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Preface

The first Arbeitstagung was organized by Friedrich Hirzebruch in 1957. The six
participants were Michael Atiyah, Hans Grauert, Alexander Grothendieck, Friedrich
Hirzebruch, Nicolaas Kuiper, and Jacques Tits. Already at the first Arbeitstagung
the principle was established which was to become its most distinctive feature: The
program was not determined beforehand by the organizers, but during the meeting
by all participants in an open discussion, albeit skillfully guided by Hirzebruch. The
curiosity about who would be speaking and on what topic was part of the excitement
of this conference series, which quickly grew in popularity, reaching well over 250
participants in later years. More importantly, the spontaneous proposal of talks
made it possible to always cover the latest developments in mathematics. Many
important results, such as the Atiyah-Singer index theorem, were first introduced to
the larger mathematics community at the Arbeitstagung. Moreover, it meant that the
conferences were not confined to a specific topic, representing over the years almost
all fields of mathematics.

The Arbeitstagung 2013 was dedicated to the memory of Friedrich Hirzebruch,
who passed away on May 27, 2012. This volume contains contributions from
speakers and participants, covering a variety of topics from algebraic geometry,
topology, differential geometry, operator theory, and representation theory. We hope
that it still captures some of the unique character and spirit of Fritz Hirzebruch’s
original Arbeitstagung.

Bonn, Germany Werner Ballmann
June 2016 Christian Blohmann

Gerd Faltings
Peter Teichner

Don Zagier

v
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The Hirzebruch Signature Theorem
for Conical Metrics

Michael Atiyah

Dedicated to my friend Fritz Hirzebruch

1 Introduction

Exactly 60 years ago the young Fritz Hirzebruch came up with two spectacular
theorems [H53, H54] which set the scene for the future development of algebraic
geometry and topology. First there was his Signature theorem which gave an
explicit topological formula for the Signature of the quadratic form on the middle
cohomology of a compact oriented 4k-dimensional manifold X

Sign.X/ D Lk.p1; : : : ; pk/ (1)

where pi are the Pontryagin classes of X and Lk is an explicit polynomial with
rational coefficients (see Sect. 2) of total weight k and so (by evaluation on the
fundamental class of X) it gives a rational number (which by (1) is then an integer).
The Signature of a non-degenerate real quadratic form is defined as p � q, where p
is the number ofC signs and q the number of � signs in a diagonalization.

This theorem, which rested on Thom’s cobordism theory, was the jumping off
point for the even more spectacular Hirzebruch–Riemann–Roch theorem (HRR).
This gave an explicit cohomological formula for the Euler characteristic of the sheaf
cohomology groups

�.X;W/ D
nX

qD0
.�1/q dim Hq.X;O.W// (2)

This paper is based on a lecture given in Bonn in May 2013 at the Hirzebruch Memorial Conference
but it incorporates significant improvements.

M. Atiyah (�)
School of Mathematics, JCMB, The King’s Buildings, Peter Guthrie Tait Road,
Edinburgh EH9 3FD
e-mail: M.Atiyah@ed.ac.uk
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2 M. Atiyah

where X is a complex projective algebraic manifold of complex dimension n and W
is an algebraic vector bundle on X. The formula is

�.X;W/ D fchW:T.X/gŒX� (3)

where chW is the Chern character of W and T is the total Todd polynomial (see
Sect. 2) in the Chern classes of X. Even the particular case where W D 1, the
trivial line-bundle, was interesting since it identified two different definitions of the
arithmetic genus. In this case (3) reduced to

�.X; 1/ D Tn.X/ (4)

which is strikingly similar to (1), especially in view of the close formal connection
between the L-polynomials and the Todd polynomials, which I will explain in
Sect. 2.

There are situations where the presence of singularities means that formulae such
as (1) or (4) do not hold and the difference between the two sets of equations called
the “defect” of the singularity has been much studied by Hirzebruch and others.
Of course, for this defect to be even defined, the two sides of the equation still
have to make sense independently. The characteristic class side can be replaced
by an integral expression, using the Chern–Weil representation for the Chern and
Pontryagin classes, while the left side may still make sense in special situations.

There are three noteworthy cases when the defect can be well-defined:

1. X is a singular algebraic variety, so that sheaf cohomology and �.X;W/ are still
defined.

2. X is a rational homology manifold (e.g. an orbifold) so that the Signature is still
defined.

3. X is a manifold but one uses a Riemannian metric with singularities to compute
the differential forms representing the characteristic classes.

Hirzebruch [H71] studied case 2 and showed an interesting connection with number
theory via Dedekind sums. Hirzebruch also made a beautiful study of the cusps of
Hilbert modular surfaces and computed the Signature defect (an example of case
(1)) in terms of L-functions of real quadratic fields [H73]. He also conjectured a
similar formula for all real number fields. This stimulated the work in [APS73] and
led to a proof of the Hirzebruch conjecture in [ADS83]. The use of the symbol “L”
in Hirzebruch Signature theorem, and in classical number theory, is fortuitous and
almost prescient.

This paper can be viewed as falling under case (3). It concerns a Riemannian
metric on X with conical singularities, of fixed angle, along a sub-manifold Y of
co-dimension 2. As we will see in Sect. 3 the whole story can essentially be reduced
to a local study of a cone in R

2. It is elementary differential geometry/topology and
involves no serious analysis (index theory).
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The particular case of four-dimensional manifolds was studied in my joint paper
[AL13] with Lebrun and the present paper was viewed as a natural generalization.
In [AL13] several proofs were given and one version lent itself to generalization,
but seemed to involve much more complicated formulae and so was postponed.

In fact, as a result of a key discussion with Don Zagier, the formulae turned not
to be at all complicated. Further scrutiny led to new variants of the proof and the
final version presented here is direct, elementary and transparent. I hope that Fritz
would have liked this exposition.

Let me now outline the structure of the paper. Section 2 recalls the general notion
of a genus attached to a power series

Q.x/ D 1C a1xC a2x
2 C � � � (5)

This was introduced by Hirzebruch and provided his key algebraic tool for studying
multiplicative invariants such as the Todd genus and the Signature. I shall recall how
this works for a fibration.

We will need to extend these standard results by allowing non-compact fibres and
also conical singularities. The case we need will be for an R

2-bundle over a compact
manifold Y in which R

2 has a special metric R
2.ˇ/ with a conical singularity of

angle 2�ˇ at the origin. The essential calculation is all for R2.ˇ/, but exploiting
its circular symmetry. We compute its first Chern form c1.ˇ/] as an equivariant
differential form (for the circle group).

This is then transferred to the normal bundle Y.ˇ/ of Y in X with the metric
R
2.ˇ/ in the fibre. In this way we get a formula (42) for the integral of the Q-class

of Y.ˇ/ along the fibres, for a particular connection.
In Sect. 4 we combine this with the tangential class coming from Y to compute

the total integral Q.Y.ˇ//, again for a particular connection, and we get a multiplica-
tive formula as in Sect. 2. Finally, we argue that the same holds for the Levi-Civita
connection.

We then extend this formula to the whole of X and derive our main result
(Theorem 4.1) which computes the defect due to the conical metric for any Q-genus.

Applied with Q D L we derive the explicit form of the signature defect
(Theorem 4.2), which was our main aim.

2 Multiplicative Genera

I recall here the main ideas on multiplicative genera introduced by Hirzebruch. First
consider a complex vector bundle W of rank k, over a space X whose total Chern
class c.W/ is formally factorized as

c.W/ D ˘ k
iD1.1C xi/ (6)
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so that the individual Chern classes cj.W/ are the elementary symmetric functions
of the xi (which have formal dimension 2). If Q.x/ is a power series of the form (5)
we then define

Q.W/ D ˘ k
iD1Q.xi/ (7)

This is then a power series in the Chern classes of W

Q.W/ D Q.c1; c2; : : :/ (8)

which is easily seen to be independent of k (for large k) and terminates at the
dimension of X. Moreover, from its definition, it is multiplicative in the sense that

Q.W1 ˚W2/ D Q.W1/Q.W2/ (9)

Two cases of special interest are

Q.x/ D T.x/ D x

1 � e�x
(10)

Q.x/ D L.x/ D x

tanh x
(11)

Note the elementary identity

T.2x/ D L.x/C x (12)

which expresses T as the sum of its even and odd parts.
The function (10) has the explicit expansion

T.x/ D 1C x

2
C
1X

mD1

.�1/m�1Bmx2m

.2m/Š
(13)

which essentially defines the Bernoulli numbers Bm (in the even notation). They are
positive rational numbers and the first few values are

B1 D 1

6
;B2 D 1

30
; : : : ; : : : ;B6 D 691

2730
; : : : (14)

showing large and intriguing denominators and numerators. Note that, because
of (12), the infinite series in (13) with x replaced by 2x gives the expansion of L.x/.

