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Abstract We describe rules for building 2d theories labeled by 4-manifolds. Using
the proposed dictionary between building blocks of 4-manifolds and 2d N D .0; 2/
theories, we obtain a number of results, which include new 3d N D 2 theories TŒM3�

associated with rational homology spheres and new results for Vafa–Witten partition
functions on 4-manifolds. In particular, we point out that the gluing measure for the
latter is precisely the superconformal index of 2d .0; 2/ vector multiplet and relate
the basic building blocks with coset branching functions. We also offer a new look at
the fusion of defect lines/walls, and a physical interpretation of the 4d and 3d Kirby
calculus as dualities of 2d N D .0; 2/ theories and 3d N D 2 theories, respectively.
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1 Introduction

We study a class of 2d N D .0; 2/ theories TŒM4� labeled by 4-manifolds (with
boundary) that enjoys all the standard operations on 4-manifolds, such as cutting,
gluing, and the Kirby moves [GS99]. Since the world-sheet SCFT of a heterotic
string is a prominent member of this class of 2d N D .0; 2/ theories we shall call it
“class H” in what follows. By analogy with theories of class S and class R that can
be thought of as compactifications of six-dimensional .2; 0/ theory on 2-manifolds
[GMN10, Gai12, AGT10] and 3-manifolds [DGH11, DGG1, CCV], respectively,
a theory TŒM4� of class H can be viewed as the effective two-dimensional theory
describing the physics of fivebranes wrapped on a 4-manifold M4.

If 2d theories TŒM4� are labeled by 4-manifolds, then what are 4-manifolds
labeled by? Unlike the classification of 2-manifolds and 3-manifolds that was of
great help in taming the zoo of theories TŒM2� and TŒM3�, the world of 4-manifolds
is much richer and less understood. In particular, the answer to the above question
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is not known at present if by a 4-manifold one means a smooth 4-manifold. And,
not surprisingly, there will be many points in our journey where this richness of
the world of 4-manifolds will translate into rich physics of 2d N D .0; 2/ theories
TŒM4�. We hope that exploring the duality between 4-manifolds and theories TŒM4�

sufficiently far will provide insights into classification of smooth structures in
dimension four.

In dimensions� 6, every combinatorial manifold—a.k.a. simplicial complex or a
manifold with piecewise linear (PL) structure—admits a unique compatible smooth
(DIFF) structure. However, not every topological 4-manifold admits a smooth
structure:

DIFF D PL � TOP (1)

and, furthermore, the smooth structure on a given topological 4-manifold may not be
unique (in fact, M4 can admit infinitely many smooth structures). When developing
a dictionary between M4 and TŒM4�, we will use various tools from string theory
and quantum field theory which directly or indirectly involve derivatives of various
fields on M4. Therefore, in our duality between M4 and TŒM4� all 4-manifolds are
assumed to be smooth, but not necessarily compact. In particular, it makes sense to
ask what the choice of smooth or PL structure on M4 means for the 2d theory TŒM4�,
when the 4-manifold admits multiple smooth structures.

Returning to the above question, the basic topological invariants of a (compact)
4-manifold M4 are the Betti numbers bi.M4/ or combinations thereof, such as the
Euler characteristic and the signature:

b2 D bC
2 C b�

2

� D bC
2 � b�

2 D
1

3

Z
M4

p1 (2)

� D 2 � 2b1 C bC
2 C b�

2

At least in this paper, we will aim to understand fivebranes on simply connected
4-manifolds. In particular, all compact 4-manifolds considered below will have
b1.M4/ D 0. We will be forced, however, to deviate from this assumption (in a
minimal way) when discussing cutting and gluing, where non-trivial fundamental
groups j�1.M4/j <1 will show up.

As long as b1 D 0, there are only two non-trivial integer invariants in (2), which
sometimes are replaced by the following topological invariants:

�h.M4/ D �.M4/C �.M4/

4
(3)

c.M4/ D 2�.M4/C 3�.M4/ .D c21 when M4 is a complex surface/
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also used in the literature on 4-manifolds. These two integer invariants (or, simply
b2 and � ) determine the rank and the signature of the bilinear intersection form

QM4 W � ˝ � ! Z (4)

on the homology lattice

� D H2.M4IZ/=Tors (5)

The intersection pairing QM4 (or, simply, Q) is a nondegenerate symmetric bilinear
integer-valued form, whose basic characteristics include the rank, the signature, and
the parity (or type). While the first two are determined by b2.M4/ and �.M4/, the
type is defined as follows. The form Q is called even if all diagonal entries in its
matrix are even; otherwise it is odd. We also define

�� D H2.M4IZ/=Tors (6)

The relation between the two lattices � and �� will play an important role in
construction of theories TŒM4� and will be discussed in Sect. 2.

For example, the intersection form for the Kümmer surface has a matrix
representation

E8 ˚ E8 ˚ 3
�
0 1

1 0

�
(7)

where
�
0 1
1 0

�
is the intersection form for S2 � S2 and E8 is minus the Cartan matrix

for the exceptional Lie algebra by the same name. A form Q is called positive (resp.
negative) definite if �.Q/ D rank.Q/ (resp. �.Q/ D �rank.Q/) or, equivalently,
if Q.�; �/ > 0 (resp. Q.�; �/ < 0) for all non-zero � 2 � . There are finitely
many unimodular1 definite forms of a fixed rank. Thus, in the above example
the intersection form for S2 � S2 is indefinite and odd, whereas E8 is the unique
unimodular negative definite even form of rank 8.

If M4 is a closed simply connected oriented 4-manifold, its homeomorphism
type is completely determined by Q. To be a little more precise, according to
the famous theorem of Michael Freedman [Fre82], compact simply connected
topological 4-manifolds are completely characterized by an integral unimodular
symmetric bilinear form Q and the Kirby–Siebenmann triangulation obstruction
invariant ˛.M4/ 2 H4.M4IZ2/ Š Z2, such that �

8
� ˛ mod 2 if Q is even. In

particular, there is a unique topological 4-manifold with the intersection pairing E8.
This manifold, however, does not admit a smooth structure. Indeed, by Rokhlin’s
theorem, if a simply connected smooth 4-manifold has an even intersection form Q,

1That is, det Q D ˙1.
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then �.M4/ is divisible by 16. There is, however, a non-compact smooth manifold
with E8 intersection form that will be one of our examples below: it corresponds to
a nice 2d theory TŒE8�, which for a single fivebrane we propose to be a realization
of level-1 E8 current algebra used in the world-sheet SCFT of a heterotic string
[GSW87, Sect. 6] or in the construction of E-strings [MNVW98]:

TŒE8� D (bosonization of) 8 Fermi multiplets (8)

In the case of compact smooth 4-manifolds, the story is a lot more complicated
and the complete classification is not known at present. One major result that will
be important to us in what follows is the Donaldson’s theorem [Don83], which
states that the intersection form Q of a smooth simply connected positive (resp.
negative) definite 4-manifold is equivalent over integers to the standard diagonal
form diag.1; 1; : : : ; 1/ or diag.�1;�1; : : : ;�1/, respectively. (This result applies
to compact M4 and admits a generalization to 4-manifolds bounded by homology
spheres, which we will also need in the study of 2d theories TŒM4�.) In particular,
since E8˚E8 is not diagonalizable over integers, the unique topological 4-manifold
with this intersection form does not admit a smooth structure.2 Curiously, this, in
turn, implies that R4 does not have a unique differentiable structure.

We conclude this brief introduction to the wild world of 4-manifolds by noting
that any non-compact topological 4-manifold admits a smooth structure [Qui82]. In
fact, an interesting feature of non-compact 4-manifolds considered in this paper—
that can be viewed either as a good news or as a bad news—is that they all admit
uncountably many smooth structures.

In order to preserve supersymmetry in two remaining dimensions, the 6d theory
must be partially “twisted” along the M4. The standard way to achieve this is
to combine the Euclidean Spin.4/ symmetry of the 4-manifold with (part of) the
R-symmetry. Then, different choices—labeled by homomorphisms from Spin.4/ to
the R-symmetry group, briefly summarized in Appendix 1—lead to qualitatively dif-
ferent theories TŒM4�, with different amount of supersymmetry in two dimensions,
etc. The choice we are going to consider in this paper is essentially (the 6d lift of)
the topological twist introduced by Vafa and Witten [VW94], which leads to .0; 2/
supersymmetry in two dimensions. In fact, the partition function of the Vafa–Witten
TQFT that, under certain conditions, computes Euler characteristics of instanton
moduli spaces also plays an important role in the dictionary between 4-manifolds
and the corresponding 2d N D .0; 2/ theories TŒM4�.

The basic “protected quantity” of any two-dimensional theory with at least N D
.0; 1/ supersymmetry is the elliptic genus [Wit87] defined as a partition function
on a 2-torus T2 with periodic (Ramond) boundary conditions for fermions. In the
present case, it carries information about all left-moving states of the 2d N D .0; 2/
theory TŒM4� coupled to the supersymmetric Ramond ground states from the right.

2Note, this cannot be deduced from the Rokhlin’s theorem as in the case of the E8 manifold.
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To be more precise, we shall consider the “flavored” version of the elliptic genus
(studied in this context, e.g., in [GGP13, BEHT13]),

ITŒM4�.q; x/ WD TrH.�1/FqL0xf ; (9)

that follows the standard definition of the superconformal index in radial quan-
tization and carries extra information about the flavor symmetry charges f . In
general, the flavor symmetry group of TŒM4� is U.1/b2 � G3d, where the second
factor is associated with the boundary M3 D @M4 and is gauged upon gluing
operations. Defined as a supersymmetric partition function on a torus T2 with a
modular parameter � (where, as usual, q D e2� i� ), the index ITŒM4�.qI x/ has a nice
interpretation as an invariant of the 4-manifold computed by the topological theory
on M4.

Indeed, since the theory TŒM4� was obtained by compactification from six
dimensions on a 4-manifold, its supersymmetric partition function on a torus can
be identified with the partition function of the 6d .2; 0/ theory on T2�M4. As usual,
by exchanging the order of compactification, we obtain two perspectives on this
fivebrane partition function

6d .2; 0/ theory
on T2 �M4

. &
N D 4 super-Yang-Mills 2d .0; 2/ theory TŒM4�

on M4 on T2

that are expected to produce the same result. If we compactify first on M4, we
obtain a 2d theory TŒM4�, whose partition function on T2 is precisely the flavored
elliptic genus (9). On the other hand, if we first compactify on T2, we get N D 4

super-Yang-Mills3 with the Vafa–Witten twist on M4 and coupling constant � . This
suggests the following natural relation:

ZG
VWŒM4�.q; x/ D ITŒM4IG�.q; x/ (10)

that will be one of our main tools in matching 4-manifolds with 2d N D .0; 2/

theories TŒM4�. Note, this in particular requires M4 to be a smooth 4-manifold. Both
sides of (10) are known to exhibit nice modular properties under certain favorable
assumptions [VW94, Wit87] that we illustrate in numerous examples below.

In this paper, we approach the correspondence between 4-manifolds and 2d
N D .0; 2/ theories TŒM4� mainly from the viewpoint of cutting and gluing.

3Sometimes, to avoid clutter, we suppress the choice of the gauge group, G, which in most of our
applications will be either G D U.N/ or G D SU.N/ for some N � 1. It would be interesting to
see if generalization to G of Cartan type D or E leads to new phenomena. We will not aim to do
this analysis here.
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For this reason, not only 4-manifolds with boundary are unavoidable, but they are
also the main subject of interest. As a result, interesting new phenomena, such as
a generalization of the Freed–Witten anomaly [FW99] to manifolds with boundary,
come into play. It also affects the relation (10), where the left-hand side naturally
becomes a function of boundary conditions, and leads to one interesting novelty
discussed in Sect. 3.10. Namely, in order to interpret the Vafa–Witten partition
function on a non-compact 4-manifold as the index (9), it is convenient to make a
certain transformation—somewhat akin to a change of basis familiar in the literature
on the superconformal index [GRRY11]—changing discrete labels associated with
boundary conditions to continuous variables.

The type of the topological twist that leads to 2d .0; 2/ theory TŒM4�, namely
the Vafa–Witten twist, can be realized on the world-volume of fivebranes wrapped
on a coassociative submanifold M4 inside a seven-dimensional manifold with G2

holonomy [BVS95, BT96]. Locally, in the vicinity of M4, this seven-dimensional
manifold always looks like the bundle of self-dual 2-forms over M4 (see, e.g.,
[AG04] for a pedagogical review). This realization of the 6d .2; 0/ theory on
the world-volume of M-theory fivebranes embedded in 11d space-time can provide
some useful clues about the 2d superconformal theory TŒM4�, especially when the
number of fivebranes is large, N � 1, and the system admits a holographic dual
supergravity description (cf. Appendix 1 for a brief survey).

In the case of fivebranes on coassociative 4-manifolds, the existence of the
holographic dual supergravity solution [GKW00, GK02, BB13] requires M4 to
admit a conformally half-flat structure, i.e., metric with anti-self-dual Weyl tensor.
Since the signature of the 4-manifold can be expressed as the integral

�.M4/ D 1

12�2

Z
M4

�jWCj2 � jW�j2
�

(11)

where W˙ are the self-dual and anti-self-dual components of the Weyl tensor, it
suggests to focus on 2d N D .0; 2/ superconformal theories TŒM4� associated
with negative definite M4. As we explained earlier, negative definite 4-manifolds
are very simple in the smooth category and, curiously, WC D 0 also happens to
be the condition under which instantons on M4 admit a description [AW77] that
involves holomorphic vector bundles (on the twistor space of M4), monads, and
other standard tools from .0; 2/ model building.

The holographic dual and the anomaly of the fivebrane system also allow to
express left and right moving central charges of the 2d N D .0; 2/ superconformal
theory TŒM4� via basic topological invariants (2) of the 4-manifold. Thus, in the case
of the 6d .2; 0/ theory of type G one finds [BB13, ABT10]:

cR D 3

2
.�C �/rG C .2�C 3�/dGhG

cL D �rG C .2�C 3�/dGhG (12)
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Table 1 The dictionary
between geometry and
physics

4-Manifold M4 2d .0; 2/ theory TŒM4�

Handle slides Dualities of TŒM4�

Boundary conditions Vacua of TŒM3�

3d Kirby calculus Dualities of TŒM3�

Cobordism Domain wall (interface)

From M�

3 to MC

3 Between TŒM�

3 � and TŒMC

3 �

Gluing Fusion

Vafa–Witten Flavored (equivariant)

Partition function Elliptic genus

ZVW.cobordism/ Branching function

Instanton number L0
Embedded surfaces Chiral operators

Donaldson polynomials Chiral ring relations

where rG D rank.G/, dG D dim.G/, and hG is the Coxeter number. In particular,
for a single fivebrane (rG D 1 and dGhG D 0) these expressions give cL D � and
cR D 3 C 3bC

2 , suggesting that b�
2 is the number of Fermi multiplets4 in the 2d

N D .0; 2/ theory TŒM4IU.1/�. This conclusion agrees with the direct counting of
bosonic and fermionic Kaluza–Klein modes [Gan96] and confirms (8). As we shall
see in the rest of this paper, the basic building blocks of 2d theories TŒM4� are indeed
very simple and, in many cases, can be reduced to Fermi multiplets charged under
global flavor symmetries (that are gauged in gluing operations). However, the most
interesting part of the story is about operations on 2d .0; 2/ theories that correspond
to gluing.

The paper is organized as follows. In Sect. 2 we describe the general ideas
relating 4-manifolds and the corresponding theories TŒM4�, fleshing out the basic
elements of the dictionary in Table 1. Then, we study the proposed rules in more
detail and present various tests as well as new predictions for Vafa–Witten partition
functions on 4-manifolds (in Sect. 3) and for 2d walls and boundaries in 3d N D 2
theories (in Sect. 4).

The relation between Donaldson invariants of M4 and QC-cohomology of the
corresponding 2d .0; 2/ theory TŒM4� will be discussed elsewhere. More generally,
and as we already remarked earlier, it would be interesting to study to what extent
TŒM4�, viewed as an invariant of 4-manifolds, can detect smooth structures. In
particular, it would be interesting to explore the relation between TŒM4� and other
invariants of smooth 4-manifolds originating from physics, such as the celebrated
Seiberg–Witten invariants [SW94, Wit94] or various attempts based on gravity
[Roh89, Ass96, Pfe04, Sla09].

4Recall, that a free Fermi multiplet contributes to the central charge .cL; cR/ D .1; 0/.
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2 2d Theories Labeled by 4-Manifolds

Building theories TŒM4� in many ways follows the same set of rules and tricks
as building 4-manifolds. Here, we describe some of the basic operations in the
world of 4-manifolds and propose their realization in the world of supersymmetric
gauge theories. While the emphasis is certainly on explaining the general rules,
we supplement each part with concrete examples and/or new calculations. More
examples, with further details, and new predictions based on the proposed relations
in Table 1 will be discussed in Sects. 3 and 4.

2.1 Kirby Diagrams and Plumbing

We start by reviewing the standard construction of 4-manifolds, based on a
handle decomposition, mostly following [GS99] (see also [Akb12]). Thus, if M4

is connected, we take a single 0-handle (Š D4) and successively attach to it k-
handles (Š Dk�D4�k) with k D 1; 2; 3. Then, depending on the application in mind,
we can either stop at this stage (if we are interesting in constructing non-compact
4-manifolds) or cap it off with a 4-handle (Š D4) if the goal is to build a compact
4-manifold.

The data associated with this process is usually depicted in the form of a Kirby
diagram, on which every k-handle (Š Dk � D4�k) is represented by its attaching
region, Sk�1 � D4�k, or by its attaching sphere, Sk�1. To be a little more precise, a
Kirby diagram of a smooth connected 4-manifold M4 usually shows only 1-handles
and 2-handles because 3-handles and 4-handles attach essentially in a unique way
[LP72]. Moreover, in our applications we typically will not see 1-handles either (due
to our intention to work with simply connected 4-manifolds). Indeed, regarding a
handle decomposition of M4 as a cell complex, its k-th homology group becomes
an easy computation in which k-handles give rise to generators and .kC 1/-handles
give rise to relations. The same interpretation of the handlebody as a cell complex
can be also used for the computation of the fundamental group, where 1-handles
correspond to generators and 2-handles lead to relations. Therefore, the easiest way
to ensure that M4 is simply connected is to avoid using 1-handles at all.

Then, for this class of 4-manifolds, Kirby diagrams only contain framed circles,
i.e., attaching spheres of 2-handles, that can be knotted and linked inside S3 (=
boundary of the 0-handle). To summarize, we shall mostly work with 4-manifolds
labeled by framed links in a 3-sphere,

M4 W Ka1
1 Ka2

2 : : : Kan
n (13)

where Ki denotes the i-th component of the link and ai 2 Z is the corresponding
framing coefficient. Examples of Kirby diagrams for simple 4-manifolds are shown
in Figs. 1, 2, and 3.
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a1 a2 an
a1 a2 an

=.... ....

Fig. 1 A Kirby diagram and the corresponding plumbing graph for the plumbing 4-manifold
associated with the string .a1; a2; : : : ; an/

E8 =
−2  −2  −2  −2  −2  −2  −2

=
−2  −2  −2  −2  −2  −2  −2

−2
−2

Fig. 2 A Kirby diagram and the corresponding plumbing graph for the E8 manifold with b2 D
�� D 8 and @E8 � †.2; 3; 5/

Fig. 3 Kirby diagram of a
4-manifold bounded by a
3-torus T3

0

0

0

At this stage, it is important to emphasize that Kirby diagrams are not quite
unique: there are certain moves which relate different presentations of the same 4-
manifold. We refer the reader to excellent monographs [GS99, Akb12] on Kirby
calculus, of which most relevant to us is the basic tool called 2-handle slide.
Indeed, since our assumptions led us to consider 4-manifolds built out of 2-
handles,5 occasionally we will encounter the operation of sliding a 2-handle i over a
2-handle j. It changes the Kirby diagram and, in particular, the framing coefficients:

aj 7! ai C aj ˙ 2lk.Ki;Kj/

ai 7! ai (14)

where the sign depends on the choice of orientation (“C” for handle addition and
“�” for handle subtraction) and lk.Ki;Kj/ denotes the linking number. We will see in
what follows that this operation corresponds to changing the basis of flavor charges.

In the class of non-compact simply connected 4-manifolds (13) labeled by
framed links, the simplest examples clearly correspond to Kirby diagrams where all

5Another nice property of such 4-manifolds is that they admit an achiral Lefschetz fibration over
the disk [Har79].
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Ki are copies of the unknot. Many6 such 4-manifolds can be equivalently represented
by graphs with integer “weights” assigned to the vertices, somewhat similar to
quiver diagrams that conveniently encode the spectrum of fields and interactions
in a large class of gauge theories. The 4-manifolds in question are constructed by
gluing together n copies of disk bundles over 2-spheres, D2

i ! S2i , each labeled
by an integer Euler class ai 2 Z. Switching the role of the base and the fiber in
the gluing process, one builds a simply connected 4-manifold M4, called plumbing,
whose handle decomposition involves n two-handles (besides the “universal” 0-
handle at the bottom). As usual, we represent such 4-manifolds by Kirby diagrams
drawing the attaching framed circles Ki of 2-handles inside S3.

The simplest non-trivial plumbing manifold corresponds to the Kirby diagram:

−p

(15)

In other words, its handlebody decomposition contains only one 2-handle with
framing �p, and the resulting manifold M4 is a twisted D2 bundle over S2 or, as
a complex manifold, the total space of the O.�p/ bundle over CP1,

M4 W O.�p/! CP1 (16)

For p > 0, which we are going to assume in what follows, M4 is a negative definite
plumbing manifold bounded by the Lens space L.p; 1/.

Another, equivalent way to encode the same data is by a plumbing graph ‡ .
In this presentation, each attaching circle Ki of a 2-handle is replaced by a vertex
with an integer label ai, and an edge between two vertices i and j indicates that the
corresponding attaching circles Ki and Kj are linked. Implicit in the plumbing graph
is the orientation of edges, which, unless noted otherwise, is assumed to be such that
all linking numbers areC1. More generally, one can consider plumbings of twisted
D2 bundles over higher-genus Riemann surfaces, see, e.g., [Akb12, Sect. 2.1], in
which case vertices of the corresponding plumbing graphs are labeled by Riemann
surfaces (not necessarily orientable) in addition to the integer labels ai. However,
such 4-manifolds typically have non-trivial fundamental group and we will not
consider these generalizations here, focusing mainly on plumbings of 2-spheres.

The topology of a 4-manifold M4 constructed via plumbing of 2-spheres is easy to
read off from its Kirby diagram or the corresponding plumbing graph. Specifically,
M4 is a non-compact simply connected 4-manifold, and one can think of Ki as
generators of � D H2.M4IZ/ with the intersection pairing

6But not all! See Fig. 3 for an instructive (counter)example.
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Qij D
(

lk.Ki;Kj/; if i ¤ j

ai; if i D j
(17)

For example, the Kirby diagram in Fig. 1 corresponds to

Q D

0
BBBBBBB@

a1 1 0 � � � 0

1 a2 1
:::

0 1
: : : 0

:::
: : :

: : : 1

0 � � � 0 1 an

1
CCCCCCCA

(18)

A further specialization to .a1; a2; : : : ; an/ D .�2;�2; : : : ;�2/ for obvious reasons
is usually referred to as An, whereas that in Fig. 2 is called E8.

