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1 Introduction

This is a survey of the current state of triangulation questions posed by Kneser in
1924:

(1) Is a polyhedron with the local homology properties of Euclidean space, locally
homeomorphic to Euclidean space?

(2) Is a space locally homeomorphic to Euclidean space, triangulable (homeomor-
phic to some polyhedron)?

(3) If there are two such triangulations, must they be PL equivalent?

Topological work on the topic is described in Sects. 2–3. This work was mature and
essentially complete by 1980, but leaves open questions about H-cobordism classes
of homology 3-spheres. Gauge theory has had some success with these, with the
most substantial progress for the triangulation questions made in a recent paper of
Manolescu [mano13]. Manolescu’s paper is discussed in Sect. 4. This area is not yet
mature, and one objective is to suggest other perspectives.

Section 5 recounts some of the history of Kneser’s questions. Kneser posed them
as an attempt to provide foundations for Poincaré’s insights 20 years before, but
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they turned out to be a dead end. They were fruitful challenges to technology as it
developed, and much of the progress of the subject can be traced out in applications
to these questions, but they do not themselves have significant applications. Here
we have a different concern: why did Kneser point his contemporaries into a dead
end? Or was he trying to get them to face the fact that it was a dead end? The
question gives a fascinating window into the transition from pre-modern to modern
mathematics in the early twentieth century.

The remainder of the introduction gives modern context for the questions and
describes the organization of the technical parts of the paper.

1.1 Modern Context

The relevant main-line topics are PL manifolds, topological manifolds, and ANR
homology manifolds.1 Polyhedra that are homology manifolds, referred to here
as “PL homology manifolds,” are mixed-category objects, and Kneser’s questions
amount to asking how these are related to the main-line categories.

PL manifold
⊂

⊂
Topological

⊂

PL homology

ANR homology

⊂?

The standard categories differ radically in flavor and technique, but turn out to be
almost equivalent. For the purposes here, topological and ANR homology manifolds
are equivalent.2 PL and topological manifolds differ by the Kirby–Siebenmann
invariant ksm.M/ 2 H4.MI Z=2/. This is in a single cohomology group, with the
smallest possible coefficients, so is about as small as an obstruction can be without
actually being zero. This means the image of PL homology manifolds in the main-
line picture is highly constrained, and on the image level the answers to the questions
can’t be much different from “yes.” Unfortunately it turns out that there are a great
many PL homology manifolds in each image equivalence class.

1ANR D “Absolute Neighborhood Retract.” For finite-dimensional spaces this is equivalent to
“locally contractible,” and is used to rule out local point-set pathology.
2There are “exotic” homology manifolds not equivalent to topological manifolds, [BFMW] but
they are extremely difficult to construct and are not produced by any known natural process.
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1.2 Topology

PL homology manifolds have two types of singularities: dimension 0 (problematic
links of vertices) and codimension 4 (problematic links of .n � 4/-simplices). Four-
manifolds are special, in part because these two types coincide. Vertex singularities
can be canonically resolved, so are topologically inessential. This is described in
Sect. 2 and provides an answer to Kneser’s first question.

The real difficulties come from the codimension 4 singularities, and these involve
homology spheres. We denote the group of homology H-cobordism classes of
homology 3-spheres by ‚. The full official name is ‚H

3 , but the decorations are
omitted here because they don’t change. Several descriptions of this group are given
in Sect. 3.1.

A PL homology manifold K has an easily defined Cohen–Saito–Sullivan coho-
mology class css.K/ 2 H4.KI ‚/ [sullSing, cohen]; see Sect. 3.6. The Rokhlin
homomorphism rokW ‚ ! Z=2 induces a change-of-coefficients exact sequence

H4(K; ker(rok)) H4(K; Θ) rok
H4(K;Z/2)

β
H5(K; ker(rok))

with Bokstein connecting homomorphism ˇ. The image of the Cohen–Saito–
Sullivan class is the Kirby–Siebenmann class. The baby version of the main
theorem is

Theorem 1 ([gs]). If M is a topological manifold of dimension ¤ 4 (and boundary
of dimension ¤ 4 if it is nonempty), then concordance classes of homeomorphisms
to polyhedra correspond to lifts of the Kirby–Siebenmann class to H4.MI ‚/.

This is the baby version because serious applications (if there were any) would
require the relative version, Theorem 3.1. A corollary is that a triangulation exists if
and only if the Bokstein of the Kirby–Siebenmann invariant is trivial. Note that if the
Kirby–Siebenmann class lifts to a class with integer coefficients, then it lifts to any
coefficient group, and it follows that the manifold is triangulable. Similarly, if the
Kirby–Siebenmann class lifts to coefficients Z=k but no further, then triangulability
of the manifold depends on whether or not there is an element in ‚ of order k and
nontrivial Rokhlin invariant. Finally, triangulations are classified up to concordance
by H4.KI ker.rok//.

These results reduce the geometric questions to questions about the group ‚ and
the Rokhlin homomorphism. This part of the picture was essentially complete by
1980, but ‚ is opaque to traditional topological methods. It has grudgingly yielded
some of its secrets to sophisticated gauge theory; an overview is given in Sect. 4. It
is infinitely generated and lots of these generators have infinite order. This means if
there is a triangulation of M and H4.MI Z/ ¤ 0, then there are a great many different
ones. Manolescu’s recent advance is that the Rokhlin homomorphism does not split.
This implies that there are manifolds (e.g., the ones identified by Galewski–Stern
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[gs5]) that cannot be triangulated. Manolescu’s paper is described in Sect. 4. This
theory is in a relatively early stage of development so the section gives speculations
about future directions.

It seems reasonable to speculate that homology spheres with nontrivial Rokhlin
invariant must have infinite order. Indeed, it seems reasonable to expect ‚ to be
torsion-free. Either would imply that M has a triangulation if and only if the integral
Bokstein ˇW H4.MI Z=2/ ! H5.MI Z/ is trivial on the Kirby–Siebenmann class.
Proof of existence of triangulations in such cases should be easier than cases that
might involve torsion.

2 Homology Manifolds are Essentially Manifolds

We begin with Kneser’s first question because the answer is easy (now) and sets the
stage for the others.

2.1 Singular Vertices

Suppose L is a PL homology n-manifold with homology isomorphic to the
homology of the n-sphere. Then the cone on L is a PL homology .n C 1/-manifold
(with boundary). However if the dimension is greater than 1 (to exclude circles) and
L is not simply connected, then the cone point is not a manifold point. The reason is
that the relative homotopy group

�2.cone; cone � �/ ' �1.L/ ¤ f1g

is nontrivial, and this is impossible for a point in a manifold.
The lowest dimension in which non-simply connected homology spheres occur

is 3, and the oldest and most famous 3-dimensional example was described by
Poincaré, see Kirby–Scharlemann [kscharlemann79]. There are examples in all
higher dimensions but the 3-dimensional ones are the most problematic. These cone
points turn out to be the only topological singularities:

Theorem 2.2. A PL homology manifold is a topological manifold except at vertices
with non-simply connected links of dimension greater than 2.

This statement is for manifolds without boundary, but extends easily. Boundary
point is singular if either the link in the boundary, or the link in the whole manifold,
is non-simply connected.

We give a quick proof using mature tools from the study of ANR homology
manifolds. Most homology manifolds are not manifolds, and some of them are quite
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ghastly.3 Nonetheless they are close to being manifolds. There is a single obstruction
in H0.XI Z/ whose vanishing corresponds to the existence of a map M ! X with
essentially contractible point inverses, and M a topological manifold [Q1]. These are
called resolutions by analogy with resolution of singularities in algebraic geometry.
When a resolution exists it is unique, essentially up to homeomorphism. Roughly
speaking this gives an equivalence of categories, and the global theories are the
same.

The obstruction is so robust that a heroic effort was required to show that exotic
examples exist [BFMW]. Existence of a manifold point implies the obstruction
vanishes, so PL homology manifolds have resolutions.