It was Hirzebruch, through his work on the Todd genus and the Signature, who
showed the arithmetical importance of the Bernoulli numbers in topology.
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For an almost complex manifold we take W to be the tangent bundle of X, and
get the total class T.X/ as a polynomial in the Chern classes cj.X/:

T.X/ D 1C c1
2
C c21 C c2

12
C c1c2

24
C � � � (15)

If dim X D 2n, then (15) stops at Tn.X/. For compact X, HRR (as extended by
the index theorem) asserts that Tn.X/, evaluated on the fundamental cycle is the
arithmetic genus.

As noted, L.x/ in (10) is an even function of x and so we can define L.X/ for any
real manifold as a polynomial in the Pontryagin classes pj.X/, which are formally
the elementary symmetric functions in the squares x2i

L.X/ D
1X

jD0
Lj.p1; : : : ; pj/ (16)

where L0 D 1;L1 D p1
3

and Lj has dimension 4j. If X is compact oriented and of

dimension 4k the Hirzebruch Signature theorem asserts that

Sign.X/ D Lk.X/ (17)

where we evaluate on the fundamental cycle of X.
If X is a product A � Y, with dim A D 4k dim Y D 4l the multiplicative

property (9) shows that the Signature is multiplicative

LkCl.A � Y/ D Lk.A/Ll.Y/ (18)

with a similar formula for the Todd genus.
A more interesting situation arises when X is not a product but a fibration

f W X ! Y with fibre A. It is now interesting to drop the restriction that both dim A
and dim Y are divisible by 4. We only assume dim A and dim Y are even and that
dim AC dim Y is divisible by 4. For example, we can take dim A D dim Y D 2 and
get interesting results as we shall see. For a fibration the tangent bundle W.X/ is
then a sum

W.X/ D W.f /˚ f �W.Y/ (19)

where W.f / is the tangent bundle along the A-fibres. Then, for the L-genus, or more
generally for any multiplicative genus Q, we have

Q.X/ D Q.f /:f �Q.Y/ (20)

where Q.f / D Q.W.f //. As before f �Q.Y/ is just a polynomial of degree l

f �Q.Y/ D
lX

jD0
f �Qj.Y/ (21)
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In the product (20) we therefore pick up, not only the obvious term as in (18), but
also cross-terms

QkCl�j.f /:f
�Qj.Y/ (22)

To evaluate Q.X/ on the fundamental cycle of X we can first apply the push-forward
f� W H�.X/ ! H�.Y/, (lowering dimensions by dim A) and then evaluate on the
fundamental cycle of Y

Q.X/ŒX� D ff�.Q.f //Q.Y/gŒY� (23)

The key term is thus seen to be

f�Q.f / 2 H�.Y/ (24)

In the next section we shall need to apply formulae (23) and (24) to the situation
where the fibre A is R2 with a special metric having a conical singularity, of angle
2�ˇ, at the origin and flat at infinity. There are therefore two new features, the non-
compactness and the singular metric. We will show how to handle these in Sect. 4.

3 Cones

Our purpose in this section is to study two-dimensional cones, deriving explicit
formulae which will be used to extend the multiplicative formulae (23) to allow
conical singularities.

A cone in R
2 of angle 2�ˇ, when slit open along a generator, gives a planar

region as shown below

2πβ

(25)
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This shows that its natural metric is flat so that its tangent bundle (outside the
vertex), with its metric connection, has zero-curvature but, near the vertex, there
is non-trivial holonomy 2�.1�ˇ/ which can be interpreted as saying that the origin
has a “distributional curvature” equal to 2�.1�ˇ/. Note that this is zero for ˇ D 1,
positive for ˇ < 1 and negative for ˇ > 1.

So far the picture would seem to imply that ˇ should be restricted to the range
0 < ˇ � 1. However, in polar coordinates .r; �/, the metric on the cone takes
the form

ds2 D dr2 C ˇ2r2d�2 (26)

so that ˇ D 1 is the standard metric in the plane. This formula for the metric shows
that it makes sense for all positive ˇ.

It will be convenient to modify the cone so that asymptotically it becomes a
cylinder (of radius C). More formally we consider the graph

α

C

(27)

where sin˛ D ˇ, smoothing it out at the break-point and then rotating it about
at the x-axis. The resulting surface will be denoted by R

2.ˇ/. It depends on the
actual smoothing chosen but the final formulae will depend only on ˇ. Note that for
ˇ D 1 it is natural to take the smoothing to consist of a hemisphere with a cylinder
attached, so that the (vertical) straight line segment in the graph is of zero length.

Topologically R
2.ˇ/ is independent of ˇ and is just R2, but differentiably the

vertex is (for ˇ ¤ 1/ a singularity.
Consider now the tangent bundle of R

2.ˇ/ outside the vertex with its metric
connection. At infinity and near the vertex it is flat (zero-curvature), the only
curvature being in the annular region where the smoothing occurs. At infinity it
is actually trivial but near the origin it has non-trivial holonomy 2�.1 � ˇ/. Let c1
be the first Chern form of this tangent bundle which is given by

c1 D �

2�
w

where � is the Gauss curvature and w the area 2-form of the metric. The large
boundary circle (in the cylinder) is a geodesic while the total geodesic curvature
round the small circle (near the vertex) is seen, from figure (25) to be 2�ˇ.
So Gauss–Bonnet gives
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Z

R2.ˇ/

c1 D ˇ (28)

Note that the restriction ˇ < 1 implied by diagram (25) is irrelevant for the argument
leading to (28). The limit case ˇ D 1 just follows from the formula for the area of a
hemisphere.

We now want to exploit the rotational symmetry of the metric (26). We can now
use G-equivariant differential forms on R

2, leading to G-equivariant cohomology
(where G is the circle group). A simple account of equivariant de Rham theory is
given in [AB84, §4] and I shall use the results explained there, with minor changes
of notation to fit in with this paper. Initially the metric plays no role. We let ˝�G be
the G-invariant differential forms on R

2 and we adjoin a degree 2 variable v to form
the polynomial ring ˝�GŒv�. This has a natural differential operator d] given by

d]a D daC i.�/av

where � D @
@�

is the vector field of the circle action and i.�/ denotes the interior
product. Then .d]/2 D 0 and the resulting cohomology is

H�G.R2/ Š H�G.point/ Š RŒv� (29)

By definition equivariant cohomology is the cohomology of the associated bundle
over the classifying space

BG D CP1

which explains the origin of the polynomial ring RŒv�.
If a 2 ˝�G is a G-invariant closed 2-form on R

2, then we can extend it to an
equivariantly closed form a] by putting

a] D a � fv (30)

when f is a function on R
2 (unique up to a constant) with

df D i.�/a (31)

We want to apply this when

a D c1.ˇ/ D �!

2�
(32)

is the Chern form of the metric R2.ˇ/. This is the place the metric enters.
Note that the area 2-form! defines a symplectic structure preserved by the circle

action. Let u be the Hamiltonian of the action, so that

! D du^d�
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Near the origin, where the metric is Euclidean, u D ˇ r2

2
, while at infinity u �

Cdr^d� . Hence

i.�/c1.ˇ/ D � �

2�
(33)

The function f of (31), with the choice (32) of a and the resulting formula (33), is
then defined by the indefinite integral

f .r/ D
Z 1

r2
2

�du (34)

The choice of 1 as the upper limit normalizes the arbitrary constant by making
f .1/ D 0. Note that the metric R2.ˇ/ is flat for all large r, so f .1/ is just the value
of f .r/ for large r.

To sum up we have extended the Chern form c1.ˇ/ on R
2.ˇ/ to an equivariantly

closed form c1.ˇ/] defined by

c1.ˇ/
] D c1.ˇ/ � f .r/v (35)

Since f .r/=0 for all large r and since c1.ˇ/ vanishes near the vertex we can view
c1.ˇ/] as an equivariant form on the whole of R

2 with compact support. In
particular we can restrict it to the origin.

Note that the value f .0/ is given, using (28), by the definite integral

f .0/ D
Z 1

0

�dt D
Z

R2.ˇ/

�

2�
! D ˇ (36)

where the passage from the double integral to the single integral can be carried out
on any small circle r D " (since the metric is flat near the origin).

Thus our equivariant Chern form c1.ˇ/], given by (35), restricts to the origin to
give the class ˇv

c1.ˇ/
]j0 D ˇv (37)

Now let us return to the equivariant cohomology. Besides H�G.R2/ we can consider
the equivariant cohomology with compact support H�G:c.R2/. This is given by the
same complex .˝�GŒv�; d]/ but now requiring that we restrict to forms in ˝�G with
compact support. This gives the equivariant cohomology of the “Thom space” of
R
2.ˇ/ which is a free module over the equivariant cohomology of R

2 with one
generator � which is characterized by its integral over R2 being equal to 1. The
restriction of � to the origin is the class v.

