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Abstract Let � � PSL2.R/ be a Fuchsian subgroup of the first kind acting
by fractional linear transformations on the upper half-plane H. Consider the
d-dimensional space of cusp forms S�

2k of weight 2k for � , and let ff1; : : : ; fdg be
an orthonormal basis of S�

2k with respect to the Petersson inner product. In this
paper we show that the sup-norm of the quantity S�

2k.z/ WD Pd
jD1 jfj.z/j2 Im.z/2k is

bounded as O�.k/ in the cocompact setting, and as O�.k3=2/ in the cofinite case,
where the implied constants depend solely on � . We also show that the implied
constants are uniform if � is replaced by a subgroup of finite index.
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1 Introduction

1.1 Motivation

Let M denote a compact Riemann surface of genus g � 2. From the uniformization
theorem there is a unique metric on M, which is compatible with its complex
structure and which has constant Gauss curvature equal to �1. On the other hand,
from complex algebraic geometry, there is a canonical metric on M obtained by
pull-back through the Abel–Jacobi map from M into its Jacobian variety Jac.M/. Let
�hyp and �can denote the .1; 1/-forms associated with the hyperbolic and canonical
metrics, respectively. A natural question to consider is to compare �hyp with �can,
in whatever manner possible for general compact Riemann surfaces M of genus
g � 2. Since M has volume 1 with respect to �can, let us rescale the hyperbolic
metric by a multiplicative constant so that the associated .1; 1/-form �shyp also gives
M volume 1. After some reflection upon the question in hand, one concludes that
perhaps the most approachable manner in which one can compare the two metrics is
to consider the sup-norm of the function �can=�shyp on M viewed as a finite degree
cover of some fixed base Riemann surface M0.

In [JK04], the authors proved the following (optimal) result. If M is a compact
Riemann surface of genus g � 2, which is a finite degree cover of a fixed compact
Riemann surface M0, then the bound

sup
z2M

�
�can.z/

�shyp.z/

�

D OM0 .1/ (1)

holds. To be precise, the main result of [JK04] applies whenever M is a finite
degree cover of M0, which has finite hyperbolic volume and need not necessarily
be compact. In the setting of arithmetic geometry, the ratio sup

z2M
�can.z/=�shyp.z/

appears as an analytic invariant in the Arakelov theory of algebraic curves, and
the bound (1) plays an important role in [JK09], where the authors derived bounds
for Faltings’s delta function and, subsequently, for the Faltings height of Jacobians
associated with modular curves. Further comments on the significance of (1) as well
as related results will be given in Sect. 1.3 below.

From the point of view of automorphic forms, the ratio �can=�shyp roughly equals
the sum of squared norms of an orthonormal basis of cusp forms of weight 2 on M.
From this point of view, we can extend the bound (1) in two regards: first, we
can consider the sum of squared norms of an orthonormal basis of cusp forms of
arbitrary weight 2k on M, and second, we can develop bounds which are uniform in
the weight. The study of these two questions is the subject of the present article.
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1.2 Statement of Results

Let � � PSL2.R/ be a Fuchsian subgroup of the first kind acting by fractional linear
transformations on the upper half-plane H, and let M WD �nH be the corresponding
quotient space. We then consider the C-vector space S�

2k of cusp forms of weight 2k
for � , and let ff1; : : : ; fdg be an orthonormal basis of S�

2k with respect to the Petersson
inner product; here d WD dimC.S�

2k/. With these notations, we put for z 2 H

S�
2k.z/ WD

dX

jD1

jfj.z/j2 Im.z/2k:

In this article, we prove optimal L1-bounds for S�
2k.z/ in two different directions,

namely uniform L1-bounds with regard to the weight 2k, as well as uniform
L1-bounds through finite degree covers of M. More precisely, the following
statement is proven:

Let �0 � PSL2.R/ be a fixed Fuchsian subgroup of the first kind and let � � �0

be any subgroup of finite index. For any k 2 N>0, we then have the bound

sup
z2M

�
S�

2k.z/
� D O�0.k

3=2/; (2)

where the implied constant depends solely on �0. Moreover, if �0 is cocompact,
then we have the improved bound

sup
z2M

�
S�

2k.z/
� D O�0.k/; (3)

where, again, the implied constant depends solely on �0.
We were somewhat surprised to find different orders of growth in the weight com-

paring the cocompact to the general cofinite case. With regard to this phenomenon,
we prove the following auxiliary result in Proposition 5.1, which indicates where
the maximal values occur in the cofinite case:

For a cofinite Fuchsian subgroup � of the first kind and k 2 N>0, let " > 0 be
such that the neighborhoods of area " around the cusps of M are disjoint. Assuming
that 0 < " < 2�=k, we have the bound

sup
z2M

�
S�

2k.z/
� D O�;".k/;

where the implied constant depends solely on � and ".
Moreover, as far as the bounds (2) and (3) are concerned, we are able to show that

the results are optimal in both cases, at least up to an additive term in the exponent
of the form �" for any " > 0.
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1.3 Related Results

As stated, the origin of the problems considered in the present article comes from
[JK04], which studies the case of cusp forms of weight 2, i.e., k D 1 in the present
notation. In this respect, we recall that in the case �0 D PSL2.Z/ and � D �0.N/,
as a first step the main result of [AU95] proved for any " > 0 that

sup
z2M

�
S�0.N/

2 .z/
� D O.N2C"/;

which was improved to O.N1C"/ in [MU98]. In [JK04], the bound was finally
improved to O�0.1/, not only for the above-mentioned setting, but also to the case
when neither � nor �0 possess any arithmetic properties. With this stated, the
present article generalizes the results of [JK04] to cusp forms of arbitrary even
weight and for arbitrary Fuchsian subgroups � � PSL2.R/ of the first kind.