Similarly, given a weighted graph ‡ , one can plumb disk bundles with Euler
numbers ai over 2-spheres together to produce a 4-manifold M4.‡/ with boundary
M3.‡/ D @M4.‡/, such that

b1.M4/ D b1.‡/ (19a)

b2.M4/ D #fvertices of ‡g (19b)

In particular, aiming to construct simply connected 4-manifolds, we will avoid
plumbing graphs that have loops or self-plumbing constructions. Therefore, in what
follows we typically assume that ‡ is a tree, relegating generalizations to future
work. Besides the basic topological invariants (19), the plumbing tree ‡ also gives
a nice visual presentation of the intersection matrix Q.‡/ D .Qij/, which in the
natural basis of H2.M4IZ/ has entries

Qij D

8̂
<̂
ˆ̂:

ai; if i D j

1; if i is connected to j by an edge

0; otherwise

(20)

The eigenvalues and the determinant of the intersection form Q can be also easily
extracted from ‡ by using the algorithm described below in (32) and illustrated
in Fig. 4.

Note, this construction of non-compact 4-manifolds admits vast generalizations
that do not spoil any of our assumptions (including the simple connectivity of
M4). Thus, in a Kirby diagram of an arbitrary plumbing tree, we can replace every
framed unknot (= attaching circle of a 2-handle) by a framed knot, with a framing
coefficient ai. This does not change the homotopy type of the 4-manifold, but does
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a1 a2 an

a20 an

b

a
2

a
n

....

....

a1

a1 an

a2 an....

b

....

b

c

1
- - -.... 1

....
1

c

-1

Fig. 4 For a plumbing tree, the eigenvalues (and, therefore, the determinant) of the intersection
form Q can be computed by orienting the edges toward a single vertex and then successively
eliminating them using the two rules shown here

affect the boundary M3 D @M4. Put differently, all the interesting information about
the knot can only be seen at the boundary.

Another important remark is that, although the description of 4-manifolds via
plumbing graphs is very nice and simple, it has certain limitations that were
already mentioned in the footnote 6. Indeed, if the 4-manifold has self-plumbings
or ‡ has loops, it may not be possible to consistently convert the Kirby diagram
into a plumbing graph without introducing additional labels. An example of such
Kirby diagram is shown in Fig. 3, where each pair of the attaching circles Ki with
framing ai D 0 has linking number zero. The corresponding 4-manifold, however,
is different from that associated with three unlinked copies of the unknot (with
plumbing graph that has three vertices and no edges) and the same values of framing
coefficients.

Finally, we point out that, since all 4-manifolds constructed in this section have
a boundary M3 D @M4, the corresponding 2d N D .0; 2/ theory TŒM4� that will
be described below should properly be viewed as a boundary condition for the 3d
N D 2 theory TŒM3�. For example, the plumbing on An has the Lens space boundary
M3 D L.n C 1; n/, while the plumbing on E8 has the Poincaré sphere boundary
M3 D †.2; 3; 5/, where

†.a; b; c/ WD S5 \ f.x; y; z/ 2 C
3 j xa C yb C zc D 0g (21)
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is the standard notation for a family of Brieskorn spheres. This remark naturally
leads us to the study of boundaries M3 and the corresponding theories TŒM3� for
more general sphere plumbings and 4-manifolds (13) labeled by framed links.

2.2 TŒM4� as a Boundary Condition

Since we want to build 4-manifolds as well as the corresponding theories TŒM4� by
gluing basic pieces, it is important to develop the physics-geometry dictionary for
manifolds with boundary, which will play a key role in gluing and other operations.

2.3 Vacua of the 3d N D 2 Theory TŒM3�

Our first goal is to describe supersymmetric vacua of the 3d N D 2 theory TŒM3�

associated with the boundary7 of the 4-manifold M4,

M3 D @M4 (22)

This relation between M3 and M4 translates into the statement that 2d N D .0; 2/

theory TŒM4� is a boundary theory for the 3d N D 2 theory TŒM3� on a half-space
RC � R

2. In order to see this, it is convenient to recall that both theories TŒM3� and
TŒM4� can be defined as fivebrane configurations (or, compactifications of 6d .2; 0/
theory) on the corresponding manifolds, M3 and M4. This gives a coupled system of
2d-3d theories TŒM4� and TŒM3� since both originate from the same configuration in
six dimensions, which looks like M3�RC�R2 near the boundary and M4�R2 away
from the boundary. In other words, a 4-manifold M4 with a boundary M3 defines a
half-BPS (B-type) boundary condition in a 3d N D 2 theory TŒM3�.

Therefore, in order to understand a 2d theory TŒM4� we need to identify a 3d
theory TŒM3� or, at least, its necessary elements.8 One important characteristic of
a 3d N D 2 theory TŒM3� is the space of its supersymmetric vacua, either in flat

7Depending on the context, sometimes M3 will refer to a single component of the boundary.
8While this problem has been successfully solved for a large class of 3-manifolds [DGG1, CCV,
DGG2], unfortunately it will not be enough for our purposes here and we need to resort to matching
M3 with TŒM3� based on identification of vacua, as was originally proposed in [DGH11]. One
reason is that the methods of loc. cit. work best for 3-manifolds with sufficiently large boundary
and/or fundamental group, whereas in our present context M3 is itself a boundary and, in many
cases, is a rational homology sphere. As we shall see below, 3d N D 2 theories TŒM3� seem to
be qualitatively different in these two cases; typically, they are (deformations of) superconformal
theories in the former case and massive 3d N D 2 theories in the latter. Another, more serious
issue is that 3d theories TŒM3� constructed in [DGG1] do not account for all flat connections on M3,
which will be crucial in our applications below. This second issue can be avoided by considering
larger 3d theories T.ref/ŒM3� that have to do with refinement/categorification and mix all branches
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space-time R
3, or on a circle, i.e., in space-time S1 �R

2. This will be the subject of
our discussion here.

Specifically, when 3d N D 2 theory TŒM3IG� is considered on a circle,
its supersymmetric ground states are in one-to-one correspondence with gauge
equivalence classes of flat GC connections on M3 [DGH11]:

dACA ^A D 0 (23)

This follows from the duality between fivebranes on S1 and D4-branes combined
with the fact that D4-brane theory is partially twisted along the 3-manifold M3. The
partial twist in the directions of M3 is the dimensional reduction of the Vafa–Witten
twist [VW94] as well as the GL twist [KW07] of the N D 4 super-Yang-Mills in
four dimensions. The resulting NT D 4 three-dimensional topological gauge theory
on M3 is the equivariant version of the Blau–Thompson theory [BT96, BT97] that
localizes on solutions of (23), where A D AC iB is the Lie.GC/-valued connection.

From the viewpoint of the topological Vafa–Witten theory on M4, solutions to
Eq. (23) provide boundary conditions for PDEs in four dimensions. To summarize,

boundary conditions

on M4

 ! complex flat

connections on M3

 ! vacua of TŒM3�

In general, complex flat connections on M3 are labeled by representations of the
fundamental group �1.M3/ into GC, modulo conjugation,

VTŒM3IG� D Rep .�1.M3/! GC/ =conj. (24)

In particular, in the basic case of abelian theory (i.e., a single fivebrane), the vacua
of the 3d N D 2 theory TŒM3� are simply abelian representations of �1.M3/, i.e.,
elements of H1.M3/. In the non-abelian case, GC flat connection on M3 is described
by nice algebraic equations, which play an important role in complex Chern–Simons
theory and its relation to quantum group invariants [Guk05].

As will become clear shortly, for many simply connected 4-manifolds (13) built
from 2-handles—such as sphere plumbings represented by trees (i.e., graphs without
loops)—the boundary M3 is a rational homology sphere (b1.M3/ D 0) in which case
the theory TŒM3IU.1/� has finitely many isolated vacua,

#fvacua of TŒM3IU.1/�g D jH1.M3IZ/j (25)

Therefore, the basic piece of data that characterizes M3 D @M4 and the corre-
sponding 3d theory TŒM3� is the first homology group H1.M3IZ/. Equivalently,
when H1.M3IZ/ is torsion, by the Universal Coefficient Theorem we can label

of flat connections [FGSA, FGP13]. Pursuing this approach should lead to new relations with rich
algebraic structure and functoriality of knot homologies.
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the vacua of TŒM3IU.1/� by elements of H2.M3IZ/. Indeed, given a 1-cycle 	
in M3, the Poincaré dual class Œ	� 2 H2.M3IZ/ can be interpreted as the first Chern
class c1.L/ D Œ	� of a complex line bundle L, which admits a flat connection
whenever the first Chern class is torsion. The (co)homology groups of the boundary
3-manifold M3—that, according to (25), determine the vacua of TŒM3�—are usually
easy to read off from the Kirby diagram of M4.

Now, once we explained the physical role of the boundary M3 D @M4, we need
to discuss its topology in more detail that will allow us to describe complex flat
connections on M3 and, therefore, determine the vacua of the 3d N D 2 theory
TŒM3�. In general, the boundary of a simply connected 4-manifold (13) labeled by
a framed link is an integral surgery on that link in S3. This operation consists of
removing the tubular neighborhood N.Ki/ Š S1 � D2 of each link component and
then gluing it back in a different way, labeled by a non-trivial self-diffeomorphism

 W T2 ! T2 of the boundary torus @N.Ki/ Š T2.

This description of the boundary 3-manifold M3 is also very convenient for
describing complex flat connections. Namely, from the viewpoint of T2 that divides
M3 into two parts, complex flat connections on M3 are those which can be
simultaneously extended from the boundary torus to M3 n Ki and N.Ki/ Š S1 �D2,
equivalently, the intersection points

VTŒM3� D VTŒM3nK� \ 

�VTŒS1�D2�

�
(26)

Here, the representation varieties of the knot complement and the solid torus can
be interpreted as .A;B;A/ branes in the moduli space of G Higgs bundles on T2.
In this interpretation, 
 acts as an autoequivalence on the category of branes, see,
e.g., [Guk07] for some explicit examples and the computation of (26) in the case
GC D SL.2;C/.

Coming back to the vacua (25), the cohomology group H2.M3IZ/ can be
easily deduced from the long exact sequence for the pair .M4;M3/ with integer
coefficients:

0! H2.M4;M3/! H2.M4/ ! H2.M3/! H3.M4;M3/! H3.M4/! 0

k k k k
Z

b2 ˚ T2 Z
b2 ˚ T1 T1 T2

(27)

where T1 and T2 are torsion groups. Since T2 ! T1 is injective, one can introduce
t D jT1j=jT2j. Then,

jH1.M3IZ/j D t2j det Qj (28)

In particular, when both torsion groups T1 and T2 are trivial, we simply have a short
exact sequence

0 �! �
Q��! �� �! H2.M3/ �! 0 (29)
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so that H1.M3/ Š H2.M3/ is isomorphic to Z
b2=Q.Zb2 /, generated by the meridians

	i of the link components Ki, modulo relations imposed by the intersection form Q
of the 4-manifold (13):

H1.M3IZ/ D ZŒ	1; : : : ; 	n�=imQ (30)

It follows that, in the case of G D U.1/ (i.e., a single fivebrane), the representation
variety (24) is parametrized by the eigenvalues xi 2 C

� of the GC-valued
holonomies along the 1-cycles 	i, subject to the relations in (30):

nY
iD1

x
Qij

i D 1 8j D 1; : : : ; n (31)

There is a similar description of VTŒM3IG� for non-abelian groups as well [Guk05].
One important consequence of this calculation is that H1.M3IZ/ is finite and,
therefore, the 3d N D 2 theory TŒM3� has finitely many vacua if and only if all
eigenvalues of the intersection form QM4 are non-zero. If Q has zero eigenvalues,
then H1.M3IZ/ contains free factors. This happens, for example, for knots with
zero framing coefficients, a D 0. Every such Kirby diagram leads to a boundary 3-
manifold M3, whose first homology group is generated by the meridian	 of the knot
K with no relations. This clarifies, for instance, why the boundary of a 4-manifold
shown in Fig. 3 has H1.M3IZ/ Š Z

3.
If M4 is a sphere plumbing represented by a plumbing tree ‡ , then the

eigenvalues of Q can be obtained using a version of the Gauss algorithm that consists
of the following two simple steps (see, e.g., [Sav02]):

1. Pick any vertex in ‡ and orient all edges toward it. Since ‡ is a tree, this is
always possible.

2. Recursively applying the rules in Fig. 4 remove the edges, replacing the integer
weights ai (= framing coefficients of the original Kirby diagram) by rational
weights.

In the end of this process, when there are no more edges left, the rational weights
ri are precisely the eigenvalues of the intersection form Q and

det.Q/ D
Y

i

ri (32a)

sign.Q/ D #fijri > 0g � #fijri < 0g (32b)

For example, applying this algorithm to the plumbing tree in Fig. 5 we get

det.Q/ D
 

bC
kX

iD1

qi

pi

!
�

kY
iD1

pi (33)
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Fig. 5 Plumbing tree of a
4-manifold bounded by a
Seifert fibration. We assume
b � �1 and aij � �2

a11 a12

....

b

....

....

....
a1n

1

a21 a22
a2n

2

ak1 ak2
akn

k

where � pi
qi
D Œai1; : : : ; aini � are given by the continued fractions

� pi

qi
D ai1 �

1

ai2 �
1

: : : � 1

aini

(34)

The boundary 3-manifold in this case is the Seifert fibered homology 3-sphere
M3.bI .p1; q1/; : : : ; .pk; qk// with singular fibers of orders pi 	 1. It is known that
any Seifert fibred rational homology sphere bounds at least one definite form. In
our applications here, we are mostly interested in the choice of orientation, such
that a Seifert manifold M3 bounds a plumbed 4-manifold with negative definite
intersection form. Then, M3 is the link of a complex surface singularity.

2.4 Quiver Chern–Simons Theory

We already mentioned a striking similarity between plumbing graphs and quivers.
The latter are often used to communicate quickly and conveniently the field content
of gauge theories, in a way that each node of the quiver diagram represents a simple
Lie group and every edge corresponds to a bifundamental matter. Here, we take this
hint a little bit more seriously and, with a slight modification of the standard rules,
associate a 3d N D 2 gauge theory to a plumbing graph ‡ , which will turn out to
be an example of the sought-after theory TŒM3�.

Much as in the familiar quiver gauge theories, to every vertex of ‡ we are going
to associate a gauge group factor. Usually, the integer label of the vertex represents
the rank. In our present example, however, we assign to each vertex a gauge group
U.1/ with pure N D 2 Chern–Simons action at level k determined by the integer
weight (= the framing coefficient) of that vertex:

S D k

4�

Z
d3xd4� V†

D k

4�

Z
.A ^ dA � ��C 2D�/ (35)
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Here, V D .A	; �; �;D/ is the three-dimensional N D 2 vector superfield and
† D D

˛
D˛V is the field strength superfield.

Similarly, to every edge of ‡ that connects a vertex “i” with a vertex “j” we
associate 3d N D 2 Chern–Simons coupling between the corresponding vector
superfields Vi and Vj:

S D 1

2�

Z
d3xd4� Vi†j (36)

Both of these basic building blocks can be combined together with the help of the
symmetric bilinear form (20). As a result, to a plumbing graph ‡ we associate the
following 3d N D 2 theory:

TŒM3IU.1/� D

8̂
<̂
ˆ̂:

U.1/n quiver Chern–Simons theory with Lagrangian

L D
nX

i;jD1

Z
d4�

Qij

4�
Vi†j D 1

4�

Z
Q.A; dA/C : : :

(37)

where n D rank.Q/ and the ellipses represent N D 2 supersymmetric completion
of the bosonic Chern–Simons action. Note, since the gauge group is abelian, the
fermions in the N D 2 supersymmetric completion of this Lagrangian decouple.
As for the bosonic part, quantum-mechanically it only depends on the discriminant
group of the lattice .�;Q/,

D D H1.M3IZ/ (38)

and a Q=Z-valued quadratic form q on D [KS11].
We claim that the quiver Chern–Simons theory (37) provides a Lagrangian

description of the 3d N D 2 theory TŒM3IU.1/� for any boundary 3-manifold M3.
Indeed, by a theorem of Rokhlin, every closed oriented 3-manifold M3 bounds a
4-manifold of the form (13) and can be realized as an integral surgery on some
link in S3. Denoting by Q the intersection form (resp. the linking matrix) of
the corresponding 4-manifold (resp. its Kirby diagram), we propose 3d N D 2

theory (37) with Chern–Simons coefficients Qij to be a Lagrangian description of
the boundary theory TŒM3IU.1/�.

To justify this proposal, we note that supersymmetric vacua of the theory (37)
on S1 � R

2 are in one-to-one correspondence with solutions to (31). Indeed, upon
reduction on a circle, each 3d N D 2 vector multiplet becomes a twisted chiral
multiplet, whose complex scalar component we denote �i D log xi. The Chern–
Simons coupling (37) becomes the twisted chiral superpotential, see, e.g., [DGG1,
FGP13]:

eW D
nX

i;jD1

Qij

2
log xi � log xj (39)
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Extremizing the twisted superpotential with respect to the dynamical fields �i D
log xi gives equations for supersymmetric vacua:

exp

 
@eW
@ log xi

!
D 1 (40)

which reproduce (31).

2.5 The Lens Space Theory

Of particular importance to the construction of two-dimensional theories TŒM4� are
special cases that correspond to 4-manifolds bounded by Lens spaces L.p; q/. We
remind that the Lens space L.p; q/ is defined as the quotient of S3 D f.z1; z2/ 2
C
2 j jz1j2 C jz2j2 D 1g by a Zp-action generated by

.z1; z2/ 
 .e2� i=pz1; e
2� iq=pz2/ (41)

We assume p and q to be coprime integers in order to ensure that Zp-action is free
and the quotient is smooth. Two Len’s spaces L.p; q1/ and L.p; q2/ are homotopy
equivalent if and only if q1q2 � ˙n2 mod p for some n 2 N, and homeomorphic if
and only if q1 � ˙q˙1

2 mod p. Reversing orientation means L.p;�q/ D �L.p; q/.
Note, supersymmetry (of the cone built on the Lens space) requires q C 1 � 0

mod p.
In the previous discussion we already encountered several examples of

4-manifolds bounded by Lens spaces. These include the disk bundle over S2 with
the Kirby diagram (15) and the linear plumbing on Ap�1, which are bounded by
L.p; 1/ and L.p;�1/, respectively. In particular, for future reference we write

@Ap D L.pC 1; p/ (42)

In fact, a more general linear plumbing of oriented circle bundles over spheres with
Euler numbers a1; a2; : : : ; an (see Fig. 1) is bounded by a Lens space L.p; q/, such
that Œa1; a2; : : : ; an� is a continued fraction expansion for � p

q ,

� p

q
D a1 �

1

a2 �
1

: : : � 1

an

(43)

When p > q > 0 we may restrict the continued fraction coefficients to be integers
ai � �2, for all i D 1; : : : ; n, so that L.p; q/ is the oriented boundary of the negative
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definite plumbing associated with the string .a1; a2; : : : ; an/. With these orientation
conventions, the Lens space L.p; q/ is defined by a .� p

q /-surgery on an unknot in

S3. We also point out that any lens space L.p; q/ bounds both positive and negative
definite forms Q. (Note, according to the Donaldson’s theorem [Don83], the only
definite forms that S3 bounds are the diagonal unimodular forms.)

Next, let us discuss 3d N D 2 theory TŒM3IG� for M3 D L.p; q/ and G D U.N/.
First, since H1.M3/ D Zp we immediately obtain the number of vacua on S1 � R

2,
cf. (25):

#fvacua of TŒL.p; q/IU.N/�g D .N C p � 1/Š
NŠ.p � 1/Š (44)

which, according to (24), is obtained by counting U.N/ flat connections on S3=Zp.
Incidentally, this also equals the number of SU.p/ representations at level N, which
is crucial for identifying Vafa–Witten partition functions on ALE spaces with WZW
characters [Nak94, VW94].

There are several ways to approach the theory TŒL.p; q/IU.N/�, in particular, to
give a Lagrangian description, that we illustrate starting with the simple case of
N D 1 and q D 1. For example, one approach is to make use of the Hopf fibration
structure on the Lens space L.p; 1/ D S3=Zp and to reduce the M-theory setup
with a fivebrane on the S1 fiber. This reduction was very effective, e.g., in analyzing
a similar system of fivebranes on Lens spaces with half as much supersymmetry
[AV01]. It yields type IIA string theory with a D4-brane wrapped on the base S2 of
the Hopf fibration with �p units of Ramond–Ramond 2-form flux through the S2.
The effective theory on the D4-brane is 3d N D 2 theory with U.1/ gauge group
and supersymmetric Chern–Simons coupling at level �p induced by the RR 2-form
flux, thus, motivating the following proposal:

TŒL.p; 1/IU.1/� D U.1/ SUSY Chern–Simons theory at level � p (45)

To be more precise, this theory as well as quiver Chern–Simons theories (37) labeled
by plumbing graphs in addition includes free chiral multiplets, one for each vertex
in the plumbing graph. Since in the abelian, G D U.1/ case these chiral multiplets
decouple and do not affect the counting of GC flat connections, we tacitly omit
them in our present discussion. However, they play an important role and need to be
included in the case of G D U.N/.

Another approach, that also leads to (45), is based on the Heegaard splitting of
M3. Indeed, as we already mentioned earlier, L.p; q/ is a Dehn surgery on the unknot
in S3 with the coefficient � p

q . It means that M3 D L.p; q/ can be glued from two

copies of the solid torus, S1�D2, whose boundaries are identified via non-trivial map

 W T2 ! T2. The latter is determined by its action on homology H1.T2IZ/ Š Z˚Z
which, as usual, we represent by a 2 � 2 matrix
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Fig. 6 (a) A genus-1
Heegaard splitting of a
3-manifold M3 becomes a 4d
N D 4 super-Yang-Mills
theory (b) coupled to
three-dimensional N D 2

theories TŒM�

3 � and TŒMC

3 � at
the boundary

4d3d
T[M3

–]

M3
–

a b
3d
T[M3

+ ]

M3
+


 D
�

p r
q s

�
(46)

with ps � qr D 1. If .� p
q / D Œa1; a2; : : : ; an� is given by the continued fraction

expansion (43), we can explicitly write

�
p r
q s

�
D
��a1 �1
1 0

���a2 �1
1 0

�
: : :

��an �1
1 0

�
(47)

This genus-1 Heegaard decomposition has a simple translation to physics,
illustrated in Fig. 6. Again, let us first consider the simple case with N D 1

and q D 1. Then, the 6d .0; 2/ theory on T2 gives 4d N D 4 supersymmetric
Maxwell theory, in which the SL.2;Z/ action (46) on a torus is realized as the
electric–magnetic duality transformation. On the other hand, each copy of the solid
torus defines a “Lagrangian” boundary condition that imposes Dirichlet boundary
condition on half of the N D 4 vector multiplet and Neumann boundary condition
on the other half. Hence, the combined system that corresponds to the Heegaard
splitting of L.p; 1/ is 4d N D 4Maxwell theory on the interval with two Lagrangian
boundary conditions that are related by an S-duality transformation 
 D � p �1

1 0

�
and

altogether preserve N D 2 supersymmetry in three non-compact dimensions.
Following the standard techniques [HW97, GW09], this theory can be realized

on the world-volume of a D3-brane stretched between two fivebranes, which impose
suitable boundary conditions at the two ends of the interval. If both boundary
conditions were the same, we could take both fivebranes to be NS5-branes.
However, since in this brane approach the S-duality of N D 4 gauge theory is
realized as S-duality of type IIB string theory, it means that the two fivebranes on
which D3-brane ends are related by a transformation (46). In particular, if we choose
one of the fivebranes to be NS5, then the second fivebrane must be a .p; q/ fivebrane,
with D5-brane charge p and NS5-brane charge q, as shown in Fig. 7. In the present
case, q D 1 and the effective theory on the D3-brane stretched between NS5-brane
and a 5-brane of type .p; 1/ is indeed N D 2 abelian Chern–Simons theory (35) at
level �p, in agreement with (45).