It follows from (37) that

Œc1.ˇ/
]� D ˇ� (38)
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in the compactly supported equivariant cohomology. With this crucial formula we
now consider the general operation of integrating over R2.ˇ/ : the push-forward

Z
W H�G;c.R2/! H�G.point/ D RŒv�

For any class a with compact support we have, for n � 1,

Œan� D Œa�:Œan�1� D Œa�:Œa.0/n�1�
where a.0/ 2 RŒv� is the value at the origin. Hence integration over R2 gives

Z
an D a.0/n�1

Z
a

Applied to a D c1.ˇ/] and using (37) and (38) we get

Z
.c1.ˇ/

]/n D ˇn�1vn�1ˇ D ˇnvn�1 (39)

Now let Q.x/ D 1C a1xC a2x2 C � � � be any power series, then (39) leads to

Z
Q.c1.ˇ/

]/ D Q.ˇv/ � 1
v

(40)

This is our key formula, expressed in terms of equivariant cohomology. By the
standard Chern–Weil process it can now be transported immediately into a formula
computing the expression (24) for the case when A D R

2.ˇ/ and f W Y.ˇ/ ! Y is
the bundle projection associated with a principal circle bundle over Y. The class v
gets converted into the first Chern class y of P. In the notation of Sect. 2, we have

f�Q.f / D Q.ˇy/� 1
y

(41)

Note. In this calculation we have used the Chern form defined by a particular (direct
sum) connection. In Sect. 4 we will see that the same results hold for the Levi-Civita
connection.

4 Globalizing the Argument

In the previous section we gave a detailed analysis of the tangent bundle along the
fibres of the map

f W Y.ˇ/! Y
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where the fibres are the modified planes R2.ˇ/ with a conical singularity of angle
2�ˇ at the origin. For any multiplicative genus Q, given by a power series (5),
we computed

f�Q.f / 2 H�.Y/

deriving the formula (41).
We now need to bring in the factor Q.Y/ coming from the base and then show

how to derive the Q-defect due to Y. There are three technical problems to deal
with

A. the conical singularity
B. the non-compactness of Y.ˇ/ at infinity (far from the singularity)
C. the fact that the Levi-Civita connection of Y.ˇ/ differs from the connection of

the direct sum (see [O66]).

Consider problem (A). Since this is a local question we may replace Y by a small
ball and also restrict to the purely conical region.1 For simplicity we still use the
same notation Y.ˇ/.

Topologically all these Y.ˇ/, being homeomorphic to Y.1/, are just products
Y �D where D is the punctured 2-disc. The universal cover OY.1/ is thus the product
Y � H where H is the open half-plane .r; �/ with r > 0. The action of the circle
G on Y.1/ lifts to �-translation on H. Dividing by the subgroup of G generated by
� D 2�ˇ we recover the cone R.ˇ/.

Now consider the Levi-Civita connection 	 on Y.1/ using the metric on Y and
the connection on its normal bundle in X. This is smooth along the zero-section
so its lift to OY.1/ extends to the closed half-plane bundle Y � NH given by taking
r � 0. The �-translation on Y � NH is an isometry and so preserves the Levi-Civita
connection.

When we divide by 2� the radial limits along the fibres lead to smoothness at the
origin.

If we divide by 2�ˇ, for ˇ not an integer, these radial limits will depend on the
radius only by an orthogonal transformation. Thus the Riemannian curvature and
the Pontryagin forms will remain bounded and all integrals will converge.

The same remarks apply to all the connections rt of the 1-parameter family

rt D tr C .1 � t/r 0

where r 0 is the connection on Y.1/ given by the direct sum of the base and fibre
connections (the one we used in Sect. 3).

1For ˇ D 1 there is no purely conical region if we take the hemispherical smoothing, but in this
case there is no singularity.



12 M. Atiyah

Thus, as far as the behaviour near the conical singularity goes, things behave as
in the compact case and the integrals of Pontryagin forms are independent of the
connection (in our family rt). This deals with both problem (A) and problem (C).

Problem (B) is disposed of for our purposes, by integrating, not the Pontryagin
forms of Y.ˇ/, but the difference between these forms and those of Y.1/. Since Y.ˇ/
and Y.1/ are isometric at infinity the difference has compact support and so presents
no problems, whichever connection we use.

To sum up we have shown that the multiplicative formula (20) holds for the
difference Q.Y.1// � Q.Y.ˇ//, and hence for the Q-defect

ıQ.ˇ/ D
Z

X
Q.X/�

Z

X.ˇ/
Q.X.ˇ// (42)

We now use formula (41), both for Y.ˇ/ and for Y.1/. Taking the difference as
in (42) we end up with our main result:

Theorem 4.1. The defect ı.Q.ˇ// for the Q-genus of a manifold X with conical
metric 
.ˇ/, of angle 2�.ˇ/, along the co-dimension two sub-manifold Y is given by

ıQ..ˇ// D
�

Q.y/ �Q.ˇy/

y
Q.Y/

�
ŒY�

where y is the class dual to Y in X.

Note. We gave the proof of this for orientable Y, but as we saw the essential
calculation is local near Y. Hence if Y is non-orientable we can lift the integrals
to the double covering. This means that the theorem continues to hold but y is
now interpreted as a cohomology class (in the neighbourhood of Y) with twisted
coefficients.

Our original integral was for Q D L giving the Hirzebruch formula for the
signature. Using the power series expansion (derived from (12) and (13)).

L.x/ D 1C
1X

mD1

.�1/m�1Bm2
2mx2m

.2m/Š
(43)

we obtain

Theorem 4.2. Let X.ˇ/ be a compact oriented 4k-dimensional Riemannian mani-
fold with a conical singularity of angle 2�ˇ along a co-dimension two sub-manifold
Y, then the Signature defect ı.ˇ/ is given by

ı.ˇ/ D
(

kX

mD1

.�1/m�1Bm.1 � ˇ2m/22my2m�1Lk�m

.2m/Š
.Y/

)
ŒY�

where y is the first Chern class of the normal bundle of Y in X.
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Notes.

1. As noted before, it Y is non-orientable, y has to be interpreted as a “twisted”
class, with local coefficients.

2. The surprising thing about the formula of Theorem 4.2 is not the apparent
complication with many terms but the simplicity of its dependence on the
parameter ˇ.

3. The case ˇ D 1=q, where q is an integer, arises naturally from the situation of
a q-fold branched cover X0 ! X, branched along Y. A metric on X0 invariant
under the cyclic group action induces a metric on X with conical singularities

along Y of angle
2�

q
. This is then a special case of the Signature defect studied

by Hirzebruch, except that our definition of the defect arising from an integral
over X, differs from that of Hirzebruch by a factor q.

4. The strict definition of conical adopted here can clearly be relaxed.

Let us consider the first two cases of Theorem 4.2, where k D 1 or 2.

For k D 1; dim X D 4 and Theorem 4.2 reduces to the simple expression

ı.ˇ/ D .1 � ˇ2/
3

Y2 (44)

where Y2 is the self-intersection number of Y. This is the formula given in [AL13].
For k D 2; dim X D 8, and the series in Theorem 4.2 now has two terms, so that

ı.ˇ/ D
�
.1 � ˇ2/yp1

9
� .1 � ˇ

4/y3

45

�
ŒY� (45)

where p1 is the first Pontryagin class of Y.
As an example and a simple check, take X D P4.C/;Y D Q3 a quadric threefold,

ˇ D 1
2
, so that the branched double covering X0! X has X0 D Q4. The total Chern

class of Q3 is

c.Q3/ D .1C x/5.1C 2x/�1 D 1C 3xC 4x2 C � � � (46)

so that p1 D c21 � 2c2 D x2. Since y D 2x; formula (45) gives

ı

�
1

2

�
D 3:2x:x2

4:9
� 15:8x3

16:45

D 1

6
.x3 � x3/ D 0

On the other hand, for a q-fold branched covering X0 ! X the defect is

ı D SignX � 1
q

SignX0 (47)

In our case q D 2; SignQ4 D 2; SignP4 D 1, so the calculation checks.
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In fact, following the original method of Hirzebruch based on Cauchy residue
calculations, it is amusing to verify Theorem 4.2 for all the double coverings

Q2n ! P2n Y D Q2n�1

Note first that, generalizing (46), we have

L.Q2n�1/ D L.1C x/nC1L.1C 2x/�1 D
� x

tanh x

�2nC1 tanh 2x

2x

Theorem 4.2, in the form of Theorem 4.1 for Q D L, but without expanding the
power series, gives