In a related direction, there has been considerable interest in obtaining sup-norm
bounds for individual Hecke eigenforms, with the most recent results coming from
the setting when the groups under consideration are arithmetic. For example, the
holomorphic setting of the quantum unique ergodicity (QUE) problem has been
studied in [LS03, Lau] and [HS10]. In [HS10], it is proven for � D PSL2.Z/

that normalized Hecke eigenforms of weight 2k converge weakly to the constant
function 3=� as k tends to infinity. In another direction, the authors prove in [HT13]
the so far best known bound for the L1-norm of L2-normalized Hecke eigenforms
for the congruence subgroups �0.N/ for squarefree N. Specifically, it is shown that

kf k1 �" k
11
2 N� 1

6 C";

with an implied constant which only depends on " > 0. We refer to the introduction
as well as the bibliography of the paper [HT13], which gives an excellent account
on the improvements of the bounds for the L1-norm of L2-normalized Hecke
eigenforms for the congruence subgroups �0.N/.

When comparing the results of the above articles to the main theorem of [JK04]
and the present article, one comes to the conclusion that the various results are
complementary. From the main result in the present paper in the case � D PSL2.Z/,
one obtains a bound for individual cusp forms which is weaker than in the theorems
of the above-mentioned articles. When taking the average results from the above-
mentioned articles, one obtains an average bound which is weaker than the main
theorem in the present paper.

More recently, a number of articles have appeared whose results are closely
related to the contents of [JK04, JK13], or the present article. In [Javanpeykar,
Kaenel1, Kaenel2], and [Pazuki], the authors study various fundamental problems in
arithmetic, such as Shafarevich-type conjectures using certain aspects of Arakelov
theory, including bounds for certain analytic invariants such as (1) as well as
effective bounds for Faltings’s delta function (see [JK13]). In [BF13], the authors
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prove an arithmetic analogue of the Hilbert–Samuel theorem, which has far-
reaching potential; the main result of the present article is related to the Bergman
measure studied in Sect. 2.5 therein.

Finally, we refer the reader to the interesting article [Templier], in which the
author proves the existence of cusp forms which, in the (not necessarily squarefree)
level aspect, have large modulus, thus disproving a “folklore” conjecture asserting
that all forms should be uniformly small.

1.4 Outline of the Paper

In Sect. 2, we establish notations and recall background material. In Sect. 3, we
prove technical results for the heat kernel associated with the Laplacian �k acting
on Maass forms of weight k for � . In Sect. 4, we provide a proof of the bound (3)
for � D �0. By an additional investigation in the neighborhoods of the cusps, we
arrive in Sect. 5 at a proof of the bound (2), again in the case that � D �0. Finally, in
Sect. 6, we are able to establish the uniformity of our bounds (2) and (3) with regard
to finite index subgroups � in �0. To complete the article, we show that our bounds
are optimal, which is the content of Sect. 7.

2 Background Material

2.1 Hyperbolic Metric

Let � � PSL2.R/ be any Fuchsian subgroup of the first kind acting by fractional
linear transformations on the upper half-plane H WD fz 2 C j z D xCiy ; y > 0g. Let
M be the quotient space �nH and g the genus of M. Denote by T the set of elliptic
fixed points of M and by C the set of cusps of M; we put t WD jT j and c WD jCj. If
p 2 T , we let mp denote the order of the elliptic fixed point p; we set mp D 1, if p
is a regular point of M. Locally, away from the elliptic fixed points, we identify M
with its universal cover H, and hence, denote the points on M n T by the same letter
as the points on H.

We denote by ds2
hyp.z/ the line element and by �hyp.z/ the volume form

corresponding to the hyperbolic metric on M, which is compatible with the complex
structure of M and has constant curvature equal to �1. Locally on M n T , we have

ds2
hyp.z/ D dx2 C dy2

y2
and �hyp.z/ D dx ^ dy

y2
:
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We denote the hyperbolic distance between z; w 2 M by disthyp.z; w/ and we recall
that the hyperbolic volume volhyp.M/ of M is given by the formula

volhyp.M/ D 2�

�

2g � 2 C c C
X

p2T

�
1 � 1

mp

��

:

2.2 Cusp Forms of Higher Weights

For k 2 N>0, we let S�
2k denote the space of cusp forms of weight 2k for � , i.e.,

the space of holomorphic functions f W H �! C, which have the transformation
behavior

f .�z/ D .cz C d/2kf .z/

for all � D �
a b
c d

� 2 � , and which vanish at all the cusps of M. The space S�
2k is

equipped with the inner product

hf1; f2i WD
Z

M

f1.z/f2.z/ y2k�hyp.z/ .f1; f2 2 S�
2k/:

By letting d WD dimC.S�
2k/ and choosing an orthonormal basis ff1; : : : ; fdg of S�

2k,
we define the quantity

S�
2k.z/ WD

dX

jD1

jfj.z/j2 y2k:

The main result of this paper consists in giving optimal bounds for the quantity
S�

2k.z/ as z ranges throughout M.

2.3 Maass Forms of Higher Weights

Following [Fay] or [Fischer], we introduce for any k 2 N the space V�
k of functions

' W H �! C, which have the transformation behavior

'.�z/ D
�

cz C d

cNz C d

�k

'.z/ D e2ik arg .czCd/'.z/
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for all � D �
a b
c d

� 2 � . For ' 2 V�
k , we set

k'k2 WD
Z

M

j'.z/j2�hyp.z/;

whenever it is defined. We then introduce the Hilbert space

H�
k WD ˚

' 2 V�
k

ˇ
ˇ k'k < 1�

equipped with the inner product

h'1; '2i WD
Z

M

'1.z/'2.z/�hyp.z/ .'1; '2 2 H�
k /:

The generalized Laplacian

�k WD �y2

�
@2

@x2
C @2

@y2

�

C 2iky
@

@x

acts on the smooth functions of H�
k and extends to an essentially self-adjoint linear

operator acting on a dense subspace of H�
k .