This approach based on Heegaard splitting and the brane construction suggests
that TŒL.p; q/IU.1/� associated with a more general gluing automorphism (46)
should be a 3d N D 2 theory on the D3-brane stretched between NS5-brane
and a 5-brane of type .p; q/. This theory on the D3-brane, shown in Fig. 7, indeed
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(p,q)

D3

NS5

Fig. 7 The effective 3d N D 2 theory on a D3-brane stretched between NS5-brane and a 5-brane
of type .p; q/ is a Chern–Simons theory at level k D � p

q . We describe it as a “quiver Chern–Simons

theory” with integer levels ai given by the continued fraction � p
q D Œa1; : : : ; an�

has the effective Chern–Simons coupling at level � p
q [KOO99, BHKK99, Oht99].

However, a better way to think about this N D 2 theory—that avoids using
fractional Chern–Simons levels and that we take as a proper Lagrangian formulation
of TŒL.p; q/IU.1/�—is based on writing the general SL.2;Z/ element (46) as a word
in standard S and T generators that obey S4 D .ST/3 D id,


 D S Ta1 S Ta2 � � � S Tan (48)

and implementing it as a sequence of operations on the 3d N D 2 abelian gauge
theory a la [Wit03]. Specifically, the T element of SL.2;Z/ acts by adding a level-1
Chern–Simons term,

T W L D 1

4�

Z
d4� V† D 1

4�
A ^ dAC � � � (49)

while the S transformation introduces a new U.1/ gauge (super)field eA coupled to
the “old” gauge (super)field A via Chern–Simons term

S W L D 1

2�

Z
d4� eV† D 1

2�
eA ^ dAC � � � (50)

Equivalently, the new vector superfield containing eA couples to the “topological”
current �F D �dA carried by the magnetic charges for A.

Using this SL.2;Z/ action on abelian theories in three dimensions, we propose
the following candidate for the generalization of the Lens space theory (45) to
jqj 	 1:

TŒL.p; q/IU.1/� D U.1/n theory with Chern–Simons coefficients Qij (51)

where the matrix Q is given by (18) and � p
q D Œa1; : : : ; an� is the continued

fraction expansion (43). Note, the matrix of Chern–Simons coefficients in this Lens
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space theory can be conveniently represented by a quiver diagram identical to the
plumbing graph in Fig. 1. The proposal (51) for the Lens space theory is, in fact, a
special case of (37) and can be justified in the same way, by comparing the critical
points of the twisted superpotential (39) with solutions to (31).

Both methods that we used to derive the basic 3d N D 2 Lens space theory (45)
suggest a natural generalization to G D U.N/:

TŒL.p; 1/IU.N/� D
(

U.N/ SUSY Chern–Simons theory at level � p

with a chiral multiplet in the adjoint representation
(52)

which corresponds to replacing a single D3-brane in the brane construction on Fig. 7
by a stack of N D3-branes. Indeed, the Witten index of N D 2Chern–Simons theory
with gauge group SU.N/ and level p (with or without super-Yang-Mills term) is
equal to the number of level p representations of affine SU.N/, see [Wit99] and also
[BHKK99, Oht99, Smi10]:

ISU.N/p D
.N C p � 1/Š
.N � 1/ŠpŠ (53)

After multiplying by p
N to pass from the gauge group SU.N/ to U.N/ D U.1/�SU.N/

ZN
we get the number of SU.p/N representations (44), which matches the number
of U.N/ flat connections on the Lens space L.p; 1/. Note that the role of the
level and the rank are interchanged compared to what one might naturally expect.
An alternative UV Lagrangian for the theory (52), that makes contact with the
cohomology of the Grassmannian [Wit93, KW13], is a N D 2U.N/ Chern–Simons
action at level � p

2
coupled to a chiral multiplet in the adjoint representation and p

chiral multiplets in the anti-fundamental representation. This theory was studied
in detail in [GP15], where further connections to integrable systems and quantum
equivariant K-theory of vortex moduli spaces were found.

2.6 3d N D 2 Theory TŒM3IG� for General M3 and G

Now it is clear how to tackle the general case of N fivebranes on a 4-manifold M4

with boundary M3 D @M4. This setup leads to a 2d N D .0; 2/ theory TŒM4IG� on
the boundary of the half-space coupled to a 3d N D 2 theory TŒM3IG� in the bulk,
with the group G of rank N and Cartan type A, D, or E.

For a general class of 4-manifolds (13) considered here, the boundary 3-manifold
is an integral surgery on a link K in S3. As usual, we denote the link components Ki,
i D 1; : : : ; n. Therefore, the corresponding theory TŒM3� can be built by “gluing”
the 3d N D 2 theory TŒS3 n K� associated with the link complement with n copies
of the 3d N D 2 theory TŒS1 � D2� associated with the solid torus:
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TŒM3� D TŒS3 n K� ˝
�

a1 ı TŒS1 � D2�

�
˝ : : : ˝

�

an ı TŒS1 � D2�

�
„ ƒ‚ …

n copies

(54)

As pointed out in the footnote 8, it is important that the theory TŒS3 n K� accounts
for all flat GC connections on the link complement, including the abelian ones.
Such theories are known for GC D SL.2;C/ and for many simple knots and
links [NRXS12, FGSS], in fact, even in a more “refined” form that knows about
categorification and necessarily incorporates all branches of flat connections. For
GC of higher rank, it would be interesting to work out such TŒS3 n K� following
[DGG13]. In particular, the results of [DGG13] elucidate one virtue of 3d N D 2

theories TŒM3IG�: they always seem to admit a UV description with only U.1/
gauge fields (but possibly complicated matter content and interactions). This will
be especially important to us in Sect. 4: in order to identify a 2d .0; 2/ theory
TŒM4� associated with a 4-manifold M4 bounded by M3 we only need to understand
boundary conditions of abelian 3d N D 2 theories.

The second basic ingredient in (54) is the theory TŒS1 � D2� associated with the
solid torus. This theory is very simple for any N 	 1 and corresponds to the Dirichlet
(D5-brane) boundary condition of N D 4 super-Yang-Mills theory, cf., Fig. 6. To
be more precise, if we denote by T � G the maximal torus of G, then GC flat
connections on T2 D @

�
S1 � D2

�
are parametrized by two TC-valued holonomies,

modulo the Weyl group W of G,

.x; y/ 2 .TC � TC/ =W (55)

Only a middle dimensional subvariety in this space corresponds to GC flat connec-
tions that can be extended to the solid torus S1�D2. Namely, since one of the cycles
of T2 (the meridian of Ki) is contractible in N.Ki/ Š S1 � D2, the GC holonomy on
that cycle must be trivial, i.e.,

VTŒS1�D2� D
�
.xi; yi/ 2 TC � TC

W

ˇ̌
ˇ xi D 1

	
(56)

The SL.2;Z/ transformation 
ai gives a slightly more interesting theory 
ai ıTŒS1�
D2�, whose space of supersymmetric vacua (24) is simply an SL.2;Z/ transform
of (56):

V
ai ıTŒS1�D2� D
�
.xi; yi/ 2 TC � TC

W

ˇ̌
ˇ xai

i yi D 1
	

(57)

See, e.g., [Guk05] for more details on Dehn surgery in the context of complex
Chern–Simons theory.

The space of vacua (57) essentially corresponds to N D 2 Chern–Simons theory
at level ai. Therefore, when performing a surgery on Ki, the operation of gluing
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back N.Ki/ Š S1 � D2 with a twist 
ai 2 SL.2;Z/ means gauging the i-th global
symmetry of the 3d N D 2 theory TŒS3 n K� and introducing a Chern–Simons term
at level ai. Before this operation, in the theory TŒS3 n K� associated with the link
complement, the twisted masses and Fayet–Iliopoulos parameters .log xi; log yi/ are
expectation values of real scalars in background vector multiplets that couple to
flavor and topological currents, respectively

For instance, when GC D SL.2;C/ and K is a knot (i.e., a link with a single
component), the holonomy eigenvalues x and y are both C

�-valued, and the space
of vacua VTŒS3nK� is the algebraic curve AK.x; y/ D 0, the zero locus of the A-
polynomial. Therefore, modulo certain technical details, the vacua of the combined
theory (54), in this case can be identified with the intersection points of the two
algebraic curves, cf. (26):

VTŒM3� D fAK.x; y/ D 0g \ fxay D 1g (58)

modulo Z2 action of the SL.2;C/ Weyl group .x; y/ 7! .x�1; y�1/. Note, both the
A-polynomial AK.x; y/ of any knot and the equation xay D 1 are invariant under this
symmetry. In particular, if K is the unknot we have A.unknot/ D y � 1 and these
two conditions give an SL.2;C/ analogue of (31).

As a simple illustration one can consider, say, a negative definite 4-manifold
whose Kirby diagram consists of the left-handed trefoil knot K D 31 with the
framing coefficient a D �1:

−1

(59)

Using standard tools in Kirby calculus (that we review shortly), it is easy to verify
that the boundary of this 4-manifold is the Poincaré homology sphere †.2; 3; 5/,
cf. (21), realized here as a �1 surgery on the trefoil knot in S3. Therefore,
the corresponding theory TŒ†.2; 3; 5/� can be constructed as in (54). The knot
complement theory that accounts for all flat connections is well known in this case
[FGSS]; in fact, [FGSS] gives two dual descriptions of TŒS3 n 31�. In this theory, the
twisted mass log x is the vev of the real scalar in background vector multiplet V that
couples to the U.1/x flavor symmetry current. Gauging the flavor symmetry U.1/x
by adding a N D 2 Chern–Simons term for V at level a D �1 gives the desired
Poincaré sphere theory:

LTŒ†.2;3;5/� D LTŒS3n31� �
1

4�

Z
d4� V† (60)

Upon compactification on S1, the field � D log x is complexified and the critical
points (40) of the twisted superpotential in the effective 2d N D .2; 2/ theory
TŒ†.2; 3; 5/�,
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exp
@

@ log x

�eWTŒS3nK� C
a

2
.log x/2

�
D 1 ; (61)

automatically reproduce Eq. (58) for flat SL.2;C/ connections.

2.7 Gluing Along a Common Boundary

Given two manifolds MC
4 and M�

4 which have the same boundary (component) M3,
there is a natural way to build a new 4-manifold labeled by a map ' W M3 ! M3

that provides an identification of the two boundaries:

M4 D M�
4 [' MC

4 (62)

For example, let M�
4 be the negative E8 plumbing, and let M

C
4 be the handlebody

on the left-handed trefoil knot with the framing coefficient a D �1. As we already
mentioned earlier, both of these 4-manifolds are bounded by the Poincaré homology
sphere †.2; 3; 5/, i.e.,

E8
∂≈

−1

(63)

Therefore, in order to glue these 4-manifolds “back-to-back” as illustrated in Fig. 8,
we need to reverse the orientation of one of them, which in the language of Kirby
diagrams amounts to replacing all knots with mirror images and flipping the sign of
all framing numbers:

M4.K
a1
1 ; : : : ;K

an
n /

orientation�������!
reversal

M4.K
�a1
1 ; : : : ;K

�an

n / (64)

Thus, in our example we need to change the left-handed trefoil knot K D 31 with
framing a D �1 to the right-handed trefoil knot K with framing coefficient C1.
The resulting 4-manifold MC

4 with a single 2-handle that corresponds to this Kirby
diagram has boundary M3 D @MC

4 D �@M�
4 , so that now it can be glued to M�

4 D
E8 plumbing.

Gluing 4-manifolds along a common boundary, as in (62), has a nice physical
interpretation. Namely, it corresponds to the following operation on the 2d N D
.0; 2/ theories TŒM4̇ � that produces a new theory TŒM4� associated with the resulting
4-manifold M4 D M�

4 [' MC
4 . As we already explained in Sect. 2.2, partial

topological reduction of the 6d fivebrane theory on a 4-manifold with a boundary
M3 leads to a coupled 2d-3d system of 3d N D 2 theory TŒM3� with a B-type
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2d
T[M4

–]
3d

T[M3]
M3M4

–

a b
2d
T[M4

+]

M4
+

Fig. 8 (a) Two 4-manifolds glued along a common boundary M3 D ˙@M˙

4 correspond to (b)
three-dimensional N D 2 theory TŒM3� on the interval coupled to two-dimensional N D .0; 2/

theories TŒM�

4 � and TŒMC

4 � at the boundaries of the interval

boundary condition determined by the 4-manifold. (If the 4-manifold in question
has other boundary components, besides M3, then the reduction of the 6d fivebrane
theory leads to a wall/interface between TŒM3� and other 3d N D 2 theories; this
more general possibility will be discussed in the next section.)

In the case at hand, we have two such 4-manifolds, M�
4 and MC

4 , with oppositely
oriented boundaries @M4̇ D ˙M3. What this means is that TŒMC

4 � defines a B-type
boundary condition — with 2d N D .0; 2/ supersymmetry on the boundary—in 3d
N D 2 theory TŒM3�, while TŒM�

4 � likewise defines a B-type boundary condition in
the theory TŒ�M3�. Equivalently, TŒ�M3� can be viewed as a theory TŒM3� with the
reversed parity:

TŒ�M3� D P ı TŒM3� (65)

where P W .x0; x1; x2/ ! .x0; x1;�x2/. This operation, in particular, changes the
signs of all Chern–Simons couplings in TŒM3�.

Therefore, thanks to (65), we can couple TŒM�
4 � and TŒMC

4 � to the same 3d N D
2 theory TŒM3� considered in space-time R2� I, where I is the interval. In this setup,
illustrated in Fig. 8, theories TŒM4̇ � define boundary conditions at the two ends of
the interval I. As a result, we get a layer of 3d N D 2 theory TŒM3� on R

2 � I
sandwiched between TŒM�

4 � and TŒMC
4 �. Since the 3d space-time has only two non-

compact directions of R
2, in the infra-red this system flows to a 2d N D .0; 2/

theory, which we claim to be TŒM4�.
The only element that we need to explain is the map ' W M3 ! M3 that enters the

construction (62) of the 4-manifold M4. If exist, non-trivial self-diffeomorphisms of
M3 correspond to self-equivalences (a.k.a. dualities) of the theory TŒM3�. Therefore,
a choice of the map ' W M3 ! M3 in (62) means coupling theories TŒM4̇ � to
different descriptions/duality frames of the 3d N D 2 theory TŒM3� or, equivalently,
inserting a duality wall (determined by ') into the sandwich of TŒM�

4 �, TŒM3�, and
TŒMC

4 �. Of course, one choice of ' W M3 ! M3 that always exists is the identity
map; it corresponds to the most natural coupling of theories TŒM4̇ � to the same
description of TŒM3�. Since ' W M3 ! M3 can be viewed as a special case of a
more general cobordism between two different 3-manifolds that will be discussed
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in Sect. 2.10, when talking about gluing 4-manifolds we assume that ' D id unless
noted otherwise. Then, we only need to know which 4-manifolds have the same
boundary.

2.8 3d Kirby Moves

Since our list of operations includes gluing 4-manifolds along their common
boundary components, it is important to understand how M3.‡/ depends on the
plumbing graph ‡ and which 4-manifolds M4.‡/ have the same boundary (so
that they can be glued together). Not surprisingly, the set of moves that preserve
the boundary M3.‡/ D @M4.‡/ is larger than the set of moves that preserve the
4-manifold M4.‡/.

Specifically, plumbing graphs ‡1 and ‡2 describe the same 3-manifold
M3.‡1/ Š M3.‡2/ if and only if they can be related by a sequence of “blowing
up” or “blowing down” operations shown in Fig. 9, as well as the moves in Fig. 10.
The blowing up (resp. blowing down) operations include adding (resp. deleting) a
component of ‡ that consists of a single vertex with label ˙1. Such blow ups have
a simple geometric interpretation as boundary connected sum operations with very

simple 4-manifolds CP2 n fptg and CP
2 n fptg, both of which have S3 as a boundary

and, therefore, only change M4 but not M3 D @M4. As will be discussed shortly,
this also has a simple physical counterpart in physics of 3d N D 2 theory TŒM3�,
where the blowup operation adds a decoupled “trivial’ ’ N D 2 Chern–Simons
term (52) at level ˙1, which carries only boundary degrees of freedom and has a
single vacuum, cf. (44). For this reason, blowing up and blowing down does not
change TŒM3IG� and only changes TŒM4IG� by free Fermi multiplets, for abelian
as well as non-abelian G.

Applying these moves inductively, it is easy to derive a useful set of rules
illustrated in Fig. 11 that, for purposes of describing the boundary of M4, allow to
collapse linear chains of sphere plumbings with arbitrary framing coefficients ai via
continued fractions

...
.

a1 a2

blow up

blow down

blow up

blow down...
.

...
.

...
.

...
.

a ± 1  ± 1

 ± 1

a1 ± 1  a2 ± 1

...
. a

Fig. 9 Blowing up and blowing down does not change the boundary M3 D @M4
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a1 + a2

...
.

...
.

...
.

...
.

...
.

0

0a1 a2

a+ +

(disjoint union)

....Y1

Y1

Ys

Ys

Fig. 10 “3d Kirby moves” that do not change M3 D @M4

Fig. 11 Boundary
diffeomorphisms relating
integral surgery and Dehn
surgery

~~

boundary
....

p/qa1

a2 an

p

q
D a1 �

1

a2 �
1

: : : � 1

an

(66)

To illustrate how this works, let us demonstrate that the An�1 plumbing, as in Fig. 1,
with ai D �2 can be glued to a disc bundle with Euler number �n over S2 to

produce a smooth 4-manifold .CP
2
/#n. In particular, we need to show that these

two 4-manifolds we are gluing naturally have the same boundary with opposite
orientation. This is a simple exercise in Kirby calculus.

Starting with the An�1 linear plumbing, we can take advantage of the fact that˙1
vertices can be added for free and consider instead

C1� �2� �2� �2� � � � �2� (67)

Clearly, this operation (of blowing up) changes the 4-manifold, but not the bound-
ary M3. Now, we slide the new C1 handle over the �2 handle. According to (14),
this preserves the framingC1 of the new handle and changes the framing of the �2
handle to �2C 1 D �1 (since they were originally unlinked), resulting in
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C1� �1� �2� �2� � � � �2� (68)

Note, this plumbing graph with n vertices is a result of applying the first move in
Fig. 9 to the An�1 linear plumbing, which we have explained “in slow motion.” Since
we now have a vertex with weight �1, we can apply the second move in Fig. 9 to
remove this vertex at the cost of increasing the weights of the two adjacent vertices
byC1, which gives

C2� �1� �2� � � � �2� (69)

This last step made the plumbing graph shorter, of length n � 1, and there is a new
vertex with weight �2 C 1 D �1 on which we can apply the blow down again.
Doing so will change the weight of the leftmost vertex from C2 to C3 and after
n � 3 more steps we end up with a plumbing graph

n � 1� �1� (70)

Applying the first move in Fig. 9 we finally get the desired relation

An�1
@ Cn� (71)

Since reversing orientation on the 4-manifold is equivalent (64) to replacing all
knots with mirror images and flipping the sign of all framing numbers, this shows
that An�1 linear plumbing has the same Lens space boundary as the disc bundle with
Euler number �n over S2, but with opposite orientation. In particular, it follows that
these 4-manifolds with boundary can be glued along their common boundary in a
natural way. (No additional orientation reversal or other operation is needed.)

Following these arguments, it is easy to show a more general version of the first
move in Fig. 9 called slam-dunk:

p=q� a� � � � @
a � q

p� � � � (72)

which, of course, is just a special case of the boundary diffeomorphism in Fig. 11.
Another useful rule in 3d Kirby calculus that can be deduced by the same argument
allows to collapse a (sub)chain of .�2/’s:

a� �2� � � � �2�
„ ƒ‚ …

n times

b� @ aC 1� nC 1� bC 1�

which is a generalization of (71).
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2.9 Physical Interpretation of 3d Kirby Moves

All these moves that preserve the boundary 3-manifold M3.‡/ D @M4.‡/ have an
elegant and simple interpretation as equivalences (dualities) of the corresponding 3d
N D 2 theory TŒM3.‡/IU.N/�. Let us illustrate this in the basic case of N D 1, i.e.,
a single fivebrane. Then, as we explained in Sect. 2.2, all theories TŒM3.‡/IU.1/�
admit a description as supersymmetric Chern–Simons theories, and 3d Kirby moves
are precisely the equivalence relations on the matrix of Chern–Simons coefficients
in the quantum theory.

Indeed, the simplest version of blowing up (resp. blowing down) operation that
adds (resp. removes) an isolated vertex with label˙1 in the theory TŒM3.‡/IU.1/�
correspond to changing the matrix of Chern–Simons coefficients

Q ! Q˚ h˙1i (73)

that is, adds (resp. removes) a U.1/ vector multiplet V with the Lagrangian

L D ˙ 1

4�

Z
d4� V† D ˙ 1

4�
A ^ dAC � � � (74)

A theory defined by this Lagrangian is trivial. In particular, it has one-dimensional
Hilbert space. Therefore, tensor products with copies of this trivial theory are indeed
equivalences of TŒM3.‡/IU.1/�. The same is true in the non-abelian case as well,
where blowups change TŒM3IG� by “trivial” Chern–Simons terms at level ˙1 that
carry only boundary degrees of freedom (and, therefore, only affect the physics of
the 2d boundary theory TŒM4IG�, but not the 3d bulk theory TŒM3IG�).

Similarly, we can consider blowing up and blowing down operations shown in
Fig. 9. If in the plumbing graph ‡ a vertex with label˙1 is only linked by one edge
to another vertex with label a ˙ 1, it means that the Lagrangian of the 3d N D 2

theory TŒM3.‡/IU.1/� has the following terms:

L D 1

4�

Z
d4�

�˙V†C 2eV†C .a˙ 1/eVe†C � � � � (75)

where ellipses stand for terms that do not involve the vector superfield V or its field
strength †. Since the action is Gaussian in V , we can integrate it out by solving the
equations of motion˙V CeV D 0. The resulting Lagrangian is

L0 D 1

4�

Z
d4�

�˙eVe†� 2eVe†C .a˙ 1/eVe†C � � � � D 1

4�

Z
d4�

�
aeVe†C � � � �

(76)

This gives a physics realization of the blowing up and blowing down operations in
the top part of Fig. 9. We can easily generalize it to that in the lower part of Fig. 9.
Starting with the right side of the relation, the terms in the Lagrangian which involve
the superfield V at Chern–Simons level ˙1 look like
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L D 1

4�

Z
d4� .˙V†C 2V1†C .a1 ˙ 1/V1†1 C 2V2†C .a2 ˙ 1/V2†2 C � � � /

(77)
Integrating out V yields ˙V C V1 C V2 D 0 and the effective Lagrangian

L0 D 1

4�

Z
d4� .a1V1†1 � 2V1†2 C a2V2†2 C � � � / (78)

which, as expected, describes the left side of the relation in the lower part of Fig. 9.
From this physical interpretation of the blowing up and blowing down operations
in the N D 1 case one can draw a more general lesson: the reason that 2-handles
with framing coefficients a D ˙1 are “nice” corresponds to the fact that 3d N D 2
theory T



M3

�˙1
�
��

is trivial.
The physical interpretation of 3d Kirby moves in Fig. 10 is even simpler: 2-

handles with framing coefficients ai D 0 correspond to superfields in 3d theory
TŒM3.‡/� that serve as Lagrange multipliers. Again, let us explain this in the basic
case of a single fivebrane (N D 1). Let us consider the first move in Fig. 10 and, as
in the previous discussion, denote by V the U.1/ vector superfield associated with a
2-handle (vertex) with framing label 0. Then, the relevant terms in the Lagrangian
of the theory TŒM3.‡/IU.1/� associated with the right part of the diagram are

L D 1

4�

Z
d4�

�
2Ve†C aeVe†C � � � � (79)

Note, there is no Chern–Simons term for V itself, and it indeed plays the role of the
Lagrange multiplier for the condition e† D 0. Therefore, integrating out V makeseV pure gauge and removes all Chern–Simons couplings involving eV . The resulting
quiver Chern–Simons theory is precisely the one associated with the left diagram in
the upper part of Fig. 10.