ı D
�

L.2x/� L.x/

2x
L.Q2n�1/

�
ŒQ2n�1�

D coefficient of x2n�1 in

1

2x

�� x

tanh x

�2nC1 � x2nC1

2.tanh x/2nC2 tanh 2x

�

D Res
1

2

(�
1

tanh x

�2nC1
� tanh 2x

2.tanh x/2nC2

)
dx

where the residue is taken at x D 0. Now substitute t D tanh x; dx D dt=1 � t2,

so that tanh 2x D 2t

1C t2
and

ı D Res
1

2

�
1

t2nC1 �
1

t2nC2 �
t

1C t2

�
dt

1 � t2

D coefficient of t2n in
˚
.1 � t2/�1 � .1 � t4/�1

�

D
(
0 if n is even

1 if n is odd

Using (47) this checks with the well-known fact that

SignQ2n D
(
2 if n is even

0 if n is odd

Cases when ˇ D 1

q
with q integral are at least locally given by branched covers and

the G-Signature theorem [AS68] gives the explicit form of the Lefschetz number
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L.g/ (for g ¤ 1 in the cyclic group of order q). Summing over all g ¤ 1 then
gives the defect and this was the starting point for the proof in [AL13], but which

proceeded from inverse integers
1

q
, to rational

p

q
and then by continuity to all

real ˇ. It also used more general machinery (index theory, cobordism) as well as
complicated trigonometric sums. All this has been avoided in our present version.

Our method also shows that there is nothing special about the L-genus, since
Theorem 4.1 works for any genus Q.

For example, we could take Q D Â, which corresponds to the index of the Dirac
operator and obtain the defect formula for Â, which is very close to the Todd genus.

Finally I should comment on the limiting case ˇ D 0. If we consider ˇ ! 0

a cone with fixed base will tend to a cylinder. Thus ˇ D 0 corresponds to non-
compact manifolds having a complete cylindrical type metric based on Y. For an
appropriate class of complete metrics we would then expect the formula for the
Signature in Theorem 4.2 to hold with ˇ D 0. In [AL13] interesting examples of
this type occurred and were in fact the primary source of the problem.

In addition to Don Zagier I acknowledge with thanks the advice and comments
of Nigel Hitchin, Claude Lebrun and Jean-Michel Bismut.
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Abstract Let G be an inner form of a general linear group over a non-archimedean
local field. We prove that the local Langlands correspondence for G preserves
depths. We also show that the local Langlands correspondence for inner forms of
special linear groups preserves the depths of essentially tame Langlands parameters.
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Let F be a non-archimedean local field and let G be a connected reductive
group over F. Let ˆ.G/ denote the collection of equivalence classes of Langlands
parameters for G, and Irr.G/ the set of (isomorphism classes of) irreducible smooth
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G-representations. A central role in the representation theory of such groups is
played by the local Langlands correspondence (LLC). It is supposed to be a map

Irr.G/! ˆ.G/

that enjoys several naturality properties [Bor, Vog]. The LLC should preserve
interesting arithmetic information, like local L-functions and �-factors. A lesser-
known invariant that makes sense on both sides of the LLC is depth.

The depth of a Langlands parameter � is easy to define. For r 2 R�0 let
Gal.Fs=F/r be the r-th ramification subgroup of the absolute Galois group of F.
Then the depth of � is the smallest number d.�/ � 0 such that � is trivial on
Gal.Fs=F/r for all r > d.�/.

The depth d.�/ of an irreducible G-representation � was defined by Moy and
Prasad [MoPr1, MoPr2], in terms of filtrations Px;r.r 2 R�0/ of the parahoric
subgroups Px � G. On the basis of several examples (see below) it is reasonable
to expect that for many Langlands parameters � 2 ˆ.G/ with L-packet …�.G/ �
Irr.G/ one has

d.�/ D d.�/ for all � 2 …�.G/: (1)

This relation would be useful for several reasons. Firstly, it allows one to employ
some counting arguments in the local Langlands correspondence, because (up
to unramified twists) there are only finitely many irreducible representations and
Langlands parameters whose depth is at most a specified upper bound.

Secondly, it would be a step towards a more explicit LLC. One can try to
determine the groups Px;r=Px;rC� .� > 0 small) and their representations explicitly,
and to match them with representations of Gal.Fs=F/=Gal.Fs=F/rC�.

Thirdly, one can use (1) as a working hypothesis when trying to establish
a local Langlands correspondence, to determine whether or not two irreducible
representations stand a chance of belonging to the same L-packet.

The most basic case of depth preservation concerns Langlands parameters � 2
ˆ.G/ that are trivial both on the inertia group IF and on SL2.C/. These can be
regarded as Langlands parameters of negative depth. Such a � is only relevant for
G if G is quasi-split and splits over an unramified extension of F. In that case one
can say that an irreducible G-representation has negative depth if it possesses a
nonzero vector fixed by a hyperspecial maximal compact subgroup. The Satake
isomorphism shows how to each such representation one can associate (in a natural
way) a Langlands parameter of the above kind.

The G-representations of depth zero have been subjected to ample study, see,
for example, [GSZ, Mor, DBRe, Mœ]. According to Moy–Prasad, an irreducible
representation has depth zero if and only if it has nonzero vectors fixed by the pro-
unipotent radical of some parahoric subgroup of G. This includes Iwahori-spherical
representations and Lusztig’s unipotent representations [Lus1, Lus2]. A Langlands
parameter has depth zero if and only if it is trivial on the wild inertia subgroup of
the absolute Galois group of F. For depth zero the equality (1) is conjectured, and
proven in certain cases, in [DBRe]. It fits very well with the aforementioned work
of Lusztig.
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In positive depth there is the result of Yu [Yu2, §7.10], who proved (1) for
unramified tori. For GLn.F/, (1) was claimed in [Yu1, §2.3.6] and proved in
[ABPS2, Proposition 4.5]. For GSp4.F/, (1) is proved in [Gan, §10]. We refer
to [GrRe, Ree, ReYu] for some interesting examples of positive depth Langlands
parameters and supercuspidal representations. Most of these examples satisfy (1),
but in [ReYu, §7.4–7.5] some particular cases are mentioned in which (1) does
not hold. All these counterexamples appear in small residual characteristics. So it
remains to be seen in which generality the local Langlands correspondence will
preserve depths.

In this paper we will prove that the local Langlands correspondence preserves
depth for the inner forms of GLn.F/. In a few non-split cases, this was done before
in [LaRa]. For inner forms of SLn.F/, we will prove an inequality between depths,
which becomes an equality if the Langlands parameter is essentially tame in the
sense that it maps the wild inertia group to a maximal torus of PGLn.C/. Every
Langlands parameter for an inner form of SLn.F/ is essentially tame if the residual
characteristic of F does not divide n.

Let D be a division algebra with centre F, of dimension d2 over F. Then G D
GLm.D/ is an inner form of GLn.F/ with n D dm. There is a reduced norm map
NrdW GLm.D/! F� and the derived group Gder WD ker.Nrd W G! F�/ is an inner
form of SLn.F/. Every inner form of GLn.F/ or SLn.F/ is isomorphic to one of this
kind.

The main steps in the proof of our depth-preservation theorem are

• With the Langlands classification one reduces the problem to essentially square-
integrable representations and elliptic Langlands parameters.

• Express the depth in terms of �-factors and conductors. This is a technical step
which involves detailed knowledge of the representation theory of G. Here it is
convenient to use an alternative but equivalent version of depth, the normalized
level of an irreducible G-representation.

• Show that the Jacquet–Langlands correspondence for G D GLm.D/ preserves
�-factors. Since the LLC for GLm.D/ is defined as a composition of the Jacquet–
Langlands correspondence with the LLC for GLn.F/ and the latter is known to
preserve �-factors, this proves depth preservation for inner forms of GLn.F/.

• Relate the depth for Gder to depth for G. For irreducible representations nothing
changes, but for Langlands parameters the depth can decrease if one replaces the
dual group GLn.C/ by PGLn.C/. Using several properties of the Artin reciprocity
map, we show that such a decrease in depth cannot occur if the Langlands
parameter is essentially tame.

This paper develops results presented by the second author in a lecture at the
2013 Arbeitstagung.

