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1 Introduction

Sixty years ago Hirzebruch observed how the vanishing of the Stiefel–Whitney class
w2 led to integrality of the OA-genus of an algebraic variety [Hirz1]. This was one
motivation for the Atiyah–Singer index theorem but also for my own thesis about
Dirac operators and Kähler manifolds. Indeed the interaction between topology and
algebraic geometry which he developed has been a constant theme in virtually all
my work.

This article is also about w2, characteristic classes and algebraic geometry, but
in a rather different context. We consider a compact oriented surface † of genus g,
a real Lie group Gr and the character variety Hom.�1.†/;Gr/=Gr, equivalently the
moduli space of flat Gr-connections on†. If U is the maximal compact subgroup of
Gr, then each principal Gr-bundle has a characteristic class in H2.†; �1.U// which
helps to determine in which connected component of the character variety it lies.

A well-known example is the case Gr D SL.2;R/ where we have U D SO.2/
and a class c 2 H2.†; �1.SO.2/// Š Z. It satisfies the Milnor–Wood inequality
jcj � 2g � 2 and there is one component for each c for which strict inequality
holds, but when jcj D 2g � 2 there are 22g connected components, each a copy of
Teichmüller space.

Here we shall consider the groups SL.n;R/ and Sp.2m;R/, higher dimensional
generalizations of SL.2;R/ D Sp.2;R/. In the first case we have a characteristic
class in H2.†; �1.SO.n/// which, for n > 2, is a Stiefel–Whitney class w2 2 Z2
and in the second a Chern class c1 in H2.†; �1.U.m/// Š Z.

We approach this question using the moduli space of Higgs bundles. For a
complex group Gc and a complex structure on †, gauge-theoretic equations enable
us to describe the Gc-character variety in terms of a holomorphic principal bundle
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and a holomorphic sectionˆ of g˝K where K is the canonical bundle. This moduli
space has the structure of a completely integrable Hamiltonian system—a proper
map to an affine space, whose generic fibre is an abelian variety. The Gr-character
variety is realized as the fixed point set of a holomorphic involution and for the real
groups in question the involution acts trivially on the base and its fixed points can be
identified with the elements of order 2 in the abelian variety. The main problem we
address is to evaluate the characteristic class as a function on this Z2-vector space.
For SL.n;R/, w2 is a quadratic function related to the mod 2 index theorem and
for Sp.2m;R/ the characteristic class is determined by the orbit of an action of a
symmetric group under its permutation representation over Z2.

The above results provide the background for testing the predictions of mirror
symmetry for the hyperkähler Higgs bundle moduli space, and this we approach
in the final section of this paper. A component of the Gr-character variety is an
example of what is known as a BAA-brane. The SYZ approach to mirror symmetry
says that its mirror should be a BBB-brane. In this context, a BBB-brane is a
hyperholomorphic bundle over a hyperkähler submanifold. Now it is known that
mirror symmetry for these moduli spaces is closely related to Langlands duality
and the duality of the abelian varieties in the integrable system. How this works
for the two real forms above is still a mystery, but we shall indicate a conjectural
mirror for the real form Gr D U.m;m/ � GL.2m;C/. There is again an integral
characteristic class here and our candidate for the mirror is, for each allowable value,
a hyperholomorphic bundle over the moduli space of Sp.2m;C/-Higgs bundles
considered as a hyperkähler submanifold of the GL.2m;C/-moduli space. It is trivial
only for the components of the moduli space where the characteristic class takes its
maximum absolute value.

2 Higgs Bundles

We summarize here the basic facts about Higgs bundles [Hit1, Sim]. A crucial fea-
ture is the hyperkähler structure which provides the non-holomorphic isomorphism
between the character variety and the moduli space of Higgs bundles. This arises
from an infinite-dimensional quotient construction.

Let † be a compact oriented Riemann surface of genus g > 1 and P a principal
bundle for the compact real form G of a complex semi-simple Lie group Gc. The
space of connections on P is an affine space A with group of translations �1.†; g/
and a symplectic form given by integrating B.a ^ b/ where B is an invariant metric
on G. The complex structure on† gives this the structure of an infinite-dimensional
flat Kähler manifold with complex tangent space �0;1.†; g/. The group G of gauge
transformations acts isometrically. The cotangent bundle T�A D A ��1;0.†; g/ is
a flat hyperkähler manifold and the induced gauge group action has a hyperkähler
moment map, which applied to .A; ˆ/ 2 A ��1;0.†; g/ is

�.A; ˆ/ D .FA C Œˆ;ˆ��; N@Aˆ/; (1)
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where FA is the curvature and ˆ 7! ˆ� for a general group is the antiholomorphic
involution coming from the compact real form.

The zero set gives firstly N@Aˆ D 0, so the Higgs field ˆ is a holomorphic section
of g ˝ K, and secondly the equation FA C Œˆ;ˆ�� D 0 which is equivalent to a
stability condition. The quotient of this zero set by G is the moduli space of pairs
.A; ˆ/, and it has an induced hyperkähler structure. This is a metric compatible with
complex structures I; J;K satisfying the relations of the quaternions. If I denotes the
complex structure of pairs .A; ˆ/, then J;K are the complex structures for the Gc-
connections rA CˆCˆ�;rA C iˆ � iˆ�, respectively. Setting (1) to zero shows
that these are flat connections and by considering the holonomy, the moduli space
with complex structure J or K can be identified with the Gc-character variety.