Now, let us consider the second move in Fig. 10, again starting from the right-
hand side. The relevant part of the Lagrangian for TŒM3.‡/IU.1/� looks like

L D 1

4�

Z
d4� .2V†1 C a1V1†1 C 2V†2 C a2V2†2 C � � � / (80)

where the dependence on V is again only linear. Hence, integrating it out makes the
“diagonal” combination V1 C V2 pure gauge, and for V 0 D V1 D �V2 we get

L0 D 1

4�

Z
d4�

�
.a1 C a2/V

0†0 C � � � � (81)

which is precisely the Lagrangian of the quiver Chern–Simons theory associated
with the plumbing graph in the lower left corner of Fig. 10.

Finally, since all other boundary diffeomorphisms in 3d Kirby calculus follow
from these basic moves, it should not be surprising that the manipulation in Fig. 11
as well as the slam-dunk move (72) also admit an elegant physical interpretation.
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However, for completeness, and to practice a little more with the dictionary between
3d Kirby calculus and equivalences of 3d N D 2 theories, we present the
details here. Based on the experience with the basic moves, the reader might have
(correctly) guessed that both the boundary diffeomorphism in Fig. 11 and the slam-
dunk move (72) correspond to integrating out vector multiplets.

Specifically, for the plumbing graph on the left side of (72) the relevant terms in
the Lagrangian of the theory TŒM3.‡/IU.1/� look like

L D 1

4�

Z
d4�

�
p

q
V†C 2eV†C aeVe†C � � �

�
(82)

Since there are no other terms in the Lagrangian of TŒM3.‡/IU.1/� that contain the
superfield V or its (super)field strength †, we can integrate it out. Replacing V by
the solution to the equation p

q V C eV D 0 gives the Lagrangian for the remaining
fields

L D 1

4�

Z
d4�

��
a � q

p

�eVe†C � � �
�

(83)

which is an equivalent description of the theory TŒM3.‡/IU.1/�, in fact, the one
associated with the right-hand side of the slam-dunk move (72). By now it should
be clear what is going on. In particular, by iterating this process and integrating in or
integrating out U.1/ vector superfields, it is easy to show that quiver Chern–Simons
theories associated with Kirby diagrams in Fig. 11 are indeed equivalent.

2.10 Cobordisms and Domain Walls

Now, it is straightforward to generalize the discussion in previous sections to
4-manifolds with two (or more) boundary components. The lesson we learned is
that each boundary component of M4 corresponds to a coupling with 3d N D 2

theory labeled by that component.
In general, when a 4-manifold M4 has one or more boundary components, it is

convenient to view it as a (co)bordism from M�
3 to MC

3 , where M3̇ is allowed to
be empty or contain several connected components, see Fig. 12a. If M�

3 D ; (or
MC
3 D ;), then the corresponding 3d N D 2 theory TŒM�

3 � (resp. TŒMC
3 �) is trivial.

And, when M3̇ has more than one connected component, the corresponding theory
TŒM3̇ � is simply a tensor product of 3d N D 2 theories associated with those
components. (In fact, we already encountered similar situations, e.g., in (54), when
we discussed 3-manifolds with several boundary components.)

What kind of 2d theory TŒM4� corresponds to a cobordism from M�
3 to MC

3 ?
There are several ways to look at it. First, trying to erase any distinction between
MC
3 and M�

3 , we can view any such 4-manifold as a cobordism from ; to MC
3 t�M�

3 ,
i.e., as a 4-manifold with boundary M3 D MC

3 t�M�
3 , thus reducing the problem to
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Fig. 12 (a) A cobordism between 3-manifolds M�

3 and MC

3 corresponds to (b) a 2d N D .0; 2/

theory TŒM4� on the domain wall (interface) coupled to 3d N D 2 theories TŒM�

3 � and TŒMC

3 � on
both sides

the one already considered. Indeed, using (65), to a 4-manifold M4 with boundary
MC
3 t�M�

3 we associate a 3d N D 2 theory TŒMC
3 �˝

�
P ı TŒM�

3 �
�

on a half-space
RC � R

2 coupled to a boundary theory TŒM4�. In turn, this product 3d theory on a
half-space is equivalent—via the so-called folding trick [WA94, OA97, BdDO02]—
to a 3d theory TŒMC

3 � or TŒM�
3 � in two regions of the full three-dimensional space

R
3, separated by a 2d interface (that in 3d context might be naturally called a “defect

wall”). This gives another, perhaps more natural way to think of 2d N D .0; 2/

theory TŒM4� associated with a cobordism from M�
3 to MC

3 , as a theory trapped on
the interface separating two 3d N D 2 theories TŒM�

3 � or TŒMC
3 �, as illustrated

in Fig. 12.
In order to understand the physics of fivebranes on 4-manifolds, it is often

convenient to compactify one more direction, i.e., consider the fivebrane world-
volume to be S1 � R � M4. In the present context, it leads to an effective
two-dimensional theory with N D .2; 2/ supersymmetry and a B-type defect9

labeled by M4. In fact, we already discussed this reduction on a circle in Sect. 2.2,
where it was noted that the effective 2d N D .2; 2/ theory—which, with some abuse
of notations, we still denote TŒM3�—is characterized by the twisted superpotentialeW.xi/. Therefore, following the standard description of B-type defects in N D
.2; 2/ Landau–Ginzburg models [HW04, BR07, BJR08, CR10], one might expect
that a defect TŒM4� between two theories TŒM�

3 � and TŒMC
3 � can be described as a

matrix (bi-)factorization of the difference of the corresponding superpotentials

eWTŒMC

3 �
.xi/ � eWTŒM�

3 �
.yi/ (84)

While conceptually quite helpful, this approach is less useful for practical descrip-
tion of the defect walls between TŒM�

3 � and TŒMC
3 �, which we typically achieve by

other methods. The reason, in part, is that superpotentials eW are non-polynomial

9The converse is not true since some line defects in 2d come from line operators in 3d.
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for most theories TŒM3�. We revisit this approach and make additional comments in
Sect. 4.

Note, if 2d theories in question were N D .2; 2/ sigma-models based on target
manifolds XTŒMC

3 �
and XTŒM�

3 �
, respectively, then B-type defects between them could

be similarly represented by correspondences, or (complexes of) coherent sheaves,
or sometimes simply by holomorphic submanifolds

 � XTŒMC

3 �
� XTŒM�

3 �
(85)

Much like defect lines in 2d, defect walls in 3d can be classified according to their
properties and the symmetries they preserve: topological, conformal, reflective or
transmissive, parameter walls, (duality) transformation walls, etc. Various examples
of such walls in 3d N D 2 theories were studied in [GGP13]. For instance,
parameter walls are labeled by (homotopy types of) paths on the moduli space
VTŒM3� and correspond to (autoequivalence) functors acting on the category of B-type
boundary conditions. Transformation walls, on the other hand, in general change 3d
N D 2 theory, e.g., by implementing the SL.2;Z/ action [Wit03] described in (49)–
(50). Topological defects in abelian Chern–Simons theories—which, according to
our proposal (37), are relevant to cobordisms between 3-manifolds—have been
studied, e.g., in [KS11, KS10, FSV12]. In supersymmetric theories, topological
defects are quite special as they are of A-type and B-type at the same time.

The next best thing to topological defects are conformal ones, which in 2d
are usually characterized by their reflective or transmissive properties. Extending
this terminology to walls in 3d, below we consider two extreme examples, which,
much like Neumann and Dirichlet boundary conditions, provide basic ingredients
for building mixed types. See Fig. 13a for an illustration of a generic defect wall
(neither totally reflective nor fully transmissive).

T +−T

−T T +
3d3d 2d

 w
al

l

2d
 w

al
l

a b

Fig. 13 A generic defect wall between two 3d N D 2 theories (a) in flat space-time and (b) the
corresponding configuration on S1 � S2. The index of the latter system is obtained from two copies
of the “half-index” IS1�qD˙

.T˙/ ' Zvortex.T˙/ convoluted via the index (flavored elliptic genus)

of the defect wall supported on S1�S1eq, where D˙ is the disk covering right (resp. left) hemisphere

of the S2 and S1eq WD @DC D �@D� is the equator of the S2
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2.11 Fully Transmissive Walls

The simplest example of a totally transmissive wall (which is also conformal) is
a trivial wall between the theory TŒM3� and itself. It corresponds to the identity
cobordism M3� I and in the language of boundary conditions (85) is represented by
the “diagonal”

X � X � X (86)

and similarly for the LG models (84).
In view of (37) and (52), more interesting examples of maximally transmissive

defects are walls between N D 2 Chern–Simons theories with gauge groups G
and H � G that have H-symmetry throughout. Such defects can be constructed by
decomposing the Lie algebra

g D .g=h/? ˚ hk (87)

and imposing Dirichlet type boundary conditions on the coset degrees of freedom
and Neumann boundary conditions on degrees of freedom for H � G. Equivalently,
via the level-rank or, in the supersymmetric context, Giveon–Kutasov duality
[GK09] equally important are level-changing defect walls in N D 2 Chern–Simons
theories. See, e.g., [FSV12] for the study of defect walls with these properties in a
purely bosonic theory and [QS02, BM09] for various constructions in closely related
WZW models one dimension lower.

2.12 Maximally Reflective Walls

Maximally reflective domain walls between 3d theories TŒM�
3 � or TŒMC

3 � do not
allow these theories to communicate at all. Typical examples of such walls are
products of boundary conditions, B� and BC, for TŒM�

3 � and TŒMC
3 �, respectively:

TŒM4� D B� ˝ BC (88)

In the correspondence between 4-manifolds and 2d N D .0; 2/ theories trapped on
the walls, they correspond to disjoint unions M4 D M�

4 tMC
4 , such that @M4̇ D M3̇ .

2.13 Fusion

Finally, the last general aspect of domain walls labeled by cobordisms that we wish
to mention is composition (or, fusion), Illustrated, e.g., in Fig. 15. As we explain
in the next section, the importance of this operation is that any 4-manifold of the
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form (13) and, therefore, any 2d N D .0; 2/ theory associated with it can built—
in general, in more than one way—as a sequence of basic fusions. Notice, while
colliding general defect walls can be singular, the fusion of B-type walls on S1 �R2
is smooth (since they are compatible with the topological twist along R

2).

2.14 Adding a 2-Handle

We introduced many essential elements of the dictionary (in Table 1) between
4-manifolds and the corresponding 2d theories TŒM4�, and illustrated some of them
in simple examples. Further aspects of this dictionary and more examples will be
given in later sections and future work. One crucial aspect—which, hopefully, is
already becoming clear at this stage—is that a basic building block is a 2-handle.
Indeed, adding 2-handles one-by-one, we can build any 4-manifold of the form (13)!
And the corresponding 2d theory TŒM4� can be built in exactly the same way,
following a sequence of basic steps, each of which corresponds to adding a new
2-handle.

In this section, we shall look into details of this basic operation and, in particular,
explain that adding a new 2-handle at any part of the Kirby diagram can be
represented by a cobordism. Then, using the dictionary between cobordisms and
walls (interfaces) in 3d, that we already explained in Sect. 2.10, we learn that the
operation of adding a 2-handle can be described by a fusion with the corresponding
wall, as illustrated in Figs. 14 and 15.

This interpretation of adding 2-handles is very convenient and very powerful,
especially for practical ways of building theories TŒM4�. For instance, it can be
used to turn a small sample of concrete examples into a large factory for producing
many new ones. Indeed, suppose one has a good understanding of a (possibly rather
small) family of 4-manifolds that can be obtained from one another by adding 2-
handles. Then, by extracting10 the “difference” one gets a key to a much larger
class of 4-manifolds and the corresponding theories TŒM4� that can be constructed
by composing the basic steps (of adding 2-handles) in a variety of new ways, thus,
potentially taking us well outside of the original family. A good starting point for
implementing this algorithm and deducing the set of basic cobordisms (resp. the
2d .0; 2/ domain wall theories) can be a class of ADE sphere plumbings, as in
Figs. 1 and 2, for which the Vafa–Witten partition function is known to be the
level N character of the corresponding WZW model [Nak94, VW94]. We pursue
this approach in Sect. 3 and identify the corresponding basic operations of adding
2-handles with certain coset models.

Suppose our starting point is a 4-manifold M�
4 with boundary

@M�
4 D M�

3 (89)

10Explaining how to do this is precisely the goal of the present section.
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Fig. 14 The operation of attaching a 2-handle to M�

4 can be represented by a cobordism, namely
the closure of MC

4 n M�

4 . This operation corresponds to fusing a 2d wall (interface) determined
by the cobordism with a boundary theory TŒM�

4 � to produce a new boundary theory TŒMC

4 �.
Equivalently, the system on the left—with a domain wall sandwiched between 3d N D 2 theories
TŒM�

3 � and TŒMC

3 �—flows in the infra-red to a new boundary condition determined by TŒMC

4 �

Attaching to it an extra 2-handle we obtain a new 4-manifold MC
4 with a new

boundary

@MC
4 D MC

3 (90)

A convenient way to describe this operation—which admits various generalizations
and a direct translation into operations on TŒM�

4 �—is to think of (the closure of)
MC
4 nM�

4 as a (co)bordism, B, from M�
3 to MC

3 . In other words, we can think of MC
4

as a 4-manifolds obtained by gluing M�
4 to a cobordism B with boundary

@B D �M�
3 [MC

3 (91)

Therefore,

MC
4 D M�

4 [' B (92)

where ' W M3 ! M3 is assumed to be the identity map, unless noted otherwise.
We have H3.M

C
4 ;B/ Š H3.M�

4 ;M
�
3 / Š H1.M�

4 / by Poincaré duality. The latter
is trivial, H1.M�

4 / D 0. Then, comparing the exact sequence for the pair .MC
4 ;B/

with the exact sequence for the triple .MC
4 ;B;M

C
3 / we get the following diagram:
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Fig. 15 The process of building a 4-manifold M4 labeled by a plumbing tree can be represented by
a sequence of basic cobordisms with b2 D 1, where each step adds a new 2-handle. Each cobordism
corresponds to a 2d wall (interface), and the process of building M4 corresponds to defining TŒM4�

as the IR limit of the layered system of 3d theories trapped between walls shown on the lower part
of the figure. Note, in general, there are many equivalent ways of building the same 4-manifold M4

by attaching 2-handles in a different order; they correspond to equivalent descriptions (dualities)
of the same 2d .0; 2/ theory TŒM4�

0! H2.B/ ! H2.M
C
4 / ! H2.M

C
4 ;B/

k # # k
0! H2.B;M

C
3 /! H2.M

C
4 ;M

C
3 / ! H2.M

C
4 ;B/ ! H1.B;M

C
3 / D 0

ok P:D: ok
H2.MC

4 / H2.M�
4 ;M

�
3 /

ok ok P:D:
H2.M

C
4 /

� ����! H2.M�
4 /

�

(93)

In this diagram, the map from H2.M
C
4 / to its dual H2.M

C
4 /

� Š H2.MC
4 / is given by

the intersection form QC � QMC

4
. Therefore, we get

0! H2.B/! H2.M
C
4 /

QC

���! H2.M
C
4 /

� ����! H2.M
�
4 /

� (94)
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Since the second map, from H2.B/ to H2.M
C
4 /, is injective, it follows that

H2.B/ D ker
�
�� ı QC� (95)

This useful result can tell us everything we want to know about the cobordism B
from the data of M�

4 and MC
4 .

In particular, when both MC
4 and M�

4 are sphere plumbings, and the plumbing
tree of the former is obtained by adding a new vertex (with an edge) to the plumbing
tree of the latter, as in Fig. 15, the second homology of the cobordism B is one-
dimensional,

b2.X/ D 1 ; (96)

and, therefore, its intersection form is determined by the self-intersection of a single
generator s 2 H2.B/. Thus, introducing a natural basis fsig for H2.M

C
4 /, such that

the intersection pairing

QC.si; si/ D QC
ij (97)

is determined by the (weighted) plumbing tree, the generator s 2 H2.B/ can be
expressed as a linear combination

s D
b2.M

C

4 /X
iD1

kisi (98)

where the coefficients ki 2 Z are determined by (95):

QC.s; x/ D 0 ; 8x 2 H2.M
�
4 / (99)

In practice, of course, it suffices to verify this orthogonality condition only on the
basis elements of H2.M�

4 /. Then, it determines the cohomology generator (98) and,
therefore, the self-intersection number QC.s; s/.

As a warm-up, let us illustrate how this works in the case of a linear plumbing in
Fig. 1, where for simplicity we start with the case where all Euler numbers ai D �2.
Namely, if M�

4 has a linear plumbing graph with n� 1 vertices and MC
4 has a linear

plumbing graph with n vertices, then the condition (99) becomes

Q.s; si/ D 0 ; i D 1; : : : ; n � 1 (100)

or, more explicitly,

� 2k1 C k2 D 0 (101)

ki�1 � 2ki C kiC1 D 0 i D 2; : : : ; n � 1
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Solving these equations we find the generator s 2 H2.B/,

s D s1 C 2s2 C 3s3 C � � � C nsn (102)

for the cobordism B that relates An�1 and An linear plumbings. Now, the self-
intersection is easy to compute:

QC.s; s/ D �n.nC 1/ (103)

It is easy to generalize this calculation to linear plumbings with arbitrary framing
coefficients ai, as well as plumbing graphs which are not necessarily linear. As the
simplest example of the latter, let us consider a 2-handle attachment in the first step
of Fig. 15 that turns a linear plumbing graph with three vertices

M�
4 W

a� b� c� (104)

into a non-linear plumbing graph with a trivalent vertex:

MC
4 W

d�
a� �

b

c�
(105)

In order to determine the cobordism B that does the job we are again going to
use (95) or, better yet, its more explicit version (99) suitable for arbitrary plumbing
trees. As before, denoting by si the generators of H2.M

C
4 / with the intersection

pairing (97), which is easy to read off from (105), we get the system of linear
equations (99) that determines the generator (98) of the cobordism B:

QC.s; s1/ D ak1 C k2 D 0

QC.s; s2/ D k1 C bk2 C k3 C k4 D 0 (106)

QC.s; s3/ D k2 C ck3 D 0

Of course, in case of negative-definite 4-manifolds a, b, c, and d are all supposed to
be negative. Solving these equations we find the integer coefficients in (98),

k1 D c

gcd.a; c/
; k2 D � ac

gcd.a; c/
; k3 D a

gcd.a; c/
; k4 D abc � a � c

gcd.a; c/
(107)

which, in turn, determine the intersection form on B:

QC.s; s/ D .abcd � ac � ad � cd/.abc � a � c/

gcd.a; c/2
(108)

For instance, if a D b D c D d D �2, we get QB D h�4i.
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3 Top-Down Approach: Fivebranes and Instantons

In this section we approach the correspondence between 4-manifolds and 2d
N D .0; 2/ theories TŒM4IG� by studying the (flavored) elliptic genus (9) which,
according to (10), should match the Vafa–Witten partition function.

In particular, we propose the “gluing rules” that follow operations on 4-manifolds
introduced in Sect. 2 and identify the set of basic cobordisms with branching
functions in certain coset models. In the non-abelian case, the key ingredient in the
gluing construction is the integration measure, which we propose to be the index
of a 2d .0; 2/ vector multiplet. Another key ingredient, which plays an important
role in (10) for non-compact 4-manifolds, is a relation between discrete basis and
continuous basis introduced in Sect. 3.10.

3.1 Vafa–Witten Theory

In order to realize the Vafa–Witten twist of 4d N D 4 super-Yang-Mills [VW94]
in M-theory, we start with the six-dimensional .2; 0/ theory realized on the world-
volume of N fivebranes. The R-symmetry group of the .2; 0/ theory is Sp.2/r Š
SO.5/r and can be viewed as a group of rotations in the five-dimensional space
transverse to the fivebranes. A .2; 0/ tensor multiplet in six dimensions contains 5
scalars, 2 Weyl fermions and a chiral 2-form, which under Sp.2/r transform as 5, 4,
and 1, respectively.

We are interested in the situation when the M-theory space is S1 �Rt �M7 �C,
where M7 is a 7-manifold with G2 holonomy and Rt may be considered as the time
direction. We introduce a stack of N fivebranes supported on the subspace S1�Rt �
M4, where M4 is a coassociative cycle in M7. This means that the normal bundle of
M4 inside M7 is isomorphic to the self-dual part of ƒ2T�M4:

TM7=M4 Š ƒ2CT�M4 : (109)

Moreover, the neighborhood of M4 in M7 is isomorphic (as a G2-manifold) to the
neighborhood of the zero section of ƒ2CT�M4.

Since both the 11-dimensional space-time and the fivebrane world-volume in
this setup have S1 as a factor, we can reduce on this circle to obtain N D4-branes
supported on R �M4 in type IIA string theory. The D4-brane world-volume theory
is maximally supersymmetric (N D 2) super-Yang-Mills in five dimensions with
the following field content:
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spectrum of 5d super-Yang-Mills

Spin.5/E Sp.2/r
1-form 5 1
scalars 1 5
fermions 4 4

The rotation symmetry in the tangent bundle of M4 is Spin.4/E Š SU.2/L � SU.2/R
subgroup of the Spin.5/E symmetry of the Euclidean five-dimensional theory. Five
normal direction to the branes are decomposed into three directions normal to
M4 inside M7 and two directions of C-plane. This corresponds to the following
decomposition of the R-symmetry group:

SO.5/r ! SO.3/A � SO.2/U Š SU.2/A � U.1/U: (110)

The fields of the 5d super-Yang-Mills transform under the resulting SU.2/L �
SU.2/R � SU.2/A � U.1/U symmetry group as

bosons W .5; 1/˚ .1; 5/! .2; 2; 1/0 ˚ .1; 1; 1/0 ˚ .1; 1; 3/0 ˚ .1; 1; 1/˙2
fermions W .4; 4/! .2; 1; 2/˙1 ˚ .1; 2; 2/˙1

(111)

Non-trivial embedding of the D4-branes in space-time with the normal bundle (109)
corresponds [BVS95] to identifying SU.2/L with SU.2/A and gives precisely the
topological twist introduced by Vafa in Witten [VW94]. The spectrum of the
resulting theory looks like:

bosons W .2; 2/0 ˚ .1; 1/0 ˚ .3; 1/0 ˚ .1; 1/˙2
fermions W .1; 1/˙1 ˚ .3; 1/˙1 ˚ .2; 2/˙1 (112)

where we indicate transformation under the symmetry group SU.2/0L � SU.2/R �
U.1/U . Here, the subgroup SU.2/0L � SU.2/R is the new rotation symmetry along
M4, whereas U.1/U is the R-symmetry11 of the effective N D 2 supersymmetric
quantum mechanics T1dŒM4� on Rt. The U.1/U quantum number is called the ghost
number.

