling on machines with setup times. In: Dehne, F., Sack, J.-R., Stege, U.
(eds.) WADS 2015. LNCS, vol. 9214, pp. 542–553. Springer, Heidelberg (2015)

8. Monma, C.L., Potts, C.N.: Analysis of heuristics for preemptive parallel machine
scheduling with batch setup times. Oper. Res. 41(5), 981–993 (1993)

9. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup
times. In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1999), pp. 759–767. SIAM (1999)

Cuboid Partitioning for Parallel Matrix
Multiplication on Heterogeneous Platforms

Olivier Beaumont1,2, Lionel Eyraud-Dubois1,2(B), and Thomas Lambert1,2

1 Inria, University of Bordeaux, Bordeaux, France
Lionel.Eyraud-Dubois@inria.fr

2 LaBRI, University of Bordeaux, Bordeaux, France

Abstract. The problem of partitioning a square into zones of prescribed
areas arises when partitioning matrices for dense linear algebra kernels
onto a set of heterogeneous processors, and several approximation algo-
rithms have been proposed for that problem. In this paper, we address the
natural generalization of this problem in dimension 3: partition a cuboid
in a set of zones of prescribed volumes (which represent the amount of
computations to perform), while minimizing the surface of the bound-
aries between zones (which represent the data transfers involved). This
problem naturally arises in the context of matrix multiplication, and
can be seen as a heterogeneous generalization of 2.5D approaches that
have been proposed in this context. The contributions of this paper are
twofold. We prove the NP-completeness of the general problem, and we
propose a 5

62/3
� 1.51-approximation algorithm for cube-partitioning.

This is the first known approximation result for this 3D partitioning
problem.

1 Introduction

In the case of homogeneous resources, the problem of partitioning data for Linear
Algebra kernels in order to both balance the load throughout the computation
and to minimize communications is well understood. 2D block-cyclic distribu-
tions, for instance, have been introduced in Scalapack [12] in order to achieve this
goal. More recently, the problem has received a lot of attention in Communica-
tion Avoiding algorithms design (see [1,16] and [3,22] for Matrix Multiplication
specifically). In this context, the goal is to partition the set of elementary com-
putations to be performed into a minimal number of zones, each zone being
able to be processed in local memory (i.e. both input, intermediate and output
data). This corresponds to maximizing the volume of computations that can be
processed with a given amount of memory.

In this paper, we concentrate on Matrix Multiplication algorithms and more
specifically on Matrix Multiplication algorithms that involve N3 elementary
operations of type Ci,j ← Ci,j +Ai,kBk,j , i.e. we ignore variants such as Strassen
or Coppersmith-Winograd. Note that throughout the paper, we will assume that
matrices are partitioned into blocks, whose size is chosen so as to be well adapted

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 171–182, 2016.
DOI: 10.1007/978-3-319-43659-3 13

172 O. Beaumont et al.

to all types of resources (typically CPUs and GPUs). On the other hand, we con-
sider a fully heterogeneous platform, where all nodes may have different process-
ing capacities and we address the most general problem, where several partially
aggregated copies of C can reside simultaneously in memory, such as in 2.5D
algorithms [22]. In this context, the problem consists in partitioning the com-
putational domain (the cube of N3 points) into sub-domains allocated to the
different resources. In order to balance the load between the processing units,
each unit should receive a volume of computations proportional to its processing
speed and the overall amount of communications, that corresponds to the overall
boundary area between the zones should be minimized.

Many algorithms [6,10,14,15,17,19] have been proposed in the context of
dense matrix multiplication based on Canon’s-like algorithm, that corresponds
to the 2D version of the problem, i.e. how to partition a matrix into zones of fixed
area while minimizing the overall length of the boundaries. On the other hand,
to the best of our knowledge, this paper is the first to consider the complexity of
the 3D version of the algorithm, to prove the NP-Completeness of the underlying
decision problem and to propose an approximation algorithm for it.

Related Works

The 2D version of this optimization problem has been first introduced by Las-
tovetsky and Kalinov in [17]. In [6], it has been proven that the problem is
NP-Complete, and a first algorithm with bounded approximation ratio (1.75)
has been proposed. This algorithm has been improved along two directions. On
the one hand, Lastovetsky et al. have proposed to relax the assumption stating
that the zones allocated to the processors should be single rectangles and have
proposed optimal algorithms, but limited to 2 heterogeneous processors [10] and
more recently to 3 heterogeneous processors [14]. On the other hand, recursive
partitioning algorithms have recently been proposed where at each step, the set
of processors is split into two parts. Sophisticated proof techniques enabled Nag-
amochi and Abe [19] to improve the approximation ratio down to 1.25. Recently,
Fügenschuh et al. [15] improved this result to 1.15, but under the assumption
that if we consider processors in decreasing order of their processing speeds, there
is no abrupt change in the performance between 2 successive processors. Unfor-
tunately, such an abrupt decrease typically happens when considering nodes
consisting of CPUs and GPUs, such that Fügenschuh’s algorithm is limited to
the case of relatively homogeneous platforms. In [8], an algorithm based on the
idea of non rectangular partitioning proposed by Lastovetsky and extended to
any number of processors by adapting the recursive partitioning algorithm pro-
posed by Nagamochi has been proposed. It achieves an approximation ratio of
2√
3

� 1.15 and does not require any specific assumption on the relative speed of
resources, so that it can be used in the case of nodes consisting of both regular
cores and accelerators.

Besides a single heterogeneous node, this partitioning problem has been
adapted to distributed hierarchical and highly heterogeneous platforms in [13],
where the partitioning is applied at two levels (intra-node and inter-node),

Cuboid Partitioning for Parallel Matrix Multiplication 173

based on sophisticated performance models. The same partitioning has also been
extended to finite-difference time-domain (FDTD) methods to obtain numerical
solutions of Maxwell’s equations in [21]. More dynamic settings have also been
considered in [18]. Recently, in order to cope with resource heterogeneity and
the difficulty to build optimal schedules, the use of dynamic runtime schedulers
have been proposed, such as StarPU [2], StarSs [20], or PaRSEC [11]. In these
systems, at runtime, the scheduler takes the scheduling and allocation decisions
based on the set of ready tasks (tasks whose all data and control dependencies
have been resolved), on the availability of the resources (estimated using expect-
ing processing and communication times), and on the actual location of input
data. The comparison between static scheduling strategies and runtime schedul-
ing strategies has been considered in [7], where the analysis of the behavior of
static, dynamic, and hybrid strategies highlights the benefits of introducing more
static knowledge and allocation decisions in runtime libraries.

Paper Outline

The paper is organized as follows. In Sect. 2, we formally present the partitioning
problem and the notations that will be used throughout the paper. In Sect. 3,
the complexity of the associated decision problem in the 3D case is established
and a 5

62/3
� 1.51-approximation algorithm for cube-partitioning is proposed in

Sect. 4. Conclusions and perspectives are given in Sect. 5.

2 General Context

Definition 1. Let P be a connected polyhedron included in [0, x]× [0, y]× [0, z].
We define its covering cuboid as the smallest cuboid Cu(P) = [x1, x2] ×
[y1, y2] × [z1, z2] that includes P . We define also its width w(P) as x2 − x1,
its height h(P) as y2 − y1 and its length l(P) as z2 − z1. Let us define
Hs(P) = h(P)l(P) + w(P)l(P) + h(P)w(P), ρ(P) = max(h(P),w(P),l(P))

min(h(P),w(P),l(P)) and

ρ′(P) = max(h(P),w(P),l(P))
med(h(P),w(P),l(P)) . Finally we denote by V (P) the volume of P .

Problem 1 (Minimizing-Surface-Cuboid-Partition (MSCuboidP)). Given a set of
n numbers {v1, . . . , vn} such that

∑

vk = xyz, and the cuboid Cu = [0, x] ×
[0, y] × [0, z], find for each vk a polyhedron Pk of Cu such that V (Pk) = vk and
⋃

Pk = Cu minimizing
∑

Hs(Pk).

A general lower bound for this problem has been established by Ballard
et al. [4] and comes from Loomis-Whitney inequality. It simply states that a
polyhedron P of volume V (P) minimizes the surface of its covering cuboid if
and only if it is shaped as a cube. This implies the following lower bound:

Hs(P) ≥ 3V (P)
2
3 . (1)

174 O. Beaumont et al.

3 NP-Completeness

We prove in this section the NP-completeness of the decision problem associated
to MSCuboidP, MSCuboidP-DEC.

Problem 2 (MSCuboidP-DEC). Given a set of n given numbers {v1, . . . , vn} such
that

∑

vk = xyz, a cuboid Cu = [0, x] × [0, y] × [0, z] and a number K, is
there a set of n polyhedra Pk of Cu such that V (Pk) = vk,

⋃

Pk = Cu and
∑

Hs(Pk) ≤ K ?

We start by proving the NP-completeness of a more constrained variant in
which the goal is to partition the cuboid in cubes of specified side lengths. The
direct reduction to MSCuboidP-DEC is then given at the end of the section.

Problem 3 (All-Cube-Cuboid-Partition (ACCuboidP)). Given a set of p given
length {l1, . . . , lp} such that

∑

l3k = xyz, and a cuboid Cu = [0, x]× [0, y]× [0, z],
is there a set of p cubes Ck ∈ Cu such that V (Ck) = l3k and

⋃

Ck = Cu ?

Lemma 1. ACCuboidP is NP-Complete.

It is easy to check that ACCuboidP belongs to NP. We prove NP-hardness of
ACCuboidP with a method inspired from the hardness proof of the equivalent
2D problem [5], by using a reduction from 2-PART-EQUAL, a variant of the
well-known 2-PART problem. The NP-completeness of 2-PART-EQUAL can be
proven by a reduction from 2-PART. Indeed, adding a constant C to every
element of the instance of 2-PART and then adding n (where n is the size of the
instance) elements of size C to the instance itself creates an instance of 2-PART-
EQUAL that has a solution if and only if the original instance of 2-PART has
one. Our proof consists in two steps: from an instance of 2-PART-EQUAL, we
first derive another set of numbers bi and prove that they can be partitioned into
two equal size sets if and only if the 2-PART-EQUAL instance has a solution.
Then, we use the bi numbers to build an instance of ACCuboidP for which the
existence of a packing is equivalent to partitioning the bi’s into two equal size
sets.

Problem 4 (2-PART-EQUAL). Given a set of 2n integers {a1, . . . , a2n}, is there
I ⊆ [1, n] such that |I| = n and

∑

i∈I

ai =
∑

i/∈I

ai ?

First Reduction. Let us now consider an instance of 2-PART-EQUAL,
{a1, . . . , a2n} and let us denote 2A =

∑2n
i=1 ai and M = 6n × max

i
ai. Let

us suppose, without loss of generality, that n is a multiple of 120 greater than
240 and let us define a new set {b1, . . . , b2n} as

∀i, bi = ai + 3n × max
i

ai + D where D =
60M − (A mod 60M)

n

= ai +
M

2
+ D.

Cuboid Partitioning for Parallel Matrix Multiplication 175

In addition, let us set k = n
120 + A+nD

60M and S = 1
2

∑2n
i=1 bi. One can prove

that k is an integer (since n is a multiple of 120) and that S = 60k × M . In
addition, let us notice that for all i, M

2 < bi (since D ≥ 0 and ai > 0) and
bi ≤ M . Indeed, D ≤ 60M

n ≤ M
4 and ai + M

2 ≤ M(12 + 1
6n) ≤ 4M

6 . Therefore
∀i, bi ≤ 11M

12 < M .
Let us prove now that there exists a solution to our instance of 2-PART-

EQUAL if and only if there exists a set I ⊂ [1, n] such that
∑

i∈I bi =
∑

i/∈I bi.
If there exists I such that |I| = n and

∑

i∈I ai =
∑

i/∈I ai, then

∑

i∈I

bi =
∑

i∈I

ai +
n

2
(
M

2
+ D) =

∑

i/∈I

ai +
n

2
(
M

2
+ D) =

∑

i/∈I

bi.

Let us assume that there exists a set I such that
∑

i∈I bi =
∑

i/∈I bi. Then,

∑

i∈I

bi −
∑

i/∈I

bi =
∑

i∈I

ai −
∑

i/∈I

ai + (|I| − |I|)(M

2
+ D)

∑

i/∈I

ai −
∑

i∈I

ai = (|I| − |I|)(M

2
+ D).

Yet,
∑

i/∈I ai − ∑

i∈I ai ≤ 2n × max ai = M
3 and M

2 ≤ M
2 + D. Therefore,

(|I| − |I|)M

2
≤ M

3
and (|I| − |I|) ≤ 2

3
< 1.

By symmetry, we obtain |I| = |I| and I is a solution to 2-PART-EQUAL.

Second Reduction. In order to build the ACCuboidP instance that will be
used in the reduction, we rely on a result from Walters [23] stating that it is
possible to tile any cuboid with a number of cubes which is poly-logarithmic in
the side lengths of the cuboid. We call the cubes in such a tiling Walters’ cubes,
and we denote by WS(X,Y,Z) a (poly-logarithmic size) set of cubes tiling the
cuboid X × Y × Z.

Let us consider the following instance of ACCuboidP:

– A cuboid of size 11M × 15M × S (with S = 60k × M).
– 20k cubes of length 6M .
– 24k cubes of length 5M .
– 30k cubes of length 4M .
– 20k cubes of length 3M .
– ∀i, a cube of length bi.
– ∀i, WS(M − bi, bi, bi) and WS(M,M − bi, bi).

with M , k and the bi’s defined from the ai’s as in the first reduction described
above. One can see that the reduction is polynomial, since the sizes of the Wal-
ters’ cubes sets are poly-logarithmic functions of the bi’s.

176 O. Beaumont et al.

M − bi
bi

bi

bi

M − bi

bi × M × M

bi

M

S

M × M × S

Fig. 1. Tiling of a M × M × S packing.

In the first part of the proof, we prove that if we can split the bi items in two
equal sets, then the above set of cubes can be packed into the cuboid.

Let us first consider, for each i, the cube of length bi and the two associated
Walters’ cubes sets. Figure 1(a) shows how they can be packed into a cuboid of
size M × M × bi, where the cuboid of size (M − bi) × bi × bi and the cuboid
of size (M − bi) × bi × M are tiled with the cubes from WS(M − bi, bi, bi) and
WS(M,M −bi, bi) respectively. Stacking up such cuboids on top of one another,
we can build two M × M × S cuboids from the two sets I and I, see Fig. 1(b).

5M

6M

4M

M

3M

4M

M

6M

5M

Fig. 2. Tiling of a 11M × 15M rectangle.

Figure 2 shows how to tile a 11M × 15M rectangle with the corresponding
squares, where both M ×M squares represent a slice of the M ×M ×S cuboids
presented above. This arrangement can be repeated for a total length of S, since
10k × 6M = 12k × 5M = 15k × 4M = 20k × 3M = 60k × M = S.

Hence, this provides a tiling of the whole 11M × 15M × S cuboid.
For the second part of the proof, we need to prove that if the cuboid can be

tiled with the set of cubes, then a partition of the bi values in two equal size sets
exists. We start by proving that in any valid tiling of the cuboid, the 11M ×15M

Cuboid Partitioning for Parallel Matrix Multiplication 177

rectangle can only be tiled as shown on Fig. 2 (or under the same pattern but
with an horizontal symmetry). This can be proven by considering all possible
values for the area occupied by the smallest cubes (the bi-cubes, the Walters’
cubes, and the cubes of length 3M). Case analysis shows that this surface needs
to be at least 11M2, which implies that any slice of the 3D tiling must intersect
the same number of cubes of each type (two of each length 6M , 5M , 4M and
one of length 3M). Then one can prove that the only way to tile the 11M ×15M
rectangle with these squares is as shown on Fig. 2. Due to lack of space, we were
not able to provide the full case analysis and we refer the interested reader to
the companion research report [9] for the sake of completeness.

We have built a pattern that must appear on each slice of the cuboid, and in
which the bi cubes have to be included into two separate parts of the tiling. Let
us denote by I the indexes of the bi cubes which appear in the leftmost M×M×S
cuboid. Since by construction, bi > M

2 for all i, these cubes have to be arranged
as depicted on Fig. 1(b). This shows that

∑

i∈I bi ≤ S and
∑

i/∈I bi ≤ S. Since
the total sum is 2S, this implies that both sums are in fact equal to S, and thus
that there exists a solution to the original 2-PART-EQUAL instance.

Note that the pattern in Fig. 2 can be horizontally reversed. Furthermore,
both possibles patterns can be present on the final tiling. However, even in
this case, considering the bi-cubes on the left side still yields a set I such that
∑

i∈I bi =
∑

i/∈I bi = S.
�
Theorem 1. MSCuboidP-DEC is NP-complete.

Proof. There is a reduction from ACCuboidP to MSCuboidP-DEC. Indeed,
ACCuboidP ({l1, . . . , lp}, [0, x]×[0, y]×[0, z]) is true if and only if MSCuboidP −
DEC({l31, . . . , l

3
p}, [0, x]× [0, y]× [0, z], 3

∑

v
2/3
k) is true (the bound in (1) is tight

if and only if there exists a partitioning where only cubes are used). Yet, thanks
to Lemma 1, ACCuboidP is NP-complete. Therefore MSCuboidP-DEC is NP-
complete.

4 Approximation Algorithm

In this section, we present 3D-NRRP, an approximation algorithm for the case
where the cuboid to partition is cubic, what corresponds to the multiplication
of square matrices. It is inspired by the NRRP algorithm proposed in [8] and by
Nagamochi et al. in [19].

4.1 Presentation and Correctness of 3D-NRRP

3D-NRRP (see Algorithm 1) is based on the divide and conquer principle, and
its analysis relies on the following invariant: at each step, the aspect ratio of the
cuboid to be partitioned is smaller than 3. In what follows, we define the aspect
ratio ρ of a cuboid as the ratio of the largest length by the smallest length. We
also define the second aspect ratio ρ′ as the ratio of the largest length by the
median length.

178 O. Beaumont et al.

Algorithm 1. 3D-NRRP
Input: A set of values {v1, . . . , vn} sorted in non-decreasing order, a cuboid

Cu = [a, b] × [c, d] × [e, f] with (b − a) × (d − c) × (f − e) =
n∑

i=1

vi

Output: For each i ≤ n a polyhedron Pi such that
⋃

Pi = Cu and V (Pi) = vi

1 if n = 1 then
2 return Cu
3 else

4 v =
n∑

i=1

vi ;

5 w = b − a ; h = d − c ; l = f − e ;

6 ρ1 = max(w,h,l)
min(w,h,l)

; ρ2 = max(w,h,l)
med(w,h,l)

;

7 if there exists k such that
k−1∑
i=1

vi ≥ v
3ρ2

then

8 k = the smallest such index ;

9 v′ =
∑k−1

i=1 vi ;
10 Cut Cu along its longest edge to obtain Cu1 and Cu2, with respective

volumes v′ and v − v′ ;
11 return 3D-NRRP({v1, . . . , vk−1}, Cu1) ∪ 3D-NRRP({vk, . . . , vn}, Cu2) ;

12 else

13 v′ =
n−1∑
i=1

vi ;

14 Cu1 = [a, a + 3
√

v′] × [c, c + 3
√

v′] × [e, e + 3
√

v′] ;
15 return 3D-NRRP({v1, . . . , vn−1}, Cu1) ∪ (Cu \ Cu1)

At each step of the algorithm, the current cuboid (whose aspect ratio is
smaller than 3) is split into two parts, and the same routine is recursively applied
to each part. To ensure that the resulting parts have an aspect ratio smaller
than 3, the splitting is performed according to two modes. The first mode is
the general case, in which the cuboid is partitioned in two disjoint cuboids by
cutting along the largest length (Lines 7 to 11 in Algorithm 1, and Fig. 3(a)).
This is possible if there exists an index k such that

∑k−1
i=1 vi ≥ v/(3ρ2). Indeed,

Lemmas 2 and 3 show that this condition is sufficient to prove the invariant for
both parts. More specifically, Lemma 2 states that in that case, both resulting
cuboids have a total volume greater than one third of the overall volume, and
Lemma 3 states that the aspect ratio of both cuboids is smaller than 3, under
the assumption that the previous one had also a ratio less than 3, what ensures
the correctness of the algorithm.

In the second mode, vn is significantly larger than the other vi’s. Splitting
in two cuboids would result in the smallest cuboid having an aspect ratio larger
than 3. Therefore 3D-NRRP shapes the smallest part as a cube, included in the
covering cuboid of the other part, which is made of one element only, namely vn

(Lines 20 to 22 of Algorithm 1, and Fig. 3(b)).

Cuboid Partitioning for Parallel Matrix Multiplication 179

Fig. 3. The two splitting modes of 3D-NRRP. In both cases, the gray polyhedra is
attributed to {v1, . . . , vk−1}, the white one to {vk, . . . , vn}.

Lemma 2. Let {v1, . . . , vn} be a set of positive values sorted in non-decreasing
order, ρ ≥ 1, and v =

∑

i vi. Let us assume that there exists an index k such that
∑k−1

i=1 vi ≥ v/3ρ, and let us consider the smallest such integer. Then
∑n

i=k vi ≥
v/3ρ.

Proof. By definition of k,
∑k−2

i=1 vi < v/3ρ. Therefore, if we assume that
∑n

i=k vi < v/3ρ, we obtain vk−1 = v − ∑k−2
i=1 vi − ∑n

i=k vi ≥ v/3ρ (since ρ ≥ 1).
Since vk ≤ ∑n

i=k vi < v/3ρ, we have vk−1 > vk which is a contradiction with
the fact that the vi’s are sorted in non-decreasing order.

Lemma 3. Let Cu be a cuboid of dimension w × h × l, with volume V = hwl,
aspect ratio ρ, and second aspect ratio ρ′. Let us assume that Cu1 and Cu2 are
obtained by cutting Cu along the largest length, with V (Cu1) and V (Cu2) not
smaller than V

3ρ′ . Then, ρ(Cu1) ≤ max(3, ρ) and ρ(Cu2) ≤ max(3, ρ).

Proof. Let us suppose that w ≤ h ≤ l without loss of generality. In this case,
w = w(Cu1) = w(Cu2), h = h(Cu1) = h(Cu2), ρ = l/w and ρ′ = l/h. Let us
denote l1 = l(Cu1) and l2 = l(Cu2) and let us consider cuboid Cu1. Then, there
are 3 cases to consider,

– If h ≤ l1, then ρ(Cu1) = l1/w ≤ l/w = ρ,
– If w ≤ l1 ≤ h, then ρ(Cu1) = h/w ≤ l/w ≤ ρ,
– If l1 ≤ w ≤ h, by assumption w ×h× l1 = V (Cu1) ≥ V

3ρ′ = w×h×l
3ρ′ . Therefore

l1 ≥ l/3ρ′. Then, ρ(Cu1) = h/l1 ≤ 3hρ′

l = 3.

Thus, in all cases, ρ(Cu1) ≤ max(3, ρ). By symmetry, the same proof applies to
Cu2.

4.2 Approximation Ratio

This section is devoted to the proof of Theorem 2, which states that the 3D-
NRRP achieves a 5

62/3
approximation ratio (5

62/3
� 1.51).

Theorem 2. 3D-NRRP is a 5
62/3

-approximation when the given cuboid is cubic.

180 O. Beaumont et al.

The sketch of the proof is as follows. First, we prove that if {P1, . . . , Pn}
is an output of 3D-NRRP, then any output polyhedron Pi satisfies Hs(Pi)

3V (Pi)
2
3

≤
5

6
2
3
. Remind that Eq. (1) states that Hs(P ∗

i) ≥ 3V (P ∗
i)

2
3 for any (optimal)

solution {P ∗
1 , . . . , P ∗

n}. By summing up these inequalities for all i, we get that
∑

i Hs(Pi) ≤ 5

6
2
3

∑

i Hs(P ∗
i) and obtain the approximation result claimed in

Theorem 2.
The rest of the section is devoted to the proof that any polyhedron returned

by 3D-NRRP satisfies the property stated above. One can see that there are
only two situations in which 3D-NRRP returns a polyhedron: Line 2 and Line
15. In the first case, the returned zone is a cuboid with aspect ratio less than 3.
In this case Lemma 5 provides the claimed result, since 5

3 3√3
≤ 5

6
2
3
. We first state

a technical result in Lemma 4, whose proof is not included for lack of space, and
can be found on the companion technical report [9].

Lemma 4. Let f(x, y) = y+x(1+y)
3(xy)2/3

. For y ∈ [1, 3] and x ∈ [1, y], f(x, y) ≤ 5
3 3√3

.

Lemma 5. If P is a cuboid with ρ(P) ≤ 3, then Hs(P)
3V (P)2/3

≤ 5
3 3√3

.

Proof. We denote ρ(P) = ρ and V (P) = V . We suppose that w = w(P) ≤ h =
h(P) ≤ l(P) = l without loss of generality. We denote x = h/w. In this case
l = ρw and V = whl = ρxw3. Therefore

Hs(P)
3V 2/3

=
(x + ρ + xρ)w2

3(ρxw3)2/3
=

ρ + x(1 + ρ)
3(ρx)2/3

= f(x, ρ),

where f is as defined in Lemma 4, what ends the proof.
�
In the other case, 3D-NRRP returns a cuboid minus a cube (Line 15 of

Algorithm 1, as described on Fig. 3(b)). The bound on the volume of the cube
is such that the conditions of Lemma 7 are fulfilled. As before, this relies on the
technical Lemma 6, whose proof can be found on the technical report [9].

Lemma 6. Let f(x, y) = y+x(1+y)

3(xy− x2
3)

2
3
. For y ∈ [1, 3] and x ∈ [1, y], f(x, y) ≤ 5

6
2
3
.

Lemma 7. If V (P) ≥ (1− 1
3ρ′(P))V (Cu(P)) and ρ(P) ≤ 3, then Hs(P)

3V (P)2/3
≤ 5

6
2
3
.

Proof. Let us denote ρ = ρ(P), ρ′ = ρ′(P), V = V (P), and let us denote by w,
h, l the dimensions of Cu(P). Let us suppose that w ≤ h ≤ l without loss of
generality. Then, l = ρw and l = ρ′h, and let us also denote x = h/w = ρ/ρ′.
With such notations, we get V (Cu(P)) = ρxw3 and Hs(P) = (ρ + x(1 + ρ))w2.
Thus, the condition on V (P) can be written as

V (P) ≥ (1 − 1
3ρ′(P)

)V (Cu(P)) = (1 − x

3ρ
)ρxw3 = (ρx − x2

3
)w3,

what leads to
Hs(P)

3V (P)2/3
≤ (ρ + x(1 + ρ))w2

3(ρx − x2

3)2/3w2
=

ρ + x(1 + ρ)
3(ρx − x2

3)2/3
= f(x, ρ),

where f is as defined in Lemma 6, what provides the conclusion.
�

Cuboid Partitioning for Parallel Matrix Multiplication 181

5 Conclusion

We introduce a model of the partitioning problem associated to the 2.5D matrix
multiplication algorithm on heterogeneous resources, a problem of crucial impor-
tance in high performance computing. This corresponds to partitioning a cuboid
into several polyhedra, each representing the volume of computations attributed
to a resource. We provide two theoretical results: a proof of the NP-completeness
for this problem, and an approximation result for 3D-NRRP, which generalizes the
results obtained in the 2D case. This is the first known approximation result for
this problem, and it provides a strong guarantee (5

62/3
� 1.51). In addition, the

computational time of the algorithm is extremely low, O(n log n), where n is the
number of processors, what makes it perfectly suitable for practical use. This
work opens several interesting perspectives for dimensions higher than 3, what
corresponds to tensor products. It would also be interesting to combine this algo-
rithm, whose general goal is to minimize the overall volume of communications
while enforcing perfect load balancing between heterogeneous resources, with
algorithms that explicitly take into account memory constraints at each node.

References

1. Anderson, M., Ballard, G., Demmel, J., Keutzer, K.: Communication-avoiding QR
decomposition for GPUs. In: IEEE International Parallel & Distributed Processing
Symposium (IPDPS), pp. 48–58. IEEE (2011)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Comput. Practice Exp. 23, 187–198 (2009). Special Issue: Euro-Par 2009

3. Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., Schwartz, O.: Communication-
optimal parallel algorithm for strassen’s matrix multiplication. In: Proceedings of
the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, pp. 193–204. ACM (2012)

4. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in lin-
ear algebra. SIAM J. Matrix Anal. Appl. 32(3), 866–901 (2011). arXiv: 0905.2485

5. Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix multiplication on het-
erogeneous platforms. IEEE Trans. Parallel Distrib. Syst. 12(10), 1033–1051 (2001)

6. Beaumont, O., Boudet, V., Rastello, F., Robert, Y., et al.: Partitioning a square
into rectangles: NP-completeness and approximation algorithms. Algorithmica
34(3), 217–239 (2002)

7. Beaumont, O., Eyraud-Dubois, L., Guermouche, A., Lambert, T.: Comparison
of static and dynamic resource allocation strategies for matrix multiplication. In:
Proceedings of the 26th IEEE International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), pp. 1–10. IEEE (2015)

8. Beaumont, O., Eyraud-Dubois, L., Lambert, T.: A new approximation algorithm
for matrix partitioning in presence of strongly heterogeneous processors. In: 30th
IEEE International Parallel and Distributed Processing Symposium (2016)

9. Beaumont, O., Eyraud-Dubois, L., Lambert, T.: Cuboid partitioning for paral-
lel matrix multiplication on heterogeneous platforms (2016). http://hal.inria.fr/
hal-01269881

http://arxiv.org/abs/0905.2485
http://hal.inria.fr/hal-01269881
http://hal.inria.fr/hal-01269881

182 O. Beaumont et al.

10. Becker, B., Lastovetsky, A.: Towards data partitioning for parallel computing on
three interconnected clusters. In: Sixth International Symposium on Parallel and
Distributed Computing, ISPDC 2007, pp. 39–39. IEEE (2007)

11. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Dongarra, J.:
PaRSEC: a programming paradigm exploiting heterogeneity for enhancing scala-
bility. Comput. Sci. Eng. 15(6), 36–45 (2013)

12. Choi, J., et al.: ScaLAPACK: a portable linear algebra library for distributed mem-
ory computers - design issues and performance. In: Waśniewski, J., Madsen, K.,
Dongarra, J. (eds.) PARA 1995. LNCS, vol. 1041, pp. 95–106. Springer, Heidelberg
(1996)

13. Clarke, D., Ilic, A., Lastovetsky, A., Sousa, L.: Hierarchical partitioning algorithm
for scientific computing on highly heterogeneous CPU + GPU clusters. In: Kak-
lamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol.
7484, pp. 489–501. Springer, Heidelberg (2012)

14. DeFlumere, A., Lastovetsky, A.: Optimal data partitioning shape for matrix mul-
tiplication on three fully connected heterogeneous processors. In: Lopes, L., et al.
(eds.) Euro-Par 2014, Part I. LNCS, vol. 8805, pp. 201–214. Springer, Heidelberg
(2014)

15. Fügenschuh, A., Junosza-Szaniawski, K., Lonc, Z.: Exact and approximation algo-
rithms for a soft rectangle packing problem. Optimization 63(11), 1637–1663
(2014)

16. Hoemmen, M.: Communication-avoiding Krylov Subspace Methods. Ph.D. thesis,
University of California, Berkeley (2010)

17. Kalinov, A., Lastovetsky, A.: Heterogeneous distribution of computations solving
linear algebra problems on networks of heterogeneous computers. J. Parallel Dis-
trib. Comput. 61(4), 520–535 (2001)

18. Mohamed, N., Al-Jaroodi, J., Jiang, H.: DDOps: dual-direction operations for load
balancing on non-dedicated heterogeneous distributed systems. Cluster Comput.
17(2), 503–528 (2014)

19. Nagamochi, H., Abe, Y.: An approximation algorithm for dissecting a rectangle
into rectangles with specified areas. Discrete Appl. Math. 155(4), 523–537 (2007)

20. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-
gramming with StarSs. Int. J. High Perform. Comput. Appl. 23(3), 284–299 (2009)

21. Shams, R., Sadeghi, P.: On optimization of finite-difference time-domain (FDTD)
computation on heterogeneous CPU and GPU clusters. J. Parallel Distrib. Com-
put. 71(4), 584–593 (2011)

22. Solomonik, E., Demmel, J.: Communication-optimal parallel 2.5D matrix multi-
plication and LU factorization algorithms. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 90–109. Springer, Heidelberg
(2011)

23. Walters, M.: Rectangles as sums of squares. Discrete Math. 309(9), 2913–2921
(2009)

HeSP: A Simulation Framework for Solving
the Task Scheduling-Partitioning Problem

on Heterogeneous Architectures

Antón Rey, Francisco D. Igual(B), and Manuel Prieto-Mat́ıas

Dept. Arquitectura de Computadores Y Automática,
Universidad Complutense de Madrid, Madrid, Spain

{anrey,figual,mpmatias}@ucm.es

Abstract. In this paper we describe HeSP, a complete simulation frame-
work to study a general task scheduling-partitioning problem on het-
erogeneous architectures, which treats recursive task partitioning and
scheduling decisions on equal footing. Considering recursive partition-
ing as an additional degree of freedom, tasks can be dynamically parti-
tioned or merged at runtime for each available processor type, exposing
additional or reduced degrees of parallelism as needed. Our simulations
reveal that, for a specific class of dense linear algebra algorithms taken as
a driving example, simultaneous decisions on task scheduling and parti-
tioning yield significant performance gains on two different heterogeneous
platforms: a highly heterogeneous CPU-GPU system and a low-power
asymmetric big.LITTLE ARM platform. The insights extracted from
the framework can be further applied to actual runtime task schedulers
in order to improve performance on current or future architectures and
for different task-parallel codes.

1 Introduction and Motivation

Task-parallel programming models have emerged as an appealing solution in
order to tackle the programmability problem on both homogeneous and hetero-
geneous platforms. These efforts aim at reducing user intervention to manage
data dependences, task allocation and data transfer management by delegating
those tasks to underlying runtime task schedulers. However, the ever-increasing
heterogeneity in current (and future) architectures has dramatically aggravated
the challenge for runtime developers; as more types of computing resources are
available, it becomes more difficult to concurrently exploit them in order to opti-
mize co-operative parallel implementations. One of the main conceptual prob-
lems lies on how to optimally (and possibly dynamically) partition a task into
sub-tasks (that is, solving a task partitioning problem), and how to efficiently
schedule them to the most convenient resource among those available in order
to maximize performance (that is, solving a task scheduling problem).

In this paper, we present HeSP (Heterogeneous Scheduler-Partitioner), a
simulation framework that addresses both problems in a simultaneous fashion.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 183–195, 2016.
DOI: 10.1007/978-3-319-43659-3 14

184 A. Rey et al.

Based on per-task and data transfers performance models, HeSP adds an addi-
tional degree of freedom to typical task scheduling policies by considering a joint
task partitioning/scheduling approach. The framework proceeds by finding a set
of task partitions that divides the initial workload into a number of sub-tasks
with different granularity, that better fit to the underlying hardware resources
at a given execution point. The approach drives to considerable performance
improvements and more efficient resource utilization. We show that the new
task scheduler-partitioner paradigm is of wide appeal to increase the schedul-
ing quality on highly heterogeneous architectures, and to gain insights that can
be further applied to specific task-parallel implementations, actual runtime task
schedulers, and present and future heterogeneous architectures.

Runtime task schedulers are capable of managing efficient load balancing,
asynchronous out-of-order task execution and handling data across separated
memory spaces, abstracting these mechanisms to the programmer. Concretely,
StarPU [1], OmpSs [2] or XKaapi [4], among others, offer implicit parallel pro-
gramming models with transparent data dependence analysis among tasks, and
support scheduling on heterogeneous processing platforms. Efficient scheduling
under this task-based perspective strongly depends on the quality of the schedul-
ing policies implemented in the runtime, and more specifically, how they address
the special features of the algorithm and the underlying architecture.

These efforts usually consider the static creation and management of equally-
sized tasks operating on uniform data tiles, which naturally drives to an improper
load balancing among computing resources on heterogeneous architectures, given
the different processing capabilities of each type of resource. As a side effect,
establishing the optimal block size, even in the homogeneous target system
case, is a time-consuming effort for the developer, and strongly depends on the
algorithmic properties of the target implementation and the features of the
underlying architecture. Although each processor type typically reaches its
performance peak for substantially different task sizes, and the chosen initial
granularity exposes a fixed amount of parallelism, few strategies have been devel-
oped in order to dynamically adapt task granularity to the underlying heteroge-
neous hardware. Focusing on dense linear algebra implementations, [8] propose
a hierarchical directed acyclic graph (DAG onwards) strategy, creating a two-
level DAG hierarchy on systems featuring two types of computing platforms
(CPU/GPU). Similarly, [5] proposes an offline adaptation of the task grain size
to the processor type and to statically assign tasks to distributed compute nodes.
On the other hand, [3] proposes an alternative approach in which computing
resources are aggregated as needed in order to adapt the computing capabilities
to coarse grain kernels. The Versioning task scheduler for the OmpSs runtime [6]
defines multiple implementations per task, each one targeting a different proces-
sor type, and decides at runtime where to map them based on historical runtime
information.

HeSP extends the aforementioned efforts by exploring the global impact of
arbitrary degrees of task granularity on an arbitrary heterogeneous platform,

HeSP: A Simulation Framework for Solving the Task Scheduling 185

adapting task sizes not only to the individual processor capabilities, but also to
the current degree of available parallelism dictated by a specific algorithm.

1.1 A Motivating Example: Tiled Cholesky Factorization

Let us expose a motivating and illustrative example of the actual problems
related with equally-sized task partitioning on heterogeneous platforms. The
blocked Cholesky factorization decomposes an n×n symmetric positive definite
matrix A stored by s × s blocks of dimension b × b each, into A = LLT where
L is a lower triangular matrix. At runtime, the outer loop in the code depicted
in Fig. 1 that calculates the Cholesky factorization divides the operation into a
number of sub-tasks that, when executed under a task-parallel paradigm, gener-
ate a task DAG as that shown in Fig. 2(a). In the task DAG, nodes correspond
to different tasks, and edges denote data dependencies between them.

void cholesky (double *A[s][s], int b, int s) {
for (int k = 0; k < s; k++) {

chol (A[k][k], b, b); // Cholesky factor. (diag. block)

for (int j = k + 1; j < s; j++)
trsm (A[k][k], A[k][j], b, b); // Triangular solve

for (int i = k + 1; i < s; i++) {
for (int j = i + 1; j < s; j++)

gemm (A[k][i], A[k][j], // Matrix multiplication
A[i][j], b, b);

syrk (A[k][i], A[i][i], b, b); // Symmetric rank -b update
} } }

Fig. 1. C implementation of the blocked Cholesky factorization.

potrf_8
192

0 1

2

3
4

5
6

7
8

9
10

11
12

13
14

15

16

17

19
22

26
31

37
44

52
61

71
82

94
107

121

18

20
23

27
32

38
45

53
62

72
83

95
108

122

21

24
28

33
39

46
54

63
73

84
96

109
123

25

29
34

40
47

55
64

74
85

97
110

124

30

35
41

48
56

65
75

86
98

111
125

36

42
49

57
66

76
87

99
112

126

43

50
58

67
77

88
100

113
127

51

59
68

78
89

101
114

128

60

69
79

90
102

115
129

70

80
91

103
116

130

81

92
104

117
131

93

105
118

132

106

119
133

120

134

135

136

137 151
138 152

153

139

154
155

156

140

157
158

159
160

141 161
162

163
164

165

142 166
167

168
169

170
171

143 172
173

174
175

176
177

178

144

179
180

181
182

183
184

185
186

145

187
188

189
190

191
192

193
194

195

146

196
197

198
199

200
201

202
203

204
205

147 206
207

208
209

210
211

212
213

214
215

216

148

217
218

219
220

221
222

223
224

225
226

227
228

149 229
230

231
232

233
234

235
236

237
238

239
240

241

150

242
243

244
245

246
247

248
249

250
251

252
253

254
255

256

257

270

258 271
272

259

273
274

275

260 276
277

278
279

261 280
281

282
283

284

262 285
286

287
288

289
290

263

291
292

293
294

295
296

297

264

298
299

300
301

302
303

304
305

265

306
307

308
309

310
311

312
313

314

266

315
316

317
318

319
320

321
322

323
324

267

325
326

327
328

329
330

331
332

333
334

335

268

336
337

338
339

340
341

342
343

344
345

346
347

269 348
349

350
351

352
353

354
355

356
357

358
359

360

361

362

374

363

375
376

364

377
378

379

365 380
381

382
383

366 384
385

386
387

388

367

389
390

391
392

393
394

368

395
396

397
398

399
400

401

369

402
403

404
405

406
407

408
409

370

410
411

412
413

414
415

416
417

418

371

419
420

421
422

423
424

425
426

427
428

372

429
430

431
432

433
434

435
436

437
438

439

373

440
441

442
443

444
445

446
447

448
449

450
451

452 453 464

454

465
466

455

467
468

469

456

470
471

472
473

457

474
475

476
477

478

458

479
480

481
482

483
484

459

485
486

487
488

489
490

491

460

492
493

494
495

496
497

498
499

461

500
501

502
503

504
505

506
507

508

462

509
510

511
512

513
514

515
516

517
518

463 519
520

521
522

523
524

525
526

527
528

529

530 531 541

532 542
543

533

544
545

546

534

547
548

549
550

535

551
552

553
554

555

536

556
557

558
559

560
561

537

562
563

564
565

566
567

568

538

569
570

571
572

573
574

575
576

539

577
578

579
580

581
582

583
584

585

540 586
587

588
589

590
591

592
593

594
595

596

597

606

598 607
608

599

609
610

611

600 612
613

614
615

601

616
617

618
619

620

602

621
622

623
624

625
626

603 627
628

629
630

631
632

633

604

634
635

636
637

638
639

640
641

605

642
643

644
645

646
647

648
649

650

651

652

660

653

661
662

654

663
664

665

655

666
667

668
669

656

670
671

672
673

674

657

675
676

677
678

679
680

658

681
682

683
684

685
686

687

659

688
689

690
691

692
693

694
695

696 697 704

698

705
706

699 707
708

709

700 710
711

712
713

701 714
715

716
717

718

702

719
720

721
722

723
724

703 725
726

727
728

729
730

731

732 733 739

734 740
741

735

742
743

744

736 745
746

747
748

737

749
750

751
752

753

738 754
755

756
757

758
759

760 761 766

762 767
768

763

769
770

771

764

772
773

774
775

765

776
777

778
779

780

781

782 786

783

787
788

784

789
790

791

785

792
793

794
795

796 797 800

798 801
802

799 803
804

805

806

807 809

808

810
811

812

813 814 815

(a) Task DAG. (b) Compute load trace.

Fig. 2. (a) Task DAG in which the computation evolves from left to right, and
(b) compute load trace generated by the Cholesky factorization in Fig. 1, for a problem
size n = 16, 384, and block size b = 1, 024.

The Cholesky factorization is an appealing example for our purposes: it
exhibits different sub-task types (chol, syrk, gemm and trsm) and complex

186 A. Rey et al.

data dependences among them, and it features different degrees of parallelism
as the factorization evolves. Consider, for example, how the DAG depicted in
Fig. 2(a) reduces the potential parallelism (that is, the number of tasks that can
be potentially executed in parallel, typically related with the width of the DAG)
at the first stages of the factorization, and (in a much larger extent) at the last
stages. This is usually translated into processor load patterns like that shown in
Fig. 2(b), that represents a timeline of an execution of the Cholesky factoriza-
tion on a highly heterogeneous platform, composed by 28 Intel Xeon cores and
3 different GPUs. The plot represents the number of active processors as the
execution proceeds. Areas with reduced load are usually due to load imbalance.
Note that this phenomenon can be motivated by two different factors: different
processing capabilities of each processor type, and lack of potential parallelism on
specific stages of the execution. The first can be alleviated by scheduling heuris-
tics (e.g. mapping tasks in the critical path to fast processors), but the second
is inherent to the algorithm, and can be alleviated by dynamic task partitioning
in order to expose additional parallelism at runtime.

Data block (tile) size is a crucial parameter in task-parallel executions, as
it ultimately determines the amount of available parallelism, and the efficiency
of each individual task execution. In Fig. 1, block size is determined by b; note
that, typically, larger block sizes usually imply higher performance per individ-
ual task, and smaller block sizes tend to expose higher degrees of parallelism,
which naturally drives to better processor occupation. In addition, different block
(task) sizes are desired for different architectures, and even for different problem
dimensions in the same architecture.

Altogether, these observations motivate the exploration of new techniques
that explore the impact of heterogeneous or non-uniform task partitioning on the
performance and resource occupation of heterogeneous architectures. In the fol-
lowing, we introduce HeSP, a complete framework that supports the definition of
complex heterogeneous architectures and simulates simultaneous task-scheduling
and task-partitioning schemes that alleviate the aforementioned problems.

2 HeSP: Heterogeneous Scheduler-Partitioner

HeSP is a simulation framework that approximately solves the task scheduling-
partitioning problem targeting heterogeneous architectures. At a glance, the
input to this problem is (1) a hardware platform description where several
finite-size memory spaces are connected according to a certain network topology,
together with a (possibly heterogeneous) set of processors associated with them;
and (2) a task to be computed in that platform. A solution to this problem
consists of (1) a set of tasks –presumably with different granularity–, related by
arbitrary data dependences and equivalent to the input task, and (2) a task-to-
processor mapping. The objective function is typically performance maximiza-
tion, although energy consumption minimization is also supported by HeSP.

HeSP: A Simulation Framework for Solving the Task Scheduling 187

2.1 Features of the Scheduling-Partitioning Simulation Framework

Besides supporting recursive task partitioning, HeSP is designed to be a realis-
tic framework that simulates not only current heterogeneous architectures, but
also state-of-the-art scheduling and data management policies on task-parallel
executions. In the following, we introduce its features in detail.

Task and Data Scheduling Heuristics. HeSP implements different heuristics
for task-to-processor assignments. Random (R-P) and Fastest (F-P) processor
selection policies consider such processor choices among idle processors at the
task release time. The Earliest Idle Time (EIT-P) and Earliest Finish Time
(EFT-P) policies select the processor becoming idle first, and the processor
finishing first if that task is assigned to it, respectively. EFT-P estimates the
finishing time accounting for eventual data transfers if needed. Task schedul-
ing order is specified by choosing between First-come, first-served (FCFS) or
Priority-List (PL) choices. In PL, a priority list is built by sorting tasks by
their critical times in decreasing order. Critical times are computed by averag-
ing task processing time for all processors, and propagating them throughout
the task DAG by a backflow algorithm. The combination of Priority-List and
EFT-P heuristics is practically identical to the well-known HEFT scheduling
algorithm [7].

When several independent memory spaces are present, HeSP considers data
movement for scheduling decisions, considering individual memory spaces of each
accelerator as software caches of a main memory space, typically tied to CPUs.
Common caching policies like write-through (WT), write-back (WB) or write-
around (WA) are used. When a task is about to be scheduled to a processor, the
required data transfers are issued from the source memory space to the memory
space the processor is tied to using prefetching schemes.

Performance and Data Transfer Models. HeSP estimates computing or
transfer times relying on analytical models extracted a priori for each task/data
type and size mapped to any existing processor/interconnect in the system.
These estimations are required when making both scheduling and partitioning
decisions, jointly or in an isolated fashion. The quality of these models will
ultimately determine the accuracy of the simulated scheduling results.

Recursive Task Partitioners. Task partitioners, specified for each task type
willing to be partitioned, are just blocked algorithms (see, for example, Fig. 1
for the specific case of the Cholesky factorization) with an input parameter that
specifies the data granularity/degree of parallelism of the following partition. On
a partitioner invocation, the corresponding emergent sub-tasks are managed by
HeSP by introducing them in the respective task DAG which the partitioned task
belongs to. In Fig. 3, starting from initial chol task –Cholesky factorization–, it
is illustrated how three successive task partitions –corresponding to respective
chol, trsm and syrk blocked algorithms– affect the prior task DAG, and the
corresponding data partitions they induce.

Note that any task can be partitioned again as long as its dependent data
blocks can be divided consistently, so an extremely hierarchical task DAG can

188 A. Rey et al.

Q1

Q2

Q3

CHOL

TRSM

GEMM

SYRK

Q1

Q2 Q3

task dependence
data input

data output
data input/output

Fig. 3. Three successive task partitions and corresponding partitioned data blocks.
Tasks and their related data dependences –Q1, Q2 and Q3 quadrants– are shown only
for the first partition for the sake of clarity. (Color figure online)

be constructed by recursively partition its tasks. A task cluster is a set of tasks
generated from a single task partitioning, being the source task their parent. We
refer to the DAG/graph depth to indicate the maximum number of nested task
clusters, and DAG/graph width as the maximum number of tasks that can be
run in parallel. For instance, in the four task DAGs in Fig. 3, the corresponding
depths are 0, 1, 2 and 2, and their widths are 1, 1, 2 and 6. Dependences between
tasks, shown as dashed arrows, represent RaW, WaR and WaW constraints.

Recursive Data Partitioning and Data Coherence Management. New
tasks generated after a partition reference to finer-grained input and output
data dependences, which are partitions of the initial data block(s) of the parent
task (see Fig. 3). HeSP implements validate/invalidate mechanisms to ensure
data coherency among different memory spaces while handling asynchronous
memory transfers. Since recursive task partitions induce corresponding recursive
data block partitions, the existing partitioned data blocks are organized in a
directed acyclic graph structure (data DAG onwards) in which nodes represent
data blocks and directed links represent nesting relations between them; for
example, A −→ B means B is fully contained in A and A is bigger than B.

Armed with the data DAG, validations and invalidations are propagated
by top-bottom and bottom-top mechanisms throughout this graph to maintain
coherence. For instance, to ensure that a task can start its computation and store
the result in an output block OB, not only the block OB must be invalidated
on the remaining memory spaces in which the block might be present, but the
hypothetical data block partitions contained in OB and the bigger blocks in
which OB might be contained must be invalidated as well. Similarly, after a
certain task has finished its computation updating OB, both OB and all the
blocks within OB must be validated in the memory space corresponding to the
processor assigned to that task.

HeSP: A Simulation Framework for Solving the Task Scheduling 189

In general, these data block partitions induced by task partitions form tree
structures. However, it is possible to have a pair of blocks which intersect par-
tially, nested within a common bigger parent block. This case shows up when
two partitions of non-divisible grain sizes are applied to the same data block (for
example, quadrant Q2 in Fig. 3). In this case, a new data block descriptor which
refers to its intersection is introduced in the data DAG as a common child node
of two intersecting blocks (see Fig. 4). With this mechanism, together with the
validate/invalidate propagation mechanisms, data coherency is ensured for all
possible data partitions and hierarchical data graphs.

Q2
A B

DC

a b

fed

g h

c

i

Q2

b de f hB A DC

Bb Ab Ad CdBe Ae DeCeBf Df DhChc a ig

Fig. 4. A data block (Q2 quadrant) can be simultaneously divided according to differ-
ent tilings (yellow and blue tilings, corresponding to trsm and syrk task partitions in
Fig. 3). Additional data block descriptors (green) are constructed to represent partial
overlaps between not nested data blocks. (Color figure online)

Iterative Solver. HeSP solves the scheduling-partitioning problem by itera-
tively searching for those hierarchical task DAGs which best fit to an hetero-
geneous processing platform—according to performance optimization—given a
specific combination of the mentioned scheduling heuristics—processor selection
heuristic and task ordering. A schedule stage is followed by a partition stage for
each iteration, being the number of iterations a user-defined parameter.

At the partition stage, HeSP chooses a candidate task to be partitioned
or a candidate task cluster to be merged back/repartitioned with a different
granularity. A global analysis of the schedule-partition done in the previous
iteration can provide useful information—i.e., bottleneck identification, number
of idle resources, or too fine grained tasks— to help the iterative process to
converge towards a better overall schedule-partition. This is the reason why we
chose an iterative approach as the first implementation of HeSP instead of a
local-scoped constructive approach, in which scheduling or partitioning decisions
are made at every task arrival to the scheduling queue.

The partition procedure is based on two stages: (1), task selection to build
the candidate list, and (2), sampling type to choose the final candidate. For (1),
HeSP implements three different policies: All, CP and Shallow. All selects all
tasks of the previous step, CP selects only tasks belonging to the critical path,
and Shallow selects those tasks whose depth (that is, number of task clusters
that contain it) is minimal. All existing task clusters are candidates to be merged
back or repartitioned. For each added candidate, a positive score is computed
by subtracting the current cost delay by an estimated cost after its eventual
partition or merge, being this estimation based on the available parallelism at its

190 A. Rey et al.

scheduling time of the previous step. For each candidate whose data dependences
have a characteristic size d, a partition parameter p ∈ (0, 1] is chosen such that
new tasks created after the eventual partition will depend on data blocks of size
b = p × d1. The more available parallelism is exposed, the smaller p is set in
order to generate a higher amount of parallel finer-grained tasks.

In the second stage, a final selection among all candidates is done according
to Hard or Soft procedures. In Hard, the candidate with the maximum score
is chosen; in Soft, the candidate is randomly selected such that the selection
probability equals the score divided by the sum of all scores.

3 Performance Results on Heterogeneous Architectures

In the following, we will feed HeSP with data describing two different hetero-
geneous architectures: bujaruelo, a highly heterogeneous CPU-GPU architec-
ture, composed by 28 Intel Xeon-E5 2695v3 cores running at 2.3 GHz, 2 GeForce
GTX980 GPU and 1 GTX950; and odroid, a low-power asymmetric ARM archi-
tecture with two types of processors: 4 slow Cortex-A7 and 4 fast Cortex-A15,
running at 800 and 1300 MHz respectively. Nvidia cuBLAS/cuSOLVER v7.5
and Intel MKL v11.3 were used to extract task performance models on bujaru-

elo, and BLIS v0.9.1 was used on odroid.

3.1 Framework Validation and Evaluation of Scheduling Heuristics

The goal of the first set of experiments is twofold: first, to validate the results
extracted from HeSP by comparing them with an equivalent execution using a
real task scheduler; second, to illustrate the impact on performance of several
scheduling policies in HeSP when using homogeneous or uniform task partitions.

Each point in the OmpSs line in Fig. 5 (left) corresponds to the best schedul-
ing performance out of 20 OmpSs executions for each grain size. These 20 trials
were set to let OmpSs Versioning scheduler [6] improve itself by gathering enough
task execution delay samples for each task type/size and processor. The other
two curves—HeSP-Replica-PM and HeSP-Replica-RD—denote the perfor-
mance attained by HeSP when applying the same task-to-processor mapping
extracted from the best OmpSs trial, using our performance models and the real
OmpSs task delays, respectively, for each uniform tiling.

Differences in performance between HeSP-Replica-RD and OmpSs points
are a measure of the OmpSs runtime overhead while the differences between
HeSP-Replica-PM and HeSP-Replica-RD are mainly due to the accuracy
of our performance models and possible differences between own OmpSs task
delay instrumentation module and the instrumentation we used to extract our
performance models. Summarizing, the differences between the replicated sched-
ules are small enough and easily explainable to assert the validity of the following
results. In general, our observations reveal a qualitative matching between real
and simulated workloads for all problem sizes, with deviations that can be easily
explained and do not usually affect the quality of the observations.
1 A task cluster is a candidate to be merged if p = 1 or repartitioned if p < 1.

HeSP: A Simulation Framework for Solving the Task Scheduling 191

Blocks per dimension (s)
4 5 6 7 8 9 10 11 12 13 14 15

G
F

LO
P

S

0

1000

2000

3000

4000

5000

6000

7000
HeSP validation - Cholesky factorization (n=18900, Single Precision)

OmpSs
HeSP-Replica-RD
HeSP-Replica-PM

Blocks per dimension (s)
3 6 9 12 15 18 21 24 27 30 33 36

G
F

LO
P

S

0

1000

2000

3000

4000

5000

6000

7000
HeSP scheduling policies performance - Cholesky factorization (n=18900, Single Precision)

Fastest Earliest Idle Time Earliest Finish Time Random

Fig. 5. Left: Comparison between OmpSs and their replicated schedules. Right: Com-
parison between different scheduling policies and block sizes in HeSP.

To introduce the context where our heterogeneous or non-uniform partition-
ing approach takes place and its potential benefits, Fig. 5 (right) reports the
performance obtained by running HeSP simulations using different scheduling
policies for different uniform task partitions. Some facts are remarkable: first,
the optimal tile size does not only depend on the underlying architecture and
problem size, but also on the selected scheduling policy; second, for every policy,
performance curves follow a similar pattern, exhibiting a peak performance in a
trade-off tile size that best balances potential parallelism and optimal individual
task performance; third, differences in performance are relevant depending on
the selected scheduling policy, being even more dramatic for large tile sizes; this
gives a clue on the potential benefits that will be obtained by using a non-uniform
partitioning scheme, as exposed next.

3.2 Impact of Non-uniform Partitioning on Performance

In the following, we illustrate the main performance improvements obtained with
HeSP using All/Soft configuration for task partitioning selection. Table 1 reports
performance values on bujaruelo and odroid using the best uniform and non-
uniform partitions found by HeSP for different scheduling policies2, together with
additional metrics that clarify many of the concepts exposed hereafter, including
average processor load, optimal/average block size and task DAG depth. The
first point to notice is the overall improvement attained for all non-uniform task
partitions found by HeSP and the overall reduction in the optimal average block
size on non-uniform partitions.

Note the direct relation between the average processor occupancy and the
improvements of the non-uniform partitions. For example, EIT-P with uniform
partitioning yields high processor occupancies (between 91 % and 98.5 %), so the
potential benefit expected from additional extracted parallelism is poor, ranging
between 0.76 % and 2.02 %. Contrary, uniform partitions on EFT-P schedules
yield better performance than EIT-P ones while still leaving more room for
potential parallelism. Although the quality of EFT-P schedules could actually
leave little room for additional improvements, the greater processor availability

2 In all cases, we use WB as the caching mechanism.

192 A. Rey et al.

Table 1. Performance comparison for bujaruelo and odroid.

bujaruelo (32, 768 × 32, 768 Cholesky factorization in single precision)

Best Uniform Best Found Non-uniform

Perf Avg. load Block Perf Improve Avg. load Avg DAG

Config (GFLOPS) (%) size (GFLOPS) (%) (%) block size depth

FCFS/R-P 3453.91 75.3 1024 4189.17 21.29 82.3 991.23 2

PL/R-P 4460.30 88.4 1024 4752.43 6.55 89.4 978.33 2

FCFS/F-P 2846.78 53.4 2048 3687.93 29.55 63.6 446.52 3

PL/F-P 3381.76 68.4 2048 3614.28 6.88 66.2 1165.70 3

FCFS/EIT-P 5650.10 91.3 1024 5747.87 1.73 92.3 1002.26 2

PL/EIT-P 6096.91 93.9 1024 6206.55 1.80 95.4 1009.91 2

FCFS/EFT-P 6581.96 23.3 2048 7569.34 15.00 63.9 412.15 5

PL/EFT-P (*) 7046.87 55.9 2048 8030.50 13.96 86.9 407.41 4

odroid (8, 192 × 8, 192 Cholesky factorization in double precision)

Best Uniform Best Found Non-uniform

Perf Avg. load Block Perf Improve Avg. load Avg DAG

Config (GFLOPS) (%) size (GFLOPS) (%) (%) block size depth

FCFS/R-P 3.75 63.9 512 4.87 29.9 70.8 458.89 2

PL/R-P 4.89 70.9 512 5.84 19.3 77.4 461.11 2

FCFS/F-P 7.59 69.7 512 8.10 6.74 73.7 335.80 3

PL/F-P 8.55 88.4 512 8.80 2.91 92.0 466.00 2

FCFS/EIT-P 8.46 98.5 256 8.52 0.76 99.1 255.19 2

PL/EIT-P 8.74 96.2 512 8.91 2.03 97.7 463.76 2

FCFS/EFT-P 8.77 89.6 512 8.96 2.20 96.2 301.23 3

PL/EFT-P (*) 8.84 91.4 512 9.08 2.75 99.0 352.07 3

they offer permits the iterative scheduler-partitioner to find finer-grained par-
titions (see Fig. 6(d)), attaining remarkable net improvements for bujaruelo

(between 13.96 % and 15 %). Note also that bigger performance improvements
do not only correspond with lower processor occupancies, but also with higher
task DAG depths (up to 5 in bujaruelo). This observation reinforces the impor-
tance of managing arbitrary task granularity, introduced by HeSP, extending the
idea of using only two degrees of granularity for two types of processors intro-
duced in other works [8].

This reasoning also applies when comparing the highly heterogeneous
bujaruelo with the less heterogeneous odroid since the optimal uniform tile
size seems to fit better to homogeneous platforms, yielding higher occupancies
for all scheduling policies tested, hence leaving less room for non-uniform par-
titioning improvements. Even with those limitations, HeSP does always provide
improvements in all cases.

Note the even better improvements, with simpler –i.e. less deep– partitions,
attained by our scheme when jointly applied with simpler schedulers –R-P/F-P–
and naive FCFS task ordering. Since bad scheduling decisions exhibit a smaller
worsening global impact when applied to a bigger set of smaller tasks, task par-
titions cooperating with a simple scheduler might alleviate its poor performance:
under highly heterogeneous scenarios and available resources, it could be safer to
partition a task rather than taking the risk of assigning it to the wrong processor.

HeSP: A Simulation Framework for Solving the Task Scheduling 193

(a) Best uniform partitioning. Task scheduling.

(b) Best uniform partitioning. Compute load.

(c) Best non-uniform partitioning. Task scheduling.

(d) Best non-uniform partitioning. Task granularity.

(e) Best non-uniform partitioning. Compute load.

Fig. 6. Execution traces for the blocked Cholesky factorization on bujaruelo (left
column, n = 32, 768) and odroid (right column, n = 8, 192), using PL/EFT-P. For
each case, traces are adjusted to fit the longest execution. In the task scheduling traces,
colors correspond to the legend in Fig. 3. (Color figure online)

Figure 6 reports execution traces for the best-performing configurations
observed for both architectures3 (marked in Table 1 with an asterisk), using
uniform and non-uniform task partitioning setups. In the traces, each line cor-
responds to a different processor. In bujaruelo, (25 CPUs on top, 3 GPUs on
bottom), observe the amount of idle times (marked in light blue) in the early
and last stages of computation; see how the corresponding best non-uniform
schedule fills those gaps by exposing extra parallelism through task partitioning.
Concretely, observing the task granularity trace, in which granularity is reported
as a gradient (from light green for small tasks to dark blue for large tasks), it is
possible to conclude that HeSP is able to refine task granularity only on those
stages in which processor occupancy is scarce, improving global performance.

3 Detailed trace generation is supported by HeSP using Paraver (http://www.bsc.es/
computer-sciences/performance-tools/paraver).

http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

194 A. Rey et al.

The increase in compute load can be observed by comparing the corresponding
uniform and non-uniform compute load traces (Figs. 6(b) and (e)).

Similar qualitative results are observed for odroid, filling the gaps that arise
in the same stages on slow cores (top four lines in the trace) with finer-grained
tasks. In this case, as was observed in Table 1, the opportunities for improvement
are more reduced, but overall performance is also increased by our scheme.

4 Conclusion

In this paper we have presented the HeSP framework and its internal mech-
anisms towards joint scheduling/partitioning tasks on heterogeneous architec-
tures. Insights reveal that important performance benefits and improved proces-
sor loads can be extracted from the framework for a family of scheduling policies.
The extracted insights for the Cholesky factorization can be applied to other
irregular task-parallel implementations, or to arbitrary heterogeneous architec-
tures.

The static iterative implementation of HeSP has shown to be useful to explore
the practical performance bounds of a scheduling-partitioning problem, and it
naturally paves the road towards a constructive implementation, in which local
information is applied on a per-task basis. This approach can be applied directly
on actual task schedulers (e.g. OmpSs) or programming models, in order to
introduce in them the recursive task partitioning as an additional degree of free-
dom. Future work also includes the exploration of more sophisticated scheduling
techniques attending not only performance optimization, but also energy con-
sumption on different architectures.

Acknowledgements. This work is funded by project TIN 2015-65277-R (MINECO/
FEDER).

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. CC: PE 23(2), 187–
198 (2011)

2. Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguade, E., Labarta,
J.: Productive programming of GPU clusters with OmpSs. In: IPDPS 2012, pp.
557–568, May 2012

3. Cojean, T., Guermouche, A., Hugo, A., Namyst, R., Wacrenier, P.: Resource aggre-
gation in task-based applications over accelerator-based multicore machines. Tech-
nical report, INRIA (2015)

4. Gautier, T., Ferreira Lima, J.V., Maillard, N., Raffin, B.: XKaapi: a runtime system
for data-flow task programming on heterogeneous architectures. In: 27th IPDPS,
Boston, May 2013

5. Haidar, A., YarKhan, A., Chongxiao, C., Luszczek, P., Tomov, S., Dongarra, J.:
Flexible linear algebra development and scheduling with Cholesky factorization.
HPCC 2015, 861–864 (2015)

HeSP: A Simulation Framework for Solving the Task Scheduling 195

6. Planas, J., Badia, R.M., Ayguade, E., Labarta, J.: Self-adaptive OmpSs tasks in
heterogeneous environments. In: IEEE 27th International Symposium on Parallel
Distributed Processing (IPDPS), pp. 138–149, May 2013

7. Topcuoglu, H., Hariri, S., Min-You, Wu: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel and Distrib.
Syst. 13(3), 260–274 (2002)

8. Wei, W., Bouteiller, A., Bosilca, G., Faverge, M., Dongarra, J.: Hierarchical dag
scheduling for hybrid distributed systems. In: IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pp. 156–165, May 2015

FPT Approximation Algorithm
for Scheduling with Memory Constraints

Eric Angel1, Cédric Chevalier2, Franck Ledoux2,
Sébastien Morais1,2(B), and Damien Regnault1

1 IBISC, Université d’Evry, Evry, France
{Eric.Angel,Sebastien.Morais,Damien.Regnault}@ibisc.univ-evry.fr

2 CEA, DAM, DIF, 91297 Arpajon, France
{Cedric.Chevalier,Franck.Ledoux,Sebastien.Morais}@cea.fr

Abstract. In this paper we study a scheduling problem motivated by
performing intensive numerical simulations on large meshes. In order to
run the simulation as fast as possible, we must allocate computations on
different processors such that the makespan is minimized, but also take
care of the limited memory on each processor. We present a dynamic
programming based algorithm that ensures that both of these objectives
are satisfied, within a ratio of 1 + ε. Our algorithm is fixed-parameter
tractable (FPT) with respect to the path-width of the graph. For sake
of readability, the algorithm is presented for two identical machines, but
it can be generalized for a fixed number of unrelated processors.

Keywords: Scheduling · Approximation algorithm · Dynamic
programming · Fixed-parameter tractable

1 Introduction

In this paper, we study a specific scheduling problem involving two types of
memory constraints: each processing unit has a bounded memory capacity; the
tasks to be scheduled depend on each others in a complex way, which we model
using a graph structure. A motivation for this problem comes from distributed
numerical simulations where most numerical schemes are based on finite ele-
ments or volume methods (FEM or VEM) [3,10]. Such approaches require the
geometric domain of study Ω to be discretized into basic elements, called cells,
which form a mesh. Then, each cell j is assigned a computation valued by a
computation cost pj , and data (like density, pressure, . . .) valued by a memory
weight mj . Moreover, performing the computation of a cell j requires, in addition
to its data, data located in its neighborhood1, denoted N (j). For a distributed
simulation, the problem is so to assign all the computations to processing units

1 The neighborhood is most of the time topologically defined (cells sharing an edge
or a face) and its depth depends on the numerical scheme used for performing the
numerical simulation.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 196–208, 2016.
DOI: 10.1007/978-3-319-43659-3 15

FPT Approximation Algorithm for Scheduling with Memory Constraints 197

with bounded memory capacities, while minimizing the makespan2 and ensuring
that the following constraints are satisfied:

– the computation of each cell j is scheduled to a processing unit;
– if a processing unit performs the computation of a cell j, then it needs to

locally access data from cell j and cells in N (j);
– the amount of data stored by a processing unit cannot exceed its capacity.

To illustrate such an assignment, let us consider Fig. 1(a), where a mesh MΩ and
its associated computations are assigned onto 3 processing units. This assign-
ment puts each computation onto a processing unit according to the cell color.
Due to the neighborhood constraint, the total amount of memory needed for each
processing unit is not limited to those colored cells but extends to some adjacent
cells. For an edge-based adjacency relationship, we get the configuration pre-
sented in Fig. 1(b), where the memory needed for each processing unit is equal
to the memory of both white and colored cells. The white cells contain additional
data needed by a processing unit to process all its assigned computation.

(a) Compact view of the com-
putation assignment of MΩ

(b) Exploded-view of MΩ , where the white cells are
cells whose data are locally known by the processing
unit and the computation is not performed by the
latter.

Fig. 1. Computation assignment of a mesh MΩ onto 3 processing units in (a) and its
exploded-view with neighbor memory needed (b).

In the present work, we model this problem as a scheduling problem using
a graph G(J,E), which we refer to as the neighborhood graph3. Computations
assigned to cells correspond to jobs (one per cell in the mesh), modeled by the
set J . Throughout this paper we will denote by n the number of jobs, i.e. n := |J |.
Job j ∈ J requires pj ∈ N units of time to be executed (computation time) and
an amount mj ∈ N of memory. Jobs have to be assigned among k identical
machines (i.e. processing unit), each machine l having a memory capacity Ml,
for l = 1, . . . , k. Moreover, each job j requires data from some adjacent jobs,
denoted by N (j) ⊆ J . We say that jobs j ∈ J and j′ ∈ J are adjacent if there

2 Recall that the makespan is the maximum computation time among the processing
units.

3 We draw the reader’s attention on the fact that this graph is not a precedence graph,
as our problem has no precedence relation between the jobs.

198 E. Angel et al.

is an edge (j, j′) ∈ E. We assume the graph is not directed, i.e. j′ ∈ N (j) if
and only if j ∈ N (j′). For a subset of jobs J ′ ⊆ J , N (J ′) := ∪j∈J ′N (j). When
a subset of jobs J ′ ⊆ J is scheduled on a machine, this machine needs to allo-
cate an amount of memory equal to

∑

j∈J ′∪N (J ′) mj , while its processing time
is

∑

j∈J ′ pj . The objective is then to assign all jobs of J onto a machine, while
minimizing the makespan and ensuring strong memory constraints: the amount
of memory stored by each machine is smaller than or equal to its memory capac-
ity. In the following we assume that there exists at least one feasible solution, i.e.
an assignment of all the jobs such that the memory constraint on each machine
is satisfied. Using the notation introduced by Graham et al. [5] we refer to our
problem as Pk|G,mem|Cmax. Notice that the second field doesn’t contain the
term prec as there are no precedence constraints among the jobs.

The neighborhood graph G(J,E) is the main feature of Pk|G,mem|Cmax

and dealing with it is the most challenging part as dynamically assigning the
jobs may lead to different amount of memory needed to be allocated. As an
illustration, let us consider an instance with 2 machines with the neighborhood
graph depicted on Fig. 2. Suppose that the subset J ′ := {j4, j5, j6} is assigned
to machine 1 while the subset J ′′ := {j7} is assigned to machine 2. Then the
assignment of j8 to machine 1 or 2 has a different impact in terms of memory
allocation: assigning j8 to machine 1 makes this machine to allocate an additional
amount of memory equal to mj8 + mj10 (see Fig. 2(a)) whereas assigning it to
machine 2 makes this machine to allocate an additional amount of memory equal
to mj10 only (see Fig. 2(b)).

j6 j7

j4

j5

j8

j9

j3 j10

j1

j2
J ′ j8 ∪ N (j8)

(a) The assignment of J ′ = {j4, j5, j6}
constraints the machine to allocate an
amount of memory for each (colored) job
j ∈ J ′ ∪ N (J ′) = {j3, j4, j5, j6, j7}. As-
signing j8 to this machine induces an ad-
ditional amount of m8 + m10.

j6 j7

j4

j5

j8

j9

j3 j10

j1

j2

J ′′

j8 ∪ N (j8)

(b) The assignment of J ′′ = {j7}
constraints the machine to allocate an
amount of memory for each (colored) job
j ∈ J ′′ ∪N (J ′′) = {j6, j7, j8, j9}. Assign-
ing j8 to this machine induces an addi-
tional amount of m10.

Fig. 2. A neighborhood graph G(J, E) and the memory allocation induced by J ′ =
{j4, j5, j6} ∈ J in (a) and J ′′ = {j7} ∈ J in (b).

1.1 Related Problems

When mj = 0 for each job j, the problem Rk|G,mem|Cmax becomes the well-
known NP- scheduling problem denoted by Rk||Cmax. Lenstra et al. [9] gave a

FPT Approximation Algorithm for Scheduling with Memory Constraints 199

2-approximation algorithm when the number of machines k is not part of the
input and proved that no polynomial algorithm can achieve an approximation
ratio less than 3/2 unless P = NP . Their algorithm computes an optimal frac-
tional solution to a natural LP -relaxation and then uses rounding to obtain a
schedule for the discrete problem. In [4], Gairing et al. gave a faster algorithm
that matches the 2-approximation quality and which is based on unsplittable flow
techniques. If the number of machines is fixed, there exist a fully polynomial-time
approximation scheme [14].

When the neighborhood graph has no edges, and the memory is bounded
on each machine, and mj = 1 for each job j, we get the so-called Schedul-
ing Machines with Capacity Constraints problem (SMCC). In this problem,
each machine k can process at most a fixed number of jobs. Saha and
Srinivasan [12] gave a 2-approximation in a more general scheduling setting,
i.e. Scheduling Unrelated Machines with Capacity Constraints. For the special
case of two machines, Woeginger designed a FPTAS for this problem [15].

1.2 Main Contribution

As Pk|G,mem|Cmax is a generalization of those well-known scheduling prob-
lems, a reasonable question is to know whether we can get approximation algo-
rithms, which could possibly depend on some parameters of the neighborhood
graph4. We answer this question by providing a dynamic programming based
algorithm that, assuming that there exists at least one feasible solution to
our problem, returns a solution within a ratio of (1 + ε) for both the opti-
mum makespan and the memory capacity constraints. This algorithm is Fixed-
Parameter Tractable (FPT) with respect to the path-width of the neighborhood
graph. Notice that there cannot exist an exact FPT algorithm with respect to
the path-width parameter, since when the graph has no edge (and therefore a
path-width equal to 0), the problem is NP-hard (see Sect. 1.1).

1.3 Outline of the Paper

We start by briefly recalling in Sect. 2 the definitions of different notions useful
for our proof. We then provide in Sect. 3 a dynamic programming based algo-
rithm that computes all the solutions to this problem. This task is not trivial
as dynamically assigning the jobs may lead to differents amounts of memory
needed to be allocated. Since the time complexity of this algorithm is not poly-
nomial in the input size, we apply the Trimming-of-the-State-Space technique
[6] in Sect. 4 obtaining an approximation algorithm that is FPT with respect to
the path-width of the graph. Finally, we give some concluding remarks in Sect. 5.

4 Recall that an algorithm is fixed-parameter tractable (FPT) with respect to h if its
running time is bounded by f(h).|I|O(1) where |I| is the size of the instance and f
is an arbitrary function depending only on the parameter h.

200 E. Angel et al.

2 Definitions

Throughout this paper we consider simple, finite, undirected graphs. Let us
start by defining the notions of path decomposition and path-width. They were
initially introduced in the framework of graph minor theory [11]. A path decom-
position of a graph G(J,E) is a pair (P,X), where P := (J(P), E(P)) is a path,
and X := (Xi)i∈J(P) is a family of subsets of J satisfying:

1. ∪i∈J(P)Xi = J ;
2. ∀(j, j′) ∈ E, there exists an i ∈ J(P) such that {j, j′} ⊆ Xi;
3. ∀j, j′, j′′ ∈ J(P), if j′ lies on the path from j to j′′ then Xj ∩ Xj′′ ⊆ Xj′ .

The width of a path decomposition is max(|Xi|−1 : i ∈ J(P)) and the path-width
of G is the minimum width of a path decomposition of G. The construction of
such a path decomposition is illustrated on Fig. 3(a), and the result is presented
on Fig. 3(b). When P is required to be a tree instead of being a path, previous
definitions straightforwardly extend to the definitions tree decomposition and
tree-width of a graph.

j1

j2

j3

j5

j4

j6

j8 j10

j9j7

X1

X2

X3 X4 X5

X6

(a) Construction of X := (Xi)i∈J(P), a fam-
ily of subsets of J satisfying the three prop-
erties of a path decomposition.

X1 X2 X3 X4 X5 X6

j1

j2

j3

j3 j4

j5

j4

j5 j6

j6 j7

j7

j8

j9

j8

j9

j10

(b) Path decomposition (P,X) of the neighborhood graph G(J,E).

Fig. 3. Example of a path decomposition (P, X) of the neighborhood graph G(J, E),
where X is composed by the subsets X1 = {j1, j2, j3}, X2 = {j3, j4, j5}, X3 =
{j4, j5, j6}, X4 = {j6, j7}, X5 = {j7, j8, j9}, X6 = {j8, j9, j10} in (a) and (P, X) is
presented in (b). This path decomposition is optimal with respect to the path-width.

FPT Approximation Algorithm for Scheduling with Memory Constraints 201

In order to define the notion of vertex separation number, which is equiva-
lent to path-width [7], let us introduce the notion of (linear) layout of a graph
G(J,E), which is simply a one-to-one mapping L : J → {1, 2, . . . , |J |}. For any
layout L, we define

VL(i) := {j ∈ J | L(j) ≤ i and ∃j′ ∈ J such that (j, j′) ∈ E and L(j′) > i}.

Thus VL(i) is the set of vertices of G mapped to integers less than or equal to i
and that are adjacent to vertices mapped to integers greater than i. Then the
vertex separation of G with respect to L, vsL(G), is the maximum number of
vertices in any VL(i). And eventually, the vertex separation number of G is the
minimum, over all possible layouts L of G, of vsL(G). Formally,

vsL(G) := max
1≤i≤|J|

{|VL(i)|}

and
vs(G) := min{vsL(G) | L is a linear layout of G}.

We note L∗ := arg minL vsL(G), i.e. L∗ is a linear layout associated with the
vertex separation number. Such an optimal numbering is used on Figs. 2 and 3.
When G has a path-width bounded by a constant integer value h, such a lay-
out can be obtained in polynomial time by constructing a linear decomposition
(P,X) of G with width h [1], and using an algorithm presented in [7], which (by
using a suitable data structure) transforms a given optimal path-decomposition
into an optimal layout L∗. It has been proved that pw(G) = O(log(n)tw(G)) for
any graph G on n vertices [8], and therefore vs(G) = O(log(n)tw(G)), where pw
and tw mean path-width and tree-width respectively.

3 An Exact Algorithm Using Dynamic Programming

For sake of readability, the presentation of the algorithm is done for two
machines. But it can be generalized to a constant number k of machines, with
k > 2, as we will see in Sect. 5. In the following, we assume that the jobs have
been numbered such that L∗(ji) = i, for 1 ≤ i ≤ n, i.e. the layout is optimal
with respect to the vertex separation number.

The dynamic programming goes through n phases. Each phase i, with i =
1, . . . , n, processes the job ji and produces a set Si of states. Each state in the
state space Si is a vector S = [s1, s2, s3, s4, Ci] ∈ Si, which encodes a partial
solution for the first i jobs, i.e. an assignment of the first i jobs to the machines,
and where:

1. s1 (resp. s2) is the total processing time on the first (resp. second) machine
in the partial schedule,

2. s3 (resp. s4) is the total amount of memory required by the first (resp. second)
machine in the partial schedule,

202 E. Angel et al.

3. Ci is an additional structure, called combinatorial frontier . For a given partial
solution from j1 to ji, it is defined as Ci := (VL(i), σi, σ

′
i) with σi : VL(i) →

{1, 2} and σ′
i : VL(i) → {0, 1}, such that σi(j) is the machine on which j

has been assigned, and σ′
i(j) := 1 if the machine on which j has not been

assigned, i.e. the machine 3 − σi(j), has already memorized the data of j.

Notice that in the definition of Ci we use only the set of vertices VL(i), instead
of the whole set {1, . . . , i}, since these vertices are the only ones needed to
compute additional amounts of memory induced by the future tasks’s assign-
ment. Moreover, the number of distinct combinatorial frontiers Ci is equal to
4|VL(i)| ≤ 4vs(G).

The algorithm main structure is summarized in Algorithm 1.

Algorithm 1. Summary of the exact dynamic programming algorithm.
input : A graph G(J, E) where L∗(ji) = i, for 1 ≤ i ≤ n
output: A solution vector s

1 S1 := {[p1, 0, m1 +
∑

j∈N (j1)
mj , 0, C1

1], [0, p1, 0, m1 +
∑

j∈N (j1)
mj , C

2
1]};

2 foreach i ← 2, n do
3 foreach [s1, s2, s3, s4, Ci−1] ∈ Si−1 do
4 Compute α1

i and C1
i ;

5 Si ← Si ∪ [s1 + pi, s2, s3 + α1
i , s4, C

1
i];

6 Compute α2
i and C2

i ;
7 Si ← Si ∪ [s1, s2 + pi, s3, s4 + α2

i , C
2
i];

8 end

9 end
10 s ← [s1, s2, s3, s4, Cn] ∈ Sn with s3 ≤ M1 and s4 ≤ M2 and such that

max{s1, s2} is minimum;

Line 1 is the initialization phase. The set S1 contains two states, the
first (resp. second) is when job 1 is assigned on machine 1 (resp. 2). C1

1 :=
(VL(1), σ1, σ

′
1) is the combinatorial frontier when job j1 is assigned on machine 1.

Either VL(1) = {j1} or VL(1) = ∅. In case VL(1) = {j1} we have σ1(j1) := 1 and
σ′
1(j1) := 0. Similarly, C2

1 is the combinatorial frontier when job j1 is assigned on
machine 2. Then at each iteration in the lines 4–7, for each state in Si−1 we add
two states in Si: The state in line 5 (resp. 7) corresponds to the case when job ji

is assigned on machine 1 (resp. 2) and α1
i (resp. α2

i) is the memory induced by
this assignment. In order to show how to compute α1

i , used in Line 5, we define
two sets of jobs, namely J1 and J2, such that

J1 := {j ∈ VL(i − 1) ∩ N (ji) : σi−1(j) �= 1 ∧ σ′
i−1(j) = 0},

J2 := {jk ∈ N (ji) : k > i ∧ ∀jl ∈ VL(i − 1) ∩ N (jk) σi−1(jl) �= 1}.

J1 is the set of jobs that are in the neighborhood of ji, have not been assigned
to machine 1, and have not been memorized by machine 1 either. J2 is the set of

FPT Approximation Algorithm for Scheduling with Memory Constraints 203

jobs that are in the neighborhood of ji, not already assigned, and such that they
do not have a job in their neighborhood already assigned to machine 1. Then,
we have

α1
i :=

∑

j∈J1∪J2

mj +
{

mi if ∀jl ∈ VL(i − 1) ∩ N (ji), σi−1(jl) �= 1
0 otherwise

To illustrate the sets J1 and J2, let us consider Fig. 4 where we want to
assign j6 to machine 1, and where J ′ = {j1, j2} is assigned to machine 1
and J ′′ = {j3, j4, j5} is assigned to machine 2. We have VL(5) = {j4, j5},
N (j6) = {j4, j5, j7} so VL(5) ∩ N (j6) = {j4, j5}. As J ′′ = {j3, j4, j5} is assigned
to machine 2, we have σ5(j4) �= 1, σ5(j5) �= 1 and σ′

5(j4) = σ′
5(j5) = 0. There-

fore J1 = {j4, j5}, i.e. assigning j6 to machine 1 forces this machine to allocate
an amount of memory for j4 and j5. Moreover, we have j7 ∈ N (j6) such that
∀jl ∈ VL(5)∩N (j7), σ5(jl) �= 1. Therefore J2 = {j7}, i.e. assigning j6 to machine
1 forces this machine to allocate an amount of memory for j7.

j1

j2

j3 j4

j5 j6 j7

j8

j9

j10

J1

J2

J ′ assigned to
machine 1

J ′′ assigned to
machine 2

Fig. 4. An example illustrating the sets of jobs J1 and J2, when i = 6, J ′ = {j1, j2} is
assigned to machine 1 and J ′′ = {j3, j4, j5} is assigned to machine 2.

Value α2
i , used in Line 7, is similarly computed. Eventually, let us show how

to obtain the new combinatorial frontier Ci := (VL(i), σi, σ
′
i) in Line 5 and 7,

denoted by C1
i and C2

i respectively, from Ci−1 := (VL(i − 1), σi−1, σ
′
i−1). Let us

consider the first case, i.e. the vertex ji is assigned on the first machine, and
let us show how to obtain C1

i . If ji ∈ VL(i), then σi(ji) := 1, and σ′
i(ji) := 1

if ∃j ∈ VL(i − 1) ∩ N (ji) such that σi−1(j) = 2, and σ′
i(ji) := 0 otherwise. For

j ∈ (VL(i)\{ji})∩N (ji) we have σi(j) := σi−1(j) and σ′
i(j) := 1 if σ′

i−1(j) = 1 or
σi(j) = 2, and 0 otherwise. For j ∈ VL(i)\({ji}∪N (ji)) we have σi(j) := σi−1(j)
and σ′

i(j) := σ′
i−1(j). The combinatorial frontier C2

i can be similarly computed.
Notice that in the dynamic programming algorithm, if two states S and S′ have
the same components, including the same combinatorial frontier, then only one
of them is kept in the state space. The time complexity to test whether two
states S and S′ are the same, is thus O(vs(G)).

Let psum :=
∑n

i=1 pi and msum :=
∑n

i=1 mi, then for each vector S =
[s1, s2, s3, s4, Ci] ∈ Si, s1 and s2 are integers between 0 and psum, s3 and s4
are integers between 0 and msum, and we have |Si| = O(p2sum × m2

sum × 4vs(G)).

204 E. Angel et al.

The time complexity of this algorithm is proportional to
∑n

i=1 |Si|. Thus, the
overall complexity is O(n × vs(G) × p2sum × m2

sum × 4vs(G)).
The time complexity of this algorithm being pseudo-polynomial, we are going

to transform it into an approximation FPT algorithm with respect to the path-
width of the neighborhood graph.

4 Getting an Approximated Algorithm via Trimming
Techniques

In this section, we propose an approximated algorithm, derived from Algorithm 1
to get an FPT approximation algorithm. The main idea is to apply the trimming-
the-state technique [14] and to withdraw, during the execution of the algorithm,
states that are close to each other.

We define Δ := 1 + ε/2n, with ε > 0 a fixed constant. Let us first consider
the first two coordinates of a state S = [s1, s2, s3, s4, Ci]. We have 0 ≤ s1 ≤ psum

and 0 ≤ s2 ≤ psum. We divide each of those intervals into intervals of the form [0]
and [Δl,Δl+1], with l an integer value getting from 0 to L1 := logΔ(psum)� =
ln(psum)/ln(Δ)� ≤ (1+ 2n

ε)ln(psum)�. In the same way, we divide the next two
coordinates into intervals of the form [0] and [Δl,Δl+1], with l an integer value
getting from 0 to L2 := logΔ(msum)�. The union of those intervals defines a
set of axis-aligned and non-overlapping boxes in a four dimensional space. If two
states have the same combinatorial frontier and have their first four coordinates
falling into the same box, then they encode similar solutions.

The approximation algorithm proceeds in the same way as the dynamic pro-
gramming Algorithm 1, except that we add a trimming phase. The trimming
phase works as follows. If in a box, there are more than one state with the same
combinatorial frontier, then we keep only one of them (chosen arbitrarily). We
will denote by Ui the (untrimmed) state space obtained before performing that
trimming phase at the i-th phase of the algorithm, and Ti the (trimmed) state
space obtained after thinning out and trimming Ui. Algorithm 2 fully describes
the approximated dynamic programming algorithm.

The worst time complexity of this algorithm is O(n×vs(G)×(L1)2×(L2)2×
4vs(G)). Since the size of an instance I is Θ(n + |E| + ln(psum + msum)), this
algorithm is therefore FPT with respect to the path-width. Let us also notice that
if the tree-width is a constant h, then the time complexity remains polynomial
since, as mentioned in Sect. 2, vs(G) = O(log(n)tw(G)). Moreover, the tree-
width of G being a constant h, we can construct a layout L such that vsL(G) =
O(log(n)h) in polynomial time by constructing a tree decomposition (T,X) of
G with width h [1] and using works in [7,13].

Theorem 1. There exists an FPT algorithm with respect to the path-width,
which returns a solution for the problem Pk|G,mem|Cmax within a ratio of
(1 + ε) for the optimum makespan, where the memory capacity Mi, 1 ≤ i ≤ k,
of each machine may be exceeded by at most a factor (1 + ε).

FPT Approximation Algorithm for Scheduling with Memory Constraints 205

Algorithm 2. The approximated dynamic programming algorithm.
input : A graph G(J, E) where L∗(ji) = i, for 1 ≤ i ≤ n
output: A solution vector s

1 S1 := {[p1, 0, m1 +
∑

j∈N (j1)
mj , 0, C1

1], [0, p1, 0, m1 +
∑

j∈N (j1)
mj , C

2
1]};

2 T1 := S1;
3 foreach i ← 2, n do
4 Ui := ∅;
5 foreach [s1, s2, s3, s4, Ci−1] ∈ Ti−1 do
6 Compute α1

i and C1
i ;

7 Ui ← Ui ∪ [s1 + pi, s2, s3 + α1
i , s4, C

1
i];

8 Compute α2
i and C2

i ;
9 Ui ← Ui ∪ [s1, s2 + pi, s3, s4 + α2

i , C
2
i];

10 end
11 Compute a trimmed copy Ti of Ui;

12 end
13 s ← [s1, s2, s3, s4, Cn] ∈ Tn with s3 ≤ (1 + ε)M1 and s4 ≤ (1 + ε)M2 and such

that max{s1, s2} is minimum;

As stated before we present here the proof when k = 2. In the conclusion we
mention the general case when k is any fixed constant. The proof of this theorem
relies on the following lemma.

Lemma 1. For each state S = [s1, s2, s3, s4, Ci] ∈ Si, there exists a state T =
[s#1 , s#2 , s#3 , s#4 , Ci] ∈ Ti such that

s#1 ≤ Δis1 and s#2 ≤ Δis2 and s#3 ≤ Δis3 and s#4 ≤ Δis4. (1)

Proof. The proof of this statement is by recurrence on i. By construction T1 = S1

so the statement is true for i = 1. Now, let us assume that inequalities (1) hold
for some index i − 1, and consider an arbitrary state S = [s1, s2, s3, s4, Ci] ∈
Si. Then, S is computed from a state [w, x, y, z, Ci−1] ∈ Si−1 and either
[s1, s2, s3, s4, Ci] = [w+pi, x, y+α1

i , z, C1
i] or [s1, s2, s3, s4, Ci] = [w, x+pi, y, z+

α2
i , C

2
i] must hold. We assume that [s1, s2, s3, s4, Ci] = [w+pi, x, y+α1

i , z, C1
i] as,

with similar arguments, the rest of the proof is also valid when [s1, s2, s3, s4, Ci] =
[w, x + pi, y, z + α2

i , C
2
i]. By the inductive assumption, there exists a vector

[w#, x#, y#, z#, Ci−1] ∈ Ti−1 such that

w# ≤ Δi−1w and x# ≤ Δi−1x and y# ≤ Δi−1y and z# ≤ Δi−1z. (2)

The trimmed algorithm generates the vector [w# + pi, x
#, y# + α1

i , z
#, C1

i] ∈ Ui

and may remove it during the trimming phase, but it must leave some vec-
tor [s#1 , s#2 , s#3 , s#4 , C1

i] ∈ Ti that is in the same box as [w# + pi, x
#, y# +

α1
i , z

#, C1
i]. This vector [s#1 , s#2 , s#3 , s#4 , C1

i] ∈ Ti is an approximation of S =
[s1, s2, s3, s4, Ci] ∈ Si in the sense of (2). Indeed, its first coordinate s#1 satisfies

s#1 ≤ Δ(w# + pi) ≤ Δ(Δi−1w + pi) ≤ Δiw + Δpi ≤ Δi(w + pi) = Δis1, (3)

206 E. Angel et al.

its third coordinate s#3 satisfies

s#3 ≤ Δ(y# + α1
i) ≤ Δ(Δi−1y + α1

i) ≤ Δiy + Δα1
i ≤ Δi(y + α1

i) = Δis3, (4)

and its last coordinate C1
i is equal to Ci. By analogous arguments, we can show

that s#2 ≤ Δis2 and s#4 ≤ Δis4. Our assumption is valid during the transition
from phase i − 1 to i, which completes the inductive proof.

�

Let us now go back to the proof of Theorem 1. At the end of phase n, the
untrimmed algorithm (Algorithm 1) outputs the vector s = [s1, s2, s3, s4, Cn]
that minimizes the value max{s1, s2} such that s3 ≤ M1 and s4 ≤ M2. By
Lemma 1, there exists a vector [s#1 , s#2 , s#3 , s#4 , Cn] ∈ Tn whose coordinates are
at most a factor of Δn above the corresponding coordinates of s. We conclude
that our algorithm (Algorithm 2) returns a solution such that the makespan
is at most Δn times the optimal solution and the amount of memory for each
machine is at most Δn its capacity. Moreover Δn ≤ 1+ ε. Indeed, if we consider
functions f(x) = (1 + x/n)n and g(x) = 1 + 2x, with 0 ≤ x ≤ 1 and n ≥ 1, we
have

(1 + x/n)n ≤ 1 + 2x (5)

since f and g are respectively a convex and a linear function in x and the
inequality holds true at x = 0 and x = 1.

So we have constructed an algorithm that returns a solution such that the
makespan is at most (1+ε) times the optimal solution and the amount of memory
for each machine is at most (1+ ε) its capacity. It ends the proof of Theorem 1.

We provide a non-intuitive optimal solution to P2|G,mem|Cmax on Fig. 5.
On that Figure the connected set of colored jobs is assigned to machine 1 while
the non-connected set of white jobs is assigned to machine 2.

j1

j2

j3 j4

j5 j6 j7

j8

j9

j10

Fig. 5. Example of an optimal assignment to P2|G, mem|Cmax for the following
instance : Ml = 21, 1 ≤ l ≤ 2; pji = mji , 1 ≤ i ≤ 10; pj1 = pj2 = pj3 = pj5 =
pj7 = pj9 = pj10 = 1; pj4 = pj8 = 5; pj6 = 9. This optimal assignment induces a
computation time of 11 to machine 1 (resp. 15 to machine 2) and a memory allocation
of 21 to machine 1 (resp. 19 to machine 2). Therefore, the induced makespan is 15 and
the memory capacity of each machine is satisfied.

FPT Approximation Algorithm for Scheduling with Memory Constraints 207

5 Conclusion

Given 2 machines and a neighborhood graph of jobs with h-bounded linear-
width or tree-width, we have constructed an algorithm that returns a solution if
at least one solution exists for our scheduling problem with memory constraints.
The output of this algorithm is generated in polynomial time and is such that
the makespan is at most (1 + ε) times the optimal solution and the amount of
memory for each machine is at most (1 + ε) its capacity. Moreover, we have
constructed an algorithm that returns an optimal solution to our problem in
pseudo-polynomial time.

This result can be extended to any constant number of machines as adding
machines means increasing the number of dimensions of a state. It only requires
to redefine the combinatorial frontier where σ′

i(j) would express the machines
on which j has not been assigned and which have memorized the data of j. This
leads to a time complexity O(n×k×vs(G)×(L1)k ×(L2)k ×(k×2k)vs(G)) where
n is the number of phases; k × vs(G) is the time complexity to test whether two
states S and S′ are the same; (L1)k×(L2)k is the number of boxes induced by the
algorithm; and (k × 2k)vs(G) is the number of distinct combinatorial frontiers.
Notice that if the maximum degree of G is bounded by a constant d, we can
lower the previous complexity as at most d machines can memorize the data of
a task. Extending the result to unrelated machines can be easily carried over.

As the algorithm is FPT with respect to the path-width, it is particularly
interesting for graphs with bounded path-width. Given the fact that such a graph
does not occur naturally in large simulations on large meshes, we are wondering
if there are FPT approximation algorithms with respect to more generic graph
parameters such as the tree-width, and the local tree-width [2].

References

1. Bodlaender, H.L., Kloks, T.: Better algorithms for the pathwidth and treewidth
of graphs. In: Leach Albert, J., Monien, B., Rodŕıguez-Artalejo, M. (eds.) ICALP
1991. LNCS, vol. 510, pp. 544–555. Springer, Heidelberg (1991)

2. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica
27, 275–291 (2000)

3. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Math-
ematical Sciences, vol. 159. Springer, New York (2004)

4. Gairing, M., Monien, B., Woclaw, A.: A faster combinatorial approximation algo-
rithm for scheduling unrelated parallel machines. Theor. Comput. Sci. 380(1–2),
87–99 (2007)

5. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approxi-
mation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math.
5, 287–326 (1979). Elsevier

6. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22(4), 463–468 (1975)

7. Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Inf. Process. Lett. 42(6), 345–350 (1992)

208 E. Angel et al.

8. Korach, E., Solel, N.: Tree-width, path-width, and cutwidth. Discrete Appl. Math.
43(1), 97–101 (1993)

9. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46(3), 259–271 (1990)

10. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, Cambridge (2002)

11. Robertson, N., Seymour, P.: Graph minors. I. Excluding a forst. J. Comb. Theory
Ser. B 35(1), 39–61 (1983)

12. Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation
problems. In: Proceeding of Innovations in Computer Science (ICS), 342–357 (2010)

13. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to
vertex separation in linear time. J. Algorithms 47(1), 40–59 (2003)

14. Woeginger, G.J.: When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS
J. Comput. 12(1), 57–74 (2000)

15. Woeginger, G.J.: A comment on scheduling two parallel machines with capacity
constraints. Discret. Optim. 2(3), 269–272 (2005)

Scheduling MapReduce Jobs Under Multi-round
Precedences

D. Fotakis1, I. Milis2, O. Papadigenopoulos1, V. Vassalos2, and G. Zois2(B)

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Athens, Greece

fotakis@cs.ntua.gr, opapadig@corelab.ntua.gr
2 Department of Informatics,

Athens University of Economics and Business, Athens, Greece
{milis,vassalos,georzois}@aueb.gr

Abstract. We consider non-preemptive scheduling of MapReduce jobs
consisitng of multiple map-reduce rounds so as to minimize the aver-
age weighted completion time on identical and unrelated processors.
For identical processors, we present LP-based O(1)-approximation algo-
rithms, while for unrelated processors the approximation ratio naturally
depends on the maximum number of rounds of any job (a small constant
in practice). For the single-round case, we substantially improve on pre-
viously best known approximation ratios for both identical and unrelated
processors. Moreover, we conduct an experimental analysis and compare
the performance of our algorithms against a fast heuristic and a lower
bound on the optimal solution, thus demonstrating their promising prac-
tical performance.

1 Introduction

The sharp rise in Internet’s use has boosted the amount of data stored on the
web and processed daily. MapReduce [6], and its open-source implementation
Hadoop, is a fundamental platform for processing data sets on large clusters.
A MapReduce job starts by allocating (randomly or arbitrarily) data to a set of
processors. The computation over the dataset is broken into successive rounds,
where, during each round, a two-phase (map-reduce) process is executed, in
which the execution of any reduce task cannot begin until all of its corresponding
map tasks have finished. A key observation is that, while the map and reduce
phases in each round must be executed sequentially, the tasks in each phase
can be executed in parallel. In addition to the computation cost of map and
reduce phases, a significant cost is the communication cost of transmitting the
intermediate data of a job from each map task to every reduce task. Although

I. Milis was partially supported by the Research Center of Athens University of
Economics and Business (RC-AUEB). V. Vassalos and G. Zois were supported by
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 604102 (Human Brain Project).

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 209–222, 2016.
DOI: 10.1007/978-3-319-43659-3 16

210 D. Fotakis et al.

MapReduce is a distributed computation model, the scheduler of such a system is
operating in a centralized manner and its performance is crucial for the efficiency
of large MapReduce clusters shared by many users. These clusters typically deal
with many jobs that consist of many tasks and of several map-reduce rounds.
In such processing environments, the quality of a schedule is typically measured
by the jobs’ average completion time, which for a MapReduce job takes into
account the time when the last reduce task finishes its work.

In this work, we present a general model and an algorithmic framework for
scheduling a set of MapReduce jobs on parallel (identical or unrelated) proces-
sors with the goal to minimize their average weighted completion time. We con-
sider an offline setting for our model, where each job is represented by multiple
successive rounds, and each round consists of multiple map and reduce tasks cor-
responding to the map and reduce phases respectively. Each reduce task cannot
begin its execution before all map tasks of the same round are finished, while
the same also holds between reduce and map tasks of two successive rounds.
Moreover, the tasks are associated with positive processing times, depending
on the processor environment, and each job has a positive weight to represent
its priority value. Concerning the communication cost that is incurred in each
round, we assume that it is incorporated in the processing times of its reduce
task.
Related Work. In the distributed setting of MapReduce’s architecture, two
main models have been proposed for analyzing the efficiency of MapReduce
algorithms with respect to the number of rounds required. Karloff et al. [12]
presented a model inspired by PRAM and proved that a large class of PRAM
algorithms can be efficiently (i.e., the number of processors and their memory
should be sublinear and the running time in each round should be polynomial
in the input size) implemented in MapReduce. Recent results in this direction
[13] have proposed substantial improvements on the number of rounds for vari-
ous MapReduce algorithms. Afrati et al. [1] proposed a different model that is
inspired by BSP and focuses on the trade-off between communication and com-
putation cost. The main idea is that restricting the computation cost leads to a
greater amount of parallelism and to a larger communication cost between the
mappers and the reducers. In this context, [2] presents multi-round MapReduce
algorithms, trying to optimize the tradeoff between the communication cost and
the number of rounds.

In the context of MapReduce scheduling a significant volume of work focuses on
the experimental evaluation of scheduling heuristics, trying to achieve good trade-
offs between various criteria (see e.g., [19]). On the other hand theoretical work
(e.g., [4,8,15]) focuses on scheduling a set of MapReduce jobs on parallel proces-
sors to minimize the average (weighted) completion time, capturing the main prac-
tical insights in a MapReduce computation (e.g., task dependencies, data local-
ity), in the restricted case where each job is executed in a single round. [4] presents
approximation algorithmsusing simplemodels, equivalent to knownvariants of the
open-shop problem, taking into account task precedences and assuming that the
tasks are preassigned to processors. Moseley et al. [15] present a 12-approximation

Scheduling MapReduce Jobs Under Multi-round Precedences 211

algorithm for the case of identical processors, modeling in this way MapReduce
scheduling as a generalization of the so-called two-stage Flexible Flow-Shop prob-
lem. They also present a O(1/ε2)-competitive online algorithm, for any ε ∈ (0, 1),
under (1+ε)-speed augmentation. [8] studies the single-roundMapReduce schedul-
ing problem in the most general case of unrelated processors and present an LP-
based 54-approximation algorithm. They also show how to incorporate the com-
munication cost into their algorithm, with the same approximation ratio.
Contribution. Our model incorporates all the main features of the models in
[1,12], aiming at an efficient scheduling and assignment of tasks in MapReduce
environments. Note that, by assuming positive values for the tasks’ execution
times, which are polynomially bounded by the input size, we are consistent with
both computation models [1,12]. We refer to our problem as the multi-round
MapReduce scheduling problem or the single-round MapReduce scheduling prob-
lem (depending on the number of rounds). Our contribution is threefold. First, in
terms of modeling the MapReduce scheduling process: (i) We consider the prac-
tical scenario of multi-round multi-task MapReduce jobs and capture their task
dependencies, and (ii) we study both identical and unrelated processors, thus
dealing with data locality. Second, in terms of algorithm design and analysis: (i)
We propose an algorithmic framework for the multi-round MapReduce schedul-
ing problem with proven performance guarantees, distinguishing between the
case of indistinguishable and disjoint (map and reduce) sets of identical or unre-
lated processors, and (ii) our algorithms are based on natural LP relaxations
of the problem and improve on the approximation ratios achieved in previous
work [8,15]. Third, in terms of experimental analysis, we focus on the most gen-
eral case of unrelated processors and show that our algorithms have an excellent
performance in practice.

The rest of the paper is organized as follows. In Sect. 2, we formally define
our model and provide notation. In Sect. 3, we consider the multi-round MapRe-
duce scheduling problem on identical indistinguishable and disjoint processors
and we design a 4-approximation and an 11-approximation algorithm, respec-
tively. Moreover, for the single-round MapReduce scheduling problem on iden-
tical disjoint processors we substantially improve on the results proposed by
Moseley et al. [15], presenting an LP-based 8-approximation algorithm, instead
of 12-approximation. In Sect. 4, we consider the multi-round MapReduce schedul-
ing problem on the most general environment of unrelated processors and we
propose an LP-based O(rmax)-approximation algorithm, where rmax is the maxi-
mum number of rounds over all jobs. As a corollary, for the single-round MapRe-
duce scheduling problem, we show a 37.87-approximation, which significantly
improves on the previously proposed 54-approximation algorithm in [8]. Fur-
thermore, we comment on the hardness of the multi-round MapReduce schedul-
ing problem. In Sect. 5, we compare our algorithms via simulations of random
instances with a fast heuristic, proposed in [8], as well as with a lower bound on
the optimal value of the multi-round MapReduce scheduling problem.

212 D. Fotakis et al.

2 Problem Formulation

We consider a set J = {1, 2, . . . , n} of n MapReduce jobs to be scheduled on a
set P = {1, 2, . . . ,m} of m parallel processors. Each job j ∈ J is available at
time zero and comprises of rj ∈ N, rj ≥ 1 rounds of computation, with each
round consisting of a set of map tasks and a set of reduce tasks. Moreover, each
job is associated with a positive weight, let wj , indicating its significance and,
therefore, its relative priority to the system. Let M, R be the sets of all map
and reduce tasks respectively. Each task Tk,j ∈ M ∪ R of a job j ∈ J , where
k ∈ N, is associated with a positive processing time. Note that, by assuming
task processing times that are polynomially bounded by the input size we are
consistent with the two above computation models [1,12]. In every round, each
reduce task of a job can start its execution only after the completion of all map
tasks of the same job, while similar precedence constraints hold also between the
reduce and the map tasks of two successive rounds. In other words, except for
the precedence constraints emerged by the existence of map and reduce phases,
there are also precedence constraints between consecutive rounds, so a map task
of a round r ∈ {2, . . . rj}, of a job j, cannot start its execution unless all the
reduce tasks of the previous round, r − 1, have completed their execution. The
precedence constraints of a multi-round MapReduce job j can be represented by
an rj-partite-like directed acyclic graph, as the one depicted in Fig. 1, where rj

is the number of rounds and lj = 2rj − 1 is the length of a maximal path of
the tasks’ precedences. Throughout the analysis, in order to upper bound the
approximation ratio of our algorithms, the latter parameter is used instead of
the number of rounds. Note that, in order to refer to a precedence constraint
between two tasks, we use the standard notation, Tk,j ≺ Tk′,j .

· · ·
Map tasks

Reduce tasks

round 1 round 2 round rj

...
...

...
...

...
...

maximal path: lj = 2rj − 1

...
...

... ...
...

...
...

...
... ...

Fig. 1. A MapReduce job j of rj rounds, and length lj = 2rj − 1.

To better capture data locality issues in task assignment, we distinguish
between the standard identical processors environment, where the processing
time of each task Tk,j , let pk,j , is the same for every processor, and the most
general unrelated processors environment, where there is a vector of processing
times {pi,k,j}, one for each processor i ∈ P. Concerning the dedication of proces-
sors to either map or reduce tasks, we examine two cases: (a) The sets PM and
PR are indistinguishable and the processors in P are processing both map and
reduce tasks, and (b) the set P is divided into two disjoint sets PM and PR,

Scheduling MapReduce Jobs Under Multi-round Precedences 213

where P = PM ∪PR, where the processors of PM process only map tasks, while
the processors of PR process only reduce tasks.

For a given schedule we denote by Cj and Ck,j the completion times of
a job j ∈ J and a task Tk,j ∈ M ∪ R respectively. Note that, due to the
task precedences along the rj rounds of each job j, Cj = maxTk,j∈R{Ck,j}. By
Cmax = maxj∈J {Cj} we denote the makespan of the schedule, i.e. the comple-
tion time of the last finishing job. Our goal is to schedule non-preemptively all
tasks on processors of P, with respect to their precedences, so as to minimize
the average weighted completion time,

∑

j∈J wjCj .

3 Scheduling Tasks on Identical Processors

We first study the case of multi-round MapReduce scheduling on identical indis-
tinguishable or disjoint processors. For indistinguishable processors, reducing the
problem to standard job scheduling under precedence constraints, we immedi-
ately obtain a 4-approximation algorithm, a result that holds also for single-
round MapReduce scheduling. Then, we present an 11-approximation algorithm
for identical disjoint processors. For the same case, we also propose an improved
8-approximation algorithm for the single-round MapReduce scheduling problem,
which substantially improves on the 12-approximation algorithm proposed in
[15] for the same problem.

Indistinguishable Processors. We consider the multi-round MapReduce
scheduling problem on identical indistinguishable processors. Finding an algo-
rithm for this problem can be easily reduced to finding an algorithm for the
classic problem of scheduling a set of jobs on identical processors, under prece-
dence constraints of any kind, to minimize their average weighted completion
time. More specifically, for any instance of our problem we can create an equiv-
alent instance of the latter problem through the following transformation: For
every task Tk,j ∈ M ∪ R, we create a corresponding job jk of equal processing
time, pk,j , and zero weight, wjk

= 0. We maintain the same precedence con-
straints, emerged from the input of multi-round MapReduce scheduling problem,
to the new problem, i.e. for every Tk,j � Tk′,j we set jk � jk′ . For each MapRe-
duce job j, we create a dummy job jD of zero processing time and weight equal
to the weight of j, i.e. wjD

= wj , and for every job jk we demand that jk � jD.
In other words, since the corresponding dummy task of a MapReduce job j
has zero processing time, there exists an optimal schedule where it is executed
exactly after the completion time of all corresponding jobs jk and, therefore,
indicate the completion time of the job itself in the MapReduce context. More-
over, every dummy job jD carries the weight of the corresponding MapReduce
job j. [16] shows a 4-approximation algorithm for scheduling a set of jobs on iden-
tical processors, under general precedence constraints, to minimize their average
weighted completion time. Combining our transformation with this algorithm,
we obtain that:

Theorem 1. There is a 4-approximation algorithm for the multi-round MapRe-
duce scheduling problem on identical indistinguishable processors.

214 D. Fotakis et al.

Disjoint Processors. Inspired by the algorithm of [10, Theorem 3.8], we present
an O(1)-approximation algorithm which transforms a solution to an interval-
indexed LP relaxation of our problem into an integral schedule by carefully
applying, on each interval of execution, a variation of the well-known Graham’s
2-approximation algorithm [9] for job scheduling on identical processors under
precedence constraints to minimize makespan. Note that, in the following, we
use the term b ∈ {M,R} to refer to both map and reduce attributes.

For any set of tasks S ⊆ b, we define p(S) =
∑

Tk,j∈S pk,j and p2(S) =
∑

Tk,j∈S p2k,j . The following (LP1) is an interval-indexed linear programming
relaxation of our problem. Constraints (1) ensure that the completion time of
a MapReduce job is at least the completion time of any of its tasks and that
the completion time of any task is at least its processing time. Constraints (2)
capture the relation of completion times of two tasks Tk,j � Tk′,j . Constraints
(3) have been proved [10] to hold for any feasible schedule on identical processors
minimizing the average weighted completion time and give useful lower bounds
to the completion times of tasks.

Let (0, tmax =
∑

Tk,j∈M∪R pk,j] be the time horizon of the schedule, where
tmax is an upper bound on the makespan of any feasible schedule. We discretize
the time horizon into intervals [1, 1], (1, 2], (2, 22], . . . , (2L−1, 2L], where L is the
smallest integer such that 2L−1 ≥ tmax. Let L = {1, 2, . . . , L}. Note that, interval
[1, 1] implies that no job finishes its execution before time 1; in fact, we can
assume, w.l.o.g., that all processing times are positive integers. Let τ0 = 1 and
τ� = 2�−1. Our algorithm begins from a fractional solution to the LP, (C̄k,j , C̄j),
and separates tasks into intervals with respect to their completion times C̄k,j as
follows.

(LP1): minimize
∑

j∈J
wjCj

s.t. Cj ≥ Ck,j ≥ pk,j ∀Tk,j ∈ M ∪ R (1)
Ck,j ≥ Ck′,j + pk,j ∀Tk′,j ≺ Tk,j (2)
∑

Tk,j∈b

pk,jCk,j ≥ p(S)2 + p2(S)
2|Pb| b ∈ {M,R},∀S ⊆ b (3)

Let S(�) = {Tk,j |τ�−1 < C̄k,j ≤ τ�}. Let also SM (�) ⊆ S(�) and SR(�) ⊆ S(�)
be a partition of each set S(�) into only map and only reduce tasks, respectively.
We define tM� = p(SM (�))

|PM | and tR� = p(SR(�))
|PR| to be the average load of a map and

reduce processor, respectively, for executing the map and reduce tasks of each
set S(�). Now, we can define an adjusted set of intervals as τ̄� = 1 +

∑�
k=1(τk +

tMk + tRk) ∀� ∈ L. We can schedule greedily the tasks of each set S(�) in interval
(τ̄�−1, τ̄�], using the following variation of Graham’s List Scheduling algorithm.

Restricted-Resource List Scheduling. Consider two different types
of available resources, i.e. the map and the reduce processors, while each

Scheduling MapReduce Jobs Under Multi-round Precedences 215

task can be scheduled only on a specific resource type. Whenever a proces-
sor becomes available, execute on it any available unscheduled task that
corresponds to its type.

Lemma 1. The tasks of S(�) can be scheduled non-preemptively at interval
(τ̄�−1, τ̄�] by applying Restricted-Resource List Scheduling.

Proof. Using the analysis of [10] we can prove that the makespan of each set S(�) is
upper bounded by the total processing time of the longest chain of precedences and
the average processing time of a map (resp. reduce) processor. By definition of S(�)
and constraints (1), we know that the former value can be at most τ�. Therefore,
if the algorithm starts by assigning tasks at time τ̄�−1, it should have finished by
time C ≤ τ̄�−1 + τ� + tM� + tR� . Then, by definition of τ̄�−1 we have that C ≤
1 +

∑�−1
k=1(τk + tMk + tRk) + τ� + tM� + tR� ≤ 1 +

∑�
k=1(τk + tMk + tRk) = τ̄�.
�

Note that the resulting schedule respects the tasks precedences since by (1),
for any pair of tasks such that Tk,j � Tk′,j , it must be the case that Tk,j ∈ S(�)
and Tk′,j ∈ S(�′) with � ≤ �′. Now we are able to prove the following theorem.

Theorem 2. There is an 11-approximation algorithm for the multi-round
MapReduce scheduling problem on identical disjoint processors.

Proof. Consider the completion time Ck,j of a task Tk,j ∈ S(�). By constraints
(1) and (2) we know that the length of any chain that ends with Tk,j is upper
bounded by C̄k,j . Therefore, using the previous lemma and since Tk,j ∈ S(�), we
can see that for its completion time it holds: Ck,j ≤ τ̄�−1 + tM� + tR� + C̄k,j =
1+

∑�−1
k=1(τk +tMk +tRk)+tM� +tR� +C̄k,j = τ�+

∑�
k=1(t

M
k +tRk)+C̄k,j . Constraints

(3) imply that, for the last finishing -say map- task, Tk′,j′ of the set S(�′), it
holds C̄k′,j′ ≥ 1

2|PM |
∑�′

k=1 p(S(k)), while the same holds for the reduce tasks.

Therefore:
∑�

k=1(t
M
k + tRk) =

∑�
k=1 tMk +

∑�
k=1 tRk ≤ 1

|PM |
∑�

k=1 p(SM (k)) +
1

|PR|
∑�

k=1 p(SR(k)) ≤ 2τ� + 2τ� = 4τ�. Since by definition of S(�), τ� ≤ 2C̄k,j

it is the case that: Ck,j ≤ τ� + 4τ� + C̄k,j ≤ 11C̄k,j . The theorem follows by
applying the previous inequality to the objective function.
�
Remark. A simple transformation of the previous algorithm yields a
7-approximation algorithm for indistinguishable processors. However, Theorem 1
also applies and gives a 4-approximation algorithm for the single-round MapRe-
duce scheduling problem.

The Single-Round Case. For the special case of single-round MapRe-
duce scheduling, we obtain an 8-approximation algorithm, improving on the
12-approximation algorithm of [15]. Our algorithm refines the idea of merging
independent schedules of only map and only reduce tasks, σM and σR respec-
tively, on their corresponding sets of processors into a single schedule, by apply-
ing a 2-approximation algorithm similar to that in [5, Lemma 6.1]. Note that [5]
considers a more general case of scheduling a set of job orders, instead of jobs

216 D. Fotakis et al.

consisting of tasks, while the completion time of each order is specified by the
completion of the job that finishes last.

(LP2): minimize
∑

j∈J
wjCj

s.t. Cj ≥ Mk,j +
pk,j

2
∀Tk,j ∈ b (4)

∑

Tk,j∈S

pk,jMk,j ≥ p(S)2

2|Pb| ∀S ⊆ b (5)

For the partial schedules σb of only map and only reduce tasks, since we
have no precedence constraints between tasks, let Mk,j be the midpoint of a
task Tk,j ∈ b in any non-preemptive schedule, i.e., Mk,j = Ck,j − pk,j

2 . [7]
shows that in any feasible schedule on m identical processors, for every S ⊆ b :
∑

Tk,j∈S pk,jMk,j ≥ p(S)2

2m .
Now, consider the linear programming formulation (LP2). Note that,

although the number of inequalities of this linear program is exponential, it
is known [17] that it can be solved in polynomial time using the ellipsoid algo-
rithm. Thus, consider an optimal solution (M̄k,j , C̄j) to this formulation with
objective value

∑

j∈J wjC̄j . If we greedily assign tasks on the processors of Pb

in a non-decreasing order of M̄k,j using Graham’s list scheduling, then, for the
resulting schedule σb, it holds that:

Lemma 2. There is a 2-approximate schedule of map (resp. reduce) tasks on
identical map (resp. reduce) processors to minimize their average weighted com-
pletion time.

The second step of our algorithm is to merge the two partial schedules σM and
σR into a single one. To succeed it, we can use the merging technique proposed in
[15]. If we denote by CσM

j and CσR
j the completion times of a job j in σM and σR

respectively, we can define the width of each job j to be ωj = max{CσM
j , CσR

j }.
The algorithm schedules the tasks of each job on the same processors that they
have been assigned in σM and σR, in non-decreasing order of ωj , with respect
to the precedences. This merging routine is known [8, Theorem 2] to result in
a schedule where the completion time of each job is at most 2max {CσM

j , CσR
j },

leading to the following theorem:

Theorem 3. There is an 8-approximation algorithm for the single-round
MapReduce scheduling problem on identical disjoint processors.

Remark. The same analysis yields an 8-approximation algorithm for single-round
MapReduce scheduling on identical indistinguishable processors. We only have
to define the width of each job to be ωj = CσM

j + CσR
j .

Scheduling MapReduce Jobs Under Multi-round Precedences 217

4 Scheduling Tasks on Unrelated Processors

In this section, we consider the multi-round MapReduce scheduling problem
on unrelated processors. We present a O(lmax)-approximation algorithm, where
lmax = maxj∈J lj is themaximum length over all jobs’maximal paths in the under-
lying precedence graph. Since lmax = 2rmax − 1, our algorithm is also a O(rmax)-
approximation, where rmax is the maximum number of rounds over all jobs. Our
technique builds on ideas proposed in [8]. We formulate an interval-indexed LP
relaxation for multi-round MapReduce scheduling so as to handle the multi-round
precedences. Unlike [8,15], we avoid the idea of creating partial schedules of only
map and only reduce tasks and then combining them into one. Moreover, applying
the following algorithm for the single-round MapReduce scheduling problem, we
derive a 37.87-approximation algorithm, thus improving on the 54-approximation
algorithm of [8]. Even though in the following analysis, we consider the case of
indistinguishable processors, we can simulate the case of disjoint processors by sim-
ply setting pi,k,j = +∞ for every map (resp. reduce) task Tk,j when i is a reduce
(resp. map) processor. In the sequel, we denote by T = M∪R the set of all tasks.

We use an interval-indexed LP relaxation. Let (0, tmax =
∑

Tk,j∈T maxi∈P pi,k,j] be the time horizon of potential completion times, where
tmax is an upper bound on the makespan of any feasible schedule. Similarly with
(LP1), we discretize the time horizon into intervals [1, 1], (1, (1+δ)], ((1+δ), (1+
δ)2], . . . , ((1 + δ)L−1, (1 + δ)L], where δ ∈ (0, 1) is a small constant, and L is the
smallest integer such that (1 + δ)L−1 ≥ tmax. Let I� = ((1 + δ)�−1, (1 + δ)�], for
1 ≤ � ≤ L, and L = {1, 2, . . . , L}. Clearly, the number of intervals is polynomial
in the size of the instance and in 1

δ .
We introduce an assignment variable yi,k,j,� indicating whether task Tk,j ∈ T

is completed on processor i ∈ P within the interval I�. Furthermore, let Ck,j be
the completion time variable for a task Tk,j ∈ T and Cj be the completion
time variable for a job j ∈ J . (LP3) is an LP relaxation of the multi-round
MapReduce scheduling problem, whose corresponding integer program is itself a
(1 + δ)-relaxation.

Algorithm 1. Multi-round MRS: An algorithm for multi-round MapReduce
scheduling on unrelated processors
1: Compute a fractional solution to the LP (ȳi,k,j,�, C̄k,j , C̄j).
2: Partition the tasks into sets S(�) = {Tk,j ∈ b | (1 + δ)�−1 ≤ αC̄k,j < (1 + δ)�},
3: where α > 1 is a fixed constant.
4: for each � = 1 . . . L do
5: if S(�) �= ∅ then
6: Let G� be the precedence graph of the tasks of S(�).
7: V1,�, . . . , Vt,�, . . . , Vlmax+1,� ← Decompose(G�)

8: for each Vt,�, in increasing order of t do
9: Integrally assign the tasks of Vt,� on P using [18, Theorem 2.1].

10: Schedule tasks of Vt,� on P, as early as possible, w.r.t. their precedences.

218 D. Fotakis et al.

(LP3): minimize
∑

j∈J
wjCj

s.t.
∑

i∈P,�∈L
yi,k,j,� ≥ 1, ∀Tk,j ∈ T (6)

Cj ≥ Ck,j , ∀Tk,j ∈ T (7)

Ck,j ≥ Ck′,j +
∑

i∈P
pi,k,j

∑

�∈L
yi,k,j,�, ∀Tk′,j ≺ Tk,j (8)

∑

i∈P

∑

�∈L
(1 + δ)�−1yi,k,j,� ≤ Ck,j , ∀Tk,j ∈ T (9)

∑

Tk,j∈T
pi,k,j

∑

t≤�

yi,k,j,t ≤ (1 + δ)�, ∀i ∈ P, � ∈ L (10)

pi,k,j > (1 + δ)� ⇒ yi,k,j,� = 0, ∀i ∈ P, Tk,j ∈ b, � ∈ L (11)
yi,k,j,� ≥ 0, ∀i ∈ P, Tk,j ∈ b, � ∈ L

Constraints (6) ensure that every task is completed on a processor of the set
P in some time interval. Constraints (7) denote that the completion time of a job
is determined by the completion time of its last finishing task. Constraints (8)
describe the relation between the completion times of two jobs Tk,j � Tk′,j ,
where the term

∑

i∈P pi,k,j

∑

�∈L yi,k,j,� refers to the fractional processing time
of Tk,j . Constraints (9) impose a lower bound on the completion time of each
task. For each � ∈ L, constraints (10), (11) are validity constraints which state
that the total processing time of jobs executed up to an interval I� on a processor
i ∈ P is at most (1 + δ)�, and that if processing a task Tk,j on a processor i ∈ P
is greater than (1 + δ)�, Tk,j should not be scheduled on i, respectively.

Algorithm 1 considers a fractional solution (ȳi,k,j,�, C̄k,j , C̄j) to (LP3) and
rounds it to an integral schedule. It begins by separating the tasks into disjoint
sets S(�), � ∈ L according to their fractional completion times C̄k,j . Since some
of the tasks of each S(�) may be related with precedence constraints, we proceed
into a further partitioning of each set S(�), � ∈ L into pairwise disjoint sets
Vt,�, 1 ≤ t ≤ lmax + 1, with the following property: all the predecessors of any
task in Vt,� must belong either in a set Vt′,� with t′ < t, or in a set S(�′)
with �′ < �. Let G be the precedence graph, given as input of the multi-round
MapReduce scheduling problem. The above partitioning process on G can be
done in polynomial time by the following simple algorithm.

Decompose(G). Identify the nodes of zero in-degree, i.e., δ−(v) = 0, in
G. Add them in a set Vt,�, starting with t = 1, remove them from the
graph, and set t ← t + 1. Repeat until there are no more nodes. Output
the sets of tasks.

As the maximum path length in the precedence graph is lmax, for each � ∈ L,
we could have at most lmax + 1 sets Vt,�, with some of them possibly empty.
Now, since there are no precedence constraints among the tasks of each set Vt,�,
we integrally assign these tasks using the algorithm of [18, Theorem 2.1] in an

Scheduling MapReduce Jobs Under Multi-round Precedences 219

increasing order of � and t. The next lemmas prove an upper bound on the
integral makespan of the tasks of every set S(�) and Vt,�.

Lemma 3. Suppose that we ignore any possible precedences among the tasks in
S(�), for each � ∈ L. Then we can (fractionally) schedule them on the processors
P with makespan at most α

α−1 (1 + δ)�.

Now, since every set of tasks Vt,� is a subset of S(�), the aforementioned
result on the fractional makespan of S(�) also holds for every Vt,� ⊆ S(�).

Lemma 4. The tasks of every set Vt,� ⊆ S(�) can be integrally scheduled on the
processors P with makespan at most (α

α−1 + 1)(1 + δ)�.

Consider now a set of tasks S(�) whose decomposition results in a sequence of
pairwise disjoint subsets V1,�, . . . , Vt,�, . . . , Vlmax+1,�. Using the Lemma 4, we see
that if we integrally schedule each subset Vt,� in a time window of (α

α−1 +1)(1+δ)�

and thenplace the schedules in an increasing order of t, the resulting schedulewould
respect all constraints andwouldhavemakespanatmost (lmax+1)(α

α−1+1)(1+δ)�.
Now, we can prove the following.

Theorem 4. Algorithm 1 is an α[(lmax + 1) α
α−1 + lmax

α
δ(α−1) + lmax + 1 +

lmax+1
δ](1 + δ)-approximation for the multi-round MapReduce scheduling prob-

lem on unrelated processors, where lmax is the maximum length over all maximal
paths in the precedence graph, and α > 1, δ > 0 are fixed constants.

Proof. First, we need to note that the tasks of each set S(�) can be scheduled inte-
grally in the processors of P with makespan equal to the sum of makespans of the
subsets Vt,�, 1 ≤ t ≤ lmax +1. The rounding theorem of [18, Theorem 2.1] suggests
that the makespan of an integral schedule of tasks in Vt,� is at most the fractional
assignment, Πt,� ≤ α

α−1 (1 + δ)�, of tasks to processors plus the maximum process-
ing time on every processor, pmax

t,� ≤ (1 + δ)�. Therefore, the sets V1,� to Vlmax,�

can be scheduled with makespan at most lmax(α
α−1 +1)(1+ δ)�, in order to respect

the precedences among them. Now, consider the sets Vlmax+1,�,∀� ∈ L. Clearly,
these must include the last finishing tasks of any chain in the precedence graph.
Therefore, by constraints (10), it is the case that

∑

t≤� Πlmax+1,t ≤ α
α−1 (1 + δ)�.

Now, let Tk,j ∈ T be the last finishing task of a job j ∈ J which is scheduled
on a processor i ∈ P. Suppose, w.l.o.g., that Tk,j belongs to the set S(�). By
Lemma 4 and Lemma 3, taking the union of the schedules of tasks in S(�′), with
�′ ≤ �, it must hold that the completion time of Tk,j in the resulting schedule is:

Ck,j ≤
∑

�′≤�

[lmax(
a

a − 1
+ 1)(1 + δ)�′

+ Πlmax+1,�′ + pmax
lmax+1,�′]

≤ α

(

(lmax + 1)
α

α − 1
+ lmax

α

δ(α − 1)
+ lmax + 1 +

lmax + 1
δ

)

(1 + δ)C̄k,j .

�

220 D. Fotakis et al.

As for single-round MapReduce scheduling, for all the maximal paths of each
job j in the underlying graph, lj = 1. By Theorem 4 with (α, δ) ≈ (1.65, 0.80),
we get that:

Corollary 1. There is a 37.87-approximation algorithm for the single-round
MapReduce scheduling problem on unrelated processors.

A Note on the Computational Complexity. Concerning the hardness of
multi-round MapReduce scheduling on unrelated processors, we note it is a gen-
eralization of the standard job-shop scheduling, where the precedence constraints
are restricted to be a disjoint union of chains and the task assignment is given
in advance, under the average weighted completion time objective. However, for
the latter one, we know that it is NP-hard to obtain an O(1)-approximation and
it does not admit an O(log1−ε lb)-approximation algorithm for any ε > 0, unless
NP ⊆ ZTIME(2log

1/ε n), where lb is a standard lower bound on the makespan of
any schedule [14]. Thus, the best we can expect is no more than a logarithmic
improvement on our approximation ratio.

5 Simulation Results

We conclude with simulation results for multi-round MapReduce scheduling on
unrelated processors. We compare our algorithm against the simple heuristic
Fast-MR of [8] and against a lower bound derived from (LP3). We provide evi-
dence that the empirical approximation ratio of Algorithm 1 is significantly
better than the theoretical one.

Fast-MR operates in two steps. First, it computes an online assignment of
tasks to processors, using the online algorithm of [3], and then, it schedules them
using a variant of Weighted Shortest Processing Time first wrt. the multi-round
task precedences.

Computational Experience and Results. We generate instances consisting
of 30 indistinguishable processors and from 5 to 50 jobs. Each job consists of 5
rounds, where the number of map and reduce tasks in each round ranges from
20 to 35 and from 5 to 15, respectively. The weight of each job is uniformly
distributed in [1, n], where n is the number of jobs. Moreover, the parameters
of Algorithm 1 are fixed to δ = 0.96 and α = 1.69. To better capture the
unrelated nature of the processors as well as data locality issues, we generate
the task processing times in each processor in a processor-task correlated way,
extending on the model of [11]. Specifically, the processing times {pi,k,j}i∈P of
each map task are equal to bjaj,i plus some noise selected u.a.r. from [0, 10],
where bj and aj,i are selected u.a.r. from [1, 10], for each job j ∈ J and each
processor i ∈ P. The processing time of each reduce task, taking into account
that is practically larger, is set to 3bjaj,i plus some noise selected u.a.r. from
[0, 10]. In this context, we simulate both Algorithm 1 and Fast-MR by running
10 different trials for each possible number of jobs. Since in various applications
a MapReduce computation is performed within a single round, we also simulate

Scheduling MapReduce Jobs Under Multi-round Precedences 221

Algorithm 1 in the single-round case, called Single-Round MRS and compare
it against Fast-MR. Note that in the latter case, we fix α = 1.65, δ = 0.80
according to Corollary 1. The instances and the results are available at http://
www.corelab.ntua.gr/∼opapadig/mrrounds/.

Fig. 2. Simulation results for the single-round and multi-round cases, in terms of
absolute values and (empirical) approximation ratios. (Color figure online)

In Figs. 2 (i)–(ii), we note that Algorithm 1 outperforms the Fast-MR heuristic,
for any simulated number of jobs. More specifically, the empirical approximation
ratio of Fast-MR, ranges from 3.32 to 4.30, while the ratio of Algorithm 1 ranges
from 2.57 to 3.68. More interestingly, the gap between the performance guarantee
of the two algorithms is growing as the number of jobs is increasing: For n = 5
jobs the average ratios of the algorithms Algorithm 1 and Fast-MR are 3.43 and
3.72, while for n = 50, the average ratio converges to 2.71 and 3.62, respectively.
Over all trials, we can see that Algorithm 1 produces up to 28.4% better solu-
tions. In Figs. 2 (iii)–(iv), we note that Single-round MRS also outperforms
Fast-MR, producing up to 36.7% better solutions. Similarly to Algorithm 1, its
empirical approximation ratio ranges from 2.25 to 3.78 (vs. the ratio of Fast-MR
which ranges from 2.94 to 4.44), while the gap against the approximation ratio
of Fast-MR increases as the number of jobs increasing (e.g., for n = 50, Single-
round MRS achieves ratio 2.37, while Fast-MR 3.40). Note that, the empirical
approximation ratios in both multi-round and single-round cases of our algorithm
are far from our theoretical worst-case approximation guarantees.

http://www.corelab.ntua.gr/~opapadig/mrrounds/
http://www.corelab.ntua.gr/~opapadig/mrrounds/

222 D. Fotakis et al.

References

1. Afrati, F.N., Das Sarma, A., Salihoglu, S., Ullman, J.D.: Upper and lower bounds
on the cost of a MapReduce computation. VLDB 6(4), 277–288 (2013)

2. Afrati, F., Joglekar, M., Salihoglu, C.R.S., Ullman, J.D.: GYM: A multiround join
algorithm in MapReduce (2014). arXiv:1410.4156

3. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. JACM 44(3),
486–504 (1997)

4. Chen, F., Kodialam, M.S., Lakshman, T.V.: Joint scheduling of processing and
shuffle phases in mapreduce systems. In: INFOCOM, pp. 1143–1151 (2012)

5. Correa, J.R., Skutella, M., Verschae, J.: The power of preemption on unrelated
machines and applications to scheduling orders. Math. Oper. Res. 37(2), 379–398
(2012)

6. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
In: OSDI, pp. 137–150 (2004)

7. Eastman, W.L., Even, S., Iaacs, I.M.: Bounds for the optimal scheduling of n jobs
on m processors. Manage. Sci. 11, 268–279 (1964)

8. Fotakis, D., Milis, I., Papadigenopoulos, O., Zampetakis, E., Zois, G.: Scheduling
MapReduce jobs and data shuffle on unrelated processors. In: Bampis, E. (ed.)
SEA 2015. LNCS, vol. 9125, pp. 137–150. Springer, Heidelberg (2015)

9. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAP 17(2), 416–429
(1969)

10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. MOR 22, 513–544
(1997)

11. Hariri, A.M., Potts, C.N.: Heuristics for scheduling unrelated parallel machines.
Comp. and Oper. Res. 18(3), 323–331 (1991)

12. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In:
SODA, pp. 263-285 (2010)

13. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
mapreduce and streaming. In: SPAA, pp. 1–10 (2013)

14. Mastrolilli, M., Svensson, O.: Hardness of approximating flow and job shop schedul-
ing problems. JACM 58(5), 20 (2011)

15. Moseley, B., Dasgupta, A., Kumar, R., Sarlós, T.: On scheduling in Map-Reduce
and flow-shops. In: SPAA, pp. 289–298 (2011)

16. Queyranne, M., Schulz, A.S.: Approximation bounds for a general class of prece-
dence constrained parallel machine scheduling problems. SICOMP 35(5), 1241–
1253 (2006)

17. Queyranne, M.: Structure of a simple scheduling polyhedron. Math. Program.
58(1), 263–285 (1993)

18. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assign-
ment problem. Math. Program. 62, 461–474 (1993)

19. Yoo, D.-J., Sim, K.M.: A comparative review of job scheduling for MapReduce. In:
CCIS, pp. 353–358 (2011)

http://arxiv.org/abs/1410.4156

High Performance Architectures and
Compilers

Code Bones: Fast and Flexible Code Generation
for Dynamic and Speculative

Polyhedral Optimization

Juan Manuel Martinez Caamaño(B), Willy Wolff, and Philippe Clauss

INRIA CAMUS, ICube Laboratory, University of Strasbourg, Strasbourg, France
jmartinezcaamao@gmail.com

Abstract. In this paper, we present a new runtime code generation tech-
nique for speculative loop optimization and parallelization, that allows
to generate on-the-fly codes resulting from any polyhedral optimizing
transformation of loop nests, such as tiling, skewing, fission, fusion or
interchange, without introducing a penalizing time overhead. The pro-
posed strategy is based on the generation of code bones at compile-time,
which are parametrized code snippets either dedicated to speculation
management or to computations of the original target program. These
code bones are then instantiated and assembled at runtime to constitute
the speculatively-optimized code, as soon as an optimizing polyhedral
transformation has been determined. Their granularity threshold is suf-
ficient to apply any polyhedral transformation, while still enabling fast
runtime code generation. This strategy has been implemented in the
speculative loop parallelizing framework Apollo.

1 Introduction

The polytope model (or polyhedral model) [7] is a powerful mathematical frame-
work for reasoning about loop nests, and for performing aggressive transfor-
mations which improve parallelism and data-locality. Although very powerful,
compilers relying on this model [3,8] are restricted to a small class of compute-
intensive codes that can only be handled at compile-time. However, most codes
are not amenable to this model, due to dynamic data structures accessed through
indirect references or pointers, which prevent a precise static dependence analy-
sis. On the other hand, Thread-Level Speculation (TLS) [14] is a promising
approach to overcome this limitation: regions of the code are executed in par-
allel before all the dependences are known. Hardware or software mechanisms
track register and memory accesses to determine if any dependence violation
occur. While traditional TLS systems implement only a straightforward loop
parallelization strategy consisting of slicing the target loop into consecutive par-
allel threads, TLS frameworks implementing a speculative and dynamic adap-
tation of the polytope model have been recently proposed: VMAD [9] and
Apollo [17], where parallelizing and optimizing transformations are performed
for loops exhibiting a polyhedral-compliant behavior at runtime. A main limi-
tation of these frameworks relies on the dynamic code generation mechanism:
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 225–237, 2016.
DOI: 10.1007/978-3-319-43659-3 17

226 J.M. Martinez Caamaño et al.

for each target loop nest, some code skeletons, which are incomplete optimized
code versions that will be completed at runtime, are generated at compile-time
and embedded in the final executable file. This approach has several limitations:
(1) Each skeleton only supports a limited set of loop optimizing transformations;
for example, while a given skeleton enables a combination of skewing and inter-
change, it cannot support any additional transformation as tiling or fission. (2)
The impact of some code transformations regarding the structure of the resulting
loop nest cannot be predicted; for example, loop fission may result in an arbi-
trary number of loops; another example is loop unrolling, where the best unroll
factor may only be known at runtime. (3) With code skeletons, the same schedule
must be applied to all the statements of a target loop, while the polytope model
considers scheduling per statements. (4) The complicated structure of generic
code skeletons hampers the application of some compiler optimizations, as for
example automatic vectorization.

In this paper, we present a dynamic code generation mechanism for specula-
tive polyhedral optimization, that allows to apply on-the-fly any combinations of
transformations to a target loop nest, similarly to what is achieved at compile-
time by static polyhedral compilers as Pluto [3]. It is based on the compile-time
generation of code bones, which are code snippets either made of instructions
of the target loop nest, or of speculation verification instructions. These code
bones are then instantiated and assembled at runtime, according to an optimiz-
ing transformation that has just been determined from runtime profiling. The
resulting assembled code is then further optimized and compiled using the LLVM
just-in-time compiler to generate the final executable code. Our contribution has
been implemented in the speculative parallelization framework Apollo [17]. We
show on a set of benchmark codes that this code generation technique enables:
(1) significant parallel speed-ups, thanks to (2) various automatic runtime loop
optimizations that are traditionally only possible at compile-time, (3) on loops
that cannot be handled at compile-time.

The paper is organized as follows. An overview of Apollo is presented in
Sect. 2. Section 3 details the proposed code generation mechanism (the main
contribution of this paper). Section 4 present the empirical results regarding
performance and time overhead of the proposed approach. Section 5 compares
our mechanism against other approaches. Finally, conclusions are given in Sect. 6.

2 Speculative Parallelization

Apollo1 [17] is a framework capable of applying polyhedral loop optimizations
on any kind of loop-nest2, even if it contains unpredictable control and memory
accesses through pointers or indirections, as soon as it exhibits a polyhedral-
compliant behavior at runtime. The framework is made of two components: a
static compiler, whose role is to prepare the target code for speculative paral-
lelization, and implemented as passes of the Clang-LLVM compiler [10]; and a
1 Automatic POLyhedral speculative Loop Optimizer.
2 for-loops, while-loops, do-while-loops.

Dynamic and Speculative Polyhedral Optimization 227

runtime system, that orchestrates the execution of the code. New virtual itera-
tors, starting at zero with step one, are systematically inserted at compile-time
in the original loop nest. They are used for handling any kind of loop in the same
manner, and serve as a basis for building the prediction model and for reasoning
about code transformations.

Apollo’s static compiler analyzes each target loop nest regarding its memory
accesses, its loop bounds and the evolution of its scalar variables. It classifies
these objects as being static or dynamic. For example, if the target address of a
memory instruction can be defined as a linear function of the iterators, then it is
considered as static. Otherwise, it is dynamic and thus requires instrumentation
to be analyzed at runtime to take part of the prediction model. The same is
achieved for the loop bounds and for scalars. This classification is used to build
an instrumented version of the code, where instructions collecting values of the
dynamic objects are inserted, as well as instructions collecting the initial values
of the static objects (e.g. base addresses of regular data structures).

At runtime, Apollo executes the target loop nest in successive phases, where
each phase corresponds to a slice of the outermost loop (see Fig. 1):

1. First, an on-line profiling 1© phase is launched, executing only a small number of
iterations, and recording memory addresses, loop-trip counts and scalar values.

2. 2© From the recorded values, linear functions are interpolated to build a
linear prediction model. Using this model, a loop optimizing and parallelizing
transformation is determined by invoking, on-line, the polyhedral compiler
Pluto. From the transformation, the corresponding parallel code is generated,
with additional instructions devoted to the verification of the speculation.

3. A backup 3© of the memory regions, that are predicted to be updated during
the execution of the next slice, is performed. An early detection of a mis-
prediction is possible, by checking that all the memory locations that are
predicted to be accessed are actually allocated to the process.

4. A large slice of iterations is executed 4© using the parallel optimized version of
the code. While executing, the prediction model is also verified by comparing
the actual values against their linear predictions. If a misprediction is detected,
memory is restored 5© to cancel the execution of the current slice. Then, the
execution of the slice is re-initiated using the original 6© serial version of the
code, in order to overcome the faulty execution point. Finally, a profiling slice
is launched again to capture the changing behavior and build a new prediction
model. If no misprediction was detected during the run of the parallel code, a
next slice of the loop nest using the same parallel code is launched.

Fig. 1. Execution in slices of iterations

228 J.M. Martinez Caamaño et al.

3 Code Generation Strategy

Until now, in order to achieve fast code generation, the Apollo framework has
been using code skeletons [9]. Code skeletons are incomplete transformed ver-
sions of the target loop nests that are generated at compile-time, and completed
at runtime as soon as the necessary information has been discovered and com-
puted. Each of such skeletons supports a fixed combination of loop transforma-
tions, related to a fixed loop structure. This approach becomes impractical when
supporting combinations of polyhedral transformations that may alter the loop
structure, such as loop fission, loop unrolling or even simple statement reorder-
ings. To cover every possible combination of loop transformations, we propose a
new fast code generation strategy based on code bones, which are parametrized
code snippets generated at compile-time, and assembled at runtime to result in
the transformed code.

Any speculatively optimized code is generally composed of two types of com-
putations: (1) computations of the original target code, whose schedule and
parameters have been modified for optimization purposes; and (2) computations
related to the verification of the speculation, whose role is to ensure semantic
correctness and to launch a recovery process in case of wrong speculation. These
computations are generated in two phases: (i) a compile-time phase where code
bones of each type are built, and (ii) a runtime phase where complex transfor-
mations are determined and instantiated using the code bones.

Generation of Code Bones: At compile time, code bones are extracted from the
control-flow graph (CFG) of the target loop nest. Each memory write instruction
yields an associated code bone, that includes all instructions belonging to the
backward static slice of the memory write instruction. In other words, these are
all the instructions required to execute an instance of the memory write. Notice
that memory read instructions are also included in code bones, since the role
of any read instruction is related to the accomplishment of at least one write
instruction. Starting from this first set of code bones (called computation bones),
a second set of bones devoted to the verification of the predictions (called ver-
ification bones) is generated. For each memory instruction of the computation
bones, that may be a write or a read, an associated verification bone is created.
These verification bones contain a verification instruction comparing the actual
accessed address to the generic predicting linear function that will be instanti-
ated at runtime. Hence, the backward slice computing the target address of the
verified memory instruction is also inserted in the verification bone. In the corre-
sponding computation bone, all these instructions are removed and replaced by
the computation of the predicting linear function. This provides better oppor-
tunities for the compiler to optimize the computation bones thanks to simpler
address computations. Similar verification bones are also created for dynamic
scalars and loop bounds. Each code bone is then optimized independently of the
rest of the code by the compiler. Finally, the so-built code bones are embedded in
a fat binary code in their LLVM intermediate representation form (LLVM-IR).

Dynamic and Speculative Polyhedral Optimization 229

They will be used later by the runtime system for code generation.

Example: As an illustration, consider the loop nest in Listing 1.1. Since array
A is accessed through an indirection using array B, whose values are unknown at
compile-time, it is impossible to determine what elements of A will be updated.
The corresponding CFG is shown in Fig. 2. To make the examples clearer for
the reader, instructions are shown in a simplified SSA intermediate representa-
tion. Instructions defining original loop iterators are identified by number 1© ,
memory accesses by 2© and loop exit conditions by 3©. Loop iterators are iden-
tified as phi-nodes in the header of each loop, recalling that a phi-node is an
instruction used to select an incoming value depending on the predecessor of the
current basic block. In order to handle this loop nest at runtime for speculative
optimization, code bones are generated. Since there is only one memory write,
one computation bone is built. Array B is accessed through a linear memory
reference that is identified at compile-time. Hence, only one verification bone
is built, which is related to the access of array A. The computation bone is
shown in Fig. 3. The computations of the predictions for the original iterators
and addresses are identified by number 1©, while the memory access instructions
using the predicted address by 2©. The associated verification bone is shown
in Fig. 4, where the computations of the predicted addresses are identified by
number 1©, number 2© points out the load of B[j] using the predicted memory
address, original ptr calculates the actual address of A[B[j]], while the verifi-
cation instruction is identified by 3©, which compares original ptr against the
prediction stored in A.pred. Notice that this bone includes the original address
computations. Variables vi.0 and vi.1 stand for the virtual iterators that are
used as a basis for building the prediction model. They are passed as parameters
to the code bone. The linear functions of the prediction model are interpolated
in terms of these iterators. Variables coef i.0-1, coef j.0-2, coef a.0-2 and
coef b.0-2 are the coefficients of the linear functions. These coefficients will be
instantiated and replaced by constant values at runtime.

Runtime Composition of Code Bones: The runtime code generation process is
depicted in Fig. 5. When linear interpolating functions have been successfully
built from the on-line profiling phase, they are used to build the encoding of a
loop nest which is compliant with the polyhedral model, using the OpenScop
format [2]. This polyhedral representation is then given as input to Pluto to
perform dependence analysis, and to compute an optimizing and parallelizing
transformation. Pluto’s result, also in OpenScop, is then passed to the code gen-
erator Cloog [1] to obtain the polyhedral scan, i.e., the new loops and iterators
for the statements. Then, a dedicated translation proccess generates LLVM-IR
from Cloog’s output. This translation process is straightforward: Cloog’s out-
put recalls some constructs in C code like for-loops, simple if-conditions and
statement invocations. This code invokes the code bones and instantiates the
embedded linear functions according to the schedule provided by Cloog. Notice
that a given bone may be invoked several times, but with different parame-
ters to instantiate the linear functions. This may happen in case of loop fission

230 J.M. Martinez Caamaño et al.

for (i = 0 ; i < 900 ; ++i)
for (j = 0 ; j < 900 ; ++j)

A[B[j]] += i + j ;

Listing 1.1. A simple loop nest Fig. 2. CFG of a simple loop nest

Fig. 3. Computation bone Fig. 4. Verification bone

Prediction
model

OpenScop
representation

OpenScop
encoding

Optimized code
OpenScop

representation

Speculatively
optimized code
with code bones

Cloog +
translation

Speculatively
optimized code

(executable)

LLVM-JITPluto

Fig. 5. Runtime code generation

for example. Finally, the resulting code is optimized further and converted into
executable form using the LLVM just-in-time compiler.