The integrable system for Gc D GL.n;C/ is defined by the characteristic
polynomial of the Higgs field in its defining representation: det.x � ˆ/ D xn C
a1xn�1 C � � � C an where ai 2 H0.†;Ki/. This maps the moduli space M to the
vector space

L
1�i�n H0.†;Ki/: it is proper and the functions defined by it Poisson-

commute with respect to the natural symplectic structure. The generic fibre is then a
complex torus but it can be identified with the Jacobian of the curve with equation
det.x � ˆ/ D 0. For complex linear groups the fibres correspond to certain abelian
subvarieties of the Jacobian.

To obtain the character variety for the real form Gr in the Higgs bundle
realization, we need the connection A to have holonomy in U, the maximal compact
subgroup of Gr and, with g D u ˚ m, the Higgs field must lie in H0.†;m ˝ K/.
So for Gr D SL.n;R/, we have U D SO.n/ and the Higgs bundle is defined by a
rank n holomorphic vector bundle V with an orthogonal structure and ƒnV trivial.
The Higgs field ˆ must then be symmetric with respect to this inner product [Hit3].
The characteristic class here is w2 2 Z2: the obstruction to lifting the SO.n;C/-
frame bundle to Spin.n;C/.

For Gr D Sp.2m;R/, the maximal compact is U D U.m/ and this means the
vector bundle V D W ˚ W� with W a rank m vector bundle [PG, GGM], the
pairing between W and W� defining the symplectic structure. Here the Higgs field
has the off-diagonal form ˆ.w; �/ D .ˇ.�/; �.w// where ˇ W W� ! W ˝ K and
� W W ! W� ˝ K are symmetric. The characteristic class here is c1.W/ 2 Z.

3 The Canonical Section

As shown in [Hit3], there are canonical sections of the integrable system, each point
of which gives a Higgs bundle for the split real form Gr. In particular, this gives a
distinguished point in the generic fibre which we can regard as the identity element
in an abelian variety. We spell this out next in our two cases which are indeed split
real forms.

For SL.n;R/ and n D 2m C 1 the vector bundle is given by

V D K�m ˚ K1�m ˚ � � � ˚ Km



250 N. Hitchin

and for n D 2m by

V D K�.2m�1/=2 ˚ K1�.2m�1/=2 ˚ � � � ˚ K.2m�1/=2;

where for n odd we have to choose a square root of the canonical bundle K (a theta
characteristic in classical terms, or a spin structure [MFA1] in the language of
topology). The pairing of K˙` or K˙`=2 defines an orthogonal structure on V and
ƒnV is trivial so it has structure group SO.n/.

The subbundle K1=2 ˚ � � � ˚ K.2m�1/=2 when n D 2m or K ˚ � � � ˚ Km when n D
2m C 1 is maximal isotropic and a spin structure for V is defined by a holomorphic
square root of the top exterior power of a maximal isotropic subbundle. This in
the two cases is Km2=2 and Km.mC1/=2. These have Chern classes m2.g � 1/ and
m.m C 1/.g � 1/. The latter is even and so in odd dimensions w2 D c1 mod 2 D 0.
When n D 2m, w2 D 0 if g is odd and if g is even w2 D m mod 2.

The Higgs field must be symmetric with respect to this orthogonal structure.
We set:

ˆ D

0

B
B
B
B
B
B
B
B
B
@

0 1 0 : : : 0

a2 0 1 : : : 0

a3 a2 0 1 : : : 0
:::

: : :
:::

an�1
: : : 1

an an�1 : : : a3 a2 0

1

C
C
C
C
C
C
C
C
C
A

; (2)

where ai 2 H0.†;Ki/.

Remark. In [Hit3, p. 456] it was claimed that this is conjugate to the companion
matrix of the polynomial xn C a2xn�2 C � � � C an which is incorrect. However, the
coefficients of the characteristic polynomial are universal polynomials in the ai and
can be thought of as simply changing the basis of invariant polynomials on sl.n/.
The actual characteristic polynomial can be viewed as follows (see [Tr]). Set p.x/ D
1 � �x C a2x2 C � � � C anxn, then p.x/ and xn have no common factor so there are
unique polynomials a.x/; b.x/ of degree � .n � 1/ such that a.x/p.x/C b.x/xn D 1.
Then b.0/ D det.� �ˆ/.

For Sp.2m;R/ the vector bundle is given by

V D K�.2m�1/=2 ˚ K1�.2m�1/=2 ˚ � � � ˚ K.2m�1/=2

where now we use the pairing between K˙`=2 to define a symplectic structure.
Putting W D K.2m�1/=2˚K.2m�1/=2�2˚� � �˚K�.2m�3/=2 gives the form V D W˚W�
above. Then c1.W/ D m.g � 1/.

We need for the Higgs field sections ˇ; � of S2W ˝ K; S2W� ˝ K, respectively.
Since W D W� ˝ K, we set � D 1. Then we take for ˆ the matrix of the form
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ˆ D
�
0 1

A 0

�

;

where

A D

0

B
B
B
B
B
B
B
B
B
@

a2 1 0 : : : 0

a4 a2 1 0 : : : 0
:::

: : :
:::

: : :

1

a2m : : : a6 a4 a2

1

C
C
C
C
C
C
C
C
C
A

: (3)

Then det.� � ˆ/ D det.�2 � A/ and the coefficients are again universal
polynomials in the ai, providing another basis for the invariant polynomials. In fact,
since Sp.2m;R/ � SL.2m;R/ the automorphisms of V generated by the ai take the
Higgs field for Sp.2m;R/ above into one of the form (2).