Next, Edwards’ CE approximation theorem asserts that if X is an ANR homol-
ogy manifold of dimension at least 5, and rW M ! X is a resolution, then r
can be approximated by a homeomorphism if and only if X has the “disjoint
2-disk property,” see [daverman]. It is easy to see that PL homology manifolds of
dimension at least 5 have the disjoint disk property everywhere except at �1-bad
vertices. This completes the proof except in dimension 4, where the only question
is with cones on homotopy spheres. Perelman has shown that these are actually
standard, so the cone is a PL 4-ball and the cone point is a PL manifold point.
The weaker assertion that they are topologically standard also follows from the next
section.

This proof seems effortless because we are using big hammers on small nails.
The job could be done with much smaller hammers, but this is more complicated
and might give the impression that we don’t have big hammers. Also, as mentioned
in the introduction, there is a rich history of partial results not recounted here.

2.2 Resolutions with Collared Singularities

The proof given above uses the fact that singularities in ANR homology manifolds
can be “resolved.” The next theorem gives a precise refinement for the PL case,
based on the following lemma:

Lemma 2.2. Suppose L is a PL homology manifold with the homology of a sphere.
Then L bounds a contractible manifold in the sense that there is a contractible
ANR homology manifold W with @W D L, L has a collar neighborhood in W, and
W � L is a topological manifold. Further, any two such W are homeomorphic rel a
neighborhood of the boundary.

The only novelty is that we have not assumed L is a manifold. The proof of
the 4-dimensional case given in [fq, Corollary 9.3C] extends easily. We sketch the
proof.

3There is a technical definition of “ghastly” in [davermanwalsh] that lives up to the name.
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The standard triangulation of L � Œ0; 1� has no vertices in the interior so, by the
Theorem above, the interior is a manifold. Do the plus construction [fq, §11.1] to
kill the fundamental group. The result is M with manifold interior, collared boundary
L� Œ0; 1�, and proper homotopy equivalent to a sphere. Replace each L� Œn; nC1� �
L � Œ0; 1/ by a copy of M and denote the result by W. If W is a manifold except
at the singularities of L, then the standard manifold proof shows that the 1-point
compactification is contractible, and a manifold except for these same singularities.
It also shows that this manifold is unique up to homeomorphism rel boundary. The
modification required in the older proof is verification that the interior of W is a
manifold.

W is a manifold except possibly at vertices in L � fng where the copies are glued
together. If n > 0, then L � fng has a collar on each side, so has a neighborhood
homeomorphic to L � R, which is a manifold. Thus the only non-manifold points
are in L � f0g. This completes the proof.

We use the lemma to define models for “collared singular points.” Suppose W is
as in the lemma, with boundary collar L� Œ0; 1/ ! W. Identify the complement of a
smaller open collar to a point to get W ! W=.W �L� Œ0; 1=2//. The quotient is the
cone L�Œ0; 1=2�=.L�f1=2g/, the map is a homeomorphism except at the cone point,
and the preimage of this point is a smaller copy of W and therefore contractible. In
particular this is a resolution.

Now define a “resolution with collared singular points” to be M ! K, that is, a
homeomorphism except at a discrete set of points in K, and near each of these points
is equivalent to a standard model. The lemma easily implies:

Theorem 2.3. A PL homology manifold K has a topological resolution with
collared singular points, and singular images the �1-bad vertices of K. This
resolution is well-defined up to homeomorphism commuting with the maps to K.

The mapping cylinder of a resolution is a homology manifold, and can be thought
of as a “concordance” between domain and range. In these terms the theorem asserts
that a PL homology manifold is concordant in a strong sense to a manifold.

The unusually strong uniqueness (commuting exactly with maps to K, not just
arbitrarily close) results from the fact that two such resolutions have the same
singular images, and the uniqueness in Lemma 2.2. This statement is true for
manifolds with boundary if the definition of “collared singularity” is extended in
the straightforward way.

3 Triangulation

The main theorem is stated after the obstruction group is defined. The proof has two
parts: first, enough structure of homology manifolds is developed to see the Cohen–
Saito–Sullivan invariant. Both cohomology and homology versions are described,
in part to clarify the role of orientations. The second part is the converse, due to
Galewski and Stern.
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3.1 The Group

‚ is usually defined as the set of oriented homology 3-spheres modulo homology
H-cobordism. Connected sum defines an abelian monoid structure, and this is a
group because reversing orientation gives additive inverses. As mentioned in the
introduction, the full name of this group is ‚H

3 , but analogous groups ‚H
k for

k � 3 are, fortunately, trivial. Roughly speaking, nontriviality would come from
fundamental groups, and in higher dimensions we can kill these (e.g., with plus
constructions).

Geometric constructions give disjoint unions of homology spheres, not single
spheres. These can be joined by connected sum to give an element in the usual
definition of the group, but there are a number of advantages to using a definition
that accepts disjoint unions directly. In this view ‚ is a quotient of the free abelian
group generated by homology 3-spheres. Elements in the kernel are boundaries of
oriented PL four-manifolds that are homologically like D4 minus the interiors of
finitely many disjoint 4-balls. These boundaries are disjoint unions of homology
3-spheres, and we identify disjoint unions with formal sums in the abelian group.
Elements of the standard version are generators in the expanded version. It is an
easy exercise to see that this inclusion gives an isomorphism of groups.

In either definition it is important that the equivalence relation be defined by
PL manifolds, not just homology manifolds. The goal is to organize cone.L/-
type singularities, and allowing singularities in the equivalences would defeat this.
There may eventually be applications in which “concordances” can have limited
singularities and the corresponding obstruction group should have these singularities
factored out. For instance, Gromov limits of Riemannian manifolds with special
metrics might allow variation by cones on homology spheres with special metrics.

The Rokhlin invariant is a homomorphism rokW ‚ ! Z=2 defined using
signatures of spin four-manifolds bounding homology 3-spheres, cf., [kirby]. This
connects with the Kirby–Siebenmann invariant, as described next.

Theorem 3.1 (Main Theorem).

(1) (CSS invariant) A PL homology manifold K has a “Cohen–Saito–Sullivan”
invariant css.K/ 2 H4.KI ‚/;

(2) (Relation to Kirby–Siebenmann) If rW M ! K is a topological resolution of a
PL homology manifold, then ksm.M/ D rok.r�.css.K//; and

(3) (Realization: Galewski–Stern [gs]) Suppose M is a topological manifold, not
dimension 4, and a homeomorphism @M ! L to a polyhedron is given. If there
is a lift ` of ksm.M/ to ‚ that extends css.L/, then there is a polyhedral pair
.K; L/ and a homeomorphism M ! K that extends the homeomorphism on @M,
and css.K/ D `.

Here, a “lift” is an element `:
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Dual of edge

Dual of vertex
Triangulation

Fig. 1 Dual cones in a simplicial complex

` ��

��

css.@K/

��

in H3.MI ‚/
@�

��

rok
��

H3.@KI ‚/

rok
��

ksm.M/ �� ksm.@M/ H3.MI Z=2/
@�

�� H3.@KI Z=2/

There is a slightly sharper version in which “lift” is interpreted as a cochain
representing such a cohomology class. Another extension is that if the map @M ! L
is a resolution instead of a homeomorphism, then the conclusion is that it extends
to M ! K, that is, a homeomorphism on M � @M. The significance is that vertex
singularities in L (where @M ! L cannot be a homeomorphism) do not affect the
codimension-4 obstructions. Finally, the fact that four-manifolds are smoothable
in the complement of points [ends3] can be used to alter definitions to give a
formulation that includes dimension 4. We await guidance from applications to see
which of these refinements is worth writing out.

The proof of parts (1) and (2) are given in the remainder of this section. The
Galewski–Stern proof of (3) follows the pattern developed to classify smooth and
PL structures [ks], so is more elaborate than really needed. I did not find a proof
short enough to include here, however.