From [Fay] or [Fischer], we quote that the eigenvalues for the equation

�k'.z/ D �'.z/ .' 2 H�
k /

satisfy the inequality � � k.1 � k/.
Furthermore, if � D k.1 � k/, then the corresponding eigenfunction ' is of the

form '.z/ D f .z/yk, where f is a cusp form of weight 2k for � , i.e., we have an
isomorphism of C-vector spaces

ker
�
�k � k.1 � k/

� Š S�
2k:

2.4 Heat Kernels of Higher Weights

The heat kernel on H associated with �k is computed in [Oshima] and corrects a
corresponding formula in [Fay]. It is given by

Kk.tI �/ D
p

2 e�t=4

.4� t/3=2

1Z

�

re�r2=.4t/

p
cosh.r/ � cosh.�/

T2k

�
cosh.r=2/

cosh.�=2/

�

dr ;

where

T2k.X/ WD cosh.2k arccosh.X//
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denotes the 2kth Chebyshev polynomial.
The heat kernel on M associated with �k is defined by (see [Fay, p. 153])

K�
k .tI z; w/ WD

X

�2�

�
c Nw C d

cw C d

�k� z � � Nw
�w � Nz

�k

Kk.tI �� Iz;w/;

where �� Iz;w WD disthyp.z; �w/. If z D w, we put �� Iz WD �� Iz;z and K�
k .tI z/ WD

K�
k .tI z; z/.

2.5 Spectral Expansions

The resolvent kernel on M associated with �k is the integral kernel G�
k .sI z; w/,

which inverts the operator �k � s.1 � s/ (see [Fischer, p. 27, Theorem 1.4.10]). The
heat kernel and the resolvent kernel on M associated with �k are related through the
expression

G�
k .sI z; w/ D

1Z

0

e�.s�1=2/2tet=4K�
k .tI z; w/; (4)

which holds for s 2 C such that Re..s � 1=2/2/ is sufficiently large. In other
words, (4) expresses the resolvent kernel on M associated with �k as the Laplace
transform of the heat kernel on M associated with �k, with an appropriate change
of variables. Conversely, one then can express the heat kernel on M as an inverse
Laplace transform, with an appropriate change of variables, of the resolvent kernel
on M.

The spectral expansion of the resolvent kernel on M associated with �k is given
on p. 40 of [Fischer], which is established as an example of a more general spectral
expansion theorem given on p. 37 of [Fischer]. Using the inverse Laplace transform,
one then obtains the spectral expansion for the heat kernel on M associated with �k;
we leave the details for the derivation to the interested reader. For the purposes of
the present article, we derive from the spectral expansion of K�

k .tI z/ and the fact
that the smallest eigenvalue of �k is given by k.1 � k/ and that the corresponding
eigenfunctions are related to S�

2k, the important relation

S�
2k.z/ D lim

t!1 e�k.k�1/tK�
k .tI z/:

Furthermore, it is evident from the spectral expansion of the heat kernel that
e�k.k�1/tK�

k .tI z/ is a monotone decreasing function for any t > 0, hence we arrive
at the estimate

ek.k�1/tS�
2k.z/ � K�

k .tI z/ (5)

for any t > 0 and z 2 H.
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3 Heat Kernel Analysis

Lemma 3.1. For t > 0, � > 0, and r � �, let

Fk.tI �; r/ WD re�r2=.4t/

sinh.r/
T2k

�
cosh.r=2/

cosh.�=2/

�

:

Then, for all values of t, �, r in the given range, we have

sinh.r/
@

@�
Fk.tI �; r/ C sinh.�/

@

@r
Fk.tI �; r/ < 0:

Proof. We put

X WD cosh.r=2/

cosh.�=2/
;

and compute

sinh.r/
@

@�
Fk.tI �; r/ C sinh.�/

@

@r
Fk.tI �; r/

D sinh.�/ Fk.tI �; r/

�
1

r
� r

2t
� cosh.r/

sinh.r/

�

C re�r2=.4t/

sinh.r/
T 0

2k.X/

�

sinh.r/
@X

@�
C sinh.�/

@X

@r

�

:

It is now easy to see that

1

r
� r

2t
� cosh.r/

sinh.r/
< 0

for all t > 0 and r > 0. Since r � �, we have X � 1, and hence

T2k.X/ D cosh.2k arccosh.X// � 1;

from which we conclude that

sinh.�/ Fk.tI �; r/

�
1

r
� r

2t
� cosh.r/

sinh.r/

�

< 0:

Furthermore, since T2k.X/ is an increasing, positive function, its derivative T 0
2k.X/

is again a positive function. To complete the proof of the lemma, we are therefore
left to show that
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sinh.r/
@X

@�
C sinh.�/

@X

@r
� 0:

For this we compute

sinh.r/
@X

@�
C sinh.�/

@X

@r

D � sinh.r/
cosh.r=2/ sinh.�=2/

2 cosh2.�=2/
C sinh.�/

sinh.r=2/

2 cosh.�=2/

D 1

2 cosh2.�=2/

� � sinh.r/ cosh.r=2/ sinh.�=2/ C sinh.�/ cosh.�=2/ sinh.r=2/
�

D 1

2 cosh2.�=2/

� � 2 sinh.r=2/ cosh2.r=2/ sinh.�=2/

C 2 sinh.�=2/ cosh2.�=2/ sinh.r=2/
�

D sinh.r=2/ sinh.�=2/

cosh2.�=2/

� � cosh2.r=2/ C cosh2.�=2/
�
;

which is negative for r > � and vanishes for r D �. ut
Proposition 3.2. For any t > 0, the heat kernel Kk.tI �/ on H associated with �k

is strictly monotone decreasing for � > 0.