Acknowledgements The authors wish to thank Vincent Sécherre for some helpful explanations on
the construction of simple types for GLm.D/, Mark Reeder for pointing out some examples where
the depth is not preserved, Wilhelm Zink for explaining properties of the Artin reciprocity map and
Paul Broussous for providing the reference [BaBr], which has allowed a substantial simplification
of the proof of Proposition 2.6 from a previous version. The second author “Paul Baum” was
partially supported by NSF grant DMS-1200475.
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2 The Local Langlands Correspondence for Inner Forms
of GLn.F/

2.1 The Statement of the Correspondence

The local Langlands correspondence for supercuspidal representations of GLn.F/
was established in the important papers [LRS, HaTa, Hen2]. Together with the
Jacquet–Langlands correspondence this provides the LLC for essentially square-
integrable representations of inner forms G D GLm.D/ of GLn.F/. It is extended to
all irreducible G-representations via the Zelevinsky classification [Zel, DKV], see
[HiSa, ABPS1]. For these groups every L-packet is a singleton and the LLC is a
canonical bijective map

recD;m W Irr.GLm.D//! ˆ.GLm.D//: (2)

A remarkable aspect of Langlands’ conjectures [Vog] is that it is better to consider
not just one reductive group at a time, but all inner forms of a given group
simultaneously. Inner forms share the same Langlands dual group, so in (2) the
right-hand side is the same for all inner forms G of the given group. Then one can
turn (2) into a bijection by defining a suitable equivalence relation on the set of
inner forms and taking the corresponding union of the sets Irr.G/ on the left-hand
side (see Theorem 2.1 below).

We define the equivalence classes of such inner forms to be in bijection with the
isomorphism classes of central simple F-algebras of dimension n2 via Mm.D/ 7!
GLm.D/, respectively, Mm.D/ 7! GLm.D/der.

As Langlands dual group of G we take GLn.C/. To deal with inner forms it is
advantageous to consider the conjugation action of SLn.C/ on these two groups. It
induces a natural action of SLn.C/ on the collection of Langlands parameters for
GLn.F/. For any such parameter � we can define

C.�/ D ZSLn.C/.im �/; and S� D C.�/=C.�/ı: (3)

Notice that the centralizers are taken in SLn.C/ and not in the Langlands dual group.
Via the Langlands correspondence the nontrivial irreducible representations of

S� are associated with irreducible representations of non-split inner forms of
GLn.F/. For example, consider a Langlands parameter � for GL2.F/ which is
elliptic, that is, whose image is not contained in any torus of GL2.C/. Then
S� D Z.SL2.C// Š f˙1g. The pair .�; trivS� / parametrizes an essentially square-
integrable representation of GL2.F/ and .�; sgnS� / parametrizes an irreducible
representation of the inner form D�, where D denotes a noncommutative division
algebra of dimension 4 over F.

The enhanced version of the local Langlands correspondence for all inner forms
of general linear groups over non-archimedean local fields says:
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Theorem 2.1 ([ABPS2, Theorem 1.1]). There is a canonical bijection between:

• pairs .G; �/ with � 2 Irr.G/ and G an inner form of GLn.F/, considered up to
equivalence;

• GLn.C/-conjugacy classes of pairs .�; 
/ with � 2 ˆ.GLn.F// and 
 2 Irr.S�/.

Via the Kottwitz isomorphism [Kot, Proposition 6.4] every character of
Z.SLn.C// determines a central simple F-algebra Mm.D/. As Z.SLn.C// � C.�/,
for any Langlands parameter as above a character of S� determines an inner form
GLm.D/ of GLn.F/. In contrast with the usual LLC, our L-packets for inner forms of
general linear groups need not be singletons. To be precise, the packet …� contains
the unique representation rec�1D;m.�/ of G D GLm.D/ if � is relevant for G, and no
G-representations otherwise.

2.2 The Jacquet–Langlands Correspondence

A representation � of G is called essentially square-integrable if �
ˇ̌
Gder

is square-
integrable and there exists an unramified character � of G such that � ˝ � is
unitary. We denote the set of (equivalence classes of) irreducible essentially square-
integrable G-representations by IrressL2 .G/. There is a natural bijection between
IrressL2 .GLn.F// and IrressL2 .GLm.D//, discovered first for GL2.F/ by Jacquet and
Langlands [JaLa]. The local Langlands correspondence for GLm.D/ is constructed
with the help of the Jacquet–Langlands correspondence. Here we recall some useful
properties of the latter correspondence.

Theorem 2.2. Let GLm.D/ be an inner form of GLn.F/. There exists a canonical
bijection

JL W IrressL2 .GLn.F//! IrressL2 .GLm.D//

with the following properties:

(a) There is a canonical identification of the semisimple elliptic conjugacy classes
in GLn.F/ with those in GLm.D/. Let g 2 GLn.F/ and g0 2 GLm.D/ be
semisimple elliptic elements in the same conjugacy class and let �� be the
character of � 2 IrressL2 .GLn.F//. Then

.�1/n��.g/ D .�1/m�JL.�/.g
0/:

(b) JL preserves twists with characters of F�:

JL.� ˝ � ı det/ D JL.�/˝ � ı Nrd:

(c) JL respects contregredient: JL.�_/ D JL.�/_.
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(d) Let P0 be a standard parabolic subgroup of GLm.D/, with Levi factor M0 DQ
i GLmi.D/. Let P be the corresponding standard parabolic subgroup of

GLn.F/, with Levi factor M D Q
i GLdmi.F/. Then the Jacquet modules

rGLn.F/
P .�/ and rGLm.D/

P0 .JL.�// are either both zero or both irreducible and
essentially square-integrable. In the latter case

JL
	
rGLn.F/

P .�/

 D rGLm.D/

P0 .JL.�//:

In other words, JL and its version for M and M0 respect Jacquet restriction.
(e) JL preserves supercuspidality.
(f ) JL.StGLn.F// D StGLm.D/, where StG denotes the Steinberg representation of G.
(g) JL preserves  -factors:

.s; JL.�/;  / D .s; �;  / for any nontrivial character  of F:

(h) JL preserves L-functions: L.s; JL.�// D L.s; �/.
(i) JL preserves �-factors: �.s; JL.�/;  / D �.s; �;  /.
Proof. The correspondence, which is in fact characterized by property (a), is proven
over p-adic fields in [DKV] and over local fields of positive characteristic in [Bad].
Properties (b) and (c) are obvious in view of (a). The same goes for property (f) in
the case m D 1, because then StGLm.D/ is just the trivial representation of D�. For
(d) see [Bad, §5], in particular Proposition B. Obviously (d) implies (e). Property
(f) for m > 1 follows from (f) for m D 1 and property (d). Property (g) was proven
over local function fields in [Bad, p. 741], with an argument that also works over
p-adic fields.

Properties (h) and (i) were claimed in [DKV], with the difference that the �-
factors of � and JL.�/ are said to agree only up to a sign .�1/nCm. This sign is
due to a convention that does not agree with [GoJa], which we use for the definition
of �-factors. Unfortunately the argument for (h) and (i) given in [DKV, §B.1] is
incorrect. Instead, we will establish (h) by direct calculation.

Let �D denote the unramified character g0 7! kNrd g0kF of GLm.D/. Consider
any � 0 2 IrressL2 .GLm.D//. By [DKV, §B.2] or [Tad, §2] there exist:

• integers a; b; s� such that ab D m and s� divides ad;
• an irreducible supercuspidal representation � of GLa.D/,

such that � 0 is a constituent of the parabolically induced representation

…0 WD IGLm.D/
GLa.D/b

�
�

s�
1�b
2

D � ˝ �s�
3�b
2

D � ˝ � � � ˝ �s�
b�1
2

D �
�
: (4)

By [Jac, Proposition 2.3] the L-function of (4) is the product of L-functions of the
inducing representations:

L.s;…0/ D
bY

kD1
L.s; �s� .k�.1Cb/=2/

D �/ D
bY

kD1
L.sC s� .k � .1C b/=2/; �/: (5)
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By definition L.s; � 0/�1 is a monic polynomial in q�s, and by [Jac, 2.7.4] it is
a factor of the monic polynomial L.s;…0/�1. Now there are two cases to be
distinguished, depending on whether � is an unramified representation of D� or not.