3.2 Structure of Polyhedra

We review the structure of polyhedra needed for homology manifolds. Suppose
� is a simplex in a simplicial complex. The dual cone of � is a subcomplex
of the barycentric subdivision of the complex. Specifically, it is the collection of
simplices that intersect � in exactly the barycenter. The link is the subcomplex of
this consisting of faces opposite to the barycenter point (Fig.1).

It is easy to see that the dual cone is the cone on the link, with cone point the
barycenter of � . This extends to an embedding of the join of the link and � , using
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linearity in the simplex. Here we only need the weaker conclusion that the interior
of � has a neighborhood isomorphic to the product int.�/ � cone.link.�//.

3.3 Links in PL Homology Manifolds

Recall that X is a homology n-manifold (without boundary) if for each x 2 X,
H�.X; X�xI Z/ ' H�.Rn; Rn �oI Z/. A pair is a homology manifold with boundary
if X � @X is a homology n-manifold, @X is a homology .n � 1/-manifold, and points
in the boundary have the same local homology as points in the boundary of an n-ball
(i.e., trivial).

PL homology manifolds have much more structure.

Lemma 3.2. A polyhedron K is a homology n-manifold (without boundary) if and
only if link of every simplex is a homology manifold, and has the homology of an
.n � k � 1/-sphere, where k is the dimension of the simplex.

The statement about homology of links is an easy suspension argument. The
assertion that links are homology manifolds follows from this and the fact that links
in a link also appear as links in the whole space (easy after unwinding definitions).
This statement is easily extended to a version for manifolds with boundary.

3.6 The Cohomology Picture

We begin with the cohomological version of the codimension-4 invariant.
In a homology manifold the cones have the relative homology of disks, so they

give a model for the chain complex. Specifically, define the conical chain group
Ccone

n .K/ to be the free abelian group generated by n-dimensional cones together
with a choice of orientation. Boundary homomorphisms in this complex come from
homology exact sequences in a standard way.

Define a homomorphism ZŒoriented 4-d cones� ! ‚ by

.cone.L/; ˛/ 7! ŒL; @˛�

where ˛ denotes the orientation of the (4-dimensional) cone, and @˛ the correspond-
ing orientation of the (3-dimensional) homology sphere. It is not hard to see that this
defines a cohomology class [cohen], and we denote it by css.K/ 2 H4.KI ‚/.

This definition includes manifolds with boundary, and the invariant of the
boundary is css.@K/ D i�css.K/, where i�W H4.K/ ! H4.@K/ is induced by
inclusion. The key result is that the Rokhlin homomorphism relates the Kirby–
Siebenmann and CSS invariants:
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Proposition 3.3. If rW M ! K is a manifold resolution of a PL homology manifold,
then r�.rok.css.K// D ksm.M/.

The usual formulation is for the special case with r a homeomorphism. The addi-
tional information in the resolution version is that including the vertex singularities
makes no difference. They neither contribute additional problems, nor do they give
a way to avoid any of these problems.

The description of css should make this result very plausible, and if the definition
of the Kirby–Siebenmann invariant is understood (which we won’t do here),
the homeomorphism version should be obvious. The resolution version follows
easily from the homeomorphism version and the uniqueness of resolutions up to
homeomorphism.

3.8 The Homology Picture

The dual homology class is sometimes easier to work with but takes more care to
define correctly. The basic idea is to use simplicial chains and represent the class
in ZŒ.n � 4/-simplices� ˝ ‚ by using the class of the link of a simplex � as the
coefficient on � . There is a problem with this: an orientation is required to define
an element in ‚, but the data provides an orientation for the simplex rather than
the dual cone. An orientation of the manifold can be used to transform simplex
orientations to dual-cone orientations, but being too casual with this invites another
mistake: the invariant is in twisted homology.

A homology manifold has a double cover with a canonical orientation, OK ! K.
The group of covering transformations is Z=2 and the generator acts on OK by
interchanging sheets and (therefore) reversing orientation. Consider the simplicial
chains C�. OK/ as a free complex over the group ring ZŒZ=2�, and suppose A is
a ZŒZ=2� module. We define the homology Hn. OKI A/ to be the homology of the
complex C�. OK/ ˝ A, where the tensor product is taken over ZŒZ=2�.

If Z=2 acts trivially on A, then the tensor product kills the action on the chains
of OK and the result is ordinary homology. We will be concerned with the opposite
extreme, A D Z with Z=2 acting by multiplication by �1.

After this preparation we can define the Cohen–Saito–Sullivan homology class
by

css�.K/ D †� � � Œlink.�/� 2 Hn�4. OK; @ OKI ‚/

where Z=2 acts on ‚ by reversing orientation, and the orientation of link.�/ is
induced by the orientation of � and the canonical orientation of OK.

This definition also includes manifolds with boundary, and the invariant of the
boundary is given by the boundary homomorphism in the long exact sequence of
the pair.
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The homology and cohomology definitions are Poincaré dual. Duality between
simplices and dual cones is particularly clear: each simplex intersects exactly one
dual cone (its own) in a single point, and this pairing gives a chain isomorphism
between simplicial homology and dual-cone cohomology when links are homology
spheres.4 This pairing matches up the two definitions.

4 Gauge Theory

The Casson invariant (see [am]) gave the first hint that something like gauge theory
would play a role in this story. Casson used representation varieties and Heegard
decompositions to define an integer-valued invariant of homology 3-spheres, and
showed that the mod 2 reduction is the Rokhlin invariant. However it is a invariant
of diffeomorphism type, not homology H-cobordism. It does not define a function
‚ ! Z, and has little consequence for the triangulation questions.

Fintushel and Stern [fintstern90] used the Floer theory associated with Donald-
son’s anti-self-dual Yang–Mills theory to show that certain families of Seifert fibered
homology 3-spheres are linearly independent in ‚. The families are infinite so ‚

has infinite rank. This implies that most manifolds have vastly many concordance
classes of triangulations, but does not clarify the existence question because all these
homology 3-spheres are in the kernel of the Rokhlin homomorphism.

There has been quite a bit of work done since Fintushel–Stern, with invariants
derived from gradings in various Floer homology theories; see Manolescu’s discus-
sion of Frøyshov correction terms. The next qualitatively new progress, however,
is in Manolescu’s paper. The outcome is three functions ‚ ! Z which are not
homomorphisms, but have enough structure to show that a homology sphere with
nontrivial Rokhlin cannot have order 2 in ‚. This implies that manifolds whose
Kirby–Siebenmann classes do not lift to mod 4 cohomology, cannot be triangulated.
See [gs5] for a 5-dimensional example. Somewhat more elaborate arguments with
these functions seem to show that many Rokhlin-nontrivial spheres have infinite
order. The full consequences are not yet known.

Sections 4.1–4.6 give a qualitative outline of the preprint version of Manolescu’s
paper. The published version may be different. References such as “[mano13,
§3.1]” are abbreviated to “M3.1,” and readers who want to see things like the
Chern-Simons-Dirac functional written out should refer to this paper. Alternate
perspectives for experts are suggested in Sects. 4.7–4.8

4This is, in fact, Poincaré’s picture of duality, and will be discussed further in the history section.
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4.1 Physics Description

The idea, on the physics level of rigor, is that the Floer homology theory associated
with the Seiberg–Witten equations is given by the Chern-Simons-Dirac functional
on an appropriate function space. This functional is invariant under a big symmetry
group. Divide by the symmetry group, then we want to think of the induced
function on the quotient as a sort of Morse function and study its gradient flow.
More specifically, we are concerned with the finite-energy trajectories. The quotient
is infinite-dimensional, but we can enclose the finite-energy trajectories in an
essentially finite-dimensional box. Invariants of the system come from algebraic-
topological invariants of this box.

This description offers an alarmingly large number of ways to misunderstand
the construction, and one goal is to clarify the strategy and logical structure of
the process. For instance, finite-dimensional differential and algebraic topology are
mature subjects with a lot of sharp tools. It is useful to see the infinite-dimensional
part of the analysis as a sequence of reductions designed to bring part of the
structure within range of these sharp tools. Another, possibly dubious, goal is to
try to clarify features of the technical details and how they might be sharpened, but
without actually describing the details. Finally, the analysis described is for three-
manifolds whose first homology is torsion (b1 D 0/. The analysis in the general
case is considerably more elaborate.