Transformation Selection Overhead: The selection of a loop transformation is
performed using the polyhedral compiler Pluto. However in [18], it has been
shown that the execution time of Pluto increases in a roughly n5 complexity in
the number of statements in the system. In consequence, for complex kernels
involving many dependences, Pluto can introduce a high time overhead which
is inadequate for a runtime usage. Meanwhile the availability of a just-in-time
polyhedral compiler, we bypass this issue by handling codes that may yield a
high overhead of Pluto in a specific way. Kernels which are associated with more
than 5 computation bones are classified as complex, while the others are classi-
fied as simple. For simple kernels, Pluto’s time is masked by the execution of a
slice of the original serial code. Apollo then starts executing the parallel code
as soon as it is ready. For complex kernels, contiguous code bones in the same
iteration domain are fused into a single bone. The execution is then equivalent

Dynamic and Speculative Polyhedral Optimization 231

to their serial executions. Notice that this fused bone can perform verification
and multiple memory-writes. Simplification of complex kernels is achieved by
fusing bones until the total number reaches a given threshold. From our exper-
iments, this threshold has been fixed to 15 bones. Then Pluto is invoked to
select a transformation. If the threshold cannot be reached, Pluto is used solely
for dependence analysis, to determine which loops in the original code may be
parallelized, without any additional transformation.

paral le l for (t2=0; t2<=899; t2++)
Veri fBone (s l i c e l ow e r , t2) ;

paral le l for (t2=0; t2<=899; t2++)
for (t1=s l i c e l o w e r ; t1<=s l i c e u pp e r ; t1++)

CompBone(t1 , t2) ;

Listing 1.2. Generated code

Fig. 6. CFG of the verification code Fig. 7. CFG of the computation code

Optimization of the Verification: Verification bones exhibit three specific opti-
mization opportunities: (1) While computation bones often participate in depen-
dencies, verification bones may not. Such verification bones are extracted into
a separate loop nest, which is run before the rest of the bones in a inspector-
executor fashion. (2) For these latter verification bones, it is possible to identify
dimensions of the iteration domain (i.e., loop indices), for which the the predict-
ing linear functions is invariant. This is achieved by checking the linear functions:
if the coefficients multiplying the iterator of a dimension are zero, the computa-
tion remains invariant for this dimension. Thus, only the first iteration is run.
(3) When some operands of the computing functions are detected as being neces-
sarily linear, while some others require some memory accesses to be performed,
outer loops embedding the memory accesses are fully executed, while the inner
loops computing linear operands only require the first iteration to be executed.

232 J.M. Martinez Caamaño et al.

Example (Continued): Let us now assume that at runtime, each array element
B[j] is assigned with j. Thus, Apollo discovers, through profiling and interpo-
lation, that addresses touched by the store instruction can be represented by a
linear function of the form: j+base address. The dependence spawned is an out-
put dependence carried by the outermost loop. The large reuse distance between
elements of A is penalizing regarding temporal data locality. Since the store
instruction is going to use the predicting linear function as its target address,
accesses to array B and A are not dependant anymore. Notice also that all the
linear functions for verifying the memory access have 0 as coefficient for the
outermost loop iterator. Then, it is sufficient to execute a single iteration of this
loop. Both loop nests are sent to Pluto: a first single-loop nest accessing array
B and verifying that its elements yield addresses equal to the predicting linear
function, and a second two-loop nest computing and storing elements of array A
using the linear function as the target address. Pluto suggests to parallelize the
single verification loop, to interchange loops i and j in the second nest to improve
temporal data locality, and also to parallelize the outermost loop. For clarity,
the resulting code built by the code generator is represented in C, in Listing 1.2,
although every operation is performed on LLVM-IR. Parameters slice lower
and slice upper are the bounds of the slice of the original loop nest that will be
run speculatively by Apollo. The CFGs of both generated loop nests are repre-
sented in Figs. 6 and 7. The invocations to the respective code bones are marked
with number 2©. Notice the branch (marked with number 3©) to the rollback
procedure in case of misprediction in the verification code. Number 1© marks
the iterators of the new loops.

4 Experiments

Our experiments were ran on two AMD Opteron 6172 processors of 12 cores
each. Reported results are obtained by averaging the outcome of three runs.
The tile sizes were always set to Pluto’s default (32 for each dimention). The
set of benchmarks has been built from a collection of benchmark suites, such
that the selected codes include a main loop nest and highlights Apollo’s capa-
bilities: SOR from the Scimark suite3, backprop and needle from the Rodinia
suite [5]; dmatmat, ispmatmat, spmatmat, djacit and pcg from the SPARK00
suite of irregular codes [13], mri-q and stencil from the Parboil suite [16], and
finally seidel-2d, which is a special version of the code belonging to the Poly-
bench suite4, in which the arrays are allocated dynamically, thus yielding pointer
aliasing issues. The input problem sizes are as follows: dmatmat, ispmatmat
and SOR: 3000 × 3000 matrices; spmatmat (square): 2500 × 2500 matrices;
spmatmat (diagonal): 8000×8000 matrices; spmatmat (random): 2000×2000
matrices with 3000000 non-zero elements; spmatmat (worst case scenario):
4000 × 4000 matrices with 1600000 non-zero elements; pcg: 1100 × 1100 matri-
ces; seidel-2d: 20, 000 × 20, 000 matrices; needle: 24, 000 × 24, 000 matrices;
3 http://math.nist.gov/scimark2/.
4 http://sourceforge.net/projects/polybench.

http://math.nist.gov/scimark2/
http://sourceforge.net/projects/polybench

Dynamic and Speculative Polyhedral Optimization 233

Table 1. Number of code bones and applied transformations.

Benchmark #comp-bones #verif-bones Applied transformation

needle 1 1 Tile + Skew + Vectorize + Unroll

SOR 1 6 Tile + Skew + Vectorize + Unroll

seidel-2d 1 10 Tile + Skew + Unroll

dmatmat 1 5 Tile + Unroll

ispmatmat 1 8 Tile + Unroll

spmatmat 1 11 Tile + Vectorize + Unroll

stencil 1 2 Tile + Interchange + Vectorize + Unroll

djacit 7 5 Skew + Unroll

mri-q 2 1 Interchange + Unroll

backprop 2 4 Interchange + Vectorize + Unroll

pcg 21 33 Identity + Unroll

stencil: 4000 × 4000 matrices; mri-q: two vectors of sizes 2048 and 262,144;
backprop: a neural-network with 80,000 input units, 512 hidden units and 16
output units.

Table 1 shows the number of generated bones and the optimizing transfor-
mations that were applied on-the-fly, in addition to parallelization. For every
benchmark, except spmatmat, mispredictions are detected in advance, during
backup, and before launching the speculatively-optimized code, as explained in
Sect. 2. Codes djacit and pcg are both classified as complex : code bones where
automatically fused to accelerate Pluto’s transformation selection. Code djacit
was simplified to 6 bones, while pcg was simplified at maximum to 21 bones.
For the latter, the identity loop transformation was used since the total number
of bones remained over the threshold of 15.

To emphasize different features of Apollo, four different inputs were used for
spmatmat: (i) a square matrix, (ii) a band matrix, (iii) a randomly distributed
matrix, and (iv) a matrix yielding the worst-case scenario for Apollo. Input (i)
exhibits a single linear phase, which is conducive to Apollo. Input (ii) yields two
different phases: the input band matrix has a constant number of elements per
rows, excepting in the very last rows where this number is decreasing. Apollo is
successful in optimizing the first large phase where rows have a constant num-
ber of elements. But since this number decreases in the last rows, the change
of memory accesses and loop bounds yields a rollback, followed by instrumen-
tation and serial loop completion. For input (iii), Apollo is not able to interpo-
late linear functions to build the prediction model, and continuously switches
between instrumented and original executions of the loop. The last input, (iv),
represents the worst case scenario for Apollo, consisting of multiple phases of
a few iterations. After each instrumented execution for profiling, Apollo suc-
cessfully builds a prediction model and generates an optimized code; but when
executing the speculatively-optimized version, a misprediction is detected, and

234 J.M. Martinez Caamaño et al.

Fig. 8. Slow-downs compared
to clang and gcc in worst-case
scenarios.

Fig. 9. Total code-generation times.

a rollback occurs. For this last input, the execution yields 6 rollbacks. Figure 8
shows a comparison with inputs (iii) and (iv), where Apollo is not able to execute
any optimized slice of iterations successfully. Caption spmatmat - non-linear
stands for the previously described input (iii), while caption spmatmat - worst
case scenario stands for input (iv). Even if Apollo imposes an overhead, it
does not influence execution time significantly from clang’s serial version. More-
over, even if input (iv) yields the worst case scenario – where the framework
continuously performs code generation, backup, and fails during the optimized
code execution, and rollbacks – the performance impact is weak.

As mentioned, we can distinguish four parts in the code generation process
of Apollo: (i) encoding the code bones in an OpenScop object, (ii) determining a
polyhedral transformation (Pluto), (iii) generating the scan (Cloog), and finally
(iv) generating executable code (LLVM-JIT). In Fig. 9, we only depict the time
overheads for the last three stages. Indeed, the time spent encoding the code
bones information (i) is negligible when compared to the other parts (0.012 s
at maximum, 0.004 s on average). Figure 10 shows the percentage of the total
execution time which is spent in the main steps of Apollo. Interpolation, code
generation and transformation selection phases are grouped with caption ‘code-
generation’. The backup time remains lower than 5 % of the execution time
for most of the benchmarks. Instrumentation is one of the most time-consuming
phases of Apollo, however mostly as fast as executing the original serial code. It is
particularly large for backprop, since the original serial code is slow due to poor
data locality (column-major array access). Since the code generation phase is
always executed in parallel with the original code, the percentage corresponding
to the original code execution is always higher than the one corresponding to the
code generation phase. Figure 11 show a comparison between the code generation
strategy using skeletons used by Apollo and the one proposed in this paper
with code bones. To compute the speed-ups, we selected the best serial version
generated among the gcc-4.8 or clang-3.4 compilers with optimization level 3
(-O3). The code bones approach outperforms the code skeletons approach for

Dynamic and Speculative Polyhedral Optimization 235

Fig. 10. Overheads of Apollo among the total execution time(24 threads).

Fig. 11. Speedup against the best of clang/gcc (8 and 24 threads)

codes that benefit from transformations not supported by the code skeleton
approach, such as tiling. For benchmarks where the applied transformation is
the same with both approaches, similar speed-ups are obtained. For SOR, tiling
is required for parallelization.

5 Related Work

The Apollo framework is a major revision of a previous framework called
VMAD [9]. To generate parallel code on-the-fly, VMAD builds code skeletons
at compile-time, whose limitations have been addressed in this paper.

Most TLS systems [11,12,15] are limited to simple parallelization schemes:
the outermost loop of the original loop nest is optimistically sliced into specu-
lative parallel threads. Such a scheme does not consider complex reordering of
iterations and statements, thus, the implemented code generation mechanisms
are reduced to different statically generated and simple code versions, and a
runtime system that switches between them. Softspec [4] represents preliminary
ideas of our approach. However, no code transformations are performed, only
slicing the loop for parallel execution.

Polly [8] may be seen as the static counterpart of our proposal. Polly is a
polyhedral compiler built on top of LLVM. However, since Polly operates only at

236 J.M. Martinez Caamaño et al.

compile-time, without any coupled runtime system, it is limited to codes where
precise information is available in the LLVM-IR. SPolly [6] is an extension to
enlarge its applicability, by detecting common expression values and aliasing
properties that prevent polyhedral optimization. During a first execution of the
program, a profile is generated; values and aliasing properties are deduced, and
specialized versions of the loop are created. These specialized code versions are
not generated at runtime. There is no speculation and thus no verification code.

6 Conclusion

The proposed runtime code generation strategy offers the opportunity of apply-
ing any polyhedral loop transformation on-the-fly, without paying a penalizing
time overhead. It also enlarges the scope of speculative parallelization by bringing
it closer to what a static optimizing compiler may achieve. The CFG abstraction
using code bones could also be employed for other goals related to dynamic opti-
mization, as soon as the runtime process consists in scheduling, guarding and
instantiating some sub-parts of the target code.

References

1. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT (2004)

2. Bastoul, C.: Openscop: A specification and a library for data exchange in polyhe-
dral compilation tools. Technical report (2011)

3. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI (2008)

4. Bruening, D., Devabhaktuni, S., Amarasinghe, S.: Softspec: software-based specu-
lative parallelism. In: ACM FDDO (2000)

5. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee, S.H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: IISWC (2009)

6. Doerfert, J., Hammacher, C., Streit, K., Hack, S.: Spolly: speculative optimizations
in the polyhedral model. In: IMPACT (2013)

7. Feautrier, P.: Some efficient solutions to the affine scheduling problem, part 2:
multidimensional time. IJPP 21(6), 389–420 (1992)

8. Grosser, T., Größlinger, A., Lengauer, C.: Polly - performing polyhedral optimiza-
tions on a low-level intermediate representation. PPL 22(4), 28 (2012)

9. Jimborean, A., Clauss, P., Dollinger, J.F., Loechner, V., Martinez, J.M.: Dynamic
and speculative polyhedral parallelization using compiler-generated skeletons.
IJPP 42(4), 1–17 (2014)

10. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: CGO 2004 (2004)

11. Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., Torrellas, J.: Posh: a
tls compiler that exploits program structure. In: PPoPP (2006)

12. Rauchwerger, L., Padua, D.: The lrpd test: speculative run-time parallelization of
loops with privatization and reduction parallelization. In: SIGPLAN Not. (1995)

13. van der Spek, H., Bakker, E., Wijshoff, H.: Spark00: A benchmark package for the
compiler evaluation of irregular/sparse codes. (2008). arXiv:0805.3897

http://arxiv.org/abs/0805.3897

Dynamic and Speculative Polyhedral Optimization 237

14. Steffan, J., Mowry, T.: The potential for using thread-level data speculation to
facilitate automatic parallelization. In: HPCA 1998 (1998)

15. Steffan, J., Colohan, C., Zhai, A., Mowry, T.: The stampede approach to thread-
level speculation. ACM TCS 23, 253–300 (2005)

16. Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., Chang, L.W., Anssari, N.,
Liu, G.D., Hwu, W.-M.W.: The Parboil technical report. Techical report, IMPACT
(2012)

17. Sukumaran-Rajam, A., Martinez Caamaño, J.M., Wolff, W., Jimborean, A.,
Clauss, P.: Speculative program parallelization with scalable and decentralized
runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 124–139. Springer, Heidelberg (2014)

18. Upadrasta, R., Cohen, A.: Sub-polyhedral scheduling using (unit-)two-variable-
per-inequality polyhedra. In: POPL 2013 (2013)

Piecewise Holistic Autotuning of Compiler
and Runtime Parameters

Mihail Popov1(B), Chadi Akel2, William Jalby1, and Pablo de Oliveira Castro1

1 Université de Versailles Saint-Quentin-en-Yvelines,
Université Paris-Saclay, Versailles, France

{mihail.popov,william.jalby,pablo.oliveira}@uvsq.fr
2 Exascale Computing Research, Versailles, France

chadi.akel@exascale-computing.eu

Abstract. Current architecture complexity requires fine tuning of com-
piler and runtime parameters to achieve full potential performance. Auto-
tuning substantially improves default parameters in many scenarios but
it is a costly process requiring a long iterative evaluation.

We propose an automatic piecewise autotuner based on CERE
(Codelet Extractor and REplayer). CERE decomposes applications into
small pieces called codelets: each codelet maps to a loop or to an OpenMP
parallel region and can be replayed as a standalone program.

Codelet autotuning achieves better speedups at a lower tuning cost.
By grouping codelet invocations with the same performance behavior,
CERE reduces the number of loops or OpenMP regions to be evaluated.
Moreover unlike whole-program tuning, CERE customizes the set of best
parameters for each specific OpenMP region or loop.

We demonstrate CERE tuning of compiler optimizations, number of
threads and thread affinity on a NUMA architecture. On average over
the NAS 3.0 benchmarks, we achieve a speedup of 1.08× after tuning.
Tuning a single codelet is 13× cheaper than whole-program evaluation
and estimates the tuning impact on the original region with a 94.7 %
accuracy. On a Reverse Time Migration (RTM) proto-application we
achieve a 1.11× speedup with a 200× cheaper exploration.

1 Introduction

The current increase of architecture complexity, multiple cores, out-of-order exe-
cution, complex memory hierarchies, and non-uniform memory access (NUMA)
complicates the performance characterization. Achieving full efficiency requires
fine tuning parameters such as the degree of parallelism, thread placement or
compiler optimization. Runtime and compiler standard parameter levels (such
as −O3 compiler flag or scatter thread placement) achieve good-enough perfor-
mance across most of the codes and architectures. But they cannot take advan-
tage of target-specific optimizations since they must correctly work on a large
panel of architectures.

Finding the optimal parameters may lead to substantial improvement but is
a costly and time consuming process. For example, compilers such as LLVM [1]
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 238–250, 2016.
DOI: 10.1007/978-3-319-43659-3 18

Piecewise Holistic Autotuning of Compiler and Runtime Parameters 239

3.4 provide more than sixty passes. Passes have different impact depending on
their order of execution and can be executed many times. This leads to a huge
exploration space: considering only sequences of 30 passes requires to explore a
space over 6030 points.

Even worse, some applications may have different optimal parameters for
different code regions. For example, compute bound loops and memory bound
loops within the same function will not be sensitive to the same compiler
optimizations.

There are different approaches to tune parameters. Iterative compilation [2]
is a well known automated search method for solving the compiler optimization
phase ordering problem. The idea is to apply successive compiler transformations
to a program and to evaluate them by executing the resulting code. Similar
execution driven studies [3,4] explore the efficiency of different thread placement
strategies or frequencies. Smart search algorithms [5,6] through the parameter
space reduce the evaluation cost. Genetic algorithms [7,8] or adaptive learning [9,
10] accelerate the search by avoiding unnecessary parameters.

A common point of these execution driven studies is that they require a full
program evaluation and execution to quantify the impact of a single parameter
value. The problem is that executing application is costly and time consuming,
especially if we have thousands of points to evaluate. Also, as regions of code
do not benefit from the same parameters, an overall program-evaluation (or
monolithic evaluation) is not able to achieve the optimal per region optimization.
In other words, these studies are expensive to perform and do not necessary lead
to the optimal parameters.

In this paper we propose a piecewise exploration framework based on
CERE [11] (Codelet Extractor and REplayer) which enhance both the search
cost and the search benefits. We partition applications into small pieces called
codelets. Each independent loop or OpenMP parallel region is extracted as a
codelet that can be replayed as a standalone program. Instead of evaluating para-
meters on the whole application, we separately evaluate them on each codelet
(Sect. 3.2). The piecewise evaluation leads to find the best parameters for each
region. Combining these regions within a single binary is called hybridization
and outperforms traditional monolithic tuning (Sect. 3.3).

Using codelets as proxies for autotuning requires that codelets faithfully
reproduce the application behavior with the exploring parameters. This requires
a warmup of the memory state. CERE already implements various warmup
strategies. To enable thread placement exploration, we extend these warmups
with a new NUMA ownership strategy (Sect. 3.1).

The contributions of this paper are:

– A novel automatic autotuner based on codelets and integrated in CERE.
– A holistic piecewise tuning approach that addresses degree of parallelism,

thread placement, NUMA effects, and compiler optimization passes.
– The validation of the codelet tuning over the NAS benchmarks and an indus-

trial proto-application with compiler and runtime parameters.
– A NUMA aware memory page capture and replay.

240 M. Popov et al.

2 Motivating Example

We will demonstrate how CERE operates on SP, a Scalar Penta-diagonal solver,
from the C version of the NPB 3.0 OpenMP benchmarks [12]. CERE autotuning
achieved a 1.82× performance speedup over the standard parameters levels.
Thanks to the CERE codelet approach, the exploration time was approximately
five times cheaper compared to the whole-program iterative compilation.

Table 1. Execution time in megacycles of
SP parallel regions across different thread
affinities with −O3 optimization. For n
threads, we consider three affinities: scat-
ter sn, compact cn, and hyperthread hn.
Executing SP with the c8 affinity provides
an overall speedup of 1.71× over the stan-
dard (s16).

thread affinity xsolve ysolve zsolve rhs total

s2 0;8 32.3 23 28.5 23 106.8
c2 0;1 21.4 17.6 18.1 23.7 80.8
h2 0;16 40 32.6 23 46.1 141.7
s4 0;8;1;9 25.9 20.9 26 12.1 84.9
c4 0;1;2;3 15.5 12.7 13.8 13.2 55.2
h4 0;16;1;17 23.8 17.5 16 24.3 81.5
s8 0;8;1;9;...;11 24.4 21.9 28.6 6.9 81.8
c8 0;1;2;3;...;7 14.4 13.4 14.3 9.1 51.2
h8 0;16;1;17;...;19 17.7 14.2 13.9 13.5 59.3
s16 16 scatter 25.1 21.4 35.5 5.3 87.4
c16 16 compact 17 15 15.5 9.7 57.2
h32 32 scatter 36 31.2 38.9 6.4 112.4

Fig. 1. Tuning exploration for two SP
regions. For each affinity, we plot the best,
worst, and −O3 optimization sequences.
Custom optimization beats −O3 for s2,
s4, and s8 on ysolve.

CERE starts by profiling SP and automatically selecting representative
OpenMP regions to tune. Xsolve, ysolve, zsolve, and rhs are selected and
cover 93 % of SP execution time. CERE extracts these regions as codelets and
tunes them with a holistic exploration across three dimensions: thread number,
thread placement, and LLVM compiler passes. Once satisfying parameters are
found, CERE produces an hybrid application where each region uses the best
found parameters.

In this study, we explored the interactions between 12 thread configurations
combining different number of threads and affinity mappings and 150 LLVM
optimization sequences generated using the random sub-sampling presented in
Sect. 4. Combining them produces an exploration space of 1800 points, which
gives an insight of how costly it is to simultaneously tune multiple parameters.

Figure 1 shows the performance of two SP parallel regions across this explo-
ration space. We notice that there is a strong interaction between the compiler
and the thread parameters as they both significantly impact the performances.

Piecewise Holistic Autotuning of Compiler and Runtime Parameters 241

Fig. 2. Violin plot execution time of SP regions using best NUMA affinity. Measures
were performed 31 times to ensure reproducibility. When measuring total execution
time, Hybrid outperforms all other optimization levels, since each region uses the best
optimization sequence available.

Moreover, the best parameters are different for the two regions: scatter place-
ment is best for rhs while compact benefits ysolve.

CERE makes it possible, through codelet replay, to independently explore
each region. Moreover, thanks to CERE replay prediction model presented in
Sect. 3.2, it is possible to quickly evaluate the impact of each configuration on
only a few datasets. CERE evaluates thread affinities and compiler optimiza-
tions on SP, respectively 5.84× and 4.52× times faster than a full application
evaluation while keeping a low average error of 2.33 %.

Custom parameters outperform the standard 16 threads scatter s16
−O3 on SP. Table 1 shows the performance of different thread affinities compiled
with −O3. The best custom thread affinity 0;1;2;3;4;5;6;7 (single NUMA
socket) achieves a speedup of 1.71× over the standard 16 threads scatter
(two NUMA sockets).

We explored with CERE 350 compiler optimization sequences on the best
single NUMA configuration found above. Xsolve and ysolve work best at the
default −O2 level, but a custom best sequence is found for zsolve and rhs.
Figure 2 shows the performance of each region compiled with the default opti-
mization and the best custom sequences. No single sequence is the best for all
regions. CERE hybrid compilation produces a binary where each region is com-
piled using its best sequence, achieving a speedup that cannot be reproduced
using traditional monolithic compilation.

3 CERE AutoTuner

CERE [11,12] is an open source framework for code isolation. CERE finds and
extracts loops or OpenMP parallel regions from an application as isolated frag-
ments of code, called codelets. Codelets can be modified, compiled, run, and
measured independently from the original application.

242 M. Popov et al.

Fig. 3. Codelet capture and replay workflow

Figure 3 presents how a region is captured as a codelet and replayed. Using
codelets as a proxy for application characterization requires two steps: capture
and replay. During the capture, the execution state is saved for each region.
During the replay, CERE restores the codelet memory and cache state before
executing the region. At replay, a cache and NUMA page ownership warmup is
necessary to ensure that the replay execution context is close to the original.

CERE extracts regions at the compiler Intermediate Representation (IR)
level after clang front-end translation but before LLVM middle-end optimiza-
tions. This allows us to re-target the codelet compilation and execution.

3.1 NUMA Aware Warmup

A replay has to faithfully reproduce the original invocation context. CERE
already handles two issues: it restores the memory working set of the region
and warms up the cache to avoid cold-start bias [13].

It uses a snapshot of the memory at page level granularity. With a mem-
ory protection mechanism, the memory pages containing the working set are
captured. During replay, pages are remaped to their original addresses. CERE
includes different cache warmup approaches [11] that operate by replaying the
memory access history at a page granularity before running the codelet.

We outline a new aspect: the placement of the pages across the NUMA nodes.
Due to the node local first touch policy, a page is mapped to the core which first
attempts to use it. We must ensure that pages are mapped to the same NUMA
nodes as they have been in the original run. The problem is that pages are not
necessarily bound to the same NUMA nodes across the different thread affinities.
Scatter maximizes the number of NUMA nodes while compact minimizes it.

Figure 4 outlines this problem on a 2-NUMA nodes architecture. CERE
default warmup uses a single thread to remap the pages to their original
addresses: all the pages are bound to a single NUMA node. Replays accurately
predict the execution time as long as the affinity binds the threads to the same
NUMA node. Otherwise, the replay pays NUMA latencies that do not appear
in the original run and which cause prediction discrepancies.

Piecewise Holistic Autotuning of Compiler and Runtime Parameters 243

1 NUMA domain (compact) 2 NUMA domains (scatter)

0e+00

1e+10

2e+10

3e+10

4e+10

2 4 8 16 2 4 8 16 32
thread number

C
yc

le
s

Original Single Thread Warmup NUMA Warmup

Fig. 4. Prediction accuracy of a single threaded warmup versus a NUMA aware
warmup on BT xsolve. Only a NUMA aware warmup is able to predict this region
execution time on a multi NUMA node configuration.

To solve this issue, we enhance the page capture by saving, for each page,
the first thread that touches it. During replay, before replaying the codelet code,
each thread touches the pages that it has saved at the capture. Hence, pages
are mapped to the NUMA node of the thread which is the first to touch them.
To ensure a correct NUMA mapping at replay when we change the number of
threads, we must both not exceed the number of threads at capture and spread
the pages across the replaying threads.

3.2 Piecewise Optimization with Codelets

Regions within an application may not be sensitive to the same optimizations:
SP rhs and zsolve regions in Sect. 2 have different best compiler optimizations.
Unlike monolithic approaches, CERE enables tuning each codelet independently.

The piecewise search not only improves the benefits over a monolithic tuning,
but also accelerates the exploration by avoiding the execution of useless com-
piler sequences (see in experiments Fig. 7) or regions. IS benefits from this as
it only times a sorting algorithm included in a region which represents 22 % of
the application execution time. Through a codelet, CERE extracts the sorting
region and tunes it without executing the rest of the application.

Codelets also accelerate the evaluation of each region. Regions may have per-
formance variations across their different invocations. Using a clustering method,
CERE classes these invocations and selects a representative subset of invocations
to be replayed. We only execute the subset to predict the region execution time.

We assume that the tuning parameters have a similar impact on the invo-
cations within the same cluster. Figure 5 illustrates this assumption across two
parameters on MG resid. Resid has 42 invocations grouped in 3 performance
classes. The invocations remain in the same classes across the parameters. So,
by replaying 3 instead of 42 invocations, CERE predicts the region execution for
each parameter to explore.

244 M. Popov et al.

Fig. 5. MG resid invocations execution time on Sandy Bridge over −O3 and −O0 with
respectively 2 and 4 threads. Each representative invocation predicts its performance
class execution time.

3.3 Hybrid Compilation

The piecewise tuning finds the best compiler optimizations for each loop and
OpenMP region. Unfortunately, LLVM does not provide a mechanism to select
compiler optimizations at the function or loop granularity. To compile each
region with a different set of optimizations we must extract each region in its
own compilation unit. We leverage the extract tool included in LLVM which
allows to extract an IR function to a separate IR file.

The first step is outlining each region of interest in its own IR function.
Before any middle-end optimization is applied, each region is moved to a separate
compilation unit using LLVM extract. A special pass changes the visibility of
symbols used by the extracted region from internal to global so that they are
not removed by the compiler. Then, the best compiler sequence found is applied
to each separate IR file and an object file is produced. Finally, all the objects
files are linked together producing an hybrid binary.

4 Experiments and Validation

This section validates both usage of codelets as proxies to tune parameters
and production of hybrid binaries. Codelets capture most of the application
hotspots [11]. Nevertheless, we must demonstrate that codelet tuning helps find-
ing optimal parameters and reducing the search cost. To accurately predict best
parameters, codelet replays must capture the original application reaction to the
different compiler and thread configurations.

We used two different Intel CPU micro-architectures: a Sandy Bridge E5
with 64 GB of RAM and an Ivy Bridge i7-3770 with 16 GB of RAM. We chose
Sandy Bridge to explore thread affinities because it has 2 NUMA sockets and
each socket has 8 physical (16 hyper-threaded) cores.

Piecewise Holistic Autotuning of Compiler and Runtime Parameters 245

Thread configurations were selected to explore different degrees of paral-
lelism, NUMA and hyper-threading effects. Sandy Bridge has 16 physical cores,
so we did not explore configurations beyond 32 threads. We used the Intel kmp
affinity [14] notation to characterize the thread placement. Cores ranked between
0 and 7 reference the physical cores of the first NUMA node while cores between
8 and 15 reference the physical cores of the second NUMA node. Similarly, cores
from 16 to 23 and from 24 to 31 reference the hyper-threaded cores of respectively
the first and the second NUMA node.

The compilation search was performed on LLVM 3.4 using a random pass
selection. We use LLVM opt and llc to change respectively middle-end and back-
end optimizations. Middle-end passes have different impact depending on their
order of execution, and can be executed multiple times. −O3 is a manually tuned
sequence composed of 65 ordered passes aiming to provide good performances.
In this paper, random compilation sequences were generated by down-sampling
the −O3 default sequence. Each pass was removed with a 0.7 probability, and
the process was repeated four times to explore the impact of pass repetitions.
We empirically found that this generation method produces good and diverse
candidates. Back-end passes were selected among −O0,−O1,−O2 and −O3.

We performed the experiments on the NAS 3.0 sequential [15] and C OpenMP
parallel [16] benchmarks (respectively NAS SER and NPB) with CLASS A
datasets and on a Reverse Time Migration [17] (RTM) proto-application.

4.1 Thread Number and Affinity Tuning

This section presents the thread affinity tuning results. CERE page memory
capture was performed on a 16 threads scatter run. Table 2 evaluates CERE
thread affinities replay accuracy and reduction factor over NAS OpenMP. We
focused on regions representing more than 5 % of the application execution time.
On average, a region exploration is 6.55× faster with codelets than with whole-
program evaluations. Tuning all the SP regions from the motivating example
with codelets is five times faster as SP has four regions with an average accel-
eration of twenty per region. CERE uses an optimistic warmup: it replays four
times the codelet over itself. These replays are not amortized on EP and MG: the
first executes the main parallel region once in the original execution while the
second requires many invocation replays to support the multiple performance
classes. As we increase the data sets, the warmup cost overhead becomes smaller
compared to the replay execution time. We tested xsolve BT with CLASS B
data sets and a single warmup invocation to achieve an acceleration of 9.48×,
twice the one achieved in class A, with an accuracy of 98.36 %.

The average CERE prediction accuracy is 93.66 %. It allows the autotuner to
outperform the standard scatter s16 over EP, FT, LU, and SP and to perform an
average speedup of 1.40× (see Fig. 6). We note that there is no thread affinity
to privilege over the others: h32, s16, and c8 are all optimal on at least two
applications.

246 M. Popov et al.

Table 2. The accuracy of the codelet prediction is the relative difference between the
original and the replay execution time. The benchmark reduction factor or accel-
eration is the exploration time saved when studying a codelet instead of the whole
application. CERE fails to accelerate EP and MG evaluation: EP has a single region
with one invocation while MG displays many performance variations.

Compiler passes Thread affinity

Benchmarks #Regions Accuracy Reduction
factor

#Regions Accuracy Reduction
factor

BT 3 98.73 79.63 4 95.24 5.28

CG 2 98.65 3.39 2 79.48 1.23

FT 5 98.3 2.6 5 90.71 2.17

IS 3 96.64 1.26 2 94.85 1.04

SP 6 98.78 68.9 4 97.66 20.07

LU 7 95.04 8.49 2 99.00 12.64

EP 1 83.08 0.36 1 99.31 0.25

MG 4 97.22 0.28 4 93.04 0.45

Average 95.8 20.61 93.66 5.39

Fig. 6. Original and CERE predicted speedup for two thread configurations. Replay
speedup is the ratio between the replayed target and the replayed standard configura-
tion. CERE accurately predicts the best thread affinities in six out of eight benchmarks.
For CG and MG, we miss-predict configurations that use all the physical cores.

4.2 Compiler Passes Tuning and Hybridization

Table 2 also presents CERE predictions through compiler optimizations with
3000 compiler sequences for BT, 500 for MG and 1000 for the others NAS SER. The
average CERE prediction accuracy and acceleration for a region is 95.8 % and
20.61×. Figure 7 presents the number of explored compiler sequences required
to achieve a speedup over 1.04× per region. We empirically determined this
speedup value. Unlike monolithic approaches which must continue exploration
until all regions are optimized, codelets can stop the search over a region once
a satisfying speedup is found and focus the exploration on other regions. Here,
CERE evaluates BT ysolve 461 times instead of 3000 times. Each evaluation
is on average 99 times cheaper than a full application run due to the codelet
invocations clustering.

Piecewise Holistic Autotuning of Compiler and Runtime Parameters 247

Fig. 7. Compiler sequences required to get a speedup over 1.04× per region. CERE
evaluates the sequences in the same order for all the regions. Exploring regions sepa-
rately is cheaper because we stop tuning a region as soon as the speedup is reached.

Fig. 8. Speedups over −O3. We only observe speedups from the iterative search over
BT, SP, and IS. Best standard is the more efficient default optimization (either −O1,
−O2, or −O3). Monolithic is best whole program sequence optimization. Hybrids are
build upon optimizations found either with codelets or with original application runs.

The focus of this paper is not on the compiler flag selection, that is why a
naive random compiler pass search was used. Nevertheless, CERE results could
be improved with more sophisticated techniques for passes selection such as
genetic algorithms [6] which would also benefit from the piecewise approach.

CERE outperforms the standard −O3 over BT, SP, and IS with an average
speedup of 1.06× (see Fig. 8). IS random generator and sorting algorithm do
not benefit from the same optimizations which explains the significant difference
between the hybrid and the monolithic approach. Hybrid binaries based on orig-
inal or replay explorations have the same performances which ensure that we do
not miss any optimizations through the codelets.

We make the simplifying assumption that optimizing a region does not affect
other regions. This is not always true: due to memory effects, it is possible to have
performance interactions between neighbors. We find a compilation sequence
which gives a speedup of x1.08× over LU jacu. Unfortunately, optimizing jacu
has the side effect of slowing down by 0.92× the neighboring region jacld.

To stress the CERE prediction accuracy model, we performed a simultaneous
search of 1000 compiler sequences across the thread affinities on LU ssor. CERE
predicted region execution time with a mean accuracy of 99 % across parameters.

248 M. Popov et al.

Finally, we used CERE to tune the RTM proto-application used in a imaging
system for geophysical depth, and provided by Asma Farjallah and Total [9].
RTM is dominated by one Jacobi stencil computation called 3000000 times and
which represents 91.1 % of the total execution time. CERE extracts this loop
and performs a compiler search of 300 passes. This codelet is 200× faster to
evaluate and finds a compiler optimization 1.11× faster than -03.

5 Related Work

While most of the research try to accelerate the iterative compilation by pruning
the exploration space [5–8,10], this paper proposes a transverse approach which
do not focus on the search space but rather accelerates the evaluation of each
exploration point through a benchmark reduction technique.

Usual benchmark reduction techniques take advantage of phases to reduce
the simulation cost [18]. They cannot be directly used for compiler tuning as
they operate on the assembly. Fursin and al. [19] managed to take advantage of
the application phases: they evaluate multiple optimizations for a region with a
single run by versioning the different iterations of the region. However, they do
not use any code isolation techniques so they cannot focus the search which is
problematic when a region of interest has a few invocations compared to the oth-
ers. Oliveira et al. [20] cluster together codelets that have the same performance
behavior, and keep only one representative copy for each group. This benchmark
reduction is complementary to the invocations clustering presented in this paper
and should accelerate the overall search. We must find clustering metrics that
are relevant for compiler optimizations and thread affinities.

Like us, Kulkarni et al. [21] propose a piecewise search at the function level
granularity. They propose a per-function compilation using the VPO compiler
framework. Yet, they do not use any extraction mechanism during the search:
exploring two functions within the same file requires to execute the program
many times. Purini et al. [22] find, through LLVM iterative compilation runs,
good general sets of compilation sequences that should work well on any given
program. They can quickly tune new applications by directly searching passes
within the good set instead of exploring the whole optimization space. Codelets
could serve proxies to quickly find and test these optimal sequences.

6 Conclusion

In this paper we present an autotuner based on CERE codelets. Codelets serve
as proxies for tuning applications holistically, considering the interactions of
thread placements, NUMA effects, and compiler passes. CERE proposes a novel
piecewise approach that accelerates searching the parameter space and enables
an hybrid compilation where each region uses the best set of local parameters.
It outperforms traditional monolithic tuning.

CERE codelets predict the impact of thread placement and compiler opti-
mization with a mean accuracy of 94.7 % over the NAS 3.0 benchmarks. On the

Piecewise Holistic Autotuning of Compiler and Runtime Parameters 249

RTM industrial proto-application, CERE achieved a 1.11× execution speedup
through compiler pass selection. The search was 200× faster thanks to codelet
tuning. Detailed accuracy and acceleration reports are available at https://
benchmark-subsetting.github.io/autotuning-results/.

Acknowledgments. The research leading to these results has received funding under
the Mont-Blanc project from the European Union’s Horizon 2020 research and inno-
vation program under grant agreement No. 671697.

References

1. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, pp. 75–86. IEEE (2004)

2. Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P., Bodin, F., Wijshoff, H.A.G.: A
feasibility study in iterative compilation. In: Polychronopoulos, C., Fukuda, K.J.A.,
Tomita, S. (eds.) ISHPC 1999. LNCS, vol. 1615, pp. 121–132. Springer, Heidelberg
(1999)

3. Mazouz, A., Touati, S.A.A., Barthou, D.: Performance evaluation and analysis
of thread pinning strategies on multi-core platforms: case study of SPEC OMP
applications on intel architectures. In: High Performance Computing and Simula-
tion (HPCS), pp. 273–279. IEEE (2011)

4. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W.,
Bletsch, T.: Adagio: making DVS practical for complex HPC applications. In:
Proceedings of the Conference on Supercomputing, pp. 460–469. ACM/IEEE
(2009)

5. Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D.I.: Compiler
optimization-space exploration. In: International Symposium on Code Generation
and Optimization, CGO 2003, pp. 204–215. IEEE (2003)

6. Ladd, S.R.: ACOVEA: Analysis of compiler options via evolutionary algorithm
(2007)

7. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space
using genetic algorithms. In: SIGPLAN Notices, vol. 34, pp. 1–9. ACM (1999)

8. Hoste, K., Eeckhout, L.: COLE: compiler optimization level exploration. In: Code
Generation and Optimization, pp. 165–174. ACM (2008)

9. de Oliveira Castro, P., Petit, E., Farjallah, A., Jalby, W.: Adaptive sampling for
performance characterization of application kernels. Concurrency and Computa-
tion: Practice and Experience (2013)

10. Fursin, G., et al.: Milepost GCC: machine learning enabled self-tuning compiler.
Int. J. Parallel Prog. 39(3), 296–327 (2011)

11. de Oliveira Castro, P., Akel, C., Petit, E., Popov, M., Jalby, W.: CERE: LLVM
based Codelet Extractor and REplayer for piecewise benchmarking and optimiza-
tion. Trans. Archit. Code Optim. 12(1), 6 (2015)

12. Popov, M., Akel, C., Conti, F., Jalby, W., de Oliveira Castro, P.: PCERE:
fine-grained parallel benchmark decomposition for scalability prediction. In:
International Parallel and Distributed Processing Symposium, pp. 1151–1160.
IEEE (2015)

13. Kessler, R.E., Hill, M.D., Wood, D.A.: A comparison of trace-sampling techniques
for multi-megabyte caches. Trans. Comput. 43(6), 664–675 (1994)

https://benchmark-subsetting.github.io/autotuning-results/
https://benchmark-subsetting.github.io/autotuning-results/

250 M. Popov et al.

14. Intel: Reference Guide for the Intel(R) C++ Compiler 15.0. https://software.intel.
com/en-us/node/522691

15. Bailey, D., et al.: The NAS parallel benchmarks summary and preliminary results.
In: Proceedings of the Conference on Supercomputing, pp. 158–165. ACM/IEEE
(1991)

16. Popov, M.: NAS 3.0 C OpenMP. http://benchmark-subsetting.github.io/cNPB
17. Baysal, E.: Reverse time migration. Geophysics 48(11), 1514 (1983)
18. Sherwood, T., Perelman, E., Calder, B.: Basic block distribution analysis to find

periodic behavior and simulation points in applications. In: Parallel Architectures
and Compilation Techniques, pp. 3–14. IEEE (2001)

19. Fursin, G.G., Cohen, A., O’Boyle, M., Temam, O.: Quick and practical run-time
evaluation of multiple program optimizations. In: Stenström, P. (ed.) Transactions
on HiPEAC I. LNCS, vol. 4050, pp. 34–53. Springer, Heidelberg (2007)

20. de Oliveira Castro, P., Kashnikov, Y., Akel, C., Popov, M., Jalby, W.: Fine-grained
benchmark subsetting for system selection. In: International Symposium on Code
Generation and Optimization, pp. 132–142. ACM (2014)

21. Kulkarni, P.A., Jantz, M.R., Whalley, D.B.: Improving both the performance ben-
efits and speed of optimization phase sequence searches, pp. 95–104. ACM (2010)

22. Purini, S., Jain, L.: Finding good optimization sequences covering program space.
Trans. Archit. Code Optim. 9(4), 56 (2013)

https://software.intel.com/en-us/node/522691
https://software.intel.com/en-us/node/522691
http://benchmark-subsetting.github.io/cNPB

Insights into the Fallback Path of Best-Effort
Hardware Transactional Memory Systems

Ricardo Quislant(B), Eladio Gutierrez, Emilio L. Zapata, and Oscar Plata

Department of Computer Architecture, University of Málaga, 29071 Málaga, Spain
{quislant,eladio,zapata,oplata}@uma.es

Abstract. Current industry proposals for Hardware Transactional
Memory (HTM) focus on best-effort solutions (BE-HTM) where hard-
ware limits are imposed on transactions. These designs may show a sig-
nificant performance degradation due to high contention scenarios and
different hardware and operating system limitations that abort trans-
actions, e.g. cache overflows, hardware and software exceptions, etc. To
deal with these events and to ensure forward progress, BE-HTM systems
usually provide a software fallback path to execute a lock-based version
of the code.

In this paper, we propose a hardware implementation of an irrevoca-
bility mechanism as an alternative to the software fallback path to gain
insight into the hardware improvements that could enhance the execu-
tion of such a fallback. Our mechanism anticipates the abort that causes
the transaction serialization, and stalls other transactions in the system
so that transactional work loss is minimized. In addition, we evaluate
the main software fallback path approaches and propose the use of ticket
locks that hold precise information of the number of transactions waiting
to enter the fallback. Thus, the separation of transactional and fallback
execution can be achieved in a precise manner.

The evaluation is carried out using the Simics/GEMS simulator and
the complete range of STAMP transactional suite benchmarks. We
obtain significant performance benefits of around twice the speedup and
an abort reduction of 50 % over the software fallback path for a number
of benchmarks.

1 Introduction

Transactional Memory (TM) [8] was first presented in 1993 [9] as a non-blocking
synchronization mechanism for shared memory chip multiprocessors (CMPs).
TM provides the programmer with the transaction construct that executes the
code within it atomically and in isolation. Such transactional properties are
ensured by the TM system via the cache coherence protocol and dedicated hard-
ware (hardware TM – HTM).

It is not until recently that some processor manufacturers have included HTM
support in their commercial off-the-shelf CMPs [4,10,19,21]. Current industry
proposals focus on best-effort solutions (BE-HTM) where hardware limits are
imposed on transactions. For instance, transactions cannot survive to capacity
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 251–263, 2016.
DOI: 10.1007/978-3-319-43659-3 19

252 R. Quislant et al.

overflows, exceptions, interrupts, page faults, migrations,... To deal with these
limitations, BE-HTM systems usually provide a software fallback path to execute
a non-transactional version of the code, often comprising a global lock.

In this paper we propose an implementation of a hardware irrevocability
mechanism as an alternative to the software fallback path to gain insight into
the hardware improvements that could enhance the execution of such a fallback.
Irrevocability [3,20] is a transactional execution mode that ensures transaction
forward progress since an irrevocable transaction cannot be aborted. Our mech-
anism anticipates the abort that causes the transaction serialization, and stalls
other transactions in the system so that transactional work loss is minimized. In
addition, we evaluate the main software fallback path approaches and propose
the use of a ticket lock that hold precise information of the number of trans-
actions waiting to enter the fallback. Thus, the separation of transactional and
fallback execution can be achieved in a precise manner with the corresponding
performance benefits. The result is an enhanced Lemming effect avoidance [6].

The evaluation is carried out using the Simics/GEMS simulator and the
complete range of STAMP transactional suite benchmarks. We obtain significant
performance benefits of around twice the speedup and an abort reduction of 50 %
over the software fallback path for a number of benchmarks.

2 Baseline Architecture

Figure 1 shows the baseline architecture used in this paper. The system relies
on the L1 caches to store new transactional values of memory blocks, while
old values are kept into the L2 cache. A pair of read and write transactional
bits per L1 cache block marks whether the block was read or written within a
transaction. Such bits can be flash-cleared on transaction commit and abort. In
case of abort, the blocks whose transactional write bit is set are also invalidated.
The cache coherence protocol maintains strong isolation [13] and implements
an eager conflict detection policy. The conflict resolution policy is requester-
wins, where the requesting transaction wins the conflict and the requested one
is aborted. The baseline cache coherence protocol is modified to support the
execution of transactions:

– Backup on first transactional store: If an L1 cache block is in M state and its
write transactional bit is not set, the L1 cache has to send the data to the L2
cache before a transactional store is performed. This way the L2 cache holds
the last old value for the block.

– Abort on evictions: The replacement of a transactional block in an L1 cache
implies losing track of transactional loads and stores, which jeopardizes trans-
action isolation; so transactions must be aborted on these type of evictions.
Beside, L2 cache block replacements may abort a transaction because of the
inclusion property.

– L2 cache serves data of aborted transactions : The L2 cache must send the
data of aborted transactions. There are two situations: (i) The requester is
already the owner of the block. In such a case, the L2 cache simply responds

Insights into the Fallback Path of Best-Effort Hardware 253

with the data; (ii) The requester is not the owner of the block. In this case,
the directory forwards the request to the owner, which receives a forward
message for a block that is no longer present in its L1 cache. Then, the L1
cache informs the L2 cache and the L2 cache sends the data.

L2 Bank

CPU

L1 I&D

...

...

...

xR/xW Tag/Data

Controller

Directory/DataV

Memory Controller

Memory Controller

Controller

Fig. 1. Baseline architecture of the BE-
HTM system.

Fig. 2. Execution scenario of hardware
irrevocability vs. software fallback.

3 Hardware Irrevocability Fallback Mechanism

A common way to deal with hardware capacity overflows and to ensure forward
progress in commercial BE-HTM systems is a software fallback path. The code
that Intel suggests as fallback path in its optimization manual [1] comprises a
global lock to execute a failed transaction as a non-transactional critical section.
Once a transaction aborts a given number of times, the fallback path is taken.
In addition, when a transaction is successfully started, the fallback global lock is
checked. If the lock was acquired, the transaction aborts. If not, the transaction
goes ahead with the lock in its read set so that another transaction acquiring the
lock can abort it. The clash of transactions and fallback path sections is thereby
avoided.

A hardware irrevocability mechanism provides several benefits over a software
fallback code of that kind:

254 R. Quislant et al.

– The programmer is not burdened with the task of writing and tuning a fall-
back code, which reduces the programming effort of transactional applica-
tions, one of the main goals of transactional memory.

– There is no need for a lock so it is neither cached nor added to the read set
of the transaction, thus freeing limited hardware resources.

– Performance benefits: Figure 2 shows an execution scenario where a hardware
irrevocability mechanism performs better than a software fallback code. The
fallback path version aborts transactional execution and retries the trans-
action as a locked critical section. The other transactions running in the
system abort as well, since they read the lock at the beginning1. Execution
is rebooted and serialized. However, the hardware irrevocability mechanism
does not discard the transactional work done so far. The other transactions
are stalled when a transaction gets irrevocable. Furthermore, the irrevocable
one does not have to abort if it gets irrevocable just before the event that
causes irrevocability, e.g. before an L1 cache replacement.

The scenario in Fig. 2 is optimistic. It considers no contention between the
irrevocable transaction and the stalled ones, which would cause the abort of the
stalled, conflicting transactions. Additionally, the fallback code causes a chain
reaction, also called as Lemming effect [6], by which all transactions take the
fallback path even if they do not have reached the retry limit yet (Sect. 5 evalu-
ates the Lemming effect problem). Nonetheless, the figure depicts the potential
of hardware irrevocability and the weaknesses of a software fallback path.

3.1 Implementation

We propose a token-based implementation of the irrevocability mechanism where
only the core that owns the token can run irrevocably. Each core has a flag that
indicates whether there is an irrevocable transaction running in the system or not
(the I bit). Another flag in the core signals whether the irrevocable transaction
belongs to this core or to another core, i.e. whether the core owns the token
or not (the T bit). Along with the pair of bits (I,T), each core has a counter
(C) that holds the number of transaction retries. The core aks for irrevocability
when C is 0.

When a transaction reaches the limit of retries, the L1 cache controller of the
core checks its (I,T) bits and acts depending on their value:

– (I,T) = (0,0): There are no irrevocable transactions running in the system and
the token is not owned. In this case, the controller broadcasts a token request
message that will be responded by the core that owns the token. Should the
owner just start irrevocability, the token is not sent and the requester keeps
stalling until the owner ends its transaction. If the token is received, the T
bit is set to 1 and the controller broadcasts an irrevocability request message

1 The non-transactional write to the lock causes these aborts by means of strong iso-
lation [13]. Correctness is ensured as locks and transactions are not allowed simul-
taneously.

Insights into the Fallback Path of Best-Effort Hardware 255

for the other cores to set the I bit to 1. The requester can safely continue its
transaction in irrevocable mode, (I,T) = (1,1), after acknowledgement of the
other L1 cache controllers.

– (I,T) = (0,1): The core owns the token, so it can request irrevocability
directly.

– (I,T) = (1,0): Someone else is running an irrevocable transaction. Conse-
quently, the transaction stalls. This value for the (I,T) pair can be found on
transaction beginning and after receiving an irrevocability message.

Table 1. L1 cache coherence protocol modifications for irrevocability (highlighted in
gray).

St
at
e

Events
L1 Replace L1 Replace L1 Replace L2 Replace L2 Replace L2 Replace
¬(xR∨xW) (xR∨xW)∧(C>1) (xR∨xW)∧(C≤1) ¬(xR∨xW) (xR∨xW) (xR∨xW)

∨ (1,1) ∨ (1,1) (1,0)∨(C>1) (0,-)∧(C≤1)

I – – – ACK – –
S – /I Abort, C-1 /I Irre, Z ACK /I Abort, C-1 /I Irre, Zz
E PUT(no data) /I Abort, C-1 /I Irre, Z ACK /I Abort, C-1 /I Irre, Zz
M PUT+Data /I Abort, C-1 /I Irre, Z ACK+Data /I Abort, C-1 /I Irre, Zz
Irre: ask for irrevocability
Z and Zz: recycle mandatory and request queue, respectively
(#,#): pair of bits (I,T)

We have modified the L1 cache controller to implement the anticipation to a
block replacement. Table 1 shows the modifications made to the protocol high-
lighted in gray. L1 cache replacements are left untouched whenever either the
block to be replaced is not transactional, ¬(xR∨xW), or the core is in irrevocable
mode and owns the token, (I,T) = (1,1). However, if the block is transactional,
xR∨xW, the counter (C) is checked. If C>1 (1 instead of 0 to anticipate the
last abort) the transaction aborts and C is decremented. Conversely, if C≤1, the
core asks for irrevocability and the mandatory queue is recycled2 so that the
event is triggered later on. Should the core manage to get irrevocable, the L1
replacement is performed safely. If irrevocability is not granted, the core stalls
by continuously recycling the message that causes the eviction.

In case of L1 transactional block replacements due to L2 cache evictions (L2
Replace events in Table 1) we have different scenarios. If the core is running an
irrevocable transaction, (I,T) = (1,1), the event is treated as a normal L2 cache
replacement. However, if the irrevocable transaction is of another core, (I,T) =
(1,0), the transaction in this core must be aborted in favour of the irrevocable
one. Thus, the only situation in which a transaction asks for irrevocability on
2 The cache controller comprises queues where coherence messages are buffered until

they are served by the controller [18]. In this case, there are a mandatory queue
that holds the messages from the CPU to the L1 cache, a request queue that holds
request messages from/to the L1 cache and a response queue with response messages
from/to the L1 cache.

256 R. Quislant et al.

an L2 Replace event is when C≤1 and there is no other irrevocable transaction
in the system, (I,T) = (0,-).

The special case in which several transactions ask for the token at the same
time is arbitrated by the controller queue of the core that owns the token. The
owner of the first token request message found in such a queue is the one that gets
the token. The rest of the token request messages are ignored and the requesters
stalled. They will ask for irrevocability again after receiving a message of end of
irrevocability.

4 Simulation Environment

The simulation environment comprises the full system simulator Simics [12], and
the Wisconsin GEMS [14] toolkit that includes Ruby. Ruby is a multiprocessor
memory system timing simulator, which we have modified to simulate the best-
effort HTM system outlined in Sect. 2, and the proposals described in this paper.

The target system is organized as shown in Fig. 1. It comprises 16 in-order
single-issue cores, with a private 32 KB split 4-way L1 cache where the data
cache holds two read and write transactional bits per 64B block. The L2 cache
is unified, shared and divided into 16 banks of 512 KB each. L2’s associativity
is 8-way and it does not hold transactional information. The directory keeps
a full bit-vector of sharers. Each thread is bound to a core, and so it is the
operating system, so that there are not interferences such as migrations and
context changes. Consequently, there is a maximum of 15 threads for the use of
benchmarks.

The whole Stanford STAMP suite [16] was used for the evaluation. Table 2
shows the parameters and characteristics of the benchmarks. Namely, the num-
ber of transactions that successfully commits (# Xact), the percentage of time
running transactions (% Time in Xact), and the average RS/WS (read set/write
set) cardinality of the transactions, in cache blocks.

Table 2. Workloads: Input parameters and transactional characteristics.

Bench Input # Xact % Time in Xact avg|RS| avg|WS|
Bayes -v32 -r1024 -n2 -p20 -i2 -e2 -s1 654 94% 87.64 48.91

Genome -g512 -s32 -n32768 19496 85% 23.34 3.58

Intruder -a10 -l16 -n4096 -s1 54933 92% 9.87 3.06

Kmeans -m15 -n15 -t0.05 -i random-n2048-d16-c16 8235 46% 6.23 1.75

Labyrinth -i random-x32-y32-z3-n96 222 100% 139.34 95.12

SSCA2 -s14 -i1.0 -u1.0 -l9 -p9 93721 13% 3.00 2.00

Vacation -n4 -q60 -u90 -r16384 -t4096 4095 95% 63.20 10.16

Yada -a20 -i633.2 5447 100% 62.45 38.21

Insights into the Fallback Path of Best-Effort Hardware 257

5 Software Fallback Path Evaluation

Figure 3 shows the fallback path code we have evaluated, which includes a vari-
able to specify the number of transaction retries and the Lemming effect3 avoid-
ance code [6,11]. The code defines a thread’s local retry variable that is initialized
to 0 (line 1). The retry limit is defined globally (RETRY LIMIT). We define two
primitives to begin a transaction: (i) TAKE XACT CHECKPOINT takes a register
checkpoint where we want to resume the transaction on abort, but it does not
start transactional bookkeeping; (ii) BEGIN XACT begins transactional bookkeep-
ing. Then, we can have non-transactional code between the two primitives to
check whether we have to take the fallback path or not. The code to begin a
transaction (lines 2–13) first takes a checkpoint and then increments the thread’s
local retry variable. Next, if the number of retries is greater than the retry limit
(line 5), the fallback path is taken by acquiring a single spin lock (line 6). If the
retry limit is not reached, the code executes transactionally and adds the lock
to the read set (line 10). The transaction is explicitly aborted if the lock is taken
(line 11). It should be noted that the thread waits for the lock to be released
just before beginning the transaction to avoid the Lemming effect (line 8). The
code to end a transaction (lines 14–19) checks the number of retries to execute
either a transaction commit or a lock release.

Fig. 3. Fallback code with retry limit and Lemming avoidance. Ticket lock alternative
on the right.

On the right hand side of Fig. 3 we show an alternative implementation of the
fallback path which replaces the single spin lock by a two-variable ticket lock [15].
Each thread takes its own ticket before entering the critical section by atomically
incrementing and reading the global ticket variable (line 6). Then, the thread
waits for his turn by checking it against the global turn variable. The global

3 If one transaction takes the fallback path, the others abort and wait for the fallback
path lock to be released, i.e. a complete serialization of the ongoing transactions is
carried out.

258 R. Quislant et al.

Fig. 4. Speedup over the sequential application for different fallbacks and parameters
(Lemm: lemming effect avoidance, rtrs: number of retries).

turn is atomically incremented to release the lock (line 18). The implementation
of the Lemming effect avoidance loop (line 8) is more accurate with the ticket
lock as the thread waits not only when the lock is taken (lock != 0) but also
when there is a queue of threads waiting to acquire the lock (globalTicket >=
globalTurn).

Figure 4 depicts the speedup results obtained for those STAMP benchmarks
that scale to some extent. The fallback code used is that of Fig. 3, with or
without Lemming avoidance (±Lemm) and with single or ticket lock. The lazy
single lock approach [5] is also shown, which is the same as the single lock without
Lemming avoidance but the lock is checked lazily at the end of transactions.4

The retry limit has been set to 5, which is a frequently used value [10,21]. We
have evaluated 3, 8 and 10 retries as well. An increased number of retries (8
or 10) seems to perform better when the number of threads, and therefore the
contention, is high. For a low number of threads, a low number of retries suffices
(3 retries up to 4 threads).

The results show that the fallback path versions with Lemming effect avoid-
ance always beat the ones without it, due to the reduction in unnecessary seri-
alizations. As far as the type of lock is concerned, the ticket lock reveals itself
as a good option since it reduces lock contention and ensures fairness in lock
acquisition. But more importantly, the ticket lock provides the information of
how many threads are waiting to enter the critical section and therefore, the
Lemming loop waits for them to finish. Conversely, the single lock does not
provide such information. Thus, the threads waiting at the Lemming loop may
begin a transaction while other threads are contending for acquiring the lock.

4 In this manner, multiple transactions are allowed to execute in parallel with the one
in the fallback path, as long as such transactions commit after the lock release and
the fallback code does not conflict with them.

Insights into the Fallback Path of Best-Effort Hardware 259

Those transaction will be aborted by the eventual lock acquisition. This fact
is more probable in those benchmarks that spend a lot of time in transactions
such as Genome, Intruder and Vacation (see Table 2), which take advantage of
the ticket lock Lemming loop enhancement to avoid unnecessary aborts. SSCA2
and Kmeans are most of the time out of transactions and they are not affected
by the type of lock. The lazy single lock yields good results since it encourages
parallelism. However, the performance is worse than the ticket lock with Lem-
ming effect avoidance as the number of threads increases, thus increasing the
contention (e.g. Intruder, Kmeans and Vacation with 15 threads). The fallback
conflicts with the concurrent transactions.

6 Hardware Irrevocability Mechanism Results

Figure 5 shows the speedup of the baseline BE-HTM system with the hardware
irrevocability mechanism (Irre) and the software fallback path (Fback) with
ticket lock and enhanced Lemming effect avoidance. The hardware irrevocability
mechanism counter has been set to 5, as well as the retry counter of the fallback
code. From these results we can classify the STAMP benchmarks in the following
groups.

Fig. 5. Speedup of the hardware irrevocability mechanism (Irre) and the software fall-
back path (Fback) over the sequential application. The geometric mean is also shown
(GeoMean).

260 R. Quislant et al.

Table 3. Average number of irrevocable transactions, broken down into those due
to L1 or L2 replacements, and those due to conflicts. Average number of aborts of
irrevocability and fallback.

Bench # Irrevocable Xacts (L1/L2/Conflicts) Aborts(IRRE/FBACK)

4 th’s 8 th’s 15 th’s 4 th’s 8 th’s 15 th’s

Bayes 135(86/0/49) 148(68/0/80) 179(37/3/139) 653/728 788/1212 1040/1585

Genome 1203(1120/0/83) 1195(1017/0/178) 1679(1358/21/301) 5022/7942 5582/10821 8217/16321

Intruder 1055(22/0/1033) 3794(36/0/3759) 10562(110/1/10450) 11455/10428 35861/39628 77299/96499

Kmeans 400(0/0/400) 970(0/0/970) 1815(0/0/1815) 2193/2074 5425/6537 10296/19185

Labyrint 97(76/0/21) 122(57/0/64) 160(44/0/116) 435/631 617/783 797/931

SSCA2 127(0/0/127) 283(0/0/283) 515(0/0/515) 657/575 1583/2140 3208/5486

Vacation 249(217/0/33) 347(280/0/68) 433(301/0/132) 1272/2924 1773/6221 2357/9874

Yada 1021(702/0/319) 1245(710/0/535) 1557(628/57/872) 4651/9128 5895/12561 7600/13643

Bayes, Labyrinth and Yada. The speedup obtained for these benchmarks is
barely that of the sequential version. And when there is only one thread the
results are even worse than the sequential. The problem with performing worse
than the sequential when we have only one thread running in the system is the
number of retries before getting irrevocable or taking the fallback (set to 5 in
this evaluation). With only one thread there is no abort due to conflicts, so
all aborts are because of capacity overflows, that are usually persistent. This
can be avoided by maintaining different retry counters as stated in Nakaike
et al. [17], where they adapt the number of retries depending on the cause of
abort. Three counters are used: one for aborts due to the fallback lock, a second
for persistent aborts such as capacity aborts, and a third for transient aborts.
In any case, the hardware irrevocability mechanism can implement different
counters as well and it performs slightly better than the fallback path due to the
last abort anticipation.

Although the irrevocable mechanism is better than the fallback one, these
benchmarks do not scale because they exhibit large transactions in average, as
shown by Table 2. In addition, Table 3 shows the number of irrevocable trans-
actions and its cause, and the majority of them are due to L1 replacements.
We can also see how the number of irrevocable transactions increases with the
number of threads because of conflict aborts and capacity overflows due to L2
evictions (the latter primarily in Yada).

Kmeans and SSCA2. These two benchmarks scale well and behave similarly
either by using hardware irrevocability or software fallback. This is due to the
short time spent in transactions that amounts to 46 % for Kmeans and only 13 %
for SSCA2, which reduces contention.

The size of transactions in Kmeans and SSCA2 is also a factor to consider.
Their small transactions make that the fallback path or hardware irrevocability
are barely taken. Actually, Table 3 shows 0 irrevocable transactions due to L1
and L2 replacements. However, contention makes some transactions to abort and
take the fallback or the irrevocability mechanism when we have more threads. For
this configurations we can see a slight benefit of irrevocability over the fallback

Insights into the Fallback Path of Best-Effort Hardware 261

version, or not so slight for Kmeans and 15 threads, because the irrevocability
mechanism stalls the transactions instead of aborting them. Table 3 shows such
an abort reduction that is up to 9000 transactions for Kmeans and 15 threads,
which supposes an abort rate of 1.2 with irrevocability in contrast to the 2.32 of
the fallback path.

Genome, Intruder and Vacation. For this group of benchmarks we obtain
considerable benefits by using the BE-HTM system with hardware irrevoca-
bility over the fallback configuration. They are benchmarks with medium and
small-sized transactions (Genome and Vacation) or that are more contended
(Intruder). These characteristics can be noted in the number of irrevocable trans-
actions that are due to replacements or conflicts in Table 3.

The hardware irrevocability mechanism not only performs better due to the
anticipation of the last abort but also reduces the number of aborts by stalling
non-irrevocable transactions instead of aborting them. Table 3 shows that the
number of transaction aborts for the system with irrevocability is usually lower
than that of its software fallback counterpart. The amount of wasted work is
larger for the fallback path, specially for Genome and Vacation with 15 threads,
where the abort reduction is more than 50 %.

Summarizing, the BE-HTM system with irrevocability speeds up the exe-
cution about 2x with respect to the fallback path counterpart for Genome and
Vacation, and it is around 20 % better for Intruder and Kmeans, for 15 threads.
The rest of the benchmarks yields similar or slightly better speedup by using
irrevocability.

7 Related Work

Irrevocability in the context of HTM was first proposed in TCC [7] to deal with
overflowed transactions. Blundell et al. [3] introduces OneTM-Serialized as a
system where overflowed transactions gets irrevocable and serializes the system
to ensure forward progress. Their implementation comprises a log-based HTM
where the irrevocable transaction can be aborted as old data can be recovered
from the log. They use a shared transaction status word residing in a fixed virtual
location that acts as a mutex lock to implement the irrevocability mechanism.
We implement irrevocability with a token-based mechanism distributed through
the cache controllers, in the context of a best-effort HTM system, comparing its
performance with a software fallback path to gain insight into the hardware that
could enhance the fallback.

IBM Blue Gene/Q HTM [19] ensures forward progress on capacity overflows
and contention scenarios by means of an irrevocable mode. The irrevocability
mechanism is implemented in a runtime system, thus freeing the programmer
from the task of providing a fallback code. The runtime decides if a transaction
gets irrevocable in an adaptive way. However, it has to abort a transaction to run
it in irrevocable mode, whereas our hardware irrevocable mechanism anticipates

262 R. Quislant et al.

the abort and initiates the irrevocable mode without wasting the work done so
far by the transaction.

Afek et al. [2] propose a ticket-lock-based technique to improve the perfor-
mance of Haswell’s hardware lock elision (HLE). It is a different approach to
our use of the ticket lock. In this case, the ticket lock guards the HLE lock
and is acquired by those transactions that abort due to conflicts. Thus, the
conflicting transactions are executed speculatively in turn, in parallel with the
non-conflicting ones. After a given number of aborts, the transaction holding
the ticket lock acquires the HLE lock and aborts all other transactions in the
system. In fact, it is a contention management approach.

8 Conclusions

In this paper we propose a hardware implementation of an irrevocability mech-
anism to gain insight into the hardware enhancements that may speedup the
execution of a fallback path in BE-HTM systems. We find that anticipating the
abort that causes the execution of the fallback path and stalling the other trans-
actions running in the system yields a significant improvement over the abort-all
fallback solution.

On the other hand, we propose an enhanced Lemming effect avoidance loop
by means of a ticket lock. A ticket lock provides precise information of how many
threads are waiting to acquire the lock, so the separation of transactional and
non-transactional execution can be performed more precisely.

We suggest having a hardware accelerated fallback path to retain both hard-
ware benefits and software versatility. However, the possibility of having a hard-
ware alternative to the software fallback path can be interesting for the user due
to its simplicity.

Acknowledgement. This work has been supported by the Government of Spain
under project TIN2013-42253-P and Junta de Andalućıa under project P12-TIC-1470.

References

1. Intel 64 and IA-32 Architectures Optimization Reference Manual. Chapter
12.3:Developing an Intel TSX Enabled Synchronization Library, September 2014

2. Afek, Y., Levy, A., Morrison, A.: Programming with hardware lock elision. ACM
SIGPLAN Not. 48(8), 295–296 (2013)

3. Blundell, C., Devietti, J., Lewis, E.C., Martin, M.M.K.: Making the fast case com-
mon and the uncommon case simple in unbounded transactional memory. In: 34th
Annual International Symposium on Computer Architecture (ISCA 2007), pp. 24–
34 (2007)

4. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust archi-
tectural support for transactional memory in the power architecture. In: 40th
Annual International Symposium on Computer Architecture (ISCA 2013), pp. 225–
236 (2013)

Insights into the Fallback Path of Best-Effort Hardware 263

5. Calciu, I., Shpeisman, T., Pokam, G., Herlihy, M.: Improved single global lock fall-
back for best-effort hardware transactional memory. In: 9th Workshop on Trans-
actional Computing (TRANSACT 2014) (2014)

6. Dice, D., Herlihy, M., Lea, D., Lev, Y., Luchangco, V., Mesard, W., Moir, M.,
Moore, K., Nussbaum, D.: Applications of the adaptive transactional memory
test platform. In: 3rd Workshop on Transactional Computing (TRANSACT 2008)
(2008)

7. Hammond, L., Wong, V., Chen, M., Carlstrom, B., Davis, J., Hertzberg, B.,
Prabhu, M., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory coher-
ence and consistency. In: 31th Annual International Symposium on Computer
Architecture (ISCA 2004). pp. 102–113 (2004)

8. Harris, T., Larus, J., Rajwar, R.: Transactional Memory, 2nd edn. Morgan & Clay-
pool Publishers, San Francisco (2010)

9. Herlihy, M., Moss, J.: Transactional memory: Architectural support for lock-free
data structures. In: 20th Annual International Symposium on Computer Architec-
ture (ISCA 1993), pp. 289–300 (1993)

10. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and imple-
mentation for IBM system Z. In: 45th Annual International Symposium on
Microarchitecture (MICRO 2012), pp. 25–36, December 2012

11. Liu, Y., Spear, M.: Toxic transactions. In: 6th Workshop on Transactional Com-
puting (TRANSACT 2011). ACM (2011)

12. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-
berg, J., Larsson, F., Moestedt, A., Werner, B., Werner, B.: Simics: A full system
simulation platform. IEEE Comput. 35(2), 50–58 (2002)

13. Martin, M.M.K., Blundell, C., Lewis, E.: Subtleties of transactional memory atom-
icity semantics. IEEE Comput. Archit. Lett. 5(2), 17 (2006)

14. Martin, M., Sorin, D., Beckmann, B., Marty, M., Xu, M., Alameldeen, A., Moore,
K., Hill, M., Wood, D.: Multifacet’s general execution-driven multiprocessor simu-
lator GEMS toolset. ACM SIGARCH Comput. Archit. News 33(4), 92–99 (2005)

15. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

16. Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization (IISWC 2008), pp. 35–46 (2008)

17. Nakaike, T., Odaira, R., Gaudet, M., Michael, M.M., Tomari, H.: Quantitative
comparison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12,
Intel Core, and POWER8. In: 42nd Annual International Symposium on Computer
Architecture (ISCA 2015), pp. 144–157 (2015)

18. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence, 1st edn. Morgan & Claypool Publishers, San Rafael (2011)

19. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera, R.,
Michael, M.: Evaluation of Blue Gene/Q hardware support for transactional mem-
ories. In: 21st International Conference on Parallel Architectures and Compilation
Techniques (PACT 2012), pp. 127–136 (2012)

20. Welc, A., Bratin, S., Adl-Tabatabai, A.R.: Irrevocable transactions and their appli-
cations. In: 20th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2008), pp. 285–296, June 2008

21. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of intel trans-
actional synchronization extensions for high-performance computing. In: Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis (SC 2013), pp. 19:1–19:11 (2013)

Portable SIMD Performance
with OpenMP* 4.x Compiler Directives

Florian Wende1(B), Matthias Noack1, Thomas Steinke1, Michael Klemm2,
Chris J. Newburn3, and Georg Zitzlsberger2

1 Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
{wende,noack,steinke}@zib.de

2 Intel Deutschland GmbH, 85579 Neubiberg, Germany
{michael.klemm,georg.zitzlsberger}@intel.com

3 Intel Corporation, Santa Clara, USA
chris.newburn@intel.com

Abstract. Effective vectorization is becoming increasingly important
for high performance and energy efficiency on processors with wide SIMD
units. Compilers often require programmers to identify opportunities
for vectorization, using directives to disprove data dependences. The
OpenMP 4.x SIMD directives strive to provide portability. We investi-
gate the ability of current compilers (GNU, Clang, and Intel) to generate
SIMD code for microbenchmarks that cover common patterns in scien-
tific codes and for two kernels from the VASP and the MOM5/ERGOM
application. We explore coding strategies for improving SIMD perfor-
mance across different compilers and platforms (IntelR© XeonR© proces-

sor and IntelR© Xeon Phi
TM

(co)processor). We compare OpenMP* 4.x
SIMD vectorization with and without vector data types against SIMD
intrinsics and C++ SIMD types. Our experiments show that in many
cases portable performance can be achieved. All microbenchmarks are
available as open source as a reference for programmers and compiler
experts to enhance SIMD code generation.

1 Introduction

On modern CPUs, effective use of SIMD (Single Instruction, Multiple Data) is
essential to approach peak performance. Data parallelism is achieved with a com-
bination of multiple threads and increasingly-wide SIMD units. On the Intel R©

Xeon Phi
TM

(co)processor, for instance, the 8-wide double-precision SIMD units
can provide up to one order of magnitude higher performance per core. Exploit-
ing SIMD for codes with complex control flow, leading to masking and execution
overhead, can be difficult. In some cases, unleashing the full performance poten-
tial of computational loops can require expertise in language interfaces, compiler
features, and microarchitecture.

Thankfully, the community is converging on a vectorization standard, in
OpenMP 4.x, that eases the programming burden. Just as OpenMP has his-
torically provided a way for users to direct execution to be parallelized across
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 264–277, 2016.
DOI: 10.1007/978-3-319-43659-3 20

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 265

threads, it now provides ways to parallelize across SIMD lanes by means of com-
piler directives. The latter are necessary to disambiguate dependences among
loop iterations and communicate vectorization opportunities to the compiler.
Our analysis shows that it can yield effective results.

This paper assesses the SIMD capabilities of the current GNU, Clang, and
Intel compilers and makes the following contributions: (1) We show limitations
of compiler-driven SIMD code generation, and (2) propose coding strategies
both to remedy SIMD vectorization issues and to gain SIMD performance in a
portable way using OpenMP 4.x. (3) We demonstrate the effectiveness of our
SIMD coding strategies for microbenchmarks and two real-world kernels from
the VASP and MOM5/ERGOM application.

2 Related Work

The development of techniques to transform (sequential) loop structures into
parallelized constructs became a major concern with the arrival of vector and
array computer systems in the 1980s. Parafrase [1], KAP [2,3], PFC [4], and
VAST [5] are well-known examples of source code transformation tools at that
time. To our knowledge, most of the work targets the transformation of complex
loop structures into SIMD code, resulting in alternatives to standard compilers.
Our approach, however, is to follow a set of SIMD coding schemes that lever-
age standards and foster portability across compilers. EXPAND [6] is a research
compiler which implements an expansion approach. It targets a whole C func-
tion which is semantically transformed by replacing operators and operands with
their SIMD equivalents. For twelve intrinsic functions of the GNU math library,
speedups range from 2x to 11x on a PowerPC G5. Scout [7] is a configurable
C source-to-source translator that generates code with SIMD intrinsics. Vec-
torization and other optimizations take place at the level of the syntax tree
generated by the Clang parser. After basic optimizations, e. g., function inlining,
the unroll-and-jam technique is applied to vectorize the loop body. For selected
CFD kernels, speedups range from 1.5x to 4x on 8 AVX SIMD lanes (Sandy
Bridge). Unlike EXPAND and Scout, our vectorization strategy, which includes
the expansion step as well, further includes vectorization of nested loops and deep
calling trees, as we demonstrate using the VASP and the MOM5/ERGOM codes.
Furthermore, our strategy applies high-level code transformations to achieve
portability across platforms and applicability across programming languages.
The Whole-Function Vectorization (WFV) algorithm [8] transforms a scalar
function into multiple parallel execution paths using SIMD instructions. WFV
can provide a language- and platform-independent code transformation at the
level of the LLVM IR. In a rendering system, they achieve up to 3.9x speedup
on 4 SIMD lanes.

266 F. Wende et al.

3 SIMD Vectorization

In this section, we show the impact of using different forms of the OpenMP
4.x constructs. Due to the considered architectures and for simplicity, we inter-
changeably use the terms SIMD vector and vector in the following.

3.1 Compiler and Library Support for SIMD Vectorization

No matter how aggressive compilers are at SIMD vectorization, they have fun-
damental theoretical limitations (cf. Rice’s Theorem [9]). Compilers perform
code analysis to disprove loop dependences [10,11], and attempt vectorization
only if code generation for SIMD-capable targets is selected, if aggressive opti-
mization levels are enabled, and if it is safe. We use the following configu-
rations: GNU GCC 5.3 and Clang 3.9 (from SVN repository) compiler: -O3

-ftree-vectorize -ffast-math -mavx2 -mfma; Intel 16.0.3 compiler: -O3

-fp-model fast=2 -xcore-avx2; for the Intel Xeon Phi (coprocessor) -mmic

(Knights Corner, KNC) and -xmic-avx512 (Knights Landing, KNL) is used
instead of -xcore-avx2, respectively. Optimizing math functions like exp and
sqrt is important since they often account for a significant fraction of computa-
tional time. Scalar versions of those functions are typically provided by system
math libraries like libm, and vector versions are commonly available in modern
compilers. They extend their scalar equivalents by using SIMD vectors rather
than scalars. Their semantics are mostly the same, except for error and exception
handling, and accuracy. The availability of such math vector functions depends
on the compiler and underlying architecture. The configurations used in this
paper are: GNU GCC 5.3 with libmvec (GLIBC 2.22) [12], and Intel compiler
16.0.3 with SVML (Short Vector Math Library) [13]. libmvec and SVML con-
tain different sets of vectorized math functions [14,15]. GCC restricts calls into
libmvec to within OpenMP SIMD constructs only, whereas the Intel Compiler
uses SVML for any vectorized code.

3.2 OpenMP 4.x SIMD Directives

If compilers fail in vectorizing loop bodies, programmers need to give additional
information to the compiler, e. g., by means of directives, which we call explicit
vectorization, or by going to the extreme of low-level programming using C
SIMD intrinsics, to override conservatism induced by language standards. If a
loop body contains calls to functions that the compiler cannot directly generate
SIMD code for (like libmvec or SVML), it has to fall back to invoking these
functions once per SIMD lane, and it must pack and unpack data into and out
of SIMD registers. Providing a SIMD-enabled function reduces calling overhead,
increases parallelism, and avoids path length increases, yielding better overall
performance. The OpenMP 4.x specification standardizes directives that are
consistently implemented across different compilers. The simd construct forces
loops to be vectorized, and the declare simd directive creates SIMD-enabled
functions, according to a well-defined ABI [16]. A simple example could be:

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 267

#pragma omp declare simd simdlen(4) uniform(v)
double foo(double x,double v){return v+1.0/sqrt(x);}

void callsite(double∗ x,double∗ y,double v){
#pragma omp simd simdlen(4) aligned(x,y:32)
for(int i=0;i<N;i++)

y[i]=foo(x[i],v);}

The simd construct instructs the compiler to partition the set of iterations of
the loop into chunks of appropriate size so as to match with the SIMD capabili-
ties of the processor. With optional clauses, programmers can specify additional
properties and transformations of the loop code, e. g., privatization and reduc-
tions, that allow loop iterations to be executed independently in SIMD lanes.
In the example, we explicitly define the vector length to be four with clause
simdlen(4), and inform the compiler that both arrays x and y are already
aligned to 32 bytes.

The declare simd directive augments function definitions and function dec-
larations. Functions tagged with the directive are vectorized by promoting the
formal function arguments and the return value (if any) into vector arguments.
This was first introduced with Intel R© Cilk

TM
Plus, known as vector_variant

or vector attribute [17], but unlike OpenMP 4.x, it is not a standard. Program-
mers may override this behavior to retain scalar arguments that are broadcast to
fill a vector with clause uniform, or express loop-carried dependences that have
a linear progression with clause linear. That way, vectorizable loops can invoke
suitable vector versions of functions by passing vector registers as arguments.

Table 1 illustrates the effect of adding optional clauses to an OpenMP
SIMD (SIMD-enabled) function for our “simple” microbenchmark (see Sect. 5.1),
encapsulating the log function. As can be seen, giving the compiler more infor-
mation about the intended usage and properties of the function arguments helps
generate better vectorized code for the function. More information about the
full capabilities of the OpenMP 4.x SIMD feature can be found in [18].

Table 1. Gain over a reference execution of a SIMD function in the “simple”
microbenchmark.

Intel, AVX2 Intel, KNC

Reference 1.00x 1.00x

#pragma omp declare simd .. 1.50x 1.48x

.. simdlen(..) 2.03x 1.48x

.. simdlen(..) linear(..) 3.55x 4.15x

.. simdlen(..) linear(..) aligned(..) 3.95x 4.54x

4 Coding Strategies to Gain SIMD Performance

Our observation when writing code for execution on SIMD units is that compiler
capabilities vary dramatically when codes are not designed with SIMD in mind

268 F. Wende et al.

from the very beginning. It is obvious that programmers need a (portable) SIMD
coding scheme that different compilers can equally understand and generate code
for. In this paper, we focus on SIMD vectorization of functions or subroutines as
these are the most complex and complicated cases in getting performance. Our
premise is that any loop body can be viewed as an inlined call to a function that
contains the loop body:

for(int i=0;i<N;i++) for(int i=0;i<N;i++)
<loop_body> =⇒ loop_body_func(..)

void loop_body_func(..)
<function_body=loop_body>

In the following, our discussion focuses on the OpenMP 4.x declare simd con-
struct introduced in Sect. 3.2, which is simple to use for whole function vector-
ization. But it lacks a mechanism to explicitly switch back to scalar execution
within a SIMD function, e. g., when library calls are present. Furthermore, only
the GNU and Intel compiler currently support it. The latest Clang compiler,
version 3.9, ignores the directive. The next paragraphs describe how to work
around these issues.

(General) SIMD functions: To enhance what is provided by the simd declare

directive, and to potentially enable SIMD functions with the Clang compiler in
a way that also applies to Fortran code, we propose the following high-level code
transformation scheme, given a scalar definition of function foo:

(1) Define vector and mask data types, e. g.,
typedef struct{double x[SIMDLEN_LOGICAL_REAL64];}
vec_real64_t __attribute__((aligned(ALIGNMENT)));

typedef struct{bool x[SIMDLEN_LOGICAL_REAL64];}
mask_real64_t __attribute__((aligned(ALIGNMENT)));

where SIMDLEN_LOGICAL_REAL64 is a multiple of the hardware’s native
SIMD vector length or vector width.

(2) Replace all scalar function arguments by vector arguments for the SIMD
equivalent vfoo and introduce a masking argument m to allow calling vfoo

conditionally, e. g.,
void foo(double& x,double& y);
=⇒ void vfoo(vec_real64_t& x,vec_real64_t& y,mask_real64_t& m);

(3) Within vfoo, vector arguments are processed by extending foo’s function
body with a SIMD loop with the adjusted trip count. Accesses to scalar
arguments in foo are replaced by accessing the components of vfoo’s vector
arguments instead:
void foo(double& x,double& y){y=sqrt(x);}
=⇒ void vfoo(vec_real64_t& x,vec_real64_t& y,mask_real64_t& m){

#pragma omp simd
for(int ii=0;ii<SIMDLEN_LOGICAL_REAL64;ii++)

if(m.x[ii]==true) y.x[ii]=sqrt(x.x[ii]);}

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 269

(4) At the call site, split the SIMD loop candidate into chunks of size
SIMDLEN_LOGI CAL_REAL64 by changing the loop increment accordingly,
and if necessary introduce a prolog and an epilog for vector un-/packing
after/before the call to vfoo, e. g.,
for(int i=0;i<N;i++) for(int i=0;i<N;i+=SIMDLEN_LOGICAL_REAL64){

foo(x[i],y[i]); =⇒ for(int ii=0;ii<SIMDLEN_LOGICAL_REAL64;ii++){
m.x[ii]=false;
if((i+ii)<N){m.x[ii]=true; vx.x[ii]=x[i+ii];}}

vfoo(vx,vy,m);
for(int ii=0;ii<SIMDLEN_LOGICAL_REAL64;ii++)

if(m.x[ii]==true) y[i+ii]=vy.x[ii];}

Splitting SIMD loops that are inside SIMD functions into parts enables mixing
vectorizable parts and unvectorizable serialized parts. The major differences with
explicit vectorization are (1) we use the “standard” omp simd on a for loop
over the vector length, (2) we use vector data types as arguments to a function
created from the loop body to enable nesting, and (3) we use masking to facilitate
conditional execution for branching and early exits. Hereafter, we refer to this
coding scheme as “enhanced explicit vectorization” to emphasize its distinction
to “explicit vectorization” with OpenMP 4.x SIMD functions.

Branching: SIMD execution with divergent control flow happens because of
branches whose predicates evaluate differently across the SIMD lanes. This can
be handled by using masked vector operations, if supported by the vector instruc-
tion set. Masks signal whether each SIMD lane is “active” or “inactive” for a
given execution. Control flow can also be handled with a sequence of consecu-
tive branches, and unmasked operations followed by blend operations. If more
than one branch is taken, the effective speedup due to SIMD execution reduces
with the costs and the number of the branches. Figure 1 illustrates the scalar
and SIMD execution of a loop containing an if-else branch. Throughout itera-
tions 0..3, both the if and the else branch is taken. Assuming they are equally
expensive, the speedup over scalar execution is at most 2x for these iterations.

Fig. 1. Scalar and SIMD vector execution of a loop containing an if-else branch
using 4 SIMD lanes. Lanes for which the vector mask is “inactive” are marked by
crosses.

Depending on the compiler’s strategy for handling conditional code execu-
tion, it can be meaningful to reduce vector masks beforehand to avoid unneces-
sary operations, e. g., “expensive” math calls. If, for instance, a predicate initi-
ating the execution of a code section evaluates to false on all SIMD lanes, the
entire section can be skipped:

270 F. Wende et al.

void vfoo(..,mask_real64_t& m_0){ // void foo(..){
bool true_for_any=false; mask_real64_t m_1=false; //
#pragma omp simd reduction(|:true_for_any) //
for(int ii=0;ii<SIMDLEN_LOGICAL_REAL64;ii++){ //

.. // ..
if(m_0.x[ii] && <pred(ii)>){ // if(<pred>)

true_for_any|=true; m_1.x[ii]=true;}} // <“expensive code section”>
if(true_for_any) // |

#pragma omp simd // |
for(int ii=0;ii<SIMDLEN_LOGICAL_REAL64;ii++) // |

if(m_1.x[ii]) <“expensive code section”> // <−−−−−−−+
..} // ..}

Local copies of frequently-accessed memory references: Loops containing frequent
access to the same memory reference(s) should be transformed such that memory
loads happen just once into SIMD lanes. These local copies then should be used
instead of referencing memory, thereby lowering the number of load operations
and potentially increasing the performance.

Arrays on SIMD lanes (SIMD function context): Local arrays with size [d] in the
scalar code need to be expanded to two-dimensional arrays of size [d][“SIMD
width”] in the SIMD case, where the first dimension is contiguous in main
memory. Unfortunately, the (Intel) compiler does not manage to optimize for
the desired data layout. Currently, the only high-level approach to solve that
issue is manual privatization of the array—Intel specific—or using the enhanced
explicit vectorization scheme:

(a) The compiler does not optimize for the desired data layout: scatter is gen-
erated.
#pragma omp declare simd #pragma omp declare simd
void foo(double& y){ void bar(double x[],int n){

double x[5]; for(int i=0;i<n;i++)
bar(x,5); x[i]=..;}
for(int i=0;i<5;i++)

y+=x[i];}

(b) Using “enhanced explicit vectorization:” it works out of the box.
void vfoo(vec_real64_t& y){ void vbar(vec_real64_t x[],int n){

vec_real64_t x[5]; for(int i=0;i<n;i++)
vbar(x,5); for(int ii=0;ii<SIMD..;ii++)
for(int i=0;i<5;i++) x[i].x[ii]=..;}

for(int ii=0;ii<SIMD..;ii++)
y.x[ii]+=x[i].x[ii];}

Loops on SIMD lanes: Loops within a SIMD context can be challenging to
optimize for an effective execution. If the loop trip count is a constant, each SIMD
lane performs the same number of loop iterations causing no load imbalances
across the lanes. If it is not, and the loop terminates differently from lane to lane,
SIMD utilization might be worse. One solution to that issue is implementing
dynamic SIMD scheduling, where lanes are dynamically assigned outstanding
loop iterations if there are any [19]. However, here, we simply describe how to
manage loops on SIMD lanes with enhanced explicit vectorization (the SIMD
loop is placed inside the while loop):

void foo(..){ void vfoo(..){// called in scalar context
while(<pred>) =⇒ while(continue_loop){// to be initialized appropriately

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 271

<loop_body>..} continue_loop=false;
#pragma omp simd
for(int ii=0;ii<SIMD..;ii++){

<loop_body with vector replacement>
if(<pred(ii)>) continue_loop=true;}..}}

Manual vectorization with SIMD intrinsics and C++ SIMD classes: A very low-
level approach to writing SIMD code is using intrinsic functions. This approach
gives the programmer maximum control and flexibility without having to rely on
the compiler’s vectorization capabilities. On the downside, the code is hard to
write and not portable, as the intrinsics are specific to a certain SIMD extension
(e.g. SSE, AVX, AVX2).

A higher-level approach to manual vectorization is encapsulating intrinsics
in C++ classes and overloaded operators. The main abstraction is a vector type,
e. g., double_v, that offers operators for element-wise operations. Together with
a query-able vector width, this allows for portable SIMD code that is valid within
the C++ language. All conditional coding paths and potential remainder situ-
ations need to be handled through masking, potentially with multiple versions
of a function, or blocks of code, that check for an empty, a full or a mixed mask
to avoid unnecessary operations. This leads to a trade-off between performance
and redundant code. We use Vc [20] for our microbenchmarks, as it provides an
API with masking support and vector math-functions.

Masked math calls: We are aware only of the Intel compiler supporting condi-
tional math function calls through SVML. However, an explicit SVML interface
is missing. Instead unmasked calls need to be followed by a vector blend opera-
tion. For inactive SIMD lanes it is important to input values to these calls that
assure fast convergence without causing floating point exceptions. We observed
significant performance gains, when assigning, e. g., 1.0 to inactive SIMD lanes
before calling exp unconditionally.

Source-to-source code translation: The coding scheme and SIMD optimizations
presented in this section can be simply integrated into a source-to-source trans-
lator. As a proof-of-concept, we built a prototype of such a tool that allows auto-
matic SIMD code generation for our microbenchmarks (Sect. 5.1) using enhanced
explicit vectorization.

5 Microbenchmarks and Real-World Codes

To demonstrate the effectiveness of the proposed SIMD coding schemes, we use
a combination of microbenchmarks and real-world kernels. The performance has
been evaluated for: (1) auto-vectorized reference, (2) explicit vectorization, (3)
enhanced explicit vectorization, (4) SIMD intrinsics, and (5) Vc (C++ SIMD
class) library.

5.1 Microbenchmarks

Our microbenchmarks are minimal, directed tests that represent common pat-
terns in real-world codes: (a) simple math function call, (b) conditional math

272 F. Wende et al.

function call, (c) conditional return, (d) nested branching with math func-
tion calls inside the branches, and (e) loop on SIMD lanes with varying trip
count. Besides the reference implementations, we provide versions using OpenMP
4.x SIMD functions, the enhanced explicit vectorization scheme, SIMD intrin-
sics, and C++ SIMD class vectorization. Additionally, our implementations use
OpenMP threading to run multiple instances of the benchmark concurrently. All
versions can be found online [21].

Benchmarking setup: All microbenchmarks have been executed on an Intel Xeon
E5-2680v3 CPU (Haswell),1 an Intel Xeon Phi 7120P (KNC) coprocessor, and
an Intel Xeon Phi 7210 (KNL) processor.

a) simple(x1,x2,y){
y=<mathcall(x1+x2)>;}

b) conditional_math\
_call(x1,x2,y){
if(<pred(x1,x2)>)

y=<mathcall(x1+x2)>;
else

y=1.0;}

c) conditional\
_return(x1,x2,y){
if(<pred(x1,x2)>)

return;
y=<mathcall(x1+x2)>;}

d) nested\
_branching(x1,x2,y){
if(<pred_1(x1,x2)>){

if(<pred_2(x1,x2)>)
y=<mathcall_1(x1)>;

else
y=<mathcall_1(x2)>;

}else{
if(<pred_2(x1,x2)>)

y=<mathcall_2(x1)>;
else

y=<mathcall_2(x2)>;
}}

e) while_loop(x1,x2,y){
y=0.0;
while(y<YMAX)

y+=<mathcall(x1,x2)>;
}

For all benchmarks we use arrays of 8192 double-
precision random numbers chosen uniformly over
[−1.0,+1.0]—in all cases we use exactly the same
random numbers. With x1, x2, and y as input and
output for the kernels, respectively, this results in
192 KiB data per kernel instance, which on both
CPU and KNC/KNL fits into the per-core data
cache. That allows us to focus on core perfor-
mance, rather than diluting vectorization effective-
ness results with caching effects. All kernels are
called conditionally to reflect a realistic calling
context as found in applications, which prevents
compiler optimizations on fully occupied masks.
The number of OpenMP threads, and hence kernel
instances, used for benchmarking has been chosen
to use all cores in the package: 12 on Haswell, 120
on KNC (due to 2-cycle decode), and 64 on KNL.
Each benchmark setup has been executed 10 times
for statistics, where the first 4 runs were skipped
(warmup). For all runs, we found the maximum
absolute relative error across all array elements to
be less than 10−14 off compared to the scalar ref-
erence, showing the correctness of our implementa-
tions. Execution times for all five microbenchmarks
calling exp within their function bodies are illus-
trated in Fig. 2. We only show results for selected
runs, where simdlen=x with x=8 on Haswell and
x=16 in KNC and KNL, respectively. All benchmark
results is available online.
On the Haswell platform, explicit vectorization gives acceptable performance
only with the Intel compiler. GNU achieves only little success and none for Clang.
Clang works only with the C++ SIMD classes and has no equivalent of libmvec
or SVML, while Vc implements its own SIMD math functions. Using enhanced
1 For CPU benchmarks, the core clock frequency has been set to 1.9 GHz (AVX base

frequency) to avoid comparing vector runs against scalar runs with overclocked cores.

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 273

explicit vectorization, the performance gets close to SIMD intrinsics with both
the Intel and GNU compiler. In some cases it is superior to intrinsics. Even
though Clang benefits from enhanced explicit vectorization, it cannot compete
with GNU and Intel. On KNC, enhanced explicit vectorization is on a par with
explicit vectorization and SIMD intrinsics. On KNL, it ranges between the two.

Except for the while loop kernel, SIMD execution gives speedups between 2x
and 4x on Haswell, and up to 2.5x on KNC and KNL. It is somehow surprising
that the effect of vectorization is more visible on Haswell than on KNC and KNL.
We found that using simdlen=8 on Haswell results in a major performance gain
over using simdlen=4, as is the native SIMD width on that platform when 64-bit
words are processed. On KNC/KNL, however, going from simdlen=8 to 16 gives
only a slight performance increase. For the while loop kernel the performance
gain due to SIMD execution is notable on Haswell only when enhanced explicit
vectorization is used together with the Intel compiler, on KNC in all cases except
Vc, and on KNL only with intrinsics.

We further found that while Intel successfully vectorized all kernels, it is not
able to vectorize through the Vc’s C++ SIMD class abstraction layers. With the
GNU and Clang compiler, we did not observe this behavior, but found Vc be a
bit slower than manual vectorization with intrinsics.

5.2 Real-World Codes

In this subsection, we demonstrate the effectiveness of the enhanced explicit
vectorization scheme when used within two real-world applications, VASP and
MOM5/ERGOM. Both of these are Fortran codes, where SIMD can only be
introduced via high-level programming—SIMD intrinsics and C++ SIMD classes
are not directly accessible. Moreover, the community tends to avoid mixing For-
tran and C/C++.

VASP 5 [22,23] is a well-known program for atomic scale materials model-
ing, e. g., electronic structure calculations and quantum-mechanical molecular
dynamics from first principles. One of the computational hotspots is the calcu-
lation of electronic properties on a grid by means of a hybrid DFT functional.
SIMD vectorization over the grid points includes a calling tree with subroutines
which themselves contain a combination of nested branching together with con-
ditional function calls and loops with low trip counts. Vectorization of the grid
loop hence means vectorization along the calling tree, which requires the SIMD
function feature. The integration of enhanced explicit vectorization mainly con-
sisted of a simple scalar-vector replacement of variables that serve as input and
output parameters of the relevant functions. Loops within these functions have
been annotated with the novector directive, to deactivate compiler vectoriza-
tion as the execution already happens in the SIMD context. Local arrays within
the function bodies have been expanded to two-dimensional arrays as described
in Sect. 5.1. As a result of these adaptions, we have the SIMD vector code at
hand, which is beneficial for code debugging—this is not the case with explicit
vectorization. In fact, we used the enhanced explicit vectorization code to trace

274 F. Wende et al.

Fig. 2. Runtimes of the five microbenchmarks for different SIMD coding strategies
using the GNU, Clang, and Intel compiler on Haswell, and Intel Xeon Phi KNC and
KNL. The per-thread work-load is the same for each architecture. Vc on KNL uses
AVX2, as AVX512 is not implemented yet.

(and eventually fix) faulty program outputs of the initial code base with explicit
vectorization to an incorrect expansion of local array definitions.

MOM [24] (Modular Ocean Model) is a program to perform numerical ocean
simulations that is utilized for research and operations from the coasts to the
globe. With ERGOM (Ecological Regional Ocean Model), MOM is extended by
a bio-geochemical model that incorporates the nitrogen and phosphorus cycle.
Within the ERGOM module, this cycle is modeled by numerical integration of a
rate equation using an Euler integrator. The latter is at the core of a loop over
grid points (hotspot), and happens to converge differently from one grid point

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 275

to another, potentially causing imbalances among the SIMD lanes. Vectorization
of the Euler integration scheme means to vectorize along a “while loop” which
is inside the SIMD loop over grid points.

Unlike the microbenchmarks, VASP and MOM5/ERGOM kernels are much
more complex and exhibit a combination of the different patterns described in
this paper. For VASP, we found that performance with explicit vectorization
using the OpenMP 4.x SIMD declare construct was inhibited by local array
definitions within any of the core routines along the calling tree. We achieved
better performance with the enhanced explicit vectorization scheme already in
the first instance. For MOM5/ERGOM we achieved success with the enhanced
explicit vectorization scheme only. With explicit vectorization we observed faulty
simulation outputs. Due to the complexity of the hotspot code section—several
hundreds of lines of code within the SIMD context—we were not able to figure
out the origin of the faulty outputs.

Performance gains for the hotspot sections (not program performance gain) in
VASP and MOM5 are summarized in Table 2. The values show that the enhanced
explicit vectorization scheme is an effective high-level approach to gaining SIMD
performance.

Table 2. Performance gain in VASP 5 and MOM5/ERGOM within hotspot sections.

Reference Explicit Enhanced explicit Intrinsics

VASP 5 (Intel 15.0.3, AVX2) 1.0x 1.6x 2.0x 1.9x

VASP 5 (Intel 15.0.3, KNC) 1.0x 1.5x 4.7x 5.7x

MOM5/ERGOM (Intel 15.0.3, AVX2) 1.0x faulty 1.5x N/A

6 Summary

We investigated the vectorization capabilities of current compilers that support
OpenMP 4.x: GNU, Clang, and Intel. We focused on SIMD functions, because
called library functions that are not inlinable are common and they account for
a significant fraction of execution time. For a set of microbenchmarks imple-
menting code patterns usually present in scientific codes, we found that only the
Intel compiler is able to generate effective vector versions of scalar function defi-
nitions, even in case of irregularities within the calling context and the functions
themselves, e. g., branching or loops with dynamic trip counts. As an alternative
to OpenMP 4.x SIMD functions, we propose a vector coding scheme, “enhanced
explicit vectorization,” that relies on explicit vector data types together with
OpenMP 4.x SIMD loop vectorization to process the vectors. Using this coding
scheme, both the GNU and the Intel compiler can close up to or even exceed the
performance with manual vector coding using SIMD intrinsics or C++ SIMD
classes like Vc. Also the Clang compiler benefits from enhanced explicit vector-
ization, since it lacks the OpenMP SIMD function feature, but stays behind GNU

276 F. Wende et al.

and Intel, because of missing vector math functions. We showed the effective-
ness of our approach for the microbenchmarks, and its portability across com-
pilers. We also showed benchmarking results for two real-world codes, VASP
and MOM5/ERGOM, where we successfully integrated the enhanced explicit
vectorization scheme. We think that despite various findings and issues which
occurred during our analysis, OpenMP 4.x provides a sound base for compiler
and language independent SIMD vectorization. Combining it with our enhanced
explicit vectorization scheme allows more control over compiler vectorization.
We expect future compiler versions to improve support of OpenMP 4.x further.

Acknowledgments. This work is supported by Intel within the IPCC activities at
ZIB, and partially supported by the project SECOS—“The Service of Sediments in
German Coastal Seas” (Subproject 3.2, grant BMBF 03F0666D). We would like to
acknowledge G. Kresse and M. Marsman for collaboration on VASP tuning. (Intel,
Xeon and Xeon Phi are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries. * Other brands and names are
the property of their respective owners. Performance tests are measured using specific
computer systems, components, software, operations, and functions. Any change to any
of those factors may cause the results to vary. Intel’s compilers may or may not opti-
mize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, func-
tionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Ref-
erence Guides for more information regarding the specific instruction sets covered by
this notice.).

References

1. Kuck, D., Kuhn, R., Leasure, B., Wolfe, M.: The structure of an advanced retar-
getable vectorizer. In: Tutorial on Supercomputers: Designs and Applications, pp.
163–178. IEEE Press, New York (1984)

2. Davies, I., Huson, C., Macke, T., Leasure, B., Wolfe, M.: The KAP/S-1: an
advanced source-to-source vectorizer for the S-l Mark IIa supercomputer. In: Pro-
ceedings of the 1986 International Conference on Parallel Processing, pp. 833–835.
IEEE Press, New York (1986)

3. Davies, I., Huson, C., Macke, T., Leasure, B., Wolfe, M.: The KAP/205: an
advanced source-to-source vectorizer for the Cyber 205 supercomputer. In: Pro-
ceedings of the 1986 International Conference on Parallel Processing, pp. 827–832.
IEEE Press, New York (1986)

4. Allen, J., Kennedy, K.: PFC: A program to convert Fortran to parallel form. Report
MASC-TR82-6, Rice Univ. Houston, Texas, March 1982

5. Brode, B.: Precompilation of Fortran programs to facilitate array processing. Com-
puter 14(9), 46–51 (1981)

6. Shin, J.: SIMD Programming by Expansion. Technical report, Mathematics and
Computer Science Division, Argonne National Laboratory Argonne, IL 60439 USA
(2007). http://www.mcs.anl.gov/papers/P1425.pdf

http://www.mcs.anl.gov/papers/P1425.pdf

Portable SIMD Performance with OpenMP* 4.x Compiler Directives 277

7. Krzikalla, O., Feldhoff, K., Müller-Pfefferkorn, R., Nagel, W.E.: Scout: a source-
to-source transformator for SIMD-Optimizations. In: Alexander, M., et al. (eds.)
Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 137–145. Springer, Heidelberg (2012)

8. Karrenberg, R., Hack, S.: Whole function vectorization. In: International Sympo-
sium on Code Generation and Optimization. CGO (2011)

9. Rice, H.: Classes of recursively enumerable sets and their decision problems. Trans.
Am. Math. Soc. 74, 358–366 (1953)

10. Bacon, D., Graham, S., Sharp, O.: Compiler transformations for high-performance
computing. ACM Comput. Surv. 26(4), 345–420 (1994)

11. Wolfe, M.: High-Performance Compilers for Parallel Computing. Pearson, Red-
wood City (1995)

12. Senkevich, A.: Libmvec (2015). https://sourceware.org/glibc/wiki/libmvec
13. Intel: Intrinsics for Short Vector Math Library Operations (2015). https://software.

intel.com/en-us/node/583200
14. O’Donell, C.: The GNU C Library version 2.22 is now available (2015). https://

www.sourceware.org/ml/libc-alpha/2015-08/msg00609.html
15. Intel: Vectorization and Loops (2015). https://software.intel.com/en-us/node/

581412
16. Intel(R) Mobile Computing and Compilers: Vector Function Application Binary

Interface, Version 0.9.5 (2013). https://www.cilkplus.org/sites/default/files/open
specifications

17. Intel: Intel Cilk Plus Language Extension Specification (2013). https://www.
cilkplus.org/sites/default/files/open specifications/Intel Cilk plus lang spec 1.2.
htm

18. OpenMP Architecture Review Board: OpenMP Application Program Interface,
Version 4.5 (2015). http://www.openmp.org/

19. Krzikalla, O., Wende, F., Höhnerbach, M.: Dynamic SIMD vector lane scheduling.
In: Proceedings of the ISC 2016 IXPUG Workshop. LNCS. Springer (2016). www.
ixpug.org

20. Kretz, M., Lindenstruth, V.: Vc: a C++ library for explicit vectorization. Softw.
Pract. Exper. 42(11), 1409–1430 (2012)

21. This paper: Code samples hosted on https://github.com/flwende/simd
benchmarks

22. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

23. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

24. Griffies, S.M.: Elements of the Modular Ocean Model (MOM). NOAA Geophysical
Fluid Dynamics Laboratory, Princeton, USA (2012)

https://sourceware.org/glibc/wiki/libmvec
https://software.intel.com/en-us/node/583200
https://software.intel.com/en-us/node/583200
https://www.sourceware.org/ml/libc-alpha/2015-08/msg00609.html
https://www.sourceware.org/ml/libc-alpha/2015-08/msg00609.html
https://software.intel.com/en-us/node/581412
https://software.intel.com/en-us/node/581412
https://www.cilkplus.org/sites/default/files/open_specifications
https://www.cilkplus.org/sites/default/files/open_specifications
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
http://www.openmp.org/
www.ixpug.org
www.ixpug.org
https://github.com/flwende/simd_benchmarks
https://github.com/flwende/simd_benchmarks

Parallel and Distributed Data
Management and Analytics

Lightweight Multi-language Bindings
for Apache Spark

Luca Salucci1(B), Daniele Bonetta2, and Walter Binder1

1 Faculty of Informatics, Università della Svizzera italiana (USI),
Lugano, Switzerland

{Luca.Salucci,Walter.Binder}@usi.ch
2 Oracle Labs, VM Research Group, Lugano, Switzerland

daniele.bonetta@oracle.com

Abstract. Apache Spark has emerged as one of the most promi-
nent frameworks for distributed high-performance data analysis. Among
Spark’s most appealing features are its bindings for dynamic languages
such as Python and R. Despite of the great flexibility of such languages,
they often cannot match the performance of statically typed languages
such as Java or Scala. However, this limitation is not only due to the
intrinsic nature of dynamically typed languages. Largely, the perfor-
mance gap is caused by the way the language runtimes interact with
Spark. In this paper we describe a new approach to integrating Python
and R into data-intensive Spark applications. Our approach significantly
reduces the performance gap between such languages and their statically
typed counterpart, making dynamic languages an attractive alternative
for the implementation of big-data applications.

1 Introduction

In the context of big-data frameworks [22], Apache Spark [3] has emerged as
one of the most popular solutions for writing complex data-analytics applica-
tions. The reasons for this success are manifold, spanning from Spark’s conve-
nient high-level programming model, to its rich plugins ecosystem and its very
active developer community. Arguably, one of the key aspects of such success
is the extensive support for several different analytics techniques and domains:
started as a research project targeting data-intensive applications in a distrib-
uted cluster [29], Spark has rapidly evolved and is now supporting also other,
more complex application domains such as graph analytics [27], stream-based
computations [30], and machine learning [24]. Spark is entirely written in Scala
and runs on the Java Virtual Machine (JVM). Hence, Spark also considers Java
as a first class citizen, and allows developers to write applications in Java, too.
Scala and Java, however, are not popular languages in many of the scientific com-
munities targeted by Spark. For this reason, Spark also offers support for other
languages, providing native built-in support for Python (i.e., PySpark [12]), and
recently also for R (i.e., SparkR [13]). Both languages are very popular among
data scientists, as they provide extensive support and abstractions for specifying
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 281–292, 2016.
DOI: 10.1007/978-3-319-43659-3 21

282 L. Salucci et al.

complex data analyses. Python and R are often considered complemental to each
other, as they offer extensive support for closely related domains, namely, sta-
tistical computing (using R) and numerical computing (using Python with pop-
ular libraries such as NumPy [10]). Hence, both languages are often combined
together to develop complex analyses. The support of high-level, dynamically
typed languages (such as Python or R) in Spark, however, comes at the expense
of performance. The reasons for this performance difference are twofold. Firstly,
dynamically typed languages are inherently slower than statically typed ones.
Despite of the progress in dynamic compilation techniques [18,26], languages
such as Python still cannot match the performance of Java due to the intrin-
sic nature of their semantics, which requires the language runtime to perform
additional checks for common operations such as function calls and property
lookups. Secondly, the runtimes of such languages are not executed within the
JVM process of the Spark runtime. If a dynamically typed language is used
to express an analysis, several independent language runtimes need to be exe-
cuted in separate processes, imposing significant additional runtime overheads.
In particular, the language runtime driving the analysis (i.e., the JVM) has to
exchange data between processes executing another language runtime (e.g., the
Python engine). Exchanging data between processes is expensive, as it intro-
duces marshalling, unmarshalling, and communication overheads, and because
it prevents the just-in-time (JIT) compiler from optimizing the framework code
and the data-analysis code together. Moreover, the overhead imposed by mix-
ing multiple language runtimes grows significantly when developers need to use
more than one dynamically typed language in their analyses. For example, since
Spark does not provide any support for integrating Python with R within the
same Spark application, developers need to come up with custom, ad-hoc integra-
tion solutions. Typically, such solutions are based on very inefficient integration
techniques such as file-based data exchange (using HDFS [9]) between language
runtimes. The need to implement such custom integration solutions also imposes
a significant loss of developer productivity and may severely limit the benefits
that could be gained by combining multiple languages in a data analysis.

In this paper we show how the overheads of integrating multiple dynamic lan-
guage runtimes with Spark can be drastically reduced by hosting them within
the same JVM process. In this way, both the dynamic language runtimes (e.g.,
Python, R) and the Spark runtime execute in the same JVM, taking advantage
from the shared memory of the underlying multicore machine. Our approach is
based on a modified version of Spark called TruffleSpark, which supports any lan-
guage implemented with the Truffle [25] framework; in particular, in this paper
we are using the Truffle implementations of Python (ZipPy [14]) and R (FastR
[5]). Our approach not only reduces the performance gap between dynamically
typed and statically typed languages in Spark, but also allows for an efficient
integration of multiple dynamically typed language runtimes in the same JVM
process, enabling an efficient execution of multi-language Spark analyses. Thus,
we offer Spark programmers the possibility to directly combine functions written
in different languages within the same Spark application without sacrificing per-

Lightweight Multi-language Bindings for Apache Spark 283

formance. This paper makes the following contributions to the state-of-the-art
in the field of data analytics:

* We present TruffleSpark and show how Truffle-based languages can be effi-
ciently integrated into Spark. TruffleSpark is based on an earlier research
prototype discussed in [15], which we extend to support multiple languages
in the same Spark application.

* Thanks to TruffleSpark, we enable multi-language support for Spark, allowing
the implementation of data analyses in multiple (statically and dynamically
typed) languages. TruffleSpark operates on spark’s RDD data types, enabling
low-overhead access to RDDs from dynamic languages.

* We evaluate TruffleSpark comparing it against the original Spark framework.
On the considered benchmarks TruffleSpark always outperforms the Spark
bindings for Python (i.e., PySpark), and has performance close to the ones
of equivalent analyses written in a statically typed language (i.e., Scala).

2 Background

Our approach is based on a modified version of the Spark runtime that supports
the execution of all the languages developed using the Truffle framework. In this
section we provide an overview of Spark and Truffle.

2.1 Apache Spark

Apache Spark [3] is a general-purpose framework for large-scale data processing
running on the JVM. One of the main programming abstractions in Spark are
Resilient Distributed Datasets (RDDs), a fault-tolerant collection of homoge-
neous data which can be operated on in parallel. Informally, Spark applications
based on RDDs consist of subsequent modifications to such data structures. Mod-
ifications can operate either on existing RDDs (e.g., by applying an operator to
all elements of an RDD), or on newly created ones. Spark supports the creation
of RDDs using multiple data formats, e.g., from a file in an external storage sys-
tem such as a shared filesystem, HDFS, HBase, or any data source supporting
the Hadoop input format. Applications that rely on the RDD abstraction can be
developed using both statically typed languages (e.g., Scala) and dynamically
typed ones. In the rest of this paper, we will focus on applications using RDDs
from dynamic languages such as Python.

At runtime, Spark executes as a set of JVM processes deployed on a clus-
ter in a master-slave fashion: one driver program orchestrates the computation
from the cluster’s master node, while other worker processes are responsible
for performing the actual distributed computation (i.e., one per cluster node).
Upon each Spark’s job submission, every worker spawns an executor process,
which executes the tasks submitted to by the master using a thread pool. Once
the executor is started, it communicates directly with the driver program, so
that worker processes are not effectively involved in the computation. Spark can

284 L. Salucci et al.

be deployed using a distributed and a standalone mode. While in the distrib-
uted deployment the driver, workers, and executors are running in distinct JVM
processes, in the local standalone deployment they run as threads within a sin-
gle JVM process. In both configurations, there is always one JVM per cluster
node that is responsible for executing all the analyses that have been submitted.
Therefore – when running with statically typed languages –, the interactions
between the parallel threads running an analysis can happen very efficiently
within the same JVM process. This is not the case with dynamically typed
languages, as we will discuss in the next section.

2.2 Spark Bindings for Dynamically Typed Languages

Spark features language bindings for Python and R, namely PySpark [12] and
SparkR [13]. Both languages are supported via an ad hoc runtime (internal to
Spark, but different than the one used when executing Scala or Java applica-
tions) which has the role of orchestrating the interaction between the Spark
runtime and the external language runtimes. Such an ad hoc runtime mimics
the original JVM-based runtime, adopting the same driver-worker architecture,
with the notable difference that executors do not use a thread-pool to accom-
plish their tasks, but instead, additionally spawn external Python processes. As a
consequence of this runtime architecture, a Python-based analysis in Spark may
require the execution of hundreds of independent processes, each one running
a dedicated Python runtime, communicating via inter-process communication
channels (e.g., using OS sockets). Such runtime architecture can sometimes be
inefficient, as the serialization, transmission and reconstruction of objects that
take place in the current system are unnecessary and avoidable, as the entities
involved run on the same shared-memory machine. Although such socket-based
communications may be optimized by the OS and be highly-efficient, they still
incur a cost which is considerably higher than the one of simply sharing an object
reference among threads sharing a common memory space. On the contrary, an
equivalent analysis using Java or Scala involves in the computation only a single
JVM process per cluster node, and can benefit from efficient in-memory com-
munication between JVM threads. More precisely, in the case of the standalone
deployment, ZipPy/Spark uses a single JVM process, while PySpark uses one
JVM process, plus N Python processes (where N is the number of available
cores). In the distributed deployment case, ZipPy/Spark uses one JVM process
per cluster node, for a total of M JVM processes (with M being the number
of nodes in the cluster). PySpark running in a cluster still requires to spawn
one JVM per cluster node, and additionally requires N Python processes per
node (resulting in M JVM processes plus M ∗ N Python processes deployed
across the cluster). The Spark terminology lacks a term to refer to the threads
in the executor’s pool and to the Python (respectively, R) processes spawned
by PySpark (respectively, SparkR). These two entities fulfill the same role in
their runtimes, and we will call them task runners. Task runners are threads in
the Spark runtime, whereas they are Python (respectively, R) processes in the
PySpark (respectively, SparkR) runtime.

Lightweight Multi-language Bindings for Apache Spark 285

2.3 GraalVM and Truffle

Our modified version of Spark relies on Truffle and on the GraalVM runtime.
Graal [7] is a state-of-the-art JIT compiler for the JVM, written in Java and
focused on performance and language interoperability. Graal implements several
optimizations such as method inlining, eliding object allocations, and speculative
execution, and can apply them to dynamically typed languages developed with
the Truffle [25] language development framework. The GraalVM comes with
support for multiple Truffle-enabled languages:

* Graal.js: a JavaScript runtime supporting Node.js applications
* FastR: a fast JIT compiler-enabled R language runtime
* RubyTruffle: a Ruby language runtime
* ZypPy: a Python language runtime

Truffle is a language implementation framework that relies on the notion of self-
optimizing Abstract Syntax Tree (AST) interpreters [25]. A Truffle language is
defined in terms of AST nodes corresponding to the constructs available in the
language. A notable characteristic of such nodes is that they use the information
gathered during their execution to specialize (i.e., to rewrite themselves) for the
types observed at runtime. In this way, when running with GraalVM, a Truffle
AST can be compiled to efficient machine code via partial evaluation [25].

3 TruffleSpark

TruffleSpark is our modified version of Spark that supports Truffle-based lan-
guages. In this section we provide an overview of its architecture and of its
main components, that is, guest function wrappers and the mechanism for data-
type conversions between different language runtimes. TruffleSpark enables the
lightweight embedding of dynamically typed guest languages (e.g., Python) in
applications developed using the Spark standard API (based on Scala or Java).
TruffleSpark extends Spark with the following two main capabilities:

* New Python and R RDD Bindings. The two dynamic languages are inte-
grated in the Spark runtime at the level of the JVM, that is, without requiring
the integration of external language runtimes. As a consequence, TruffleSpark
does not need to execute Python or R code in independent processes, and
can execute the entire analysis in the same JVM process. This brings notable
advantages (in terms of performance), as the overhead due to inter-process
communication is substantially reduced. Moreover, this enables the JVM to
perform optimizations (e.g., JIT compilation) of Python code together with
the Spark runtime code. Finally, this approach has notable advantages in
terms of resource utilization, as Java threads are used instead of more heavy-
weight processes.

* Language Interoperability. Since the Truffle framework and the GraalVM
support several languages, our integration allows one to combine multiple

286 L. Salucci et al.

of them in Spark in the same application, allowing developers to share the
infrastructure code and classes necessary to execute analyses that combine
multiple language runtimes.

The embedding of guest language functions in the runtime is achieved by
means of function wrappers (called also wrappers in the shorthand form); these
wrappers provide the functionality for parsing and compiling the Python or R
functions (by interacting with the GraalVM), as well as for invoking them once
parsed. Since wrappers are Java objects, they can be optimized together with the
Spark runtime and the function they wrap by the JVM’s JIT compiler. Being
able to execute Python or R code is a necessary but not sufficient condition
for integrating foreign languages in Spark. As the dynamically typed language
runtime is hosted on the same JVM where Spark runs, it is possible to directly
exchange object references between it and the Spark runtime. Exchanged objects,
however, have different data type representations and APIs (e.g., when accessed
from Python or Java). To support operating on data types belonging to different
language runtimes, we provide object adapters (called also adapters) for each of
such objects. In this way, data structures that offer the API enforced by the host
language (i.e., Scala or Java) are backed by the original guest object (e.g., in
Python). The same approach is used also for objects that are passed from Spark
to the dynamic language runtime, with different adapters enclosing a Java object
while offering the API expected from, e.g., a Python object. This approach avoids
deep copying of the objects exchanged between language runtimes, and greatly
reduces overhead.

An example TruffleSpark application combining multiple Truffle languages is
depicted in Fig. 1. The application corresponds to a typical word-count bench-
mark, expressed by combining Java, Python, and R. In the example, each lan-
guage is used to express a different part of the computation. Java is used to
specify how the RDDs are created, and what operations have to be applied to
them (e.g., flatMap). Python and R are used to express the functional part of the
analysis, that is, to split the input and to count words. Like with normal Spark
applications, it is the responsibility of the programmer to choose the proper
interface for the RDD data types involved in the analysis (e.g., JavaPairRDD
of strings). Different than plain Spark, expressions in such languages can be
directly embedded in the analysis code. To this end, we provide bindings for
Truffle-based languages using a function wrapper (e.g., PyFunction in Fig. 1).
Such wrappers enable the execution of the guest language (e.g., Python) in the
same JVM process running Spark, as they implement the methods used inter-
nally to construct, serialize, restore, and invoke the guest language function.

3.1 TruffleSpark Implementation

The TruffleSpark framework builds upon the Sparks’ Java RDD API, which
has been extended to support dynamically typed languages. The two main ele-
ments that compose our TruffleSpark framework are guest language wrappers
and the object adapters used to perform data-type conversion between the guest
languages (i.e., Python and R), and the host language (i.e., Java).

Lightweight Multi-language Bindings for Apache Spark 287

Fig. 1. An example word-count computation expressed in TruffleSpark, combining
Python, R, and Java code.

Guest Language Function Wrappers. The TruffleSpark runtime is composed of
multiple AST interpreters and a single JIT compiler (i.e., Graal [7]), shared
among all language runtimes. Each thread in the Spark runtime holds a thread-
local instance of a dynamically typed language parser, to avoid data races at the
language runtime level. During parsing, an AST for the code provided as input
is produced. The AST is implemented as a Java class, and can be used directly
from Java by invoking its methods and the API it provides. As described in
Sect. 2, when the type for the nodes in the AST stabilizes, the compilation of
the AST to machine code is triggered by the Graal compiler, which is shared
between threads. The guest language functions are hosted and embedded in Java
by means of function wrappers that provide the runtime support in order to exe-
cute the computation expressed in a dynamically typed language. By embedding
we mean that at runtime they resemble standard Java methods, and are therefore
optimized by the JVM together with the Spark runtime. Wrappers also imple-
ment the parsing and interpretation of guest language functions. This is achieved
by interacting with the GraalVM parser and compiler in the background.

Guest-to-host Datatype Conversions. Enabling the execution of guest language
code is not sufficient for completing the integration of the different runtimes.
The integration of guest languages in TruffleSpark does not require the expen-
sive serialization and reconstruction of objects: objects can be passed from one
language to the other freely, since they operate in the same address space. This
helps avoiding the transmissions of objects over OS pipes, or other means of IPC,
among processes running on the same shared-memory machine. Despite being
available and accessible by the other language runtime, such objects cannot be
used as they are out of their native context. It is necessary to make possible for
the foreign language (e.g., Python) to operate on objects generated by another
runtime (e.g., R). This has been achieved with a solution that involves object
adapters for the foreign language objects, which can consequently be used in
the host runtime as if it was a native object. This solution avoids deep copying
of the object to its closest equivalent in the target language. In this way, the
adapters offer the expected API to the hosting runtime while being backed by

288 L. Salucci et al.

the original object. Thus, with respect to the original system which involves the
serialization of the data, we only pay for the allocation of an adapter.

Function Wrappers and Guest Object Serializability. In order to be executable by
the Spark runtime, wrappers need to be serializable, as it is necessary, together
with the input data, to transmit the code to the Spark workers. To meet this
requirement we made the AST stored in a function wrapper transient, accord-
ing to the Java terminology (which causes the field and the object contained in it,
to be omitted in the serialization process). We transmit only the code of the func-
tion over the network. Once restored on the remote node, the remote instance of
the GraalVM will translate the code into its AST equivalent and store it back in
the newly constructed wrapper, thus restoring the original object. Moreover in
Spark, whenever a type is returned as the output of an RDD transformation and
has to be stored in the dataset, it is required to be serializable. As in the case of
the guest functions, the guest objects passed among the different stages of the
computation, could eventually be transmitted over the network if the framework
runs in a distributed deployment. To this end, we modified some of the guest
language types implementations (e.g., R tuples and lists or vectors, which are
frequently used as intermediate objects between stages of the computation), to
make them serializable.

4 Evaluation

We performed an initial experimental evaluation of TruffleSpark with the main
goal of highlighting the performance of dynamic languages executed using our
approach. To this end, we compared our TruffleSpark framework against Spark
on common applications that use dynamic languages.

We first focused our evaluation on the Python bindings for Spark, comparing
the performance of some well-known Spark benchmarks (included in the Spark
distribution) against ZipPy/Spark. The performance of TruffleSpark in this setup
is expected to outperform Spark’s native Python bindings (i.e., PySpark). We
then focused on a single popular benchmark for data-intensive computations
(i.e., WordCount), and executed it with different configurations. Specifically, we
have re-implemented the benchmark using R, and using a combination of R
and Python. In this way, we can highlight the benefits of combining multiple
languages in a data-intensive benchmark. We use Spark 1.5.1, PySpark with
Python 2.7.3, we build ZipPy using Java 8 and execute on GraalVM 0.9 (the
release provided on the OTN website, which includes FastR). All experiments
are executed on a server-class machine running Ubuntu 14.04 LTS equipped with
two 8-core Intel Xeon CPUs E5-2680 (2.70 GHz) with 2 MB of L2 cache, 20 MB
of L3 cache, and 128 GB of RAM. Hyper-threading is enabled on the cores, Intel
Turbo Boost Technology is disabled, and the CPU driver is Acpi-cpufreq.

Python Performance. In evaluating the performance of Python, we considered
four popular Spark benchmarks: WordCount, a program that counts the distri-
bution of words in a text file; Grep, an analysis that scans a file searching for

Lightweight Multi-language Bindings for Apache Spark 289

1 2 4 8 16
0

100

200

300

400

1
0
5
.9

5
1
.9

2
7
.7

1
6
.8

1
0
.1

1
1
5
.3

5
9
.2

3
1
.7

1
8
.7

1
2
.6

3
1
5
.3

1
6
2
.5

8
1
.5

4
5
.4

2
5
.4

of task runners

E
x
ec

u
ti

o
n

ti
m

e
[s

]
(a) WordCount

1 2 4 8 16
0

50

100

3
1
. 0

1
8
.2

1
3
.8

1
3
. 1

1
3
.9

3
4
.0

2
1
.5

1
6
.1

1
4
.7

1
5
.4

8
9
.0

5
2
.4

3
4
.3

2
6
.2

2
3
.4

of task runners

(b) Grep

1 2 4 8 16
0

500

900

1
3
4
.2

7
8
.1

7
5
.8

7
8
.4

8
1
.5

1
3
4
.0

8
2
.6

9
2
.2

8
1
.4

8
3
.9

8
8
2
.0

4
3
3
.8

3
4
1
.7

3
0
6
.3

2
9
8
.8

of task runners

E
x
ec

u
ti

o
n

ti
m

e
[s

]

(c) PageRank

1 2 4 8 16
0

100

200

300

1
1
.5

6
.0

5
.9

6
. 0

6
. 08
.7

8
.4

8
.4

8
.5

8
.5

2
3
6
.4

1
7
3
.9

1
6
7
.8

1
6
6
.4

1
6
5
.9

of task runners

(d) Kmeans

Spark ZipPy/Spark PySpark

Fig. 2. Python performance. (a) WordCount and (b) Grep use an input file of size
2.7 G; (c) PageRank uses an input size of 42M (d) KMeans uses a file size of 400 K
(k = 10)

given patterns; PageRank, a famous graph algorithm [23]; and KMeans, a popu-
lar vector quantization method [20]. The performance of TruffleSpark is depicted
in Fig. 2, where the average execution time for each benchmark is reported for
an increasing number of parallel task runners. As the figure clearly shows, Truf-
fleSpark always outperforms the equivalent implementation in PySpark. More-
over, the performance of Python running with TruffleSpark (i.e., ZipPy/Spark)
is close to the same analysis written in Scala. This result suggests that our
approach makes Python an efficient alternative to Scala.

Combining R and Python. The R language has performance that often cannot
match Python. Still, the language offers very convenient data-analysis functional-
ities, making it a good choice for certain applications. With the goal of showing
the potential of a multi-language solution, we have adapted one of the previ-
ous benchmarks (i.e., WordCount) to use R for parts of the computation. The
performance for this experiment is depicted in Fig. 3, where the benchmark is
executed with different input files. As the picture shows, the performance of

290 L. Salucci et al.

817M 1.1G 1.6G 2.7G

0

100

200

300
8
.4

8
.8

9
.8 1
3
.1

1
0
.4

1
3
.4

1
5
. 6

1
9
.0

1
0
.1

1
5
.6

1
7
.7

2
7
.1

1
0
0
.4 1
3
9
. 7 1
7
0
.9

2
6
0
.5

6
2
.8 8
2
. 6 1
0
0
.8

1
4
9
.1

Varying input file size; 16 task runners

E
x
ec

u
ti

o
n

ti
m

e
(s

)

(a) WordCount

1 2 4 8 16
0

500

1,000

1,500

1
0
5
.9

5
1
.9

2
7
.7

1
6
.8

1
0
.11
1
5
. 3

5
9
.2

3
1
.7

1
8
.7

1
2
.6

3
1
5
.3

1
6
2
.5

8
1
.5

4
5
.4

2
5
.4

1
,1

3
5
.0

8
4
0
.3

5
8
8
.4

4
0
2
.4

2
7
9
.3

5
8
6
.2

4
1
8
.9

2
7
5
.0

1
8
6
.6

1
5
5
.8

Number of task runners

(b) WordCount - Scalability

Spark ZipPy/Spark PySpark FastR/Spark MultiLang

Fig. 3. WordCount performance using multiple languages. In (a) the number of task
runnners is fixed at 16. In (b) the input file size is 2.7 G.

R cannot match pure Scala or Python. Nevertheless, it is possible to express
the most CPU-demanding part of the computation in another language (Mul-
tilang, in the figure). By using Python, the performance of the data analysis
improves significantly. As the figure suggests, by combining multiple languages
it is possible to mitigate the performance impact of certain (slow) computations
by selectively replacing them with faster implementations. Combining languages
in this way is not possible in the current Spark framework, where users who
want to use R for their analysis must accept its high runtime overhead.

5 Related Work

Other frameworks exist that provide functionalities similar to Spark. Two
notable examples are Apache Flink [16], and Google Cloud Dataflow [6]. Both
frameworks offer bindings for multiple languages: Flink, for example, enables the
development of analyses in Scala and Java, and supports the integration of other
languages via inter-process communication. Another example of multi-language
integration is Apache Hadoop [1], a well-known open-source implementation of
MapReduce [19]. Hadoop’s standard way to express computation is to provide
map and reduce operations implemented in Java. To enable multi-language inte-
gration, Hadoop also enables to execute map and reduce operations as external
processes via Hadoop Streaming [8], allowing programmers to express map/re-
duce jobs using potentially any programming language with basic input-output
capabilities. In such configuration, the map and reduce functions are executed
by language runtimes that read the input from the standard input and produce
results by writing it to the standard output. Another relevant approach is the one
of Apache Pig [2], a high-level platform for creating MapReduce programs on top
of Hadoop that enables guest language integration through IPC. Multi-language
integration is enabled through a language called Pig Latin, which abstracts the

Lightweight Multi-language Bindings for Apache Spark 291

Java map/reduce idiom into a form similar to SQL. Users can extend Pig Latin
by writing user defined functions (UDFs in the shorthand form), using Java,
Python, Ruby, or other scripting languages, and then call them directly from Pig
Latin. Support for such UDFs requires a light-weight serialization/deserializa-
tion layer with bindings in the supported languages. Unlike all such frameworks,
SparkSQL [17] exemplifies an alternative approach for achieving external lan-
guage integration, which overcomes IPC and serialization. Built on the previous
experience with Shark [28], Spark SQL is the state-of-the-art API for query-
ing structured data in Spark. SparkSQL features a highly extensible optimizer
(i.e., Catalyst [4]) and offers much tighter integration between relational and
procedural processing. Thanks to Catalyst, Spark SQL uses a code generation
approach that involves the translation of SQL queries into equivalent Java byte-
code, using a domain-specific language (DSL) similar to R data frames [21] and
Python Pandas [11]. SparkSQL corresponds to a relevant improvement towards
the integration of foreign languages in Spark. Unlike our approach, it is focused
at structured data types (as opposed to RDDs), and supports only a subset of
the Python language. Unlike SparkSQL, TruffleSpark supports RDDs and aims
at supporting the entire Python language.

6 Conclusion

In this paper we have introduced TruffleSpark, a modified version of the Spark
runtime that supports the execution of Truffle-based languages. Thanks to Truf-
fleSpark, it is possible to develop data analyses in Spark that make extensive
use of dynamically typed languages, with performance comparable to the ones
of statically typed languages. TruffleSpark is based on the tight integration of
Truffle-based languages with the Spark runtime, and enables the execution of
data analyses that combine more than a single language. Our performance eval-
uation suggests that dynamically typed languages such as Python or R are a
valid alternative to Java or Scala for developing Spark applications.

Acknowledgments. Our research has been supported by Oracle (ERO project 1332)
and by the Swiss National Science Foundation (project 200021 153560). We thank
the VM Research Group at Oracle for their support. Oracle, Java, and HotSpot are
trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

References

1. The Apache Hadoop distributed system. http://hadoop.apache.org
2. Apache Pig, high-level platform for MapReduce. https://pig.apache.org/
3. The Apache Spark engine. https://spark.apache.org
4. Catalyst: A Query Optimization Framework for Spark and Shark. https://github.

com/apache/spark/tree/master/sql/catalyst
5. FastR, an high performance R runtime. https://bitbucket.org/allr/fastr/overview

http://hadoop.apache.org
https://pig.apache.org/
https://spark.apache.org
https://github.com/apache/spark/tree/master/sql/catalyst
https://github.com/apache/spark/tree/master/sql/catalyst
https://bitbucket.org/allr/fastr/overview

292 L. Salucci et al.

6. Google Cloud Dataflow. http://cloud.google.com/dataflow
7. The Graal project. http://openjdk.java.net/projects/graal/
8. Hadoop Streaming. https://hadoop.apache.org/docs/r1.2.1/streaming.html
9. HDFS distributed file system. https://hadoop.apache.org/docs/r1.2.1

10. NumPy, scientific computing with Python. http://www.numpy.org/
11. Pandas, Python Data Analysis Library. http://pandas.pydata.org/
12. PySpark. https://cwiki.apache.org/confluence/display/SPARK
13. Spark on R. https://spark.apache.org/docs/1.6.0/sparkr.html
14. ZipPy, a fast and lightweight Python implementation. https://bitbucket.org/

ssllab/zippy
15. Efficient Embedding of Dynamic Languages in Big-data Analytics. In: Proceedings

of the 36th International Conference on Distributed Computing Systems Work-
shops. DCPerf 2016, IEEE (2016)

16. Alexandrov, A., Kunft, A., Katsifodimos, A., Schüler, F., Thamsen, L., Kao, O.,
Herb, T., Markl, V.: Implicit parallelism through deep language embedding. In:
Proceedings of SIGMOD, pp. 47–61 (2015)

17. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., et al.: Spark SQL: relational data processing
in spark. In: Proceedings of SIGMOD 2015, pp. 1383–1394. ACM (2015)

18. Bolz, C.F., Cuni, A., Fijalkowski, M., Rigo, A.: Tracing the Meta-level: PyPy’s
tracing JIT compiler. In: Proceedings of ICOOLPS, pp. 18–25 (2009)

19. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

20. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)
21. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput.

Graph. Stat. 5(3), 299–314 (1996)
22. Nothaft, F.A., Massie, M., Danford, T., Zhang, Z., Laserson, U., Yeksigian, C.,

Kottalam, J., Ahuja, A., Hammerbacher, J., Linderman, M., Franklin, M.J.,
Joseph, A.D., Patterson, D.A.: Rethinking data-intensive science using scalable
analytics systems. In: Proceedings of SIGMOD 2015, pp. 631–646 (2015)

23. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report 1999–66, November 1999

24. Shanahan, J.G., Dai, L.: Large scale distributed data science using apache spark.
In: Proceedings of KDD, pp. 2323–2324 (2015)

25. Würthinger, T., Wimmer, C., Wöß, A., Stadler, L., Duboscq, G., Humer, C.,
Richards, G., Simon, D., Wolczko, M.: One vm to rule them all. In: Proceedings
of Onward! 2013, pp. 187–204. ACM (2013)

26. Würthinger, T., Wöß, A., Stadler, L., Duboscq, G., Simon, D., Wimmer, C.: Self-
optimizing AST interpreters. SIGPLAN Not. 48(2), 73–82 (2012)

27. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed
graph system on spark. In: Proceedings of GRADES, pp. 2:1–2:6 (2013)

28. Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark:
SQL and rich analytics at scale. In: Proceedings of SIGMOD 2013, pp. 13–24. ACM
(2013)

29. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of NSDI 2012, p. 2 (2012)

30. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of SOSP, pp. 423–
438 (2013)

http://cloud.google.com/dataflow
http://openjdk.java.net/projects/graal/
https://hadoop.apache.org/docs/r1.2.1/streaming.html
https://hadoop.apache.org/docs/r1.2.1
http://www.numpy.org/
http://pandas.pydata.org/
https://cwiki.apache.org/confluence/display/SPARK
https://spark.apache.org/docs/1.6.0/sparkr.html
https://bitbucket.org/ssllab/zippy
https://bitbucket.org/ssllab/zippy

Toward a General I/O Arbitration Framework
for netCDF Based Big Data Processing

Jianwei Liao(B), Balazs Gerofi(B), Guo-Yuan Lien, Seiya Nishizawa,
Takemasa Miyoshi, Hirofumi Tomita, and Yutaka Ishikawa

RIKEN Advanced Institute for Computational Science, Kobe 6500047, Japan
{jianwei.liao,bgerofi,guo-yuan.lien,s-nishizawa,takemasa.miyoshi,

htomita,yutaka.ishikawa}@riken.jp

Abstract. On the verge of the convergence between high performance
computing (HPC) and Big Data processing, it has become increasingly
prevalent to deploy large-scale data analytics workloads on high-end
supercomputers. Such applications often come in the form of complex
workflows with various different components, assimilating data from sci-
entific simulations as well as from measurements streamed from sensor
networks, such as radars and satellites. For example, as part of the next
generation flagship (post-K) supercomputer project of Japan, RIKEN
is investigating the feasibility of a highly accurate weather forecasting
system that would provide a real-time outlook for severe guerrilla rain-
storms. One of the main performance bottlenecks of this application is
the lack of efficient communication among workflow components, which
currently takes place over the parallel file system.

In this paper, we present an initial study of a direct communication
framework designed for complex workflows that eliminates unnecessary
file I/O among components. Specifically, we propose an I/O arbitrator
layer that provides direct parallel data transfer among job components
that rely on the netCDF interface for performing I/O operations, with
only minimal modifications to application code. We present the design
and an early evaluation of the framework on the K Computer using up to
4800 nodes running RIKEN’s experimental weather forecasting workflow
as a case study.

1 Introduction

With the accelerating convergence between high performance computing (HPC)
and a new generation of Big Data technologies, high-end supercomputers are
increasingly being leveraged for processing the unprecedented amount of data
scientific simulations and sensor networks produce [4]. Consequently, the high-
performance computing community has been heavily focusing on how to provide
the appropriate execution environment for Big Data workloads on large scale
HPC systems.

A motivating example, as well as our case study in this paper, is SCALE-
LETKF [23], a complex weather forecasting application that is being devel-
oped at RIKEN. With the next generation Japanese flagship supercomputer
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 293–305, 2016.
DOI: 10.1007/978-3-319-43659-3 22

294 J. Liao et al.

(post-K) as its primary target platform, SCALE-LETKF is intended to pro-
vide high-resolution, real-time weather forecasting of severe guerrilla rainstorms
in Japan. Similar to other operational weather forecasting applications, the
SCALE-LETKF mainly consist of two components developed separately: a
numerical weather prediction (NWP) model and a data assimilation system. The
NWP model used here is the SCALE-LES (Scalable Computing for Advanced
Library and Environment-LES [7]), which simulate the time evolution of the
weather-related atmosphere and land/sea surfaces based on physical equations
(hereafter “Simulation”). Meanwhile, the data assimilation method used here
is the Local Ensemble Transform Kalman Filter (LETKF [6]), which assimilate
observation data taken from the real world into the simulated state to produce a
better initial condition for the model (hereafter “Assimilation”). The two com-
ponents run in a cyclic way: after the simulation finishes, the data assimilation
starts taking the results from the simulation as its input data, and after the data
assimilation finishes, the simulation of the next cycle follows, depending on the
results from the data assimilation.

Both the simulation (SCALE) and data assimilation (LETKF) components
in the current workflow rely on netCDF for I/O operations using the parallel file
system. netCDF is a self-describing, portable, scalable, appendable and share-
able file format, which is widely used to exchange array-oriented scientific data,
such as grids and time-series [1]. Historically, the decision for file based data
exchange was mainly driven by the fact that these models are being developed
and maintained by independent research entities and it’s been strongly desired
not to modify either of the component models purely for the purpose of building
a coupled forecasting system.

The prediction of guerrilla heavy rains, however, is a strictly time constrained
procedure, and we identified that file I/O based data transfer between the two
components is one of the hindering factors for acquiring the needed realtimeness.
A large number of coupling tools, targeting effective integration of separately
developed models or applications, have been proposed [13,14,21], nevertheless,
all of them require numerous modifications to the applications.

Our main focus in this paper is to provide an I/O arbitration framework that
can enable high-performance, direct data exchange among workflow components
which process large amounts of data and use netCDF for their underlying data
format. Furthermore, we seek to provide a solution that retains the original
netCDF API and requires only minimal changes to existing application code.
Specifically, this paper makes the following contributions:

– General I/O Arbitration Middleware. We propose a general I/O arbitration
middleware, i.e., a software library that enables direct parallel data transfer
among workflow components that utilize netCDF for their data representa-
tion. Our library is customizable through configuration files and requires only
slight modifications to the source code of existing applications.

– Support for Integration of Existing Models. Our middleware benefits the inte-
gration of existing, separately developed models for solving complicated prob-
lems. Individual models or applications are usually developed to tackle specific

Toward a General I/O Arbitration Framework 295

scientific issues and easy integration of existing models into complex workflows
enables solving more intricate problems.

– Accelerated Data Exchange in Coupled Systems. Compared to file based data
exchanging the proposed middleware adopts communication pattern-based
optimization to efficiently support direct data transfer. It shortens data
exchange time among the components so that rigid time constraints of real-
time applications can be satisfied.

The remainder of the paper is structured as follows. Related work is described
in Sect. 2. The design and implementation of the proposed middleware are
explained in Sect. 3. Section 4 shows the evaluation methodology and discusses
experimental results. At last, concluding remarks are given in Sect. 5.

2 Related Work

In weather forecasting and geoscientific systems, individual models usually deal
with analyzing a single, specific phenomenon. On the other hand, a practical fore-
casting system takes various aspects into account, and thus it normally employs
several models to achieve its final goal. This section introduces related work
focusing on coupling existing models or applications, as well as on related work
about conducting data transfer among the component models or applications in
such systems.

1© Integration mechanisms for individual models. The intricate global cli-
mate problems motivate researchers from different scientific disciplines to inte-
grate existing multi-physics computation models or applications for exhaustive
modeling by using a software framework or a coupled system [17]. The Model
Coupling Toolkit (MCT) [13] is a library providing routines and datatypes for
creating a coupled system, and it is mainly used in Community Climate Sys-
tem Model (CCSM) [14]. Hereafter, S. Valcke et al. [8] have summarized major
coupling technologies used in Earth System Modeling, and their paper shows
common features of the existing coupling approaches including the functionality
to communicate and re-grid data.

The OASIS coupler is another related study (the latest version is OASIS3),
which is able to process synchronized exchanges of coupling information gen-
erated by different components in a climate system, and the coupler mediates
communication among the components [16]. But, the OASIS coupler has its
own interface, and is not a solution for general cases. C. Armstrong et al. [15]
have designed an approach to separate the code of models from the coupling
infrastructure, but it does not provide coupling functions such as data transfer.
However, it enables users to choose the underlying coupling functions from other
couplers, such as the OASIS coupler. Besides, there are numerous existing mid-
dlewares for coupling specific models, such as ESMF [9], and C-Coupler1 [10],
which adopt similar integration schemes to the above mentioned solutions, but
unfortunately they also require application modifications.

Moreover, G. Waston et al. [19] proposed the scheme to use parallel cou-
pling tool for effectively integrating the existing programming and performance

296 J. Liao et al.

tools, to benefit the development of parallel applications. Dorier et al. [22] have
summarized several tools developed by themselves, which can flexibly couple
simulations with visualization packages or analysis workflows.

2© Data transfer approaches in coupling or other large-scale systems. Many
integrated approaches employ file-based I/O to exchange data, since the data
stored on the global file system can be easily accessed by all participating compo-
nents [8]. It is worth mentioning the MCT framework again, which also enables
data transfer among different components via MPI communication [18] rather
than file based I/O. For instance, the CCSM4 system is a single executable
implementation, which includes a top-level driver and components integrated
via standard init/run/finalise interfaces by leveraging MCT [11]. From a func-
tionality view point, the MCT tool might be the most similar approach to our
work, but it requires to compile all individual models or applications together
to generate a single executable binary file. The combined binary ensures that
all processes can share the same MPI intra-communicator to communicate with
each other through MPI function calls. However, this prerequisite is not easy to
meet, because it is difficult to combine a large number of separately developed
components due to possible collisions on global variables and function names.

However, since all MPI processes share the same MPI COMM WORLD communi-
cator in MCT, local broadcast operations within a specific (individual) model
becomes visible to all other processes belonging to other components. To over-
come this limitation, P.A. Browne and S. Wilson [17] have proposed a very
similar mechanism for coupling two specified models for the purpose of data
assimilation, through a different use of the Message Passing Interface. In their
solution, although two models are still compiled together to generate a single
MPI job, they split the MPI communicator to enable local MPI communication
within individual components. However, this solution implies that the source
codes of all involved models have to be modified for enabling usage of split MPI
communicators for local communication.

In addition, for supporting flexible communication patterns and better com-
munication efficiency of I/O data transfer, the Adaptable I/O System (ADIOS)
framework has been proposed [5]. Similarly to the OASIS coupler, the users
have to modify the models or applications to use ADIOS ’s specific interfaces.
C. Zhang et al. have proposed and implemented a butterfly implementation
of data transfer and then developed an adaptive data transfer library for the
coupled systems [12]. F. Zhang et al. presented a distributed data sharing and
task execution framework to minimize inter-application data exchange [20]. In
summary, existing works fail to provide a general framework to integrate sep-
arately developed models or applications into a coupled system (so that direct
parallel data transfer among all component models could be supported) without
modifying the source codes of individual components. To the contrary, our I/O
middleware intends to offer a universal communication framework to accelerate
data transfer among components in coupled systems in order to meet strict time
constraints. Additionally, our framework requires only minimal modifications to
existing application codes.

Toward a General I/O Arbitration Framework 297

Fig. 1. The communication pattern of one cycle in the SCALE-LETKF system utilizing
file I/O (a.) or direct data transfer (b.) methods.

3 I/O Arbitrator Middleware

As we mentioned before, our target coupling system of SCALE-LETKF repeats
a two-step cycle of simulation and data assimilation, performed by two sepa-
rately developed models, i.e., SCALE and LETKF. The I/O communication
of one cycle in the current SCALE-LETKF system is depicted in Fig. 1(a). As
seen, the netCDF output data of the Simulation processes are first written to the
global parallel file system, which in turn is read by the Assimilation processes.
Note that SCALE consists of multiple simulation instances (denoted by Sim-
ulation 1 to n in the figure), which are called “ensemble” simulations and the
simulation results are fed to the LETKF processes. Each ensemble member takes
slightly different initial condition and outputs different results so the total I/O
amount is roughly equal to the I/O amount of one member multiplied by the
number of ensemble members. After computation, the ensemble model of SCALE
generates a large amount of output data, written in netCDF format, which are
all requested by the subsequent assimilation step of the same cycle. In brief,
the output data generated by the simulation processes will be used by the cor-
responding assimilation processes, which indicates that I/O communication is
performed between two separate groups of MPI processes.

To reduce the time needed for data transfer, we have been developing a novel
I/O middleware to allow direct parallel data transfer between the two compo-
nent models. Figure 1(b) illustrates the workflow of the system when the I/O
middleware is utilized. As a result, in each cycle, the output data of simula-
tion processes are directly forwarded to the assimilation processes, as well as
the analyzed results generated by assimilation processes which can be directly
transferred to the simulation processes in the next cycle. Specifically, the I/O
middleware connects the two kinds of processes by using MPI communication
[18], and consequently, it enables direct communication between the simulation
processes and the assimilation processes.

Although only the SCALE-LETKF application is detailed in this paper, it
is worth emphasizing that our proposed I/O middleware is a general solution
for coupled Big Data processing applications on the top of netCDF. In order

298 J. Liao et al.

to handle a wide range of possible I/O patterns the middleware is customizable
using configurations files. Different configurations enable deployment for appli-
cations with different properties, such as different number of component models,
or different I/O communication patterns.

3.1 High Level Architecture

Figure 2 shows the software stack of the I/O arbitrator middleware, which is used
to support direct parallel data transfer between simulation processes (SIM in
the figure) and data assimilation processes (DA in the figure) in our case study.
Except for the application layer itself, the netCDF, POSIX, and MPI layers are
involved in the middleware. Briefly speaking, the mechanism of direct parallel
data transfer is transparent to the applications.

As it is shown in the figure, communication is currently performed by using
MPI, for which the following subsection will discuss the construction of the
communication context between two kinds of processes.

Fig. 2. Architectural overview of the
middleware

Fig. 3. The internals of direct data
transfer among workflow components

3.2 Establishing Communication

Because the simulation and data assimilation models are separately developed
applications, and are executed as separate MPI jobs, they do not share the same
MPI communicator. To overcome this problem, our prototype implementation
currently utilizes the standard MPI intercommunicator family of routines to
establish a communication context between the two types of jobs.

We provide an overview of the current MPI based implementation. At initial-
ization time, the Assimilation process opens a port using MPI Open port(), and
then publishes it by calling the MPI Publish name() feature. Subsequently, the
Assimilation process calls MPI Comm accept(), to wait for the connection from
the simulation processes. The Simulation processes, connect to the Assimila-
tion processes through MPI Comm connect() once they successfully obtained the
service name by using MPI lookup name(). As a result, processes of both com-
ponents can communicate with each other by using standard MPI functions.