From (112) it is clear that the resulting supersymmetric quantum mechanics
T1dŒM4� has two supercharges, which are scalar from the viewpoint of the 4-
manifold M4 and which carry ghost number U D C1 and U D �1, respectively.
When the quantum mechanics is lifted to the 2d theory TŒM4� on S1�Rt they become
supercharges of N D .0; 2/ SUSY. Among the bosons, two states .1; 1/˙2 with non-
zero ghost number are scalars 
 and 
 that are not affected by the twist, the state
.3; 1/0 is the self-dual 2-form field B, and finally the state .1; 1/0 is the scalar field

11Note, in [VW94] the symmetry group U.1/U is enhanced to the global symmetry group SU.2/U
due to larger R-symmetry of the starting point.
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C, all transforming in the adjoint representation of the gauge group. The state .2; 2/0

is, of course, the gauge connection on M4:

.2; 2/0 gauge connection A

.3; 1/0 self-dual 2-form B

.1; 1/˙2 complex scalar 


.1; 1/0 real scalar C

(113)

Now let us consider a situation where the time direction is also compactified to
a circle: Rt  S1t in a way that allows the M-theory circle S1 to fiber non-trivially
over S1t , so that the twisted product S1 Ì S1t is a torus with the complex modulus
� . Then, the theory on the fivebranes can be described as a theory on D4-branes
supported on M4, i.e., the four-dimensional topologically twisted N D 4 SYM with
coupling constant � [VW94].

The path integral of the Vafa–Witten theory localizes on the solutions to the
following equations:

FC
A �

1

2
ŒB � B�C ŒC;B� D 0

d�
AB � dAC D 0

where

A 2 GP

B 2 �2;C.M4I adP/

C 2 �0.M4I adP/

(114)

where GP denotes the space of connections of a principal bundle P. Under certain
conditions (see [VW94] for details) the only non-trivial solutions are given by
configurations with vanishing self-dual part of the curvature

FC
A D 0 (115)

and trivial other fields (B D 0 and dAC D 0). The partition function is then given by
the generating function of the Euler numbers of instanton moduli spaces:

ZVWŒM4�.q/ D
X

m

�.Mm/q
m� c

24 (116)

where

Mm D
�

A 2 GP W FC
A D 0; hch; ŒM4�i � 1

8�2

Z
M4

Tr F2 D m

	
=Gauge ;

q D e2� i�

and c is a constant that depends on the topology of M4. In [VW94] it was proposed
that

c D N � �.M4/ (117)
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where N is the rank of the gauge group and �.M4/ is the Euler characteristic12 of
M4. The constant c can be interpreted as the left-moving central charge cL of the
dual 2d .0; 2/ theory TŒM4�.

In general, when the manifold M4 is not compact and the gauge group is U.N/,
anti-self-dual configurations can also be distinguished by the first Chern class c1
and the boundary conditions at infinity. In order to have finite action, the connection
should be asymptotically flat:

AjM. 4
D A�; FA� D 0 : (118)

Therefore, as we already mentioned in Sect. 2.2, different asymptotics can be labeled
by flat connections on the boundary 3-manifold M3 D @M4:

� 2MflatŒM3� � Hom.�1.M3/;U.N// =Gauge : (119)

The dependence on the first Chern class can be captured by introducing the
following topological term in the action, cf. [DHSV07]:

S D 1

2�

Z
�

Tr F � hc1; �i (120)

where � 2 H2.M4/˝ C. It is useful to define the following exponential map:

exp W H2.M4/˝ C �! .C�/b2
� 7�! x

(121)

such that ker.exp/ D H2.M4;Z/ and also the “power” operation

.C�/b2 � H2.M4/ �! C
�

.x; h/ 7�! xh � e2� ihh;�i (122)

for some preimage � of x. The refined Vafa–Witten partition function then depends
on b2.M4/ additional fugacities and is given by

ZVWŒM4��.q; x/ D
X
m;c1

�.Mm;c1;�/ qm� c
24 xc1 (123)

where

Mm;c1;� D
˚
A 2 GP W FC

A D 0; hch; ŒM4�i
D m; ŒTr F� D 2�c1; AjM3 D A�

�
=Gauge:

12When M4 is non-compact �.M4/ should be replaced by the regularized Euler characteristic, and
when G D U.N/ one needs to remove by hand the zero-mode to ensure that the partition function
does not vanish identically.
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From the point of view of the 2d theory TŒM4IU.N/�, the fugacities x in (123)
play the role of flavor fugacities in the elliptic genus. This tells us that TŒM4IU.N/�
has flavor symmetry of rank b2 associated with 2-cycles of M4.

In what follows, if not explicitly stated otherwise, we will consider 4-
manifolds (13) with

bC
2 .M4/ D 0 ; �1.M4/ D 0 ; H2.M3;Z/ D 0 ; H1.M3;R/ D 0

� � H2.M4;Z/ Š Z
b2 ; �� � H2.M4;Z/ Š Z

b2

(124)
The last two conditions mean that there is no torsion in second (co)homology. As
explained in Sect. 2.1, such manifolds are uniquely defined by the intersection form
or, alternatively, by the plumbing graph.

3.2 Gluing Along 3-Manifolds

In this section we will describe how the Vafa–Witten partition function behaves
under cutting and gluing of 4-manifolds. Suppose one can produce a 4-manifold M4

by gluing MC
4 and M�

4 along a common boundary component M3. For simplicity,
in the following we actually assume that M3 is the only boundary component for
both MC

4 and M�
4 (that is, the resulting manifold M4 does not have any boundary).

The generalization to the case when M4̇ have other boundary components (that will
become boundary components of M4 after the gluing) is straightforward. For the
same reason we will also suppress the dependence of the moduli spaces on the first
Chern class c1 or, equivalently, the dependence of the Vafa–Witten partition function
on the fugacities x in (123).

Since for bC
2 > 1 we expect the topology of the instanton moduli spaces to be

independent under smooth deformations of the 4-manifold, consider the situation
where the boundary neighborhoods of M4̇ look like long “half-necks” of the form
RC �M3, as illustrated in Fig. 16. Very naively the Vafa–Witten partition function
on M4 is given by a sum of products of partition functions on M4̇ with identified

Fig. 16 Gluing of MC

4 and M�

4 along the common boundary M3
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boundary conditions. However in this way we count instantons living on the long
neck M3 � R twice and we need to cancel out this contribution.

Let us address this issue more systematically. Let fM˛ˇ
m be the moduli space of m

instantons13 on M3�R with boundary conditions ˛; ˇ 2MflatŒM3�. One can always
factor out the part of the moduli space associated with translations along R:

fM˛ˇ
m DM˛ˇ

m � R: (125)

Let us denote the corresponding generating function for Euler characteristics as
follows:

K˛ˇŒM3� �
X

m

�.fM˛ˇ
m /q

m: (126)

Now let Mm and Mṁ;˛ be instanton moduli spaces for M4 and M4̇ , respectively.
Then

Mm D
[
˛

m
C

Cm
�

Dm

MC
m

C

;˛ �M�
m

�

;˛: (127)

The problem, however, is that this union is not disjoint. Various terms have com-
mon boundary components corresponding to particular degeneration of instanton
configurations. Common codimension-1 boundary components have the following
form:

MC
m

C

;˛ �M˛ˇ

 �M�
m

�

;ˇ �
@
�
MC

m
C

C;ˇ �M�
m

�

;ˇ

�
and

@
�
MC

m
C

;˛ �M�
Cm

�

;˛

�
:

(128)

The first case can be intuitively understood from a limit when we separate a localized
configuration with instanton number  in MC

4 and push it to the boundary. And in
the second case we do the same for M�

4 . Similarly, there are common codimension-2
boundary components:

MC
m

C

;˛ �M˛ˇ

1
�Mˇ�

2
�M�

m
�

;� �
@
�
MC

m
C

C1C2;� �M�
m

�

;�

�

@
�
MC

m
C

C1;ˇ �M�
2Cm

�

;ˇ

�

@
�
MC

m
C

;˛ �M�
1C2Cm

�

;˛

� (129)

and so on.

13Here and in what follows the instanton number is not necessarily an integer.
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Then, applying inclusion–exclusion principle for Euler characteristic we get

�.Mm/ D
X
˛

m
C

Cm
�

Dm

�
�
MC

m
C

;˛ �M�
m

�

;˛

�

�
X

˛;ˇI >0
m

C

CCm
�

Dm

�
�
MC

m
C

;˛ �M˛ˇ

 �M�
m

�

;ˇ

�
(130)

C
X

˛;ˇ;� I 1;2>0
m

C

C1C2Cm
�

Dm

�
�
MC

m
C

;˛ �M˛ˇ

1
�Mˇ�

2
�M�

m
�

;�

�
� � � �

which translates into the following relation for the generating functions:

ZVWŒM4� D
X
˛

ZVWŒM
C
4 �˛ZVWŒM

�
4 �˛ �

X
˛;ˇ

ZVWŒM
C
4 �˛.K

˛ˇŒM3� � ı˛ˇ/ZVWŒM
�
4 �ˇ

C
X
˛;ˇ;�

ZVWŒM
C
4 �˛.K

˛ˇŒM3� � ı˛ˇ/.Kˇ� ŒM3� � ıˇ� /ZVWŒM
�
4 �� � � � �

D
X
˛;ˇ

ZVWŒM
C
4 �˛.K

�1ŒM3�/
˛ˇZVWŒM

�
4 �ˇ (131)

where K�1ŒM3� denotes the matrix inverse to KŒM3� defined in (126). The rela-
tion (131) obviously holds when M4 D MC

4 D M�
4 D M3 � R. Let us note that

in the case when M3 is a lens space the “gluing kernel” KŒM3� can be explicitly
computed using the results of [Aus90, FH90].

For later convenience, let us define a modified Vafa–Witten partition with an
upper index denoting the boundary condition:

ZVWŒM
�
4 �
˛ �

X
ˇ

.K�1ŒM3�/
˛ˇZVWŒM

�
4 �ˇ: (132)

Intuitively this modification can be understood as excluding instantons approaching
the boundary. Then the relation between partition functions takes the following
simple form:

ZVWŒM4� D
X
˛

ZVWŒM
C
4 �˛ZVWŒM

�
4 �
˛: (133)
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3.3 Relation to Affine Lie Algebras

Before we discuss cobordisms, let us review the relation between Vafa–Witten
theory on ALE spaces and affine Lie algebras [Nak94, VW94, DHSV07], that will
be our starting point for constructing generalizations. Namely, let M4 be a hyper-
Kähler ALE space obtained by a resolution of the quotient singularity C

2=H, where
H is a finite subgroup of SU.2/. According to the McKay correspondence, finite
subgroups of SU.2/ have ADE classification and therefore for each H there is
a corresponding simple Lie algebra g of the same ADE type. From the work of
Nakajima [Nak94] it follows that the partition function of the Vafa–Witten theory
with the gauge group U.N/ is given by the character of the integrable representation
of the corresponding affine Lie algebra Og at level N:

ZU.N/
VW ŒM4��.q; x/ D � OgN

� .q; x/ : (134)

Let us explain in some detail the role of the parameters �, q, and x on the right-hand
side of this formula. First, the formula (134) exploits the fact that there is a one-to-
one correspondence between U.N/ flat connections on M3 Š S3=H and integrable
representations of OgN . The right-hand side of (134) can then be understood as a
character of OgN for a given representation �. Let us consider how the identification
between flat connections and integrable representations works in a simple case when
H D Zp, M4 D Ap�1 and g D su.p/. The set of flat connections (119) in this
case is given by the ordered partitions of N with p parts, which are in one-to-one
correspondence with Young diagrams that have at most p � 1 rows and N columns:

Hom(Zp, U(N))/U(N) =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

z1 0
. . .

0 zN

⎞

⎟
⎠

p

= 1

⎫
⎪⎬

⎪⎭
/SN =

⎧
⎪⎨

⎪⎩
diag(1, . . . , 1

N0

, e
2πi
p , . . . , e

2πi
p

N1

, . . . , e
2πi p−1

p , . . . , e
2πi p−1

p

Np−1

)

⎫
⎪⎬

⎪⎭

∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(135)

Young diagrams of such type indeed describe integrable representation of bsu.p/N .
The variables .q; x/ in the right-hand side of (134) play the role of coordinates on the



204 A. Gadde et al.

(complexified) torus corresponding to the Cartan subalgebra Oh of OgN . In particular, �
is a coordinate on Oh in the direction of L0 and x can be interpreted as coordinates on
the (complexified) maximal torus of the Lie group G corresponding to the ordinary
Lie algebra g. This is in agreement with the fact that the lattice �� for an ALE space
of the ADE type is the same as the weight lattice of the corresponding simple Lie
algebra g and � in (122) is then the element of the dual space. The dual lattice �
is the same as the root lattice of g and the intersection form Q plays the role of
the normalized Killing form. It follows that the abelian quiver CS with coefficients
Qij is the same as the ordinary CS with the gauge group G restricted to the Cartan
subalgebra, which can be interpreted as a level-rank duality.

Now let us describe the gluing of 4-manifolds considered in Sect. 2.7 in the
language of (affine) Lie algebras. Suppose the manifold MC

4 with boundary MC
3 is

defined by a plumbing graph of ADE type which can be interpreted as a Dynkin
diagram of Lie algebra gC with root lattice �C � H2.M

C
4 /. Let us pick up a

subalgebra g� � gC and consider the manifold MC
4 with properties (124) such that

the lattice �� � H2.M�
4 / is the root lattice of g�. The lattice �� is a sublattice of

�C and the manifold MC
4 can be obtained by gluing M�

4 with a certain (co)bordism
B such that B. D M�

3 tMC
3 along the common boundary component M�

3 , cf. (92). In
the rest of the paper we will sometimes use the following schematic (but intuitive)
notation for the process of obtaining a manifold MC

4 by gluing a cobordism B
to M�

4 :

M�
4

B MC
4 : (136)

From the gluing principle described in the previous section we have:

ZU.N/
VW ŒMC

3 ��.q; x/ D
X
�

ZU.N/
VW ŒB���.q; x

?/ZU.N/
VW ŒM�

3 ��.q; x
k/ (137)

where the splitting of the parameters x D .x?; xk/ corresponds to the splitting14 of
the homology groups H2.M

C
4 /˝C D H2.B/˝C˚H2.M�

4 /˝C. Using (134) one
has

�
OgC

N
� .q; x/ D

X
�

ZU.N/
VW ŒB���.�; x

?/ � Og�

N
� .q; xk/ : (138)

Therefore, ZU.N/
VW ŒB��� are given by the branching functions of the embedding

g� � gC,

ZU.N/
VW ŒB��� D �

OgC

N = Og�

N
�;� (139)

14Let us note that H2.M
C

4 / ¤ H2.B/ ˚ H2.M�

4 /. However, the lattice H2.M
C

4 / can be obtained
from the lattice H2.B/˚ H2.M�

4 / by the so-called gluing procedure that will be described in detail
shortly.
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Table 2 Dictionary between Vafa–Witten theory and (affine) Lie
algebras

Physics and geometry Algebra

Plumbing graph Dynkin diagram of g

Fugacities x Maximal torus of G

Coupling � Coordinate on Oh along L0
Intersection form Normalized Killing form of g

b2.M4/ Rank of g

H2.M4/ Root lattice of g

H2.M4/ Weight lattice of g

Boundary condition Integrable representation of Og
Rank of the gauge group Level of Og
ZVWŒM4� Character of Og
Cobordism B: MC

4 D B [ M�

4 Embedding g� 	 gC

ZVWŒB� Branching functions

Let us consider a particular example: MC
4 D Ap and M�

4 D Ap�1. As was shown
in Sect. 2.14 via a variant of the “Norman trick” [Nor69, Qui79], the cobordism B
in this case is a 4-manifold in family (124) with a single 2-cycle of self-intersection
�.pC 1/p and the boundary L.p;�1/ t L.pC 1;�1/. The partition function on B
is then given by the characters of su.pC 1/=su.p/ cosets:

ZU.N/
VW ŒB��� D �

bsu.pC1/N=bsu.p/N
�;� : (140)

The relation between Vafa–Witten theory and (affine) Lie algebras is summarized
in Table 2 and will play an important role in the following sections. In the next
section we consider in detail the case of the gauge group U.1/. Then, in Sect. 3.9,
we will make some proposals about the non-abelian case.

3.4 Cobordisms and Gluing in the Abelian Case

For a 4-manifold M4 that satisfies (124) one has the short exact sequence (29):

0 �! H2.M4/
Q�! H2.M4/

i�M3�! H2.M3/ �! 0 (141)

where the map Q is given by the intersection matrix and iM3 is the inclusion map of
the boundary M3 D M. 4 into M4. Equivalently, H2.M3/ Š cokerQ.

In the case of abelian theory self-duality condition implies that

dF D 0 ; d�F D 0: (142)
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For manifolds with asymptotically cylindrical or conical ends it has been shown
(under certain assumptions) [APS73, Loc87] that the space of L2 integrable 2-forms
satisfying conditions (142) coincides with the space harmonic 2-forms H2.M4/ and
is isomorphic to the image of the natural map H2.M4;M3;R/ �! H2.M4;R/. In
our case this map is an isomorphism. Since bC

2 .M4/ D 0 the space H2.M4/ is an
eigenspace of the Hodge � operator with eigenvalue �1.

For an ordinary U.1/ gauge theory the Dirac quantization condition implies
that ŒF=2�� 2 H2.M4/ � ��. However, since we are interested in gauge theory
on the world-volume of a D4-brane in type IIA string theory setup, we need to
take into account the Freed–Witten anomaly [FW99]. Specifically, the two-form
F D dA should be viewed as a curvature of the U.1/ part of a connection on a
Spinc.4/ � Spin.4/�Z2U.1/ principal bundle over M4 obtained by a lift of the SO.4/
orthonormal frame bundle. Let us note that such a lift is possible for any 4-manifold,
i.e., any 4-manifold is Spinc. Not any 4-manifold, though, has a Spin structure.
The obstruction is given by the second Stiefel–Whitney class w2 2 H2.M4;Z2/.
Therefore, as in [GVW00, GST02] we have a shifted quantization condition for the
magnetic flux through a 2-cycle C � M4:

Z
C

F

2�
D 1

2

Z
C

w2 D 1

2
Q.C;C/ mod Z (143)

where the second equality is the Wu’s formula. The class ŒF=2�� then takes values
in the shifted lattice:


F

2�

�
2 e�� � �� C (144)

where 2 is a lift15 of w2 with respect to the map �� � H2.M4;Z/! H2.M4;Z2/.
From the Wu’s formula it follows that w2 D 0 or, equivalently, the manifold M4 is
Spin, if and only if the lattice � is even.

Let us note that since �1.M4/ D 0 there are no non-trivial flat connections
and therefore fixing ŒF=2�� in e�� completely determines the anti-self-dual gauge
connection. On the boundary FjM3 D 0 and therefore AjM3 is a flat connection on M3

which determines ŒF=2�� modulo H2.M4;M3/ � � . It is easy to see that the coset
spacee��=� coincides with the space of flat connections. From (141) it follows that
H1.M3/ is a finite abelian group of order j det Qj. All such groups are isomorphic to
a direct sum of finite cyclic groups. Therefore the space of flat connections on the
boundary is given by

Hom.�1.M3/;U.1// Š Hom.H1.M3/;U.1// Š H2.M3/ Š ��=� Š e��=�
(145)

where the last equality follows from (141) and (144).

15Such lift exists because the manifold is Spinc.
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The Vafa–Witten partition for U.1/ gauge group can be calculated explicitly for
general 4-manifold M4 in the family (124) for a prescribed boundary condition � 2e��=� and a fugacity x 2 H2.M4;R/, cf. [Wit96, DVV02]:

ZU.1/
VW ŒM4��.q; x/ D 1

��.M4/.q/

X
ŒF=2��2e��

ŒF=2��D� mod �

q
1

8�2

R
F^FxŒF=2��

D 1

��.M4/.q/

X
ŒF=2��2e��

ŒF=2��D� mod �

q� 1
2Q�1.ŒF=2��;ŒF=2��/xŒF=2��

D 1

��.M4/.q/

X
�2�

q� 1
2Q�1.Q�C�;Q�C�/xQ�C�

D 1

��.M4/.q/

X
�2�

q� 1
2Q.�CQ�1�;�CQ�1�/xQ�C�: (146)

The overall factor

1

��.M4/.q/
D q� �.M4/

24

1X
mD0

�.HilbŒm�.M4// qm (147)

is the contribution of point-like instantons. Let us remind that the moduli space of
m point-like instantons is given by the Hilbert scheme HilbŒm�.M4/ which can be
understood as a regularization of the configuration space of m points on M4.

Since the quadratic form �Q is positive definite one can always assume that the
lattices � and �� are embedded in the Euclidean space R

b2 so that

�� D fni!ijni 2 Zg � R
b2 :

and

� D fni�ijni 2 Zg � �� � R
b2

The basis vectors of these lattices are chosen so that .�i; �j/ D �Qij and .!i; �j/ D
ıij where .�; �/ is the standard Euclidean scalar product. The shift due to the Freed–
Witten anomaly can be represented then by the vector  D 1

2

P
i k�ik2!i. In this

setup (146) reads simply as:

ZU.1/
VW ŒM4��.q; x/ D 1

��.M4/.q/

X
�2�	Rb2

q
1
2 k�C�Ck2x�C�C

� �
.�C/
� .xI q/
��.M4/.q/

; � 2 ��=�: (148)
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where �.�C/
� stands for the theta function of the lattice � with the shift �C. The

regularized Euler characteristic �.M4/ coincides with dimension of the lattice b2.

3.5 Number of Vacua

As in [GVW00, GST02], the quantum mechanics T1dŒM4� on Rt obtained by
reduction of an M5-brane on S1 � M4 is specified by a flat connection A� on the
boundary and the flux at infinity which, up to constant depending on the topology
of M4 � M7, is given by

ˆ1 D ND0 � 1

8�2

Z
M4

F ^ F (149)

Here, ND0 is a non-negative integer denoting the number of point-like instantons.
The origin of the last term is the Wess–Zumino part of the D4-brane action:

IWZ D �
Z
R�M4

C� ^ ch.F/ ^
sbA.TM4/

bA.NM4/
: (150)

Once we picked ˆ1 and fixed the value of ŒF=2�� modulo � which specify the
theory T1dŒM4��;ˆ

1

, its supersymmetric vacua are obtained by finding ND0 	 0 and
ŒF=2�� which solve (149). Note, the effective theory is massive when ND0 D 0. If
ND0 > 0 there are moduli of point-like abelian on M4. The number of vacua is given
by the corresponding coefficient of (123):

#fvacua of T1dŒM4��;ˆ
1

g D ZVWŒM4��.q; 0/jcoefficient of qˆ1

�

c
24

(151)

Let us consider M4 D Ap�1 as an example. The lattice � is even in this case
and therefore e�� D ��. As was mentioned earlier, � and �� can be interpreted as
the root and weight lattices of su.p/. These lattices can be naturally embedded into
R

p�1, which in turn can be considered as the subspace of Rp orthogonal to the vector
.1; : : : ; 1/. The root lattice can be generated by simple roots satisfying k�ik2 D 2

and .�i; �iC1/ D �1. The weight lattice can be generated by !r; r D 1; : : : ; p � 1,
the highest weights of the fundamental representations which can be realized as
ƒr

C
p. Let us also define !0 � 0. In the coset ��=� Š Zp one has !r 
 r!1. For

a given boundary condition r D 0; : : : ; p � 1 the flux at infinity has the following
form:

ˆ1 D ND0 C 1

2

�����
p�1X
iD1

ni�i C !r

�����
2

; ni 2 Z : (152)
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The massive vacua of the theory T1dŒAp�1��;ˆ
1

correspond to the weights w DPp�1
iD1 ni�i C !r that minimize (152) when ND0 D 0. The set of such weights is

precisely the set of weights of the fundamental representation of su.p/ with the
highest weight !r. Therefore one has

#fvacua of T1dŒAp�1�rg D dimƒr
C

p D pŠ

rŠ.p � r/Š
: (153)

Up to a permutation, these weights have the following coordinates:

w 

Sp
.1 � r

p
; : : : ; 1 � r

p„ ƒ‚ …
r

;� r

p
; : : : ;� r

p„ ƒ‚ …
p�r

/: (154)

The minimal value of the flux at infinity equals then

ˆ1 D .p � r/r

2p
: (155)

3.6 Gluing in the Abelian Case

Consider two 4-manifolds (not necessarily connected) M4̇ , both satisfying (124),
with boundaries M. 4̇ D M3̇ . Let us denote �˙ � H2.M4̇ / and T˙ � H2.M3̇ / Š
H1.M3̇ / so that

0 �! �˙ ,! � �̇ �
˙�! T˙ �! 0: (156)

Suppose that MC
4 can be obtained from M�

4 by gluing to the latter a certain
(co)bordism B with boundary B. D �M�

3 tMC
3 .