4.2 The Coulomb Slice

The first step in the heuristic description is to “divide by an infinite group of
symmetries.” It is almost impossible to make literal sense of this, and in M3.1
Manolescu uses the Coulomb slice to avoid it. There is a (“normalized”) subgroup
of the full symmetry group with the property that each orbit intersects this slice in
exactly one point. The slice is therefore a model for the quotient by this subgroup,
and projection to the slice reduces the symmetry to the quotient of whole group by
the subgroup. The quotient is the compact Lie group Pin.2/.

Since it is compact, dividing by Pin.2/ makes good sense, but it introduces
singularities that are much more painful than symmetry groups. The plan is therefore
to do a nonsingular equivariant reduction to finite dimensions, and the long-term
strategy is roughly “let the finite-dimensional people deal with the group action.”

Manolescu explicitly describes the restriction of the Chern-Simons-Dirac func-
tional to the Coulomb slice, and describes a projected Riemannian metric that
converts the derivative of the functional to a gradient vectorfield with the property
that the projection preserves gradient flows. This description usually gives non-
specialists the wrong picture because the “Riemannian metric” is not complete.
The slice is a Frechét space of C1 functions, and there is no existence theorem
for flows in this context. In fact, in most directions the gradient vectorfield does not
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have a flow, even for short time, and the flow trajectories exploited by Floer and
others exist due to a regularity theorem for solutions of a differential equation with
boundary conditions. In other words there is only a small and precious fragment
of a flow for this vectorfield, and this is not Morse theory with a globally defined
flow. The observation that projection to the Coulomb slice preserves flows means it
preserves this small and precious fragment, not something global.

This explanation is still not quite right. Manolescu doesn’t actually identify
the flow fragment in infinite dimensions, so saying that the projection preserves
whatever part of the flow that happens to exist is a heuristic summary. On a technical
level the projection preserves reasons the fragment exists and it is these reasons, not
the flow itself, that power the rest of the argument.

4.3 Sobolev Completions

In the last paragraph of M3.1 the space V.k/ is defined as the completion of the
Coulomb slice, using the L2 Sobolev norm on the first k derivatives. This gives
Hilbert spaces but still doesn’t give us a flow because the “vectorfield” now changes
spaces: it is of the form

` C cW V.kC1/ ! V.k/

with ` linear Fredholm and c compact.5 The index shift corresponds to a loss of
a derivative, reflecting the fact that we are working with a differential equation.
The maneuvering (bootstrapping) needed to more-or-less recover this lost derivative
is a crucial analytic ingredient. Almost nothing is said about this in [mano13],
but some details are in [mano03, Sect. 3 and 4], phrased in terms of flows rather
than vectorfields. Manolescu’s next step is projection to finite-dimensional spaces
where there are well-behaved flows. There would be significant advantages to
connecting directly with Morse theory in an infinite-dimensional setting rather than
in projections; see section “Hilbert, or SC Manifolds” for further comments.

4.4 Eigenspace Projections

In section M3.2 Manolescu defines V�
� to be the subspace of V spanned by

eigenvectors of ` with eigenvalues in the interval .�; ��. This uses the fact, prominent
in [mano03] but unmentioned in [mano13], that ` is self-adjoint. In particular its
eigenvalues are real and eigenspaces are spanned by eigenvectors. These spaces are

5The spaces V are vector spaces and ` linear because we are assuming b1 D 0 (homology sphere).
The general situation is more complicated.
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finite-dimensional because ` is Fredholm. Finally, the symmetry group Pin.2/ acts
on them because they are defined using equivariant data.

There is a technical modification that deserves comment. The orthogonal pro-
jections V ! V�

� give a function from the parameter space f� < �g to linear
maps V ! V . This takes discrete values (depending only on the eigenvalues
in the interval) so is highly discontinuous. Manolescu smooths this function: the
dimension of the image still jumps but when it does, the projection on the new part
is multiplied by a very small number. The result is continuous as a function into the
space of linear maps. This implies that the finite projections of the CSD vectorfield
become smooth functions of the eigenvalue parameters. This is useful in showing
that parts of the qualitative structure of the output do not depend on the parameters
once they are sufficiently large.

The final modification of the flow is done in section M3.7. There is a unique
reducible solution of the equations, and non-free points of the Pin.2/ action come
from this. The functional is perturbed slightly (following the earlier [mano03]) to
make the reducible solution a nondegenerate critical point. The irreducible critical
points can also be made nondegenerate in an appropriate equivariant (Bott) sense.

This is one of the places where the Seiberg–Witten theory diverges in a qualitative
way from the Donaldson theory. The finite-energy trajectories in the Donaldson–
Floer theory cannot be made nondegenerate, and the analysis takes place on a center
manifold. This is rather more delicate.

4.5 Isolated Invariant Sets

The last structural input from the infinite-dimensional context is specification of the
“precious fragment” of the flow supposed to have come from infinite dimensions.
This is done by Proposition M3.1 in [mano13], which is a reference back to
Proposition 3 of [mano03]. The flow fragment is the union of trajectories that stay
in a ball of a certain radius, and the key fact is that it is isolated in the sense that it
is the same as the union of trajectories that stay in a ball of twice the radius.

We comment on the logic of the reduction. Defining the invariant uses only the
answer (the form of the explicit finite-dimensional approximations) and the proof
in Proposition M3.1 that the trajectories-in-a-ball construction gives an isolated
invariant set. This does not use the construction of a flow fragment in infinite
dimensions, so the demonstration that such a flow fragment would have been
preserved by the projection is not actually used. This demonstration does, however,
give a tight connection between this construction and those of Floer et.al. that do
use the infinite-dimensional flow.
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4.6 Equivariant Stable Homotopy Theory

The plan is to enclose the isolated invariant set identified in the previous step in a
nice box, and extract information about the system from algebraic and geometric
topology of the box. The box is a subspace (or submanifold) of a finite-dimensional
vector space so this is the point at which the problem enters the finite-dimensional
world. Manolescu is not a native of this world, however, and his treatment could
be refined. We briefly sketch Manolescu’s definition of the invariants in this
section. The main difficulties come in showing that these are well-defined and have
good properties. The next section hints at some of these difficulties and suggests
approaches that may be better adapted.

Manolescu uses the Conley Index construction to get a “box” enclosing the
isolated invariant set. The output is a pair of spaces that depends on choices or,
by taking the quotient, a pointed space that the choices change only by homotopy
equivalence. This takes place in an eigenvalue projection V�

� and changing � and
� changes the pointed-space output by suspension. The object associated with the
system is therefore a spectrum in the homotopy-theory sense. Finally, all these
things have Pin.2/ actions, and the suspensions are by Pin.2/ representations. The
proper setting for all this is evidently some sort of equivariant stable homotopy
theory. The most coherent account in the literature is Lewis–May–Steinberger
[may86], and Manolescu uses this version. The next step is to extract numerical
invariants from these Pin.2/-equivariant spectra using Borel homology.

To a first approximation the homology appropriate to a G-space X is the
homology of the quotient X=G. This works well for free actions but undervalues
fixed sets. The Borel remedy is to make the action free by product with a contractible
free G-space EG, and take the homology of the quotient .X � EG/=G. The free
part of X is unchanged by this but points fixed by a subgroup H � G are blown
up to copies of the classifying space EG=H. These classifying spaces are usually
homologically infinite-dimensional, so fixed sets become quite prominent. Another
benefit of the Borel construction is that the homology of .X � EG/=G is a module
over the cohomology of BGW D EG=G. These facts are illustrated by a localization
theorem quoted in M2.1: suppose X is a finite G-complex6 and the action is free
on the complement of A � X. A localization that kills finite-dimensional H�.BG/

modules kills the relative Borel homology of .X; A/, so the inclusion A ! X
induces an isomorphism on localizations. There is a difficulty that Borel homology
is not fully invariant under equivariant suspensions. Manolescu finesses this with F2

coefficients, but eventually it must be instituted.
In the case at hand the G-objects are spectra rather than single spaces. X can

be thought of as the equivariant suspension spectrum of a finite G-complex and
the sub-spectrum A of non-free points is essentially the suspension spectrum of
a point. Inclusion therefore gives a H�.BG/-module homomorphism H�.BG/ !