Case 1: a D 1; b D m and � is unramified.
There exists an unramified character � of F� such that � D �ıNrd. By [DKV,

§B.2] or [Tad, §2] (4) only has an essentially square-integrable subquotient if s� D
d. Then � 0 Š StGLm.D/˝�ıNrd, so JL�1.� 0/ Š StGLn.F/˝�ıdet. With property (f)
this enables us to compute the  -factor. Let !F be a uniformizer of F, oF the ring of
integers and pF its maximal ideal. Assume that is trivial on pF but not on oF. Then

.s; � 0;  / D .s;StGLn.F/˝�ıdet;  / D .�1/nqn=2 1 � q�sC.1�n/=2�.!F/

1 � q�sC.1Cn/=2�.!F/
: (6)

By [GoJa, Proposition 4.4], (5) becomes

mY

kD1
L.sCd.k� .1Cm/=2/; �ıNrd/ D

mY

kD1
L.sCd.k� .1Cm/=2/C .d�1/=2; �/:

(7)

Now we apply [GoJa, Theorem 7.11.4]. It is stated only for GLn.F/, but the proof
with zeros and poles of L-functions goes through because we know .s; � 0;  /. We
find that for the L-function of � 0 we need only the factor k D m of (7):

L.s; � 0;  / D L.sC .n � 1/=2; �/ D .1 � q�sC.1�n/=2�.!F//
�1:

In particular the whole calculation works with d D 1, so

L.s;StGLm.D/ ˝ � ı Nrd/ D L.s;StGLn.F/ ˝ � ı det/ D L.sC .n � 1/=2; �/: (8)

Case 2: all other � .
Then [GoJa, Proposition 5.11] says that L.s; � ˝ �/ D 1 for every unramified

character � of GLa.D/. Hence L.s;…0/ D 1 by (5). We observed above that
L.s; � 0/�1 is a factor of L.s;…0/, so L.s; � 0/ D 1. Because JL is bijective, JL�1.� 0/
is not an unramified twist of the Steinberg representation, so L.s; JL�1.� 0// D 1 as
well. This proves property (h).

In view of the relation

�.s; �;  / D .s; �;  /L.s; �/L.1 � s; �_/; (9)

(i) follows directly from (c), (g) and (h). �

We record a particular consequence of Eqs. (6), (8) and (9):

�.s;StGLm.D/ ˝ � ıNrd;  / D .�1/n�1�.s; �;  / D .�1/n�1qs�1=2�.!�1F / (10)

for any character  of F which is trivial on pF but not on oF.
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2.3 Depth for Langlands Parameters

Let Fs be a separable closure of F and let Gal.Fs=F/ be the absolute Galois group
of F. We recall some properties of its ramification groups (with respect to the upper
numbering), as defined in [Ser, Remark IV.3.1]:

• Gal.Fs=F/�1 D Gal.Fs=F/ and Gal.Fs=F/0 D IF , the inertia group.
• For every l 2 R�0; Gal.Fs=F/l is a compact subgroup of IF . It consists of all
 2 Gal.Fs=F/ which, for every finite Galois extension E of F contained in Fs,
act trivially on the ring oE=p

i.l;E/
E (where i.l;E/ 2 Z�0 can be found with [Ser,

§IV.3]).
• l 2 R�0 is called a jump of the filtration if

Gal.Fs=F/lC WD
\

l0>l

Gal.Fs=F/l
0

does not equal Gal.Fs=F/l. The set of jumps of the filtration is countably infinite
and need not consist of integers.

Recall [Bor] that a Langlands parameter for GLm.D/ is a continuous homomor-
phism

� WWF � SL2.C/! GLn.C/

such that:

• �.WF/ consists of semisimple elements;
• �

ˇ̌
SL2.C/

W SL2.C/! GLn.C/ is a morphism of complex algebraic groups;
• � is relevant for GLm.D/. This means that the conjugacy class of a Levi subgroup

of GLn.C/minimally containing im.�/ should correspond to a conjugacy of class
of Levi subgroups of GLm.D/.

We define the depth of such a Langlands parameter as

d.�/ WD inffl � 0 j Gal.Fs=F/lC � ker�g:

We say that � 2 ˆ.GLn.F// is elliptic if its image is not contained in any proper
Levi subgroup of GLn.C/.

Let  be a nontrivial character of F and let c. / be the largest integer c such that
 is trivial on p�c

F . The � factor of � (and  ) was defined in [Tat]. It takes the form

�.s; �;  / D �.0; �;  /q�s.a.�/Cnc. // with �.0; �;  / 2 C
�: (11)

Here a.�/ 2 Z�0 is the Artin conductor of � (called f .�/ in [Ser, §VI.2]). To study
a.�/ it is convenient to rewrite � in terms of the Weil–Deligne group. For  2 WF

we write kk D q if  induces the automorphism x 7! xq on the residue field of Fs.
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Define

�0./ D �.; 1/�
�
1;
� kk1=2 0

0 kk�1=2
��
; (12)

so �0 is a representation of WF which agrees with � on IF . Define N 2 gln.C/ as the
nilpotent element log�

	
1;
	
1 1
0 1


 

. Then .�0;N/ is the Weil–Deligne representation

of WF Ë C corresponding to �.
Denote the vector space C

n endowed with the representation � by V , and write
VN D ker.N W V ! V/. By definition [Tat, §4.1.6]

a.�/ D a.�0/C dim.VIF=VIF
N /; (13)

�.s; �;  / D �.0; �0;  / det
�
� Frob

ˇ̌
VIF =V

IF
N

�
q�s.a.�/Cnc. //; (14)

where Frob denotes a geometric Frobenius element of WF .

Lemma 2.3. For any elliptic � 2 ˆ.GLn.F//

d.�/ WD
(
0 if IF � ker.�/,
a.�/

n � 1 otherwise;
(15)

Proof. This was proved in [ABPS2, Lemma 4.4] under the additional assumption
SL2.C/ � ker�. We will reduce to that special case.

Since � is elliptic, it defines an irreducible n-dimensional representation V of
WF � SL2.C/. Hence there are irreducible representations .�1;V1/ of WF and
.�2;V2/ of SL2.C/ such that

.�;V/ D .�1;V1/˝ .�2;V2/: (16)

In particular VIF D VIF
1 ˝ V2. Suppose first that VIF

1 D V1. Then IF � ker�,
so d.�/ D 0 by definition. Now suppose VIF

1 ¤ V1. As .�1;V1/ is irreducible
and IF is normal in WF , we must have VIF

1 D 0. Hence VIF D 0, which by (12)
and (13) implies a.�/ D a.�0/. By [Ser, Corollary VI.2.1’] a.�0/ is additive in V
and depends only on

�0
ˇ̌
IF
D � ˇ̌IF

D �1
ˇ̌
IF
˝ idV2 :

Now it follows from (16) that

a.�/ D a.�1/ dim V2 D na.�1/= dim V1: (17)
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As ker�1 	 SL2.C/ we may apply [ABPS2, Lemma 4.4], which together with (17)
gives

d.�1/ D a.�1/

dim V1
� 1 D a.�/

n
� 1:

To conclude, we note that d.�1/ D d.�/ by (16). �

2.4 The Depth of Representations of GLm.D/

Let kD D oD=pD be the residual field of D. Let A be a hereditary oF-order in Mm.D/.
The Jacobson radical of A will be denoted by P. Let r D eD.A/ and e D eF.A/
denote the integers defined by pDA D Pr and pFA D Pe, respectively. We have

eF.A/ D d eD.A/: (18)

The normalizer in G of A� will be denoted by

K.A/ WD ˚g 2 G W g�1A�g D A�
�
:

Define a sequence of compact open subgroups of G D GLm.D/ by

U0.A/ WD A�; and Uj.A/ WD 1CPj; j � 1:

Then A� is a parahoric subgroup of G and U1.A/ is its pro-unipotent radical. We
define the normalized level of an irreducible representation � of G to be

d.�/ WD min fj=eF.A/g ; (19)

where .j;A/ ranges over all pairs consisting of an integer j � 0 and a hereditary
oF-order A in Mm.D/ such that � contains the trivial character of UjC1.A/.

Remark 2.4. When � is a representation of GLn.F/, our notion of normalized level
coincides with that of [BuHe2, §12.6]. However when � is a representation of D�
(or more generally of GLm.D/), the normalized level of � as defined above is not
equal to the level `D.�/ defined in [BuHe2, §54.1] (resp. `.�/ defined by Broussous
in [BaBr, Théorème A.1.2]): we have

d.�/ D 1

d
`D.�/ .resp. d.�/ D 1

d
`.�/:

This reflects the fact that we have divided by eF.A/ instead of eD.A/ in Eq. (19).
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The following proposition will allow to use both results that were written in the
setting of the normalized level, as general results on the depth in the sense of Moy
and Prasad.

Proposition 2.5. The normalized level of � 2 Irr.G/ equals its Moy–Prasad depth.

Proof. Let us denote the Moy–Prasad depth of .�;V�/ by dMP.�/ for the duration
of this proof. For any point x of the Bruhat–Tits building B.G/ of G, consider the
Moy–Prasad filtrations Px;r;Px;rC .r 2 R�0/ of the parahoric subgroup Px � G
[MoPr1, §2]. We normalize these filtrations by using the valuation on Fs which
maps F� onto Z. Then dMP.�/ is the minimal r 2 R�0 such that V

Px;rC

� ¤ 0 for
some x 2 B.G/, see [MoPr2, §3.4].