Also, let us suppose that b2.B/ D 0 and the torsion groups in the long exact
sequence (27) for the pair .B;B. / are T2 D 0 and T1 � T . This means that the only
non-trivial cohomology of B and B. is contained in the following finite groups:

H2.B;B. / Š H2.B/ D T (157)

H1.B/ Š H3.B;B. / D T (158)

H1.B. / Š H2.B. / D T� ˚ TC (159)

The sequence (27) then reduces to the following short exact sequence of finite
abelian groups:

0 �����! T
�D�

�

˚�
C�������! T� ˚ TC

 �����! T �����! 0 (160)
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Let us denote the family of all such “basic” cobordisms by B. From the Mayer–
Vietoris sequence for the pair of manifolds M�

4 and B glued along M�
3 one can

deduce the following commutative diagram:

0 �����! ��C �����! ��� ˚ T �����! T� �����! 0??y�C

??y.��

��
�

/˚�
C

??yid

0 �����! TC �����! T� ˚ TC �����! T� �����! 0

(161)

where both horizontal lines form short exact sequences. From the snake lemma it
follows that �C D ker�C can be realized as a sublattice of ���:

�C D ker.�� � ��/˚ �C D ��1�


im ��jker �

C

�
D f˛ 2 ��� j 9� 2 T s.t. ˛ mod �� D ��.�/; �C.�/ D 0g : (162)

Let us now briefly review the notion of gluing of lattices described in detail in,
e.g., [GL91]. Consider some integer lattice � embedded into a Euclidean space and
a finite family of glue vectors gi 2 ��. Then one can define the glued lattice

� 0 D f� C
X

i

nigi j � 2 �; ni 2 Zg � ��: (163)

The finite abelian group J � � 0=� is called the glue group. It is a subgroup of ��=�
generated by the equivalence classes Œgi�. As was considered in detail in [GL92,
GL92], the gluing operation produces identities on the corresponding theta functions
defined as in (148):

�
.�/

�0

D
X
�2J

�
.�C�/
� (164)

One can see that in our case � 0 D �C is the gluing of � D �� with the glue group

im ��jker �
C

� ���=�� (165)

Since b2.B/ D 0 the only solutions of (142) are given by flat connections. The
flat connections on B correspond to the elements of T D H2.B/, while the flat
connections on B. D �M�

3 tMC
3 are in bijection with the elements of T� ˚ TC. In

the case of an ordinary U.1/ gauge theory without Freed–Witten anomaly, the short
exact sequence (160) determines which flat connections on the boundary can be
extended to flat connections in the bulk B. Namely, a flat connection on the boundary
given by .	; �/ 2 H2.B. / D T� ˚ TC originates from a flat connection in B if it is
in the image of the map � or, equivalently, in the kernel of  . The Vafa–Witten
partition function of a cobordism B 2 B in this case is simply given by
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ZU.1/
VW ŒB�	;� D ı .	;�/ (166)

where

ı� D
�
1; � D 0
0; otherwise

(167)

In the case when the U.1/ connection is replaced by the U.1/ part of the Spinc.4/

connection one has to take into account the appropriate shift  0:

ZU.1/
VW ŒB�	;� D ı .	;�/� 0 : (168)

In the abelian case the “gluing kernel” defined in Sect. 3.2 is trivial: K˛ˇŒM3� D
ı˛ˇ (therefore there is no difference between partition functions with upper and
lower indices). Then we should have the following relation between the Vafa–Witten
partition function on MC

4 , M�
4 , and B, cf. (92):

ZU.1/
VW ŒMC

4 �� D
X
	2T

�

ZU.1/
VW ŒB�	;� ZU.1/

VW ŒM�
4 �	 : (169)

Since the abelian Vafa–Witten partition function on an arbitrary four-manifold of the
form (13) is given by the theta function of the corresponding lattice (17), Eq. (169)
can be viewed as the identity (164) that relates theta functions of the lattice �� to
the theta function of glued lattice �C.

3.7 Composing Cobordisms

Now let us consider two four-manifolds M.1/
4 ; M.2/

4 , both satisfying (124), such that

M.
.1/
4 D Ma

3 t Mb
3 and M.

.2/
4 D Mb

3 t Mc
3. The 3-manifold Mb

3 is supposed to be

connected and have an opposite orientation in M.1/
4 and M.2/

4 . The manifolds Ma
3 and

Mc
3 can be empty. Then the new manifold MC

4 D M.1/
4 [M.2/

4 obtained by gluing M.1/
4

and M.2/
4 along Mb

3 also has the properties (124). If we interpret M.1/
4 as a cobordism

between 3-manifolds Mb
3 and Ma

3 , and M.2/
4 as a cobordism between Mc

3 and Mb
3 , then

the resulting manifold MC
4 is the composition of these two cobordisms. It is easy to

see that this composition is a particular case of gluing described in the previous
section. Namely, the manifold MC

4 can be obtained by gluing M�
4 D M.1/

4 t M.2/
4

with a basic cobordism, illustrated in Fig. 17,

B Š Ma
3 � I tMb

3 � I tMc
3 � I 2 B (170)
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Fig. 17 Composition of cobordisms M.1/
4 ı M.2/

4 D MC

4 can be constructed by gluing M�

4 D
M.1/
4 t M.2/

4 with a basic cobordism B Š Ma
3 � I t Mb

3 � I t Mc
3 � I 2 B

where I is the interval. Let us denote Ti D H2.Mi
3/, where i D a; b; c. Then, in the

notations of the previous section, we have

T D Ta ˚ Tb ˚ Tc

T� D Ta ˚ Tb ˚ Tb ˚ Tc (171)

TC D Ta ˚ Tc

�� W �˚ 	˚ � 7�! �˚ 	˚ .�	/˚ �; (172a)

�C W �˚ 	˚ � 7�! �˚ �:v (172b)

As usual, let us denote �i � H2.M
.i/
4 / and ��

i � H2.M.i/
4 /. Then, the lattice �C is

obtained by gluing of �1 ˚ �2 with the glue group

Tb diag
,! ��

1 =�1 ˚ ��
2 =�2 Š .Ta ˚ Tb/˚ .Tb ˚ Tc/: (173)

That is

�C D ˚.˛ C 	; ˇ � 	/ j ˛ 2 �1; ˇ 2 �2; 	 2 Tb
�
: (174)

The Vafa–Witten partition functions of the manifolds M.1/
4 and M.2/

4 are given by:
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ZU.1/
VW ŒM.1/

4 �
�
	.q; x/ D

X
˛2�1

q
1
2 k˛C�C	k2x˛C�C	 ; .�; 	/ 2 Ta˚Tb ; (175a)

ZU.1/
VW ŒM.2/

4 �
	
� .q; y/ D

X
ˇ2�2

q
1
2 kˇ�	C	0C�k2yˇC	C� ; .	; �/ 2 Tb ˚ Tc ;

(175b)

where the boundary condition	 on the boundary component Mb
3 of M.1/

4 is identified

with the boundary condition �	C	0 on Mb
3 � M.

.2/
4 . The identity (169) in this case

reads as:

X
	

ZU.1/
VW ŒM.1/

4 �
�
	.q; x/ ZU.1/

VW ŒM.2/
4 �

	
� .q; y/

D
X

˛2�1; ˇ2�2; 	
q
1
2 k˛C�C	Cı1k2C 1

2 kˇ�	C	0C�C2k2x˛C�C	C1yˇ�	C	0C�C2

D
X
�2�

C

q
1
2 k�C.�C1/˚.�C2C	0/k2 .x; y/�C.�C1/˚.�C2C	0/

D ZU.1/
VW ŒMC

4 �
�
� .q; .x; y// ; .�; �/ 2 Ta ˚ Tc : (176)

so that the new shift due to the Freed–Witten anomaly is given by D 1˚ .2C
	0/.

3.8 Examples

Let us denote the 4-manifold associated with the Lie algebra g of the ADE type as
M4.g/ and the 4-manifold with the plumbing graph‡ by M4.‡/, as in Sect. 2.1. For
example,

Ap�1 D M4.su.p// D M4.
�2�� � � � ��2�„ ƒ‚ …

p�1
/; (177)

O.�p/
#

CP1
D M4.

�p� /; (178)

CP
2
# : : : #CP

2„ ƒ‚ …
p

nfptg D M4.
�1� : : : �1�„ ƒ‚ …

p

/: (179)

As was previously mentioned, the lattice � for the 4-manifold M4.g/ coincides with
the root lattice of g, while �� is given by the corresponding weight lattice. The
lattice � is always even and, therefore, M4.g/ is Spin and  D 0. Since level-1
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characters are given by theta functions on the root lattice [KP], the formula (134)
with N D 1,

ZU.1/
VW ŒM4.g/�� D �

Og1
� ; (180)

also follows from (148). The abelian Vafa–Witten partition function of the Ap

manifold was studied in detail in [DS08].
Let us point out that there is also the following relation between Vafa–Witten

partition functions and affine characters:

ZU.1/
VW ŒM4.

�p� /��.q; x/ D
1

�.�/

X
n2Z

q
1
2p .pnC�/2xpnC� � �

Ou.1/p
� ; � 2 Zp

(181)

when p is even. This relation is a natural generalization of (180) since the one-
dimensional lattice H2.M4.

�p� // can be interpreted as a weight lattice of Ou.1/p. Let
us note that it is also consistent with the fact that A1 D M4.

�2� / since

�
bsu.2/1
� D � Ou.1/2

� : (182)

For general p one can write

ZU.1/
VW ŒM4.

�p� /��.q; x/ D
1

�.�/

X
n2Z

q
1
2p .pnC�C/2xpnC�C � Q� Ou.1/p

� ; � 2 Zp

(183)

where  D 0 if p is even and  D 1
2

if p is odd. Let us call Q� Ou.1/p the “twisted”
Ou.1/p character.

In Table 3 we present various examples of the gluing procedure described earlier.
The corresponding gluings of lattices for many of these (and other) examples can
be found in [GL92, GL92]. Let us note that in Example 3 one can choose the gluing
cobordism to be a cylinder with a hole B D S3=Zp � I X pt, i.e., one can just glue
two components of M�

4 along their boundaries (and then cut out a hole) in order
to obtain MC

4 . In Examples 8, 9 the cobordism B is homologically equivalent to a
cylinder with a hole, but not topologically, since the boundaries of E8�n and An are
only homologically equivalent. Consider Example 2 in some detail. In general it is
not possible to glue M4.

�k� / with M4.
�k� /, because although the boundaries are the

same, they do not have opposite orientations. However, when k D p2 C 1 for some
integer p there exists an orientation reversing diffeomorphism ' of L.k; 1/ such that

'� W H2.L.k; 1// �! H2.L.k; 1// Š Zk

� 7�! p�
(184)
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Table 3 Examples of gluing M�

4

B
 MC

4

Original 4-manifold
M�

4

End result MC

4 Homological data of B 2 B (b2.B/ D 0)

T
�

D H2.M.
�

4 / T
C

D H2.M.
C

4 / T D H2.B/

� W T !
T

�

˚ T
C

;  W
T

�

˚ T
C

! T

1 M4.
�p2� / M4.

�1� / Zp
�.�/ D p�

T
�

D Zp2 T
C

D 0  .	/ D .	 mod p/

2 M4.
�p2�1� / t

M4.
�p2�1� /

M4.
�1� �1� / Zp2C1 �.�/ D �˚ p�

T
�

D Zp2C1 T
C

D 0  .	˚�/ D .p	��/
3 Ap�1 t M4.

�p� / M4.
�1� : : :�1�„ ƒ‚ …

p

/ Zp �.�/ D �˚ �

T
�

D Zp ˚ Zp T
C

D 0  .	˚ �/ D .	� �/

4 Ap�1 t M4.
�p.pC1/� / Ap

Zp ˚ ZpC1

�.�˚ �/ D
�˚ �˚ �˚ �

T
�

D
Zp ˚ Zp ˚ ZpC1

T
C

D ZpC1

 .	˚ �˚ �˚�/ D
.	� �/˚ .� � �/

5 M4.
�a1�� 
 
 
 ��an� / t

M4.
�pnpnC1� /

M4.
�a1�� 
 
 
 ��anC1� /

Zpn ˚ ZpnC1

�.�˚ �/ D
�˚ �˚ �˚ �

where
pnC1 D anpn � pn�1

T
C

D ZpnC1

 .	˚ �˚ �˚�/ D
.	� �/˚ .� � �/

T
�

D
Zpn ˚ Zpn ˚ ZpnC1

6 A3 t M4.
�4� / D4

Z4 ˚ Z2
�.	˚ �/

T
�

D Z4 ˚ Z4 T
C

D Z2 ˚ Z2

D 	˚ .	C2�/˚ .	

mod 2/˚ �

 .	˚ �˚ �˚�/ D
.� � 	� 2�/˚ ..	

mod 2/� �/

7 D8 E8
Z2

�.�/ D �˚ 0

T
�

D Z2 ˚ Z2 T
C

D 0  .	˚ �/ D �

8 E7 t A1 E8
Z2

�.�/ D �˚ �

T
�

D Z2 ˚ Z2 T
C

D 0  .	˚ �/ D .	� �/

9 E6 t A2 E8
Z3

�.�/ D �˚ �

T
�

D Z3 ˚ Z3 T
C

D 0  .	˚ �/ D .	� �/

10 A8 E8
Z3

�.�/ D 3�

T
�

D Z9 T
C

D 0  .	/ D .	 mod 3/
11 A4 t A4 E8

Z5
�.�/ D �˚ 2�

T
�

D Z5 ˚ Z5 T
C

D 0  .	˚�/ D .2	��/
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Fig. 18 Gluing of A1 and
M4.

�6� / gives A2

Fig. 19 Gluing of M4.
�5� /

and M4.
�5� / gives M4.

�1� �1� /

It is an automorphism of Zk because p and k D p2C1 are coprime. One can also glue
Ap2 with Ap2 using the same prescription (cf. Example 11). The gluings of lattices
in Examples 2 and 3 are illustrated in Figs. 18 and 19.

Let us consider in some detail the gluing in Example 3 when p is even. This
example is rather interesting because both of the original 4-manifolds Ap�1 and
M4.

�p� / are Spin, but the resulting 4-manifold M4.
�1� : : : �1� / is not Spin (since the

corresponding lattice Zp is not even). What is going on here? The explanation is very
instructive and reveals new aspects of the Freed–Witten anomaly in the presence of
boundaries.

Each of the original “pieces”, Ap�1 and M4.
�p� /, admits a unique Spin structure.

However, the restrictions of these Spin structures to the boundary 3-manifold M3,
along which one must glue these pieces in order to produce M4.

�1� : : : �1� /, are
different. To be a little more precise, as in (92) consider the gluing map between
the boundaries:

' W A. p�1 ! M. 4.
�p� / (185)

If we introduce Spin structures on Ap�1 and M4.
�p� /, the map ' does not lift to a map

between the restrictions of the Spin structures on the boundaries. This is why it is
not possible to construct a Spin structure on M4.

�1� : : : �1� / from the Spin structures
on Ap�1 and M4.

�p� /.
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Nevertheless, it is possible to lift ' to a map between the restrictions of Spinc

structures on Ap�1 and M4.
�p� /. Since Spin.4/ holonomies on the boundaries do not

match, the holonomies of the U.1/ part of Spinc.4/ should be identified with �1
factor which corresponds to the shift by p

2
in the Zp space of flat connections on the

boundaries. One can check that indeed

X
�2Zp

ZU.1/
VW ŒM4.

�p� /��Cp=2.q; x
?/ ZU.1/

VW ŒM4.
�p� /��.q; xk/

D
X
�2Zp

�
Ou.1/p
�Cp=2.q; x

?/ �bsu.p/1� .q; xk/ D Q� Ou.p/1 .q; x/ �
pY

iD1
Q� Ou.1/1 .q; xi/

D ZU.1/
VW ŒM4.

�1� � � � �1�„ ƒ‚ …
p

/� (186)

where the splitting of parameters x D .x?; xk/ is such that x? D .
Q

i xi/
1=p. A

version of this relation without shifts due to Freed–Witten anomaly was considered
in [DHSV07, DS08].

In general, a gluing of the form

M4.g
.1// t : : : tM4.g

.n// tM4.
�p1� / t : : : tM4.

�pm� / B M4.g/ (187)

where all pi are even, g.j/ and g are of ADE type, corresponds to the embedding of
the associated algebras:

g
.1/
1 ˚ : : :˚ g

.n/
1 ˚ u.1/p1 ˚ : : :˚ u.1/pm � g (188)

where the subscripts denote the indices of the embeddings.
Let us recall that the index ` of the embedding k` � g is defined as the ratio

between the normalized Killing form of g restricted to the subspace k and the
normalized Killing form of k. In other words, the root lattice of k is rescaled by
the factor of

p
` when embedded into the root lattice of g. For the corresponding

affine Lie algebras, representations of Og at level k decompose into representations of
Ok at level `k:

�
Ogk
� D

X
	

b	� �
Ok`k
	 : (189)

The coefficients b	� are called branching functions of the embedding k` � g.
If B 2 B, that is b2.B/ D 0, the total rank on both sides of (188) is the same:

nX
iD1

rank g.i/ C m D rank g: (190)
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Then, taking into account (180) and (183), the identity (169) can be interpreted as a
decomposition of the characters:

�
Og1
� D

X
	;�

ZU.1/
VW ŒB�	1:::	n�1:::�m

� �
Og.1/1
	1 � � �� Og.n/1

	n �
Ou.1/p1
�1 � � �� Ou.1/pm

�m (191)

so that the Vafa–Witten partition function of B plays the role of branching functions
for the embedding (188) at level 1. As was shown earlier, the abelian Vafa–Witten
partition function of B 2 B does not depend on � . This corresponds to the fact that
the embedding (188) is always conformal at level 1.

Now let us defineeB as B glued with M4.
�p1� / t : : : tM4.

�pm� / along the common
boundary components. This 4-manifoldeB is no longer in B and has b2.eB/ D m. It
can be considered as a cobordism for the following gluing:

M4.g
.1// t : : : tM4.g

.n// eB M4.g/ : (192)

The identity (191) can be rewritten as

�
Og1
� D

X
	

ZU.1/
VW


eB�	1:::	n

�
�

Og.1/1
	1 � � �� Og.n/1

	n (193)

and, therefore, ZU.1/
VW ŒeB� plays the role of the level-1 branching functions for the

embedding

g
.1/
1 ˚ : : :˚ g

.n/
1 � g (194)

where all Lie algebras are of ADE type.

3.9 Non-abelian Generalizations

As was already mentioned in Sect. 3.3, the non-abelian generalization of (180) is
given by

ZU.N/
VW ŒM4.g/�� D � OgN

� (195)

Hence, the Vafa–Witten partition function of a cobordismeB in (192) should coincide
with the branching functions for the embedding (194) at level N:

ZU.N/
VW


eB�	1:::	n

�
D branching function b	1:::	n

�
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Since the lattice H2.M4.
�p� // is one-dimensional it is natural to expect that the

corresponding Vafa–Witten partition function can be expressed in terms of Ou.1/
characters. As a non-abelian generalization of (183) one can propose that

ZU.N/
VW ŒM4.

�p� /��.q; x/ D
X
	

C	

� .q/ Q� Ou.1/pN
	 .q; x/ (196)

with some coefficients C	

� independent of x. This is consistent with the fact that
M4.

�2� / D A1 because the characters of bsu.2/ can be decomposed in terms of the
Ou.1/ characters, where u.1/ is embedded as a Cartan subalgebra of su.2/ with index
2:

ZU.N/
VW ŒM4.

�2� /��.q; x/ D ZU.N/
VW ŒA1��.q; x/ D �bsu.2/N� .q; x/ D

X
	

C	

� .q/�
Ou.1/2N
	 .q; x/

(197)

Hence, in this case C	

� are the branching functions for the embedding u.1/2 � su.2/.
The formula (196) is also in agreement with the results of [AOSV05].

From (196) and (195) it follows that ZU.N/
VW ŒB� for the cobordism B in (187)

is given, up to coefficients C, by level-N characters of the coset for the embed-
ding (188):

G

G.1/ � : : : � G.n/ � U.1/ � : : : � U.1/„ ƒ‚ …
m

: (198)

Note, such coset spaces are Kähler manifolds because of the property (190). This
suggests that the corresponding 2d theories TŒB� may have a realization in terms of
.0; 2/ gauged WZW theories studied in [Joh95, BJKZ96].

Now let us discuss various consequences and consistency checks of the proposed
relation between cobordisms and branching functions. In [VW94] it was argued that

under the blow up of M4 (that is taking the connected sum with CP
2
) the SU.N/

partition function on M4 is multiplied by the character of bsu.N/1:
ZSU.N/

VW ŒM4#CP
2
� D ZSU.N/

VW ŒM4� �
bsu.N/1 : (199)

Based on our experience with abelian theory discussed in the previous section, it
is then natural to propose the following generalization to the case of U.N/ gauge
group and non-compact 4-manifolds:

ZU.N/
VW

h
M4\

�
CP

2 n fptg
�i
.�; x/ D ZU.N/

VW ŒM4�.�; x
k/ Q� Ou.N/1 .�; x?/ (200)

where \ denotes the boundary connected sum, x D .xk; x?/, xk 2 exp.H2.M4/˝C/,

and x? 2 exp.H2.CP
2 n fptg/ ˝ C/ Š C

�. The “twisted” Ou.N/1 character Q� Ou.N/1
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is defined as in (186). The parameter x 2 C
� plays the role of the coordinate along

the diagonal u.1/ of u.N/, and the coordinates in the other directions of the Cartan
subalgebra are set to zero. If the manifold M4 is constructed by the plumbing graph
‡ , the relation (200) looks like

ZU.N/
VW ŒM4.‡ t �1� /� D ZU.N/

VW ŒM4.‡/� Q� Ou.N/1 : (201)

In particular:

ZU.N/
VW ŒM4.

�1� � � � �1�„ ƒ‚ …
p

/� D
pY

iD1
Q� Ou.N/1 .q; xi/: (202)

Let us note that the “twisted” Ou.N/1 character is given by the product of N
standard theta functions with odd characteristics:

Q� Ou.N/1 .q; z/ D
NY

jD1

1

�.q/

X
nj2Z

q
.njC1=2/2

2 znjC1=2 �
NY

jD1

�2.q; zj/

�.q/
: (203)

Therefore, (202) can be rewritten as

ZU.N/
VW ŒM4.