Toward a General I/O Arbitration Framework 299

Once the data transfer had taken place, the Simulation processes proactively
disconnect and the Assimilation processes can unpublish their connection ser-
vices with MPI Unpublish name().

3.3 Direct Data Transfer Mechanism

The parallel data transfer between the simulation processes and the assimilation
processes is carried out when the communication context has been established.
Figure 3 depicts the details of direct data transfer in the I/O middleware, where
the interaction between two kinds of processes can be described as follows:

1. The Simulation process writes the output data to the file system through
calling the nc put vara() function (i.e. an example write subroutine in the
netCDF library). We assume that the Assimilation process will eventually
read the contents of the same file, but the Assimilation process is blocked
until the requested data is satisfied in Step 6.

2. The nc put vara() calls are intercepted by Library Hook offered by the mid-
dleware, and the write contents are cached in the designated Memory Buffer
instead of flushing them to the global file system.

3. The buffered data is forwarded from the Simulation node to the destination
node, i.e. the Assimilation process, by calling the MPI Send() routine.

4. The Assimilation process responds an ACK message, when it has received
the data sent by the Simulation process, through calling MPI Recv(). Con-
sequently, the data is cached in the designated memory buffer for satisfying
potential future read requests.

5. According to the parameters offered by the nc get vara() function (i.e. an
example read subroutine in the netCDF library), which was blocked because
the required data were not yet available, the specified piece of data will be
picked up by Library Hook from Memory Buffer.

6. The Assimilation process resumes its execution after it received the data from
Library Hook.

Both Simulation and Assimilation processes are able to exchange their data
through direct data transfer. Specifically, all nc put vara() requests will be
fulfilled when the contents have been buffered in the memory, and all cached
data are eventually sent to the destination process. On the other side, all
nc get vara() requests will be satisfied with the data buffered in the memory,
which was initially received from the source process.

3.4 Implementation for SCALE-LETKF

To demonstrate the effectiveness of direct parallel data transfer between the
simulation and assimilation processes in SCALE-LETKF, we have developed a
proof-of-concept implementation of the proposed I/O middleware. Besides, since
data is exchanged between each SCALE process and the corresponding LETKF
process in netCDF format, we have made slight modifications to the netCDF
library itself (using ver. 4.2.2.1), so that it complies with the proposed I/O
middleware to enable direct data transfer in an application transparent fashion.

300 J. Liao et al.

4 Evaluation

This section first describes the experimental setup and experimental methodol-
ogy for evaluating the proposed I/O middleware. It then presents experimental
results and provides the relevant discussion. At last, we summarize the key points
of our direct parallel data transfer approach.

4.1 Experimental Setup

Evaluation experiments to assess the advantages of the SCALE-LETKF sys-
tem equipped with our current prototype middleware were conducted on the
K computer [2]. The K computer is Japan’s flagship supercomputer sporting
88,128 compute nodes (8 CPU cores each), with peak performance more than
10 petaFLOPS. The K computer took the first place of TOP 500 in 2011, and
as of June 2015, it is ranked as the fourth fastest machine of the world [3].

As for the input data used in our experiments, we employ real world obser-
vations to test the efficiency of SCALE-LETKF when equipped with the pro-
posed I/O middleware. In all experiments each MPI process was allocated to one
compute node, and we logged the results related to I/O operations during the
execution. Three real world test cases for regional weather analysis were used. In
each measurement, SCALE is composed of up to 100 ensemble instances. Test
Case 1 and Test Case 2 have 4 processes in each ensemble instance, but there
are 48 processes in each ensemble instance of Test Case 3. LETKF consists of
only one instance, but it contains the same number of processes as all SCALE
instances in total. Note that every MPI process is allocated onto one computing
node, and openMP is used to explicitly direct multi-threaded parallelism.

Table 1. Total Amount of Transferred Data in the Case Study.

Ensemble Size Test Case 1 Test Case 2 Test Case 3

10 3, 468 MB 6, 720 MB 53, 328MB

20 6, 936 MB 13, 440 MB 106, 656MB

40 13, 872 MB 26, 880 MB 213, 312MB

60 20, 808 MB 40, 320 MB 319, 968MB

80 27, 744 MB 53, 760 MB 426, 624MB

100 34, 680 MB 67, 200 MB 533, 280MB

Table 1 summarizes the size of transferred data for the cases having different
number of ensemble instances. Note that in our current execution model, each
application instance corresponds to a separate MPI job.

Toward a General I/O Arbitration Framework 301

4.2 Experimental Results

The main limitation of our current proof-of-concept I/O middleware is that we
can run only one cycle of the SCALE-LETKF system. In other words, each
SCALE process generates output data after simulation, which will be read by
the corresponding LETKF process as input for assimilation.

Communication Time for Transferring Data. While running the selected
two test cases, we first measured the communication time for transferring data
between SCALE and LETKF, as the function of increasing the number of ensem-
ble instances from 10 to 100. Figure 4 shows the time required for transferring
the data from SCALE to LETKF. The horizontal axis represents the number
of ensemble instances and the vertical axis shows the time required for data
transmission. As the experimental results imply, the communication time for
transferring data between the two components remains essentially unchanged,
even with the growing number of involved processes, which is due to the pair-wise
communication pattern of the SCALE-LETKF system.

Another interesting observation is that while data size between Test Case 1
and Test Case 2 differ by a factor of two, transfer time is only increased by
approximately 50%. We believe this is due to the communication protocol that
attains higher bandwidth with the increased data size.

(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

0

50

100

150

200

250

300

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
im

e
re

qu
ir

ed
 f

or
 T

ra
ns

fe
rr

in
g

D
at

a
(m

s)

Number of Ensemble Cases (Number of Compute Nodes)

0

50

100

150

200

250

300

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
im

e
re

qu
ir

ed
 f

or
 T

ra
ns

fe
rr

in
g

D
at

a
(m

s)

Number of Ensemble Cases (Number of Compute Nodes)

0

50

100

150

200

250

300

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
im

e
re

qu
ir

ed
 f

or
 T

ra
ns

fe
rr

in
g

D
at

a
(m

s)

Number of Ensemble Cases (Number of Compute Nodes)

Fig. 4. Communication time needed for transferring data from SCALE to LETKF.

I/O Acceleration. For comparison, we recorded the time required for I/O
operations between the SCALE and LETKF processes by using both actual file
I/O operations and the mechanism of direct data transfer. Figures 5(a), (b) and
(c) indicate the time required for carrying out I/O operations between the two
types of processes utilizing file I/O and the proposed mechanism, respectively.
Note that the I/O time shown by the proposed mechanisms includes the time
needed for memory operations issued by both SCALE and LETKF processes,
and the time required for transferring the data from SCALE to LETKF.

As the Figure depicts, the proposed mechanism can substantially reduce the
time needed for I/O operations between SCALE and LETKF processes com-
pared to the file I/O-based data transfer. For example, when the size of ensemble
instances is 100 using the case of Test Case 3, the mechanism of direct data
transfer can yield over 30× speedup on I/O operations, which in turn implies

302 J. Liao et al.

(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

0

2

4

6

8

10

12

14

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
ot

al
 I

/O
 T

im
e

(s
ec

on
d)

Number of Ensemble Cases (Number of Compute Nodes)

Direct Parallel Data Transfer
File-based Transfer

0

2

4

6

8

10

12

14

16

18

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

T
ot

al
 I

/O
 T

im
e

(s
ec

on
d)

Number of Ensemble Cases (Number of Compute Nodes)

Direct Parallel Data Transfer
File-based Transfer

0

10

20

30

40

50

10(480) 20(960) 40(1920) 60(2880) 80(3840) 100(4800)

T
ot

al
 I

/O
 T

im
e

(s
ec

on
d)

Number of Ensemble Cases (Number of Compute Nodes)

Direct Parallel Data Transfer
File-based Transfer

Fig. 5. I/O time contrasting file I/O and direct data transfer.

that more time can be devoted to perform simulation and data assimilation, and
that the total execution time can be consequently decreased. Furthermore, the
file-based data transfer may require significantly increased I/O time due to con-
tention on the parallel file system. The case of Test Case 2 required 34.1% more
time for conducting file I/O operations, compared with the case of Test Case 1,
because the size of transmission data needed by the former case is two times of
the size of transmission data of the latter one. In contrast, direct data transfer
does not increase the transfer time significantly even for double size data.

Data Throughput. After verifying the proposed mechanism can indeed reduce
the time needed for exchanging the data between SCALE and LETKF in our
test cases, this section aims to measure the I/O data throughput while execut-
ing various test cases. Figures 6(a), (b) and (c) show the results about I/O data
throughput reported by performing the tests with varying ensemble sizes, respec-
tively. As seen, the proposed scheme of direct data transfer outperforms the
scheme of file I/O-based data transfer, and it achieves from 758.3% to 2933.3%
data rate improvements for the selected test cases. Particularly, improvements
are getting remarkable while the ensemble size is getting larger that indicates
more data are required to be processed.

(a) Test Case 1 (b) Test Case 2 (c) Test Case 3

0

5000

10000

15000

20000

25000

30000

35000

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

I/
O

 D
at

a
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Ensemble Cases (Number of Compute Nodes)

Direct Parallel Data Transfer
File-based Transfer

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

10(40) 20(80) 40(160) 60(240) 80(320) 100(400)

I/
O

 D
at

a
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Ensemble Cases (Number of Compute Nodes)

Direct Parallel Data Transfer
File-based Transfer

0

50000

100000

150000

200000

250000

300000

10(480) 20(960) 40(1920) 60(2880) 80(3840) 100(4800)

I/
O

 D
at

a
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Ensemble Cases (Number of Compute Nodes)

Direct Parallel Data Transfer
File-based Transfer

8967.9 MB/s

Fig. 6. I/O data throughput utilizing file I/O and direct data transfer.

Another noticeable issue, implied by the figures, is the fact that the larger the
amount of data is to be exchanged, the higher the benefits become by utilizing
the direct data transfer method.

Toward a General I/O Arbitration Framework 303

4.3 Summary

With respect to comparing direct data transfer and file I/O based data transfer,
we emphasize the following two key observations. First, with increasing number
of processes, direct data transfer yields better relative performance. Second,
the more time reduction and higher data throughput can be achieved with the
growing size of the involved data. In brief, we conclude that the proposed file
I/O middleware is able to significantly reduce the time required by exchanging
data between the component models in the SCALE-LETKF workflow system.

Furthermore, the implemented I/O middleware offers a general framework
for inter-component data exchange in netCDF -based workflow systems, where
individually developed applications are coupled together. By accelerating the
execution of such systems, we believe our middleware, facilitated with the direct
data transfer functionality, is particularly important for systems with rigorous
time constraints.

5 Concluding Remarks

This paper has proposed a general I/O middleware for Big Data processing,
coupled workflows that are comprised of multiple netCDF -based and individu-
ally developed components. Our framework enables direct parallel data trans-
fer among component models in order to reduce data exchange time, which
we applied to the SCALE-LETKF data assimilation based weather forecasting
system.

Experimental results on the K computer using up to 4800 nodes have shown
that the proposed mechanism can significantly reduce the time spent on I/O
operations among SCALE and LETKF. This achievement is useful for real-
time weather forecasting in SCALE-LETKF or similar applications, because the
I/O time does not noticeably increase while the problem scale is getting larger.
Furthermore, we have demonstrated that the benefit of larger data throughput
increases with the growing amount of data that is required to be processed.

Enabling asynchronous data transfer so that communication and compu-
tation can be efficiently overlapped is an important item on the list of our
future work. Furthermore, with asynchronous data transmission we also intend
to explore the usage of direct RDMA operations between individual components
so that any unnecessary buffering can be eliminated during the data exchange.

Acknowledgment. This work has been partially supported by CREST, JST and the
MEXTs program for the Development and Improvement of Next Generation Ultra
High-Speed Computer Systems. This research used computational resources of the K
computer provided by the RIKEN Advanced Institute for Computational Science
through the HPCI System Research project (Project ID: hp150019).

304 J. Liao et al.

References

1. Network Common Data Form (netCDF) (2013). www.unidata.ucar.edu/netcdf/
2. RIKEN AICS: K computer (2011). http://www.aics.riken.jp/en/k-computer/
3. TOP500 Supercomputer Sites (2015). http://www.top500.org/
4. Reed, D., Dongarra, J.: Exascale computing and big data. Commun. ACM 58,

56–68 (2015)
5. Podhorszki, N., Klasky, S., et al.: Plasma fusion code coupling using scalable I/O

services and scientific workflows. In: Proceedings of the 4th Workshop on Workflows
in Support of Large-Scale Science (WORKS 2009), November 2009

6. Hunt, B., Kostelich, E., Szunyogh, I.: Efficient data assimilation for spatiotemporal
chaos: a local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena
230(1), 112–126 (2007)

7. Nishizawa, S., Yashiro, H., Tomita, H., et al.: Influence of grid aspect ratio on
planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev.
8(10), 3393–3419 (2015)

8. Valcke, S., Balaji, V., Riley, G., et al.: Coupling technologies for earth system
modelling. Geosci. Model Dev. 5, 1589–1596 (2012)

9. Janjic, Z., Black, T.: An ESMF unified model for a broad range of spatial and
temporal scales. Geophys. Res. Abstr. 9, 05025 (2007)

10. Liu, L., Yang, G., Wang, B., et al.: C-Coupler1: A Chinese community coupler for
Earth system modelling. Geosci. Model Dev. Discuss. 7(3), 3889–3936 (2014)

11. Craig, A., Jacob, R., et al.: A new flexible coupler for Earth system modeling
developed for CCSM4 and CESM1. Int. J. High Perform. C 26(1), 31–42 (2012)

12. Zhang, C., Liu, L., Yang, G., et al.: Improving data transfer for model coupling.
Geosci. Model Dev. Discuss. 8, 8981–9020 (2015)

13. Larson, J., Jacob, R., Ong, E.: The model coupling toolkit: a new Fortran90 toolkit
for building multiphysics parallel coupled models. Int. J. High Perform. C 19(3),
277–292 (2005)

14. Craig, A., Jacob, R., Kauffman, B., He, Y., et al.: CPL6: the new extensible, high
performance parallel coupler for the community climate system model. Int. J. High
Perform. C 19(3), 309–327 (2005)

15. Armstrong, C., Ford, R., Riley, G.: Coupling integrated Earth System Model com-
ponents with BFG2. Concurr. Comp-Pract. E. 21(6), 767–791 (2009)

16. Valcke, S., Budich, R., Carter, M., et al.: The PRISM software framework and the
OASIS coupler. In: Proceedings of the 18 Annual BMRC Modelling Workshop,
Melbourne, 28 November - 1 December 2006

17. Browne, P.A., Wilson, S.: A simple method for integrating a complex model into an
ensemble data assimilation system using MPI. Environ. Modell. Softw. 68, 122–128
(2015)

18. MPI: A Message-Passing Interface Standard, Version 2.2, September 2009
19. Watson, G., Frings, W., Knobloch, C., et al.: Scalable control and monitoring of

supercomputer applications using an integrated tool framework. In: Proceedings
ICPPW 2011, pp. 457–466 (2011)

20. Zhang, F., Docan, C., Parashar, M., et al.: Enabling in-situ execution of coupled
scientific workflow on multi-core platform. In: Proceedings of IEEE 26th Interna-
tional Parallel & Distributed Processing Symposium (IPDPS 2012), pp. 1352–1363
(2012)

21. Valcke, S., Craig, A., Dunlap, R., Riley, G.: Sharing experiences and outlook on
Coupling Technologies for Earth System Models. Bull. Amer. Meteor. Soc. (2015).
doi:10.1175/BAMS-D-15-00239.1

www.unidata.ucar.edu/netcdf/
http://www.aics.riken.jp/en/k-computer/
http://www.top500.org/
http://dx.doi.org/10.1175/BAMS-D-15-00239.1

Toward a General I/O Arbitration Framework 305

22. Dorier, M., Dreher, M., Peterka, T., et al.: Lessons learned from building in situ
coupling frameworks. In: Proceedings of the First Workshop on In Situ Infrastruc-
tures for Enabling Extreme-Scale Analysis and Visualization, pp. 19–24. ACM
(2015)

23. Miyoshi, T., Kondo, K., Terasaki, K.: Big ensemble data assimilation in numerical
weather prediction. IEEE Comput. 48(11), 15–21 (2015)

High Performance Parallel Summed-Area Table
Kernels for Multi-core and Many-core Systems

Angelos Papatriantafyllou1(B) and Dimitris Sacharidis2

1 Research Group Parallel Computing, Faculty of Informatics,
Institute of Information Systems, TU Wien, Vienna, Austria

papatriantafyllou@par.tuwien.ac.at
2 E-Commerce Group, Faculty of Informatics,

Institute of Software Technology and Interactive Systems,
TU Wien, Vienna, Austria
dimitris@ec.tuwien.ac.at

Abstract. The summed-area table (SAT), also known as integral image,
is a data structure extensively used in computer graphics and vision
for fast image filtering. The parallelization of its construction has been
thoroughly investigated and many algorithms have been proposed for
GPUs. Generally speaking, state-of-the-art methods cannot efficiently
solve this problem in multi-core and many-core (Xeon Phi) systems due
to cache misses, strided and/or remote memory accesses. This work pro-
poses three novel cache-aware parallel SAT algorithms, which generalize
parallel block-based prefix-sums algorithms. In addition, we discuss 2D
matrix partitioning policies which play an important role in the efficient
operation of the cache subsystem. The combination of a SAT algorithm
and a partition is manually tuned according to the matrix layout and
the number of threads. Experimental evaluation of our algorithms on
two NUMA systems and Intel’s Xeon Phi, and for three datatypes (int,
float, double) by utilizing all system cores, shows, in all experimental set-
tings, better performance compared to the best known CPU and GPU
approaches (up to 4.55× on NUMA and 2.8× on Xeon Phi).

1 Introduction

The construction of a summed-area table (SAT) is a well-studied problem in
computer graphics and vision [1,13,14], with applications in texture filtering.
Since first introduced by Crow [4], several parallel implementations for GPUs
[6,7,9] have been proposed. Given a matrix x of size n×m, where n, m are the
number of rows and columns, respectively, the problem is to compute the sum
of all elements x(i, j), 0 ≤ i < n and 0 ≤ j < m, according to the formula:

y(i, j) =
∑

0≤r<i

∑

0≤c<j

x(r, c) (1)

SAT is the 2D generalization of the prefix-sums, or scan, problem, whose
parallelization has also been extensively studied; the prefix-sums problem
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 306–318, 2016.
DOI: 10.1007/978-3-319-43659-3 23

High Performance Parallel Summed-Area Table Kernels 307

(assuming + as the associative operation) for an array x of length n is to com-
pute the sums y(i) =

∑

0≤r<i x(r). Hence, a straightforward method to paral-
lelize SAT is to scan the matrix row by row, and for each row apply a parallel
scan kernel from the literature [5,10–12] to compute its prefix-sums in-place,
and then perform in parallel vectorized additions with the prefix-sums of the
previous row. Such an approach has throughput bounded by the column size;
each process unit (core, warp), henceforth termed thread, operates on a block of
size m

p , where p is the number of threads. Hence, better performance is achieved
with 2D blocks.

In literature, there have been several 2D block-based parallel SAT algorithms
for GPUs (Hensley et al. [6], Kasagi et al. [7], Nehab et al. [9] and Yan et al. [15])
and CPUs (Zhang [16]). These can be classified to those that perform within
a block prefix-sums along a single dimension [6,15,16], and those along both
dimensions, [7,9]. Methods of the former use blocks of size n

p × m (or m
p × n),

resulting in performance degradation when run on NUMA multi-core systems,
due to cache misses since blocks can be bigger than the LLC (Last Level Cache),
and remote memory accesses imposed by the block assignment, explained later
in the related work. On the other hand, algorithms of the latter use square
b × b blocks, and could thus suffer from strided memory accesses when row-
major matrix allocation is used on multi-core systems. In addition, the degree
of parallelism of [7] is bounded by the number of blocks of each anti-diagonal,
which ranges from 1 to min(n,m)

b − 1.

Contributions. Our research is motivated by two important facts: (1) the per-
formance limitations of square blocks used in [7,9], and (2) the lack of perfor-
mance and scalability in current parallel SAT implementations for multi-core
systems. Both [7,9] execute row- and column-wise prefix-sums, where the latter
are expensive, w.r.t. performance, due to strided memory accesses. To alleviate
this overhead, we propose to use non-square blocks of size br×bc, where br, bc are
the number of rows and columns, respectively, that are horizontally “stretched”
(while being vertically “squeezed”), i.e., bc > br. The in-parallel processed blocks
must fit into the LLC; thus, p × br × bc should not exceed the LLC size.

For the following discussion it helps to conceptually represent the matrix as
a sequence of stripes each having size br × m. Depending on the value of bc
relative to m, we distinguish two partitionings. In the first called stripe, bc is
equal to m

p , which means that all blocks processed in parallel lie within a stripe.
In the second and more general called tile, bc �= m

p , meaning that a block can
span over two consecutive stripes, and thus correspond to a non-rectangular area
of the matrix. Figure 1 depicts the two partitionings on the actual matrix, and
illustrates that a block in tile can be non-rectangular (shaded).

In addition, we propose three cache-aware parallel SAT algorithms, called
psat cpps, psat mcstl and psat sarpps, which process square and non-
square blocks, and are generalizations of three parallel block-based prefix-sums
algorithms: CPPS [10], MCSTL [12], and the method of Chatterjee et al. [3],
which we henceforth call SARPPS (Scan after Reduction Parallel Prefix-Sums).
In particular, our algorithms operate in three phases: Phases 1 and 3 are devoted

308 A. Papatriantafyllou and D. Sacharidis

Fig. 1. The 2D matrix partitioning policies: stripe (left), and tile (right). The grey
box indicates the shape of a block according to each partitioning

to in-block computations, and in Phase 2 shared data are propagated across the
threads. They differ in the tasks performed in Phases 1 and 3, which are opti-
mized (e.g., using vectorization, loop-unrolling) based on the target system and
datatype. Depending on the matrix partitioning employed, certain tasks of Phase
2 are omitted resulting in distinct performance behavior for the same algorithm.

We carefully evaluate the performance and scalability of our kernels com-
pared to the state-of-the-art method for GPU by Kasagi et al. [7], and CPU by
Zhang [16]. We experiment on two NUMA systems (Westmere- and Opteron-
based) and Intel’s Xeon Phi, considering different datatypes (int, float, double),
while varying number of threads. Our results verify the limitations of existing
work when deployed in multi-core and many-core systems. In particular, when
utilizing almost the maximum available physical cores, the speedup of [7] drops,
and in certain settings down-scale behavior is observed. On the other hand, [16]
has the worst performance by a large margin in NUMA systems. In contrast, our
proposed kernels have consistent performance behavior across all systems and
datatypes, without requiring any modifications to the parallelization code, and in
almost all cases outperform the competitors. Specifically, our kernels have up to
4.55x and 3.25x more speedup in NUMA systems, and up to 1.5x and 2.8x in the
Xeon Phi system, compared to [16] and [7], respectively. Furthermore, we study
the main parameters (e.g., block row and column size, row- and column-wise
optimizations, matrix partitioning) and draw conclusions on how they influence
the performance of our kernels. In summary, the performance gains we measure
are due to the better utilization of the LLC, which is the direct result of larger
(non-rectangular) blocks that could not be exploited by previous works.

The rest of this paper is organized as follows. Section 2 describes and reviews
related works. Section 3 presents our algorithms in detail. Section 4 shows per-
formance and scalability results. Section 5 concludes the paper.

2 Related Work

Parallel Prefix-Sums Kernels. CPPS [10], MCSTL [12], and SARPPS [3] are
block-based algorithms that solve the prefix-sums problem in parallel by splitting
the input array in p or p+1 blocks. Each block is processed in three phases, where
the first and third perform in-block computations, while the second propagates
shared data across threads. In Sect. 3, we discuss their generalization to SAT.

Parallel SAT Kernels. There are two algorithmic classes for parallelizing SAT.
While, they both split the matrix in blocks assigned to individual threads, they

High Performance Parallel Summed-Area Table Kernels 309

differ in their in-block computations. The first class, termed 1D, is to perform
either row- or column-wise prefix-sums, while the second, termed 2D, is to per-
form prefix-sums in both dimensions, i.e., compute the block’s SAT.

Previous 1D approaches on GPUs (Hensley et al. [6] and Yan et al. [15]) use
2-phase algorithms to compute in parallel first all horizontal and later all vertical
prefix-sums. In [6], they use recursive doubling for computing the prefix-sums
of both phases, whereas, in [15] they exploit vectorization over a column-major
order input matrix by using an auxiliary n × m matrix. Similarly, Zhang [16]
present a 1D method for multi-core systems. Noticeably, the performance of all
1D approaches is expected to be penalized on multi-core systems due to cache-
unawareness, because blocks may exceed the LLC. Particularly on NUMA sys-
tems, it is expected more performance degradation due to NUMA-unawareness,
since the data needed in Phase 2 may reside in remote NUMA nodes.

Nehab et al. [9] present a generalization of the SARPPS algorithm for GPUs,
which works quite similar to our psat sarpps algorithm. The input matrix is
partitioned in blocks of size b × b, where b matches the warp size of an SM (i.e.
b = 32). Each warp computes the SAT of a block with the help of the last block
row and block column of the other warp’s. Their approach could compose and
process also rectangular blocks but it is unable to exploit non-rectangular blocks.

Kasagi et al. [7] present a different 2D approach, called 1R1W, where each
matrix element is read from and written to DRAM only once. To accomplish
that, an n× n matrix is partitioned into n

b × n
b blocks of equal b× b size, where

b ≤ n
p , and processed anti-diagonally in 2n

b − 1 steps. In the kth step, where
0 ≤ k < 2n

b − 1, there are min(p, k + 1) active threads, where each computes
its own block by using elements of the adjacent left, top and diagonal blocks.
Before entering each step, the threads must synchronize at a global barrier.
This approach is expected to exhibit poor performance and scalability in NUMA
systems for very large p due to two reasons. First, while increasing p more NUMA
nodes are activated and subsequently, more LLCs can be utilized. However, in
this approach the block size is bounded by n, implying that the increase of
p leads to smaller block sizes and eventually, the LLC footprint is reduced.
Exploiting less LLC footprint means that the CPUs process faster the cached
blocks and the kernel’s performance is exposed to the main memory latency
overhead. Second, while increasing p it would need more synchronization steps
to reach the maximum degree of parallelism.

In-block Optimizations. Both 1D and 2D approaches benefit from
prefix-sums optimizations. Zhang [16] optimizes the row-wise prefix-sums
with an algorithm called enhanced parallelism, which breaks each row in
groups of 6 elements; each group is computed by independent prefix-
sums pairs. However, such a technique is not efficient for large vec-
tor widths machines like Xeon Phi due to its lack of leveraging vec-
tor instructions. Previous works on GPUs [6,9,15] exploit the SIMT
(Single Instruction Multiple Thread) model in order to vectorize the row-wise
prefix-sums. Unfortunately, SIMT is not compatible with the SIMD (Single
Instruction Multiple Data) programming model used in CPUs.

310 A. Papatriantafyllou and D. Sacharidis

A SIMD-based approach is provided by OpenCV (Open Source Computer
Vision) [2], which is a computer vision and machine learning library. This app-
roach uses the SSE instruction set, which has a limited target group and works
under specific input constraints (short numbers). Thus, it is not suitable for
Xeon Phi systems and it is not applicable to arbitrary datatypes.

From the above discussion, it becomes clear that new optimizations tech-
niques are necessary for multi-core systems. We remark that the sequential (in-
block) SAT computation in all 2D methods is based on only one of the three
known basic approaches for computing SAT [8]. In Sect. 3, we optimize this
approach by further segmenting the assigned block to leverage deep cache hier-
archies, investigate prefix-sums optimizations presented in [10], and also explore
the optimization space of another basic SAT approach.

3 Parallel Summed-Area Table Kernels (PSAT)

Our algorithms construct the SAT of a matrix x in-place, with an associative
operator + over the basic type, by splitting x in 2D blocks. The blocks are formed
according to stripe and tile partitionings, and are further tuned to meet load-
balancing requirements according to each PSAT kernel, later explained. Each
block is assigned only once to a unique thread and processed in-cache across
some or all the algorithmic phases, as illustrated in Figs. 2, 3 and 4. In addition,
the threads use two shared buffers, called blr and blc, to propagate their last
row and column, respectively, across all threads. For simplicity and readability,
we use square blocks to describe our implementations.

3.1 Implementations

Psat cpps. This algorithm is the generalization of CPPS [10], which works as
follows: (1) Each thread computes the prefix-sums for its assigned block, (2)
an inclusive scan is computed over the last element of all the assigned chunks,
and (3) each thread, except for thread 0, propagates a previous corresponding
cumulative sum to its own elements; thread 0 is assigned and process a new
block.

In Phase 1 of psat cpps (Fig. 2), each thread is assigned a b × b block, on
which a sequential SAT is invoked. At the completion of Phase 1, thread 0 is
the only thread that has successfully computed its own block. Subsequently,
each thread copies the last computed block row and block column to the shared
buffers blr and blc, respectively, and synchronizes with the others at a global
barrier. The role of these buffers is crucial. They hold the fragments of the final
product computed later at Phase 3. For instance, thread p − 1 needs to sum up
all the information from the blc’s and blr’s belonged to the threads accessing
the matrix rows and matrix columns which are equal and less than p − 1’s.

Phase 2 (Fig. 3) is devoted to process and propagate the shared data from
the buffers blr and blc across threads. The phase is split in three parts, where
the first two are responsible to process the blr’s, and the third part handles to

High Performance Parallel Summed-Area Table Kernels 311

Fig. 2. Phase 1: each of the p threads is assigned a distinct b × b block of the n × m
matrix and runs a sequential SAT kernel. The computed last block row and block
column are copied into the blr and blc shared buffers, respectively. All the blocks fit
into the system’s LLC. At the end of this phase, thread 0 has completed its block

Fig. 3. Phase 2: shared data propagation. Each thread collects the cumulative sum of
the last element of each blr at its left and propagates it to its own blr (Phase 2.1).
Subsequently, in parallel column-wise prefix-sums are computed by adding the elements
of all the blr’s, from top to bottom, including the last blr’s from the previous group
of cached blocks (Phase 2.2). In Phase 2.3, each thread computes and stores locally
the cumulative sums of the blc’s at its left

process the blc’s. Therefore, each thread computes the cumulative sum of the
last element of the blr’s related to the threads at its left. Subsequently, the sum
is used to propagate the elements of its own blr (Phase 2.1). Then, the threads
synchronize once again before passing to Phase 2.2, where the aggregation of each
shared-row blr’s is split in p segments of size m

p and each segment is assigned
to each thread. In total, each thread has to process pb

m segments, on which
is computed the column-wise inclusive prefix-sums by adding the ith element,
i = 0, 1, ..., m

p − 1, of the jth segment, j = 0, 1, ..., pb
m − 1, with the ith element of

312 A. Papatriantafyllou and D. Sacharidis

the j + 1th segment, and so on. The threads synchronize again before accessing
Phase 2.3, where each thread computes the reduction of the elements of the blc’s
of the threads located at its left by adding the ith element, i = 0, 1, ..., b − 1 of
the jth blc with the ith element of the j + 1th blc, j starts with the id of the
thread being the first at its left and ends with the id of the previous thread. It
is implied that a barrier is unnecessary at this point. The reductions are stored
in local buffers, and are accessed in Phase 3 locally by their associate thread.

Finally, in Phase 3 (Fig. 4), each thread uses its local blc and the updated blr
(top) to construct the table by propagating their values to its block elements. In
addition, thread 0 is assigned a new block, and invokes a sequential SAT kernel
by adding at the same time the elements of the left and top buffers. After careful
benchmarking, this new block must be a factor of 4 smaller; the block is fetched
from DRAM while the other threads work on cached data.

Psat sarpps. SARPPS [3] generalizes psat sarpps kernel, and works as follows:
(1) each thread first acquires the total sum of its elements, (2) an inclusive scan is
performed over the previous sums, and (3) each thread computes the prefix-sums
of its elements by adding first the corresponding sum from Phase 2.

In Phase 1, the threads do not invoke a sequential SAT but a 2D reduction
kernel, which computes the sums of every block row and block column by storing
the sum of the ith block row, i = 0, 1, ..., b − 1, into the ith cell of the blc
buffer and the jth block column, j = 0, 1, ..., b − 1, into the jth cell of the blr
buffer. Subsequently, in Phase 2, the threads are grouped according to which of
them access the same matrix rows. The threads assigned non-rectangular blocks
(refer to tile in Fig. 1) are potential members of two groups. However, we do
not permit “double membership”, and we place those threads to the groups
with the least members. Consecutively, each group runs a parallel prefix-sums
on its elements by invoking CPPS [10], configured with a two-level-nested-loop
sequential prefix-sums kernel, described in [10]. Phases 2.2 and 2.3 are executed
as before (refer to psat cpps). In Phase 3, each thread updates its first block
column and row by using the computed data of its local blc and the shared blr
(left), respectively, and subsequently it executes a sequential SAT kernel.

Psat mcstl. This algorithm is the generalization of the MCSTL [12] algorithm,
which resembles SARPPS. However, they are distinguishable from each other.

Fig. 4. Phase 3: The adjacent shared top (blr) and local buffers are used by each
thread to update its block. Thread 0 is assigned a new block and computes the SAT

High Performance Parallel Summed-Area Table Kernels 313

In MCSTL’s Phase 1, thread 0 computes the prefix-sums of a block, which differs
from the block that it computes its prefix-sums in Phase 3.

In Phase 1 of psat mcstl, a block of size b
2× b

2 is assigned to thread 0 and p−1
blocks of size b×b to the other threads. Thread 0 invokes a sequential SAT kernel
and the others a 2D reduction kernel for their blocks. The block of thread 0 is a
factor of 4 smaller than the other blocks because of the heavyweight computation
of the sequential SAT compared to the 2D reduction task. The results of the last
computed block row and column are stored again in the blr and blc buffers,
respectively. At that time, thread 0 has produced the final result for its block.
Phase 2 can be executed as described in psat sarpps. However, since thread 0
blc holds already the final values it should not take part in Phase 2. Instead, we
re-segment the input of its group and assign a task to thread 0. Phases 2.2 and
2.3 are executed as before (refer to psat cpps). Consecutively, Phase 3 operates
as described in psat sarrps, however, thread 0 employs a different block; for
better load balancing this block size must be b × b

2 .

Optimizations. Due to space constraints, we briefly describe the optimizations
that took place for improving the performance of the sequential SAT kernel used
by our PSAT kernels. We have optimized two basic SAT approaches, described
in [8]; one is used by [7,9]. Since both approaches compute prefix-sums row-
wisely, we first tested several optimized sequential prefix-sums kernels, presented
in [10]. In addition, both approaches also compute the prefix-sums column-wisely,
which can be easily vectorized. However, the size of the vectorized rows can be
bigger than the underlying L2/L1 cache size. Thus, we considered performance
improvements through further input segmentation. The new formed sub-blocks
have 2–4 rows each, and the column size varies according to the architecture.
We investigated improving the ILP and the spatial locality of the column-wise
prefix-sums. The former through hard-coding the execution of 2–4 independent
row-wise prefix-sums of each sub-block, and the latter by storing consecutively
in memory the row-wise results (in vector-width chunks).

3.2 Matrix Partitionings

Conceptually, the matrix is composed by a sequence of stripes of size br × m.
Accordingly, our PSAT kernels split the stripes in groups of blocks whose cumu-
lative size does not exceed the aggregated system’s LLC. Subsequently, each
group is processed in parallel by p threads. In stripe partitioning (Fig. 1 (left)),
the kernels process one stripe at a time by computing groups of blocks located
in one stripe, so that, bc × p ≤ m. On the contrary, in tile (Fig. 1 (right)), the
formed groups of blocks may span across several stripes, as long as bc ≤ m.

Stripe affects the functionality of our algorithms. In particular, Phases 2.1
and 2.2 are omitted since all threads operate within the same stripe, where the
column-wise propagation is omitted. The reason is that each thread is assigned
the same matrix columns across different stripes, and thus can directly access
the last block row of the previous stripe without needing the blr buffer.

Regarding the scalability of our kernels, we make the following observations.
Increasing the number of threads (p) in stripe means that the block column

314 A. Papatriantafyllou and D. Sacharidis

size (bc) decreases resulting in the following trade-off: we can increase the br
(wider stripe) to improve the LLC utilization at the expense of multiple strided
memory accesses, or keep the LLC utilization low, thus avoiding this overhead
(strided accesses). In NUMA systems, this effect is amplified since the LLC size
increases by activating more NUMA nodes. The benefit of stripe over tile is
the decrease of the amount of propagated shared data. Thus, we expect stripe
to perform better for small p. On the contrary, tile is not affected by this trade-
off and promises better scalability in both multi-core and many-core systems.

4 Evaluation

We implemented our PSAT kernels in C with Pthreads and tested on three sys-
tems: two NUMA systems, called Mars and Saturn, and one Intel’s Xeon Phi,
called MIC. Detailed system information are listed in Table 1. All benchmarks
are compiled with Intel’s ICC 14.0.1 with -O3 optimization level and executed
30 times. The results show median values. Due to space limitations, we report
only results for a specific problem size; similar behavior is observed in other
problem sizes. Each kernel is configured and tested with different sequential
SAT kernels and block sizes. We only report results for the best configurations.
The experiments show the performance and scalability behavior of our PSAT
kernels, comparing against 1R1W [7] and Zhang [16]. For a fair comparison,
we re-implemented 1R1W for x86 systems according to [7], tested with rectan-
gular blocks, and applied x86-based sequential optimizations. For the testbeds,
in-parallel first-touch page placement was applied and consecutive thread pin-
ning.

Table 1. Specifications of the three systems (Mars, Saturn and MIC)

System CPU # cores # cores/ # NUMA LLC/ L2 L1

(model & freq.) NUMA nodes NUMA

Mars Intel Xeon E7-8850

2.0GHz

80-hyperthreaded 10 8 24576K 256K 32K

Saturn AMD Opteron 6168

1.9GHz

48 6 8 5118K 512K 32K

MIC Intel Xeon Phi 5110P

1.059GHz

60-hyperthreaded - - only L2 cache 512K 64K

PSATs Performance. Figure 5 (left) depicts the performance (execution time
in seconds) of our PSAT kernels (psat cpps, psat sarpps, psat mcstl). Each
kernel has been separately tested with tile and stripe partitionings. In addi-
tion, Fig. 5 (right) depicts a breakdown phase analysis of our PSATs in stripe
mode by reporting the sum of the execution time (in milliseconds) of Phases 1
and 3 when computing p (= #threads) blocks. All the testbeds construct the
SAT of a 12K×12K integer matrix on Mars with different number of threads.
Due to quantitatively similar results, other systems and datatypes are omitted.

High Performance Parallel Summed-Area Table Kernels 315

best sequential kernel

0.0

0.1

0.2

2 4 8 16 32 64 80
threads

E
xe

cu
tio

n
tim

e
(in

 s
)

PSAT Kernels
psat_cpps_stripe
psat_cpps_tile
psat_mcstl_stripe
psat_mcstl_tile
psat_sarpps_stripe
psat_sarpps_tile

psat_cpps psat_mcstl psat_sarpps

0.0

0.5

1.0

1.5

2.0

2 4 8 16326480 2 4 8 16326480 2 4 8 16326480

threads

E
xe

cu
tio

n
tim

e
fo

r
pr

oc
es

si
ng

 p
 (

=
 #

th
re

ad
s)

 b
lo

ck
s

(in
 m

s)

Phases
phase1
phase3

Fig. 5. Performance comparison (left) between our three PSAT kernels (psat cpps,
psat sarpps, psat mcstl) configured with the two partitionings (tile, stripe), and
breakdown phase analysis (right) of our PSATs in stripe mode, which reports the sum
of the execution time of Phases 1 and 3 for computing p (= #threads) blocks. The
testbeds run on Mars for different number of threads and a 12K×12K integer matrix

Figure 5 (left) justifies our assumptions about the behavior of both parti-
tionings independently of PSAT kernel. The stripe behaves better for small
number of threads due to less computations, and the tile is better for large
number of threads due to better cache utilization and less synchronization steps
caused by handling bigger block sizes. In most cases, psat cpps outperforms the
other kernels, even though Phase 1 of psat sarpps is faster, due to the reduc-
tion computations being auto-vectorized by gcc and icc compilers, as depicted
in the breakdown analysis of Fig. 5 (right). Therefore, our analysis suggests that
running a sequential SAT kernel first leads to better performance.

PSATs Speedup. Figure 6 depicts the absolute speedup comparison between
1R1W, Zhang and our best performing PSAT for each of the tile and stripe
partitionings. The results are collected by all our systems after composing the
SAT of a 12K×12K matrix separately for integers, floats and doubles. In addi-
tion, the best performing sequential kernel that we have is selected as a baseline.

Figure 6 shows that in all cases our kernels outperform 1R1W and Zhang for
large number of threads (p) in tile. In particular, our kernels run 1.2×–3.25×
faster than 1R1W (all datatypes) with all system cores: (1) 3.25× in Mars, (2)
1.8× in Saturn and (3) 2.8× in MIC. Nonetheless, 1R1W behaves slightly better
for small p since it spends zero time on processing shared data, and needs fewer
synchronization steps until all threads are utilized in parallel. Regarding the
performance of Zhang in MIC, it is almost equal to that of our best kernel for
integers, but it is 1.5× and 1.2× slower for floats and doubles, respectively. In
addition, Zhang proves to be inefficient in NUMA systems, for reasons discussed
in Sect. 2. For instance, with all system cores, Zhang is slower by 3.25× (inte-
gers and floats) and 3.5× (doubles) on Mars, and 4.55× (integers and floats),
and 4.15× (doubles) on Saturn. In conclusion, we observe that the best perfor-

316 A. Papatriantafyllou and D. Sacharidis

Problem size: 12K×12K elements

Fig. 6. Absolute speedup comparison between 1R1W kernel [7], Zhang’s [16], and our
best performing PSAT for each of the two partitionings: tile and stripe running on
all systems. The kernels construct a 12K×12K matrix for three datatypes (int, float,
double). The best performing sequential kernel that we have is selected as a baseline

mance of our kernels, in tile with all cores, is achieved when the block column
size (bc) is smaller than the matrix column size by 1.67× (integers and floats)
and 3.3× (doubles) in Mars, 4× (all datatypes) in Saturn and 5× (doubles and
floats) and 10× (integers) in MIC. In addition, the block row size is by far smaller
than the bc in NUMA (57×–114×), and still quite smaller in MIC (1.2×–4.8×).

5 Conclusions and Future Work

In this paper, we present three new cache-aware parallel SAT (Summed-Area
Table) algorithms, called psat cpps, psat sarpps and psat mcstl, for many-core
and multi-core systems. Our algorithms are generalizations of three block-based

High Performance Parallel Summed-Area Table Kernels 317

parallel prefix-sums algorithms, and can process rectangular and non-rectangular
blocks in order to utilize better the cache subsystem. We provide performance and
speedup results after comparing against Kasagi et al. [7] and Zhang [16]. Our next
step will be designing an auto-tuning mechanism capable of finding the best config-
urations (parallel and sequential SAT, matrix partitioning, etc.) for different prob-
lem sizes in order to increase system efficiency.

Acknowledgements. We would like to thank the members of the TU Wien Research
Group Parallel Computing and the anonymous reviewers for their valuable comments.

References

1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.J.V.: Speeded-up robust features (SURF).
Comput. Vis. Image Underst. 110(3), 346–359 (2008)

2. Bradski, G.R., Kaehler, A.: Learning OpenCV - Computer Vision with the
OpenCV Library: Software That Sees. O’Reilly, Beijing (2008)

3. Chatterjee, S., Blelloch, G.E., Zagha, M.: Scan primitives for vector computers.
In: Proceedings Supercomputing 1990, pp. 666–675 (1990)

4. Crow, F.C.: Summed-area tables for texture mapping. In: Proceedings of the
11th Annual conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pp. 207–212 (1984)

5. Dotsenko, Y., Govindaraju, N.K., Sloan, P., Boyd, C., Manferdelli, J.: Fast scan
algorithms on graphics processors. In: Proceedings of the 22nd Annual Interna-
tional Conference on Supercomputing (ICS), pp. 205–213 (2008)

6. Hensley, J., Scheuermann, T., Coombe, G., Singh, M., Lastra, A.: Fast summed-
area table generation and its applications. Comput. Graph. Forum 24(3), 547–555
(2005)

7. Kasagi, A., Nakano, K., Ito, Y.: Parallel algorithms for the summed area table on
the asynchronous hierarchical memory machine, with GPU implementations. In:
Proceedings of the 43rd International Conference on Parallel Processing (ICPP),
pp. 251–260 (2014)

8. Kisacanin, B.: Integral image optimizations for embedded vision applications. In:
Proceedings of the 2008 IEEE Southwest Symposium on Image Analysis and Inter-
pretation (SSIAI), pp. 181–184 (2008)

9. Nehab, D., Maximo, A., Lima, R.S., Hoppe, H.: GPU-efficient recursive filtering
and summed-area tables. ACM Trans. Graph. 30(6), 176 (2011)

10. Papatriantafyllou, A.: Energy characterization and optimization of parallel prefix-
sums kernels. In: Hunold, S., et al. (eds.) Euro-Par 2015 Workshops. LNCS, vol.
9523, pp. 685–696. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27308-2 55

11. Sengupta, S., Harris, M., Garland, M.: Efficient Parallel Scan Algorithms for GPUs.
Technical report, NVIDIA Corporation (2008)

12. Singler, J., Sanders, P., Putze, F.: MCSTL: the multi-core standard template
library. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS,
vol. 4641, pp. 682–694. Springer, Heidelberg (2007)

13. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of sim-
ple features. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 511–518 (2001)

http://dx.doi.org/10.1007/978-3-319-27308-2_55

318 A. Papatriantafyllou and D. Sacharidis

14. Viola, P.A., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion
and appearance. Int. J. Comput. Vis. 63(2), 153–161 (2005)

15. Yan, S., Zhang, Y., Long, G.: Summed-area table algorithm optimization based
on the OpenCL. In: Proceedings of the ATIP/A*CRC Workshop on Accelerator
Technologies for High-Performance Computing: Does Asia Lead the Way? (2012)

16. Zhang, N.: Working towards efficient parallel computing of integral images on
multi-core processors. In: Proceedings of the 2nd International Conference on Com-
puter Engineering and Technology (ICCET), pp. V2-30–V2-34 (2010)

GraphIn: An Online High Performance
Incremental Graph Processing Framework

Dipanjan Sengupta1(B), Narayanan Sundaram2, Xia Zhu2,
Theodore L. Willke2, Jeffrey Young1, Matthew Wolf1, and Karsten Schwan1

1 Georgia Institute of Technology, Atlanta, GA, USA
{dsengupta6,jyoung9}@gatech.edu, {mwolf,karsten.schwan}@cc.gatech.edu

2 Intel Labs, Hillsboro, OR, USA
{narayanan.sundaram,xia.zhu,theodore.l.willke}@intel.com

Abstract. The massive explosion in social networks has led to a signifi-
cant growth in graph analytics and specifically in dynamic, time-varying
graphs. Most prior work processes dynamic graphs by first storing the
updates and then repeatedly running static graph analytics on saved
snapshots. To handle the extreme scale and fast evolution of real-world
graphs, we propose a dynamic graph analytics framework, GraphIn, that
incrementally processes graphs on-the-fly using fixed-sized batches of
updates. As part of GraphIn, we propose a novel programming model
called I-GAS (based on gather-apply-scatter programming paradigm)
that allows for implementing a large set of incremental graph processing
algorithms seamlessly across multiple CPU cores. We further propose
a property-based, dual-path execution model to choose between incre-
mental or static computation. Our experiments show that for a vari-
ety of graph inputs and algorithms, GraphIn achieves up to 9.3 mil-
lion updates/sec and over 400× speedup when compared to static graph
recomputation.

Keywords: Graph · Big data · Performance · Incremental processing

1 Introduction

With the increasing interest in many emerging domains such as social networks,
the World Wide Web (e-commerce and advertising), and genomics, the impor-
tance of dynamic graph processing has grown substantially. This recent trend
has given rise to many graph processing frameworks like GraphLab [13], Power-
Graph [10], Graphchi [12], and X-Stream [19] that operate on time-varying real-
world graphs. However, most current graph analytics on such dynamic graphs
follow a store-and-static-compute model that involves storing batches of updates
to a graph applied at different points in time and then repeatedly running static
graph computations on the “snapshots” of the evolving graph. The key assump-
tion made here is that the dynamic graph changes slower than the static process-
ing rate. Extreme-scale applications like Facebook’s representative social graph
benchmark [4] reports an update rate of 86,400 objects/second in 2013, while
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 319–333, 2016.
DOI: 10.1007/978-3-319-43659-3 24

320 D. Sengupta et al.

Twitter traffic [3] can peak at 143 thousand tweets (and associated updates) per
second and emails sent [1] can reach as high as 2.5 millions/sec. This high vol-
ume of changes in dynamic graphs is further complicated by the need for soft or
hard real-time guarantees for applications like real-time anomaly detection and
disease spreading. Both the volume and complexity of queries have outstripped
traditional static graph analytics.

To address the challenges of large scale dynamic graph processing, we propose
an incremental graph processing framework called GraphIn. The GraphIn frame-
work employs a novel programming model called Incremental-Gather-Apply-
Scatter (or I-GAS) to incrementally process a continuous stream of updates
(i.e., edge/vertex insertions and/or deletions) as a sequence of batches. The
I-GAS programming model is based on the popular gather-apply-scatter (GAS)
programming paradigm [10] and it allows an incremental graph problem to be
reduced to a sub-problem that operates on a portion, or sub-graph, of the entire
evolving graph. This sub-graph abstraction allows I-GAS to substantially out-
perform traditional static processing techniques.

Furthermore, GraphIn takes into account situations where incremental
processing may perform worse than static recomputation, such as with incre-
mental BFS, where updates may affect the entire BFS tree. To handle such
scenarios, we introduce the notion of “dual-path execution” or property-based
switching between incremental and static graph processing based on built-in and
user defined properties (e.g., vertex degree information).

Finally, GraphIn’s design allows it to run on top of, and take advantage of
performance benefits of any GAS-based static graph analytics framework like
X-Stream [19], GraphMat [26] (used in this work) or Graphchi [12].

This paper makes following contributions:

• A high-performance incremental graph processing framework built on top of
GraphMat to process time-varying evolving graphs.

• A novel programming model called I-GAS for simplified implementation of
incremental versions of many popular graph algorithms using the GraphIn
framework that seamlessly generates parallel code for multi-core systems.

• An optimization heuristic to decide between static and dynamic graph exe-
cution based on built-in and user defined graph properties. This dual path
execution results in speedups of up to 60× over a näıve streaming approach.

• An extensive evaluation of GraphIn for three popular graph algorithms that
operate on large scale real-world and synthetic graph datasets. Compared to
competitive frameworks such as STINGER [7], GraphIn achieves a speedup
of up to 6.6×. Overall, GraphIn achieves up to 9.3 million updates/sec and
400× speedup over the näıve static graph recomputation approach.

The remainder of the paper is organized as follows: Sect. 2 discusses the
background on graph analytics. Section 3 introduces our GraphIn framework.
Section 4 presents the experimental setup and result analysis. Section 5 discusses
the related work and Sect. 6 concludes with future work.

GraphIn: An Online High Performance 321

Fig. 1. GraphIn software architecture.

2 Background

Gather-Apply-Scatter (GAS) [10,13,14] is a computational model for graph
processing sufficiently general to express a broad set of graph algorithms. With
GAS, a problem is described as a directed graph, G = (V,E), where V denotes
the vertex set and E denotes the directed edge set and a property/state value
is associated with each vertex vi ∈ V . Graph programs written in GAS typi-
cally follow 3-phases: Gather, Apply and Scatter. In the Gather phase, incoming
messages are processed and combined (reduced) into one message. In the Apply
phase, vertices use the combined message to update their state. Finally, in the
Scatter phase, vertices can send a message to their neighbors along their edges.

GraphMat [26] complements the use of the GAS model in GraphIn by
taking vertex programs and compiling them into sparse matrix operations
(e.g. sparse matrix-vector multiplication). The graph programs are specified
by at least 4 user-defined functions (UDFs), SEND MESSAGE for scatter phase,
PROCESS MESSAGE and REDUCE to specify Gather phase and APPLY for its epony-
mous phase.

We use 3 algorithms in this paper - Clustering co-efficient (CCof), Connected
Components (CC) and Breadth-First Search (BFS). Clustering coefficient Cv for
vertex v is defined as Cv = Tv

dv(dv−1) where Tv is the total number of triangles in
a graph with vertex v as one of the endpoints and dv is its degree. CC refers to
computing the weakly connected components in the graph. BFS assigns a level
(equal to the number of edges traversed) to every vertex reachable from a root.

3 GraphIn Framework

The GraphIn framework can efficiently process evolving graphs by dividing the
continuous stream of updates (edge or vertex insertions and/or deletions) into
fixed size batches processed in the order of their arrival. It simplifies evolving
graph analytics programming by supporting a multi-phase, dual path execu-
tion model. Figure 1 shows the general software architecture of GraphIn which
consists of five major components: GAS Engine, Inconsistency Graph Builder,
Property Check, I-GAS Engine and Graph Merger.

322 D. Sengupta et al.

3.1 Graph Data-Structure

There are multiple options to store an evolving graph with n vertices and m
edges. Adjacency matrices allow for fast updates with both insertions and dele-
tions taking O(1) time but require a lot of space (O(n2)). Adjacency lists are
space efficient with O(m+ n) space and allow fast updates but graph traversals
are very inefficient due to non-contiguous memory nodes. Compressed Sparse
Row (CSR) formats [5] provide both space efficiency combined with fast traver-
sal (often easily parallelized) by storing offsets rather than all the valid fields
in the adjacency matrix. However, updates are expensive because each update
requires shifting of the graph data throughout the array to match the compressed
format.

GraphIn adopts a hybrid data structure involving edge-lists to store incre-
mental updates and compressed matrix format to store a static version of the
graph. The edge-list allows for faster updates without adversely affecting the per-
formance of incremental computation. The compressed format allows for faster
parallel computation over the entire static version of the graph. The framework
merges the update list and the static graph whenever required (see Phase V).

Fig. 2. Incremental BFS phases.

3.2 User Interface

As shown in Table 1, programmers can write a sequential algorithm by simply
defining six functions for the different phases in GraphIn. GraphIn will then seam-
lessly generate parallelized code to incrementally process evolving graph on the
target multi-core system. The user-defined functions include meta computation(),
build inconsistency list(), check property(), activate frontier(), update - inconsis-
tency list() and merge state(), corresponding to the different phases of GraphIn
computation described below in detail. Figure 2 shows various incremental BFS
phases.

GraphIn: An Online High Performance 323

3.3 Phase I: Static Graph Computation (GAS Engine)

This phase is responsible for running (1) Static graph computation and (2) Meta-
computation to be used later in the incremental logic. The static graph compu-
tation follows the GAS programming model, and therefore, any framework that
supports GAS can be used as a Static Engine. We have used GraphMat frame-
work for our static graph computation. Meta computation (meta computation())
involves the computation of graph properties like vertex parents, vertex degree
etc., which are needed by incremental algorithms for later phases of GraphIn.
As an example, incremental BFS requires parent information during Phase IV.

3.4 Phase II: Inconsistency Graph Builder

Between multiple versions or snapshots of an evolving graph the vertex states
for many vertices remain the same over time and therefore their recomputation
is essentially redundant. We define an inconsistent vertex to be a vertex for
which one or more properties are affected when the update batch is applied. For
example in BFS, addition of edge (vi, vj) can potentially make vj and all vertices
that are downstream from vj inconsistent. This phase is responsible for mark-
ing the portions of the graph that become inconsistent using the user-defined
function(UDF) build inconsistency list(). This UDF takes two parameters: the
update batch and a user-defined priority. The update batch consists of edge or
vertex insertions and/or deletions from which a list of inconsistent vertices is
built after applying the updates. Vertices in this inconsistency list are assigned
the user-defined priorities and by default all the inconsistent vertices have equal
priority. This phase also optionally builds a user-defined sub-graph G’ to be used
in the later phases. By default G’ is same as the original graph.

3.5 Phase III: Property Check (Static vs. Dynamic)

Runtime of online graph analytics depends both on the algorithm and the par-
ticular choice of updates. There are classes of incremental algorithms that cause
large portions of the graph to become inconsistent and hence can result in recom-
putation over the entire graph. For them, incremental processing will not achieve
any performance benefit over static recomputation and may even result in perfor-
mance degradation due to the overheads associated with incremental execution.
To deal with such situations, we allow the user to define a heuristic for determin-
ing when one form of computation is used over the other. The user may select
from a set of predefined graph properties (e.g. vertex degree) or define their own
properties that affect the runtime of the incremental algorithm. The framework
will then use the selected properties to decide whether to run incremental or
static recomputation by calling check property() for each update batch. This is
called “property-based dual path execution”. check property() takes four para-
meters: inconsistency list, property list, threshold vector, and threshold fraction.
Property list defines the set of graph properties under consideration. Threshold
vector defines a set of thresholds for properties in the property list, above (or

324 D. Sengupta et al.

Table 1. Implementing graph applications in GraphIn

Graph Algorithms

GraphIn APIs and

Phases

Breadth First Search

(BFS) [18]

Connected

Components

(CC) [8]

Clustering

Coefficients

(CCof) [6]

Type All-merge Delete-only-merge No-merge

meta computation()

(Phase I)

Parent id and vertex

degree

Vertex degree Vertex degree

build inconsistency list()

(Phase II)

1. Inconsistency list

contains vertices with

incorrect depth values

with MIN PRIORITY.

1. For each edge

insertion add an

edge in G’ if the

endpoints belong

to different

components [8,

15].

1. Inconsistency list

contains

endpoints of every

edge inserted

and/or deleted

and their

respective

neighbors.

2. G’ = G 2. G’ is also known as

component graph

2. G’ consists of

inconsistent

vertices and edge

incident on them

in G [6]

check property() (Phase

III)

Check BFS depth

property

Check disjoint

component

property

Check vertex degree

property

activate frontier() (Phase

IV)

Activate inconsistent

vertices with

minimum depth

value-Ramalingam

and Reps [18]

Activate all the

vertices in G’

Activate all the

vertices in G’

update inconsistency list()

(Phase IV)

Remove frontier vertices

and add inconsistent

successors to

inconsistency list

Clear inconsistency

list

Clear inconsistency

list

merge state() (Phase V) 1. Apply all insertions

and deletions to G

1. Apply only

deletions to G.

1. Applying

insertions and

deletions to G not

required.

2. Relabel

components in G

using G’

2. Update triangle

counts and degree

information in G

using G’

below) which the performance of incremental processing will drastically degrade.
Finally, threshold fraction defines the fraction of inconsistent vertices that are
above (or below) the corresponding property threshold. For example, in BFS,
the vertex depth could be one of the properties defined in the property list with
depth threshold 2 and threshold fraction 0.3. Then, GraphIn would switch to
static BFS recomputation if > 30 % of inconsistent vertices have BFS depth <
2, in line with the idea that if updates affect a large number of vertices closer to
the root of the BFS tree, its better to run a full static recomputation. Note that
these thresholds for static recomputation are algorithm and dataset dependent
user-tunable parameters that require training to derive their optimal values.

GraphIn: An Online High Performance 325

Algorithm 1. I-GAS computation loop per update batch
1: while(!inconsistency list.isempty()):
2: frontier = activate frontier(G’, inconsistency list)
3: IGAS(G’)
4: update inconsistency list(G’, inconsistency list, frontier)

3.6 Phase IV: Incremental GAS Computation (I-GAS Engine)

The incremental GAS (or I-GAS) phase ensures that only the inconsistent part
of the graph is recomputed incrementally, not the entire graph. The I-GAS
Engine identifies the overlap between two consecutive versions of the evolving
graph and incrementally processes the graph by opening only the new com-
putational frontier. Here the user implements the I-GAS program as well as
the activate frontier() and update inconsistency list() APIs whose prototypes
are: activate frontier(G, inconsistency list), update inconsistency list(G, incon-
sistency list, frontier).

As shown in Algorithm 1, the I-GAS loop is comprised of three basic steps
that are iterated over until the inconsistency list becomes empty. It starts with
a set of inconsistent vertices and calls activate frontier() to activate or open
the next computational frontier using the vertex priority defined in Phase II and
then runs an I-GAS program. An I-GAS program consists of incremental versions
of the gather, apply and scatter functions. By default, the I-GAS program is
the same as the GAS program for static execution, but the user can choose to
override it if necessary. Finally, the new computational frontier information is
used to update the vertex inconsistency list.

3.7 Phase V: Merge Graph States (Graph Merger)

This phase is responsible for both merging updated vertex property information
(e.g., new vertex depths calculated in incremental BFS) and inserting/deleting
edges into the most recent version of the static graph G, thereby generating the
next version of the graph. GraphIn can perform the merger in several ways to
accommodate different types of graph algorithms and different levels of tolerance
for inconsistency in the system.

Some incremental algorithms must accommodate both inserts and deletes
from the latest update batch in each iteration of the algorithm. These updates
must be applied to G before the next update batch is considered. In general, this
is the case for graph algorithms that calculate global properties, like BFS, which
needs to consider any added or removed edges before recalculating vertex depths.
Other algorithms, often ones that compute properties that are semi-localized
within a graph, need to only accommodate deletes e.g. in connected components
algorithm, insertions can be handled by creating a component graph [8,15] G’
in the Phase II (see Table 1), where each edge insertion (u, v) in G results in an
edge in G’ if u and v belong to separate components or results in a self-edge,
which is ignored in the component graph. Therefore, a batch of insertions has

326 D. Sengupta et al.

Table 2. Graph datasets.

Graphs Type # Vertices # Edges

RMAT Scale 20 (G1M16M) Synthetic 1,048,576 15,700,394

RMAT Scale 21 (G2M32M) Synthetic 2,097,152 31,771,509

RMAT Scale 22 (G4M64M) Synthetic 4,194,304 64,155,735

Facebook (FB) [28] Real World 2,937,612 41,919,708

LiveJournal (LJ) [2] Real World 4,847,571 68,475,391

no dependency on insertions from prior batches; they can be processed at any
point (e.g., deferred) without affecting the accuracy of results. But deletes must
be applied before the next update batch is considered. Finally, there are algo-
rithms where each incremental iteration has no dependency on inserts or deletes
from the previous batch. This is often the case for algorithms that only utilize
local properties. Examples include the computation of clustering coefficients [6],
triangle counting, vertex degree, etc. In such cases, both inserts and deletes may
be deferred. Based on these observations, we support three merge patterns:

1. All-Merge: Both inserts and deletes are merged with static graph G.
2. Partial-Merge: Either deletes or inserts are merged with G. The framework

defers applying the rest of the updates to the original graphs.
3. No-Merge: Neither inserts nor deletes from the update batch are merged

with G. The framework defers applying both inserts and deletes.

4 Experimental Evaluation

4.1 Experimental Setup

Evaluation Platform. GraphIn is evaluated1 on a dual-socket Intel node
equipped with two Intel� Xeon�2E5-2608L six-core processors running at
2.0 GHz with 64 GB of DDR4 RAM. We used the Intel� C++ Composer XE

1 Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to http://
www.intel.com/performance.

2 Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other coun-
tries.

http://www.intel.com/performance
http://www.intel.com/performance

GraphIn: An Online High Performance 327

2015 Compiler3 to compile the native and benchmark codes. We used Graph-
Mat [26] and STINGER [6–8] for performance comparisons. In order to uti-
lize multiple threads on the CPU, GraphIn, GraphMat and STINGER all use
OpenMP. Updates are provided in batches of size ranging from 10,000 up to one
million with 1 % of all updates being deletions (except for CC where we use only
insertions). The endpoints of the edges used for batch updates are generated
randomly.

Graph Datasets. As shown in Table 2, we evaluate the performance of GraphIn
using a mix of real-world and synthetic datasets. The synthetic datasets are
obtained from the Graph500 RMAT data generator [16] for scales 20, 21 and 22
with an average degree of 16 per vertex.

Evaluated Algorithms.Three widely used graph algorithms are evaluated,
including Clustering Coefficient (CCof), Connected Components (CC) and
Breadth First Search (BFS). As shown in Table 1, these algorithms are classified
as no-merge (CCof), partial-merge (CC) and all-merge (BFS) algorithm defined
in the previous section. Algorithms requiring undirected graphs as inputs, e.g.,
connected components, are stored as pairs of directed edges.

4.2 Evaluation and Analysis

(1) Benefits of Incremental graph computation: From Figs. 3a, 4a, and 5a we can
observe that, GraphIn achieves maximum speedups of 407×, 40× and 82× over
static computation across all the datasets for CCof, CC and BFS, respectively,
with update batch size going as high as 1 million updates. Figures 3b, 4b, and 5b
show updates per second versus batch size; GraphIn achieves up to 9.3 million
updates/sec. These speedups result from the use of incremental computation in
the IGAS execution model to compute the vertex properties/states for only the
inconsistent vertices, as opposed to executing the graph algorithm for the entire
input graph in the static case. Furthermore, we can draw key inferences as to
how the performance of incremental execution varies with the algorithm type
and update batch size, which we discuss next in detail.

Effect of graph algorithm. From Figs. 3a–5a we can observe that the maxi-
mum speedups occur with no-merge algorithms, such as clustering coefficients,
followed by partial-merge and all-merge algorithms like CC and BFS respec-
tively. Note that the maximum speedup for BFS occurs when the update batch
3 Intel’s compilers may or may not optimize to the same degree for non-Intel micro-

processors for optimizations that are not unique to Intel microprocessors. These opti-
mizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any opti-
mization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel micro-architecture are reserved for Intel micro-
processors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice. Notice
revision #20110804.

328 D. Sengupta et al.

Fig. 3. (a) Incremental speedup over static execution vs. update batch size (b) Update
rate vs. batch size for Clustering Coefficient.

Fig. 4. (a) Incremental speedup over static execution vs. update batch size (b) Update
rate vs. batch size for Connected Components.

Fig. 5. (a) Incremental speedup over static execution vs. update batch size (b) Update
rate vs. batch size for BFS.

size is much smaller (∼50k updates) compared to other two incremental algo-
rithms (∼1M updates). This variation in speedups occurs because the fraction of
the graph that becomes inconsistent after applying an update batch increases in
the order of no-merge, partial-merge, and all-merge. No-merge or partial-merge
algorithms affect the graph locally whereas all-merge algorithms like BFS cal-
culate a global property (i.e. depth), so the incremental computation affects a
larger portion of the graph and incurs higher incremental processing time.

Effect of Update Batch Size. For a particular incremental algorithm in
GraphIn, the speedup achieved falls as the update batch size increases (Figs. 3a–
5a) because the problem size and the average incremental runtime increases with
the batch size. Also, both runtime (because of decreasing speedup) and update
rate increase with the batch size for CCof and CC (see Figs. 3b and 4b), which
implies the decrease in speedup changes slower with respect to dynamic update
rate increases for larger batches. Whereas in BFS both speedup and update rate

GraphIn: An Online High Performance 329

Fig. 6. Effect of (a) vertex degree, (b) disjoint components and (c) depth value from
source vertex on the update rate in CCof, CC and BFS respectively

Fig. 7. Dual path execution vs. näıve streaming in incremental BFS using vertex depth
property for G2M32M, LiveJournal and Facebook graph

falls with increase in batch size (Fig. 5b) as the incremental computation affects
a larger portion of the graph with the increase in batch size causing the update
rate to drop.
(2) Performance implications of graph properties: To demonstrate how proper-
ties of the inconsistent vertices in an update batch affect the average runtime in
GraphIn, we have chosen graph properties: vertex degree (CCof), vertices with
disjoint components (CC) and vertex depth from the source (BFS). The rationale
behind choosing these properties is that they play a key role in the computation
of the corresponding static graph algorithm we are comparing against.

Clustering Coefficient (Vertex Degree): Figure 6a shows the change in the
update rate versus the fraction of vertices with degree greater than a certain
threshold (e.g. 750 for the Facebook graph) that are affected by the updates.
We can observe that the degree property does not have a dramatic effect on
the CCof update rate which remains relatively constant. This is because CCof
is a no-merge algorithm for both inserts and deletes to the graph and thus the
incremental runtime is independent of the vertex degree.

Connected Components (Disjoint Components): As shown in Fig. 6b, the
update rate for CC decreases as the fraction of edges inserted whose endpoints
belong to different components in the original graph is increased, with a max-
imum slowdown of 3.97× across all datasets. This happens because such edges
have endpoints in multiple components, meaning that there is a corresponding
edge in the component graph, as opposed to self edges where endpoints of an
edge fall in the same component. As described in Table 1, GraphIn reduces incre-
mental CC to static CC processing on the component graph and increasing the

330 D. Sengupta et al.

Fig. 8. STINGER comparison for CCof

number of vertices with disjoint components increases the size of the component
graph and subsequently, the incremental processing time.

BFS (Depth): From Fig. 6c we can observe that increasing the fraction of ver-
tices with depth threshold below 2 causes a sharp decline in the update rate. E.g.
in G1M16M even with a small increment of 10 % in inconsistent vertices below
the depth of 2 results in 29x decline in update rate. When more insertions and
deletions occur on these lower-depth vertices closer to the root vertex, it results
in the I-GAS loop making a much larger portion of the graph inconsistent with
each increment and hence the runtime increases sharply. Another observation
to make here is that the largest graphs with higher diameter values are affected
the most, e.g. LiveJournal, which has the maximum number of edges and the
maximum diameter among all input datasets has the largest max to min ratio
of update rate . For larger graphs with higher diameter the I-GAS loop iterates
through larger number of BFS levels with more work per iteration (large number
of edges) until the inconsistency vertex set becomes empty.

Benefits of property-based dual-path execution: Figure 7 shows how
GraphIn adapts to situations where the incremental processing performs worse
than static recomputation. The performance of incremental BFS for näıve (no
property checks) streaming falls relative to static processing beyond a threshold
fraction of vertices with depth threshold below 2. For G2M32M, LiveJournal and
Facebook this threshold fraction is 0.6, 0.1 and 0.1, respectively. This degrada-
tion in incremental performance is because of a larger number of updates to these
lower-depth vertices resulting in a larger portion of the graph becoming incon-
sistent incurring longer processing times. In such scenarios, GraphIn processes
the update batch with static recomputation, which ensures that the worst-case
performance of GraphIn is no worse than static recomputation. With dual path
execution we achieve a maximum speedup of 60× (Facebook input).

(3) Comparison with STINGER: As shown in Fig. 8, clustering coefficients [6]
using STINGER shows a max update rate of 1.32 million versus 8.7 million
updates per sec with GraphIn for the G1M16M case, which results in 6.6×
speedup in throughput. This is because unlike STINGER, which uses a single
edge-list based data structures for both static and incremental graph process-
ing, GraphIn’s hybrid data structure of edge-list for incremental updates and

GraphIn: An Online High Performance 331

compressed matrix format for static versions of the graph enables faster updates
as well as fast static computation on the clustering coefficient subproblem.

5 Related Work

Dynamic graph processing can be broken down into offline and online processing;
GraphIn is a framework designed to addresses the latter problem.

Offline Processing: Chronos [11], GraphScope [25], and TEG [9] represent
recent work in offline graph processing. Chronos supports incremental process-
ing on temporal graphs using a graph representation that places graph ver-
tex data from different versions together leading to good cache locality. Graph-
Scope proposes encoding for evolving graphs community discovery and anomaly
detection.

Online Processing: Continuous query processing over streaming updates [29]
incurs memory constraints and restricts keeping multiple versions of the evolv-
ing graph. GIM-V [27] proposes an incremental graph processing model based
upon generalized iterative matrix-vector multiplication. STINGER [7] defines
an efficient data structure to represent streaming graphs that enables fast, real-
time insertions and/or deletions to the graph. Unlike STINGER which uses a
single data structure for both static and dynamic graph analysis, GraphIn uses
a hybrid data structure that allows for incremental computation on edge lists
and a compressed format for static graph computation.

Static Graph Processing: Pregel [14], PowerGraph [10] and GraphLab [13]
are some of the distributed frameworks that work by mapping large graphs across
the combined memories of multiple machines. GraphChi [12] and X-Stream [19]
are recently proposed out-of-memory frameworks that handle graphs that don’t
fit into a single machine’s host memory. GraphReduce [22] framework can effi-
ciently process graphs that cannot fit into the limited GPU memory [20,21] by
mapping sub-graphs to the different memory abstractions of slow and fast mem-
ory [23]. These projects are complimentary to GraphIn, as they could be used
to implement the static component of GraphIn while I-GAS can be leveraged to
make these frameworks more dynamic.

6 Conclusion and Future Work

In this paper we present GraphIn, a high performance incremental graph process-
ing framework for time-evolving graphs. Using its novel programming model
called I-GAS, GraphIn incrementally computes the required graph properties
only for the affected subgraph and thereby eliminates redundant computation.
We further propose a user-tunable, property-based dual path execution optimiza-
tion to choose between an incremental and a static run to achieve the best perfor-
mance. Extensive experimental evaluations for a wide variety of graph inputs and
algorithms demonstrate that GraphIn achieves a throughput of up to 9.3 million

332 D. Sengupta et al.

updates/sec and over 400× speedup compared to static graph recomputation.
Using property-based dual-path execution GraphIn achieves up to 60× speedup
compared to a näıve streaming approach. Future work will look at extending
GraphIn to take advantage of on-node accelerators like Nvidia GPU [24] and
multi-node clusters handling extreme-scale datasets [17].

References

1. Email Statistics: http://tinyurl.com/o7pch5f
2. The University of Florida Sparse Matrix Collection: http://tinyurl.com/me4w55
3. Twitter Statistics: http://tinyurl.com/kcuhdcw
4. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a

database benchmark based on the facebook social graph. In: SIGMOD 2013, NY,
USA (2013)

5. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008

6. Ediger, D., Jiang, K., Riedy, J., Bader, D.: Massive streaming data analytics: a
case study with clustering coefficients. In: IPDPSW 2010, pp. 1–8 (2010)

7. Ediger, D., McColl, R., Riedy, J., Bader, D.: Stinger: high performance data struc-
ture for streaming graphs. In: HPEC, September 2012

8. Ediger, D., Riedy, J., Bader, D., Meyerhenke, H.: Tracking structure of streaming
social networks. In: IPDPSW 2011, May 2011

9. Fard, A., Abdolrashidi, A., Ramaswamy, L., Miller, J.: Towards efficient query
processing on massive time-evolving graphs. In: CollaborateCom, October 2012

10. Gonzalez, J.E., Low, Y., Gu, H., et al.: Powergraph: distributed graph-parallel
computation on natural graphs. In: OSDI 2012, Hollywood, CA. USENIX (2012)

11. Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen,
W., Chen, E.: Chronos: a graph engine for temporal graph analysis. In: EuroSys
(2014)

12. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: large-scale graph computation on
just a pc. In: OSDI 2012, Berkeley, CA, USA. USENIX Association (2012)

13. Low, Y., Bickson, D., Gonzalez, J., et al.: Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proc. VLDB Endowment 5(8),
716–727 (2012)

14. Malewicz, G., Austern, M.H., Bik, A.J., et al.: Pregel: a system for large-scale
graph processing. In: SIGMOD 2010, New York, NY, USA. ACM (2010)

15. McColl, R., Green, O., Bader, D.: A new parallel algorithm for connected compo-
nents in dynamic graphs. In: HiPC, December 2013

16. Murphy, R.C., Wheeler, K., Barrett, B., Ang, J.A.: Introducing the graph 500. In:
Cray Users Group (CUG) (2010)

17. Plimpton, S.J., Devine, K.D.: Mapreduce in mpi for large-scale graph algorithms.
Parallel Comput. 37(9), 610–632 (2011)

18. Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the
shortest-path problem. J. Algorithms 21(2), 267–305 (1996)

19. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing
using streaming partitions. In: SOSP 2013, New York, NY, USA. ACM (2013)

20. Sengupta, D., Belapure, R., Schwan, K.: Multi-tenancy on gpgpu-based servers.
In: VTDC 2013, New York, NY, USA, pp. 3–10. ACM (2013)

http://tinyurl.com/o7pch5f
http://tinyurl.com/me4w55
http://tinyurl.com/kcuhdcw

GraphIn: An Online High Performance 333

21. Sengupta, D., Goswami, A., Schwan, K., Pallavi, K.: Scheduling multi-tenant cloud
workloads on accelerator-based systems. In: SC 2014, NJ, USA. IEEE (2014)

22. Sengupta, D., Song, S.L., Agarwal, K., Schwan, K.: Graphreduce: processing large-
scale graphs on accelerator-based systems. In: SC 2015, NY, USA. ACM (2015)

23. Sengupta, D., Wang, Q., Volos, H. et al.: A framework for emulating non-
volatilememory systemswith different performance characteristics. In: ICPE 2015,
NY, USA (2015)

24. Slota, G.M., Rajamanickam, S., Madduri, K.: High-performance graph analytics
on manycore processors. In: IPDPS 2015 IEEE International, pp. 17–27, May 2015

25. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free
mining of large time-evolving graphs. In: KDD 2007, New York, NY, USA. ACM
(2007)

26. Sundaram, N., Satish, N., Patwary, M.M.A., et al.: Graphmat: high performance
graph analytics made productive. Proc. VLDB Endowment 8(11), 1214–1225
(2015)

27. Suzumura, T., Nishii, S., Ganse, M.: Towards large-scale graph stream processing
platform. In: WWW 2014 Companion, Republic and Canton of Geneva, Switzer-
land (2014)

28. Wilson, C., Boe, B,. Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in
social networks and their implications. In: EuroSys 2009, New York, NY, USA.
ACM (2009)

29. Zeitler, E., Risch, T.: Massive scale-out of expensive continuous queries. PVLDB
4(11), 1181–1188 (2011)

Efficient Large Outer Joins over MapReduce

Long Cheng1(B) and Spyros Kotoulas2

1 cfaed, TU Dresden, Dresden, Germany
long.cheng@tu-dresden.de

2 IBM Research, Dublin, Ireland
spyros.kotoulas@ie.ibm.com

Abstract. Big Data analytics largely rely on being able to execute large
joins efficiently. Though inner join approaches have been extensively eval-
uated in parallel and distributed systems, there is little published work
providing analysis of outer joins, especially on the extremely popular
MapReduce platform. In this paper, we studied several current algo-
rithms/techniques used in large outer joins. We find that some of them
could meet performance bottlenecks in the presence of data skew, while
others could be complex and incur significant coordination overheads
when applied to the MapReduce framework. In this light, we propose a
new algorithm, called POPI (Partial Outer join & Partial Inner join),
which targets for efficient processing large outer joins, and most impor-
tant, is lightweight and adapted to the processing model of MapReduce.
We implement our method in Pig and evaluate its performance on a
Hadoop cluster of up to 256 cores and datasets of 1 billion tuples. Experi-
mental results show that our method is scalable, robust and outperforms
current implementations, at least in the case of high skew.

1 Introduction

In light of the explosion of available data and the increasing connectivity between
data systems, the infrastructure for scalable data analytics is as relevant as
ever. An essential operation in this domain is the join, which facilitates the
combination of records based on a common join key. Since this data-intensive
operation can incur significant costs, improving the efficiency of this operation
would have a significant impact on the performance of applications.

Outer Join. Although distributed inner join algorithms have been widely stud-
ied [1,2], there has been relatively little done on the topic of outer joins. In fact,
outer joins are common in complex queries and widely used such as in OLAP
applications. For example, in online e-commerce, customer ids are often left outer
joined with a large transaction table for analyzing the purchase patterns [3]. In
contrast to inner joins, outer joins do not discard tuples from one (or both)
table(s) that do not match with any tuple in the other table. As a result, the
final join results contain not only the matched part but also the non-matched
part. This difference makes outer join implementations significantly different
from inner joins in a distributed system and challenge current techniques [4].
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 334–346, 2016.
DOI: 10.1007/978-3-319-43659-3 25

Efficient Large Outer Joins over MapReduce 335

MapReduce. As applications grow in scale, joins on multiple CPUs and/or
machines is becoming important. Compared to conventional parallel DBMSs,
MapReduce (over Hadoop) integrates parallelization, fault tolerance and load
balancing in a simple programming framework, and can be easily run in a large
computing center or cloud, making it extremely popular for large-scale data
processing. In fact, most vendors (such as IBM) provide solutions, either on-
premise or on the cloud, to compute on massive amount of structured, semi-
structured and unstructured data for their business applications.

In this light, studying analytic techniques on this platform becomes very
important. In fact, join operations are sometimes hard in MapReduce [5]. Unlike
implementations in DBMS’es, complex designs for joins in MapReduce can eas-
ily lead to poor performance: the overhead of starting a communication phase
between partitions is very high. Namely, we have to start a new job and re-read
(part of) the data. In addition, the MapReduce paradigm is highly sensitive to
the presence of data or computation skew: since coordination is infrequent and
very costly, there are fewer opportunities to re-balance workloads across nodes.

In comparison to most of current studies focusing on inner joins over MapRe-
duce [2,5], in this work, we focus on the design and evaluation of outer joins on
this platform. We summarize our contributions as following:

• We introduce several outer join implementations which are applied in MapRe-
duce and discuss their possible performance issues.

• We discuss the possibility to apply some advanced join strategies used in
parallel DBMSs to outer joins over MapReduce. We find that, they could
either meet performance issues or be complex in implementations and thus
bring in high overhead in terms of the number of MapReduce jobs launched.

• We propose a new approach, called POPI (Partial Outer join & Partial Inner
join), which targets efficient outer joins adapted to MapReduce.

• We implement the various approaches on Apache Pig. Our experimental
results show that our method is robust and can perform better than cur-
rent implementations in MapReduce, at least in the presence of high skew.

The rest of this paper is organized as follows: In Sect. 2, we shortly introduce
the MapReduce framework and describe current outer join implementations over
it. In Sect. 3, we discuss some advanced strategies for large data outer joins in
MapReduce. We describe our new approach in Sect. 4 and present the evaluation
in Sect. 5. We report on related work in Sect. 6 while we conclude the paper in
Sect. 7.

2 MapReduce and Outer Joins

Overview. MapReduce [6] is designed to operate over key/value pairs. Specifi-
cally, each Map function receives a key/value pair and emits a set of key/value
pairs. All key/value pairs produced during the map phase are grouped by their
key and passed to reduce phase. During the reduce phase, a Reduce function is
called for each unique key, processing the corresponding set of values.

336 L. Cheng and S. Kotoulas

Though MapReduce has various advantages on large data processing, it
entails more overhead compared to traditional DBMSs during execution: This
platform sacrifices per-node efficiency, for scalability [5]. Namely, performance
loss on a single node can usually be compensated by simply employing more
computation resources. Nevertheless, MapReduce has no way of automatically
re-balancing load, and any operation that changes the distribution of data should
only be performed in the context of a new job (which typically incurs a coordi-
nation overhead of tens of seconds, if not minutes). Thus, achieving good load-
balancing in data/join processing is critical.

Current Methods for MapReduce. Currently, three outer join methods
are commonly applied in MapReduce implementations: hash-based, replication-
based and histogram-based outer joins. We focus on left outer joins (��) here
since they are the most common ones and their implementations would be anal-
ogous for right outer joins. In the following, we focus on a single outer join
operation between two relations R and S. We assume both R and S are <k, v>
pairs with |R| < |S| and k is the join key. For simplicity, we also assume that R
is uniformly distributed and S is skewed for all of our examples, unless otherwise
specified.

Hash-Based Outer Join. Similarly to inner join implementations, this app-
roach can be done in a single MapReduce job. In the map phase, each map task
works on either R or S. To identify which relation an input record is from, each
map task tags the record with its originating table, and outputs the extracted
join key and the tagged record. For example, for a record < k1, v1 > from S, the
output will be < k1, (s, k1, v1) > pair, where s is the table tag. Then, the frame-
work brings together records sharing the same key and eventually feed them to
a reducer, based on the hash value of their keys. In the reduce phase, the reduce
function separates the input records into two sets according to their table tags
and then performs a cross-product between each record in these sets and output
the final results.

Normally, this scheme can achieve good performance under ideal balancing
conditions for distributed systems [1]. However, when the processed records has
significant skew, number of records will be flushed to a small part of reducers
and cause hotpots. Such issues impact system scalability which will be reduced
as employing new nodes1 cannot yield improvements - the skew records will still
be distributed to the same reducers.

Replication-BasedOuter Join.Compared to the replication-based inner joins
containing only a mapreduce job, outer joins within this scheme is significantly
different. It is composed by two distinct join stages in an abstract level2: (1) A
map-side inner join between R and S. Namely, all records of the small table R is
retrieved from the DFS and then each map task uses a main-memory hash table to

1 Note that, in terms of terminology, when we talk about a node, we mean a computing
unit (e.g., a Reducer in MapReduce) in this work.

2 The detailed process about how to identity where a record comes from is the same as
the hash-based approach described above, thus here we do not present it again.

Efficient Large Outer Joins over MapReduce 337

join S with R, formulating the intermediate results T ; and (2) A reduce-side outer
join between R and T , which is done in the same way as the hash-based method
described above. Namely, all the records of R and T will be grouped based on their
keys, and then fed to reducers for the local outer joins.

The replication in this method can reduce load imbalance, as each map task
has the same workloads in the first phase. Nevertheless, this operation is costly
and only suitable for small-large outer joins [3]. Moreover, even if R is small,
the cardinality of the intermediate results T could be large when S is highly
skewed [4]. This could make tasks in the second stage very costly and conse-
quently decreases the whole performance.

Histogram-Based Outer Join. As data skew is common in most applications,
efficient approaches to handle this kind of skew becomes critical for the join
performance. Apache Pig has some built-in resistance to skewed joins, a typical
method is using histogram [7]. Namely, firstly, a histogram of key popularity is
calculated, which can be done with a single MapReduce job. Then, the keys are
re-arranged and the jobs are distributed based on that. For instance, if we have
the following histogram k1 = 19, k2 = 20, k3 = 18, k4 = 60, and we have two
reducers, instead of splitting the keys in a hash-based way (i.e., k1 and k3 go to
reducer 1, k2 and k4 go to reducer 2), the workload will be balanced by sending
k1, k2 and k3 to reducer 1 and k4 to reducer 2. However, this does not work with
extreme skew. As shown in [8], if a key is overly popular, the single reducer that
it will be sent to will still become a hotspot.

3 Candidate Strategies for MapReduce

In this section, we present some advanced strategies studied in parallel databases
and discuss about the possibility to apply them to outer joins in MapReduce.

3.1 The PRPD Method

Xu et al. [9] propose an algorithm named PRPD (Partial Redistribution & Par-
tial Duplication) for inner joins. In their implementation, S is partitioned into
two parts: (1) a locally-retained part Sloc, which comprises high skew items
and which is not involved in the redistribution phase, and (2) the redistributed
part Sredis which comprises the records with low frequency of occurrence and
is redistributed using a common hash-based implementation. The relation R is
also divided into two parts: (1) the duplicated part Rdup, which contain the keys
in Sloc, which will be broadcast to all other nodes, and (2) the redistributed part
Rredis - the remaining part of R that is to be hash redistributed. Then, the final
inner join is composed by Rredis �� Sredis and Rdup �� Sloc.

This method presents an efficient way to process the high skew records (i.e.
the ones with keys that are highly repetitive). All these records of S are not
transferred at all, instead, a small number of records containing the same keys
from R are broadcast. The results for this approach show significant speedup in
the presence of data skew. Because PRPD is a hybrid method combining both

338 L. Cheng and S. Kotoulas

the hash and duplication-based join scheme, we can simply use outer joins to
replace the corresponding inner joins in the case of MapReduce. Namely, we have

R �� S = (Rredis �� Sredis)
⋃

(Rdup �� Sloc) (1)

However, this implementation could meet the same performance issue as the
duplication-based approach described above: the cardinality of the intermedi-
ate results of Rdup �� Sloc could be large, because Sloc here is highly skewed,
which means that a naive PRPD algorithm cannot be applied to outer joins in
MapReduce directly.

3.2 The PRPS Approach

Cheng et al. [10] propose an efficient algorithm for inner joins, named as PRPS
(further refined to PRPQ in their work). They use a semijoin-alike way to handle
skewed data, inspiring us to apply it to the outer joins of Rdup �� Sloc in Eq. 1.

In this case, we divide the detailed process into two steps: (1) The unique
keys of Sloc are extracted and we perform an outer join with Rdup; and (2) The
matched part of Rdup is joined with Sloc (inner join), which is union-ed with the
non-matching part of Rdup to formulate the outputs. Namely,

Rdup �� Sloc = [Rdup �� πk(Sloc)]� �� Sloc]
⋃

[Rdup �� πk(Sloc)]⊥ (2)

where the symbol � and ⊥ means the matched and non-matched results of a
outer join respectively.

We can see that this PRPS outer join method (referred as PRPS-O in the
following) will be efficient on skew handling in MapReduce. The reason is that
the large part of skewed records in S is still locally kept and just a small number
of unique keys are extracted and transferred, which can be executed with two
extra jobs in MapReduce. Nevertheless, as we describe later, we can use a simpler
and more efficient method for the outer join implementation.

3.3 Complex Techniques

Other approaches (e.g., [4]) are also very efficient on distributed outer joins.
They focus on a fine grained operation of per-node data movement (e.g., peer-
to-peer communication based on requirements) to minimizing network commu-
nication during implementation. We believe that these algorithms can be coded
in MapReduce, however, the number of their execution jobs could be large, more
than the PRPS-O method at least. In this case, their implementations could be
costly, not only because of their complex data flows, but also the overheads of
MapReduce as we described. Actually, in our later evaluation, we have shown
that, with two more jobs, PRPS-O takes around 80 s more on runtime, compared
to our new method. Thus, we do not consider the detailed implementation and
evaluation of these complex techniques in this work.

Efficient Large Outer Joins over MapReduce 339

4 Our Approach

In this section, we present our POPI method and its implementation over Pig [7].

4.1 The POPI Algorithm

The design principles of POPI are: (1) large scale redistribution of skewed records
should be limited, so as to avoid load balancing problems; and (2) duplication-
based outer join operations should be avoided to the extend possible, in order to
simplify the implementation and also reduce possible redundant communication
and computation. Based on this, our algorithm adopts the same partitioning
approach as PRPD [9]. We process the partitioned records as follows:

R �� S = (Rredis �� Sredis)
⋃

(Rdup �� Sloc) (3)

Namely, the skewed part is executed as an inner join directly. For clarification,
we first give a brief proof of the correctness of Eq. 3 here:

Proof sketch: Assume that L is the set of skewed keys of S, then we
have that: (1) L is extracted from the skewed part of S, namely, there is
L = πb(Sloc); (2) because the partitioning of R is based on L, namely, a record
of R, < a, x >∈ Rdup if only if the key meets the condition a ∈ L. Namely, every
key of Rdup appears in L. In this condition, there will be no non-matched results
in Rdup during its outer join execution with Sloc. Therefore, the outer join can
be represented as an inner join. Note that, even if a skewed key in S does not
appear in R, the inner join between Rdup and Sloc will still be valid here, since
the final left outer join results depend on the match conditions of R only. �

We can see that our outer join implementation is composed by an outer join
and an inner join, which is different from a naive transformation, such as that
in Eq. 1, in which there are two outer join operations involved. In the meantime,
compared to the PRPS-O as Eq. 2, our approach also greatly simplifies the outer
join implementations (with two jobs less over Pig for a left outer join). That is
also the motivation behind the naming of our approach, POPI (Partial Outer
join & Partial Inner join), since the processing between the skewed part and
non-skewed part is different from current approaches and allows us to replace an
outer join with an inner join.

Inheriting the advantages of the same data partitioning approach as PRPD,
we believe that POPI will be robust and efficient on large outer joins in MapRe-
duce. The reason is that we only need to transfer a small part of keys/records
(via DFS), rather than the large number of records in S. Moreover, this method
will be more efficient than the PRPS-O algorithm, as the number of MapReduce
jobs has been reduced.

Following above, with regard to the case of skewed-skewed outer joins (i.e., the
relation R is also skewed), we partition R into three parts: the Rdup and Rredis

as we described previous, as well as the locally kept part Rloc, which contains all
the skewed records in R. Correspondingly, records in S is partitioned into three

340 L. Cheng and S. Kotoulas

parts as well, the Sloc, Sredis and the duplicated part Sdup, in which records
contains join key belongs to Rloc. Then, the final outputs will be composed by
three joins: a left outer join for the non-skew part records, namely Rredis ��Sredis,
and two inner joins for the skewed records, namely Rdup �� Sloc and Rloc �� Sdup.
In this case, the outer join R �� S can be presented as:

(Rredis �� Sredis)
⋃

(Rdup �� Sloc)
⋃

(Rloc �� Sdup) (4)

As the uniform-skew join is the core part of a join [9,11], we will focus on such
kind of outer joins in our subsequent implementation and evaluation.

4.2 Implementation

We present a general implementation of our method using Pig Latin [12], a lan-
guage that can be compiled to produce MapReduce programs used with Hadoop.
We have three main advantages using this language: (1) It provides a concise
notation for algorithms. (2) The outer join methods, such as hash, replicated
and histogram, have been integrated in Pig, allowing us for a fair comparison.
(3) In a larger pipeline of operations, we can avail of optimisations that are
already implemented in Pig, such as performing multiple operation within a job,
re-using partitioning of data or executing multiple jobs in parallel.

The detailed implementation of our method in Pig is shown in Algorithm 1.
There, R, S, k, t refer to the left table of the outer join, the right side of the
outer join, the sampling rate (referred to as samplingPercentage later) and the
number of chosen top popular keys (refer as samplingThreshold) respectively.
Initially, we sample the large table S (line 3), group by its join keys (line 4) and
count the number of occurrences of sampled key (line 5). Then we order the keys
and pick up the most popular keys based on the threshold t (lines 6–7). After
that, the tables R and S are partitioned into two parts respectively based on
the skewed keys (lines 9–13). With the partitioned data, we then start the outer
joins (line 15) and inner joins (line 16). Finally, the outputs of the outer join are
composed by the results from both parts (line 18).

5 Experimental Evaluation

5.1 Experiment Setup

Each computation unit of our experimental system has two 8-core Intel Xeon
CPU E5-2690 processors running at 2.90 GHz, resulting in a total of 16 cores per
physical node. Each node has 32 GB of RAM and a single 128 GB SSD local disk
and nodes are connected by Infiniband. The operating system is Linux kernel
version 2.6.32-279 and the software stack consists of Hadoop version 1.2.1, Pig
version 0.14.0 and Java version 1.7.0 25.

The evaluation is implemented on two relations R and S. We fix the car-
dinality of R to 64 million records and S to 1 billion records. Because data in

Efficient Large Outer Joins over MapReduce 341

Algorithm 1. POPI Outer Joins
1: DEFINE Skew resistant outer join(R,S,k,t)
2: RETURNS Result {
3: SS = SAMPLE S k; //sample S
4: SG = GROUP SS BY S::key;
5: SC = FOREACH S2 GENERATE group, COUNT(SS) as c;
6: OrderedKey = ORDER SC BY c DESC;
7: SkewedKey = LIMIT OrderedKey t;
8:
9: SS = JOIN S BY key LEFT, SkewedKey BY group USING ’replicated’;

10: SPLIT SS INTO S loc IF SkewedKey::group is not null, S red IF Skewed-
Key::group is null;

11:
12: RS = JOIN R BY key LEFT, SkewedKey BY group USING ’replicated’;
13: SPLIT RS INTO R dup IF SkewedKey::group is not null, R dis IF Skewed-

Key::group is null;
14:
15: JA = JOIN R dis BY R::key LEFT, S dis by S::key;
16: JB = JOIN S loc BY S::key, R dup BY R::key USING ’replicated’;
17:
18: $Result = UNION JA, JB; }

warehouses is commonly stored following a column-oriented model, we set the
data format to <key, value> pairs, where both the key and value are 8-byte
integers. We assume that R and S meet the foreign key relationship and when S
is uniform, the tuples are created in such a way that each of them matches the
tuples in the relation R with the same probability. Meanwhile we only add skew
to S, following the Zipf distribution. The skew factor is set to 0 for uniform, 1 for
the low skew (top ten popular keys appear 14 % of the time) and 1.4 for high skew
dataset (top ten appear 68 %). Joins with such characteristics and workloads are
common in data warehouses and column-oriented architectures [10].

In all experiments, we set the following system parameters: map.tasks.maxi-
mum to 16 and reduce.tasks.maximum to 8 and the rest of the parameters are
left to the default values. The implementation parameters of our method are
configured as follows: samplingPercentage is set to 10, samplingThreshold to
4000 as default. We measure runtime as the elapsed time from job submission
to the job being reported as finished.

5.2 Experimental Results

Runtime. We focus on examining the runtime of three algorithms: the hash-
based algorithm (referred to Hash), histogram-based method (referred to as
Skewed) and the proposed POPI approaches. Since the first two methods have
been integrated in Pig, we just simple use them directly. Though Pig also pro-
vides the replicated implementation, we do not compare with it here, since it is
limited by the fact that the replicated relation needs to fit in memory [4].

342 L. Cheng and S. Kotoulas

170

316 298

213

405
437

733 731

361

0

200

400

600

800

1000
Skew = 0
Skew = 1
Skew = 1.4

R
un

tim
e

(s
)

Algorithm / Skew

POPI

Skewed

POPI
Skewed

Hash
Hash

POPI

Skewed

Hash

Fig. 1. Runtime of each algorithm.

298

181 193

437

243

378 361

208

288

0

200

400

600

800

1000
Skew = 0
Skew = 1
Skew = 1.4

R
un

tim
e

(s
)

Algorithm / Skew

(PRPS-O)

(POPI)

(PRPS-O)

(POPI)

POPI
POPI

(PRPS-O)

(POPI)

POPI

Fig. 2. Compare POPI and PRPS-O.

We implement our tests using over 128 cores (8 nodes) and Fig. 1 shows
the runtime of each algorithm. It can be seen that: (1) When S is uniform,
Hash is more faster than the other two algorithms. The possible reason is the
later two methods have extra-sampling operation and also the overhead of more
MapReduce jobs. (2) With low skew, all the runtime increases, which is out of
our expectation. As skew handling techniques have been adopted in the later two
algorithms, the possible reason could be that not all the highly skewed records
were sampled and there remains serious skew in both executions. (3) With high
skew, our method becomes the best, which means that, the POPI algorithm can
efficiently handle high skew at least.

We also compare the performance of POPI and PRPS-O. The results are
shown in Fig. 2. There, the algorithm within “()” means that its sampling oper-
ation has been removed. Instead, the top popular keys are stored in a flat file
and read as the skewed keys during executions. The reason to do so is for a
more precise comparison: the join performance is sensitive to the sampled skew
keys and operations like sampling cannot guarantee we always get the skewed
keys. In addition, in most data processing pipelines, there is ample opportunity
to extract this information as a side-effect of previous jobs. It can be observed
that the (POPI) implementation is always faster than the original POPI, which
means that the sampling operation could be costly and the sampled skewed keys
are also critical for the performance. Moreover, the (POPI) is always faster than
(PRPS-O), indicating the more jobs brought by complex implementations in
PRPS-O are also costly, about 80 s out of 288 s in a high skewed dataset.

Load Balancing. We also track the detailed time spent on each reducer for
each algorithm in the presence of data skew. Under low skew, the results are
shown in Fig. 3. It can be seen that there are relatively small discrepancies for
all the algorithms. The possible reason is that Hash can not handle data skew
and the Skewed and POPI algorithm can not fully catch the skew keys because
of their huge number. Furthermore, Fig. 4 shows the results in the condition
of high skew. There, Hash is not balanced at all, in comparison, the Skewed
method and POPI are much better. We should highlight that POPI achieves
excellent load-balancing here. The reason could be that the number of skewed

Efficient Large Outer Joins over MapReduce 343

0 10 20 30 40 50 60
50

100

150

200

250

300

R
un

tim
e

(s
ec

)

Reducer No.

Hash
Skewed
POPI

Fig. 3. Runtime of reducer in Skew = 1.

0 10 20 30 40 50 60
0

200

400

600

800

R
un

tim
e

(s
ec

)

Reducer No.

Hash
Skewed
POPI

Fig. 4. Runtime of reducer in Skew = 1.4.

0 50 100 150 200 250 300
100

200

300

400

500

600

700

R
un

tim
e

(s
ec

)

Number of cores

Hash
Skewed
POPI

Fig. 5. Scalablity in Skew = 1.

0 50 100 150 200 250 300
200

300

400

500

600

700

800

900

R
un

tim
e

(s
ec

)

Number of cores

Hash
Skewed
POPI

Fig. 6. Scalablity in Skew = 1.4.

key is relative small in the condition of high skew and most of the popular keys
are extracted, even when we only sample a small part of the input. Moreover,
our runtime is much smaller than the Skewed method, which demonstrates the
efficiency of this new approach.

Scalability. We finally test the scalability of our algorithm by varying the num-
ber of processing cores. We implement our test on the system from 2 nodes (32
cores) to 16 nodes (256 cores) over the skewed datasets. The detailed time-cost is
shown in Figs. 5 and 6. We can see that the Skewed method and our algorithms
generally scales well with the number of cores under low skew. However, they are
slower than Hash. The reason could be the overhead of their implementations on
MapReduce since Hash has only a single mapreduce job. This result is greatly
different from the conditions when using other programming languages (e.g.,
X10 in [4]), where the Hash method is slower. In such scenarios, we believe that
the hash-based approach could still be a better choice for MapReduce, under
low skew. In comparison, with high skew, our method scales well while the other
two are not. More importantly, our approach is significantly faster. Combining
this with the good load balancing we have illustrated in Fig. 4, it can be seen
that our method could be more suitable for the large outer joins in the presence
of high skew.

344 L. Cheng and S. Kotoulas

6 Related Work

Several approaches have been proposed to improve the performance of joins over
MapReduce [13], regardless, they have modified the basic MapReduce frame-
work and cannot be readily used by existing platforms like Hadoop. Though
the work [5] presents an extensive implementation on joins in MapReduce, they
focus on execution profiling and performance evaluation, but not for robust join
algorithms in the presence of big data.

As data skew has significant impact on distributed join processing, there
has been in-depth research on skew handling in parallel and distributed
DBMSs [1,3,4,9,10]. However, as we have explained, their methods could either
have performance issues or be complex in MapReduce implementations. In com-
parison, our POPI algorithm is simple on implementation and also shown to be
efficient.

Many algorithms have been introduced on skew handling for joins over
MapReduce [14], regardless, most of them focus on inner joins, as opposed to
consider the challenges on the complexity of outer join implementations. More-
over, several efforts in designing high level query languages on MapReduce, such
as Pig [7] and Hive [15], have employed advanced mechanisms on skew handling
in outer joins, however, as we have described, sometimes they could be not very
efficient. Additionally, though some platforms (e.g., Stratosphere [16]) have pro-
vided efficient techniques on big data analytics, they focus on creating optimized
plans of executing jobs, in contrast to the detailed implementation of a single
operation as we studied in this work.

Recently, Bruno et al. [17] present three SkewJoin transformations to miti-
gate the impact of data skew in a distributed join operation. To prevent an outer
join operator from generating null values, they partition the skewed tuples (e.g.,
in S) in a round-robin way so that each node can see at least one such tuple.
In comparison, our approach is more light-weighted, since we do not need to
repartition the skewed tuples, the number of which is always huge. Even when
that some skewed tuples do not appear on some nodes, we will not generate null,
as we use an inner join operation for the skewed tuples in our approach.

The PRPD algorithm [9] is a very popular method adopted by many compa-
nies (e.g., Teradata [9], Microsoft [17] and Oracle [18]). Nevertheless, as we have
analyzed, PRPD cannot be applied to outer joins directly. The underlying data
partitioning of our method is the same as PRPD, both are based on the skewed
keys, therefore, the statistical information of data skew that is collected by the
current systems using PRPD can be applied to POPI directly. This means that
POPI can be used to extend the join implementations of current systems (or over
current platforms like MapReduce [6] and Spark [19]) and consequently simplify
the general executions of data queries. For example, skew statistics on the join
keys (a, b) for the inner join implementation R(a, x) �� S(b, y) can be applied to
the implementation of R(a, x) �� S(b, y) directly, without any modifications for
the underlying join patterns.

Efficient Large Outer Joins over MapReduce 345

7 Conclusions

In this paper, we focus on one data-intensive operation - outer joins - over
the MapReduce platform. We have described current applied techniques and
discussed the potential performance issues in the condition of using current
advanced methods from parallel databases. Based on that, we propose our POPI
algorithm for efficient large-scale data outer joins over MapReduce. We describe
the detailed design and present the evaluation over a Hadoop cluster and Pig.
We show that our new method is simple to implement. In the meantime, the
experiment results also show that POPI is scalable, robust and can perform
better compared with current implementations, at least in the case of high skew.

Acknowledgments. This work is supported by the German Research Foundation
(DFG) within the Collaborative Research Center SFB 912 (HAEC) and in Emmy
Noether grant KR 4381/1-1 (DIAMOND).

References

1. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35(6), 85–98 (1992)

2. Li, F., Ooi, B.C., Özsu, M.T., Wu, S.: Distributed data management using MapRe-
duce. ACM Comput. Surv. 46(3), 31 (2014)

3. Xu, Y., Kostamaa, P.: A new algorithm for small-large table outer joins in parallel
DBMS. In: ICDE, pp. 1018–1024 (2010)

4. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Robust and efficient
large-large table outer joins on distributed infrastructures. In: Silva, F., Dutra, I.,
Santos Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 258–269. Springer,
Heidelberg (2014)

5. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., et al.: A comparison of join
algorithms for log processing in Map Reduce. In: SIGMOD, pp. 975–986 (2010)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Gates, A.F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S.M.,
Olston, C., Reed, B., Srinivasan, S., Srivastava, U.: Building a high-level dataflow
system on top of Map-Reduce: the Pig experience. PVLDB 2(2), 1414–1425 (2009)

8. Kotoulas, S., Urbani, J., Boncz, P., Mika, P.: Robust runtime optimization and
skew-resistant execution of analytical SPARQL queries on pig. In: Cudré-Mauroux,
P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X.,
Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I.
LNCS, vol. 7649, pp. 247–262. Springer, Heidelberg (2012)

9. Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins in
shared-nothing systems. In: SIGMOD, pp. 1043–1052 (2008)

10. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Robust and skew-
resistant parallel joins in shared-nothing systems. In: CIKM, pp. 1399–1408 (2014)

11. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join
algorithms for multi-core CPUs. In: SIGMOD, pp. 37–48 (2011)

12. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: SIGMOD, pp. 1099–1110 (2008)

346 L. Cheng and S. Kotoulas

13. Jiang, D., Tung, A., Chen, G.: Map-Join-Reduce: toward scalable and efficient data
analysis on large clusters. TKDE 23(9), 1299–1311 (2011)

14. Liao, W., Wang, T., Li, H., Yang, D., Qiu, Z., Lei, K.: An adaptive skew insensitive
join algorithm for large scale data analytics. In: Chen, L., Jia, Y., Sellis, T., Liu,
G. (eds.) APWeb 2014. LNCS, vol. 8709, pp. 494–502. Springer, Heidelberg (2014)

15. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive: a warehousing solution over a Map-Reduce framework.
PVLDB 2(2), 1626–1629 (2009)

16. Alexandrov, A., Bergmann, R., Ewen, S., Freytag, J.C., Hueske, F., Heise, A., Kao,
O., Leich, M., Leser, U., Markl, V., et al.: The stratosphere platform for big data
analytics. VLDB J. 23(6), 939–964 (2014)

17. Bruno, N., Kwon, Y., Wu, M.C.: Advanced join strategies for large-scale distributed
computation. PVLDB 7(13), 1484–1495 (2014)

18. Bellamkonda, S., Li, H.G., Jagtap, U., Zhu, Y., Liang, V., Cruanes, T.: Adaptive
and big data scale parallel execution in Oracle. PVLDB 6(11), 1102–1113 (2013)

19. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI, pp. 15–28 (2012)

Cluster and Cloud Computing

Slurm-V: Extending Slurm for Building Efficient
HPC Cloud with SR-IOV and IVShmem

Jie Zhang(B), Xiaoyi Lu, Sourav Chakraborty,
and Dhabaleswar K. (DK) Panda

Department of Computer Science and Engineering,
The Ohio State University, Columbus, USA

{zhanjie,luxi,chakrabs,panda}@cse.ohio-state.edu

Abstract. To alleviate the cost burden, efficiently sharing HPC cluster
resources to end users through virtualization is becoming more and more
attractive. In this context, some critical HPC resources among Virtual
Machines, such as Single Root I/O Virtualization (SR-IOV) enabled Vir-
tual Functions (VFs) and Inter-VM Shared memory (IVShmem) devices,
need to be enabled and isolated to support efficiently running multiple
concurrent MPI jobs on HPC clouds. However, original Slurm is not
able to supervise VMs and associated critical resources, such as VFs and
IVShmem. This paper proposes a novel framework, Slurm-V, which
extends Slurm with virtualization-oriented capabilities such as job sub-
mission to dynamically created VMs with isolated SR-IOV and IVSh-
mem resources. We propose several alternative designs for Slurm-V:
Task-based design, SPANK plugin-based design, and SPANK plugin over
OpenStack-based design, to manage and isolate IVShmem and SR-IOV
resources for running MPI jobs. We evaluate these designs from aspects
of startup performance, scalability, and application performance in differ-
ent scenarios. The evaluation results show that VM startup time can be
reduced by up to 2.64X through snapshot scheme in Slurm SPANK plu-
gin. Our proposed Slurm-V framework shows good scalability and the
ability of efficiently running concurrent MPI jobs on SR-IOV enabled
InfiniBand clusters. To the best of our knowledge, Slurm-V is the first
attempt to extend Slurm for the support of running concurrent MPI
jobs with isolated SR-IOV and IVShmem resources. The capabilities of
Slurm-V can be used to build efficient HPC clouds.

1 Introduction

To meet the increasing demand for computational power, HPC clusters have
grown tremendously in size and complexity. Efficient sharing of such HPC
resources is becoming more important to achieve faster turnaround time and
lower the cost per user. Furthermore, a large number of users experience large
variability in workloads depending on business needs, which makes predicting

This research is supported in part by National Science Foundation grants #CNS-
1419123, #IIS-1447804, #ACI-1450440, and #CNS-1513120.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 349–362, 2016.
DOI: 10.1007/978-3-319-43659-3 26

350 J. Zhang et al.

the required resources for future workloads a difficult task. Therefore, virtualized
HPC clusters can be an attractive solution that can offer on-demand resource
acquisition, high configurability while delivering near bare-metal performance at
a low cost.

While virtualization technology has come a long way since its inception,
achieving near-native performance for latency-critical HPC application remains
a challenge to this date. A significant bottleneck exists in the virtualized I/O
subsystem, which is one of the biggest hindrances to large scale adoption of vir-
tualization in the HPC community. The recently introduced Single Root I/O
Virtualization (SR-IOV) [3] technology for InfiniBand and High Speed Ethernet
is quickly changing the landscape by providing native I/O virtualization capa-
bilities [12]. Through SR-IOV, a single physical device, or a Physical Function
(PF), can be presented as multiple virtual devices, or Virtual Functions (VFs).
However, our previous studies [10] have shown that SR-IOV lacks support for
locality-aware communication, which leads to performance overheads for inter-
VM communication within the same physical node. In this context, Inter-VM
Shared Memory (IVShmem) [15] has been proposed and can be hot-plugged to
a VM as a virtualized PCI device to support shared memory backed intra-node-
inter-VM communication. The performance improvements enabled by SR-IOV
and IVShmem have contributed to their adoption by the HPC community. For
example, the MVAPICH2 MPI library is able to take advantage of SR-IOV and
IVShmem to deliver near-native performance for MPI applications [9,10,18].

Fig. 1. Different scenarios of running MPI jobs
over VMs on HPC cloud

Fig. 2. Slurm architecure

1.1 Motivation

For improved flexibility and resource utilization, it is important to manage and
isolate virtualized resources of SR-IOV and IVShmem to support running multi-
ple concurrent MPI jobs. As this requires knowledge of and some level of control
over the underlying physical hosts, it is difficult to achieve this with the MPI

Slurm-V: Extending Slurm for Building Efficient HPC 351

library alone, which is only aware of the virtual nodes and resources inside.
Thus, extracting the best performance from virtualized clusters require support
from other middleware like job launchers and resource managers, which have a
global view of the VMs and the underlying physical hosts. Figure 1 illustrates
three possible scenarios of running MPI jobs over VMs in shared HPC clus-
ters. Exclusive Allocation for Sequential Jobs (EASJ): Users exclusively
allocate the physical nodes and add dedicated SR-IOV and IVShmem devices
for each VM to sequentially run MPI jobs. This scenario requires co-resident
VMs select different Virtual Functions, like VF1 and VF2, and add virtual-
ized PCI devices mapping to the same IVShmem region, like IVShmem-1 as
shown in Fig. 1. Exclusive Allocation for Concurrent Jobs (EACJ): Users
get exclusive allocations, but multiple IVShmem devices, like IVShmem-1 and
IVShmem-2 in Fig. 1 need to be added to each VM for multiple MPI jobs run-
ning concurrently. Because each MPI job at least needs one IVShmem device on
one host to support Inter-VM shared memory based communications. Shared-
hosts Allocation for Concurrent Jobs (SACJ): In shared HPC clusters,
different users might allocate VMs on the same physical node. Each VM needs
to have a dedicated SR-IOV virtual function, like VF1 to VF4. And IVShmem
devices in different users’ VMs need to point to different shared memory regions
on the physical node, like IVShmem-1 and IVShmem-2 in Fig. 1.

Unfortunately, to the best of our knowledge, none of the currently available
studies on resource managers such as Slurm [6,11,16] are SR-IOV and IVShmem
aware. Therefore, they are not able to handle the above three scenarios of running
MPI jobs. Moreover, one of the major contributors to the increasing popularity
of virtual cluster computing is OpenStack [2]. It provides scalable and efficient
mechanisms for creation, deployment, and reclamation of VMs on a large number
of physical nodes. This offers us with further optimization opportunities - by
integrating OpenStack with Slurm, which might be possible to drastically reduce
the required interaction and turnaround time for a user attempting to utilize a
virtualized cluster. To achieve the above goals, the following challenges need to
be addressed:

– Can Slurm be extended to manage and isolate SR-IOV and IVShmem
resources for running concurrent MPI jobs efficiently?

– What kind of design alternatives be proposed to achieve better deployment/
job launching times as well as application performance?

– Can Slurm and OpenStack be combined to provide a scalable solution for
building efficient HPC clouds?

– Can MPI library running on the extended Slurm with SR-IOV and IVSh-
mem support provides bare-metal performance for end HPC applications on
different scenarios?

1.2 Contributions

To address the above challenges, this paper proposes a framework, called
Slurm-V, which extends Slurm to manage and isolate SR-IOV and IVShmem

352 J. Zhang et al.

resources for running MPI applications concurrently on virtual machines. In
the proposed Slurm-V, three new components are introduced: VM Configura-
tion Reader, VM Launcher and VM Reclaimer. To support these components,
we propose three alternative designs: Task-based design, SPANK plugin-based
design, and SPANK plugin over OpenStack-based design. We evaluate these
designs from various aspects such as startup time, scalability, and application
performance. Our evaluations show that our proposed Slurm-V framework has
good deployment performance and scalability. With the proposed designs, VM
startup time can be reduced by up to 2.64X through snapshot scheme in Slurm
SPANK plugin. The sequential and concurrent MPI jobs can be efficiently exe-
cuted on shared HPC clusters while maintaining minor overhead.

To the best of our knowledge, our proposed Slurm-V is the first attempt to
extend Slurm for the support of running concurrent and sequential MPI jobs
with isolated SR-IOV and IVShmem resources. The capabilities of Slurm-V can
be used to build efficient HPC Clouds with SR-IOV and IVShmem.

2 Background

2.1 Slurm and SPANK

Simple Linux Utility for Resource Management (Slurm) [17] is an open-source
resource manager for large scale Linux based clusters. Slurm can provide users
with exclusive and/or shared access to cluster resources. As shown in Fig. 2,
Slurm provides a framework including controller daemons (slurmctld), data-
base daemon (slurmdbd), compute node daemons (slurmd), and a set of user
commands (e.g. srun, scontrol, squeue) to start, execute and monitor jobs on
a set of allocated nodes and manage a queue of pending jobs. Slurm Plug-in
Architecture for Node and job (K)control (SPANK) [4] provides a generic inter-
face to be used for dynamically modifying the job launch code. SPANK plugins
have the ability to add user options when using srun. It may be built without
accessing Slurm source code and will be automatically loaded at the next job
launch. Thus, SPANK provides a low-cost and low-effort mechanism to change
runtime behavior of Slurm.

2.2 SR-IOV and IVShmem

Single Root I/O Virtualization (SR-IOV) [3] is a new PCI Express technology,
which specifies the native I/O virtualization capabilities in PCIe adapters. A sin-
gle Physical Function (PF) can present itself as multiple Virtual Functions (VFs)
through SR-IOV. Each VF can be passthroughed to a single VM. However, an
efficient management mechanism is required to detect and select an exclusive VF
for each VM. Inter-VM Shared Memory (IVShmem) (e.g. Nahanni) [15] provides
zero-copy access to data residing on VM shared memory on the KVM platform.
The host shared memory region is exposed to VM by serving as a virtualized
PCI device in VM. Thus, shared memory based communication can be executed

Slurm-V: Extending Slurm for Building Efficient HPC 353

between processes in co-resident VMs. However, the difference from host shared
memory is that IVShmem device does not support hierarchical file structure.
To support multiple concurrent MPI jobs, multiple IVShmem devices need to
be provided accordingly. Therefore, managing and isolating IVShmem devices
among different concurrent MPI jobs is critical.

2.3 OpenStack

OpenStack [2] is an open-source middleware for cloud computing that controls
large pools of computing, storage, and networking resources. It provides sev-
eral components, such as Nova, Neutron, Glance, etc. to efficiently manage and
quickly deploy cluster resources. OpenStack can work with many available vir-
tualization technologies. It has been widely deployed in many private and public
cloud environments.

3 Proposed Design

3.1 Architecture Overview of Slurm-V

This section presents an overview of Slurm-V framework. As we can see in Fig. 3,
it is based on the original architecture of Slurm. It has a centralized manager,
Slurmctld, to monitor work and resources. Each compute node has a Slurm
daemon, which waits for the task, executes that task, returns status, and waits for
more tasks [17]. Users can put their physical resource requests and computation
tasks in a batch file, submit it by sbatch to the Slurm control daemon, Slurmctld.
Slurmctld will respond with the requested physical resources according to its
scheduling mechanism. Subsequently, the specified MPI jobs are executed on
those physical resources.

In our framework Slurm-V, three new components are integrated into the
current architecture. The first component is VM Configuration Reader, which
extracts the related parameters for VM configuration. Each time when users
request physical resources, they can specify the detailed VM configuration infor-
mation, such as vcpu-per-vm, memory-per-vm, disk-size, vm-per-node, etc. In
order to support high performance MPI communication, the user can also specify
SR-IOV devices on those allocated nodes, and the number of IVShmem devices
which is the number of concurrent MPI jobs they want to run inside VMs. The
VM Configuration Reader will parse this information, and set them in the cur-
rent Slurm job control environment. In this way, the tasks executed on those
physical nodes are able to extract information from job control environment and
take proper actions accordingly. The second component is the VM Launcher,
which is mainly responsible for launching required VMs on each allocated phys-
ical node based on user-specified VM configuration. The zoom-in box in Fig. 3
lists the main functionalities of this component. If the user specifies the SR-IOV
enabled device, this component detects those occupied VFs and selects a free
one for each VM. It also loads user-specified VM image from the publicly acces-
sible storage system, such as NFS or Lustre, to the local node. Then it generates

354 J. Zhang et al.

XML file and invokes libvirtd or OpenStack infrastructure to launch VM. Dur-
ing VM boot, the selected VF will be passthroughed to VM. If the user enables
the IVShmem option, this component assigns a unique ID for each IVShmem
device, and sequentially hotplugs them to VM. In this way, IVShmem devices
can be isolated with each other, such that each concurrent MPI job will use a
dedicated one for inter-VM shared memory based communication. On the aspect
of network setting, each VM will be dynamically assigned an IP address from an
outside DHCP server. Another important functionality is that the VM Launcher
records and propagates the mapping records between local VM and its assigned
IP address to all other VMs. Other functionalities include mounting global stor-
age systems, etc. Once the MPI job reaches completion, the VM Reclaimer is
executed. Its responsibilities include reclaiming VMs and the critical resources,
such as unlocking the passthroughed VFs, returning them to VF pool, detaching
IVShmem devices and reclaiming corresponding host shared memory regions.

If OpenStack infrastructure is deployed on the underlying layer, VM
Launcher invokes OpenStack controller to accomplish VM configuration, launch
and destruction.

3.2 Alternative Designs

We propose three alternative designs to effectively support the three components.

Task-based Design: The three new components are treated as three
tasks/steps in a Slurm job. Therefore, the end-user needs to implement cor-
responding scripts and explicitly insert them in the job batch file. After the job
being submitted, srun will execute these three tasks on allocated nodes.

Fig. 3. Architecture overview of Slurm-V

Listing 1.1. SPANK Plugin-
based Script
1 #!/ bin/bash
2 #SBATCH -J Slurm -V
3 #SBATCH -N 2
4 #SBATCH -p All
5 #SBATCH --vm -per -node =2
6 #SBATCH --vcpu -per -vm=2
8 #SBATCH --disk -size =10G

10 #SBATCH --sriov -ib=1
11 #SBATCH --ivshmem =1
12 #SBATCH --num -ivshmem =1
13 #SBATCH --ivshm -sz =128M
14
15 Slurm -V-run -np 8 a.out

The Task-based design is portable and easy to integrate with existing HPC
environments without any change to Slurm architecture. However, it is not trans-
parent to end users as they need to explicitly insert the three extra tasks in their
jobs. More importantly, it may incur some permission and security issues. VF
passthrough requires that VM Launcher connects to the libvirtd instance running

Slurm-V: Extending Slurm for Building Efficient HPC 355

with the privileged system account ‘root’, which in turn exposes security threats
to the host system. In addition, the scripts implementation may be varied for
different users. This will impact the deployment and application performance.
To address these issues, we propose SPANK plugin-based design as discussed
below.

SPANK Plugin-based Design: As introduced in Sect. 2.1, the SPANK plugin
architecture allows a developer to dynamically extend functions during a Slurm
job execution. Listing 1.1 presents an example of a SPANK plugin-based batch
job in the Slurm-V framework. As we can see from line5-line13, the user can
specify all VM configuration options as inherent ones preceded with #SBATCH.
The Slurm-V-run on line15 is a launcher wrapper of srun for launching MPI
jobs on VMs. Also, there is no need to insert extra tasks in this job script. Thus,
it is more transparent to the end user compared to the Task-based design. Once
the user submits the job using sbatch command, the SPANK plugin is loaded
and the three components are invoked in different contexts.

Figure 4(a) illustrates the workflow of the SPANK plugin-based design in
detail under the Slurm-V framework. Once the user submits the batch job
request, SPANK plugin is loaded, and spank init will first register all VM
configuration options specified by the user and do a sanity checking for them
locally before sending to the remote side. Then, spank init post opt will set
these options in the current job control environment so that they are visible
to all Slurmd daemons on allocated nodes later. Slurmctld identifies requested
resources, environment and queues the request in its priority-ordered queue.
Once the resources are available, Slurmctld allocates resources to the job and
contacts the first node in the allocation for starting user’s job. The Slurmd on
that node responds to the request, establishes the new environment, and initiates
the user task specified by srun command in the launcher wrapper. srun con-
nects to Slurmctld to request a job step and then passes the job step credential
to Slurmds running on allocated nodes.

After exchanging the job step credential, SPANK plugin is loaded on each
node. During this process, spank task init privileged is invoked to execute
VM Launcher component in order to setup VM for the following MPI job.
spank task exit is responsible for executing VM Reclaimer component to tear
down VMs and reclaim resources. In this design, we utilize the file-based lock
mechanism to detect occupied VFs and exclusively allocate VFs from available
VF pool. With this design, each IVShmem device will be assigned a unique ID
and dynamically attached to VM. In this way, IVShmem devices can be effi-
ciently isolated to support running multiple concurrent MPI jobs.

In this design, we utilize snapshot and the multi-threading mechanism to
speed up the image transfer and VM launching, respectively. This will further
reduce VM deployment time.

SPANK Plugin over OpenStack-based Design: This section discusses the
design that combines SPANK plugin and OpenStack infrastructure. In this
design, the VM Launcher and VM Reclaimer components will accomplish their
functionalities by offloading the tasks to OpenStack infrastructure.

356 J. Zhang et al.

Fig. 4. SPANK Plugin-based and SPANK Plugin over OpenStack-based Design

Figure 4(b) presents the workflow of SPANK plugin over OpenStack. When
the user submits a Slurm job, SPANK plugin is loaded first. VM configuration
options are registered and parsed. The difference is that, on local context, VM
Launcher will send a VM launch request to OpenStack daemon on its controller
node. The core component of OpenStack, Nova, is responsible for launching
VMs on all allocated compute nodes. Upon the launch completes, it returns
a mapping list between all VM instance names and their IP addresses to VM
Launcher. VM Launcher propagates this VM/IP list to all VMs. The MPI job
will be executed after this. Once the result of MPI job is returned, VM Reclaimer
in local context sends a VM destruction request to OpenStack daemon. Subse-
quently, VMs are torn down and associated resources are reclaimed in the way
that OpenStack defines. In addition, our earlier work [18] describes in details
about VF allocation/release and enabling IVShmem devices for VM under Open-
Stack framework. In this design, except VM Configuration Reader, the other two
components work by sending requests to OpenStack controller and receiving its
returning results. There are dedicated services in OpenStack infrastructure to
manage and optimize different aspects of VM management, such as identifica-
tion, image, networking. Therefore, the SPANK plugin over OpenStack-based
design is more flexible and reliable.

4 Performance Evaluation

4.1 Experiment Setup

Cluster-A: This cluster has four physical nodes. Each node has dual 8-core
2.6 GHz Intel Xeon E5-2670 (Sandy Bridge) processors with 32 GB RAM and
equipped with Mellanox ConnectX-3 FDR (56 Gbps) HCAs. Chameleon: [1]

Slurm-V: Extending Slurm for Building Efficient HPC 357

It has eight physical nodes, each with 24 cores delivered in dual socket Intel Xeon
E5-2670 v3 (Haswell) processors, 128 GB RAM and equipped with Mellanox
ConnectX-3 FDR (56 Gbps) HCAs as well.

CentOS Linux 7 (Core) 3.10.0-229.el7.x86 64 is used as both host and guest
OS. In addition, we use KVM as the Virtual Machine Monitor (VMM), and Mel-
lanox OpenFabrics MLNX OFED LINUX-3.0-1.0.1 to provide the InfiniBand
interface with SR-IOV support. Our Slurm-V framework is based on Slurm-
14.11.8. MVAPICH2-Virt library is used to conduct application experiments.

Fig. 5. VM launch breakdown on
Cluster-A

Fig. 6. VM launch breakdown on
Chameleon

4.2 Startup Performance

To analyze and optimize the startup performance of the Slurm-V framework, we
break down the whole VM startup process into several parts. Table 1 describes
the time period of each part.

Overlapping: We found that image transfer is independent of VF/XML gen-
eration, so they can start simultaneously after submitting the job. As shown in
Figs. 5 and 6, the time spent on direct image copy (2.2 GB) is larger than the
time spending on VF selection and XML generation. So it can be completely
overlapped. The overlapping effect can be clearly observed between SPANK and
SPANKoverlap under direct image copy scheme on Chameleon.

Snapshot: We also observe that direct image copy takes a large proportion
of the whole VM startup time for any startup methods on both Cluster-A and
Chameleon. In order to shorten the time of image transfer, the external snapshot
mechanism is applied. The original image file that user specified will be in a read-
only saved state. The new file created using external snapshot will be the delta for
the changes and take the original image as its backup file. All the changes from
here onwards will be written to this delta file. Instead of transferring a large-size
image file, we only create a small-size snapshot file for each VM, which clearly
reduces the image transfer time. In addition, the backup file can be read in

358 J. Zhang et al.

Table 1. VM startup breakdown

Part Time period description

Job submission From submitting sbatch job to starting VM configuration

VF/XML generation Reading VM configurations, selecting available VF to
generate XML

Image transfer Transferring VM image from public location to store
location of each VM

VM creation Time between invoking libvirt API to create VM and its
return

SSH boot Booting VM, getting available IP address until starting
SSH service

IVShmem hotplug Time of completing IVShmem hotplug operation

VM/IP propagation Propagating VMs’ hostname/IP records to all VMs

parallel by running VMs. Therefore, the snapshot mechanism enhances the VM
startup performance significantly. The evaluation result shows that the whole
VM startup time is shortened by up to 2.64X and 2.09X on Cluster-A and
Chameleon, respectively.

Total VM Launch Time: We discussed the SPANK plugin over OpenStack-
based design in Sect. 3.2. As VM Launcher offloads its task to OpenStack
infrastructure as a whole task, we do not breakdown timings within the Open-
Stack operations. The evaluation results show that the total VM launch times are
24.6 s, 23.8 s, and 20.2 s for SPANK plugin-based design, SPANK plugin-based
design with overlap and SPANK plugin over OpenStack-based design, respec-
tively. Compared to other designs, SPANK plugin over OpenStack has better
total VM launch time, which is around 20 s. This is because OpenStack, as a
well-developed and relatively mature framework, has integrated optimizations
on different steps of VM launch.

4.3 Scalability

In this section, we evaluate the scalability of proposed Slurm-V framework using
single-threading (ST) and multi-threading (MT) schemes. In the evaluation,
snapshot with overlapping is used for both schemes. In MT case, each thread is
responsible for launching one VM. From Figs. 7 and 8, it can be observed that
MT scheme significantly improves the VM startup performance, compared to
ST scheme on both Cluster-A and Chameleon. For instance, to launch 32 VMs
across 4 nodes on Chameleon, ST scheme takes 260.11 s, while MT only spends
34.88 s. Compared with ST scheme, MT scheme reduces the VM startup time by
up to 86 % and 87 % on Cluster-A and Chameleon, respectively. As the number
of physical nodes increases, we do not see the clear increase for startup time
of MT scheme. These results indicate that our proposed Slurm-V framework
scales well.

Slurm-V: Extending Slurm for Building Efficient HPC 359

Fig. 7. Scalability study on Cluster-A Fig. 8. Scalability study on Chameleon

4.4 Application Performance

The Slurm-V framework extends Slurm to manage and isolate virtualized
resources of SR-IOV and IVShmem to support running multiple concurrent MPI
jobs under different scenarios. In this section, we evaluate the Graph500 perfor-
mance under three scenarios (EASJ, EACJ, and SACJ) as indicated in Sect. 1.1
with 64 processes across 8 nodes on Chameleon. Each VM is configured with 6
cores and 10 GB RAM.

For EASJ, two VMs are launched on each node. Figure 9(a) shows the
Graph500 performance with 64 processes on 16 VMs in this scenario. The eval-
uation results indicate that the VM launched by Slurm-V with SR-IOV and
IVShmem support can deliver near-native performance, with less than 4 % over-
head. This is because the Slurm-V framework is able to efficiently isolate SR-IOV
VFs and enable IVShmem device across co-resident VMs. Co-resident VMs can
execute shared memory based communication through IVShmem device. On the
other hand, each VM with the dedicated VF can achieve near-native inter-node
communication performance. For SACJ, four VMs VM(0–3) are launched on
each node. Graph500 is executed across all VM(0–1), while the second MPI
job is executed across all VM(2–3) simultaneously. We run NAS as the second
MPI jobs. For the native case, we use 8 cores corresponding to VM(0–1) to run
Graph500, while another 8 cores corresponding to VM(2–3) to run the second
job. As shown in Fig. 9(b), the execution time of Graph500 on VM is similar
with the native case with around 6 % overhead. This indicates that the Slurm-V
framework is able to efficiently manage and isolate the virtual resource of SR-IOV
and IVShmem on both VM and user level, although in the shared allocation. One
dedicated VF is passthroughed to each VM and one unique IVShmem device is
attached to all co-resident VMs of each user. For EACJ, similarly, our Slurm-V
framework can also deliver the near-native performance, with around 8 % over-
head, as shown in Fig. 9(c). The Slurm-V framework supports the management
and isolation of IVShmem on MPI job level, so each MPI job can have a unique
IVShmem device to execute shared memory backend communication across the
co-resident VMs.

360 J. Zhang et al.

Fig. 9. Graph500 performance with 64 processes on different scenarios

From these application studies, we see that VMs deployed by Slurm-V with
appropriately managed and isolated SR-IOV and IVShmem resources are able to
deliver high performance for concurrent MPI jobs, which can be seen as promis-
ing results for running applications on shared HPC clouds.

5 Related Work

For building cloud computing environments with Slurm, Jacobsen et al. [11]
present ‘shifter’ tightly integrated into Slurm for managing Docker and other
user-defined images. Ismael [6] uses VM for dynamic fractional resource man-
agement and load balancing in a batch cluster environment. Markwardt et al. [16]
propose a solution to run VMs in a Slurm-based batch system. They use a VM
scheduler to keep track of the status of Slurm queue on the VMs. For build-
ing HPC cloud environments, studies [7,8,13] with Xen demonstrate the ability
to achieve near-native performance in VM-based environment for HPC applica-
tions. Ruivo et al. [5] explore the potential use of SR-IOV on InfiniBand in an
Open Nebula cloud towards the efficient support of MPI-based workloads. Our
previous evaluation [10] has revealed that IVShmem can significantly improve
intra-node inter-VM communication on SR-IOV enabled InfiniBand clusters.
Further, we redesigned MVAPICH2 library [9] to take advantage of this fea-
ture and proposed an efficient approach [18] to build HPC clouds by extending
OpenStack with redesigned MVAPICH2 library. However, none of these has dis-
cussed how to effectively manage and isolate IVShmem and SR-IOV resources
in shared HPC cluster under Slurm framework in order to support running MPI
jobs in different scenarios as indicated in Sect. 1.1. The initial idea of this work
had been presented in Slurm Forum [14], and we further complete the whole
Slurm-V design, implementation, and evaluation in this paper.

6 Conclusion and Future Work

In this paper, we proposed a novel Slurm-V framework to efficient support running
multiple concurrent MPI jobs with SR-IOV and IVShmem in shared HPC clusters.
The proposed framework extends Slurm architecture and introduces three new

Slurm-V: Extending Slurm for Building Efficient HPC 361

components: VM Configuration Reader, VM Launcher, and VM Reclaimer. We
present three alternative designs to support these components, which are: Task-
based design, SPANK plugin-based design and SPANK plugin over OpenStack-
based design. We evaluate our Slurm-V framework from different aspects including
startup performance, scalability and application performance under different sce-
narios. The evaluation results indicate that the VM startup time can be reduced
by up to 2.64X by using snapshot scheme. Compared with the single-threading
scheme, multi-threading scheme reduces the VM startup time by up to 87 %. In
addition, Slurm-V framework shows good scalability and is able to support run-
ning multiple MPI jobs under different scenarios on HPC clouds. In the future, we
plan to explore other alternative SPANK-based designs to further extend Slurm
framework to have more virtualization support.

References

1. Chameleon. http://chameleoncloud.org/
2. OpenStack. http://openstack.org/
3. PCI-SIG Single-Root I/O Virtualization Specification. http://www.pcisig.com/

specifications/iov/
4. SPANK - Slurm Plug-in Architecture for Node and job (K)control. http://slurm.

schedmd.com/spank.html
5. De Lacerda Ruivo, T., Altayo, G., Garzoglio, G., Timm, S., Kim, H.W., Noh, S.Y.,

Raicu, I.: Exploring infiniband hardware virtualization in OpenNebula towards effi-
cient high-performance computing. In: 2014 14th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), pp. 943–948 (2014)

6. Estrada, I.F.: Overview of a Virtual Cluster using OpenNebula and SLURM
7. Huang, W., Koop, M.J., Gao, Q., Panda, D.K.: Virtual machine aware commu-

nication libraries for high performance computing. In: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC 2007, pp. 9: 1–9: 12. ACM, New
York (2007)

8. Huang, W., Liu, J., Abali, B., Panda, D.K.: A case for high performance computing
with virtual machines. In: Proceedings of the 20th Annual International Conference
on Supercomputing, ICS 2006, New York, NY, USA (2006)

9. Zhang, J., Lu, X., Jose, J., Li, M., Shi, R., Panda, D.K.: High performance MPI
library over SR-IOV enabled InfiniBand clusters. In: Proceedings of International
Conference on High Performance Computing (HiPC), Goa, India (2014)

10. Zhang, J., Lu, X., Jose, J., Shi, R., Panda, D.K.: Can Inter-VM shmem benefit
MPI applications on SR-IOV based virtualized InfiniBand clusters? In: Silva, F.,
Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 342–353.
Springer, Heidelberg (2014)

11. Jacobsen, D., Botts, J., Canon, S.: Never Port Your Code Again Docker func-
tionality with Shifter using SLURM. http://slurm.schedmd.com/SLUG15/shifter.
pdf

12. Jose, J., Li, M., Lu, X., Kandalla, K., Arnold, M., Panda, D.K.: SR-IOV support
for virtualization on infiniband clusters: early experience. In: On 13th IEEE/ACM
International Symposium Cluster, Cloud and Grid Computing (CCGrid), pp. 385–
392 (2013)

http://chameleoncloud.org/
http://openstack.org/
http://www.pcisig.com/specifications/iov/
http://www.pcisig.com/specifications/iov/
http://slurm.schedmd.com/spank.html
http://slurm.schedmd.com/spank.html
http://slurm.schedmd.com/SLUG15/shifter.pdf
http://slurm.schedmd.com/SLUG15/shifter.pdf

362 J. Zhang et al.

13. Lu, X., Lin, J., Zha, L., Xu, Z.: Vega LingCloud: a resource single leasing point
system to support heterogeneous application modes on shared infrastructure. In:
Proceedings of the 2011 IEEE Ninth International Symposium on Parallel and
Distributed Processing with Applications, ISPA 2011, pp. 99–106. IEEE Computer
Society, Washington, DC (2011)

14. Lu, X., Zhang, J., Chakraborty, S., Subramoni, H., Arnold, M., Perkins, J., Panda,
D.K.: Supporting SR-IOV and IVSHMEM in MVAPICH2 on Slurm: Challenges
and Benefits. http://slurm.schedmd.com/SLUG15/mv2 virt slug luxi osu.pdf

15. Macdonell, A.C.: Shared-Memory Optimizations for Virtual Machines. Ph.D. The-
sis. University of Alberta, Edmonton, Alberta, Fall 2011

16. Markwardt, U., Jurenz, M., Rotscher, D., Muller-Pfefferkorn, R., Jakel, R., Wesarg,
B.: Running Virtual Machines in a Slurm Batch System. http://slurm.schedmd.
com/SLUG15/SlurmVM.pdf

17. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource
management. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003)

18. Zhang, J., Lu, X., Arnold, M., Panda, D.K.: MVAPICH2 over OpenStack with
SR-IOV: an efficient approach to build HPC clouds. In: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp.
71–80 (2015)

http://slurm.schedmd.com/SLUG15/mv2_virt_slug_luxi_osu.pdf
http://slurm.schedmd.com/SLUG15/SlurmVM.pdf
http://slurm.schedmd.com/SLUG15/SlurmVM.pdf

An Autonomic Parallel Strategy
for the Projection of Ecological Niche Models
in Heterogeneous Computational Environments

Fernanda G.O. Passos(B) and Vinod E.F. Rebello

Instituto de Computação – Universidade Federal Fluminense (UFF),
Niterói, RJ, Brazil

{fernanda,vinod}@ic.uff.br

Abstract. Ecological Niche Modelling (ENM) is an important process
to help ecologists understand and predict the potential geographic dis-
tribution of species. In addition to creating correlative models for each
species, the projection of the model onto a geographical environment is
an essential step in the process to visualize suitable habitats. Given the
demand for improved precision and the need to address wider geospatial
domains, using larger data sets means that these methods incur increas-
ingly higher processing, memory and I/O demands. This paper proposes
a new parallel algorithm for the projection stage of a popular ENM tool.
Although the characteristics of ENM already allow this tool to make use
of heterogeneous computing environments, a new algorithm has been
designed to be autonomic and capable of reconfiguration to respond bet-
ter to the resource capacities available. The proposal has been compared
with the default sequential implementation and a parallel MPI version,
both distributed with the ENM tool. An empirical analysis reveals gains
from 109% to 742% in terms of performance and improved scalability
with efficiencies above 81 % in evaluations with up to 128 processors.

1 Introduction

An ecological niche can be defined as the set of environmental conditions for a
species to survive and maintain viable populations over time [4]. Ecological Niche
Modelling (ENM) is a common procedure most often used in macroecology and
biogeography to determine the geographical extension of species distributions.
These correlative ecological niche models are generated by relating locations
where a given species is known to occur with the environmental conditions at
that locale that might influence their distribution [17]. ENM provides a powerful
mechanism to predict potential species distribution in distinct geographical and
temporal contexts, as well as to study another aspects of evolutionary biology
and ecology. ENM has been widely used in various situations such as: searching
for rare or endangered species; identifying suitable areas for the (re-)introduction
of species; forecasting the impact of climate change on biodiversity; helping in
conservation planning and delimitation and evaluation of protected areas; pre-
venting the spread of invasive species; identifying geographical and ecological
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 363–375, 2016.
DOI: 10.1007/978-3-319-43659-3 27

364 F.G.O. Passos and V.E.F. Rebello

aspects of disease transmission; guiding biodiversity field surveys; among other
important applications [12].

ENM applications combine information about the occurrence of species
(biotic) with environmental databases (abiotic) in the form of geo-referenced
raster layers (such as temperature, rainfall and salinity) to generate potential
distribution models. This process includes a combination of 3 dependent steps:
model creation, testing and projection. The models are usually generated by sta-
tistical techniques, such as maximum entropy, or by machine learning techniques
such as artificial neural networks [12]. One of the most widely adopted ENM tools
is openModeller [7], which offers a choice of 15 modelling algorithms. Although
this tool has been adopted by various large scale e-infrastructure projects [1,2,5]
to provide ENM services in the cloud, the software tool was designed principally
for a single server.

This paper addresses the parallelisation of the costly stage that projects
the ecological niche model into the chosen geospatial domain given a set of
environmental conditions at the time of interest. openModeller is distributed
with a default sequential algorithm and an optional parallel version for model
projection, but neither implementation takes into sufficient consideration the
possibility of having to run on heterogeneous resources or in shared dynamic
environments, like clouds. The goal of this paper is to propose an adaptive par-
allel algorithm for ENM projection that it is able to manage its own execution
in any one of these three common types of environments. This algorithm has
been integrated with the EasyGrid application management system (EasyGrid
AMS) [10] to harness the available environment more efficiently by making the
projection autonomic.

The paper is structured as follows. Section 2 presents the openModeller tool
and describes the projection of an ecological niche model, as well as the default
sequential implementation adopted in openModeller. The existing parallel MPI
version is explained in Sect. 3. In Sect. 4, the presentation of the EasyGrid AMS
and its programming model is followed by that of the proposed new autonomic
algorithm for ENM projection. Section 5 supports the proposal through experi-
mental evaluations, with some conclusions being drawn in Sect. 6.

2 OpenModeller and ENM Projection

OpenModeller (OM), an ENM tool developed by a Brazilian Reference Centre
for Environmental Information (Centro de Referência em Informação Ambiental
– CRIA) together with national and international partners [7], is widely used in
the biogeographical and ecological research communities [3,13,18]. OM produces
species potential distribution models and includes mechanisms: to read environ-
mental data and species occurrence points; to select environmental layers on
which the model may be based; to create a fundamental niche model; project
models in an environmental scenario and produce detailed graphical images in
several formats.

An Autonomic Parallel Strategy for the Projection 365

Several algorithms are available as plug-ins for model creation [7] includ-
ing: BIOCLIM (Bioclimatic envelopes), GARP (Genetic Algorithm for Rule-
set Production), GARP BS (GARP with Best Subsets), DG GARP (Desktop
GARP), DG GARP BS (Desktop GARP BS), ENVSCORE (Envelope Score),
ENVDIST (Environmental Distance), RF (Random Forests), MAXENT (Max-
imum Entropy), NICHE MOSAIC (Niche Mosaic), and SVM (Support Vector
Machines).

Effort has been invested in distributing ENM workflows consisting of hun-
dreds or more instances of dependent tasks to create, test and project each
model [1,2,6]. However, since ENM projection often involves large amounts of
data, our work seeks additional gains by exploring parallelism in individual pro-
jection tasks. The OM tool presents an optional MPI implementation for the
ENM projection [11] using the traditional parallel programming model described
in Sect. 3.

1

2

3

4

5

points of species occurrence

environmental layers

modeling algorithm

model in the environmental space

projection of the model

1

2

3

4
5

Fig. 1. Example of modelling and projection of an ecological niche [11]. (Color figure
online)

OM project is the OpenModeller mechanism to project the distribution mod-
els and generate a high resolution geographical 2D rectangular image of a region
bounded by coordinates (a, b) and (c, d) where a < c and b < d. A geospatial
mask can be selected by the user to project a model in to arbitrary areas within
the defined region. The value of each coordinate point represents the probabil-
ity of the environmental conditions at that locale being hospitable for a given
species. Figure 1 shows the modelling and projection of an ecological niche, where
item 5 indicates the result of the projection of a model. The colour scale that
varies from blue to red represents the suitability of a region (red means high
and blue means low). The scientist is responsible for selecting the environmental
data layers for which the prediction should be based.

Algorithm 1 briefly presents the sequential implementation of a model projec-
tion of a ecological niche. The algorithm inputs are themodel, generated previously
in amodelling stagebya chosenOMalgorithmdescribed inSect. 2, and the environ-
mental data for the region of interest. The output image contains the map with the

366 F.G.O. Passos and V.E.F. Rebello

predicted probabilities. The following steps are executed by the algorithm for each
point (x, y) where a ≤ x ≤ c and b ≤ y ≤ d: Line 3 obtains the necessary envi-
ronmental layer data for (x, y); Line 4 applies the model to the coordinate (x, y)
considering the environmental data and calculates a probability p; finally, Line 5
converts p to a image value (RGB) and writes it in the file at position (x, y).

Algorithm 1. The sequential algorithm for ENM projection.
Input: model - model previously generated by an OM algorithm.
env data - environmental data.
Output: map - file which contain the projection.

1 for x ← a to c − 1 do
2 for y ← b to d − 1 do
3 env ← env data at position (x, y)
4 apply model with env and put the value in p
5 write p in map at position (x, y)

3 Original MPI Version for OM Projection

The OM tool, currently, has a MPI implementation for the ENM projection.
This MPI version uses a parallel programming model similar to master-worker.
In addition to the worker processes that compute the projection, there are two
master processes instead of one to improve performance. We refer to masterD as
the process that distributes on-demand ranges of coordinates for each worker to
evaluate and masterR the process that receives the partial solutions from each
worker and writes them to the output image file.

The masterD algorithm partitions the total number of points to be projected
into fixed-size blocks (the default is 30,000 points). The worker processes request
blocks from the masterD and compute the species distribution potential for each
coordinate within the block. The result is a partial projection block that must
be sent to masterR which in turn must aggregate the projected blocks and write
them to the output file.

4 Autonomic ENM Projection with EasyGrid AMS

The EasyGrid Application Management System (AMS) [10] is an example of an
application-centric middleware that is responsible for managing an application’s
execution on the computational resources available. The EasyGrid philosophy
promotes the idea that an AMS should employ autonomic management strate-
gies tuned for each application instead of single resource-centric management
approach if one wishes to improve efficiency and performance.

An Autonomic Parallel Strategy for the Projection 367

The EasyGrid AMS offers some autonomic features, with different implemen-
tations strategies for different classes of MPI applications: a three-level hierar-
chical dynamic scheduler [8], providing self-optimization, and; a fault-tolerant
mechanism capable of detecting and recovering application failures [16], pro-
viding self-healing. Self-configuration allows an application to change its con-
figuration dynamically during execution. The implementation of this feature is
heavily dependent on characteristics of the application that is to become auto-
nomic. Previous studies with other MPI applications have shown more than
satisfactory results using this middleware [9,14–16].

Key to this success is the adoption of an alternative programming model,
1Ptask [9], to the traditional MPI one (referred to here as 1Pproc). The 1Pproc
model considers a single process per processor and thus each process is relatively
coarse-grained. The 1Ptask model considers each process to be a finer grained
task and consequently, the total number of processes tends to be relatively larger
than the number of processors. While more processes might mean higher over-
heads, it also provides greater flexibility to improve load balancing, for example.

4.1 A Self-Configuring Projection Implementation

The original MPI version suffers from two drawbacks: (1) the algorithm is cen-
tralized and the messages sent and received by the two masters create a bot-
tleneck, impairing performance; (2) the programming model 1Pproc may not
be the best alternative for large-scale distributed environments. Previous work
has shown the 1Ptask model to be more appropriate for multi-core servers envi-
ronments that are typically dynamic, heterogeneous and/or are shared, such as
those commonly used in grid and cloud computing. The proposal of an auto-
nomic algorithm with the EasyGrid AMS necessitates: the use of the 1Ptask
model; the definition of application tasks that can dynamically self-configure,
and; the use of the EasyGrid AMS for the autonomic management of the tasks.