6The finiteness hypothesis on X is missing in the statement in [mano13].
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H�..X � EG/=G/. Finiteness of X implies that the third term in the long exact
sequence (the homology of the free pair .X; A/) is finite-dimensional. In particular
the kernel of H�.BG/ ! H�..X � EG/=G/ is a finite-dimensional H�.BG/-module.
When G D Pin.2/ these submodules are characterized by three integers ˛; ˇ; � , and
these are Manolescu’s invariants. The algebraic details give a pretty picture, and
readers should refer to Manolescu’s paper for this.

4.7 Handcrafted Contexts

Both stable homotopy theory and equivariant topology are sprawling, complicated
subjects. Off-the-shelf versions tend to be optimized for particular applications
and often use shortcuts or sloppy constructions that can cause trouble in other
circumstances. The best practice is to handcraft a theory that fits the application,
but this requires insider expertise. In this section we suggest such a handcrafted
context for the finite-dimensional part of Manolescu’s development.

Lyapunov Blocks

The first step is to be more precise about the data at the transition from analysis to
finite-dimensional topology. Manolescu uses the Conley index construction to get a
“box” enclosing an isolated invariant set in a flow on a manifold V . We recommend
instead an object we call a Lyapunov block. These were introduced and shown to
exist using Lyapunov functions by Wilson and Yorke [wilsonyorke73], and shown to
be essentially equivalent to Lyapunov functions by Wilson [wilson80]. Wilson and
Yorke call these “isolating blocks,” but a more distinctive name seems to be needed.
This construction has been revisited recently by Cornea [cornea], Rot–Vandervorst
[rotvdh], and others.

A Lyapunov block for an invariant set in a flow is a compact smooth
codimension-0 submanifold-with-corners B � V with boundary divided into
submanifolds @�B [ @0B [ @CB. Trajectories intersect B in arcs. Trajectories
enter through the incoming boundary @CB, exit through the outgoing boundary
@�B. The transient boundary @0B is a union of intersections with trajectories, and
the trajectory arcs give a product structure @0B ' @0;CB � I; see Fig. 2. Finally, the
trajectories completely contained in B are those in the original invariant set. The
underlying smooth manifold structure can be thought of as a smooth manifold triad
.B; @CB; @�B/. @0B is a collar so absorbing it into either @�B or @CB (or half into
each) changes them only by canonical diffeomorphism.

These blocks are not well-defined: different choices in a truncation step give
B that differ by addition or deletion of plugs of the form P � I, that intersects
trajectories in product arcs fpg� I. This implies that the pairs .B; @CB/ and .B; @�B/
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Fig. 2 A Lyapunov block for
a flow
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have well-defined relative homotopy types.7 To relate this to Manolescu’s version,
.B; @�B/ is a particularly nice Conley index pair for the flow, and the index itself is
the pointed space B=@�B. The quotient B=@CB is a Conley index for the reversed
flow. The manifold triad therefore gives both Conley indices and precisely encodes
their relationship.

Smooth Manifold Triads

The handcrafted context appropriate to this situation seems to be a stable category
defined using equivariant smooth manifold triads. It is “stable” in the sense that the
objects are families of triads related by equivariant suspensions that are “internal” in
the sense that they come from eigenvalue-range changes (see below). This context
receives Lyapunov blocks without further processing. It has many other virtues, as
we explain next, and in fact we like Lyapunov blocks because they permit use of
this context.

This context does not follow the standard practice of dividing to get pointed
spaces. Data from geometric situations often comes as pairs with structure that does
not gracefully extend to pointed-space quotients. Bundles on pairs, for instance,
rarely extend to the pointed space. This means they have to be described as “bundles
over the complement of the basepoint,” and to work with them one must recover the
pair by deleting a neighborhood of the basepoint. Group actions can be extended
to have the quotient basepoint as a fixed point, but this is often just cosmetic. In
many geometric applications, for instance, algebraic topology is done equivariantly
on the universal cover. The fact that the action is free is essential. The pointed-space
quotient therefore must be described as an action free in the complement of the
basepoint, and again much of the work requires deleting the basepoint to recover a
pair with a free action. Having to delete the basepoint is a clue that dividing to get a
basepoint was a mistake. In some cases the pair information can be recovered stably
without explicitly deleting the basepoint, but it is usually a lot of work.

The second advantage of this context is that in the manifold-triad world, Spanier–
Whitehead duality is implemented by interchanging the two boundary components.

7Blocks can be modified to eliminate the transient boundary [rotvdh], but it is best not to make this
part of the definition because it makes the “plug” variation hard to formulate.
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Interchanging boundaries in a Lyapunov block corresponds to reversing the flow, so
it is obvious that the flow and its reverse have S-W dual blocks. In the pointed-space
context there is a stable description in terms of maps from a smash product to a
sphere, but this is a characterization, not the definition, and it does not work in all
cases. Manolescu quotes this version in M2.4, and cites references that show that the
stable and unstable Conley indices are S-W dual in this sense. But these references
use Lyapunov blocks, so the net effect is “discard the Conley constructions and
redo the whole thing with manifold triads.” Going back to Conley indices not only
is inefficient but also introduces troublesome ambiguities about suspensions. This
difficulty is discussed next.

The final wrinkle in this context has to do with the meaning of “suspension.”
Enlarging the range of eigenvalues changes the projection by product with a
representation of Pin.2/, and changes the Lyapunov block by suspension with
the ball in this representation. This is an “internal” suspension because it is
specified by the analytic data. Understanding how internal suspensions change,
for instance, when the metric on the original manifold is varied, is a job for
analysis. External suspensions used to define equivariant invariants are specified
differently, and the two types of suspensions should be kept separate. In particular
the eigenvalue-change suspensions should not be seen as instances of external
suspension operations. To explain this, note that the equivariant theory of Lewis
et al. [may86] (used by Manolescu) is handcrafted to give a setting for homology
theories and classifying spaces. Roughly speaking, they want to grade homology
theories by equivalence classes of objects in the category of representations.
When objects have nontrivial automorphisms, equivalence classes of objects do
not form objects in a useful category. The standard fix for this is to use a skeleton
subcategory with one object in each equivalence class. In the equivariant setting
this means choosing one representation in each equivalence class, and always
suspending by exactly this representation. This is fine for external suspensions, but
representations that come internally from eigenvalue projections have no canonical
way to be identified with randomly chosen representatives. If the group is S1, as in
most previous work on Seiberg–Witten–Floer theory, then there are essentially no
automorphisms and this issue can be finessed. Manolescu’s key insight, however, is
that Pin.2/ is the right symmetry for this problem,8 and these representations have
automorphisms that make identifications problematic. The solution is to avoid using
external suspensions in describing the geometric invariant. Lyapunov blocks do this.

4.8 Next Goals

Floer homology is, to a degree, a solution in search of worthy problems. Distinguish-
ing knots is a baby problem whose persistence just reflects the lack of real work to
do. The triangulation problem is useful for teething technology but, as explained in

8The Pin.2/ symmetry was observed much earlier, cf., [bauerFuruta], but not fully exploited.
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the History section, is a backwater with no important application. This weakness
is reflected in the structure of Manolescu’s invariant: detailed information about
homology spheres lies in the part of the moduli space on which Pin.2/ acts freely,
but the invariant discards all this except the levels at which it cancels homology
coming from the fixed point. This is not a gateway to something deeper. We have
several suggestions for further work.