�1� � � � �1�„ ƒ‚ …
p

/�.q; x/ D
pY

iD1

NY
jD1

�2.q; xi/

�.q/
D Q� Ou.Np/1 .q; x/ (204)

where the components xi play the role of the coordinates in the diagonal directions
of p copies of the u.N/ subalgebra in u.Np/. In [DHSV07] it was shown that the
embedding (which is conformal at level 1)

su.N/p ˚ u.1/pN ˚ su.p/N � u.Np/ ; (205)

leads to the following relation between the “untwisted” characters:

pY
iD1

NY
jD1

�3.q; xiyj/

�.q/
� � Ou.Np/1 .q; fx; yg/

D
X
Œ��

NX
aD1

pX
bD1

�
bsu.N/p
�a

N .�/
.q; yk/� Ou.1/Np

j�jCapCbN.x
?y?/�bsu.p/N

�b
p .�

t/
.q; xk/ (206)

where x? D .
Q

i xi/
N , y? D .

Q
j xj/

p, �N and �p denote the generators of outer
automorphisms groups ZN and Zp of bsu.N/ and bsu.p/, respectively, � denotes
an integrable representation of bsu.p/N associated with a Young diagram, and �t
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denotes an integrable representation of bsu.N/p associate to the transposed Young
diagram. The first sum on the right-hand side of this expression is performed over
the orbits Œ�� of � with respect to the action of the outer automorphism group.
Finally, j�j stands for the number of boxes in the Young diagram associated with
�. See [DHSV07] for the details.

When p D 1 and y D 0, it follows from (206) that

ZU.N/
VW ŒM4.

�1� /� D � Ou.N/1 .q; x/ D
X
�

�
bsu.N/1
� .q; 0/ � Ou.1/N

� .q; x/ (207)

and, therefore, the coefficients C in (196) in the case p D 1 are given by the
characters of bsu.N/1.

Now let us consider the Example 3 from Table 3:

Ap�1 tM4.
�p� / B M4.

�1� � � � �1�„ ƒ‚ …
p

/: (208)

As was mentioned earlier, B is topologically a cylinder with a hole: B Š L.p; 1/ �
I n fptg. One can expect the following identify for the corresponding non-abelian
Vafa–Witten partition functions:

ZU.N/
VW ŒM4.

�1� � � � �1�„ ƒ‚ …
p

/�.q; x/

D
X
�;	

ZU.N/
VW ŒM4.

�p� /��.q; x?/ ZU.N/
VW ŒB��;	.q/ ZU.N/

VW ŒAp�1�	.q; xk/ : (209)

Taking into account

ZU.N/
VW ŒAp�1�	.q; xk/ D �bsu.p/N	 .q; xk/ (210)

combined with (202) and (196), one can interpret (209) as the “twisted” version of
the identity (206) in the case where y is set to zero.

3.10 Linear Plumbings and Quiver Structure

From Example 5 in Table 3 it follows that one can build the plumbing a1�� � � � �an�
step by step, attaching one node at a time. Moreover, as we explained in Sect. 2.2,
the boundary 3-manifold is the Lens space, M3.

a1�� � � � �an�/ D L.pn; qn/, where
pn=qn is given by the continued fraction (43) associated with the string of integers
.a1; : : : ; an/. Therefore, the gluing discussed in Sects. 2.14 and 3.4
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M4.
a1�� � � � �an�/  M4.

a1�� � � � �an� anC1� / (211)

can be achieved with a certain cobordism B
pnC1;qnC1
pn;qn from the family (124), which is

uniquely determined by the properties

B.
pnC1;qnC1
pn;qn D �L.pn; qn/ t L.pnC1; qnC1/ (212)

b2.B
pnC1;qnC1
pn;qn / D 1

The cobordism B
pnC1;qnC1
pn;qn can be obtained by joining the cobordism B in Exam-

ple 5 of Table 3 with M4.
�pnpnC1� /. Let us note that the Lens spaces L.p; q/ are

homologically equivalent for different values of q and have H1.L.p; q// D Zp. A
manifestation of this fact is that the abelian Vafa–Witten partition function of the
cobordism Bp0;q0

p;q depends only on p and p0, and is given by

ZU.1/
VW ŒBp0;q0

p;q �
j0

j D
X
n2Z

q
pp0

2

�
n� j

p C j0

p0

�2
xpp0n�p0jCpj0 ; j 2 Zp; j0 2 Zp0 (213)

when p and p0 are even.
This gluing procedure can be formally encoded in a quiver diagram where every

vertex is labeled by pair of integers. This quiver can be interpreted as a quiver
description of the corresponding 2d theory TŒM4�. A four-manifold with L.p; q/
boundary has a “flavor symmetry vertex” p; q :When the cobordism Bp0;q0

p;q is glued

to it to produce the L.p0; q0/ boundary, we “gauge” the p; q vertex with the p; q

vertex of the “bifundamental” p; q p0; q0 :
Let us illustrate this gluing procedure with an example. Consider the plumbing

a1� a2� . We start with the node a1� . The corresponding manifold M4.
a1�/ can be

considered as a cobordism from the empty space to L.a1; 1/. Therefore, the quiver
associated with it looks like

a1; 1 (214)

The boundary of the space after adding the plumbing node a2� is another Lens
space L.a1a2 � 1; a2/. This space is obtained by gluing M4.

a1�/ with Ba1;1
a1a2�1;a2 . After

“gauging” the node a1; 1 we get the quiver

a1, 1 a1a2−1, a2

(215)
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Clearly, the associated quiver in general depends on the plumbing sequence. We
expect each quiver to give a 2d N D .0; 2/ theory and theories associated with the
same plumbing to be dual to each other. For the purposes of computing ZVW, the
“flavor symmetry node” stands for a boundary condition label. “Gauging” this node
means summing over all such labels.

Let us consider in more detail how this works in the case when all ai D �2. The
4-manifold constructed by the plumbing with n nodes is then An, and adding one
extra node (cf. Example 4 in Table 3) can be realized by the cobordism BnC2;nC1

nC1;n .
As was explained in Sect. 3.3, the relevant ingredients have the form:

ZU.N/
VW ŒAnC1��.q; x/ D

X
�

ZU.N/
VW ŒBnC2;nC1

nC1;n ���.q; x
?/ZU.N/

VW ŒAn��.q; x
k/ ; (216)

ZU.N/
VW ŒAn�� D �

bsu.nC1/N
� ; (217)

ZU.N/
VW ŒBnC2;nC1

nC1;n ��� D �
bsu.nC2/N=bsu.nC1/N
�;� : (218)

This suggests that TŒBnC2;nC1
nC1;n � may have a realization in terms of bsu.nC 2/N=bsu

.nC 1/N coset WZW. Direct realization in terms of .0; 2/ WZW models considered
in [Joh95, BJKZ96] is difficult because the coset space does not have a complex
structure. However, as we will show below, it is easy to interpret the Vafa–
Witten partition function on BnC2;nC1

nC1;n if we make a certain transformation changing
discrete labels associated with boundary conditions to continuous variables. This
transformation can be interpreted as a change of basis in TQFT Hilbert spaces
associated with boundaries. Namely, let us define the Vafa–Witten partition function
on An in the continuous basis as

ZU.N/
VW ŒAn�1�.q; xjz/ WD

X
�

�
Ou.N/n
Q� .q; z/ZU.N/

VW ŒAn�1��.q; x/ (219)

where we used that, due to the level-rank duality, there is a one-to-one correspon-
dence � $ Q� between integrable representations of bsu.n/N and Ou.N/n realized by
transposing the corresponding Young diagrams. Namely,

�
Ou.N/n
Q� .q; z/ D

NX
aD1

�
Ou.1/Nn

j�jCan.q; z
?/ �bsu.N/n

�a
N .�

t/
.q; zk/ (220)

in the notations of the formula (206).
The fugacities z in (219) can be interpreted as fugacities for flavor symmetry

of TŒM4� associated with the boundary M3 D @M4. This symmetry is the gauge
symmetry of TŒM3�. Gluing two 4-manifolds with along the common boundary M3

corresponds to integrating over z, that is gauging the common flavor symmetry
associated with z. Naively, the fugacities x have different nature since they are
associated with 2-cycles, not three-dimensional boundaries. However, one can
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expect a relation between them since one can always produce a three-dimensional
boundary by excising a tabular neighborhood of a 2-cycle.

It is convenient to introduce the q-theta function defined as:

�.wI q/ WD
1Y

rD0
.1 � qrw/.1 � qrC1=w/ D .wI q/1.q=wI q/1 (221)

where

.wI q/s WD
s�1Y
rD0
.1 � wqr/ (222)

is the q-Pochhammer symbol. From (206) it follows then that in the continuous basis
the Vafa–Witten partition function takes a remarkably simple form:

ZU.N/
VW ŒAn�1�.q; xjz/ D q� nN

24

nY
iD1

NY
jD1
�.�q

1
2 xizjI q/ (223)

where the fugacities x are represented by xi 2 C
�; i D 1 : : : n satisfyingQn

iD1 xi D 1.
Now, in the continuous basis, the right-hand side of (223) can be interpreted as

the flavored elliptic genus (9) of nN Fermi multiplets, possibly with a superpotential
(to account for the q shift in the argument). In [DHSV07] the transition from the
Ou.Nn/1 character in the right-hand side of (223) to the bsu.n/N character in the right-
hand side of (217) was interpreted as gauging degrees of freedom of D4-branes
obtained by a compactification of M5-branes.

As we show explicitly in Appendix 2 for N D 2 and conjecture for general N,
the characters satisfy the following orthogonality condition:

I
dz

2� iz
IU.N/

V .q; z/ � Ou.N/n
� .q; z/ � Ou.N/n

�0

.q; z/ D C�.q/ı�;�0 (224)

where

IU.N/
V .q; z/ D .qI q/2N1

Y
i¤j

�.zi=zjI q/ (225)

is precisely the index (9) of a 2d N D .0; 2/ vector multiplet for the gauge group
G D U.N/. Let us note that the transformation between the continuous basis and
the discrete basis is similar to the transformation considered in [GRRY11] where
ordinary, non-affine characters were used.
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If the Vafa–Witten partition function for the cobordism in the continuous basis is
defined as

ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/

D
X
�;�

�
Ou.N/nC2

� .q; z0/ � ZU.N/
VW ŒBnC2;nC1

nC1;n ���.q; y/ � � Ou.N/nC1
� .q; z/ � C�1

� .q/ (226)

the relation (216) in the continuous basis should translate into the following
property:

ZU.N/
VW ŒAnC1�.q; fynC1; x1=y; : : : ; xnC1=ygjz0/

D
I NY

jD1

dzj

2� izj
IU.N/

V .q; z/ ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/

� ZU.N/
VW ŒAn�.q; fx1; : : : ; xnC1gjz/ (227)

or, explicitly,

NY
jD1

�
�.�q

1
2 ynC1z0

jI q/
nC1Y
iD1

�.�q
1
2 xiz

0
j=yI q/

�

D
I NY

jD1

dzj

2� izj
.qI q/2N1

nC1Y
iD1

�.�q
1
2 xizjI q/

Y
i¤j

�.zi=zjI q/ ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/:

(228)

The contour prescription is important and we take it to mean as evaluating the
residue of the leading pole. If this is the case, then the following ansatz for
ZU.N/

VW ŒBnC2;nC1
nC1;n � solves Eq. (228):

ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/ D
NY

jD1
�.�q

1
2 ynC1z0

jI q/
NY

i;jD1

1

�.z0
i=.zjy/I q/ : (229)

The poles of the integral come from the denominator. They are at zi D z0
�.i/=y for

some permutation � . After summing over all poles we end up with the desired result.
From the form of the partition function we see that the cobordism corresponds to the
theory of bifundamental chiral multiplets along with a fundamental Fermi multiplet.
The Fermi multiplet itself can be associated with the 2-cycle in the cobordism which
increases the second Betti number b2 by 1.

Following the same reasoning one can deduce the partition function of the
cobordism B transforming An1�1 t : : : t Ans�1  An1C:::Cns�1. Consider s D 2
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for simplicity. Then, ZU.N/
VW ŒB� must satisfy

ZU.N/
VW ŒAkCl�1�.q; fylx1; : : : ; x

lxk; y
�kw1; : : : ; y

�kwlgjz0/

D
I NY

jD1

dzj

2� izj

dQzj

2� iQzj
IU.N/

V .q; z/ IU.N/
V .q; Qz/ ZU.N/

VW ŒB�.q; yjz0; z; Qz/

� ZU.N/
VW ŒAk�1�.q; fx1; : : : ; xkgjz/ ZU.N/

VW ŒAl�1�.q; fw1; : : : ;wlgjz/ (230)

NY
jD1

kY
iD1
�.�q

1
2 ylxiz

0
jI q/

lY
iD1
�.�q

1
2 x�kwiz

0
jI q/

D
I NY

jD1

dzj

2� izj
.qI q/2N1

Y
i¤j

�.zi=zjI q/
NY

jD1

kY
iD1
�.�q

1
2 xizjI q/

�
I

dQzj

2� iQzj
.qI q/2N1

Y
i¤j

�.Qzi=QzjI q/
NY

jD1

lY
iD1
�.�q

1
2 wiQzjI q/

� ZU.N/
VW ŒB�.q; yjz0; z; Qz/ (231)

In this case, the following ansatz solves the equation:

ZU.N/
VW ŒB�.q; yjz0; z; Qz/ D

Y
i;j

1

�.ylz0
i=zjI q/

Y
i;j

1

�.y�kz0
i=QzjI q/ : (232)

As we can see, this is the index of two sets of bifundamental chiral multiplets,
cf. [GGP13]. For a general cobordism An1�1 t : : : t Ans�1  An1C:::Cns�1, the
corresponding 2d N D .0; 2/ theory is that of s sets of bifundamental chiral
multiplets.

3.11 Handle Slides

Another source of identities on the partition functions is handle slide moves
described in Sect. 2. Consider the following simple example. First, let us note that
since L.p; p � 1/ Š L.p; 1/ the cobordism B for

M4.
�p� / B M4.

�p� �1� / (233)

is the same (although we glue along the different component of B. ) as for

Ap�2 B Ap�1 (234)
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Therefore,

ZU.N/
VW ŒB��� D �

bsu.p/N=bsu.p�1/N
�;� : (235)

as we argued in Sect. 3.3. On the other hand, sliding a 2-handle gives the following
relation, cf. (14):

M4.
�p� �1� / Š M4.

�.p�1/� �1� / : (236)

Taking into account (201) one can expect that

X
�

�
bsu.p/N=bsu.p�1/N
�;� ZU.N/

VW ŒM4.
�p� /�� D Q� Ou.N/1 ZU.N/

VW ŒM4.
�.p�1/� /�� : (237)

One can consider more complicated handle slides, for example:

�p� �1� �! �p� �.p�1/ �.p�1/� �! �4pC3� �2.p�1/ �.p�1/� (238)

which gives the equation

X
�

ZU.N/
VW ŒBp�1;1

4p�3;1�
�
� ZU.N/

VW ŒM4.
�4pC3� /�� D Q� Ou.N/1 ZU.N/

VW ŒM4.
�.p�1/� /�� :

4 Bottom-Up Approach: From 2d .0; 2/ Theories
to 4-Manifolds

As explained in Sect. 2, a 4-manifold M4 with boundary M3 D @M4 defines a half-
BPS (B-type) boundary condition in a 3d N D 2 theory TŒM3�, such that the
boundary degrees of freedom are described by a 2d N D .0; 2/ theory TŒM4�.
Similarly, a cobordism between M�

3 and MC
3 corresponds to a wall between 3d

N D 2 theories TŒM�
3 � and TŒMC

3 � or, equivalently (via the “folding trick”), to a
B-type boundary condition in the theory TŒMC

3 � � TŒ�M�
3 �, etc.

Therefore, one natural way to approach the correspondence between 4-manifolds
and 2d .0; 2/ theories TŒM4� is by studying half-BPS boundary conditions in 3d N D
2 theories. For this, one needs to develop sufficient technology for constructing such
boundary conditions, which will be the goal of the present section.
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4.1 Chiral Multiplets and 3d Lift of the Warner Problem

The basic building blocks of 3d N D 2 theories, at least those needed for building
theories TŒM3�, are matter multiplets (chiral superfields) and gauge multiplets
(vector superfields) with various interaction terms: superpotential terms, Fayet–
Iliopoulos terms, Chern–Simons couplings, etc.

Therefore, we start by describing B-type boundary conditions in a theory of n
chiral multiplets that parametrize a Kähler target manifold X. Examples of such
boundary conditions were recently studied in [OY13] and will be a useful starting
point for our analysis here. After reformulating these boundary conditions in a
more geometric language, we generalize this analysis in a number of directions by
including gauge fields and various interaction terms.

In order to describe boundary conditions that preserve N D .0; 2/ supersym-
metry on the boundary it is convenient to decompose 3d N D 2 multiplets into
multiplets of 2d N D .0; 2/ supersymmetry algebra, see, e.g., [Witt93]. Thus, each
3d N D 2 chiral multiplet decomposes into a bosonic 2d .0; 2/ chiral multiplet ˆ
and a fermionic chiral multiplet ‰, as illustrated in Table 4. Then, there are two
obvious choices of boundary conditions that either impose Neumann conditions
on ˆ and Dirichlet conditions on ‰, or vice versa. In the first case, the surviving
.0; 2/ multiplet parametrizes a certain holomorphic submanifold Y � X, whereas
the second choice leads to left-moving fermions that furnish a holomorphic bundle
E over Y . Put differently, a choice of a Kähler submanifold Y � X determines a B-
type boundary condition in a 3d N D 2 sigma-model on X, such that 2d boundary
theory is a .0; 2/ sigma-model with the target space Y and a holomorphic bundle
E D TX=Y , the normal bundle to Y in X:

ˆi W Neumann

‰i W Dirichlet

)
) Y � X (239)

ˆi W Dirichlet

‰i W Neumann

)
) E D TX=Y (240)

Now let us include superpotential interactions.

Table 4 Decomposition of
N D .2; 2/ superfields and
couplings into .0; 2/
superfields and couplings

N D .2; 2/ supersymmetry N D .0; 2/ supersymmetry

Vector superfield Fermi + adjoint chiral

(twisted chiral superfield) .ƒ;†/

Chiral superfield Chiral + Fermi

.ˆ;‰/

Superpotential .0; 2/ superpotential

W.ˆ/ J D @W
@ˆ

Charge qˆ E D i
p
2 qˆ †ˆ
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4.2 3d Matrix Factorizations

In general, there are three types of holomorphic couplings in 2d .0; 2/ theories that
play the role of a superpotential. The first type already appears in the conditions that
define bosonic and fermionic chiral multiplets:

DCˆi D 0 ; DC‰j D
p
2Ej.ˆ/ (241)

Here, Ej.ˆ/ are holomorphic functions of chiral superfields ˆi. The second type
of holomorphic couplings Ji.ˆ/ can be introduced by the following terms in the
action:

SJ D
Z

d2xd�C‰iJ
i.ˆ/C c:c: (242)

where, as in the familiar superpotential terms, the integral is over half of the
superspace. In a purely two-dimensional .0; 2/ theory, supersymmetry requires

X
i

EiJ
i D 0 (243)

However, if a 2d .0; 2/ theory is realized on the boundary of a 3d N D 2 theory that
has a superpotential W.ˆ/, then the orthogonality condition E �J D 0 is modified to

E.ˆ/ � J.ˆ/ D W.ˆ/ (244)

This modification comes from a three-dimensional analog of the “Warner problem”
[War95], and reduces to it upon compactification on a circle. It also leads to a nice
class of boundary conditions that are labeled by factorizations (or, “matrix factor-
izations”) of the superpotential W.ˆ/ and preserve N D .0; 2/ supersymmetry. For
example, a 3d N D 2 theory with a single chiral superfield and a superpotential
W D 
k has kC 1 basic boundary conditions, with .0; 2/ superpotential terms

J.
/ D 
m ; E.
/ D 
k�m ; m D 0; : : : ; k (245)

To introduce the last type of holomorphic “superpotential” couplings in .0; 2/
theories, we note that in 2d theories with .2; 2/ supersymmetry there are two
types of F-terms: the superpotential W and the twisted superpotential eW . In a
dimensional reduction from 3d, the latter comes from Chern–Simons couplings. The
distinction between these two types of F-terms is absent in theories with only .0; 2/
supersymmetry. In particular, they both correspond to couplings of the form (242)

with J D @W
@ˆ

oreJ D @eW
@†

, except in the latter case one really deals with the field-
dependent Fayet–Iliopoulos (FI) terms:
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SFI D
Z

d2xd�CƒieJi.†;ˆ/C c:c: (246)

where the Fermi multipletƒi is the gauge field strength of the i-th vector superfield.
The possibility of such holomorphic couplings is very natural from the (mirror)
symmetry between the superpotential and twisted superpotential in .2; 2/ models.
However, the importance of such terms and, in particular, the fact that they
can depend on charged chiral fields was emphasized only recently [MQSS12].
The novelty of these models is that classically they are not gauge invariant, but
nevertheless can be saved by quantum effects. This brings us to our next topic.

4.3 Anomaly Inflow

Now we wish to explain that not only the coupling of a 2d N D .0; 2/ theory TŒM4�

to a 3d N D 2 theory TŒM3� on a half-space is convenient, but in many cases it
is also necessary. In other words, by itself a 2d theory TŒM4� associated with a 4-
manifold with boundary may be anomalous. Such theories, however, do appear as
building blocks in our story since the anomaly can be cancelled by inflow from the
3d space-time where TŒM3� lives [CH85].

In this mechanism, the one-loop gauge anomaly generated by fermions in the
2d .0; 2/ theory TŒM4� is typically balanced against the boundary term picked up
by anomalous gauge variation of the classical Chern–Simons action in 3d N D 2

theory TŒM3�. Essentially the same anomaly cancellation mechanism—with Chern–
Simons action in extra dimensions replaced by a WZW model—was used in a
wide variety of hybrid .0; 2/ models [GPS93, Joh95, BJKZ96, DS10, AG], where
the chiral fermion anomaly and the classical anomaly of the gauged WZW model
were set to cancel each other out. In particular, our combined 2d-3d system of
theories TŒM4� and TŒM3� provides a natural home to the “fibered WZW models”
of [DS10], where the holomorphic WZW component is now interpreted as Chern–
Simons theory in extra dimension.

The simplest example—already considered in this context in [GGP13]—is an
abelian 3d N D 2 Chern–Simons theory at level k. In the presence of a boundary,
it has k units of anomaly inflow which must be cancelled by coupling to an
“anomalous heterotic theory”

@	J	 D AR �AL

2�
˛�	�F	� (247)

whose left-moving and right-moving anomaly coefficients are out of balance by k
units:

AR �AL D k (248)
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4.4 Boundary Conditions for N D 2 Chern–Simons Theories

In general, there can be several contributions to the anomaly coefficients AL;R

and, correspondingly, different ways of meeting the anomaly cancellation condition
like (248). In the case of a single U.1/ gauge symmetry, there is, of course, a
familiar contribution from fermions transforming in chiral representations of the
gauge group,

AR D
X

rWchiral

Qq2r (249a)

AL D
X
`WFermi

q2` (249b)

where Qqr and q` are the charges of .0; 2/ chiral and Fermi multiplets, respectively.
Besides the chiral anomaly generated by charged Weyl fermions, there can

be an additional contribution to (248) from field-dependent Fayet–Iliopoulos cou-
plings (246), such as “charged log interactions”:

eJ D i

8�

X
r

Nr log .ˆr/ (250)

which spoils gauge invariance at the classical level. As explained in [MQSS12] such
terms contribute to the anomaly

AR D �
X

rWchiral

QqrNr (251)

and arise from integrating out massive pairs of .0; 2/ multiplets with unequal
charges. Note the sign difference in (249a) compared to (251).