Another issue related to the programming model is the division of the ENM
projection domain in fixed-size blocks as presented in the original MPI version.
Figure 2 shows the variation in execution times for each block (one map line) of
the ENM projection using the BIOCLIM algorithm. One can see a reasonable
variation in the execution times, in this case, with an average of 0.28 s and
standard deviation of 0.15. The longest block is about to 32 times slower than
the fastest. Although the blocks have a fixed size, their processing costs can be
different. Furthermore, for example in the case of the first and last lines of the
map domain, the processing times can be so low that the communication times
may exceed the processing time, causing further losses in performance.

Given that one cannot assume that the processing capacity is the same for all
available resources and, from Fig. 2, the task granularities for fixed-sized blocks
are not going to be similar amongst them, the proposed EasyGrid AMS version
adopts variable block sizes that changes dynamically over time. At first, the
workload is divided equally to tasks across all processors cores independently of
their processing capacities. Under the 1Ptask programming model, each task is
implemented as an MPI process. In this application, the block size is set initially

368 F.G.O. Passos and V.E.F. Rebello

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of lines in the map

0

0.5

1

1.5

T
im

e
in

 s
ec

on
ds

Fig. 2. Execution times of each line of the ENM projection.

to the total number of map lines divided by the number of processor cores. During
execution, the tasks calculate the projection of the block in the same way as the
sequential algorithm, but with one subtle difference, the task execution time is
limited by a timer timeout. Should the task’s current processing time exceed the
timeout value, a number of new tasks are created to continue the projection of
the remaining portion of the block and the original task then terminates. For
each level of task creation (assume the initial tasks to be in level 0, their children
belong to level 1 and so on recursively), the task’s timeout duration is reduced.
Effectively, the block size allocated to a task changes dynamically, depending on
the resource location and the application’s progress. One goal is for later tasks
to become finer in granularity so that the EasyGrid AMS can distribute them
among the available processors more efficiently [8].

The Algorithm 2 highlights the execution steps of each task of the new ENM
projection, called partition. As input, this algorithm receives the model, the
environmental data, the Y dimension of the original map, the block and the
timeout value. Each task has its output identified by mapli , where li represents
the initial line of the block. The projection of the allocated block is processed
line by line (Lines 1) with Lines 2 to 5 evaluating the coordinates in a given block
line in the same way as Algorithm 1. Now, in the Line 6, after completing the
projection of a map line, the timer timeout is verified. If the time limit has been
exceeded, the number of new tasks ntasks to be created is estimated, in Line 6,
based on the processing rate during the last time period. In a total of Dimx

map lines, if x is the current line map that was calculated in timeout seconds,
to calculate the remaining Dimx −x we need (Dimx−x)

x tasks. Line 8 determines
a shorter timeout value for the new tasks while in Lines 9 to 11, the remaining
unprocessed portion of the block is split and sent to the ntasks tasks. The new
timeout value is the quotient of old timeout (starting from 10 s) divided by the
level plus 1. If the value is lower than 1, the new timeout is 1 s. Unfortunately
by the end of this process, the parallelisation of ENM projection means that the
image is made up of several sub-maps each stored in a separate output file (one

An Autonomic Parallel Strategy for the Projection 369

Algorithm 2. Algorithm for the partition tasks of the ENM projection
with EasyGrid AMS.
Input: model - model previously generated by an OM algorithm.
env data - environmental data.
Dimy - dimension Y of the complete map.
(li, lj) - block to be calculated.
timeout - initial timer.
Output: mapli - partial maps.

1 for x ← li to lj do
2 forall the y ← 0 to Dimy do
3 env ← env data at position (x, y)
4 Apply model in env and put the value in p
5 Write p in mapli at position (x − li, y)

6 if timeout is over then
7 Calculate ntasks
8 Calculate the new timeout
9 Split remaining block (x+1, lj) into ntasks and put each sub-block in S

10 forall the k ∈ S do
11 Create task with arguments model, env data, Dimy, k and timeout

per task). Thus, a merge task is required to combine the files and generate a
final image containing the projection map. At present, this is implemented using
a sequential algorithm.

5 Experimental Analysis

Three sets of experiments were carried out. The first aims to compare the two
parallel implementations (the original MPI version that distributed fixed block
sizes on demand with the proposed autonomic version with EasyGrid AMS)
using a variety of OM model algorithms at small scales (with up to 24 CPUs).
The second aims to evaluate the scalability of the proposal at a larger scale, obvi-
ously. The final experiment evaluates the efficiency of the proposal in a dynamic
heterogeneous environment where external loads were introduced periodically.
The last two experiments used a cluster of 16 8-core processors each, totalling
128 CPUs.

5.1 Experiment 1: Small Scale Performance

In this experiment, p initial worker processes are considered for both projection
implementations running on p CPUs. For the original MPI version, there are
actually p+2 processes in total (plus 2 masters). The projection modelling algo-
rithms BIOCLIM, ENVSCORE, GARP, DG GARP, DG GARP BS, MAXENT,
GARP BS, SVM, RF and NICHE MOSAIC are selected for this experiment.

370 F.G.O. Passos and V.E.F. Rebello

Table 1. Speed-up obtained by the original MPI version and the autonomic version.

Algorithm Version Speed-up

4 8 12 16 24

BIOCLIM Original MPI 2.58 4.29 5.54 5.45 5.70

EasyGrid 3.67 7.15 9.96 13.03 19.21

ENVSCORE Original MPI 2.65 4.20 5.49 4.86 6.18

EasyGrid 3.32 6.48 9.35 12.67 18.28

GARP Original MPI 3.12 4.90 6.85 8.25 8.03

EasyGrid 3.85 7.57 11.21 14.59 21.58

DG GARP Original MPI 2.90 4.74 6.17 7.59 7.49

EasyGrid 3.67 7.11 10.01 13.10 19.73

DG GARP BS Original MPI 3.11 5.80 7.26 9.68 10.49

EasyGrid 3.78 7.65 10.87 14.32 21.48

MAXENT Original MPI 3.46 6.07 7.84 10.38 11.45

EasyGrid 3.88 7.62 10.99 14.61 21.70

GARP BS Original MPI 2.98 5.42 7.50 9.46 10.33

EasyGrid 3.85 7.60 10.96 14.52 21.77

SVM Original MPI 3.32 5.63 8.01 10.54 12.59

EasyGrid 3.90 7.71 11.17 14.85 22.24

RF Original MPI 3.28 4.99 7.97 10.15 11.30

EasyGrid 3.59 7.14 10.35 13.78 20.58

NICHE MOSAIC Original MPI 3.28 5.68 7.70 7.49 4.63

EasyGrid 3.94 7.81 10.10 11.48 12.74

Table 2. Execution Time in seconds for partition and merge operations, when using
the ENVDIST and SVM modelling algorithms.

ENVDIST SVM

p partition merge speed-up partition merge speed-up

24 70,758.88 75.93 22.85 1, 186.28 41.18 24.05

48 35,316.90 85.26 45.72 614.53 59.50 43.80

96 17,758.27 88.44 90.69 313.29 47.33 81.86

128 13,390.62 98.59 119.99 238.36 46.59 103.60

Table 1 presents a comparison of the speed-ups, in relation to sequential algo-
rithm, obtained by original MPI approach and autonomic approach with Easy-
Grid AMS for the ENM projection. Using different OM modelling algorithms
and varying the number of processors (from 4 to 24), the autonomic version pre-
sented significantly better speed-ups and, for the most of modelling algorithms,
the value was close to the number of processors used.

An Autonomic Parallel Strategy for the Projection 371

Figure 3 provides a better visualisation of the improvements in speed-up.
Each bar group with labels 4, 8, 12, 16 and 24 processors represents the gain
(in percent) of the autonomic EasyGrid AMS version over the original MPI one.
As seen in Table 1, the autonomic version always achieved higher speed-ups.
For most algorithms, as the number of processors increases, so does the gain
in relation to the original MPI version. For BIOCLIM, with 24 processors, the
parallel projection with EasyGrid AMS is more than 3 times better than the
existing solution.

4 8 12 16 24

Number of processors

0%

100%

200%

300%

400%

G
ai

n
(%

)

BIOCLIM
ENVSCORE
GARP
DG_GARP
DG_GARP_BS
MAXENT
GARP_BS
SVM
RF
NICHE_MOSAIC

Fig. 3. Performance gain of the autonomic approach over the original MPI versions.

Scalability is a weakness of the original MPI version. For some algorithms,
the speed-up values continue to increase as the number of processors grows, while
for others, already with 24 CPUs the speed-ups taper off or fall (as in the case of
DG GARP and NICHE MOSAIC). To obtain good scalability, algorithm design-
ers should aim for near linear speed-up, especially at relatively lower processor
counts. In the case of the EasyGrid AMS version, while this property is better
it is not perfect, for example, in the case of NICHE MOSAIC, but in part due
to the overhead of the unparallelised merge operation.

5.2 Experiment 2: Larger Scale Homogeneous Performance

From the first experiment, the better performance of the autonomic parallel
ENM version with the EasyGrid AMS over the original MPI one was not only
clear but also indicated that the former approach was more scalable. This second
experiment aims analyse further the scalability of the EasyGrid AMS version.
The two modelling algorithms with the longest execution times were selected:
ENVDIST and SVM. The sequential implementation of ENM Projection with
ENVDIST, for example, has an execution time of almost 20 days. The number
of processors varied from 24, 48, 96 to 128 CPUs.

372 F.G.O. Passos and V.E.F. Rebello

The number of tasks created by the autonomic version during execution can
be quite high, relatively speaking. The total amount of tasks for the instance
SVM is approximately 5,400 for all CPUs numbers used, with low variance. For
the instance ENVDIST, the number is approximately 16,000 for all numbers of
CPUs used, again with low variance. For both, the number of tasks keeps more
or less static as the processors increase. For this reason, the merge time has a
low variability as approximately the same number of sub-maps are merged.

24 48 96 128

Processors

0%

20%

40%

60%

80%

100%

E
ffi

ci
en

cy
 (

%
)

ENVDIST
SVM

Fig. 4. Efficiency of the autonomic parallel ENM projection with EasyGrid AMS for
the algorithms ENVDIST and SVM using 24, 48, 96 and 128 CPUs.

Table 2 presents the execution times, in seconds, for the partition tasks and
merge tasks of the autonomic ENM projection with EasyGrid AMS, separately,
for both the ENVDIST and SVM model algorithms. There is also a column
that represents the speed-up of the combined partition plus merge execution.
We consider the total execution time to be the sum of the two but are interested
in the partition execution since it dwarfs the merge time. The sequential merge
algorithm is only used to concatenate the images generated by the partition tasks
but as in the case of Amdahl’s Law will eventually limit the speedup.

The efficiency of the proposal for the 8 ENM projections (i.e. the partition
and merge tasks) is indicated in Fig. 4.

The self-configuring and self-optimisation abilities of the autonomic version
combined allow significantly better performance and good scalability for the
ENM projections with costly OM model algorithms. The self-configuring mech-
anism ensures an appropriate degree of parallelism by dynamically creating pro-
gressively finer grained tasks taking into consideration the application’s behav-
iour. This over-provisioning of tasks is then managed by the self-optimisation
through the dynamic scheduler of the EasyGrid AMS. Together, these abilities
explore the characteristics of the ENM projection and the execution environ-
ment, achieving acceptable efficiency levels for large scale computing.

5.3 Experiment 3: Larger Scale Heterogeneous Performance

The aim of this experiment is to briefly highlight the difference in performance of
the original MPI and EasyGrid AMS approaches in a heterogeneous or dynamic

An Autonomic Parallel Strategy for the Projection 373

Table 3. Results with a simulated shared environment.

Original MPI version EasyGrid AMS version

Algorithm Dedicated With load Slowdown (%) Dedicated With load Slowdown (%)

SVM 1,156.40 2,446.02 111.5 238.36 329.66 38.30

ENVDIST 24,611.82 46,490.34 88.89 13,390.62 17,840.64 33.23

shared environment. Using the previous dedicated homogeneous 128-core clus-
ter, CPU-intensive loads were introduced to compete with the application. These
independent externals loads are not constant – they are effectively active for
intercalated periods of processing (20 s) and idleness (20 s) on each CPU-core.
Thus, the full capacity of the cluster is available to the OM projection applica-
tions for half the time, the rest of the time they will compete, obtaining only
half the capacity.

Table 3 presents execution times in seconds for the SVM and ENVDIST
modelling algorithms again. For each approach, the execution times in a dedi-
cated environment and in this shared environment were measured. The column
Slowdown indicates the relative loss in performance due to resource sharing (or
dynamic heterogeneity), i.e., how much longer the applications take to execute.
These results indicate significantly better performance is obtained by the auto-
nomic version in a shared configuration. Furthermore, while this version is 4.85
and 1.84 times faster in a static homogeneous environment, this shoots up to
7.42 and 2.61 times in this dynamic heterogeneous one, for OM projection with
the SVM and ENVDIST modelling algorithms, respectively.

6 Conclusion

This paper proposed a new autonomic approach for the projection of the ecolog-
ical niches in geospatial domains. This kind of application appears to be easily
parallelisable since data processing can be decomposed into independent tasks.
However traditional approaches may not be as efficient as expected in current
execution environments due to workload granularities of unknown size.

The current MPI approach distributed with the biodiversity tool openMod-
eller is based on the master-worker model and uses fixed-block partitioning allow-
ing on-demand load balancing between tasks executing under a 1Pproc model.
The new autonomic approach proposes the use of the 1Ptask model with a
dynamic partition that generates tasks with variable block sizes. This partition-
ing is achieved by a simple self-configuring strategy that takes into consideration
the execution behaviour. Tasks are created to process blocks on the fly, each
being managed by the EasyGrid AMS, which provides self-optimisation.

Results showed that the proposed algorithm presented better performance
and scalability in all experiments when compared to the original traditional
algorithm. With 24 processors, speed-ups with the EasyGrid AMS version are
between 109 % to 337 % higher than those of the original version. The proposed

374 F.G.O. Passos and V.E.F. Rebello

approach scales up to 128 processors, obtaining efficiency values of at least 81 %
even though sub-maps are still merged sequentially. Future work includes sub-
stituting this with a parallel version. Finally, in heterogeneous or shared envi-
ronments, the improvements in performance are even greater.

References

1. Amaral, R., Badia, R.M., Blanquer, I., Braga-Neto, R., Candela, L., Castelli, D.,
Flann, C., De Giovanni, R., Gray, W.A., Jones, A., et al.: Supporting biodiver-
sity studies with the EUBrazilOpenBio hybrid data infrastructure. Concurrency
Comput. Pract. Experience 27(2), 376–394 (2015)

2. EUBrazil Cloud Connect Project: EUBrazil Cloud Connect (2016). http://www.
eubrazilcloudconnect.eu. Accessed Feb 2016

3. Geller, G.N., Melton, F.: Looking forward: applying an ecological model web to
assess impacts of climate change. Biodiversity 9(3–4), 79–83 (2008)

4. Grinnell, J.: Field tests of theories concerning distributional control. Am. Nat.
51(602), 115–128 (1917)

5. Leidenberger, S., De Giovanni, R., Kulawik, R., Williams, A.R., Bourlat, S.J.:
Mapping present and future potential distribution patterns for a meso-grazer guild
in the baltic sea. J. Biogeogr. 42(2), 241–254 (2015)

6. Lezzi, D., Rafanell, R., Torres, E., Giovanni, R., Blanquer, I., Badia, R.: Pro-
gramming ecological niche modeling workflows in the cloud. In: 27th International
Conference on Advanced Information Networking and Applications Workshops
(WAINA), pp. 1223–1228, March 2013

7. Muñoz, M.E.S., De Giovanni, R., Siqueira, M.F., Sutton, T., Brewer, P., Pereira,
R.S., Canhos, D.A.L., Canhos, V.P.: Openmodeller: a generic approach to species’
potential distribution modelling. GeoInformatica 15(1), 111–135 (2011)

8. Nascimento, A., Sena, A., Boeres, C., Rebello, V.E.F.: Distributed and dynamic
self-scheduling of parallel MPI grid applications. Concurrency Comput. Pract.
Experience 19(14), 1955–1974 (2007)

9. Nascimento, A., Sena, A., da Silva, J., Vianna, D.Q.C., Boeres, C., Rebello, V.E.F.:
On the advantages of an alternative MPI execution model for grids. In: CCGRID
2007, pp. 575–582. IEEE Computer Society, Rio de Janeiro (2007)

10. Nascimento, A., Sena, A., da Silva, J., Vianna, D.Q.C., Boeres, C., Rebello, V.E.F.:
Autonomic application management for large scale MPI programs. Int. J. High
Perform. Comput. Networking 5(4), 227–240 (2008)

11. Team, O.: Openmodeller webpage (2016). http://openmodeller.sourceforge.net/.
Accessed Feb 2016

12. Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Mart́ınez-Meyer,
E., Nakamura, M., Araújo, M.B.: Ecological niches and geographic distributions
(MPB-49). Princeton University Press (2011)

13. Ramachandra, T., Kumar, U., Aithal, B.H., Diwakar, P., Joshi, N.: Landslide sus-
ceptible locations in western ghats: prediction through openmodeller. In: Proceed-
ings of the 26th Annual In-House Symposium on Space Science and Technology,
pp. 65–74. Indian Institute of Science, Bangalore, Indian, January 2010

14. Ribeiro, F., Nascimento, A., Boeres, C., Rebello, V., Sena, A.: Autonomic mal-
leability in iterative MPI applications. In: 25th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), pp. 192–199,
October 2013

http://www.eubrazilcloudconnect.eu
http://www.eubrazilcloudconnect.eu
http://openmodeller.sourceforge.net/

An Autonomic Parallel Strategy for the Projection 375

15. Sena, A., Nascimento, A., Boeres, C., Rebello, V.: Easygrid enabling of iterative
tightly-coupled parallel MPI applications. In: International Symposium on Parallel
and Distributed Processing with Applications (ISPA 2008), pp. 199–206, December
2008

16. da Silva, J.A., Rebello, V.E.F.: Low cost self-healing in MPI applications. In: Cap-
pello, F., Herault, T., Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757, pp.
144–152. Springer, Heidelberg (2007)

17. Soberón, J., Peterson, A.T.: Interpretation of models of fundamental ecological
niches and species distributional areas. Biodivers. Inform. 2, 1–10 (2005)

18. Zarco-González, M.M., Monroy-Vilchis, O., Alańız, J.: Spatial model of livestock
predation by jaguar and puma in mexico: conservation planning. Bio. Conserv.
159, 80–87 (2013)

Towards Network-Aware Service Placement
in Community Network Micro-Clouds

Mennan Selimi1,3(B), Davide Vega2, Felix Freitag1, and Lúıs Veiga3

1 Universitat Politècnica de Catalunya, Barcelonatech, Barcelona, Spain
{mselimi,felix}@ac.upc.edu

2 University of Bologna, Bologna, Italy
davide.vegadaurelio@unibo.it

3 INESC-ID Lisboa/Instituto Superior Técnico,
University of Lisbon, Lisbon, Portugal

luis.veiga@inesc-id.pt

Abstract. Cloud services in community networks have been enabled
by micro-cloud providers. They form community network micro-clouds
(CNMCs), which grow organically, i.e. without being planned and opti-
mized beforehand. Services running in community networks face specific
challenges intrinsic to these infrastructures, such as the limited capacity
of nodes and links, their dynamics and geographic distribution. CNMCs
are used to deploy distributed applications, such as streaming and storage
services, which transfer significant amounts of data between the nodes on
which they run. Currently there is no support given to users for enabling
them to chose better or the best option for specific service deployments.
This paper looks at the next step in community network cloud service
deployments, by taking network characteristics into account when decid-
ing placement of service instances. We propose a service placement algo-
rithm (PASP) that minimizes the service overlay diameter, while fulfilling
service specific criteria. First, we characterize with simulations the poten-
tial performance gains of our approach. Secondly, we apply our algorithm
to deploy a distributed storage service currently used in Guifi.net, and
evaluate it in the real production network, assessing the performance and
effects of our algorithm. We find that our PASP algorithm reduces the
client reading times by an average of 16 % (with a max. improvement
of 31%) compared to the currently used organic placement scheme. Our
results show how the choice of an appropriate set of nodes, taken from a
larger resource pool, can influence service performance significantly.

Keywords: Community network micro-clouds · Service placement

1 Introduction

Community networks or Do-It-Yourself networks (DIYs) are bottom-up built
decentralized networks, deployed and maintained by their own users. One suc-
cessful effort of such a network is Guifi.net1, located in the Catalonia region of
1 http://guifi.net/.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 376–388, 2016.
DOI: 10.1007/978-3-319-43659-3 28

http://guifi.net/

Towards Network-Aware Service Placement in Community Network 377

Fig. 1. Guifi.net nodes and links in
Barcelona

Fig. 2. Guifi.net topology

Spain. Guifi.net is defined as an open, free and neutral community network built
by its members: citizens and organizations pooling their resources and coor-
dinating efforts to build and operate a local network infrastructure. Guifi.net
network started in 2004 and today it has more than 30.000 operational nodes,
which makes it the largest community network worldwide [1]. Figure 1 shows
as example the nodes and links of Guifi.net in the city of Barcelona. Figure 2
shows the topology structure followed in Guifi.net. Client nodes are connected to
the super-nodes. These super-nodes interconnect through wireless links different
administrative zones.

Until recently, user-oriented local services were not much deployed because
of the lack of easy to use mechanisms to exploit the available resources within
the community network and due to other technological barriers. Early services
include GuifiTV, Graph servers, mail servers, game servers [1]. With the adop-
tion of community network micro-clouds (CNMC)2, i.e. the platform that enables
cloud-based services in community networks, local user-oriented services gained
a huge momentum. Community network users started creating their own home-
grown services and using alternative open source software for some of today’s
Internet cloud services, e.g., data storage services, interactive applications such
as Voice-over-IP (VoIP), video streaming, P2P-TV, [2,3]. In a CNMC, a server
(i.e. a low-power device such as a enhanced home gateway or mini-PC) is con-
nected to a node of the community network.

Since Guifi.net nodes and the connected servers are geographically distrib-
uted, it needs to be decided where services should be placed in a network. If the
underlying network resources are not taken into account, a service may suffer
from poor performance, e.g., by sending large amounts of data across slow wire-
less links while faster and more reliable links remain underutilized. Therefore, a
key challenge in community network micro-clouds is to determine the location of
the service deployments, i.e. which servers at a certain geographic points in the
network. Due to the dynamic nature of community networks and usage patterns,
it is challenging to calculate an optimal placement.

2 http://cloudy.community/.

http://cloudy.community/

378 M. Selimi et al.

In this paper we aim at understanding the impact of network-aware service
placement decisions on end-to-end client performance. The main contributions
of this paper can be summarized as follows:

– We introduce a service placement algorithm that provides optimal service
overlay selection without the need to verify the whole solution space. The
algorithm finds the minimum possible distance in terms of the number of hops
between two furthest selected resources, and at the same time fulfil different
service type quality criteria.

– We extensively study the effectiveness of our approach in simulations using
real-world node and usage traces from Guifi.net nodes. From the results
obtained in the simulation study, we are able to determine the key features of
the network and node selection for different service types.

– Subsequently, we deploy our algorithm, driven by these findings, in a real
production community network and quantify the performance and effects of
our algorithm with a distributed storage service.

2 System Model

2.1 Network Structure

The Guifi.net community network consists of a set of nodes interconnected
through mostly wireless equipment that users, companies, administrations must
install and maintain in addition to its links, typically on building rooftops. The
set of nodes and links are organized under a set of mutually exclusive and
abstract structures called administrative zones, which represent the geographic
areas where nodes are deployed.

We have collected network description data through CNML files (obtained
January 2016)3. CNML (Community Networks Markup Language) is an XML-
based language used to describe community networks. Guifi.net publishes a
snapshot of its network structure every 30 min with a description of registered
nodes, links and their configurations. In the CNML description, the information
is arranged according to different geographical zones in which the network is
organised. Furthermore, we used a Node database: a dump of the community
network database that, in addition to the data described in CNML, includes
other details about dates and people involved in the creation and update of the
configuration of nodes and links.

The CNML information obtained has been used to build two topology graphs:
base-graph and core-graph. The base-graph of Guifi.net is constructed by consid-
ering only operational nodes, marked in Working status in the CNML file, and
having one or more links pointing to another node in the zone. Additionally, we
have discarded some disconnected clusters. All links are bidirectional, thus, we
use an undirected graph. We have formed what we call the core-graph by remov-
ing the terminal nodes of the base graph (i.e., client nodes). Table 1 summarizes

3 https://guifi.net/en/guifi/cnml/2413.

https://guifi.net/en/guifi/cnml/2413

Towards Network-Aware Service Placement in Community Network 379

Table 1. Summary of the used network graphs

Nodes / edges Node degree Diameter Zones

max/ mean/ min

Base-graph 13636 / 13940 537 / 2.04 / 1 35 129

Core-graph 687 / 991 20 / 2.88 / 1 32 85

the main properties of base and core graphs that we use in our study e.g., num-
ber of nodes, node degree, diameter (number of max hops in the sub-graph) and
number of zones traversed in core and base-graph.

2.2 Allocation Model and Architecture

In order to generalize the placement model for community services, we made the
following assumptions that give to our model the flexibility to adapt to many
different types of real services. In our case, a service is a set of S generic processes
or replicas (with different roles or not) that interact or exchange information
through the community network. The service can also be a composite service
(e.g., three-tier service) built from simpler parts. These parts or components of
a service would create an overlay and interact with each other to offer more
complex services. Each of the service replicas or components will be deployed
over a node in the network, where each node will host only one process no matter
which service it belongs to.

It is important to remark that the services aimed in this work should be
at infrastructure level (IaaS), as cloud services in current dedicated datacen-
ters. Therefore the services are deployed directly over the core resources of the
network (nodes in the core-graph) and accessed by base-graph clients. Services
can be deployed by Guifi.net users or administrators. The architecture that we
consider is based on a hybrid peer-to-peer model with three hierarchical levels
of responsibility. On each level, members are able to share information among
themselves.

The coordination is managed by some peer (i.e., as a super-peer) designated
from the immediate upper layer. Three types of peers can be identified:

1. Community Nodes: are the computing equipment placed along the wireless
community network by users. Besides contributing to the network quality
and stability, they share all or part of their physical resources with other
community members in an infrastructure as a service (IaaS) fashion. In terms
of type and amount of resources, our model assumes the nodes are different.
This means that from service point of view there is allocation preference.

2. Zone Managers: are single nodes - only one within each zone, selected
among all the Community nodes with the extra responsibility to manage local
zone services and coordinate inter zones aggregated information. In our model
we do not explicitly identify these managers and we assume the existence of
at least one of them in each area.

380 M. Selimi et al.

3. The Controller: is a unique centralized entity in our system. The role of
the controller is to manage all the service allocation requests from the users
and update service structures by pulling the configuration information for the
zone managers. The allocation algorithms are implemented in the controller.

2.3 Service Quality Parameters

Resource dispersion in a community network scenario can be a drawback or an
advantage, as the Nebula [4] authors claim in their research. The overlay created
by composite services abstracts from actual underlying network connections.
Based on that, services that require intensive inter-component communication
(e.g. streaming service), can perform better if the replicas (service components)
are placed close to each other in high capacity links [2]. On other side, bandwidth-
intensive services (e.g., distributed storage, video on-demand) can perform much
better if their replicas are as close as possible to their final users (e.g. overall
reduction of bandwidth for service provisioning).

If we have some information about the application SLAs in community net-
works and node behaviour from the underlying network, decisions can be made
accordingly, in order to promote that certain types of applications are executed
in certain type of nodes with better QoS.

Our algorithm considers the following network and graph metrics as shown
in Table 2, when allocating different type of services.

– Availability: The availability of a node is defined as the percentage of ping
requests that the node replies when requested by the graph-server system.
Graph-servers are distributed in Guifi.net and are responsible for performing
network measurements between nodes. This is an important metric for service
life-cycle and is considered for two service types. It is measured in percent-
age (%).

– Latency: The latency of a node is defined as the time it takes for a small
IP packet to travel from the Guifi.net graph-servers through the network to
the nodes and back. It is an important metric for latency-sensitive service in
CNMCs. It is measured in milliseconds (ms).

Table 2. Service-specific quality parameters

Type of service Examples of services Network Graph metrics

metrics

Bandwidth-intensive distributed storage, video-on-
demand network graph server,
mail server

availability
closeness

closeness
centrality

Latency-sensitive VoIP, video-streaming game
server, radio station server

availability
latency

betweenness
centrality

Towards Network-Aware Service Placement in Community Network 381

– Closeness: The closeness is defined as the average distance (number of hops)
from the solution obtained from the algorithm to the clients. It is an important
metric for bandwidth-sensitive services. It is measured in number of hops.

In terms of graph centrality metrics, we consider closeness and betweenness
centrality. Closeness centrality is a good measure of how efficient a particular
node is in propagating information through the network. Betweenness centrality
quantifies the number of times a node acts as a bridge along the shortest path
between two other nodes.

3 Service Placement Algorithm

We designed an algorithm that explores different placements searching for the
local minimal service overlay diameter while, at the same time, fulfilling different
service type quality parameters. Algorithm1 relies on the method PASP () to
evaluate the different service placements in different zones and generate the solu-
tions. The algorithm tries to find a solution in each zone by applying Breadth-
First Search (BFS) and utilizing the IsBetter method to choose the best solu-
tions by applying service policies shown at Table 2. In the case of equal diameter
allocations, the mean out-degree (the mean boundary of the nodes in the service
overlay with the nodes outside of it) is taken. The service allocation with smallest
diameter and largest mean out-degree fulfilling different service quality parame-
ters is kept as the optimal. The algorithm iterates using Breadth-First-Search
algorithm (BFS) in the network graph, taking as root the given node and select-
ing the first S−1 closest resources to it. The node with high degree centrality is
initially chosen as root. Degree centrality is the fraction of nodes that a particu-
lar node is connected to. In the case of several nodes at the same distance, nodes
are selected randomly, distributing thus uniformly. Thanks to this feature, our
algorithm performs faster than a pure exhaustive search procedure, since size
equivalent placements are not evaluated. It is worth noting that the same set of
nodes might be obtained from different root nodes, since placements in nearby
network areas would involve the exact same nodes. We avoid re-evaluating these
placements with a cache mechanism, that improves algorithm efficiency. After
the placement solutions for different number of services are returned from BFS,
the solutions are compared regarding the service quality parameters.

For each solution set obtained, we check our defined service-specific policies
and then accordingly we calculate different scores (e.g., latency or availability
score). Once we have the these scores for each solution set, we utilize the IsBetter
method to compare the solutions and to choose the new best placement solu-
tion according to different service types. Currently, the algorithm has not been
optimized regarding the computation time, but it provides near-optimal overlay
allocations, as our results show, without need of verifying the whole solution
space.

382 M. Selimi et al.

Algorithm 1. Policy-Aware Service Placement (PASP)
Require: N(Vn, En) � Network graph
Require: Z(Vz, Ez) � Zones graph
Require: Zone � Search solution zone
Require: S � Number of nodes in the service
Require: ServicePolicy � Service specific policies

1: procedure PASP(N, Z, Zone, S, ServicePolicy)
2: Community ← Vn ∈ Vzi

3: BestSolution ← null
4: for all node ∈ Community do
5: solution ←BreadthFirstSearch(N, Community, node, S)
6: if isBetter(solution, BestSolution, ServicePolicy) then
7: BestSolution ← solution
8: end if
9: end for

10: return BestSolution
11: end procedure
12: procedure isBetter(currentSolution, bestSolution, ServicePolicy)
13: for all p ∈ ServicePolicy do
14: result ←CheckPolicy(currentSolution, bestSolution, p)
15: end for
16: return result
17: end procedure

4 Experimental Results

4.1 Network Behaviour and Algorithmic Performance

Our service placement algorithm proposed in Sect. 3 is used to simulate the
placement of different services in Guifi.net. Our goal is to determine the key
features of the network and its nodes, in particular to understand the network
metrics that could help us to design new heuristic frameworks for smart service
placement in CNMCs.

From the data obtained, our first interest is to analyse the availability and
latency of Guifi.net nodes. This can be used as an indirect metric of quality of
connectivity that new members may expect from the network.

Figure 3 shows that 40 % of the base-graph nodes are reachable from the
network 90 % or less of the time. The situation seems to be even worse with the
core-graph nodes, which are supposed to be the most stable part of the network
(20 % of the core-graphs have availability of 90 % or less). Base-graph nodes
have higher availability because they are closer to users, and is of high interest
to users to take care of them. It is interesting to note that 20 % of the core-graph
nodes have availability between 98–100%, and those are most probably the nodes
that comprise the backbone of the network and connect different administrative
zones. Since the service placement is done on the core-graph nodes, selecting the
nodes with higher availability (e.g., 90–100%) is of high importance.

Towards Network-Aware Service Placement in Community Network 383

Fig. 3. ECDF of node availability Fig. 4. ECDF of node latency

Figure 4 depicts the Empirical Cumulative Distribution Function (ECDF)
plot of the node latency. Similar to the availability case, the latency of base-
graph nodes is slightly better. For both cases, 30 % of the nodes have latency of
480 ms or less, which makes the other 70 % of the nodes to have higher latency.
The availability and latency graph demonstrate the importance of, and indeed
the need for, a more effective, network-aware placement in CNMCs. By not
taking the performance of the underlying network into account, applications can
end up sending large amounts of data across slow wireless links while faster and
more reliable links and nodes remain under-utilized.

In order to see the effects of the network-aware placement in the solutions
obtained, we compare two versions of our algorithm. The first version i.e.,
Baseline, allocates services just with the goal of minimizing the service over-
lay diameter without considering node properties such as availability, latency or
closeness. The second version of the algorithm called PASP , tries to minimize
the service overlay diameter, while taking into account these node properties.

The availability and latency of the Baseline solutions are calculated by tak-
ing the average of nodes in the optimal solutions (after the optimal solution is
computed), where the optimal solution is the best solution that minimizes the
service overlay diameter, that can only be calculated exhaustively offline.

We allocate services of size 3, 5, 7, 9, 11 and 15. Figures 5 and 6 reveal that
nodes obtained in the solutions with PASP have higher average availability
and lower latency than with Baseline, with minimum service overlay diameter.

Fig. 5. PASP-
availability

Fig. 6. PASP-latency Fig. 7. PASP-closeness

384 M. Selimi et al.

On average, the gain of PASP over Baseline is 8 % for the availability, and
45 ms for the latency (5–20% reduction).

We find that our PASP algorithm is good in finding placement solutions
with higher availability and lower latency, however the service solutions obtained
might or might not be very close (in terms of number of hops) to base-graph
clients. Because of this we also developed another flavour of PASP algorithm
called PASP − closeness. Figure 7 shows the number of solutions obtained that
are 1-hop close to the base-graph clients. When PASP − closeness algorithm
allocates three services, on average there are three solutions whose internal nodes
(e.g., any of the nodes) are at 1-hop distance to any of the base-graph client
nodes, contrary to the Baseline where on average there is one solution whose
nodes are at 1-hop distance to base-graph clients.

Overall, in the two algorithms, there is a trade-off between latency and close-
ness. For bandwidth-intensive applications closeness seems to be more important
when allocating services (e.g., PASP−closeness can be used), while for latency-
sensitive applications it is the latency the one that naturally seems to be more
important (e.g., PASP − latency can be used).

Moreover, from working with the Guifi.net data, we observed some patterns
in the node features that conforms optimal allocations. We saw that the solu-
tion overlay diameter depends on the nodes degree centrality. Minimum degree
centrality can be used to select the first node that composes the service (the solu-
tion). We saw that most of the solutions obtained are concentrated on a small
set of of average centrality values. Selecting the next nodes in a particular range
of closeness centrality (for bandwidth-intensive services) and betweenness cen-
trality (for latency-sensitive services) is specially useful to obtain more optimal
overlays.

4.2 Deployment in a Real Production Community Network

In order to understand the gains of our network-aware service placement algo-
rithm in a real production community network, we deploy our algorithm in real
hardware connected to the nodes of the QMP4 network, which is a subset of
Guifi.net located in the city of Barcelona. Figure 8 depicts the topoloqy of the
QMP network. Furthermore, a live QMP monitoring page updated hourly is
available in the Internet5.

We use 16 servers connected to the wireless nodes of QMP. The nodes and
the attached servers are geographically distributed in the city of Barcelona. The
hardware of the servers consists of Jetway devices, which are equipped with an
Intel Atom N2600 CPU, 4 GB of RAM and 120 GB SSD. They run an operating
system based on OpenWRT, which allows running several slivers (VMs) on one
node simultaneously implemented as Linux containers (LXC).

The slivers host the Cloudy6 operating system. Cloudy contains some pre-
integrated distributed applications, which the community network user can
4 http://qmp.cat/.
5 http://dsg.ac.upc.edu/qmpsu/index.php.
6 http://cloudy.community/.

http://qmp.cat/
http://dsg.ac.upc.edu/qmpsu/index.php
http://cloudy.community/

Towards Network-Aware Service Placement in Community Network 385

Fig. 8. QMP topology Fig. 9. Average reading time on clients
side

activate to enable services inside the network. Services include a streaming ser-
vice, a storage service and a folder synchronizing service, among others. For
our experiments, we use the storage service, which is based on Tahoe-LAFS7.
Tahoe-LAFS is an open-source distributed storage system with enforced security
and fault-tolerance features, such as data encryption at the client side, coded
transmission and data dispersion among a set of storage nodes.

As the controller node we leverage the experimental infrastructure of
Community-Lab8. Community-Lab provides a central coordination entity that
has knowledge about the network topology in real time. Out of the 16 devices
used, three of them are storage nodes and 13 of them are clients (chosen ran-
domly) that read files. The clients are located in different geographic locations
of the network. The controller is the one that allocates the distributed storage
service in these three nodes and clients access this service. On the client side we
measure the file reading times. We monitored the network for the entire month
of January 2016. The average throughput distribution of all the links for one
month period was 9.4 Mbps.

Figure 9 shows the average download time for various file sizes (2–64 MB)
perceived at the 13 clients, after allocating services using Random algorithm (i.e.,
currently used at Guifi.net) and using our PASP algorithm. The experiment is
composed of 20 runs, where each run has 10 repetitions, and averaged over all
the successful runs. Standard deviation error bars are also shown.

Regarding the network interferences that may be caused by other users con-
current activities which can impact the results of our experiments, we reference
to our earlier work [5] which investigated these issues.

Allocation of services using Random algorithm by Controller is done without
taking into account the performance of the underlying network. It can be seen for
instance that when using our PASP algorithm for allocation, it takes around
17 s for the clients on average to read a 8 MB file. In the random case, the
time is almost doubled, reaching 28 s for reading a file from the clients side.
We observed therefore that when allocating services, taking into account the

7 https://tahoe-lafs.org/trac/tahoe-lafs.
8 https://community-lab.net/.

https://tahoe-lafs.org/trac/tahoe-lafs
https://community-lab.net/

386 M. Selimi et al.

closeness and availability parameters in the allocation decision, on average (for
all clients) our algorithm reduces the client reading times for 16 %. Maximum
improvement (around 31 %) has been achieved when reading larger files (64 MB).
When reading larger files client needs to contact many nodes in order to complete
the reading of the file.

5 Related Work

Service placement is a key function of cloud management systems. Typically, it
is responsible for monitoring all the physical and virtual resources on a system
and balance their load through the allocation, migration and replication of tasks.

Data Centers: Choreo [6] is a measurement-based method for placing appli-
cations in the cloud infrastructures to minimize an objective function such as
application completion time. Choreo makes fast measurements of cloud net-
works using packet trains as well as other methods, profiles application network
demands using a machine-learning algorithm, and places applications using a
greedy heuristic, which in practice is much more efficient than finding an optimal
solution. In [7] the authors proposed an optimal allocation solution for ambient
intelligence environments using tasks replication to avoid network performance
degradation. Volley [8] is a system that performs automatic data placement
across geographically distributed datacenters of Microsoft. Volley analyzes the
logs or requests using an iterative optimization algorithm based on data access
patterns and client locations, and outputs migration recommendations back to
the cloud service.

Distributed Clouds: There are few works that provides service placement in
distributed clouds with network-aware capabilities. The work in [9] proposes
efficient algorithms for the placement of services in distributed cloud environ-
ment. Their algorithms need input on the status of the network, computational
resources and data resources which are matched to application requirements.
In [10] authors propose a selection algorithm to allocate resources for service-
oriented applications and the work in [11] focuses on resource allocation in dis-
tributed small datacenters.

Service Migration: Regarding the service migration in distributed clouds, few
works came out recently. The authors in [12,13] study the dynamic service migra-
tion problem in mobile edge-clouds that host cloud-based services at the network
edge. They formulate a sequential decision making problem for service migration
using the framework of Markov Decision Process (MDP) and illustrate the effec-
tiveness of their approach by simulation using real-world mobility traces of taxis
in San Francisco. The work in [14] studies when services should be migrated in
response to user mobility and demand variation.

Our focus is to perform service placements in community network clouds,
which are peer-to-peer clouds formed from low-resource machines and very
dynamic and diverse network. Another work in the community network context
related to ours is [15] where the authors propose service allocation algorithms
that minimize the coordination and overlay cost along the network.

Towards Network-Aware Service Placement in Community Network 387

6 Conclusion and Future Work

We addressed the need for network-aware service placement in community net-
work micro-cloud infrastructures. We looked at a specific case of improving the
deployment of service instance on micro-servers for enabling an improved dis-
tributed storage service in a community network.

As services become more network intensive, the bandwidth, latency etc.,
between the used nodes becomes the bottleneck for improving performance. In
community networks, the limited capacity of nodes and links and an unpre-
dictable network performance becomes a problem for service performance. Net-
work awareness in placing services allows to chose more reliable and faster paths
over poorer ones.

In this work we introduced a service placement algorithm that provides
improved overlay service selection for distributed services considering service
quality parameters, without the need for exploring the whole solution space. For
our simulations we employed a topological snapshot from Guifi.net to identify
node traits in the optimal service placements. We deployed our service place-
ment algorithm in a real network segment of Guifi.net, a production community
network, and quantified the performance and effects of our algorithm. We con-
ducted our study on the case of a distributed storage service. In experiments we
showed that by using our service placement algorithm, we were able to improve
the total file reading time comparing to the currently used random placement.

In next steps we plan to develop and implement a decentralized version of
our investigated service placement algorithm. Service migration should also be
addressed to support performance objectives in the case of user mobility and
within dynamic changes in the network.

Acknowledgements. This work was supported by the EU Horizon 2020 Framework
Program project netCommons (H2020-688768), by the EMJD-DC program and by
the Spanish Government under contract TIN2013-47245-C2-1-R. This work was also
supported by the national funds through Fundação para a Ciência e a Tecnologia with
reference UID/CEC/50021/2013.

References

1. Selimi, M., et al.: Cloud services in the Guifi.net community network. Comput.
Netw. 93, 373–388 (2015). Part 2

2. Selimi, M., et al.: Integration of an assisted p2p live streaming service in community
network clouds. In: Proceedings of the IEEE 7th International Conference on Cloud
Computing Technology and Science, CloudCom 2015. IEEE, November 2015

3. Selimi, M., et al.: Performance evaluation of a distributed storage service in com-
munity network clouds. Concurrency and Computation: Practice and Experience
n/a-n/a cpe.3658 (2015)

4. Ryden, M., et al.: Nebula: distributed edge cloud for data intensive computing.
In: IEEE International Conference on Cloud Engineering, IC2E 2014, pp. 57–66,
March 2014

388 M. Selimi et al.

5. Cerdà-Alabern, L., Neumann, A., Escrich, P.: Experimental evaluation of a wireless
community mesh network. In: Proceedings of the 16th ACM International Con-
ference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
MSWiM 2013, pp. 23–30. ACM, New York (2013)

6. LaCurts, K., Deng, S., Goyal, A.: Choreo: network-aware task placement for cloud
applications. In: Proceedings of the 2013 Conference on Internet Measurement-
Conference, IMC 2013, pp. 191–204. ACM, New York (2013)

7. Herrmann, K.: Self-organized service placement in ambient intelligence environ-
ments. ACM Trans. Auton. Adapt. Syst. 5(2), 6:1–6:39 (2010)

8. Agarwal, S., et al.: Volley: automated data placement for geo-distributed cloud
services. In: Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI 2010, Berkeley, CA, USA, USENIX Association
2–2 (2010)

9. Steiner, M., Gaglianello, B.G., Gurbani, V., Hilt, V., Roome, W. D., Scharf,
M., Voith, T.: Network-aware service placement in a distributed cloud environ-
ment. In: Proceedings of the ACM SIGCOMM 2012 Conference, SIGCOMM 2012,
pp. 73–74. ACM, NewYork (2012)

10. Klein, A., Ishikawa, F., Honiden, S.: Towards network-aware service composition
in the cloud. In: Proceedings of the 21st International Conference on World Wide
Web, WWW 2012, pp. 959–968. ACM, New York (2012)

11. Alicherry, M., Lakshman, T.: Network aware resource allocation in distributed
clouds. In: 2012 Proceedings of INFOCOM, pp. 963–971. IEEE, March 2012

12. Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., Leung, K.K.: Dynamic
service migration in mobile edge-clouds. CoRR abs/1506.05261 (2015)

13. Wang, S., et al.: Dynamic service placement for mobile micro-clouds with predicted
future costs. In: IEEE International Conference on Communications, ICC 2015,
pp. 5504–5510, June 2015

14. Urgaonkar, R., et al.: Dynamic service migration and workload scheduling in edge-
clouds. Perform. Eval. 91, 205–228 (2015). Special Issue: Performance 2015

15. Vega, D., Meseguer, R., Cabrera, G., Marques, J.: Exploring local service allocation
in community networks. In: 10th International Conference on Wireless and Mobile
Computing, Networking and Communications, WiMob 2014, pp. 273–280. IEEE,
October 2014

Heating as a Cloud-Service, A Position Paper
(Industrial Presentation)

Yanik Ngoko(B)

Qarnot Computing, 92120 Montrouge, France
yanik.ngoko@qarnot-computing.com

Abstract. In this paper, we discuss a novel utility computing approach,
implemented by the company Qarnot computing in private clouds. The
approach promotes a new computing paradigm in which computers are
considered as machines that produce both data and heat. It is based
on two main technologies: a new model of servers and a new resource
manager for servicing both computing and heating as a cloud-service.
This paper focuses on the resource manager promoted by this utility
computing approach. We summarize the architecture of the middleware
and describe the key computational challenges. We also provide a per-
formance characterization on the thermal comfort and processing time.
Some preliminary results show that the proposed utility computing app-
roach can lead to distributed systems that are competitive with both
traditional cloud solutions and heating systems.

Keywords: Heating as a service · Utility computing · Resource manager

1 Introduction

With the analytical engine [7], Charles Babbage conceptualized the main ideas
of a general purpose computer. One of the most innovative point of the Babbage
machine was the input/output model he defined. This model is still the reference
today; indeed, it is commonly admitted that the computers are machines that
given an input data and a computer program will automatically generate output
data that are the results of the computer program on the input. The Babbage
analytical engine was a mechanical machine. Many years after its conceptual-
ization, the electronic design of computers stressed the importance of the heat
generated by the run of computer programs. A question was then to know how
to consider this heat regarding, computational processes. On this interrogation,
one can distinguish two paradigms that we will refer to as the pure-compute and
compute-and-heat.

In the pure-compute paradigm, the heat produced by computing machines
is an unexpected outcome. The execution of a computer program must pursue
the sole objective to produce the correct output data. On modern computing
machines, the pure-compute paradigm led to the usage of fans in personal com-
puters or cooling technologies like chilled water and air conditioning systems.
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 389–401, 2016.
DOI: 10.1007/978-3-319-43659-3 29

390 Y. Ngoko

The pure-compute paradigm follows the vision that pioneers like Babbage or
Alan Turing had about the functioning of computers. It is also supported by the
impact of high temperatures on processors aging and reliability [5]. Alternatively
to pure-compute, there is the compute-and-heat paradigm. Here, the computer
programs are not only supposed to produce data. The heat is an expected out-
come and computer designers should invest in the mastering of its production.
Though heat generation was already observed in successive generation of elec-
tronic computers, it is only in recent years that this second vision was clearly
set with the development of heat recovery systems in data centers [1] and in the
pioneer initiative of Qarnot computing1.

In his report on the Babbage analytical engine [7], Menabrea suggested to
consider two economical gains we could expect from general purpose comput-
ers: the economy of time and the economy of intelligence. The conviction that
supports this work is that in shifting from the pure-compute to the compute-
and-heat paradigm, we could add another gain: the economy of energy. This
is because the compute-and-heat paradigm is based on a vision where we can
merge a computer and a heater into a single machine. However, this reason-
ing holds if we are able to establish that the compute-and-heat vision could
lead to satisfactory solutions for heating and computing. For this purpose, our
paper focuses on the implementation of the compute-and-heat paradigm made
by Qarnot computing.

(a) External view (b) Some sensors

Fig. 1. The Qarnot digital heater.

Qarnot computing promotes a utility computing model in which comput-
ing and heating are delivered from a single cloud infrastructure. The model is
implemented by means of a geo-distributed cloud plateform based on special
server nodes named digital heaters or Q.rads (See Fig. 1). Each Q.rad embeds
several processors connected to a heat diffusion system. Q.rads are deployed in
homes, offices, schools etc. and the network of radiators that they constitute is
the physical infrastructure of the distributed data center.
1 http://www.qarnot-computing.com/.

http://www.qarnot-computing.com/

Heating as a Cloud-Service 391

The Qarnot model is based on a new and customized resource manager named
Q.ware. In comparison with traditional ones, Q.ware supports a service provi-
sioning model that distinguishes two types of requests: requests for heating and
for computing. In addition, the requirements in computations must be balanced
with those in heating. Our paper summarizes the design principles of the mid-
dleware and presents the new computational problems for which it was built. It
also proposes an empirical characterization of the middleware performance on
thermal comfort and processing time. These prelimary results show that Q.ware
can be used to develop distributed systems that are competitive with traditional
clouds and heating systems.

The remainder of this paper is organized as follows. In Sect. 2, we present and
discuss the related works. Section 3 describes the Q.ware manager. An empiri-
cal characterization of performance is proposed in Sect. 4 before concluding in
Sect. 5.

2 Related Works

At first sight, it might not be easy to perceive the interest in developing a new
resource manager for geo-distributed computing. Indeed, the study of resource
management is a well-investigated topic and several managers already demon-
strated their efficiency in the management of huge computer systems. However
let us notice that while these managers were mainly developed for the man-
agement of grids, clusters, or desktop grids, they are not necessarily adequate
for geo-distributed clouds. Indeed, clouds are based on alternative models for
service provisioning that introduce specific scheduling problems like the virtual
machines consolidation and placement problem.

Several resource managers were proposed for geo-distributed clouds. In [2],
the authors showed how to combine a classical grid scheduler with a set of clouds
that offers infrastructure as services. In their model, the user requests describe
a job to process. The jobs are submitted to the grid scheduler with an addi-
tional description of the machines to use for the processing. The requirements
in machines is transmitted to an IaaS provider that will then boot the necessary
compute nodes with virtual machines. The grid scheduler then deploys the job
on the virtual machines that are started. The open stack project2 developed
several solutions for the creation of distributed clouds. This includes distributed
scheduling mechanisms implemented in Nova or the open stack cascading solu-
tion that can be used for an hierarchical management of several open stack sites.
The NebulaEdgeCloud [10] proposes a distributed edge computing. It enables
distributed data-intensive computing through a number of optimizations includ-
ing location-aware data and computation placement, replication, and recovery.
The SlapOs cloud [11] introduced a distributed resource manager for cloud that
implements the master/slave paradigm. The master nodes are stateful while
slaves nodes are stateless. Slaves request to their master node which software
they should deploy and which tasks to run. They frequently sent reports to
2 https://www.openstack.org/.

https://www.openstack.org/

392 Y. Ngoko

the master about their state. Finally, the distributed cloud management has
also been envisionned throughout multi-cloud brokers that interact with several
clouds to find the best resources according to user service level agreement [3].
Several other resource managers were proposed for geo-distributed clouds. For
an extended state-of-the-art, we invite the interested reader to the report pro-
vided in [6]. Despite the existence of such solutions, they do not all implement
one of the main feature required in the Qarnot vision, which is the need to define
a thermal-aware manager.

We did not find in the literature any geo-distributed cloud resource manager
whose specificity is to be thermal-aware. However, let us notice that thermal-
aware schedulers were investigated on several computing systems. Thus, one
might consider that a thermal manager for geo-distributed cloud would easily
be derived in including existing scheduler policies in a geo-distributed manager.
However, let us observe that this will not necessarily conduct to the heating as a
service model that is targeted. Indeed, existing thermal-aware scheduling policies
mainly targeted the minimization of the power consumption and heat generation,
the minimization of the flow of hot air or the minimization of the cooling costs
of computer systems [8]. This also means that they are formulated in the pure-
compute paradigm while with Q.ware, it is the compute-and-heat paradigm that
is followed. The consequence is that Q.ware will reduce the temperature only
when requested and must manage target of temperatures. In addition, Q.ware
can operate in an highly dynamic environment in which it is the requirements
in heating that determines the computing power of its nodes. The next section
gives a general view of the architecture of the middleware.

3 The Q.ware Resource Manager

3.1 Design Principles

The design of the Q.ware system is based on several guiding principles, including
the following:

– Distributivity: Q.ware assumes a physical geo-distributed topology for
cloud computing. In the case of the Qarnot cloud for instance, the com-
pute nodes consists of digital heaters deployed in buildings of the city of
Paris. The management of the geo-distributivity is in particular handled by
locality-aware rules in the scheduling.

– Security: Q.ware integrates state-of-the-art security modules for encryption
and authentication. The REST API is accessible through HTTPS or leased
line; All distribution and computing nodes implement TLS/IPSEC with client
authentication. In addition, the compute node could be stateless (no storage).

– Thermal-awarness: As already mentioned, in addition to traditional cloud
computing requests, Q.ware also handles heating requests.

– Multi-clouds and multi-architectures: Q.ware assumes a generic view of
computing resources. They can consist of a motherboard (part or not of a
Q.rad), a connected device, a computer server. Q.ware also supports various
types of virtual machines and containers.

Heating as a Cloud-Service 393

– City-cloud: The Q.ware is based on a hierarchy of 3 levels of servers: Q.node,
Q.box, Q.rad. The organization has been conceived to manage a data center
distributed in a city. Thus, the Q.rads support the clouds’ abstractions at
home level, the Q.boxes aim at managing abstractions at building levels and
Q.nodes, abstractions at city level.

– Autonomy: In Q.ware, if a top server fails, the servers underneath will
autonomously take the appropriate decisions to ensure that the heating is
serviced. In addition, if there are no computing requests, the servers will
automatically request computations from databases of scientific problems like
BOINC (http://sat.isa.ru/pdsat/top users.php).

– Fault-tolerance: A Q.box can be connected to several Q.nodes. This is
important for continuing the service provisioning when a Q.node fails. In
the same way if a Q.box could not be accessed, the Q.rad will ensure the
heating supply.

– Scalability: We can easily add new compute nodes to Q.ware by creating
new instances of the different servers.

The Q.ware resource manager includes a C# API and several SDK (Python,
NodeJs, C#) for the submission of computing requests. In the next section, we
will present the architecture of the manager in more details.

3.2 Architecture

The Q.ware is composed of three types of servers: Q.nodes, Q.boxes and Q.rads.
The servers are organized in a hierarchical tree where the Q.nodes are root nodes
and the Q.rads are leaf nodes. An example of deployment is given in Fig. 2(a).
As Q.ware was designed to operate data centers distributed in cities, a typical
deployment of the middleware could be seen as a forest of Q.nodes. Here, each
home is associated with a set of Q.rads that are controlled at the building level
by a Q.box. The Q.boxes are controlled by a Q.node. In practice however, this
deployment might not be suitable. For fault tolerance issues, it might be more
interesting to link a Q.box to several Q.nodes. Ideally, Q.ware assumes that the
computing power of the cloud is in the processors (we will also use the term
compute nodes) inside the digital heaters. But, as already mentioned, it can also
manage these resources without the digital heater abstraction (See Fig. 2(b)). In
particular, Q.ware can exploit concurrently the compute nodes of a heater and
container/virtual machines deployed in another data center.

In the server hierarchy of Q.ware, the heating requests are first routed towards
the leaf nodes while the computing requests are routed to the top. For computing
requests, Q.ware supports a Python and C# client that is used to formulate the
computing requests as the submission of a set of tasks. Here, a task refers to the
run of a container/virtual machine image and is associated with a set of input
files, a virtual disk and an output directory.

Each Q.node runs a scheduler that manages a queue of tasks. The scheduler
implements a list scheduling algorithm with priority on tasks. The principle
of the algorithm is to iteratively loop on the queue and to select the tasks of

http://sat.isa.ru/pdsat/top_users.php

394 Y. Ngoko

Q.node

Q.box

Q.rad

(a) View of the servers hierarchy

Q.box

Q.rad

Compute
 nodes

(b) Compute nodes, Qrads and Q.boxes

Fig. 2. Possible deployment with Q.ware.

higher priorities to deploy. Once done, several filters are applied to determine
the compute nodes that will run the tasks. We will come back on the scheduling
model further. For now, it is important to retain that the vision that the Q.ware
has of the compute nodes come from data reported by the Q.boxes. Thus, when
for instance, in a heater, a request is sent to not produce any heat, the Q.box
will state that the corresponding nodes are not exploitable. In the list scheduling
algorithm, there are globally three classes of priorities: background, high and low.
Tasks of background priorities correspond to those that are mainly deployed
to heat. Those with high priorities are associated with a computing request
that has a strong SLA. The list scheduler of the Q.node assumes that tasks are
preemptable. However, we cannot interrupt a task with a given priority to run
another of lower priority.

At the lower end of the Q.ware architecture there are the Q.rads servers, in
each digital heater. The Q.rads servers have a direct access to the processors,
sensors and the main computing power information. The sensors include humid-
ity, light, CO2, noises, temperature etc. The servers are also connected to a
control interface (HMI) that the hosts of the heater can use to control their tem-
perature. The Q.rad is able to negotiate computing loads with Q.nodes, through
the secured connexion of its Q.box. In the case, the communication is broken
between the Q.box and the Q.nodes, the Q.rads are still able to compute cached
tasks. In the case where the communication with the Q.box is broken, are not
working, the Q.rads will autonomously ensure that the heating will be serviced
in launching a generic benchmarked computer program.

Over the Q.rads and under the Q.node, Q.boxes are acting as local controllers
to handle heating and jobs’ dispatching, security and caching. The Qboxes man-
age the storage used in the heaters. The choice to separate the management of
the storage was initially driven by noise and integration consideration. Q.boxes
are in charge of dynamic container deployment, input, output and session data
synchronization with parent Q.nodes. A Q.box can also stop or pause a con-
tainer of the processors of the heaters it controls. Those decisions are based on
collected sensors data. Finally, each Q.box is connected to at least one Q.node.
In the same way, a Q.rad can be connected to one or several Q.boxes. These
choices were made for being fault-tolerant.

Heating as a Cloud-Service 395

3.3 Scheduling in Q.ware

One main novelty in Q.ware is its scheduling model. To understand why, in
this part, we will present here some challenges envisionned in the design of the
middleware.

A New Objective Function. Scheduling in Q.ware is naturally a multi-
objective problem. This is because there are at least three viewpoints: the one of
customers that want to compute (HPC customers), the viewpoint of customers
that want to be heated (host) and the one of the middleware.

In Q.ware, the viewpoint of the HPC customers is what we find in classical
distributed scheduling systems: the goal is to get the results of submitted jobs as
soon as possible. For this purpose, the current Q.ware implementation focuses
on Cmax minimization. The viewpoint of the hosts completely differs from what
we could find in classical scheduling theory. Indeed, let us assume that at date
t, a host of the heater i want to be heated at the temperature targeti(t). Let us
also assume that ambianti(t) is the current ambient temperature observed from
the heater. Given n jobs to schedules on m heaters, the hosts expect that the
processing of the jobs should be done such as to minimize the difference between
the target and ambient temperatures. This is captured with the objective
function:

minimize max
1≤i≤m

∫ Tm

0

|targeti(t) − ambianti(t)|.dt

Here, Tm is an input estimation of the time required to process the jobs.
Finally, the middleware viewpoint is specifically related to one goal of the Qarnot
computing business model. It is the one of reducing the energy consumption in
the processing of the jobs. This means that if Pi(t) is the power consumption of
the heater i at date t, the objective is to minimize:

max
1≤i≤m

∫ Tm

0

Pi(t).dt

This objective is related to the Qarnot business model since the company refunds
the electricity bill of the hosts. At first sight, it might seem impossible to reduce
the energy consumption on a system that produces heat from electricity. How-
ever, we can play on the inertia of the heater to not compute all the time.

A general approach for solving multi-objective problems consists of formu-
lating the other objectives as a constraint such as to have a single objective
problem [4]. This is done in Q.ware where the hosts and Q.ware viewpoints are
defined as constraints in an adaptive scheduling approach.

A New Scheduling Problem. As we have a new objective function, we have
a new scheduling problem. But, the novelty of the scheduling problem in Q.ware
is not only related to the objective function. The Q.ware scheduling model also

396 Y. Ngoko

introduces two types of constraints related to heat production. To understand
why, let us consider the power equation:

P = CV 2f + Pstatic (1)

Here, Pstatic is a base power consumption and CV 2f is the dynamic power
where V is the voltage, f the frequency and C the capacitance. In Q.ware, this
power equation is used to manage the heat production in Q.ware. The idea is to
act on the dynamic part to consume more or less electricity and then generate
heat. There are two new types of heat production constraints we consider. The
first is on the velocity at which we go from a temperature Δ(t) to Δ(t′) (t′ > t).
Here, we define the velocity as

v(Δ(t),Δ(t′)) =
Δ(t′) − Δ(t)

t′ − t

The value of the velocity will depend on the configurations we will set for
the load, voltage, frequency of the processors inside the heater. The velocity
constraint we consider is that a host could set a minimal speed in heating. In
general, all velocities cannot be reached because each heater has a limited power
consumption. The second type of constraints is to ensure that the heat diffused
by any heater fits within a given interval. The guarantee of a minimal and
maximal heat is important since some temperatures are more suitable for the
human body. This constraint implies to have an accurate model of the inertia of
the heater.

A New Model for Heterogeneity. Since processors frequencies are manipu-
lated to produce heat (see Eq. 1), scheduling in Q.ware must be envisionned in an
heterogeneous context. This hypothesis holds even if the processors layer of the
distributed architecture initially have the same characteristics. Scheduling algo-
rithms for variable speed processors have been investigated in the past. But the
main novelty that the Q.ware model introduces is that the variability is dynamic
and could be caused by the interaction of the hosts with the heater (modification
of the target temperature for instance). In its current implementation, Q.ware
supports a simple variability model that calibrates the computational power of
the nodes depending on the seasons. But a more elaborated model that uses the
sensors embedded in the heaters is in construction. The idea is to to anticipate
the available computational power by detecting the presence of host and combin-
ing this information with meteorogical parameters like the external temperature,
the humidity etc.

An Open Perspective for Non Cooperative Game Scheduling. During
the summer, the available computing power in Q.ware will decrease. To increase
it, we can however turn the scheduling problem in a game where hosts compete
in an ecological perspectives. Given two hosts host1, host2 let us assume that
each could tolerate a small deviation over the temperature they want inside

Heating as a Cloud-Service 397

their homes. In a ecological viewpoint, this is interesting because it allows the
processing of the tasks in using a free-cooling system. Let us assume that in
manipulating the target temperature, each host can either accept or reject a task
that was scheduled on his heater. The deviations that host1 could tolerate could
differ from the one that host2 could tolerate. In order to make these threshold
grow, let us consider a game with four participants: the Q.ware, host1, host2 and
a datacenter. Initially in the game, n tasks are submitted to Q.ware. At the round
j of the game, the Q.ware pushes a task and chooses a host that will process it.
If the host accepts the task, it cumulate the reward associated with it. If not,
Q.ware will propose the task to the other host. If none of the hosts accepts, then
it is the datacenter that will run the task. Such a game will put in tension two
objectives: the thermal confort of each host (private interest) and the ecological
benefit for all (public interest). In practice, the winner of such a competition
could be the datacenter. To avoid this situation and maximize efficiency, Qarnot
gives priority to optimal buildings for deployment (e.g. schools closed in summer)
and plan to leverage on others opportunities to exploit heat (e.g. hot water).

Here ends the presentation of the Q.ware middleware. In the next section,
we will discuss its performance.

4 Performance Characterization

In this section, we propose an empirical characterization of the performance we
could expect from Q.ware. The characterization is based on data collected from
the Qarnot cloud. It is important to notice that it is not easy to dissociate the
impact of the physical architecture of the cloud on the performance we measured.
However, as Q.ware was mainly designed for the Qarnot cloud, we can say that
the estimation are significant. We estimated the performance on two criteria:
the thermal comfort and processing time. We start with the thermal comfort.

4.1 Thermal Comfort

On thermal comfort, we considered distribution of temperatures inside homes
where the Qarnot heater was deployed. The intent was to see whether or not the
system was able to produce sufficient heat to people that adopts it.

In Fig. 3(a–d), we present the trends on temperatures we observed. The fig-
ures were computed from more than 200 different heaters. The temperatures
were taken from November, 01st of 2015 to May 05th of 2016. The measures
were collected approximately every 10 min. The interval probabilities were com-
puted for the intervals [a, a + 1] where a is a positive integer. The curves show
that the temperatures were concentrated between 17 and 26 ◦ with an average
temperature around 22.5 ◦. They also show that the heat is guaranteed during
the winter with a low probability to observe a temperature under 17 ◦ (mostly
open windows). These results are interesting because as shown by a national
french study [9], more than 75 % of french householders have a preference for
a reference living room over or equal to 19 ◦. In addition, this latter study [9]

398 Y. Ngoko

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

p(
t <

=
T)

temperatures (°c)

(a) Cumulative distribution of temperatures

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

te
m

pe
ra

tu
re

 (°
c)

hour

(b) Average temperature in a day

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

6 7 8 9 101112131415161718192021222324252627282930

 d
en

si
ty

 (%
)

temperature range (°c)

(c) Interval probabilities per day

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

11 12 1 2 3 4 5

 te
m

pe
ra

tu
re

 (°
c)

month

(d) Average temperature per month

Fig. 3. Temperature distributions

reveals a correlation between the increase of this reference temperature and the
revenue level of the householders. We can thus conclude that the distributions
we observed reflect a vision of the comfort shared by most french householders.

It is important to precise that since these measures were done with sensors
embedded in the heater, there might be a biais when we go far from the heater.

4.2 Processing Time

We analyzed the journal of events of the Qarnot cloud scheduler. This journal
reports the state of the tasks submitted in the platform. One of these task
consists of the execution of the Qarnot parallel rendering service3. We focused
on it (more than 1500 tasks). In Fig. 4(a), we depict a cumulative distribution
of the rendering tasks that were completed (some failed). This figure shows
that more than 80% of the tasks we analyzed were processed in less than 3 h
(Makespan). It also shows that some of the processed tasks took more than 80 h.
This is very interesting if we consider that we did not get an error even if the
processors temperature in these cases often exceeded 80 ◦. This first curve shows
that the idea of provisioning heating from computations can perfectly be applied
to long-term and compute intensive tasks.

The tasks we considered were diverse. To show this point, we computed a
load balancing factor as the ratio between the sum of completion time required
for processing a task and the makespan times the number of processors used

3 blender.qarnot.net.

http://www.blender.qarnot.net

Heating as a Cloud-Service 399

in the run of the task
(
∑

Ci

P.Cmax

)

. Somehow, this factor could approximate the
parallel efficiency achieved on the task in the case where the sequential time
is the parallel time on one processor. Figure 4(b) gives the interval probability
to fall in different range of load balancing. As one can notice, there is not an
interval that dominates the other.

In the parallel rendering, any input file is splitted into several sub-files that
each is associated with a sub-task to deploy on the heater (Bag of Task paral-
lelism). If these subtasks are deployed on a set S of processors, we considered
that the maximal time spent on each processor pi ∈ S is the effective computing
time. For each task, we computed the ratio between the elapsed time in the
processing of the task (the one perceived by HPC customers) and the effective
computing time

(

elapsed time
Cmax

)

. The goal was to capture the overhead induced
by Q.ware (system deployment, remote access to the persistent storage, execu-
tion faults, variation of processors speed etc.). Figure 4(b–c) depicts the result
we observed. We distinguish two cases: in the former, the number of cores used
for the rendering is lower than 64 and in the latter it is greated. We made the
distinction to see the impact of the number of processors on the overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 10 25 55.55 103.89

p(
x

<=
 X

)

runtime (h)

(a) Cumulative distribution of runtime

 0

 0.05

 0.1

 0.15

 0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

pr
ob

ab
ilit

y

 Range of load balancing factors

(b) Interval probability of balance factors

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

p(
r <

=
R

)

elapsed/makespan

(c) Cumulative distribution of the overhead
in the release date (1-64 cores)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

p(
r <

=
R

)

elapsed/makespan

(d) Cumulative distribution of the overhead
in the release date (over 64 cores)

Fig. 4. Runtime distributions

As one can notice, the probability for the overhead to be close to 1 was high in
all cases. This means that the time taken for the management of the resources is
not predominant in Q.ware. However, let us notice that the overhead reached 1.7
in some cases. This phenomenon occurs on short jobs. For instance, the execution

400 Y. Ngoko

of a sub-task in the parallel rendering service always includes a deployment time
(operating systems, copy of files etc.). The shorter the execution time, the higher
the importance of the deployment time.

5 Conclusion

In this paper, we introduced Q.ware, a new resource manager for a utility com-
puting approach in which heating is considered as a cloud-service. We described
the architecture of the middleware and proposed a performance characteriza-
tion in considering data collected from the Qarnot cloud. The results showed
that Q.ware could pave the way of a new vision of distributed computing where
cloud-services and heating are provisioned from a unique platform. The results
also invite to (1) reconsider the question of cooling in datacenters and servers
and (2) to design new scheduling algorithms for the efficient production of heat
based on computers.

To continue this work, we mainly envision an extensive benchmarking study
of the middleware. The objective is to consider other dimensions of the quality
of services like the reliability and the availability. We also intend to make a
comparative analysis with the performance of other resource managers.

References

1. Alfonso, C., Giulio, P.: Cooling systems in data centers: state of art and emerging
technologies. In: Sustainability in Energy and Buildings: Proceedings of the 7th
International Conference, SEB 2015, pp. 484–493. Elsevier (2015)

2. Armstrong, P., et al.: Cloud scheduler: a resource manager for distributed compute
clouds. CoRR abs/1007.0050 (2010)

3. Buyya, R., Barreto, D.: Multi-cloud resource provisionning with aneka: a uni-
fied and integrated utilization of microsoft azure and amazon ec2 instances. In:
International Conference on Computing and Network Communications, pp. 222–
235, December 2015

4. Dutot, P.F., Rzadca, K., Saule, E., Trystram, D.: Multi-objective Scheduling,
Chap. 9. Chapman and Hall/CRC Press, November 2009. ISBN: 978-1420072730

5. Huang, L., Xu, Q.: Agesim: a simulation framework for evaluating the lifetime
reliability of processor-based socs. In: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2010, pp. 51–56. European Design and
Automation Association, Belgium (2010)

6. Jennings, B., Stadler, R.: Resource management in clouds: survey and research
challenges. J. Netw. Syst. Manage. 23(3), 567–619 (2015)

7. Menabrea, L.F., Lovelace, A.: The analytical engine invented by charles babbage.
From the Bibliothèque Universelle de Genève, No. 82, October 1842. http://www.
fourmilab.ch/babbage/sketch.html

8. Moore, J., Chase, J., Ranganathan, P., Sharma, R.: Making scheduling “cool”:
temperature-aware workload placement in data centers. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC 2005, p. 5.
USENIX Association, Berkeley (2005)

http://www.fourmilab.ch/babbage/sketch.html
http://www.fourmilab.ch/babbage/sketch.html

Heating as a Cloud-Service 401

9. Penot-Antoniou, L., Zobiri, R., (directeur de la publication), X.B.: Les
déterminants de la température de chauffage adoptée par les ménages. Etude et
Documents No. 83, Comissariat général du développement durable, April 2013.
http://developpement-durable.gouv.fr/IMG/pdf/ED83.pdf

10. Ryden, M., Oh, K., Chandra, A., Weissman, J.: Nebula: Distributed edge cloud
for data intensive computing. In: 2014 IEEE International Conference on Cloud
Engineering (IC2E), pp. 57–66, March 2014

11. Smets-Solanes, J.P., Cérin, C., Courteaud, R.: Slapos: a multi-purpose distributed
cloud operating system based on an erp billing model. In: 2011 IEEE International
Conference on Services Computing (SCC), pp. 765–766, July 2011

http://developpement-durable.gouv.fr/IMG/pdf/ED83.pdf

Distributed Systems and Algorithms

Design and Verification of Distributed Phasers

Karthik Murthy(B), Sri Raj Paul, Kuldeep S. Meel,
Tiago Cogumbreiro, and John Mellor-Crummey

Rice University, Houston, USA
karthik.murthy@rice.edu

Abstract. A phaser is an expressive barrier-like synchronization con-
struct that supports dynamic task membership. Each task can partic-
ipate in a phaser as a signaler, a waiter, or both. In this paper, we
present a highly concurrent and scalable design of phasers for a distrib-
uted memory environment. Our design for a distributed phaser employs
a pair of concurrent skip lists augmented with the ability to collect and
propagate synchronization signals. To enable a high degree of concur-
rency, the addition and deletion of participant tasks are performed in
two steps: a “fast single-link-modify” step followed by multiple hand-
over-hand “lazy multi-link-modify” steps. We verify our design for a
distributed phaser using the SPIN model checker. We employ a novel
“message-based” model checking scheme to enable a non-approximate
complete model checking of our phaser design. We guarantee the cor-
rectness of phaser semantics by ensuring that a set of linear temporal
logic formulae are valid during model checking. We also present com-
plexity analysis of the cost of synchronization and structural operations.

1 Introduction

Power consumption is now considered to be a very important parameter in the
design of future HPC systems. Dynamic voltage and frequency scaling is an
essential tool required to operate parallel systems within a tight energy enve-
lope [10]. As a consequence, dynamic task-based programming models are gain-
ing attention as an alternative to static SPMD models. Synchronization between
tasks in the dynamic task-based programming models is becoming increasingly
important, as noted in the report “Software Challenges in Extreme Scale Sys-
tems” [9].

Phasers are a general barrier-like synchronization primitive that supports
dynamic registration of tasks. Each task has a choice of participation modes:
signal-only, wait-only, and signal-wait. To date, the only phaser design available
is for shared memory systems [11,12]. In this paper, we present a highly concur-
rent and scalable design of phasers for distributed memory parallel systems.

Recent designs for phaser-like synchronization include Alting barriers in
Communicating Sequential Processes for Java (JCSP) [13] and Clocks in X10 [8].
While Clocks have been implemented for distributed memory environments, they
use a non-scalable design in which a single root task collects information from all

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 405–418, 2016.
DOI: 10.1007/978-3-319-43659-3 30

406 K. Murthy et al.

the participants [7]. Alting barriers similarly maintain global state in a central-
ized fashion. In contrast, our phaser design uses a scalable distributed protocol.

Synchronization protocols that take time linear in the number of participat-
ing tasks are not scalable. Protocols with sub-linear growth in time complexity
are necessary. Skip lists [6] have long been used in shared memory environments,
providing an expected time complexity of O(log n) for operations on a skip list
containing n items. We make use of a pair of distributed concurrent skip lists
as the backbone for a distributed phaser. Insert and delete operations on the
skip lists enable a task to dynamically join or abandon a phaser. Additional
operations on the skip lists support propagation of synchronization signals.

Proving the correctness of distributed protocols is difficult. The manual enu-
meration of communication interleavings is infeasible and writing formal proofs
is error prone. For these reasons, we employ automated formal verification known
as model checking to verify our design. We check whether our design satisfies
the required phaser semantics with a quorum of Linear Temporal Logic (LTL)
formulae. Model checkers explore all possible paths of execution, verifying the
input LTLs at each point along these paths. During this process, the size of
the state space needed to completely model check the operations on a distrib-
uted phaser is significantly more than a terabyte. However, we employ a novel
“message-based” divide-and-conquer strategy to reduce the state space and pro-
vide a non-approximate complete model checking of our design. To the best of
our knowledge, we are the first to employ a message-based scheme for a non-
approximate model checking to prove the correctness of a distributed synchro-
nization protocol.

In this paper, we explore the design of a distributed phaser, complexity of
operations and its correctness. Our contributions are as follows:

– We describe a design for distributed phasers that employs a scalable decen-
tralized event-driven approach to synchronize dynamic tasks.

– We prove livelock- and deadlock-freedom, semantic properties about synchro-
nization and structural-modification operations through a novel “message”-
based model checking scheme.

– We analyze the time and message complexity of operations on distributed
phasers.

Section 2 introduces distributed phasers. Section 3 details the design and
operations. Section 3.4 verifies our design using model checking. Section 4 derives
the complexity of phaser operations. Section 5 discusses related work. Section 6
presents conclusions.

2 Distributed Memory Phasers

A phaser is a flexible, barrier-like primitive used to synchronize a group of parallel
tasks [11]. A phaser enables each task to participate in one of three modes: signal-
only, wait-only, signal-wait. This flexibility lets a phaser be used in a spectrum of
synchronization patterns ranging from a barrier to a producer-consumer pattern.

Design and Verification of Distributed Phasers 407

A phaser supports five operations: create, register, drop, signal, and
wait. create is a collective among a team of tasks that creates a phaser.
register adds a task as a participant, while drop lets a task remove its mem-
bership. The only way to invoke register is when a task spawns another:
the spawner registers the spawnee. Operations create and register indicate
whether a task participates as a signaler (signal-only), a waiter (wait-only), or
both signaler and waiter (signal-wait). The participation mode affects the two
remaining phaser operations signal and wait, explained next.

A phaser synchronization maintains a monotonically increasing global event
counter called phase. To increment the counter, all signalers that have not
dropped from the phaser must invoke signal exactly once. A waiter issues a
wait to block until the phaser reaches a certain phase i, effectively observing
the i-th collective event. Any task that is both a signaler and a waiter must
always signal before waiting. A wait-only task will observe but not affect syn-
chronization. In contrast, a signal-only task contributes to advancing phase, but
waits for no other, e.g., a producer in a producer-consumer pattern.

On distributed systems, tasks participating in a phaser may reside on differ-
ent compute nodes and must interact with each other through messages1. Below,
we detail the challenges of designing phasers for a distributed memory model and
introduce our solutions to address these challenges.

(1) Efficient creation, signal aggregation and diffusion among partici-
pants. Communication costs are significantly higher than computation costs in a
distributed memory model. Centralized algorithms lack scalability. Decentralized
algorithms that grow sub-linearly in the number of communication interactions
among participant tasks to perform phaser operations are necessary.

Skip lists [6] have long been used in shared memory environments, providing
an expected time complexity of O(log n) for operations on a skip list containing
n items. The items in a skip list participate at one or more levels. Every item
participates at level 0. An item at level k participates at level k + 1 with proba-
bility p. A skip list does not require rebalancing after insertion/removal of items
to maintain expected logarithmic time complexity for all operations.

Intuitively, determining the phase of a phaser is equivalent to retrieving the
phase information resident on signalers organized as members of a skip list while
performing a min-reduce of the phase information along the retrieval path.

(2) Efficient integration of dynamically created participants. The
expected cost of including a task into a distributed phaser should be cost effective
in terms of the number of communication interactions needed.

In our design, the number of communication interactions to either register
or drop a task is sub-linear in the number of phaser participants.

(3) Concurrent synchronization and structural modifications. A dis-
tributed phaser design needs to provide a separation of concerns by allowing

1 Our design of distributed phasers is idempotent to whether messages are one-sided
(i.e., RDMA) or two-sided.

408 K. Murthy et al.

synchronization signals to propagate through the underlying data structure while
structural modifications (adding or deleting a task) are in progress.

We achieve this concurrency by factoring a register/drop into a sequence of
sub-operations that can be interleaved with signaling operations. In particular,
we factor every register/drop into a “fast single-link-modify” step followed by a
“lazy multi-link-modify” step similar to the one presented by Crain et al. [3] to
support higher levels of concurrency in a distributed memory environment.

3 Distributed Phaser Design

Our design for a distributed phaser employs a pair of distributed skip lists.
Signalers self organize into a signal collection skip list (referred to as SCSL),
which is used to aggregate signals to a designated signaler at the head of the list.
Waiters self organize into a signal notification skip list (referred to as SNSL) that
is used to diffuse phase information from the head of the list to all the waiters.

Fig. 1. Phaser synchronization achieved
through signal collection and notification
skip lists.

In a synchronization round, phase
aggregation occurs in a right to left
sweep with each signaler communi-
cating the minimum phase of itself
and its right neighbors to its high-
est level left neighbor in the SCSL.
The designated signaler at the head
of the SCSL conveys the aggregated
phase to the designated waiter at the
head of the SNSL, who then initiates
a left to right diffusion of the phase
to all the waiters.

To support non-blocking signal
operations, we separate the imple-
mentation of a task into actions by
a computation and communication
thread. The computation thread exe-

cutes the task, informs the communication thread at signal, and proceeds with-
out blocking. The communication thread interacts with other such threads to
perform the required SCSL actions. All the task actions described in this paper
are those of the communication thread. We explicitly refer to the computation
thread where necessary. In this section, we present detailed design descriptions
of the creation and operations on SCSL. Managing the signal notification skip
list - SNSL is similar, but simpler compared to SCSL. For lack of space, we omit
the design of SNSL.

3.1 Distributed Skip Lists Creation

Create is a collective operation among a set of tasks that is used to create a
phaser. Each task can specify whether it wants to participate in the phaser and if

Design and Verification of Distributed Phasers 409

so, its participation mode. Invoking the create operation leads to the creation
of both SCSL and SNSL, for which we employ the O(log n)-based recursive
doubling algorithm developed by Egecioglu et al. [4] without wrap-around. The
algorithm proceeds in log n rounds of communication. In each round i, a task
communicates with its hypercube neighbors at 2i links away and accumulates
left and right “frontiers” that indicate visible neighbors at each level.

3.2 Synchronization Signal Aggregation

Definition 1. Local phase is the number of calls to signal by a signaler’s com-
putation thread. Subtree phase at a signaler is the minimum subtree phase
across all the right neighbors connected to the signaler in the SCSL at their
highest level and local phase at the signaler itself. These right neighbors are
referred to as from neighbors. Messages informing the subtree phase at a sig-
naler to the left neighbor at its highest level is called a synchronization signal.
The left neighbor at the highest level is referred to as the to neighbor.

For example, in Fig. 1, s3 is the from neighbor of s2 and also the
to neighbor for both s4 and s5.

Single round of signal aggregation. In a round of signal aggregation, each
signaler issues a request (SRQ) to its from neighbors querying whether they can
participate in the next phase, i.e., subtree phase+1. On receiving an SRQ, a sig-
naler waits for responses from all its from neighbors and waits for local phase
to equal the requested phase. After the wait conditions are satisfied, the signaler
increments its subtree phase and sends a response (SRP) to its to neighbor
and forming a request-response chain, which begins at the designated root sig-
naler task in the SCSL. The request-response chain might, however, result in
the ripple of requests from the root to the farthest signaler participating in
the SCSL, and the ripple of responses back to the root in every synchroniza-
tion round. To mitigate the latency of such ripples, we require that a signaler
issues SRQ for the subsequent synchronization round immediately after sending
a response to its to neighbor.

Definition 2 (Synchronization signal invariant). The to neighbor of any sig-
naler aggregates signals for the same or lower synchronization round than the
signaler itself, formally:

∀s ∈ SCSL, s.subtree phase ≥ s.to neighbor.subtree phase

Since every signaler is transitively connected to the root in the SCSL, this
invariant ensures that an increment of the subtree phase at the root occurs
only after all signalers in the SCSL have signaled for that round.

3.3 Registration of a Signaler

Our design supports the dynamic addition of a task into a phaser. Similar
to phasers in shared memory, only a task currently participating in a phaser,

410 K. Murthy et al.

referred to as parent, registers new tasks, referred to as children, into the phaser.
By doing so, we provide the guarantee that a child begins participating in the
same phase (local phase+1) as that of its parent.

Inserting a child into the SCSL is decomposed into multiple steps to enhance
concurrency. In each step, the granularity of locking is limited to a maximum of
two links at two adjacent levels of the SCSL. First, a parent eagerly inserts a
child into a link at the lowest level of the SCSL, i.e., L0. Next, the child initiates
a lazy hand-over-hand climb from one level to the next until its final level in the
list; decision to move to level k+1 from k is based on probability p.

There are two modes of signal propagation for a child. After eager insertion,
a child still needs the parent to propagate its signals since it might be at a
lower phase than the subtree phase of the left neighbor at L0 of the SCSL.
We refer to this state as a transient state. Once it reaches the subtree phase
of its left neighbor at L0, then it functions as a typical task in the SCSL
and propagates its signals through its left neighbor. We refer to this state as a
normal state. In the next two sections, we describe the two steps of eager- and
lazy-insertion in detail.

3.3.1 Eager Single-Link Modify
Here, we describe in detail the pattern of communications between tasks in the
SCSL needed to register a child task with the phaser. When a parent registers
a child, the parent’s computation thread blocks until the child is linked into the
SCSL at L0. The blocking ensures that no signals of the child are lost. To insert
a child at L0 of the SCSL, the first step is to find the location where the child
should be linked. To do so, we employ the logical rank of the compute node on
which a child will execute as a key.

TUS
Travel Upstream during

Spawn

TDS
Travel Downstream during

Spawn

MURS/E
Moving Up of Right Neighbor

Started/Ended

MULS/E
Moving Up of Left Neighbor

Started/Ended

AT Attach

ENSP End Of Spawn

Fig. 2. Message sequence for addition of a task.

Figure 2 illustrates the message sequence for linking a child to L0 of the SCSL
based on the child’s key. In the figure, n2 links its child n4 into the SCSL. The
first step in this process is to find neighbors n3 and n5 such that n4’s key lies

Design and Verification of Distributed Phasers 411

between n3 and n5. To do so, n2 initiates an upstream message chain, 1-TUS,
that hops from a task to its left neighbor at its highest level terminating at
a task n0, such that n4’s key lies between n0 and its right neighbor or the
highest level of the SCSL is reached and n0’s right neighbor’s key is less than
the child’s key. n0 then initiates a downstream message chain, 2-TDS, that hops
from a task to its right neighbor until it ends at the L0 link where the child
should be linked. The left neighbor of this L0 link, n3, enqueues 3-MURS on
itself because another inclusion/drop might occur concurrently preventing n3

from handling the 3-MURS immediately. Once, n3 dequeues 3-MURS, it verifies
whether the link with its current right neighbor, n5, remains valid for the
child’s inclusion. If so, n3 proceeds to lock the link to prevent other structural
changes and informs n5 of the child through 4-MULS. n5 sets its to neighbor
to n4, locks its left neighbor at L0 and sends 5-AT to n4. n4 sets its left and
right neighbors at L0 to n3 and n5 respectively and sends 6-MURE, 7-MULE
and 8-ENSP. n4 starts in the same phase as n2. If subtree phase of n3 is higher
than that of n2, then n4 needs to send signals to n2 till it catches up with the
synchronization round of n3, i.e., transient state. On receipt of 6-MURE, n3

sets its right neighbor at L0 to n4 and unlocks it. On receipt of 7-MULE,
n5 sets its left neighbor at L0 to n4 and unlocks it. The right neighbor of
n3 and left neighbor of n5 are set at the end to ensure that search messages
such as 1-TUS and 1-TDS are never blocked and go through a transient task
only after its completely linked at L0. On receipt of 8-ENSP, n2 determines
whether to maintain a signaling link with child task (n4) and notifies its blocked
computation thread to proceed.

3.3.2 Lazy Multi-link Modify
The lazy hand-over-hand movement of a child to its final height in the SCSL does
not begin until the child completes transition from transient state, i.e., signals
through its parent, to normal state, i.e., signals through its left neighbor at
L0 in the SCSL. The transition to normal state occurs once the child reaches
the subtree phase of its left neighbor at L0. In normal state, at each level k,
the child decides to move to level k+1 based on probability p until it reaches its
final height. To move to level k+1, it needs to determine its neighbors at level
k+1. Using a message chain similar to 1-TUS, the first neighbor on the left of
the child with a height of k+1 is determined. This neighbor, its right neighbor
at level k+1, and the child interact in a hand-shake message sequence exactly
like the one for eager insertion to move the child to level k+1.

For lack of space, we do not provide details about the drop operation. The
message exchanges are similar to the inclusion except the signaler is moving
lazily from k+1 to k before delinking itself from the SCSL completely.

3.4 Verification of SCSL

In this section, we show the correctness of SCSL operations with model check-
ing [2]. In model checking, given a system (specified as a configuration) and some

412 K. Murthy et al.

properties, a model checker tests these properties in all possible execution paths
of the system. The goal of the SCSL verification is to show that the signal aggre-
gated at the root is inclusive of signals from all registered signalers who haven’t
drop’ed; we call this property root aggregation correctness. To this end, we define
a set of linear temporal logic (LTL) formulae that capture the root aggregation
property. We check whether these formulae are satisfied during model checking.
We employ a “message”-based strategy that consists of model-checking LTLs
against a different configuration for each message type, say 1-TUS. We do so
because a naive process-based model checking strategy required more than 1TB
of RAM in our experiments.

We realize our verification using the state-of-the-art model checker Spin [5].
The complete set of LTLs and configurations is available online at: http://goo.
gl/ypuhaq.

3.4.1 Root Aggregation Correctness
We introduce three categories of properties: synchronization signal, structural
consistency, and progress.
Synchronization Signal. Every signaler signals to its to neighbor only after
its from neighbors and itself have signaled, i.e., SCSL maintains the synchro-
nization signal invariant at all times. The synchronization signal invariant, Def-
inition 2, guarantees the integrity of the phase aggregated at the root of the
SCSL. The LTLs that capture this invariant are as follows:

– �(∀i, (! is transient(ni) =⇒
(ni.subtree phase ≥ ni.to neighbor.subtree phase))

– �(∀i, (is transient(ni) =⇒
ni.left neighbor[cur height].subtree phase > ni.subtree phase))

Structural Consistency. Every signaler is transitively connected to the root,
i.e., SCSL maintains structural consistency at all times. Every signaler has a
single to neighbor whose identifier is lesser than its own, and every signaler has
at most one from neighbor at each level of SCSL. This prevents any independent
clusters in the SCSL and guarantees eventual connectivity to the root of the
SCSL, thereby, ensuring that no signal from a signaler is lost.

– �(∀i,∀L, (ni.left neighbor[L] < ni < ni.right neighbor[L])) states
that for every signaler, its identifier is always between its left neighbor and
right neighbor at every level in which it participates. This monotonically
increasing task-to-to neighbor chain ensures that there are no independent
loops of signalers that are not attached to the SCSL.

– �(∀i,∀L, (ni == ni.left neighbor[L].right neighbor[L])) states that for
every signaler, the right neighbor’s left neighbor is the signaler itself.

– �(∀i, ni == ni.to neighbor.from neighbor[height(ni)])) states that every
signaler always has a to neighbor and that the from neighbor of the
to neighbor at the height of the signaler is always the signaler itself.

Progress SCSL is deadlock- and livelock-free. This requirement ensures
progress.

http://goo.gl/ypuhaq
http://goo.gl/ypuhaq

Design and Verification of Distributed Phasers 413

3.4.2 Message-Based Verification
Every phaser operation in our design is implemented as a series of message
exchanges in the SCSL, where every message is handled atomically and ter-
minates with the initiation of the next message needed for the operation. For
example, if a task processes a 1-TUS then it either sends a 1-TUS or initiates
the 2-TDS and does so atomically. Therefore, if each message of an operation
can be processed correctly under any possible structural change and every mes-
sage completes by starting the next message needed for the operation, then the
operation is guaranteed to function correctly.

Message-based Modeling and Model Checking. Our scheme uses a quorum
of processes, signalers in our case, to undergo structural changes that challenge
the successful completion of a single message in an operation on the SCSL. The
structural changes include the source of the message delinking from the SCSL
or moving lazily to a higher level, the destination of the message delinking from
the SCSL or moving lazily to a higher level, and a new signaler linking between
the source and destination and later delinking itself. These processes also have
to complete a specific set of synchronization rounds. In the presence of such
structural changes, if a message successfully completes, the LTL constraints are
satisfied, and the specific number of synchronization rounds are complete, then
we conclude that the handling of that message is correct.

Verifying 1-TUS message. Consider the 1-TUS message in Fig. 2. n2 initiates
a 1-TUS to n1 in the SCSL. The following structural changes can occur: n1 can
move down from L1 to L0, and n1’s new neighbor at L0, say n01, can drop out of
the SCSL. To ensure the successful handling of 1-TUS message in these scenarios,
we model check a configuration of 6 signalers n0,01,1,2,3,4 such that n2 inserts n4,
n1 and n01 undergo structural changes as mentioned above. This configuration
along with others needed to verify eager insertion are present in Table 1. In
Table 1, column 1 describes the message while column 2–6 lists configurations of
5 tasks; the root n0 participates at all levels, does not undergo structural changes,
and hence, omitted from the table. Column 7 specifies the memory consumed
and Column 8 specifies the number of states explored. A configuration of the task
is specified as L:X*, where L indicates the initial level and X* is the sequence of
operations comprising of D (drop), M(lazy move up), E[i] (eager insertion with
parent task i).

A Model of SCSL in PROMELA. The input specification to Spin is the
SCSL implemented in PROMELA along with the LTLs. We implement the SCSL
as a group of processes (proctypes), one for each signaler. These signalers inter-
act with each other using channels; a channel holds messages sent from one
process to another. Every signaler is configured to perform a specific number
of phase advancements and its probabilistic height is decided a priori based on
the configuration needed to verify a specific message. Every signaler executes a
message-driven progress engine, which on receipt of a specific message responds
with messages as specified in previous sections. We model check our configu-

414 K. Murthy et al.

Table 1. Configurations used to model check the eager insertion of a signaler.

Message n01 n1 n2 n3 n4 Mem (GB) States

TUS L0:D L1:D L1 L2 :E(2) 135 1.1e10

TDS L1:D L0:D :E(0) L1 - 23 1.7e9

MURS :E(0)D :E(0) L0:D - - 10 5.6e8

MULS-1 L0 L0 :E(01) :E(0) - 78 7.4e9

MULS-2 L0 L0 :E(01) L0:M - 86 6.7e9

MULS-3 L0 L0 :E(01) L1:D - 50 4.3e9

AT L1 :E(0) :E(0)MDD - - 6 3.1e8

ENSP L1 :E(0) - - - 1 5.4e7

rations on a POWER7 compute node with 256 GB RAM. A few experiments
that needed more memory than 256 GB were run on NERSC’s Carver system,
which had 1TB RAM. In total, we employed 23 configurations to verify all the
messages in all operations on the SCSL.

Design Influenced by Model Checking: Tagging Messages with Link-
sequence Numbers. Monotonically increasing unique integral identifiers are
assigned to links between tasks in the SCSL and messages are tagged with them.
This design feature avoids problems due to stale messages. Consider the scenario
in which n3 initiates a move into the link between n2 and n4 at Li. Concurrently,
n4 also decides to move into the next level, i.e., Li to Li+1, and issues an 1-LLNL
to n2. Before the 1-LLNL is processed at n2, the following events occur: n3 moves
into the link between n2 and n4, n3 processes the move up of n4, n3 drops out
of the phaser, n4 drops a level relinking itself to n2, and n2 processes the 1-
LLNL issued by n4 prior to these events. Processing the stale 1-LLNL leads to
n2 locking the link n2-n4 without n4 having any intention of moving to the upper
level. This led to the introduction of link identifiers.

4 Complexity Analysis

In this section, we present complexity analysis of synchronization and structure
modification operations on the signal collection skip list - SCSL.

Complexity of Signal Aggregation. The expected critical path length in a
skip list from any task to the root is logarithmic in the number of tasks in
the skip list. Hence, the expected time complexity taken by a signal from any
participant in the SCSL to reach the designated root is O(log n), where n is the
total number of signalers. The expected time complexity to aggregate signals
from all the signaler tasks is also O(log n) since the aggregation occurs in parallel
across all such chains.

Complexity of Participant Addition. Here, we present complexity analysis
of the expected number of message hops, i.e., pairwise communications, needed

Design and Verification of Distributed Phasers 415

to insert a task to the SCSL. Eager insertion requires a skip list search, O(log n),
to find the position to attach and a constant number of operations to finalize
attach. Hence, eager insertion has a time and message complexity of O(log n).
The rest of this discussion derives the complexity for moving a task lazily from
L0 to its eventual height.

Let there be a group of tasks that are lazily moving up to the higher levels
between two stable tasks; stable tasks are those that have already reached their
final height. We use Kj

i to indicate the jth task at Li and use |Kj
i | to represent the

distance between the left stable task and Kj
i . To this end, we abstract our model

by making the following assumptions: (1) When considering the movement of
tasks from Li to Li+1, there is a uniform probability distribution over the orders
in which they move up. For example, if tasks K1

i ,K2
i ,K3

i are moving up, then
any of the 6 possible orders are equally likely. (2) The number of hops required
for task Kj

i is
(a) |Kj

i |, if there is no task |Kl
i | < |Kj

i | that moves to Li+1 before Kj
i , and

(b) |Kj
i | − |Kl

i |, if Kl
i moves to Li+1 before Kj

i and there is no other task Kt
i

that reaches before Kj
i and |Kt

i | > |Kl
i |.

The key idea in our complexity analysis is to compute the expected number
of messages for an arbitrary link, Li. We then sum up the number of messages
across levels and divide by the total number of inserted tasks to obtain per
inserted task analysis. Before stating the main result, we prove three helper
lemmas. Let mi denotes the total number of intervals at Li and mT denote the
total number of intervals at L0.

Lemma 1. Let C be the interval contention at L0 in the SCSL and let the
interval contention at Li be denoted by Ci. Then C ∗ pi ≤ E[Ci] ≤ C.

Proof. Let X be the number of newly inserted tasks that move to Li and Y is
the number of stable tasks excluding root that are present at Li. X and Y are
independent of each other and are binomially distributed with probability pi.
mT is the total number of intervals at L0. By definition, Ci = X/(Y + 1) and
hence, E[Ci] = E[X/(Y + 1)]. Since X and Y are independent and binomially
distributed with probability pi, E[X] = mTCpi and E[1/(Y +1)] = (1−(1−pi)mT)

mT pi .
Since, E[Ci] = E[X] ∗ E[1/(Y + 1)], we have C ∗ pi ≤ E[Ci] ≤ C.

Lemma 2. Let Ki = {K1
i , · · · ,Kni

i } be the tasks that move up from Li to Li+1,
then the expected value of total number of hops for Ki, denoted by E[Cost(Ki)],

is Σni
j=1

|Kj
i |

ni+1−j .

Proof. We first note that E[Cost(Ki)] = Σni
j=1E[Cost(Kj

i)]. To compute,
E[Cost(Kj

i)], we further partition the space of different configurations based on
the order in which Kj

i moves up and use M(Ki
j , r) to denote the event that Kj

i

is rth task to reach the level i+1. Note that Cost(M(Ki
j , r)) depends only on the

largest Kl
i < Kj

i that reaches Li+1 before Kj
i . To this end, we use MO(Kj

i , r, l)
to denote the event that Kj

i is rth task to reach Li+1 and Kl
i reaches before

416 K. Murthy et al.

Kj
i and there is no other task Kt

i that reaches before Kj
i and |Kt

i | > |Kl
i |. We

use MO(Kj
i , 1, 0) to denote the event when Kj

i is the first task to reach Li+1.
Therefore, E[Cost(Ki)] = Σni

j=1Σ
ni
r=1Σ

ni

l=0,l �=jE[Cost(MO(Kj
i , r, l))]. The rest of

the proof is completed by first computing E[Cost(MO(Kj
i , r, l))] and then apply-

ing algebraic simplifications to compute E[Cost(Ki)].
To compute E[Cost(MO(Kj

i , r, l))], we first note that E[Cost (MO(Kj
i , r, l))]

= Pr(MO(Kj
i , r, l)) ×Cost(MO(Kj

i , r, l)). Next, Pr(MO(Kj
i , r, l)) is (a)

1
ni

∏ni−l
t=1 (ni−r−t−1

ni−t) for r �= 1, j > l − 1, (b) 0 for r �= 1, j <= l − 1 and (c)
1/n for r = 1. Also, Cost(MO(Kj

i , r, l)) = |Kj
i | − |Kl

i | if r �= 1, |Kj
i | otherwise.

Therefore, E[Cost(Kj
i)] = |Kj

i | − Σj−1
t=1

|Kj−t
i |

t(t+1) . Summing up over j, we obtain

E[Cost(Ki)] = Σni
j=1

|Kj
i |

ni+1−j . To simplify this cost expression, we use the follow-
ing lemma.

Lemma 3. Let |K∗
i | = minni/2

j=1
|Kj

i |+|Kni+1−j

i |
2 , then E(|K∗

i |) ≥ p
4C

i.

Proof. |K∗
i | = minni/2

j=1
|Kj

i |+|Kni+1−j

i |
2 ≥ minni/2

j=1
|Kj

i |
2 +minni/2

j=1
|Kni+1−j

i |
2 . There-

fore, |K∗
i | ≥ 1

2 + |Kni/2
i |
2 ≥ |Kni/2

i |
2 . Since E(|Kni/2

i |) ≥ p
2C

i, E(|K∗
i |) ≥ p

4C
i.

Theorem 1. Let E[HC] be the expected number of hops consumed by a
task inserted at L0 to reach stable state, then Ω(p3 log(Cp3)) ≤ E[HC] ≤
O(p

1−p log(C p
1−p)).

Proof. To compute expected number of hops per task, we take the ratio of
expected number of hops for all tasks inserted at L0, denoted by E[HT

C] and the
total number of tasks at L0. Let HT,i

C denote the total number of hops consumed
by tasks moving from Li−1 to Li, then E[HT

C] = ΣiE[HT,i
C]. From Lemma 2,

we have E[HT,i
C] = E[miΣ

ni
j=1

|Kj
i |

ni+1−j]. Using Lemma 3 and ∀j,Kj
i < Kni

i ,

we have E[miΣ
ni
j=1

|K∗
i |

ni+1−j] ≤ E[HT,i
C] ≤ E[miΣ

ni
j=1

|Kni
i |

ni+1−j]. From the proof
of Lemma 1, we know that E[ni] = E[Ci]p. Similarly, following the proof of
Lemma 1, we have E[mi] = mT pi. Since Ω(log ni) ≤ Σni

j=1
1

ni+1−j ≤ O(log ni).
Next, E[Kni

i] ≤ C and noting the random variables mi, ni,Ki are inde-
pendent, we have mT pi p2E[Ci]Ω(log E[ni]) ≤ E[HT,i

C] ≤ mT piCO(log E[ni]).

Hence, mT piC pi+1

4 Ω(log(Cpi+1)) ≤ E[HT,i
C] ≤ mT piCO(log Cp). Therefore,

mTCp3Ω(log(Cp3)) ≤ E[HT
C] ≤ mTC p

1−pO(log(C p
1−p)). Noting that the total

number of tasks inserted at L0 is mTC we have,
Ω(p3 log(Cp3)) ≤ E[HC] ≤ O(p

1−p log(C p
1−p))

5 Related Work

Agarwal et al. present a distributed version of X10 clocks [1]. In this proto-
col, each task consults a local snapshot to determine the participant tasks and
to make a decision about moving to the next phase. Processes add or drop

Design and Verification of Distributed Phasers 417

themselves from these local snapshot. The authors, however, do not depict how
this information is exchanged and state that in a basic implementation, one
would require O(n2) messages. Our protocol describes the complete set of actions
needed to ensure a total of O(n) messages and O(log n) time complexity for syn-
chronization using distributed skip lists.

In the non-blocking skip list protocol presented by Crain et al. [3], changes
to the skip list structure are divided into two stages: eager abstract modifica-
tion and lazy structural adaptation. They employ a single adaptive thread with
global information to perform the structural changes based on neighborhood
information. Our protocol is similar with two stages for insertion and deletion,
but does not rely on an adaptive thread to perform the structural changes.

6 Conclusions

In this paper, we present a design for phasers, a general barrier-like synchroniza-
tion construct that supports dynamic addition and deletion of parallel tasks, for
a distributed memory-environment. Our design is based on a pair of distributed
concurrent skip lists augmented with the ability to aggregate and diffuse phaser
synchronization signals. By employing eager- and lazy-strategies while perform-
ing structural operations, our distributed phaser design supports a high-degree
of concurrency. We employ a novel “message-based” model checking scheme to
prove the correctness of our design. We derive the expected cost of signal aggre-
gation, i.e., log n and cost for inclusion of a new task in the presence of interval
contention C, i.e., Ω(p3 log(Cp3)) ≤ E[HC] ≤ O(p

1−p log(C p
1−p)).

Acknowledgment. We would like to thank Moshe Y. Vardi for the insightful discus-
sions regarding verification. This research was supported in part by the DOE Office
of Science Advanced Scientific Computing Research program through collaborative
agreement DE-FC02-12ER26105. This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of Science User Facility supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

References

1. Agarwal, S., Joshi, S., Shyamasundar, R.K.: Distributed generalized dynamic bar-
rier synchronization. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V.,
Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 143–154. Springer,
Heidelberg (2011)

2. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

3. Crain, T., Gramoli, V., Raynal, M.: No hot spot non-blocking skip list. In: Pro-
ceedings of ICDCS, pp. 196–205 (2013)

4. Egecioglu, O., Koc, C.K., Laub, A.J.: A recursive doubling algorithm for solution of
tridiagonal systems on hypercube multiprocessors. J. Comput. Appl. Math. 27(1),
95–108 (1989)

418 K. Murthy et al.

5. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

6. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990)

7. Saraswat, V., et al.: Source Distribution of X10 V2.5.1 (2014). http://sourceforge.
net/projects/x10/files/x10/2.5.1

8. Saraswat, V., et al.: X10 Language Specification Version 2.5 (2014). http://x10.
sourceforge.net/documentation/languagespec/x10-latest.pdf

9. Sarkar, V., Harrod, W., Snavely, A.E.: Software challenges in extreme scale sys-
tems. J. Phys. Conf. Ser. 180(1), 12 (2009)

10. Schöne, R., et al.: Tools and methods for measuring and tuning the energy efficiency
of HPC systems. Sci. Program. 22(4), 273–283 (2014)

11. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: a unified deadlock-
free construct for collective and point-to-point synchronization. In: Proceedings of
ICS, pp. 277–288. ACM (2008)

12. Shirako, J., Sarkar, V.: Hierarchical phasers for scalable synchronization and reduc-
tions in dynamic parallelism. In: Proceedings of IPDPS, pp. 1–12 (2010)

13. Welch, P., et al.: Alting barriers: synchronisation with choice in Java using JCSP.
Concur. Comput. Pract. Exp. 22(8), 1049–1062 (2010)

http://sourceforge.net/projects/x10/files/x10/2.5.1
http://sourceforge.net/projects/x10/files/x10/2.5.1
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

Exploring Partial Replication to Improve
Lightweight Silent Data Corruption Detection

for HPC Applications

Eduardo Berrocal1(B), Leonardo Bautista-Gomez2,
Sheng Di2, Zhiling Lan1, and Franck Cappello2

1 Illinois Institute of Technology, Chicago, IL, USA
{eberroca,lan}@iit.edu

2 Argonne National Laboratory, Lemont, IL, USA
{leobago,sdi1,cappello}@anl.gov

Abstract. Silent data corruption (SDC) poses a great challenge for
high-performance computing (HPC) applications as we move to extreme-
scale systems. If not dealt with properly, SDC has the potential to influ-
ence important scientific results, leading scientists to wrong conclusions.
In previous work, our detector was able to detect SDC in HPC appli-
cations to a certain level by using the peculiarities of the data (more
specifically, its “smoothness” in time and space) to make predictions.
Accurate predictions allow us to detect corruptions when data values
are far “enough” from them. However, these data-analytic solutions are
still far from fully protecting applications to a level comparable with
more expensive solutions such as full replication. In this work, we pro-
pose partial replication to overcome this limitation. More specifically, we
have observed that not all processes of an MPI application experience
the same level of data variability at exactly the same time. Thus, we can
smartly choose and replicate only those processes for which our light-
weight data-analytic detectors would perform poorly. Our results indi-
cate that our new approach can protect the MPI applications analyzed
with 49–53 % less overhead than that of full duplication with similar
detection recall.

Keywords: Silent data corruption detection · Partial replication · Data
analysis · HPC applications

Government License Section: The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated
under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative works, distribute copies to the public,
and perform publicly and display publicly, by or on behalf of the Government.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 419–430, 2016.
DOI: 10.1007/978-3-319-43659-3 31

420 E. Berrocal et al.

1 Introduction

Silent data corruption (SDC) involves corruption to an application’s memory
state (including both code and data) caused by undetected soft errors, that is,
errors that modify the information stored in electronic devices without destroy-
ing the functionality [13]. If undetected, these errors have the potential to be
damaging since they can change the scientific output of HPC applications and
mislead scientists with spurious results.

External causes of transient faults are usually rooted in cosmic ray particles
hitting the electronic devices of the supercomputer [22]. As systems keep scaling
up, the increasing number of devices will make these external faults appear more
often. Other techniques introduced to deal with excessive power consumption,
such as aggressive voltage scaling or near-threshold operation, as well as more
complex operating systems and libraries, may also increase the number of errors
in the system [7].

Substantial work has been devoted to this problem, both at the hardware
level and at higher levels of the system hierarchy. Currently, however, HPC
applications rely almost exclusively on hardware protection mechanisms such
as error-correcting codes (ECCs), parity checking, or chipkill-correct ECC for
RAM devices [10,19]. As we move toward the exascale, however, it is unclear
whether this state of affairs can continue. For example, recent work shows that
ECCs alone cannot detect and/or correct all possible errors [16]. In addition,
not all parts of the system, such as logic units and registers inside the CPUs,
are protected with ECCs.

With respect to software solutions, full process replication provides excellent
detection accuracy for a broad range of applications. The major shortcoming
of full replication is its overhead (e.g., ≥ 100 % for duplication, ≥ 200 % for
triplication). Another promising solution is data-analytic-based (DAB) fault tol-
erance [2,6,9,26], where detectors take advantage of the underlying properties
of the application data (the smoothness in the time and/or space dimensions)
in order to compute likely values for the evolution of the data and use those
values to flag outliers as potential corruptions. Although DAB solutions provide
high detection accuracy for a number of HPC applications with low overhead,
their applicability is limited because of an implicit assumption—the application
is expected to exhibit smoothness in its variables all the time.

In this work, we propose a new adaptive SDC detection approach that com-
bines the merits of replication and DAB. More specifically, we have observed that
not all processes of some MPI applications experience the same level of data vari-
ability at exactly the same time; hence, one can smartly choose and replicate
only those processes for which lightweight data-analytic detectors would perform
poorly. In addition, evaluating detectors solely on overall single-bit precision and
recall may not be enough to understand how well applications are actually pro-
tected. Instead, we calculate the probability that a corruption will pass unnoticed
by a particular detector. In our evaluation, we use two applications dealing with
explosions from the FLASH code package [12], which are excellent candidates
for testing partial replication. Our results show that our adaptive approach is

Exploring Partial Replication to Improve Lightweight Silent Data Corruption 421

able to protect the MPI applications analyzed (99.999 % detection recall) repli-
cating only 43–51 % of all the processes with a maximum total overhead of only
52–56 % (compared with 110 % for pure duplication).

The rest of the paper is organized as follows. In Sect. 2 we describe how
DAB SDC detectors work. In Sect. 3 we introduce our adaptive method for SDC
detection. In Sect. 4 we describe the probabilistic evaluation metric used. In
Sect. 5 we present our experimental results. In Sect. 6 we discuss related work in
this area. In Sect. 7 we summarize our key findings and present future directions
for this work.

2 Data-Analytic-Based SDC Detectors

In this section we describe how DAB detectors work. We also point out their
major limitations.

Lightweight DAB SDC detectors are composed of two major parts. The pre-
dictor component computes a prediction for the next value of a particular data
point. The prediction takes advantage of the underlying physical properties of
the evolution of the data, since we have observed that this evolution is smooth
in the time and/or space dimensions for a wide range of variables in HPC scien-
tific applications. After the prediction is done, the detector component decides
whether the current value of the data point is corrupted.

We have implemented our lightweight DAB SDC detectors inside the Fault
Tolerance Interface (FTI) [4], an MPI library for HPC applications to perform
fast and efficient checkpoint/restarts (C/R). We can add SDC detection support
by taking advantage of the fact that iterative applications already provide (to
FTI) the data variables representing their state. An HPC application needs to
perform only one extra call to FTI: a call at the end of every iteration to allow
our detectors to check for SDC in the data.

In our previous work we showed that one can detect a large number of cor-
ruptions by using simple and lightweight predictors. For the time dimension, we
found that quadratic curve fitting (QCF) outperformed all the other considered
options [6] with a memory overhead of less than 90 % for all the applications stud-
ied. Another way to do predictions is by using the spatial information instead
of the temporal information. In [3], 3D linear interpolation was used succesfully
to predict values in a computational fluids dynamics (CFD) miniapplication.

Once a prediction X(t) has been made, our detector decides whether the
current value of the data V (t) is a normal value by checking whether it falls inside
a particular confident interval determined by a parameter δ: [X(t)−δ,X(t)+δ].
We calculate δ using the maximum prediction error from all data points in a
process at t−1 multiplied by some constant: δ = λ ·emax(t−1). This constant λ
determines a tradeoff between detection recall (how many real corruptions can
we actually detect) and precision (how many of the detected corruptions are
actually real corruptions). In our case, the value for λ is chosen to have zero
false positives given a particular execution size (i.e., to maximize precision).

422 E. Berrocal et al.

Fig. 1. Detection recall for two different processes in Sedov during 100 iterations.

When data values change too abruptly in a particular process, our δ becomes
far too big to detect barely any corruption. Two examples of this kind of appli-
cation dealing with sharp changes in the data are Sedov and BlastBS. Sedov is a
hydrodynamical test code involving strong shocks and nonplanar symmetry [21].
BlastBS, on the other hand, is a 3D version of the magnetohydrodynamical
spherical blast wave problem [27]. Both are part of the FLASH simulation code
package.

To illustrate the problem at hand, we show in Fig. 1(a) and (b) detection
recall rates for single bit-flips injected on each bit position over two different
processes in the variable pressure of Sedov during a particular period of time
(100 iterations). One can see how the wave of the explosion passing through rank
87 is making detection recall rates decrease substantially for this variable1. In
contrast, detection recall is high in rank 99. To get a glimpse of how this data
looks like, consider Fig. 1(c). Here, we show the state of the maximum of variable
pressure right after the window of 100 time steps has passed.

3 Adaptive Method

Full replication is generally considered too costly for HPC because of its high
overhead both in the time and the space dimensions. Partial replication, however,
is worth considering for applications for which sharp changes in the data occur
only in a small subset of the processes, such as those involving explosions or
collisions (e.g., Sedov). Considering again the example introduced in Sect. 2, we
can see that duplicating rank 99 in this situation is a major waste of resources,
while rank 87 can surely benefit from replication, making detection recall go
from below 10 % in the majority of bits to 100 % in all of them automatically.

One way to detect corruptions efficiently by using replication, proposed by
Fiala et al. [11], is by comparing messages in MPI. The idea is that any corruption
in the data of a particular process will ultimately produce corrupted messages
that will be sent to other process. By comparing messages from replicas of the
same process, one can determine whether that process (or any of its replicas)

1 The rank of a process in MPI is its ID inside a group of processes. In this paper we
consider only the rank of the general group to which all processes belong. In this
sense, we use rank(s) or process(es) interchangeably.

Exploring Partial Replication to Improve Lightweight Silent Data Corruption 423

got its data corrupted. In this paper we adopt an adaptive strategy. For some
processes (replication set), we use partial replication based on the method of
Fiala et al. For the other processes, we use our lightweight DAB detectors.

We implement the following strategy in order to select our replication set
and to dynamically adapt it over time. After the first iteration, we choose a
subset of processes to replicate, given the maximum prediction error in that first
iteration. The number of processes to replicate is determined by the replication
budget B. During the following w application time steps (where w defines a
window), we create an array S of size n, which is the number of processes in the
application. After every time step, we sort all processes in ascending order given
their maximum prediction errors and add their positions in S. For example, if at
a particular time step, rank 12 is the one with the highest prediction error and
there are 128 processes, then S[12] += 128. When w steps have passed, the score
S represents an aggregation of the relative positions of each rank with respect
to the others given their prediction errors during the window w. At this point
we sort all processes by their score S, pick the top B (which is the allocated
budget) as the new replication set, and reset S to start a new window again.

4 Probabilistic Evaluation Metric

In order to understand why this metric is needed, consider the case where we have
a mechanism with perfect detection recall for the 22 most significant bits of 32-bit
numbers. What is the probability that, in this particular example, a corruption
will evade our detector? The answer to this question will actually depend on how
many bits can get “flipped” in the memory state of the application. Assuming 1-
bit-flip corruptions only, we could say that 10/32 = 0.3125 (31 % of corruptions
will pass undetected). For 2-bit-flips, the probability would be (10/32)×(9/31) =
0.0907 (9.07 % corruptions will pass undetected). For our detector to be unaware
of a 2-bit-flip corruption in this case, all flips would always need to hit bits in the
10 less significant positions of the mantissa. We could continue with 3-bit-flips,
4, and so on. An interesting observation from this example is that, generally, the
fewer bits that can get “flipped” in a system, the harder it is to detect corruptions
using software mechanisms. Furthermore, another interesting question appears:
What is the distribution of corruption sizes (in terms of the number of bits)
in the system? Is a corruption affecting a large number of bits more or less
common than one affecting just a few? The key idea is that protecting the data
of simulations at this level is not so much protecting against particular bit-flips
as it is protecting against numerical deviations from the original data.

In this work we use an evaluation metric based on the probability that a
corruption will pass unnoticed by a particular detector. Since we aim at designing
general SDC detectors, we cannot assume that bit-flips in the less significant
bits of the mantissa are harmless. For example, we performed a sensitivity study
where we injected different corruption sizes on multiple applications (the full
study is omitted because of space limitations). In that study we observed that

424 E. Berrocal et al.

the same exact corruption produces different impacts2 on different applications,
i.e., there are applications that can absorb the corruption effortlesly while there
are others that suffer big data deviations.

The evaluation metric, which we also call the probability of undiscovered
corruption, is defined as

Pf =
N

∑

i=1

[

P (#bits = i) × (1 − (
1
N

×
N

∑

j=1

rj))i
]

, (1)

where N is the number of bits per data point (i.e., 64), 1
N × ∑N

j=1 rj represents
the average recall rate for all bit positions collected during our injection studies,
and P (#bits = i) represents the probability that the corruption is exactly i bits
long.

The distribution P (#bits = x) depends on how corruptions in the whole sys-
tem ultimately affect the numerical data of simulations. Because of the impossi-
bility of calculating this distribution for a system as massive as a supercomputer,
we assume four distributions representing the following four cases: (1) the num-
ber of bits affected is usually small, with 1 bit being the most common size
(for this case, we use a Poisson distribution with λ = 1.0); (2) all bit sizes are
equally probable (i.e., P (#bits = x) = 1/N); (3) all possible corruptions (2N)
are equally probable (e.g., P∼ N (32.5, 13.05) for N = 64); and (4) the number
of bits affected is usually big, with N bits being the most common size (for this
case, we use the inverse of distribution (1)).

5 Evaluation

We use two applications from the FLASH code package in our experiments—
Sedov and BlastBS—representing two different types of explosions. These appli-
cations are excellent candidates for testing the effectiveness of partial replication
for data experiencing sharp changes due to explosions and collisions. Implemen-
tations of MPI allowing replication at the process level, such as RedMPI [11],
do not yet support partial replication; we simulate partial replication by consid-
ering precision and recall to be 100 % for those processes that are part of the
replication set3. For the others, we use our lightweight SDC detectors.

Detection recall for each bit position is calculated by averaging the results
over hundreds of random injections on the pressure variable in every process over
thousands of time steps. For all our experiments, we set our λ parameter, which
controls our dynamic detection range δ (see Sect. 2) to have exactly zero false
positives. In all the experiments, we run the applications using 256 processes,

2 Impact is defined as the rate of deviation over the variable’s total data range during
the execution. For example, a deviation of 10 on a [0,200] range produces an impact
of 0.05.

3 Of course, this only holds for deterministic applications (which is the case here).

Exploring Partial Replication to Improve Lightweight Silent Data Corruption 425

Fig. 2. Single-bit detection recall results from our injection study. We use two appli-
cations (Sedov and BlastBS) running 256 processes, and we set w = 100. Five partial
replication rates (5–25%) are compared with nonreplication (2DINT).

Fig. 3. Probability of undiscovered corruption when replicating a particular percentage
of processes using the four distributions P (#bits= x) described in Sect. 4. Note that
the y-axis is plotted using logarithmic scale. The small subplots represent the data
zoomed below 10−15.

while the data domain is configured to be a two-dimensional grid. We report
the results only of those experiments using linear interpolation (spatial) as our
predictor. Similar results were obtained using our temporal predictor (QCF), so
we omit them here.

Figure 2 presents the results of our injection study. Here, we fix the window
w (see Sect. 3) to be 100 time steps. One can see the added benefit of using
partial replication for improving single-bit detection recall rates. For example,
we observe an overall improvement for Sedov from 6 % for 5 % replication to 18 %
for 25 % replication. For BlastBS we also see significant gains, with improvements
from 5 % for 5 % replication to 24 % for 25 % replication.

Figure 3 presents the results when using the probabilistic evaluation metric
Pf with the four distributions presented in Sect. 4. We note that the y-axis is
plotted by using a logarithmic scale. We can categorize the distributions in a
spectrum from difficult (dist1) to easy (dist4) (as discussed in Sect. 4, the fewer
the number of bits that can get corrupted, the harder it is to detect corruptions
at the software level). In this case, only distributions 1 and 2 are of further
interest to us, since distributions 3 and 4 represent easy detection cases; that is,
the probability of undiscovered corruption using our DAB detectors is already

426 E. Berrocal et al.

below 10−15 without even considering replication. For distribution 1, we need
over 43 % of the processes replicated in order to achieve a 99.999 % protection
(i.e., Pf < 0.001) level in the case of Sedov and 51 % in the case of BlastBS.
Recall that distribution 1 is the most difficult one, representing an upper bound
in the number of replicated processes needed.

Apart from the obvious performance overhead incurred by using replication
(i.e., extra hardware needed to run extra processes, or spatial overhead), there
is also an overhead introduced by extra messages sent throughout the network,
which ultimately enlarges the runtime of applications. Another source of tem-
poral overhead is our own DAB detector, which needs to run on every iteration
and check all the data points for all the protected variables. From the system’s
point of view, both dimensions—temporal and spatial—contribute equally to
the overall overhead, so both should be included. In partial replication we also
need to consider the extra temporal overhead introduced by process migration
when changing the replication set. We calculate the total overhead, then, using
the following model:

O(r, w) = T (r) × (r + 1) +
M × r × n

W × Tw
. (2)

where r is the replication rate (e.g., 0.5 when replicating half of the processes)
and T (r) is the runtime overhead introduced by the DAB detector and partial
replication when running with a replication rate equal to r (e.g., T (r) = 1.1 if
there is a 10 % increase in running time). The right-hand side of the summa-
tion represents the overhead introduced by changing the replication set every
w steps4. In this part, M is the memory used per process, r × n is the replica-
tion budget (n is the number of processes), W represents the aggregate network
bandwidth in the system, and Tw is the time taken to run w steps in the original
application. Note that this is an upper bound, since in some cases the number
of processes to replicate is less than the budget, namely, when some processes
replicated in the previous window are chosen again for the current one. We find
that in only a few cases does the replication set change completely.

The temporal overhead T (r) may vary depending on the communication-to-
computation ratio of the application. For those cases where computation domi-
nates communication, the extra overhead is usually small. Fiala et al. [11] show
that temporal overhead for full duplication (i.e., r = 1.0) is not a concern (around
1–2 %) for those applications that can maintain a well-balanced communication-
to-computation ratio as they scale (applications exhibiting weak scalability).
On the other hand, temporal overheads can reach 30 % for network-bound appli-
cations and kernels. Since we are simulating partial replication, we are unable
to measure exactly the value of T (r) for the applications used. In this case, we
assume the temporal overhead introduced by the extra network messages never
to be above 5 %, given that the stencil codes evaluated are not network-bound.

4 Wang et al. [25] show that calculating process migration time as process memory/
network bandwidth is a fairly good estimate.

Exploring Partial Replication to Improve Lightweight Silent Data Corruption 427

Fig. 4. Total overhead introduced by partial replication using different values of w.
Distribution 1 used for P (#bits= x); the small subplots represent the data zoomed
between [0.0, 0.004].

Moreover, our experiments indicate that the temporal overhead introduced by
using our DAB detectors is never above 6 %5. Thus, we set T (r = 1.0) = 1.11
(i.e., 5+6 = 11 % temporal overhead introduced by replicating all processes and
using our DAB detector on every process). We estimate T (r) for r < 1.0 assum-
ing a balanced communication pattern between processes (which is the case
in the stencil codes evaluated, where processes communicate mainly with their
neighbors): T̂ (r < 1.0) = 1 + r × 0.05 + 0.06.

In order to get an idea of how much overhead would be introduced by partial
replication, we compute the values of Pf in Fig. 4 based on O(r), for different
values of the parameter w. Moreover, we assume distribution 1 for P (#bits= x).
All the injection experiments are run on the Fusion cluster at Argonne National
Laboratory [1], which has an InfiniBand QDR network with a bandwidth of 4
GB/s per link, per direction, arranged on a fat tree topology. Since we are not
taking into account network contention issues in our overhead model, we set W
to the lowest possible aggregate bandwidth in order to get an upper bound on
the effect that the network bandwidth has on the overhead. That is, we set W=4
GB/s.

As one can see, a window of a 100 time steps is the best choice among all the
considered possibilities. The reason is that the smaller temporal overheads can
not compensate for the accuracy loss incurred when using larger window sizes.
Our analyses show that we can have a 99.999 % protection (i.e., Pf < 0.001)
with w = 100 with a total overhead of around 1.52 (52 %) for Sedov and 1.56
(56 %) for BlastBS, with a replication rate of 43 % and 51 % respectively. This is
an improvement of 53 % and 49 %, respectively, over full duplication (considering
5 % in temporal overhead due to the extra network messages, full duplication
has a total overhead of 2.1, or 110 %) with a detection recall close to 100 %. For
easy comparison, these results are listed in Table 1.

5 The memory overhead of our DAB detectors is practically 0 % given that we are
using spatial-based predictors only in this study. For that reason, we do not include
extra memory usage in the overhead calculation.

428 E. Berrocal et al.

Table 1. Detection recall and overhead for DAB-only detectors, 2x replication, and our
adaptive solution. In the latter, two cases are shown corresponding to two protection
levels: 97 % and 99.999% recall, respectively.

DAB-only Duplication Adaptive (case 1) Adaptive (case 2)

Sedov Overhead 6 % 110 % 25 % 52 %

Recall 92 % 100 % 97 % 99.999 %

BlastBS Overhead 6 % 110 % 26 % 56 %

Recall 91 % 100 % 97 % 99.999 %

6 Related Work

Software solutions for SDC detection can be grouped in four main categories:
(1) full replication [11,18], which is the most general but also the most expen-
sive; (2) algorithm-based fault tolerance (ABFT) [14]; (3) approximate comput-
ing [5]; and (4) data-analytic-based (DAB) fault tolerance [2,6,9,26]. ABFT and
approximate computing are not general enough and have limited applicability,
since kernels need to be adapted manually and only a subset of them can be pro-
tected. In the case of DAB, detectors take advantage of the underlying properties
of the applications’ data (their smoothness in the time and/or space dimensions)
in order to compute likely values for the evolution of the data and use those to
flag outliers as potential corruptions. In this work we combine replication-based
and DAB in order to avoid some of their individual shortcomings (i.e., the high
cost of replication and the limited applicability of DAB).

Replication mechanisms for fault tolerance have been studied extensively
in the past, especially in the context of aerospace and command and control
systems [8]. Traditionally, the HPC community has considered replication to be
too expensive to be applicable; and, to the best of our knowledge, it has not
been implemented in any real production system.

Liu et al. [17] propose partial replication in time by taking advantage of the
fact that soft errors in the first 60 % of iterations of some iterative applications
are relatively tolerable. The idea is to duplicate all processes only during the
last 40 % of iterations. Nakka et al. [20], Subasi et al. [24], and Hukerikar et
al. [15]—by introducing new programming language syntax—propose to make
the programmers responsible for identifying those parts of the code or data that
are critical and need to be replicated. In contrast to these solutions, which are
application dependent, our work is more general in the sense that we do not
require any specific knowledge of tolerability to errors of particular iterations,
variables, or code regions.

Partial replication in HPC where processes are chosen at random has also
been investigated. Research has shown, however, that such an approach does not
pay off [23]. In this work we choose the processes to replicate based on their data
behavior.

Exploring Partial Replication to Improve Lightweight Silent Data Corruption 429

7 Conclusions and Future Work

In this paper we have shown that combining partial replication along with DAB
detectors allows us to get SDC protection levels that are close enough to those
achieved by duplication at a lower overhead price. Our results show that we
can get an overall SDC protection level, or recall, of 99.999 % replicating only
between 43 % and 51 % of all the processes with a maximum total overhead
(upper bound) of 52–56 % (compared to 110 % for duplication) for the applica-
tions analyzed.

As future steps for this work, we want to consider the situation where the
replication budget B is “elastic” during the length of the computation—for
example, a situation where we can replicate a small number of processes (say,
10 %) during the majority of the computation but increase the rate to a higher
number (say, 60 %), for a short period of time. This strategy can be useful for
situations where sharp data changes are concentrated not only in a particular
place in space but also in time. One can imagine an scenario in exascale where
systems will have spare resources, in our case nodes, which will be allowed to
be requested “on the fly” by applications and libraries in order to perform fault
tolerance tasks.

Acknowledgments. This material was based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scientific Computing Research
Program, under Contract DE-AC02-06CH11357, and by the ANR RESCUE and the
INRIA-Illinois-ANL- BSC-JSC-Riken Joint Laboratory on Extreme Scale Computing.
The work at the Illinois Institute of Technology is supported in part by U.S. National
Science Foundation grants CNS-1320125 and CCF-1422009.

References

1. Fusion cluster at Argonne National Laboratory. http://www.lcrc.anl.gov/guides/
Fusion

2. Bautista-Gomez, L.A., Cappello, F.: Detecting silent data corruption through data
dynamic monitoring for scientific applications. In: PPoPP 2014, pp. 381–382 (2014)

3. Bautista-Gomez, L.A., Cappello, F.: Detecting and correcting data corruption in
stencil applications through multivariate interpolation. In: 1st International Work-
shop on Fault Tolerant Systems (part of Cluster 2015), pp. 595–602 (2015)

4. Bautista-Gomez, L.A., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N.,
Matsuoka, S.: FTI: high performance fault tolerance interface for hybrid systems.
In: SC 2011, pp. 32:1–32:32 (2011)

5. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-
stepping schemes. Int. J. High Perform. Comput. Appl. 29(4), 1–20 (2014)

6. Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., Cappello, F.: Lightweight silent
data corruption detection based on runtime data analysis for HPC applications.
In: HPDC 2015 (short paper) (2015)

7. Borkar, S.: Major challenges to achieve exascale performance. Intel Corporation,
April 2009

http://www.lcrc.anl.gov/guides/Fusion
http://www.lcrc.anl.gov/guides/Fusion

430 E. Berrocal et al.

8. Briere, D., Traverse, P.: AIRBUS A320/A330/A340 electrical flight controls - a
family of fault-tolerant systems. In: Proceedings of the IEEE International Sym-
posium on Fault-Tolerant Computing, pp. 616–623 (1993)

9. Chalermarrewong, T., Achalakul, T., See, S.C.W.: Failure prediction of data cen-
ters using time series and fault tree analysis. In: ICPads 2012, pp. 794–799 (2012)

10. Dell, T.J.: A white paper on the benefits of chipkill-correct ECC for PC server
main memory. In: IBM Microelectronics Division, pp. 1–23 (1997)

11. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.:
Detection and correction of silent data corruption for large-scale high-performance
computing. In: SC 2012, pp. 78:1–78:12 (2012)

12. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q., MacNeice,
P., Rosner, R., Truran, J.W., Tufo, H.: Flash: an adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. (ApJS)
131, 273–334 (2000)

13. Hengartner, N.W., Takala, E., Michalak, S.E., Wender, S.A.: Evaluating experi-
ments for estimating the bit failure cross-section of semiconductors using a colored
spectrum neutron beam. Technometrics 50(1), 8–14 (2008)

14. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Trans. Comput. 100(6), 518–528 (1984)

15. Hukerikar, S., Diniz, P.C., Lucas, R.F., Teranishi, K.: Opportunistic application-
level fault detection through adaptive redundant multithreading. In: HPCS 2014
(2014)

16. Hwang, A.A., Stefanovici, I.A., Schroeder, B.: Cosmic rays don’t strike twice:
understanding the nature of dram errors and the implications for system design.
In: ASPLOS XVII, pp. 111–122 (2012)

17. Liu, J., Kurt, M.C., Agrawal, G.: A practical approach for handling soft errors in
iterative applications. In: Cluster 2015, pp. 158–161 (2015)

18. Mukherjee, S., Kontz, M., Reinhardt, S.: Detailed design and evaluation of redun-
dant multi-threading alternatives. In: ISCA 2002, pp. 99–110 (2002)

19. Mukherjee, S.S., Emer, J., Reinhardt, S.K.: The soft error problem: an architectural
perspective. In: HPCA 2005 (2005)

20. Nakka, N., Pattabiraman, K., Iyer, R.: Processor-level selective replication. In:
DSN 2007, pp. 544–553 (2007)

21. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics, 10th edn. Academic
Press, New York (1959)

22. Snir, M., et al.: Addressing failures in exascale computing. Int. J. High Perform.
Comput. 28(2), 129–173 (2014)

23. Stearly, J., Ferreira, K., Robinson, D., Laros, J., Pedretti, K., Arnold, D., Bridges,
P., Riesen, R.: Does partial replication pay off? In: DSN 2012 (2012)

24. Subasi, O., Arias, J., Unsal, O., Labarta, J., Cristal, A.: Programmer-directed
partial redundancy for resilient HPC. In: CF 2015 (2015)

25. Wang, C., Mueller, F., Engelmann, C., Scott, S.L.: Proactive process-level live
migration in HPC environments. In: SC 2008 (2008)

26. Yim, K.S.: Characterization of impact of transient faults and detection of data
corruption errors in large-scale n-body programs using graphics processing units.
In: IPDPS 2014, pp. 458–467 (2014)

27. Zachary, A.L., Malagoli, A., Colella, P.: A higher-order godunov method for multi-
dimensional ideal magnetohydrodynamics. SIAM J. Sci. Comput. 15(2), 263–284
(1994)

Parallel and Distributed Programming,
Interfaces, Language

Automatic Verification of Self-consistent
MPI Performance Guidelines

Sascha Hunold(B), Alexandra Carpen-Amarie, Felix Donatus Lübbe,
and Jesper Larsson Träff

Research Group for Parallel Computing, TU Wien, Vienna, Austria
{hunold,carpenamarie,luebbe,traff}@par.tuwien.ac.at

Abstract. The Message Passing Interface (MPI) is the most com-
monly used application programming interface for process communi-
cation on current large-scale parallel systems. Due to the scale and
complexity of modern parallel architectures, it is becoming increas-
ingly difficult to optimize MPI libraries, as many factors can influence
the communication performance. To assist MPI developers and users,
we propose an automatic way to check whether MPI libraries respect
self-consistent performance guidelines for collective communication oper-
ations. We introduce the PGMPI framework to detect violations of per-
formance guidelines through benchmarking. Our experimental results
show that PGMPI can pinpoint undesired and often unexpected per-
formance degradations of collective MPI operations. We demonstrate
how to overcome performance issues of several libraries by adapting the
algorithmic implementations of their respective collective MPI calls.

Keywords: MPI · Collectives · Performance guidelines · Benchmarking

1 Introduction

Communication libraries implementing the Message Passing Interface (MPI) are
major building blocks for developing parallel, distributed, and large-scale appli-
cations for current supercomputers. The performance of parallel codes is there-
fore highly dependent on the efficiency of MPI implementations. Much research
is currently conducted to cope with the problems of exascale computing in MPI.

Assessing the performance of MPI implementations is vital for developers,
vendors, and users of the libraries. However, the performance of MPI libraries
can be measured in different ways. A common approach is to run a set of MPI
micro-benchmarks, such as SKaMPI [12] or ReproMPI [7]. Micro-benchmarks
usually report the measured (mean or median) run-time of a given MPI function
for different message sizes, e.g., the run-time of MPI Bcast for broadcasting a
1 Byte message. Developers can gain insights on how the run-time of an MPI
function depends on the message size for a fixed number of processes. It is also

A. Carpen-Amarie and F.D. Lübbe—This work was supported by the Austrian
Science Fund (FWF): P26124 and P25530.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 433–446, 2016.
DOI: 10.1007/978-3-319-43659-3 32

434 S. Hunold et al.

possible to assess the scalability of MPI functions when the number of processes
is increased and the message size stays fixed.

Verifying self-consistent MPI performance guidelines is an alternative,
orthogonal method for analyzing the performance of MPI libraries [15]. This
approach does not require explicit performance models. Instead, performance
guidelines form a set of rules that an MPI library is expected to fulfill. A per-
formance guideline usually defines an upper bound on the run-time behavior of
a specialized MPI function. For example, one performance guideline states that
a call to MPI Scatter of n data elements should “not be slower” than a call to
MPI Bcast with n data elements, as the semantics of an MPI Scatter operation
could be emulated using MPI Bcast [15]. Only minor efforts have been made to
systematically test self-consistent performance guidelines for MPI implementa-
tions in practice, one example being the mpicroscope benchmark [14]. To close
this gap, we introduce the benchmarking framework PGMPI that can automat-
ically verify performance guidelines of MPI libraries.

We make the following contributions: (1) We propose the benchmarking
framework PGMPI to detect performance-guideline violations. (2) We present a
systematic, experimental verification of performance guidelines for several MPI
libraries. (3) We examine different use cases, for which the detection of guideline
violations enabled us to tune and improve the libraries’ performance.

In Sect. 2, we state the scientific problem and introduce our notation. We
continue with summarizing related work and comparing it to our approach in
Sect. 3. We introduce the PGMPI framework in Sect. 4 and present an exper-
imental evaluation of different MPI libraries using it in Sect. 5. We summarize
our findings and conclude in Sect. 6.

2 Problem Statement and Notation

Träff et al. [15] introduced self-consistent performance guidelines for MPI
libraries as follows: The run-time of two MPI functionalities A and B can be
ordered using the relation � as MPI A(n) � MPI B(n), which means that func-
tionality MPI A(n) is possibly faster than functionality MPI B(n) for (almost)
all communication amounts n. Performance guidelines are defined for a fixed
number of processes p, and thus, they do not mention p explicitly. However, the
communication volume per process may vary depending on the semantics of a
given MPI function and the number of processes. For example, in the case of
MPI Bcast, the total size n is equal to the message size being transferred to each
process. In contrast, the individual message size for an MPI Scatter is a fraction
of the total communication volume n, i.e., each process receives n/p elements.

We examine three types of performance guidelines: (1) monotony, (2) split-
robustness, and (3) pattern. The monotony guideline

MPI A(n) � MPI A(n + k)

ensures that communicating a larger volume should not decrease the communi-
cation time.

Automatic Verification of Self-consistent MPI Performance Guidelines 435

The split-robustness guideline

MPI A(n) � k MPI A(n/k)

states that communicating a total volume of n data elements should not be
slower than sending n

k elements in k steps.
Pattern guidelines define upper bounds on the performance of MPI commu-

nication operations. The idea is that a specialized MPI function should not have
a larger running time than a combination of other MPI operations, which emu-
late the functionality of the specialized function. Let us consider the following
pattern performance guidelines:

MPI Scatter(n) � MPI Bcast(n) , and
MPI Bcast(n) � MPI Scatter(n) + MPI Allgather(n) .

The first states that MPI Scatter should not be slower than MPI Bcast. The rea-
son is that the semantics of MPI Scatter can be implemented using MPI Bcast,
by broadcasting the entire vector before processes take their share depending
on their rank. The second guideline states that a call to MPI Bcast should be
at least as fast as a combination of MPI Scatter and MPI Allgather, which we
call the mock-up version of MPI Bcast, as it emulates its semantics [2].

3 Related Work

Collective communication operations are a central part of the MPI standard, as
they are essential for many large-scale applications. Chan et al. [2] provide an
overview of typical, blocking collectives and their implementations, as well as
lower bounds for the communication cost of each function. For different network
topologies, the authors devise algorithms that achieve the lower bounds for either
the latency or the bandwidth component. As the model of parallel computation
in this paper is rather simplistic, we aim to complement this study by carefully
benchmarking MPI collectives on actual hardware.

Träff [14] proposed the MPI benchmark mpicroscope, which can verify two
self-consistent performance guidelines: “split-robust” and “monotone”. In the
present work, we extend this functionality by testing various pattern violations,
using the experimental framework that was proposed by Hunold and Carpen-
Amarie [7] for better reproducibility of the experimental results. While we focus
on performance guidelines for collectives, previous works have also formulated
performance guidelines for derived datatypes [4] and MPI-IO operations [5].

As hardware and software factors can influence the performance of MPI
collectives, tuning MPI parameters is an essential part for achieving high per-
formance, when installing an MPI library. Yet, optimizing and tuning MPI
operations are orthogonal steps compared to the verification of self-consistent
performance guidelines, i.e., the latter can help us to verify whether run-times
of collectives are consistent in terms of expected performance. For example, the
guidelines can be used to ensure that Gather is faster than Allgather for the

436 S. Hunold et al.

same problem size. For that reason, if a violation occurs, it usually means that
one collective can be tuned. To optimize the latency of collectives at run-time,
one can employ the STAR-MPI routines [3]. When a call to a specific MPI func-
tion is issued, STAR-MPI selects one of the available algorithms and measures
its run-time. When STAR-MPI has enough knowledge about the performance of
different algorithms, it is able to pick a good algorithm for a specific case.

Selecting the right algorithm to implement a given MPI function is only
one step towards tuning MPI libraries. Another problem is finding the right
parameter settings that run-time systems of MPI libraries like Open MPI or
MVAPICH offer. Chaarawi et al. [1] introduced the OTPO tool that can be
used to tune Open MPI run-time parameters. OTPO takes as input the run-
time parameters to be tuned as well as their respective ranges, and then starts
measuring for all combinations of parameter values. Another approach to tune
Open MPI parameters has been proposed by Pellegrini et al. [10], where the
parameter values are predicted using machine learning techniques.

The performance guidelines are formulated as a function of the communica-
tion volume. It is also possible to examine the scalability of MPI collectives when
increasing the number of processes. Shudler et al. [13] proposed a framework
to compare performance characteristics of HPC applications with a theoretical
performance model. The framework fits the recorded benchmarking data to ana-
lytic speedup functions and compares the experimentally determined scalability
behavior to this expected performance model. A model mismatch indicates a
scalability problem of the parallel code section.

4 PGMPI: Verifying MPI Performance Guidelines

We now introduce the PGMPI framework to verify self-consistent performance
guidelines of MPI libraries. In the first step, PGMPI experimentally determines
the number of repetitions needed to obtain stable, reproducible run-time mea-
surements (Step NREP). In the second step, the framework performs run-time
measurements of all functions for which performance guidelines are formulated
(Step MEASURE). The data analysis and the statistical verification of perfor-
mance guidelines is carried out in the last step (Step ANALYZE).

4.1 Obtaining Reproducible Results

We start by looking at the main (second) step of PGMPI (Step MEASURE),
in which the run-times of MPI functions and their emulating counterparts are
measured. The guideline-checking program takes as input a set of pattern guide-
lines, each defined by a pair consisting of an MPI function and its emulating
mock-up function. Our PGMPI framework will measure the run-time of one of
the specified MPI functions f for all given message sizes mi and the number
of processes p that are given in the input file. Within one call to mpirun, each
individual measurement for (f , mi) is repeated ri times, where ri is defined for
each mi. As we expect that mean (or median) run-times vary between different

Automatic Verification of Self-consistent MPI Performance Guidelines 437

calls to mpirun [7], the PGMPI framework measures the run-time of each MPI
function f over R mpiruns.

4.2 Determining the Number of Repetitions

A major problem in MPI benchmarking is the question of how long (how many
times) to measure. We need to find the right trade-off between time and mea-
surement stability. One way of dealing with this problem is by executing the
experiment sufficiently often, e.g., 1000 times. This would alleviate the problem
of low measurement stability, but most often, we cannot afford long-running
benchmarking experiments. Therefore, we formulate the following problem:

Definition 1. The NREP problem is to find a suitable number of repetitions ri
for the tuple (f,mi, p), such that the obtained run-time metric after ri repetitions
of function f with mi Bytes on p processes is reproducible between different calls
to mpirun. Reproducible in this case means that the distribution of the measured
values (for a specific metric) obtained from R mpiruns has a small variance.

We have experimented with various ways of estimating the number of repe-
titions needed to obtain reproducible results. One possibility is to monitor the
relative standard error of the mean (RSE). SKaMPI, for example, stops the
measurements when the RSE falls below a threshold of 0.1 [12]. Although we
have tested many different ways to solve the NREP problem, we could not find
a generally superior approach. We therefore designed the NREP predictor for
Step NREP of the PGMPI framework in a flexible manner. The framework cur-
rently provides three different methods (metrics) for solving the NREP problem,
but new metrics can be added. The NREP prediction may stop

1. when the relative standard error (RSE) is smaller than some predefined
threshold tRSE ; or

2. when the coefficient of variation of the mean run-time (COVmean) is
smaller than some predefined threshold tCOVmean

. The value of the COVmean

is computed over the last wCOVmean
means (window size); or

3. when the coefficient of variation of the median run-time (COVmedian)
is smaller than some predefined threshold tCOVmedian

using a window size of
wCOVmedian

.

Users can choose the NREP prediction method on the command line as follows:
mpirun -np 4 ./ mpibenchmarkPredNreps --calls -list=MPI_Reduce --msizes -list=8
--rep -prediction min=20,max =1000 , step =10 --pred -method=rse --var -thres =0.025

It is also possible to combine different metrics, i.e., the NREP prediction stops
when all selected metrics have been positively evaluated. An example is shown
in Fig. 1, in which both the RSE and the COVmean need to be below a specific
threshold (marked with horizontal lines). The prediction function for the RSE
metric stops after 85 iterations, at which the COVmean value is also below its
threshold. As a result, 85 is the number of iterations that will be used when
collecting benchmark data in Step MEASURE . To cope with the run-time vari-
ation between different mpiruns, we perform three NREP predictions for each
message size and select the maximum number of repetitions obtained.

438 S. Hunold et al.

selected value (85)

20

25

30

35

40

45

0 50 100 150
repetitions

m
ea

n
ru

n-
ti

m
e

[µ
s]

0.00

0.05

0.10

0.15

0 50 100 150
repetitions

C
O

V
of

m
ea

n
ru

n-
ti

m
e

0.1

0.2

0 50 100 150
repetitions

R
SE

of
ru

n-
ti

m
e

Fig. 1. Example of estimating the required number of repetitions for MPI Allgather

(16 B, 16 × 1 processes, Jupiter , tRSE = 0.025, tCOVmean = 0.01, wCOVmean = 20)

4.3 Statistically Verifying Performance Guidelines

After gathering the measurement results, PGMPI can proceed to Step ANA-
LYZE , which consists of the data processing and the verification of performance
guidelines. We now explain which statistical methods are applied for guideline
verification. For each MPI function, for which guidelines were formulated, the
experimental results comprise R (number of mpiruns) data sets for a specific
number of processes p. Each data set contains ri run-time measurements for a
specific message size mi. We first reduce the number of measurements per tuple
(mpirunj , mi, p) to a single value, by computing the median run-time over the
ri measurements. In this way, we obtain a distribution of R medians (median
run-times) for each message size mi and processes p. The various performance
guidelines will then be verified using these distributions of medians.

Monotony Guideline. PGMPI checks for each pair of adjacent message sizes
mi and mj , mi < mj that the run-time of an MPI function with a message size
of mi is not larger than the run-time with a size of mj . We use the Wilcoxon
rank-sum test [6] to test whether the distribution of medians at mi is smaller or
equal than the one at mj . If the test rejects our hypothesis, we have statistical
confidence (at the provided confidence level) that the monotony between message
sizes mi and mj is violated.

Split-Robustness Guideline. We want to verify that sending a message of
size mj by transferring k packets of size mi < mj is not faster than sending only
one message of size mj . We are only given the run-time distribution of one MPI
function at mi. Unfortunately, we have no knowledge about the shape of the
run-time distribution when we communicate messages of size mi in k rounds. As
a matter of fact, we cannot simply shift the distribution at mi by some constant
factor, and therefore, we decided to rely on (and to compare) the median values
of the distributions.