Any hereditary oF-order A in Mm.D/ is associated with a unique facet F.A/ of
B.G/. The filtration fUj.A/ j j 2 Z�0g was compared with the Moy–Prasad groups
for x 2 F.A/ by Broussous and Lemaire. Let xA be the barycenter of F.A/. From
[BrLe, Proposition 4.2 and Appendix A] and the definition of eF.A/ we see that

Uj.A/ D PxA;j=eF.A/ for all j 2 Z�0:

Hence the definitions of the normalized level and the Moy–Prasad depth are almost
equivalent, the only difference being that for dMP.�/ we must consider all points
of B.G/, whereas for d.�/ we may only use barycenters of facets of B.G/. Thus it
remains to check the following claim: there exists a facet F of B.G/with barycenter
xF , such that V� has nonzero PxF ;dMP.�/C-invariant vectors.

This is easy to see with the explicit constructions of the groups Px;r at hand,
but we prefer not to delve into those details here. In fact, since every chamber of
B.G/ intersects every G-orbit in B.G/, it suffices to consider facets contained in
the closure of a fixed “standard” chamber. Then the claim becomes equivalent to
saying that xF is an “optimal point” in the sense of [MoPr1, §6.1]. That is assured
by [MoPr1, Remark 6.1], which is applicable because the root system of G is of
type Am�1. �

2.5 Conductors of Representations of GLm.D/

Let �.s; �;  / denote the Godement–Jacquet local constant [GoJa]. It takes the
form

�.s; �;  / D �.0; �;  / q�f .�; /s; where �.0; �;  / 2 C
�: (20)

Recall that c. / is the largest integer c such that p�c
F � ker . In the previous

section we had c. / D �1.
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A representation of D� is called unramified if it is trivial on o�D. An unramified
representation of D� is a character and has depth zero.

Proposition 2.6. Let � be a supercuspidal irreducible representation of G. We have

f .�;  / D
(

n .c. /C 1/� 1 if m D 1 and � is unramified;

n .d.�/C 1C c. // otherwise:
(21)

Proof. We suppose first that m D 1 (so d D n) and � is unramified. The required
formula can be read off from (10) if c. / D �1. For general  , applying [BuFr1,
Theorem 3.2.11] and taking into account [BuFr1, (1.2.7), (1.2.8), (1.2.10)], we
obtain

f .�;  / D .d.1� d � dc. // �
�
�1

d

�
D dC dc. / � 1:

Hence the first case of Eq. (21) holds.
From now on, we will assume that m � 2 or � is ramified. Then by

combining [BaBr, Théorème A.2.1] with the fact that the Godement–Jacquet L-
function L.s; �/ is 1, we see that � satisfies the conditions of Theorem 3.3.8 of
[BuFr2]. Choose .j;A/ as in (19), so d.�/ D j=eF.A/ and � contains the trivial
representation of UjC1.A/. Recall that n D md. By applying the formula of [BuFr2,
Theorem 3.3.8 (iv)], we obtain

qf .�; / D
h
A W pc. /C1

F Pj
i1=n

:

On the other hand, the oF-order A is G-conjugate to the standard principal oF-order
of Mm.D/ defined by the partition .t; : : : ; t/ (r-times) of m, where m D rt and r D
eD.A/. Hence we have A=P ' .Mt.kD//

r. It follows that

ŒA W P� D .qd/t
2r D qdrt2 :

Hence we get

f .�;  / D drt2.jC eC ec. //

n
D n

�
j

e
C 1C c. /

�
;

since drt2 D nt D n2=e.
On the other hand, it follows from [SéSt1, Corollaire 5.22] that there exists a

maximal simple type .J; �/ in G, and an extension ƒ of � to the normalizer NJ D
NG.�/ of �, such that

� D c�IndG
NJ ƒ:
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By the construction of the type .J; �/, we have d.�/ � j=e. Conversely, let
ŒA0; j0; j0 � 1; ˇ0� be a stratum contained in � . Then if ŒA0; j0; j0 � 1; ˇ0� is such
that its normalized level j0=e0 is minimal among the normalized levels of all the
strata contained in � , it is necessarily fundamental [Bro, Theorem 1.2.1. (ii)]. Since
all the fundamental strata contained in � have the same normalized level [BaBr,
Théorème A.1.2], we get j=e D d.�/. �

Theorem 2.7 below proves the validity of Conjecture 4.3 of [LaRa]. In the case
when F has characteristic 0, it is due to Lansky and Raghuram for the groups
GLn.F/ and D�, [LaRa, Theorem 3.1], and for certain representations of GL2.D/,
[LaRa, Theorem 4.1]. Our proof is inspired by those of these results.

Theorem 2.7. The depth d.�/ and the conductor f .�/ WD f .�;  /� nc. / of each
essentially square-integrable irreducible representation � of GLm.D/ are linked by
the following relation:

d.�/ D
(
0 if � is an unramified twist of StGLm.D/

f .�/ � n
n otherwise:

; (22)

In particular

d.�/ D max

�
f .�/ � n

n
; 0

�
: (23)

Proof. Let � 2 IrressL2 .GLm.D//. We use the same notation as for � 0 in the proof
of Theorem 2.2.h, so � is constituent of

IGLm.D/
GLa.D/b

�
�

s�
.1�b/
2

D � ˝ �s�
.3�b/
2

D � ˝ � � � ˝ �s�
.b�1/
2

D �
�
;

where � 2 Irr.GLa.D// is supercuspidal. Since the depth is preserved by parabolic
induction [MoPr2, Theorem 5.2], we get

d.�/ D d
�
�

s�
.1�b/
2

D � ˝ �s�
.3�b/
2

D � ˝ � � � ˝ �s�
.b�1/
2

D �
�
:

It follows that

d.�/ D d.�/: (24)

We will apply Proposition 2.6 to the supercuspidal representation � of GLa.D/. In
the special case � is an unramified representation of D� (hence a D 1 in this case),
Eq. (21) gives

f .�;  / D d .c. /C 1/� 1;
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that is, f .�/ D d � 1. Hence we get

f .�/ � d

d
D �1

d
:

Then it implies that

max

�
f .�/ � d

d
; 0

�
D max

�
�1

d
; 0

�
D 0 D d.�/;

in other words, Eq. (23) holds for the unramified representations of D�.
In the other cases (that is, a ¤ 1 or � is ramified), (21) gives f .�/ D ad.d.�/C1/,

that is,

f .�/

ad
D d.�/C 1: (25)

Since d.�/ � 0 (by definition of the depth), we obtain that

d.�/ D max

�
f .�/ � ad

ad
; 0

�
: (26)

Hence (22) holds for every supercuspidal irreducible representation of GLa.D/, with
a � 1 an arbitrary integer.

Recall that s� is an integer dividing ad, say ad D a�s� with a� 2 Z. The
image JL�1.�/ of � under the Jacquet–Langlands correspondence is equivalent to
the Langlands quotient of the parabolically induced representation

I
GLa�s� .F/

GLa� .F/s�

	
�
.1�s� /
2

F �� ˝ �
.3�s� /
2

F �� ˝ � � � ˝ �
.s��1/
2

F ��


;

where �� is a unitary supercuspidal irreducible representation of GLa�.F/ and
�F.g�/ D j det.g�/jF.

The representation JL�1.�/ is equivalent to a constituent of the parabolically
induced representation

IGLadb.F/
GLa� .F/bs�

	
�
.1�bs� /

2

F �� ˝ �
.3�bs� /

2

F �� ˝ � � � ˝ �
.bs��1/

2

F ��


:

We recall from [Hen, §2.6] the formula describing the epsilon factor of JL�1.�/ in
terms of the local factors of ��:

�.s; JL�1.�/;  / D
bs��1Y

iD0
�.sC i; ��;  /

bs��2Y

jD0

L.�s � j; L��/
L.sC j; ��/

: (27)
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Since the Jacquet–Langlands correspondence preserves the �-factors (see Theo-
rem 2.2 i) we have

�.s; JL�1.�/;  / D �.s; �;  /:

Thus we have obtained the following formula:

�.s; �;  / D
bs��1Y

iD0
�.sC i; ��;  /

bs��2Y

jD0

L.�s � j; L��/
L.sC j; ��/

: (28)

If � D StGLm.D/ ˝ � for some unramified character � of D�, it follows from (10)
that f .�;  / D �1 in the case where c. / D �1, hence we obtain

f .�/ D n � 1: (29)

From now on we assume � is not equivalent to a representation of the form
StGLm.D/ ˝ �, with � an unramified character of D� (that is, we have m ¤ 1 or
� ramified). Then Theorem 2.2 b and f implies that similarly JL�1.�/ is not a twist
of StGLn.F/ by an unramified character of F�. Thus we have a� ¤ 1 or �� ramified.
It follows that L.�s � j; L��/ D L.sC j; ��/ D 1, and we obtain from (28) that

f .�/ D bs� f .��/: (30)

In the special case when b D 1 Eq. (30) gives

f .�/ D s� f .��/: (31)

Then using (24) and (26) we get

d.�/ D d.�/ D max

�
bs� f .��/� bad

bad
; 0

�
D max

�
f .�/ � n

n
; 0

�
:ut (32)

2.6 Depth Preservation

Corollary 2.8. The Jacquet–Langlands correspondence preserves the depth of
essentially square-integrable representations of GLm.D/.