This can be easily generalized to a 2d-3d coupled system with gauge symmetry
U.1/n. Namely, let us suppose that 3d N D 2 theory in this combined system
contains Chern–Simons interactions with a matrix of “level” coefficients kij, much
like our quiver Chern–Simons theory (37) associated with a plumbing graph‡ . And
suppose that on a boundary of the 3d space-time it is coupled to some interacting
system of .0; 2/ chiral and Fermi multipets that, respectively, carry charges Qqi

r and
qi
` under U.1/n symmetry, i D 1; : : : ; n. In addition, for the sake of generality

we assume that the Lagrangian of the 2d .0; 2/ boundary theory contains field-
dependent FI terms (246) with

eJi D i

8�

X
r

Ni
r log .ˆr/ (252)
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Then, the total anomaly cancellation condition for the coupled 2d-3d system—that
combines all types of contributions (248), (249), and (251)—has the following form:

X
rWchiral

Qqi
r Qqj

r �
X
`WFermi

qi
`q

j
` �

X
rWchiral

Qq.ir Nj/
r D kij (253)

which must be satisfied for all values of i; j D 1; : : : ; n. Note that each of the
contributions on the left-hand side can be viewed as a “matrix factorization” of
the matrix of Chern–Simons coefficients. In particular, the term

P Qq.ir Nj/
r is simply

the (symmetrized) product of the matrix of chiral multiplet charges and the matrix
of the boundary superpotential coefficients, which altogether can be viewed as a
“twisted superpotential version” of the condition (244), with (39) and (252).

Suppose for simplicity that we have a theory of free chiral and Fermi multiplets.
The elliptic genus of this theory is simply

I.q; x/ D
Q
`WFermi �.

Q
i x

qi
`

i I q/Q
rWchiral �.

Q
i x

Qqi
r

i I q/
(254)

In [BDP] it was argued that the right-hand side can be interpreted as the “half-
index” of CS theory, that is, the partition function on S1 �q D which has boundary
S1 �q S1 Š T2 with modulus � . Following [GGP13] one can argue that this theory
is equivalent to the quiver CS theory with coefficients kij living in the half-space on
the left of 2d world-volume. That is, the original 2d-3d system is equivalent to CS
theory in the whole space. The relation

kij D
X

rWchiral

Qqi
r Qqj

r �
X
`WFermi

qi
`q

j
` (255)

can be deduced by considering the limit q ! 1 using that �.xI q/ 

expf�.log x/2=.2 log q/g

Now, one can apply this to 3d N D 2 theories TŒM3IG� that come from
fivebranes on 3-manifolds. Luckily, many of these theories—even the ones coming
from multiple fivebranes, i.e., associated with non-abelian G—admit a purely
abelian UV description, for which (253) should suffice. Hence, using the tools
explained here one can match 4-manifolds to specific boundary conditions that
preserve N D .0; 2/ supersymmetry in two dimensions.

4.5 From Boundary Conditions to 4-Manifolds

Let us start with boundary conditions that can be described by free fermions. Clearly,
these will give us the simplest examples of 2d .0; 2/ theories TŒM4�, some of which
have been already anticipated from the discussion in the previous sections.
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In particular, we expect to find free fermion description of theories TŒM4.‡/�

for certain plumbing graphs ‡ . In the bottom-up approach of the present section,
we construct such theories as boundary conditions in 3d N D 2 theories TŒM3�

associated with M3 D @M4. Thus, aiming to produce a boundary condition for the
N D 2 quiver Chern–Simons theory (37), let us associate a symmetry group U.1/i
to every vertex i 2 ‡ of the plumbing graph. Similarly, to every edge between
vertices “i” and “j” we associate a Fermi multiplet carrying charges .C1;�1/
under U.1/i � U.1/j. Then, its contribution to the gauge anomaly (253) is given
by the matrix of anomaly coefficients that is non-trivial only in a 2 � 2 block (that
corresponds to rows and columns with labels “i” and “j”):

�AL D
��1 1

1 �1
�

(256)

To ensure cancellation of the total anomaly, a combination of such contributions
must be set to equal the matrix of Chern–Simons coefficients kij, which for the quiver
Chern–Simons theory (37) is given by the symmetric bilinear form (20). Therefore,
by comparing (256) with (20), we immediately see that assigning U.1/ factors to
vertices of the plumbing graph ‡ and “bifundamental” charged Fermi multiplets to
edges already accounts for all off-diagonal terms (with i ¤ j) in the intersection
form Q.

Also, note that contributions of charged Fermi multiplets to the diagonal
elements of the anomaly matrix are always negative, no matter what combination
of contributions (256) or more general charge assignments in (253) we take. This
conclusion, of course, relies crucially on the signs in (253) and has an important
consequence: only negative definite intersection forms Q can be realized by free
Fermi multiplets.

For example, in the case of the An plumbing graph shown in Fig. 1, we have M3 D
L.nC 1; n/, and the N D 2 quiver Chern–Simons theory TŒL.nC 1; n/IU.1/� has
matrix of Chern–Simons coefficients of the form (18) with ai D �2, i D 1; : : : ; n.
By combining (256) with two extra Fermi multiplets of charges ˙1 under the first
and the last U.1/ factors, we can realize the An intersection form as the anomaly
matrix in the following 2d N D .0; 2/ theory:

TŒM4.An/IU.1/� D Fermi multiplets ‰`D0;:::;n (257)

with charges

q.‰`/ D

8̂
<̂
ˆ̂:
C1 under U.1/1; if ` D 0
.�1;C1/ under U.1/` � U.1/`C1; if 1 � ` < n

�1 under U.1/n; if ` D n

(258)

Note, the total number of Fermi multiplets in this theory is nC 1, which is precisely
the number of Taub-NUT centers in the ALE space of type An.
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Let us briefly pause to discuss the structure of the charge matrix .qi
`/

iD1;:::;n
`D0;:::;n

in (258). First, it is easy to see that each of the U.1/n gauge symmetries is “vector-
like” in a sense that the charges add up to zero for every U.1/ factor. Also note that
redefining the charges qn

` 7! q1` C 2q2` C 3q3` C � � � C nqn
` for all Fermi multiplets

as in (102) gives a new matrix of charges that, via (253), leads to a new matrix of
Chern–Simons coefficients:

Q D An�1 ˚ h�n.nC 1/i (259)

which splits into a matrix of Chern–Simons coefficients for a similar U.1/n�1 theory
and an extra N D 2 Chern–Simons term at level �n.n C 1/. In this basis we
recognize the statement—explained in Sect. 2.14 through a variant of the “Norman
trick” [Nor69, Qui79]—that a sphere plumbing with ‡ D An can be built from the
An�1 sphere plumbing by a cobordism (attaching a 2-handle) with the intersection
form QB D h�n.nC 1/i, cf. (103).

This observation has a nice physical interpretation in the coupled 2d-3d system
described in Sect. 2.14 and illustrated in Figs. 14 and 15. Namely, the system of
Fermi multiplets (257)–(258) without ‰n is simply the 2d N D .0; 2/ theory
TŒM4.An�1/IU.1/� that can cancel anomaly and define a consistent boundary
condition in the 3d N D 2 Chern–Simons theory TŒM3.An�1/IU.1/� associated
with the plumbing graph ‡ D An�1 by the general rule (37). In the new basis, the
extra U.1/iDn symmetry (which is not gauged in TŒM3.An�1/IU.1/�) is, in fact, an
axial symmetry under which all‰`D0;:::;n�1 have chargeC1. Gauging this symmetry
and adding an extra Fermi multiplet that in the new basis has charge �n under
U.1/iDn gives precisely the 2d-3d system of 3d N D 2 quiver Chern–Simons
theory TŒM3.An/IU.1/� coupled to the 2d N D .0; 2/ theory TŒM4.An/IU.1/� on the
boundary. This way of building TŒM4.An/IU.1/� corresponds to a fusion of the fully
transmissive domain wall that carries‰n with a boundary theory TŒM4.An�1/IU.1/�,
as illustrated in Figs. 14 and 15.

And, last but not least, in the matrix of charges .qi
`/

iD1;:::;n
`D0;:::;n given in (258) one

can recognize simple roots ˛iD1;:::;n of the An root system. This suggests immediate
generalizations. For instance, for a 4-manifold (105) whose plumbing graph ‡ D
D4 contains a trivalent vertex, we propose the “trinion theory” TŒ?� to be a theory of
four Fermi multiplets with the following charge assignments under the U.1/4 flavor
symmetry group:

�2�

�2� ��2
�2�

W .qi
`/trinion D

0
BB@
1 �1 0 0

0 1 �1 0

0 0 1 �1
0 0 1 1

1
CCA (260)

The rows of this matrix are simple roots of the D4 root system associated with the
plumbing graph‡ , while the columns are the charge vectors of the Fermi multiplets
‰`D1;:::;4. Substituting this into (253), we conclude that this 2d trinion theory can
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precisely cancel the anomaly of the 3d N D 2 Chern–Simons theory with gauge
group U.1/4 and the matrix of Chern–Simons coefficients:

.Qij/ D

0
BB@
�2 1 0 0

1 �2 1 1

0 1 �2 0

0 1 0 �2

1
CCA (261)

which equals minus the Cartan matrix of the D4 root system. This is in complete
agreement with our general proposal (37) that TŒM4.‡/� defines a consistent, non-
anomalous boundary condition for the 3d N D 2 theory TŒM3.‡/�, which in the
present case is simply the quiver Chern–Simons theory defined by the symmetric
bilinear form (20).

In Sect. 2.7 we saw that An linear plumbing can be naturally glued to a twisted
D2 bundle over S2 with Euler number �.nC 1/ since they share the same boundary
(with opposite orientation, as required for gluing). In particular, the latter 4-manifold
is represented by the Kirby diagram (15) with p D nC 1 and has boundary M3 D
L.nC 1; 1/.

The corresponding 3d N D 2 theory TŒL.nC 1; 1/IU.1/� was derived in (45): it
is a U.1/ Chern–Simons theory at level �.nC 1/. This theory can be related to the
U.1/n quiver Chern–Simons theory TŒL.nC 1; n/IU.1/�, cf. (51), by a sequence of
dualities (3d Kirby moves) described in Sect. 2.7. In particular, this chain of dualities
shows that TŒL.n C 1; n/IU.1/� and TŒL.n C 1; 1/IU.1/� are related by a parity
transformation (65):

TŒL.nC 1; n/� ' P ı TŒL.nC 1; 1/� (262)

which, of course, is expected to hold for any G, not just G D U.1/.
Given the explicit description of the 3d N D 2 theory TŒL.n C 1; 1/IU.1/�,

one can study B-type boundary conditions and try to match those with 4-manifolds
bounded by L.nC 1; 1/. The anomaly cancellation condition (253) suggests several
possible candidates for the .0; 2/ boundary theory TŒM4�:

(a) nC 1 Fermi multiplets of charge ˙1 (or, more generally, a collection of Fermi
multiplets whose charges squared add up to nC 1);

(b) a single .0; 2/ chiral multiplet ˆ of charge Qqˆ D C1 and charged log
interaction (252) with Nˆ D nC 2.

4.6 Non-abelian Generalizations and Cobordisms

It is straightforward to extend this discussion to boundary theories and theories
TŒM4IG� trapped on walls for non-abelian G. Even if G is non-abelian, theories
TŒM4IG� and TŒM3IG� often admit (multiple) UV definitions that only involve
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abelian gauge fields. In some cases, however, it is convenient to build TŒM4IG�
and TŒM3IG� using non-abelian gauge symmetries. For instance, the Lens space
theory (52) proposed in Sect. 2.2 is a good example.

In order to accommodate such examples, we need to discuss 2d .0; 2/ theories
with non-abelian gauge symmetries, which by itself is a very interesting subject
that does not appear to be explored in the literature on .0; 2/ heterotic models.
Specifically, consider a general 2d theory with .0; 2/ chiral multiplets ˆr that
transform in representations eRr of the gauge group G and Fermi multiplets ‰` in
representations R`. The corresponding fermions couple to the non-abelian gauge
field via the usual covariant derivatives, e.g., for left-moving fermions in Fermi
multiplets we have

.Dz/ij D ıij@z C
X

a

Aa
z .T

a
R`
/ij

and similarly for chiral multiplets. Here, Ta
R are matrices of size dim.R/�dim.R/ that

obey the same commutation relations as the generators Ta of the Lie algebra Lie .G/.
(The latter correspond to the fundamental representation.) Then, the anomaly
cancellation condition in such a theory has the form, cf. (253),

X
rWchiral

Tr ŒTaeRr
TbeRr
� �

X
`WFermi

Tr ŒTa
R`

Tb
R`
� D .kC � k�/ � Tr ŒTaTb� (263)

where, in order to diversify our applications, we now assumed that the inflow from
three dimensions has two contributions, from Chern–Simons couplings at levels kC
and k�, respectively. This more general form of the anomaly inflow is realized in
a 2d .0; 2/ theory trapped on a domain wall between 3d N D 2 theories TŒMC

3 �

and TŒM�
3 �.

The anomaly cancellation condition (263) can be written more succinctly by
using the index C.R/ of a representation R defined via Tr

�
Ta

RTb
R

� D C.R/ıab. For
example, for the fundamental and adjoint representations of G D SU.N/ we have
C.fund/ D 1

2
and C.Adj/ D N, respectively. In general,

C.R/ D hR
dim.R/

dim.Adj/
(264)

where hR is the quadratic Casimir of the representation R.
Now we can apply (263), say, to the Lens space theory (52). We conclude that a

domain wall that carries a Fermi multiplet ‰ in the fundamental representation of
G D U.N/ changes the level of the N D 2 Chern–Simons theory by one unit,

kC � k� D �1 (265)

This is consistent with our proposal, based on matching the Vafa–Witten partition
function with the superconformal index, that the cobordism B that relates Ap and
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ApC1 sphere plumbings corresponds to a domain wall which carries 2d .0; 2/ theory

TŒBIU.N/� D Fermi multiplet ‰ in the fundamental representation (266)

The fusion of such domain walls is clearly non-singular and gives

TŒM4.Ap/IU.N/� D pC 1 Fermi multiplets ‰`D0;:::;p in N-dimn’l representation

In fact, the wall in this example is fully transmissive. Notice, as in (257), the total
number of Fermi multiplets in this theory is greater (by one) than the number of
2-handles in M4 and equals the number of Taub-NUT centers in the ALE space of
type Ap.

5 Future Directions

There are many avenues along which one can continue studying 2d N D .0; 2/

theories TŒM4� labeled by 4-manifolds. The most obvious and/or interesting items
on the list include:

• Examples: While focusing on the general structure, we presented a number
of concrete (abelian and non-abelian) examples of: (a) theories labeled by 4-
manifolds and 3-manifolds, (b) dualities that correspond to Kirby moves, (c)
relations between cosets and Vafa–Witten partition functions, and (d) B-type
walls and boundary conditions in 3d N D 2 theories. Needless to say, it would
certainly be interesting to extend our list of examples in each case.

In particular, it would be interesting to study 2d N D .0; 2/ theories TŒM4�

associated with 4-manifolds that are not definite or not simply connected. Such
examples clearly exist (e.g., for M4 D T2 � †g or M4 D K3, possibly with
“frozen singularities” [Wit98, dDHKM02]), but still remain rather isolated and
beg for a more systematic understanding, similar to theories labeled by a large
class of negative definite simply connected 4-manifolds (13) considered in this
paper. Thus, in Sect. 2 we briefly discussed a natural generalization to plumbings
of twisted D2 bundles over genus-g Riemann surfaces. It would be interesting to
see what happens to the corresponding theories TŒM4� when Riemann surfaces
have boundaries/punctures and to make contact with [GRRY11].

• 4-manifolds with corners: Closely related to the last remark is the study of
4-manifolds with corners. Although such situations were encountered at the
intermediate stages in Sect. 2.2, we quickly tried to get rid of 3-manifolds with
boundaries performing Dehn fillings. It would be interesting to study whether
Vafa–Witten theory admits the structure of extended TQFT and, if it does, pursue
the connection with gluing discussed in Sect. 2.2.

• Smooth structures: As was already pointed out in the introduction, it would
be interesting to understand what the existence of a smooth structure on M4

means for the corresponding 2d N D .0; 2/ theory TŒM4�. We plan to tackle
this problem by studying surface operators in the fivebrane theory.
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• Large N limit: It would be interesting to study the large N behavior of the
Vafa–Witten partition function on plumbing 4-manifolds and make contact with
holographic duals.

• Non-abelian .0; 2/ models: It appears that not much is known about non-
abelian 2d .0; 2/ gauge dynamics. While in general abelian (gauge) symmetries
suffice for building theories TŒM4� and TŒM3�, in Sects. 2.2 and 4.5 we saw some
examples where using non-abelian symmetries is convenient.

• Defect junctions: One important property of defect lines and walls is that they
can form complicated networks and foam-like structures. Following the hints
from Sects. 2.2–2.10 it would be interesting to understand if these play any role
in the correspondence between 4-manifolds and 2d .0; 2/ theories.

• Triangulations: Since a basic d-dimensional simplex has d C 1 vertices, the
Pachner moves in d dimensions involve adding one more vertex and then
subdividing the resulting .dC2/-gon into basic simplices. In particular, for d D 4
such subdivisions always give a total of 6 simplices, resulting in 3–3 and 2–4
Pachner moves for 4-manifolds [Mac99]. It would be interesting to find a special
function (analogous to the quantum dilogarithm for 2–3 Pachner moves in case
of 3-manifolds) that enjoys such identities. Pursuing this approach, however, one
should keep in mind that not every 4-manifold can be triangulated. Examples of
non-triangulable 4-manifolds include some natural cases (such as Freedman’s
E8 manifold mentioned in the Introduction) on which the fivebrane theory is
expected to be well defined and interesting.
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Appendix 1: M5-Branes on Calibrated Submanifolds
and Topological Twists

We study the twisted compactification of 6d .2; 0/ theory on a four-manifold M4. In
each of the cases listed in Table 5, such compactification produces a superconformal
theory TŒM4� in the two non-compact dimensions. Via the computation of the
T2 partition function explained in the main text, the cases (a)–(c) correspond to
previously studied topological twists of N D 4 super-Yang-Mills which, in turn,
are summarized in Table 6.

Specifically, in the first case (a) the N D 4 SYM is thought of as an N D 2 gauge
theory with an extra adjoint multiplet and the Donaldson–Witten twist [Wit88]. Its
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Table 5 Supersymmetric M5 brane compactifications on a negatively curved 4-manifold M4

R-symmetry SO.5/ � Embedding of M4 SUSY Solution Metric on M4

(a) SO.4/ � SU.2/ � SU.2/ Cayley in Spin.7/ .0; 1/ AdS3 � M4 Conf. half-flat

(b) SO.4/ Lagrangian in CY4 .1; 1/ AdS3 � M4 Const. curvature

(c) SO.2/� SO.3/ Coassociative in G2 .0; 2/ AdS3 � M4 Conf. half-flat

(d) SO.2/ � SO.2/ Kähler in CY4 .0; 2/ AdS3 � M4 Kähler–Einstein

(e) SO.4/ � U.2/ � U.1/ Kähler in CY3 .0; 4/ AdS3 � S2 � CY3 Kähler–Einstein

(f) SO.4/ � U.2/ Complex Lagrangian in .1; 2/ AdS3 � M4 Kähler-Einstein w/

d D 8 hyper-Kähler Const. hol. sec. curv.

(g) SO.4/ � SO.2/ � SO.2/ .M2 	 CY2/� .M0

2 	 CY2/ .2; 2/ AdS3 � M2 � M0

2 Const. curvature

In the first column we box the subgroup of SO.5/ R-symmetry of the M5 brane theory that is
used to twist away the holonomy (or its subgroup) on M4. Except in the case (e), all the AdS3
solutions are already found in 7d supergravity and can be lifted to 11d by fibering S4 over M4,
see, e.g., [GKW00, GK02, BB13]. In the case (e), the solution is found only in 11d supergravity.
For manifolds M4 with general holonomy (but still some restrictions on the metric), only the
compactifications (a)–(c) are allowed. In this paper, we focus on the case (c) as it produces
.0; 2/ superconformal theory in two dimensions. In this case, M4 is conformally half-flat; see,
e.g., [Ito93] for moduli of conformally half-flat structures

Table 6 Topological twists of N D 4 super-Yang-Mills

R symmetry SO.6/ � Name Equations

(a) SO.2/� SU.2/ � SU.2/ Donaldson–Witten FC

˛ˇ C ŒM.˛ ;Mˇ/� D 0

D˛ P̨

M˛ D 0

(b) SO.2/� SU.2/ � SU.2/ Marcus/GL FC

	� � iŒV	;V� �C D 0

.DŒ	V��/� D 0 D D	V	

(c) SO.3/� SO.3/ Vafa–Witten D	C C p
2D�BC

�	 D 0

FC

	� � i
2
ŒBC

	� ;B
C�
� �� i

p

2
ŒBC

	� ;C� D 0

path integral localizes on solutions to the non-abelian monopole equations. The
untwisted rotation group of the DW theory is then twisted by the remaining SU.2/
symmetry to obtain the case (b). This twist (a.k.a. GL twist) was first considered by
Marcus [Mar95] and related to the geometric Langlands program in [KW07]. The
last case (c) is of most interest to us as it corresponds to .0; 2/ SCFT in 2d. On a
4-manifold M4, this twist is the standard Vafa–Witten twist [VW94].

Appendix 2: Orthogonality of Affine Characters

The Weyl–Kac formula for affine characters of bsu.2/k is
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�
bsu.2/k
� .q; a/ D ‚

.kC2/
�C1 .aI q/ �‚.kC2/

���1.aI q/
‚
.2/
1 .aI q/ �‚.2/

�1.aI q/
(267)

where

‚
.k/
� .aI q/ WD e�2� ikt

X
n2ZC�=2k

qkn2akn D e�2� iktq
�2

4k

X
n

qkn2C�naknC� (268)

Using the Weyl–Kac denominator formula the character can be rewritten as

�
bsu.2/k
� .q; a/ D e�2� i.kC2/tq

.�C1/2

4.kC2/
P

n q.kC2/n2a.kC2/n.q.�C1/na.�C1/ � q�.�C1/na�.�C1//

a�1.qI q/�.a2I q/
:

(269)
Consider the integral

I
da

2� ia
.qI q/21�.a2I q/�.a�2I q/�bsu.2/k� .q; a/�bsu.2/k

�0

.q; a/

D e�2� i.kC2/tq
.�C1/2

4.kC2/ C .�0

C1/2

4.kC2/

�
X
n;m


q.kC2/.n2Cm2/C.�C1/nC.�0C1/m

I
da

2� ia
a.kC2/.nCm/C.�C1/C.�0C1/

� q.kC2/.n2Cm2/C.�C1/n�.�0C1/m
I

da

2� ia
a.kC2/.n�m/C.�C1/�.�0C1/

� q.kC2/.n2Cm2/�.�C1/nC.�0C1/m
I

da

2� ia
a.kC2/.�nCm/�.�C1/C.�0C1/

C q.kC2/.n2Cm2/�.�C1/n�.�0C1/m
I

da

2� ia
a.kC2/.�n�m/�.�C1/�.�0C1/ / ı�;�0

(270)

This shows that bsu.2/k characters are orthogonal with respect to the measure

.qI q/21�.a2I q/�.a�2I q/ (271)

but this measure is exactly the index of SU.2/ .0; 2/ vector multiplet. The
orthogonality of Ou.1/k characters can be verified in a similar way. We conjecture
that bsu.N/k (Ou.N/k) characters are orthogonal with respect to SU.N/ (U.N/) vector
multiplet measure as well.
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