Automatic Verification of Self-consistent MPI Performance Guidelines 439

Table 1. Overview of parallel machines used in the experiments

Name Hardware MPI libraries/Compiler

Jupiter 36 × Dual Opteron 6134 @ 2.3GHz NECMPI 1.3.1, MVAPICH2-2.1

IB QDR MT26428 OpenMPI 1.10.1/ gcc 4.4.7

VSC-3 2000 × Dual Xeon E5-2650V2 @ 2.6GHz Intel MPI Library 5.0 (Update 3)

IB QDR-80 gcc 4.4.7

Since we measure the run-time of MPI functions only for a limited number of
message sizes, we compute the factor k = minl∈N(lmi ≥ mj), which denotes the
smallest multiple of mi such that the resulting product is at least mj . Notice that
we explicitly allow lmi to be larger than mj , which enables us to check whether
sending two messages of size 1024 B is faster than sending one message of size
2000 B. The PGMPI framework checks whether the time to communicate mes-
sages of size mi in k rounds is smaller than the run-time for mj . If we find such
a violation for a message size mj , we only report the largest message size mi (the
smallest factor k) for which the violation occurred; otherwise too many violations
would be reported in some cases. It often happens that the predicted run-time
for lmi is very similar to the run-time for mj . To avoid reporting split-robustness
violations for which only marginal relative run-time differences have been mea-
sured, we use a 5 % tolerance level to verify this guideline. Currently, PGMPI does
not empirically test whether communicating k messages of size mi is indeed faster
than communication a message of size mj in practice. This additional check would
require an additional benchmarking round, and might be added to PGMPI later.

Pattern Guidelines. The verification of pattern guidelines is done similarly to
checking the monotony guideline, except that we now compare two run-time dis-
tributions of two distinct functions: an MPI function and its mock-up version. We
apply the Wilcoxon rank-sum test on the two distributions to test whether the
run-time distribution of the MPI function is not significantly shifted to the right
of the distribution obtained with the mock-up version (“to the right” means larger
run-time). If this is the case, PGMPI reports a pattern violation. Alternatively,
the Kolmogorov-Smirnov test [6] can be employed, as it is less sensitive to ties.
Overall, both tests led to similar results in the majority of the considered cases.

5 Experimental Evaluation and Results

We evaluate our proposed PGMPI framework1 experimentally using the hard-
ware and software setup listed in Table 1. First, we present a summary of
detected performance-guideline violations for several MPI libraries. Second, we
demonstrate in two case studies that the knowledge about specific guideline vio-
lations can help tuning and adapting MPI implementations to parallel systems.
Please refer to our technical report [8] for more details about the experimental
evaluation.
1 https://github.com/hunsa/pgmpi.

https://github.com/hunsa/pgmpi

440 S. Hunold et al.

Table 2. Performance-guideline violations of different MPI libraries (R = 10); violation
types: monotony, split-robustness, pattern; message sizes between 1 B and 100 KiB

(a) Jupiter

#processes type MVAPICH2-2.1 NECMPI 1.3.1 OpenMPI 1.10.1

16x1 m 7/9 6/9 7/9

16x1 s 1/9 0/9 3/9

16x1 p 12/15 7/15 9/15

32x16 m 5/9 4/9 4/9

32x16 s 3/9 0/9 3/9

32x16 p 8/15 7/15 7/15

(b) VSC-3

#processes type Intel MPI 5.0

16x16 m 7/9

16x16 s 6/9

16x16 p 13/15

64x16 m 6/9

64x16 s 7/9

64x16 p 11/15

5.1 Assessing the Guideline Compliance of MPI Libraries

We used the PGMPI framework to verify the performance guidelines listed in
Appendix A for different MPI libraries. On Jupiter , we evaluated NEC MPI 1.3.1,
MVAPICH2-2.1, and Open MPI 1.10.1. The NEC MPI 1.3.1 library was delivered
by NEC pre-compiled for our system and we therefore do not know all internals.
The other two libraries, MVAPICH2-2.1 and Open MPI 1.10.1, were compiled
using the default settings. On VSC-3 , we recorded guideline violations for the
proprietary Intel MPI Library 5.0 (Update 3).

Table 2 presents an overview of the detected guideline violations for several
MPI libraries on Jupiter and VSC-3 . For the monotony and the split-robustness
guidelines, the table shows the number of MPI functions for which violations
occurred, e.g., for MVAPICH2-2.1 using 16× 1 processes, PGMPI found seven
monotony violations among the nine tested MPI collectives. For the pattern
guidelines, we verified the 15 guidelines provided in Appendix A. If a guideline
violation is found for any message size of a particular MPI function, we say that
this particular guideline is unsatisfied, i.e., a violation is only counted once across
all message sizes. We can observe in Table 2 that the monotony and the split-
robustness guidelines are violated by approximately 50 % of the collectives. The
table also reveals that more than 40 % of the examined pattern guidelines were
violated. The guideline violations occurred across different numbers of processes,
message sizes, libraries, and machines. We therefore contend that there is a large
potential for optimization of the individual MPI libraries on these machines.

Table 3 compares the detected pattern violations for the three libraries on
Jupiter . Except for two guidelines, we found violations for all other pattern
guidelines in at least one MPI library. The experimental results clearly sug-
gest that Reduce-like functions should be improved and tuned in all MPI
libraries, which are: MPI Allreduce, MPI Reduce, MPI Reduce scatter, and
MPI Reduce scatter block.

A detailed view on the detected guideline violations for MVAPICH2-2.1 on
Jupiter is given in Table 4. For this MPI library, we observe a couple of monotony
violations. For short message sizes (<32 B), the absolute difference in run-times
is very small, and thus, fixing these cases has low priority. Monotony viola-
tions occur for larger messages when the message size is not a power of two
(e.g., between 10000 B and 16384 B). These cases could be investigated in more

Automatic Verification of Self-consistent MPI Performance Guidelines 441

Table 3. Pattern guideline violations of different MPI libraries with 32 × 16 processes
on Jupiter , R = 10; message sizes between 1 B and 100 KiB

Guideline MVAPICH2-2.1 NECMPI 1.3.1 OpenMPI 1.10.1

MPI Allgather � Allreduce •
MPI Allgather � Alltoall

MPI Allgather � Gather+Bcast •
MPI Allreduce � Reduce+Bcast • • •
MPI Allreduce � Reduce scatter block+Allgather •
MPI Bcast � Scatter+Allgather • •
MPI Gather � Allgather

MPI Gather � Reduce •
MPI Reduce scatter block � Reduce+Scatter • • •
MPI Reduce scatter � Allreduce • • •
MPI Reduce scatter � Reduce+Scatterv •
MPI Reduce � Allreduce • •
MPI Reduce � Reduce scatter block+Gather •
MPI Scan � Exscan+Reduce local • •
MPI Scatter � Bcast •

detail, as padding up the message to the next power of two could be an option.
For split-robustness guidelines we can see potential for improvement only for
larger message sizes. When analyzing the pattern guidelines, two cases stand
out: MPI Allreduce is slower than the emulating function using Reduce and
Bcast for message sizes up to 2 KiB and MPI Reduce scatter exposes a perfor-
mance degradation compared to Allreduce for almost all message sizes.

As it is impossible for library developers to provide suitable parameters for
each individual installation, checking the compliance to performance guidelines
can be seen as indicators for programmers and administrators, how to tune MPI
libraries. Often, specific MPI libraries already provide efficient algorithms, and
violations would not occur if the right algorithm were enabled for a specific
case. We therefore show in the next section how violations can guide us to find
more suitable algorithms and implementations for collective calls on a specific
machine.

5.2 Case Study 1: MPI Gather � MPI Allgather, MVAPICH

We consider the violation of this performance guideline that was detected
using 32× 1 processes and MVAPICH2-2.1 on Jupiter and is shown in Fig. 2a.
When the Wilcoxon rank-sum test reports a violation for a particular mes-
sage size, we mark this case in the figure with a red background and add
asterisks to show the statistical significance. Here, executing MPI Gather using
32× 1 processes (one process per compute node) is slower than performing a
Gather using MPI Allgather. Calling MPI Gather in the default installation of

442 S. Hunold et al.

Table 4. Performance-guideline violations of MVAPICH2-2.1 using 32 × 16 processes
on Jupiter (R = 10); violation types: monotony, split-robustness, pattern

type function 1 2 4 8 1
6

3
2

6
4

1
0
0

1
2
8

2
5
6

5
1
2

1
0
2
4

1
5
0
0

2
0
4
8

4
0
9
6

5
0
0
0

8
1
9
2

1
0
0
0
0

1
6
3
8
4

3
2
7
6
8

1
0
2
4
0
0

m MPI Allgather • •
m MPI Allreduce • •
m MPI Gather • •
m MPI Reduce • •
m MPI Scatter • • •
s MPI Gather • • • • • •
s MPI Reduce •
s MPI Reduce scatter block • •
p MPI Allgather � Allreduce • •
p MPI Allreduce � Reduce+Bcast • • • • • • • • • • • • • •
p MPI Gather � Reduce • • •
p MPI Reduce scatter block � Reduce+Scatter • • • •
p MPI Reduce scatter � Allreduce • • • • • • • • • • • • • • • • •
p MPI Reduce � Allreduce • • • •
p MPI Reduce � Reduce scatter block+Gather • • •
p MPI Scatter � Bcast • • •

20

40

60

80

4 5 8 11 16 22 32 45 64 90 12
8

18
1

25
6

36
2

51
2

72
4

10
24

message size [Bytes]

ru
n-

ti
m

e
[µ

s]

MPI_Gather MPI_Allgather

32=32x1 processes

(a) With Violations

20

40

60

80

4 5 8 11 16 22 32 45 64 90 12
8

18
1

25
6

36
2

51
2

72
4

10
24

message size [Bytes]

ru
n-

ti
m

e
[µ

s]

MPI_Gather MPI_Allgather

32=32x1 processes

(b) No Violations

Fig. 2. Verification of MPI Gather � MPI Allgather (a) before and (b) after changing
the Gather implementation (MVAPICH2-2.1, Jupiter , R = 30, ri = 1000)

MVAPICH2-2.1 will use the internal function MPIR Gather intra for the first
14 invocations and then switch to MPIR Gather MV2 Direct for subsequent calls.
The direct implementation of Gather performs (p − 1) MPI Irecvs on the root
process and an MPI Send on the other processes. We can set the environment vari-
able MV2 USE DIRECT GATHER=0 to force MVAPICH to use MPIR Gather intra
only. The intra-version on our machine uses a binomial tree algorithm to imple-
ment Gather, and forcing this algorithm fixes the violation (cf. Fig. 2b). Let us
check that the algorithmic change for small message sizes is indeed favorable. We
use the Hockney model for MPI Reduce given by Pjesivac et al. [11], but omit the
computational term. As the direct algorithm issues (p − 1) receive operations,
we obtain a run-time for small message sizes (we neglect the bandwidth term) of
about 52.7µs, for a network latency of roughly 1.7µs. If we use a binomial tree

Automatic Verification of Self-consistent MPI Performance Guidelines 443

*** *** *** *** *** *** *** *** ***

0

5000

10000

15000

20000

64 91 12
8

18
2

25
6

36
3

51
2

72
5

10
24

message size [KBytes]

ru
n-

ti
m

e
[µ

s]

MPI_Reduce MPI_Allreduce

512=32x16 processes

(a) With Violations

0

5000

10000

15000

20000

64 91 12
8

18
2

25
6

36
3

51
2

72
5

10
24

message size [KBytes]

ru
n-

ti
m

e
[µ

s]

Custom_MPI_Reduce MPI_Allreduce

512=32x16 processes

(b) No Violations

Fig. 3. Verification of MPI Reduce � MPI Allreduce with (a) original and (b) new
Reduce implementation (Open MPI 1.10.1, Jupiter , R = 5, ri = 100)

algorithm instead, the latency cost grows only logarithmically in the number of
processes, i.e., log 32 · 1.7µs = 8.5µs. Even though our estimation does not per-
fectly match the experimental data, it explains why the binomial tree algorithm
performs better.

5.3 Case Study 2: MPI Reduce � MPI Allreduce, Open MPI

In the second case study, we consider the guideline violations that occurred for
MPI Reduce using Open MPI 1.10.1 on the Jupiter system. Here, in contrast
to the first case study, violations have only been measured for larger message
sizes (> 216 B), but for various numbers of processes: 16× 1, 32× 1, 16× 16,
and 32× 16. Figure 3 limits the view to message sizes for which violations were
detected. Since Open MPI is highly configurable via the MCA parameters, we have
tried to find parameter settings for MPI Reduce, such that executing the latter
would be faster than executing MPI Allreduce. We have tried various segment
sizes and fan-outs (where the parameters were applicable). Unfortunately, we
failed to tune the parameters in such a way that the violations would disappear
on our machine. For that reason, we implemented our own Reduce algorithm,
which is based on the MPI Allreduce algorithm found in Open MPI 1.10.1. Here,
MPI Allreduce is implemented using a Reduce-scatter followed by an Allgatherv
on a ring of processes [9]. We modified this algorithm to become an MPI Reduce
by replacing the final Allgatherv by a Gatherv to the root. The Gatherv was
realized using a direct Irecv/Send scheme. In the MPI semantics of Reduce, only
the root process has a receive buffer. We therefore need to allocate additional
buffer space to send and receive data segments in the Reduce-scatter phase.
We found that executing malloc in each Reduce call has a severe impact on
the performance of Reduce. To overcome this problem, we allocate a temporary
buffer outside of Reduce but accessible to the Reduce implementation. This
modification helped us to significantly speed up the run-time, and made this

444 S. Hunold et al.

Reduce implementation a suitable candidate to be included in the Open MPI
library. In sum, our Reduce implementation avoids violations for larger messages
sizes, as shown in Figure 3b.

6 Conclusions

The experimental verification of performance guidelines is an orthogonal app-
roach to traditional MPI library tuning. It allows to find performance degra-
dations of MPI functions, which would be hidden otherwise. For example, it
is possible to optimize several existing implementations of MPI Gather, but
even the fastest of these Gather algorithms might be slower than the call to
MPI Allgather.

We have introduced the PGMPI framework to verify self-consistent perfor-
mance guidelines of MPI functions. Currently, the framework supports blocking
MPI collective communication operations, but it can be extended to support
MPI point-to-point communication operations and derived datatypes. We have
evaluated 17 different guidelines for collective communication operations for sev-
eral MPI libraries such as MVAPICH and Open MPI. The experimental results
reveal that none of the libraries was well adapted to our parallel machines, which
might not be surprising. However, by using PGMPI we were able to pinpoint
exactly which MPI functions should be tuned and which message sizes should
be considered. Thus, PGMPI is a useful tool for MPI developers and system
administrators to easily spot tuning potentials.

A Self-consistent Performance Guidelines in PGMPI

The guidelines are formulated for a variable communication volume n, n ≥ 0
and fixed number of processes p, p ≥ 1, which is omitted.

Monotony Guideline

MPI A(n) � MPI A(n + k) , k ≥ 0 (GL1)

Split-Robustness Guideline

MPI A(n) � k MPI A(n/k) , k ≥ 1 (GL2)

Pattern Guidelines

MPI Gather(n) � MPI Allgather(n) (GL3)
MPI Gather(n) � MPI Reduce(n) (GL4)

MPI Allgather(n) � MPI Alltoall(n) (GL5)
MPI Allgather(n) � MPI Allreduce(n) (GL6)

MPI Scatter(n) � MPI Bcast(n) (GL7)
MPI Reduce(n) � MPI Allreduce(n) (GL8)

Automatic Verification of Self-consistent MPI Performance Guidelines 445

MPI Reduce scatter(n) � MPI Allreduce(n) (GL9)
MPI Bcast(n) � MPI Scatter(n) + MPI Allgather(n) (GL10)

MPI Allgather(n) � MPI Gather(n) + MPI Bcast(n) (GL11)
MPI Allreduce(n) � MPI Reduce(n) + MPI Bcast(n) (GL12)
MPI Allreduce(n) � MPI Reduce scatter block(n)

+ MPI Allgather(n) (GL13)
MPI Reduce(n) � MPI Reduce scatter block(n)

+ MPI Gather(n) (GL14)
MPI Reduce scatter block(n) � MPI Reduce(n) + MPI Scatter(n) (GL15)

MPI Scan(n) � MPI Exscan(n) + MPI Reduce local(n) (GL16)
MPI Reduce scatter(n) � MPI Reduce(n) + MPI Scatterv(n) (GL17)

References

1. Chaarawi, M., Squyres, J.M., Gabriel, E., Feki, S.: A tool for optimizing runtime
parameters of Open MPI. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 210–217. Springer, Heidelberg (2008)

2. Chan, E., Heimlich, M., Purkayastha, A., van de Geijn, R.A.: Collective communi-
cation: theory, practice, and experience. Concurrency Comput. Pract. Experience
19(13), 1749–1783 (2007)

3. Faraj, A., Yuan, X., Lowenthal, D.K.: STAR-MPI: self tuned adaptive routines for
MPI collective operations. In: International Conference on Supercomputing (ICS),
pp. 199–208. ACM (2006)

4. Gropp, W., Hoefler, T., Thakur, R., Träff, J.L.: Performance expectations and
guidelines for MPI derived datatypes. In: Cotronis, Y., Danalis, A., Nikolopoulos,
D.S., Dongarra, J. (eds.) EuroPVM/MPI 2011. LNCS, vol. 6960, pp. 150–159.
Springer, Heidelberg (2011)

5. Gropp, W.D., Kimpe, D., Ross, R., Thakur, R., Träff, J.L.: Self-consistent MPI-
IO performance requirements and expectations. In: Lastovetsky, A., Kechadi, T.,
Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 167–176. Springer,
Heidelberg (2008)

6. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods, 3rd
edn. Wiley, Hoboken (2014)

7. Hunold, S., Carpen-Amarie, A.: Reproducible MPI benchmarking is still not as
easy as you think. IEEE TPDS (2016)

8. Hunold, S., Carpen-Amarie, A., Lübbe, F.D., Träff, J.L.: PGMPI: automatically
verifying self-consistent MPI performance guidelines. CoRR abs/1606.00215 (2016)

9. Patarasuk, P., Yuan, X.: Bandwidth optimal all-reduce algorithms for clusters of
workstations. JPDC 69(2), 117–124 (2009)

10. Pellegrini, S., Wang, J., Fahringer, T., Moritsch, H.: Optimizing MPI runtime para-
meter settings by using machine learning. In: Ropo, M., Westerholm, J., Dongarra,
J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 196–206. Springer, Heidelberg
(2009)

446 S. Hunold et al.

11. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra,
J.: Performance analysis of MPI collective operations. Cluster Comput. 10(2),
127–143 (2007)

12. Reussner, R., Sanders, P., Träff, J.L.: SKaMPI: a comprehensive benchmark for
public benchmarking of MPI. Sci. Program. 10(1), 55–65 (2002)

13. Shudler, S., Calotoiu, A., Hoefler, T., Strube, A., Wolf, F.: Exascaling your library:
will your implementation meet your expectations? In: International Conference on
Supercomputing (ICS), pp. 165–175 (2015)

14. Träff, J.L.: mpicroscope: towards an MPI benchmark tool for performance guideline
verification. In: Träff, J.L., Benkner, S., Dongarra, J.J. (eds.) EuroPVM/MPI 2012.
LNCS, vol. 7490, pp. 100–109. Springer, Heidelberg (2012)

15. Träff, J.L., Gropp, W.D., Thakur, R.: Self-consistent MPI performance guidelines.
IEEE TPDS 21(5), 698–709 (2010)

ParallelME: A Parallel Mobile Engine
to Explore Heterogeneity in Mobile

Computing Architectures

Guilherme Andrade1(B), Wilson de Carvalho1, Renato Utsch1,
Pedro Caldeira1, Alberto Alburquerque1, Fabricio Ferracioli4,

Leonardo Rocha2, Michael Frank3, Dorgival Guedes1, and Renato Ferreira1

1 Department of Computer Science,
Federal University of Minas Gerais, Belo Horizonte, Brazil

gnandrade@dcc.ufmg.br
2 Department of Computer Science,

Federal University of São João del Rei, São João del Rei, Brazil
3 LG Electronics, San Jose Lab, Santa Clara, USA

4 LG Electronics, São Paulo, Brazil

Abstract. Following the evolution of desktops, mobile architectures are
currently witnessing growth in processing power and complexity with the
addition of different processing units like multi-core CPUs and GPUs.
To facilitate programming and coordinating resource usage in these
heterogeneous architectures, we present ParallelME, a Parallel Mobile
Engine designed to explore heterogeneity in mobile computing architec-
tures. ParallelME provides a high-level library with a friendly program-
ming language abstraction for developers, facilitating the programming
of operations that can be translated into low-level parallel tasks. Addi-
tionally, these tasks are coordinated by a runtime framework, which is
responsible for scheduling and controlling the execution on the low-level
platform. ParallelME’s purpose is to explore parallelism with the benefit
of not changing the programming model, through a simple programming
language abstraction that is similar to sequential programming. We per-
formed a comparative analysis of execution time, memory and power
consumption between ParallelME, OpenCL and RenderScript using an
image processing application. ParallelME greatly increases application
performance with reasonable memory and energy consumption.

1 Introduction

Mobile phones are no longer devices for basic communication between people, but
have become much more sophisticated devices. Current models include a range of
sensors that are capable of collecting a wide variety of data about the user and the
environment, and many applications are being proposed which involve processing
this large data volume either on the device or in the cloud. These application’s
compute demands have put pressure on the hardware architecture to significantly
increase the processing power while also maintaining the power consumption at
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 447–459, 2016.
DOI: 10.1007/978-3-319-43659-3 33

448 G. Andrade et al.

a reasonable level. A recent trend in the desktop scenario is the utilization of
different types of processing units (PUs), in the so-called heterogeneous systems
- computers which include multi-core CPUs as well as other special purpose
processors - GPUs being a favorite among them. Nowadays, many cell phone
SoCs are also equipped with multi-core CPUs, such as Qualcomm Snapdragon
and NVIDIA Tegra 3, and high-performance GPUs, such as Mali from ARM,
and Adreno from Qualcomm.

In this new context, it becomes necessary for applications of different domains
to achieve better performance and hence have better user experience by explor-
ing, in a coordinated and efficient way, all the available PUs taking full advantage
of their processing capabilities. In this direction it is important to create high-
level programming abstractions which allow programmers to define the opera-
tions in some simple, intuitive way, while its parallel execution on different PUs
can be achieved at run-time with minimal programmer interference. To accom-
plish that, we propose a specialized run-time framework, providing mechanisms
for manipulating the generated low-level tasks. The framework is responsible for
creating specific tasks to be executed in specific processing units, for managing
the dependencies and for scheduling them across the devices in an efficient way.
The proper use of different processing units in a heterogeneous system is a well
studied problem in the literature when it comes to conventional computer archi-
tectures, for which different run-time environments [8,12] exist. However, it is a
new and challenging scenario for mobile architectures.

The challenges in dealing with different processing units on a mobile architec-
ture involve mainly the limited resources available for coding and the absence of
facilitating run-time environments. The vast majority of mobile developers use
programming languages, frameworks and APIs, supported by the device oper-
ating system, with a high level abstraction. In order to access and use different
computational resources on a device architecture (i.e. GPU), programmers must
be able to work at a lower level of abstraction, which requires advanced knowl-
edge. This major effort to link low-level programming with high-level abstraction
leads to a high cost of application programming.

In this work we present ParallelME, a Parallel Mobile Engine designed for
exploring heterogeneity in mobile architectures. ParallelME provides a high-
level library with a friendly programming language abstraction for developers,
enabling programs to easily describe complex operations and translate them into
low-level tasks. These tasks are manipulated in a coordinated manner by our
proposed run-time framework, which is responsible for scheduling and control-
ling the execution on the low-level platform. Therefore, in our work, we explore
two challenging points in the context of mobile architectures: (1) Expressing
high-level parallel operations; and (2) Exploring different processing units in the
low-level system. Despite being originally proposed for the mobile scenario, Par-
allelME is a generic parallel Java extension, coupled with a OpenCL run-time
framework, which can easily be used for developing to desktop systems as well.

ParallelME: A Parallel Mobile Engine to Explore Heterogeneity 449

ParallelME’s purpose is to explore parallelism with the benefit of not chang-
ing the programming model, through a simple programming language abstrac-
tion that is similar to sequential programming.

We performed a comparative analysis of execution time, memory and power
consumption between ParallelME, OpenCL and RenderScript using an image
processing application. Our experiments have shown that ParallelME greatly
increases application performance up to 32.34 times, with reasonable energy con-
sumption and reducing memory usage significantly, while maintaining a simple
programming interface.

The remainder of this paper is organized as follows. In Sect. 2 we present
a description of the main parallel programming frameworks currently available
for mobile architectures. In Sect. 3 we present all components of ParallelME, on
which we highlight the language used and the low level platforms explored. In
sequence, in the Sects. 3.1 and 3.3 we explain the features of the proposed high-
level library and the details of the low-level execution mechanism, respectively.
We evaluate the comprehensiveness and applicability of our abstract language
and the run-time performance, presenting the results in Sect. 4. Finally, we con-
clude and discuss some future work in the last section.

2 Related Works

In this section we present a detailed description of the main parallel programming
frameworks available, to the best of our knowledge, for developing efficient appli-
cation for mobile architectures. The frameworks addressed here are Pyjama [9],
Aparapi [11], Rootbeer [14], Paralldroid [7] and RenderScript [6].

Pyjama’s [9] focus is on bringing OpenMP’s programming model to Java,
with optimizations for Graphical User Interface (GUI) applications. Pyjama was
built with this requirement in mind: it changes the way threads are generated by
its own source to source compiler implementation. In OpenMP, the main thread
that triggers parallel computation becomes the master one for the processing,
whereas in Pyjama a new master thread is created for that, since the GUI one
has to be kept running. It does not exactly present a new parallel programming
model, but its changes in benefit of GUI applications are really interesting for
developing mobile apps and its source to source compiler model is an effective
way of introducing its own changes to the Java language, as it keeps things simple
to the user while retaining control over how the parallelization is implemented.
The amount of information the user provides and the way it is done is key to the
effectiveness of the programming model adopted by the framework. On the other
hand, Pyjama does little to address the complexity of OpenMP programming in
general: a developer still has to learn his ways through it and is fully responsible
for the good execution of his code.

Aparapi [11] is an AMD project, which focuses on making GPU program-
ming easier. Aparapi was presented in 2011 as an API to express data parallel
workloads in Java. It avoids changing the basic structure of the language itself,
so instead of writing a parallel-for, for example, the developer extends a kernel

450 G. Andrade et al.

base class to write his function. The code is compiled to Java bytecode and
then parallelized by converting to OpenCL at runtime, reverting back to Java
Thread Pool if necessary. It is possible to iterate over objects, not only primitive
types. Comparing to programming with OpenCL or CUDA directly, Aparapi
offers several advantages, though it does not tackle important problems. It is
much easier to create and maintain new code, but debugging is still difficult and
searching for execution bottlenecks remains as hard as on other environments.
Compared with our own goals, Aparapi is limited in its parallelization scope,
regarding both the hardware it optimizes code for and the level of complexity of
its functions.

The idea behind Rootbeer [14] is similar to Aparapi’s: transform regular Java
code into GPU parallel code with minimum effort. Rootbeer is more robust than
Aparapi, for it supports a broader set of instructions in Java language, exclud-
ing mostly dynamic method invocation, reflection and native methods. Rootbeer
was created to make development on GPUs easier, but it never guaranteed per-
formance improvement by treating the Java code written by the programmer.
This means that even though it makes it easier to program, the task of code
optimization still befalls heavily on the programmer, so much knowledge and
time is still required to create efficient code and the programmer has to deal on
his own with the performance issues his program’s structure creates after the
code conversion.

Paralldroid [7] is a framework to ease parallel programming on Android
devices, aiming to make source to source translation of OpenMP-like annotated
code. The user writes his Java code directing the framework on what should be
done in parallel on each occasion, and the framework writes the low level code.
Though it has limitations on what it converts, as they only support primitive
type variables, conversions are made to RenderScript, OpenCL and Native C
code. Akin to Pyjama, Paralldroid also uses OpenMP-like directives as basis for
its programming model. These are complex to learn and require knowledge many
programmers might not have.

RenderScript [6] is a framework designed by Google to perform data-parallel
computation in Android devices, and was formally introduced in Android SDK
API Level 11 (aka Android 3.0 Honeycomb). RenderScript is a means of writing
performance critical code that can run natively on different processors, selected
from those available at runtime. This could be the device CPU, a DSP, or even
the GPU. Where it ultimately runs on is a question that depends on many factors
that are not readily available to the developer.

3 ParallelME

ParallelME was conceived as a complete infrastructure for parallel program-
ming for mobile architectures, exploring different processing units in a coordi-
nated manner. Our purpose is focused on mobile computing, so we implemented
ParallelME through available and widely used platforms for mobile systems. It
is composed of three main components: (1) a programming abstraction, (2) a
source-to-source compiler and (3) a run-time framework.

ParallelME: A Parallel Mobile Engine to Explore Heterogeneity 451

The programming abstraction was inspired by ideas found in the Scala collec-
tions library and is designed to provide an easy-to-use and generic programming
model for parallel applications in Java for Android. The language was extended
by means of specialized classes for which we also provided a sequential imple-
mentation. This means that the applications can run as they are written using
the regular development infrastructure, though they will be very inefficient.

Our source-to-source compiler, however, provides a mechanism for replacing
the use of the sequential libraries by extracting the portions of the code that
comprise the parallel tasks and generating them either as RenderScript or as
OpenCL [5]. The compiler also incorporates the appropriate bindings of the
application code with the parallel tasks, thus creating a parallel application and
improving the overall performance.

The run-time framework was developed using OpenCL and is responsible
for setting up the application to allow several parallel tasks to be specified and
queued for execution on different devices. It allows different criteria in deciding
the PU in which each task should run at run-time, creating a novel level of
control and flexibility which can be explored in order to achieve certain goals as
far as resource utilization, which can further improve overall performance.

The first and current version of ParallelME is focused on the mobile operating
system (Mobile OS) Android. In addition to being the most used Mobile OS
in the world [4], Android is also an open source Linux-based system. In the
following subsections we further describe each of the components of our proposed
framework.

3.1 Programming Abstraction

General purpose mobile applications are commonly implemented in Java for
Android OS through the use of the SDK (Software Development Kit [2]). Even
though it is possible to use native Android resources with lower level program-
ming platforms and language through NDK (Native Development Kit [1]), the
use of Android SDK is preponderant among programmers. In this sense, Paral-
lelME programming abstraction was designed to be supported by Android SDK
in Java. In order to provide a generic and effective programming model for paral-
lel applications, we considered the highest level of abstraction possible regarding
the limitations of the current Java version supported by Android.

ParallelME programming abstraction was inspired in ideas found on the Scala
collection library [15], which is a library consisted of a set of different data
structures with native support for parallel processing. The goal of ParallelME
was to create a similar data-structure oriented library that could be used to
produce parallel code with the minimum effort by its user. In ParallelME, this
set of data structures is called User-Library.

The User-Library is composed of a series of classes as part of a collections’
package. These collections represent common data structures like arrays, lists,
hash sets and hash maps capable of handling an abstract data type. The abstract
data type corresponds to the user class which is used to store user data. All
user data is stored on the respective collection through one of its data insertion
methods.

452 G. Andrade et al.

So far, the User-Library contains three functional classes: Array, BitmapIm-
age and HDRImage. The former class is a generic single-dimensional array, while
the last two classes offer support for bitmap and HDR image processing.

Though Scala is a language which differs deeply from Java, ParallelME pro-
vides a similar approach for operations that iterate through an entire collection
with no restriction of processing order. Given a bitmap object and a foreach
operation to iterate through all its pixels and perform a simple modification in
its color (i.e. add 1 to each RGBA color space parameter), the proposed abstrac-
tion for ParallelME is presented in Listing 1.

Listing 1: Programming abstraction for ParallelME

Code in Listing 1 shows two variations of the same operation where left and
right side are semantically identical. The first and last lines respectively are the
data input and output operations of the User-Library class. They correspond
to the class constructor where the user provides the input data (in this case
a bitmap object) and the data retrieval method, on which the user gets back
the data processed on ParallelME (in this case, the data replaces the original
bitmap). The code between data input and output corresponds to the user code
with the color modification proposed. It contains a call to method par on object
image, which indicates that a parallel operation will be performed on the next
method call. It is followed by a foreach iterator containing the user code and
where operations have different syntax on each side. Left side code represents a
version compatible with Java version supported by Android (Java 7) [2] during
the development of the first version of ParallelME, with no support for lambda
expressions [10]. Right side code was created using a lambda expression, which is
available in Java 8. It demonstrates the simplicity and objectivity of our syntax
when applied together with a lambda expression and shows how ParallelME will
be used as a more recent version of Java is incorporated in Android.

3.2 Source-to-Source Compiler

The ParallelME source-to-source compiler has been developed with the incor-
poration of ANTLR, a powerful parser generator [13] widely used to build lan-
guages, tools and frameworks. We used an ANTLR Java grammar to create a
parser that was used to build and traverse a parse tree, which in turn was the
basis for ParallelME compiler. Our compiler takes as input Java code written

ParallelME: A Parallel Mobile Engine to Explore Heterogeneity 453

with the User-Library and translates it into C code compatible with Render-
Script or OpenCL frameworks, depending on the chosen runtime. Besides that,
the compiler also integrates the translated code with the Java application, per-
forming modifications to the original user code to support the proposed run-time
environment.

In this sense, our compiler is composed of 3 macro steps:

– User-Library detection: detects where the user code was written with User-
Library classes. These locations will point to the code that must be translated
to the target runtime.

– Memory binding: detects where the user is providing the data that will be
processed in order to transmit it to the runtime environment.

– Conversion to RenderScript/OpenCL: the user code in the iterators’
body of the User-Library classes must be translated to a RenderScript or
OpenCL compliant version in order to produce the behaviour specified on the
high level programming abstraction.

In favor of creating a first version of ParallelME on a reasonable schedule,
we defined some rules and limitations on the input and output code. These rules
and limitations are related to the user code provided to the iterator and the
user class that is parametrized on User-Library collections. For both user code
in iterators and parametrized classes we defined that only Java primitive types,
their equivalent wrapper classes and User-Library collections can be used. These
restrictions reduced considerably the compiler complexity, yet allowing a high
degree of flexibility on user code creation.

Once our User-Library was designed in Java, the user code written with our
programming abstraction is 100 % compliant with Java 7 language specification.
This allowed us to rely on the Java compiler (javac) for syntactic and semantic
evaluation of code, reducing responsibilities of ParallelME compiler and increas-
ing its robustness.

3.3 Run-Time Framework Details

The run-time component of ParallelME is responsible for coordinating, in an
efficient way, all processing units available on the mobile architecture. It orga-
nizes and manages low level tasks generated by the Compiler component, from
definitions expressed by developers in User-Library. The implementation is in
C++ and was inserted in the Android system using the NDK toolkit. As pre-
viously explained, OpenCL was adopted as a low-level parallel platform to
manipulate available processing units. In general, the dynamics of the runtime
involves the following phases: (1) Identifying the computing resources available
on mobile architecture; (2) Creating tasks and their input and output parame-
ters; (3) Arranging task’s data according to their parameters; (4) Submitting
them for execution; (5) Instantiating routines of a scheduling policy; (6) Assign-
ing tasks to processing units defined by the scheduling policy. The first four
phases correspond to user API phases and must be performed to instantiate

454 G. Andrade et al.

the system and the tasks. The run-time internal engine is composed of the two
remaining phases. Figure 1 gives an overall picture of the entire framework, which
is further described below.

Fig. 1. Execution mechanism dynamics

Run-Time API Phases. The first run-time phase is divided into two steps:
(1) detection of the available resources in a specific mobile architecture; and
(2) instantiation of all necessary structures related to the framework. In the first
step, the framework identifies the available processing units, also called devices.
A context is created for each device, which corresponds to specific implemen-
tations of OpenCL routines, provided by different suppliers such as NVIDIA,
Intel, AMD and Qualcomm. In the second step, the framework instantiates a
system thread for each of these contexts. These threads, called Worker Threads,
are responsible for managing devices using specific OpenCL routines. These con-
figurations are performed by instantiating the run-time constructor.

The second phase corresponds to the creation of tasks that are executed by
processing units. In this phase, a source file containing one or more OpenCL
kernels is built, and each kernel present in the compiled file composes one or
more tasks. When more than one kernel is assigned to a task, they are executed
in the order they were instantiated. It is important to emphasize that these tasks
are generic and not linked - at this moment - to any device. When submitted to
execution, these tasks will be scheduled and executed on a specific device.

ParallelME: A Parallel Mobile Engine to Explore Heterogeneity 455

The third phase is responsible for preparing the data that will be manipulated
by each task. As OpenCL buffers are device-specific, it would be very expensive
to set up tasks’ data before the scheduler decides where the task will run on. In
order to deal with this, we propose a mechanism in which the task configuration
is done through callbacks: before sending the task to the scheduler, the user
specifies configuration callbacks (that can be lambda functions) that set up task
data. Only after the scheduler decides where the task will run, the configuration
function is called with the target device specified through a parameter. This
avoids the cost of copying task data to multiple devices. Also, in this step, it is
possible to configure for each kernel the amount of threads or work units involved
(OpenCL work range) in its execution.

Finally, the last phase related to Environment Setup corresponds to submit-
ting tasks to execution. The run-time routine responsible for performing it must
be called for each created task.

Execution Engine. After task submission, the run-time engine is responsible
for scheduling and executing tasks across the devices. Once a task is submitted,
the scheduler routine Push Task allocates it to a specific device task list, following
a particular scheduling policy. Worker threads remain on a sleeping state if
there is no task to be executed. However, when a task is submitted, a signal
awakens worker threads which in turn call the routine Pop Task. This routine
is responsible for retrieving a task from the task list, following a particular
scheduling policy. When a worker thread receives the task returned by Pop task
routine it starts the execution process.

For task execution, first the run-time framework executes the Configure Exe-
cution callback, responsible for allocating buffers of kernel parameters, assigned
in the task, on the specific device. After this allocation, the kernel is also assigned
to the device memory in order to start its execution. A worker thread waits for
the execution to finish and then calls the Finish Execution callback, which is
responsible for retrieving the output buffers. The worker thread then goes back
to sleeping state if there is no more tasks in its execution lists.

4 Evaluation

The evaluation of ParallelME was performed on three different metrics: exe-
cution time, memory consumption and power consumption. For this purpose,
we implemented a HDR tone mapping application using Eric Reinhard’s opera-
tor [16] with ParallelME. Tone mapping is a technique used in image processing
and computer graphics to map one set of colors to another to approximate
the appearance of high dynamic range images in a medium that has a more
limited dynamic range. Additionally, we implemented and evaluated the same
application in different platforms in order to compare and discuss ParallelME
performance: (1) Single Threaded Java; (2) OpenCL using CPU; (3) OpenCL
using GPU; (4) RenderScript.

456 G. Andrade et al.

In each of the mentioned platforms, along with ParallelME, we ran the appli-
cation two times. In the first run we measured execution time and power con-
sumption, while in the second we measured memory consumption. We used 5
different HDR images (Clifton Bridge, Clock Building, Crowfoot, Lake Tahoe
and Tintern Abbey) [3] and all executions ran each image 1, 2, 5, 10 and 15
times. For ParallelME environment, each tone mapping execution correspond to
a task. In this way, in our experiment 1, 2, 5, 10 and 15 tasks were executed
concurrently in the ParallelME environment. For these experiments ParallelME
used just a simple First Come First Serve scheduler for task distribution.

We also performed each execution from scratch, meaning that after finishing
the previous execution, we killed the application process and restarted it anew.
We used a LG D855 (LG G3) device set up with Android 5.0, 100 % of screen
brightness, flight mode activated and all others applications closed.

4.1 Results and Discussions

To measure execution time we used Java routines to take the time delay between
application start and finish and for power consumption evaluation we used a Mon-
soon Power Monitor configured to 3.9 V. Power consumption was measured in
the following way: (1) average consumption of Android OS with 180 s idle (no
application running) and the screen on; (2) average consumption during the algo-
rithm execution. Then we subtracted values (1) from (2) to get the application
power consumption, that tells us, in milliwatts (mW), the average power con-
sumption required during execution. Additionally we evaluated and discussed the
total energy consumption, which was found by multiplying the average power by
the application execution time. Taking the single threaded Java implementation
as the basis for comparison, we evaluated execution time, memory consumption,
power consumption and total energy consumption for the other implementations.
Figures 2 and 3 show the mean and median for all executions.

Fig. 2. Performance and memory consumption evaluation.

In Fig. 2(a) it is possible to observe that ParallelME presents the best result,
increasing application performance, in average, by 32.34 times compared to the
single thread Java implementation. The presence of a run-time framework in
ParallelME allows tasks to be executed concurrently. Thus all processing units

ParallelME: A Parallel Mobile Engine to Explore Heterogeneity 457

Fig. 3. Power and energy consumption evaluation.

in the mobile architecture are being explored in coordination, reflecting a sig-
nificant performance increase. In addition, analyzing the Fig. 3(a), we note that
ParallelME required 88% more power to achieve the reported performance. This
consumption is acceptable given that different resources in mobile architecture
are being used in parallel. However, despite ParallelME requiring more power,
the total energy consumption, shown in Fig. 3(b), is 94 % lower than the energy
consumed by the single threaded Java implementation, since the application
execution time using ParallelME is considerably lower than the Java one. This
shows that reducing application execution time with ParallelME also causes a
significant reduction on the energy consumed by the application. Also, by com-
paring the results to RenderScript, which required the same amount of power
to increase application performance by just 13 times, ParallelME becomes even
more satisfactory when it comes to the total energy consumption.

It is necessary to emphasize the results of the OpenCL GPU implementation.
In this case, the total energy consumption is only slightly smaller than the Par-
allelME energy consumption, although power consumption was just 10% higher
than the single thread Java. This also happened because ParallelME runtime
is much faster. Also, in this situation, despite the significant increase in perfor-
mance and low power consumption of OpenCL, GPU resources are fully occupied
during application execution. Because of this, the phone screen may freeze, as
the screen stops being updated, compromising user experience.

To measure memory consumption we plugged the phone to a computer using
a USB cable and adb connection, allowing it to run in debug mode and, in this
way, to track memory. Following this strategy, Fig. 2(b) presents in graphical
format the average values of the proposed scenario.

RenderScript application consumes more memory to execute; 9% on aver-
age. On the other hand, the improvements achieved by OpenCL version are
clear, reducing memory consumption by 57% on average. ParallelME is based
on OpenCL and provides, besides a significant performance improvement and
reduction in power consumption, a significant reduction in memory usage com-
pared to RenderScript and single thread Java implementations.

458 G. Andrade et al.

5 Conclusions

In this work we presented ParallelME, a framework designed to explore het-
erogeneity in mobile computing architectures. The proposed engine provides a
high-level library with a friendly programming language abstraction for users
and a run-time mechanism which is responsible for scheduling and controlling the
execution on the low-level platform. We described all three ParallelME compo-
nents - programming abstraction, source-to-source compiler and run-time envi-
ronment - showing it was designed to deal with parallel operations from high-level
implementation to execution on heterogeneous architectures.

We measured execution time, memory and power consumption of ParallelME
comparing to other implementations of an image processing application. We
show that ParallelME increases application performance by 32.34 times, which
is the best result, with reasonable energy consumption and significantly reducing
memory usage.

This work can be extended in different ways. The User-Library can be
extended with several different collections and operations to increase Paral-
lelME’s usability. The system run-time API makes it possible to insert different
scheduling strategies and others schedulers may explore different aspects of the
underlying environment, such as reducing energy consumption. It is also possible,
at the level of the proposed compiler, to insert features to extract code informa-
tion that can be used by the scheduler to improve kernel execution assignment
in the available processing units.

References

1. Android NDK. http://developer.android.com/tools/sdk/ndk
2. Android SDK. http://developer.android.com/sdk
3. HDR images collection. https://www.cs.utah.edu/∼reinhard/cdrom/results.html
4. IDC analyses. http://www.idc.com/prodserv/smartphone-os-market-share.jsp
5. OpenCL by khronos group. https://www.khronos.org/opencl/
6. RenderScript. https://developer.android.com/guide/topics/renderscript
7. Acosta, A., Almeida, F.: Performance analysis of paralldroid generated programs.

In: 2014 22nd Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE (2014)

8. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: A Unified Platform
for Task Scheduling on Heterogeneous Multicore Architectures (2011)

9. Giacaman, N., Sinnen, O. et al.: Pyjama: OpenMP-like implementation for Java,
with GUI extensions. In: Proceedings of the 2013 International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores. ACM (2013)

10. Gosling, J., Joy, B., Steele Jr., G.L., Bracha, G., Buckley, A.: The Java Language
Specification, Java SE 7 Edition. 1st edn. (2013)

11. Gupta, K.G., Agrawal, N., Maity, S.K.: Performance analysis between Aparapi (a
parallel api) and Java by implementing sobel edge detection algorithm. In: Parallel
Computing Technologies (PARCOMPTECH). IEEE (2013)

12. Kunzman, D.: Charm++ on the cell processor (2006)
13. Parr, T.: The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edn. (2013)

http://developer.android.com/tools/sdk/ndk
http://developer.android.com/sdk
https://www.cs.utah.edu/~reinhard/cdrom/results.html
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.khronos.org/opencl/
https://developer.android.com/guide/topics/renderscript

ParallelME: A Parallel Mobile Engine to Explore Heterogeneity 459

14. Pratt-Szeliga, P.C., Fawcett, J.W., Welch, R.D.: Rootbeer: seamlessly using GPUs
from java. In: 2012 IEEE 14th International Conference on High Performance Com-
puting and Communication & 2012 IEEE 9th International Conference on Embed-
ded Software and Systems (HPCC-ICESS). IEEE (2012)

15. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A generic parallel collec-
tion framework. In: Proceedings of the 17th International Conference on Parallel
Processing - Volume Part II, EUROPAR 11 (2011)

16. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction
for digital images. ACM Trans. Graph. (TOG) 21, 267–276 (2002). ACM

CBPQ: High Performance
Lock-Free Priority Queue

Anastasia Braginsky1(B), Nachshon Cohen2, and Erez Petrank2

1 Yahoo Research, Haifa, Israel
anastas@yahoo-inc.com

2 Technion - Israel Institute of Technology, Haifa, Israel
{ncohen,erez}@cs.technion.ac.il

Abstract. Priority queues are an important algorithmic component and
are ubiquitous in systems and software. With the rapid deployment of
parallel platforms, concurrent versions of priority queues are becoming
increasingly important. In this paper, we present a novel concurrent
lock-free linearizable algorithm for priority queues that scales signifi-
cantly better than all known (lock-based or lock-free) priority queues.
Our design employs several techniques to obtain its advantages including
lock-free chunks, the use of the efficient fetch-and-increment atomic
instruction, and elimination. Measurements under high contention
demonstrate performance improvement by up to a factor of 1.8 over
existing approaches.

Keywords: Non-blocking · Priority queue · Lock-free · Performance ·
Freezing

1 Introduction

Priority queues serve as an important basic tool in algorithmic design. They are
widely used in a variety of applications and systems, such as simulation sys-
tems, job scheduling (in computer systems), networking (e.g., routing and real-
time bandwidth management), file compression, numerical computations, and
more. With the proliferation of modern parallel platforms, the need for a high-
performance concurrent implementation of the priority queue has become acute.

A priority queue (PQ) supports two operations: insert and deleteMin. The
abstract definition of a PQ provides a set of key-value pairs, where the key
represents a priority. The insert() method inserts a new key-value pair into the
set (the keys don’t have to be unique), and the deleteMin() method removes and
returns the value of the key-value pair with the lowest key (i.e., highest priority)
in the set.

Lock-free (or non-blocking) algorithms [12,13] guarantee eventual progress of
at least one operation under any possible concurrent scheduling. Thus, lock-free

This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant
No. 274/14).

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 460–474, 2016.
DOI: 10.1007/978-3-319-43659-3 34

CBPQ: High Performance Lock-Free Priority Queue 461

implementations avoid deadlocks, live-locks, and priority inversions. Typically,
they also demonstrate high scalability, even in the presence of high contention.

In this paper we present the design of a high performance lock-free lineariz-
able PQ. The design builds on a combination of three ideas. First, we use a
chunked linked-list [3] as the underlying data structure. This replaces the stan-
dard use of heaps, skip-lists, linked-lists, or combinations thereof. Second, we
use the fetch-and-increment (F&I) instruction for an efficient implementation
of deleteMin and insert. This replaces the stronger, but less efficient compare-
and-swap (CAS) atomic primitive (used in all other lock-free PQ studies). Third,
the resulting design is a great platform for applying an easy variant of elimina-
tion [11,18], which resolves the contention of concurrent inverse operations: the
insert of a small key and a deleteMin.

Various constructions for the concurrent PQ exist in the literature. Hunt
et al. [14] used a fine-grained lock-based implementation of a concurrent heap.
Dragicevic and Bauer presented a linearizable heap-based priority queue that
used lock-free software transactional memory (STM) [8]. A quiescently consistent
skip-list based priority queue was first proposed by Lotan and Shavit [17] using
fine-grained locking, and was later made non-blocking [9]. Another skip-list based
priority queue was proposed by Sundell and Tsigas [19]. Liu and Spear [16]
introduced two concurrent versions of data structure called mounds (one is lock-
based and the other is lock-free). The mounds data structure aims at very fast
O(log(log(N))) insert operations. It is built of a rooted tree of sorted lists that
relies on randomization for balance. The deleteMin operations have a slower
O(log(N)) complexity. Mounds’ insert operation is currently the most productive
among concurrent implementations of the PQ. Linden and Jonsson [15] presented
a skip-list based PQ. Deleted elements are first marked as deleted in the deleteMin
operation. Later, they are actually disconnected from the PQ in batches when the
number of such nodes exceed a given threshold. Their construction outperforms
previous algorithms by 30 − 80%. Recently, Calciu et al. [5] introduced a new
lock-based, skip-list-based adaptive PQ that uses elimination and flat combining
techniques to achieve high performance at high thread counts.

Elimination [11,18] provides a method to match concurrent inverse oper-
ations so that they exchange values without synchronizing on a centralized
data structure. Elimination for PQ was presented in [5], where threads that
insert small keys and threads that delete minimum keys post their operations
in an elimination array and wait for their request to be processed. Our elimi-
nation variant requires no additional similar waiting time and it bears minimal
overhead.

We implemented CBPQ in C++ and compared its performance to the cur-
rently best performing PQs: the Linden and Jonsson’s PQ [15], the lock-free
and lock-based implementations of the Mounds PQ [16], and the adaptive PQ
(APQ) of Calciu et al. [5]. We evaluated the performance of CBPQ using tar-
geted micro-benchmarks: one that runs a mix of insert and deleteMin operations,
where each occurs with equal probability, a second one that runs only insert
operations, and a third with only deleteMin operations.

462 A. Braginsky et al.

The results demonstrate that our CBPQ design performs excellently under
high contention, and it scales best among known algorithms, providing the best
performance with a large number of threads. Under low contention, our algorithm
is not a winner, and it turns out that the LJPQ design performs best. In par-
ticular, under high contention and for a mix of deleteMin and insert operations,
CBPQ outperforms all other algorithms by up to 80 %. When only deleteMin
operations run, and with high contention, CBPQ performs up to 5 times faster
than deletions of any other algorithm we compared to. As expected, Mounds
perform best with insert only operations, outperforming CBPQ (which comes
second) by a factor of up to 2.

2 A Bird’s Eye Overview

The CBPQ data structure is composed of a list of chunks. Each chunk has a
range of keys associated with it, and all CBPQ entries with keys in this range
are located in this chunk. The ranges do not intersect and the chunks are sorted
by the ranges’ values. To improve the search of a specific range, an additional
skip-list is used as a directory that allows navigating into the chunks, so inserting
a key to the CBPQ is done by finding the relevant chunk using a skip-list search,
and then inserting the new entry into the relevant chunk.

The first chunk is built differently from the rest of the chunks since it holds the
smallest keys and supports deleteMin operations. We forbid inserts into the first
chunk. Instead, a key in the range of the first chunk is inserted through special
handling, as discussed below. The remaining chunks are used for insertions only.

The first chunk consists of an immutable sorted array of elements. To delete
the minimum, a thread simply needs to atomically fetch and increment a shared
index to this array. All other chunks consist of unsorted arrays with keys in the
appropriate range. To insert a key to a chunk other than the first, the insert
operation simply finds the adequate chunk using the skip-list directory, and
then adds the new element to the first empty slot in the array, again, simply by
fetching and incrementing the index of the first available empty slot in the array.

When an insert operation needs to insert a key to the first chunk, it registers
this key in a special buffer and requests the first chunk rebuild. Subsequently,
a new first chunk with a new sorted array is created from the remaining keys
in the first chunk, all keys registered in the buffer, and if needed, more keys
from the second chunk. The thread that attempts to insert a (small) key into
the buffer yields the processor and allows progress of other threads currently
accessing the first chunk, before making everybody cooperate on creating a new
first chunk. During this limited delay, elimination can be executed and provide
even more progress. By the time a rebuild of the first chunk actually happens,
either much progress has occurred, or the buffer has been filled with keys, making
the amortized cost of a new first chunk construction smaller. The creation of a
new first chunk is also triggered when there are no more elements to delete in
it. The creation of a new first chunk is made lock-free by allowing all relevant
threads to take part in the construction, never making a thread wait for others
to complete a task.

CBPQ: High Performance Lock-Free Priority Queue 463

Fig. 1. Overview of the CBPQ data structure

When an internal chunk is filled due to insertions, it is split into two half-
full chunks using the lock-free freezing mechanism of [3]. The CBPQ scheme is
illustrated in Fig. 1 (with some more algorithmic details shown in text in the
angle brackets, to be discussed later). The full description of the algorithm is
provided in Sect. 3.

Key Design Ideas:The key design ideas in the proposed priority queue are as
follows. First, we aim at using F&I instructions for the contention bottlenecks.
For that, we employ the chunked linked-list as the underlying data structure.
This allows most insert and deleteMin operations to be executed with an (atomic)
increment of a chunk index. To make the above work, we distinguish the design of
the first chunk (that mostly handles deleteMin operations) from the design of the
remaining chunks (which handle only insert operations). An extra buffer chunk
supports insertions to the first chunk. Finally, we add elimination, which fits
this algorithm like a glove with negligible overhead and significant performance
benefits.

3 The Full CBPQ Design

In this section we describe the core CBPQ algorithm. In Sect. 4 we describe the
skip-list on top of the list and the elimination. The CBPQ linearization points
presentation can be found in the full version of this paper [1].

3.1 Underlying Data Structures

Each chunk in the CBPQ has a status word, which combines together an array
index (shortly denoted index), a frozen index, and the chunk state. The status
is always atomically updated. The state of a newly created chunk is insert,
delete, or buffer, indicating that it is created for further insertions, for dele-
tions, or for serving as a buffer of keys to be inserted to the first chunk, respec-
tively. In addition, when a chunk has to be replaced by a new chunk, the old
chunk enters the freezing state, indicating that it is in the process of being
frozen. The frozen state indicates that the chunk is frozen and thus, obsolete.

464 A. Braginsky et al.

Listing 1: Status and Chunk records

1 class Status{
2 uint29 t frozenIdx;
3 uint3 t state;
4 uint32 t index;
5 } // 64 bits, machine word
6

7

8

9 class Chunk{
10 Status status;
11 uint64 t entries[M];
12 uint32 t max;
13 uint64 t frozen[M/63+1];
14 Chunk ∗next, ∗buffer;
15 }

The frozen index is used only for freezing the first chunk, as will be explained
in Sect. 3.4. In Listing 1, we list the Status and Chunk classes that we use. The
relevant state, index, and frozenIdx fields are all held in a single machine word
that is called the Status.

In addition to the status, each chunk consists of an array (entries in the Chunk
class), which holds the key-value pairs contained in the chunk. The entries are
machine words, whose bits are used to represent the key and value. For simplicity,
in what follows we will refer to the keys only. Our keys can take any value that
can be represented in 31 bits, except 0, which is reserved for initialization. Each
chunk has an immutable maximal value of a key that can appear on it, defined
when the chunk is created (max in Chunk). A chunk holds keys less than or
equal to its max value and greater than the max value of the previous chunk (if
it exists). This max field is not relevant for the buffer chunk. Any chunk (except
the buffer) uses a pointer to the next chunk (the next field). Finally, only the
first chunk uses a pointer to a buffer chunk (the buffer field). The meaning of
the frozen array that appears in the Chunk specification of Listing 1 is related
to the freeze action and will be explained in Sect. 3.4. Finally, the CBPQ is a
global pointer head to the first chunk. In Fig. 1 the chunk’s fields are depicted.

3.2 Memory Management

Similar to previous work [15], we use Keir Fraser’s epoch based reclamation
(EBR) [9] as a (simplified) solution for memory reclamation. The EBR scheme
was used in one previous work to which we compare [15]. The other algorithms
that we compare against [5,16] did not implement memory reclamation at all.
Measurements show that avoiding reclamation buys a performance advantage of
up to 4 % (but does not provide a full solution). More advanced lock-free memory
reclamation solutions appear in [2,4,6,7].

3.3 Operations Implementation

Insert: The insert pseudo-code is presented in the insert() method in Listing 2.
In order to insert a key into the CBPQ, we first need to find the relevant chunk C.
Because chunks are ordered by their ranges, a simple search can be used, skipping
the chunks with smaller maximums (Line 4). If an insert must be performed to
the first chunk, the insertToBuffer() method is invoked (Line 6), as explained in
the next paragraph. Otherwise, C is not first. After C is found, its array index
is atomically incremented to make room for the new entry (Line 9).

CBPQ: High Performance Lock-Free Priority Queue 465

1 void insert(int key) {
2 Chunk∗ cur = NULL, ∗prev = NULL;
3 while(1) {
4 getChunk(&cur, &prev, key); // set the current and previous chunk pointers
5 if (cur==head) { // first chunk
6 if (insertToBuffer(key, cur, head)) return;
7 else continue;
8 }
9 Status s = cur−>status.aIncIdx(); // atomically increase the index in the status

10 int idx = getIdx(s);
11 if (idx<M && !s.isInFreeze()) { // insert into a non−full and non−frozen chunk
12 cur−>entries[idx] = key; memory fence;
13 if (!cur−>status.isInFreeze()) return;
14 if (cur−>entryFrozen(idx)) return; // key got copied
15 }
16 freezeChunk(cur); // restructure the CBQP, then retry
17 freezeRecovery(cur, prev);
18 }
19 }
20 bool insertToBuffer(int key, Chunk∗ cur, Chunk∗ curhead) {
21 Chunk ∗curbuf = cur−>buffer; bool result = false; // PHASE I: key insertion into the buffer
22 if(curbuf==NULL) // the buffer is not yet allocated
23 if (createBuffer(key,cur,&curbuf)) goto phaseII; // key added during buffer creation
24 Status s = curbuf−>status.aIncIdx(); // atomically increase the index in the status
25 int idx = getIdx(s);
26 if (idx<M && !s.isInFreeze()) {
27 curbuf−>entries[idx] = key; memory fence;
28 if (!curbuf−>status.isInFreeze()) result = true;
29 if (curbuf−>entryFrozen(idx)) return true;
30 }
31 phaseII: // PHASE II: first chunk merges with buffer before insert ends
32 usleep(0); // yield, give other threads a chance
33 freezeChunk(cur); freezeRecovery(cur, NULL);
34 return result;
35 }
36 int deleteMin() {
37 Chunk∗ cur, next;
38 while(1){
39 cur = head;
40 Status s = cur−>status.aIncIdx(); // atomically increase the index in the status
41 int idx = getIdx(s);
42 if (idx<M && !s.isInFreeze()) // delete from not full and non−frozen chunk
43 return curr−>entries[idx];
44 freezeChunk(cur); freezeRecovery(cur, NULL); // Freeze, then restructure the CBPQ and retry
45 }
46 }

Listing 2. Common code path: insertion of a key and deletion of the minimum

The aIncIdx() method wraps an F&I instruction and returns the status with
the new value of the chunk index. The index is incremented first and only later
we check whether it surpassed the end of the array. However, the number of bits
required to represent the chunk size (M) is much smaller than the number of
bits in the index, and so even if each thread increments it once after the chunk is
full, an overflow would not occur.1 If C is not frozen and the incremented index
does not point beyond the chunk’s capacity, we simply write the relevant key to
the array entry (Lines 11–15). The write is followed by a memory fence in order
to ensure it will be visible to any other thread that may freeze C concurrently.

1 The size of the array plus the number of operating threads limits the index value. In
our implementation the array size is less then 210 plus the number of threads (less
then 26), so 11 bits suffice.

466 A. Braginsky et al.

If C is not freezing (Line 13), the insert is completed. Else if C is freezing,
but our key was already marked as frozen (Line 14), the insert is also finished.
Otherwise (if the index has increased too much or a freeze has been detected),
then the freeze is completed and C is split (Lines 16, 17), as will be explained
later. After the chunks restructure, the insert is restarted.

Insert to the First Chunk: The lowest range keys are inserted into the buffer
pointed to from the first chunk. The pseudo-code of an insertion to the buffer
chunk is presented in the insertToBuffer() method in Listing 2. It starts by allo-
cating a new buffer holding the relevant key, if needed (Line 23). The create-
Buffer() method returns true if the new buffer was successfully connected to the
first chunk, or false if another thread had connected another buffer. In the latter
case, a new pointer to the buffer is inserted into curbuf.

Keys are inserted to the buffer in a manner similar to their insertion to other
(non-first) chunk: the index is increased and the key is placed. If this cannot be
done because the buffer is full or frozen, the insertToBuffer() returns false (after
the first chunk’s freeze and recovery) to signal that the insert operation has to be
retried. The insert to buffer operation cannot end until the new key is included in
the first chunk and considered for deletion. So after a key is successfully inserted
into a buffer, the freeze and merge of the first chunk is invoked. However, if this
key is already frozen, the insert to the first chunk can safely return (Line 29),
because no deletion can now happen until the new key is taken into the new first
chunk. After the first chunk is replaced, the insertion is considered done. The
yielding, freeze and merge (Lines 32–33) are explained in Sects. 3.4 and 4.

Delete Minimum: The deletion is very simple and usually very fast. It goes
directly to the first chunk, which has an ordered array of minimal keys. The first
chunk’s index is atomically increased. Unless the need to freeze the first chunk is
detected, we can just return the relevant key. The pseudo-code for the deletion
operation is presented in the deleteMin() method in Listing 2.

3.4 Split and Merge Algorithms

It remains to specify the case where a freeze is needed for splitting a non-first
chunk or merging the first chunk with the buffer and possibly also with the
second chunk. This mechanism is developed in [3] and we adopt it with minor
modifications. For completeness, we explain this mechanism below.

For splitting or merging chunks, a freeze is first applied on the chunks, indi-
cating that new chunks are replacing the frozen ones. A frozen chunk is logically
immutable. Then, a recovery process copies the relevant entries into new chunks
that become active in the data structure. Threads that wake up after being out
of the CPU for a while may discover that they are accessing a frozen chunk and
they then need to take actions to move into working on the new chunks that
replace the frozen ones. In [3], the freezing process of a chunk was applied by
atomically setting a dedicated freeze bit in each machine word (using a CAS
loop), signifying that the word is obsolete. Freezing was achieved after all words
were marked in this manner. Applying a CAS instruction on each obsolete word

CBPQ: High Performance Lock-Free Priority Queue 467

1 void freezeChunk(Chunk∗ c) {
2 int idx, frozenIdx = 0; Status localS; // locally copied status
3 while(1){ // PHASE I: set the chunk status if needed
4 localS = c−>status; idx = localS.getIdx(); // read the current status to get its state and index
5 switch (localS.getState()){
6 case BUFFER: // in insert or buffer chunks frozenIdx was and remained 0
7 case INSERT: c−>status.aOr(MASK FREEZING STATE); break;
8 case DELETE:
9 if (idx>M) frozenIdx=M; else frozenIdx=idx;

10 Status newS; newS.set(FREEZING, idx, frozenIdx); // set: state, index, frozen index
11 if (c−>status.CAS(localS,newS)) break; // can fail due to delete updating the index
12 else continue;
13 case FREEZING: break; // in process of being freezed
14 case FROZEN: // c was frozen by someone else
15 c−>markPtrs(); return; // mark the chunk out−pointers as deleted
16 }
17 break; // continue only if CAS from DELETE state failed
18 }
19 if (c != head) freezeKeys(c); // PHASE II: freeze the entries
20 c−>status.aOr(MASK FROZEN STATE); // from FREEZING to FROZEN using atomic OR
21 c−>markPtrs(); // set the chunk pointers as deleted
22 }

Listing 3. Freezing the keys and the entire chunk

(sometimes repeatedly) may be slow and it turns out that in the context of
CBPQ we can freeze a chunk more efficiently.

The freezing mechanism coordinates chunk replacements with concurrent
operations. What may come up in the CBPQ is a race between insertion and
freezing. An insert operation increments the array index reserving a location for
the insert. But such an operation may then be delayed for a long while before
actually inserting the item to the array. This operation may later wake up to
find that the chunk has been frozen and entries have already been copied to
a newer chunk. Since the item’s content was not installed into the array, the
freezing process could not include it in the new chunk and insertion should be
retried. The inserting thread needs to determine whether its item was inserted
or not using a freeze bit that is associated with his entry of the frozen chunk.
This motivates a freeze bit for each entry, but these bits do not need to reside
on the entry.

In CBPQ, all freeze bits are located separately from the entries, with a simple
mapping from them to their freeze bits. In the CBPQ Chunk class (Listing 1), the
data words (storing the keys and the values) are located in the entries array. All
freeze bits are compacted in the frozen array. Each frozen bit signifies whether
the key in the associated entry has been copied into the chunks that replace the
current frozen chunk. Assuming a 64-bit architecture, we group each 63 entries
together and assign a freeze word of 64 bits to signify the freeze state of all 63
entries. We use one bit for each of the 63 entries and reserve the most significant
bit (MSB) of the freeze word to make sure that it is written only once (modifying
this bit from 0 to 1 when written).

The freezing process reads the actual entries of the 63 entries. Since a value
of zero is not a valid key, having a zeroed key word indicates an uncompleted

468 A. Braginsky et al.

insert. In this case, the entry is not copied into the new chunk. After determining
which entries should be copied, the freezing process attempts to set the freeze
word accordingly (1 for an existing entry and 0 for an invalid entry) using an
atomic CAS of this word in the frozen array. Atomicity is guaranteed, because
each freeze word is updated only once, due to the MSB being set only once. The
compaction of the freeze bits allows setting them with a single CAS instead of 63
CAS operations, reducing the synchronization overhead for the freeze processing.

Freezing the Chunk: Following the pseudo-code of method freezeChunk() in
Listing 3, here is how we execute the freeze for a chunk C. In the first phase of
the operation, we change C’s status, according to the current status (Lines 4–
17). Recall that the status consists of the state, the index and the frozen index.
If C is not in the process of freezing or already frozen, then it should be in a
buffer, an insert or a delete state, with a zeroed frozen index and an index
indicating the current array location of activity. For insert or buffer chunks, we
need only change the state to freezing; this is done by setting the bits using an
atomic OR instruction (Line 7). The frozen index is only used for the first chunk,
in order to mark the index of the last entry that was deleted before the freeze.
Upon freezing, the status of the first chunk is modified to contain freezing

as a state, the same index, and a frozen index that equals the index if the first
chunk is not exhausted, or the maximum capacity if the first chunk is exhausted,
i.e., all entries have been deleted before the freeze (Line 9). Let us explain the
meaning of the frozen index.

As the deletion operation uses a F&I instruction, it is possible that concur-
rent deletions will go on incrementing the index of the first array in spite of its
status showing a frozen state. However, if a thread attempts to delete an entry
from the first chunk and the status shows that this chunk has been frozen, then
it will not use the obtained index. Instead, it will help the freezing process and
then try again to delete the minimum entry after the freezing completes. There-
fore, the frozen index indicates the last index that has been properly deleted.
All keys residing in locations higher than the frozen index must be copied into
the newly created first chunk during the recovery of the freezing process. If all
keys in the frozen first chunk have been deleted, then no key needs to be copied
and we simply let the frozen index contain the maximum capacity M , indicating
that all keys have been deleted from the first chunk.

In Line 11 the status is updated using a CAS to ensure that concurrent
updates to the index due to concurrent deletions are not lost. If C is already
in the freezing state because another thread has initiated the freeze, we can
move directly to phase II. If C is in the frozen state, then the chunk is in
an advanced freezing state and there is little left to do. It remains to mark the
chunk pointers buffer and next so that they will not be modified after the chunk
has been disconnected from CBPQ. These pointers are marked (in Line 15 or
Line 21) as deleted (using the common Harris delete-bit technique [10]). At this
point we can be sure that sleeping threads will not wake up and add a link to a
new buffer chunk or a next chunk to C and we may return.

CBPQ: High Performance Lock-Free Priority Queue 469

The second phase of the freeze assumes the frozen index and state have been
properly set and it executes the setting of the words in the frozen array in method
freezeKeys() (Line 19). However, in the first chunk no freeze bits are set at all. In
the first chunk it is enough to insert the chunk into the freezing state. This is
so, because no one ever checks the frozen bits on the first chunk. Once we get the
index and find that the state is delete the relevant minimum is just returned.
With the second phase done, it remains to change the state from freezing to
frozen (using the atomic OR instruction in Line 20) and to mark the chunk’s
pointers deleted as discussed above. The atomic OR instruction is available on
the x86 platform and works efficiently. However, this is not an efficiency-critical
part of the execution as freezing happens infrequently, so using a simple CAS
loop to set the state would be fine.

CBPQ Recovery from a Frozen Chunk: Once the chunk is frozen, we pro-
ceed like [3] and replace the frozen chunk with one or more new chunks that
hold the relevant entries of the frozen chunk. This is done in the freezeRecov-
ery() method, presented in Listing 4. The input parameters are: cur – the frozen
chunk that requires recovery, and prev – the chunk that precedes cur in the chunk
list or NULL if cur is the first chunk.2 The first phase determines whether we
need to split or merge the frozen chunk (Line 4). If cur is the first chunk (which
serves the deleteMin operation), a merge has to be executed; as the first chunk
gets frozen when there is need to create a new first chunk with other keys. If
it is not the first chunk, then another chunk (which serves the insert operation)
must have been frozen because it got full and we need to split it into two chunks.
There is also a corner case in which a merge of the first chunk happens concur-
rently with a split of the second chunk. This requires coordination that simply
merges relevant values of the second chunk into the new first. So if cur is the
second chunk and the first chunk is currently freezing, then we should work on
a merge.3

In order to execute the entire recovery we will need to place the new chunks
in the list of chunks following the previous chunk. In the split case, we therefore
proceed by checking if prev is in the process of freezing and if it is, we help it
finish the freezing process and recover. Namely, we freeze prev, we look for prev’s
predecessor and then invoke the freeze recovery for prev (Lines 5–12). This may
cause recursive recovery calls until the head of the chunk list, Line 8. During
this time, there is a possibility that some other thread has helped recovering our
own chunk and we therefore search for it in the list, Line 10. If we can’t find it,
we know that we are done and can return.

In the third phase we locally create new chunks to replace the frozen one
(Lines 13, 14). In the case of a split, two new half-full chunks are created from a
single full frozen chunk, using the split() method. The first chunk, with the lower-
valued part of the keys, points to the second chunk, with the higher-valued part.

2 The freezeRecovery() method is never called with a cur chunk being the buffer chunk.
3 It is possible that we miss the freezing of the first chunk and start working on a split

of the second chunk. In this case a later CAS instruction, in Line 16, will fail and
we will repeat the recovery process with the adequate choice of a merge.

470 A. Braginsky et al.

1 void freezeRecovery(Chunk∗ cur, Chunk∗ prev) {
2 bool toSplit = true; Chunk ∗local=NULL, ∗p=NULL;
3 while(1) { // PHASE I: decide whether to split or to merge
4 if (cur==head||(prev==head && prev−>status.isInFreeze())) toSplit = false;
5 if (toSplit && prev−>status.isInFreeze()){ //PHASE II: in split, if prev is frozen, recover it first
6 freezeChunk(prev); // ensure prev freeze is done
7 if (getChunk(&prev, &p)) // search the previous to prev
8 freezeRecovery(prev, p); // the frozen prev found, p precedes prev; recursive recovery
9 // prev is already not in the list; re−search the current chunk and find its new predecessor

10 if (!getChunk(&cur, &p)) return; // the frozen cur is not in the list
11 else {prev = p; continue;}
12 }
13 if (toSplit) local = split(cur); // PHASE III: apply the decision locally
14 else local = mergeFirstChunk(cur);
15 if (toSplit) { // PHASE IV: change the PQ accordingly to the previous decision
16 if (CAS(&prev−>next, cur, local)) return;
17 } else { // when modifying the head, check if cur second or first
18 if (prev==NULL)
19 if(CAS(&head, cur, local)) return
20 else if(CAS(&head, prev, local)) return;
21 }
22 if (!getChunk(&cur,&p)) return; // look for new location; finish if the frozen cur is not found
23 else prev = p;
24 }
25 }

Listing 4. CBPQ recovery from a frozen chunk

In the case of a merge, a new first chunk is created with M ordered keys taken
from the frozen first chunk, the buffer and from the second chunk. This is done
using the mergeFirstChunk() method. If there are too many frozen keys, a new
first chunk and new second chunk can be created. The new first chunk is created
without pointing to a buffer, it will be allocated when needed for insertion.

In phase IV, the thread attempts to attach its local list of new chunks to the
chunk list. Upon success the thread returns. Otherwise, the recovery is retried,
but before that, cur is searched for in the chunk list. If it is not there, then other
threads have completed the recovery and we can safely return. Otherwise, a
predecessor has been found for cur in the search and the recovery is re-executed.

4 Optimizations

First, in order to improve the search time for the relevant chunk, we use a simple
lock-free skip-list from [13] to index the chunks. Updates to the skip-list are
executed during splits and merges of chunks. Second optimization is exploiting
the context switch waiting time. When an insert operation needs to insert a key
to the buffer and it initiates a freeze of the first chunk. It is worth letting other
threads run for a while before executing the freeze. We implemented this by
yielding the processor to another thread (using usleep(0)). Third optimization is
the elimination. According to the CBPQ algorithm, an insert of a small key k
is done by inserting k into the buffer and waiting until the first chunk is rebuilt.
During this time, if k becomes smaller than the current minimum key, then the
insert operation can be eliminated by a deleteMin operation that consumes its key
k. This can be viewed as if the insert and the deleteMin happened instantaneously

CBPQ: High Performance Lock-Free Priority Queue 471

Fig. 2. Throughput in different workloads with an increasing threads number

one after the other just at the moment that k was smaller than the minimum
key. Due to lack of space, the further details of the optimizations are omitted
here and can be found in the full version of this paper [1].

5 Performance Evaluation

We implemented the CBPQ and compared it to the Linden’s and Jonsson’s
PQ [15] (LJPQ), to the lock-free and lock-based implementation of Mounds,
and to the adaptive priority queue (APQ) [5]. We chose these implementations,
because they are the best performing priority queues in the literature and they
were compared to other PQ implementations in [5,15,16]. We thank the authors
of [5,15,16] for making their code available to us. All implementations were
coded in C++ and compiled with a −O3 optimization level.

We ran our experiments on a machine with 4 AMD Opteron (TM) 6272
16-core processors, overall 64 threads. The machine was operated by Linux OS
(Ubuntu 14.04) and the number of threads was varied between 1 and 64. The
chunk capacity (M) was chosen to be 928, so one chunk occupies a virtual page
of size 4KB. The CBPQ implementation included the skip-list optimization of
Sect. 4, we report results with and without elimination, and the results include
the EBR memory management (as described in Sect. 3.2). The performance
was evaluated using targeted micro-benchmarks: insertion-only or deletion-only
workloads and mixed workloads where deletions and insertions appear with equal
probability. The keys for insertions were uniformly chosen at random among all

472 A. Braginsky et al.

30-bit sized keys. We ran each test 10 times and report average results. Error
bars on the graphs show 95% confidence level.

A Mixed Workload. We considered different percentages of insert and
deleteMin operations. First, we evaluate the new algorithm using a stress test
micro-benchmark, where each operation is invoked with the same probability.
Figure 2a shows the throughput of the 50-50-benchmark during one second on
a PQ that is initiated with 1M keys before the measurement starts. The CBPQ
(with elimination) is not a winner for a small number of threads, but outperforms
LJPQ (the best among all competitors) by up to 80% when contention is high.
Also, the CBPQ is the only implementation that scales for a large number of
threads. The balanced workload is not favorable for the CBPQ design, because
it drastically increases the probability that an insert will hit the first chunk.
This happens because smaller values are repeatedly deleted and the first chunk
holds higher and higher values. In contrast, the inserted values remain uniformly
chosen in the entire range and hit the range of the first chunk more frequently.
Hitting the first chunk often slows the CBPQ because inserts to the first chunk
are the most costly. However, elimination excellently ameliorate this problem,
especially for an increasing number of threads. Figures 2d and e show the CBPQ
with 80% and 20% of deleteMin respectively, after the PQ was initiated with
10M keys. In both cases, the CBPQ surpasses the competitors for almost every
thread count.

Deletion-Only Workload. Next, we measure the performance of the PQs when
only deleteMin is executed. In order to make the deletion measurement relevant
with deletion-only workload, we ensured that there are enough keys in the PQ
initially so that deletions actually delete a key and never operate on an empty
PQ. This requires initiating the PQ with 10M entries for the CBPQ. Elimination
is not beneficiary in this case because there exist no pairs to match. Nevertheless,
we show the results with and without elimination to highlight the negligible
overhead of elimination for the CBPQ. In a deletion-only workloads we see a
drastic performance improvement for the CBPQ. Results for the deletion-only
workload are reported in Fig. 2b. For a substantial number of threads, the CBPQ
deletion throughput is up to 5 times higher than LJPQ throughput, and up to
8 times higher than the rest of the competitors.

Insertion-Only Workload. Similarly to the mixed workload, we start with
a PQ that initially contains 1M random keys in it. During the test, we let a
varying number of concurrent threads run simultaneously for 1 second, and we
measure the throughput. Figure 2c shows the results. Mounds are designed for
best performance with inserts of complexity O(log(log(N))) and this indeed
shows in our measurements. The CBPQ throughput is about 2 times worse than
that of lock-based Mound, for a large number of threads. Note that for a smaller
amount of threads, the advantage of Mounds is reduced significantly. More over,
in spite of the advantage of Mounds with inserts, CBPQ significantly outperforms
Mounds on a mixed set of operations. The CBPQ implementation outperforms
LJPQ for inserts-only workloads. The performance of the insert operation with

CBPQ: High Performance Lock-Free Priority Queue 473

CBPQ is not affected by elimination, therefore the performance of CBPQ on
inserts only operations does not change when using or not using elimination.

6 Conclusions

We presented a novel concurrent, linearizable, and lock-free design of the priority
queue, called CBPQ. CBPQ cleverly combines the chunked linked-list, elimina-
tion technique, and the performance advantage of the F&I atomic instruction.
We implemented CBPQ and measured its performance against Linden’s and
Jonsson’s PQ (LJPQ) [15], adaptive PQ (APQ) [5] and the Mounds [16] (lock-
free and lock-based), which are the best performing priority queues available.
Measurements with a mixed set of insert and delete operations show that under
high contention CBPQ outperforms all competitors by up to 80%.

References

1. Braginsky, A., Cohen, N., Petrank, E.: CBPQ: High performance lock-free priority
queue (full version). http://www.cs.technion.ac.il/∼erez/papers.html

2. Braginsky, A., Kogan, A., Petrank, E.: Drop the anchor: lightweight memory man-
agement for non-blocking data structures. SPAA (2013)

3. Braginsky, A., Petrank, E.: Locality-conscious lock-free linked lists. In: Aguilera,
M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011.
LNCS, vol. 6522, pp. 107–118. Springer, Heidelberg (2011)

4. Brown, T.A.: Reclaiming memory for lock-free data structures: There has to be a
better way. In: PODC (2015)

5. Calciu, I., Mendes, H., Herlihy, M.: The adaptive priority queue with elimination
and combining. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 406–420.
Springer, Heidelberg (2014)

6. Cohen, N., Petrank, E.: Automatic memory reclamation for lock-free data struc-
tures. In: OOPSLA 2015 (2015)

7. Cohen, N., Petrank, E.: Efficient memory management for lock-free data structures
with optimistic access, SPAA 2015, pp. 254–263. ACM (2015). http://doi.acm.org/
10.1145/2755573.2755579

8. Dragicevic, K., Bauer, D.: Optimization techniques for concurrent stm-based imple-
mentations: a concurrent binary heap as a case study. In: IPDPS (2009)

9. Fraser, K.: Practical lock-freedom. In: Ph.D. dissertation, University of Cambridge
(2004)

10. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)

11. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. J.
Parallel Distrib. Comput. 70, 1–12 (2010)

12. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

13. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Pub. Inc., San Francisco (2008)

14. Hunt, G., Michael, M., Parthasarathy, S., Scott, M.: An efficient algorithm for
concurrent priority queue heaps. In: Information Processing Letters (1996)

http://www.cs.technion.ac.il/~erez/papers.html
http://doi.acm.org/10.1145/2755573.2755579
http://doi.acm.org/10.1145/2755573.2755579

474 A. Braginsky et al.

15. Linden, J., Jonsson, B.: A skiplist-based concurrent priority queue with minimal
memory contention. In: OPODIS 2013 (2013)

16. Liu, Y., Spear, M.: Mounds: array-based concurrent priority queues. In: Proceed-
ings of the ICpp (2012)

17. Lotan, I., Shavit, N.: Skiplist-based concurrent priority queues. In: Proceedings of
the IPDPS (2000)

18. Shavit, N., Touitou, D.: Elimination trees and the construction of pools and stacks.
Theory Comput. Syst. 30, 645–670 (1997)

19. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. J. Parallel Distrib. Comput. 65, 609–627 (2005)

Multicore and Manycore Parallelism

Redesigning Triangular Dense Matrix
Computations on GPUs

Ali Charara(B), Hatem Ltaief, and David Keyes

Extreme Computing Research Center,
King Abdullah University of Science and Technology,

Thuwal, Jeddah 23955, Saudi Arabia
{Ali.Charara,Hatem.Ltaief,David.Keyes}@kaust.edu.sa

Abstract. A new implementation of the triangular matrix-matrix mul-
tiplication (TRMM) and the triangular solve (TRSM) kernels are
described on GPU hardware accelerators. Although part of the Level
3 BLAS family, these highly computationally intensive kernels fail to
achieve the percentage of the theoretical peak performance on GPUs
that one would expect when running kernels with similar surface-to-
volume ratio on hardware accelerators, i.e., the standard matrix-matrix
multiplication (GEMM). The authors propose adopting a recursive for-
mulation, which enriches the TRMM and TRSM inner structures with
GEMM calls and, therefore, reduces memory traffic while increasing
the level of concurrency. The new implementation enables efficient use
of the GPU memory hierarchy and mitigates the latency overhead,
to run at the speed of the higher cache levels. Performance compar-
isons show up to eightfold and twofold speedups for large dense matrix
sizes, against the existing state-of-the-art TRMM and TRSM implemen-
tations from NVIDIA cuBLAS, respectively, across various GPU gen-
erations. Once integrated into high-level Cholesky-based dense linear
algebra algorithms, the performance impact on the overall applications
demonstrates up to fourfold and twofold speedups, against the equiv-
alent native implementations, linked with cuBLAS TRMM and TRSM
kernels, respectively. The new TRMM/TRSM kernel implementations
are part of the open-source KBLAS software library (http://ecrc.kaust.
edu.sa/Pages/Res-kblas.aspx) and are lined up for integration into the
NVIDIA cuBLAS library in the upcoming v8.0 release.

Keywords: Triangular dense matrix computations · High performance
computing · Recursive formulation · KBLAS · GPU optimization

1 Introduction

Most large-scale numerical simulations rely for high performance on the
BLAS [13], which are often available through various vendor distributions tuned
for their own architecture, e.g., MKL on Intel x86 [3], ACML [5] on AMD x86,
ESSL [2] on IBM Power architecture. Indeed, BLAS kernels are considered as
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 477–489, 2016.
DOI: 10.1007/978-3-319-43659-3 35

http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx
http://ecrc.kaust.edu.sa/Pages/Res-kblas.aspx

478 A. Charara et al.

building blocks, and the library represents one of the last layers of the usual soft-
ware stack, which is usually where application performance is extracted from the
underlying hardware. This drives continuous efforts to optimize BLAS kernels [8].
While performance of Level 1 and 2 BLAS kernels is mainly limited by the bus
bandwidth (memory-bound), Level 3 BLAS kernels display a higher flop/byte
ratio (compute-bound), thanks to high data reuse occurring at the upper levels
of the cache hierarchy. However, BLAS operations on triangular matrix struc-
ture, i.e., the triangular matrix-matrix multiplication (TRMM) and the system
of linear equations triangular solvers (TRSM), have demonstrated limited per-
formance on GPUs using the highly optimized NVIDIA cuBLAS library [5].
Although in the category of Level 3 BLAS operations, the triangular structure
of the input matrix and the in-place nature of the operation may generate many
Write After Read (WAR) data hazards. WAR situations usually reduce the level
of concurrency due to inherent dependencies, and incur excessive data fetching
from memory.

We describe a recursive formulation that enriches the TRMM/TRSM inner
structures with GEMM calls and, therefore, enhances data reuse and concur-
rency on the GPU by minimizing the impact of WAR data hazards and by
mitigating the memory transactions load overhead. The idea of casting level 3
BLAS operations into GEMM operations has been promoted by several previ-
ous works, including K̊agström et al. [16], Goto and van de Geijn [12], Andersen
et al. [9], and Elmorth et al. [11]. In this paper, we describe a recursive for-
mulation of the TRMM and TRSM kernels, which suits well the aggressively
parallel many-core GPUs architecture. Performance comparisons show up to
sixfold and twofold speedups for large dense matrix sizes with our implementa-
tion, against the existing state-of-the-art TRMM/TRSM implementations from
NVIDIA cuBLAS, respectively, across various GPU generations. After integrat-
ing it into high-level dense linear algebra algorithms, such as the Cholesky-based
symmetric matrix inversion and the Cholesky-based triangular solvers, the per-
formance impact on the overall application demonstrates up to fourfold and
twofold speedups against the equivalent native implementations, linked with
NVIDIA cuBLAS TRMM/TRSM kernels.

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 recalls the TRMM/TRSM kernel operations and identifies the
performance bottlenecks seen on NVIDIA GPUs. The implementation details
of the high-performance recursive TRMM/TRSM kernels are given in Sect. 4.
Section 5 shows TRMM/TRSM performance results on various GPU generations,
compares against the state-of-the-art high-performance NVIDIA cuBLAS imple-
mentations, and shows the impact of integrating our TRMM/TRSM implemen-
tations into the Cholesky-based symmetric matrix inversion and the Cholesky-
based triangular solver from MAGMA [7], a high performance dense linear alge-
bra library on GPUs. We conclude in Sect. 6.

Redesigning Triangular Dense Matrix Computations on GPUs 479

2 Related Work

The literature is rich when it comes to BLAS kernel optimizations targeting
different x86 and vector architectures [8,17–19]. We focus only on a few, which
are directly related to the topic of the paper.

K̊agström et al. [16] proposed a method to express Level 3 BLAS operations
in terms of general matrix-matrix multiplication kernel (GEMM). The core idea
is to cast the bulk of computations involving off-diagonal blocks as GEMMs,
and to operate on the diagonal blocks with Level 1 and 2 BLAS kernels, which
increases the byte/flops ratio of the original Level 1 and 2 BLAS operations.
Furthermore, recursive formulations for several LA kernels have been promoted
by Andersen et al. [9] with packed and general data formats, and by Elmorth et
al. [11] with recursive blocking. However, their formulations are designed for the
hierarchical memory architecture of x86 multicore processors. Goto and van de
Geijn [12] proposed another approach, which casts the computations of Level 3
BLAS operations in terms of a General Panel-Panel multiplication (GEPP). For
operations that involve triangular matrices like TRMM and TRSM. The authors
customized the GEPP kernel by adjusting the involved loop bounds or by zeroing
out the unused elements above the diagonal (for lower triangular TRMM). They
show that, with such minimal changes to the main GEPP kernel, this approach
enhances the performance of Level 3 BLAS operations against open-source and
commercial libraries (MKL, ESSL and ATLAS) on various CPU architectures.
Later, Igual et al. [15] extended the same approach to GPUs and accelerated the
corresponding Level-3 BLAS operations.

Though these methods are effective for multicore CPU processors, especially
when the employed block sizes fits well in the L1 and L2 cache sizes, GPU archi-
tecture imposes fundamental changes to the programming model to extract better
performance. In general, because the GPU is a throughput-oriented device, Level
3 BLAS kernels perform better when processing larger matrix blocks, which also
help mitigate the overhead of extra kernel launches. In particular, GEMM kernel
reaches the sustained peak performance with matrix blocks higher than 1024 as
shown in Fig. 1(a), an important fact that we will use to explain our method in
Sect. 4 to speed up the execution of both TRMM and TRSM operations.

Both K̊agström’s and Goto’s methods require additional temporary buffers
to store temporary data, whose size needs to be tuned for better cache align-
ment. The later method adds the overhead of packing data of each panel before
each GEPP operation and unpacking it after GEPP is over. This incurs extra
memory allocations and data transfer costs that would prevent an efficient GPU
port. Moreover, K̊agström’s method requires a set of sequentially invoked GEMV
kernels to achieve a TRMM for small diagonal blocks, which may be prohibitive
on GPUs, due to the overhead of kernel launches. We study the recursive for-
mulations of these kernels in the context of massively parallel GPU devices.

480 A. Charara et al.

3 The Triangular Matrix Operations: TRMM and TRSM

This Section recalls the general TRMM and TRSM operations and highlights
the reasons behind the performance bottleneck observed on GPUs.

3.1 Recalling TRMM and TRSM Operations

As described in the legacy BLAS library [1], TRMM performs one of the tri-
angular matrix-matrix operations as follows: B = α op(A) B, if side is left, or
B = α B op(A), if side is right. On the other hand, TRSM solves one of the
matrix equations as follows: op(A) X = α B, if side is left, or X op(A) = α B,
if side is right. For both formulas, α is a scalar, B and X are M × N matrices,
A is a unit, or non-unit, upper or lower triangular matrix and op(A) is one of
op(A) = A or op(A) = AT . The resulting matrix X is overwritten on B. It is
noteworthy to mention that these operations happen in-place (IP), i.e., B gets
overwritten by the final output of the TRMM or TRSM operations. This in-place
overwriting may engender lots of anti-dependencies or WAR data hazards, from
successive memory accesses, due to the triangular structure of the input matrix,
and may generate lots of memory traffic.

3.2 Current State of Art Performance of TRMM and TRSM

The NVIDIA cuBLAS library currently provides two APIs for TRMM, in-place
(IP) and out-of-place (OOP) and a single IP API for TRSM. Figure 1(a) shows
the performance of NVIDIA cuBLAS (v7.5) DTRMM in-place (IP) against out-
of-place (OOP) using a Kepler K40 GPU, in double precision arithmetic. The
theoretical peak performance of the card and the DGEMM sustained peak are
given as upper-bound references. The OOP DTRMM runs close to DGEMM per-
formance for asymptotic sizes. However, the IP DTRMM achieves only a small
percentage of DGEMM peak and one can notice a factor of six between IP and
OOP DTRMM performances. The OOP TRMM removes the WAR data depen-
dencies on B and can be implemented in an embarrassingly parallel fashion,
similar to GEMM, at the expense of increasing by a factor of two the memory
footprint, besides violating the legacy BLAS TRMM API. On the other hand,
MAGMA provides an OOP TRSM implementation, in which the diagonal blocks
of matrix A are inverted, followed by a set of GEMM calls. Figure 1(b) shows the
performance of NVIDIA cuBLAS (v7.5) IP DTRSM for a low number of right-
hand sides (RHS), i.e. 512, as well as a number of RHS equal to the matrix size
(square problem), in comparison to the OOP implementation from MAGMA.
cuBLAS DTRSM for square problems runs close to DGEMM peak, although
it highlights a jaggy performance behavior. However, for low RHS, cuBLAS
DTRSM looses computational intensity and seems to further suffer from lack
of parallelism. MAGMA DTRSM presents more stable performance for square
matrices and much better performance for low RHS cases, at the cost of doubling
the memory footprint and thus excessive data transfer.

Redesigning Triangular Dense Matrix Computations on GPUs 481

Fig. 1. Performance comparisons of cuBLAS (v7.5) and MAGMA (v2.0.1) in-place
(IP) against out-of-place (OOP) of TRMM and TRSM using an NVIDIA Kepler K40
GPU, in double precision arithmetic.

3.3 Identifying the Performance Bottlenecks

We can observe limited concurrency for IP TRSM, since updating right columns
of matrix B (for a right sided TRSM) needs to read updated left columns of
the same matrix, causing a multitude of RAW dependencies. Other variants
of TRSM exhibit similar RAW dependencies. The IP TRMM has also limited
concurrency due to the fact that updating the left columns of matrix B (for a
right sided TRMM) need to read initial values from subsequent right columns
of matrix B before the right columns get updated, causing a multitude of WAR
dependencies. Other variants of TRMM exhibit similar WAR dependencies. On
the other hand, the OOP TRMM/TRSM incurs additional overheads, due to
data transfers through the slow PCIe link, as well as extra memory allocation,
which would be prohibitive for large matrix sizes, especially since memory is a
scarce resource on GPUs.

Fig. 2. Profiling of memory transactions for cuBLAS IP and OOP DTRMM against
that of DGEMM.

482 A. Charara et al.

3.4 Profiling of NVIDIA cuBLAS TRMM

Assuming square matrices, GEMM performs 2N3 floating-point operations
(flops) on 3N2 data, and TRMM performs N3 flops on 3/2N2 data. In fact,
TRMM can be ideally thought of as an IP GEMM; thus, the memory trans-
actions involved are expected to be proportional to the processed data size.
However, Fig. 2(a) highlights that cuBLAS IP TRMM implementation performs
almost an order of magnitude of DRAM read memory accesses higher than a
GEMM for the same input size, and an equivalent number of DRAM memory
writes as GEMM for the same input size. On the other hand, OOP TRMM
implementation exhibits much better memory traffic load, with almost equiv-
alent DRAM read memory accesses to GEMM for the same input size, but
astonishingly more DRAM write accesses as shown in Fig. 2(b). This hints that
the cuBLAS implementation of TRMM is not optimal and produces excessive
memory accesses, due to its inability to efficiently overcome the WAR dependen-
cies. We note that profiling of cuBLAS and KBLAS memory transactions has
been done using the nvprof tool available from NVIDIA CUDA Toolkit [4].

In this paper, we propose to further improve the performance of IP TRSM
and IP TRMM on NVIDIA GPUs, by running closer to GEMM peak, in addition
to staying compliant with the legacy BLAS regarding operating in-place. We
refer to IP TRMM and IP TRSM as TRMM and TRSM onward in this paper.

4 Recursive Definition and Implementation Details

In this section, we describe the recursive formulation of the TRMM and TRSM
operations, as illustrated in Fig. 3, and their implementation over NVIDIA
GPUs. In the following definition, we illustrate the Left Lower Transpose TRMM,
and the Left Lower NonTranspose TRSM cases, where TRMM → B = α AT B
and TRSM → A X = α B, B is of size M × N and A of size N × N . All other
variants are supported and operate in a similar manner. As illustrated in Fig. 3,
we first choose a suitable partition of the number of B rows M = M1 + M2

as discussed in the next paragraph. We then partition the triangular matrix A
into three sub-matrices: two triangular matrices A1 and A3 (i.e. two diagonal
blocks) of sizes M1 × M1 and M2 × M2, respectively, and a third rectangular
non-diagonal block A2 of size M2 × M1. We correspondingly partition the rec-
tangular matrix B into two rectangular matrices B1 and B2 of sizes M1 × N
and M2 ×N , respectively (such partitioning would be instead along the columns
N = N1 + N2 for right sided TRMM/TRSM, where A is of size N × N). We
then re-write these operations as follows:

TRMM :

⎧

⎪

⎨

⎪

⎩

B1 = α AT
1 B1 recursive TRMM

B1 = α AT
2 B2 + B1 GEMM

B2 = α AT
3 B2 recursive TRMM

Redesigning Triangular Dense Matrix Computations on GPUs 483

TRSM :

⎧

⎪

⎨

⎪

⎩

A1 X1 = α B1 recursive TRSM: Solve for X1 over B1

B2 = α B2 − A2 B1 GEMM
A3 X2 = B2 recursive TRSM: Solve for X2 over B2

Recursion stops when reaching the size where cuBLAS TRMM/TRSM exhibits
good performance in comparison to the performance of further splitting, in order
to minimize the extra overhead of continuing the recursion on small sub-matrix
sizes. At this level we call again the cuBLAS TRMM/TRSM routine, respec-
tively, which launches one kernel with enough thread blocks to process the small
sub-matrix in parallel. The stopping size is left as a tuning parameter. In our
tests, we used 128 as the stopping size, a value that was effective across various
GPU devices.

To maximize the performance of the generated GEMM calls, we need to
be careful about the choice of partitioning the rows. Our target is to generate
GEMM calls with maximum possible sub-matrix size, which in turn makes the
best boost in performance. We choose the partitioning M1 = M/2 if M is a
power of 2, otherwise we choose M1 as the closest power of 2 strictly less than
M ; in both cases M2 = M −M1. The same logic applies when partitioning along
columns for right sided TRMM or TRSM. Such a strategy for partitioning the
matrices is also needed to ensure that the generated GEMM calls operate on
suitable matrix sizes and to minimize the number of trailing sub-matrices with
odd matrix sizes during the subsequent recursion.

By casting the TRMM and TRSM operations into a set of large GEMMs
and a set of small TRMMs and TRSMs, respectively, we benefit not only from
the GEMM speed but also from its optimized memory access pattern that fits
the GPU memory hierarchy, and thus removing most of the redundant memory
accesses observed in cuBLAS TRMM implementation, for instance. The next
section details such performance gains.

5 Experimental Results

This section features the performance results of our recursive KBLAS TRMM
and TRSM on GPUs and compares it against state-of-the-art implementation
from NVIDIA cuBLAS and MAGMA. The experiments have been conducted on
various NVIDIA GPUs generations: Fermi, K20, K40, GTX Titan Black, and
the latest Maxwell GPU card. Since the Titan and Maxwell are gaming cards,
ECC memory correction has been turned off on the other GPUs for consistency.
The latest CUDA Toolkit v7.5 has been used. The four precisions for TRMM
and TRSM as well as their eight variants are supported in our KBLAS software
distribution. It is important to recall the profiling graphs from Sect. 3.4, in which
the performance bottleneck of the IP cuBLAS TRMM has been identified, i.e.,
the excessive amount of memory accesses.

484 A. Charara et al.

Fig. 3. Illustrating a Left-Lower-Transpose recursive TRMM, and Left-Lower-
NonTranspose recursive TRSM, partitioning along the rows. Steps are to be applied
at each recursive call in the order depicted in the picture.

Fig. 4. Profiling of memory transactions for
KBLAS DTRMM against that of DGEMM.

Figure 4 shows how KBLAS
TRMM is capable of fetching less
data from global memory in favor of
reusing already fetched data in the
higher cache levels, as opposed to IP
cuBLAS TRMM. KBLAS TRMM
also performs less data traffic com-
pared to cuBLAS DGEMM, how-
ever, this is commensurate to the
processed data size. In addition, it
performs less data fetching from
global memory than the more regu-
lar cuBLAS OOP TRMM. Note that
the increase in global memory data
writes in KBLAS TRMM is due to the fact that some horizontal panels are
updated several times by the recursive nature of the algorithm. The number of
updates of a horizontal panel is equal to the number of GEMMs that updates
in the left path to the recursion root, plus one for the TRMM leaf. However
this increase in the number of global memory writes is much less expensive than
the significantly greater number of global memory reads needed by cuBLAS IP
TRMM.

Redesigning Triangular Dense Matrix Computations on GPUs 485

Fig. 5. Performance comparisons of KBLAS TRMM against that of IP and OOP
cuBLAS TRMM running on NVIDIA K40 GPU.

Figures 5(a) and (b) show the performance comparisons of KBLAS TRMM
against that of IP and OOP cuBLAS TRMM for single and double precision
arithmetics, respectively. KBLAS TRMM achieves similar performance as OOP
cuBLAS TRMM, while maintaining the same memory footprint of IP cuBLAS
TRMM. For large matrix sizes in double precision, KBLAS DTRMM achieves
almost one Tflop/s, six times more than the IP cuBLAS DTRMM from NVIDIA.
KBLAS DTRMM attains almost 90 % performance of DGEMM, thanks to the
recursive formulation, which inherently enriches TRMM with GEMM calls. Fur-
thermore, Figs. 6(a) and (b) show performance speedup of KBLAS IP TRSM
against cuBLAS IP TRSM and MAGMA OOP TRSM for single and double
precision arithmetics, respectively, on an NVIDIA K40 GPU. It is noteworthy
to mention that although the performance gain with square matrices is not sig-
nificant, and in fact smooths out the irregular performance from cuBLAS, the
performance gain with triangular solves with small number of RHS is impor-
tant. In practice, it is more common to encounter a triangular solve with only a
few RHS. Note also that KBLAS IP TRSM achieves similar (sometimes better)
performance as MAGMA OOP TRSM without the overhead of excessive data
transfer and extra memory allocations.

Figures 7(a) and (b) show performance speedup of KBLAS TRMM and
TRSM against cuBLAS TRMM and TRSM, respectively, on various generations
of NVIDIA GPUs. The speedup ranges shown proves the performance portability
of the implementation across different NVIDIA GPUs. We note that the double
precision capability ratio in reference to single precision capability of the Quadro-
M6000 GPU (a Maxwell architecture) has been intentionally fixed by NVIDIA
to 1:32, hence its limited double precision computation performance. Although
Titan Black GPU is also a graphics card, the user can still control its GPU’s
double precision performance by switching between 1:3 and 1:24 ratios, which
explains its ability to ramp up its double precision performance, as opposed to
the Quadro-M6000 GPU.

486 A. Charara et al.

Fig. 6. Performance comparisons of KBLAS IP TRSM against that of cuBLAS IP
TRSM and MAGMA OOP TRSM running on NVIDIA K40 GPU, with square and
low RHS matrices.

Fig. 7. Performance speedup of KBLAS TRMM and TRSM against cuBLAS TRMM
and TRSM, respectively, on various generations of NVIDIA GPUs.

In scientific computations, often data resides on the host memory. Data is
shipped to device memory on demand, and as a best practice, one repeatedly
operates on the data while it is in the device memory until operations are done or
the result is needed back on the CPU memory [6]. It is becoming a common prac-
tice within scientific libraries to provide an API that handles the data transfer
between the host and the device implicitly and to operate on it in one func-
tion call. This practice simplifies the API and puts less burden on programmers
who want to replace a CPU call by an equivalent GPU function call, without
explicitly handling data transfer. The only way to perform such API with the
existing cuBLAS routines is to wrap it within a function call that will initiate
the data transfer, wait for it to arrive on device memory, operate on it, then
initiate its transfer back to host memory. This results in a severe synchronous
communication and computation scheme. In this context, our implementation
brings an added value, in that due to the recursive nature of the routine calls,
we can overlap communication with computation, i.e., by operating on parts of
the data while waiting for the other parts to arrive into device memory and vice

Redesigning Triangular Dense Matrix Computations on GPUs 487

Fig. 8. Performance impact of asynchronous APIs for TRMM and TRSM.

versa. We provide an asynchronous API that achieves this goal. Figures 8(b)
and (a) show the performance gain of such asynchronous TRMM and TRSM
API’s in comparison to the synchronous cuBLAS and KBLAS API’s.

To conclude, we show the impact of KBLAS TRMM and TRSM when
integrated into high-level dense linear algebra algorithms. In particular, the
Cholesky-based symmetric matrix inversion is one of the main operations for
the computation of the variance-covariance matrix in statistics [14]. The inver-
sion algorithm first factorizes the dense symmetric matrix using the Cholesky
factorization (POTRF) and then inverts and multiply in-place the triangular
Cholesky factor by its transpose (POTRI) to get the final inverted triangu-
lar matrix. Figure 9 shows the performance impact of linking the MAGMA [7]
library with the KBLAS library. With KBLAS TRMM, MAGMA POTRI gets
up to twofold and fourfold speedup, for single and double precision, respec-
tively, when compared to using cuBLAS TRMM on a single GPU, as seen in
Fig. 9(a). Moreover, the symmetric matrix inversion operation drives a compu-
tational astronomy application [10], which designs the future instruments of the

Fig. 9. Sample impact of using KBLAS TRMM and TRSM in MAGMA library.

488 A. Charara et al.

European Extremely Large Telescope (E-ELT). This simulation has a strong
constraint on close to real-time computations and, therefore, can highly benefit
from the efficient KBLAS TRMM and TRSM introduced in this paper, when
running on NVIDIA GPUs.

Finally, solving a system of linear equations with a positive definite matrix
(POSV) is a very common operation in scientific computations. It can be
achieved by first factorizing the matrix A with Cholesky method (POTRF),
then solving with POTRS. Figure 9(b) shows the impact of linking the MAGMA
library with the KBLAS library. With KBLAS TRSM, MAGMA POTRS gets
up to twofold and 30 % speedup, for single and double precision, respectively,
compared to linking with cuBLAS TRSM.

6 Conclusions and Future Work

Recursive formulations of the Level 3 BLAS triangular matrix-matrix multipli-
cation (TRMM) and triangular solve (TRSM) have been implemented on GPUs,
which allow reducing memory traffic from global memory and expressing most of
the computations in GEMM sequences. They achieve up to eightfold and twofold
speedups, respectively, for asymptotic dense matrix sizes against the existing
state-of-the-art TRMM/TRSM implementations from NVIDIA cuBLAS v7.5,
across various GPU generations. After integrating them into high-level Cholesky-
based dense linear algebra algorithms, performance impact on the overall appli-
cation demonstrates up to fourfold and twofold speedups against the equiva-
lent vendor implementations, respectively. The new TRMM and TRSM imple-
mentations on NVIDIA GPUs are available in the open-source KAUST BLAS
(KBLAS) library [8] and are scheduled for integration into the NVIDIA cuBLAS
library in its future release. Future work includes the performance analysis on
tall and skinny matrices, which is critical for some dense linear algebra algo-
rithms (e.g., the generalized symmetric eigenvalue problem), as well as looking
at multi-GPU support. The authors would like also to study the general applica-
bility of such recursive formulations on other Level 3 BLAS operations as well
as targeting other hardware architectures (e.g., Intel/AMD x86, Intel Xeon Phi,
AMD APUs, ARM processors, etc.).

Acknowledgments. We thank NVIDIA for hardware donations in the context of the
GPU Research Center Award to the Extreme Computing Research Center at the King
Abdullah University of Science and Technology and KAUST IT Research Computing
for hardware support on the GPU-based system.

References

1. BLAS: Basic Linear Algebra Subprograms. http://www.netlib.org/blas
2. Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL. http://

www-03.ibm.com/systems/power/software/essl/
3. Intel MKL Library. http://software.intel.com/en-us/articles/intel-mkl

http://www.netlib.org/blas
http://www-03.ibm.com/systems/power/software/essl/
http://www-03.ibm.com/systems/power/software/essl/
http://software.intel.com/en-us/articles/intel-mkl

Redesigning Triangular Dense Matrix Computations on GPUs 489

4. NVIDIA CUDA Toolkit. http://developer.nvidia.com/cuda-toolkit
5. The NVIDIA CUDA Basic Linear Algebra Subroutines (CUBLAS). http://

developer.nvidia.com/cublas
6. CUDA C best practices guide
7. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,

Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. J. Phys. Conf. Ser. 180(1), 012037 (2009)

8. Ahmad, A., Ltaief, H., Keyes, D.: KBLAS: an optimized library for dense matrix-
vector multiplication on GPU accelerators. ACM Trans. Math. Softw. (2016) (to
appear)

9. Andersen, B.S., Gustavson, F.G., Karaivanov, A., Marinova, M., Waniewski, J.,
Yalamov, P.Y.: LAWRA: linear algebra with recursive algorithms. In: Gebremedhin,
A.H., Manne, F., Moe, R., Sørevik, T. (eds.) PARA 2000. LNCS, vol. 1947, pp. 38–51.
Springer, Heidelberg (2001)

10. Charara, A., Ltaief, H., Gratadour, D., Keyes, D.E., Sevin, A., Abdelfattah, A.,
Gendron, E., Morel, C., Vidal, F.: Pipelining computational stages of the tomo-
graphic reconstructor for multi-object adaptive optics on a multi-GPU system. In:
Damkroger, T., Dongarra, J. (eds.) International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, pp. 262–273. IEEE (2014)

11. Elmroth, E., Gustavson, F., Jonsson, I., K̊agström, B.: Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software. SIAM Rev.
46(1), 3–45 (2004)

12. Goto, K., van de Geijn, R.: High-performance implementation of the level 3 BLAS.
ACM Trans. Math. Softw. 35(1), 4:1–4:14 (2008)

13. Hadri, B., Fahey, M.R.: Mining software usage with the automatic library tracking
database (ALTD). In: Pfeiffer, H., Ignatov, D., Poelmans, J., Gadiraju, N. (eds.)
ICCS. Procedia Computer Science, vol. 18, pp. 1834–1843. Elsevier (2013)

14. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-
phia (2002)

15. Igual, F.D., Quintana-Ort, G., van de Geijn, R.A.: Level-3 BLAS on a GPU: picking
the low hanging fruit. In: AIP Conference Proceedings, vol. 1504(1), pp. 1109–1112
(2012)

16. K̊agström, B., Ling, P., van Loan, C.: GEMM-based level 3 BLAS: high-
performance model implementations and performance evaluation benchmark.
ACM Trans. Math. Softw. 24(3), 268–302 (1998)

17. Nath, R., Tomov, S., Dongarra, J.: An improved magma GEMM for fermi graphics
processing units. Int. J. High Perform. Comput. Appl. 24(4), 511–515 (2010)

18. Nath, R., Tomov, S., Dong, T., Dongarra, J.: Optimizing symmetric dense matrix-
vector multiplication on GPUs. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
6:1–6:10. ACM, New York (2011)

19. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
Proceedings of 2008 ACM/IEEE Conference on Supercomputing, SC 2008, pp.
31:1–31:11. IEEE, Piscataway (2008)

http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas

A Sharing-Aware Memory Management Unit
for Online Mapping in Multi-core Architectures

Eduardo H.M. Cruz1(B), Matthias Diener1, Laércio L. Pilla2,
and Philippe O.A. Navaux1

1 Informatics Institute,
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

{ehmcruz,mdiener,navaux}@inf.ufrgs.br
2 Department of Informatics and Statistics,

Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
laercio.pilla@ufsc.br

Abstract. In modern shared-memory architectures, it is important to
map threads and data in a way that increases the locality of their memory
accesses, thereby improving performance and energy efficiency. Threads
that access shared data should be mapped close to each other in the
memory hierarchy, while the data they access should be mapped to their
NUMA node, which is called sharing-aware mapping. In this paper, we
propose SAMMU, which adds sharing-awareness to the memory man-
agement unit in current architectures. SAMMU analyzes the memory
access behavior in hardware and provides information to the operating
system so it can perform an online mapping of threads and data. In the
evaluation with a wide range of parallel applications, performance was
improved by up to 35.7 % (13.1 % on average).

1 Introduction

As parallel applications need to access shared data, the memory hierarchy
presents challenges for mapping threads to cores, and data to NUMA nodes [24].
Threads that access a large amount of shared data should be mapped to cores
that are close to each other in the memory hierarchy, while data should be
mapped to the same NUMA node that the threads that access it are execut-
ing on [22]. In this way, the locality of the memory accesses is improved, which
leads to an increase of performance and energy efficiency. This type of thread
and data mapping is called sharing-aware mapping. For optimal performance
improvements, data and thread mapping should be performed together [23]. For
the thread mapping, knowledge about how data is shared between the threads
is necessary. Data mapping additionally requires information about the memory
pages that are accessed by each thread.

Sharing-aware thread and data mapping improve performance and energy
efficiency of parallel applications by optimizing memory accesses [11]. Improve-
ments happen for three main reasons. First, cache misses are reduced by decreas-
ing the number of invalidations that happen when write operations are performed
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 490–501, 2016.
DOI: 10.1007/978-3-319-43659-3 36

A Sharing-Aware Memory Management Unit for Online Mapping 491

on shared data [19]. For read operations, the effective cache size is increased by
reducing the replication of cache lines on multiple caches [6]. Second, the locality
of memory accesses is increased by mapping data to the NUMA node where it is
most accessed. Third, the usage of interconnections in the system is improved by
reducing the traffic on slow and power-hungry interchip interconnections, using
more efficient intrachip interconnections instead.

In this paper, we propose a Sharing-Aware Memory Management
Unit (SAMMU), which uses the virtual memory implementation to detect the
memory access pattern during the execution of a parallel application. SAMMU
modifies the memory management unit to analyze the memory access behavior,
which is used to perform online thread and data mapping. To the best of our
knowledge, SAMMU is the first mechanism that detects the memory access pat-
tern for thread and data mapping completely on the hardware level, considering
many more memory accesses than related work to achieve a higher accuracy.
It requires no changes to the application or its runtime system, and needs no
previous information about application behavior.

2 Related Work

Traditional data mapping strategies, such as first-touch and next-touch [15],
have been used by operating systems to allocate memory on NUMA machines.
In the case of first-touch, pages are not migrated during execution. Next-touch
can lead to excessive data migrations if the same page is accessed from different
nodes. The NUMA Balancing policy [7] was included in more recent versions of
Linux. In this policy, the kernel introduces page faults during the execution of
the application to perform lazy page migrations, reducing the number of remote
memory accesses. However, it does not detect sharing patterns between threads.

Marathe et al. [18] present an automatic page placement scheme for NUMA
platforms by tracking memory addresses from the performance monitoring unit
(PMU) of Itanium. Their work requires the generation of memory traces to
guide data mapping for future executions of the applications, which may lead
to a high overhead [3]. A similar technique is used in Marathe and Mueller [17]
to perform data mapping dynamically. They enable the profiling mechanism just
during the beginning of each application due to the high overhead, losing the
opportunity to handle changes in rest of the execution. Data mapping alone is
not able to improve locality when more than one thread accesses the same pages,
since threads may be mapped to cores of different NUMA nodes.

Azimi et al. [1] map threads based on information from the hardware coun-
ters of Power5 processors that sample the memory addresses resolved by remote
caches. Accesses resolved by local caches are not considered, generating an
incomplete sharing pattern. Cruz et al. [9] detect the pattern by monitoring the
invalidation messages of cache coherence protocols. Only thread mapping was
performed, which does not improve the locality of memory accesses in NUMA
architectures.

The kMAF affinity framework is proposed in [11]. It performs both thread
and data mapping and gather information from page faults. Carrefour [10] is

492 E.H.M. Cruz et al.

a similar mechanism that uses sampling to detect page usage. Due to its over-
head, the authors restrict the mechanism to 30,000 pages, which limits its use
to applications with a low memory usage. These mechanisms generate mapping
information based on a very small number of samples compared to SAMMU, as
all memory accesses are handled by the MMU. Some techniques such as Forest-
GOMP [4] require annotations in the source code and depend on specific paral-
lelization libraries. Similarly, Ogasawara [20] proposes a data mapping method
that is limited to object oriented languages.

The usage of the instructions per cycle (IPC) metric to guide thread mapping
is evaluated in Autopin [14]. Autopin itself does not detect the sharing pattern,
it only verifies the IPC of several mappings fed to it and executes the applica-
tion with the thread mapping that presented the highest IPC. The BlackBox
scheduler [21], similar to Autopin, selects the best mapping by measuring the
performance that each mapping obtained. When the number of threads is low,
all possible thread mappings are evaluated. When the number of threads makes
it unfeasible to evaluate all possibilities, the authors execute the application
with 1000 random mappings to select the best one. These mechanisms that rely
on statistics from hardware counters take too much time to converge to an opti-
mal mapping, since they need to first check the statistics of the mappings. The
convergence is usually not possible because the number of possible mappings is
exponential in the number of threads. Also, these statistics do not accurately
represent sharing and data access patterns.

3 SAMMU: A Sharing-Aware Memory Management
Unit

Computer systems that support virtual memory use a memory management
unit (MMU) to translate virtual to physical addresses. To perform the trans-
lation, the operating system stores page tables in the main memory, which
contain the physical address and metadata of each memory page. A special
cache memory, the Translation Lookaside Buffer (TLB), is used to speed up the
address translation. A high-level overview of the operation of the MMU, TLB
and SAMMU is illustrated in Fig. 1. On every memory access, the MMU checks
if the page has a valid entry in the TLB. If it does, the virtual address is trans-
lated to a physical address and the memory access is performed. If the entry is
not in the TLB, the MMU performs a page table walk and caches the entry in
the TLB before proceeding with the address translation and memory access.

The operation of the MMU is extended in two ways, both happening in par-
allel to the normal operation of the MMU without stalling application execution:

1. SAMMU counts the number of times that each TLB entry is accessed from the
local core. This enables the collection of information about the pages accessed
by each thread. We store these saturating access counters (AC), one per TLB
entry, in a table that we call TLB access table, which is stored in the MMU.

2. On every TLB eviction or when an access counter saturates, SAMMU analyzes
statistics about the page and stores them in the main memory in two separate

A Sharing-Aware Memory Management Unit for Online Mapping 493

Application
accesses
memory

Valid entry
in TLB?

Perform address translation

Evict old entry from TLB

Fetch new TLB entry by
walking page table

Continue
execution

A

AC ≥ AT?
B

Update memory access
count (AC) in TLB Access
Table

No

TLB miss

Yes TLB hit

AC saturates?
Update AT using Eq. 1, the SV
and SM for thread mapping,
and NC for data mapping

D

Update
AT using
Eq. 2

C

Notify the operating
system if a migra-
tion is necessary

E

Yes

No

Do not
update

Yes
A

No

MMU

SAMMU

Fig. 1. Overview of the MMU and SAMMU.

structures. The first structure is the sharing matrix (SM), which estimates the
amount of sharing between the threads. The second structure is the page history
table, which contains one entry per physical page in the system with informa-
tion about the threads and NUMA nodes that accessed them, and is indexed
by the physical page address. Each entry of the page history table has three
fields: (1) access threshold (AT), which defines the minimum number of mem-
ory accesses required to modify the statistics; (2) sharers vector (SV), which
contains the ID of the last threads that accessed the page; (3) NUMA counters
(NC), which estimate the number of accesses from each NUMA node.

3.1 Gathering Information About Memory Accesses

SAMMU gathers memory access information by counting the number of memory
accesses to each page in the TLB of each core. We count the number of accesses
to the TLB entry of a page by adding a saturating access counter (AC) to the
TLB access table. When AC saturates or a TLB entry gets evicted, SAMMU
collects the information and updates the page history table entry of the page.
To filter out threads that perform only few accesses to a page, we use an access
threshold (AT) in the page history table. AT specifies the minimum number of
memory accesses required to update the mapping-related information for a page.
A number of memory accesses smaller than AT means that a thread does not use
a page enough to influence its mapping. SAMMU updates the mapping-related
statistics of a page only when its AC saturates or if the page is evicted from
a TLB and the number of memory accesses registered in the AC of this TLB
entry is greater than or equal to the AT of the page (Fig. 1-).

A detailed example of the operation of SAMMU can be found in Fig. 1. The
initial value of AT is 0. Access thresholds are kept per page because the number

494 E.H.M. Cruz et al.

of memory accesses can vary from page to page. SAMMU automatically adjusts
the access threshold of a given page, separating this procedure into two cases
(Fig. 1-):

Case 1 (AC saturates or AC ≥ AT): When AC saturates or, during a TLB
eviction, AC is greater than or equal to its access threshold (AT) (Fig. 1-),
we need to increase AT to reduce the influence of threads that perform few
accesses to the page. Therefore, AT is updated with the average value of AC
and AT , as illustrated in Eq. 1. Also, the mapping statistics are updated, as
explained in Sects. 3.2 and 3.3. It is important to note that, since we use the
same number of bits to store AC and AT , when AC saturates, it will be greater
than or equal to AT .

ATnew ← AT + AC

2
, AC ≥ AT (1)

Case 2 (AC < AT): In the second case, when the number of memory accesses
registered by AC during a TLB eviction is lower than the access threshold (Fig. 1-

), we update AT in such a way that NUMA nodes with a small number of
accesses to the page have a lower influence on the threshold. For that, we use
Eq. 2, which guarantees that AT will never be decreased by more than 25% at
each update. In this case, mapping statistics are not updated.

ATnew ← AT − AT − AC
AT/AC

, AC < AT (2)

3.2 Detecting the Sharing Pattern for Thread Mapping

To detect the sharing pattern, SAMMU identifies the last threads that accessed a
memory page. To obtain that information, SAMMU adds a small sharers vector
(SV) to each page history table entry. Each SV stores the IDs of the last threads
to access its page. This has the advantage of maintaining temporal locality when
detecting which threads share each page. Old entries will be overwritten and
not considered as sharers. SAMMU also keeps a sharing matrix (SM) in main
memory for each parallel application to estimate the number of accesses to pages
that are shared between each pair of threads. In the TLB access table, SAMMU
stores the ID of the thread that accessed each TLB entry. Control registers
containing the memory address and dimensions of the sharing matrix, and the
ID of the thread being executed must be added to the architecture and updated
by the operating system.

When SAMMU is triggered for a certain page by thread T (Fig. 1-), it
accesses the SV of the corresponding page history table entry. If the access
counter is greater than or equal to the access threshold (Fig. 1-), SAMMU
then increments the sharing matrix in row T , for all the columns that correspond
to an entry in the SV (Fig. 1-): SM [T][SV [i]] ← SM [T][SV [i]] + 1.

Each line of SM is accessed by its corresponding thread only, minimizing the
impact of coherence protocols. Finally, SAMMU inserts thread T into the SV of
the evicted page by shifting its elements, such that the oldest entry is removed.

A Sharing-Aware Memory Management Unit for Online Mapping 495

Table 1. Configuration of the experiments.

System Parameter Value

SAMMU Structure sizes AC, AT : 32 bits, SV : 2× 8 bits, NC: 4× 4 bits

Sharing matrix 256 threads, 4 Byte element size

Control registers Support up to 256 threads, Vadd = 2, NT = 10

Pin L1 TLB 64 entries, 4-way, shared between 2 SMT-cores

L2 TLB 512 entries, 4-way, shared between 2 SMT-cores

Xeon Processors 4x Xeon X7550 (Nehalem), 8 cores, 2-SMT

Caches/processor 8x 32 KByte L1, 8x 256 KByte L2, 18 MByte L3

Main memory 128 GByte DDR3-1333, 4 KByte page size

3.3 Detecting the Page Usage Pattern for Data Mapping

To identify where a memory page should be mapped, SAMMU requires the
addition of a vector to each page history table entry. The vector, which we call
NUMA counters (NC), has N elements for a system with N NUMA nodes. NC
employs saturating counters to count a relative number of accesses from different
NUMA nodes. The initial value of each NC is 0.

When a TLB entry from a core in NUMA node n is selected for eviction or its
AC reaches its maximum value (Fig. 1-), SAMMU reads the corresponding
page history table entry. If the number of memory accesses stored in AC is
greater than or equal to the threshold AT (Fig. 1-), SAMMU increments the
NUMA counter of node n, and decrements all other NUMA counters (Fig. 1-).
Since the NUMA counters are saturated, they do not overflow nor underflow.

After updating the values of NC, SAMMU checks if the corresponding page
is stored in NUMA node n. If the page is currently mapped to another NUMA
node m, SAMMU evaluates if the difference between the NUMA counters of n
andm is greater than or equal to a global valueNUMA threshold (NT) (Fig. 1-):
NC[n] −NC[m] ≥ NT . If that is the case, SAMMU notifies the operating system
of the page and its destination node n. The NUMA threshold may be configured by
a control register. The operating system then chooses how it will handle the migra-
tion of the page. The higher the NUMA threshold NT , the lower the number of
page migrations.

4 Experiments and Results

In this section, we present the experiments we performed with SAMMU. We
describe the methodology and then evaluate the performance and overhead.

4.1 Methodology

The parameters of our experiments are summarized in Table 1. The experiments
were performed using a real machine. The machine consists of 4 NUMA nodes

496 E.H.M. Cruz et al.

with one 8-core, 2-SMT Intel Xeon X7550 processor per node, with a total of
64 virtual cores. It is running version 3.8 of the Linux kernel. Information about
the hardware topology is gathered using Hwloc [5]. To generate the thread map-
pings, we used the EagerMap [8] mapping algorithm, which receives the sharing
matrix and a graph representing the memory hierarchy (from Hwloc) as input,
and it outputs which core will execute each thread.

As workloads, we used the OpenMP implementation of the NAS parallel
benchmarks (NPB) [13], v3.3.1. All experiments were executed 30 times. We
show average values as well as a 95 % confidence interval calculated with Stu-
dent’s t-distribution. Results are normalized to the operating system original
mapping. We configured the benchmarks to run with one thread per virtual
core. Input sizes were chosen to provide similar total execution times and feasi-
ble simulation time. Benchmarks BT, LU, SP and UA were executed using input
size A. Benchmarks CG, EP, FT, IS and MG were executed using input size B.

Since SAMMU is an extension to the current MMU hardware, we simulate its
behavior with the Pin [2] dynamic binary instrumentation tool. The simulated
hardware uses the same TLB configuration as the real machines. We used Pin
because it is faster than a full system simulator. To make it possible to evaluate
SAMMU in real machines, the mapping information generated in Pin is fed into
the mapping mechanism in runtime. This is possible because the access pattern
of the applications we evaluated and their memory addresses remain the same
across different executions, since their memory is statically allocated. Besides
performance, we measured L3 cache misses per thousand instructions (MPKI)
and QPI interchip interconnection traffic using the Intel PCM tool [12].

4.2 Performance Results

The sharing patterns of a subset of our workloads are illustrated in Fig. 2. The
results of execution time can be found in Fig. 3, L3 cache misses per thousand
instructions (MPKI) in Fig. 4a, and interchip traffic in Fig. 4b. Lower values are
better. In these figures, we also show the average improvements, calculated using
the geometric mean function. In this section, we focus on the SAMMU results.
The next section presents a comparison to other mapping techniques that are
shown in the figures.

In applications whose pages are shared within a small subgroup of threads,
mapping presents a high potential for performance improvement. For instance, in
SP, most sharing happens between neighboring threads, which is very common in
parallel applications that use domain decomposition. In LU and MG, the sharing
between more distant threads is more evident than in the other applications. The
threads of these applications are able to benefit from the shared cache memories
and faster interconnection when mapped nearby in the memory hierarchy, as well
as accessing shared pages from their local NUMA node. In general, the effect
is a reduction of cache misses and interchip traffic, observed in LU and SP. SP
presented the highest improvements, with an execution time reduction of 35.7%.

To illustrate how thread mapping also affects data mapping, consider MG.
MG’s sharing pattern indicates that it has a high potential for thread mapping.

A Sharing-Aware Memory Management Unit for Online Mapping 497

(a) CG. (b) LU. (c) MG. (d) SP.

Fig. 2. Sharing patterns of some applications. Axes represent thread IDs. Cells show
the number of accesses to shared pages for each pair of threads. Darker cells indicate
more accesses.

BT CG EP FT IS LU MG SP UA Avg.
−40%
−30%
−20%
−10%

0%
10%
20%
30%
40%
50%
60%

Random Oracle SAMMU Marathe

Autopin kMAF Numa Balancing

Fig. 3. Execution time normalized to the operating system.

Random Oracle SAMMU

BT CG EP FT IS LU MG SP UAAvg.

−60%

−40%

−20%

0%

20%

(a) L3 cache MPKI.

BT CG EP FT IS LU MG SP UAAvg.
−75%

−50%

−25%

0%

25%

50%

75%

(b) Interchip interconnection traffic.

Fig. 4. Performance results, normalized to the operating system.

However, the reduction of interchip traffic is higher than the reduction of cache
misses. The reason is that the better fitting thread mapping results in a place-
ment of threads that share data on the same NUMA node, thus reducing inter-
chip traffic. Cache misses were not reduced to the same degree. Therefore,
although MG shows a high potential for thread mapping, we are able to observe
this by looking at interchip traffic, not at cache misses.

498 E.H.M. Cruz et al.

Some applications do not present a sharing pattern suitable for thread map-
ping. One example of this type of application is CG. The sharing pattern of CG
is illustrated in Fig. 2a, where we can observe that each pair of threads has a
similar amount of sharing. Therefore, no thread mapping is able to improve the
usage of cache memories. This is the reason that SAMMU does not decrease the
number of cache misses in CG. However, due to the data mapping, SAMMU
improved the memory access locality in CG such that the amount of interchip
traffic was decreased by 44.9%, leading to a performance improvement of 9.0%.

In some applications, no performance improvements are expected, either by
thread or data mapping. For instance, EP is a CPU-bound application [13] with
almost no data sharing among its threads. Due to this, there is no thread map-
ping that is able to optimize the memory accesses. Regarding data mapping,
since it is a CPU bound application, the memory accesses have very little influ-
ence in the performance of EP.

The number of cache misses and the traffic in the interconnections were
reduced by SAMMU significantly. L3 MPKI was reduced by an average of 30.6%.
Interchip traffic was reduced by an average of 39.0%. The execution time was
reduced by an average of 13.1%. This smaller reduction happens because a
better mapping directly influences the number of cache misses and traffic on the
interconnections, while the execution time is influenced by several other factors.

Most applications are more sensitive to data mapping than thread map-
ping, which can be observed in the results by the fact that the interchip traffic
presented a higher reduction than cache misses. This happens because, even if
an application does not share much data among its threads, each thread will
still need to access its own private data, which can only be improved by data
mapping. It is important to note that this does not mean that data mapping is
more important than thread mapping, because the effectiveness of data mapping
depends on thread mapping, in case of pages shared by several threads.

4.3 Comparison to Related Work

We compare SAMMU to the following techniques: Random and Oracle map-
pings, the Marathe [17] data mapping mechanism, Autopin [14], the kMAF
affinity framework [11] and NUMA Balancing [7]. For the random mapping,
we randomly generated a thread and data mapping for each execution. For the
Oracle mapping, we generated traces of all memory accesses for each application
and performed an analysis of the sharing and page usage patterns, similar to [3].
Autopin was executed with 5 mappings: the Oracle mapping and 4 random map-
pings. We implemented Marathe using a long latency load profile [17] in Pin and
fed the information during the execution of the application.

Execution time results of the related work are also shown in Fig. 3. In
CG, Marathe presented slightly better results than SAMMU. This happens
because, as previously explained, CG is only affected by data mapping, such
that SAMMU introduces thread migrations during execution that increase the
overhead. Unnecessary thread migrations could be avoided if our mapping
algorithm presented features to allow migrations only if the detected sharing
pattern has high potential for mapping.

A Sharing-Aware Memory Management Unit for Online Mapping 499

Autopin, in several executions, selected a mapping different from the Ora-
cle, which shows that indirect metrics are not accurate. Also, its performance
improvement is lower than ours because it needs to evaluate several other map-
pings. The results of kMAF are lower than SAMMU for most of the benchmarks.
Due to its sampling mechanism, kMAF needs more time to detect the memory
access behavior, losing opportunities for improvements. The only application in
which NUMA Balancing performed well was SP.

The comparison to the related work shows that mechanisms that perform
both thread and data mapping are able to achieve better improvements than
mechanisms that perform these mapping separately. It also shows that mecha-
nisms that have access to more accurate information about the memory accesses
can provide better performance improvements. SAMMU presented results sim-
ilar to the Oracle mapping, demonstrating its effectiveness. In most cases, it
performed significantly better than the random mapping. This shows that the
gains compared to the operating system are not due to the unnecessary migra-
tions introduced by the operating system, but due to a more efficient usage of
resources.

4.4 Overhead of SAMMU

SAMMU causes an overhead on the execution of the parallel application on the
hardware and software levels. In the hardware level, the additional hardware of
SAMMU is not in the critical path, since it operates in parallel to the MMU, such
that application execution is not stalled while SAMMU is operating. Therefore,
the time overhead introduced by SAMMU consists of the additional memory
accesses to update its structures stored in the main memory. To calculate this
overhead, we measured the average memory access latency in the Simics full
system simulator [16], and multiplied it by the number of additional memory
accesses introduced by SAMMU. On the software level, the operating system
introduces overhead when calculating the thread mapping, and when migrating
threads and pages.

The performance overhead caused by the hardware was 0.41%, due to the
introduction of 1.43% additional memory transactions, on average. The overhead
in the software level was 0.29%, on average. These results show that SAMMU
has only a small performance overhead. Regarding storage overhead, each entry
of the page history table would require 8 Bytes, with a total space overhead
of 0.2% relative to the total main memory. The sharing matrix would require
256 KByte, each of its elements with 4 Bytes. We estimate the additional hard-
ware required by SAMMU by counting the amount of transistors required in
the implementation. SAMMU would require 143, 000 transistors per core, which
results in an increase in transistors of less than 0.05% in a modern processor.

5 Conclusions and Future Work

In this paper, we presented SAMMU, an extension of the memory management
unit to improve locality of memory accesses. SAMMU analyzes the memory

500 E.H.M. Cruz et al.

accesses of multithreaded applications during execution, such that the operating
system can perform a sharing-aware online mapping of threads to cores and
data to NUMA nodes. In contrast to previous proposals, it detects the memory
access pattern completely in hardware, considering most memory accesses and
achieving a higher accuracy. It is independent of the application and its runtime
system, and requires no source code modification or previous information about
the behavior of the application.

Experiments with the NAS OpenMP benchmarks showed performance
improvements of up to 35.7% (13.1% on average). L3 cache MPKI and interchip
interconnection traffic were reduced by an average of 30.6% and 39.0%, respec-
tively. Compared to previous work, SAMMU presented the best performance
improvements for most applications.

For the future, we will evaluate SAMMU using parallel applications with
several processes that do not necessarily share the same virtual address space,
as well as running multiple applications simultaneously.

Acknowledgment. This research received funding from the EU H2020 Programme
and from MCTI/RNP-Brazil under the HPC4E project, grant agreement n.o 689772.
This work was also supported by the STIC-AmSud/CAPES scientific cooperation pro-
gram under the EnergySFE research project grant 99999.007556/2015-02. Additional
funding was provided by CNPq and Capes.

References

1. Azimi, R., Tam, D.K., Soares, L., Stumm, M.: Enhancing operating system support
for multicore processors by using hardware performance monitoring. ACM SIGOPS
Oper. Syst. Rev. 43(2), 56–65 (2009)

2. Bach, M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K.,
Jaleel, A., Luk, C.K., Lyons, G., Patil, H., Tal, A.: Analyzing parallel programs
with pin. IEEE Comput. 43(3), 34–41 (2010)

3. Barrow-Williams, N., Fensch, C., Moore, S.: A communication characterisation of
splash-2 and parsec. In: IEEE International Symposium on Workload Characteri-
zation, IISWC (2009)

4. Broquedis, F., Aumage, O., Goglin, B., Thibault, S., Wacrenier, P.A., Namyst, R.:
Structuring the execution of OpenMP applications for multicore architectures. In:
IEEE International Parallel & Distributed Processing Symposium, IPDPS (2010)

5. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: a generic framework for managing hardware
affinities in HPC applications. In: Euromicro Conference on Parallel, Distributed
and Network-based Processing, pp. 180–186 (2010)

6. Chishti, Z., Powell, M.D., Vijaykumar, T.N.: Optimizing replication, communica-
tion, and capacity allocation in CMPs. ACM SIGARCH Comput. Archit. News
33(2), 357–368 (2005)

7. Corbet, J.: Toward better NUMA scheduling (2012). http://lwn.net/Articles/
486858/

8. Cruz, E.H.M., Diener, M., Pilla, L.L., Navaux, P.O.A.: An efficient algorithm for
communication-based task mapping. In: International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP), pp. 207–214 (2015)

http://lwn.net/Articles/486858/
http://lwn.net/Articles/486858/

A Sharing-Aware Memory Management Unit for Online Mapping 501

9. Cruz, E.H.M., Diener, M., Alves, M.A.Z., Navaux, P.O.A.: Dynamic thread map-
ping of shared memory applications by exploiting cache coherence protocols. J.
Parallel Distrib. Comput. 74(3), 2215–2228 (2014)

10. Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R., Lepers, B., Quema,
V., Roth, M.: Traffic management: a holistic approach to memory placement on
NUMA systems. In: Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS) (2013)

11. Diener, M., Cruz, E.H.M., Navaux, P.O.A., Busse, A., Heiß, H.U.: kMAF: auto-
matic kernel-level management of thread and data affinity. In: Interntional Con-
ference on Parallel Architectures and Compilation Techniques (PACT) (2014)

12. Intel: Intel Performance Counter Monitor - A better way to measure CPU utiliza-
tion (2012). http://www.intel.com/software/pcm

13. Jin, H., Frumkin, M., Yan, J.: The OpenMP implementation of NAS Parallel
Benchmarks and Its Performance (1999)

14. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: Autopin - automated optimization
of thread-to-core pinning on multicore systems. High Perform. Embed. Archit.
Compil. 3(4), 219–235 (2008)

15. Löf, H., Holmgren, S.: Affinity-on-next-touch: increasing the performance of an
industrial PDE solver on a cc-NUMA system. In: International Conference on
Supercomputing (2005)

16. Magnusson, P., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg,
J., Larsson, F., Moestedt, A., Werner, B.: Simics: a full system simulation platform.
IEEE Comput. 35(2), 50–58 (2002)

17. Marathe, J., Mueller, F.: Hardware Profile-guided Automatic Page Placement for
ccNUMA Systems. In: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP) (2006)

18. Marathe, J., Thakkar, V., Mueller, F.: Feedback-directed page placement for
ccNUMA via hardware-generated memory traces. J. Parallel Distri. Comput.
70(12), 1204–1219 (2010)

19. Martin, M.M.K., Hill, M.D., Sorin, D.J.: Why on-chip cache coherence is here to
stay. Commun. ACM 55(7), 78 (2012)

20. Ogasawara, T.: NUMA-aware memory manager with dominant-thread-based copy-
ing GC. ACM SIGPLAN Not. 44(10), 377–389 (2009)

21. Radojković, P., Cakarević, V., Verdú, J., Pajuelo, A., Cazorla, F.J., Nemirovsky,
M., Valero, M.: Thread assignment of multithreaded network applications in multi-
core/multithreaded processors. IEEE Trans. Parallel Distrib. Syst. (TPDS) 24(12),
2513–2525 (2013)

22. Ribeiro, C.P., Mehaut, J.F., Carissimi, A., Castro, M., Fernandes, L.G.: Memory
affinity for hierarchical shared memory multiprocessors. In: International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD)
(2009)

23. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and thread
affinity in OpenMP programs. In: Workshop on Memory Access on Future Proces-
sors: A Solved Problem? (MAW) (2008)

24. Wang, W., Dey, T., Mars, J., Tang, L., Davidson, J.W., Soffa, M.L.: Performance
analysis of thread mappings with a holistic view of the hardware resources. In:
IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS) (2012)

http://www.intel.com/software/pcm

GreenBST: Energy-Efficient
Concurrent Search Tree

Ibrahim Umar(B), Otto Anshus, and Phuong Ha

Department of Computer Science,
UiT The Arctic University of Norway, Tromsø, Norway
{ibrahim.umar,otto.anshus,phuong.hoai.ha}@uit.no

Abstract. Like other fundamental abstractions for energy-efficient com-
puting, search trees need to support both high concurrency and fine-
grained data locality. However, existing locality-aware search trees such
as ones based on the van Emde Boas layout (vEB-based trees), poorly
support concurrent (update) operations while existing highly-concurrent
search trees such as the non-blocking binary search trees do not consider
data locality.

We present GreenBST, a practical energy-efficient concurrent search
tree that supports fine-grained data locality as vEB-based trees do,
but unlike vEB-based trees, GreenBST supports high concurrency.
GreenBST is a k-ary leaf-oriented tree of GNodes where each GNode
is a fixed size tree-container with the van Emde Boas layout. As a result,
GreenBST minimizes data transfer between memory levels while sup-
porting highly concurrent (update) operations. Our experimental evalua-
tion using the recent implementation of non-blocking binary search trees,
highly concurrent B-trees, conventional vEB trees, as well as the portably
scalable concurrent trees shows that GreenBST is efficient: its energy effi-
ciency (in operations/Joule) and throughput (in operations/second) are
up to 65% and 69% higher, respectively, than the other trees on a high
performance computing (HPC) platform (Intel Xeon), an embedded plat-
form (ARM), and an accelerator platform (Intel Xeon Phi). The results
also provide insights into how to develop energy-efficient data structures
in general.

1 Introduction

Recent researches have suggested that the energy consumption of future com-
puting systems will be dominated by the cost of data movement [12,34,35]. It is
predicted that for 10 nm technology chips, the energy required between accessing
data in nearby on-chip memory and accessing data across the chip, will differ as
much as 75× (2 pJ versus 150 pJ), whereas the energy required between access-
ing on-chip data and accessing off-chip data will only differ 2× (150 pJ versus
300 pJ) [12]. Therefore, in order to construct energy-efficient software systems,
data structures and algorithms must not only be concerned with whether the
data is on-chip (e.g., in cache) or not (e.g., in DRAM), but must consider also
data locality in finer-granularity: where the data is located on the chip.
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 502–517, 2016.
DOI: 10.1007/978-3-319-43659-3 37

GreenBST: Energy-Efficient Concurrent Search Tree 503

Fig. 1. Result of 5 millions tree operations of decreasing search percentage workloads
using 12 cores (1 CPU). DeltaTree’s energy efficiency and throughput are lower than
the other concurrent search trees after 95% search workload on a dual Intel Xeon
E5-2650Lv3 CPU system with 64 GB RAM.

Concurrent search trees are crucial data structures that are widely used as a
backend in many important systems such as databases (e.g., SQLite [24]), filesys-
tems (e.g., Btrfs [32]), and schedulers (e.g., Linux’s Completely Fair Scheduler
(CFS)), among others. These important systems can access and organize data
in a more energy efficient manner by adopting the energy-efficient concurrent
search trees as their backend structures.

Devising fine-grained data locality layout for concurrent search trees is chal-
lenging, mainly because of the trade-offs needed: (i) a platform-specific locality
optimization might not be portable (i.e., not work on different platforms while
there are big interests of concurrent data structures for unconventional plat-
forms [18,21]), (ii) the usage of transactional memory [20,23] and multi-word
synchronization [19,22,27] complicates locality because each core in a CPU needs
to consistently track read and write operations that are performed by other cores,
and (iii) fine-grained locality-aware layouts (e.g., van Emde Boas layout) poorly
support concurrent update operations. Some of the fine-grained locality-aware
search trees such as Intel Fast [25] and Palm [33] are optimized for a specific
platform. Concurrent B-trees (e.g., B-link tree [28]) only perform well if their B
size is optimal. Highly concurrent search trees such as non-blocking concurrent
search trees [14,30] and Software Transactional Memory (STM)-based search
trees [1,11], however, do not take into account fine-grained data locality.

Fine-grained data locality for sequential search trees can be theoretically
achieved using the van Emde Boas (vEB) layout [15,31], which is analyzed using
cache-oblivious (CO) models [16]. An algorithm is categorized as cache-oblivious
for a two-level memory hierarchy if it has no variables that need to be tuned with
respect to cache size and cache-line length, in order to optimize its data transfer
complexity, assuming that the optimal off-line cache replacement strategy is used.
If a cache-oblivious algorithm is optimal for an arbitrary two-level memory, the
algorithm is also asymptotically optimal for any adjacent pair of available levels
of the memory hierarchy [9]. Therefore, cache-oblivious algorithms are expected
to be locality-optimized irrespective of variations in memory hierarchies, enabling
less data transfer between memory levels and thereby saving energy.

504 I. Umar et al.

However, the throughput of a vEB-based tree when doing concurrent updates
is lower compared to when it is doing sequential updates. Inserting or deleting a
node may result in relocating a large part of the tree in order to maintain the vEB
layout. Solutions to this problem have been proposed [7]. The first proposed solu-
tion’s structure requires each node to have parent-child pointers. Update oper-
ations may result in updating the pointers. Pointers will also increase the tree
memory footprint. The second proposed solution uses the exponential tree algo-
rithm [3]. Although the exponential tree is an important theoretical breakthrough,
it is complex [10]. The exponential tree grows exponentially in size, which not only
complicates maintaining its inter-node pointers, but also exponentially increases
the tree’s memory footprint. Recently, we have proposed a concurrency-aware vEB
layout [36], which has a higher throughput when doing concurrent updates com-
pared to when it is doing sequential updates. In the same study, we have proposed
DeltaTree, a B+tree that uses the concurrency-aware vEB layout. We have docu-
mented that the concurrency-aware vEB layout can improve DeltaTree’s concur-
rent search and update throughput over a concurrent B+tree [36].

Nevertheless, we find DeltaTree’s throughput and energy efficiency are lower
than the state-of-the-art concurrent search trees (e.g., the portably scalable
search tree [13]) for the update-intensive workloads (cf. Fig. 1). Our investigation
reveals that the cost of DeltaTree’s runtime maintenance (i.e., rebalancing the
nodes) dominates the execution time. However, reducing the frequency of the
runtime maintenance lowers DeltaTree’s energy efficiency and throughput for
the search-intensive workloads, because DeltaTree nodes will then be sparsely
populated and frequently imbalanced. Note that DeltaTree energy efficiency and
throughput are already optimized for the search intensive workloads [36,37].

In this paper, we present GreenBST, an energy-efficient concurrent search
tree that is more energy efficient and has higher throughput for both the con-
current search- and update-intensive workloads than the other concurrent search
trees (cf. Table 1). GreenBST applies two significant improvements on DeltaTree
in order to lower the cost of the tree runtime maintenance and reduce the tree
memory footprint. First, unlike DeltaTree, GreenBST rebalances incrementally
(i.e., fine-grained node rebalancing). In DeltaTree, the rebalance procedure has
to rebalance all the keys within a node and the frequency of rebalancing can-
not be lowered as they are necessary to keep DeltaTree in good shape (i.e.,
keeping DeltaTree’s height low and its nodes are densely populated). Incremen-
tal rebalance makes the overall cost of each rebalance in GreenBST lower than
DeltaTree. Second, we reduce the tree memory footprint by using a different lay-
out for GreenBST’s leaf nodes (heterogeneous layout). Reduction in the memory
footprint also reduces GreenBST’s data transfer, which consequently increases
the tree’s energy efficiency and throughput in both update- and search- intensive
workloads. We will show that with these improvements, GreenBST can become
up to 195 % more energy efficient than DeltaTree (cf. Sect. 3).

We evaluate GreenBST’s energy efficiency (in operations/Joule) and through-
put (in operations/second) against six prominent concurrent search trees
(cf. Table 1) using parallel micro-benchmarks Synchrobench [17] and STAMP

GreenBST: Energy-Efficient Concurrent Search Tree 505

Table 1. List of the evaluated concurrent search tree algorithms.

Algorithm Ref Description Synchronization Code authors Data structure

1 SVEB [8] Conventional vEB

layout search tree

global mutex U. Aarhus binary-tree

2 CBTree [28] Concurrent B-tree

(B-link tree)

lock-based U. Tromsø b+tree

3 Citrus [4] RCU-based search tree lock-based Technion binary tree

4 LFBST [30] Non-blocking binary

search tree

lock free UT Dallas binary tree

5 BSTTK [13] Portably scalable

concurrent search

tree

lock-based EPFL binary tree

6 DeltaTree [36] Locality aware

concurrent search

tree

lock-based U. Tromsø b+tree

7 GreenBST - Improved locality aware

concurrent search

tree

lock-based this paper b+tree

database benchmark Vacation [29] (cf. Sect. 3). We present memory and cache
profile data to provide insights into what make GreenBST energy efficient
(cf. Sect. 3). We also provide insights into what are the key ingredients for devel-
oping energy-efficient data structures in general (cf. Sect. 4).

Our Contributions. Our contributions are threefold:

1. We have devised a new portable fine-grained locality-aware concurrent search
trees, GreenBST (cf. Sect. 2.1). GreenBST are based on our proposed
concurrency-aware vEB layout [36] with the two improvements, namely the
incremental node rebalance and the heterogeneous node layouts.

2. We have evaluated GreenBST throughput (in operations/second) and energy
efficiency (in operations/Joule) with six prominent concurrent search trees (cf.
Table 1) on three different platforms (cf. Sect. 3). We show that compared to
the state of the art concurrent search trees, GreenBST has the best energy
efficiency and throughput across different platforms for most of the concurrent
search- and update- intensive workloads.
GreenBST code and evaluation benchmarks are available at: https://github.

com/uit-agc/GreenBST.
3. We have provided insights into how to develop energy-efficient data structures

in general (cf. Sect. 4).

2 Design Overview

We devise GreenBST based on the concurrency-aware vEB layout [36], based
on the idea that the layout has the same data transfer efficiency between two
memory levels as the conventional sequential vEB layout [15,31]. Therefore,

https://github.com/uit-agc/GreenBST
https://github.com/uit-agc/GreenBST

506 I. Umar et al.

Fig. 2. Illustration of the required data block transfer in searching for (a) key 13
in BFS tree and (b) key 12 in vEB tree, where a node’s value is its address in the
physical memory. Note that in (b), adjacent nodes are grouped together (e.g., (1,2,3)
and (10,11,12)) because of the recursive tree building. The similarly colored nodes
indicates a single block transfer B. An example of multi-level memory is shown in (c),
where Bx is the block transfer size B between levels of memory.

theoretically, we can use the concurrency-aware layout within a concurrent search
tree to minimize data movements between memory levels, which can eventually
be a basis of an energy-efficient concurrent search tree. This section starts with
brief descriptions about the original vEB layout and the concurrency-aware vEB
layout for concurrent search tree, followed by detailed description of GreenBST
structure and algorithms.