Complicated Geometric Structure

The first suggestion is motivated by internal structure of the analytic arguments.
Analysis associates to a homology 3-sphere a complicated Pin.2/-equivariant
gadget. We expect this to reveal something about geometric properties of the three-
manifold, but neither the properties nor the mechanisms of revelation are clear.
A useful intermediate step would be a complicated Pin.2/-equivariant gadget
derived more directly from the topological object. The two equivariant gadgets
might be related by a sort of index theorem. The point is that sometimes it is easier to
relate two complicated things than to understand either in detail, and the connection
can be a powerful aid to understand. We suggest maps from the homology sphere to
S3 ' SU.2/ as the topological gadget. Pin.2/ acts on this because it is a subgroup
of SU.2/, and these maps should connect to geometric structure by a form of
generalized Morse theory, cf., [gaykirby].

Hilbert, or SC Manifolds

The key analytic goal is to situate the objects of interest in a context accessible to
“finite-dimensional” geometric and algebraic topology. The context does not have to
be literally finite-dimensional to use the techniques, however, and a context that does
not require finite-dimensional projections would simplify formulation of invariants.
The first requirement for such a context is an effective global existence theorem for
flows. There seem to be at two possibilities that are, in a sense, at opposite extremes.

Manolescu begins (see Sect. 4.2) by restricting the Chern-Simons-Dirac func-
tional to the Coulomb slice, and using a Riemannian metric to convert the derivative
of the functional to a vector field. It would be quite natural to complete with
respect to this metric, to get a vectorfield on a separable Hilbert manifold. The
problem is that current estimates are not good enough to show that the finite-
energy trajectories form an isolated invariant set in this topology. There are heuristic
reasons to worry that they are not isolated in general. A perturbation of the system
to be “nondegenerate” in some sense might help. Eventually the geometric invariant
would be a Lyapunov block in the Hilbert manifold, together with an equivalence
class of structures related to the finite-dimensional projections. This would clarify
that the objects obtained by projection are fragments of a structure on the invariant
object, not the invariant object itself. A Hilbert-manifold formulation should be
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much easier to extend to things like Hilbert-manifold bundles over H1.XI R/, which
may be necessary for three-manifolds with ˇ1 ¤ 0.

Another possible context is the Banach-scale manifolds developed by Hofer,
Wysocki, and Zehnder. The Hilbert approach takes place at a fixed level of
differentiability, while the Banach-scale approach organizes the way in which
function spaces of increasing differentiability approach C1. It is “handcrafted”
in the sense of Sect. 4.7 to formalize and exploit the bootstrapping common in
applications.

The first comment is that the Hofer–Wysocki–Zehnder “polyfold” theory is not
appropriate here. This was developed to handle closure problems in quotients.
Here this is handled by taking the quotient by a subgroup of the full gauge group
which, since it has a global slice, has no closure problems. This leaves a residual
gauge action by Pin.2/. Dividing by this does introduce orbit-closure problems but
(1) these seem to be outside the reach of the Hofer–Wysocki–Zehnder polyfold
theory, and (2) by now it should be quite clear that equivariant nonsingular objects
are more effective than trying to describe some sort of structure on singular
quotients. The second comment is that a useful version of “Lyapunov block” would
be needed, and this may require negotiation with the topological theory that has
to use it. The final comment is that this may give a setting for the germ-near-a-
compact-set suggestion in the next section.

Stay in Dimension 4

The motivation for the final suggestion is external to the analysis. The best guides
to development of a theory are deep potential applications. Floer homology of
three-manifolds is supposed to organize boundary values and glueing properties of
gauge theories on smooth four-manifolds but, in general, three-manifolds slices and
boundaries do not adequately reflect the complexity of smooth four-manifolds. We
explain this in a context that ideally would connect with homology 3-spheres.

Suppose M is a smooth four-manifold with a submanifold V homeomorphic to
S3 � R. If M is compact, simply connected, and V separates M, then a relatively
soft argument [freedmanTaylor] shows that M also contains a smooth homology
3-sphere homologous to S3 � f0g. But this is usually not true if M is either
noncompact or not simply connected. For instance, a compact four-manifold has
a smooth structure in the complement of a point, and this point has a neighborhood
homeomorphic to S3 � R, but almost none of these contain smooth homology
spheres. When there is an appropriate homology sphere in M it is usually not in
the given V .

Another soft argument shows that in the compact simply connected case any two
homology 3-spheres arising as above are homology H-cobordant, but not “in M”.
Note that disjoint homologous homology spheres have a region between them that
is a H-cobordism. Ideally, if we have two homology spheres, then we would find a
third homology sphere disjoint from both. The first two would both be H-cobordism
to the third, so the first two would be H-cobordant by a composition of embedded
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H-cobordisms. Unfortunately we can usually not find a third disjoint sphere, and the
soft argument does not give embedded H-cobordisms.

The moral of this story is that we can use transversality to get smooth three-
manifold splittings, but these three-manifolds usually cannot reflect the global
homotopy theory of the manifold even up to homology. A glueing theory that
depends on finding nice slices (e.g., smooth homology spheres in topological
connected sums) therefore cannot be an effective general setting.

A better setting for glueing 4-d theories should be some sort of “germs of necks”
that locally separate the four-manifold. We have much better criteria for finding
good topological slices in four-manifolds, so a first approximation would be “germs
near X � f0g of smooth structures on X � R,” where X is a closed three-manifold,
but the smooth structure on X � R is not the product structure.

Smooth neighborhoods of topological embeddings are the sort of mixed-category
thing that (according to the History section) is probably a bad idea in the long
term, but it gives a concise starting point. The homotopy data required to find a
topological slice in a “neck” are non-obvious and fairly elaborate. The data needed
to find a “virtual analytic slice” may also be elaborate, so speculations should wait
on feedback from analysis. In any case the point for the present discussion is that the
best next step in Floer-type theory is probably gauge theory on 4-d “neck germs,”
not gauge theory on three-manifolds.

5 History

Poincaré’s insights about the homology of manifolds, at the end of the nineteenth
century, are usually celebrated as the starting point of modern topology. But many
of his insights were wrong in detail, and his methodology was so deficient that
it could not be used as a foundation for further development. His contemporaries
found it inconceivable that the Emperor might have no clothes, so they spent the
next quarter-century trying to see them. Kneser’s triangulation questions are precise
formulations of what it would take to make Poincaré’s arguments sensible. Labeling
one of them “the Hauptvermutung” suggests that he still hoped it would all work out.
But it did not. As interesting as these questions seem, they are a technical dead end.
Not only are they not a foundation for manifold theory, but they seem not to have
significant applications. Details of this story, and how topology finally recovered
from Poincaré’s influence, are told in this section.

5.1 Pre-modern Methodology

Poincaré worked during the period when modern infinite-precision mathemat-
ics was being developed [rev]. He was not part of this development, however,
but worked in—and strongly defended—the older heuristic and intuitive style.
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His explanations often included the technical keys needed for a modern proof of
a modern interpretation of his assertion. But he often omitted hypotheses necessary
for his assertions to be correct, and his arguments were too casual to reveal the need
for these hypotheses. He gave examples, but did not use precise definitions and
often did not verify that the examples satisfied the properties he ascribed to them.
This casual approach, and the philosophical convictions that underlay it, made for a
difficult start for the subject.

For instance, Poincaré proceeded on the presumption that the choice of analytic,
combinatorial, or topological tools would be dictated by the task at hand rather than
the type of object. Functionally this amounts to an implicit claim that topological,
PL, and smooth manifolds are all the same. Clearly anything built on this foundation
was doomed. But identifying this as a flaw in Poincaré’s work would have invited
strong political and philosophical attack and the new methodologies were not secure
enough for this. Kneser’s triangulation questions 25 years were precise technical
formulations of what would be needed to justify Poincaré’s work, but he still did not
identify this as a gap in the work.

Not only was it hard to know which parts of Poincaré’s work were solid, but also
apparently it was hard to track which parts were actually known to be false. For
instance, in a 1912 paper of Veblen and Alexander [veblenAlex12] we find

Poincaré has proved that any manifold Mn may be completely characterized from a
topological point of view by means of suitably chosen matrices . . .