4 Spectral Data

Given a Higgs bundle for a linear group the spectral curve S is defined by the
characteristic equation 0 D det.x � ˆ/ D xn C a1xn�1 C � � � C an, where
ai 2 H0.†;Ki/. It is a divisor of the line bundle ��Kn on the total space of K,
where x is the tautological section of ��K on K, and since the canonical bundle of
a cotangent bundle is trivial, KS Š ��Kn by adjunction. In particular the genus of S
is given by gS � 1 D n2.g � 1/. When S is smooth, the cokernel of ��ˆ � xI on S
defines a line bundle L��K.D L ˝ ��K/ and the vector bundle V can be recovered
as V D ��L, the direct image sheaf. The direct image of x W L ! L��K is then the
Higgs fieldˆ. The direct image of the trivial bundle is O˚K�1˚K�2˚� � �˚K�.n�1/
[BNR].

In general ƒnV Š Nm.L/K�n.n�1/=2 [BNR] where Nm W Pic.S/ ! Pic.†/ is the
norm map which associates to a divisor

P
nipi on S the divisor

P
ni�.pi/ on †.

Thus, to get an SL.n;C/-Higgs bundle we take L Š U��K.n�1/=2 where U lies in
the Prym variety, the kernel of the homomorphism Nm W Pic0.S/ ! Pic0.†/. The
canonical section described above is obtained by taking U to be the trivial bundle.

For the symplectic group Sp.2m;C/, the eigenvalues of ˆ occur in pairs ˙� and
the equation for the spectral curve has the form x2m Ca2x2m�2C� � �Ca2m D 0. Thus
S has an involution 	.x/ D �x. In this case the bundle U must satisfy 	�U Š U�
[Hit2]. This is the Prym variety for the map to the quotient S ! NS D S=	 .

These are the spectral data for the complex groups, next we need to find the
restrictions for the real forms. For the group SL.m;R/, we need V to be orthogonal
and ˆ to be symmetric. This is a fixed point of a holomorphic involution on
the Higgs bundle moduli space: .V; ˆ/ 7! .V�; ˆT/. Since the real dimension
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of .Hom.�1.†/; SL.m;R//=SL.m;R/ is 2.g � 1/ dim SL.m;R/, each component
of the fixed point set has complex dimension dimM=2. The canonical Higgs
bundle lies in the fixed point set as we have seen, and so the C1-eigenspace of
the action on the tangent space at this point has dimension dimM=2. However,
det.x�ˆT/ D det.x�ˆ/ so the involution acts trivially on the base of the integrable
system, which means the action on the tangent space to the fibre is �1. Since
the fibre is known to be connected, by exponentiation the fixed points correspond to
the elements of order 2 in the Prym variety. In fact, this argument holds for any split
real form and is dealt with in [LS].

To see more concretely how the direct image ��L acquires an orthogonal
structure when U2 is trivial we use relative duality, with the equivalent condition
L2 Š ��Kn�1 Š KS�

�K�.
Relative duality in our situation states that for any vector bundle W on S,

.��W/� Š ��.W� ˝ KS�
�K�/: Explicitly, over a regular value p of � ,

.��W/p D
M

�.u/Dp

Wu

and at each point u 2 S we have the derivative d�u 2 .KS�
�K�/u. Then given

v 2 .��W/p, � 2 ��.W� ˝ KS�
�K�/p the non-degenerate pairing is

hv; �i D
M

�.u/Dp

�.v/u

d�u
:

At a branch point with the local form z 7! w D zk we write a local holomorphic
section of ��W as f .z/ D b0.w/C zb1.w/C � � � C zk�1bk�1.w/ and then, if g.z/ D
c0.w/Czc1.w/C� � �Czk�1ck�1.w/ is a local section of ��.W� ˝KS�

�K�/ we have
a contribution of

lim
z!0

k�1X

iD0

1

k!�izk�1 hf .! iz/; g.! iz/i D
X

jC`Dk�1
hbj; c`i;

where ! is a primitive kth root of unity.
So, returning to the case L2 Š KS�

�K�, the duality V Š V� is expressed by the
quadratic form

.s; s/p D
M

�.u/Dp

s2u
d�u

(4)

which is naturally a sum of squares over regular values. The Higgs field is the direct
image of s 7! xs and since .xs/tu D s.xt/u, ˆ is symmetric.

In the symplectic case 	�U Š U� and since L Š U��K.n�1/=2 we have

	�L Š L���Kn�1 Š L�KS�
�K�:
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Here, we have a non-degenerate bilinear form

hv;wi D
M

�.u/Dp

	�v.w/
d�u

(5)

which is skew-symmetric since d� has opposite signs at u; 	.u/.
We also have the condition that U2 is trivial and so L2 Š KS�

�K� . This means
that 	�L Š L and we have an action of 	 (well-defined modulo ˙1) on L. Given
an open set A � †, ��1.A/ � S is invariant under 	 and this means that the
decomposition of H0.��1.A/;L/ into invariant and anti-invariant parts descends to
a decomposition V D W1˚W2. Since 	 interchanges in pairs the 2m fibres, rk W1 D
rk W2 D m.

Now if s; t 2 W1 they are represented by local invariant sections of L. Then
from (5), .	�s/t is invariant but the denominator d�u is anti-invariant and hence
W1 is Lagrangian, and hence W2 Š W�

1 . We therefore have the required form for
V D W ˚ W�. Now since 	.x/ D �x, ˆ interchanges W and W� and as before
.xs/t D s.xt/ is symmetric.