Proof. We will prove that @=@� Kk.tI �/ < 0 for � > 0. To simplify notations, we
put

c.t/ WD
p

2e�t=4

.4� t/3=2
:

In the notation of Lemma 3.1, we then have, using integration by parts,

Kk.tI �/ D c.t/

1Z

�

Fk.tI �; r/
sinh.r/

p
cosh.r/ � cosh.�/

dr

D �2c.t/

1Z

�

@

@r
Fk.tI �; r/

p
cosh.r/ � cosh.�/ dr :

We now apply the Leibniz rule of differentiation to write

@

@�
Kk.tI �/ D �2c.t/

1Z

�

@2

@r @�
Fk.tI �; r/

p
cosh.r/ � cosh.�/ dr

C c.t/

1Z

�

@

@r
Fk.tI �; r/

sinh.�/
p

cosh.r/ � cosh.�/
dr :
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Using integration by parts on the first term once again, yields the identity

@

@�
Kk.tI �/ D c.t/

1Z

�

�

sinh.r/
@

@�
Fk.tI �; r/ C sinh.�/

@

@r
Fk.tI �; r/

�

� dr
p

cosh.r/ � cosh.�/
:

With Lemma 3.1 we conclude that @=@� Kk.tI �/ < 0 for � > 0, which proves the
claim. ut
Proposition 3.3. For given � , k 2 N, and t > 0, the heat kernel K�

k .tI z/ on M
associated with �k converges absolutely and uniformly on compact subsets K of M.

Proof. Let K � M be a compact subset. In order to prove the absolute and uniform
convergence of the heat kernel K�

k .tI z/ on M associated with �k for t > 0 and
z 2 K, we have to show the convergence of

X

�2�

Kk.tI �� Iz/

for t > 0 and z 2 K. To do this, we introduce for � > 0 and z 2 K the counting
function

N.�I z/ WD #
˚
� 2 � j �� Iz D disthyp.z; �z/ < �

�
: (6)

By arguing as in the proof of Lemma 2.3 (a) of [JL95], one proves that

N.�I z/ D O�;K.e�/; (7)

uniformly for all z 2 K with an implied constant depending solely on � and K. The
dependence on � is given by the maximal order of elliptic elements of � .

By means of the counting function N.�I z/, we obtain the following Stieltjes
integral representation of the quantity under consideration:

X

�2�

Kk.tI �� Iz/ D
1Z

0

Kk.tI �/ dN.�I z/:

Since Kk.tI �/ is a non-negative, continuous, and, by Proposition 3.2, monotone
decreasing function of �, an elementary argument allows one to derive from (7)
the bound
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1Z

0

Kk.tI �/ dN.�I z/ D O�;K

� 1Z

0

Kk.tI �/ e� d�

�

; (8)

again uniformly for all z 2 K with an implied constant depending solely on � and K.
We are thus left to find a suitable bound for Kk.tI �/. For this we observe the

inequality

r2

4t
� r2

8t
C �2

8t

for r � �, which gives

Kk.tI �/ D
p

2 e�t=4

.4� t/3=2

1Z

�

re�r2=.4t/

p
cosh.r/ � cosh.�/

T2k

�
cosh.r=2/

cosh.�=2/

�

dr

� e��2=.8t/

p
2 e�t=4

.4� t/3=2

1Z

�

re�r2=.8t/

p
cosh.r/ � cosh.�/

T2k

�
cosh.r=2/

cosh.�=2/

�

dr

� e��2=.8t/

p
2 e�t=4

.4� t/3=2

1Z

0

re�r2=.8t/

p
cosh.r/ � 1

T2k.cosh.r=2// dr I (9)

for the last inequality we used that the preceding integral is monotone decreasing
in �, which follows along the same lines as the proof of Proposition 3.2. Using the
equalities

cosh.r/ � 1 D 2 sinh2.r=2/ and T2k.cosh.r=2// D cosh.kr/ ;

the estimate (9) leads to the bound

Kk.tI �/ � e��2=.8t/ Gk.t/ (10)

with the function Gk.t/ given by

Gk.t/ WD e�t=4

.4� t/3=2

1Z

0

re�r2=.8t/

sinh.r=2/
cosh.kr/ dr:

Introducing the function

H.t/ WD
1Z

0

e��2=.8t/e� d� ;
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the bound (10) in combination with (8) yields

X

�2�

Kk.tI �� Iz/ D O�;K
�
Gk.t/H.t/

�
;

where the implied constant equals the implied constant in (8). From this the claim
of the proposition follows. ut
Corollary 3.4. For any Fuchsian subgroup � of the first kind and k 2 N>0, we have
the bound

S�
2k.z/ �

X

�2�

Kk.tI �� Iz/

for any t > 0 and z 2 H, where the right-hand side converges uniformly on compact
subsets of M.

Proof. Since k 2 N>0 and

ˇ
ˇ
ˇ
ˇ

�
cNz C d

cz C d

�k� z � � Nz
�z � Nz

�kˇˇ
ˇ
ˇ D 1

for any � D �
a b
c d

� 2 � , we deduce for any t > 0 and z 2 H from (5) that

S�
2k.z/ � ek.k�1/t S�

2k.z/ � K�
k .tI z/ �

X

�2�

Kk.tI �� Iz/; (11)

where the right-hand side of (11) converges uniformly on compact subsets by
Proposition 3.3. This proves the claim. ut

4 Bounds in the Cocompact Setting

Proposition 4.1. For any ı > 0, there is a constant Cı > 0, such that for any
Fuchsian subgroup � of the first kind and k 2 N>0, we have the bound

S�
2k.z/ � k

X

�2�
��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�
��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
;

where we recall that �� Iz D disthyp.z; �z/ with z 2 H and � 2 � .
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Proof. From Corollary 3.4, we recall for any t > 0 and z 2 H the inequality

S�
2k.z/ �

X

�2�

Kk.tI �� Iz/: (12)

We proceed by estimating the right-hand side of (12), i.e., by giving a suitable
bound for

Kk.tI �� Iz/ D
p

2 e�t=4

.4� t/3=2

1Z

��Iz

re�r2=.4t/

p
cosh.r/ � cosh.�� Iz/

T2k

�
cosh.r=2/

cosh.�� Iz=2/

�

dr :