This refers to the 1895 claim that the incidence matrices of a triangulation (now
called boundary homomorphisms in the chain complex) characterized manifolds
up to homeomorphism. We overlook this blunder today because Poincaré himself
disproved it not long after, by using the fundamental group to show the “Poincaré
sphere” is not S3 even though it has equivalent chains. But more than 10 years later
Veblen and Alexander seem to have been unaware of this refutation.

5.2 Poincaré’s Duality

An explicit example of Poincaré’s methodology is provided by his description of
duality. He observed the beautiful pairing of simplices and dual cones explained
in Sect. 3.8. But he called these dual cones “cells,” and implicitly presumed that
they were equivalent (in an unspecified sense) to disks. Instead of seeing this as a
general PL construction that might or might not give a cell, it was seen as a manifold
construction that “failed” if the output was not a cell. This convention makes
arguments with dual cells logically sensible, but it hides the necessity of showing
that the construction does not fail in specific instances. One of Poincaré’s classes
of examples was inverse images of regular values of smooth maps Rn ! Rk. In
what sense can these be triangulated, and why are the dual objects cells? Whitehead
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sorted this out some 40 years later [whitehead40]. The proof was probably beyond
Poincaré’s ability, but the real problem was that he did not notice (or acknowledge)
that there was a gap.

Another difficulty is that Poincaré’s duality relates different objects: homology
(or Betti numbers) based on simplices, on one hand, and homology based on dual
cells, on the other hand. In order to get duality as a symmetry of a single object,
these must be identified in some other way. This time Poincaré got it wrong: dual
cells actually give cohomology so, as we know now, duality gives an isomorphism
between homology and cohomology. The homology/cohomology distinction (in
the group formulation) together with the Universal Coefficient Theorem explain
why the torsion has symmetry shifted one dimension from the Betti-number
symmetry. Poincaré missed this, and found a patch only after Heegard pointed out
a contradiction. In another direction, duality requires some sort of orientation and
(as we saw with ‚ in Sect. 3.8) may be twisted even when there is an orientation.
When the manifold has boundary, or is not compact, duality pairs homology with
rel-boundary or compact-support homology. Homology of the boundary appears as
an error term for full symmetry. Again these results were beyond Poincaré’s intuitive
definitions and heuristic arguments, but the real problem was that he did not notice
(or acknowledge) that more precision was needed.

5.3 Point-Set Topology

Schoenfliss and others were developing point-set topology around the same time,
and the relationship between the two efforts is instructive.

An important point-set goal was to settle the status of the Jordan Curve theorem.
This is not hard to prove for smooth or PL curves, but an intuitive extrapolation
to continuous curves was discredited by the discovery of continuous space-filling
curves by Peano and others. The continuous version had important implications for
the emerging role of topology as a setting for analysis. For instance, integration
along a closed curve around a “hole” in the plane was a vital tool in complex
analysis. Integration required piecewise-smooth curves. The question was: were
“analytic holes” identified by piecewise smooth curves the same as “topological
holes” identified with continuous curves? If not then the role of general topology
would probably be quite limited.

Addressing the Jordan Curve problem turned out to be difficult, and fixing gaps
in attempted proofs required quite a bit of precision about open sets, topologies,
separation properties, etc. In short, it required modern infinite-precision techniques.
Wilder [hist] found it curious that Shoenfliss never mentioned Poincaré or his work,
since nowadays the Jordan Curve theorem and high-dimensional analogues are seen
as immediate consequences of a homological duality theorem. But this makes sense:
Shoenfliss was trying to fix a problem in a heuristic argument, and Poincaré used
heuristic arguments. The duality approach was not available to Shoenfliss because—
for good reason—he could not trust Poincaré’s statements about duality.
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5.4 Constrained by Philosophy

The general question in this section is: why did it take Poincaré’s successors so long
to find their way past his confusions? The short answer is that they were in the very
early part of the modern period and still vulnerable to old and counterproductive
convictions. We go through some of the details for what they reveal about the short
answer: what were the counterproductive nineteenth-century convictions, and how
did they inhibit mathematical development?

To be more specific, a mathematician with modern training would probably
respond to Poincaré’s work with something like

The setting seems to be polyhedra, and the key property seems to be that the dual of a
simplex should be a cell. Let’s take this as the working definition of ‘manifold’, and see
where it takes us. Later we may see something better, but this is a way to get started.

We now know that the basic theory of PL manifolds is more elementary and
accessible than either smooth or topological manifolds, and this working definition
is a pretty good pointer to the theory. Why were Poincaré’s successors slow to
approach the subject this way, and when they did, why did it not work as well as we
might have expected?

The first problem was that Poincaré and other nineteenth-century mathematicians
objected to the use of explicit definitions. The objection goes back 2400 years to
Pythagoras and Plato, and is roughly that accepting a definition is like accepting
a religious doctrine: you get locked in and blocked from any direct (intuitive)
connection to “reality.” The precise-definition movement reflects practice in science:
established definitions are distillations of the discoveries of our predecessors, and
working definitions provide precise input needed for high-precision reasoning. It is
odd that this aspect of scientific practice came so late to mathematics, but recall
that in the nineteenth century there was still a strong linkage between mathematics
and philosophy. And still to this day, accepting a definition in philosophy is like
accepting a religious doctrine.

An interesting transitional form appears in a long essay by Tietze in 1908
([tietze]; see the translation at [tietzeTrans]). He defined manifolds as polyhedra
such that the link of a simplex is simply connected, but did not define “simply
connected.” It is hard to imagine that he meant this literally. The use of the
terminology “simply connected” indicates familiarity with Poincaré’s work with the
fundamental group, but Poincaré asks explicitly if it is possible for a three-manifold
“to be simply connected and yet not a sphere.” Simply connected is obviously
wrong one dimension higher. His use of the term seems to have been a deliberately
ambiguous placeholder in a proposal for a “big-picture” view of manifolds. This
reflects the philosophical idea that big pictures should be independent of details, and
the goal of heuristic arguments in the nineteenth-century tradition was to convince
people that this was the right intuition, not actually prove things. On a practical level,
Tieze may have been mindful of the advantages ambiguity had for Poincaré. People
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worked hard trying to find interpretations of Poincaré’s ideas that would make them
correct, but could not have been so generous if he had tried to be more precise and
guessed wrong.

The next milestone we mention is the introduction of PL homology manifolds as
a precise setting for the study of duality. Wilder [wilder] attributes this to Veblen in
1916. They knew these were not always locally Euclidean so would not be the final
context for geometric work, but they would serve for algebraic topology until the
geometric people got their acts together.

In the geometric line at that time, people were experimenting with various
precise replacements for Tieze’s placeholder. The favorite was “stars homeomorphic
to Euclidean space.” Today we would see this as a mixed-category idea that for
general reasons is unlikely to be correct and in any case is inappropriate for a basic
definition. This experience was not available at the time, of course, but they were not
having success with homeomorphisms and there were clues that an all-PL version
would have advantages. Why did they stick with homeomorphisms for so long?
There were two philosophical concerns and a technical problem.

The first philosophical concern was that a “manifold” should be a thing.
A topological space was considered a primitive thing,9 and a space that satisfies
a property (e.g., locally homeomorphic to Euclidean space) is a thing. A simplicial
complex is also a thing. A polyhedron, however, is a space with an equivalence
class of triangulations. This is a structure on a thing, not a primitive thing, so
for philosophical reasons could not qualify as a correct definition of “manifold.”
This objection also blocked the use of coordinate charts to globalize differential
structures.

The second philosophical objection to PL manifolds has to do with the “recog-
nition problem.” A simplicial complex is a finite set of data. Suppose someone sent
you one in the mail. How would you know whether or not links of simplices were
PL equivalent to spheres? Suppose the sender enclosed a note asserting that this was
so. How could you check to be sure it was true? Bertrand Russell summarized the
philosophical attitude toward such things [russell, p. 71]

The method of “postulating” what we want has many advantages; they are the same as the
advantages of theft over honest toil.