5 Characteristic Classes for SL.n;R/

In the previous section we saw how the direct image of a line bundle U of order 2
on the curve S defines an orthogonal bundle V on †. There are two characteristic
classes w1.V/ and w2.V/ but w1 D 0 if U lies in the Prym variety of � W S ! †.
Topologically this means that if we take the dual homology class u 2 H1.S;Z2/ of
U 2 H1.S;Z2/, then ��.u/ D 0.

The second Stiefel–Whitney class is more complicated.
To discuss the topology of orthogonal bundles on a surface † we use KO-theory,

following [MFA1]. For a compact surface †

KO.†/ Š Z ˚ H1.†;Z2/˚ H2.†;Z2/;

where the total Stiefel–Whitney class w D 1 C w1 C w2 gives an isomorphism of
the additive group QKO.†/ to the multiplicative group 1˚ H1.†;Z2/˚ H2.†;Z2/.

Generators are given by holomorphic line bundles L such that L2 Š O and the
class � D Op C O�

p � 2 where Op is the holomorphic line bundle given by a point
p 2 †. We write ˛.x/ 2 KO.†/ for the class of the line bundle corresponding to
x 2 H1.†;Z2/. Then ˛.0/ D 1 and

˛.x C y/ D ˛.x/C ˛.y/ � 1C .x; y/�

This is nonlinear as it corresponds to the tensor product of line bundles. We have
w1.˛.x// D x;w1.�/ D 0;w2.�/ D c1.Op/ mod 2=Œ†�.
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For an arbitrary rank n orthogonal bundle V we have

ŒV� D n � 1C ˛.w1.V//C w2.V/�:

Now choose a theta characteristic K1=2 on †. This is a spin structure and defines
a KO-orientation. The map to a point gives an invariant which is a spin cobordism
characteristic number, an additive homomorphism ' W KO.†/ ! Z2.

Given a holomorphic bundle V with an orthogonal structure, ' is an analytic
mod 2 index '.ŒV�/ D dim H0.†;V ˝ K1=2/ mod 2. For V D Op C O�

p , then (as in
[MFA1]), Riemann–Roch and Serre duality gives

1 D dim H0.†;OpK1=2/ � dim H0.†;O�
p K1=2/

and so '.V/ D 1 D '.�/.

Theorem 1. Let S be a smooth curve in the total space of � W K ! † given by
an equation xn C a1xn�1 C � � � C an D 0 and let L be a line bundle on S such that
L2 Š KS�

�K�. Define V D ��L, the direct image bundle given the orthogonal
structure described above.

Let K1=2 be a theta characteristic on † with '†.1/ D 0, and K1=2
S D L��K1=2

the corresponding theta characteristic on S. Then

w2.V/ D 'S.1/C '†.˛.w1.V///:

Proof. The class of V in KO.†/ is n � 1C ˛.w1.V//C w2.V/� so

w2.V/ D .n � 1/'†.1/C '†.˛.w1.V//C '†.V/

and '†.1/ D 0 by the choice of K1=2.
Now, the defining property of the direct image is that H0.A; ��L/ D

H0.��1.A/;L/ for any open set A � † so with A D †

H0.S;K1=2
S / D H0.S;L��K1=2/ D H0.†; ��L ˝ K1=2/

which gives 'S.1/ D '†.V/. �

Remarks.

1. There is an alternative approach to deriving this formula using the topological
definition of the mod 2 index due to Thurston (see [AGH] p. 291). Away from
the branch locus B, the monodromy of a loop in †nB preserves the orthogonal
structure on the direct image as a sum of squares and so lies in the group B.n/,
the semi-direct product of the symmetric group S.n/ and .Z2/n. This group is a
subgroup of O.n/ and has a double covering C.n/ � Pin.n/ which is a central
extension by Z2. The authors of [EOP] relate the mod 2 invariant to lifting issues
related to this group. In our context it clearly corresponds to the question of
whether the structure group of V lifts to Spin.n/, i.e., whether w2.V/ D 0 or not.
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2. The characteristic class w2 is independent of which spin structure K1=2 we
choose, (which was why it was convenient to take an even one in the theorem).
A better way to formulate this fact is to regard the isomorphism L2 Š KS�

�K�
as a KO-theory orientation on the map � W S ! †. There is then a push-forward
map �Š W KO.S/ ! KO.†/ and ŒV� D �Š.1/.

Given the formula in Theorem 1 we need to determine how many points of order
2 give w2.V/ D 0. The interpretation of w2 via 'S tells us that this is an affine
quadratic function  on PŒ2�, the elements of order 2 in the Prym variety. Choosing
an origin such that  .0/ D 0 this means that  .x C y/ D  .x/ C  .y/ C .x; y/
using the intersection form on H1.S;Z2/ restricted to PŒ2�.

The quadratic functions xy and x2 C xy C y2 on .Z2/2 have the same bilinear
form but are not equivalent and for quadratic functions associated with a non-
degenerate bilinear form there are two canonical forms: a sum of k terms xy or a
sum of .k � 1/ such terms plus a single term x2 C xy C y2. They are distinguished
by their Arf invariant 2 Z2 which is zero in the first case and 1 in the second. When
the Arf invariant is 0,  has 2k�1.2k C 1/ zeros and otherwise 2k�1.2k � 1/. This
interpretation shows that the invariant is independent of any choice of origin. The
invariant is additive under orthogonal direct sum since x2CxyCy2Cu2CuvCv2 D
.x C u/.x C y C u/C .y C v/.y C u C v/:

Note in what follows that �� W H1.†;Z2/ ! H1.S;Z2/ is injective: indeed,
(as in [BNR]), given a degree zero line bundle L on † with ��L trivial, we have a
section of ����L D L ˚ LK�1 ˚ : : : . Since L has degree 0 and g > 1 this must be
a section of L which is therefore trivial.