We start with some elementary bounds for the Chebyshev polynomials T2k.X/ D
cosh.2k arccosh.X//. Using that

arccosh.X/ D log
�
X C

p
X2 � 1

�
;

we find

arccosh

�
cosh.r=2/

cosh.�� Iz=2/

�

D log

�
1

cosh.�� Iz=2/

�

cosh.r=2/ C
q

cosh2.r=2/ � cosh2.�� Iz=2/

��

� log

�
1

cosh.�� Iz=2/

�

cosh.r=2/ C
q

cosh2.r=2/ � 1

��

D r=2 � log
�

cosh.�� Iz=2/
�
:

Therefore, we obtain the bound

T2k

�
cosh.r=2/

cosh.�� Iz=2/

�

D cosh

�

2k arccosh

�
cosh.r=2/

cosh.�� Iz=2/

��

� ekr

cosh2k.�� Iz=2/
;

and hence arrive at

S�
2k.z/ �

p
2 e�t=4

.4� t/3=2

X

�2�

1Z

��Iz

re�r2=.4t/

p
cosh.r/ � cosh.�� Iz/

ekr

cosh2k.�� Iz=2/
dr

D
p

2 e�t=4

.4� t/3=2

X

�2�

1

cosh2k.�� Iz=2/

1Z

��Iz

re�r2=.4t/Ckr

p
cosh.r/ � cosh.�� Iz/

dr: (13)
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We next multiply both sides of inequality (13) by te�s.s�1/t with s 2 R, s > k, and
integrate from t D 0 to t D 1. Recalling from [GR81], formula 3.325, namely

1Z

0

e�a2te�b2=.4t/ t1=2 dt

t
D

p
�

a
e�ab;

we arrive with a D s � 1=2 and b D r at the bound

S�
2k.z/

.s.s � 1/ � k.k � 1//2
�

p
2�

.4�/3=2.s � 1=2/

X

�2�

1

cosh2k.�� Iz=2/

�
1Z

��Iz

re�.s�1=2/rCkr

p
cosh.r/ � cosh.�� Iz/

dr:

Now, let s D k C 1, to get

S�
2k.z/ �

p
2

2�

k2

k C 1=2

X

�2�

1

cosh2k.�� Iz=2/

1Z

��Iz

re�r=2

p
cosh.r/ � cosh.�� Iz/

dr: (14)

To finish, we will estimate the integral in (14) in a manner similar to the proof of
Lemma 4.2 in [JK13]. We start by first considering the case, where � � ı. Let us
then use the decomposition

1Z

��Iz

	 	 	 D
��IzClog.4/Z

��Iz

	 	 	 C
1Z

��IzClog.4/

	 	 	

For r 2 Œ�� Wz; �� Iz C log.4/	, we have the bound

cosh.r/ � cosh.�� Iz/ D .r � �� Iz/ sinh.r�/ � .r � �� Iz/ sinh.�� Iz/;

where r� 2 Œ�� Iz; �� Iz C log.4/	. With this in mind, we have the estimate

��IzClog.4/Z

��Iz

re�r=2

p
cosh.r/ � cosh.�� Iz/

dr � .�� Iz C log.4//e���Iz=2

p
sinh.�� Iz/

��IzClog.4/Z

��Iz

drp
r � �� Iz

D 2
p

log.4/
.�� Iz C log.4//e���Iz=2

p
sinh.�� Iz/

: (15)
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If r � �� Iz C log.4/, we have

cosh.r/

2
� cosh.�� Iz C log.4//

2
� cosh.�� Iz/ cosh.log.4//

2
� cosh.�� Iz/;

so then

cosh.r/ � cosh.�� Iz/ � 1

2
cosh.r/ � er

4
;

hence

1Z

��IzClog.4/

re�r=2

p
cosh.r/ � cosh.�� Iz/

dr � 2

1Z

��IzClog.4/

re�r dr

D .�� Iz C log.4/ C 1/e���Iz

2
: (16)

Combining inequalities (15) and (16), we find for �� Iz � ı a suitable constant Cı >

0 depending on ı such that

1Z

��Iz

re�r=2

p
cosh.r/ � cosh.�� Iz/

dr � 2
p

log.4/
.�� Iz C log.4//e���Iz=2

p
sinh.�� Iz/

C .�� Iz C log.4/ C 1/e���Iz

2
� Cı �� Iz e���Iz :

From inequality (14), we thus obtain the bound

S�
2k.z/ � k

X

�2�
��Iz<ı

1

cosh2k.�� Iz=2/

1Z

��Iz

re�r=2

p
cosh.r/ � cosh.�� Iz/

dr

C Cı k
X

�2�
��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
: (17)

In order to estimate the finite sum in (17), we introduce the function

h.�/ WD
1Z

�

re�r=2

p
cosh.r/ � cosh.�/

dr D �2

1Z

�

p
cosh.r/ � cosh.�/

d

dr

�
re�r=2

sinh.r/

�

dr:
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We have

d

d�
h.�/ D

1Z

�

sinh.�/
p

cosh.r/ � cosh.�/

d

dr

�
re�r=2

sinh.r/

�

dr

D
1Z

�

sinh.�/
p

cosh.r/ � cosh.�/

re�r=2

sinh.r/

�
1

r
� 1

2
� coth.r/

�

dr:

Since tanh.r/ � r, we have that coth.r/ � 1=r, so then 1=r � 1=2 � coth.r/ �
�1=2 < 0, hence the function h.�/ is monotone decreasing. Therefore, (17)
simplifies to

S�
2k.z/ � k

X

�2�
��Iz<ı

1

cosh2k.�� Iz=2/

1Z

0

re�r=2

p
cosh.r/ � 1

dr C Cı k
X

�2�
��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
:

Using the fact that sinh.r/ � r, we have that

1Z

0

re�r=2

p
cosh.r/ � 1

dr D
1Z

0

re�r=2

p
2 sinh.r=2/

dr � p
2

1Z

0

e�r=2 dr D 2
p

2:

Therefore, we arrive at the bound

S�
2k.z/ � k

X

�2�
��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�
��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
;

as claimed. ut
Theorem 4.2. For any Fuchsian subgroup � of the first kind, k 2 N>0, and any
compact subset K � M, we have the bound

sup
z2K

�
S�

2k.z/
� D O�;K.k/;

where the implied constant depends solely on � and K.