The van Emde Boas (vEB) Layout. The vEB layout has inspired several
cache-oblivious (CO) search trees such as the concurrent CO B-trees [5,6] and
the CO binary trees [8]. The vEB layout based trees recursively arrange related
data in contiguous memory locations, minimizing data transfer between any two
adjacent levels of the memory hierarchy.

Figure 2 illustrates the vEB layout, where B size is 3. B is the data block
transfer between two memory levels (e.g., RAM and disk) in the I/O model [2].
Traversing a complete binary tree with the Breadth First Search layout (or BFS
tree for short) with height 4 will need three data block transfers to locate the
key at leaf-node 13 (cf. Fig. 2a). The first two levels with three nodes (1, 2, 3)
fit within a single block transfer while the next two levels need to be loaded in
two separate block transfers that contain nodes (6, 7, 8)1 and nodes (13, 14, 15),
respectively. Generally, the number of data block transfers for a BFS tree of size
N is (log2 N − log2 B) = log2 N/B ∼ log2 N for N � B.

For a vEB tree with the same height, the required block transfers is only two.
As shown in Fig. 2b, locating the key in leaf-node 12 requires only a transfer of
nodes (1, 2, 3), followed by a transfer of nodes (10, 11, 12). Generally, the data
transfer (or I/O) complexity of searching for a key in a tree of size N is now
reduced to log2 N

log2 B = logB N , simply by using an efficient tree layout so that
nearby nodes are located in adjacent memory locations. If B = 1024, searching
a BFS tree for a key at a leaf requires 10× (or log2 B) more I/Os than searching
a vEB tree with the same size N , where N � B.
1 For simplicity, we assume that the memory controller transfers a block of 3 nodes

starting at the address of the requested node in memory.

GreenBST: Energy-Efficient Concurrent Search Tree 507

Fig. 3. Map structure and the mapping functions.

On commodity machines with multi-level memory, the vEB layout is even
more efficient. So far the vEB layout is shown to have log2 B less I/Os for two-
level memory. In a typical machine having three levels of inclusive caches (with
cache line size of 64B), a RAM (with page size of 4KB) and a disk, a vEB tree
search can intuitively give 640× less I/Os than a BFS tree search, assuming the
node size is 4 bytes (cf. Fig. 2c). However, the drawback of the vEB layout is in
its recursive structure. For example if the tree is full, a new bigger tree needs to
be built, recursively in one contiguous block of memory, which also means that
the old tree needs to be invalidated and its members copied to the new tree.
This drawback prevents an effective way to implement concurrency.

The Concurrency-Aware vEB Layout. Our proposed concurrency-aware
vEB layout has been proved to have the same data transfer efficiency between
two memory levels as the conventional sequential vEB layout [36]. Because of
the limited space, we spared the full details of our layout design in this paper,
but in brief, a concurrency-aware vEB layout tree (U) is a tree consisting of |U |
GNodes Ti, i = 1, . . . , |U |. Nodes of tree Ti are called internal nodes in order to
distinguish them from GNodes. Each GNode contains a pre-allocated vEB-layout
binary search tree (BST) structure that can hold a maximum of UB internal
nodes. Each GNode’s internal leaf nodes may link to another GNode’s internal
root node, which eventually form a k-ary tree of GNodes at the higher level.
Note that this k-ary tree does not required to have a cache-oblivious layout [36].

2.1 GreenBST

GreenBST and DeltaTree is designed by devising three major strategies, namely
it uses a common GNode map instead of pointers or arithmetic-based implicit
BST (i.e., a node’s successor memory address is calculated on the fly) for node
traversals, crafting an efficient inter-node connection, and using balanced layouts.
In addition to the shared common traits with DeltaTree, GreenBST also employs
two new major strategies: (i) GreenBST uses incremental GNode rebalance and
(ii) GreenBST uses heterogeneous GNode layouts.

508 I. Umar et al.

Fig. 4. Search within pointer-less GNode. This function will return the leaf GNode
containing the searched key. From there, an implicit array search using left and right

functions is adequate to pinpoint the key location. The search operations are utilizing
both the nextRight pointers and highKey variables to handle concurrent search even
during GNode split.

Data Structures. GreenBST is a collection of GNodes where each GNode
consists of an UB internal nodes that hold the tree keys and a 1/2UB link array
that links the GNode internal leaf nodes to another GNode’s root node. Chain of
GNodes formed a B+tree (to avoid confusion, from this point onward, we refer
the “fat” nodes of GreenBST as GNode and the GNode’s internal tree nodes
as internal nodes or nodes). Each GNode also contains a lock (locked); a rev
counter that is used for optimistic concurrency [26]; nextRight variable, which
is a pointer that points to the GNode’s right sibling; and highKey variable,
which contains the lowest key member of the right sibling GNode. These last
four variables are used for GreenBST concurrency control.

Cache-Resident Map Instead of Pointers or Arithmetic Implicit Array.
GreenBST does not use pointers to link between its internal nodes, instead it
uses a single map-based implicit BST array. This approach is unique to the
concurrency-aware vEB layout as it benefits from the usage of the fixed-size
GNodes. The usage of pointers and arithmetic-based implicit array in cache-
oblivious (CO) trees has been previously studied [8] and both are found to have
weaknesses. Pointer based CO tree search operation is slow, mainly because over-
heads in every data transfer between memory (although CO tree can minimize
data transfers, the inclusion of pointers can lower the amount of meaningful data
(e.g., keys) in each block transfer). The implicit array that uses arithmetic calcu-
lation for every node traversal may increase the cost of computation, especially
if the tree is big.

The cache-resident-maps technique emulates BST’s (left and right) child tra-
versals inside a GNode using a combination of a cache-resident GNode map
structure and left and right functions (cf. Fig. 3). The left and right func-
tions, given an arbitrary node v and its GNode’s root memory addresses, return
the addresses of the left and right child nodes of v, or 0 if v has no children

GreenBST: Energy-Efficient Concurrent Search Tree 509

(i.e., v is an internal leaf node of a GNode). The left and right operations
throughout GreenBST share a common cache-resident map instance (cf. Fig. 3,
line 5). All GNodes use the same fixed-size vEB layout, so only one map instance
with size UB is needed for all traversing operations. This makes GreenBST’s
memory footprint small and keeps the frequently used map instance in cache.

Note that the mapping approach does not induce memory fragmentation.
This is because mapping approach applies only for each GNode, and map is
only used to point to internal nodes within a GNode. GNode layout uses a
contiguous memory block of fixed size UB and update operations can only change
the values of GNode internal nodes (e.g., from EMPTY to a key value in the
case of insertion), but cannot change GNode’s memory layout.

Inter-GNode Connection. To enable traversing from a GNode to its child
GNodes, we develop a new inter-GNode connection mechanism. We logically
assign binary values to GNode’s internal edges so that each path from GNode
root to an internal leaf node is represented by a unique bit-sequence. The bit-
sequence is then used as an index in a link array containing pointers to child
GNodes. As GNode’s internal node has only left and right edges, we assign 0
and 1 to the left and right edges, respectively. The maximum size of the bit
representation is GNode’s height or log(UB) bits. We allocate a link pointer
array whose size is half UB length. The algorithm in Fig. 4 explains how the
inter-GNode connection works in a pointer-less search function.

Balanced and Concurrent Tree. GreenBST adopts the concurrent algo-
rithms of B-link tree that provides lock-free search operations and adopts the
B+tree structure for its high-level structure [28]. However, unlike B-link tree,
GreenBST is an in-memory tree and uses optimistic concurrency to handle lock-
free concurrent search operations even in the occurrences of the unique “in-place”
GNodes maintenance operations.

Similar to B-link tree, GreenBST insert operations built the tree from the
bottom up, but unlike B-link tree, GreenBST insert operation can trigger rebal-
ance operation, a unique GreenBST feature to maintain GNode’s small height.

Function rebalance(Ti) is responsible for rebalancing a GNode Ti after an
insertion. If a new node v is inserted at the last level node of a GNode, that
GNode is rebalanced to a complete BST. Rebalance sets all GNode leaves node
height to �log N� + 1, where N is the count of the GNode’s internal nodes and
N ≤ UB . Note that this is the default rebalance strategy used by DeltaTree, the
incremental rebalance used by GreenBST is explained further in this section.

The delete operation in GreenBST simply marks the requested key (v) as
deleted. This function fails if v does not exist in the tree or v is already marked.
GreenBST does not employ merge operation between GNodes as node reclama-
tion is done by the rebalance and split operations. The offline memory recla-
mation techniques used in the B-link tree [28] can be deployed to merge nearly
empty GNodes in the case where delete operations are the majority. Our new
search trees aim at workloads dominated by search operations.

510 I. Umar et al.

GreenBST concurrency control uses locks and nextRight and highKey
variables to coordinate between search and update operations [28] in addition to
rev variable that is used for the search’s optimistic concurrency. When a GNode
needs to be maintained by either rebalance or split operations, the GNode’s rev
counter is incremented by one before the operation starts. The GNode counter is
incremented by one again after the maintenance operation finishes. Note that all
maintenance procedures happen when the lock is still held by the insert operation
and therefore, only one operation may update rev counter and maintain a GNode
at a time. The usage of rev counter is to prevent search from returning wrong
key because of the “in-place” GNode maintenance operation.

The search operation in GreenBST uses a combination of function Search

(cf. Fig. 4) and an implicit tree traversal using map. Function Search traverses
the tree from the internal root node of the root GNode down to a leaf GNode, at
which the search is handed over to the implicit tree traversal to find the searched
key within the leaf GNode. GreenBST search operation does not wait or use lock,
even in the occurrence of the concurrent updates.

GreenBST search uses optimistic concurrency [26] to ensure the operation
always returns the correct answer even if it arrives at a GNode that is undergo-
ing the in-place maintenance operation (i.e., rebalance and split). First, before
starting to traverse a GNode, a search operation records the GNode rev counter.
Before following a link to a child GNode or returning a key, the search operation
re-checks again the counter. If the current counter value is an odd number or if
it is not equal to the recorded value, the search operation needs to retry search
as this indicates that GNodes are being or have been maintained.

Incremental Rebalance. As explained earlier, the rebalance in DeltaTree
always involves UB keys, which eventually makes insertions require amortized
O(UB) time. GreenBST borrows the incremental rebalance idea similar to the
conventional vEB layout [8] that has the amortized O((log2 UB)/(1 − Γ1)) time
if used in GreenBST. However, unlike the conventional vEB layout that might
have to rebalance the whole tree, we only apply the incremental rebalance to
GNodes. To briefly explain the idea, we denote density(w) as the ratio of num-
ber of keys inside a subtree rooted at w divided by the number of maximum keys
that a subtree rooted at w can hold. For example, a subtree with root w that
is located three levels away from an internal leaf of a GNode can hold at most
23 − 1 keys. If the subtree only contains 3 keys, then density(w) =3/7 = 0.42.
We also denote a density threshold 0 < Γ1 < Γ2 < ... < ΓH = 1, where H is the
GNode’s height. The main idea is after a new key is inserted at an internal leaf
position v, we find the nearest ancestor w of v where density(w) ≤ Γdepth(w) and
depth(w) is the level where w resides, counted from the root of the GNode. If
that w is found, we rebalance the subtree rooted at w.

Heterogeneous GNodes. We aim to reduce the overhead of rebalancing
and lower the GreenBST height with the usage of different layout for the leaf
GNodes (or heterogeneous). All DeltaTree’s GNodes use the leaf-oriented BST

GreenBST: Energy-Efficient Concurrent Search Tree 511

layout, or DeltaTree uses homogeneous GNodes. Unlike DeltaTree, leaf GNodes
in GreenBST use the internal tree layout instead of the external (or leaf-oriented)
tree layout. In the internal tree layout, keys are located in all nodes of a tree,
while in the external tree layout, keys are only located in the leaf nodes. The rea-
soning behind this choice is although leaf-oriented GNodes layout is required for
inter-GNode connection (i.e., between parent- and child- GNodes), leaf GNodes
do not have any children and therefore, need not to adopt same structure as the
other GNodes.

3 Experiments

We run several different benchmarks to evaluate GreenBST throughput and
energy efficiency. We combine the benchmark results with the last level cache
(LLC) and memory profiles of the trees to draw a conclusion of whether
GreenBST improved fine-grained data locality layout (i.e., heterogeneous layout)
and concurrency (i.e., lower overall cost of runtime maintenance) over DeltaTree
are able to make GreenBST the most energy-efficient tree across different plat-
forms, even when processing the update-intensive workloads. Note that we are
not collecting the computation profiles (e.g., Mflops/second) because all the tree
operations are data-intensive instead of compute-intensive.

We conduct an experiment on GreenBST and several prominent concurrent
search trees (cf. Table 1) using parallel micro-benchmark that is based on Syn-
chrobench [17] (cf. Fig. 5). The trees’ LLC and memory profiles during the micro-
benchmarks are collected and presented in Fig. 5d and e, respectively. To inves-
tigate GreenBST behavior in real-world applications, we implement GreenBST
and CBTree as the backend structures in the STAMP database benchmark
Vacation [29], alongside the Vacation’s original backend structure red-black tree
(rbtree) (cf. Fig. 6).

All the experimental benchmarks are conducted on an Intel high performance
computing (HPC) platform with 24 core 2× Intel Xeon E5-2650Lv3 CPU and
64 GB of RAM, an ARM embedded platform with an 8 core Samsung Exynos
5410 CPU and 2 GB of RAM (Odroid XU+E), and an accelerator platform
based on the Intel Xeon Phi 31S1P with 57 cores and 6GB of RAM (MIC
platform). For the parallel micro-benchmark, the trees are pre-initialized with
several initial keys before running 5 million operations of 100 % (search-intensive)
and 50 % searches (update-intensive), respectively. The initial keys given to both
the ARM and MIC platforms are 222 keys and to the HPC platform are 223 keys.
All experiments are repeated at least 5 times to guarantee consistent results.

Energy efficiency metrics (in operations/Joule) are the energy consump-
tion divided by the number of operations and throughput metrics (in opera-
tions/second) are the number of operations divided by the maximum time for
the threads to finish the whole operations. Energy metrics are collected from the
on-board power measurement on the ARM platform, Intel RAPL interface on
the HPC platform, and micras sysfs interface (i.e., /sys/class/micras/power)
on the MIC platform.

512 I. Umar et al.

Fig. 5. (a,b,c) Energy efficiency and throughput comparison of the trees. On the HPC
platform, DeltaTree and GreenBST energy efficiency and throughput decreases in the
50 % search benchmark using 18 and 24 cores (i.e., with 2 chips) because of the coher-
ence overheads between two CPUs (cf. Sect. 4). In the 50 % search benchmark using 57
cores (MIC platform), BSTTK energy efficiency and throughput beats GreenBST by
20 % because of the coherence overheads in the MIC platform (cf. Sect. 4). (d) LLC-
DRAM data movements on the HPC platform, collected from the CPU counters using
Intel PCM. (e) L2 cache miss counter on the MIC platform, collected using PAPI
library. (f) The tree memory footprint.

GreenBST: Energy-Efficient Concurrent Search Tree 513

Fig. 6. GreenBST energy efficiency and throughput against CBTree and STAMP’s
built-in red-black tree (rbtree) for the vacation benchmark. At best, GreenBST con-
sumes 41 % less energy and requires 42 % less time than CBTree (in the 57 clients
benchmark on the MIC platform).

Experimental Results. Based on the results in Figs. 5 and 6, GreenBST’s
energy efficiency and throughput are the highest compared to DeltaTree and
the other trees. Because of its incremental rebalance, GreenBST outperformed
DeltaTree (and the other trees) in the update-intensive workloads. With its
heterogeneous layout, GreenBST is able to outperform DeltaTree in the search-
intensive workloads. GreenBST energy efficiency and throughput are up to 195 %
higher than DeltaTree for the update intensive benchmark and up to 20 % higher
for the search intensive benchmark (cf. Fig. 5b). Compared to the other trees,
GreenBST energy efficiency and throughput are up to 65 % and 69 % higher,
respectively. Note that CBTree (B-link tree) is a highly-concurrent B-tree variant
that it’s still used as a backend in popular database systems such as PostgreSQL.

The reason behind GreenBST good results is GreenBST’s data transfer (cf.
Fig. 5e) and LLC misses (cf. Fig. 5d) are among the lowest of all the trees. These
facts prove that combination of locality-aware layout and the optimizations that
GreenBST has over DeltaTree are beneficial to both fine-grained locality and
concurrency, of which are the key ingredients of an energy-efficient concurrent
search tree.

4 Discussions

Some of the benchmark results showed that besides data movements, efficient
concurrency control is also necessary in order to produce energy-efficient data
structures. For example, the conventional vEB tree (SVEB) always transferred
the smallest amount of data between memory to CPU, but unfortunately, its
energy efficiency and throughput failed to scale when using 2 or more cores.
SVEB is not designed for concurrent operations and an inefficient concurrency
control (a global mutex) had to be implemented in order to include the tree in this
study (note that we are unable to use a more fine-grained concurrency because
SVEB uses recursive layout in a contiguous memory block). Therefore, even if
SVEB has the smallest amount of data transfer during the micro-benchmarks,

514 I. Umar et al.

the concurrent cores have to spend a lot of time waiting and competing for a
lock. This is inefficient as a CPU core still consumes power (e.g., static power)
even when it is waiting (idle).

Finally, an important lesson that we have learned is that minimizing over-
heads in locality-aware data structures can reduce the structure’s energy con-
sumption. One of the main differences between DeltaTree and GreenBST is that
DeltaTree uses the homogeneous (leaf-oriented) layout, while GreenBST does
not. Leaf-oriented leaf GNodes increased DeltaTree’s memory footprint by 50 %
compared to GreenBST (cf. Fig. 5f) and has caused higher data transfer between
LLC and DRAM (cf. Fig. 5d). Bigger leaf size also increases maintenance cost
for each leaf GNode, because there more data that need to be arranged in every
rebalance or split operation, which leads to lower update concurrency. Therefore,
DeltaTree energy efficiency and throughput are lower than GreenBST.

Inter-CPU and Many-Core Coherence Issue. Our experimental analysis
has revealed that multi-CPU and many-core cache coherence, if triggered, can
degrade concurrent update throughput and energy efficiency of the locality-aware
trees. Figure 5a shows the “dips” in GreenBST’s 50 % update energy efficiency
and throughput on the HPC platform (i.e., in the 50% update/18 cores and 50%
update/24 cores cases). Figure 5c also shows that BSTTK beats GreenBST in
the 50% update/57 cores case on the MIC platform.

Using the CPU performance counters, we have found that the GreenBST
concurrent updates frequently triggered the inter-CPU coherency mechanism. In
the HPC platform, coherency mechanism causes heavy bandwidth saturation in
the CPU interconnect. In the MIC platform, it causes most of the L2 data cache
misses to be serviced from other cores and saturates the platform’s bidirectional
ring interconnect. These facts highlight the challenge faced by the locality-aware
concurrent search tree: because of its locality awareness (i.e., related data are
kept nearby and often re-used), the tree concurrent update operations might
trigger heavy interconnect traffic on the multi-CPU platforms. The coherency
mechanisms increase the total number of data transfer and the platform’s energy
consumption.

5 Conclusions

The results presented in this paper not only show that GreenBST is an energy-
efficient concurrent search tree, but also provide an important insight into how to
develop energy efficient data structures in general. On single core systems, having
locality-aware data structures that can lower data movement has been demon-
strated to be good enough to increase energy-efficiency. However, on multi-CPU
and many cores systems, data-structures’ locality-awareness alone is not enough
and good concurrency and multi-CPU cache strategy are needed. Otherwise, the
energy overhead of “waiting/idling” CPUs or multi-CPU coherency mechanism
can exceed the energy saving obtained by fewer data movements.

GreenBST: Energy-Efficient Concurrent Search Tree 515

Acknowledgments. This work has received funding from the European Union Sev-
enth Framework Programme (EXCESS project, grant no. 611183) and from the
Research Council of Norway (PREAPP project, grant no. 231746/F20).

References

1. Afek, Y., Kaplan, H., Korenfeld, B., Morrison, A., Tarjan, R.E.: CBTree: a practical
concurrent self-adjusting search tree. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 1–15. Springer, Heidelberg (2012)

2. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

3. Andersson, A.: Faster deterministic sorting and searching in linear space. In: Pro-
ceedings of the 37th Annual Symposium on Foundations of Computer Science,
FOCS 1996, pp. 135–141, October 1996

4. Arbel, M., Attiya, H.: Concurrent updates with rcu: search tree as an example. In:
Proceedings of 2014 ACM Symposium on Principles of Distributed Computing,
PODC 2014, pp. 196–205 (2014)

5. Bender, M., Demaine, E.D., Farach-Colton, M.: Cache-oblivious b-trees. SIAM J.
Comput. 35, 341 (2005)

6. Bender, M.A., Farach-Colton, M., Fineman, J.T., Fogel, Y.R., Kuszmaul, B.C.,
Nelson, J.: Cache-oblivious streaming b-trees. In: Proceedings of the 19th Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA 2007, pp. 81–92
(2007)

7. Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, B.C.: Concurrent cache-
oblivious b-trees. In: Proceedings of the 17th Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA 2005, pp. 228–237 (2005)

8. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees
of small height. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete
Algorithms, SODA 2002, pp. 39–48 (2002)

9. Brodal, G.S.: Cache-oblivious algorithms and data structures. In: Hagerup, T.,
Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 3–13. Springer, Heidelberg
(2004)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

11. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In:
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2012, pp. 161–170 (2012)

12. Dally, B.: Power and programmability: the challenges of exascale computing. In:
DoE Arch-I presentation (2011)

13. David, T., Guerraoui, R., Trigonakis, V.: Asynchronized concurrency: the secret to
scaling concurrent search data structures. In: Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2015, pp. 631–644 (2015)

14. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing, PODC 2010, pp. 131–140 (2010)

15. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:
Proceedings of the 16th Annual Symposium on Foundations of Computer Science,
SFCS 1975, pp. 75–84 (1975)

516 I. Umar et al.

16. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proceedings of the 40th Annual Symposium on Foundations of Com-
puter Science, FOCS 1999, p. 285 (1999)

17. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2015, pp. 1–10 (2015)

18. Ha, P.H., Tsigas, P., Anshus, O.J.: Wait-free programming for general purpose
computations on graphics processors. In: Proceedings of the 2008 IEEE Interna-
tional Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–12
(2008)

19. Ha, P.H., Tsigas, P.: Reactive multi-word synchronization for multiprocessors. In:
Proceedings of the 12th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2003, pp. 184–193 (2003)

20. Ha, P.H., Tsigas, P., Anshus, O.J.: Nb-feb: a universal scalable easy-to-use synchro-
nization primitive for manycore architectures. In: Proceedings of the 13th Interna-
tional Conference on Principles of Distributed Systems, OPODIS 2009, pp. 189–203
(2009)

21. Ha, P.H., Tsigas, P., Anshus, O.J.: The synchronization power of coalesced memory
accesses. IEEE Trans. Parallel Distrib. Syst. 21(7), 939–953 (2010)

22. Ha, P.H., Tsigas, P., Wattenhofer, M., Wattenhofer, R.: Efficient multi-word lock-
ing using randomization. In: Proceedings of the 24th Annual ACM Symposium on
Principles of Distributed Computing, PODC 2005, pp. 249–257 (2005)

23. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture, ISCA 1993, pp. 289–300 (1993)

24. Hipp, D.R.: Sqlite (2015). http://www.sqlite.org
25. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee,

V.W., Brandt, S.A., Dubey, P.: Fast: fast architecture sensitive tree search on mod-
ern cpus and gpus. In: Proceedings of 2010 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2010, pp. 339–350 (2010)

26. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Trans. Database Syst. 6(2), 213–226 (1981)

27. Larsson, A., Gidenstam, A., Ha, P.H., Papatriantafilou, M., Tsigas, P.: Multi-word
atomic read/write registers on multiprocessor systems. In: Albers, S., Radzik, T.
(eds.) ESA 2004. LNCS, vol. 3221, pp. 736–748. Springer, Heidelberg (2004)

28. Lehman, P.L., Yao, S.B.: Efficient locking for concurrent operations on b-trees.
ACM Trans. Database Syst. 6(4), 650–670 (1981)

29. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: stanford transactional
applications for multi-processing. In: IEEE International Symposium on Workload
Characterization, IISWC 2008, pp. 35–46, September 2008

30. Natarajan, A., Mittal, N.: Fast concurrent lock-free binary search trees. In: Pro-
ceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2014, pp. 317–328 (2014)

31. Prokop, H.: Cache-oblivious algorithms. Master’s thesis. MIT (1999)
32. Rodeh, O.: B-trees, shadowing, and clones. Trans. Storage 3(4), 2:1–2:27 (2008)
33. Sewall, J., Chhugani, J., Kim, C., Satish, N.R., Dubey, P.: Palm: Parallel

architecture-friendly latch-free modifications to b+ trees on many-core processors.
Proc. VLDB Endowment 4(11), 795–806 (2011)

http://www.sqlite.org

GreenBST: Energy-Efficient Concurrent Search Tree 517

34. Tran, V., Barry, B., Ha, P.H.: RTHpower: accurate fine-grained power models
for predicting race-to-halt effect on ultra-low power embedded systems. In: Pro-
ceedings of the 17th IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2016 (2016) (pages to appear)

35. Tran, V., Barry, B., Ha, P.H.: Supporting energy-efficient co-design on ultra-low
power embedded systems. In: Proceedings of the 2016 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS
XVI (2016) (pages to appear)

36. Umar, I., Anshus, O.J., Ha, P.H.: Deltatree: a locality-aware concurrent search
tree. In: Proceedings of the 2015 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS 2015, pp.
457–458 (2015)

37. Umar, I., Anshus, O.J., Ha, P.H.: Effect of portable fine-grained locality on energy
efficiency and performance in concurrent search trees. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2016, pp. 36:1–36:2 (2016)

HAP: A Heterogeneity-Conscious Runtime
System for Adaptive Pipeline Parallelism

Jinsu Park and Woongki Baek(B)

School of ECE, UNIST, Ulsan, South Korea
{jinsupark,wbaek}@unist.ac.kr

Abstract. Heterogeneous multiprocessing (HMP) is a promising solu-
tion for energy-efficient computing. While pipeline parallelism is an effec-
tive technique to accelerate various workloads (e.g., streaming), rela-
tively little work has been done to investigate efficient runtime support
for adaptive pipeline parallelism in the context of HMP. To bridge this
gap, we propose a heterogeneity-conscious runtime system for adaptive
pipeline parallelism (HAP). HAP dynamically controls the full HMP
system resources to improve the energy efficiency of the target pipeline
application. We demonstrate that HAP achieves significant energy-
efficiency gains over the Linux HMP scheduler and a state-of-the-art
runtime system and incurs a low performance overhead.

1 Introduction

Heterogeneous multiprocessing (HMP) is rapidly emerging as a promising solu-
tion for energy efficient computing [9]. The key idea of HMP is to provide mul-
tiple types of cores that are architecturally designed and optimized for different
performance and energy efficiency goals. To maximize the energy efficiency of
HMP, its system software must be able to dynamically analyze the characteristics
of the applications and schedule them on the most efficient cores. Recent work
has demonstrated that application-directed dynamic optimization is effective for
improving the energy efficiency of parallel applications (e.g., web browser [17]
and DBMS [10]).

Pipeline parallelism is an effective software technique to accelerate the exe-
cution of tasks, which are difficult to parallelize using conventional techniques
(e.g., data parallelism) due to the internal dependence between their subtasks.
Pipeline parallelism decomposes the entire task into multiple subtasks and over-
laps the execution of the subtasks for different work items to improve the overall
throughput on parallel systems. Recent work has shown that various workloads
(e.g., data mining [1] and streaming [4]) can be effectively accelerated through
pipelining.

To achieve the best possible energy efficiency of pipeline parallelism on HMP,
heterogeneity-conscious runtime support is crucial. While there has been prior
work that investigates the runtime support for adaptive pipeline parallelism, they
have limitations in that they target symmetric multiprocessing (SMP) without

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 518–530, 2016.
DOI: 10.1007/978-3-319-43659-3 38

HAP: A Heterogeneity-Conscious Runtime System 519

any support for HMP [14] or they control only a subset of system resources,
leaving key HMP system resources unmanaged (e.g., no dynamic voltage and
frequency scaling (DVFS) of heterogeneous cores) [8,15] and achieving subopti-
mal energy efficiency.

To bridge this gap, we propose a heterogeneity-conscious runtime sys-
tem for adaptive pipeline parallelism (HAP). Unlike the aforementioned prior
approaches, HAP dynamically controls the full system resources (i.e., core types,
counts, and voltage/frequency levels) of the underlying HMP system to maxi-
mize the energy efficiency of the target pipeline application. In addition, HAP
provides a simple and easy-to-use application programming interface (API) that
programmers can use to exploit the energy-efficient adaptive pipeline parallelism
supported by HAP. Through our quantitative evaluation, we demonstrate the
effectiveness of HAP. Specifically, this paper makes the following contributions:

– We propose a heterogeneity-conscious runtime system for adaptive pipeline
parallelism. HAP manages the full system resources (i.e., core types, counts,
and voltage/frequency levels) of the underlying HMP system for energy-
efficient adaptive pipeline parallelism.

– We implement and evaluate HAP based on a full HMP system. Prior work is
based on architectural simulators that lack the modeling of the entire system
software stack such as the operating system [8,15]. We investigate the inter-
action between the Linux HMP scheduler and pipeline applications, demon-
strating its performance and energy inefficiency.

– We quantify the effectiveness of HAP using six pipeline applications and a
fully-configurable microbenchmark. Our quantitative evaluation shows that
HAP significantly outperforms the Linux HMP scheduler and a state-of-the-art
runtime system for adaptive pipeline parallelism [14,15] in terms of energy effi-
ciency. In addition, our experimental results demonstrate that HAP robustly
detects and adapts to the phase changes of the target pipeline application and
incurs a low performance overhead.

2 Background

Heterogeneous Multiprocessing: A single-ISA heterogeneous multiprocess-
ing system consists of cores that implement the same ISA but exhibit different
architectural characteristics such as the instruction issue width [9]. A core clus-
ter is defined as a group of the cores with the same architectural characteristics.
In this work, for simplicity, we assume that the HMP system consists of the two
types of core clusters, similarly to the ARM’s big.LITTLE processor [7]. The
core cluster that consists of the cores with higher (or lower) performance and
power consumption is referred as the big (or little) core cluster. We assume that
the big and little clusters consist of NB and NL cores, respectively.

In addition, we assume that the big and little clusters provide NfB
and NfL

voltage/frequency levels, which can be dynamically controlled in software. While
per-core DVFS is promising, we consider cluster-level DVFS in this work because
per-core DVFS is not yet widely supported in commodity processors.

520 J. Park and W. Baek

Pipeline Parallelism: Pipeline parallelism decomposes a task into subtasks
and overlaps their execution to improve the overall throughput. A pipeline appli-
cation consists of one or more stages, each of which executes its assigned sub-
task for processing work items. Adjacent stages communicate through the work
queues. Each pipeline stage consists of one or more worker threads. Each stage
worker thread retrieves a work item from its input queue, processes it, and inserts
the processed work item into its output queue, which is used as the input queue
of the next stage.

The throughput of a pipeline stage is defined as the number of work items
that can be processed by the stage per unit time. If the average processing
time of a work item in stage s is ts and the number of worker threads is Ns,
the throughput of the stage s is computed as λs = Ns

ts
. The limiter stage of a

pipeline application is defined as the stage whose throughput is the minimum
among all the stages. The non-limiter stages are defined as all the stages except
for the limiter stage. The overall throughput of the pipeline application is lim-
ited by the throughput of the limiter stage. This indicates that accelerating the
non-limiter stages by allocating excessive hardware resources may significantly
degrade energy efficiency without achieving any performance gain.

Heterogeneity-conscious runtime support is crucial to achieve the best pos-
sible energy efficiency of pipeline parallelism on HMP systems due to the fol-
lowing reasons. First, since the system state space rapidly grows with various
characteristics of the target pipeline application (e.g., stage count and worker
count) and the underlying HMP system (e.g., core types, counts, and voltage/fre-
quency levels), it is nearly infeasible to develop a profiling-based static system
for energy-efficient pipeline parallelism. Second, since the target pipeline applica-
tion may exhibit widely different behaviors depending on its input data and pro-
gram phases, it is critical to dynamically adapt its execution in a heterogeneity-
conscious and energy-efficient manner, guided by runtime information.

3 Design and Implementation

HAP mainly consists of two components – the application programming inter-
face (API) and the runtime system. For simplicity, we describe the design and
implementation of HAP with an assumption that the underlying HMP system
consists of two types of core clusters (i.e., big and little). However, we believe
that our proposed techniques can be generalized for various HMP systems (e.g.,
more core types).

3.1 The HAP API

HAP provides the four API functions summarized in Table 1. To exploit the
energy-efficient adaptive pipeline parallelism supported by HAP, programmers
need to instrument their applications using the API functions. The begin app
function is used to notify the beginning of the target pipeline application. The
begin app function establishes the interprocess communication (IPC) between

HAP: A Heterogeneity-Conscious Runtime System 521

Table 1. The HAP application programming interface (API)

Function Description

begin app(nStage) Beginning of the target pipeline application

begin work() Beginning of the work-item processing

end work(stageId) End of the work-item processing

end app() End of the target pipeline application

the target pipeline application and the HAP runtime system and sends the infor-
mation on the target application (e.g., the number of pipeline stages) to the HAP
runtime system through IPC.

The begin work function is used to mark the beginning of a work-item
processing performed by the calling stage worker thread. The begin work func-
tion reads the time (tB) when the processing of the work item is about to
begin. The end work function reads the time (tE) when the processing of the
work item has ended and sends the data such as the work-item processing time
(tW = tE − tB) and the stage ID of the calling thread to the HAP runtime
system through IPC. Finally, the end app function is used to notify the end of
the target pipeline application.

The current implementation of the HAP API builds upon the Application
Heartbeats framework [6], which provides a well-established interface to commu-
nicate messages called heartbeats between processes. We extend the Application
Heartbeats framework to encode and communicate pipeline-specific information
such as the stage ID and work-item processing time (tW).

3.2 The HAP Runtime System

The HAP runtime system manages the full system resources to significantly
enhance the energy efficiency of the target pipeline application. The system
resources managed by the HAP runtime system are the core types, counts, and
the voltage/frequency levels of each cluster. The HAP runtime system divides
the system resources into two groups – the ones allocated to the limiter stage of
the target pipeline application and the others allocated to the non-limiter stages.
We define the system state space as all the possible combinations of the system
resources that can be allocated to the limiter stage. Figure 1 shows the overall
architecture of the HAP runtime system, which consists of three components –
the performance estimator, power estimator, and runtime manager.

Performance Estimator: For a system state of interest, the performance esti-
mator of HAP estimates the performance of the target pipeline application. The
performance estimator assumes that each of the stage worker threads of the
target pipeline application is assigned with its dedicated core. The performance
estimator employs a linear model that assumes that the performance of each
worker thread of the limiter stage is proportional to the computation capacity

522 J. Park and W. Baek

Heterogeneous Multi-Processing System

Pipeline Application

Runtime
Manager

Power
Estimator

Performance
Estimator

Candidate
Sys. States

Est. Perf.
Data

Candidate
Sys. States

Est. Power
Data

Heartbeat

Next System State

HAP

Fig. 1. The overall architecture of the HAP runtime system

of its allocated core. If the performance ratio of the big core to the little core is
r0 at the frequency of f0, the computation capacities of the big and little cores
running at the frequencies of fB and fL are r0 · fB

f0
and fL

f0
. The performance

ratio (r0) can be either statically determined based on the architectural char-
acteristics (e.g., instruction issue width) of heterogeneous cores or dynamically
determined based on the runtime information collected during the execution of
the target pipeline application. As discussed later, r0 is dynamically computed
based on the runtime information encoded in the heartbeats.

Power Estimator: For a system state of interest, the power estimator of HAP
estimates the power consumption of the underlying HMP system. The power esti-
mator estimates the power consumption of the big and little core clusters based
on a linear regression model, which assumes that the power consumption of each
cluster is proportional to the sum of the utilization of the cores in the correspond-
ing cluster. The regression coefficient values are determined for every available
frequency of each cluster. The regression coefficients are computed based on the
data collected through the offline experiments with our microbenchmark that
can stress the underlying HMP system with different configurations (e.g., core
type, count, frequency, and utilization). Currently, the power estimator assumes
that the power consumption of other hardware components (e.g., memory) is
constant, which can be extended with more sophisticated models. In summary,
the power estimator uses Eq. 1 to estimate the power consumption of the under-
lying HMP system.

P = αB,fB
·

NB−1
∑

i=0

UB,i + βB,fB
+ αL,fL

·
NL−1
∑

i=0

UL,i + βL,fL
+ γ (1)

The power estimator assumes that all the cores allocated to the limiter stage
are fully utilized because, by its definition, it is the performance bottleneck
among all the stages. To estimate the utilization of the cores allocated to the non-
limiter stages, the power estimator sorts the non-limiter stage worker threads in
an increasing order of the throughput and the cores allocated to the non-limiter
stages in a non-increasing order of the computation capacity, respectively. The
power estimator assumes that the runtime manager establishes the one-to-one

HAP: A Heterogeneity-Conscious Runtime System 523

mapping of each worker thread to core in the sorted order, which is the actual
scheduling performed by the runtime manager. Based on the queuing theory [12],
the utilization of each core allocated to a non-limiter stage s is approximated to
be Us = λlim·ts

Ns
, where λlim, ts, and Ns are the throughput of the limiter stage,

the work-item processing time, and the worker thread count of the stage s.
We note that the utilization of cores where the non-limiter stages are sched-

uled can be computed more precisely based on the queuing theory extended
for heterogeneous servers [5] because of the different processing capabilities of
the stage worker threads scheduled on different clusters. However, we decide to
use an approximate solution because the computational complexity of the pre-
cise solution is high and the accuracy of the approximate solution is expected
to be reasonable [5]. By substituting the estimated utilization of all the cores
into Eq. 1, the power estimator estimates the power consumption of the target
pipeline application for a system state of interest.

Runtime Manager: The HAP runtime manager explores the system state
space to find an efficient system state that significantly reduces the energy con-
sumption of the target pipeline application. The system state space rapidly grows
with the worker thread count of the limiter stage and architectural parameters
of the underlying HMP system (e.g., core types, counts, and voltage/frequency
levels). For instance, if the limiter stage consists of two worker threads and the
underlying HMP system consists of four big cores with NfB

voltage/frequency
levels and four little cores with NfL

voltage/frequency levels, the number of all
the system states is NfB

+ NfB
·NfL

+ NfL
. Due to the large system state space,

the runtime manager explores the system state space based on an incremental
and greedy algorithm, inspired by the hill-climbing algorithm [13].

The runtime manager executes in two phases – the adaptation and idle
phases. Algorithm 1 shows the pseudocode for the runtime manager. During the
adaptation phase, the runtime manager checks if an adaptation period has been
reached (Line 7) for every new heartbeat generated when a stage worker thread
finishes the processing of a work item. The adaptation phase consists of three
sub-phases – the initial, observation, and exploration sub-phases.

The runtime manager runs in the initial sub-phase until the first adaptation
period is reached. At the end of the initial sub-phase (Line 9), the runtime
manager retrieves the information on the target pipeline application such as
the thread ID of each stage worker thread. The runtime manager then sets the
affinity of all the threads of each stage to each of the available cores, transitioning
to the observation sub-phase.

The runtime manager runs in the observation sub-phase until the second
adaptation period is reached. At the end of the observation sub-phase (Line 11),
the runtime manager retrieves the dynamic information on the target pipeline
application such as the throughput of each stage using the data encoded in the
received heartbeats and the equation discussed in Sect. 2. The runtime manager
then identifies the limiter stage, sets the system state to the initial state, and
transitions into the exploration sub-phase.

524 J. Park and W. Baek

Algorithm 1. The pseudocode for the HAP runtime manager

1: limiter ← invalidStageId; pScore ← 0
2: firstAdtPeriod ← false; cScore ← 0
3: pState ← obsState; cState ← obsState
4: phase ← adaptation; subPhase ← initial
5: procedure main

6: while true do
7: if isAdaptPeriod() then
8: if phase = adaptation then
9: if subPhase = initial then
10: subPhase ← observation
11: else if subPhase = observation then
12: subPhase ← exploration
13: limiter ← findLimiter()
14: firstAdtPeriod ← true
15: cState ← initState
16: else � Exploration sub-phase
17: cScore ← computeScore()
18: exploreSystemStateSpace()

19: else � Idle phase
20: if triggerReadaptation() = true then
21: phase ← adaptation
22: subPhase ← initial
23: resetVariables()

24: applyState()

25: procedure exploreSystemStateSpace

26: if firstAdtPeriod = false ∧ cScore − pScore
< δc then

27: cState ← pState
28: phase ← idle
29: else
30: if firstAdtPeriod = true then
31: firstAdtPeriod ← false
32: pState ← cState
33: pScore ← cScore
34: cState ← getNextState()
35: if cState = invalidState then
36: cState ← pState
37: phase ← idle

38: procedure getNextState

39: bestState ← invalidState
40: bestScore ← minScore
41: candStates ← cState ∪ getNeigh-

borStates(cState)
42: for candState in candStates do
43: estScore ← estimateScore(candState)
44: if estScore > bestScore then
45: bestState ← candState
46: bestScore ← estScore
47: if bestState = cState then
48: bestState ← invalidState
49: return bestState

During the exploration sub-phase (Line 16), the runtime manager explores
the system state space to find an efficient system state that results in the
significantly reduced energy consumption of the target pipeline application.
The runtime manager explores the system state space based on an incremen-
tal and greedy algorithm. At each adaptation period,1 the runtime manager
invokes the exploreSystemStateSpace function, which subsequently calls the
getNextState function to determine the next system state to transition. The
runtime manager adapts the system state in an incremental manner in that the
candidate system states are generated by incrementally changing the system
resources allocated to the limiter stage from the current system state.

Specifically, the runtime manager considers the system states that are within
the Manhattan distance d from the current system state in the three dimensional
system state space (i.e., the big core count allocated to the limiter stage,2 the
frequencies of the big and little core clusters) as the candidate system states
(Line 41). For instance, with the current system state of (nB , fBi

, fLj
) and

d = 1, the candidate system states are (nB + 1, fBi
, fLj

), (nB − 1, fBi
, fLj

),
(nB , fBi+1 , fLj

), · · · , and (nB , fBi
, fLj−1). With larger d, the runtime manager

1 At the end of the first adaptation period of the exploration sub-phase, the runtime
manager computes the performance ratio (r0) of the big core to the little core based
on the work-item processing time (tW) data encoded in the heartbeats generated by
the stage worker threads scheduled on the big and little core clusters.

2 Since the little core count of the limiter stage can be determined from its big core
count, we do not consider its little core count when computing d.

HAP: A Heterogeneity-Conscious Runtime System 525

explores the system state space more exhaustively at the potential cost of higher
performance overheads and instability due to abrupt system state changes.

The runtime manager adapts the system state in a greedy manner in that it
chooses the next system state as the one that is estimated to result in the highest
energy efficiency among all the candidate system states (Lines 42–46).3 The
energy efficiency (i.e., joules per processed work item) of each candidate system
state is estimated to be PEst

λEst
, where λEst and PEst are its performance and power

consumption estimated through the performance and power estimators.
The runtime manager transitions to the idle phase in the following two cases.

First, if the energy efficiency of the current period is lower than the previous
period, the runtime manager restores the previous system state and transitions
to the idle state (Lines 26–28). The energy efficiency of the current period is com-
puted based on the actual energy consumption data collected using the sensors
discussed in Sect. 4 and the throughput data. Second, if none of the candidate
states are expected to achieve higher energy efficiency than the current system
state (Lines 35 and 47), the runtime manager transitions to the idle phase.

During the idle phase (Line 19), the runtime manager executes the target
pipeline application without performing any adaptation but keeps monitoring
the application to detect its phase changes. When detecting a program phase
change, the runtime manager terminates the idle phase and triggers the entire
adaption process again (Lines 20–23). To detect phase changes, the runtime
manager computes the work ratio (rW) of the limiter stage to the non-limiter
stages. If the work ratios between the consecutive periods differ by rth and NR

times in a row, the runtime manager determines that the program phase of the
target pipeline application has changed and transitions to the adaptation phase
to find a new efficient system state. Unless stated otherwise, d, rth, and NR are
set to 5, 25 % and 3.

4 Evaluation

Methodology: To quantify the effectiveness of HAP, we use a full heteroge-
neous multiprocessing (HMP) system, the ODROID-XU3 embedded develop-
ment board. The board is equipped with the Exynos 5422 processor based on
the ARM’s big.LITTLE architecture [7]. The processor consists of the four big
cores (i.e., NB = 4) and the four little cores (i.e., NL = 4). The board is installed
with Xubuntu 14.04 and the Linux kernel 3.10.69, which implements the HMP
scheduler. The configurable frequency ranges of the big and little clusters are 0.2
– 2.0 GHz and 0.2 – 1.4 GHz, respectively. The board is equipped with sensors
that periodically sample the power consumption of the big cluster, little cluster,
memory, and GPU, which we use to construct the linear regression model of the
power estimator and to measure the energy consumption of the HMP system
during the execution of the target pipeline application.

3 Note that HAP can be generalized to perform optimizations based on other metrics
(e.g., energy-delay product) by customizing the estimateScore function (Line 43).

526 J. Park and W. Baek

We use the following six pipeline benchmarks, some of which are modified to
exploit pipeline parallelism – blackscholes (BL) [3], binomialoptions (BO) [3],
bzip2 (BZ) [2], dedup (DD) [1], ferret (FR) [1], montecarlo (MC) [3]. The number
of stages of BL, BO, BZ, DD, FR, and MC are 3, 3, 3, 5, 6, and 3, respectively. We also
use a microbenchmark that is fully configurable in terms of pipeline parameters
such as the number of stages, workers per stage, workload per worker.

Our evaluation aims to investigate the following. First, we quantify how much
energy efficiency gain can be achieved through the use of HAP. Second, we eval-
uate the effectiveness of the re-adaptation functionality of HAP when the target
pipeline application has multiple distinct program phases. Third, we investigate
the sensitivity of the energy efficiency and performance overhead of HAP to the
search distance parameter (d), which controls the exhaustiveness of the system
space exploration.

0.0
0.5
1.0
1.5
2.0
2.5

BL BO BZ DD FR MC GM

N
or

m
. E

ne
rg

y

S-MIN S-MAX S-BEST FDP HAP

(a) Full subscription

0.0

0.5

1.0

1.5

BL BO BZ DD FR MC GM

N
or

m
. E

ne
rg

y

S-MIN S-MAX S-BEST FDP HAP

(b) Moderate subscription

Fig. 2. Normalized energy

Energy Efficiency: We evaluate the energy efficiency of HAP. We run the each
benchmark with the following five OS or runtime versions – (1) the Linux HMP
scheduler with the lowest big and little core frequencies (S-MIN), (2) the Linux
HMP scheduler with the highest big and little core frequencies (S-MAX), (3) the
Linux HMP scheduler with the big and little core frequencies that result in the
best energy efficiency among all the possible combinations of the minimum,
medium, and maximum frequencies (S-BEST),4 (4) feedback-directed pipeline
parallelism (FDP), which implements the runtime system proposed in [14,15],5

and (5) HAP. In addition, to investigate the effectiveness of HAP with differ-
ent system utilization levels, we configure each benchmark in the following two
settings – (1) full subscription, in which the worker thread counts of the limiter
and each of the non-limiter stages are set to NB + NL −S + 1 and 1, where S is
the number of stages and (2) moderate subscription, in which the worker thread
counts of the limiter and each of the non-limiter stages are set to 2 and 1.

4 Due to the large system space which requires infeasibly long time for collecting pro-
filed data, we selectively use the most representative frequencies (i.e., min, medium,
and max) to determine the configuration for S-BEST.

5 Due to space limit, we refer to [14,15] for more details on FDP.

HAP: A Heterogeneity-Conscious Runtime System 527

Figure 2(a) shows the energy consumption of the five OS and runtime versions
normalized to S-MIN with the full subscription setting, demonstrating the follow-
ing data trends. First, HAP significantly outperforms the Linux HMP scheduler
in terms of energy efficiency. Specifically, HAP reduces the energy consumption
of the target pipeline applications by 42.4, 64.8, and 20.8 % on average (i.e., geo-
metric mean), compared with the S-MIN, S-MAX, and S-BEST versions. HAP
outperforms S-BEST mainly due to the performance inefficiency of the current
version of the Linux HMP scheduler. For some benchmarks (e.g., BL), we observe
that the Linux HMP scheduler often heavily biases CPU-intensive stage worker
threads to the big cores even when the little cores are idle, eventually causing
performance and energy efficiency degradation due to the load imbalance.

Second, HAP significantly outperforms FDP, which is a state-of-the-art run-
time system for adaptive pipeline parallelism. Specifically, HAP reduces the
energy consumption of the target pipeline applications by 63.8 % on average,
compared with FDP. This is mainly because FDP lacks the capability of con-
trolling voltage/frequency levels of heterogeneous core clusters, which are critical
hardware knobs for achieving high energy efficiency. In contrast, HAP manages
the full system resources (i.e., core types, counts, and voltage/frequency levels),
significantly improving the energy efficiency of the target pipeline applications.

Figure 2(b) shows the energy consumption of the five OS and runtime versions
normalized to S-MIN with the moderate subscription setting. HAP continues to
achieve higher energy efficiency gains over the other OS and runtime versions
with moderate subscription. Specifically, HAP reduces the energy consumption
of the target pipeline applications by 55.3, 67.5, 32.0, and 63.4 % on average, com-
pared with the S-MIN, S-MAX, S-BEST, and FDP versions. Since the system is
less utilized with moderate subscription, HAP discovers more opportunities for
reducing the energy consumption of the target pipeline application (e.g., setting
the frequency of the unused core cluster to the lowest level), achieving higher
energy efficiency gains than the case with full subscription. In summary, our
experimental results show that HAP is effective in that it significantly outper-
forms all the other OS and runtime versions in terms of energy efficiency.

0.0
0.5
1.0
1.5
2.0

0
1
2
3
4

0 10 20 30 40 50 60 70 80 90

Fr
eq

. (
G

H
z)

C
or

e
C

ou
nt

Time (s)

N_B N_L F_B F_L

(a) Runtime behavior

0.0
0.5
1.0
1.5
2.0

S-
M

IN

S-
M

A
X

S-
B

ES
T

FD
P

H
A

P-
N

R

H
A

P

N
or

m
. E

ne
rg

y

(b) Energy efficiency

Fig. 3. Effectiveness of re-adaptation

528 J. Park and W. Baek

Effectiveness of Re-adaptation: To evaluate the effectiveness of the re-
adaptation functionality of HAP, we use a microbenchmark, which is config-
ured to exhibit three distinct phases. Figure 3(a) shows the runtime behavior of
the microbenchmark. At t = 23.0, the microbenchmark transitions to the second
phase in which the work ratio (rW) of the limiter to the non-limiter stages signif-
icantly changes. HAP robustly detects the phase change and accordingly adapts
the system state after observing that the three consecutive samples of rW are
consistent (i.e., NR = 3). At t = 48.8, the microbenchmark transitions to the
third phase in which one of the non-limiter stages becomes the new limiter stage.
HAP also robustly detects the phase change and accordingly performs adapta-
tions. Figure 3(b) demonstrates the effectiveness of the re-adaptation functional-
ity of HAP in that HAP significantly outperforms all the other OS and runtime
versions in terms of energy efficiency, including a variant of HAP (i.e., HAP-NR)
with which the re-adaptation functionality is intentionally disabled for illustra-
tive purposes.

0.0
0.2
0.4
0.6
0.8

1 2 3 4 5 6 7

N
or

m
. E

ne
rg

y

Distance (d)

Full Moderate

(a) Energy efficiency

0.0

0.5

1.0

1.5

1 2 3 4 5 6 7

C
PU

 U
til

. (
%

)

Distance (d)

Full Moderate

(b) CPU utilization

Fig. 4. Sensitivity to the search distance

Sensitivity to the Search Distance: Finally, we investigate the sensitivity of
the energy efficiency and performance overhead of HAP to the search distance
(d) parameter. Figure 4(a) shows the average (i.e., geometric mean) energy con-
sumption of HAP across all the evaluated benchmarks, normalized to OS-MIN
when d varies from 1 to 7. With larger d, the energy efficiency of HAP gener-
ally improves because it explores the system state more exhaustively. When d
is sufficiently large (i.e., d > 5), the energy efficiency of HAP slightly decreases
as d increases. This is mainly because HAP may converge to a slightly subop-
timal system state when the system state changes too abruptly with larger d.
Nevertheless, HAP consistently provides significant energy-efficiency gains over
the Linux HMP scheduler both in the full and moderate subscription settings.

To quantify the performance overhead of HAP, Fig. 4(b) shows the sensi-
tivity of the CPU utilization of HAP to the search distance. With larger d,
the CPU utilization of HAP tends to gradually increase because it explores the
system state space more exhaustively. However, the CPU utilization of HAP
is insignificant (i.e., < 1.0 %) across all the configurations. Interestingly, with
sufficiently large d (i.e., d > 4), the CPU utilization of HAP slightly decreases.

HAP: A Heterogeneity-Conscious Runtime System 529

This is mainly because HAP converges faster with sufficiently large d and then
consumes significantly less CPU cycles afterward. In summary, our experimen-
tal results demonstrate that HAP is an effective runtime system for adaptive
pipeline parallelism in that it significantly improves energy efficiency, robustly
adapts to program phase changes, and incurs a low performance overhead.

5 Related Work

Prior work has proposed runtime techniques for adaptive pipeline paral-
lelism [8,14,15]. While insightful, the proposed techniques target runtime sup-
port for symmetric multiprocessing (SMP) systems [14] or lack the management
of full system resources (e.g., no DVFS) of HMP systems [8,15], resulting in sub-
optimal energy efficiency as quantified by our experimental results. Further, the
techniques proposed in [8,15] have been evaluated using architectural simula-
tors without in-depth investigation of the interaction among the target pipeline
application, runtime, and OS. Our work differs in that HAP effectively manages
the full system resources (core types, counts, and voltage/frequency levels) and
is implemented and evaluated based on a real HMP system with the full system
software stack.

Prior work has proposed architectural [9] and system software [11,16] tech-
niques to enhance the power and/or energy efficiency of conventional applications
on HMP systems. Our work differs in that we propose an energy-efficient run-
time system for adaptive pipeline parallelism in the context of HMP. In addition,
recent work has investigated application-level techniques to improve the energy
efficiency of the web browser [17] and DBMS [10]. While similar in that they uti-
lize the application-level knowledge to enhance energy efficiency, our work differs
as HAP targets efficient runtime support for adaptive pipeline parallelism.

6 Conclusions

This work presents HAP, a heterogeneity-conscious runtime system for adaptive
pipeline parallelism. HAP dynamically controls the full system resources of the
underlying HMP system to maximize the energy efficiency of the target pipeline
application. In addition, HAP provides a simple and easy-to-use application
programming interface that programmers can use to exploit the energy efficient
adaptive parallelism supported by HAP. Our quantitative evaluation demon-
strates the effectiveness of HAP in that it significantly outperforms the Linux
HMP scheduler and the state-of-the-art runtime system for adaptive pipeline
parallelism in terms of energy efficiency, robustly adapts to the phase changes
of the target pipeline application, and incurs a small performance overhead.
As our future work, we plan to extend HAP by investigating more advanced
search algorithms that explore the system state space with higher coverage and
efficiency.

Acknowledgements. This research was supported by ICT R&D program of MSIP/
IITP (B0101-16-0661).

530 J. Park and W. Baek

References

1. Bienia, C., et al.: The PARSEC benchmark suite: characterization and architec-
tural implications. In: PACT 2008 (2008)

2. BZIP2SMP. http://bzip2smp.sourceforge.net/
3. CUDA Samples. http://docs.nvidia.com/cuda/cuda-samples/
4. Gordon, M.I., et al.: Exploiting coarse-grained task, data, and pipeline parallelism

in stream programs. In: ASPLOS XII (2006)
5. Gumbel, H.: Waiting lines with heterogeneous servers. Oper. Res. 8(4), 504–511

(1960)
6. Hoffmann, H., et al.: Application heartbeats: a generic interface for specifying

program performance and goals in autonomous computing environments. In: ICAC
2010 (2010)

7. Je, B.: Big.LITTLE system architecture from ARM: saving power through hetero-
geneous multiprocessing and task context migration. In: DAC 2012 (2012)

8. Joao, J.A., et al.: Bottleneck identication and scheduling in multithreaded appli-
cations. In: ASPLOS XVII (2012)

9. Kumar, R., et al.: Single-ISA heterogeneous multi-core architectures: the potential
for processor power reduction. In: MICRO 36 (2003)

10. Mühlbauer, T., et al.: Heterogeneity-conscious parallel query execution: getting a
better mileage while driving faster! In: DaMoN 2014 (2014)

11. Muthukaruppan, T.S., et al.: Hierarchical power management for asymmetric
multi-core in dark silicon era. In: DAC 2013 (2013)

12. Navarro, A., et al.: Analytical modeling of pipeline parallelism. In: PACT 2009
(2009)

13. Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer-Verlag, London
(2008)

14. Suleman, M.A., et al.: Feedback-directed pipeline parallelism. In: PACT 2010
(2010)

15. Suleman, M.A.: An asymmetric multi-core architecture for efficiently accelerat-
ing critical paths in multithreaded programs. Ph.D. thesis. University of Texas at
Austin (2010)

16. Yun, J., et al.: HARS: A heterogeneity-aware runtime system for self-adaptive
multithreaded applications. In: DAC 2015 (2015)

17. Zhu, Y., et al.: High-performance and energy-efficient mobile web browsing on
Big/Little systems. In: HPCA 2013 (2013)

http://bzip2smp.sourceforge.net/
http://docs.nvidia.com/cuda/cuda-samples/

Using Data Dependencies to Improve
Task-Based Scheduling Strategies

on NUMA Architectures

Philippe Virouleau1,2(B), François Broquedis1, Thierry Gautier2,
and Fabrice Rastello1

1 Inria, Univ. Grenoble Alpes, CNRS, Grenoble Institute of Technology,
LIG, Grenoble, France

{philippe.virouleau,francois.broquedis,fabrice.rastello}@inria.fr
2 LIP, ENS de Lyon, Lyon, France
thierry.gautier@inrialpes.fr

Abstract. The recent addition of data dependencies to the OpenMP 4.0
standard provides the application programmer with a more flexible way
of synchronizing tasks. Using such an approach allows both the compiler
and the runtime system to know exactly which data are read or written
by a given task, and how these data will be used through the program
lifetime. Data placement and task scheduling strategies have a significant
impact on performances when considering NUMA architectures. While
numerous papers focus on these topics, none of them has made extensive
use of the information available through dependencies. One can use this
information to modify the behavior of the application at several levels:
during initialization to control data placement and during the applica-
tion execution to dynamically control both the task placement and the
tasks stealing strategy, depending on the topology. This paper introduces
several heuristics for these strategies and their implementations in our
OpenMP runtime Xkaapi. We also evaluate their performances on linear
algebra applications executed on a 192-core NUMA machine, reporting
noticeable performance improvement when considering both the archi-
tecture topology and the tasks data dependencies. We finally compare
them to strategies presented previously by related works.

Keywords: OpenMP · Task dependencies · Benchmark · Runtime
systems · NUMA · Xkaapi · Scheduling · Work-stealing

1 Introduction

While non-uniform memory access (NUMA) architectures stand today as one of
the most popular design to build large-scale shared memory machines, exploiting
them at their full potential remains challenging. On such architectures, the mem-
ory is split into several NUMA nodes and both bandwidth and latency depend
on which processor accesses specific data: accessing memory allocated locally is

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 531–544, 2016.
DOI: 10.1007/978-3-319-43659-3 39

532 P. Virouleau et al.

most of the time faster than accessing data allocated to remotely-located NUMA
nodes. Controlling data locality over the application lifetime is one of the key
steps to achieving both good performance and scalability on these architectures.

Task-based parallel programming environments like OpenMP have become
very popular when it comes to program shared memory machines with hundreds
of cores. Indeed, they offer ways of expressing massive fine-grain parallelism with
a relatively low overhead. Most of them also come with facilities to dynamically
perform load balancing of tasks over the processors. Even if such characteristics
fill the need of generating more and more parallelism out of parallel applica-
tions, standard parallel programming environments still not explicitly address
the problem of data locality on NUMA systems.

The runtime system plays a central role in the execution of a task-based par-
allel application. For example, it is responsible for assigning ready tasks to the
target platforms’ processors. It is also in charge of performing load balancing
when a processor idles. Both these decisions should take the architecture topol-
ogy into account in order to avoid NUMA-related performance penalties on the
overall application performance.

The recent addition of data dependencies to the OpenMP tasking model
provides the runtime system with very precise information about which part
of an application accesses which variables. Thanks to these dependencies, the
runtime system knows which memory areas are read or written by which task.
As shown in this paper, the task scheduler can rely on this information when
assigning tasks to processors to implement NUMA-aware strategies.

This paper describes several of these strategies we implemented inside the
Xkaapi [9] runtime system. We identified three major steps in the task scheduler
workflow that may have an impact on parallel applications on NUMA systems:
the data distribution, the assignment of ready tasks to the processors and the
way the task scheduler browses the architecture topology to perform load bal-
ancing. This paper describes and evaluates them, showing how they impact the
application performance on a 192-core NUMA machine. We also compare them
to state-of-the-art task scheduling strategies taken from related works and imple-
mented within Xkaapi.

The layout of this paper falls into six sections as follows. In Sect. 2, we first
give some background on NUMA architectures and the task programming model
with data dependencies. We then describe in Sect. 3 the ideas, strategies and
implementation details that we used to improve the runtime performances for
these applications. Section 4 is devoted to the presentation performances evalu-
ation. We eventually present some related works in Sect. 5 before concluding.

2 NUMA Architectures Design and Exploitation

2.1 Hardware Background

Most of nowadays parallel shared memory architectures are built according to a
NUMA design where the memory is physically split into several banks attached
to processors. Many vendors assemble these banks in a hierarchical way, thus

Using Data Dependencies to Improve Task-Based Scheduling Strategies 533

building shared memory machines embedding several hundreds of cores. Exploit-
ing such architectures at their full potential requires a fine control of the exe-
cution of a parallel application, as accessing local memory is most of the time
faster than accessing memory stored in a memory bank attached to a remote
processor.

The machine we experimented on is an SGI UV2000 platform made of 24
NUMA nodes. Each NUMA node holds an 8-core Intel Xeon E5-4640 CPU for
a total of 192 cores. We refer to this machine as Intel192 in the paper. The
memory topology is organized by pairs of NUMA nodes connected together
through Intel QuickPath Interconnect. These pairs can communicate together
through a proprietary fabric called NUMALink6 with up to two hops.

Table 1 shows the distances advertised by the hwloc library [4] that represents
the communication time for different distances normalized to the time of a local
communication. Distances named local and peer form a pair of NUMA nodes
(through Intel QPI), other nodes are either one hop away or two hops away
(through NUMALink6).

Table 1. NUMA distances from node 0 advertised by the hwloc library on Intel192.

NUMA nodes location local peer one hop away two hops away

hwloc distances 1.0 5.0 6.5 7.9

2.2 Software Background

To exploit large-scale shared memory architectures, the application programmer
needs:

1. to express massive fine grain parallelism to get the most out of the numerous
processing units of the platform;

2. to control the execution of the application, especially the way computations
and data are distributed over the platform, to prevent the NUMA design to
have a negative impact on the overall application performance.

Task-based parallel programming environments provide ways of expressing
fine grain parallelism that can be dynamically assigned to processors at runtime.
OpenMP [12], the de-facto standard for shared-memory parallel programming,
supports task parallelism with dependencies since revision 4.0.

A Glimpse at OpenMP Tasking. An OpenMP task can be seen as an inde-
pendent unit of work an OpenMP thread can execute. Tasks can be created
by an OpenMP thread and executed by any thread of the same parallel region.
As managing tasks at runtime is way cheaper than creating and synchronizing
threads, the application programmer can take the parallelization of its applica-
tion further, as he can now consider portions of code that were too fine grain to

534 P. Virouleau et al.

be parallelized using only threads. The synchronization of OpenMP 3.0 tasks is
performed thanks to the taskwait keyword that waits for the completion of all
the tasks generated from the current OpenMP parallel region. On one hand, the
application programmer is responsible for creating and synchronizing OpenMP
tasks explicitly. On the other hand, the runtime system is in charge of correctly
assigning tasks to threads during the application execution.

OpenMP 4.0 pushes the concept of task further introducing the depend key-
word to specify the access mode of each shared variable a task will access during
its execution. Access modes can be set to either in, out or inout whether the
corresponding variable is respectively read as input, written as output or both
read and written by the considered task. This information is then processed by
the underlying runtime system to decide whether a task is ready for execution
or should first wait for the completion of other ones.

KASTORS Benchmark Suite. Figure 1 shows the implementation of a
Cholesky factorization implemented with OpenMP task dependencies. This fac-
torization algorithm comes from the PLASMA library and is very similar to the
one implemented in the KASTORS benchmark suite [15]. Task dependencies
support comes with several benefits. First, task dependencies involve decen-
tralized, selective synchronization operations that should scale better than the
broad-range taskwait-based approaches. In some situations, this way of pro-
gramming unlocks more valid execution scenarios than explicitly synchronized
tasks, which provides the runtime system with many more valid task schedules
to choose from. For example, in the Cholesky factorization, many instances of
the dtrsm, dsyrk and dgem BLAS computations can legally run concurrently
when executing the version with task dependencies. Secondly, information about
task dependencies also enables the runtime system to optimize further, such as
improving tasks and data placement.

Fig. 1. Cholesky factorization with OpenMP-4.0 task dependencies

Using Data Dependencies to Improve Task-Based Scheduling Strategies 535

The Way We Execute Task-Based Applications. Most task-based pro-
gramming environments rely on a work-stealing execution model, originally
introduced in Cilk [8]. Work-stealing is indeed often considered when it comes
to dynamically balance the workload among processing units. The work-stealing
principle can be summarized as follows. An idle thread, called a thief, initiates
a steal request to a randomly selected victim. On reply, the thief receives a
copy of one ready task, leaving the original task marked as stolen. Coherency
between a thief and its victim is ensured by a variant of Cilk’s T.H.E protocol,
also described in [8].

The runtime system we develop, called Xkaapi, also implements the work-
stealing execution model to execute OpenMP task-based applications. The run-
time creates a system thread, called a kproc, for each processing unit to be used.
On a NUMA multicore machine, a processing unit is a core. A kproc creates
tasks and pushes them on its own work queue, which is implemented as a stack.
The enqueue operation is very fast: it takes around ten cycles on modern x86/64
processors [3]. As in Cilk, a running Xkaapi task can create children tasks.
Depending on the number of tasks per thread, Xkaapi implements two strate-
gies to find a ready task. If the number of tasks is lower than a threshold, Xkaapi

follows the Cilk’s work first principle. In that case, the thief iterates through the
victim’s stack queue from the least recently pushed task to the most recently one
and it computes true data-flow dependencies for each task until a ready task is
found. If the number of tasks is greater than the threshold, the data flow graph
is built and the thief picks a task from the victim’s list of ready tasks [1]. By
the nature of our benchmarks, this latter strategy is de facto selected and we
developed new NUMA aware strategies.

3 Using OpenMP Tasks Dependencies to Improve Tasks
and Data Placement on NUMA Machines

In this section, we describe how the runtime system can have a positive impact on
the application execution using the information provided by data dependencies.
The following sections describe the way we adapted the behavior of the runtime
system to control data placement during the initialization phase, when data will
be allocated and accessed for the first time, and how we modified the way tasks
that perform the actual computations are dynamically assigned to processors
while maximizing data locality.

3.1 Inside the XKAAPI Task-Based Runtime System

This section describes some of the key internal structures and mechanisms of
the Xkaapi runtime system.

The Way XKAAPI Models the Architecture. Xkaapi sees the architecture
topology as a hierarchy of places. A place is a list of tasks associated with a
subset of the machine processing units. Xkaapi’s places are very similar to the

536 P. Virouleau et al.

notion of shepherd introduced in [10], or ForestGOMP’s runqueues [2]. Xkaapi

most of the time only considers two levels of places : node-level places, which are
bound to the set of processors contained in a NUMA node, and processor-level
places, which are bound to a single processor of the platform. This way, at the
processor level one place is associated to each of the physical cores, and at the
NUMA node level one place is associated to each of the NUMA nodes.

The Way XKAAPI Enables Ready Tasks and Steals Them. The scheduling
framework in Xkaapi [1] relies on virtual functions for selecting a victim, select-
ing a place to push a ready task and pushing a set of initial ready tasks.

When a processor becomes idle the runtime system has to select a victim
and calls a function, called WSselect for work-stealing select, to browse the
topology to find a place from which stealing a task from the place task queue.

The completion of a task may unlock the execution of some of its children
in the dependency graph. This means marking them as ready for execution and
pushing at least one of them to a place. Once again, there are many ways of
selecting the place where to push ready tasks, implemented in strategies we
refer to as WSpush, for work-stealing push.

Before parallel computation begins, the runtime system can distribute (push)
the set of ready tasks to multiple places, according to the strategy defined by
WSpush init.

These three functions are the main entry points to specify a scheduling
algorithm in Xkaapi. Sections 3.3 to 3.5 describe strategies for these three
points, all them were designed to explore the possibilities of the target NUMA
architectures, to be able to evaluate which one are worth taking into account.

3.2 Controlling Data Distribution on a NUMA System

Controlling the way data are allocated on a NUMA system requires a good under-
standing of the underlying memory architecture. Application programmers can
achieve this using dedicated tools or libraries, like libNUMA’s numactl [17],
which can be used to set a default memory allocation policy for the whole appli-
cation. For example, the --interleave=all memory policy spreads out all
the memory pages of dynamically allocated variables, over all the NUMA nodes
of the machine. This policy is widely used on NUMA systems in conjunction with
dynamic parallelism, like task-based programs, as it distributes the memory traf-
fic over all the memory controllers, making processors “all equally bad” when it
comes to memory access. To better control data placement, parallel application
programmers are used to relying on the first-touch allocation policy, which is
the default behavior for memory allocation on most Linux systems. This allows
allocating memory pages when they are accessed for the first time.

To better control data distribution on NUMA systems, we propose two dif-
ferent approaches:

– either the application programmer explicitly allocates data on specific
NUMA nodes of the machine through a dedicated API we provide [7]

Using Data Dependencies to Improve Task-Based Scheduling Strategies 537

(omp locality domain allocate XXX) where XXX may be a bloc cyclic
data distribution for one or two-dimensional arrays over MAMI [2];

– or the application programmer only marks some regions of code that initialize
data to give the runtime system the opportunity to map the corresponding
tasks to make the first-touch allocation policy indirectly apply the data distri-
bution we target. Indeed, Olivier et al. [11] have shown that specifying affinity
for initialization tasks can lead to huge improvement over locality oblivious
techniques. To avoid remote memory accesses, the threads must access the
data during the computation phase the exact same way it was accessed dur-
ing the initialization phase, which is very difficult to guarantee with dynamic
task-based parallelism. We extend the OpenMP runtime in two ways. First, by
adding functions to provide a dedicated API: omp set affinity to make the
runtime map the next task to a specific NUMA node. Secondly, by extending
scheduling heuristics to take into account task’s dependencies to better map
ready tasks.

During the application’s execution, the runtime relies on system’s get
mempolicy to determine on which physical node data are allocated. This
information is then used to guide the way we perform task creation and load
balancing.

3.3 Distribution of Initial Ready Tasks: WSpush init Strategies

We refer to initial tasks when considering the sources of a task dependency
graph, usually declared at the beginning of an OpenMP parallel region. These
tasks are basically the first ones to be marked as ready and to be distributed
over the platforms’ places. We have implemented two initial tasks distribution
strategies: cyclicnuma which distributes the tasks in a round-robin fashion
over the NUMA nodes, and randnuma which randomly distributes the tasks
over the NUMA nodes. Note that unlike numactl, the strategies we imple-
mented consider the whole data appearing in the OpenMP task depend clause
instead of working at the page level. In other words, while the two memory
pages holding an 8K-wide array would be distributed on different nodes by
numactl --interleave=all, they are always assigned to the same NUMA
node when using one of our data distribution strategies.

3.4 Distribution of Ready Tasks: WSpush Strategies

This section describes four different ways of pushing ready tasks to a NUMA
system places. Two of them are data-oblivious while the other two rely on the
dependencies expressed using the depend keyword on OpenMP tasks.

The pLoc strategy makes a processor push ready tasks to its own place,
while the pLocNum strategy makes a processor push ready tasks to the place of
its NUMA node (local NUMA node). The pNumaW strategy pushes tasks on the
node-level place corresponding to the NUMA node where most of their output
data are allocated to (W stands for Write). The last WSpush strategy, called

538 P. Virouleau et al.

pNumaWLoc, behaves almost the same than pNumaW except that if the data are
allocated to the NUMA node of the processor pushing the task, we directly push
the task to this processor’s place instead of pushing it to the node-level place
(Loc stands for Local).

It’s important to note that pLoc and pLocNum does not take initial data
placement into account, while pNumaW and pNumaWLoc are both aware of where
a task’s data are physically allocated and which of them are written, thanks to
the OpenMP depend keyword.

3.5 Dynamic Load Balancing Using Work-Stealing:
WSselect Strategies

Another important step when implementing work-stealing is the selection of
the victim processor we want to steal from. This section describes the selec-
tion strategies we implemented, that take the architecture memory hierarchy
into account. The first two strategies, sRand and sRandNuma are similar to
those studied in [10] and distinguish two levels of hierarchy : the processor level
and the NUMA node level. sRand selects a random processor’s place while
sRandNuma selects a random NUMA node’s place. We additionally implemented
several strategies mixing both levels of hierarchy, described below.

– sProcNuma: First, we browse the processor’s place. Upon failure, we browse
the topology in the following order: we first browse one of the neighbor proces-
sors; when all the neighbors have been visited, we browse the local NUMA
place; we continue by browsing all the processors’ places from a random remote
node and we eventually consider the place of its NUMA node.

– sNumaProc: This strategy is similar, except we always look at the NUMA
place before looking at the processors’ place.

– sProc: In this strategy the stealer will visit only the processors’ places and
its own NUMA place.

– sNuma: In this strategy the stealer will visit only NUMA places and its neigh-
bors.

Like proposed in [11], all these strategies come in two versions: a strict
version in which we prevent processors from stealing from other NUMA nodes
to improve data locality and a loose version where these restrictions do not
apply.

4 Evaluation

We ran all our experiments on the Intel192 machine described in Sect. 2.1.
We evaluated our strategies using the KASTORS [15]1 benchmark suite.
More specifically, we used the dependent tasks version of the blocked QR
1 git available at https://scm.gforge.inria.fr/anonscm/git/kastors/kastors.git, tag

“tag-europar16”.

https://scm.gforge.inria.fr/anonscm/git/kastors/kastors.git

Using Data Dependencies to Improve Task-Based Scheduling Strategies 539

factorization (dgeqrf taskdep), and of the blocked Cholesky factoriza-
tion (dpotrf taskdep). These applications rely on kernels from BLAS and
LAPACK libraries provided by OpenBLAS 2.15. We used the OpenMP GCC
compliant runtime libKOMP [3] based on Xkaapi runtime system. We tagged
the version we used on Xkaapi’s git repository2 in the branch public/eu-
ropar2016. For all of the above applications, we used the GCC 5.2.0 compiler.
We also made our execution log files public3, as well as all the scripts we used,
so that anyone may reproduce our data analysis, and look at the other results
we did not put in the figures.

4.1 Impact of the Data Distribution

We first evaluated the impact the initial data distribution has on the application
performance. We did an evaluation for multiple matrix sizes and block sizes, as well
as multiple combinations of WSpush and WSselect strategies. Figure 2 reports the
results we obtained for the Cholesky application, on 32 K-wide matrices divided
into blocks of 512×512 elements. We observed similar behavior running Cholesky
on different matrix sizes (16 K to 64 K) and block sizes (256 to 1024). The lower
double dashed horizontal line is the GCC performance baseline using sequential
initialization. The middle dashed line is the same experiment using numactl. The
upper solid line is the GCC baseline using parallel initialization.

Fig. 2. Evaluating data distributions for multiple strategies (WSselect + WSpush)

Using numactl provides an important performance gain compared to the
sequential initialization. However using a parallel initialization, either controlled
(cyclicnuma, randnuma) or not (GCC init-para), is necessary to significantly
improve the performances, regardless of the strategies used.

The cyclicnuma distribution is the one that works best regardless of the
strategies, and we will use it as the default strategy for the next experiments.

2 https://scm.gforge.inria.fr/anonscm/git/kaapi/xkaapi.git.
3 https://github.com/viroulep/europar-2016-public.

https://scm.gforge.inria.fr/anonscm/git/kaapi/xkaapi.git
https://github.com/viroulep/europar-2016-public

540 P. Virouleau et al.

4.2 Impact of the Stealing Restriction

Given a data distribution, previous works [11] have shown that restricting the
task execution to the node where the data are written leads to better data
locality which may improve the application performance. However, this is heavily
dependent on the algorithm the application implements. For instance, in the
case of a Cholesky factorization, many tasks write to the diagonal tiles of the
matrix comparatively to other tiles of the matrix. Therefore applying a steal
restriction on these tasks will potentially lead to an important number of inactive
processors. We evaluated both strict and loose versions of our work-stealing
strategies and found out that preventing processors from stealing from other
NUMA nodes can lead to a loss of performance by around 25 % to more than
75 % with respect to the same setup without the strict restriction. For the sake of
brevity we did not include a figure for this, but the results of these experiments
are included in the logs publicly published.

4.3 Overview of the Strategies Performances

We took a given data distribution, cyclicnuma, and compared the different
strategies, without any steal restriction. The performance obtained running the
Cholesky application executed by the libGOMP 4 runtime system (without mod-
ification) is considered as a baseline for these experiments. Once again, even
if the performances we obtained are obviously not the same, the behavior of
the different strategies comparatively to each others are similar for the differ-
ent applications we ran. Figure 3 shows the results of the experiments for the
Cholesky application on 32 K-wide matrices divided into blocks of 512×512 ele-
ments (best configuration for this matrix size). The dashed horizontal line is the
GCC performance baseline using parallel initialization.

It is first interesting to note that even very basic WSselect and WSpush
strategies, like sRand+pLoc, obtained decent performances thanks to the data
distribution. Also, given a selection strategy (e.g. sRandNuma), placing the task
on the NUMA node where the written data are allocated (pNumaW) behaves
better than simply pushing the data to its NUMA node (pLocNum). However,
assuming the tasks are being pushed using the pNumaWLoc strategy, focusing the
place selection on only one level of the hierarchy (sProc or sNuma) fails to reach
the same level of performance we obtained with naive strategies. On the con-
trary, taking into account both levels of the hierarchy (sProcNuma,sNumaProc)
achieve similar performance that outperforms other strategies.

4.4 Strategies Performance Scaling

We eventually selected the three strategy combinations that outperformed the
GCC baseline to evaluate their scalability depending on the size of the input
matrix. These strategy combinations are:

4 GCC 5.2.0.

Using Data Dependencies to Improve Task-Based Scheduling Strategies 541

Fig. 3. Evaluating all strategies (WSselect + WSpush), using cyclicnuma WSpush init

Fig. 4. Evaluating specific strategies on multiple sizes, using cyclicnuma WSpush init

– sRand + pLoc, which is a basic strategy that does not take the architecture
topology into account;

– sNumaProc + pNumaWLoc, which was the best strategy in our previous eval-
uation and is also equivalent to using sProcNuma;

– sRandNuma + pNumaW that performs random selection of node-level places.

Figure 4 reports their performances using a cyclicnuma distribution with-
out steal restriction. The figure shows the performances using the best block size
for each matrix size (which is, for our setup, 256 for a matrix size of 16384, and
512 for the others). As expected, combinations of strategies taking both the archi-
tecture hierarchy and data locality into account (sNumaProc + pNumaWLoc)
achieve the best performances. The only exceptions are for small matrix sizes
(16384), where there may just be not enough work to be able to take advantage
of this strategy. We must note that simply distributing the data over the nodes
enables the basic sRand + pLoc combination to achieve satisfying performances.

Finding the appropriate combination is highly application-dependent, there-
fore it is hard to give a solution for every type of application. However some
general guidelines can be followed:

542 P. Virouleau et al.

– The most critical part is the initial data distribution. Figure 2 showed it is
absolutely necessary to use one.

– Hierarchical strategies have a cost, so the problem size has to generate enough
work and data transfer to see a benefit.

5 Related Work

Numerous works focus on data locality and/or topology-aware task scheduling
strategies for NUMA architectures. Clet-Ortega et al. [5] studied different ways
of decorating the architecture topology with task lists and how it impacts the
performance of task-based applications on NUMA systems, promoting private
per-threads lists of tasks browsed in a hierarchical way by work-stealing strate-
gies. We somehow extended this work considering also node-level task lists. We
showed considering these lists for pushing ready tasks and selecting work-stealing
victims can help improving performance on NUMA systems. Olivier et al. [10]
evaluated hierarchical task scheduling with respect to traditional centralized or
distributed task schedulers. Creating a thread list, called shepherd, per NUMA
node allowed their hierarchical scheduler to outperforms other approaches on
several task-based applications. Tahan et al. [13] also studied the behavior of
task-based OpenMP applications on NUMA systems, extending the NANOS
runtime system with two NUMA-aware task schedulers called DFWSPT and
DFWSRPT, taking into account the notion of task priority when pushing tasks
to core-level queues. They also try to minimize the number of memory hops when
performing load balancing. Drebes et al. [6] proposed similar ideas in another
dataflow programming model named OpenStream. This model has a focus on
data streaming and has a lot of flexibility on their placement, but does not
provide flexibility to the user.

While the same kind of studies have been conducted in other contexts [14,
16,17], none of them takes advantage of the OpenMP depend clause, which
precisely indicates which data are read and written by a given task. As advertised
by the results obtained by our sNumaProc+pNumaWLoc combined strategy, this
information is worth taking into account when choosing a place to push ready
tasks to.

6 Conclusion and Future Work

Task-based programming environments like OpenMP have become a standard
way to program large-scale NUMA systems. Indeed, they give the program-
mer ways of expressing massive fine-grain parallelism that can be dynamically
mapped to the architecture topology at runtime. OpenMP recently evolved to
deal with tasks dependencies describing the data a task reads as input and writes
as output.

This paper presented several runtime-level strategies to efficiently assign
tasks to processors on any NUMA architecture. We presented strategies assign-
ing ready tasks to lists of tasks, called places, attached to processors and NUMA

Using Data Dependencies to Improve Task-Based Scheduling Strategies 543

nodes. These strategies define the way a task-based runtime system pushes ready
tasks to their initial place and the way idle processors browse the architecture
topology to select a place to steal from. We considered several initial data distrib-
utions and evaluated different combinations of “push” and “select” strategies on
a 192 core NUMA system, on linear algebra applications. We achieved the best
performance with strategies taking into account both the architecture topology
and the initial data placement obtained through OpenMP tasks dependencies.

A short-term future work will be to extend an OpenMP compiler to be able to
identify the initialization tasks in a more OpenMP-friendly manner, like extend-
ing the task construct with a init clause. We also intend to experiment with
more OpenMP 4 applications. In a longer term, we intend to move our focus
to compile-time techniques able to infer and to attach valuable information on
tasks, like an estimation of a task operational intensity, that could guide some
of the runtime system’s decisions regarding task scheduling and load balancing.
We strongly believe a tight cooperation between the compiler and the runtime
system is a key step to enhance the performance and scalability of task-based
programs on large-scale platforms.

Acknowledgments. This work is integrated and supported by the ELCI project, a
French FSN (“Fond pour la Société Numérique”) project that associates academic and
industrial partners to design and provide software environment for very high perfor-
mance computing.

References

1. Bleuse, R., Gautier, T., Lima, J.V.F., Mounié, G., Trystram, D.: Scheduling data
flow program in XKaapi: a new affinity based algorithm for heterogeneous archi-
tectures. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014 Parallel
Processing. LNCS, vol. 8632, pp. 560–571. Springer, Heidelberg (2014)

2. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.-A., Namyst, R.: Forest-
GOMP: an efficient OpenMP environment for NUMA architectures. Int. J. Parallel
Program. 38(5), 418–439 (2010). Special Issue on OpenMP; Guest Editors: Müller,
M.S., Ayguade, E

3. Broquedis, F., Gautier, T., Danjean, V.: libKOMP, an efficient OpenMP runtime
system for both fork-join and data flow paradigms. In: Chapman, B.M., Massaioli,
F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 102–115.
Springer, Heidelberg (2012)

4. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: a generic framework for managing hardware affini-
ties in HPC applications. In: Danelutto, M., Bourgeois, J., Gross, T. (eds.) Pro-
ceedings of the 18th Euromicro Conference on Parallel, Distributed and Network-
based Processing, PDP 2010, Pisa, Italy, 17–19 February 2010, pp. 180–186. IEEE
Computer Society (2010)

5. Clet-Ortega, J., Carribault, P., Pérache, M.: Evaluation of OpenMP task schedul-
ing algorithms for large NUMA architectures. In: Silva, F., Dutra, I., Santos
Costa, V. (eds.) Euro-Par 2014 Parallel Processing. LNCS, vol. 8632, pp. 596–607.
Springer, Heidelberg (2014)

544 P. Virouleau et al.

6. Drebes, A., Heydemann, K., Drach, N., Pop, A., Cohen, A.: Topology-aware and
dependence-aware scheduling and memory allocation for task-parallel languages.
ACM Trans. Archit. Code Optim. 11(3), 30:1–30:25 (2014)

7. Durand, M., Broquedis, F., Gautier, T., Raffin, B.: An efficient OpenMP loop
scheduler for irregular applications on large-scale NUMA machines. In: Rendell,
A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp.
141–155. Springer, Heidelberg (2013)

8. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. SIGPLAN Not. 33(5), 212–223 (1998)

9. Gautier, T., Besseron, X., Pigeon, L.: Kaapi: a thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PASCO 2007 (2007)

10. Olivier, S., Porterfield, A., Wheeler, K.B., Spiegel, M., Prins, J.F.: Openmp task
scheduling strategies for multicore NUMA systems. IJHPCA 26(2), 110–124 (2012)

11. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and miti-
gating work time inflation in task parallel programs. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2012, pp. 65:1–65:12. IEEE Computer Society Press, Los Alamitos
(2012)

12. Board, OpenMP Architecture Review: OpenMP application program interface ver-
sion 4.0, July 2013

13. Tahan, O.: Towards efficient OpenMP strategies for non-uniform architectures.
CoRR, abs/1411.7131 (2014)

14. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Task-parallel programming on
NUMA architectures. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.)
Euro-Par 2012. LNCS, vol. 7484, pp. 638–649. Springer, Heidelberg (2012)

15. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage,
O., Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Heidel-
berg (2014)

16. Weng, T.-H., Chapman, B.M.: Implementing OpenMP using dataflow execution
model for data locality and efficient parallel execution. In: Proceedings of the 16th
International Parallel and Distributed Processing Symposium, IPDPS 2002, p. 180.
IEEE Computer Society (2002)

17. Wittmann, M., Hager, G.: Optimizing ccNUMA locality for task-parallel execution
under openmp and TBB on multicore-based systems. CoRR, abs/1101.0093 (2011)

Multicore vs Manycore: The Energy
Cost of Concurrency

Martin Groen and Vincent Gramoli(B)

University of Sydney, Sydney, Australia
mgro7657@uni.sydney.edu.au, vincent.gramoli@sydney.edu.au

Abstract. In this paper, we study the relation between performance
and energy in concurrent programs. As energy efficiency became a key
challenge of the computing industry, it is crucial to seek solutions that
achieve high performance at a reasonable carbon footprint. We show,
however, that energy is dramatically impacted by concurrency and it
remains difficult to predict the energy consumed even when the appli-
cation and the thermal design power are given, due to the number of
threads running or their level of contention.

To this end, we evaluated concurrent algorithms on a 2.1 GHz mul-
ticore and a 1.2 GHz manycore platforms. Our results show that even
though the throughput on manycore is lower than the throughput on
multicore, we could not find a single concurrent algorithm where the
multicore offers consistently a higher performance per watt than the
manycore. More importantly, we identified some benchmarks on which
the manycore offers up to 4.3× more operations per second per watt than
the multicore.

Keywords: Power consumption · Energy · Manycore · Concurrency

1 Introduction

As the complex processing cores require a superlinear growing thermal design
power (TDP) to achieve linear performance improvement, increasing concur-
rency requires to slow down the cores [1]. The limitation stems from the sub-
40 nm size of transistors where the Dennard scaling stops applying [2]: the power
consumption of a processor is no longer proportional to its area because of cur-
rent leakage. To lessen the leakage, Intel designed 22 nm Tri-gate transistors,
however, this problem will soon limit concurrency by requiring powering off
some of the complex cores to let others compute at full speed, a phenomenon
known as dark silicon [3].

Adopting manycores, the concept of placing more simpler cores per chip [4],
is thus necessary to keep scaling concurrency within the same power envelope. To
understand whether it is worth trying scaling concurrency one has to first answer
the question: Does the energy needed to reach some performance on multicore m
exceed the energy needed to reach the same performance on manycore M? This

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 545–557, 2016.
DOI: 10.1007/978-3-319-43659-3 40

546 M. Groen and V. Gramoli

question is not simple. On the one hand, m is generally known to have higher
energy consumption per unit of time than M [5], but on the other hand m is
also known to run at higher clock frequencies hence executing more instructions
than M over time. Manycores have proved instrumental to run concurrent appli-
cations at a high performance per watt—examples include key-value stores [6,7].
These applications have, however, been genuinely re-engineered for the consid-
ered manycore platform. Hence, it is hard to compare the original multicore
implementations to the resulting manycore implementations.

In this paper, we evaluate the performance per watt under concurrency. In
particular, we compare the number of benchmark operations executed per second
and per watt on a traditional 32-way Intel Xeon multicore platform of 32 nm
complex cores running at 2.1 GHz and on a less conventional 36-way Tilera Tile-
Gx manycore platform of 40 nm simpler cores running at 1.2 GHz.

We ported Synchrobench on Tilera to compare the performance obtained
on both platforms. Synchrobench is a benchmark suite executing muti-threaded
insert/delete/lookup operations to stress-test concurrent data structures using
various synchronization techniques [8]. The C/C++ Synchrobench benchmark-
suite [8] was originally designed for x86-64 multicores while the Tilera platform
provides a manycore architecture with a reduced instruction set and runs a port
of the version 3.10 of the Linux kernel and GCC v4.4.6. Unlike previous manycore
applications whose multi-threading was carefully re-factorized to run efficiently
on Tilera [7], we only ported the Synchrobench benchmark suite with minimal
modifications.

One may think that benchmarking performance is sufficient as the energy
can be determined with the Thermal Design Power (TDP) provided by its man-
ufacturers. For example, our Intel multicore consumes more power (95 W TDP
for 16 hyperthreaded complex cores) than our Tilera manycore (28 W TDP for
36 simple cores). This comparison is not always easy: in particular, multicore
manufacturers offer different definitions of TDP [9] and may even provide a
Configurable TDP (cTDP) that adapts the performance and the energy con-
sumptions at runtime (AMD offers the Turbo Core technology while Intel offers
Turbo Boost).

Moreover, as we will show in this paper, the power consumption of a machine
is dramatically affected by the concurrent algorithm. The power consumption
depends on the number of cores that run and at which clock frequency but
it also depends on whether some simultaneous multithreading technology (like
hyperthreading) is enabled on these cores. To accurately report these power
measurements, we plugged a hardware power meter on our existing multicore
and manycore platforms.

As expected, at similar thread count, all applications run significantly faster
on the multicore platform than on the manycore platform. Yet, when looking
at the performance per watt attained by both machines, our results are surpris-
ing: there is no benchmark where the multicore machine achieves consistently
higher performance per watt than the manycore. We also observed that there
exist benchmarks where the manycore offers significantly higher performance

Multicore vs Manycore: The Energy Cost of Concurrency 547

per watt than the multicore. This is interesting as it shows, for the first time,
that the power consumption of state-of-the-art algorithms can compensate the
performance advantage of multicores. In other words, even though the highest
performance is obtained while running concurrent algorithms on the multicore
platform, running them on the manycore platform provides higher performance
within the same power envelope.

In Sect. 2, we present the problem of measuring the performance per watt of
concurrent applications on multicore and manycore architectures. In Sect. 3, we
present our manycore and multicore experimental settings. In Sect. 4, we present
the performance and energy consumption of our platforms. In Sect. 5, we relate
the energy consumed and the synchronization technique used. In Sect. 6, we
discuss the related work and in Sect. 7 we conclude the paper.

2 How to Measure Energy Under Concurrency

To evaluate the performance and energy consumption of the manycore platform,
we choose the multicore platform as the baseline.

Figure 1 reports the performance and energy consumed by the 32-way multi-
core platform as observed directly on the power socket when running the lock-free
linked list Synchrobench benchmark (Algorithm 21 [8]) with 64 K elements and
10 % attempted update, namely the portion of invoked updates (even the ones
that return unsuccessfully without writing as described in [8]). The dotted line
indicates the throughput T given by Synchrobench when running the benchmark
for one minute at different thread count. The bar chart indicates the power con-
sumed in watts E during the experiment as the average over all values read every
second on a dedicated power meter (the detailed settings are presented in Sect. 3).
The solid line indicates the performance per watt P = T∗1000

E ops per sec/W as
the number of operations per second divided by the watts. The value reported at
thread count 0 corresponds to the machine idle, i.e., not running any experiment.

Fig. 1. Power and throughput depending on the level of concurrency

First, we can observe that the power consumption increases with the level of
concurrency. The power consumed keeps increasing with the number of threads

548 M. Groen and V. Gramoli

even when the number of threads exceed the number of cores (16). We can see
however that the power increases faster below 16 threads than above 16 threads.
This is due to activation of one new core with each new running thread up to 16:
we noted a scattered thread pinning strategy, hyperthreading kicking in after 16
threads. Second, the performance increases as the number of hardware threads
used increases, confirming the performance scalability of this particular bench-
mark on multicore as already noted [8]. Finally, we observe that the performance
per watt increases also steadily up to the highest hardware thread count, indicat-
ing that the multicore machine delivers an energy proportional computation [10]
on this particular benchmark. This is not always the case as the performance of
several algorithms does not necessarily increase to the highest hardware thread
count, as explained in Sect. 4.

As in Fig. 1, we carefully observed that the highest performance per watt for
a given workload on both the mutlicore and the manycore platforms was always
obtained at the thread count where the performance was the highest. In other
words, the energetic overhead is never higher than the performance drop. Hence,
in the remainder of the paper and when not explicitly mentioned, we report the
performance per watt observed at the thread count that maximizes performance.

3 Energy and Concurrency Settings

In this section, we present the multicore and manycore platforms, the power
monitoring tools and the algorithms used. The multicore and the manycore
platforms are both 64-bit platforms made available for purchase in 2012. The
multicore machine is a 32 nm Xeon platform based on Intel’s x86 architecture
with a complex instruction set whereas the manycore is a TILExtreme platform
with 40 nm manycore Tile-Gx processors based on the Tilera architecture with
reduced instruction set. These two platforms use a 3-level cache.

Table 1. The specification summary of our manycore (M) and multicore (m) platforms

Platform Description CPU #CPU #cores

per CPU

#hw

threads

Clock fre-

quency

CPU

TDP

Power

(idle)

Power

(loaded)

M TILExtreme Tile-Gx 4 36 144 1.2GHz 28W 240W 294W

m SandyBridge Intel Xeon 2 8 32 2.1GHz 95W 103W 277W

Multicore. The multicore machine is a SandyBridge-EN of 28-core Intel Xeon
E5-2450 offering a total of 32 hardware threads with hyperthreading enabled
running at 2.1 GHz but that could be overclocked at 2.9 GHz with enabled Tur-
boBoost [11]. Intel offers Turbo Boost 2.0 so that processors may “operate at
a power level that is higher than its TDP configuration”.1 Note that this app-
roach is shared by other multicore manufacturers: AMD proposes the Turbo
1 http://www.intel.com/content/www/us/en/architecture-and-technology/

turbo-boost/turbo-boost-technology.html.

http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

Multicore vs Manycore: The Energy Cost of Concurrency 549

Core technology to increase similarly the core frequency within the thermal and
power limits of the accelerated processing unit.2 Each processor has a TDP of
95 W.3 It features transistors of size 32 nm.

Manycore. The manycore machine is a TILExtreme, a four 36-core Tile-Gx
processors running at 1.2 GHz. It features 16 fans that run at a speed of 3000
to 16000 rpm that cannot be disabled or tuned individually [12]. The details
are summarized in Table 1. There is no coherence across two different TileGx
sockets. The 36 cores of each Tile-Gx are organized into a 6 × 6 mesh of tiles
where each cache line has a dedicated “home” core. Upon level-2 local cache
miss, a core request the cache line from the home core local level-2 cache so
that the union of all home core level-2 caches represents an 9 MiB level-3 cache.
The cache coherence is maintained through a distributed directory that is more
energy efficient than a bus-snooping cache coherency protocol.

3.1 Preliminary Power Measurements

We measured the performance of our platforms using a power metering tool.

Watt Metering. We used the Watts Up? .NET watt meter 100–250 V, 50/60 Hz
and 15 amps to perform our power measurements. This device has an accuracy
of ±1.5% when reporting consumption above 60 W like in our case. Note that
the same device was previously used to report power consumption in other stud-
ies [6]. All power measurements were collected for both the muticore and many-
core machines in the same room with a steady temperature of 20.8◦C cooled
using an independent air conditioning system whose power consumption was
not accounted in our measurements.

Power Consumption Under Full Load. The power consumption at full load
was measured with the Synchrobench lock-free skip list running with parameters
u10-i65536-r132K-d600004 with the number of threads set to the maximum
number of hardware threads available. Because the fans cannot be disabled and
tuned individually on the Tilera [12], we run the full load on the four sockets
of the Tilera (144 cores) and divided the energy consumption by four to get an
estimate of the energy consumed per socket. It is important to remark that a
single socket machine could consume more than a fourth of this overall power
due to the consumption of components shared by the four sockets. To confirm
that the shared consumption was not impacting our results, we measured the
power consumption of the machine with all the sockets shut-down in hardware
and observed 87 W. We then confirmed that manycore would still reach higher
2 http://www.amd.com/en-us/innovations/software-technologies/turbo-core.
3 http://ark.intel.com/products/64611/Intel-Xeon-Processor-E5-2450-20M-Cache-

2 10-GHz-8 00-GTs-Intel-QPI.
4 10% update, initial size of 65536, value range of 132 K and a duration of 60 s [8].

http://www.amd.com/en-us/innovations/software-technologies/turbo-core
http://ark.intel.com/products/64611/Intel-Xeon-Processor-E5-2450-20M-Cache-2_10-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64611/Intel-Xeon-Processor-E5-2450-20M-Cache-2_10-GHz-8_00-GTs-Intel-QPI

550 M. Groen and V. Gramoli

performance per watt than multicore even if each fan consumed less than 0.8 W
on this heavy workload. We selected the multicore platform as the baseline for
our experiments as it is the most common platform of the two. We noticed that
the power consumption of this platform when idle was 103 W, which is close to
the 95 W TDP announced by the manufacturer.

Table 2. Port of Synchrobench-C/C++ to the Tilera manycore

Data Structure Ref. Synchronization

skip lists Optimistic skip list [13] spin-lock, mutex

Rotating skip list [14] lockfree CAS

Elastic skip list [15] ESTM

Fraser skip list [16] lockfree CAS

No hot spot skip list [17] lockfree CAS

Sequential skip list [8] ∅
linked lists Lazy linked list [18] spin-lock, mutex

Harris’s linked list [19] lockfree CAS

Reusable linked list [20] ESTM

Lock-coupling linked list [21] spin-lock, mutex

Sequential linked list [8] ∅
hash tables Lock-free hash table [22] lockfree CAS

Elastic hash table [15] ESTM

Sequential hash table [8] ∅
binary trees Speculation-friendly tree [23] ESTM

Transactional red-black tree [24] ESTM

Sequential binary search tree [8] ∅

3.2 Porting Synchrobench-C/C++ to Manycore

To understand whether the concurrent programs and the synchronization tech-
niques impact energy efficiency, we run the Synchrobench [8] benchmark suite
on both the multicore and the manycore machine. Synchrobench is a benchmark
suite designed to evaluate the performance of synchronization techniques like
compare-and-swap (CAS), spin-lock, mutex and transactional memory (TM),
and data structure implementations on multicore machines.

To evaluate the performance on manycore, we ported 17 benchmarks out of
the 19 C/C++ benchmarks of Synchrobench-v1.1.0-alpha to the Tilera archi-
tecture. We also ported the TM library implementing elastic transactions,
ESTM [25]. We restricted our study to C/C++ because the only other avail-
able version of Synchrobench is in Java5 and we know that the experimental
5 https://sites.google.com/site/synchrobench/download.

https://sites.google.com/site/synchrobench/download

Multicore vs Manycore: The Energy Cost of Concurrency 551

Fig. 2. Operations per second per watt of multicores and manycores running the con-
current hash tables benchmark

measurements are more predictable than in Java especially when running differ-
ent JVMs [8].6

The oldest benchmarks of Synchrobench used the atomic ops library from
HP7, however, this library supports only IA32 and x86-64 and was adapted for
SPARC but not for Tilera—we had to manually port some of its operations to
the Tilera architecture, as listed in Table 2. Some other benchmarks rely on the
recent C/C++11 atomic intrinsics, however, as of today neither stdatomic nor
the latest versions of GCC are supported on Tilera.8 We decided not to port
the remaining benchmarks because of the changes they would induce: some of
the benchmarks of Synchrobench were only designed to run on 64-bit Intel and
featured a 128-bit wide compare-and-swap that does not exist on Tilera [26] and
adapting them would have affected the veracity of our comparisons on different
architectures.

6 The TILExtreme runs a port of Java 1.6.
7 https://github.com/ivmai/libatomic ops/.
8 http://www.tilera.com/scm/.

https://github.com/ivmai/libatomic_ops/
http://www.tilera.com/scm/

552 M. Groen and V. Gramoli

4 The Energy of Multicore and Manycore

In this section, we show that with their lower clock frequencies, manycore can
have a substantially higher performance per watt than multicore in different
workloads. We also show that there is no single benchmark where multicore can
provide higher performance per watt than manycore across all synchronization
techniques.

Fig. 3. Operations per second and per watt of multicore and manycore running the
concurrent binary search trees benchmark

Raw Performance. Figure 2 (resp. Fig. 3) represents the performance achieved
and the energy dissipated when running the hash table (resp. binary search tree)
benchmarks of Synchrobench-C/C++ on our multicore and manycore platforms.
In these figures, each binary tree or hash table implementation is synchronized
with compare-and-swap (denoted by CAS), transactional memory (denoted by
TM) or nothing being only able to run sequentially (denoted by SEQ). The
different binary search trees algorithms are either of type red-black tree (denoted
rbt) or of type speculation-friendly tree [27] (denoted sft). Both figures indicate
that concurrent algorithms perform generally better on the multicore than on
the manycore. This is expected given the lower clock frequency of the mancycore

Multicore vs Manycore: The Energy Cost of Concurrency 553

machine (1.2 GHz) compared to the multicore machine (2.1 GHz). However, we
can also see that the performance of the manycore can be higher than the one of
the multicore in some cases (cf. top-right of Fig. 2). This is due to the contention
that induces cross-socket communication on the multicore and that does simply
require low-latency network-on-chip communication on the manycore.

Higher Performance per Watt for the Manycore. The hash table bench-
mark (Fig. 2) clearly shows higher performance per watt on the manycore than
on the multicore (across different sizes and update ratios). In particular, on 90 %
updates and with 212 elements, the hash table benchmark runs 4.3× more oper-
ations per watt than the multicore at maximum thread counts. Note that the
speedup is 3.9× when the thread count is 32 on both machines. The reason is
probably due to the low contention of hash table and the fact that the manycore
platform have high speed core-to-core communication compared to the multi-
core machine. In addition, the time needed for a core to access the memory or
the level-1 cache on the manycore are faster than on the multicore. For example
accessing the level-1 cache of the Tilera takes 1.7µs (2 cycles at 1.2 GHz) while it
takes 2.4µs (5 cycles at 2.1 GHz) on the Xeon. For other data structures, whether
the multicore or the manycore is more suitable depends on many parameters,
like the synchronization technique used to synchronize the data structure, the
level of contention and the size of the data structures. We discuss the impact of
the synchronization technique used in Sect. 5.

5 The Energy of Synchronization Techniques

To get a broader view of the performance per watt delivered by the manycore
and the multicore, we ran the other Synchrobench benchmarks.

Figure 4 depicts the performance per watt obtained on the multicore and the
manycore for the Harris linked list that uses CAS for synchronization. We used
this benchmark as an example to illustrate that both manycore and multicore
can achieve better performance per Watt results at different thread counts. For
clarity and given that we had only 32 hardware contexts on the multicore, we did
not represent the performance obtained on the manycore at 36 threads. The other
Synchrobench parameters used for this benchmark are -u10-i16384-r32768,
indicating an initial size of 214 elements and an attempted update ratio of 10 %.

First, we can observe that the performance per watt delivered by the many-
core does not scale up to 32 threads (triangle-dotted line) while the one delivered
by the multicore scales with the level of concurrency (square-dotted line). In
addition, the peak performance per watt delivered by the manycore is compara-
tively higher than the peak performance per watt delivered by the multicore. This
indicates that the multicore presents some advantage in terms of performance
per watt for this particular benchmark. Finally, we observe that the performance
per watt delivered by the multicore is, however, not consistently higher than the
one delivered by the manycore. In particular, between 1 and 24 threads, the per-
formance per watt obtained from the multicore is higher than the one obtained

554 M. Groen and V. Gramoli

from the multicore. Although not depicted here, we ran additional experiments
and identified some skip list benchmarks with similar differences: the peak per-
formance per watt is higher on manycore whereas, at some thread counts, the
manycore delivers higher performance per watt.

Fig. 4. Performance per watt improvement of the
manycore over the multicore

We conclude that the mul-
ticore does not consistently
provide a higher performance
per watt than the manycore
on a given data structures.
This is in contrast with the
manycore offering consistently
higher performance per watt
than the multicore on all the
binary search trees evaluated,
whether they were synchro-
nized with CAS, TM or simple
running sequentially. We also
observed, however, that this is
not necessarily true when con-
sidering a data structure benchmark synchronized with a particular technique.
Hence, we observed that the multicore would deliver a higher performance per
watt than the manycore on the skip list synchronized with CAS or TM and on
the linked list synchronized with TM, but not on the skip list synchronized with
locks, the linked list synchronized with CAS and the linked list synchronized
with locks.

6 Related Work

A study on the impact of concurrency on power consumption [28] shows that
running two cores instead of one could, on some workloads, double the power
overhead and that simultaneous multi-threading could save energy on recent
hardware and in-order processors. The focus of this study is on managed lan-
guages showing, for example, how seeminlgy singly-threaded Java applications
actually exploit multiple cores through the JVM.

Some research work focuses on algorithms to model theoretically their carbon
footprint [29,30]. The first study [30] shows that for matrix multiplication and
the n-body problem, the energy consumption remains constant as the number
of processors increases and the runtime decreases. The second study raised the
question of the relevance of designing algorithms under the constraint of energy
efficiency [29]. It does not present experimental measurements but rather exploits
energy models applied to graphical processing units. These studies do not model
the energy consumed by non-deterministic executions.

A recent work simulated the impact of the MSI cache coherence protocol
on the energy consumed by data structure algorithms that experience non-
deterministic executions [31]. The authors propose new lease and release instruc-

Multicore vs Manycore: The Energy Cost of Concurrency 555

tions to minimize cache invalidation in lock-based and lock-free structures. Sim-
ulations of their instructions on the Graphite multi-processor simulator indicate
a substantial reduction of the energy consumption, compared to the classic MSI
cache coherence protocol without lease/release.

The energy consumption of both simple and complex cores was modelled in
the context of distributed heterogeneous platforms [32]. To validate their results,
the authors measure the consumption of high performance computing applica-
tions on clusters of Intel Xeon and ARM Cortex-A9 nodes. FAWN [6] is an
in-memory key-value store well-tuned for running on 21 single-threaded winpy
nodes using flash storage to retrieve data that cannot fit in memory. FAWN
achieves a peak 350 key-value queries per Joule. With 21 nodes, FAWN achieves
350 key-value queries per Joules. As the goal of our study was to compare con-
current programs running on multicore and manycore platforms released the
same year, we minimized the changes of our benchmarks while porting them to
manycores.

7 Conclusion

We measured the performance and energy consumption of a multicore and a
manycore when running concurrent algorithms. As expected, these algorithms
run faster on the multicore but can achieve better performance per watt on
the manycore. There are several directions for future work. First, it would be
interesting to isolate the power consumption of each individual components, like
fans and CPUs, by separating them physically or by using dedicated software
toolsets. Second, it would be interesting to broaden the scope of benchmarks to
see whether the same results hold for IO-bound applications.

Acknowledgments. This research was supported under Australian Research Coun-
cil’s Discovery Projects funding scheme (project number 160104801) entitled “Data
Structures for Multi-Core”. Vincent Gramoli is the recipient of the Australian Research
Council Discovery International Award.

References

1. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.: Power
challenges may end the multicore era. Commun. ACM 56(2), 93–102 (2013)

2. Dennard, R.H., Rideout, V., Bassous, E., Leblanc, A.: Design of ion-implanted
mosfet’s with very small physical dimensions. IEEE J. Solid-State Circ. 9(5), 256–
268 (1974)

3. Esmaeilzadeh, H., Blem, E. St. Amant, R., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: ISCA, pp. 365–376, June 2011

4. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54(5),
67–77 (2011)

5. Borkar, S.: Thousand core chips: a technology perspective. In: DAC, pp. 746–749
(2007)

556 M. Groen and V. Gramoli

6. Andersen, D.G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., Vasudevan,
V.: Fawn: A fast array of wimpy nodes. In: SOSP, pp. 1–14 (2009)

7. Berezecki, M., Frachtenberg, E., Paleczny, M., Steele, K.: Many-core key-value
store. In: IGCC, pp. 1–8, July 2011

8. Gramoli, V.: More than you ever wanted to know about synchronization: syn-
chrobench, measuring the impact of the synchronization on concurrent algorithms.
In: PPoPP, pp. 1–10 (2015)

9. Intel: Measuring power processor: TDP vs. ACP Intel White paper (2011)
10. Barroso, L.A., Holzle, U.: The case for energy-proportional computing. Computer

40(12), 33–37 (2007)
11. Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E.: Power

management architecture of the 2nd generation intel core microarchitecture, for-
merly codenamed sandy bridge. In: HotChips (2011)

12. Tilera: UG410 - TILExtreme-Gx Platform User’s Guide Release 1.1 Doc. N.
UG410, May 2013

13. Herlihy, M.P., Lev, Y., Luchangco, V., Shavit, N.N.: A simple optimistic skiplist
algorithm. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp.
124–138. Springer, Heidelberg (2007)

14. Dick, I., Fekete, A., Gramoli, V.: A skip list for multicore. Concurrency and Com-
putation, Practice and Experience (2016)

15. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)

16. Fraser, K.: Practical lock-freedom. Ph.D. Thesis, University of Cambridge (2004)
17. Crain, T., Gramoli, V., Raynal, M.: No hot spot non-blocking skip list. In: ICDCS,

pp. 196–205 (2013)
18. Hellor, S., Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N., Shavit, N.: A lazy

concurrent list-based set algorithm. Parallel Process. Lett. 17(4), 411–424 (2007)
19. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,

J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001)
20. Gramoli, V., Guerraoui, R.: Reusable concurrent data types. In: Jones, R. (ed.)

ECOOP 2014. LNCS, vol. 8586, pp. 182–206. Springer, Heidelberg (2014)
21. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-

mann Publishers Inc., San Francisco (2008)
22. Michael, M.M.: High performance dynamic lock-free hash tables and list-based

sets. In: SPAA, pp. 73–82. ACM, New York (2002)
23. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly binary search tree. In:

Wolf, F., Mohr, B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 229–240.
Springer, Heidelberg (2013)

24. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: Stamp: Stanford transactional
applications for multi-processing. In: IISWC, pp. 35–46. IEEE (2008)

25. Felber, P., Gramoli, V., Guerraoui, R.: Elastic transactions. In: Keidar, I. (ed.)
DISC 2009. LNCS, vol. 5805, pp. 93–107. Springer, Heidelberg (2009)

26. Intel: Intel 64 and IA-32 architectures software developers manual - vol. 2A:
Instruction set reference, A–M (2007)

27. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In:
PPoPP, pp. 161–170 (2012)

28. Esmaeilzadeh, H., Cao, T., Yang, X., Blackburn, S.M., McKinley, K.S.: Looking
back and looking forward: Power, performance, and upheaval. Commun. ACM
55(7), 105–114 (2012)

29. Choi, J.W., Vuduc, R.W.: How much (execution) time and energy does my algo-
rithm cost? XRDS 19(3), 49–51 (2013)

Multicore vs Manycore: The Energy Cost of Concurrency 557

30. Demmel, J., Gearhart, A., Lipshitz, B., Schwartz, O.: Perfect strong scaling using
no additional energy. In: IPDPS, pp. 649–660 (2013)

31. Haider, S.K., Hasenplaugh, W., Alistarh, D.: Lease/release: architectural support
for scaling contended data structures. In: PPoPP (2016)

32. Ramapantulu, L., Loghin, D., Teo, Y.M.: An approach for energy efficient execution
of hybrid parallel programs. In: IPDPS, pp. 1000–1009, May 2015

Theory and Algorithms for Parallel
Computation and Networking

Work-Efficient Parallel Union-Find with
Applications to Incremental Graph Connectivity

Natcha Simsiri1, Kanat Tangwongsan2,
Srikanta Tirthapura3(B), and Kun-Lung Wu4

1 College of Information and Computer Sciences,
University of Massachusetts, Amherst, USA

nsimsiri@umass.edu
2 Mahidol University International College,

Phutthamonthon District, Thailand
kanat.tan@mahidol.edu

3 Department of Electrical and Computer Engineering,
Iowa State University, Ames, USA

snt@iastate.edu
4 IBM T.J. Watson Research Center, Yorktown Heights, USA

klwu@us.ibm.com

Abstract. On an undirected graph, how can one quickly answer
whether two vertices are connected while allowing more edges to be added
incrementally? This is the well-studied incremental graph connectivity
(IGC) problem, a fundamental problem that can be efficiently solved
using solutions to the classical union-find problem. Motivated by the need
to handle larger and rapidly-changing graphs, this paper presents the first
shared-memory parallel algorithm for IGC and equivalently, Union-Find
that is provably work-efficient (i.e., does no more work than the sequen-
tial optimal) and has polylogarithmic parallel depth. It performs path
compression in parallel without a lock or speculative execution. We also
present a simpler algorithm with slightly worse theoretical properties,
but which is easier to implement, and has good practical performance.

1 Introduction

The classical Union-Find problem is to maintain a collection of disjoint sets,
supporting (1) union(u, v): given elements u and v, combine the sets containing u
and v into a single set and return (a handle to) the combined set; and (2) find(v):
given an element v, return (a handle to) the set containing v.

The problem has many applications, including incremental graph connec-
tivity on undirected graphs. The graph connectivity question asks, given two
vertices, is there a path between them? The problem of incremental graph con-
nectivity (IGC) requires a (quick) answer to the connectivity question as edges
are incrementally added. Union-Find is a well-known solution to this problem: To
answer whether u and v are connected, check if find(u) and find(v) are equal.
To add an edge (w, x), invoke union(w, x) on the union-find data structure.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 561–573, 2016.
DOI: 10.1007/978-3-319-43659-3 41

562 N. Simsiri et al.

With a sharp increase in the amount of linked data, IGC now has to be solved
at a much larger scale than before. On the one hand, modern streaming systems
(e.g., IBM Streams [1] and Spark Streaming [2]) provide a software platform
for using parallelism to achieve high-throughput processing. On the other hand,
scalable, parallel, and dynamic algorithms are needed to effectively utilize the
platform. This paper makes a step forward in designing parallel algorithms for
IGC: the input is a graph stream consisting of a sequence of edges, and the queries
are connectivity queries. Our main ingredient is a novel parallel algorithm for
Union-Find.

To enable parallelism in stream processing, many systems (e.g., Apache Spark
Streaming [2]) use a “discretized streams” input model: a stream is divided into
a sequence of minibatches, each processed using a parallel algorithm. We adopt
this model and seek parallel methods to efficiently process a minibatch of edges.
On a vertex set V , a graph stream A is a sequence of minibatches A1, A2, . . . ,
where each minibatch Ai is a set of edges on V . The graph at the end of observing
At, denoted by Gt, is Gt = (V,∪t

i=1Ai) containing all the edges up to t. The
minibatches Ais may have different sizes. Equivalently, each edge (u, v) can be
viewed as a single union(u, v) operation that merges the sets containing u and
v, and a minibatch Ai is a set of union’s that have to be applied in parallel.

We study a bulk-parallel incremental connectivity problem, which is to main-
tain a data structure that provides two operations: Bulk-Update and Bulk-Query.
The Bulk-Update operation takes as input a minibatch of edges Ai and adds
them to the graph—this involves multiple union operations, one per edge. The
Bulk-Query operation takes a minibatch of vertex-pair queries and returns for
each query, whether the two vertices are connected on the edges observed so far
in the stream—this involves multiple find operations, two per vertex-pair query.
On this data structure, the Bulk-Query and Bulk-Update operations are each
invoked with a (potentially large) minibatch of input, each processed using a
parallel computation. But a bulk operation, say a Bulk-Update, must complete
before the next operation, say a Bulk-Query, can begin. By disallowing mixing
unions and finds in the same batch, the model provides clean semantics for what
constitutes the graph being queried.

1.1 Contributions

We present the first shared-memory parallel algorithm for Union-Find (and
hence, for IGC) that is both provably work-efficient and has polylogarithmic par-
allel depth. We analyze our algorithms in terms of work and depth assuming an
underlying concurrent-read, concurrent-write (CRCW) machine1. Specifically:

– Simple Parallel Algorithm. We first present a simple parallel algorithm for
Union-Find (Sect. 2). This is easy to implement and has good theoretical
properties. On a graph with n vertices, it makes a single pass through the

1 We use parallel integer sort internally, which assumes CRCW.

Work-Efficient Parallel Union-Find 563

stream using O(n) memory, and can process a minibatch of b edges (equiva-
lently, b union operations), using O(b log n) work and O(polylog(n)) parallel
depth.

– Work-Efficient Parallel Algorithm. We then present an improved parallel algo-
rithm for Union-Find (Sect. 3), with total work O((m+ q)α(m+ q, n)), where
m is the total number of union operations across all minibatches and q is
the total number of find operations across all minibatches, and α is an
inverse Ackermann’s function (see Sect. 1.2). Equivalently, this is a paral-
lel algorithm for IGC with total work O((m + q)α(m + q, n)), where m is
the total number of edges across all minibatches, q is the total number of
connectivity queries across all minibatches. This matches the work of the
theoretically time-optimal sequential counterpart (i.e., it is work-efficient).
Further, processing a minibatch takes O(polylog(m,n)). Hence, the sequen-
tial bottleneck in the runtime of the parallel algorithm is very small, and
the algorithm is capable of using almost a linear number of processors effi-
ciently. We are not aware of a prior parallel algorithm for Union-Find with
such provable properties on work and depth.

We have implemented a variant of the simple algorithm on a 20-core shared
memory machine. Our preliminary experimental results suggest that the algo-
rithm achieves good speedups in practice and is able to efficiently use available
parallelism. On a 20-core machine, it can process hundreds of millions of edges
per second, and realize a speedup of 8–11x over its single threaded performance.
Due to space constraints, we are unable to present experimental results in this
paper. Experimental results and detailed proofs of our theoretical results can be
found in the expanded version of this paper [3].

1.2 Related Work

Let n denote the number of vertices, m the number of operations, and α an
inverse Ackermann’s function, a very slow-growing function, practically a con-
stant independent of its input. The most efficient sequential data structure for
Union-Find (and hence, IGC) is the well-known solution based on path compres-
sion, for example, see [4]. The analysis due to Tarjan [5] shows an O(α(m,n))
amortized time per find and an O(1) time per union, which has been proved to
be optimal (see Seidel and Sharir [6] for an alternate analysis). However, current
solutions are often unable to take advantage of parallelism and hence are unable
to process high-throughput dynamic graphs.

Recent work on streaming graph algorithms has focused on minimizing the
memory requirement, with little attention given to the use of parallelism. This
line of work has largely focused on the “semi-streaming model” [7], which allows
O(n ·polylog(n)) space. In the semi-streaming model, the union-find data struc-
ture [5] solves IGC in O(n) space and a total time nearly linear in m.

When only o(n) of work space (sublinear) is allowed, interesting tradeoffs
are known for multi-pass algorithms. For an allotment of O(s) workspace, an
algorithm needs Ω(n/s) passes [7] to compute the connected components of a

564 N. Simsiri et al.

graph. Demetrescu et al. [8] consider the W-stream model, which allows the
processing of streams in multiple passes in a pipelined manner: the output of
the i-th pass is given as input to the (i+1)-th pass. They show a tradeoff between
the number of passes and the memory required. With s bits of space, their
algorithm computes connected components in O((n log n)/s) passes. Demetrescu
et al. [9] present a simulation of a PRAM algorithm on the W-Stream model,
allowing existing PRAM algorithms to run sequentially in the W-Stream model.

McColl et al. [10] present a parallel algorithm for maintaining connected
components in a fully-dynamic graph (addition and deletion), a more general
setting than ours. Their work focuses on engineering algorithms that work well
on real-world graphs, and gives no theoretical analysis of the parallel complexity.
Manne and Patwary [11] present a parallel Union-Find algorithm for distributed
memory computers. Unlike these two works, our work aims for algorithms with
a provable performance bounds and parallel efficiency.

Berry et al. [12] present methods for maintaining connected components in
their parallel graph stream model, called X-Stream, which periodically ages out
edges. Their algorithm is essentially an “unrolling” of the algorithm of [8], and
edges are passed from one processor to another until connected components are
found by the last processor in the sequence. Compared to our work, their input
model and notions of correctness differ. Our work views the input stream as a
sequence of batches, where each batch is an unordered set of edges or a set of
queries. Their work views the input as a totally ordered sequence of interleaved
edges and queries and their algorithm must strictly respect this total ordering.
Next, they age out edges, while we do not. Finally, they do not give provable
parallel complexity bounds while we do.

There exist work-efficient batch parallel algorithms for graph connectivity,
such as [13,14]. These compute the connected components of a graph whose edges
are all known in advance, using work linear in the number of edges and parallel
depth polylogarithmic in the number of edges. The work of these algorithms is of
the same order as that of the best sequential algorithm for connected components
of a static graph. However, these algorithms are not efficient for a dynamic graph.
If the graph changes due to the addition of a few edges, then the entire algorithm
will have to be re-run to update the connected components in the graph. Hence,
these are not suitable for parallel ICG.

Shiloach and Vishkin (as presented by Jájá [15]) describe a batch parallel
algorithm for graph connectivity based on Union-Find that runs in O(m log n)
work and polylogarithmic depth. Their algorithm, like ours, also relies on a
union-find-like forest and linking together trees (“grafting” in their terminology);
however, theirs relies on pointer jumping to keep the tree shallow to the point
of keeping stars. As far as we know, there is no easy way to port their algorithm
to our setting, let alone perform parallel path compression. Our algorithm is
simpler as it sidesteps concurrent grafting.

Prior work on wait-free algorithms for Union-Find [16] has focused on the
asynchronous model, where the goal is to be correct under all possible inter-
leavings of operations. Unlike us, they do not focus on bulk processing of edges.

Work-Efficient Parallel Union-Find 565

In addition, there is a long line of work on sequential algorithms for maintain-
ing graph connectivity on an evolving graph. See the recent work by [17] that
addresses this problem in the general dynamic case and the references therein.

1.3 Preliminaries and Notation

Throughout the paper, let [n] denote the set {0, 1, . . . , n}. A sequence is written
as X = 〈x1, x2, . . . , x|X|〉, where |X| denotes the length of the sequence. For a
sequence X, the i-th element is denoted by Xi or X[i]. Following the set-builder
notation, we denote by 〈f(x) : Φ(x)〉 a sequence generated (logically) by taking
all elements that satisfy Φ(x), preserving their original ordering, and transform
them by applying f . For example, if T is a sequence of numbers, the notation
〈1 + f(x) : x ∈ T and x odd〉 means a sequence created by taking each element
x from T that are odd and map x to 1 + f(x), retaining their original ordering.
Furthermore, we write S ⊕ T to mean the concatenation of S and T .

We design algorithms in the work-depth model assuming an underlying
CRCW machine: the work of an algorithm is the total operation count, and
the depth (also called parallel time or span) is the length of the longest chain of
dependencies within a parallel computation. The gold standard for algorithms
in this model is to perform the same amount of work as the best sequential
counterpart (work efficient) and to have polylogarithmic depth. At the expense
of an extra polylog factor in work and depth, algorithms designed for CRCW
can work in other shared-memory models (e.g., CREW).

We use standard parallel operations such as filter, prefix sum, map (applying
a constant-cost function), and pack, all of which has O(n) work and at most
O(log2(n)) depth on an input sequence of length n. Given a sequence of m
numbers, there is a duplicate removal algorithm removeDup running in O(m)
work and O(log2 m) depth [15]. We also use the following results to sort integer
keys in a small range faster than a typical comparison-based algorithm:

Theorem 1 (Parallel Integer Sort [18]). There is an algorithm, intSort,
that takes a sequence of integer keys a1, a2, . . . , an, each ai ∈ [0, cn], where c =
O(1), and produces a sorted sequence in O(n) work and polylog(n) depth.

Parallel Connectivity: For a graph G = (V,E), a connected component algo-
rithm (CC) computes a sequence of connected components 〈Ci〉k

i=1, where each
Ci is a list of vertices in the component. There are algorithms for CC that have
O(|V | + |E|) work and O(polylog(|V |, |E|)) depth (e.g., [13,14]), with Gazit’s
algorithm [14] requiring O(log |V |) depth.

2 Simple Bulk-Parallel Data Structure

In this section, we describe a simple bulk-parallel data structure for Union-Find
and IGC. The data structure is conceptually simple but will be instructive for the
theoretical improvements presented in the next section. As before, let n denote
the number of vertices in the graph stream, and equivalently, the total number
of elements across all disjoint sets. The main result for this section is as follows:

566 N. Simsiri et al.

Theorem 2. There is a bulk-parallel data structure for Union-Find and IGC
with the following properties: (1) the total memory consumption is O(n)
words; (2) processing a minibatch of b updates takes O(b log n) work and
O(log max(b, n)) depth; and (3) processing a minibatch of q queries takes
O(q log n) work and O(log n) depth.

Our solution is a parallel version of the standard union-find data structure
that keeps the height of the union-find forest at most O(log n). The crux here is
to handle concurrent union operations efficiently.

Sequential Union-Find Algorithm: We begin by reviewing a basic union-
find implementation that uses union by size2. The data structure maintains a
forest with one tree for each set in the partition. find(v) returns the element
at the root of the tree containing v. If u and v are in different sets union(u, v)
combines the trees containing u and v into a single tree by pointing the root of
one to the root of the other. Once union(u, v) has been applied, find(u) and
find(v) return the same element.

A tree in a union-find forest is typically represented by remembering each
node’s parent, in an array parent of length n, where parent[u] is the tree’s
parent of u or parent[u] = u if it is the root of its component. The running time
of the union and find operations depends on the height of the corresponding
trees. To keep the height within O(log n), a simple strategy, known as union by
size, is for union to always link the tree with fewer vertices into the tree with
more vertices. The data structure also keeps an array for the sizes of the trees.
The following results are standard (see [6], for example):

Lemma 1 (Sequential Union-Find). On a graph with n vertices, a sequen-
tial union-find data structure implementing the union-by-size strategy consumes
O(n) space and has the following characteristics:

– Every union-find tree has height O(log n) and each find takes O(log n)
sequential time.

– Given two distinct roots u and v, the operation union(u, v) implementing
union by size takes O(1) sequential time.

Our data structure maintains an instance of this union-find data structure,
called U . The find operation here is read-only; unlike some more sophisticated
variants, this version of union-find does not perform path compression.

Connectivity Queries in Parallel. Let U denote the union-find data structure
stored in shared memory. Connectivity queries can be answered in parallel, using
read-only find operations on U . To answer whether u and v are connected, we
compute U.find(v) and U.find(u), and report if the results are equal. Multiple
queries can be answered by running multiple copies of this procedure in parallel,
as described in Simple-Bulk-Query (Algorithm 1).

Correctness follows from the underlying union-find structure. The parallel
cost is simply that of applying q operations of U.find in parallel. Hence:
2 Other variants, such as union by rank, will also work.

Work-Efficient Parallel Union-Find 567

Algorithm 1. Simple-Bulk-Query(U, 〈(ui, vi)〉q
i=1).

Input: U : union find structure, and (ui, vi) is a pair of vertices, for 1 ≤ i ≤ q.
Output: For each i, whether or not ui is connected to vi in the graph.

1: for i = 1, 2, . . . , q do in parallel
2: ai ← (U.find(ui) = U.find(vi))
3: return 〈a1, a2, . . . , aq〉

Lemma 2. The parallel depth of Simple-Bulk-Query is O(log n), and the work
is O(q log n), where q is the number of queries input to the algorithm.

Multiple Updates in Parallel. How to incorporate (in parallel) a minibatch of
edges A into an existing union-find structure? Sequentially, this is simple: for
each edge, invoke union on the endpoints. But it is dangerous to directly apply
different union operations in parallel since union updates the structure.

However, it is safe run multiple unions in parallel as long as they operate on
different trees. Because there may be a number of union operations involving the
same tree, this is not sufficient in itself—running these sequentially will result
in a large parallel depth. For instance, consider adding the edges of a star graph
(with a very high degree) to an empty graph. Because all the edges share a
common endpoint (the center), this vertex is involved in every union, and hence
no two operations can proceed in parallel.

To tackle this problem, our algorithm transforms the minibatch of edges A
into a structure that can be connected up easily in parallel. For illustration,
we revisit the example when the minibatch is itself a star graph. Suppose there
are seven edges within the minibatch: (v1, v2), (v1, v3), (v1, v4), . . . , (v1, v8). By
examining the minibatch, we find that all of v1, . . . , v8 will belong to the same
component. We now apply these connections to the graph.

In terms of connectivity, it does not matter whether we apply the actual edges
that arrived, or a different, but equivalent set of edges; it only matters that the
relevant vertices are connected up. To connect up these vertices, our algorithm
schedules the unions in only three parallel rounds as follows. The notation X‖Y
indicates that X and Y are run in parallel:

1. union(v1, v2)‖union(v3, v4)‖union(v5, v6)‖union(v7, v8)
2. union(v1, v3)‖union(v5, v7)
3. union(v1, v5)

As we will soon see, such a schedule can be constructed for a component of
any size provided that no two vertices in the component are connected previously.
The resulting parallel depth is logarithmic in the size of the minibatch.

To add a minibatch of edges Simple-Bulk-Update (Algorithm 2) proceeds in
three steps: (1) Relabel edges as links between existing components (2) Discover
new connections arising from A (3) Commit new connections to U in parallel,
using a divide-and-conquer strategy. We omit further details here. For proof of
correctness and analysis of the properties of the algorithm, we refer the reader
to the full version of the paper [3].

568 N. Simsiri et al.

Algorithm 2. Simple-Bulk-Update(U,A)
Input: U : the union find structure;
A: a set of edges to add to the graph, equivalently viewed as a set of union
operations to be applied to U
� Relabel each (u, v) ∈ A with the roots of u and v

1: A′ ← 〈(pu, pv) : (u, v) ∈ A where pu = U.find(u) and pv = U.find(v)〉
� Remove self-loops

2: A′′ ← 〈(u, v) : (u, v) ∈ A′ where u �= v〉
3: C ← CC(A′′)
4: foreach C ∈ C do in parallel
5: Parallel-Join(U, C)

Algorithm 3. Parallel-Join(U,C)
Input: U : the union-find structure, C: a seq. of tree roots
Output: The root of the tree after all of C are connected

1: if |C| = 1 then
2: return C[1]
3: else
4: � ← 	|C|/2

5: u ← Parallel-Join(U, C[1, 2, . . . , �]) in parallel with

v ← Parallel-Join(U, C[� + 1, � + 2, . . . , |C|])
6: return U.union(u, v)

Intuitively, Parallel-Join is correct because the order that the union oper-
ations are made does not matter and that parallel union operations always work
on separate sets of tree roots, posing no conflicts.

Lemma 3 (Complexity of Simple-Bulk-Update). Given a minibatch A with
b edges, Simple-Bulk-Update takes O(b log n) work and O(log n) depth.

3 Work-Efficient Parallel Algorithm

Whereas the fastest sequential data structures (e.g., [5]) require O((m+q)α(m+
q, n)) work to process m edges and q queries, our basic data structure from the
previous section needs up to O((m + q) log n) work for the same input stream.
This section describes improvements that make it match the best sequential work
bound while preserving the polylogarithmic depth guarantee. The main result
for this section is as follows:

Theorem 3. There is a bulk-parallel data structure for Union-Find and IGC
with the following properties:
(1) The total memory consumption is O(n) words.
(2) The depth of Bulk-Update and Bulk-Query is O(log n) each.
(3) Over the lifetime of the data structure, the total work for processing m

updates (across all Bulk-Update) and q queries is O((m + q)α(m + q, n)).

Work-Efficient Parallel Union-Find 569

Overview: All sequential data structures with a O((m + q)α(n)) bound use a
technique called path compression, which shortens the path that find takes to
reach the root, making subsequent operations cheaper. Our goal in this section is
to enable path compression during parallel execution. We present a new parallel
find procedure called Bulk-Find, which answers a set of find queries in parallel
and performs path compression.

To understand the benefits of path compression, consider a concrete example
in Fig. 1A, which shows a union-find tree T that is typical in a union-find forest.
The root of T is r = 19. Suppose we need to support find’s from u = 1 and
v = 7. When all is done, both find(u) and find(v) should return r. Notice that
in this example, the paths to the root u � r and v � r meet at a common
vertex w = 4. That is, the two paths are identical from w onward to r. If find’s
were done sequentially, say find(u) before find(v), then find(u)—with path
compression—would update all nodes on the u � r path to point to r. This
means that when find(v) traverses the tree, the path to the root is significantly
shorter: for find(v), the next hop after w is already r.

The kind of sharing and shortcutting illustrated, however, is not possible
when the find operations are run independently in parallel. Each find, unaware
of the others, will proceed all the way to the root, missing out on possible sharing.

570 N. Simsiri et al.

We fix this problem by organizing the parallel computation so that the work
on different “flows” of finds is carefully coordinated. Algorithm 4 shows an
algorithm Bulk-Find, which works in two phases, separating actions that only
read from the tree from actions that only write to it:

� Phase I: Find the roots for all queries, coalescing flows as soon as they meet
up. This phase should be thought of as running breadth-first search (BFS),
starting from all the query nodes S at once. As with normal BFS, if multiple
flows meet up, only one will move on. Also, if a flow encounters a node that
has been traversed before, that flow no longer needs to go on. To proceed
to Phase II, we need to record the paths traversed so that we can distribute
responses to the requesting nodes.
� Phase II: Distribute the answers and shorten the paths. Using the tran-
script from Phase I, Phase II makes sure that all nodes traversed will point to
the corresponding root—and answers delivered to all the finds. This phase,
too, should be thought of as running breadth-first search (BFS) backwards
from all the roots reached in Phase I. This BFS reverses the steps taken in
Phase I using the trails recorded. There is a technical challenge in implement-
ing this. Back in Phase I, to minimize the cost of recording these trails, the
trails are kept as a list of directed edges (marked by their two endpoints)
that are traversed. However, for the reverse traversal in Phase II to be effi-
cient, it needs a means to quickly look up all the neighbors of a vertex (i.e.,
at every node, we must be able to find every flow that arrived at this node
back in Phase I). For this, we use a data structure that takes advantage of
hashing and integer sorting (Theorem 1) to keep the parallel complexity low.
We discuss this in Lemma 4.

Example: We illustrate how the Bulk-Find algorithm works using the union-
find from Fig. 1A. The queries to the Bulk-Find are nodes that are circled. The
paths traversed in Phase I are shown in panel B. If a flow is terminated, the last
edge traversed on that flow is rendered as .

Notice that as soon as flows meet up, only one of them will carry on. In
general, if multiple flows meet up at a point, only one will go on. Notice also
that both the flow 1 → 2 → 4 and the flow 7 → 8 → 9 → 4 are stopped at 4
because 4 is a source itself, which was started at the same time as 1 and 7. At
the finish of Phase I, the graph (in fact a tree) given by R∪ is shown in panel C.
Finally, in Phase II, this graph is traversed and all nodes visited are updated to
point to their corresponding root (as shown in panel D).

3.1 Response Distributor

For a sequence R∪ = 〈(fromi, toi)〉λ
i=1, we need to answer the query allFrom(f),

which returns a sequence containing all toi where fromi = f . To meet the desired
overall running bound, we can spend no more than O(λ) work and O(polylog(λ))
depth on preprocessing R∪ and cannot generate, say, a sequence of sequences
RD where RD[f] stores allFrom(f). This calls for a data structure.

Work-Efficient Parallel Union-Find 571

19
6 15

16 17 1812 414 19

2 5 9

1 3 8 10

7 11

19
6 15

16 17 1812 414 19

2 5 9

1 3 8 10

7 11

19
6 15

16 17 1812 414 19

2 5 9

1 3 8 10
7

11

19
6

4

2 9

1 3 8

7

A B C D

Fig. 1. A: An example union-find tree with sample queries circled; B: Bolded edges are
paths, together with their stopping points, that result from the traversal in Phase I;
C: The traversal graph R∪ recorded as a result of Phase I; and D: The union-find tree
after Phase II, which updates all traversed nodes to point to their roots.

Lemma 4 (Response Distributor). There is a response distributor (RD)
structure that can be constructed from input R∪ = 〈(fromi, toi)〉λ

i=1 in O(λ)
work and O(polylog(n)) depth. Each allFrom query takes O(log λ) depth. If
F = {fromi : i = 1, . . . , λ}, then E

[∑

f∈F
Work(RD.allFrom(f))

]

= O(λ).

Idea Sketch: Each fromi is hashed to a number in, say, [cλ], c = O(1). Then,
intSort places the same keys together. To answer allFrom(f), scan the tuples
that hash to the same number as f , filtering out those that are not for f . Since
two different fs hash to the same place with probability 1/c, there cannot be
too many “collisions,” so the overall work across all queries in F is still O(λ).

Hence, Bulk-Find(U, S) performs O(|R∪|) work and O(polylog(n)) depth.

3.2 Bulk-Find’s Cost Equivalence to Serial find

To analyze the work bound of the improved data structure, we will show that
what Bulk-Find does is equivalent to some sequential execution of the standard
find and requires the same amount of work, up to constants.

To gather intuition, we will manually derive such a sequence for the sam-
ple queries S = {1, 3, 4, 7} used in Fig. 1. The query of 4 went all the way to
the root without merging with another flow. But the queries of 1 and 7 were
stopped at 4 and in this sense, depended upon the response from the query
of 4. By the same reasoning, because the query of 3 merged with the query
of 1 (with 1 proceeding on), the query of 3 depended on the response from
the query of 1. Note that in this view, although the query of 3 technically
waited for the response at 2, it was the query of 1 that brought the response,
so it depended on 1. To derive a sequence of execution, we need to respect the
“depended on” relation: if a depended on b, then a will be invoked after b. As
an example, one sequential execution order that respects these dependencies is
find(4), find(7), find(1), find(3). By applying finds in this order, the paths
traversed are exactly what the parallel execution does because U.find performs
full path compression. This idea is formalized as follows:

Lemma 5. For a sequence of queries S with which Bulk-Find(U, S) is invoked,
there is a sequence S′ that is a permutation of S such that applying U.Find to

572 N. Simsiri et al.

S′ serially in that order yields the same union-find forest as Bulk-Find′s and
incurs the same traversal cost of O(|R∪|), where R∪ is as defined in Bulk-Find.

Finally, to obtain the bounds in Theorem 3, we modify Simple-Bulk-Query
and Simple-Bulk-Update (in the relabeling step) to use Bulk-Find on all query
pairs. The depth clearly remains O(polylog(n)) per bulk operation. Aggregating
the cost of Bulk-Find across calls from Bulk-Update and Bulk-Query, we know
from Lemma 5 that there is a sequential order that has the same work. Therefore,
the total work is bounded by O((m + q)α(m + q, n)).

4 Conclusion

We presented a shared-memory parallel algorithm for incremental graph connec-
tivity in the minibatch arrival model. Our algorithm has polylogarithmic parallel
depth and its total work across all processors is of the same order as the work
due to the best sequential algorithm for incremental graph connectivity.

We list some natural open questions. (1) The present paper assumes CRCW
(Concurrent Read and Concurrent Write) because of parallel integer sorting,
which is used internally. Is it possible to design an algorithm with the same
work and depth that does not require concurrent write? (2) For large but still
o(n) batch size, can the work of our algorithm be improved? Our algorithm,
though work-efficient with respect to union-find, still does slightly more than
linear work. By contrast, the optimal connectivity in the static setting only
requires linear work. Note, however, that for all practical purposes, the work
of our algorithm is linear in the number of edges, due to very slow growth of
the inverse Ackerman’s function. (3) Can these results on parallel algorithms be
extended to the fully dynamic case when there are both edge arrivals as well as
deletions?

References

1. IBM Corporation: IBM Streams. http://www-03.ibm.com/software/products/en/
ibm-streams. Accessed Feb 2016

2. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: Proceedings of ACM Symposium
on Operating Systems Principles (SOSP), pp. 423–438 (2013)

3. Simsiri, N., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Work-efficient parallel
and incremental graph connectivity. Technical report, arXiv (2016). https://arxiv.
org/

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

5. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

6. Seidel, R., Sharir, M.: Top-down analysis of path compression. SIAM J. Comput.
34(3), 515–525 (2005)

7. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2–3), 207–216 (2005)

http://www-03.ibm.com/software/products/en/ibm-streams
http://www-03.ibm.com/software/products/en/ibm-streams
https://arxiv.org/
https://arxiv.org/

Work-Efficient Parallel Union-Find 573

8. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph
streaming problems. ACM Trans. Algorithms 6(1), 6 (2009)

9. Demetrescu, C., Escoffier, B., Moruz, G., Ribichini, A.: Adapting parallel algo-
rithms to the W-stream model, withapplications to graph problems. Theor. Com-
put. Sci. 411(44–46), 3994–4004 (2010)

10. McColl, R., Green, O., Bader, D.A.: A new parallel algorithm for connected com-
ponents in dynamic graphs. In: 20th Annual International Conference on High Per-
formanceComputing, HiPC 2013, Bengaluru (Bangalore), Karnataka, India, 18–21
December 2013, pp. 246–255 (2013)

11. Manne, F., Patwary, M.M.A.: A scalable parallel union-find algorithm for dis-
tributed memory computers. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 186–195. Springer,
Heidelberg (2010)

12. Berry, J., Oster, M., Phillips, C.A., Plimpton, S., Shead, T.M.: Maintaining con-
nected components for infinite graph streams. In: Proceedings of 2nd International
Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms,
Systems, Programming Models and Applications (BigMine), pp. 95–102 (2013)

13. Shun, J., Dhulipala, L., Blelloch, G.E.: A simple and practical linear-work parallel
algorithm for connectivity. In: 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2014, Prague, Czech Republic, pp. 143–153 (2014)

14. Gazit, H.: An optimal randomized parallel algorithm for finding connected com-
ponents in a graph. SIAM J. Comput. 20(6), 1046–1067 (1991)

15. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Redwood City
(1992)

16. Anderson, R.J., Woll, H.: Wait-free parallel algorithms for the union-find problem.
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
5–8 May 1991, New Orleans, Louisiana, USA, pp. 370–380 (1991)

17. Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polyloga-
rithmic worst case time. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
6–8 January 2013, pp. 1131–1142 (2013)

18. Rajasekaran, S., Reif, J.H.: Optimal and sublogarithmic time randomized parallel
sorting algorithms. SIAM J. Comput. 18(3), 594–607 (1989)

An Efficient Cache-oblivious
Parallel Viterbi Algorithm

Rezaul Chowdhury, Pramod Ganapathi(B), Vivek Pradhan,
Jesmin Jahan Tithi, and Yunpeng Xiao

Department of Computer Science, Stony Brook University, New York, USA
pramod.ganapathi@stonybrook.edu

Abstract. The Viterbi algorithm is used to find the most likely path
through a hidden Markov model given an observed sequence, and has
numerous applications. Due to its importance and high computational
complexity, several algorithmic strategies have been developed to paral-
lelize it on different parallel architectures. However, none of the existing
Viterbi decoding algorithms designed for modern computers with cache
hierarchies is simultaneously cache-efficient and cache-oblivious. Being
oblivious of machine resources (e.g., caches and processors) while also
being efficient promotes portability. In this paper, we present an efficient
cache- and processor-oblivious Viterbi algorithm based on rank conver-
gence. The algorithm builds upon the parallel Viterbi algorithm of Maleki
et al. (PPoPP 2014). We provide empirical analysis of our algorithm by
comparing it with Maleki et al.’s algorithm.

Keywords: Viterbi algorithm · Cache-efficient · Cache-oblivious ·
Recursive · Divide-and-conquer · Parallel · Multi-instance · Rank
convergence

1 Introduction

The Viterbi algorithm [36,37] proposed by Andrew J. Viterbi in 1967, is a
dynamic programming algorithm that finds the most probable sequence of hid-
den states, called the “Viterbi path” from a given sequence of observed events
in the context of a hidden Markov model (HMM).
Motivation. The Viterbi algorithm has numerous real-world applications.
Although it was originally used for speech recognition in CDMA technology,
in the last 25 years, it has been heavily used in computational biology and
bioinformatics for finding coding and non-coding regions of an unlabeled string
of DNA nucleotides (i.e., gene finding) [3], prediction of protein-coding regions
in genome sequences modeling families of related DNA or protein sequences
and prediction of secondary structure elements in proteins [24], CpG island [17],
promoter [29] and conserved elements detection [30]. Apart from computational
biology, Viterbi algorithm is used in TDMA system for GSM [15], television sets
[28], satellite and space communication [21], magnetic recording systems [23],
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 574–587, 2016.
DOI: 10.1007/978-3-319-43659-3 42

An Efficient Cache-oblivious Parallel Viterbi Algorithm 575

parsing context-free grammars [22], and part-of-speech tagging [16]. Therefore,
improving performance of Viterbi algorithm will likely to have impact in these
areas as well.

When the input data becomes too large to fit into a cache, between two
algorithms that perform the same set of CPU operations, the one that is more
cache-efficient, i.e., causes fewer block transfers (or IO) between adjacent levels
of caches is likely to run faster. Though there have been a lot of efforts and
successes in parallelizing the Viterbi algorithm, there is little work in the realm of
designing cache-efficient Viterbi algorithms that are also cache-oblivious [20], i.e.,
independent of cache parameters such as cache sizes and block sizes. Similarly,
a processor-oblivious [12] algorithm does not use the number of processors in
the algorithmic description. A cache- and processor-oblivious algorithm is more
likely to be portable across machines. To the best of our knowledge, we present
the first provably cache-efficient cache-oblivious parallel Viterbi algorithm.

We use dynamic multithreading model [14] and ideal cache model [20] to mea-
sure parallelism and serial cache complexity, respectively.

Related Work. Several efficient cache- and processor-oblivious recursive divide-
and-conquer algorithms for solving dynamic programs (DP) have been developed
[2,4,7–11,13,31,33,34]. But the approach used in those papers assumes that the
set and sequence of DP cell updates to be performed do not depend on the data
values in the DP table which is not true in case of Viterbi DP.

One can use auto-parallelizers to parallelize sequential Viterbi programs.
Fisher and Ghuloum [19] present a method in which loop body instances are
represented in a closed form using function compositions. Reduction is then
applied for parallelization. Chin et al. [5,6] use second-order generalization and
induction derivation to generate divide-and-conquer parallel programs. None of
these methods exploit parallelism across stages. Also the generated parallel pro-
grams are not cache-efficient.

The parallel Viterbi algorithm [18] used for homology search in HMMER
uses SSE2 instructions and reduces L1 cache misses. Though the phrase “cache-
oblivious” appears in the title of the paper, the presented algorithm is not obliv-
ious of the cache parameters as it uses loop-tiling with the tile size determined
based on the size of the L1 data cache. Also the algorithm works only for three
states, and it is not clear how the method behaves for arbitrarily large number
of states as in the case of a general Viterbi algorithm.

The EasyPDP system [32] parallelizes the Viterbi algorithm and also reduces
cache misses. However, it requires the user to specify loop tile sizes making it
cache-aware. Also the reduction in cache misses is not significant.

The Viterbi algorithm is inherently sequential across stages which constraints
parallelism along the time dimension. A parallel Viterbi algorithm presented in
[26,27] based on rank convergence is the first to exploit parallelism across stages.
However, this algorithm is processor-aware and not cache-efficient.

576 R. Chowdhury et al.

Our Contributions. Our major contributions are: (1) an efficient cache-
oblivious parallel multi-instance Viterbi algorithm (Sect. 3), (2) an efficient
cache-oblivious parallel single-instance Viterbi algorithm (Sect. 5) based on our
multi-instance algorithm (Sect. 3) and Maleki et al.’s rank convergence algorithm
(Sect. 4), and (3) experimental results (Sect. 6) comparing our algorithms with
Maleki et al.’s algorithms on modern multicore platforms.