Proposition 2. In the context of Theorem 1, when n is odd there are 22p�1 C 2p�1
choices of L which give w1.V/ D w2.V/ D 0; and when n D 2m there are
22p�1 C .�1/m.g�1/2pCg�1 choices, where p D .g � 1/.n2 � 1/.
Proof. We have already observed that w1.V/ D 0 if U lies in the Prym variety P.

1. First consider the case where n D 2m C 1 is odd.

The Prym variety has polarization .1; 1; 1; : : : ; n; n; : : : n/ with g copies of n (see
[BNR]) so since n is odd the intersection matrix mod 2 is non-degenerate. Moreover,
since Nm��.x/ D .2m C 1/x D x if 2x D 0, then H1.S;Z2/ is an orthogonal direct
sum ��H1.†;Z2/˚ PŒ2�.

From Theorem 1 we have w2.V/ D 'S.1/ as a function of theta characteristics
of the form K1=2

S D LK1=2. By [MFA1] for all choices of K1=2
S the Arf invariant is

0. But the invariant is additive under orthogonal direct sum, and if we take K1=2
S D

��.UKmC1=2/ for U 2 H1.†;Z2/, then taking the direct image,

dim H0.S;K1=2
S / D dim H0.†;U ˝ .K�mC1=2 ˚ � � � ˚ KmC1=2//

D dim H0.†;U ˝ K1=2/C 2.g � 1/C � � � C 2m.g � 1/
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which is dim H0.†;U ˝K1=2/mod 2. This is the standard quadratic function for the
Riemann surface † so the Arf invariant is zero and by additivity so is the invariant
on PŒ2�.

We have dim H0.†;K1=2/ D 0mod 2 by choice, the origin, and so it follows that
there are 2p�1.2p C 1/ zeros where p D .g � 1/ dim SL.n/ D .g � 1/.n2 � 1/ is the
dimension of the Prym variety.

2. Now assume n D 2m.

In this case Nm��.x/ D 2mx D 0 and ��H1.†;Z2/ lies inside PŒ2�, as the
degeneracy subspace of the intersection form. In this case taking K1=2

S D ��.UKm/

for U 2 H1.†;Z2/ we have

dim H0.S;K1=2
S / D dim H0.†;U ˝ .K�mC1 ˚ � � � ˚ Km//

D dim H0.†;U/C H0.†;UK/C 3.g � 1/C : : :

C.2m � 1/.g � 1/
which by Riemann–Roch and Serre duality is m.g � 1/ mod 2.

From the proof of Theorem 1 in this case w2.V/ D 'S.1/ C 2m'†.1/ D 'S.1/

independently of the choice of K1=2. In particular this means that 'SjPŒ2� is invariant
under the action of U 2 ��H1.†;Z2/ and hence for y 2 PŒ2� and x 2 ��H1.†;Z2/,
 .x C y/ D  .y/, and so  .x/ D 0 and .x; y/ D 0.

Choose a transverse 2p � 2g-dimensional subspace X to ��H1.†;Z2/ and
consider the quadratic function  restricted to X. Then from the canonical form
there is a basis yi; zi of X such that the function is

Pp�g
iD1 aibi or

Pp�g
iD2 aibi C a21 C

a1b1 C b21:
Take a basis x1; : : : ; x2g for ��H1.†;Z2/, then by non-degeneracy of the

intersection form on H1.S;Z2/ there are elements wi such that .xi;wj/ D ıij.
Take

Qw1 D w1 C
X

i

.w1; yi/zi C
X

i

.w1; zi/yi

which makes Qw1 orthogonal to X. Since each xi is orthogonal to PŒ2� the 2-
dimensional space spanned by x1; Qw1 is orthogonal to X. Then since  .x1/ D 0

 .a Qw1 C bx1/ D a2 . Qw1/C b2 .x1/C ab D a.a . Qw1/C b/

and so on the space spanned by X and these two vectors we are adding an xy term,
which means we have the same Arf invariant. By induction so does the full space.

Now, as we showed above, for U 2 ��H1.†;Z2/ we have dim H0.S;K1=2
S / D

m.g � 1/ mod 2, so the number of zeros on X is 2p�g�1.2p�g C .�1/m.g�1//. Acting
by U 2 ��H1.†;Z2/ gives all of PŒ2� and hence the total number of zeros is

22g � 2p�g�1.2p�g C .�1/m.g�1// D 22p�1 C .�1/m.g�1/2pCg�1 (6)

�
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6 Characteristic Classes for Sp.2m;R/

We have already seen in Sect. 4 that a Higgs bundle for the group Sp.2m;R/ is
obtained from the spectral curve S defined by x2m C a2x2m�2 C � � � C a2m D 0 as the
direct image V D W ˚ W� of a line bundle L Š U��K.n�1/=2 such that 	�U Š U
and U2 is trivial. Moreover W is the direct image of the invariant sections of L. The
characteristic class here is c1.W/, and we need to evaluate this as a function of PŒ2�
for the Prym variety of p W S ! S=	 D NS.