The manly thing to do, then, is to prove links are PL spheres, and assuming this
is cowardly and philosophically dishonest. Today we might wonder that assuming
that a space is locally Euclidean (rather than recognizing it as being so) is ok, while
assuming PL is not. At any rate one consequence was that the generalized Poincaré
conjecture10 (then referred to as “the sphere problem”) seemed to be essential to
justify work in higher-dimensional PL manifolds. The effect was to paralyze the
field.

9We now think of a topological space as a structure (a topology) on a set. In the Poincaré tradition,
spaces were primitive objects with properties extrapolated from those of subsets of Euclidean
spaces.
10The generalized Poincaré conjecture is the assertion that a polyhedron that is known to be a PL
manifold and that has the homotopy type of the sphere is PL equivalent to the sphere.
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The technical problem had to do with the definition of “PL equivalence” of
simplicial complexes. The modern definition is that they should have a common
subdivision. This is very convenient technically because if you show some invariant
does not change under a single subdivision then it must be a PL invariant. For
traditionalists, however, it seemed uncomfortably existential. Equivalence of smooth
or topological objects uses a nice concrete function with specific local properties;
shouldn’t PL follow this pattern? Brouwer, the great intuitionist, intuited a direct
simplicial criterion for stars in simplicial complexes to be “Euclidean” and proposed
this as a replacement for Tietze’s placeholder. His intuition was ineffective, however,
and later shown to be wrong.11

We finally come to Kneser’s triangulation questions. In 1924 he gave precise
formulations of what would have to be done to show that “polyhedron locally
homeomorphic with Euclidean space” really did give a theory as envisioned by
Poincaré, Tietze, et al. Whether he intended it or not, one message was roughly
“enough sterile big-picture speculation; time to focus on what it would take to
make it work.” In particular, since Poincaré’s use of dual cells gives duality
between homologies defined with two different triangulations, the uniqueness of
triangulations was needed to show Poincaré’s claims about duality were correct. It
must have seemed scandalous that this was still unresolved a quarter-century after
Poincaré made the claims. We might also see Hilbert’s influence in the concise
straight-to-the-point formulations.

When Van der Vaerden surveyed manifold theory in 1928 he described it as a
“battlefield of techniques.” There had been advances in methodology but still no
effective definitions and big issues were still unsettled. In fact the situation was
already improving. In 1926 Newman [newman26] had published a version in which
stars were still assumed homeomorphic to Euclidean space, but with complicated
combinatorial conditions. This still didn’t work, but in 1928 he published a revision
[newman28] in which this was replaced by the common-subdivision version still
used in the mature theory. PL topology was finally launched but, as it turned out, a
bit too late.

5.5 Overtaken

Manifolds were supposed to be a setting for global questions in analysis, so smooth
manifolds were the main goal. We have been following the PL topology developed
to make sense of Poincaré’s combinatorial ideas, but there are two other approaches
that would have done this. The most effective is singular homology. This requires
some algebraic machinery, but it is simpler than the PL development, much more

11In 1941, after the dust had settled, J. H. C. Whitehead reviewed the various proposals from the
1920s. Brouwer’s proposal was particularly dysfunctional, and one has to wonder if he had actually
tried to work with it in any serious way.
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general, and connects better with analytic use of sheaves, currents, and deRham
cohomology. The second is less effective but closer to Poincaré’s ideas: show
that smooth manifolds have standard (piecewise-smooth) triangulations. Remember
that Kneser called the uniqueness-of-triangulations question “the Hauptvermutung”
(principal assertion) because it would show that simplicial homology is independent
of the triangulation. Either of the other approaches would have accomplished
this, and therefore achieved the principal motivation of the PL development. The
historical question should be: given the obvious importance of the questions, why
did it take so long to find any of these solutions12? Slow development in the PL track
is only interesting because the others were slow as well.

Singular homology probably developed slowly because it is so far outside the
received wisdom from Poincaré. It requires algebraic apparatus and while we now
see plenty of clues about this in Poincaré’s work, these only became visible after
Noether’s promotion of abstract algebra as a context for such things. Čech’s open-
cover approach to homology also pushed things in this direction, but again this was
outside Poincaré’s vision.

The lack of an effective definition held up development of smooth manifolds, just
as it held up development of PL. And, like PL and unlike the singular theory, no huge
technical leaps were necessary: the main obstructions were ineffective intuitions and
philosophical objections to structures defined with coordinate charts. These were
finally overcome by Veben and Whitehead [vebWhitehead32] in 1932, and we can
identify two things that made the advance possible. The first was a change to a more
modern style that better reflects mathematical structure. Veblen and Whitehead did
not give a philosophical argument or a speculative “big picture”; they developed
enough basic structure (with technical details) to demonstrate conclusively that this
was an effective setting for differential geometry. The second change was in the
mathematical community. Young people were attracted by the power and depth of
precise definitions and full-precision reasoning, and were more than ready to trade
philosophy for success, while the old people committed to philosophy were fading
away. These changes led to a great flowering of the differential theory, and it was
the setting for some of the deepest and most remarkable discoveries of the second
half of the twentieth century.

One consequence of the smooth-manifold flowering, and the development of
singular homology, was a near abandonment of PL topology for several decades.
It continued to be used in low dimensions due to low-dimensional simplifications
(homology identifies two-manifolds). Enough of a community had been established
to sustain some general activity, but it lacked the guidance of an important goal.

The 1950s and 1960s saw a renascence in PL topology. Smale’s development
of handlebody theory, and particularly his proof of a form of the generalized
Poincaré conjecture, electrified the manifold communities. Smale’s work was in
the smooth world, coming from a study of the dynamics of Morse functions, but
“handles” appear much more easily and naturally in PL. Milnor’s discovery of

12Existence of piecewise-smooth triangulations was shown in 1940 by Whitehead [whitehead40].
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multiple smooth structures on the 7-sphere [milnor56] was a huge boost. The reason
was that Smale had proved that high-dimensional smooth homotopy spheres were
homeomorphic to the sphere. Stallings then used PL techniques to show that high-
dimensional PL homotopy spheres were homeomorphic to the sphere. Both of these
had the defect that the conclusions were in a different category from the hypotheses.
Smale improved on this by using PL versions of his techniques to show that high-
dimensional PL homotopy spheres are PL isomorphic to spheres. Milnor’s discovery
showed that this is false in the smooth world, so PL is genuinely simpler and closer
to the original intuitions.13 All this took place in the modern links-are-PL-spheres
context. Kneser’s questions played no role and, as far as the main-line developments
were concerned, were a dead-end curiosity.

By the end of the 1960s PL was again overshadowed, this time by development
of purely topological manifold theory. Basic topological techniques are much more
complicated than PL, almost insanely so in some cases, but the outcomes are more
systematic and coherent. Further progress on what seemed to be PL issues also
required outside techniques: the 3-dimensional Poincaré conjecture was settled by
Perelman with delicate analytic arguments almost 80 years after Kneser’s work, and
100 years after Poincaré hinted that this might be the key to further progress. The
4-dimensional case is still open in 2014, and no resolution is in sight. Finally, as we
have seen here, insight into the structure of homology 3-spheres seems to require
gauge theory.

5.6 Summary

Kneser’s triangulation questions were a careful formulation of what it would take to
develop a theory of manifolds that followed Poincaré’s intuitions and nineteenth-
century philosophy. Not long after, more fruitful approaches emerged based on
full-precision twentieth-century methodology. Kneser’s questions proved to be
a curiosity: a nice challenge for developing technology, but apparently without
significant implications.

Acknowledgements This work was partially supported by the Max Planck Institute for Mathe-
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13Milnor’s discovery also invalidated the intuition, inherited from Poincaré, that there would be a
single world of “manifolds” where all techniques would be available. Subsequent developments,
as we have seen here, revealed how confining that intuition had been.
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