2 Cache-inefficient Viterbi Algorithm

In this section, we formally describe the Viterbi dynamic program (DP),
and describe a simple cache-inefficient Viterbi algorithm based on divide-and-
conquer.

Loop-Viterbi(P,A,B)

1. for j ← 2 to t do
2. par for i ← 1 to n do
3. for k ← 1 to n do
4. P [i, j] ← max (P [i, j],

P [k, j−1]×A[k, i]×B[i, yj])

Viterbi-D&C(P,A,B)

1. for j ← 2 to t do
2. X ← P [.., j]; U ← P [.., j−1]
3. V ← A; W ← B[.., yj]
4. Avit(X,U, V,W)

Avit(X,U, V,W)

1. if V is a small matrix then
2. Aloop−vit(X,U, V,W)
3. else
4. par: Avit(X1, U1, V11,W1),

Avit(X2, U1, V12,W2)
5. par: Avit(X1, U2, V21,W1),

Avit(X2, U2, V22,W2)

Fig. 1. Iterative and recursive Viterbi algorithms.

Formal Specification. The Viterbi DP is described as follows. We are given
an observation space O = {o1, o2, . . . , om}, state space S = {s1, s2, . . . , sn},
observations Y = {y1, y2, . . . , yt}, transition matrix A of size n×n, where A[i, j]
is the transition probability of transiting from si to sj , emission matrix B of
size n × m, where B[i, j] is the probability of observing oj at si, and initial
probability vector (or initial solution vector) I, where I[i] is the probability that
x1 = si. Let X = {x1, x2, . . . , xt} be a sequence of hidden states that generates
Y = {y1, y2, . . . , yt}. Then the matrices P and P ′ of size n × t, where P [i, j] is
the probability of the most likely path of getting to state si at observation oj

An Efficient Cache-oblivious Parallel Viterbi Algorithm 577

and P ′[i, j] stores the hidden state of the most likely path (i.e., Viterbi path)
are computed as follows. P [i, j] = I[i] · B[i, y1], and P ′[i, j] = 0 when j = 1.
Otherwise (i.e., when j > 1):

P [i, j] = maxk∈[1,n](P [k, j − 1] · A[k, i] · B[i, yj]),

and P ′[i, j] = argmaxk∈[1,n](P [k, j − 1] · A[k, i] · B[i, yj]),

Cache-inefficient Algorithm. An iterative parallel and a recursive divide-and-
conquer-based parallel Viterbi algorithms are given in Fig. 1. As per the Viterbi
recurrence, each cell (i, j) of matrix P depends on all cells of P in column
j − 1, all cells of A in column i, and the cell (i, yj) of B. The function Avit fills
jth column of P denoted by X using (j − 1)th column denoted by U using a
divide-and-conquer approach. To compute each column of P , the entire matrix
of A has to be read. Hence the recursive algorithm is cache-inefficient. In both
algorithms, the stages are computed sequentially, however, all cells in each stage
(or timestep) are computed in parallel.

Complexity Analysis. The serial cache complexity of the iterative algorithm
is computed as

∑t
j=1

∑n
i=1 O (n/B) = O (

n2t/B
)

, and that of the divide-and-
conquer algorithm is computed as follows. Let QA(n) denote the serial cache
complexity of Avit on a matrix of size n × n. Then QA(n) = O (

n2/B + n
)

if n2 ≤ γAM , and 4QA (n/2) + O (1), otherwise; where, γA is a suitable con-
stant. Solving, QA(n) = O (

n2/B + n
)

. Thus, the serial cache complexity of the
recursive algorithm is O (

n2t/B + nt
)

when n2 is too large to fit in cache.
Both the iterative and recursive algorithms have spatial locality, but they do

not have any temporal locality. Hence, these algorithms are not cache-efficient.
The span (i.e., runtime on a machine with an unbounded number of proces-

sors) of the iterative algorithm is Θ (nt), as there are t time steps and it takes
n time steps to fully update a cell of P . The span of the recursive algorithm
is computed as follows. Let TA(n) denote the span of Avit on a matrix of size
n × n. Then TA(n) = Θ (1) if n = 1, and 2TA (n/2) + Θ (1), otherwise. Solving,
TA(n) = Θ (n), which implies that the span of the recursive algorithm is Θ (nt).

3 Cache-efficient Multi-instance Viterbi

In this section, we present a novel cache-efficient cache-oblivious Viterbi algo-
rithm for multiple instances of the problem.

It is easy to see that a standard recursive divide-and-conquer algorithm has
no temporal locality because to compute each column of P (Θ

(

n2
)

work), we
have to scan the entire matrix A (Θ

(

n2
)

space). We can exploit temporal cache
locality by solving multiple instances of the problem simultaneously. The existing
method that uses multiple instances [25] is cache-inefficient.

Two problems that have the same transition matrix A and emission matrix
B are termed two instances of the same problem. The spoken word recognition
problem can be considered as an example of multi-instance Viterbi problem.

578 R. Chowdhury et al.

Viterbi-Multi-Instance-D&C(P1, P2, . . . , Pq, A,B, t)

1. for j ← 2 to t do
2. X ← [P1[.., j], P2[.., j], . . . , Pq [.., j]]
3. U ← [P1[.., j − 1], P2[.., j − 1], . . . , Pq [.., j − 1]]
4. V ← A
5. W ← [B[.., y1j], B[.., y2j], . . . , B[.., yqj]]
6. Avit(X,U, V,W)

Avit(Xn×q, Un×q, Vn×n,Wn×q)

1. if X and V are small matrices then
2. Aloop−vit(X,U, V,W)
3. else if q > n do
4. par: Avit(XL,UL, V,WL), Avit(XR,UR, V,WR)
5. else if q < n do
6. par: Avit(XT ,UT , V11,WT), Avit(XB,UT , V12,WB)
7. par: Avit(XT ,UB, V21,WT), Avit(XB,UB, V22,WB)
8. else
9. par: Avit(X11, U11, V11,W11), Avit(X12, U12, V11,W12),

Avit(X21, U11, V12,W21), Avit(X22, U12, V12,W22)
10. par: Avit(X11, U21, V21,W11), Avit(X12, U22, V21,W12),

Avit(X21, U21, V22,W21), Avit(X22, U22, V22,W22)

Fig. 2. Cache-efficient multi-instance Viterbi algorithm.

The core idea of the algorithm comes from the fact that by scanning the transi-
tion matrix A only once, a particular column of matrix P can be computed for
n instances of the problem.

Consider Fig. 2. In the function Avit (X,U, V,W), the matrix U is an n × q
matrix obtained by concatenating (j−1)th columns of q matrices P1, P2, . . . , Pq,
where Pi is the most likely path probability matrix of problem instance i. The
algorithm computes X, which is a concatenation of jth columns of the q prob-
lem instances. Each problem instance i has a different observations vector Yi =
{yi1, yi2, . . . , yit}. Matrix W W is a concatenation of B[y1,j], B[y2,j], . . . , B[yq,j].
We use XT ,XB ,XL, and XR to represent the top half, bottom half, left half, and
right half of X, respectively. Executing the divide-and-conquer algorithm once
computes the second column of all matrices P1 to Pq. Executing the algorithm
again computes the third column of the q matrices. Executing the algorithm t
times, the last column of all problem instances would be filled. Note that for
each time step (or observation step), W needs to be reconstructed.

Complexity Analysis. The serial cache complexity of the algorithm in Fig. 2 is
computed as follows. Let QA(n, q) denote the serial cache complexity of Avit on
a matrix of size n × q, and let n and q be powers of two. Then QA(n, q) =
O (

n2/B + n
)

when n2 + nq ≤ γAM ; QA(n, q) = 8QA (n/2, q/2) + O (1)
when n = q; QA(n, q) = 2QA (n, q/2) + O (1) when n < q; and QA(n, q) =
4QA (n/2, q) + O (1) when n > q; where, γA is a suitable constant. Solv-
ing, the cache complexity of the algorithm for t timesteps is t × QA(n, q) =
O

(

n2qt/(B
√

M) + n2qt/M + n(n + q)t/B + t
)

. As the algorithm exploits tem-
poral locality, it is cache-efficient. The span of the algorithm remains Θ (nt).

An Efficient Cache-oblivious Parallel Viterbi Algorithm 579

4 Viterbi Algorithm Using Rank Convergence

We briefly describe and improve Maleki et al.’s Viterbi algorithm [26] below.

Preliminaries. We rewrite the Viterbi recurrence using log-probabilities (i.e.,
logarithms of all probabilities) as follows so that we can replace multiplications
with additions: P [i, j] = I[i] + B[i, y1] if j = 1, and P [i, j] = maxk∈[1,n](P [k, j-
1] + A[k, i] + B[i, yj]) if j > 1.

We rewrite the recurrence above as s[t − 1] = s[0] � A1 � A2 � · · · � At−1,
where s[j] is the jth solution vector (or column vector P [.., j]) of matrix P ,
the n × n matrix Ai is a suitable combination of A and B, and � is a
matrix product operation defined between two matrices Rn×n and Sn×n as
(R � S)[i, j] = maxk∈[1,n](R[i, k] + S[k, j]).

Viterbi-Rank(s[0..t − 1], A,B)

1. p ← #processors

〈 Forward phase 〉
2. par for i ← 1 to p do
3. li ← t(i − 1)/p; ri ← ti/p
4. if i > 1 then s[li] ← random vector
5. for j ← li to ri − 1 do
6. s[j+1] ← Viterbi(s[j], A,B[.., yj+1])

〈 Fix up phase 〉
7. converged ← false
8. while !converged do
9. par for i ← 2 to p do

10. convi ← false; s ← s[li]
11. for j ← li to ri − 1 do
12. s ← Viterbi(s, A,B[.., yj+1])
13. if s is parallel to s[j + 1] then
14. convi ← true; break
15. s[j + 1] ← s
16. converged ← ∧i convi

Fig. 3. Processor-aware parallel Viterbi algorithm using rank convergence as given in
Maleki et al. paper [26].

The rank of a matrix Am×n is r if r is the smallest number such that A can
be written as a product of two matrices Cm×r and Rr×n. Vectors v1 and v2 are
parallel provided they differ by a constant offset. For example, 〈1, 2, 3, 4〉 and
〈5, 6, 7, 8〉 are two parallel vectors.

Original Algorithm. The algorithm, shown in Fig. 3, consists of two phases:
(i) parallel forward phase, and (ii) fix up phase. In the forward phase, the t
stages are divided into p segments, where p is the number of processors, each
segment having �t/p� stages (except possibly the last stage). The stages in the ith
segment are from li to ri. The initial solution vector of the entire problem is the
initial vector of the first segment and it is known. The initial solution vectors of
all other segments are initialized to non-zero random values. A sequential Viterbi

580 R. Chowdhury et al.

algorithm is run in all the segments in parallel. A stage i is said to converge if
the computed solution vector s[i] is parallel to the actual solution vector si. A
segment i is said to converge if rank(Ali �Ali+1�· · ·�Aj) is 1 for j ∈ [li, ri −1].

In the fix up phase a sequential Viterbi algorithm is executed for all segments
simultaneously. The solution vectors computed in different segments (except the
first) might be wrong. But eventually they will become parallel to the actual
solution vectors if rank convergence occurs. If rank convergence occurs at every
segment then the solution vectors at every stage will be parallel to the actual
solution vectors. Otherwise, the fix up phase is run again and again until rank
convergence occurs at some point. In the worst case, which rarely happens in
practice, the fix up phase will have to be executed a total of p−1 times for rank
converngence to happen.

Improved Algorithm. The algorithm described above is processor-aware, and
we make it processor-oblivious as follows.

Viterbi-Rank-Improved(s[0..t − 1], A,B)

1. n ← 2k; t ← 2k+k′
; c ← 28

〈 Forward phase 〉
2. size ← c; q ← t/size
3. par for i ← 0 to q − 1 do
4. li ← i × size, ri ← li + size − 1
5. if i > 0 then s[li] ← random vector
6. for j ← li to ri do
7. s[j + 1] ← Viterbi(s[j], A,B[.., yj+1])

〈 Fixup phase 〉
8. u[0..t − 1] ← s[0..t − 1]; converged ← false
9. for (j ← log c to (log t)-1) & !converged do

10. size ← 2j ; q ← t/(2 × size)
11. par for i ← 0 to q − 1 do
12. li ← (2i + 1) × size − 1
13. ri ← li + size; convi ← false
14. for j ← li to ri do
15. u[j+1] ← Viterbi(u[j], A,B[.., yj+1])
16. if u[j + 1] is parallel to s[j + 1] then
17. convi ← true; break
18. s[j + 1] ← u[j + 1]
19. for i ← 0 to q − 1 do
20. converged ← converged ∧ convi
21. if converged = true then break

Fig. 4. Processor-oblivious parallel Viterbi algorithm using rank convergence.

We chose a suitable segment size c (say 256) that is feasibly large, then use a
parallel for loop to solve those t/c segments simultaneously. Unlike Maleki et al.’s
algorithm, we need to make sure that the segments are non-overlapping at their
boundaries and then adjust the fixup phase accordingly as shown in Fig. 4.

Here is how the algorithm works. Let the initial segment size is c (i.e., c
consecutive time steps). For convenience we chose c = 2i where i ∈ [log c, log t].
We divide t time steps into t/c independent segments each of size c. Similar to

An Efficient Cache-oblivious Parallel Viterbi Algorithm 581

Maleki et al.’s algorithm, the first solution vectors of all except the first segment
are initialized to non-zero valid random probability values. Then in the forward
phase we run serial Viterbi algorithm on all segments simultaneously. At the end
of the forward phase solution vectors till the cth column (i.e., all columns in the
first segment) will have correct log-likelihood values. Other segments will have
values computed from the random values chosen initially which may or may not
be parallel to the expected values.

In the fix up phase, we start fixing from the second segment as in the original
Maleki et al.’s algorithm. However, in each fix up phase, we work on alternative
segments always leaving the first segment of the prior fix up phase. After each
fix up phase, the size of each segment being considered doubles and number of
segments becomes half with respect to the previous phase. At the end of each
fix up phase, we check whether the computed solution vectors are parallel to
those in the forward phase, and if the answer is ‘yes’ for all segments under
consideration, the program terminates. Otherwise, the next fix up phase is run.
In the worst case, the fix up phase is executed λ ∈ [1, log(t/c)] times after which
all results are guaranteed to be correct since by that time the result from the
original input propagates till the end. In the worst case, the program is like a
serial Viterbi algorithm with a constant factor overhead.

Complexity Analysis. Let TF
1 (n, t), QF

1 (n, t), TF
∞(n, t), and SF (t) denote the

work, serial cache complexity, span, and the steps for convergence, respectively,
of algorithm F ∈ {O, I}, where O represents the original rank convergence algo-
rithm and I denotes our modified algorithm. Let f(t) be the number of segments
in algorithm O. Note that for Maleki et al.’s original algorithm f(t) = p. Let
the number of times the fix up phase is executed in O and I be λO and λI ,
respectively. Then λO ∈ [1, f(t)] and λI ∈ [1, log (t/c)].

Work. TO
1 (n, t) = Θ

(

n2t · λO

)

, and T I
1 (n, t) = Θ

(

n2t · λI

)

. In the worst case,
TO
1 (n, t) is Θ

(

n2t · f(t)
)

, and T I
∞(n, t) is Θ

(

n2t · log t
)

.
Serial Cache Complexity. As there is no temporal locality, QO

1 (n, t) =
O (

TO
1 (n, t)/B

)

and QI
1(n, t) = O (

T I
1 (n, t)/B

)

, when n2 does not fit into the
cache.

Span. TO
∞(n, t) = Θ (n(t/f(t)) · λO), as the number of stages in each segment

is Θ (t/f(t)), and the span of executing each stage is Θ (n). In the worst case,
TO

∞(n, t) is Θ (nt). T I
∞(n, t) is computed as follows. In the ith fix up phase,

the number of stages in each segment is 2i. Hence, the span of executing all
stages for λI iterations in the fix up phase is Θ

(

∑(log c)+λI

i=log c 2i
)

= Θ
(

2λI
)

. Then

T I
∞(n, t) = Θ

(

n2λI
)

. In the worst case, T I
∞(n, t) is Θ (nt).

Steps for Convergence. Let the rank of the matrix A1�A2�· · ·�At be k. For the
original algorithm, (SO(t) − 1) × (t/f(t)) < k ≤ SO(t) × (t/f(t)), which implies
SO(t) = �kf(t)/t�. Similarly, for the improved algorithm, 2SI(t)−1+log c < k ≤
2SI(t)+log c, which implies SI(t) = �k/c�.

582 R. Chowdhury et al.

5 Cache-efficient Viterbi Algorithm

In this section, we present an efficient cache- and processor-oblivious parallel
Viterbi algorithm based on recursive divide-and-conquer, as shown in Fig. 5. The
algorithm is derived by combining ideas from the cache-efficient multi-instance
Viterbi algorithm (see Sect. 3) and the improved parallel Viterbi algorithm based
on rank convergence (see Sect. 4).

Recall that in the multi-instance Viterbi algorithm works on the ith solution
vectors, s[i], of different instances of the problem and generates the (i + 1)th

solution vectors, s[i + 1], of the instances cache-efficiently. To develop a cache-
efficient Viterbi algorithm, in the forward phase, we divide t time steps into t/c
independent segments each of size c as we did in the improved parallel Viterbi
algorithm using rank convergence shown in Fig. 4, As before, we chose c = 2i

where i ∈ [log c, log t]. Since each segment is independent, we can assume that
these segments are different instances of the same Viterbi problem. Therefore,
we can use the cache-efficient multi-instance Viterbi algorithm to solve these t/c
instances simultaneously. Again, the first solution vectors of all except the first
segment are initialized to non-zero valid random probability values.

The fix up phase is similar to that of the Viterbi-Rank-Improved algo-
rithm (see Figs. 4 and 5), except that now we use cache-efficient Multi instance
Viterbi algorithms to compute the next solution vector of all segments at once
instead of using Viterbi algorithm to compute an entire segment independently.
As before, we start fixing from the second segment since the first segment is
already fixed after the forward phase.

In each fix up phase, we work on alternative segments always leaving out the
first segment of the prior fix up phase (already fixed by this time). After each
fix up phase, the size of each segment being considered doubles and number
of segments halves with respect to the previous phase. For each step, we use
multi-instance Viterbi algorithm to compute the (i + 1)st solution vector from
the ith solution vectors for all segments at once. At the end of each fix up phase,
we check whether the computed solution vectors are parallel to those found in
the forward phase, and if that is true for all segments under consideration, the
program terminates. Otherwise, the next fix up phase is run. In the worse case,
the fix up phase is executed for λ ∈ [1, log(t/c)] times after which all results are
guaranteed to be correct.

Complexity Analysis. Let T1(n, t), Q1(n, t), and T∞(n, t) be the work, serial
cache complexity, and span of the cache-efficient Viterbi algorithm, respectively.
Let λ ∈ [1, log(t/c)] be the number of times the fix up phase is executed.

T1(n, t) = Θ
(

n2t · λ
)

. In the worst case, T1(n, t) = Θ
(

n2t · log t
)

. As in Sect. 4,

T∞(n, t) = Θ
(

n2λ
)

. Finally, Q1(n, t) = O
(

∑(log c)+λ
i=log c

(

QA

(

n, t/2i
) · 2i

)

)

=

O
(

n2tλ/(B
√

M + n2tλ/M + (n(n2λ + tλ))/B + 2λ
)

. If n2, t = Ω
(√

M
)

and
convergence happens afterλ = O (1) iterations of the fix upphase,Q1(n, t) reduces
to O

(

n2tλ/(B
√

M) + n2tλ/M
)

which further reduces to O
(

n2tλ/(B
√

M)
)

when the cache is tall (i.e., M = Ω
(

B2
)

).

An Efficient Cache-oblivious Parallel Viterbi Algorithm 583

Viterbi-Cache-Efficient(s[0..t − 1], A,B)

1. n ← 2k; t ← 2k+k′
; c ← 28

〈 Forward phase 〉
2. size ← c; q ← t/size
3. par for i ← 0 to q − 1 do
4. li ← i × size, ri ← li + size − 1
5. if i > 0 then s[li] ← random vector
6. Viterbi-MI(s[l0..r0], s[l1..r1], ..,

s[lq-1..rq-1], A,B, c)

〈 Fixup phase 〉
7. u[0..t−1] ← s[0..t−1]; converged ← false
8. for (j ← log c to (log t) − 1) do

9. size ← 2j , q ← t/(2 × size)
10. par for i ← 0 to q − 1 do
11. li ← (2i + 1) × size − 1
12. ri ← li + size; convi ← false
13. Viterbi-MI(u[l0..r0], . . . , u[lq-1..rq-1],

A,B, size + 1)
14. par for i ← 0 to q − 1 do
15. ri ← 2(i + 1) × size − 1
16. if u[ri] is parallel to s[ri] then
17. convi ← true
18. else s[ri] ← u[ri]
19. for i ← 0 to q − 1 do
20. converged ← converged ∧ convi

Fig. 5. An efficient cache- and processor-oblivious parallel Viterbi algorithm using rank
convergence. Viterbi-MI refers to Viterbi-Multi-Instance-D&C of Sect. 3.

6 Experimental Results

This section presents our implementation details and performance results.

Fig. 6. Running time and L3 miss of our cache-efficient multi-instance Viterbi algo-
rithm along with the multi-instance iterative Viterbi algorithm.

We used a dual socket 16-core (= 2 × 8-cores) 2 GHz Intel Sandy Bridge
machine to run all experiments presented in the paper. Each core of this machine
was connected to a 32 KB private L1 cache and a 256 KB private L2 cache. All
the cores in a socket shared a 20 MB L3 cache, and the machine had 32 GB RAM
shared by all cores. We used PAPI 5.2 [1] to count the L3 cache misses (event

584 R. Chowdhury et al.

PAPI L3 TCM) and likwid [35] (i.e., likwid-perfctr) to measure energy and
power consumption of the program. The matrices A,B, and I were initialized to
random probabilities. We used log-probabilities in all implementations and hence
used additions instead of multiplications in the Viterbi recurrence. All matrices
were stored in column-major order. We performed two sets of experiments to
compare our cache-efficient algorithms with the iterative and the fastest known
Viterbi (Maleki et al.’s) algorithms. They are as follows.

Cache-efficient Multi-instance Viterbi Algorithm. We compared our
cache-efficient multi-instance recursive Viterbi algorithm with the multi-instance
iterative Viterbi algorithm. Both algorithms were optimized and parallelized. To
construct matrix Wn×q (we chose q to be n in this case), instead of copying all
the relevant columns of B, only the pointers to the respective columns were used.
Wherever possible, pointer swapping was used to interchange previous solution
vector (or matrix) and current solution vector (or matrix).

The running time and the L3 cache misses for the two algorithms are plotted
in Fig. 6. The number of stages n, which is also the number of instances was
varied from 32 to 4096. Note that in the cache-efficient multi-instance Viterbi
algorithm, the number of stages does not need to be the same as the number of
instances. The variable m was fixed to 32 and the number of timesteps t was also
kept the same as n (hence overall complexity is O(n4)). The recursive algorithm
ran slightly faster than the iterative algorithm in most cases when the number
of instances increased. When n was 4096, our recursive algorithm ran around
2.26 times faster than the iterative algorithm.

Cache-efficient Viterbi Algorithm. We compared our cache-efficient parallel
Viterbi algorithm with Maleki et al.’s parallel Viterbi algorithm. Both implemen-
tations were optimized and parallelized and the reported statistics are averages
of 4 independent runs. In all our experiments, the number of processors p was
set to 16. The plots of Fig. 7 show the graphs of the running time and L3 cache
misses for the two algorithms for n = 4096.

When n = 4096, we varied t from 212 to 218, and kept m fixed at 32. Our algo-
rithm ran faster and incurred significantly fewer L3 misses than Maleki et al.’s
algorithm throughout. For t = 218, our algorithm ran 33 % faster, and incurred a
factor of 6 fewer L3 misses. Better cache performance led to lower DRAM energy
consumption.
Energy Consumption. We ran experiments to analyze the energy consumption
(taking average over three runs) of our cache-efficient recursive algorithm and
Maleki et. al.’s algorithm. Our algorithm consumed relatively less DRAM energy
compared to the other algorithm.

We used the likwid-perfctr tool to measure CPU, Power Plane 0 (PP0),
DRAM energy, and DRAM power consumption during the execution of the pro-
grams. The energy measurements were end-to-end, i.e., included all costs during
the entire program execution. Note that the DRAM energy consumption is some-
what related to the L3 cache miss of a program as each L3 cache miss results in
a DRAM access. Similarly, since CPU energy gives the energy consumed by the

An Efficient Cache-oblivious Parallel Viterbi Algorithm 585

Fig. 7. Running time, L3 miss and energy/power consumption of our cache-efficient
Viterbi algorithm along with the existing algorithms.

entire package (all cores, on chip caches, registers and their interconnections), it
is related to a program’s running time. PP0 is basically a subset of CPU energy
since it captures energy consumed by only the cores and their private caches.

For n = 2048, t was increased from 211 to 214 while keeping m fixed to 32.
Figure 7 shows that the DRAM energy as well as power consumption of our
algorithm was significantly less because of the reduced L3 cache misses. When
t = 16384, Maleki et al.’s algorithm consumed 60 % more DRAM energy and
30 % more DRAM power than ours.

Acknowledgment. Chowdhury and Ganapathi were supported in part by NSF grants
CCF-1162196, CCF-1439084 and CNS-1553510.

586 R. Chowdhury et al.

References

1. Performance Application Programming Interface (PAPI). http://icl.cs.utk.edu/
papi/

2. Bille, P., Stöckel, M.: Fast and cache-oblivious dynamic programming with local
dependencies. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol.
7183, pp. 131–142. Springer, Heidelberg (2012)

3. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic
DNA. J. Mol. Biol. 268(1), 78–94 (1997)

4. Cherng, C., Ladner, R.E.: Cache efficient simple dynamic programming. In: Pro-
ceedings of AofA, pp. 49–58 (2005)

5. Chin, W., Tan, S., Teo, Y.: Deriving efficient parallel programs for complex recur-
rences. In: Proceedings of PASCO, pp. 101–110 (1997)

6. Chin, W.N., Darlington, J., Guo, Y.: Parallelizing conditional recurrences. In:
Fraigniaud, P., Mignotte, A., Bougé, L., Robert, Y. (eds.) Euro-Par 1996. LNCS,
vol. 1123, pp. 579–586. Springer, Heidelberg (1996)

7. Chowdhury, R.A., Ganapathi, P., Tithi, J.J., Bachmeier, C., Kuszmaul, B.C.,
Leiserson, C.E., Solar-Lezama, A., Tang, Y.: AutoGen: automatic discovery of
cache-oblivious parallel recursive algorithms for solving dynamic programs. In:
Proceedings of PPoPP, p. 10. ACM (2016)

8. Chowdhury, R.A.: Cache-efficient algorithms and data structures: theory and
experimental evaluation. Ph.D. thesis, Department of Computer Sciences, The
University of Texas at Austin (2007)

9. Chowdhury, R.A., Ramachandran, V.: Cache-oblivious dynamic programming. In:
Proceedings of SODA, pp. 591–600 (2006)

10. Chowdhury, R.A., Ramachandran, V.: Cache-efficient dynamic programming algo-
rithms for multicores. In: Proceedings of SPAA, pp. 207–216 (2008)

11. Chowdhury, R.A., Ramachandran, V.: The cache-oblivious Gaussian elimination
paradigm: theoretical framework, parallelization and experimental evaluation. The-
ory Comput. Syst. 47(4), 878–919 (2010)

12. Chowdhury, R.A., Ramachandran, V., Silvestri, F., Blakeley, B.: Oblivious algo-
rithms for multicores and networks of processors. J. Parallel Distrib. Comput.
73(7), 911–925 (2013)

13. Chowdhury, R.A., Le, H.S., Ramachandran, V.: Cache-oblivious dynamic program-
ming for bioinformatics. IEEE/ACM Trans. Comput. Biol. Bioinf. 7(3), 495–510
(2010)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

15. Costello, D.J., Hagenauer, J., Imai, H., Wicker, S.B.: Applications of error-control
coding. IEEE Trans. Inf. Theory 44(6), 2531–2560 (1998)

16. Cutting, D., Kupiec, J., Pedersen, J., Sibun, P.: A practical part-of-speech tagger.
In: Proceedings of ANLC, pp. 133–140. Association for Computational Linguistics
(1992)

17. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge (1998)

18. Ferreira, M., Roma, N., Russo, L.M.: Cache-oblivious parallel SIMD Viterbi decod-
ing for sequence search in HMMER. Bioinformatics 15(1), 165 (2014)

19. Fisher, A.L., Ghuloum, A.M.: Parallelizing complex scans and reductions. ACM
SIGPLAN Notices 29(6), 135–146 (1994)

http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

An Efficient Cache-oblivious Parallel Viterbi Algorithm 587

20. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proceedings of FOCS, pp. 285–297 (1999)

21. Heller, J., Jacobs, I.: Viterbi decoding for satellite and space communication. IEEE
Trans. Commun. Technol. 19(5), 835–848 (1971)

22. Klein, D., Manning, C.D.: A∗ parsing: fast exact Viterbi parse selection. In: Pro-
ceedings of NAACL, pp. 40–47 (2003)

23. Kobayashi, H.: Application of probabilistic decoding to digital magnetic recording
systems. IBM J. Res. Dev. 15(1), 64–74 (1971)

24. Krogh, A., Larsson, B., Von Heijne, G., Sonnhammer, E.L.: Predicting transmem-
brane protein topology with a hidden Markov model: application to complete
genomes. J. Mol. Biol. 305(3), 567–580 (2001)

25. Liu, C.: cuHMM: A CUDA implementation of hidden Markov model training and
classification. The Chronicle of Higher Education (2009)

26. Maleki, S., Musuvathi, M., Mytkowicz, T.: Parallelizing dynamic programming
through rank convergence. In: Proceedings of PPoPP, pp. 219–232 (2014)

27. Maleki, S., Musuvathi, M., Mytkowicz, T.: Low-rank methods for parallelizing
dynamic programming algorithms. ACM Trans. Parallel Comp. 2(4), 26 (2016)

28. Nam, H., Kwak, H.: Viterbi decoder for a high definition television (1998). http://
www.google.com/patents/US5844945 US Patent 5,844,945

29. Ohler, U., Niemann, H., Liao, G.C., Rubin, G.M.: Joint modeling of DNA sequence
and physical properties to improve eukaryotic promoter recognition. Bioinformatics
17(Suppl. 1), S199–S206 (2001)

30. Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K.,
Clawson, H., Spieth, J., Hillier, L.W., Richards, S., et al.: Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15(8),
1034–1050 (2005)

31. Tan, G., Feng, S., Sun, N.: Locality and parallelism optimization for dynamic
programming algorithm in bioinformatics. In: Proceedings of SC, p. 78 (2006)

32. Tang, S., Yu, C., Sun, J., Lee, B.S., Zhang, T., Xu, Z., Wu, H.: EasyPDP: an
efficient parallel dynamic programming runtime system for computational biology.
IEEE Trans. Parallel Distrib. Syst. 23(5), 862–872 (2012)

33. Tang, Y., Chowdhury, R.A., Luk, C.K., Leiserson, C.E.: Coding stencil computa-
tions using the Pochoir stencil-specification language. In: Proceedings of HotPar
(2011)

34. Tithi, J.J., Ganapathi, P., Talati, A., Aggarwal, S., Chowdhury, R.A.: High-
performance energy-efficient recursive dynamic programming with matrix-
multiplication-like flexible kernels. In: Proceedings of IPDPS (2015)

35. Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of ICPPW, pp. 207–216
(2010)

36. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

37. Viterbi, A.J.: Convolutional codes and their performance in communication sys-
tems. IEEE Trans. Commun. Technol. 19(5), 751–772 (1971)

http://www.google.com/patents/US5844945
http://www.google.com/patents/US5844945

Gradual Stabilization Under τ -Dynamics

Karine Altisen1, Stéphane Devismes1, Anäıs Durand1(B), and Franck Petit2

1 VERIMAG UMR 5104, Université Grenoble Alpes, Saint-Martin-d’Hères, France
anais.durand@imag.fr

2 LIP6 UMR 7606, INRIA, UPMC Sorbonne Universités, Paris, France

Abstract. In this paper, we introduce the notion of gradually stabilizing
algorithm as any self-stabilizing algorithm with the following additional
feature: if at most τ dynamic steps occur starting from a legitimate
configuration, it first quickly recovers to a configuration from which a
minimum quality of service is satisfied and then gradually converges to
stronger and stronger safety guarantees until reaching a legitimate config-
uration again. We illustrate this new property by proposing a gradually
stabilizing unison algorithm.

1 Introduction

Self-stabilization [10] is a general paradigm to enable the design of distributed
systems tolerating any finite number of transient faults. Consider the first con-
figuration after all transient faults cease. This configuration is arbitrary, but
no other transient faults will ever occur from this configuration. By abuse of
language, this configuration is referred to as arbitrary initial configuration of
the system in the literature. Then, a self-stabilizing algorithm (provided that
faults have not corrupted its code) guarantees that starting from an arbitrary
initial configuration, the system recovers within finite time, without any external
intervention, to a so-called legitimate configuration from which its specification
is satisfied. Thus, self-stabilization makes no hypotheses on the nature (e.g.,
memory corruptions, topological changes) of transient faults, and the system
recovers from the effects of those faults in a unified manner. Such versatility
comes at a price, e.g., after transient faults cease, there is a finite period of
time, called stabilization phase, during which safety properties of the system
may be violated. Hence, self-stabilizing algorithms are mainly compared accord-
ing to their stabilization time, i.e., the maximum duration of the stabilization
phase. Many problem specifications induce a significant stabilization time, e.g.,
in the context of synchronization tasks [3] and more generally for specifications
of non-static problems [13], such as broadcast, the lower bound is Ω(D) rounds,
where D is the diameter of the network. By definition, the stabilization time is
impacted by worst case scenarios, but, in many cases, transient faults are sparse
and their effect may be superficial. Recent research thus focuses on proposing
self-stabilizing algorithms that also ensure drastically smaller convergence times
in favorable cases.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 588–602, 2016.
DOI: 10.1007/978-3-319-43659-3 43

Gradual Stabilization Under τ -Dynamics 589

Defining the number of faults hitting a network using some kind of Hamming
distance (minimal number of processes whose state must be changed in order
to recover a legitimate configuration), variants of self-stabilization have been
defined. A time-adaptive self-stabilizing algorithm [21] additionally guarantees a
convergence time in O(k) time units when the initial configuration is at distance
at most k from a legitimate configuration. Fault containing self-stabilizing algo-
rithms [14] ensure that when few faults hit the system, the faults are both spa-
tially and temporally contained. “Spatially” means that those faults cannot be
propagated further than a preset radius around the corrupted processes. “Tem-
porally” means quick stabilization when few faults occur. Some other approaches
consist in providing convergence times tailored by the type of transient faults, e.g.,
a superstabilizing algorithm [11] is self-stabilizing and has two additional proper-
ties when transient faults are limited to a single topological change: after adding
or removing one link or process in the network, it recovers fast (typically O(1)
rounds), and a safety predicate, so-called passage, should be satisfied meanwhile.

Contributions. We introduce the notion of gradually stabilizing algorithm as
any self-stabilizing algorithm achieving the following additional feature. If at
most τ dynamic steps1 occur starting from a legitimate configuration, a grad-
ually stabilizing algorithm first quickly recovers to a configuration from which
a specification offering a minimum quality of service is satisfied. It then gradu-
ally converges to specifications offering stronger and stronger safety guarantees
until reaching a configuration from which its initial (strong) specification is sat-
isfied again, and where it is ready to achieve another gradual convergence in
case of up to τ new dynamic steps. Of course, this property makes sense only if
convergence to every intermediate weaker specification is fast.

We illustrate this new property by considering three variants of a synchro-
nization problem respectively called strong, weak, and partial (asynchronous)
unison. In these problems, each process maintains a local clock. We restrict
our study to periodic clocks, i.e., clocks are integer variables whose domain is
{0, . . . , α − 1}, where α ≥ 2 is called the period. Each process should regularly
increment its clock modulo α (liveness) while fulfilling some safety requirements.
The safety of strong unison requires that at most two consecutive clock values
exist in each configuration of the system. Weak unison only requires that the dif-
ference between clocks of every two neighbors is at most one increment. Finally,
we define partial unison as a specification dedicated to dynamic systems which
enforces the difference between clocks to remain at most one increment, but only
for neighboring processes that do not appear during the dynamic steps.

We propose a self-stabilizing strong unison algorithm which works with any
period α > 4 in any anonymous connected network. It assumes the knowledge
of two values μ and β, where μ is any upper bound on n — the (initial) number
of processes, α should divide β, and β > μ2. Our algorithm is designed in
the locally shared memory model and assumes the distributed unfair daemon,
the most general daemon of the model. Its stabilization time is at most n +
(μ + 1)D + 1 rounds, where D is the diameter of the network. We then slightly
1 N.b., a dynamic step is a step containing topological changes.

590 K. Altisen et al.

modify this algorithm to make it gradually stabilizing after one dynamic step. In
particular, the parameter μ should be now at least n+#J , where #J is an upper
bound on the number of processes that join the system during a dynamic step.
This new version is gradually stabilizing because after one dynamic step from a
configuration which is legitimate for strong unison, it immediately satisfies the
specification of partial unison, then converges to the specification of weak unison
in at most one round, and finally retrieves, after at most (μ+1)D1+1 additional
rounds (where D1 is the diameter of the network after the dynamic step), a
configuration from which the specification of strong unison is satisfied and where
it is ready to achieve gradual convergence again in case of another dynamic
step. This result holds considering dynamic steps which may contain several
link and/or process additions and/or removals, however we assume that after a
dynamic step, the network stays connected and, if α > 4, every new process is
linked to at least one process already in the system before the dynamic step. We
show that this condition, called UnderLocalControl, is necessary to obtain gradual
convergence. However, notice that if the system suffers from arbitrary other kinds
of transient fault including, e.g., several dynamic steps that do not satisfy the
UnderLocalControl condition, our algorithm still converges to strong unison, yet
without intermediate safety guarantees during the stabilization phase.

Related Work. Gradual stabilization is related to two other stronger forms
of self-stabilization: safe-converging self-stabilization [19] and superstabilization
[11]. The goal of a safely converging self-stabilizing algorithm is to first quickly
(O(1) rounds is the usual rule) converge from an arbitrary configuration to a fea-
sible legitimate configuration, where a minimum quality of service is guaranteed.
Once such a feasible legitimate configuration is reached, the system continues
to converge to an optimal legitimate configuration, where more stringent condi-
tions are required. Hence, the aim of safe-converging self-stabilization is also to
ensure a gradual convergence, but only for two specifications. However, such a
gradual convergence is stronger than ours as it should be ensured after any step
of transient faults,2 while our gradual convergence applies after dynamic steps
only. Safe convergence is especially interesting for self-stabilizing algorithms that
compute optimized data structures, e.g., minimal dominating sets [19], minimal
(f, g)-alliances [8]. However, to the best of our knowledge, no safe-converging
algorithm for non-static problems, such as unison, has been proposed until now.

In superstabilization, like in our approach, fast convergence and the pas-
sage predicate should be ensured only if the system was in a legitimate con-
figuration before the topological change occurs. In contrast with our approach,
superstabilization ensures fast convergence to the original specification. However,
this strong property only considers one dynamic step with only one topologi-
cal event. Again, superstabilization has been especially studied in the context
of static problems, e.g., spanning tree construction [4,5,11], and coloring [11].
However, there exist few superstabilizing algorithms for non-static problems in
particular topologies, e.g., mutual exclusion in rings [16,20].

2 Such transient faults may include topological changes, but not only.

Gradual Stabilization Under τ -Dynamics 591

We use the general term unison to name several close problems also known
in the literature as phase or barrier synchronization problems. There exist
many self-stabilizing algorithms for strong or weak unison problems, e.g.,
[2,6,7,15,17,18,22,23]. However, to the best of our knowledge, until now there
was no self-stabilizing solution for such problems addressing specific conver-
gence properties in case of topological changes, in particular no superstabilizing
one. Self-stabilizing strong unison was first considered in synchronous anony-
mous networks. Particular topologies were considered in [17] (rings) and [22]
(trees). Gouda and Herman [15] proposed a self-stabilizing algorithm for strong
unison working in anonymous synchronous systems of arbitrary connected topol-
ogy. However, they considered unbounded clocks. A solution working with the
same settings, yet implementing bounded clocks, is proposed in [2]. In [23], an
asynchronous self-stabilizing strong unison algorithm is proposed for arbitrary
connected rooted networks.

Johnen et al. investigated asynchronous self-stabilizing weak unison in ori-
ented trees in [18]. The first self-stabilizing asynchronous weak unison for general
graphs was proposed by Couvreur et al. [9]. However, no complexity analysis was
given. Another solution which stabilizes in O(n) rounds has been proposed by
Boulinier et al. in [7]. Finally, Boulinier proposed in his PhD thesis a parametric
solution which generalizes both the solutions of [9] and [7]. In particular, the
complexity analysis of this latter algorithm reveals an upper bound in O(D.n)
rounds on the stabilization time of the Couvreur et al.’ algorithm.

Roadmap. In the next section, we define the computational model used in this
paper. In Sect. 3, we recall the formal definition of self-stabilization, and intro-
duce the notion of gradual stabilization. In Sect. 4, we show that condition Under-

LocalControl is necessary to obtain a gradually stabilizing solution. We present
our self-stabilizing strong unison algorithm in Sect. 5. The gradually stabiliz-
ing variant of this latter algorithm is proposed in Sect. 6. We make concluding
remarks in Sect. 7.

Due to the lack of space, proofs are omitted, see the report online [1] for
details.

2 Preliminaries

We consider distributed systems made of anonymous processes. The system ini-
tially contains n > 0 processes and its topology is connected, however it may
suffer from topological changes over time. Each process p can directly communi-
cate with a subset p. N of other processes, its neighbors. In our context, p. N can
vary over time. Communications are assumed to be bidirectional and carried out
by a finite set of locally shared variables: each process can read its own variables
and those of its current neighbors, but can only write into its own variables. The
state of a process is the vector of values of its variables. We denote by S the set
of all possible states of a process. Each process updates its variables according
to a local algorithm. The collection of all local algorithms defines a distributed
algorithm. The local algorithm of p consists of a finite set of actions of the

592 K. Altisen et al.

following form: 〈 label 〉::〈 guard 〉 → 〈 statement 〉. Labels are used to identify
actions in the reasoning. The guard of an action is a Boolean predicate involving
variables of p and its neighbors. The statement is a sequence of assignments on
variables of p. If the guard of some action evaluates to true, the action is said
to be enabled at p. By extension, if at least one action is enabled at p, p is said
to be enabled. An action can be executed only if it is enabled. The execution of
an action consists in executing its statement, atomically. A configuration γi is a
pair (Gi, Vi → S). Gi = (Vi, Ei) is a simple undirected graph, where Vi is the
set of processes that exist in γi and Ei represents the links between processes in
γi. Vi → S is a function which associates a state to any process of Vi. We denote
by C the set of all possible configurations.

Executions. The dynamicity and asynchronism of the system are material-
ized by an adversary, called daemon. To perform a step from a configuration
γi, the daemon can (1) activate processes that are enabled in γi — each acti-
vated process executes one of its enabled actions according to its state and that
of its neighbors in γi, and/or (2) modify the topology. Activation of enabled
processes and/or topology modifications are done atomically, leading to a new
configuration γi+1. The set of all possible steps induces a binary relation �→ over
configurations (empty steps of the form γi �→ γi are excluded). Relation �→ is
partitioned into �→s and �→d. Relation �→s defines all possible static steps con-
sisting in activation of enabled processes only. Relation �→d defines all possible
dynamic steps containing topological changes and possibly process activations.

An execution is a sequence of configurations γ0, γ1, . . . such that G0 is con-
nected and ∀i ≥ 0, γi �→ γi+1. For sake of simplicity, we note G0 = G = (V,E);
we also note D the diameter of G. Moreover, we note Eτ the set of maximal
executions which contain at most τ dynamic steps. The set of all possible execu-
tions is therefore equal to E = ∪τ≥0Eτ . For any subset of configurations X ⊆ C,
we denote by Eτ

X the set of all executions in Eτ that start from a configuration
of X.

Dynamic Steps. Any step γi �→d γi+1 contains a finite number of topological
events and maybe some process activations. Each topological event is of the
following types. (1) A process p can join the system. This event, denoted by
joinp, triggers the atomic execution of a specific action, called bootstrap. This
bootstrap is executed without any communication and initializes the variables of
p to a particular state, called bootstate. We denote by Newk the set of processes
which are in bootstate in γk. When p joins the system in γi �→d γi+1, we have
p ∈ Newi+1, but p /∈ Newi. Until p executes its bootstrap, say in step γx �→ γx+1,
it is still in bootstate. Hence, ∀j ∈ {i + 1, . . . , x}, p ∈ Newj , but p /∈ Newx+1.
We assume that there are at most #J joins during a dynamic step. (2) A process
can also leave the system. (3) Finally, some communication links can appear or
disappear between two different processes.

Daemon. We assume the daemon is distributed and unfair. In a static step,
this daemon must select at least one enabled process. In a dynamic step, it can
select zero, one, or several enabled processes. It has no fairness constraint, i.e.,

Gradual Stabilization Under τ -Dynamics 593

it might never select a process p during any step unless in the case of a static
step from a configuration where p is the only enabled process. Moreover, at each
configuration, it freely chooses between making a static or dynamic step, except
if no more process is enabled; in this latter case, only a dynamic step containing
no process activation can be chosen.

Metrics. We measure the time complexity of our algorithms in rounds [12]. The
first round of an execution e = (γi)i≥0 is the minimal prefix e′ of e in which
every process that is enabled in γ0 either disappears, or executes an action, or
becomes disabled (due to some changes in its neighborhood). Let γj be the last
configuration of e′, the second round of e is the first round of e′′ = (γi)i≥j , and
so on.
Specifications. We define a specification as a predicate over executions. We
denote by SPSU and SPWU the respective specifications for strong and weak unison.
The specification of partial unison, noted SPPU, does not impose any constraint
on processes that join the system until they achieve their bootstrap: the safety
holds as long as clocks of every two neighboring processes not in bootstate differ
from at most one increment.

3 Stabilization

Self-stabilization has been defined by only considering executions free of topo-
logical changes, yet starting from an arbitrary configuration. Indeed, self-
stabilization considers the system immediately after transient faults cease. So,
the system is initially observed from an arbitrary configuration reached after
occurrences of transient faults (including some topological changes maybe), but
from which no faults will ever occur. Below, we recall the definitions of some
notions classically used in self-stabilization for a given distributed algorithm A.
Let X and Y be two subsets of configurations.

– X is closed under A iff every static step of A starting from a configuration of
X leads to a configuration which is also in X.

– Y converges to X under A iff every execution of E0
Y contains a configuration

of X.
– A stabilizes from Y to a specification SP by X iff X is closed under A, Y

converges to X under A, and every execution of E0
X satisfies SP . In this case,

the convergence time from Y to X in rounds is the maximal number of rounds
to reach a configuration of X over every execution of E0

Y .

A distributed algorithm A is self-stabilizing for a specification SP iff ∃L ⊆ C
such that A stabilizes from C to SP by L. L is said to be a set of legitimate con-
figurations w.r.t. SP , and the convergence time from C to L is called stabilization
time of A.

Gradual Stabilization Under τ-Dynamics. This property is a specialization
of self-stabilization which additionally requires that after at most τ dynamic
steps from a legitimate configuration, the system gradually re-stabilizes to

594 K. Altisen et al.

stronger and stronger specifications, until fully recovering its initial (strong)
specification. For every execution e = (γi)i≥0 ∈ Eτ , we note γfst(e) the first
configuration of e after the last dynamic step. Formally, fst(e) = min{i :
(γj)j≥i ∈ E0}. For any subset E of Eτ , let FC(E) = {γfst(e) : e ∈ E}
be the set of all configurations that can be reached after the last topological
changes in executions of E. Let SP1, SP2, . . . , SPk, be an ordered sequence of
specifications. Let B1, B2, . . . , Bk be (asymptotic) complexity bounds such that
B1 ≤ B2 ≤ · · · ≤ Bk.

A distributed algorithm A is gradually stabilizing under τ -dynamics for (SP1•
B1, SP2 • B2, . . . , SPk • Bk) iff ∃L1, . . . ,Lk ⊆ C such that

1. A stabilizes from C to SPk by Lk.
2. ∀i ∈ {1, . . . , k}, A stabilizes from FC(Eτ

Lk
) to SPi by Li, and the convergence

time in rounds from FC(Eτ
Lk

) to Li is bounded by Bi.

The first point ensures that a gradually stabilizing algorithm is still self-
stabilizing for its strongest specification. Hence, its performances can be also
evaluated at the light of its stabilization time. Indeed, it captures the maximal
convergence time of the gradually stabilizing algorithm after the system suf-
fers from an arbitrary finite number of transient faults, e.g., after more than τ
dynamic steps.

The second point means that after at most τ dynamic steps from a legitimate
configuration w.r.t. the strongest specification SPk, the algorithm gradually con-
verges to every specification SPi with i ∈ {1, . . . , k} in at most Bi rounds. Note
that Bk captures a complexity similar to the fault gap in fault-containing algo-
rithms [14]: assume a period of at most τ dynamic steps starting in a legitimate
configuration Lk; Bk represents the necessary fault-free interval after this period
and before the next period of at most τ dynamic steps so that system becomes
ready to achieve gradual convergence again.

4 Necessary Condition

In this section, we establish that Condition UnderLocalControl is necessary to
allow the design of a deterministic algorithm A which is gradually stabilizing
under 1-dynamics for (SPPU •0, SPWU •1, SPSU •B) (with B ≥ 1) in any arbitrary
anonymous network, assuming the distributed unfair daemon. Below, we assume
the existence of A and denote by LA

SU the set of legitimate configurations of A
w.r.t. specification SPSU.

UnderLocalControl captures a condition on the network dynamics which is nec-
essary to prevent a notable desynchronization of clocks: the network should stay
connected and, if α > 4, every process that joins during the dynamic step γ �→d γ′

should be “under control of” (that is, linked to) at least one process which exists
in both γ and γ′. The definition of UnderLocalControl uses the notion of domi-
nating set of a graph G = (V,E), i.e., any subset D of V such that every node
not in D is adjacent to at least one member of D. Formally, UnderLocalControl

holds iff ∀e ∈ E1
LA

SU
, Gfst(e) is connected, and if α > 4, then Vfst(e) \ Newfst(e) is

a dominating set of Gfst(e).

Gradual Stabilization Under τ -Dynamics 595

Theorem 1. An algorithm A is gradually stabilizing under 1-dynamics for
(SPPU •0, SPWU •1, SPSU •B) in arbitrary anonymous networks under the distrib-
uted unfair daemon only if UnderLocalControl holds.

Fig. 1. Proof outline of Theorem 1. The hachured nodes are in bootstate.

Proof Outline. If the graph becomes disconnected after a dynamic step, the
distributed unfair daemon can prevent forever all processes of a given connected
component from incrementing their clocks, hence violating the liveness of SPSU.
Assume, by contradiction, that there is an execution e with α > 4 such that
Gfst(e) is connected but Vfst(e) \ Newfst(e) is not a dominating set. This means
that some process p and all its neighbors have been added during the dynamic
step. First, to satisfy SPWU after at most one round, p and its neighbors should
be enabled to take a clock value immediately after the dynamic step. Let c be the
clock value that p would choose in this case. Then, we build another execution
e′ initiated from a configuration in LA

SU on another graph containing at least
two nodes which are neither p, nor one of its neighbors. As SPSU holds and the
execution can be asynchronous, it is possible for the system to eventually reach
a configuration γT where there are exactly two clock values: (c + 2) mod α and
(c + 3) mod α (see Fig. 1(a)). Then, assume the daemon chooses to execute,
during γT �→d γT+1, the dynamic step which contains no process activation, but
introduces p, its neighborhood, and two links, just as in Fig. 1(b). Then, after
this step, SPPU should be satisfied. Finally, assume that the daemon selects no
process, except p and its neighbors in the next step. As before, p sets its clock to c,
but, as α > 4, whatever be the value chosen by q, there is a difference greater than
one increment between q and at least one of its neighbors (Fig. 1(c)). Henceforth,
the legitimate configurations of SPPU are not closed under A, a contradiction. �

5 Self-Stabilizing Strong Unison

In this section, we propose an algorithm which is self-stabilizing for strong unison
in any arbitrary connected anonymous network. This algorithm works for any
period α > 4 and is based on an algorithm previously proposed by Boulinier
in his PhD [6], this latter is self-stabilizing for weak unison and works for any
period β > n2.

Algorithm WU . We first recall the algorithm of Boulinier [6], noted here Algo-
rithm WU . This algorithm being just self-stabilizing, it only considers execu-
tions without any topological change, yet starting from arbitrary configurations.

596 K. Altisen et al.

So, the topology of the network consists in a connected graph G = (V,E) of n
nodes which is fixed all along the execution. Each process p is endowed with a
clock variable p.t ∈ {0, . . . , β − 1}, where β is its period. β should be greater
than n2. The algorithm also uses another constant, noted μ, which should satisfy
n ≤ μ ≤ β

2 . The algorithm uses the notion of delay between two integer values x
and y, defined by the function dβ

(

x, y
)

= min
(

(x − y) mod β, (y − x) mod β
)

.
It also uses the relation �β,μ such that for every two integer values x and y,
x �β,μ y ≡ (

(y − x) mod β
) ≤ μ.

Two actions are used to maintain the clock p.t at each process p. When the
delay between p.t and the clocks of some neighbors is greater than one, but the
maximum delay is not too big (that is, does not exceed μ), then it is possible to
“normally” converge, using Action WU-N below, to a configuration where the
delay between those clocks is at most one by incrementing the clocks of the most
behind processes among p and its neighbors: WU-N ::∀q ∈ p. N , p.t �β,μ q.t →
p.t ← (p.t + 1) mod β

Moreover, once legitimacy is achieved, p can “normally” increment its clock
still using Action WU -N when it is on time or one increment late with all its
neighbors. In contrast, if the delay is too big (that is, the delay between the
clocks of p and one of its neighbors is more than μ) and the clock of p is not
yet reset, then p should reset its clock to 0 using Action WU-R: WU-R::∃q ∈
p. N , dβ

(
p.t, q.t

)
> μ ∧ p.t 	= 0 → p.t ← 0

Fig. 2. From t to c.

Algorithm SU . For this algorithm, we still
assume a non-dynamic context (no topologi-
cal change). Algorithm SU is a straightforward
adaptation of Algorithm WU . More precisely,
Algorithm SU maintains two clocks at each
process p. The first one, p.t ∈ {0, . . . , β − 1},
is called the internal clock and is maintained
exactly as in Algorithm WU . Then, p.t is used
as an internal pulse machine to increment a sec-
ond, yet actual, clock of Algorithm SU p.c ∈
{0, . . . , α − 1}, also called external clock.

Algorithm SU is designed for any period
α > 4. Its actions SU-N and SU-R are iden-
tical to actions WU -N and WU-R of Algorithm WU , except that we add the
computation of the external c-clock in their respective statement.
SU-N :: ∀q ∈ p. N , p.t �β,μ q.t → p.t ← (p.t + 1) mod β; p.c ←

⌊
α
β
p.t
⌋

SU-R :: ∃q ∈ p. N , dβ

(
p.t, q.t

)
> μ ∧ p.t 	= 0 → p.t ← 0; p.c ← 0

Algorithm WU stabilizes to a configuration from which t-clocks regularly
increment while preserving a bounded delay of at most one between two neigh-
boring processes, and so of at most n − 1 between any two processes. Algo-
rithm SU implements the same mechanism to maintain p.t at each process p
and computes p.c from p.t as a normalization operation from clock values in
{0, . . . , β − 1} to {0, . . . , α − 1}: each time the value of p.t is modified, p.c is
updated to

⌊

α
β p.t

⌋

. Hence, we can set β in such way that K = β
α is greater than

Gradual Stabilization Under τ -Dynamics 597

Algorithm 1. DSU , for every process p

Parameters:
α: any positive integer such that α > 4
μ: any positive integer such that μ ≥ n + #J
β: any positive integer such that β > μ2,
and ∃K such that K > μ and β = Kα

Variables: p.c ∈ {0, . . . , α − 1} ∪ {⊥}, p.t ∈ {0, . . . , β − 1} ∪ {⊥}
Predicates:

Lockedp ≡ p.t = ⊥ ∨ ∃q ∈ p. N , q.t = ⊥
NormalStepp ≡ ¬Lockedp ∧ ∀q ∈ p. N , p.t β,μ q.t
ResetStepp ≡ ¬Lockedp ∧ (∃q ∈ p. N , dβ

(
p.t, q.t

)
> μ ∧ p.t �= 0

)

JoinStepp ≡ p.t = ⊥
Actions:

DSU-N :: NormalStepp → p.t ← (p.t + 1) mod β; p.c ←
⌊

α
β p.t

⌋

DSU-R :: ResetStepp → p.t ← 0; p.c ← 0

DSU-J :: JoinStepp → p.t ← MinTimep; p.c ←
⌊

α
β p.t

⌋

bootstrap :: joinp → p.t ← ⊥; p.c ← ⊥

or equal to n (here, we choose K > μ ≥ n and β > μ2 for sake of simplicity) to
ensure that, when the delay between any two t-clocks is at most n−1, the delay
between any two c-clocks is at most one, see Fig. 2. The liveness of WU ensures
that every t-clock increments infinitely often, thus so do c-clocks.

Theorem 2. Algorithm SU is self-stabilizing for SPSU in any arbitrary con-
nected anonymous network assuming a distributed unfair daemon. Its stabiliza-
tion time is at most n + (μ + 1)D + 1 rounds.

We have also proven that, once SU has stabilized, every process increments
its c-clock at least once every D + β

α rounds. This result derives from [6] which
states that after stabilization of t-clocks, those ones increment at least once every
D + 1 rounds.

6 Gradual Stabilization Under 1-Dynamics for Strong
Unison

We now propose Algorithm DSU (Algorithm 1), a variant of Algorithm SU .
DSU is still self-stabilizing for strong unison, but also achieves a gradual con-
vergence after one dynamic step. This dynamic step may include several topo-
logical events (i.e. link or process additions or removals). However, according to
Theorem 1, it should satisfy Condition UnderLocalControl. Precisely, after any
dynamic step which fulfills condition UnderLocalControl, DSU maintains clocks
almost synchronized during the convergence to strong unison since it immedi-
ately satisfies partial unison, then converges in at most one round to weak uni-
son, and finally re-stabilizes to strong unison. Remember that, after one dynamic
step, the graph contains at most n+#J processes, by definition, and D1 denotes
the diameter of the new graph.

598 K. Altisen et al.

Fig. 3. Link addition.

We first showed a result allowing to simplify
proofs and explanations: for every closed set of
configurations X, if UnderLocalControl holds, then
∀γi ∈ C, (∃γj ∈ X | γj �→d γi) ⇔ (∃γk ∈
X | γk �→donly

γi), where �→donly
is the relation defin-

ing all dynamic steps containing no process activa-
tion. We apply this result to the set of legitimate
configurations w.r.t. strong unison, noted Ld

SU (n.b., Ld
SU is closed, by definition):

the set of configurations reachable from Ld
SU after one dynamic step (which may

also include process activations) is the same as the one reachable from Ld
SU after

one dynamic step made of topological events only. At the light of this result, we
only consider this latter kind of dynamic steps in the following.

Consider first link additions only. Adding a link (see the dashed link in Fig. 3)
can break the safety of weak unison on internal clocks. Indeed, it may create a
delay greater than one between two new neighboring t-clocks. Nevertheless, the
delay between any two t-clocks remains bounded by n − 1, consequently, no
process will reset its t-clock (Fig. 3 shows a worst case). Moreover, c-clocks still
satisfy strong unison immediately after the link addition. Besides, since incre-
ments are constrained by neighboring clocks, adding links only reinforces those
constraints. Thus, the delay between internal clocks of arbitrary far processes
remains bounded by n − 1, and so strong unison remains satisfied, in all sub-
sequent static steps. Consider again the example in Fig. 3: before the dynamic
step, pn−1 had only to wait until pn−2 increments pn−2 in order to be able to
increment its own t-clock; yet after the step, it also has to wait for p0.

0
0

p0 0
1

p1 0
2

p2

0
1

p3 0
2

p4

Fig. 4. Removals.

Assume now a dynamic step containing only process and
link removals. Due to Condition UnderLocalControl, the net-
work remains connected. Hence, constraints between (still
existing) neighbors are maintained: the delay between t-
clocks of two neighbors remains bounded by one, see the
example in Fig. 4: process p2 and link {p0, p3} are removed.
So, weak unison on t-clocks remains satisfied and so is strong
unison on c-clocks.

Consider now a more complex scenario, where the dynamic step contains link
additions as well as process and/or link removals. Figure 5 shows an example
of such a scenario, where safety of strong unison is violated. As above, the
addition of link {p1, p6} in Fig. 5(b) leads to a delay between t-clocks of these two
(new) neighbors which is greater than one (here 5). However, the removal of link
{p1, p2}, also in Fig. 5(b), relaxes the neighborhood constraint on p2:p2 can now
increment without waiting for p1. Consequently, executing Algorithm SU does
not ensure that the delay between t-clocks of any two arbitrary far processes
remains bounded by n − 1, e.g., after several static steps from Fig. 5(b), the
system can reach Fig. 5(c), where the delay between p1 and p2 is 9 while n−1 = 5.
Since c-clock values are computed from t-clock values, we also cannot guarantee
that there is at most two consecutive c-clock values in the system, e.g., in Fig. 5(c)
we have: p1.c = 1, p6.c = 2, and p2.c = 3.

Gradual Stabilization Under τ -Dynamics 599

(a)
1
11

p1

2
12

p2 2
13

p3 2
14

p4

2
15

p52
16

p6
(b)

1
11

p1

2
12

p2 2
13

p3 2
14

p4

2
15

p52
16

p6
(c)

1
11

p1

3

20

p2 3

19

p3 3

18

p4

2
17

p52
16

p6

Fig. 5. Execution where links are added and removed (μ = 6, α = 7, and β = 42).

Again, in the worst case scenario, after a dynamic step, the delay between
two neighboring t-clocks is bounded by n−1. Moreover, t-clocks being computed
like in Algorithm WU , we can use two of its useful properties (see [6]): (1)
when the delay between every pair of neighboring t-clocks is at most μ with
μ ≥ n, the delay between these clocks remains bounded by μ because processes
never reset; (2) furthermore, from such configurations, the system converges to a
configuration from which the delay between the t-clocks of every two neighbors
is at most one. So, keeping μ ≥ n, processes will not reset after one dynamic step
and the delay between any two neighboring t-clocks will monotonically decrease
from at most n − 1 to at most one. Consequently, the delay between any two
neighboring c-clocks (which are computed from t-clocks) will stay at most one,
i.e., weak unison will be satisfied all along the convergence to strong unison.

Consider now a process p that joins the system. The event joinp occurs and
triggers the specific action bootstrap that sets both the clocks p.t and p.c to a
specific bootstate value, noted ⊥. By definition and from the previous discussion,
the system immediately satisfies partial unison since it only depends on processes
that were in the system before the dynamic step. Now, to ensure that weak
unison holds within a round, we add the action DSU-J which is enabled as
soon as the process is in bootstate. This action initializes the two clocks of p
according to the clock values in its neighborhood. Precisely, the value of p.t can
be chosen among the non-⊥ values in its neighborhood, and such values exist by
Condition UnderLocalControl. We choose to set p.t to the minimum non-⊥ t-clock
value in its neighborhood, using the function MinTimep:

MinTimep = 0 if ∀q ∈ p. N , q.t = ⊥; = min{q.t : q ∈ p. N ∧ q.t �= ⊥}
otherwise.

The value of p.c is then computed according to the value of p.t. Notice that
MinTimep returns 0 when p and all its neighbors have their respective t-clock
equal to ⊥. This ensures that Algorithm DSU remains self-stabilizing (in par-
ticular, if the system starts in a configuration where all t-clocks are equal to
⊥).

To prevent the unfair daemon from blocking the convergence to a configura-
tion containing no ⊥ values, we should also forbid processes with non-⊥ t-clock
values to increment while there are t-clocks with ⊥-values in their neighborhood.
So, we define the predicate Locked which holds for a given process p when either
p.t = ⊥, or at least one of its neighbors q satisfies q.t = ⊥. We then enforce the
guard of both normal and reset actions, so that no Locked process can execute
them. See actions DSU-N and DSU-R. This ensures that t-clocks are initialized
first by Action DSU-J , before any value in their neighborhood increments.

600 K. Altisen et al.

Finally, notice that all the previous explanation relies on the fact that, once
the system recovers from process additions (i.e., once no ⊥ value remains), the
algorithm behaves exactly the same as Algorithm SU . Hence, it has to match
the assumptions made for SU , in particular, the ones on α and β. However the
constraint on μ has to be adapted, since μ should be greater than or equal to
the actual number of processes in the network and this number may increase.
Now, the number of processes added in a dynamic step is bounded by #J . So,
we require μ ≥ n + #J .

We now consider the example execution of Algorithm DSU in Fig. 6. This exe-
cution starts in a configuration legitimate w.r.t. the strong unison, see Fig. 6(a).
Then, one dynamic step happens (step (a)�→(b)), where a process p6 joins the
system. We now try to delay as long as possible the execution of DSU-J by
p6. In configuration (b), p3 and p5, the new neighbors of p6, are locked. They
will remain disabled until p6 executes DSU-J . p1 and p4 execute DSU-N in
(b)�→(c). Then, p4 is disabled because of p5 and p1 executes DSU-N in (c)�→(d).
In configuration (d), p1 is from now on disabled: p1 must wait until p2 and p4
get t-clock value 7. p6 is the only enabled process, so the unfair daemon has no
other choice but selecting p6 to execute DSU-J in the next step.

(a)

0

5

p1 0

6

p2 1
7

p3

0

5

p4 0

5

p5
(b)

0

5

p1 0

6

p2 1
7

p3

0

5

p4 0

5

p5 ⊥
⊥
p6

(c)

0

6

p1 0

6

p2 1
7

p3

0

6

p4 0

5

p5 ⊥
⊥
p6

(d)

1
7

p1 0

6

p2 1
7

p3

0

6

p4 0

5

p5 ⊥
⊥
p6

Fig. 6. Execution where the first step of a new process is delayed (μ = 6, α = 6,
β = 42).

Theorem 3. If UnderLocalControl is satisfied then Algorithm DSU is gradually
stabilizing under 1-dynamics for (SPPU • 0, SPWU • 1, SPSU • (μ + 1)D1 + 2).

After one dynamic step that fulfills Condition UnderLocalControl from any
legitimate configuration w.r.t. strong unison, the system re-stabilizes to strong
unison in at most (μ+1)D1 +2 rounds. Now, in any other cases (e.g., a dynamic
step that does not satisfy UnderLocalControl), the system still recovers to a legiti-
mate configuration within finite time, as the algorithm is self-stabilizing. Never-
theless, in such cases, the stabilization time is slightly bigger: n+#J+(μ+1)D1+2
rounds.

Finally, we have proven [1] that after stabilization to strong unison, every
process increments its c-clock at least once every D1 + β

α rounds, like in Algo-
rithm SU . Moreover, during the convergence from weak to strong unison, the
increments are slower, i.e., the c-clocks are guaranteed to increment at least once
every μD1 + β

α rounds.

Gradual Stabilization Under τ -Dynamics 601

7 Conclusion

The apparent seldomness of superstabilizing solutions for non-static problems,
such as unison, may suggest the difficulty of obtaining such a strong property
and if so, make our notion of gradual stabilization very attractive compared to
merely self-stabilizing solutions. For example, in our unison solution, gradual
stabilization ensures that processes remain “almost” synchronized during the
convergence phase started after one dynamic step satisfying UnderLocalControl.
Hence, it is worth investigating whether this new paradigm can be applied to
other, in particular non-static, problems. Concerning our unison algorithm, the
graceful recovery after one dynamic step comes at the price of slowing down the
clock increments. The question of limiting this drawback remains open. Finally,
it would be interesting to address in future work gradual stabilization for non-
static problems in context of more complex dynamic patterns.

References

1. Altisen, K., Devismes, S., Durand, A., Petit, F.: Gradual stabilization under τ -
dynamics. Technical report (2015). https://hal.archives-ouvertes.fr/hal-01215190

2. Arora, A., Dolev, S., Gouda, M.G.: Maintaining digital clocks in step. Parallel
Process. Lett. 1, 11–18 (1991)

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: STOC, pp. 652–661 (1993)

4. Blin, L., Potop-Butucaru, M., Rovedakis, S.: A super-stabilizing log(n)-
approximation algorithm for dynamic steiner trees. Theor. Comput. Sci. 500, 90–
112 (2013)

5. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: Loop-free super-
stabilizing spanning tree construction. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 50–64. Springer, Heidelberg (2010)

6. Boulinier, C.: L’Unisson. Ph.D. thesis, Université de Picardie Jules Vernes, France
(2007)

7. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC, pp. 150–159 (2004)

8. Carrier, F., Datta, A.K., Devismes, S., Larmore, L.L., Rivierre, Y.: Self-stabilizing
(f, g)-alliances with safe convergence. J. Parallel Distrib. Comput. 81–82, 11–23
(2015)

9. Couvreur, J., Francez, N., Gouda, M.G.: Asynchronous unison (extended abstract).
In: ICDCS, pp. 486–493 (1992)

10. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

11. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. 1997, 13 (1997)

12. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Trans. Parallel Distrib. Syst. 8(4), 424–440 (1997)

13. Genolini, C., Tixeuil, S.: A lower bound on dynamic k-stabilization in asynchronous
systems. In: SRDS, p. 212 (2002)

14. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing
self-stabilizing distributed protocols. Distrib. Comput. 20(1), 53–73 (2007)

https://hal.archives-ouvertes.fr/hal-01215190

602 K. Altisen et al.

15. Gouda, M.G., Herman, T.: Stabilizing unison. Inf. Process. Lett. 35(4), 171–175
(1990)

16. Herman, T.: Superstabilizing mutual exclusion. Distrib. Comput. 13(1), 1–17
(2000)

17. Huang, S., Liu, T.: Four-state stabilizing phase clock for unidirectional rings of
odd size. Inf. Process. Lett. 65(6), 325–329 (1998)

18. Johnen, C., Alima, L.O., Datta, A.K., Tixeuil, S.: Optimal snap-stabilizing neigh-
borhood synchronizer in tree networks. Parallel Process. Lett. 12(3–4), 327–340
(2002)

19. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm
with safe convergence. In: IPDPS, p. 8 (2006)

20. Katayama, Y., Ueda, E., Fujiwara, H., Masuzawa, T.: A latency optimal super-
stabilizing mutual exclusion protocol in unidirectional rings. J. Parallel Distrib.
Comput. 62(5), 865–884 (2002)

21. Kutten, S., Patt-Shamir, B.: Stabilizing time-adaptive protocols. Theor. Comput.
Sci. 220(1), 93–111 (1999)

22. Nolot, F., Villain, V.: Universal self-stabilizing phase clock protocol with bounded
memory. In: IPCCC, pp. 228–235 (2001)

23. Tzeng, C., Jiang, J., Huang, S.: Size-independent self-stabilizing asynchronous
phase synchronization in general graphs. J. Inf. Sci. Eng. 26(4), 1307–1322 (2010)

Parallel Numerical Methods and
Applications

High Performance Polar Decomposition
on Distributed Memory Systems

Dalal Sukkari, Hatem Ltaief(B), and David Keyes

Extreme Computing Research Center, Division of Computer, Electrical,
and Mathematical Sciences and Engineering, King Abdullah University

of Science and Technology, Thuwal, Kingdom of Saudi Arabia
{Dalal.Sukkari,Hatem.Ltaief,David.Keyes}@kaust.edu.sa

Abstract. The polar decomposition of a dense matrix is an impor-
tant operation in linear algebra. It can be directly calculated through
the singular value decomposition (SVD) or iteratively using the QR
dynamically-weighted Halley algorithm (QDWH). The former is diffi-
cult to parallelize due to the preponderant number of memory-bound
operations during the bidiagonal reduction. We investigate the latter
scenario, which performs more floating-point operations but exposes at
the same time more parallelism, and therefore, runs closer to the theo-
retical peak performance of the system, thanks to more compute-bound
matrix operations. Profiling results show the performance scalability of
QDWH for calculating the polar decomposition using around 9200 MPI
processes on well and ill-conditioned matrices of 100 K× 100K problem
size. We study then the performance impact of the QDWH-based polar
decomposition as a pre-processing step toward calculating the SVD itself.
The new distributed-memory implementation of the QDWH-SVD solver
achieves up to five-fold speedup against current state-of-the-art vendor
SVD implementations.

1 Introduction

The polar decomposition is a critical numerical algorithm for various applica-
tions, including aerospace computations [4], chemistry [8], computation of block
reflectors in numerical linear algebra [15], factor analysis [16], and signal process-
ing [3].

There are rather distinct algorithmic approaches to its calculation: a direct
method based on the singular value decomposition (SVD) [9,18] and an iter-
ative method such as Newton, which requires the explicit matrix inversion at
each iteration, or the inverse-free iterative QR dynamically-weighted Halley
algorithm (QDWH) [12,13]. These approaches present diametrically opposed
computational challenges. The SVD approach is difficult to parallelize due to
the preponderant number of memory-bound operations during the bidiagonal
reduction, where a large portion of the code is characterized by low arithmetic
intensity. The latter can exploit high concurrency effectively and is inherently
compute-bound, and so may run closer to the theoretical peak performance of
the system.
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 605–616, 2016.
DOI: 10.1007/978-3-319-43659-3 44

606 D. Sukkari et al.

This comes at the expense of performing extra floating-point operations
(flops), which at first glance appear to be a prohibitive handicap. Semiconductor
manufacturers are, however, designing future manycore chips to be throughput-
oriented and massively parallel, highly populated by floating-point units (e.g.,
x86 architectures with next generation AVX-512 instruction sets for Knights
Landing Xeon Phi processor) at the price of increasingly limited bandwidth per
core [7]. Data motion, whether vertically within a node or horizontally across
the network interconnect, is becoming as one of the impeding factors for parallel
performance and energy efficiency of scientific applications.

To this hostile hardware landscape, the authors offer a new high performance
implementation of the polar decomposition on distributed-memory environment
systems, based on the inverse-free QDWH. Previous work by the authors [17]
has demonstrated the QDWH capability and performance on shared-memory
systems equipped with GPUs. This paper presents a comprehensive perfor-
mance analysis of QDWH on a homogeneous large-scale x86 system, based on
the distributed-memory vendor-optimized numerical library ScaLAPACK [5].
Performance scalability and profiling results provide an assessment of the imple-
mentation using more then 9200 MPI processes on 100 K× 100 K matrix problem
size. We look at one of the direct applications for QDWH in the context of sin-
gular value decomposition (SVD), a paramount operation in linear algebra. By
using the QDWH-based polar decomposition as a pre-processing step toward cal-
culating the SVD itself, a new distributed-memory QDWH-SVD solver has been
developed that achieves up to five-fold speedup against current state-of-the-art
vendor SVD implementations.

The remainder of the paper is organized as follows. Section 2 presents related
work. Section 3 recalls the polar decomposition. Section 4 describes the funda-
mental design of dense linear algebra algorithms, as implemented in LAPACK [1]
and ScaLAPACK [5]. The implementation details of the high performance
distributed-memory QDWH are given in Sect. 5. Section 6 shows the numeri-
cal robustness of QDWH in distributed memory. Section 7 assesses the QDWH
performance scalability and identifies room for improvements. The impact on
SVD solvers and a comparison with existing state-of-the-art solvers are given in
Sect. 8 and we conclude in Sect. 9.

2 Related Work

Developing a high performance QDWH-based polar decomposition has been a
computational challenge due to the high number of flops required within each
iteration.

Higham and Papadimitriou [14] introduced the first QDWH implementation
on shared-memory systems, for which the early version required the calculation
of the matrix inversion. A decade and half later, Nakatsukasa et. al [12] revis-
ited the QDWH algorithm by replacing the expensive matrix inversion kernels
with QR factorization and theoretically proved the numerical robustness of the
new inverse-free QDWH. Then, Nakatsukasa and Higham [13] presented a new

High Performance Polar Decomposition on Distributed Memory Systems 607

spectral divide and conquer algorithms for the symmetric eigenvalue problem
and the singular value decomposition that are backward stable, based on the
QDWH polar decomposition. All aforementioned related works focus primarily
on the stability of the algorithm and the orthogonality of the polar factor, as
a qualitative metric to assess QDWH. However, high performance implemen-
tations have not been covered, especially on distributed-memory systems. In
previous work [17], we demonstrated a high performance implementation on a
shared-memory system equipped with multiple GPUs. The results showed decent
scalability and proposed an attractive new QDWH-SVD solver for the scientific
community.

We introduce here a high performance QDWH implementation on
distributed-memory based on the state-of-the-art vendor-optimized numerical
library ScaLAPACK [5]. We then use QDWH as a pre-processing step toward
calculating the SVD of a dense matrix, and demonstrate not only the suitabil-
ity of QDWH for the polar decomposition as opposed to an SVD-based direct
method, but also how QDWH can catalyze a new SVD solver, itself.

3 The Polar Decomposition and its SVD Extension

The polar decomposition of the matrix A ∈ R
m×n (m ≥ n) is written A = UpH,

where Up is an orthogonal matrix and H =
√

A�A is a symmetric positive
semidefinite matrix. We use the inverse-free QDWH-based iterative procedure
to calculate the polar decomposition as follows [13]:

X0 = A/α,
[√

ckXk

I

]

=
[

Q1

Q2

]

R, Xk+1 =
bk

ck
Xk +

1√
ck

(

ak − bk

ck

)

Q1Q
�
2 , k ≥ 0.

(1)

When, Xk becomes well-conditioned, it is possible to replace Eq. 1 with a
Cholesky-based implementation as follows:

Xk+1 =
bk

ck
Xk +

(

ak − bk

ck

)

(XkW−1
k)W−�

k ,

Wk = chol(Zk), Zk = I + ckX�
k Xk.

(2)

This algorithmic switch at runtime allows to further speed up the overall compu-
tation, thanks to a lower algorithmic complexity, while still maintaining numer-
ical stability. In particular, in the subsequent experiments, our implementations
switch from Eqs. 1 to 2 if ck is smaller than 100. In terms of algorithmic com-
plexity, the number of flops depends on the number of iterations required to
converge, which is dictated by the condition number of the original matrix prob-
lem, but is six at maximum, based on standard double precision. More details
on theoretical results can be found in [13]. For instance, assume the matrix is
ill-conditioned, QDWH will typically perform an initial condition estimate of the
matrix, and then enter the inner iteration loop to perform QR factorization for

608 D. Sukkari et al.

the first 3 iterations, followed by three iteration of Cholesky, besides executing
other expensive Level 3 BLAS operations. The total cost is roughly 43n3 from an
extreme side of the spectrum, and to help put this flops number in perspective,
this corresponds to 43 times the cost of solving a Cholesky-based system of lin-
ear equations. A direct method based on the SVD would require 25n3 But even
with this high flop count, thanks to its high degree of parallelism, the QDWH
polar decomposition remains more suitable on distributed-memory system than
a direct method based on the SVD itself.

Furthermore, once the QDWH polar decomposition has been calculated, it
can be used as a pre-processing stage towards getting the SVD of a general
dense matrix as follows: (1) perform the polar decomposition A = Up × H,
(2) calculate the singular values and the right singular vectors H = V ×Σ ×V T

using a symmetric dense eigensolver of choice, and (3) compute the left singular
vectors U × V . These three successive computational stages represent the crux
of the QDWH-SVD on distributed-memory systems.

4 Background on ScaLAPACK

This Section reviews the core methodology used under the hood by ScaLAPACK,
the standard dense linear algebra (DLA) library on distributed-memory systems,
since it is central to the QDWH implementation presented in this paper.

ScaLAPACK relies on block algorithms, similar to LAPACK [1], and can be
expressed by two successive computational stages: the panel factorization and the
update of the trailing submatrix. While the former is memory-bound, the latter
is rich in compute-bound operations and this is where most of ScaLAPACK
(and LAPACK) dense linear algebra algorithms extract parallel performance
through calls to Level 3 BLAS. ScaLAPACK employs the bulk synchronous
programming model, which may limit performance due to strong synchronization
points. Furthermore, ScaLAPACK uses 2D block cyclic data distribution to map
the matrix data to the distributed-memory and relies on the Message Passing
Interface (MPI) [11] to exchange data within the grid of MPI processes. There
are two main categories of DLA algorithms in ScaLAPACK (and LAPACK): the
one-sided and two-sided transformations. The one-sided DLA operations mostly
regroup solvers of linear equations and their corresponding factorizations (i.e.,
QR/LU/LLT). The two-sided transformations gather non-symmetric, symmetric
eigensolvers, and SVD with their corresponding reductions to condensed forms
(i.e., Hessenberg, tridiagonal, and bidiagonal reductions).

It is noteworthy to mention that the panel factorization for the two-sided
transformations are much more expensive than the one-sided operations because
they operate on the entire unreduced part of the matrix, as opposed to just
within the panel. Therefore, two-sided operations require extensive data move-
ment across the network interconnect. This background will later be referenced
to help interpret and analyze the performance results.

High Performance Polar Decomposition on Distributed Memory Systems 609

5 High Performance Implementations

Algorithm 1 describes the pseudo-code of the distributed-memory QDWH-SVD
based on ScaLAPACK [5]. We define the MPI process grid configuration P × Q
so that the data mapping can occur following the 2D block-cyclic data distrib-
ution (2D-BCDD). Each data structure owns a handle or a descriptor, which is
paramount for the computations as it describes which process has which chunk
of the original matrix data. The size of the chunk is referred as nb and is used to
initialize the various data structures needed in the beginning of the code. The
nb parameter is also critical for performance as it trades-off concurrency with
arithmetic intensity. We set nb = 64 as it seems to be the proper sweetspot for
all our experiments. Once the QDWH-based polar decomposition (stage 1) has
been calculated, we can plug in a symmetric dense eigensolver of choice (stage
2) (e.g., PDSYEVR from ScaLAPACK based on the MRRR eigensolver [2] or
ELPA-EIG [10] which combines a two-stage reduction with a divide-and-conquer
eigensolver) to compute the singular values and the right singular vectors, and
finally, perform a matrix-matrix multiplication to get the left singular vectors.

6 Numerical Accuracy

This Section highlights the numerical robustness of the distributed-memory
QDWH-SVD implementation. We use around 5200 MPI processes on the Cray
XC40 system installed at the Swiss National Supercomputing Centre (CSCS)
in Lugano, Switzerland. QDWH-SVD relies on the state-of-the-art vendor-
optimized ScaLAPACK from the Cray Scientific library (libSCI). Although this
has been studied in details on shared-memory systems [17], the deployment on
distributed-memory environment may necessitate a change in the algorithm to
match the data distribution and/or may require the execution of floating-point
operations in a different order, which may be cumbersome for sensitive algo-
rithms due to rounding errors.

6.1 Synthetic Matrix Generation

Since QDWH performance depends strongly on the condition number of the
matrix (cond), the numerical robustness of the SVD algorithms is assessed
against a well-conditioned synthetic matrix (cond = 1) and an ill-conditioned
synthetic matrix (cond = 1e16). Each dense synthetic matrix A = QDQ� is gen-
erated using the ScaLAPACK routine PDLATMS (matrix of type 4), by initially
setting a diagonal matrix D = diag(Σ) containing the singular values, which fol-
lows a uniform distribution and from an orthogonal matrix Q generated from
random entries.

6.2 Accuracy Assessments of SVD Solvers

Figure 1 presents the accuracy of the singular values and the orthogonality of all
singular vectors, the backward error of the overall SVD for ill-conditioned and

610 D. Sukkari et al.

Algorithm 1. Distributed-memory QDWH Pseudo-Code using ScaLAPACK.
1: // Set the block size
2: nb = 64
3: // Initialize data structures using the 2D-BCDD
4: descinit(nb, nb, A, descA); Fill in(A, descA)
5: descinit(nb, nb, B, descB); Fill in(B, descB)
6: descinit(nb, nb, C, descC); Fill in(C, descC)
7: descinit(nb, nb, X, descX); Fill in(X, descX)
8: descinit(nb, nb, H, descH); Fill in(H, descH)
9: descinit(nb, nb, U, descU); Fill in(U, descU)
10: descinit(nb, nb, V, descV); Fill in(V, descV)
11: // Estimate the condition number
12: pdlacpy(A, descA, B, descB)
13: pdgetrf(B, descB)
14: pdgecon(B, descB, alpha)
15: // Compute the polar decomposition A = UpH using QDWH
16: pdlacpy(A, descA, X, descX)
17: pdlascl(X, descX, α), α ≈ ‖A‖2
18: k = 1, Li = β × α/1.1, conv = 100
19: while (conv ≥ 3√5eps || |Li − 1| ≥ 5eps) do

20: L2 = Li2, dd = 3
√

(4(1 − L2)/L22)

21: sqd =
√
1 + dd, a1 = sqd +

√
8 − 4 × dd + 8(2 − L2)/(L2 × sqd))/2

22: a = real(a1), b = (a − 1)2/4, c = a + b − 1
23: Li = Li(a + b × L2)/(1 + cL2)
24: pdlacpy(X, descX, B, descB)
25: if c > 100 then

26: C =

[√
c B
I

]

27: pdgeqrf(C, descC, tau)
28: pdorgqr(C, descC, tau)
29: // Compute Xk from Xk−1
30: pdgemm(C(1 : m, :), descC, C(m : m + n, :), descC, X, descX)
31: else
32: pdlaset(C, descC, 0.0, 1.0)
33: pdgemm(B, descB, B, descB, C, descC)
34: pdposv(C, descC, B, descB)
35: // Compute Xk from Xk−1
36: pdgeam(B, descB, X, descX)
37: end if
38: conv ← ‖Xk − Xk−1‖F

39: k = k + 1
40: end while
41: pdgemm(Xk, descX, A, descA, H, descH)

42: // Compute the singular values and the right singular vectors H = V ΣV �

43: if ScaLAPACK PDSYEVR then
44: pdsyevr(H, descH, Σ, V, descV)
45: else
46: ELPA DSY EV D(H, descH, Σ, V, descV)
47: end if
48: // Compute the left singular vectors X × V
49: pdgemm(X, descX, V, descV, U, descU)

well-conditioned matrix of type 4, following the metrics as in [17]. The QDWH-
SVD implementations based on the eigensolvers from ELPA [10] or ScaLAPACK
(PDSYEVR) provide satisfactory accuracy up to the machine precision across all
matrix sizes, regardless on the condition number of the matrix. These extensive
numerical tests have in fact helped detect numerical issues for PDGESVD from
Cray libSCI library on ill-conditioned matrices for some matrix sizes (Figs. 1(a)
and (c)). PDGESVD uses internally a QR iteration to retrieve the singular val-
ues and their associated singular vectors. The issues may have to do with the

High Performance Polar Decomposition on Distributed Memory Systems 611

implementation on distributed-memory systems, since this numerical behavior
has not been detected on shared-memory systems [17]. The performance num-
bers corresponding to these matrix sizes have not been reported in the following
performance results Section.

7 Performance Results and Analysis

This Section highlights the performance assessment of QDWH on distributed-
memory environment system and demonstrates its impact on the SVD solver.

7.1 Environment Settings

The Cray XC40 system codenamed dora installed at the Swiss National Super-
computing Centre (CSCS) has been used extensively to generate all experimental
data: dora has 1256 compute nodes, each with two-sockets Intel Xeon E5-2690 v3
(Haswell) with 12 cores each running at 2.60 GHz. Given our compute-intensive
workload, we disabled hyperthreading. Each node has 64GB of DDR3 main mem-
ory. The customized network interconnect on the platfrom is Cray Aries, which
implements a Dragonfly network topology. The theoretical peak performance
of the system is 1.254 Petaflops. We use intel compiler suites v15.0.1.133 and
rely on the vendor-optimized ScaLAPACK implementation from Cray scientific
library libSCI. We choose a square MPI process grid to support the 2D-BCDD
and set nb = 64 for all experimental results as this turns out to be a possible
optimal value for QDWH-SVD parallel performance. Given the low number of
main memory available per core on each node, we execute 12 MPI processes
per node instead of 24. We investigate only pure MPI implementation, since
we notice MPI+OpenMP programming model has shown limitations on ScaLA-
PACK performance due to its bulk synchronous programming model.

7.2 QDWH Performance in Tflop/s

Although appearing sometime as controversial, the Tflop/s metric is important
in the sense that it indicates how well the underlying architecture is used. As
depicted in Fig. 2, we show the parallel performance of QDWH in Tflop/s across
various matrix sizes and number of MPI processes. QDWH achieves around 90
Tflop/s and 100 Tflop/s for ill and well-conditioned matrix, respectively on 9216
MPI processes. Unfortunately, it is difficult to assess these numbers against the
theoretical peak performance of the system, since starting from Haswell processor
with the introduction of AVX2 instruction sets, the processor may require more
power to run and therefore, may perform at less the marked frequency at runtime
to stay within the thermal design power limits.

612 D. Sukkari et al.

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

A
cc

ur
ac

y
of

 s
in

gu
la

r
va

lu
es

Matrix size

ScaLAPACK SVD
QDWH + ScaLAPACK EIG MRRR

QDWH + ELPA EIG DC

(a) Accuracy of singular values.

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

O
rt

ho
go

na
lit

y
of

 U

Matrix size

ScaLAPACK SVD
QDWH + ScaLAPACK EIG MRRR

QDWH + ELPA EIG DC

(b) Orth. of Left/right singular vectors.

1e-20
1e-18
1e-16
1e-14
1e-12
1e-10
1e-08
1e-06
1e-04
1e-02
1e+00
1e+02

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

A
cc

ur
ac

y
of

 s
vd

Matrix size

ScaLAPACK SVD
QDWH + ScaLAPACK EIG MRRR

QDWH + ELPA EIG DC

(c) Accuracy of SVD.

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

A
cc

ur
ac

y
of

 s
in

gu
la

r
va

lu
es

Matrix size

ScaLAPACK SVD
QDWH + ScaLAPACK EIG MRRR

QDWH + ELPA EIG DC

(d) Accuracy of singular values.

1e-18

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400
O

rt
ho

go
na

lit
y

of
 U

Matrix size

ScaLAPACK SVD
QDWH + ScaLAPACK EIG MRRR

QDWH + ELPA EIG DC

(e) Orth. of Left/right singular vectors.

1e-20
1e-18
1e-16
1e-14
1e-12
1e-10
1e-08
1e-06
1e-04
1e-02
1e+00
1e+02

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

A
cc

ur
ac

y
of

 s
vd

Matrix size

ScaLAPACK SVD
QDWH + ScaLAPACK EIG MRRR

QDWH + ELPA EIG DC

(f) Accuracy of SVD.

Fig. 1. Accuracy comparison of SVD solvers on matrix of type 4: (a-b-c) for ill condi-
tioned matrix and (d-e-f) for well conditioned matrix.

 0

 20

 40

 60

 80

 100

 120

 140

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

T
flo

p/
s

Matrix size

96x96
84x84
72x72
60x60
48x48
32x32
24x24
12x12

(a) Ill-conditioned matrix.

 0

 20

 40

 60

 80

 100

 120

 140

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

T
flo

p/
s

Matrix size

96x96
84x84
72x72
60x60
48x48
32x32
24x24
12x12

(b) Well-conditioned matrix.

Fig. 2. QDWH performance results in Tflop/s.

 0

 50

 100

 150

 200

 144 576 1296 2304 3600 5184 7056 9216

T
flo

p/
s

Number of cores

PDGEMM
QDWH

(a) Ill-conditioned matrix.

 0

 50

 100

 150

 200

 144 576 1296 2304 3600 5184 7056 9216

T
flo

p/
s

Number of cores

PDGEMM
QDWH

(b) Well-conditioned matrix.

Fig. 3. QDWH scalability assessment.

High Performance Polar Decomposition on Distributed Memory Systems 613

7.3 QDWH Performance Scalability

However, we can still assess QDWH performance by looking at weak scaling
against the matrix-matrix multiplication PDGEMM from ScaLAPACK as a nat-
ural performance upper-bound. Figure 3 highlights the aforementioned exper-
iment for ill and well-conditioned matrix. QDWH achieves around 60 % and
70 % of PDGEMM performance for ill and well-conditioned matrix, respectively.
PDGEMM is obviously a loose upper-bound as it is embarrassingly parallel
and have less synchronization points and data structures than the sophisticated
QDWH implementation. All in all, there is clearly room for further improve-
ments. For instance, for the QDWH iterations for which a QR factorization is

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(a) P=12, Q=12.

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(b) P=36, Q=36.

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(c) P=60, Q=60.

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(d) P=84, Q=84.

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(e) P=24, Q=24.

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(f) P=48, Q=48.

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(g) P=72, Q=72.

 0

 1

 2

 3

 4

 5

 6

 10240 20480 30720 40960 51200 61440 71680 81920 92160 102400

S
pe

ed
up

Matrix size

QDWH + ELPA EIG DC, Ill conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Ill conditioned matrix

QDWH + ELPA EIG DC, Well conditioned matrix
QDWH + ScaLAPACK EIG MRRR, Well conditioned matrix

ScaLAPACK PDGESVD

(h) P=96, Q=96.

Fig. 4. Performance comparison of SVD solvers on different process grid configurations.

614 D. Sukkari et al.

performed, the matrix structure has a size of 2*N rows for N cols (see line 26 in
Algorithm 1), for which a square MPI process grid may not be adequate any-
more to mitigate the overhead of the sequential panel factorization (see Sect. 4).
A rectangular process grid (P < Q) would reduce data movement across the
process columns in favor of more concurrency across the process rows.

8 Performance Impact on SVD Solvers

8.1 Performance Speedup

Figure 4 depicts performance comparisons of two QDWH-SVD variants and
ScaLAPACK PDGESEVD across a range of MPI process grid configurations
P ×Q, where P is the number of row processors and Q is the number of column
processors. QDWH-SVD using the ELPA symmetric eigensolver [10] achieves
up to five-fold and two-fold on ill and well-conditioned matrices, respectively.
The ScaLAPACK PDSYEVR eigensolver suffers from the expensive one-stage
tridiagonal reduction (see the two-sided transformations in Sect. 4) and does
not scale when increasing the number of processes, which in return, slows down
the overall perfromance of its corresponding QDWH-SVD solver. The relative
speedup of the ELPA-based QDWH-SVD increases as we increase the number
of processes because of the high level of concurrency that QDWH algorithm is
able to expose.

8.2 Profiling

Figure 5 profiles the three computational stages of the ELPA-based QDWH-SVD
across various number of MPI processes on ill and well-conditioned matrices.
For ill-conditioned matrix, QDWH-SVD is the bottleneck since the number of
iterations required for QDWH to converge is a maximum of six. However, for
well-conditioned matrix, QDWH is as expensive as the divide-and-conquer two-
stage ELPA symmetric eigensolver.

Fig. 5. Profiling the computational stages of ELPA-based QDWH-SVD (Color figure
online).

High Performance Polar Decomposition on Distributed Memory Systems 615

9 Conclusion and Future Work

A high performance QDWH implementation and its SVD extension has been
presented on distributed-memory environment system. Performance analysis
shows decent scalability running with around 9200 MPI processes on well and
ill-conditioned matrices of 100 K× 100 K problem size. We have also identified
room for improvements to further enhance the scalability. We have also stud-
ied the performance impact of using QDWH as a pre-processing step toward
calculating the SVD itself. The new distributed-memory implementation of the
QDWH-SVD solver achieves up to five-fold speedup against current state-of-
the-art vendor-optimized SVD implementations. Moreover, numerical accuracy
study highlights the robustness of QDWH-SVD over ScaLAPACK PDGESVD in
presence of ill-conditioned matrices. We would like also to investigate task-based
programming model to break the ScaLAPACK bulk synchronous programming
model in the context of DPLASMA [6] library using dynamic runtime systems
for asynchronous task scheduling.

Acknowledgment. For computer time, this research used the resources from the
Swiss National Supercomputing Centre (CSCS) in Lugano, Switzerland.

References

1. Anderson, E., Bai, Z., Bischof, C.H., Blackford, L.S., Demmel, J.W., Dongarra,
J.J., Croz, J.J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.:
LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)

2. Antonelli, D., Vömel, C.: PDSYEVR. ScaLAPACK’s Parallel MRRR Algorithm
for the Symmetric Eigenvalue Problem (168), 18 August 2005. http://www.netlib.
org/lapack/lawnspdf/lawn168.pdf, technical Report UCB//CSD-05-1399

3. Arun, K.S.: A unitarily constrained total least squares problem in signal processing.
SIAM J. Matrix Anal. Appl. 13(3), 729–745 (1992)

4. Bar-Itzhack, I.: Iterative optimal orthogonalization of the strapdown matrix. IEEE
Trans. Aerosp. Electron. Syst. AES–11(1), 30–37 (1975)

5. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E.F., Demmel, J.W., Dhillon,
I.S., Dongarra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker,
D.W., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia (1997)

6. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Hérault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: Flexible development of dense linear algebra algorithms on massively
parallel architectures with DPLASMA. In: IPDPS Workshops, pp. 1432–1441.
IEEE (2011)

7. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai,
D., Berthou, J.Y., Boku, T., Braunschweig, B., Cappello, F., Chapman, B., Chi,
X., Choudhary, A., Dosanjh, S., Dunning, T., Fiore, S., Geist, A., Gropp, B.,
Harrison, R., Hereld, M., Heroux, M., Hoisie, A., Hotta, K., Jin, Z., Ishikawa, Y.,
Johnson, F., Kale, S., Kenway, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky,
A., Lippert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse, P.,

http://www.netlib.org/lapack/lawnspdf/lawn168.pdf
http://www.netlib.org/lapack/lawnspdf/lawn168.pdf

616 D. Sukkari et al.

Mohr, B., Mueller, M.S., Nagel, W.E., Nakashima, H., Papka, M.E., Reed, D., Sato,
M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling, T., Stevens, R., Streitz, F.,
Sugar, B., Sumimoto, S., Tang, W., Taylor, J., Thakur, R., Trefethen, A., Valero,
M., Van Der Steen, A., Vetter, J., Williams, P., Wisniewski, R., Yelick, K.: The
international exascale software project roadmap. Int. J. High Perform. Comput.
Appl. 25(1), 3–60 (2011). http://dx.org/10.1177/1094342010391989

8. Goldstein, J.A., Levy, M.: Linear algebra and quantum chemistry. Am. Math.
Monthly 98(10), 710–718 (1991). http://dx.org/10.2307/2324422

9. Golub, G.H., Van Loan, C.F.: Matrix Computations. John Hopkins Studies in the
Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

10. Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke,
A., Bungartz, H., Lederer, H.: The ELPA library: scalable parallel eigenvalue solu-
tions for electronic structure theory and computational science. J. Phys. Condens
Matter 26(21) (2014). http://www.ncbi.nlm.nih.gov/pubmed/24786764

11. Forum, M.P.I.: MPI: a message passing interface. In: Proceedings of Supercomput-
ing 1993, pp. 878–883. IEEE CS Press, Portland, November 1993

12. Nakatsukasa, Y., Bai, Z., Gygi, F.: Optimizing halley’s iteration for computing the
matrix polar decomposition. SIAM J. Matrix Anal. Appl. 31, 2700–2720 (2010)

13. Nakatsukasa, Y., Higham, N.J.: Stable and efficient spectral divide and conquer
algorithms for the symmetric eigenvalue decomposition and the svd. SIAM J. Sci.
Comput. 35(3), A1325–A1349 (2013)

14. Higham, N.J., Papadimitriou, P.: A new parallel algorithm for computing the singu-
lar value decomposition. In: Lewis, J.G. (ed.) Proceedings of the Fifth SIAM Con-
ference on Applied Linear Algebra, pp. 80–84. Society for Industrial and Applied
Mathematics, Philadelphia (1994)

15. Schreiber, R., Parlett, B.: Block reflectors: theory and computation. SIAM J.
Numer. Anal. 25(1), 189–205 (1988). http://dx.org/10.1137/0725014

16. Schnemann, P.: A generalized solution of the orthogonal procrustes problem. Psy-
chometrika 31(1), 1–10 (1966). http://dx.org/10.1007/BF02289451

17. Sukkari, D., Ltaief, H., Keyes, D.: A high performance QDWH-SVD solver using
hardware accelerators. Accepted for publication at ACM Trans. Math. Softw.
(2016). https://ecrc.kaust.edu.sa/Documents/qdwh-svd.pdf

18. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997).
http://www.siam.org/books/OT50/Index.htm

http://dx.org/10.1177/1094342010391989
http://dx.org/10.2307/2324422
http://www.ncbi.nlm.nih.gov/pubmed/24786764
http://dx.org/10.1137/0725014
http://dx.org/10.1007/BF02289451
https://ecrc.kaust.edu.sa/Documents/qdwh-svd.pdf
http://www.siam.org/books/OT50/Index.htm

A Synchronization-Free Algorithm for Parallel
Sparse Triangular Solves

Weifeng Liu1,2(B), Ang Li3, Jonathan Hogg2, Iain S. Duff2, and Brian Vinter1

1 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
weifeng.liu@nbi.ku.dk

2 Scientific Computing Department,
STFC Rutherford Appleton Laboratory, Didcot, UK

3 Eindhoven University of Technology, Eindhoven, Netherlands

Abstract. The sparse triangular solve kernel, SpTRSV, is an important
building block for a number of numerical linear algebra routines. Paral-
lelizing SpTRSV on today’s manycore platforms, such as GPUs, is not
an easy task since computing a component of the solution may depend
on previously computed components, enforcing a degree of sequential
processing. As a consequence, most existing work introduces a pre-
processing stage to partition the components into a group of level-sets or
colour-sets so that components within a set are independent and can be
processed simultaneously during the subsequent solution stage. However,
this class of methods requires a long preprocessing time as well as sig-
nificant runtime synchronization overhead between the sets. To address
this, we propose in this paper a novel approach for SpTRSV in which the
ordering between components is naturally enforced within the solution
stage. In this way, the cost for preprocessing can be greatly reduced, and
the synchronizations between sets are completely eliminated. A compar-
ison with the state-of-the-art library supplied by the GPU vendor, using
11 sparse matrices on the latest GPU device, show that our approach
obtains an average speedup of 2.3 times in single precision and 2.14
times in double precision. The maximum speedups are 5.95 and 3.65,
respectively. In addition, our method is an order of magnitude faster for
the preprocessing stage than existing methods.

1 Introduction

The sparse triangular solve kernel, SpTRSV, is an important building block in a
number of numerical linear algebra routines, such as direct methods [5,7], precon-
ditioned iterativemethods [22], and least squares problems [3].This operation com-
putes a dense solution vector x from a sparse linear system Lx = b, where L is a
square lower triangular sparse matrix and b is a dense vector.

Compared to a dense triangular solve [9] and other sparse basic linear alge-
bra subprograms (BLAS) [8,14] such as sparse transposition [27], sparse matrix-
vector multiplication [16,17] and sparse matrix-matrix multiplication [15], the
SpTRSV operation is more difficult to parallelize since it is inherently sequential.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 617–630, 2016.
DOI: 10.1007/978-3-319-43659-3 45

618 W. Liu et al.

This means that, for a lower triangular sparse matrix, computing any single com-
ponent xk may depend on having first computed a subset of previous components
x0, · · · , xk−1. Therefore, most existing research concentrates on adding a pre-
processing stage to divide the entries of x into a number of sets (known as level-
sets or colour-sets). Even though the sets have to be executed in sequence, entries
in any single set can be computed in parallel. As a result, parallel hardware can
be exploited efficiently. This class of methods demonstrates great advantage
over the original sequential implementation both on CPUs [10,20,24,28] and on
GPUs [12,19,26].

However, the set-based methods have two performance bottlenecks. Firstly,
finding a good set partitioning often takes too much time, which may offset or
even wipe out the benefits from parallelization. Secondly, the synchronization
between consecutive sets reduces parallelization efficiency at runtime. In fact,
due to these large overheads, finding an efficient thread synchronization scheme
still remains a popular research topic for computer design [11,13,21].

In this paper, we propose a synchronization-free algorithm for parallel
SpTRSV on GPUs. Our approach requires only a light-weight preprocess-
ing stage without set partitioning. More importantly, our method completely
eliminates the runtime barrier synchronizations among sets. By doing so, our
method resolves the bottlenecks and achieves significant performance improve-
ment. Using 11 sparse matrices from the University of Florida Sparse Matrix
Collection [6], our method achieves an average speedup of 2.3 times in single
precision and 2.14 times in double precision over the vendor provided library
on the latest NVIDIA GPU. The maximum speedups are 5.95 and 3.65, respec-
tively. More noticeably, the preprocessing stage of our algorithm is on average
43.7 faster (maximum of 70.5 times) than existing set-based methods in the
vendor supplied library.

2 Background

2.1 Serial Algorithm

Without loss of generality, in the paper we assume that the input matrix L is
a nonsingular lower triangular matrix and is stored in the compressed sparse
column (CSC) format composed of three arrays col ptr, row idx and val. A
typical serial implementation of SpTRSV for solving Lx = b is given in Algo-
rithm 1. This method traverses all columns in ascending order (line 3) and solves
a single component of x in each step (line 4). After that, the code updates all
the positions corresponding to the nonzero entries of the current column in an
intermediate array left sum (lines 5–7).

As can be seen, the columns in the main for loop (lines 3–8) cannot be paral-
lelized as the ith column requires the ith value in left sum (line 4), which may
be affected by previous columns that update left sum[i] (line 6). To be clear, we
give an example. Figure 1 (a) shows a matrix L, for which the underlying depen-
dencies are illustrated in graph form in Fig. 1 (b). Obviously, vertex 5 (i.e., x5)
cannot be solved before vertex 3 is solved, and vertex 3 has to wait for vertex 0.

A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves 619

Algorithm 1. A serial SpTRSV method for Lx = b, where L in CSC format.
1: malloc(*left sum, n)
2: memset(*left sum, 0)
3: for i = 0 to n − 1 do
4: x[i] ← (b[i]-left sum[i])/val[col ptr[i]]
5: for j = col ptr[i]+1 to col ptr[i + 1]−1 do
6: left sum[row idx[j]] ← left sum[row idx[j]] + val[j] × x[i]
7: end for
8: end for
9: free(*left sum)

(a) L’s matrix form. (b) L’s graph form. (c) Level-sets generated.

Fig. 1. A lower triangular matrix L and parallel SpTRSV using the level-set method.

2.2 Level-Set Method for Parallel SpTRSV

The motivation of parallel-SpTRSV comes from the observation that some com-
ponents/vertices are independent and can be processed simultaneously (e.g.,
vertices 0 and 1 in Fig. 1 (b)). Therefore, the components can be partitioned
into a number of sets so that components inside a set can be solved in parallel,
while the sets are processed sequentially (i.e., level by level). With this observa-
tion, Anderson and Saad [1] and Saltz [23] introduced a preprocessing stage to
perform such a partition before the solving stage. Figure 1 (c) shows that five
level-sets are generated for the matrix L. Consequently, levels 0, 1 and 2 can use
parallel hardware (e.g., a dual-core machine) for accelerating SpTRSV. However,
between sets, dependencies still exist so synchronization is required at runtime.

2.3 Motivation for Avoiding Synchronization

Synchronization remains a performance bottleneck for many applications and
has long been a classic problem in computer systems research [11,13,21]. To
evaluate the synchronization cost in SpTRSV, we run a parallel SpTRSV imple-
mented by Park et al. [20] based on the aforementioned level-set approach. We
show the cost of the preprocessing stage and a breakdown of the solving stage

620 W. Liu et al.

Table 1. Breakdown of näıve level-set method [20] on Intel dual-socket E5-2695 v3.

Matrix name Preprocessing cost (ms) SpTRSV cost (ms) SpTRSV cost breakdown (ms) #Level-sets

Synchronization Compute

FEM/ship 003 92.46 12.95 10.96 1.99 4367

FEM/Cantilever 47.89 9.60 5.62 3.98 2397

chipcool0 8.74 1.99 1.15 0.84 534

nlpkkt160 484.67 38.30 0.01 38.29 2

execution time (i.e., synchronization cost and floating-point calculations) using
four representative matrices1 from the University of Florida Sparse Matrix Col-
lection [6].

We have two observations from Table 1. Firstly, the preprocessing stage takes
much longer than a single call to SpTRSV. Specifically, the preprocessing stage
is 4.39 times (matrix chipcool0) to 12.65 times (matrix nlpkkt160) slower than
the main kernel of SpTRSV. This implies that if SpTRSV is only executed a
few times, level-set based parallelization is not attractive. Secondly, when the
number of level-sets increases, the overhead for synchronization dominates the
SpTRSV solving stage execution time. For example, matrix FEM/ship 003 has
4367 level-sets that implies 4366 explicit barrier synchronizations in the solving
stage and accounts for 85 % of the total SpTRSV execution time (10.96 ms out
of 12.95 ms). In contrast, the synchronization overhead for matrix nlpkkt160 is
much less as only two level-sets are generated.

Therefore, to improve the performance of parallel SpTRSV, it is crucial to
reduce the overhead for preprocessing (i.e., generating level-sets) and to avoid
the runtime barrier synchronizations.

3 Synchronization-Free Algorithm

The objective of this work is to eliminate the cost for generating level-sets and
the barrier synchronizations between the sets. Due to the inherent dependencies
among components, the major task for parallelizing SpTRSV is to clarify such
dependencies and to be sure to respect them when solving at runtime.

In this work, we use GPUs as the platform to exploit inherent parallelism
when there are many components for a very large matrix. We assign a warp of
threads to solve a single component of x (a warp is a unit of 32 SIMD threads
executed in lock-step for NVIDIA GPUs. For AMD GPUs the warp is 64 threads
and is denoted by the term wavefront). To respect the partial order of SpTRSV,
we need to be sure that the warps associated with dependent entries (if any)
must be finished first. Thus thread-blocks of multiple warps are required to be
dispatched in ascending order, even though they can be switched and finished
in arbitrary order. Since the partial order is essentially unidirectional (i.e.,
any component only depends on previous components but not on later ones, see

1 Similar to [20], the nonsingular matrix L is the lower triangular part of the input
matrix, plus a dense main diagonal.

A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves 621

Fig. 1 (b)), we can map entries to warps and strictly respect the partial order of
the entries so that no warp execution deadlock will occur.

Therefore, before actually solving for a particular component, we let the
processing warp learn how many entries have to be computed in advance (i.e.,
the number of dependent entries). This number equals the in-degree of a vertex
in the graph representation of a matrix (Fig. 1 (b)), which is also identical to the
number of nonzero entries of the current matrix row minus one (to exclude the
entry on diagonal). Thus, we use an intermediate array in degree of size n to
hold the number of nonzero entries for each row of the matrix. This is all we do in
the preprocessing stage. Algorithmically, this step is part of transposing a sparse
matrix in parallel [27]. Compared with the complex dependency extraction in
the set-based methods that have to analyse the sparsity structure, our method
requires much less work. Lines 3–7 in Algorithm 2 show the pseudocode of our
preprocessing stage.

Algorithm 2. The proposed synchronization-free SpTRSV algorithm.
1: malloc(*d left sum, *s left sum, *d in degree, *s in degree, n)
2: memset(*d left sum, *s left sum, *d in degree, *s in degree, 0)
3: function preprocessing-stage()
4: for i = 0 to nnz − 1 in parallel do
5: atomic-add(&d in degree[row idx[i]], 1)
6: end for
7: end function
8: function solving-stage()
9: th ← set() � size of diagonal block
10: for i = 0 to n − 1 in parallel do � One concurrent warp for one component.
11: while s in degree[i]+1 �= d in degree[i] do
12: //busy wait
13: end while
14: x[i] ← (b[i]-d left sum[i]-s left sum[i])/val[col ptr[i]]
15: for j = col ptr[i]+1 to col ptr[i + 1]−1 in parallel do � One thread for one nonzero.
16: rid ← row idx[j]
17: if rid < i + th − i%th then � Use on-chip scratchpad for red areas in Figure 3.
18: atomic-add(&s left sum[rid], val[j] × x[i])
19: atomic-add(&s in degree[rid], 1)
20: else � Use off-chip memory for green area in Figure 3.
21: atomic-add(&d left sum[rid], val[j] × x[i])
22: atomic-sub(&d in degree[rid], 1)
23: end if
24: end for
25: end for
26: end function
27: free(*d left sum, *s left sum, *d in degree, *s in degree)

Knowing the in-degree information indicating how many warps have to be
finished in advance, we can initiate sufficient numbers of warps to fully exploit
the irregular parallelism. For an arbitrary warp, after finishing the necessary
floating-point computation (line 14 in Algorithm 2) for a component, it notifies
all the later entries that depend on the current one, by atomic updating (lines 19
and 22). Note that atomic operations are needed here as multiple updates from
different warps may happen simultaneously. Therefore, a warp only has to wait
(lines 11–13) until its corresponding in-degrees are all eliminated, implying that

622 W. Liu et al.

all the dependent components are successfully solved and the warp can start
processing safely. Due to the warp multi-issuing property of GPUs, a warp can
start processing immediately after its dependencies have been satisfied, without
any false waiting incurred by the hardware. Also, the first component of x can
be solved without any dependencies.

Figure 2 illustrates the procedure of our synchronization-free algorithm2

using an example. Suppose there are three warps enrolled, tagged as warp0,
warp1 and warp2. They follow the same procedure and are context-switched by
the hardware scheduler. For an arbitrary warp, the central region contained in
the red dotted box (labelled as the critical section protecting the left sum array)
separates the whole procedure into three phases: lock-wait, critical section and
lock-update.

Fig. 2. The basic procedure of our synchronization-free algorithm.

In the lock-wait phase, the warp iteratively evaluates the status of the lock
protecting the critical section of the current warp. If locked, it waits in the
loop (known as spinning); otherwise, it stops waiting and enters the next phase.
Although the lock here is a spin-lock, it does not have the busy-waiting problem.
Based on our observation, if the clock() function is invoked inside the waiting
loop, the hardware warp scheduler will be signalled to switch to the next warp
context. This avoids the execution deadlock. In the critical section phase, the
warp updates the components in left sum that have dependencies on the com-
ponents the warp is currently working on. This is done in an order that depends
on the partial dependency defined by the sparsity structure. After that, it aborts
the critical section and enters the lock-update phase. In the last lock-update
phase, the warp updates the dependent in degree array, in the same order as
for the left sum (so that all the order dependencies are strictly respected). The
warp updates the related in-degrees. Depending on the number of components
in that column (line 15 in Algorithm 2), it may require one or several updates.

2 Note that hardware-level synchronizations in atomic operations should not be con-
fused with barrier synchronizations in the set-based methods, when we claim that
the proposed method is synchronization-free.

A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves 623

When an in-degree is updated to reach the target value (so that all the depen-
dencies of the component are resolved), the lock corresponding to that in-degree
is unlocked. Consequently, the warp waiting for that lock can abort the waiting
phase and enter its critical section.

Lines 8–26 in Algorithm 2 give the pseudocode for the solving stage of our
synchronization-free SpTRSV method. An optimization here is to exploit the
GPU on-chip scratchpad memory. The idea is to allocate two sets of intermediate
arrays, one on local scratchpad memory (s left sum and s in degree) and the
other on off-chip global memory (d left sum and d in degree), see line 1 of
Algorithm 2. When a warp finds a dependent entry (the later entry that depends
on the current one) is in the same GPU thread-block composed of multiple
warps, it updates the local arrays (lines 18–19) in the scratchpad memory for
faster accessing. Otherwise, it updates the remote off-chip arrays (lines 21–22),
to notify warps from other thread-blocks. The sum of the two arrays (line 11) is
used to verify if all the dependencies are fulfilled ultimately.

Figure 3 (a) shows an example using 12 warps organized in 3 thread-blocks
for solving a system of order 12× 12. Operations in on-chip scratchpad memory
are marked red (lines 18–19 in Algorithm 2), other operations in off-chip memory
are marked green (lines 21–22), and the diagonal entries are coloured blue (line
14). Figure 3 (b) plots read/write behaviours for solving the 12 components
(presented as 12 columns) of x. We can see that entries 0, 1 and 5 can be
solved immediately once the corresponding warps are issued since they have

(a) Matrix. (b) Read/write behaviours.

Fig. 3. An example of the proposed synchronization-free SpTRSV method. The red
area performs atomic-adds (lines 18–19 in Algorithm 2) in scratchpad memory, and the
green area performs both atomic-adds (line 21) and atomic-subs (line 22) in off-chip
memory. (Color figure online)

624 W. Liu et al.

no in-degree (see the top half of the subfigure), and they update values using
their out-degrees (see the bottom half). In contrast, the other entries have to
busy-wait until their in-degrees are eliminated.

4 Experimental Results

4.1 Experimental Setup

We have implemented the proposed synchronization-free SpTRSV method both
in CUDA and in OpenCL, and have evaluated it on three GPUs: (1) an NVIDIA
Tesla K40c GPU of Kepler architecture, (2) an NVIDIA GeForce GTX Titan
X GPU of newer Maxwell architecture, and (3) an AMD Radeon R9 Fury X
GPU of GCN architecture. As references, we also benchmark the most recent
SpTRSV implementations from two libraries cuSPARSE v7.5 and MKL v11.3
Update 1 provided by NVIDIA and Intel, respectively.

Table 2. The testbeds and participating SpTRSV algorithms.

The testbeds The participating SpTRSV algorithms

A dual-socket Intel Xeon E5-2695 v3
(Haswell, 2×14 cores @ 2.3GHz, 128GB
ECC DDR4 @ 2×68.3GB/s).

(1) The mkl ?csrtrsv in MKL v11.3 Update
1. Note that this is a highly tuned serial
implementation.

(2) The parallel executor mkl sparse ? trsv

using the functions
mkl sparse set sv hint and
mkl sparse optimize as an inspector in
MKL v11.3 Update 1.

An NVIDIA Tesla K40c (Kepler GK110B,
2880 CUDA cores @ 0.75GHz, 12GB
GDDR5 @ 288GB/s, driver v352.39).

(1) The latest SpTRSV method
cusparse?csrsv2 solve using functions
cusparse?csrsv2 bufferSize and
cusparse?csrsv2 analysis in its
preprocessing stage in the NVIDIA
cuSPARSE v7.5.

(2) The synchronization-free method
proposed in this paper.

An NVIDIA GeForce GTX Titan X
(Maxwell GM200, 3072 CUDA cores @
1GHz, 12GB GDDR5 @ 336.5GB/s,
driver v352.39).

(1) The latest SpTRSV method
cusparse?csrsv2 solve using functions
cusparse?csrsv2 bufferSize and
cusparse?csrsv2 analysis in its
preprocessing stage in the NVIDIA
cuSPARSE v7.5.

(2) The synchronization-free method
proposed in this paper.

An AMD Radeon R9 Fury X (GCN Fiji,
4096 Radeon cores @ 1.05GHz, 4GB
HBM @ 512GB/s, driver v15.12)

(1) The synchronization-free method
proposed in this paper.

A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves 625

Because mixed-precision numerical methods have recently attracted much
attention, we evaluate all methods in both single and double precision. Informa-
tion about the platforms and test schemes are listed in Table 2.

Table 3 lists 11 sparse matrices used for our experiments on all platforms.
These matrices have also been used in other research on sparse matrix compu-
tations [10,14–17,20] and are publicly available from the University of Florida
Sparse Matrix Collection [6] (except matrix Dense). The selected matrices cover
a wide range for the number of level-sets as well as the average parallelism
inside a level-set. For example, matrix nlpkkt160 has only two level-sets so that
the computation of most its components can run in parallel, whereas for the
matrix Dense every component has to wait for earlier components.

4.2 SpTRSV Performance

Figure 4 shows the single and double precision SpTRSV performance on the 11
matrices measured on the four platforms. Overall, the MKL and cuSPARSE
libraries show comparable performance, while our synchronization-free method
is much faster (in particular on the Maxwell-based Titan X GPU) than the
vendor supplied libraries.

Specifically, on the Titan X GPU, our synchronization-free algorithm demon-
strates an average speedup over the cuSPARSE library of 2.3 times in single
precision and 2.14 times in double precision. The maximum speedups are 5.95
and 3.65, respectively. The best speedups are from a relatively regular matrix
FEM/Cantilever that has most of its nonzero entries in its diagonal blocks. For
this matrix, the optimizing strategy of using both scratchpad and off-chip mem-
ory improves the overall performance. Also, our method achieves speedups of 2.69
and 2.52 for single and double precision, respectively, for matrix hollywood-2009.
This matrix requires 82,735 runtime synchronizations (see Table 3) limiting its

Table 3. The benchmark suite.

Matrix name #Rows/Columns #Nonzeros #Level-sets Parallelism

nlpkkt160 8, 345, 600 229, 518, 112 2 4, 172, 800

road central 14, 081, 816 33, 866, 826 59 238, 675

road usa 23, 947, 347 57, 708, 624 77 311, 004

webbase-1M 1, 000, 005 3, 105, 536 514 1, 946

wiki-Talk 2, 394, 385 5, 021, 410 522 4, 587

chipcool0 20, 082 281, 150 534 37

Dense 2, 000 4, 000, 000 2, 000 1

FEM/Cantilever 62, 451 4, 007, 383 2, 397 26

crankseg 1 52, 804 10, 614, 210 4, 056 13

FEM/ship 003 121, 728 8, 086, 034 4, 367 28

hollywood-2009 1, 139, 905 113, 891, 327 82, 735 14

626 W. Liu et al.

nlpkkt160 road central road usa

webbase-1M wiki-Talk chipcool0

Dense FEM/Cantilever crankseg 1

FEM/ship 003 hollywood-2009 Harmonic mean

Fig. 4. The SpTRSV performance of the 11 matrices on the four platforms. (Color
figure online)

performance from the level-set methods. In contrast, our method avoids synchro-
nizations and thus obtains much superior performance. For the same reason, our
method shows comparable performance compared to existing methods on matrix
nlpkkt160, which requires only two runtime synchronizations.

Compared to the Kepler based K40c GPU, the Titan X GPU offers higher
performance. The major reason is that the Maxwell architecture dramatically
improves its micro-architectures for faster atomic operations, which are exten-
sively utilized in our approach. Actually, Scogland and Feng [25] also confirmed
that atomic operations have been continuously improved in the last generations
of modern GPUs. Moreover, although the AMD Fury X GPU has higher band-
width than the NVIDIA Titan X, it is in general slower for our synchronization-
free SpTRSV algorithm. The main reason may be the difference between the
warp/wavefront scheduling strategies on the NVIDIA and AMD GPUs.

A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves 627

4.3 Overhead for Preprocessing

Table 4 shows the preprocessing overhead of the parallel SpTRSV implementa-
tions from MKL, cuSPARSE and our approach on the four platforms. As can be
seen, our method achieves an average speedup of 43.7 (maximum of 70.5) over
the method in cuSPARSE library on the Titan X card. On the K40c device, the
speedups are on average 58.2 with a maximum of 89.2. The major reason is that
the vendor supplied implementation attempts to find level-sets in the preprocess-
ing phase. Moreover, the AMD Fury X GPU offers lower cost for preprocessing,
due to more cores and higher off-chip memory bandwidth.

Table 4. Preprocessing cost (in millisecond) of the tested methods on the four
platforms.

Matrix name Intel 2xE5-2695 v3 NVIDIA K40c NVIDIA Titan X AMD Fury X

MKL cuSPARSE Sync-Free cuSPARSE Sync-Free Sync-Free

nlpkkt160 64.43 40.58 7.27 19.99 8.91 5.58

road usa 155.48 160.41 5.06 84.01 3.37 2.31

road central 92.16 82.01 9.28 42.62 6.98 5.53

wiki-Talk 17.38 16.27 0.33 10.49 0.20 0.16

webbase-1M 7.08 8.53 0.19 5.48 0.13 0.11

chipcool0 1.05 1.48 0.02 1.41 0.02 0.02

FEM/ship 003 9.14 6.41 0.19 4.34 0.26 0.13

FEM/Cantilever 9.52 8.92 0.10 8.28 0.16 0.07

hollywood-2009 223.54 139.98 5.20 204.10 4.82 2.78

crankseg 1 9.30 8.93 0.24 6.14 0.43 0.14

Dense 9.29 3.46 0.08 2.99 0.12 0.05

Harmonic mean 6.80 6.99 0.12 5.71 0.13 0.10

5 Related Work

Existing parallel SpTRSV methods can be classified into two groups: those con-
structing level-sets and those generating colour-sets.

Anderson and Saad [1] and Saltz [23] proposed that level-sets can expose
parallelism in SpTRSV. A few recently developed parallel SpTRSV implemen-
tations have improved the level-set method for better data locality and faster
synchronization [10,20,28]. Naumov [19] implemented the level-set method on
NVIDIA GPUs with a tradeoff for decreasing the number of synchronizations.
Li and Saad [12] demonstrated that reordering the input matrix can further
improve parallelism but requires longer preprocessing time. Unlike the above
level-set methods, our synchronization-free SpTRSV algorithm does not analyse
the sparsity structure of the input matrix and thus completely removes costs for
generating sets and executing barrier synchronization. As a result, our method
shows much better performance than level-set methods.

628 W. Liu et al.

Schreiber and Tang [24] first used graph colouring for constructing colour-
sets for SpTRSV on multiprocessors. When the input sparse matrix is coloured,
it is reorganized as multiple triangular submatrices located on its diagonal.
Because all the submatrices can be solved in parallel, this method can be very
efficient in practice. Suchoski et al. [26] recently extended the graph colouring
method for SpTRSV to GPUs. However, as graph colouring is known to be an
NP-complete problem, finding good colour-sets for SpTRSV is in general more
time consuming. Thus it may be impractical for real-world applications.

There are also several classes of methods that do not create sets in advance.
Mayer [18] pointed out that 2D decomposition can accelerate SpTRSV but
needs to reorganize the data structure of the input matrix. Chow and Patel [4]
and Anzt et al. [2] recently developed several iterative methods for SpTRSV
for use with incomplete factorization. Because iterative methods only give
approximate solutions, they should not be used more generally for other sce-
narios such as using SpTRSV in sparse direct solvers. In contrast, the method
we propose in this paper uses the unchanged CSC sparse matrix format and
works for general problems.

Some researchers have also utilized atomic operations for improving fun-
damental algorithms such as bitonic sort [29], prefix-sum scan [30], wave-
front [11], sparse transposition [27], and sparse matrix-vector multiplication [14,
16,17]. Unlike those problems, the SpTRSV operation is inherently serial and
thus more irregular and complex. We also use atomic operations both in on-chip
and off-chip memory, and set atomic operations as the central part of the whole
algorithm.

6 Conclusions

In this paper, we have proposed a synchronization-free algorithm for parallel
SpTRSV. The method completely eliminates the overhead for generating level-
sets or colour-sets (in the preprocessing stage) and for explicit runtime barrier
synchronization (in the solving stage). Experimental results show that our app-
roach makes preprocessing an order of magnitude faster than level-set methods,
and gives average speedups of 2.3 (with a maximum of 5.95) and 2.14 (with a
maximum of 3.65) over vendor supplied parallel routines for single and double
precision SpTRSV, respectively.

Acknowledgments. The authors would like to thank our anonymous reviewers for
their invaluable feedback. We also thank Shuai Che for helpful discussion about
OpenCL programming, and thank Huamin Ren for supplying access to the machine
with the NVIDIA GeForce Titan X GPU. The research leading to these results has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement number 671633.

A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves 629

References

1. Anderson, E., Saad, Y.: Solving sparse triangular linear systems on parallel com-
puters. Int. J. High Speed Comput. 1(1), 73–95 (1989)

2. Anzt, H., Chow, E., Dongarra, J.: Iterative sparse triangular solves for precon-
ditioning. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par 2015. LNCS,
vol. 9233, pp. 650–661. Springer, Heidelberg (2015)

3. Björck, Å.: Numerical Methods for Least Squares Problems. Society for Industrial
and Applied Mathematics, Philadelphia (1996)

4. Chow, E., Patel, A.: Fine-grained parallel incomplete LU factorization. SIAM J.
Sci. Comput. 37(2), C169–C193 (2015)

5. Davis, T.: Direct Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia (2006)

6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

7. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford
University Press Inc., New York (1986)

8. Duff, I.S., Heroux, M.A., Pozo, R.: An overview of the sparse basic linear algebra
subprograms: the new standard from the BLAS Technical forum. ACM Trans.
Math. Softw. 28(2), 239–267 (2002)

9. Hogg, J.D.: A fast dense triangular solve in CUDA. SIAM J. Sci. Comput. 35(3),
C303–C322 (2013)

10. Kabir, H., Booth, J.D., Aupy, G., Benoit, A., Robert, Y., Raghavan, P.: STS-k: a
multilevel sparse triangular solution scheme for NUMA multicores. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015, pp. 55:1–55:11 (2015)

11. Li, A., van den Braak, G.J., Corporaal, H., Kumar, A.: Fine-grained synchroniza-
tions and dataflow programming on GPUs. In: Proceedings of the 29th ACM on
International Conference on Supercomputing, ICS 2015, pp. 109–118 (2015)

12. Li, R., Saad, Y.: GPU-accelerated preconditioned iterative linear solvers. J. Super-
computing 63(2), 443–466 (2013)

13. Liang, C.K., Prvulovic, M.: MiSAR: minimalistic synchronization accelerator with
resource overflow management. In: Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA 2015, pp. 414–426 (2015)

14. Liu, W.: Parallel and Scalable Sparse Basic Linear Algebra Subprograms. Ph.D.
Thesis, University of Copenhagen (2015)

15. Liu, W., Vinter, B.: A framework for general sparse matrix-matrix multiplication
on GPUs and heterogeneous processors. J. Parallel Distrib. Comput. 85, 47–61
(2015)

16. Liu, W., Vinter, B.: CSR5: an efficient storage format for cross-platform sparse
matrix-vector multiplication. In: Proceedings of the 29th ACM International Con-
ference on Supercomputing, ICS 2015, pp. 339–350 (2015)

17. Liu, W., Vinter, B.: Speculative segmented sum for sparse matrix-vector multipli-
cation on heterogeneous processors. Parallel Comput. 49, 179–193 (2015)

18. Mayer, J.: Parallel algorithms for solving linear systems with sparse triangular
matrices. Computing 86(4), 291–312 (2009)

19. Naumov, M.: Parallel Solution of Sparse Triangular Linear Systems in the Precon-
ditioned Iterative Methods on the GPU. Technical report NVIDIA (2011)

630 W. Liu et al.

20. Park, J., Smelyanskiy, M., Sundaram, N., Dubey, P.: Sparsifying synchronization
for high-performance shared-memory sparse triangular solver. In: Kunkel, J.M.,
Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 124–140. Springer,
Heidelberg (2014)

21. Ros, A., Kaxiras, S.: Callback: efficient synchronization without invalidation with
a directory just for spin-waiting. In: Proceedings of the 42nd Annual International
Symposium on Computer Architecture, ISCA 2015, pp. 427–438 (2015)

22. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003)

23. Saltz, J.H.: Aggregation methods for solving sparse triangular systems on multi-
processors. SIAM J. Sci. Stat. Comput. 11(1), 123–144 (1990)

24. Schreiber, R., Tang, W.P.: Vectorizing the Conjugate Gradient Method. In: Pro-
ceedings of the Symposium on CYBER 205 Applications (1982)

25. Scogland, T.R., Feng, W.C.: Design and evaluation of scalable concurrent queues
for many-core architectures. In: Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, ICPE 2015, pp. 63–74 (2015)

26. Suchoski, B., Severn, C., Shantharam, M., Raghavan, P.: Adapting sparse trian-
gular solution to GPUs. In: Proceedings of the 2012 41st International Conference
on Parallel Processing Workshops, ICPPW 2012, pp. 140–148 (2012)

27. Wang, H., Liu, W., Hou, K., Feng, W.C.: Parallel Transposition of Sparse Data
Structures. In: Proceedings of the 30th ACM International Conference on Super-
computing, ICS 2016 (2016)

28. Wolf, M.M., Heroux, M.A., Boman, E.G.: Factors impacting performance of mul-
tithreaded sparse triangular solve. In: Palma, J.M.L.M., Daydé, M., Marques, O.,
Lopes, J.C. (eds.) VECPAR 2010. LNCS, vol. 6449, pp. 32–44. Springer, Heidelberg
(2011)

29. Xiao, S., Feng, W.C.: Inter-block GPU Communication via fast barrier synchro-
nization. In: 2010 IEEE International Symposium on Parallel Distributed Process-
ing, IPDPS 2010, pp. 1–12 (2010)

30. Yan, S., Long, G., Zhang, Y.: StreamScan: fast scan algorithms for GPUs with-
out global barrier synchronization. In: Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPopp. 2013,
pp. 229–238 (2013)

Exploiting Task-Parallelism in Message-Passing
Sparse Linear System Solvers Using OmpSs

José I. Aliaga1, Maŕıa Barreda1(B),
Matthias Bollhöfer2, and Enrique S. Quintana-Ort́ı1

1 Dpto. de Ingenieŕıa y Ciencia de Computadores,
Universidad Jaume I, Castellón, Spain
{aliaga,mvaya,quintana}@icc.uji.es

2 Institute of Computational Mathematics,
TU Braunschweig, Braunschweig, Germany

m.bollhoefer@tu-bs.de

Abstract. We introduce a parallel implementation of the precondi-
tioned iterative solver for sparse linear systems underlying ILUPACK
that explores the interoperability between the message-passing MPI pro-
gramming interface and the OmpSs task-parallel programming model.
Our approach commences from the task dependency tree derived from
a multilevel graph partitioning of the problem, and statically maps the
tasks in the top levels of this tree to the cluster nodes, fixing the inter-
node communication pattern. This mapping induces a conformal parti-
tioning of the tasks in the remaining levels of the tree among the nodes,
which are then processed concurrently via the OmpSs runtime system.

The experimental analysis on a cluster with high-end Intel Xeon
processors explores several configurations of MPI ranks and OmpSs
threads per process showing that, in general, the best option matches
the internal architecture of the nodes. The results also report significant
performance gains for the MPI+OmpSs version over the initial MPI code.

Keywords: Programming models · Sparse linear systems ·
Preconditioned iterative solvers · Task-level parallelism · ILUPACK ·
MPI · OmpSs

1 Introduction

The solution of large sparse systems of linear equations is a key linear algebra
problem arising in many scientific and engineering applications that involve the
discretization of partial differential equations (PDEs) [18]. Moreover, the con-
nection between sparse linear algebra and graph algorithms has turned this type
of problem into an appealing means to mine the vast amount of information in
social networks and other big data analytic processes [13].

ILUPACK1 (Incomplete LU decomposition PACKage) is a numerical pack-
age that contains efficient multilevel ILU factorization solvers, based on Krylov
1 http://ilupack.tu-bs.de.

c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 631–643, 2016.
DOI: 10.1007/978-3-319-43659-3 46

http://ilupack.tu-bs.de

632 J.I. Aliaga et al.

subspace methods [18], for large-scale sparse linear systems with up to mil-
lions of equations [10,19,21]. In previous work, we exploited the task-parallelism
exposed by the task dependency graph (TDG) associated with the sparse
matrix to develop parallel versions of ILUPACK’s preconditioned Conjugate
Gradient (PCG) solver. The target platforms for these past efforts included
shared-memory multiprocessors via OpenMP [2,3], multicore architectures with
OmpSs2 [1], and clusters using MPI [1,4].

Unfortunately, the previous MPI version of ILUPACK [1,4] could only map
one leaf of the TDG to each MPI rank, impeding the exploitation of other types
of parallelism internally to the nodes. This is a strong limitation for clusters
consisting of “fat” nodes equipped with a significant numbers of cores per node,
as the static correspondence between tasks and MPI ranks may result in an
unbalanced distribution of the workload and, therefore, inefficiency.

In this work, we present a new implementation of ILUPACK which merges
MPI and OmpSs to exploit the benefits of each programming model, and allows
the execution of the solver with more than one leaf per MPI process. In addition,
we perform an experimental evaluation in order to assess the impact of the
MPI+OmpSs configuration, problem dimension, and number of leaves per core
on the performance of the iterative solve. Our results on a cluster equipped with
16 Intel Xeon cores per node reveals that the MPI+OmpSs version consistently
outperforms the initial MPI code in terms of both strong and weak scaling.

There exist other packages also based on ILU factorizations and Krylov sub-
space methods. For example, pARMS [15] is an MPI-based library of parallel
solvers for solving general sparse linear systems where the preconditioner is based
on an algebraic recursive multilevel ILU. In contrast to ILUPACK, it relies on
an independent set strategy for partitioning the leading systems into small diag-
onal blocks and then it re-applies the strategy recursively. In [7] a completely
different parallel approach to ILUs was presented treating the error between the
ILU and the original matrix as sequences of nonlinear equations to be improved
in parallel rather than decomposing the system into a hierarchy of independent
blocks. In [9], a parallel incomplete factorization approach uses direct solver
techniques based on the level-of-fill and the underlying graph properties Beside
ILU-based techniques, efficient parallel direct solvers [11,12,14,17,20] based on
OpenMP/MPI rely on tree–parallelism and a variety of sophisticated techniques.
Moreover, there are certainly many further parallel preconditioning methods,
e.g., those based on approximate inverses or algebraic multigrid methods just to
mention a few of them.

The rest of the paper is organized as follows. Section 2 offers a brief review
of ILUPACK and the strategy to extract task-parallelism from this applica-
tion. Section 3 describes the different parallelization approaches, based on either
OmpSs or MPI only, and the new solution that combines both parallel pro-
gramming interfaces. Section 4 analyzes the performance and scalability of the
different parallel versions. Finally, Sect. 5 summarizes our work and offers several
concluding remarks.

2 https://pm.bsc.es/ompss.

https://pm.bsc.es/ompss

Exploiting Task-Parallelism in Message-Passing Sparse 633

2 Exposing Task-Parallelism in ILUPACK

Introduction to ILUPACK. The C and Fortran routines included in ILU-
PACK can be leveraged to solve sparse linear systems of the form Ax = b via
Krylov subspace methods [18]. This library provides multilevel preconditioners
that improve the numerical properties of the linear system, reducing the number
of steps of the iterative solver. Concretely, the procedure obtains an efficient
preconditioner from the ILU factorization of the system matrix, dropping the
small entries of the factors, while relying on pivoting to bound the norm of the
inverse triangular factors, yielding a numerical multilevel hierarchy of partial
inverse-based approximations [5,6].

S1: Compute the preconditioner A → M ≈ LU
S2: Initialize x0, r0, z0, d0, β0, τ0
S3: k := 0
S4: while (τk > τmax) Iterative PCG solve
S5: wk := Adk (spmv)
S6: ρk := βk/dT

k wk (dot product)
S7: xk+1 := xk + ρkdk (axpy)
S8: rk+1 := rk − ρkwk (axpy)
S9: zk+1 := M−1rk+1 ≈ U−1L−1rk+1 Apply preconditioner
S10: βk+1 := rTk+1zk+1 (dot product)
S11: αk := βk+1/βk

S12: dk+1 := zk+1 + αkdk (axpy-like)
S13: τk+1 :=‖ rk+1 ‖2 (2-norm)
S14: k := k + 1
S15: endwhile

Fig. 1. Algorithmic formulation of the PCG method. Here, τmax is an upper bound on
the relative residual for the computed approximation to the solution.

For the particular case of a symmetric positive definite (s.p.d.) linear system,
Fig. 1 illustrates a simplified version of the PCG solver underlying ILUPACK.
The most challenging operations in this algorithm are the computation of the
preconditioner (S1), before the iteration commences, and its application at each
iteration (S9). We will describe in detail the task-parallelism implicit in these
two operations.

Nested Dissection. Exploiting the relationship between sparse matrices and
adjacency graphs, nested dissection can be recursively applied to permute a
sparse matrix, yielding a collection of diagonal blocks that are linked to certain
subgraphs and separators [3]. Moreover, the hierarchy of subgraphs and sepa-
rators fixes the order in which the diagonal blocks have to be factorized. This
process renders a TDG with the structure of a tree, where the subgraphs occupy
the leaves and the separators correspond to the internal nodes. For example,

634 J.I. Aliaga et al.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A00 0 0 0 A04 0 A06

0 A11 0 0 A14 0 A16

0 0 A22 0 0 A25 A26

0 0 0 A33 0 A35 A36

A40 A41 0 0 A44 0 A46

0 0 A52 A53 0 A55 A56

A60 A61 A62 A63 A64 A65 A66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ T0 T1 T2 T3

T5T4

T6

Fig. 2. Partitioning (left) and task dependency tree of the diagonal blocks (right). Task
Tj is in charge of processing the diagonal block Ajj .

Fig. 2 (left) reflects the structure of a sparse matrix on which two nested dis-
section steps have been applied, yielding 4 subgraphs and 3 separators. Figure 2
(right) shows the TDG of the permuted matrix, where the edges of this directed
acyclic graph define the dependencies between the diagonal blocks (tasks).

Computation of the Preconditioner. In order to improve the concurrency of
this computation, the permuted matrix can be disassembled into one submatrix
per leaf of the TDG. For instance, the submatrices for the graph in Fig. 2 are
decomposed as

⎡

⎣

A00 A04 A06

A40

A60

A0
44 A0

46

A0
64 A0

66

⎤

⎦ ,

⎡

⎣

A11 A14 A16

A41

A61

A1
44 A1

46

A1
64 A1

66

⎤

⎦ ,

⎡

⎣

A22 A25 A26

A52

A62

A2
55 A2

56

A2
65 A2

66

⎤

⎦ ,

⎡

⎣

A33 A35 A36

A53

A63

A3
55 A3

56

A3
65 A3

66

⎤

⎦ , (1)

where

A44 = A0
44 + A1

44 , A55 = A2
55 + A3

55 , A66 = A0
66 + A1

66 + A2
66 + A3

66. (2)

Thus, the factorizations of the leading blocks of these four submatrices can pro-
ceed in parallel, while the modified blocks A0/1/2/3

ij are needed to solve the depen-
dencies of the ancestor tasks. This process continues traversing the dependency
tree, until the root task factorizes its local submatrix.

Application of the Preconditioner. The application of the preconditioner
requires the solution of two triangular systems, corresponding to the lower and
the upper incomplete triangular factors. The TDG for the former triangular sys-
tem presents the same structure and dependencies as that associated with the
computation of the preconditioner. In the latter triangular solve, the structure
is preserved but dependencies are reversed, pointing top-down from the root to
the leaves. Therefore, concurrency increases/decreases as we move towards/away
from the leaves.

Other Kernels in the PCG Iteration. The remaining operations of PCG
conform the computation/application of the preconditioner. The matrix is dis-
assembled following (1) and the vectors are partitioned in a conformal manner,

Exploiting Task-Parallelism in Message-Passing Sparse 635

but the operation on vectors does not always fulfill (2). With this formulation
all these computations only involve the leaves of the TDG and, therefore, can be
computed fully in parallel, except for the dot products, which require an atomic
addition (reduction) of the values locally computed in each leaf.

Degree of Concurrency. The number of leaves of the TDG grows exponen-
tially with the number of nested dissection steps, so that the degree of con-
currency can be easily increased by expanding additional levels. However, each
dissection step introduces additional numerical levels in the computation yield-
ing both a different TDG and a distinct preconditioner. While the numerical
properties of all these preconditioners are similar, in practice the number of iter-
ations of the PCG solver increases significantly after a few levels (8 and more)
are expanded.

3 Exploiting Task-Parallelism with OmpSs and MPI

In this section, we first briefly review how to exploit the task-parallelism explic-
itly exposed by the TDG, using either OmpSs or MPI, to then introduce our app-
roach that combines both parallel programming models to yield a task-parallel
MPI+OmpSs solution.

3.1 Parallelization Using OmpSs

OmpSs is a task-based parallel programming model developed at Barcelona
Supercomputing Center (BSC) [8,16]. At execution time, the runtime system
underlying OmpSs detects data dependencies between tasks, with the help of
OpenMP-like compiler directives (pragmas) annotated with clauses that indi-
cate the task operands’ directionality (input, output or input/output). OmpSs
then generates a task graph during the execution, which is leveraged to sched-
ule the tasks to the cores, exploiting the inherent task-level parallelism while
fulfilling the dependencies embedded in the graph.

The opportunities to exploit task-level parallelism in ILUPACK’s PCG
method lie within the computations that involve the preconditioner (compu-
tation and application) as well as the vector operations. The introduction of
OmpSs in the operations with the preconditioner is quite intricate, mostly due
to the complexity of ILUPACK itself. Nonetheless, it is possible to create a
“skeleton” structure that explicitly exposes/governs the dependencies associated
with the TDG while requiring only minor modifications in the routines included
in the OpenMP version of ILUPACK [1,2]. In contrast, as the sparse matrix
and the vectors in the PCG iteration are disassembled conformally, according
to (1), the operations on the latter can be decomposed into a number of inde-
pendent vector suboperations, which are easily parallelized using OmpSs. The
only exception are the dot products which, after the reduction of the subvectors
local to each thread, involve an atomic addition and, therefore, a synchroniza-
tion/barrier [1,2]. Although nested parallelism could be applied to optimize the
operations related to each node, our experience with this technique is negative.

636 J.I. Aliaga et al.

3.2 Parallelization with MPI

The original MPI-based parallel version of ILUPACK, introduced in [4], spawns
one MPI rank per leaf (task) of the TDG, with a one-to-one static mapping
between leaves and ranks. This task-rank correspondence is fixed before the
preconditioner computation, by the root process, which sends the information
for each leaf to the appropriate MPI rank. The same mapping is then maintained
during the complete execution, for all computations and iterations, including the
preconditioner computation/application and vector operations.

The operations with the preconditioner potentially transform the dependen-
cies of the TDG into communications among MPI ranks. To reduce the number
of transfers, an inner task is always mapped to one of the two MPI ranks where
the two “children” tasks were mapped to. For example, consider a TDG consist-
ing of 4 leaves mapped to 4 MPI ranks: R0–R3. Then, in order to collapse the
first level when the graph is traversed bottom-up during the lower triangular
system solve, ranks R0, R2 send their data to R1, R3, respectively. Next, the
receivers accumulate this information with the results from their own computa-
tions, and process the tasks in the next higher level, while the senders block till
the top-down traversal of the TDG during the upper triangular system solve. Fol-
lowing this strategy, traversing the TDG only requires a communication between
“sibling” tasks/“neighbour” MPI ranks.

Disassembling the matrix and the vectors, according to (1), allows all the
other computations in PCG to operate with the leaves, avoiding any communica-
tion, except for the dot operations, which require an MPI reduction (MPI Reduce)
to accumulate the values computed in each node.

3.3 Combining MPI+OmpSs

In general, a strong motivation for mixing OmpSs with MPI is to unleash a
higher level of asynchronism, for example in order to overlap communication with
computation reducign the number of global synchronizations. In this particular
work, the major advantage of combining both programming models is to exploit
dynamic scheduling within the cluster nodes via OmpSs.

The first step to obtain an MPI+OmpSs solution is to develop a new MPI
version of ILUPACK where an MPI rank can handle a subtree of the TDG
comprising several leaves and the related inner tasks. With this version, OmpSs
can then be used to process the tasks mapped to each MPI rank, dynamically
distributing the work between several OmpSs threads. For example, consider
a 2-level TDG composed of one root task and two leaves to be executed on a
processor with two cores. If the computational cost associated with the leaves is
unbalanced, this can be tackled by expanding an additional level of the TDG,
yielding a 3-level tree consisting of four leaves. Now, if the parallelization is
based on MPI only, an optimal mapping of the tasks to MPI ranks requires a
prior knowledge of the computational costs of the tasks. Compared with this, an
OmpSs parallel version with 2 threads features a dynamic mapping of tasks to

Exploiting Task-Parallelism in Message-Passing Sparse 637

threads that is more flexible and can use the resources more efficiently by, e.g.,
prioritizing the execution of the more expensive tasks.

The MPI+OmpSs version still requires an initialization where the root
process distributes the data corresponding to (the leaves of) the subtrees among
the MPI ranks. The MPI+OmpSs version of ILUPACK is then divided into a
sequence of interleaved OmpSs and MPI stages, with the former ones computing
the tasks internal to the subtrees local to the MPI ranks, and the latter requir-
ing communication between MPI ranks. In particular, the computation of the
preconditioner comprises only one stage of each type, but its application in the
loop body of PCG has two OmpSs stages per iteration because the TDG is tra-
versed twice. Figure 3 illustrates the initial distribution for a TDG with 8 leaves,
together with a scheme of the execution of the two stages in the preconditioner
computation. In that example, the OmpSs threads process the tasks within the
bottom two levels, with no MPI communication involved. For the top two levels,
the OmpSs threads remain inactive and it is the MPI ranks that are in charge
of processing the tasks. The dot operations also exhibit the same two stages: On
the leaves, the OmpSs threads accumulate their local subvectors, and an atomic
reduction is then applied to compute the reduction inside each MPI rank. These
local values are then reduced using an MPI collective primitive. The remain-
ing vector computations of the PCG iteration operate in the bottom level only
and, therefore, are computed by OmpSs threads with no MPI communication
involved.

Fig. 3. Mapping of a TDG to 4 MPI ranks (R0–R3) with 2 OmpSs threads per rank.