Note first that, as in the case of SL.2m;R/, p�H1.NS;Z2/ lies in the Prym variety.
The map p� is also injective. This is a similar argument to the one above. In this case
the invariant and anti-invariant parts decompose the direct image of p�U as U ˚ U0
where U0 has negative degree. So if p�U has a section, so does U. The dimension
of the Z2-vector space PŒ2�=p�H1.NS;Z2/ is therefore 2.gS � 2gNS/, but by Riemann–
Hurwitz, since S ! NS has 4m.g�1/ branch points, 2�2gS D 2.2�2gNS/�4m.g�1/
and so

dim PŒ2�=p�H1.NS;Z2/ D 4m.g � 1/ � 2:

We now use the condition 	�U Š U, so that the involution lifts to the line
bundle U. There are two lifts ˙	 but fix attention on one for the moment. Following
[LS1], we consider the action ˙1 of 	 on the fibre of U at a fixed point.

Proposition 1. Suppose the action is �1 at ` fixed points, then c1.W/ D �`=2 C
m.g � 1/.
Proof. The fixed point set of 	 is the intersection of the zero section of K with S.
Setting x D 0 in the equation x2m C a2x2m�2 C � � � C a2m D 0, these points are
the images of the 4m.g � 1/ zeros of am 2 H0.†;K2m/ under the zero section. The
action is �1 at ` of these points.

Choose a line bundle M on† of large enough degree that the higher cohomology
groups vanish and then applying the holomorphic Lefschetz formula [AB] we obtain

dim H0.S;L��M/C � dim H0.S;L��M/� D 1

2
.�`C .4m.g � 1/ � `//

where the superscript denotes the ˙1 eigenspace under the action of 	 . Riemann–
Roch gives

dim H0.S;L��M/CCdim H0.S;L��M/� D dim H0.†;V˝M/ D 2m.1�gCc1.M//

since V is symplectic and deg V D 0. Hence

dim H0.S;L ˝ ��M/C D �`
2

C mc1.M/
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But by the definition of W this is dim H0.†;W ˝M/ and Riemann–Roch and the
vanishing of H1 give the value m.1 � g/C c1.W/C mc1.M/ and so

c1.W/ D �`
2

C m.g � 1/: (7)

�

Remarks.

1. Since 0 � ` � 4m.g�1/we have jc1.W/j � m.g�1/which is the Milnor–Wood
inequality for this group [PG, GGM].

2. Taking the action �	 instead of 	 changes ` in the formula to 4m.g � 1/� ` and
c1.W/ to �c1.W/, and the roles of W and W� are interchanged. Choosing one or
the other is simply a choice of generator in �1.U.m// D Z.

The formula (7) above clearly requires ` to be even, but there is a reason for this.
If ` D 0 and the action is trivial at all fixed points, then U is the pull-back of a
flat line bundle of order 2 on the quotient NS. In general, let B denote the subset of
` points in the branch locus of S ! NS, then the line bundle corresponds to a flat
line bundle on NSnB where the local holonomy around each b 2 B is �1. The global
holonomy defines a homomorphism 
 W �1.†nB/ ! Z2 where the fundamental
group has generators Ai;Bi, 1 � i � g and ıj, 1 � j � N, each ıi defining a loop
around a branch point. These satisfy the relation

Y

i

ŒAi;Bi�
Y

j

ıj D 1

but then, with values in the abelian group Z2 we must have
Q

j ıj D 1 and hence an
even number of �1 terms.

This interpretation helps to understand which of the 22p (where p D dim P.S; †//
elements in the Prym variety yield a given characteristic class. Let Z be the
4m.g � 1/-element set of zeros of the section a2m of K2m and let C.Z/ be the space
of Z2-valued functions on Z, and C0.Z/ the subspace of those whose integral is zero,
i.e., takes the value 1 an even number of times. The constant function 1 lies in C0.Z/
and let H.Z/ be the .4m.g � 1/ � 2/-dimensional quotient.

For a line bundle U 2 PŒ2� let A be the subset of Z over which the action of 	
is �1. (The set A � † is in bijection with B � NS since B lies in the zero section
of Km.) As noted above, A has an even number of elements and so its characteristic
function �A lies in C0.Z/. Define f .U/ 2 H.Z/ to be its equivalence class. Since we
take the quotient by the constant function 1, this is independent of the choice of lift
of 	 .

Proposition 2. The homomorphism f from PŒ2� to H.Z/ is surjective and has kernel
p�H1.NS;Z2/ � PŒ2�.
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Proof. Given any subset of the zeros of a2m with an even number of elements we can
choose ıi D �1 as above and get a flat line bundle U 2 H1.S;Z2/ and an action of
	 which acts as �1 at those points, so the homomorphism is surjective. The kernel
consists of line bundles with trivial action at all fixed points and these are precisely
those pulled back from the quotient NS. �

Since H.Z/ and PŒ2�=p�H1.NS;Z2/ have the same number of elements we see from
the proposition that they are isomorphic.

We can now count the points in PŒ2� with fixed characteristic class. This is, from
Eq. (7), c1.W/ D m.g � 1/ � `=2 and involves a choice between W and W� or
equivalently a choice of lifting of the involution 	 , or the subset A � Z with an
even number ` of elements. Thus the number of such elements in PŒ2� is, from
Proposition 2,

 
4m.g � 1/

`

!

� 22q;

where q D gNS D .2m2 � m/.g � 1/C 1.

Remarks.

1. The Z2-vector space H.Z/ is a representation of the symmetric group
S.4m.g � 1//, the permutations of the 4m.g � 1/ branch points, and we may
describe the above result by saying that the characteristic class is determined
by the orbit of the symmetric group on this space. In the case of n D 2 this
picture was derived via the monodromy action of the family of abelian varieties
in [LS0].