Proof. From Proposition 4.1, we have the bound

S�
2k.z/ � k

X

�2�
��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�
��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
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� k
X

�2�
��Iz<ı

2
p

2

cosh2.�� Iz=2/
C Cı k

X

�2�
��Iz�ı

�� Iz e���Iz

cosh2.�� Iz=2/
: (18)

In order to estimate the first summand in (18), we observe that the sum is finite and
hence is a well-defined continuous function on M, which has a maximum C0

�;K;ı > 0

on K, depending solely on � , K, and ı. For z 2 K, we thus have

k
X

�2�
��Iz<ı

2
p

2

cosh2.�� Iz=2/
� C0

�;K;ı k: (19)

To finish, we use the counting function N.�I z/ defined by (6) and its bound (7). For
the second summand in (18), we then find a constant C00

�;K;ı > 0 depending solely
on � , K, and ı such that

Cı k
X

�2�
��Iz�ı

�� Iz e���Iz

cosh2.�� Iz=2/
� 4 Cı k

X

�2�
��Iz�ı

�� Iz e�2��Iz � C00
�;K;ı k

1Z

0

� e�2�e� d�

D C00
�;K;ı k: (20)

Adding up inequalities (19) and (20) yields the claim keeping in mind that ı can be
chosen universally. ut
Corollary 4.3. For any cocompact Fuchsian subgroup � of the first kind and k 2
N>0, we have the bound

sup
z2M

�
S�

2k.z/
� D O�.k/;

where the implied constant depends solely on � .

Proof. The proof is an immediate consequence of Theorem 4.2. ut

5 Bounds in the Cofinite Setting

Proposition 5.1. For a cofinite Fuchsian subgroup � of the first kind and k 2 N>0,
let " > 0 be such that the neighborhoods of area " around the cusps of M are
disjoint. Assuming that 0 < " < 2�=k, we have the bound

sup
z2M

�
S�

2k.z/
� D O�;".k/;

where the implied constant depends solely on � and ".
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Proof. For a cusp p 2 C, we denote by U".p/ the neighborhood of area " centered
at p. By means of the neighborhoods U".p/, we have the compact subset

K" WD M n
[

p2C
U".p/

of M. We will now estimate the quantity S�
2k.z/ for z ranging through K" and U".p/

(p 2 C), respectively.
In the first case, we obtain from Theorem 4.2 that

sup
z2K"

�
S�

2k.z/
� D O�;K" .k/;

where the implied constant depends solely on � and K".
In order to prove the claim in the second case, we may assume without loss of

generality that p is the cusp at infinity and the neighborhood U".p/ is given by the
strip

S1=" WD fz 2 H j 0 � x < 1; y > 1="g:

For a cusp form f 2 S�
2k of weight 2k for � , we then consider the expression

jf .z/j2 y2k D
ˇ
ˇ
ˇ
ˇ

f .z/

e2� iz

ˇ
ˇ
ˇ
ˇ

2 y2k

e4�y
:

The function jf .z/=e2� izj2 is subharmonic and bounded in the strip S1=" and, hence,
takes its maximum on the boundary

@S1=" D fz 2 H j 0 � x < 1; y D 1="g

of S1=", by the strong maximum principle for subharmonic functions. On the
other hand, an elementary calculation shows that the function y2k=e4�y takes its
maximum at

y D k

2�
<

1

"
;

and is monotone decreasing for y > k=.2�/. Therefore, we have

sup
z2S1="

�jf .z/j2 y2k
� D sup

z2@S1="

�jf .z/j2 y2k
�
:

From this we conclude that

sup
z2M

�
S�

2k.z/
� D sup

z2K"

�
S�

2k.z/
� D O�;K" .k/:
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Since the compact subset K" depends only on M, i.e., on � , and on ", the claim of
the proposition follows. ut
Theorem 5.2. For a cofinite Fuchsian subgroup � of the first kind and k 2 N>0,
we have the bound

sup
z2M

�
S�

2k.z/
� D O�.k3=2/;

where the implied constant depends solely on � .

Proof. As in the proof of Proposition 5.1, we choose " > 0 such that the
neighborhoods U".p/ of area " around the cusps p 2 C are disjoint. These
neighborhoods give rise to the compact subset

K" WD M n
[

p2C
U".p/

of M. As before, we will estimate the quantity S�
2k.z/ for z ranging through K" and

U".p/ (p 2 C), respectively. As in the proof of Proposition 5.1, we obtain

sup
z2K"

�
S�

2k.z/
� D O�;K" .k/; (21)

where the implied constant depends solely on � and K". Since the choice of "

depends only on M, the implied constant depends in the end solely on � .
In order to establish the claimed bound for the cuspidal neighborhoods, we

distinguish two cases.

(i) If 0 < " < 2�=k, the bound for S�
2k.z/ in the cuspidal neighborhoods U".p/

(p 2 C) is reduced to the bound (21) as in the proof of Proposition 5.1. The
proof of the theorem follows in this case.