638 J.I. Aliaga et al.

4 Experimental Results

4.1 Setup and Preliminaries

The experiments in this section were performed using IEEE754 double-precision
arithmetic on MareNostrum, a large-scale computing infrastructure at BSC. This
platform connects 3,056 compute nodes via an Infiniband Mellanox FDR10 net-
work. Each node contains two Intel Xeon E5-2670 processors for a total of 16
cores per server (2.6 GHz). The nodes employed in our experiments were also
equipped with 64 Gbytes of DDR3 RAM.

For the experimental analysis, we employed an s.p.d. linear system arising
from the finite difference discretization of a 3D Laplace problem, with instances
of different size; see Table 1. In the experiments, all entries of the right-hand
side vector b were initialized to 1, and the PCG iterate was started with the
initial guess x0 ≡ 0. For the tests, the parameters that control the fill-in and
convergence of the iterative process in ILUPACK were set as droptool = 1.0E-2,
condest = 5, elbow = 10, and restol = 1.0E-6.

Table 1. Matrices employed in the experimental evaluation, where nz only includes
the non-zeros in the upper triangular part.

Matrix Dimension n #non-zeros nz Density (%)

Laplace A159 4,019,679 16,002,873 9.90E-7

A200 8,000,000 31,880,000 4.98E-7

A252 16,003,008 63,821,520 2.49E-7

A318 32,157,432 128,326,356 1.24E-7

A400 64,000,000 255,520,000 6.23E-8

In the following we analyze the performance of two parallel versions of the
PCG solver in ILUPACK: one based on MPI that can handle several leaves per
MPI rank, with no intervention of OmpSs (hereafter, referred to as MPI-only);
and an alternative variant that combines MPI+OmpSs also capable of processing
several leaves per MPI rank, but which does so via OmpSs threads internally
to each node. The MPI+OmpSs code was compiled using Mercurium C/C++
(1.99.8), with the OpenMPI (1.8.1) flags -showme:compile and -showme:link.
The MPI-only variant was compiled with the same version of OpenMPI. Other
software included OmpSs (15.06), ILUPACK (2.4), and ParMetis3 (4.0.2) for
the graph reorderings. In the executions with the MPI-only version, we spawned
one MPI rank per core (i.e., 16 per node). For MPI+OmpSs, we tested distinct
combinations of MPI ranks and OmpSs threads, with the numbers of ranks
multiplied by the number of threads always being equal to 16 per node.

In the following, we consider the behaviour of the iterative PCG solver only,
without the preconditioner computation, because the computational cost of the
3 http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download.

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download

Exploiting Task-Parallelism in Message-Passing Sparse 639

Fig. 4. Execution time per PCG iteration for the Laplace A400 problem for different
configurations, using 1 leaf per core (top) and 2 leaves per core (bottom). (Color figure
online)

latter is in general smaller and we observed no significant performance differences
between the MPI-only and MPI+OmpSs parallel versions of this procedure. In
addition, several previous experiments (for brevity, not shown here) revealed that
the best performance was obtained when splitting the sparse matrix via nested
dissection to generate a TDG with a number of leaves that equals or doubles
the number of cores. Therefore, for simplicity, in the following we analyze only
these two cases.

4.2 Analysis of Configurations

In order to assess the performance of the parallel MPI+OmpSs version of ILU-
PACK, we first evaluate different combinations of MPI ranks and OmpSs threads
per node (configurations). Given the node target architecture, with 2 sockets/8
cores per socket, we employ 1, 2, 4, 8 or 16 MPI ranks per node and the cor-
responding number OmpSs threads that fill all cores per node: 16, 8, 4, 2 or
1, respectively. We will denote these configurations as 1R/16T, 2R/8T, 4T/4T,
8R/2T, and 16R/1T (#Ranks/#Threads). Figure 4 reports the ratio of execution

640 J.I. Aliaga et al.

time of these configurations normalized with respect to the MPI-only implemen-
tation for the A400 problem, splitting the problem to obtain one leaf per core and
two leaves per core. Both graphs reveal that, for almost all cases, the best option
is 2R/8T, which mimics the internal socket/core architecture of the servers. Fur-
thermore, we also notice that the extreme configurations, 1R/16T and 16R/1T,
deliver the lowest performance. In the case that employs 1 rank and 16 OmpSs
threads, this is due to the intersocket implicit communications. In the alternative
with 16 MPI ranks and 1 thread per rank the reason is the overhead introduced
by the OmpSs runtime system. In order to avoid this, when exploiting the hard-
ware concurrency using MPI ranks only, we will not employ the OmpSs runtime
system in the following.

4.3 Analysis of Scalability

We first evaluate the strong scalability of the parallel solvers. Figure 5 shows
the execution time per iteration of the PCG solve for the A400 problem as the
resources are increased from 16 cores/1 node to 256 cores/16 nodes. In gen-
eral, as expected, there is a decrease in the iteration time as the number of
cores grows. If we compare the two versions, the results demonstrate that the
MPI+OmpSs variant consistently outperforms the MPI version (with no under-
lying OmpSs runtime system), by a margin that is around 5–10 %. Moreover,
there is a slight difference between the cases with one or two leaves per core that
is enlarged with the number of cores, revealing the TDG with one leaf per core
as the best choice for 32 or more cores. The reason is that, as the amount of
computational resources grows, the additional concurrency explicitly exposed by
further splitting the computational load (sparse matrix/adjacency graph) does
not compensate the overhead that is introduced for this particular (moderate)
problem dimension.

The next experiment aims to provide an evaluation of weak scaling for the
parallel solvers. Unfortunately, for ILUPACK’s PCG solve it is not possible to

Fig. 5. Execution time per PCG iteration for the Laplace A400 problem. (Color figure
online)

Exploiting Task-Parallelism in Message-Passing Sparse 641

Fig. 6. Execution time per PCG iteration for different Laplace problems. (Color figure
online)

generate an instance of the Laplace problem with a computational complexity
that grows exactly in proportion to the number of resources. To approximate
this scenario, we set the number of non-zeros of the sparse matrix (nz) to be
roughly proportional to the number of cores. However, we emphasize that nz

only offers an estimation of the computational cost, as other factors such as the
fill-in/quality of the preconditioner may play a relevant role. Figure 6 reports the
performance of the parallel implementations of the PCG solve (per iteration) for
the different matrices in Table 1. These results show that the execution times
grow with the number of cores/problem dimension. The reason is that the num-
ber of actual floating-point arithmetic operations per iteration increases faster
than nz. Comparing both implementations, the MPI+OmpSs version outper-
forms the MPI variant; and the difference between the cases with one or two
leaves per core also grows with the number of cores.

5 Concluding Remarks

We have presented a new parallel version of the complete method underlying
ILUPACK for solving symmetric positive definite linear systems on clusters of
multicore processors. The approach extracts task-parallelism by splitting the
sparse matrix into multiple levels, yielding a directed acyclic graph, with the
form of a binary tree, where the nodes represent tasks, the arrows indicate data
dependencies, and most computational work is performed in the leaf tasks. This
graph is then traversed from bottom-up for the computation of the precondi-
tioner and one of the triangular solves during its application, and top-down for
the second triangular solve. In principle, the tree can be expanded into fur-
ther levels to expose any number of tasks and, therefore, degree of concurrency.
However, doing so yields different preconditioners and, from a certain depth,
incurs into a significant overhead. In general, the best compromise is to generate
up to two leaves per core, to allow the OmpSs scheduler optimize the compu-
tation. The experimental results confirm this assert for configurations with a

642 J.I. Aliaga et al.

reduced number of nodes, where the overhead is compensated by the OmpSs
optimization. For unstructured matrices, the OmpSs runtime system accelerates
the computation in most scenarios, due to the irregularity of the node sizes.

The solver combines the MPI and OmpSs programming models, with the
best solution corresponding to a configuration that maps one MPI rank and
eight OmpSs threads per socket, mimicking the internal architecture of the clus-
ter nodes. With these parameters, the new MPI+OmpSs version of ILUPACK
outperforms the initial implementation for clusters, which was based on MPI
and could only process one leaf per rank.

Acknowledgements. This work was supported by the CICYT project TIN2014-
53495-R of the MINECO and FEDER, and the H2020 EU FETHPC Project 671602
“INTERTWinE”. Maŕıa Barreda was supported by the FPU program of the Ministerio
de Educación, Cultura y Deporte. The authors thankfully acknowledge the computer
resources provided by BSC-CNS (Centro Nacional de Supercomputación).

References

1. Aliaga, J.I., Badia, R.M., Barreda, M., Bollhöfer, M., Dufrechou, E., Ezzatti, P.,
Quintana-Ort́ı, E.S.: Exploiting task and data parallelism in ILUPACK’s precon-
ditioned CG solver on NUMA architectures and many-core accelerators. Parallel
Comput. 54, 97–107 (2016)

2. Aliaga, J.I., Badia, R.M., Barreda, M., Bollhöfer, M., Quintana-Ort́ı, E.S.: Lever-
aging task-parallelism with OmpSs in ILUPACK’s preconditioned cg method. In:
26th International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD 2014), pp. 262–269 (2014)

3. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Exploiting thread-
level parallelism in the iterative solution of sparse linear systems. Parallel Comput.
37(3), 183–202 (2011)

4. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization
of multilevel ILU preconditioners on distributed-memory multiprocessors. In:
Jónasson, K. (ed.) PARA 2010, Part I. LNCS, vol. 7133, pp. 162–172. Springer,
Heidelberg (2012)

5. Bollhöfer, M., Grote, M.J., Schenk, O.: Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media. SIAM J. Sci. Comput. 31(5), 3781–
3805 (2009)

6. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based
ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006). Special issue on the 8-th
Copper Mountain Conference on Iterative Methods

7. Chow, E., Patel, A.: Fine-grained parallel incomplete lu factorization. SIAM J.
Sci. Comput. 37(2), C169–C193 (2015)

8. Duran, A., Ferrer, R., Ayguadé, E., Badia, R.M., Labarta, J.: A proposal to extend
the OpenMP tasking model with dependent tasks. Int. J. Parallel Program. 37(3),
292–305 (2009)

9. Gaidamour, J., Hénon, P.: A parallel direct/iterative solver based on a schur com-
plement approach. In: 11th IEEE International Conference on Computational Sci-
ence and Engineering, CSE 2008, pp. 98–105. IEEE (2008)

Exploiting Task-Parallelism in Message-Passing Sparse 643

10. George, T., Gupta, A., Sarin, V.: An empirical analysis of the performance of
preconditioners for SPD systems. ACM Trans. Math. Softw. 38(4), 24:1–24:30
(2012)

11. Hénon, P., Ramet, P., Roman, J.: PaStiX: a high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Comput. 28(2), 301–321 (2002)

12. Irony, D., Shklarski, G., Toledo, S.: Parallel, fully recursive multifrontal supernodal
sparse Cholesky. Future Gener. Comput. Syst. 20(3), 425–440 (2004). Special issue:
Selected numerical algorithms archive

13. Kepner, J., Gilbert, J. (eds.) Graph Algorithms in the Language of Linear Algebra.
SIAM (2011)

14. Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface.
ACM Trans. Math. Software 31(3), 302–325 (2005)

15. Li, Z., Saad, Y., Sosonkina, M.: pARMS: a parallel version of the algebraic recursive
multilevel solver. Numerical Lin. Alg. W. Appl. 10, 485–509 (2003)

16. The OmpSs programming model. http://pm.bsc.es/ompss
17. Amestoy, J.K.P.R., Duff, I.S., L’Excellent, J.-Y.: A fully asynchronous multifrontal

solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1),
15–41 (2001)

18. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003)
19. Schenk, O., Bollhöfer, M., Römer, R.A.: On large scale diagonalization techniques

for the Anderson model of localization. SIAM Rev. 50, 91–112 (2008)
20. Schenk, O., Gärtner, K.: On fast factorization pivoting methods for symmetric

indefinite systems. Electr. Trans. Num. Anal. 23(1), 158–179 (2006)
21. Schenk, O., Wächter, A., Weiser, M.: Inertia-revealing preconditioning for large-

scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960
(2009)

http://pm.bsc.es/ompss

Lightweight and Accurate Silent Data
Corruption Detection in Ordinary

Differential Equation Solvers

Pierre-Louis Guhur1,2(B), Hong Zhang1, Tom Peterka1, Emil Constantinescu1,
and Franck Cappello1

1 Argonne National Laboratory, Lemont, USA
pierre-louis.guhur@ens-cachan.fr,

{hongzh,tpeterka,emconsta,cappello}@mcs.anl.gov
2 ENS de Cachan, Cachan, France

Abstract. Silent data corruptions (SDCs) are errors that corrupt the
system or falsify results while remaining unnoticed by firmware or oper-
ating systems. In numerical integration solvers, SDCs that impact the
accuracy of the solver are considered significant. Detecting SDCs in
high-performance computing is necessary because results need to be
trustworthy and the increase of the number and complexity of com-
ponents in emerging large-scale architectures makes SDCs more likely
to occur. Until recently, SDC detection methods consisted in replicat-
ing the processes of the execution or in using checksums (for example
algorithm-based fault tolerance). Recently, new detection methods have
been proposed relying on mathematical properties of numerical kernels or
performing data analysis of the results modified by the application. None
of those methods, however, provide a lightweight solution guaranteeing
that all significant SDCs are detected. We propose a new method called
Hot Rod as a solution to this problem. It checks and potentially cor-
rects the data produced by numerical integration solvers. Our theoretical
model shows that all significant SDCs can be detected. We present two
detectors and conduct experiments on streamline integration from the
WRF meteorology application. Compared with the algorithmic detection
methods, the accuracy of our first detector is increased by 52 % with a
similar false detection rate. The second detector has a false detection
rate one order of magnitude lower than these detection methods while
improving the detection accuracy by 23 %. The computational overhead
is lower than 5% in both cases. The model has been developed for an
explicit Runge-Kutta method, although it can be generalized to other
solvers.

Keywords: Resilience · Fault tolerance · Runge-kutta · Numerical inte-
gration solvers · HPC · SDC

1 Introduction

Ensuring trustworthy results has always been a critical challenge for scientists.
In numerical simulations, results can be impaired by silent data corruptions
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 644–656, 2016.
DOI: 10.1007/978-3-319-43659-3 47

Lightweight and Accurate Silent Data Corruption Detection 645

(SDCs). Because of an ever increasing number of processes, exascale reports [18]
project an increase in the SDC rate in future systems. The origins of SDC are
diverse. Examples of SDC sources are electromagnetic interferences [15], ionizing
radiation [1], and aging of hardware components.

Replication [10] can detect SDCs by duplicating the same program (or other
versions in n-version programming [7]) and comparing their results. In a deter-
ministic program, all duplications must provide exactly the same result; oth-
erwise the results are considered corrupted. The protection of linear algebra
results in algorithm-based fault tolerance (ABFT) [12] and the error-correction
code memory (ECC) [9] are both based on checksums: ABFT computes and per-
forms detection inside the software, and ECC memory is inside the hardware.
All these methods are generic (although ABFT is limited to certain numerical
kernels), and only a few percents of SDCs are undetected. However, these meth-
ods may be too computationally expensive (replication), or they do not protect
each component. ABFT covers only the data used in the kernel and not the other
data used by the application. ECC protects only memory, caches, and registers;
it usually does not protect the CPU control logic or its functional units.

In the context of iterative, time-stepping methods, new detection techniques
compare the results of the numerical method with results produced by a surro-
gate function. Because previous steps of the numerical method have already been
validated, the surrogate function can use these values as trusted references to com-
pute its own results for the current step. In the adaptive impact-driven (AID)
detector [8], the surrogate function computes value predictions for the current
step by extrapolation from several past steps of the numerical method. If the dif-
ference between the numerical method results and the surrogate function predic-
tions is outside a certain confidence interval, an SDC is reported. AID uses differ-
ent extrapolation methods from order 0 to 2 and selects dynamically the one that
minimizes the prediction error. The confidence interval is built from the accept-
able bound (given by the user) upon which SDCs are considered as impacting the
results, the number of false positives, and the maximum error of extrapolation.
Following a different direction, Benson et al. [3] propose a more complex surro-
gate function by computing an error estimate. As with the AID detector, the esti-
mate is compared to a predicted value. If the estimate for the current step is not
similar to previous estimates, an SDC is reported. Their detector is called BSS14.
While the two approaches are different, they both use extrapolation and thus rely
on the smoothness property of the data set (AID) or of the estimate (BSS14) to
perform accurate detection. As shown in Sect. 4, they do not guarantee that all
SDCs impacting the accuracy of the iterative methods are detected, in particular
when the data set (AID) or the estimate (BSS14) presents stiff variations.

Our objective is to design and develop a new SDC detection technique that
presentsahighdetectionaccuracy (also called recall or truepositive rate,TPR) and
a low false detection rate (also called false positive rate, FPR), and does not rely
on extrapolation.Wemathematically show that all significant SDCs are detected. In
the context of numerical integration solvers, a solver is chosen because its approx-
imation error is acceptable with respect to the required accuracy of the results.

646 P.-L. Guhur et al.

We consider that an SDC is significant when the introduced error is bigger than
the approximation error of the solver.Webuilt two newdetectors relying onmathe-
matical properties of the ordinary differential equation (ODE) integrationmethod.
Our detection technique compares two estimates of this approximation error. We
chose estimates that are similar if and only if no significant SDC occurs. A confi-
dence interval on the similarity, established from a simple machine learning algo-
rithm, controls the SDC detection. If an SDC is detected, the correction is done
by recomputing the step. The two detectors present different tradeoffs. One has
a high accuracy (we call it Hot Rod HR, for resilient ODE high recall) and small
false detection rate. The other has a false detection rate lower than 1% but also a
lower accuracy (we call itHot Rod LFP, for low false positive). We designed the two
detectors for Cash-Karp’s method [5], a fourth-order Runge-Kutta method with a
fixed-step size. However, our technique can be applied to other ODE integration
methods as discussed in Sect. 5.

Because all significant SDCs are detected, our detectors improve the trust-
worthiness of the results while avoiding wasting of resources to recover from
insignificant SDCs. We performed experiments on a streamline integrator used
for visualizing of WRF meteorology application results [17].

Section 2 explains background. In Sect. 3, our method for detecting SDC is
detailed, and proof is given that all significant SDC are detected. In Sect. 4,
our SDC detectors are tested in a meteorology application and compared with
replication and the AID and BSS14 detectors.

2 Background

An ODE is a differential equation of one independent variable and its derivatives.
Because numerical integration solvers are widely used, trust in their results is
critical. An initial value problem can be formulated as

x′(t) = f(t, x(t)), x(t0) = x0,

with t0 ∈ R, x0 ∈ R
m, x : R → R

m, and f : R × R
n → R

m; f is L-Lipschitz
continuous.

2.1 Runge-Kutta Methods

For each n = 1, ..., N with N the total number of steps, Runge-Kutta methods
(RKMs) provide an approximation xn of x(tn), where tn = t0 + nh, h ∈ R

∗
+ the

step size, and x(tn) the exact solution of the ODE at time tn. An s-stage explicit
RKM is defined by

∀i ≤ s, ki = f

⎛

⎝tn + cih, xn + h

i−1
∑

j=1

aijkj

⎞

⎠ ; xn+1 = xn + h

s
∑

i=1

biki.

Here (ki)i are called the stage slopes and represent the most computation-
ally expensive part of the method. The local truncation error (LTE) is the

Lightweight and Accurate Silent Data Corruption Detection 647

approximation error introduced at a step n + 1, and it can be defined by
LTEn+1 = xn+1 − x̃(tn+1, xn), with x̃(t, xn) the exact solution of the prob-
lem x̃′(t, xn) = f(t, x̃(t, xn)), x̃(tn, xn) = xn. The global truncation error (GTE)
is the absolute difference between the correct value x̃(tn, x0) and the approx-
imated value xn. An ODE integration method is said to have an order p if
LTEn = O(hp+1) and GTEN = O(hp), where N is the last step.

In the following, we focus on a RKM called Cash-Karp’s method [5], while
generalization is discussed in Sect. 5. Cash-Karp’s method has an order 4 and
computes six stages. Although two more stages than the classical fourth-order
Runge-Kutta method are required, Cash-Karp’s method allows us to compute
the embedded method that is used in BSS14, in our detectors, and in the adaptive
integration scheme.

2.2 Embedded Methods

LTE can be estimated with embedded methods. These methods compute two
results xp

n and xq
n from two RKMs with orders p and q (in general |q − p| = 1).

The solution is propagated by one of these results, while its stages (and possibly
extra stages) are reused to compute the other result in order to achieve a low
overhead. In the case of Cash-Karp’s method, p = 4 and q = 5. If LTEq

n has
a higher order than does LTEp, the difference between xp

n and xq
n estimates

LTEp:

En = xp
n − xq

n

= xp
n − x̃(tn, xn−1) − (x̃(tn, xn−1) − xq

n) ,

= LTEp
n − LTEq

n,

= LTEp
n + O(hq+1).

2.3 Radau’s Quadrature

Another way of estimating LTE is suggested by Stoller and Morrison [19] and
extended by Ceschino and Kuntzmann [6]. Relying on Radau’s quadrature and
Taylor’s expansion, Ceschino and Kuntzmann give an expression of the LTE
of a method given its order p ≤ 5. The estimate Rn, called here Radau’s esti-
mate, does not require the computation of any extra stage, but it checkpoints
previous stages and solutions. Therefore, it has a memory overhead, rather than
a computational overhead as does the embedded method. Since En is a sixth-
order estimate, we use the following estimate Rn presented by Butcher and
Johnston [4]:

Rn =
h

10
[3f(tn−2, xn−2) + 6f(tn−1, xn−1) + f(tn, xn)]

− 1
30

[xn−3 + 18xn−2 − 9xn−1 − 10xn]

= LTEp
n + O(hp+2).

648 P.-L. Guhur et al.

3 Proposed Hot Rod Method

Our method relies on a surrogate function Δn that is the difference between
two estimates: Δn = An − Bn. For Cash-Karp’s method, we use the embedded
estimate An = En and Radau’s estimate Bn = Rn. In the absence of SDC, the
surrogate function becomes O(hp+2):

Δn =
(

LTEn + O(hp+2)
) − (

LTEn + O(hp+2)
)

= O(hp+2).

In Hot Rod HR, the surrogate function is compared with a certain confidence
interval centered over zero. When the surrogate function is outside the confidence
interval, an SDC is reported. We show that all significant SDCs are detected.
However, Hot Rod HR may have a false positive rate of a few percents. In Hot
Rod LFP, we chose a larger confidence interval, and its false positive rate remains
below 1 percent.

3.1 First Detector: Hot Rod HR

In regular cases, our surrogate function is one order higher than that of the
LTE. In presence of an SDC, Δn is outside the confidence interval, as shown in
the following paragraph. Hence, SDCs whose introduced errors are even smaller
than the LTE are expected to be detected. We show that all significant SDCs
are detected by Hot Rod HR.

Detection of Significant SDCs. An SDC is detected when |Δc
n| ≥ Cn with

Cn the half-length of the confidence interval at step n. It is all the more difficult
to detect when Δo

n = 0. We show that the minimum injected error εmin that can
be detected is of the same order as that of the approximation error.

We study the case of a corrupted stage ki; the case of a corrupted result xn

itself is similar. Here, kc
i = ε − ko

i , where c (resp. o) denotes corrupted (resp.
uncorrupted) data:

Δc
n − Δo

n = Ec
n − Eo

n − (Rc
n − Ro

n) = hε

[

b̂i + bi

(

1
30

− 3δi,1

10

)]

,

where δij is defined by δij = 1 if i = j; otherwise δij = 0, (bi) (resp. (b̂i)) are
the coefficients of the order 4 (resp. 5) in Cash-Karp’s method.

The minimum error εmin that we can detect corresponds to the case
|Δc

n − Δo
n| = Cn − 0. We note that B = b̂i + bi

(

1
30 − 3δi,1

10

)

. This leads to

εmin =
Cn

hB
= O

(Cn

h

)

.

When xn is corrupted instead of a stage, one can derive that εmin = O(Cn). If
Cn has the same order as Δn, then (1) εmin = O(hp+1) when an error is injected
inside a stage and (2) εmin = O(hp+2) when an error is injected inside a result.
In other words, the threshold of detection has the same order as (or better than)
the LTE of Cash-Karp’s method. This guarantees that all significant SDCs are
detected.

Lightweight and Accurate Silent Data Corruption Detection 649

Confidence Interval. Because Δn = O(hp+2), one can assume that Δn acts
as a random variable, with a zero-mean in the absence of SDC. Its standard
deviation can be estimated from a training set T composed of Ns samples with
the unbiased sample standard deviation

σ =

√

√

√

√

1
Ns − 1

Ns
∑

n=1

Δ2
n. (1)

Assuming that (Δn)n follows a normal distribution, the “three sigma
rule” [14] suggests choosing Cn = 3σ. Thus, we expect that 99.7% of uncorrupted
(Δn)n fall within the confidence interval, or in other words a false positive rate
of 0.3%. The normal distribution is a natural choice for modeling the repartition
of training samples.

Because items from T are not labeled as trusted or untrusted samples, the
evaluation of σ might be corrupted. It thus would jeopardize the confidence
interval and thus the SDC detector. To improve reliability, we weighted each Δn

with its own value. Equation (1) becomes

Σ =
Ns
∑

n=1

exp (−Δ2
n); σ =

√

√

√

√

1
(Ns − 1)Σ

Ns
∑

n=1

exp (−Δ2
n)Δ2

n.

Adaptive Control. The hypothesis of a normal distribution may be invali-
dated. We therefore developed a correction of the confidence interval based on
false positives.

When an SDC is reported, the current step is recomputed. If the result has
the same value, we can assume that it was a false positive and not an SDC.
Because of the “three sigma rule,” the FPR is expected to be 0.3%. If the FPR
is an order of magnitude higher, at 3%, for k times, the confidence interval is
increased with a certain coefficient 1+α. Cn becomes Cn = (1+α)k × 3σ, where
α fixes the rate of the adaptive control. Because (1+α)k = 1+αk +O(α2), α is
taken as 1/(max (FPR)×N), where N is the number of steps in the application
and max (FPR) is the maximum acceptable false positive rate. Because a false
positive requires the recomputation of a noncorrupted step, we suggest setting
max (FPR) at 5% to limit the computational overhead. In our experiments, we
have N = 1000; thus α = 0.02.

Thanks to the adaptive control, the training set requires only a few steps. In
our experiments, we have found that Ns = 5 samples are sufficient to initialize
the confidence interval.

3.2 Second Detector: Hot Rod LFP

If the cost of a false positive is too high, Hot Rod HR is not suitable. Hence,
we designed a second detector with a larger confidence interval. Nonetheless, all
significant SDCs must still be detected.

650 P.-L. Guhur et al.

This new confidence interval is defined by Cn = 10C99(|Δ| ∈ T), with C99 the
99th percentile of the training set. The interval can be interpreted as a threshold
that is an order of magnitude bigger than the surrogate functions in the training
set. Because this threshold is higher than the previous one, this detector’s recall
is lower. Because the estimates are at order p = 4 for Cash-Karp’s method, the
LTE at step n can be expressed as LTEn = Chp+1+O(hp+2). We show that the
GTE at the last step N is still an order p, since it used to be without corruption.
We assume the probability that an SDC occurs and is accepted as small enough
to guarantee that at most only one SDC will be accepted. The worst case is
when this SDC is accepted at the first step, n = 1, and when Cn = Δn. Hence,
the introduced error is LTE1 = 10Chp+1 + O(hp+2). Because GTE1 = LTE1,
GTE1 = 10Chp+1 + O(hp+2).

With x̃(t, xn) the notation in Sect. 2.1, x(t) = x̃(t, x0), and one can write
that the GTE at a step 0 < n < N is

|GTEn+1| = |x(tn+1) − x̃(tn+1, xn) + x̃(tn+1, xn) − xn+1| ,
≤ |x(tn+1) − x̃(tn+1, xn)| + |xn+1 − x̃(tn+1, xn)| .

Because f is L-Lipschitz continuous, the Gronwall’s inequality simplifies the
first term to

|x(tn+1) − x̃(tn+1, xn)| ≤ |x̃(tn, x0) − x̃(tn, xn−1)| eLh = |GTEn| eLh.

The second term, |xn+1 − x̃(t, xn+1)|, is the LTE at step n+1 and so is evaluated
at Chp+1 + O(hp+2). Denoting γ = eLh, we obtain

|GTEn+1|
γn

≤ |GTEn|
γn−1

+
Chp+1

γn
≤ ... ≤ |GTE1| + Chp+1

n
∑

i=1

1
γi

.

Because
∑N

i=1 1/γi = (γN − 1)/γN (γ − 1) and γ − 1 ≥ Lh, noting τ = Nh, we
obtain

|GTEn+1| ≤ 10Chp+1 +
Chp

L

(

eLτ − 1
)

+ O(hp+2).

At the last step, we have verified that GTEN = O(hp). The order of GTE
is unchanged: the SDC is insignificant.

3.3 Algorithm

We presented two detectors and showed their efficiency. They differ in their
tradeoffs: Hot Rod HR has a higher TPR, and Hot Rod LFP has a lower FPR.
We saw that undetected SDCs have no impact on the accuracy of the ODE
method. They require fixing the parameter α, but simple indications are given.
We can thus derive two scenarios. If an SDC is likely to happen (it could be the
case when the processor is not protected from SDC by ECC memory or other
protection system), then Hot Rod HR is employed. Otherwise, employing Hot
Rod LFP allows us to detect all significant SDCs with fewer false positives. The
schema is illustrated in Algorithm1 for a given detector.

Lightweight and Accurate Silent Data Corruption Detection 651

while learning do
step ← simulation(prev. step) ;
Δ ← |A(step, prev.steps) − B(step, prev.steps)| ;
TraininigSet.push(Δ) ;

end
while new step do

step ← simulation(prev. step) ;
Δ ← |A(step, prev.steps) − B(step, prev.steps)| ;
if (Detector == Hot Rod HR and Δ ≤ Cn) or (Detector == Hot Rod
LFP and Δ ≤ Cn) then

report(“no error”) ;
accept step ;

end
else

step ← simulation(prev. step) ;
Δ′ ← |A(step, prev.steps) − B(step, prev.steps)| ;
if Δ′ = Δ then

report(“false positive”) ;
if FPR > 3% then

k++ ;
end

end
accept step ;

end

end
Algorithm 1. Pseudocode for the execution of our detectors

4 Experiments and Results

We have shown theoretically that all significant SDCs are detected with Hot Rod.
In this section, we evaluate the SDC detectors with a meteorology application.

4.1 Environment

Experiments were computed on a machine with four Intel Xeon E5620 CPUs
(each with 4 cores and 8 threads), 12 GB RAM, and one NVIDIA Kepler K40
GPU with 12 GB memory. It was programmed in C++11 using CUDA. The
application is particle tracing for streamline flow visualization [11,16,17]. The
solver integrates a velocity field to compute the streamline. It stops when the
streamline goes outside the velocity field. Uncorrected streamlines can thus be
shorter than they were supposed to be (Fig. 1).

4.2 SDC Injection Methodology

An SDC can arise from many sources in hardware and software [2,13], and these
sources may change with new versions and generations of hardware and software.

652 P.-L. Guhur et al.

Fig. 1. Streamlines computed by the application. The color gradient starts in red at
seeds; 1,408 streamlines are computed (Color figure online).

We do not attempt to evaluate exhaustively the coverage of our approach because
of space limitations. SDCs are simulated by flipping bits in data items. SDCs
affect one or several bits in the same data item, called respectively singlebit and
multibit corruption. We experimented with both cases. In multibit corruption,
we chose the number of bit-flips Nflips from a uniform distribution. Other
distributions such as normal and beta distributions were tested with several
different parameters, but the results were not significantly different from those
reported below. Corruption can affect data items in any stage (or even directly
in the result). The position of a bit-flip is drawn from a uniform distribution. In
multibit corruption, we have forced the Nflips bit-flips to be applied on Nflips
different positions. Some SDC have no impact on the results. In a third scenario,
we inject only significant singlebit corruptions. We considered that an SDC is
significant when the difference between the corrupted result and the safe result
is higher than the mean LTE.

4.3 Benchmark

We compared our approach with similar methods presented in Sect. 1: replica-
tion, AID and BSS14 detectors. Those methods need to be parametrized. We
compared results with a set of parameters and selected the parameters that pro-
vide the best results in our application. Using the same notation as in [8], we
configure AID with θr = 1. Results were improved if the confidence interval is
taken as (1 + α)k(ε + θr) with α = 0.2 and k defined in Sect. 3.1. Concerning
BSS14, five parameters should be set, but no indication is detailed in [3] about
two of them. With the notation of [3], the considered values are τj = 1e−5,
τv = 0.02, Γ = 1.4, γ = 0.95, and p = 10.

4.4 Results

Table 1 presents results from our benchmark. We did not compare each detec-
tor with a solver with no detector. We compared each detector with a perfect
detector that returns the ground truth. For computational overhead, we divided
the execution time of each detector with that of the perfect detector. Our detec-
tors have a computational overhead lower than 5%, as do the BSS14 and AID
detectors. It is 20 times less computationally expensive than replication. But

Lightweight and Accurate Silent Data Corruption Detection 653

Table 1. Benchmark of our detectors Hot Rod (H.R.) LFP and HR, replication, AID
and BSS14. Values in the column “IRE 95%” are the injected relative errors (IRE)
that were detected 95 % of the time.

Detector TPR (%) FPR (%) IRE 95 % Overheads (%)

Singlebit Multibit Significant Comp Memory

Replication 100.0 100.0 100.0 100.0 0.0 +100 +100

AID 14.3 43.2 86.7 1.6 7e−6 +4.6 +50

BSS14 18.8 49.5 91.2 0.6 4e−6 +3.7 +13

H.R. LFP 23.1 64.6 99.9 0.01 7e−8 +3.8 +50

H.R. HR 28.6 69.6 99.9 1.2 5e−9 +4.4 +50

unlike the AID detector, our detectors have to employ an embedded integration
method that computes more stages than does another Runge-Kutta method of
the same order.

Our detectors have a higher memory cost than does the BSS14 detector, but
a smaller memory cost than does replication. For estimating memory overheads,
we counted the number of stored vectors, such as solutions (xn)n, stage slopes
(ki)i and estimates. Cash-Karp’s method requires computing and storing two
additional stage slopes than does Runge-Kutta 4, but the same number as the
other embedded fourth-order methods. Cash-Karp’s method requires storing 6
(ki)i (among them f(xn−1)), and xn; xn−1 is stored to allow a rollback in case of
SDC detection; when f(xn−1) is employed in the Radau estimation, f(xn) can
be computed at the position (the result is employed at the next step if the step
is accepted). Thus in total, 8 data elements are stored by the perfect detector,
whereas E (R can use the same storage as E), f(xn−2), xn−2 and xn−3 are stored
for our detectors; AID stores xn−2, xn−3, xn−4, and the extrapolated solution;
and BSS14 stores E .

The true positive rate (TPR) shows that our detectors detect perfectly (at
99.9%) significant SDCs. Replication does as well, but the BSS14 and AID
detectors have a TPR of 91.2% and 86.7% of significant SDCs, respectively.
For BSS14 and AID, some SDCs can thus be undetected while affecting the
accuracy of the solvers. Moreover, the “IRE 95 %” value of our detectors is
smaller than the mean local error estimate (1.5e−6) by a factor of 100. Because
all significant SDCs are detected, SDCs undetected by Hot Rod are sure to have
no impact. The undetected 76.9% of SDCs by Hot Rod LFP are thus insignificant
and do not need to be corrected: correcting these insignificant SDCs would not
improve results and would demand extra computation. Figure 2 shows the LTE
of the solver in the confidence interval in the absence of SDC. It represents the
approximation error. As defined in Sect. 1, significant SDCs inject errors that are
higher than this error. Because the streamlines of the AID and BSS14 detectors
are pushed outside the confidence interval at SDC injections, they do not detect
those SDCs. On the other hand, Hot Rod HR and LFP’s streamlines are not
affected by SDCs: these detectors protected the solver. This result is consistent

654 P.-L. Guhur et al.

Fig. 2. One streamline computed by the different detectors. Singlebit injection is made
every 50 steps. In the window, the position of the bit-flip varies from 31 to 35 in
IEEE754 doubleprecision. The interval “±LTE ” represents the approximation error.
Significant SDCs shift the solution outside this interval. In the application, the origin
is the center of the Earth. (Color figure online)

with the fact that the IRE 95% of Hot Rod is two orders of magnitudes less
than the approximation error.

5 Conclusion

This study presented our SDC detection method Hot Rod for ODE integration
solvers. Both experimental and theoretical results show that all significant SDCs
are detected. Except for replication, no other tested SDC detectors achieve these
results. More specifically, compared with the algorithmic detection SDC detec-
tors, the true positive rate is improved by 52% for singlebit corruptions; whereas
compared with replication, the computational overhead is reduced by 20 times.
Moreover, users need only to fix the maximum false positive rate, as explained
in Sect. 3.

Our detectors were employed for one of the ODE integration methods. Other
embedded Runge-Kutta methods can be directly employed. Radau’s estimates
have a general expression in the case of adaptive step size; see the work of
Butcher and Johnston [4]. For implicit methods or linear multisteps, Richard-
son’s estimates can also be used. In future work, we plan to investigate detection
in partial differential equation solvers.

Acknowledgments. We express our gratitude to Julie Bessac for assistance with the
algorithm and Gail Pieper for comments that greatly improved the manuscript. We
also gratefully acknowledge the use of the services and facilities of the Decaf project at

Lightweight and Accurate Silent Data Corruption Detection 655

Argonne National Laboratory, supported by U.S. Department of Energy, Office of Sci-
ence, Advanced Scientific Computing Research, under Contract DE-AC02-06CH11357,
program manager Lucy Nowell. We also thank the anonymous reviewers for their help-
ful comments.

References

1. Bagatin, M., Gerardin, S.: Ionizing Radiation Effects in Electronics: From Memo-
ries to Imagers. Devices, Circuits, and Systems. CRC Press, Cleveland, Boca Raton
(2015)

2. Bairavasundaram, L.N., Goodson, G.R., Pasupathy, S., Schindler, J.: An analysis
of latent sector errors in disk drives. ACM SIGMETRICS Perform. Eval. Rev. 35,
289–300 (2007)

3. Benson, A.R., Schmit, S., Schreiber, R.: Silent error detection in numerical time-
stepping schemes. Int. J. High Perform. Comput. Appl. 29, 403–421 (2014)

4. Butcher, J., Johnston, P.: Estimating local truncation errors for Runge-Kutta
methods. J. Comput. Appl. Math. 45(1), 203–212 (1993)

5. Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial value
problems with rapidly varying right-hand sides. ACM TOMS 16(3), 201–222 (1990)

6. Ceschino, F., Kuntzmann, J.: Numerical solution of initial value problems (1966)
7. Chen, L., Avizienis, A.: N-version programming: A fault-tolerance approach to

reliability of software operation. In: Digest of Papers FTCS-8, pp. 3–9 (1978)
8. Di, S., Cappello, F.: Adaptive impact-driven detection of silent data corruption

for HPC applications. In: IEEE Transactions on Parallel and Distributed Systems
(2016)

9. Ghosh, S., Basu, S., Touba, N.A.: Selecting error correcting codes to minimize
power in memory checker circuits. J. Low Power Electron. 1, 63–72 (2005)

10. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. Com-
puter 4, 68–74 (1997)

11. Guo, H., He, W., Peterka, T., Shen, H.W., Collis, S.M., Helmus, J.J.: Finite-
time lyapunov exponents and lagrangian coherent structures in uncertain unsteady
flows. In: IEEE TVCG (Proceedings of the PacificVis 16) 22, to appear (2016)

12. Huang, K.H., Abraham, J., et al.: Algorithm-based fault tolerance for matrix oper-
ations. IEEE Trans. Comput. 100(6), 518–528 (1984)

13. Hwang, A.A., Stefanovici, I.A., Schroeder, B.: Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system design.
ACM SIGPLAN Not. 47, 111–122 (2012)

14. Krishnamoorthy, K., Mathew, T.: Statistical tolerance regions: theory, applica-
tions, and computation, vol. 744. Wiley, Hoboken (2009)

15. Lapinsky, S.E., Easty, A.C.: Electromagnetic interference in critical care. J. Crit.
Care 21(3), 267–270 (2006)

16. McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two
decades of integration-based, geometric flow visualization. In: Eurographics 2009
State of the Art Report, pp. 73–92. Munich, Germany (2009)

17. Peterka, T., Ross, R., Nouanesengsy, B., Lee, T.Y., Shen, H.W., Kendall, W.,
Huang, J.: A study of parallel particle tracing for steady-state and time-varying
flow fields. In: IPDPS, pp. 580–591. IEEE (2011)

656 P.-L. Guhur et al.

18. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P.,
Belak, J., Bose, P., Cappello, F., Carlson, B., et al.: Addressing failures in exascale
computing. Int. J. High Perform. Comput. Appl. 28, 129–173 (2014)

19. Stoller, L., Morrison, D.: A method for the numerical integration of ordinary dif-
ferential equations. Math. Tables Other Aids Comput. 12, 269–272 (1958)

Accelerator Computing

High-Performance Matrix-Matrix
Multiplications of Very Small Matrices

Ian Masliah2(B), Ahmad Abdelfattah1, A. Haidar1, S. Tomov1,
Marc Baboulin2, J. Falcou2, and J. Dongarra1,3

1 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 University of Paris-Sud, Orsay, France

ian.masliah@lri.fr
3 University of Manchester, Manchester, UK

Abstract. The use of the general dense matrix-matrix multiplication
(GEMM) is fundamental for obtaining high performance in many sci-
entific computing applications. GEMMs for small matrices (of sizes less
than 32) however, are not sufficiently optimized in existing libraries. In
this paper we consider the case of many small GEMMs on either CPU or
GPU architectures. This is a case that often occurs in applications like
big data analytics, machine learning, high-order FEM, and others. The
GEMMs are grouped together in a single batched routine. We present spe-
cialized for these cases algorithms and optimization techniques to obtain
performance that is within 90 % of the optimal. We show that these
results outperform currently available state-of-the-art implementations
and vendor-tuned math libraries.

Keywords: GEMM · Batched GEMM · Small matrices · HPC ·
Autotuning

1 Introduction

Parallelism in todays computer architectures is pervasive not only in systems
from large supercomputers to laptops, but also in small portable devices like
smartphones and watches. Along with parallelism, the level of heterogeneity
in modern computing systems is also gradually increasing. Multicore CPUs are
combined with discrete high-performance GPUs, or even become integrated parts
with them as a system-on-chip (SoC) like in the NVIDIA Tegra mobile family
of devices. To extract full performance from systems like these, the heterogene-
ity makes the parallel programming for technical computing problems extremely
challenging, especially in modern applications that require fast linear algebra on
many independent problems that are of size O(100) and smaller. According to
a recent survey among the Sca/LAPACK and MAGMA [17] users, 40 % of the
responders needed this functionality for applications in machine learning, big
data analytics, signal processing, batched operations for sparse preconditioners,
algebraic multigrid, sparse direct multifrontal solvers, QR types of factorizations
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 659–671, 2016.
DOI: 10.1007/978-3-319-43659-3 48

660 I. Masliah et al.

on small problems, astrophysics, and high-order FEM. At some point in their
execution, applications like these must perform a computation that is cumula-
tively very large, but whose individual parts are very small; when such operations
are implemented naively using the typical approaches, they perform poorly. To
address the challenges, we designed a standard for Hybrid Batched BLAS [6], and
developed innovative algorithms [10], data and task abstractions [1], as well as
high-performance implementations based on the standard that are now released
through MAGMA 2.0 [5,9]. Figure 1 illustrates how the need for batched oper-
ations and new data types arises in areas like linear algebra (Left) and machine
learning (Right). The computational characteristics in these cases are common
to many applications, as already noted: the overall computation is very large
but is made of operations of interest that are in general small, must be batched
for efficiency, and various transformations must be explored to cast the batched
small computations to regular and therefore efficient to implement operations,
e.g., GEMMs. We note that applications in big data analytics and machine
learning target higher dimension and accuracy computational approaches (e.g.,
ab initio-type) that model mutilinear relations, thus, new data abstractions,
e.g., tensors, may be better suited vs. the traditional approach of flattening the
computations to linear algebra on two-dimensional data (matrices). Indeed, we
developed these tensor data abstractions and accelerated the applications using
them significantly [1] compared to other approaches.

Fig. 1. Left: Example of a 4th-order tensor contractions design using Einstein sum-
mation notation and a Domain Specific Embedded Language (or DSEL). Right: Illus-
tration of batched computations needed in machine learning.

There is a lack of sufficient optimizations on the batched GEMMs needed
and targeted in this paper. We show this in comparison to vendor libraries like
CUBLAS for NVIDIA GPUs and MKL for Intel multicore CPUs. Related work
on GEMM and its use for tensor contractions [1] target only GPUs and for
very small sizes (16 and below). Batched GEMM for fixed and variable sizes in
the range of O(100) and smaller were developed in [2]. The main target here is
multicore CPUs and GPUs for sizes up to 32.

High-Performance Matrix-Matrix Multiplications of Very Small Matrices 661

2 Contributions to the Field

The evolution of semiconductor technology is dramatically transforming the bal-
ance of future computer systems, producing unprecedented changes at every level
of the platform pyramid. From the point of view of numerical libraries, and the
myriad of applications that depend on them, three challenges stand out: (1) the
need to exploit unprecedented amounts of parallelism; (2) the need to maximize
the use of data locality and vectorized operations; and (3) the need to cope with
component heterogeneity. Below, we highlight our main contributions related
to the algorithm’s design and optimization strategies aimed at addressing these
challenges on multicore CPU and GPU architectures:

Exploit Parallelism and Vector Instructions: Clock frequencies are
expected to stay constant, or even decrease to conserve power; consequently,
as we already see, the primary method of increasing computational capability of
a chip will be to dramatically increase the number of processing units (cores),
which in turn will require an increase of orders of magnitude in the amount
of concurrency that routines must be able to utilize as well as increasing the
computational capabilities of the floating point units by extending it to the clas-
sical Streaming SIMD Extensions set (SSE-1, to SSE-4) in the earlier 2000, and
recently to Advanced Vector Extensions (AVX, AVX-2, AVX-3). We developed
specific optimization techniques that demonstrate how to use the many cores
(currently multisocket 10–20 cores for the Haswell CPU and 15 × 192 CUDA
cores for the K40 GPU) to get optimal performance. The techniques and kernels
developed are fundamental and can be used elsewhere.

Hierarchical Communication Techniques that Maximizes the Use of
Data Locality: Recent reports (e.g., [7]) have made it clear that time per
flop, memory bandwidth, and communication latency are all improving, but at
exponentially different rates. So computation on very small matrices, that can
be considered as computation-bound on old processors, is, –today and in the
future– communication-bound and depends from the communication between
levels of the memory hierarchy. We demonstrate that, performance is indeed
harder to get on new manycore architectures unless hierarchical communications
and optimized memory management are considered in the design. We show that,
only after we developed multilevel memory design, our implementations reach
optimal performance.

Performance Analysis and Autotuning: We demonstrate the theoretical
maximal performance bounds that could be reached for computation on very
small matrices. We studied various instructions and performance counters, as
well as proposed a template design with different tunable parameters in order
to evaluate the effectiveness of our implementation and optimize it to reach the
theoretical limit.

662 I. Masliah et al.

3 Experimental Hardware

All experiments are done on an Intel multicore system with two 10-cores Intel
Xeon E5-2650 v3 (Haswell) CPUs, and a Kepler Generation Tesla K40c GPU.
Details about the hardware are illustrated in Fig. 2. We used gcc compiler 5.3.0
for our CPU code (with options -std=c++14 -O3 -avx -fma), as well as the icc
compiler from the Intel suite 2016.0.109, and the BLAS implementation from
MKL (Math Kernel Library) 16.0.0 [12]. We used CUDA Toolkit 7.5 for the GPU.
For the CPU comparison with the MKL library we used two implementations:
(1) An OpenMP loop statically or dynamically unrolled among the cores (we
choose the best results), where each core computes one matrix-matrix product
at a time using the optimized sequential MKL dgemm routine, and (2) The
batched dgemm routine that has been recently added to the MKL library.

Fig. 2. Memory hierarchies of the experimental CPU and GPU hardware

4 Methodology, Design, and Optimization

To evaluate the efficiency of our algorithms we derive theoretical bounds for
the maximum achievable performance Pmax = F/Tmin, where F is the num-
ber of operations needed by the computation and Tmin is the fastest time to
solution. For simplicity, consider C = αAB + βC on square matrices of size n.
We have F ≈ 2n3 and Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C)).
Note that we have to read/write 4n2 elements, or 32n2 Bytes for double pre-
cision (DP) calculations. Thus, if the maximum achievable bandwidth is B (in
Bytes/second), and we assume TCompute(C) → 0 for very small computation,
then Tmin = TRead(A,B,C) + TWrite(C) = 4n2/B in DP. Note that this time is
theoretically achievable if the computation totally overlaps the data transfer and
does not disrupt the maximum rate B of read/write to the GPU memory. Thus,

Pmax =
2n3B

32n2
=

nB

16
in DP.

High-Performance Matrix-Matrix Multiplications of Very Small Matrices 663

The achievable bandwidth can be obtained by benchmarks. For our measures, we
used the STREAM benchmark [16] and the Intel memory latency checker 3.0 tool
for CPU, and the NVIDIA’s bandwidthTest for GPU. Our tests show that the
practical CPU bandwidth we are able to achieve using different benchmarks is
about 44 GB/s per socket. On the K40 GPU with ECC on the peak is 180 GB/s,
so in that case Pmax is 2.75 n GFlop/s per socket for the CPU and 11.25 n
GFlop/s for the K40 GPU. The curve representing this theoretical maximal
limit is denoted by the “upper bound” line on Figs. 5 and 8. Thus, when n = 16
for example, we expect a theoretical maximum performance of 180 GFlop/s in
DP on the K40 GPU.

4.1 Programming Model, Performance Analysis, and Optimization
for CPUs

The design of our code is done using new features of C++ for better re-usability
and adaptability of the code. By using advanced template techniques we can
create high-level interfaces [15] without adding any cost even for small matrix-
matrix products. To do so, we have designed a batch structure which will contain
a C++ vector for the data and static dimensions. By using the C++ constexpr
keyword and integral constants we can make a generic batched code that will
dispatch at compile time the correct version depending on the size of matrices.
We use this environment for each code sequence we generate.

The implementation of a matrix-matrix products kernel for very small matri-
ces for CPUs requires specific design and optimisations. As we can store three
double precision matrices of size up to 32 × 32 in the L1 cache of an Intel Xeon
E5-2650 v3 processor, one can expect that any implementation will not suffer
from data cache misses. This can be seen on Fig. 5b where the performance of an
ijk implementation, which is not cache-aware and cannot be vectorized, is pretty
close to the ikj one. For smaller sizes, the ijk implementation is even more effi-
cient than the ikj one, as it optimizes the number of stores (Fig. 3a). To obtain
a near optimal performance, we conduct an extensive study over the perfor-
mance counters using the PAPI [18] tools. Our analysis concludes that in order
to achieve an efficient execution for such computation, we need to maximize the
occupancy and minimize the data traffic while respecting the underlying hierar-
chical memory design. Unfortunately, today’s compilers cannot introduce highly
sophisticated cache/register based loop transformations and, consequently, this
kind of optimization effort should be studied and implemented by the devel-
oper [13]. This includes techniques like reordering the data so that it can be eas-
ily vectorized, reducing the number of instructions so that the processor spends
less time in decoding them, prefetching the data that will be reused in registers,
and using an optimal blocking strategy.

Data Access Optimizations and Loop Transformation Techniques. In
our design, we propose to order the iterations of the nested loops in such a
way that we increase locality and expose more parallelism for vectorization.

664 I. Masliah et al.

The matrix-matrix product is an example of perfectly nested loops which means
that all the assignment statements are in the innermost loop. Hence, loop
unrolling, loop peeling, and loop interchange can be useful techniques for such
algorithm [3,4]. These transformations improve the locality and help to reduce
the stride of an array based computation. In our approach, we propose to unroll
the two inner-most loops so that the accesses to matrix B are independent from
the loop order, which also allows us to reorder the computations for continuous
access and improved vectorization. This technique enables us to prefetch and
hold some of the data of B into the SIMD registers. Here, we manage to take
advantage from the knowledge of the algorithm, and based on the principle of
locality of references [11], to optimize both the temporal and spatial data locality.

Register Data Reuse and Locality. Similarly to the blocking strategies for
better cache reuse in numerically intensive operations (e.g., large matrix-matrix
products), we focus on register blocking to increase the performance. Our study
concludes that the register reuse ends up being the key factor for performance.
The idea is that when data is loaded into SIMD register, it will be reused as much
as possible before its replacement by new data. The amount of data that can
be kept into registers becomes an important tuning parameter. For example,
an 8 × 8 matrix requires 16 256-bit AVX-2 registers to be completely loaded.
As the targeted hardware consists of only 16 256-bit AVX-2 registers, one can
expect that loading the whole B will not be optimal as we will have to reload the
vectors for A and C. However, if we load only 8 registers for B, which is equal to
4 rows, we can compute a row of C at each iteration and reuse these 8 registers
for each iteration. We propose an auto-tuning process to check all the possible
scenarios and provide the best option. This reduces the number of load, store,
and total instructions from O(n2) to O(n), compared to a classical ijk or ikj
implementation as depicted in Figs. 3a, b, and 5a, respectively.

Algorithmic Advancements. Algorithm 1 is an example of our methodology
for a matrix-matrix product of 16 × 16 matrices. In this pseudo-code, we start
by loading four 256-bit AVX-2 registers with values of B which correspond to
the first row. These registers are reused throughout the algorithm. In the main
loop (Lines 4–14), we start by computing the first values of every multiplica-
tion (stored into a register named M=A×B) based on the prefetched register in
line 1. Then, we iterate on the remaining rows (Lines 7–11) loading B, multiply-
ing each B by a value of A, and adding the result into M. Once the iteration over
a row is accomplished, the value of M is the final result of A×B and thus, we can
load the initial values of C, multiply by α and β, and store it back before mov-
ing toward the next iteration such a way to minimize the load/store as shown
in Fig. 3. Each C ends up being loaded/stored once. We apply this strategy to
matrix sizes ranging from 8 to 32 as for smaller sizes the whole matrix can fit
in registers. Different blocking strategies (square versus rectangular) have been
studied through our auto-tuning process in order to achieve the best perfor-
mance. We generate each matrix-matrix product function at compile time with

High-Performance Matrix-Matrix Multiplications of Very Small Matrices 665

C++ templates. The matrix size is passed as a function parameter using C++
integral constants.

1: Load B0, B1, B2, B3
2: Load α, β
3: S = 16
4: for i = 0, 1, ... , S-1 do
5: Load A[i*S]
6: Mi0 = A[i*S] * B0; ... Mi3 = A[i*S] *B3
7: for u = 1, 2, ... , S-1 do
8: Load A[i*S + u]
9: Load Bu0, Bu1, Bu2, Bu3

10: Mi0 += A[i*S+u] * Bu0; ... Mi3 += A[i*S+u] *Bui3
11: end for
12: Mi0 = α Mi0 + β (Load Ci0); ... Mi3 = α Mi3 + β (Load Ci3)
13: Store Mi0, Mi1, Mi2, Mi3
14: end for

Algorithm 1: Generic matrix-matrix product applied to matrices of size 16 × 16

0 5 10 15 20 25 30 35

105

106

107

108

Matrix Size

N
um

be
r
of

lo
ad

s

gen load
mkl load
ijk load
ikj load

(a) # of load instructions

0 5 10 15 20 25 30 35

105

106

107

108

Matrix Size

N
um

be
r
of

st
or

es

gen store
mkl store
ijk store
ikj store

(b) # of store instructions

Fig. 3. CPU Performance counters measurement of the memory accesses

Effect of the Multi-threading. As described above, operating on matrices of
very small sizes is memory-bound computation and thus, increasing the number
of CPU cores may not always increase the performance since the performance
will be limited by the bandwidth which can be saturated by a few cores. We
performed a set of experiments towards clarifying this behaviour and illustrate
our findings in Fig. 4b. As shown, the notion of perfect speed-up does not exist
for a memory-bound algorithm, and adding more cores increases the performance
slightly. We performed a bandwidth evaluation when varying the number of cores
to find that a single core can achieve about 18 GB/s while 6 and 8 cores (over
the available 10 cores) can reach about 88 % and 93 % of the practical peak
bandwidth, which is about 44 GB/s.

666 I. Masliah et al.

0 5 10 15 20 25 30 35
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

up
per

bou
nd

Matrix Size

G
flo

ps
/s

20 cores custom numa
20 cores interleave all

20 cores
10 cores

(a) Effect of the NUMA memory manage-
ment

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Matrix Size

G
flo

ps
/s

1 core
2 cores
6 cores
8 cores
10 cores

(b) Effect of the number of CPU cores

Fig. 4. CPU Performance analysis

Effect of the NUMA-Socket and Memory Location. We also studied
NUMA-socket (non-uniform memory access) [8] when using two Xeon sockets as
seen in Fig. 4a. A standard memory allocation puts all of the data in the memory
slot associated to the first socket until it gets filled, then starts filling the second
socket. Since the problem size we are targeting is very small, most of the data is
allocated on one socket, and thus using extra 10 cores of the second socket will
not increase the performance. This is due to the fact that the data required by
the cores of the second socket goes through the memory bus of the first socket,
and thus is limited by the bandwidth of one socket (44 GB/s). There are ways
to overcome this issue. By using NUMA with the interleave=all option, which
spreads the allocation over the two sockets by memory pages, we can improve
the overall performance. However, for very small sizes, we observe that such
solution remains far from the optimal bound since data is spread out over the
memory of the two sockets without any rules that cores from socket 0 should
only access data on socket 0, and vice versa. To further improve performance,
we use a specific NUMA memory allocation, which allows us to allocate half of
the matrices on each socket. As shown in Fig. 4a, this allows our implementation
to scale over the two sockets and to reach close to the peak bound.

0 5 10 15 20 25 30 35

106

107

108

Matrix Size

N
um

be
r
of

in
st
ru

ct
io
ns

gen code
mkl code
ijk code
ikj code

(a) Total CPU instruction count

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

up
per

bou
nd

Matrix Size

G
flo

ps
/s

gen code
mkl code
ijk code
ikj code

mkl batched

(b) CPU Performance comparison

Fig. 5. Experimental results of the matrix-matrix multiplication on CPU’s

High-Performance Matrix-Matrix Multiplications of Very Small Matrices 667

4.2 Programming Model, Performance Analysis, and Optimization
for GPUs

Our goal is to minimize coding effort and to design one kernel that can be easily
adapted for very small matrix size computations, providing very efficient exe-
cution. To design a GEMM kernel in CUDA to take advantage of the available
threads, thread blocks, and streaming multiprocessors (SMs) of a GPU, the com-
putation must be partitioned into blocks of threads (also called thread blocks, or
simply TBs) that execute independently from each other on the multiprocessors
of the GPU. We use a hierarchical blocking model of both communications and
computations, similarly to the MAGMA batched GEMM kernel [2] for medium
and large sizes. We designed CUDA C++ templates to enable unified code base
for all the small sizes. Templates enable an easy instantiation of a kernel with a
specific precision and tuning parameters.

A Cache-Based Approach. Unlike multi-core CPUs, the L1 cache (per SM)
is not intended for global memory accesses, which are cached only in the L2. The
L2 cache is shared among all SMs, which makes it difficult to use for cache-based
optimizations, since all TBs will be sharing it (L2 cache is up to 1.5 MB). How-
ever, a modern Kepler GPU has a 48 KB per SM of a read-only cache (rocache),
which can be used for global memory reads. A possible implementation that takes
advantage of this is to read the input matrices A and B through the read-only
cache. Each matrix computation is associated to one TB that is configured with
M × N threads, where each thread is responsible for computing one output ele-
ment of the resulting matrix C. Thus, each thread reads an entire row of A and
entire column of B. This cache-based design ideally assumes that most of the
global memory accesses hit in the rocache. This kernel does not use the shared
memory, and so it does not need any synchronization points.

A Shared Memory Based Approach. Another approach is to use shared
memory (shmem) for data reuse rather than rocache. We refer to this implemen-
tation as the MAGMA kernel, since it is distributed within the MAGMA library.
We performed an extensive set of auto-tuning and performance counter analysis
to optimize and improve this implementation. The matrices A and B are loaded
by block into the shared memory, and the corresponding block of the matrix C
is held into registers. Prefetching can also be used to load the next blocks of A
and B. The prefetching can be done through either the shared memory or the
register, and is controlled by a tunable parameter. This implementation is very
well parametrized, and can work for any dimension with tunable block sizes for
A, B, and C.

Instruction Mix. We performed a detailed performance study based on the
collection and analysis of hardware counters. Counter readings were taken using
performance tools (Nvidia’s CUPTI and PAPI CUDA component [14]). Our
analysis shows that it is important to pay attention to the instruction mix of

668 I. Masliah et al.

Fig. 6. Performance counters measurement on the K40 GPU

the GPU kernel, in particular when operating on matrices of such very small
sizes. Integer instructions, which are used for loop counters and memory address
calculations, can be quite an overhead in such computations. Moreover, our
study showed that a loop with predefined boundary can be easily unrolled and
optimized by the Nvidia compiler. We adopt an aggressive approach to produce
a fully unrolled code for every size of interest. We add the sizes M, N, and K
to the template parameters such a way to use a unified code base to produce a
fully unrolled and optimized implementation for any of these very small sizes.
Figure 6a shows the ratio of integer instructions to the total number integer and
floating point instructions, the MAGMA kernel has the smallest ratio for most
sizes. An interesting observation of the CUBLAS implementation, for this range
of matrices, is that it uses a fixed blocking size of 16×16. This explains the drops
at sizes 16 and 32, where the problem size matches the internal blocking size.

Fig. 7. Performance counters measurement on the K40 GPU

Thread Block-Level Aggregation. We further improved the proposed design
by another optimization that helps significantly increase the performance for the
tiny sizes (e.g. less than 12). Multiple TBs, each is assigned for one problem, are

High-Performance Matrix-Matrix Multiplications of Very Small Matrices 669

Fig. 8. Performance counters measurement and efficiency of our design for the matrix-
matrix multiplication on the K40 GPU

aggregated together into one larger TB. The motivation behind this technique is
to increase the number of threads, especially when the TB configuration has few
warps or even less than a warp. Aggregation is controlled through an additional
parameter tba, which controls the number of TBs to be fused together. Figure 6b
shows the impact of tba on performance. For example, we achieve a speed-up
of 6.8× for size 2 and 3.8× for size 3. The performance improvement reaches
24 % at size 8. Beyond size 10, setting tba larger than 1 does not achieve any
gains because the resources required by one fused TB become expensive, which
affects the number of residing TBs per SM. Some curves look incomplete, since
a large value of tba sometimes requires more threads than the hardware-defined
maximum number of threads allowed per TB.

Performance Counter Analysis. Figure 7 shows two of the key factors to
high performance on a GPU: the achieved occupancy and the efficiency of global
memory reads. The first one is the ratio between the number of active warps
per active cycles and the maximum number of warps that can run on an SM.
The second is defined as the ratio between the load throughput requested by
the kernel, and the actual required throughput needed to fulfil the kernel load
requests. Our proposed MAGMA implementation achieves more than 75 % occu-
pancy in most cases, which is nearly the upper limit for the other design. It can
also achieve very high occupancy (≈90 %) even for very small matrices, thanks
to the TB-level aggregation. On the other hand, the MAGMA approach is at
least 90 % efficient in reading from global memory, which means that the kernel
encounters very little overhead in terms of load instructions replays.

5 Conclusions and Future Directions

We presented work motivated by a large number of applications, ranging from
machine learning to big data analytics, that require fast linear algebra on many
independent problems that are of size 32 and smaller. The use of batched GEMM

670 I. Masliah et al.

for small matrices is fundamental for obtaining high performance in applications
like these. We presented specialized algorithms for these cases – where the overall
computation is memory bound but still must be blocked – to obtain performance
that is within 90 % of the optimal, significantly outperforming currently avail-
able state-of-the-art implementations and vendor-tuned math libraries. Here, the
optimal is the time to just read the data once and write the result, disregarding
the time to compute. The algorithms were designed for modern multi-core CPU
and GPU architectures. The optimization techniques and algorithms can be used
to develop other batched Level 3 BLAS and to accelerate numerous applications
that need linear algebra on many independent problems.

Future work includes further optimizations and analyses, e.g., on how high
performance can go using CUDA. It is known that compilers have their limi-
tations in producing top performance codes for computations like these, thus,
requiring the use of lower level programming languages. Current results used
intrinsics for multi-core CPUs and CUDA for GPUs, combined with auto-tuning
in either case, to quickly explore the large algorithmic variations developed in
finding the fastest one. Future work includes also use in applications, develop-
ment of application-specific optimizations, data abstractions, e.g., tensors, and
algorithms that use them efficiently.

Acknowledgments. This material is based in part upon work supported by the US
NSF under Grants No. CSR 1514286 and ACI-1339822, NVIDIA, the Department of
Energy, and in part by the Russian Scientific Foundation, Agreement N14-11-00190.

References

1. Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J.,
Haidar, A., Karlin, I., Kolev, T., Masliah, I., Tomov, S.: High-performance tensor
contractions for GPUs. In: International Conference on Computational Science
(ICCS 2016). Elsevier, Procedia Computer Science, San Diego, CA, USA, June
2016

2. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Performance, design, and
autotuning of batched GEMM for GPUs. In: Kunkel, J.M., Balaji, P., Dongarra,
J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp. 21–38. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-41321-1 2

3. Ahmed, N., Mateev, N., Pingali, K.: Tiling imperfectly-nested loop nests. In:
ACM/IEEE 2000 Conference Supercomputing, p. 31, November 2000

4. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-
performance computing. ACM Comput. Surv. 26(4), 345–420 (1994)

5. Dong, T., Haidar, A., Luszczek, P., Harris, A., Tomov, S., Dongarra, J.: LU Fac-
torization of small matrices: accelerating batched DGETRF on the GPU. In: Pro-
ceedings of 16th IEEE International Conference on High Performance and Com-
munications, August 2014

6. Dongarra, J., Duff, I., Gates, M., Haidar, A., Hammarling, S., Higham, N.J., Hogg,
J., Valero-Lara, P., Relton, S.D., Tomov, S., Zounon, M.: A proposed API for
batched basic linear algebra subprograms. MIMS EPrint 2016.25, Manchester Insti-
tute for Mathematical Sciences, The University of Manchester, UK, April 2016.
http://eprints.ma.man.ac.uk/2464/

http://dx.doi.org/10.1007/978-3-319-41321-1_2
http://eprints.ma.man.ac.uk/2464/

High-Performance Matrix-Matrix Multiplications of Very Small Matrices 671

7. Fuller, S.H., Millett, L.I., Committee on Sustaining Growth in Computing Perfor-
mance; National Research Council: The Future of Computing Performance: Game
Over or Next Level? The National Academies Press, Washington (2011). http://
www.nap.edu/openbook.php?record id=12980

8. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists
and Engineers. CRC Press, Boca Raton (2011)

9. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched matrix com-
putations on hardware accelerators based on gpus. Int. J. High Perform. Comput.
Appl. 29(2), 193–208 (2015). http://hpc.sagepub.com/content/early/2015/02/06/
1094342014567546.abstract

10. Haidar, A., Dong, T.T., Tomov, S., Luszczek, P., Dongarra, J.: A frame-
work for batched and GPU-resident factorization algorithms applied to block
householder transformations. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High
Performance 2015. LNCS, vol. 9137, pp. 31–47. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-319-20119-1 3

11. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 5th edn. Morgan Kaufmann Publ. Inc., San Francisco (2011)

12. Intel Math Kernel Library (2016). http://software.intel.com
13. Loshin, D.: Efficient Memory Programming, 1st edn. McGraw-Hill Professional,

New York (1998)
14. Malony, A.D., Biersdorff, S., Shende, S., Jagode, H., Tomov, S., Juckeland, G.,

Dietrich, R., Poole, D., Lamb, C.: Parallel performance measurement of hetero-
geneous parallel systems with gpus. In: Proceedings of ICPP 2011, pp. 176–185.
IEEE Computer Society, Washington, DC (2011)

15. Masliah, I., Baboulin, M., Falcou, J.: Metaprogramming dense linear algebra
solvers applications to multi and many-core architectures. In: 2015 iIEEE Trust-
Com/BigDataSE/ISPA, Helsinki, Finland, vol. 3, pp. 69–76, August 2015

16. McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25, December 1995

17. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Comput. 36(5–6), 232–240 (2010)

18. Weaver, V., Johnson, M., Kasichayanula, K., Ralph, J., Luszczek, P., Terpstra, D.,
S.: Measuring energy and power with PAPI. In: 41st International Conference on
Parallel Processing Workshops, September 2012

http://www.nap.edu/openbook.php?record_id=12980
http://www.nap.edu/openbook.php?record_id=12980
http://hpc.sagepub.com/content/early/2015/02/06/1094342014567546.abstract
http://hpc.sagepub.com/content/early/2015/02/06/1094342014567546.abstract
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://software.intel.com

Effective Minimally-Invasive GPU Acceleration
of Distributed Sparse Matrix Factorization

Anshul Gupta1(B), Natalia Gimelshein2, Seid Koric3, and Steven Rennich2

1 IBM Research, Yorktown Heights, NY, USA
anshul@us.ibm.com

2 NVIDIA Corporation, Santa Clara, CA, USA
srennich@nvidia.com

3 NCSA, University of Illinois, Urbana, IL, USA
koric@illinois.edu

Abstract. Sparse matrix factorization, a critical algorithm in many sci-
ence and engineering applications, has had difficulty leveraging the addi-
tional computational power afforded by the infusion of heterogeneous
accelerators in HPC clusters. We present a minimally invasive approach
to the GPU acceleration of a hybrid multifrontal solver, the Watson
Sparse Matrix Package, which is already highly optimized for the CPU
and exhibits leading performance on distributed architectures. The novel
aspect of this work is to demonstrate techniques for achieving substantial
GPU acceleration, up to 3.5x, of the sparse factorization with strategic,
but contained changes to the original, CPU-only, code. Strong scaling
results show that performance benefits scale to as many as 512 nodes
(4096 cores) of the Blue Waters supercomputer at NCSA. The techniques
presented here suggest that detailed code reorganization may not be nec-
essary to achieve substantial acceleration from GPUs, even for complex
algorithms with highly irregular compute and data access patterns, like
those used for distributed sparse factorization.

1 Introduction

The solution of large sparse linear systems is central to many problems in science,
engineering, and optimization. Direct methods, for which the major computa-
tional task is factoring the coefficient matrix, are often the solution method of
choice due to their generality and robustness. Performance optimization, and
particularly parallelization, of sparse factorization has been the subject of inten-
sive research.

A growing portion of the computational capability of supercomputer clusters
is now being provided by accelerators, particularly GPUs [22]. The characteris-
tics of these distributed heterogeneous systems, most particularly the separate
CPU and GPU memories and the limited bandwidth of the PCIe bus over which
they communicate, makes leveraging their computational power a challenge for
irregular algorithms such as sparse factorization. As a result, there is a need to
adapt the implementation of sparse factorization algorithms to such heteroge-
neous architectures and there is active work in this area [6,14,19,21,23].
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 672–683, 2016.
DOI: 10.1007/978-3-319-43659-3 49

Effective Minimally-Invasive GPU Acceleration 673

Previous work in GPU acceleration of sparse factorization has taken the
approach of offloading dense math to the GPU and making accommodation for:

• only sending appropriately sized work to the GPU,
• asynchronous operations to overlap CPU computation, GPU computation

and PCIe communication,
• minimizing communication by re-using data on the GPU as much as possible.

Most previous work has been limited to single-node, shared-memory systems
with the notable exception of [20], which showed performance on 8 nodes.

This work seeks GPU acceleration of sparse factorization on large heteroge-
neous, distributed systems. The current scope is limited to Cholesky factorization
(A = LLT) [8] as that is the simpler case, but we expect many of the techniques
will be applicable to other factorization algorithms as well. While we leverage the
techniques itemized immediately above, this implementation is novel in that it:

• accelerates the factorization in the Watson Spare Matrix Package (WSMP)
[9] which shows leading performance on distributed systems [12,13,18],

• uses a minimally-invasive approach promoting maintainability and portability
of the underlying CPU code,

• demonstrates improved performance that scales to an order of magnitude
more nodes and cores than previous work, and

• identifies techniques for achieving further performance improvements.

We describe the implementation in detail, present experimental results, ana-
lyze the results to gain insights about performance bottlenecks, and suggest
concrete and feasible avenues for further performance improvement. We show
that the use of GPUs can more than double the performance of WSMP’s sparse
Cholesky factorization on up to 128 nodes of NCSA’s Blue Waters supercom-
puter [3] and can strong scale beneficially up to 512 nodes.

2 WSMP Cholesky Factorization

WSMP uses a highly scalable distributed-memory parallel sparse Cholesky fac-
torization algorithm [11] based on the multifrontal method [5,16]. A multifrontal
algorithm expresses the entire sparse matrix factorization in terms of partial fac-
torizations of smaller dense matrices called frontal matrices of the type illustrated
in Fig. 1. The rows and columns of the sparse coefficient matrix A are divided
into contiguous blocks called supernodes [2] to aid the construction of the dense
frontal matrices. The control and data flow in a typical multifrontal algorithm
follows a dependency graph known as the elimination tree [15], which can be
computed inexpensively from the structure of a symmetric sparse matrix. Each
vertex of the elimination tree corresponds to a supernode.

In WSMP’s distributed-memory parallel factorization utilizing p MPI
processes, the supernodal tree is binary in the top log2 p levels. The portions
of this binary supernodal tree are assigned to the processes using a subtree-
to-subcube strategy [17] illustrated in the top two levels of the tree in Fig. 2.

674 A. Gupta et al.

m

−1

SCholesky

UT

k

U <− U − TT

DTRSM

DSYRK

i

i iT

T <− S T

Fig. 1. Computation in the frontal matrix F i of a typical supernode in sparse multi-
frontal Cholesky factorization.

The frontal matrix of each supernode is distributed among a logical mesh of a
subset of processes using a bit-mask based block-cyclic scheme [11]. The parallel
partial factorization operation at each supernode is a pipelined implementation
of dense block Cholesky factorization and update operations shown in Fig. 1.
Most of the flops corresponding to a supernode are performed by Basic Lin-
ear Algebra Subprograms (BLAS) [4]. The three key operations are: (1) dense
Cholesky on the top left matrix S, (2) the DTRSM operation T = S−1T , and (3)
the DSYRK operation U i = U i−TTT . Hereafter, we will refer to a factorization
task like this performed on multiple nodes as cooperative factorization.

Usually, each MPI process is multithreaded, and the portion of multifrontal
factorization assigned to each process is further parallelized [10]. Just like the
message-passing portion, tasks at each subroot of the elimination tree are
assigned to independent groups of threads until each thread ends up with its
own subtree. However, mapping between tasks and threads is more flexible than
mapping between tasks and MPI processes. Furthermore, a strict block-cyclic
mapping based on the binary representation of the indices is not used because
all processors can access all rows and columns with the relatively small overhead.
Hereafter, we will refer to factorization tasks performed on a single MPI rank as
individual factorization.

Figure 2 shows one hypothetical mapping of an elimination tree among the
16 CPUs of a 4-node cluster with 4-way shared-memory parallel nodes. The
symbolic computation preceding the numerical phase ensures that the tree is
binary at the top log2 p levels. At each of these levels, multithreaded BLAS calls
are used to utilize all the CPU’s on each node during cooperative factorization.
In the individual factorization region of the tree, which lies below the top log2 p
levels, the subtrees are assigned to groups of threads until they are mapped onto
single threads.

Effective Minimally-Invasive GPU Acceleration 675

Phase
Cooperative

Individual
Phase

P−2,3P−0,1

P−2P−1 P−3

T−0 T−1 T−2 T−3

T−2,3T−0,1 T−0

T−1 T−2 T−3

T−2,3

T−2 T−3

T−0 T−1,2,3

T−1

T−0,1,2,3 T−0,1,2,3

T−0 T−1 T−2 T−3

T−1,2,3

P−0,1,2,3 Distributed−memory

Shared−memory

Serial

T−0,1,2,3

P−0

parallel

parallel
T−0,1,2,3

Fig. 2. A mapping of a hypothetical elimination tree on a 4-node cluster with 4-way
shared-memory nodes.

3 Minimally Invasive Approach

When factorization involves sufficient large dense blocks, where the computa-
tion can be tiled and the communication costs hidden behind computation, then
satisfactory acceleration can be achieved by offloading large level-3 BLAS com-
putations to the GPU [21]. However, when dense blocks are fewer or smaller (as
might occur in shell models), or at scale (when the dense blocks are distributed
across many nodes), communication can’t be hidden and opportunity for easy
GPU acceleration is limited. Further, for best PCIe performance, and to sup-
port transfers which are asynchronous or concurrent with GPU computation,
the data on the host must reside in ‘pinned’ (page-locked) memory. Copying
data in or out of pinned memory buffers adds to the communication overhead.
This BLAS-offloading approach was investigated for use with WSMP, and as
expected, did not yield significant benefit.

However, as WSMP is inherently multithreaded and performs multiple BLAS
operations simultaneously in different threads, the same idea behind tiling a
single large BLAS operation can be used to hide communication between many
simultaneous small BLAS operations. That is, computation for a BLAS operation
in one thread call can proceed simultaneously with PCIe communication for
a BLAS operation in another thread and with host memory copy (in or out
of pinned buffers) of a third. This parallel offload approach did not involve
any changes to the base WSMP code and permitted GPU acceleration of the
numerical factorization by a factor of 1.7 on average [7] on a single multicore
node. Unfortunately, at scale, to promote load-balancing, WSMP decomposes
BLAS calls into smaller blocks than can be accelerated in this fashion.

676 A. Gupta et al.

3.1 Dual Library Solution

Pursuing further optimization, it is clear from Fig. 1 that DTRSM is typically fol-
lowed by DSYRK, which takes as input the output from DTRSM. As a result,
a considerable amount of unnecessary, but expensive, communication remains
in transferring submatrix T in and out of GPU memory. It is relatively sim-
ple to construct a library routine which performs both DTRSM and DSYRK
on the GPU and eliminates the intervening communication. However, such an
optimization would require high-level code changes to WSMP. Consequently, a
scheme was devised that would not only help overcome the performance con-
straints at scale, but would also prove to be an elegant way of enabling a large
complex existing software like WSMP to effectively harness the power of accel-
erators. This was implemented as a library (the ‘dual’ library, which we will call
ACCEL WSMP) which would contain all of the GPU-specific code accessed via
high-level (BLAS or above) routines. Only small changes would need to be made
to WSMP to call these routines, if available, at a high level. In this way, WSMP
could be linked with a driver code and, if ACCEL WSMP was not provided,
it’s CPU-only behavior would be unchanged. However, if ACCEL WSMP were
provided during the linking, then GPU acceleration would be obtained. In this
way, we consider the GPU acceleration to be ‘minimally-invasive’.

In addition to the acceleration techniques described so far, additional opti-
mizations were to:

1. limit the minimum tile size by which the problem can be decomposed to a
size that still permits acceleration on the GPU,

2. create high-level API which would provide parallel, tiled GPU BLAS opera-
tions and combined GPU BLAS operations to minimize communication,

3. define a protocol for flagging matrices on the GPU for re-use (and later indi-
cating when they can be deleted) to further minimize communication.

ACCEL WSMP consists of a total of 10 functions for performing compu-
tations on dense matrices and/or moving them between host and device mem-
ories, and two administrative functions, including one-time initialization that
performs the relatively expensive task of allocating pinned buffers. Note that all
computational routines in ACCEL WSMP have a CPU equivalent (pre-existing
in WSMP). If the GPU is occupied (by other WSMP threads) or the operation
is too small, then the computation remains on the CPU.

3.2 Individual Factorization

In the initial individual factorization phase of WSMP’s sparse Cholesky fac-
torization, the computationally-intensive portion consists of DTRSM followed
by symmetric rank-k update DSYRK, with DTRSM output used as input for
DSYRK.

In Fig. 3, we show the benefit of caching the output matrix T from DTRSM
for subsequent use in DSYRK. The figure shows performance of DTRSMSYRK

Effective Minimally-Invasive GPU Acceleration 677

0 500 1000 1500 2000 2500 3000
inner dimension

0

200

400

600

800

pe
rf

or
m

an
ce

, G
F

lo
p/

s
dtrsmsyrk
w/o caching dtrsm results
CPU peak dgemm

Fig. 3. Performance of DTRSMSYRK with and without caching of DTRSM output
on the GPU.

routine on a single node of our target cluster (see Sect. 4) as a function of dimen-
sion k of the triangular matrix S. The number of rows of matrix T is set to an
empirically derived value of 3k. Separately, performance achieved when DTRSM
output is not cached in GPU memory (and is therefore reloaded for DSYRK) is
shown. Caching appears to improve DTRSMSYRK performance by about 30 %
over individual uncached DTRSM and DSYRK. GPU performance increases
with k, with a slight decrease at k = 2048 due to switch to tiled version of the
algorithm. GPU performance overtakes the highest possible CPU performance
at about k = 384, which is the cutoff that we use to determine if DTRSMSYRK
operation is performed on the CPU or on the GPU.

3.3 Cooperative Factorization

In the cooperative phase of WSMP’s Cholesky factorization, the dense Cholesky
panel factorization illustrated in Fig. 1 is performed with S, T , and U distributed
among multiple nodes. The dense level-3 BLAS calls in this phase are DTRSM,
DSYRK and matrix-matrix multiply (DGEMM). Generally, the caching strategy
described in Sect. 3.2 is used to hide PCIe communication.

There are two additional challenges in this phase. First, unlike DTRSM-
SYRK, where DTRSM output could be immediately reused as DSYRK input,
this reuse is spread over multiple DGEMM calls during cooperative factoriza-
tion. To expose this data reuse, WSMP signals when a particular matrix is likely
to be used across many DGEMM and DSYRK calls. Such flagging of reusable
data is a key part of the interface between WSMP and ACCEL WSMP libraries.
ACCEL WSMP attempts to retain flagged matrices until WSMP signals that a
previously flagged matrix is no longer needed.

The second challenge is related to load balancing. In the cooperative factoriza-
tion phase, WSMP distributes frontal matrices in a block-cyclic fashion among
participating nodes in order to facilitate pipelined load-balanced dense panel

678 A. Gupta et al.

factorization. The optimal block size needs to be large enough to take advantage of
the level-3 BLAS operations, yet small enough to not cause excessive load imbal-
ance in the pipeline. Typical block sizes used on the CPU are 64 or 128. This block
size is the inner dimension k of DSYRK and DGEMM calls issued during cooper-
ative factorization. When GPU acceleration is used, since data transfer must be
hidden behind communication, the achieved performance is directly proportional
to the inner dimension. As shown in Fig. 3, GPU performance lags the CPU per-
formance for inner dimensions smaller than about 384. Therefore, a block size of
512 is used in order to achieve significant GPU acceleration, which increases load
imbalance and negatively impacts scalability. The trade-offs involved in the selec-
tion of the block size are discussed in more detail in Sects. 5 and 6.

4 Testing Configuration

The matrices used in this study are extracted via a DMAP procedure [1] from
a commercial FEA software NX Nastran (2012) from Siemens PLM. They rep-
resent industrial CAD geometries and are automatically meshed with 10-noded
tetrahedral elements. Figure 4 shows the geometries used for this paper: a sym-
metric machine part cutter with asymmetrical loads, and a header part of a
Charge Air Cooler (CAC) with complex geometry and whose elements have
higher aspect ratios and therefore a higher condition number. For the cutter
model, the element size control has produced different levels of automatic mesh
refinement. Table 1 summarizes the test matrices.

Table 1. Test matrices

Matrix Source model Dimension Nonzeros Condition number

M2 Cutter 2,246,022 175,360,626 5.9E + 06

M6 Cutter 6,418,305 512,711,831 7.5E + 06

M11 CAC 11,562,627 937,454,416 6.8E + 09

M20 Cutter 20,056,050 1,634,926,088 2.7E + 07

Fig. 4. Finite element discretization of the cutter model (left) used for matrices M2,
M6, and M20, and the Charge Air Cooler (CAC) model used for M11 (right).

Effective Minimally-Invasive GPU Acceleration 679

The sustained peta-scale Blue Waters [3] system, hosted at the University of
Illinois National Center for Supercomputing Applications (NCSA) was used in
our experiments. Accelerated XK7 nodes of Blue Waters, each containing a single
AMD Interlagos processor with 8 floating point cores (32 GB node memory) and
a single NVIDIA Kepler K20X GPU (8 GB of GPU memory) were used. The
Intel compiler version 2015 was used for compilation, and sequential Intel MKL
for BLAS routines on the host. The CUDA runtime and cuBLAS libraries from
the NVIDIA CUDA Toolkit version 5.5 were used for operations on the GPU.
All runs used a single MPI rank per node and utilized all 8 cores on each node
by using 8 threads per MPI rank.

5 Scaling and Acceleration Results

The numerical factorization performance for each of the four matrices has been
benchmarked against the number of XK7 nodes used, spanning from the min-
imum number of nodes necessary to accommodate the problem to where the
GPU-accelerated performance drops below the CPU-only performance. Parallel
speed-up is defined as the ratio of the wall clock time on one cluster node to the
wall clock time on p nodes. However, since most matrices do not fit on one node,
the speed-up is computed with respect to the performance on the minimum
number of nodes that a problem fits on.

Figure 5 shows the parallel speed-up obtained both on the CPU and the
GPU for the numerical factorization of the four test matrices. Solid blue and
green lines show the CPU and GPU results, respectively. Plain dashed lines of
the corresponding colors show ideal speed-up from the starting point of each
curve. The actual Cholesky factorization times on which these speed-up curves
are based are shown in Table 2.

Table 2. Numerical factorization times (seconds) of the default CPU code, CPU code
with block size of 512, and GPU-enabled code with block size of 512.

XK7 Nodes Matrices

M2 M6 M20 M11

4.5E12 flops 3.7E13 flops 3.6e14 flops 3.5E13 flops

CPU CPU GPU CPU CPU GPU CPU CPU GPU CPU CPU GPU

default 512 512 default 512 512 default 512 512 default 512 512

1 82.5 83.5 28.7

2 47.0 48.0 19.1

4 24.0 26.5 11.5 180.0 190.0 51.2

8 14.9 15.8 7.6 98.0 103.0 34.6 95.0 102.5 36.0

16 9.0 10.5 5.0 55.8 63.4 24.0 52.0 57.2 25.0

32 6.0 7.5 4.0 34.0 39.5 17.0 249.1 252.7 78.2 32.0 35.3 17.0

64 4.0 5.7 3.3 22.5 26.5 11.6 137.5 152.5 55.5 18.7 21.6 10.8

128 2.7 4.6 2.8 12.6 17.0 9.0 77.2 91.1 38.4 12.0 15.6 7.9

256 8.8 13.0 7.4 44.9 57.1 25.2 8.5 11.8 6.4

512 26.3 40.8 20.7 5.1 10.5 5.3

1024 16.7 30.2 18.0

680 A. Gupta et al.

Fig. 5. Numerical factorization speed-ups vs. number of XK7 nodes for the four matri-
ces studied. (Color figure online)

In Sect. 3.3, it was noted that a block size of 512 was used in the cooperative
factorization phase on the GPU runs. In CPU-only runs, WSMP automatically
chooses the block size, which is typically 64 or 128. To estimate the effect of
increased block size on load imbalance, and hence on performance, the CPU
runs were also performed using a block size of 512 and the results are shown
as black lines in Fig. 5. In all the cases, the performance penalty due to larger
block size grows larger as the number of nodes increases. This happens because,
in wider runs, more levels of the elimination tree are cooperatively factored,
and the number of XK7 nodes among which the frontal matrices of a given size
are distributed increases. This creates a longer pipeline of dense operations on
smaller submatrices for a given size of a frontal matrix. A large block size results
in fewer stages in the pipelines, and therefore greater load imbalance. Figure 5
also shows the projected performance (dotted red line) that could be achieved
through further optimizations discussed in Sect. 6.

In all four cases, on the smaller number of nodes, the GPU-accelerated version
shows significant performance gains (2.5–3.5x) vs. the CPU-only case. These
gains become smaller for wider runs.

Effective Minimally-Invasive GPU Acceleration 681

Fig. 6. Acceleration achieved by the GPU-enabled library over the CPU-only factor-
ization vs. number of XK7 nodes.

Figure 6 shows the acceleration achieved by the GPU-enabled library over
the CPU-only version for the cutter and CAC matrices on the different numbers
of nodes. This plot directly demonstrates the benefit of GPU-acceleration.

6 Performance Analysis

The results in Sect. 5 show significant GPU acceleration with respect to the CPU-
only performance for complex problems on hundreds of nodes. In this section,
we study the issues limiting further GPU acceleration and show that one of the
key causes can be remedied to a large extent by a simple enhancement to our
implementation.

We have already touched upon the need for using a large block size of 512 in
the GPU implementation and the resulting load imbalance in cooperative fac-
torization. Splitting submatrix T into column blocks results in same blocks of
U being updated multiple times. Therefore, if ACCEL WSMP can retain the
result matrix of DGEMM in GPU memory, then the result matrix, U , could be
transferred back to the CPU only once, after the last DGEMM. In this way,
the total amount of PCIe traffic would become independent of the block size -
in fact it would be the same as in the unblocked case, permitting effective use
of smaller block sizes and improving both performance and load-balancing. The
current implementation of ACCEL WSMP includes the capability to cache the
input matrices of DGEMM, but not the output.

To estimate the effect of caching U , we first calculated the time lost on the
CPU due to the added load imbalance when running with a block size of 512.
This is the difference between CPU-512 and CPU-default times (Table 2). We
assume that this overhead is reflected in the GPU-512 time, but scaled by a
factor related to GPU acceleration of the imbalanced computation. We used
the ratio of CPU-512 to GPU-512 time on the smallest number of nodes that a

682 A. Gupta et al.

matrix ran on to derive a conservative estimate of the acceleration factor. The
time lost to load imbalance in the CPU-512 case is then divided by this factor
and subtracted from the GPU-512 time to obtain the GPU-projected time and
speedup. The results is shown by the dotted red lines (GPU-projected) in Fig. 5.

7 Conclusions

Sparse factorization is difficult to accelerate on heterogeneous clusters due to
irregularity in computation and memory access and the limits of communication
between the GPU and CPU. These issues are beyond the traditional cluster
hurdles of problem decomposition and MPI communication.

In this work, it has been shown that with remarkably minor modifications to
the original CPU code, the numerical factorization performance of WSMP can
be accelerated on a large number of GPU-enabled nodes of a supercomputer.
Our approach relied upon identifying computations that could be beneficially
accelerated, defining an accelerator API at an appropriate level of abstraction
to capture these computations, and designing a separate library to implement the
API. Benchmarking on industrially-derived matrices shows that on 128 nodes,
the GPU-accelerated code is about 2 times faster than the CPU-only code using
the same number of XK7 nodes, but without using the GPUs. A high degree of
acceleration, up to 3.5x, is observed for lower node counts. Due to issues with
load-balancing and difficulty maintaining sufficient computational intensity to
hide CPU↔GPU transfers, the observed speed-up is reduced at larger node
counts. A way to overcome a significant portion of the performance loss on large
numbers of nodes has been identified as caching U on the GPU.

The observed scaling represents a unique demonstration that GPUs can be
effectively applied to sparse factorization on large clusters and has the potential
to permit application of these GPU-accelerated clusters to new types of analysis.

A relatively unique feature of our approach is that performance portabil-
ity across different accelerator platforms can be achieved by simply tuning or
reimplementing the well-contained accelerator library.

Acknowledgments. The authors would like to thank the Private Sector Program
and the Blue Waters sustained-petascale computing project at NCSA. Blue Waters is
supported by NSF awards OCI-0725070 and ACI-1238993, and by the state of Illinois.

References

1. NX Nastran User’s Manual, Version 8.0 (2012). http://support.industrysoftware.
automation.siemens.com/general/nxn.shtml

2. Ashcraft, C., Grimes, R.G.: The influence of relaxed supernode partitions on the
multifrontal method. ACM Trans. Math. Softw. 15(4), 291–309 (1989)

3. Bode, B., Butler, M., Dunning, T., Hoefler, T., Kramer, W., Gropp, W., mei Hwu,
W.: The Blue Water Super-System for Super-Science, pp. 339–366. Chapman and
Hall/CRC (2013) (02 Oct 2016)

http://support.industrysoftware.automation.siemens.com/general/nxn.shtml
http://support.industrysoftware.automation.siemens.com/general/nxn.shtml

Effective Minimally-Invasive GPU Acceleration 683

4. Dongarra, J.J., Croz, J.D., Hammarling, S., Duff, I.S.: A set of level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

5. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric
linear equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)

6. George, T., Saxena, V., Gupta, A., Singh, A., Choudhury, A.: Multifrontal fac-
torization of sparse spd matrices on gpus. In: 2011 IEEE International Parallel
Distributed Processing Symposium (IPDPS), pp. 372–383 (2011)

7. Gimelshein, N.E., Gupta, A., Rennich, S.C., Koric, S.: GPU acceleration of WSMP.
In GPU Technology Conference 2015. Nvidia Corp. (2015)

8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins
University Press, USA (1996)

9. Gupta, A.: WSMP: Watson sparse matrix package (Part-I: direct solution of sym-
metric sparse systems). IBM TJ Watson Research Center, Yorktown Heights, NY,
Technical report, RC, 21886 (2000)

10. Gupta, A.: A shared- and distributed-memory parallel sparse direct solver. In:
Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp.
778–787. Springer, Heidelberg (2006)

11. Gupta, A., Karypis, G., Kumar, V.: Highly scalable parallel algorithms for sparse
matrix factorization. IEEE Trans. Parallel Distrib. Syst. 8(5), 502–520 (1997)

12. Gupta, A., Koric, S., George, T.: Sparse linear solvers on massively parallel
machines. In: Proceedings of the ACM/IEEE Conference on High Performance
Computing, SC 2009, Portland, Oregon, USA, 14–20 November. IEEE (2009)

13. Koric, S., Lu, Q., Guleryuz, E.: Evaluation of massively parallel linear sparse solvers
on unstructured finite element meshes. Comput. Struct. 141, 19–25 (2014)

14. Lacoste, X., Faverge, M., Bosilca, G., Ramet, P., Thibault, S.: Taking advan-
tage of hybrid systems for sparse direct solvers via task-based runtimes. In:
2014 IEEE International Parallel & Distributed Processing Symposium Workshops
(IPDPSW), pp. 29–38. IEEE (2014)

15. Liu, J.W.-H.: The role of elimination trees in sparse factorization. SIAM J. Matrix
Anal. Appl. 11, 134–172 (1990)

16. Liu, J.W.-H.: The multifrontal method for sparse matrix solution: theory and prac-
tice. SIAM Rev. 34(1), 82–109 (1992)

17. Mu, M., Rice, J.R.: A grid-based subtree-subcube assignment strategy for solving
partial differential equations on hypercubes. SIAM J. Sci. Stat. Comput. 13(3),
826–839 (1992)

18. Puzyrev, V., Koric, S., Wilkin, S.: Evaluation of parallel direct sparse linear solvers
in electromagnetic geophysical problems. Comput. Geosci. 89, 79–87 (2016)

19. Rennich, S.C., Stosic, D., Davis, T.A.: Accelerating sparse Cholesky factoriza-
tion on GPUs. In: Proceedings of the Fourth Workshop on Irregular Applications:
Architectures and Algorithms, IA3 2014, pp. 9–16 (2014)

20. Sao, P., Vuduc, R., Li, X.S.: A distributed CPU-GPU sparse direct solver. In: Silva,
F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014 Parallel Processing. LNCS,
vol. 8632, pp. 487–498. Springer, Heidelberg (2014)

21. Schenk, O., Christen, M., Burkhart, H.: Algorithmic performance studies on graph-
ics processing units. J. Parallel Distrib. Comput. 68(10), 1360–1369 (2008)

22. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: The Top 500 list. http://
www.top500.org

23. Yeralan, N., Davis, T.A., Ranka, S.: Sparse QR factorization on the GPU. Sub-
mission to ACM Trans. Math. Softw

http://www.top500.org
http://www.top500.org

Automatic OpenCL Task Adaptation
for Heterogeneous Architectures

Pierre Huchant(B), Marie-Christine Counilh, and Denis Barthou

Inria/LaBRI, University of Bordeaux, Bordeaux INP, Bordeaux, France
{pierre.huchant,denis.barthou}@inria.fr, counilh@labri.fr

Abstract. OpenCL defines a common parallel programming language
for all devices, although writing tasks adapted to the devices, managing
communication and load-balancing issues are left to the programmer.

In this work, we propose a novel automatic compiler and runtime tech-
nique to execute single OpenCL kernels on heterogeneous multi-device
architectures. The technique proposed is completely transparent to the
user, does not require off-line training or a performance model. It han-
dles communications and load-balancing issues, resulting from hardware
heterogeneity, load imbalance within the kernel itself and load varia-
tions between repeated executions of the kernel, in an iterative com-
putation. We present our results on benchmarks and on an N-body
application over two platforms, a 12-core CPU with two different GPUs
and a 16-core CPU with three homogeneous GPUs.

1 Introduction

Heterogeneous parallel architectures are ubiquitous, from supercomputers to cell
phones. Developing an application for a heterogeneous, multi-devices system,
taking advantage of all available devices is extremely challenging. OpenCL is a
standard language for the development of code on heterogeneous architectures. It
leverages part of this difficulty by defining one language for all platforms, and by
structuring parallelism into a task graph, where tasks are parallel computations
to be mapped onto one device. However, this implies that the developer has
to design as many tasks as there are devices, with tasks adapted in terms of
parallelism and memory granularity: There should be enough parallelism for all
devices, and communications between devices have to be explicit.

OpenCL kernels describe tasks as parallel work-groups. To transform one
kernel into as many kernels as devices, these work-groups have to be parti-
tioned among devices. This raises load balancing issues, stemming from device
heterogeneity and from workload variation between work-groups. As many ker-
nels are executed in iterative computation, the workload may change from one
iteration to the other, requiring a constant adaptation of the work-group parti-
tioning. Moreover, data has to be split among partitioned work-groups in order
to reduce communication time and written data has to be merged upon ker-
nel completion. Achieving adaptive work-group partitioning, with no training,
handling load balancing and data movements has never been conducted before.
c© Springer International Publishing Switzerland 2016
P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 684–696, 2016.
DOI: 10.1007/978-3-319-43659-3 50

Automatic OpenCL Task Adaptation for Heterogeneous Architectures 685

We propose in this paper a static/dynamic approach for the execution of any
given OpenCL kernel on a multi-device heterogeneous architecture. The method
tackles, without training, load balancing issues coming from device heterogene-
ity and from varying computational intensity inside the kernel, when the kernel
is called multiple times. The load-time analysis computes how to partition data
for the execution of work-groups as a function of the work-group partitioning.
The dynamic method evaluates from previous runs how to partition work-groups
and splits/merges data accordingly. We show with two different runtime meth-
ods that only a few iterations are required to reach the optimal granularity.
Finally, when the kernel computational intensity changes with each execution,
the method dynamically adapts the load and stays close to the optimal load.

Section 2 shows causes for load balancing issues when splitting a kernel into
subkernels. Section 4 presents our method, generating partition-ready kernels
and instantiating with the appropriate granularity, for each device. Computation
of granularities is described in Sect. 5. Related works and experimental results
are given in Sects. 6 and 7.

2 Motivating Example

Given an OpenCL kernel, we define a subkernel as a code executing only part
of the kernel computation. As OpenCL kernel executions are characterized by
the number of parallel work-groups, the ratio of work-groups of a subkernel over
the total number of work-groups is called granularity, a granularity of 1 meaning
the whole kernel is executed. We study the performance variation of a kernel on
one device, decreasing manually its granularity. The granularity is indicated as
a percentage of the total number of work-groups, and performance is indicated
as the mean time per work-group (lower is better). Figure 1 shows performance
of AESEncrypt and EP from SNU NPB Suite [13] for different granularities
on a 16-core Intel Xeon E5-2650 2.00 GHz with 64GB (CPU) and on an Nvidia
Tesla M2075 (GPU). For AESEncrypt, the average time per work-group is nearly
constant for all granularities, and very different on CPU and on GPU. For EP,
we observe large performance drops (higher average time/work-group) at regular
intervals of granularities on both CPU and GPU. This may come from compiler
optimizations (such as unrolling), cache effects, and inefficient occupancy of the
parallel resources due to a low number of work-groups within subkernels.

Work-groups are indexed in OpenCL by a vector of indices among a rectangu-
lar space (from 1D to 3D) called the NDRange. Selecting a granularity boils down
to defining a subvolume of indices. In this paper, the subvolumes we consider are
obtained by selecting one smaller interval in one dimension of the NDRange. The
offset is the first index of this interval of indices, the granularity defining the size
of this interval. Figure 1c shows for a Sparse Matrix Vector Multiply (SpMV)
the influence of the offset on performance when, for a kernel of 1/4 granularity,
the offset is changed. In the chosen sparse matrix, rows with a high index have
more non-0 elements than those with a low index. This accounts for the execu-
tion time increase for large offsets, more than 7× the time of a 0-offset. When
splitting a kernel into subkernels, this is a possible source of load-imbalance.

686 P. Huchant et al.

Fig. 1. (a) and (b): Impact on performance of architectural heterogeneity and granu-
larity on AESEncrypt and EP benchmarks. Performance is given as an average time
per work-group, granularity as a percentage of the total number of work-groups. (c)
Impact on performance of the offset (starting index) for SpMV kernel, with a fixed
granularity of 1/4. (d) Impact of iteration count on performance for OTOO applica-
tion. Granularities are set to 1/4 for all devices, and offset is fixed on all devices. (Color
figure online)

Many OpenCL kernels are executed in iterative computations. For instance,
OTOO [11] is an astrophysics particle N-Body simulation and the same kernel is
called repeatedly to compute forces and move the different particles. Figure 1d
shows how the execution time changes for different iterations, for different offsets,
for each iteration of the computation. The kernel is split into 4 subkernels, each
one is given a granularity of 1/4 and executed on one GPU. The input set
corresponds to a non-uniform distribution of the masses in space. As this space
is partitioned among the work-groups, this results in a non-homogeneous load
distribution among the work-groups, changing with iteration number.

These results advocate for a method able to cope with the heterogeneity of
the hardware, but also with the performance variations associated to different
granularities, depending on the offset and varying with each execution of the
kernel. Adapting a single OpenCL kernel to an heterogeneous architecture with
any number of devices, taking into account these four sources of imbalance has
never been tackled before.

Automatic OpenCL Task Adaptation for Heterogeneous Architectures 687

3 Principle of Adaptive Granularity

The method proposed is threefold. First the kernel is analyzed and a new version,
partition-ready, is generated at compile time. Then each time the original kernel
has to be executed, a granularity is chosen for each device, based on previous
executions if any, and the partition-ready kernel is instantiated on each device
with the chosen granularity. More precisely: (i) When the kernel code is first
loaded, it is analyzed. This step is more thoroughly described in Sect. 4. The
objective is the generation of a parametric and partition-ready kernel, executing
only a slice of the NDRange space. The analysis is performed once on the OpenCL
code (no host code analysis) but the code generated can be instantiated at run-
time for many different granularities and offsets. The slicing of the rectangular
volume corresponding to the NDRange is done in any of the dimensions of the
volume and does not require to flatten it. The memory region accessed by each
work group is computed, parametrically w.r.t. the work-group id and the scalar
parameters of the kernel; (ii) Each time the original kernel is launched, a granu-
larity for each device is determined. This granularity determines the number of
work-groups to execute on a particular device. The array regions are instanti-
ated with the granularities and the actual parameters of the kernel. Depending
on the result, all arrays are communicated to the devices or only the region they
require. The same occurs for bringing back data from the devices. This kernel
instantiation is described in Sect. 4.2; (iii) The execution time of each kernel
execution is collected for refining the granularity in the possible following runs.
This iterative granularity optimization is described in Sect. 5.

4 Automatic Adaptation of Data and Parallelism

We describe in this section how a kernel is analyzed and transformed into a
parametric partition-ready kernel, function of the granularity.

4.1 Static Analysis and Transformation

The analysis determines for each array passed to the kernel how this array can
be split among the different devices. For arrays that are read-only, a safe over-
approximation is to broadcast the whole array to all devices. A more precise
analysis can determine a finer partition, allowing shorter communication times
and for some extreme case, may be the only possible way to execute the kernel
if the initial array is too large for any of the devices. Finding how to partition
arrays written by the kernel is essential: When the written region is precisely
known and there is no overlap with other device regions, bringing back this
data to the host can be done in parallel. On the contrary, if the analysis is not
able to precisely determine which region has been written, a merge operation
is necessary to build the output array [8,12]. The analysis only handles arrays
(buffer objects) but could be extended to OpenCL images. We describe in this
section how to determine precisely the array regions accessed by each work-item.
The case where the analysis fails is discussed in the next section.

688 P. Huchant et al.

We first identify in the kernel all statements accessing arrays passed as a
parameter. In OpenCL, arrays can be cast into other types (from 1D to 3D
for instance), with possible offsets. All accesses through the cast arrays are also
accesses to the initial array. Likewise, array accesses may occur inside functions
called by the kernel. We therefore resort to an inter-procedural alias analysis,
following assignments and use-def chains on arrays. In the following example,

void KERNEL(float *A) {
...

S1: double(* B)[3][5][5] =(double (*) [3][5][5])&A[offset];
...

S2: B[1][0][0]=..
}

the analysis detects that statement S1 defines the 3D array B, aliasing A. S2
accesses B[1][0][0], corresponding to A[25+offset]. Only constant offsets are
handled so far. It generates a list of statements accessing input arrays, with their
mapping function turning the index into an index of the input array.

For each array that is a parameter of the kernel and for each statement, we
compute the array region accessed by this statement. The idea is to consider the
index expression and to replace the variables in it by their values, repeatedly.
Assuming the code is in SSA-form, this repeated substitution may lead to several
cases: The resulting expression only uses scalar parameters of the kernel and
work-item ids (local, group or global). In such case, the substitution process stops
and the exact region will be evaluated dynamically, when these ids and parameter
values are known. When a variable is defined by a Φ-function, if this is an
induction variable and its interval of values can be determined, then the variable
is replaced by its interval, the index expression becoming an interval expression.
For other cases of Φ-functions or variables that are defined by loads, the region
accessed is assumed to be unknown. Therefore, the array regions computed are
interval expressions of the scalar inputs of the kernel and of the work-item ids,
or unknown. We compute additionally the conditions on the ids for which this
region is accessed. The abstraction we use for these conditions is an interval
on ids. A similar analysis is therefore conducted on the conditionals (or loop
bounds) governing the execution of the statement considered. Out of simplicity,
only uniform expressions on ids are kept, i.e. inequalities of the form: ±id ≤ expr
where expr is an expression independent of the work-item ids. Conditionals that
are not uniform expressions are assumed to be true. The conjunction of such
conditionals define intervals of ids. To wrap-up, the array region accessed by a
statement is either unknown, or represented by a guarded region of the form:

if id ∈ [lb(s), ub(s)] : [expr1(id, s), expr2(id, s)]

with s the scalar parameters of the kernel and id a work-item id. Note that the
expressions expr1, expr2, lb and ub have no restriction and can use any operator
allowed by the language. For a given array, the region accessed by the kernel is
defined by the union of array regions accessed by all statements.

Kernel Modification. When executing a kernel with a fraction of the original
NDRange, some syntactic modifications are needed in order to keep the correct

Automatic OpenCL Task Adaptation for Heterogeneous Architectures 689

Fig. 2. Buffer management

semantics. Indeed, the global size is different from the original kernel, the number
of work-groups has changed and their id has changed too. Two additional para-
meters are added to the partition-ready kernel: splitdim (1, 2 or 3) accounts
for the dimension of the NDRange that is split, and numgroups is the number of
work-groups in this dimension. Then the following function calls are changed:

Expression Rewritten into

get global size(expr) (expr == splitdim?numgroups*get local size(expr):get global size(expr))

get num groups(expr) (expr == splitdim?numgroups:get num groups(expr))

get group id(expr) (get global id(expr)/get local size(expr))

All analyses and transformations are performed once at compile-time within
the LLVM compiler [6]. The granularities are determined later at runtime.

4.2 Kernel Instantiation and Communication Generation

OpenCL function calls from the host are intercepted by our runtime library
Libsplit. When the kernel is called in the OpenCL code, the values of the
scalar parameters and the size of the NDRange are known. The array regions can
then be evaluated and the range of work-item ids is determined according to the
chosen granularity and the size of work-groups. The runtime kernel instantiation
evaluates the dimension of the NDRange that allows to distribute written data
among devices, with no need for a merge operation, if possible.

Array regions are defined as union of guarded intervals. In order to reduce
the number of communications, we evaluate for a given interval of ids and for
each array an interval including the array region.

Figure 2 shows the different steps, assuming a copy is performed with a
WriteBuffer command. Calls to WriteBuffer are deferred communications:

690 P. Huchant et al.

Our library registers the commands, write protects the buffers to prevent any
modification until the kernel execution. If one buffer is modified before kernel
execution, the modification access is trapped, so that the copies occur first and
then the modification occurs. If the buffers are not modified, this additional
copy is not done. When the kernel is called, the granularity for each device is
computed and the devices execute a subkernel, with its associated data. The
runtime analysis keeps information related to data distribution. When multiple
kernel executions are performed, communications are only performed for data
not already present on the device.

Limits of the Analysis. The previous analysis is not always able to precisely
compute the regions accessed by a work-item, in particular when indirections
occur or when the region accessed depends on control flow too complex for the
analysis. When this happens, the array is not split between devices. If the array
is written, a merge operation is required after the kernel execution in order
to fuse the different contributions computed by each device. The operation we
propose is based on a diff, similarly to [12]. Such operation degrades the overall
performance for communication/memory bound kernels.

5 Adapting Granularity

This section proposes a method to dynamically adapt granularity to the devices
and to the kernel, assuming the same kernel is executed multiple times.

5.1 Formalization

Given a kernel and n devices, the problem consists in determining how to split
the computation among the devices so as to minimize the execution time. Each
device executes the same kernel, but possibly with a different number of work-
groups and different data. We formally define the granularity as a value xi in
[0, 1] corresponding to the ratio between the number of work-groups allocated
to the device i and the total number of work-groups (numgroups). numgroups
is known when the kernel is called. We define fi(xi, offseti, t) as the mean time
to execute one work-group on device i, when a subkernel of granularity xi is
executed at time step t, with an offset offseti. The total execution time of this
subkernel is therefore fi(xi, offseti, t) ∗ xi ∗ numgroups.

The solution to the problem consists in finding the time T and the granular-
ities xi and the offsets offseti such that the system in Fig. 3a is fulfilled.

The functions fi are not known precisely but they can be measured for a
given xi, offseti and t. We arbitrarily order the offsets by increasing id of device.
Thus, with offsets defined by values in [0, 1], offset1 = 0, . . . , offsetn =

∑

k<n xk

and fi no longer depends on offsets in Fig. 3b but on xi.
We generalize this formulation by introducing a new set of variables, yi ∈

[0, 1], as shown in Fig. 3b. Now it is possible to define a function F such that

Automatic OpenCL Task Adaptation for Heterogeneous Architectures 691

Fig. 3. Formulations of the granularity problem

Ft(x) = (y), with x = (xi)i the vector of all xi and y = (yi)i the vector of all
yi, satisfying conditions from Fig. 3b:

Ft(x) =

(
T

fi(x1, . . . , xi, t) ∗ numgroups

)

i

,

with T = numgroups∑
i 1/fi(x1,...,xi,t)

. The evaluation of Ft(x) requires O(n) basic arith-
metic operations with n the number of devices. A solution to the problem of
Fig. 3a can be found by computing a fixed point of the function F: Ft(x) = x or
similarly, by finding the 0 of the function Gt: Gt(x) = x − Ft(x).

5.2 Resolution Method

First assume the function Ft does not depend on t, the iteration count. Several
methods have been proposed in the literature for solving such problem, when the
function is not known analytically: The fixed point method consists in computing
the suite of granularity vectors xk = F (xk−1), k ≥ 1 from some initial value x0.
The evaluation of F (xk−1) requires to execute the kernel with the granularities
xk−1. When the suite converges, it converges linearly towards a vector of optimal
granularities satisfying the initial problem and achieving perfect load balance.
The convergence depends on F and on the initial value x0 but is in general
linear. The secant method, or its generalization for n-D space the Broyden’s
method, uses an approximate gradient to converge to the 0 of a function with
a near quadratic convergence rate. We implemented both methods to refine the
granularity assigned to each device. F is evaluated at each kernel instantiation
and provides the input necessary to instantiate the partition-ready kernel.

Finally, when the functions fi also depend on the iteration count t, the fixed
point equation becomes Ft−1(xk−1,t−1) = xk,t with F changing for each term of
the suite. For real applications, a good approximation of the solution at step t
remains a good approximation at step t+1. As the fixed point method converges
quickly when the approximation is close to the solution, we believe this approach
can be used for many real cases. We demonstrate for a N-Body application that
the fixed point method is able to stay close to the optimal, even when the optimal
granularity is varying with the iteration count (see Sect. 7).

6 Related Works

Several works focus on kernel splitting. Kim et al. [3] are making one OpenCL
device unifying multiple uniform GPUs. The OpenCL NDRange and array regions

692 P. Huchant et al.

are split according to the values recorded by sampling. They do not handle con-
ditionals as we do and assume that array indices are all linear in the kernel para-
meters. Moreover, they assume subkernels have the same load. Luk et al. [10]
propose an heterogeneous programming system that provides an adaptive map-
ping technique based on execution-time projections stored in a database during
training runs. The technique we propose does not require training runs. Li et
al. [9] present STEPOCL, a tool which takes as input kernels along with a config-
uration file and generates automatically an OpenCL multi-devices application.
The configuration file describes how to split data, the control flow of the pro-
gram, and allow to have specialized kernels for different architectures. The work
partitioning between devices is based on offline profiling. Grewe and O’Boyle
[2] propose a pure static task partitioning method, based on predictive model-
ing and program features. They do not collect data dynamically however and
cannot adapt to differences in terms of computing efficiency, depending on gran-
ularity, as shown in the motivating example. Kim et al. [4] propose to solve the
load imbalance problem on CPUs by dynamically assigning sets of work-groups
with decreasing sizes to an idle compute unit thread. It manages data across
different devices in a cluster, however mapping tasks and data to these devices
is left to the programmer. Seo et al. [14] propose an automatic work-group size
selection technique for OpenCL kernels on multicore CPUs. Their method uses a
profiling-based algorithm. Heterogeneity is not handled however and kernels are
assumed to be work-group size independent. Kofler et al. [5] present a method
for OpenCL task partitioning relying on offline generated model. This model is
based on artificial neural networks, relying on the features of the kernels, includ-
ing their input sizes. In [1], the authors propose a dynamic method to partition
OpenCL tasks and perform load balancing. Their approach generates chunks of
work-groups with increasing size to execute on different devices and selects the
best partition of these chunks on the devices. The chunks are manually generated
and there is no automatic scheme to partition data for the OpenCL kernels.

In [12], the authors propose an OpenCL runtime that takes a single device
kernel and executes it on CPU and GPU. Load balancing is managed at run-
time. While their approach dynamically balance work between one CPU and one
GPU, it cannot be easily generalized for any number of devices. Besides, data is
not split between subkernels, all arrays are transferred to all devices. Finally, the
kernel transformation is achieved by hand, and not with an automatic compiler
optimization. In [15], Shen et al. present a method for heterogeneous platforms
and imbalanced applications. They propose a model integrating both the work-
load of the application, determined by sampling, and the architecture. When the
workload has an irregular shape, it is reshaped by sorting to obtain a regular
shape with a peak and a bottom part. Based on this model and after profil-
ing, a predictor determines the optimal partitioning between CPUs and GPUs.
The work described in [8] relies on complex training, resorting to linear regres-
sion techniques in order to predict the correct load balance. They do not handle
dynamic load changes, such as the SpMV or OTOO case shown in the motivating
example. In [7], the authors extend the previous work to complete task graphs.

Automatic OpenCL Task Adaptation for Heterogeneous Architectures 693

It is still based on offline training and assumes performance per work-group is
constant, while we have shown there can be large variations.

7 Performance Evaluation

Experiments are conducted on two platforms: conan — 16-core Intel Xeon E5-
2650 2.00 GHz with 64 GB, 3 Nvidia Tesla M2075; happyCL — 12-core Intel Xeon
E5-2680 2.80 GHz with 64 GB, Nvidia Tesla K20c, Nvidia Quadro K5000.

Detailed Load Balancing: Figure 4 shows the speed-up obtained on conan with
AESEncrypt and EP compared to the best single device performance, when
these kernels are repeated 10 times. The speed-up shown here are per itera-
tion. For the first iteration, the granularity is the same for all devices (uniform
hypothesis), explaining poor performance compared to the GPU performance.
For EP, Fig. 4a, the fixed point method requires 6 iterations to reach a maximum
speed up of 2.8, whereas the Broyden’s method converges in only 4 iterations
leading to a better global speedup. For AESEncrypt, Fig. 4b shows there is no
such difference and both methods are similar, reaching a peak speed-up of 2.15
in 3 iterations only. The variations are due to the fact that the optimal granu-
larity does not correspond to a round number of work-groups, hence there are
granularity adjustments and communications at each step.

Figure 5 shows how our method behaves when the load changes over 60 iter-
ations. Figure 5a illustrates the time taken by each subkernel for OTOO when
the granularity is the same for all devices (Uniform strategy). From one device
to the other, the execution time differs by more than a factor 3 (iteration 15 for
instance). Figure 5b shows how the same load is shared among the four devices
when it is continuously adapted by our technique (Adaptive strategy). As the
4 plots are close to each other, this shows the execution time is nearly optimal.
We observe that convergence to the optimal only requires 2 iterations.

Overall Speedups: Figure 6 presents speed-ups compared to the best single device
performance on the two target architectures, for a large number of bench-
marks when they are repeated 100 times. We observe the results of our method

Fig. 4. Speedup per iteration of EP and AESEncrypt

694 P. Huchant et al.

Fig. 5. Performance of OTOO executed on conan (3GPUs+CPU) for 60 iterations. (a)
shows the execution time of each subkernel with the Uniform splitting, same granularity
for all devices. (b) shows the execution time of each subkernel with the Adaptive
splitting. (Color figure online)

Fig. 6. Performance of AESEncrypt, EP, MonteCarlo, OTOO, SPMV and some Poly-
bench on happyCL (top) and conan (bottom). Original codes run only on one device.
Uniform and Adaptive are using subkernels automatically obtained by our method.

(Adaptive) are close to the optimal, obtained when launching the kernel directly
with the granularity obtained after convergence (Oracle). For Jacobi1D and
Jacobi2D, the gap is more important because these benchmarks consist in 2 ker-
nels, one stencil and one copy. Defining the same granularity for both copy and
stencil minimizes communication time. Our method handles only one kernel at
a time, and does not find the same granularity for both kernels.

Automatic OpenCL Task Adaptation for Heterogeneous Architectures 695

8 Conclusion

We proposed in this paper the design and implementation of a method that sim-
plifies the development of OpenCL applications for heterogeneous, multi-device
systems. Our technique splits computation and data automatically across the
computing devices, handling all load-balancing issues, including load variations
when the kernel is executed iteratively. We have shown the optimal granularity
is obtained in a few iterations and the technique does not require profiling or
training. The approach is completely transparent to the user, and the same code
can be executed without modification on different machines.

References

1. Boyer, M., Skadron, K., Che, S., Jayasena, N.: Load balancing in a changing world:
dealing with heterogeneity and performance variability. In: Computing Frontiers
Conference (2013)

2. Grewe, D., O’Boyle, M.F.P.: A static task partitioning approach for heterogeneous
systems using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 286–305.
Springer, Heidelberg (2011)

3. Kim, J., Kim, H., Lee, J.H., Lee, J.: Achieving a single compute device image in
OpenCL for multiple GPUs. In: Principles and Practice of Parallel Programming,
PPopp 2011, pp. 277–288. ACM, New York (2011)

4. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: an OpenCL framework for
heterogeneous CPU/GPU clusters. In: ACM International Conference on Super-
computing, ICS 2012, pp. 341–352. ACM, New York (2012)

5. Kofler, K., Grasso, I., Cosenza, B., Fahringer, T.: An automatic input-sensitive
approach for heterogeneous task partitioning. In: International Conference on
Supercomputing, pp. 149–160. ACM, New York (2013)

6. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis and transformation, San Jose, CA, USA, pp. 75–88, March 2004

7. Lee, J., Samadi, M., Mahlke, S.: Orchestrating multiple data-parallel kernels on
multiple devices. In: Parallel Architecture and Compilation Techniques. IEEE
(2015)

8. Lee, J., Samadi, M., Park, Y., Mahlke, S.: SKMD: single kernel on multiple devices
for transparent CPU-GPU collaboration. ACM Trans. Comput. Syst. 33(3),
9:1–9:27 (2015)

9. Li, P., Brunet, E., Trahay, F., Parrot, C., Thomas, G., Namyst, R.: Automatic
OpenCL code generation for multi-device heterogeneous architectures. In: Interna-
tional Conference on Parallel Processing, pp. 959–968 (2015)

10. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Symposium on Microarchitecture, MICRO
42, pp. 45–55. ACM, New York (2009)

11. Nakasato, N., Ogiya, G., Miki, Y., Mori, M., Nomoto, K.: Astrophysical Particle
Simulations on Heterogeneous CPU-GPU Systems. CoRR abs/1206.1199 (2012)

12. Pandit, P., Govindarajan, R.: Fluidic kernels: cooperative execution of OpenCL
programs on multiple heterogeneous devices. In: Code Generation and Optimiza-
tion, pp. 273–283. ACM (2014)

13. Seo, S., Jo, G., Lee, J.: Performance characterization of the NAS parallel bench-
marks in OpenCL. In: Workload Characterization, pp. 137–148 (2011)

696 P. Huchant et al.

14. Seo, S., Lee, J., Jo, G., Lee, J.: Automatic OpenCL work-group size selection for
multicore CPUs. In: Parallel Architectures and Compilation Techniques, pp. 387–
397 (2013)

15. Shen, J., Varbanescu, A.L., Sips, H., Arntzen, M., Simons, D.G.: Glinda: a frame-
work for accelerating imbalanced applications on heterogeneous platforms. In:
Computing Frontiers Conference, p. 14. ACM (2013)

Author Index

Abdelfattah, Ahmad 659
Akel, Chadi 238
Alburquerque, Alberto 447
Aliaga, José I. 631
Altisen, Karine 588
Andrade, Guilherme 447
Angel, Eric 196
Anshus, Otto 502

Babaoglu, Ozalp 117
Baboulin, Marc 659
Baek, Woongki 518
Barreda, María 631
Barthou, Denis 684
Baumeister, Paul F. 77
Bautista-Gomez, Leonardo 419
Beaumont, Olivier 171
Bekas, Costas 103
Berrendorf, Rudolf 90
Berrocal, Eduardo 419
Binder, Walter 281
Bollhöfer, Matthias 631
Bonetta, Daniele 281
Bornemann, Marcel 77
Braginsky, Anastasia 460
Broquedis, François 531
Bühler, Markus 77

Caldeira, Pedro 447
Canon, Louis-Claude 133
Cappello, Franck 419, 644
Carpen-Amarie, Alexandra 433
Catalán, Sandra 103
Chakraborty, Sourav 349
Charara, Ali 477
Cheng, Long 334
Chevalier, Cédric 196
Chowdhury, Rezaul 574
Clauss, Philippe 225
Cogumbreiro, Tiago 405
Cohen, Nachshon 460
Constantinescu, Emil 644
Counilh, Marie-Christine 684
Cruz, Eduardo H.M. 490

de Carvalho, Wilson 447
de Oliveira Castro, Pablo 238
Devismes, Stéphane 588
Di, Sheng 419
Diener, Matthias 490
Dongarra, J. 659
Duff, Iain S. 617
Durand, Anaïs 588

Ecker, Jan P. 90
Eyraud-Dubois, Lionel 171

Falcou, J. 659
Feitelson, Dror G. 3
Ferracioli, Fabricio 447
Ferreira, Renato 447
Fotakis, D. 209
Frank, Michael 447
Freitag, Felix 376
Fürlinger, Karl 51

Ganapathi, Pramod 574
Gautier, Thierry 531
Gerofi, Balazs 293
Gimelshein, Natalia 672
Gramoli, Vincent 545
Groen, Martin 545
Guedes, Dorgival 447
Guhur, Pierre-Louis 644
Gupta, Anshul 672
Gutierrez, Eladio 251

Ha, Phuong 502
Habich, Dirk 146
Haidar, A. 659
Hater, Thorsten 77
Héam, Pierre-Cyrille 133
Hogg, Jonathan 617
Huchant, Pierre 684
Hunold, Sascha 433

Igual, Francisco D. 183
Ishikawa, Yutaka 293

Jalby, William 238
Jansen, Klaus 159

Keyes, David 477, 605
Kiefer, Tim 146
Klemm, Michael 264
Koric, Seid 672
Kotoulas, Spyros 334
Kowalewski, Roger 51
Krill, Benjamin 77
Krzikalla, Olaf 37

Lambert, Thomas 171
Lan, Zhiling 419
Land, Felix 159
Ledoux, Franck 196
Lehner, Wolfgang 146
Lehnert, Christoph 90
Li, Ang 617
Liao, Jianwei 293
Lien, Guo-Yuan 293
Liu, Weifeng 617
Ltaief, Hatem 477, 605
Lu, Xiaoyi 349
Lübbe, Felix Donatus 433

Malossi, A. Cristiano I. 103
Mannuss, Florian 90
Marangozova-Martin, Vania 63
Martin, Alexis 63
Martinez Caamaño, Juan Manuel 225
Masliah, Ian 659
Meel, Kuldeep S. 405
Mellor-Crummey, John 405
Milis, I. 209
Miyoshi, Takemasa 293
Morais, Sébastien 196
Müller-Pfefferkorn, Ralph 37
Murthy, Karthik 405

Nagel, Wolfgang E. 37
Navaux, Philippe O.A. 490
Newburn, Chris J. 264
Ngoko, Yanik 389
Nishizawa, Seiya 293
Noack, Matthias 264

Panda, Dhabaleswar K. (DK) 349
Papadigenopoulos, O. 209
Papatriantafyllou, Angelos 306

Park, Jinsu 518
Passos, Fernanda G.O. 363
Paul, Sri Raj 405
Peterka, Tom 644
Petit, Franck 588
Petrank, Erez 460
Philippe, Laurent 133
Pilla, Laércio L. 490
Plata, Oscar 251
Pleiter, Dirk 77
Popov, Mihail 238
Pradhan, Vivek 574
Prieto-Matías, Manuel 183

Quintana-Ortí, Enrique S. 103, 631
Quislant, Ricardo 251

Rastello, Fabrice 531
Rebello, Vinod E.F. 363
Regnault, Damien 196
Rennich, Steven 672
Rey, Antón 183
Rocha, Leonardo 447
Rosenberg, Arnold L. 22

Sacharidis, Dimitris 306
Salucci, Luca 281
Schwan, Karsten 319
Selimi, Mennan 376
Sengupta, Dipanjan 319
Simsiri, Natcha 561
Sîrbu, Alina 117
Steinke, Thomas 264
Sukkari, Dalal 605
Sundaram, Narayanan 319

Tangwongsan, Kanat 561
Tirthapura, Srikanta 561
Tithi, Jesmin Jahan 574
Tomita, Hirofumi 293
Tomov, S. 659
Träff, Jesper Larsson 433

Umar, Ibrahim 502
Utsch, Renato 447

Vassalos, V. 209
Vega, Davide 376
Veiga, Luís 376

698 Author Index

Vinter, Brian 617
Virouleau, Philippe 531

Wende, Florian 264
Willke, Theodore L. 319
Wolf, Matthew 319
Wolff, Willy 225
Wu, Kun-Lung 561

Xiao, Yunpeng 574

Young, Jeffrey 319

Zapata, Emilio L. 251
Zeller, Rudolf 77
Zhang, Hong 644
Zhang, Jie 349
Zhu, Xia 319
Zitzlsberger, Georg 264
Zois, G. 209

Author Index 699

	Preface
	Organization
	Contents
	Invited Papers
	Resampling with Feedback --- A New Paradigm of Using Workload Data for Performance Evaluation
	1 Introduction
	2 Background
	3 Using Workload Logs and Models to Drive Simulations
	3.1 Workload Modeling
	3.2 Problems with Models
	3.3 Using Logs Directly
	3.4 Drawbacks of Using Logs

	4 Resampling and Feedback
	4.1 Before Resampling: Input Shaking and User-Based Modeling
	4.2 Resampling from a Log
	4.3 Adding Feedback
	4.4 Applications and Benefits

	5 Conclusions
	References

	Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016
	1 Prehistory
	2 The Dream of Opportunistic Scheduling
	2.1 An Informal Overview
	2.2 Opportunistic dag-Execution via Platform-Oblivious Scheduling

	3 The Reality
	3.1 Formalizing the Dream
	3.2 Finding High-Quality Schedules
	3.3 The Benefits of Opportunistic Scheduling

	References

	Support Tools and Environments
	Synchronization Debugging of Hybrid Parallel Programs
	1 Introduction
	2 Model
	3 Synchronization Races
	4 The Replay Algorithm
	5 Practical Evaluation
	6 Related Work
	7 Conclusion
	References

	Nasty-MPI: Debugging Synchronization Errors in MPI-3 One-Sided Applications
	1 Introduction
	2 MPI-3 One-Sided Communication
	2.1 Challenges in MPI RMA
	2.2 Modeling Memory Consistency in MPI RMA

	3 Forcing Synchronization Errors with Nasty-MPI
	3.1 Conceptual Overview
	3.2 Nasty-MPI Rescheduling Process

	4 Experimental Evaluation
	4.1 Methodology
	4.2 Effectiveness of Nasty-MPI

	5 Related Work
	6 Conclusion and Future Work
	References

	Automatic Benchmark Profiling Through Advanced Trace Analysis
	1 Introduction
	2 Automatic Profiling of Benchmarks
	2.1 Benchmark Profiles Definition
	2.2 Initial Profile Data
	2.3 Profile Computation

	3 Profiling the Phoronix Test Suite
	3.1 The Phoronix Test Suite
	3.2 Tracing Phoronix with LTTng
	3.3 Experimental Setup
	3.4 LTTng Overhead and Benchmark Stability
	3.5 Benchmark Types
	3.6 CPU Usage and Parallelization
	3.7 Memory Usage Profile

	4 Related Work
	5 Conclusion and Ongoing Work
	References

	Performance and Power Modeling, Prediction and Evaluation
	Addressing Materials Science Challenges Using GPU-accelerated POWER8 Nodes
	1 Introduction
	2 GPU-accelerated POWER Architectures
	3 Application Performance Characteristics
	4 Application Performance Analysis on Processor
	5 Kernel Acceleration on GPU
	6 Performance Model Analysis
	7 Energy Efficiency Analysis
	8 Related Work
	9 Conclusions and Future Work
	References

	Performance Prediction and Ranking of SpMV Kernels on GPU Architectures
	1 Introduction
	2 Related Work
	3 Performance Modeling
	3.1 Benchmarking-Based Approach
	3.2 Linear Regression Techniques
	3.3 k-Nearest Neighbors

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 Prediction Quality
	4.3 Ranking Quality
	4.4 Other Aspects

	5 Summary and Outlook
	References

	The Impact of Voltage-Frequency Scaling for the Matrix-Vector Product on the IBM POWER8
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Hardware
	3.2 Kernel and Implementation

	4 Tuning VFS for the Dense Matrix-Vector Product
	5 Tuning VFS for the Sparse Matrix-Vector Product
	5.1 Training Set
	5.2 Validation with UFMC

	6 Concluding Remarks
	References

	Power Consumption Modeling and Prediction in a Hybrid CPU-GPU-MIC Supercomputer
	1 Introduction
	2 The Eurora System and its Data
	3 Power Model
	3.1 Features
	3.2 Regression Problem and Training Procedure
	3.3 Evaluation

	4 Model Performance
	5 Related Work
	6 Discussion and Conclusions
	References

	Scheduling and Load Balancing
	Controlling and Assessing Correlations of Cost Matrices in Heterogeneous Scheduling
	1 Introduction
	2 Related Work
	3 Correlation Between Tasks and Processors
	4 Controlling the Correlation
	5 Impact on Scheduling Heuristics
	6 Relation to TMA
	7 Conclusion
	References

	Penalized Graph Partitioning for Static and Dynamic Load Balancing
	1 Introduction
	1.1 Penalized Performance Model
	1.2 Motivating Example
	1.3 Related Work
	1.4 Contributions

	2 Graph Partitioning
	2.1 Partitioning Algorithm

	3 Penalized Graph Partitioning
	3.1 Prerequisites
	3.2 Penalized Graph Partitioning Algorithm (Static Case)
	3.3 Incrementally Updating the Partitioning (Dynamic Case)

	4 Experimental Evaluation
	4.1 Scalability Experiments
	4.2 Incremental Update Experiment

	5 Conclusion
	References

	Non-preemptive Scheduling with Setup Times: A PTAS
	1 Introduction
	2 A Linear 3-Approximation
	3 A 2-Dual Approximation
	4 A Polynomial Time Approximation Scheme
	4.1 Removing Small Jobs of Classes with sk 3
	4.2 Gluing Small Jobs of Classes with sk > 3
	4.3 Finding a Schedule for Large Jobs
	4.4 Putting it Together

	5 Conclusion
	References

	Cuboid Partitioning for Parallel Matrix Multiplication on Heterogeneous Platforms
	1 Introduction
	2 General Context
	3 NP-Completeness
	4 Approximation Algorithm
	4.1 Presentation and Correctness of 3D-NRRP
	4.2 Approximation Ratio

	5 Conclusion
	References

	HeSP: A Simulation Framework for Solving the Task Scheduling-Partitioning Problem on Heterogeneous Architectures
	1 Introduction and Motivation
	1.1 A Motivating Example: Tiled Cholesky Factorization

	2 HeSP: Heterogeneous Scheduler-Partitioner
	2.1 Features of the Scheduling-Partitioning Simulation Framework

	3 Performance Results on Heterogeneous Architectures
	3.1 Framework Validation and Evaluation of Scheduling Heuristics
	3.2 Impact of Non-uniform Partitioning on Performance

	4 Conclusion
	References

	FPT Approximation Algorithm for Scheduling with Memory Constraints
	1 Introduction
	1.1 Related Problems
	1.2 Main Contribution
	1.3 Outline of the Paper

	2 Definitions
	3 An Exact Algorithm Using Dynamic Programming
	4 Getting an Approximated Algorithm via Trimming Techniques
	5 Conclusion
	References

	Scheduling MapReduce Jobs Under Multi-round Precedences
	1 Introduction
	2 Problem Formulation
	3 Scheduling Tasks on Identical Processors
	4 Scheduling Tasks on Unrelated Processors
	5 Simulation Results
	References

	High Performance Architectures and Compilers
	Code Bones: Fast and Flexible Code Generation for Dynamic and Speculative Polyhedral Optimization
	1 Introduction
	2 Speculative Parallelization
	3 Code Generation Strategy
	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Piecewise Holistic Autotuning of Compiler and Runtime Parameters
	1 Introduction
	2 Motivating Example
	3 CERE AutoTuner
	3.1 NUMA Aware Warmup
	3.2 Piecewise Optimization with Codelets
	3.3 Hybrid Compilation

	4 Experiments and Validation
	4.1 Thread Number and Affinity Tuning
	4.2 Compiler Passes Tuning and Hybridization

	5 Related Work
	6 Conclusion
	References

	Insights into the Fallback Path of Best-Effort Hardware Transactional Memory Systems
	1 Introduction
	2 Baseline Architecture
	3 Hardware Irrevocability Fallback Mechanism
	3.1 Implementation

	4 Simulation Environment
	5 Software Fallback Path Evaluation
	6 Hardware Irrevocability Mechanism Results
	7 Related Work
	8 Conclusions
	References

	Portable SIMD Performance with OpenMP* 4.x Compiler Directives
	1 Introduction
	2 Related Work
	3 SIMD Vectorization
	3.1 Compiler and Library Support for SIMD Vectorization
	3.2 OpenMP 4.x SIMD Directives

	4 Coding Strategies to Gain SIMD Performance
	5 Microbenchmarks and Real-World Codes
	5.1 Microbenchmarks
	5.2 Real-World Codes

	6 Summary
	References

	Parallel and Distributed Data Management and Analytics
	Lightweight Multi-language Bindings for Apache Spark
	1 Introduction
	2 Background
	2.1 Apache Spark
	2.2 Spark Bindings for Dynamically Typed Languages
	2.3 GraalVM and Truffle

	3 TruffleSpark
	3.1 TruffleSpark Implementation

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Toward a General I/O Arbitration Framework for netCDF Based Big Data Processing
	1 Introduction
	2 Related Work
	3 I/O Arbitrator Middleware
	3.1 High Level Architecture
	3.2 Establishing Communication
	3.3 Direct Data Transfer Mechanism
	3.4 Implementation for SCALE-LETKF

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Summary

	5 Concluding Remarks
	References

	High Performance Parallel Summed-Area Table Kernels for Multi-core and Many-core Systems
	1 Introduction
	2 Related Work
	3 Parallel Summed-Area Table Kernels (PSAT)
	3.1 Implementations
	3.2 Matrix Partitionings

	4 Evaluation
	5 Conclusions and Future Work
	References

	GraphIn: An Online High Performance Incremental Graph Processing Framework
	1 Introduction
	2 Background
	3 GraphIn Framework
	3.1 Graph Data-Structure
	3.2 User Interface
	3.3 Phase I: Static Graph Computation (GAS Engine)
	3.4 Phase II: Inconsistency Graph Builder
	3.5 Phase III: Property Check (Static vs. Dynamic)
	3.6 Phase IV: Incremental GAS Computation (I-GAS Engine)
	3.7 Phase V: Merge Graph States (Graph Merger)

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Evaluation and Analysis

	5 Related Work
	6 Conclusion and Future Work
	References

	Efficient Large Outer Joins over MapReduce
	1 Introduction
	2 MapReduce and Outer Joins
	3 Candidate Strategies for MapReduce
	3.1 The PRPD Method
	3.2 The PRPS Approach
	3.3 Complex Techniques

	4 Our Approach
	4.1 The POPI Algorithm
	4.2 Implementation

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusions
	References

	Cluster and Cloud Computing
	Slurm-V: Extending Slurm for Building Efficient HPC Cloud with SR-IOV and IVShmem
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Slurm and SPANK
	2.2 SR-IOV and IVShmem
	2.3 OpenStack

	3 Proposed Design
	3.1 Architecture Overview of Slurm-V
	3.2 Alternative Designs

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Startup Performance
	4.3 Scalability
	4.4 Application Performance

	5 Related Work
	6 Conclusion and Future Work
	References

	An Autonomic Parallel Strategy for the Projection of Ecological Niche Models in Heterogeneous Computational Environments
	1 Introduction
	2 OpenModeller and ENM Projection
	3 Original MPI Version for OM Projection
	4 Autonomic ENM Projection with EasyGrid AMS
	4.1 A Self-Configuring Projection Implementation

	5 Experimental Analysis
	5.1 Experiment 1: Small Scale Performance
	5.2 Experiment 2: Larger Scale Homogeneous Performance
	5.3 Experiment 3: Larger Scale Heterogeneous Performance

	6 Conclusion
	References

	Towards Network-Aware Service Placement in Community Network Micro-Clouds
	1 Introduction
	2 System Model
	2.1 Network Structure
	2.2 Allocation Model and Architecture
	2.3 Service Quality Parameters

	3 Service Placement Algorithm
	4 Experimental Results
	4.1 Network Behaviour and Algorithmic Performance
	4.2 Deployment in a Real Production Community Network

	5 Related Work
	6 Conclusion and Future Work
	References

	Heating as a Cloud-Service, A Position Paper (Industrial Presentation)
	1 Introduction
	2 Related Works
	3 The Q.ware Resource Manager
	3.1 Design Principles
	3.2 Architecture
	3.3 Scheduling in Q.ware

	4 Performance Characterization
	4.1 Thermal Comfort
	4.2 Processing Time

	5 Conclusion
	References

	Distributed Systems and Algorithms
	Design and Verification of Distributed Phasers
	1 Introduction
	2 Distributed Memory Phasers
	3 Distributed Phaser Design
	3.1 Distributed Skip Lists Creation
	3.2 Synchronization Signal Aggregation
	3.3 Registration of a Signaler
	3.4 Verification of SCSL

	4 Complexity Analysis
	5 Related Work
	6 Conclusions
	References

	Exploring Partial Replication to Improve Lightweight Silent Data Corruption Detection for HPC Applications
	1 Introduction
	2 Data-Analytic-Based SDC Detectors
	3 Adaptive Method
	4 Probabilistic Evaluation Metric
	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Parallel and Distributed Programming, Interfaces, Language
	Automatic Verification of Self-consistent MPI Performance Guidelines
	1 Introduction
	2 Problem Statement and Notation
	3 Related Work
	4 PGMPI: Verifying MPI Performance Guidelines
	4.1 Obtaining Reproducible Results
	4.2 Determining the Number of Repetitions
	4.3 Statistically Verifying Performance Guidelines

	5 Experimental Evaluation and Results
	5.1 Assessing the Guideline Compliance of MPI Libraries
	5.2 Case Study 1: MPI_Gather MPI_Allgather, MVAPICH
	5.3 Case Study 2: MPI_Reduce MPI_Allreduce, OpenMPI

	6 Conclusions
	A Self-consistent Performance Guidelines in PGMPI
	References

	ParallelME: A Parallel Mobile Engine to Explore Heterogeneity in Mobile Computing Architectures
	1 Introduction
	2 Related Works
	3 ParallelME
	3.1 Programming Abstraction
	3.2 Source-to-Source Compiler
	3.3 Run-Time Framework Details

	4 Evaluation
	4.1 Results and Discussions

	5 Conclusions
	References

	CBPQ: High Performance Lock-Free Priority Queue
	1 Introduction
	2 A Bird's Eye Overview
	3 The Full CBPQ Design
	3.1 Underlying Data Structures
	3.2 Memory Management
	3.3 Operations Implementation
	3.4 Split and Merge Algorithms

	4 Optimizations
	5 Performance Evaluation
	6 Conclusions
	References

	Multicore and Manycore Parallelism
	Redesigning Triangular Dense Matrix Computations on GPUs
	1 Introduction
	2 Related Work
	3 The Triangular Matrix Operations: TRMM and TRSM
	3.1 Recalling TRMM and TRSM Operations
	3.2 Current State of Art Performance of TRMM and TRSM
	3.3 Identifying the Performance Bottlenecks
	3.4 Profiling of NVIDIA cuBLAS TRMM

	4 Recursive Definition and Implementation Details
	5 Experimental Results
	6 Conclusions and Future Work
	References

	A Sharing-Aware Memory Management Unit for Online Mapping in Multi-core Architectures
	1 Introduction
	2 Related Work
	3 SAMMU: A Sharing-Aware Memory Management Unit
	3.1 Gathering Information About Memory Accesses
	3.2 Detecting the Sharing Pattern for Thread Mapping
	3.3 Detecting the Page Usage Pattern for Data Mapping

	4 Experiments and Results
	4.1 Methodology
	4.2 Performance Results
	4.3 Comparison to Related Work
	4.4 Overhead of SAMMU

	5 Conclusions and Future Work
	References

	GreenBST: Energy-Efficient Concurrent Search Tree
	1 Introduction
	2 Design Overview
	2.1 GreenBST

	3 Experiments
	4 Discussions
	5 Conclusions
	References

	HAP: A Heterogeneity-Conscious Runtime System for Adaptive Pipeline Parallelism
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 The HAP API
	3.2 The HAP Runtime System

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	Using Data Dependencies to Improve Task-Based Scheduling Strategies on NUMA Architectures
	1 Introduction
	2 NUMA Architectures Design and Exploitation
	2.1 Hardware Background
	2.2 Software Background

	3 Using OpenMP Tasks Dependencies to Improve Tasks and Data Placement on NUMA Machines
	3.1 Inside the XKAAPI Task-Based Runtime System
	3.2 Controlling Data Distribution on a NUMA System
	3.3 Distribution of Initial Ready Tasks: WSpush_init Strategies
	3.4 Distribution of Ready Tasks: WSpush Strategies
	3.5 Dynamic Load Balancing Using Work-Stealing: WSselect Strategies

	4 Evaluation
	4.1 Impact of the Data Distribution
	4.2 Impact of the Stealing Restriction
	4.3 Overview of the Strategies Performances
	4.4 Strategies Performance Scaling

	5 Related Work
	6 Conclusion and Future Work
	References

	Multicore vs Manycore: The Energy Cost of Concurrency
	1 Introduction
	2 How to Measure Energy Under Concurrency
	3 Energy and Concurrency Settings
	3.1 Preliminary Power Measurements
	3.2 Porting Synchrobench-C/C++ to Manycore

	4 The Energy of Multicore and Manycore
	5 The Energy of Synchronization Techniques
	6 Related Work
	7 Conclusion
	References

	Theory and Algorithms for Parallel Computation and Networking
	Work-Efficient Parallel Union-Find with Applications to Incremental Graph Connectivity
	1 Introduction
	1.1 Contributions
	1.2 Related Work
	1.3 Preliminaries and Notation

	2 Simple Bulk-Parallel Data Structure
	3 Work-Efficient Parallel Algorithm
	3.1 Response Distributor
	3.2 Bulk-Find's Cost Equivalence to Serial find

	4 Conclusion
	References

	An Efficient Cache-oblivious Parallel Viterbi Algorithm
	1 Introduction
	2 Cache-inefficient Viterbi Algorithm
	3 Cache-efficient Multi-instance Viterbi
	4 Viterbi Algorithm Using Rank Convergence
	5 Cache-efficient Viterbi Algorithm
	6 Experimental Results
	References

	Gradual Stabilization Under -Dynamics
	1 Introduction
	2 Preliminaries
	3 Stabilization
	4 Necessary Condition
	5 Self-Stabilizing Strong Unison
	6 Gradual Stabilization Under 1-Dynamics for Strong Unison
	7 Conclusion
	References

	Parallel Numerical Methods and Applications
	High Performance Polar Decomposition on Distributed Memory Systems
	1 Introduction
	2 Related Work
	3 The Polar Decomposition and its SVD Extension
	4 Background on ScaLAPACK
	5 High Performance Implementations
	6 Numerical Accuracy
	6.1 Synthetic Matrix Generation
	6.2 Accuracy Assessments of SVD Solvers

	7 Performance Results and Analysis
	7.1 Environment Settings
	7.2 QDWH Performance in Tflop/s
	7.3 QDWH Performance Scalability

	8 Performance Impact on SVD Solvers
	8.1 Performance Speedup
	8.2 Profiling

	9 Conclusion and Future Work
	References

	A Synchronization-Free Algorithm for Parallel Sparse Triangular Solves
	1 Introduction
	2 Background
	2.1 Serial Algorithm
	2.2 Level-Set Method for Parallel SpTRSV
	2.3 Motivation for Avoiding Synchronization

	3 Synchronization-Free Algorithm
	4 Experimental Results
	4.1 Experimental Setup
	4.2 SpTRSV Performance
	4.3 Overhead for Preprocessing

	5 Related Work
	6 Conclusions
	References

	Exploiting Task-Parallelism in Message-Passing Sparse Linear System Solvers Using OmpSs
	1 Introduction
	2 Exposing Task-Parallelism in ILUPACK
	3 Exploiting Task-Parallelism with OmpSs and MPI
	3.1 Parallelization Using OmpSs
	3.2 Parallelization with MPI
	3.3 Combining MPI+OmpSs

	4 Experimental Results
	4.1 Setup and Preliminaries
	4.2 Analysis of Configurations
	4.3 Analysis of Scalability

	5 Concluding Remarks
	References

	Lightweight and Accurate Silent Data Corruption Detection in Ordinary Differential Equation Solvers
	1 Introduction
	2 Background
	2.1 Runge-Kutta Methods
	2.2 Embedded Methods
	2.3 Radau's Quadrature

	3 Proposed Hot Rod Method
	3.1 First Detector: Hot Rod HR
	3.2 Second Detector: Hot Rod LFP
	3.3 Algorithm

	4 Experiments and Results
	4.1 Environment
	4.2 SDC Injection Methodology
	4.3 Benchmark
	4.4 Results

	5 Conclusion
	References

	Accelerator Computing
	High-Performance Matrix-Matrix Multiplications of Very Small Matrices
	1 Introduction
	2 Contributions to the Field
	3 Experimental Hardware
	4 Methodology, Design, and Optimization
	4.1 Programming Model, Performance Analysis, and Optimization for CPUs
	4.2 Programming Model, Performance Analysis, and Optimization for GPUs

	5 Conclusions and Future Directions
	References

	Effective Minimally-Invasive GPU Acceleration of Distributed Sparse Matrix Factorization
	1 Introduction
	2 WSMP Cholesky Factorization
	3 Minimally Invasive Approach
	3.1 Dual Library Solution
	3.2 Individual Factorization
	3.3 Cooperative Factorization

	4 Testing Configuration
	5 Scaling and Acceleration Results
	6 Performance Analysis
	7 Conclusions
	References

	Automatic OpenCL Task Adaptation for Heterogeneous Architectures
	1 Introduction
	2 Motivating Example
	3 Principle of Adaptive Granularity
	4 Automatic Adaptation of Data and Parallelism
	4.1 Static Analysis and Transformation
	4.2 Kernel Instantiation and Communication Generation

	5 Adapting Granularity
	5.1 Formalization
	5.2 Resolution Method

	6 Related Works
	7 Performance Evaluation
	8 Conclusion
	References

	Author Index