2. For n D 2 the two groups coincide, so we may use the formula above to compare
with the SL.2;R/ case. Here S is a double cover of † and so NS D †, hence
H.Z/ D PŒ2�=��H1.†;Z2/. Equation (7) gives c1.W/ D �`=2 C .g � 1/ and
w2 D c1.W/ mod 2, but here we don’t distinguish between W and W� so the
number with w2 D 0 is

1

2

X

`�.2g�2/mod 4

 
4.g � 1/

`

!

� 22g:

If .g � 1/ is even this is

22g�3..1C 1/4.g�1/ C .1C i/4.g�1/ C .1 � 1/4.g�1/ C .1 � i/4.g�1//

and if .g � 1/ is odd

22g�3..1C 1/4.g�1/ C .1C i/4.g�1/ � .1 � 1/4.g�1/ � .1 � i/4.g�1//:

Using ei�=4 D .1C i/=
p
2 this gives 26g�7 C 24g�4 or 26g�7 � 24g�4 which checks

with (6).
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7 Mirror Symmetry

A hyperkähler manifold has not only three complex structures I; J;K but also
three symplectic forms, the corresponding Kähler forms !1; !2; !3. A brane for
a complex manifold (a B-brane) is roughly speaking a holomorphic bundle over
a complex submanifold and for a symplectic manifold (an A-brane) it is a flat
vector bundle over a Lagrangian submanifold. For a hyperkähler manifold a BAA-
brane is a B-brane for the complex structure I and an A-brane for the symplectic
structures !2; !3. The trivial bundle over a component of the Gr-character variety
is an example. As the fixed point set of an antiholomorphic isometry for complex
structures J;K it is Lagrangian for the Kähler forms !2; !3, and it is holomorphic
with respect to I.

Mirror symmetry should transform a BAA-brane on a hyperkähler manifold M to
a BBB-brane on its mirror OM (I am indebted to Sergei Gukov for this information).
A BBB-brane is a holomorphic bundle over a complex submanifold with respect
to all complex structures I; J and K, equivalently a hyperkähler submanifold with
a hyperholomorphic bundle over it. A hyperholomorphic bundle is a bundle with
connection whose curvature is of type .1; 1/ with respect to all complex structures.
Such connections (generalizations of instantons in four dimensions) are quite rare
and so it is intriguing to seek such an object as the mirror of a Gr-character variety.
We shall attempt this now for the group Gr D U.m;m/ � GL.2m;C/.

The Higgs bundle and spectral data description of U.m;m/ will be familiar
from our previous discussion of Sp.2m;R/. Details can be found in [LS1]. The
Higgs bundle is of the form V D W1 ˚ W2 and the Higgs field ˆ is off-diagonal:
ˆ.w1;w2/ D .ˇ.w2/; �.w1//. There is a characteristic class c1.W1/, and to keep
the link with flat connections we need c1.V/ D 0 and so c1.W1/ D �c1.W2/ 2 Z.
The spectral curve S has the form x2m C a2x2m�2 C � � � C a2m D 0 and hence an
involution 	.x/ D �x and the spectral data consist of taking a line bundle L on
S such that 	�L Š L. As in Sect. 6, the characteristic class is determined by the
number of points on x D 0 at which the lifted action of 	 is �1. The difference here
with the Sp.2m;R/-case is that the fibre is not discrete but is instead the disjoint
union of a finite number of abelian varieties. In fact if L1;L2 are two line bundles
with the same subset of fixed points at which 	 acts as �1, then the action on L�

1L2
is trivial and so it is pulled back from the quotient NS. Thus the fibre is isomorphic
to the disjoint union of N copies of Pic0.NS/ where N D 24m.g�1/�1 is the number of
subsets of the zero set Z of a2m with an even number of elements.

For a Calabi–Yau manifold with a special Lagrangian fibration mirror symmetry
is effected via the Strominger–Yau–Zaslow approach of replacing each nonsingular
torus fibre by its dual, and hoping that it can be extended over the discriminant
locus in the base. The Higgs bundle integrable system fits into this framework as
first investigated in [HT]. As in [Hit4] for certain cases and [DP] in general, it
corresponds to replacing the group Gc by its Langlands dual group LGc.

We now consider the structure on the dual fibration relevant for U.m;m/ �
GL.2m;C/. The abelian variety for GL.2m;C/ is the Jacobian, or Pic0.S/, and since
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Jacobians are self-dual, and the norm map is the adjoint of the pull-back, dualizing
the inclusion Pic0.NS/ � Pic0.S/ gives

0 ! P.S; NS/ ! Pic0.S/ ! Pic0.NS/ ! 0

and the Prym variety P.S; NS/ is a distinguished subvariety of Pic0.S/. In terms of
duality it parametrizes line bundles on Pic0.S/ which are trivial on Pic0.NS/.

If mirror symmetry is to work as predicted this family of abelian varieties
over the space of polynomials x2m C a2x2m�2 C � � � C a2m should extend to a
hyperkähler submanifold of the Higgs bundle moduli space for the Langlands dual
of GL.2m;C/, which is again GL.2m;C/. But in Sect. 4 we saw that the Sp.2m;C/-
moduli space had an integrable system over this base whose generic fibre was
P.S; NS/. The inclusion of a group gives a hyperkähler subspace of the moduli space
so the symplectic Higgs bundles form a hyperkähler subspace of the moduli space of
GL.2m;C/-Higgs bundles. We therefore have the first requirement of the mirror—
the hyperkähler support for a hyperholomorphic bundle.