(ii) If " � 2�=k, we have to modify the estimates for S�
2k.z/ in the cuspidal

neighborhoods U".p/ (p 2 C). As before, we may assume without loss of
generality that p is the cusp at infinity and the neighborhood U".p/ is given
by the strip

S1=" WD fz 2 H j 0 � x < 1; y > 1="g:

From the argument given in the proof of Proposition 5.1, we find that

sup
z2Sk=.2�/

�
S�

2k.z/
� D sup

z2@Sk=.2�/

�
S�

2k.z/
�
;

where Sk=.2�/ is the subset of S1=" given by

Sk=.2�/ WD fz 2 H j 0 � x < 1; y > k=.2�/g:
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Therefore, we are reduced to estimate the quantity S�
2k.z/ for z ranging through the

set

S1=" n Sk=.2�/ D fz 2 H j 0 � x < 1; 1=" < y � k=.2�/g:

For this, we will use the bound

S�
2k.z/ � k

X

�2�
��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�
��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
(22)

obtained in Proposition 4.1 with an arbitrarily, but fixed chosen ı > 0. By means of
the stabilizer subgroup

�1 WD
	�

1 n
0 1

� ˇ
ˇ
ˇ
ˇ n 2 Z




of the cusp at infinity, we can rewrite inequality (22) as

S�
2k.z/ � k

X

�2�1

��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�1

��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/

C k
X

�2�n�1

��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�n�1

��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
: (23)

Using the formula

cosh2

�
disthyp.z; w/

2

�

D jz � Nwj2
4 Im.z/ Im.w/

;

the first two summands on the right-hand side of (23) can be bounded as

k
X

�2�1

��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�1

��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/

� k.2
p

2 C Cı=e/ C 2k
1X

nD1

2
p

2 C Cı=e
�
.n=2y/2 C 1

�k :
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By an integral test, we have (recalling formula 3.251.2 from [GR81])

1X

nD1

1
�
.n=2y/2 C 1

�k

1

2y
�

1Z

0

1
�
1 C 
2

�k d
 D
p

� �.k � 1=2/

2 �.k/
;

which leads to the bound

k
X

�2�1

��Iz<ı

2
p

2

cosh2k.�� Iz=2/
C Cı k

X

�2�1

��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/

D O

�

k y
�.k � 1=2/

�.k/

�

D O
�
k3=2

�
;

keeping in mind that y � k=.2�/ and using Stirling’s formula.
We now turn to estimate the third summand on the right-hand side of (23).

For fixed z 2 S1=" n Sk=.2�/, the sum in question is finite and bounded by the
corresponding sum with k D 1. Letting z more generally range across the compact
subset given by the closure of S1=", the latter sum takes its maximum on that compact
set, which depends solely on � , ", and ı. In summary, we obtain

k
X

�2�n�1

��Iz<ı

2
p

2

cosh2k.�� Iz=2/
D O�.k/; (24)

where the implied constant depends solely on � .
We are left to estimate the fourth summand on the right-hand side of (23).

Eventually, by shrinking ", we may assume that we have Im.�z/ < 1=" for all
� 2 � n �1; this process depends only on � . We then find

Cı k
X

�2�n�1

��Iz�ı

�� Iz e���Iz

cosh2k.�� Iz=2/
� Cı k

X

�2�n�1

��Iz�ı

e���Iz=2

cosh2k.�� Iz=2/

� Cı k
X

�2�n�1

e���Iz;"=2

cosh2.�� Iz;"=2/
; (25)

where

�� Iz;" WD disthyp
�
�z; @S1="

�
:

Using a counting function similar to (6) with a bound similar to (7), the right-hand
side of (25) can be bounded as O�;".Cı k/ with an implied constant depending solely
on � and ", hence solely on � .

This completes the proof of the theorem. ut
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6 Bounds for Covers

In this section, we fix a Fuchsian subgroup �0 � PSL2.R/ of the first kind with
quotient space M0 WD �0nH. We then consider subgroups � � �0, which are of
finite index. The quotient space M D �nH then is a finite degree cover of M0. Our
main goal in this section is to give uniform bounds for the quantity S�

2k.z/ depending
solely on k and �0.

Theorem 6.1. Let �0 be a fixed Fuchsian subgroup of PSL2.R/ of the first kind and
� � �0 any subgroup of finite index. For any k 2 N>0, we then have the bound

sup
z2M

�
S�

2k.z/
� D O�0.k

3=2/;

where the implied constant depends solely on �0.

Proof. Denote by � W M �! M0 the covering map and by C0 the set of cusps of M0.
As before, we choose " > 0 such that the neighborhoods U".p0/ of area " around
the cusps p0 2 C0 are disjoint. These neighborhoods give rise to the compact subset

K0;" WD M0 n
[

p02C0

U".p0/

of M0. By means of K0;" we obtain the compact subset K" WD ��1.K0;"/ of M. For z
ranging through K", we use Corollary 3.4 to obtain

S�
2k.z/ �

X

�2�

Kk.tI �� Iz/ �
X

�2�0

Kk.tI �� Iz/: (26)

The proofs of Proposition 4.1 and Theorem 4.2 with � and K" replaced by �0

and K0;", respectively, now show that the right-hand side of inequality (26) can be
uniformly bounded as O�0.k/, keeping in mind that the choice of " and, hence of the
compact subset K0;", depend solely on �0.

We are thus left to bound S�
2k.z/ in the neighborhoods of the cusps of M obtained

by pulling back the neighborhoods U".p0/ for p0 2 C0 to M. In order to do this, we
can again assume that p0 is the cusp at infinity and U".p0/ is given as the strip

S1;1=" WD ˚
z 2 H

ˇ
ˇ 0 � x < 1; y > 1="

�
:

Furthermore, we may also assume that the cusp p 2 C of M lying over the cusp p0

is also at infinity of ramification index a, say. The pull-back of the neighborhood
U".p0/ to p via � is then modeled by the strip

Sa;1=" WD ˚
z 2 H

ˇ
ˇ 0 � x < a; y > 1="

�
;
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which contains the strip

Sa;a=" WD ˚
z 2 H

ˇ
ˇ 0 � x < a; y > a="

�

of area ". As in the proof of Theorem 5.2, we distinguish two cases.

(i) If 0 < " < 2�=k, i.e., a=" > ak=.2�/, we show as in Proposition 5.1 that

sup
z2Sa;a="

�
S�

2k.z/
� D sup

z2@Sa;a="

�
S�

2k.z/
�
;

and we are reduced to bound S�
2k.z/ in the annulus Sa;1=" n Sa;a=", which will be

done below.
(ii) If " � 2�=k, i.e., a=" � ak=.2�/, we proceed as in the corresponding part of

the proof of Theorem 5.2 to find

sup
z2Sa;ak=.2�/

�
S�

2k.z/
� D sup

z2@Sa;ak=.2�/

�
S�

2k.z/
�
;

where Sa;ak=.2�/ is the strip

Sa;ak=.2�/ WD ˚
z 2 H

ˇ
ˇ 0 � x < a; y > ak=.2�/

�
;

which reduces the problem to bound S�
2k.z/ to the region Sa;a=" nSa;ak=.2�/. As in

the proof of Theorem 5.2, we next use inequality (23), observing that we now
have

�1 D
	�

1 an
0 1

� ˇ
ˇ
ˇ
ˇ n 2 Z




:

The first two summands in (23) can be bounded by an obvious adaption as O.k3=2/

as z ranges through the set Sa;a=" n Sa;ak=.2�/, where we use in particular that
y � ak=.2�/. Furthermore, by increasing the range of summation in the sums (24)
and (25) by replacing � n �1 by �0 n �0;1, the argument given in the proof of
Theorem 5.2 shows that the third and fourth summand in (23) can both be bounded
as O�0.k/. All in all, we obtain in case (ii)

sup
z2Sa;a="

�
S�

2k.z/
� D O�0.k

3=2/;

and we are also in this case reduced to bound S�
2k.z/ in the annulus Sa;1=" n Sa;a=",

which we do next.
To this end, we make again use of the estimate (23) with z ranging through

Sa;1=" n Sa;a=". By estimating the third and the fourth summand in (23) as in (24)
and (25) with � n �1 replaced by �0 n �0;1, respectively, these two summands can



Uniform Sup-Norm Bounds on Average for Cusp Forms of Higher Weights 151

be bounded as O�0.k/. By proceeding as in the proof of Theorem 5.2, the first and
the second summand in (23) can be estimated as O.k1=2="/ using that y � a=".

By adding up all the above estimates, the proof of the theorem is complete. ut
Remark 6.2. We note that, if in addition to the hypotheses of Theorem 6.1, the fixed
Fuchsian subgroup �0 of PSL2.R/ of the first kind is cocompact and, hence the
subgroup � � �0 of finite index is also cocompact, then the proof of Theorem 6.1
in combination with Corollary 4.3 shows that for any k 2 N>0, we then have the
bound

sup
z2M

�
S�

2k.z/
� D O�0.k/;

where the implied constant depends solely on �0.

7 Optimality of the Bounds

In this section we show that the bounds obtained in Corollary 4.3 and Theorem 5.2
are optimal, at least in certain cases.

7.1 Optimality in the Cocompact Setting

In order to address optimality in case that the Fuchsian subgroup � of the first kind
under consideration is cocompact, we assume in addition that � does not contain
elliptic elements. We then let ! denote the Hodge bundle on M. For k large enough,
we then have by the Riemann–Roch theorem that

d D dimC

�
S�

2k

� D dimC

�
H0.M; !˝2k/

� D 2k deg.!/ C 1 � g

D 2k
volhyp.M/

4�
C 1 � g:

From this we derive for k large enough

sup
z2M

�
S�

2k.z/
�

volhyp.M/ �
Z

M

S�
2k.z/ �hyp.z/ D d D 2k

volhyp.M/

4�
C 1 � g:

Dividing by volhyp.M/ D 4�.g � 1/, yields

sup
z2M

�
S�

2k.z/
� � 2k � 1

4�
;

which shows that the bound obtained in Corollary 4.3 is optimal for k being large
enough.
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7.2 Optimality in the Cofinite Setting

In this subsection we will show that the bound obtained in Theorem 5.2 in the
cofinite setting is optimal in case that � D PSL2.Z/. For this, let f 2 S�

2k be an
L2-normalized, primitive, Hecke eigenform with Fourier expansion

f .z/ D
1X

nD1

�f .n/ e2� inz:

In [Xia], letting " > 0, the author proves as the main result the bounds

k1=2�" �" sup
z2M

�jf .z/j2 y2k
� �" k1=2C";

with an implied constant depending only on ". The lower bound, which is of interest
for this subsection, is obtained as follows. For fixed y > 0, we compute

1Z

0

jf .x C iy/j2 y2k dx D
1X

nD1

j�f .n/j2 y2k e�4�ny � j�f .1/j2 y2k e�4�y: (27)

From [Xia], we then recall the formula

j�f .1/j2 D �

2

.4�/2k

�.2k/

1

L
�
Sym2.f /; 1

� ;

where L
�
Sym2.f /; s

�
(s 2 C) denotes the symmetric square L-function associated

with the primitive Hecke eigenform f , which can be bounded as

k�" �" L
�
Sym2.f /; 1

� �" k"

for any " > 0. Using Stirling’s formula, we arrive at the estimate

j�f .1/j2 
" .2k/1=2�"

�
4�e

2k

�2k

: (28)

Using (28), we derive from (27) the lower bound

1Z

0

jf .x C iy/j2 y2k dx 
" .2k/1=2�"

�
2�e

k

�2k y2k

e4�y
: (29)
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Evaluating (29) at y D k=.2�/, we thus obtain the claimed lower bound

sup
z2M

�jf .z/j2 y2k
� �

1Z

0

jf .x C iy/j2 y2k dx 
" k1=2�"

for k large enough with an implied constant depending on the choice of " > 0.
Let now ff1; : : : ; fdg be an orthonormal basis of S�

2k consisting of primitive Hecke
eigenforms. Since d 
 k, we arrive with y D k=.2�/ at

sup
z2M

�
S�

2k.z/
� �

dX

jD1

1Z

0

ˇ
ˇfj.x C iy/j2 y2k dx 
" k3=2�"

for k large enough with an implied constant depending on the choice of " > 0.
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