The remaining task is to find a hyperholomorphic vector bundle over the
Sp.2m;C/-moduli space, or rather several, one for each characteristic class. There
are relatively few constructions of such bundles but there is one which involves a
Dirac-type operator, and which we describe next. More information may be found
in [Hit5, Bon].

For each .A; ˆ/ satisfying the Higgs bundle equations for a compact group G, we
take a vector bundle V associated with the principal G-bundle via a representation
of G and define an elliptic operator D� W V ˝ .K ˚ NK/ ! V ˝ .K NK ˚ K NK/ by

D� D
� N@A ˆ

ˆ� @A

�

:

The equation FA C Œˆ;ˆ�� D 0 yields a vanishing theorem for irreducible
connections and the index theorem gives dim ker D� D .2g�2/ rk V . For the adjoint
representation the null-space can be viewed as the tangent space of the moduli space.

Let M be the Higgs bundle moduli space for a linear group—the moduli space
of pairs .V; ˆ/ with possible extra structure. Given a universal bundle over M�†,
the family of null-spaces for D� defines a rank .2g � 2/ rk V vector bundle on M,
and since D� acts on one-forms with values in a Hermitian bundle V , there is a
conformally invariant L2 inner product which defines by projection a connection on
this bundle. It turns out that this connection is hyperholomorphic: for the adjoint
representation it is the Levi–Civita connection. We shall leave till later the issue of
the existence of a universal bundle—locally these exist and connections are locally
determined.

The null-space of D� can be viewed in different ways according to the complex
structures I; J;K. For J the operator D� is the Hodge operator for the de Rham
complex of the flat connection rA CˆCˆ�; for I it is the Hodge operator for the
total differential N@˙ˆ in the double complex
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�0;�.V/ ˆ! �0;�.V/:

In this latter case ker D� is identified with the hypercohomology group H1. Trading
the Dolbeault viewpoint for the Čech approach, it is the hypercohomology for the
complex of sheaves

O.V/ ˆ! O.V ˝ K/:

Now take V to be associated with the defining representation of Sp.m/, and .A; ˆ/
to lie in a generic fibre of the integrable system. Thenˆ W V ! V ˝K is generically
an isomorphism and the spectral sequence for the complex of sheaves identifies the
hypercohomology group H1 with sections of a sheaf supported on the zero set of
detˆ. For a smooth spectral curve, detˆ D a2m has 4m.g � 1/ distinct zeros Z and
we have

H1 Š
M

z2Z

cokerˆz:

From the spectral data, L��K D coker.x�ˆ/, so identifying Z with the intersection
of the spectral curve S with the zero section x D 0 of K we have

H1 Š
M

z2Z

.L��K/z

(note in particular the dimension checks with the index theory calculation).
To summarize, what we have here is a hyperholomorphic bundle V over the

Sp.2m;C/-moduli space whose fibre at a point defined by a nonsingular spectral
curve S and line bundle L is given by ˚z2Z.L��K/z.

Now observe that the components of the fibre in the U.m;m/-character variety
with a fixed characteristic class correspond to the subsets of ` D 2k elements in Z,
and, at a point in the Sp.2m;C/-moduli space over the same point in the base

ƒ2kV Š
M

fz1;:::;z2kg�Z

.L��K/z1 .L�
�K/z2 � � � .L��K/z2k

is a sum over all such subsets. This bundle, with its induced hyperholomorphic
connection, seems a natural choice for the mirror: as a direct sum over components
of the fibre it is analogous to the Fourier–Mukai transform yet it is well-defined
on the whole moduli space apart from the issue of the universal bundle, which we
consider next.

The Sp.2m;C/-moduli space has no universal bundle: the obstruction lies in
H2.M;Z2/. To be more concrete, for an open covering fU˛g of M there is a local
universal bundle V˛ on U˛ �† and on U˛ \ Uˇ there is a line bundle L˛ˇ of order 2
such that Vˇ Š V˛ ˝ L˛ˇ with compatibility conditions on the isomorphisms. This
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describes the gerbe which is the obstruction. The D� null-spaces define bundles
V˛ over U˛ with a hyperholomorphic connection and these are related on the
intersection U˛ \ Uˇ by the flat line bundle L˛ˇ . However, the even exterior power
ƒ2kV˛ is insensitive to this ambiguity and so is well-defined globally.

Remarks.

1. The operator D� may be regarded as a quaternionic operator (see [Hit5]) with
coefficients in the bundle V whose structure group is Sp.m/ hence also quater-
nionic. This means the null-space has a real structure and a Hermitian structure,
equivalently an orthogonal structure. In particular we have an isomorphism as
bundles with connection ƒ2kV Š ƒ4m.g�1/�2kV. As we have seen it is only the
choice of lifting of the involution 	 that distinguishes a 2k-element subset of Z
and its complement, so this is expected.

2. From the point of view of the spectral data there is a natural orthogonal
structure which is almost certainly the same as the above differential-geometric
description. At each point z 2 Z we have a2m.z/ D 0 and the derivative at a
simple zero defines da2m.z/ 2 K2mC1

z . But L Š U��K.2m�1/=2 and 	�U Š U�,
so at the fixed point z of 	 we have a non-zero vector uz in U�2

z . Given
s 2 .L��K/z we can define s2uz=da2m.z/ 2 C and summing these get a non-
degenerate quadratic form on V.

3. The cases k D 0 or k D 2m.g � 1/ correspond to the maximum absolute value
of the characteristic class allowed and here the hyperholomorphic bundle is the
trivial line bundleƒ0V˛ . Maximal representations play a special role in the study
of character varieties (see, e.g., [Burg]).
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