Proof. Theorem 2.2.i shows in particular that the Jacquet–Langlands correspon-
dence preserves conductors. Now Theorem 2.7 shows that it preserves depths as
well. �

Theorems 2.7 and 2.2 are also the crucial steps to show that the local Lang-
lands correspondence for inner forms of GLm.D/ preserves depths. With similar
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considerations we show that it also preserves L-functions, �-factors and  -factors.
We abbreviate these three to “local factors”. For the basic properties of the local
factors of Langlands parameters we refer to [Tat].

Theorem 2.9. The local Langlands correspondence for representations of GLm.D/
preserves L-functions, �-factors,  -factors and depths. In other words, for every
irreducible smooth representation � of GLm.D/:

L.s; �/ D L.s; recD;m.�//;

�.s; �;  / D �.s; recD;m.�/;  /;

.s; �;  / D .s; recD;m.�/;  /

d.�/ D d.recD;m.�//:

Proof. It is well known that the local Langlands correspondence for GLn.F/
preserves local factors, see the introduction of [HaTa].

Assume first that � is essentially square-integrable. Recall the notations of the �
factors of � and of � WD recD;m.�/ 2 ˆ.GLm.D// from (11) and (20). By definition

recD;m.�/ D recF;n.JL�1.�//;

so by Theorem 2.2 recD;m preserves the �-factors of �:

�.0; �;  / q�s.a.�/Cnc. // D �.s; �;  / D �.s; �;  / D �.0; �;  /q�sf .�; /: (33)

Hence, with the notation from Theorem 2.7:

f .�/ D f .�;  / � nc. / D a.�/: (34)

The properties of recF;n imply that � is elliptic. By combining Lemma 2.3 with
Theorem 2.7 and (34), we obtain that d.�/ D d.�/ whenever � is essentially
square-integrable.

Now let � be any irreducible representation of GLm.D/. By the Langlands
classification, there exist a parabolic subgroup P � GLm.D/ with Levi factor M and
an irreducible essentially square-integrable representation ! of M, such that � is a
quotient of IGLm.D/

P .!/. Moy and Prasad proved in [MoPr2, Theorem 5.2] that � and
! have the same depth. By [Jac, Theorem 3.4] � and ! have the same L-functions
and �-factors and by [Jac, (2.3) and (2.7.3)] they also have the same  -factors.

On the other hand, M is isomorphic to a product of groups of the form GLmi.D/,
so the local Langlands correspondence for M is simply the product of that for
the GLmi.D/. The Langlands parameters recD;m.�/ and recM.!/ are related via an
inclusion of the complex dual groups

Q
i GLdmi.C/ ! GLn.C/. Hence these two

Langlands parameters also have the same depth and local factors.
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Because we already proved that the LLC preserves depths for essentially square-
integrable representations of GLm.D/ or M, we can conclude that

d.�/ D d.!/ D d.recM.!// D d.recD;m.�//;

and similarly for the local factors. �

3 The Local Langlands Correspondence for Inner Forms
of SLn.F/

3.1 The Statement of the Correspondence

Recall that F is a non-archimedean local field and that the equivalence classes of
inner forms of SLn.F/ are in bijection with the isomorphism classes of central
simple F-algebras of dimension n2, via Mm.D/ 7! GLm.D/der. As mentioned after
Theorem 2.1, every character of Z.SLn.C// gives rise to such an algebra via the
Kottwitz isomorphism.

The local Langlands correspondence for GLm.D/der is implied by that for
GLm.D/, in the following way. A Langlands parameter

� WWF � SL2.C/! PGLn.C/

which is relevant for GLm.D/der can be lifted it to a Langlands parameter

� WWF � SL2.C/! GLn.C/

which is relevant for GLm.D/, by Weil [Wei]. Then rec�1m;D.�/ is an irreducible
representation of GLm.D/ which, upon restriction to GLm.D/der, decomposes as
a finite direct sum of irreducible representations. The packet …�.GLm.D/der/ is

defined as the set of irreducible constituents of ResGLm.D/
GLm.D/der

rec�1m;D.�/.
For these groups it is more interesting to consider the enhanced Langlands

correspondence, where � is supplemented with an irreducible representation of a
finite group. In addition to the groups defined in (3), we write

Z� D Z.SLn.C//=Z.SLn.C//\ C.�/ı Š Z.SLn.C//C.�/
ı=C.�/ı: (35)

Any character of Z� determines a character of Z.SLn.C//, and hence an inner form
of SLn.F/. An enhanced Langlands parameter is a pair .�; 
/ with 
 2 Irr.S�/. The
groups in (3), (35) are related to the more usual component group

S� WD ZPGLn.C/.im �/=ZPGLn.C/.im �/ı
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by the short exact sequence

1! Z� ! S� ! S� ! 1:

Hence S� has more irreducible representations than S� . Via the enhanced Langlands
correspondence the additional ones are associated with irreducible representations
of non-split inner forms of SLn.F/. The following result is due to Hiraga and Saito
[HiSa, Theorem 12.7] for generic representations of GLm.D/ when char F D 0.

Theorem 3.1 ([ABPS2, Theorem 1.2]). There exists a bijective correspondence
between:

• pairs .GLm.D/der; �/ with � 2 Irr.GLm.D/ der/ and GLm.D/der an inner form of
SLn.F/, considered up to equivalence;

• SLn.C/-conjugacy classes of pairs .�; 
/ with � 2 ˆ.SLn.F// and 
 2 Irr.S�/.

Here the group GLm.D/der determines 

ˇ̌
Z�

and conversely. The correspondence
satisfies the desired properties from [Bor, §10.3], with respect to restriction
from inner forms of GLn.F/, temperedness and essential square-integrability of
representations.

We remark that the above bijection need not be canonical if …�.GLm.D/der/ has
more than one element.

3.2 The Depth of Representations of GLm.D/der

For the depth of an irreducible representation of GLm.D/der there are two candidates.
Besides the Moy–Prasad depth one can define the normalized level, just as in (19).
This was done for representations of SLn.F/ in [BuKu]. However, Proposition 2.5
quickly reveals that these two notions agree:

Proposition 3.2. The Moy–Prasad depth of an irreducible representation of
GLm.D/der equals its normalized level.

Proof. Let us compare the descriptions of the two kinds of depth with those given
in the proof of Proposition 2.5. By definition GLm.D/ and GLm.D/der have the same
Bruhat–Tits building. The Moy–Prasad depth is defined in terms of the groups

P0x;r D Px;r \ GLm.D/der with x 2 B.GLm.D//: (36)

The normalized level is expressed with the groups

Uj.A/0 D Uj.A/\ GLm.D/der;
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where A is a hereditary oF-order in Mm.D/. With these groups instead of Px;r and
Uj.A/ the entire proof of Proposition 2.5 carries over to GLm.D/der. �

It turns out that the depth of an irreducible GLm.D/der-representation � behaves
nicely with respect to restriction from GLm.D/. To be precise, equals the minimum
of the depths of the irreducible GLm.D/-representations that contain � . (Notice that
this minimum is always attained because all depths for inner forms of GLn.F/ lie in
1
nZ.)

Proposition 3.3. Let � 2 Irr.GLm.D/der/ and let � 2 Irr.GLm.D// be such that

• � is a direct summand of ResGLm.D/
GLm.D/der

.�/;
• d.�/ � d.� ˝ � ı Nrd/ for every character � of F�.

Then d.�/ D d.�/.

Proof. In the case G D GLn.F/, this is guaranteed by Proposition 3.2 and
[BuKu, Proposition 1.7.iii]. The same proof works for GLm.D/ but this would be
cumbersome, one would have to check that everything in [BuKu, pp. 265–268] also
works with a division algebra instead of a field.

Instead, we select some parts of [BuKu, §1] to provide a shorter proof. Pick a
x 2 B.G/ such that .�;V/ has nonzero vector fixed by Px;d.�/C. Then

VP0

x;d.�/C 	 VPx;d.�/C ¤ 0;

so there is an irreducible GLm.D/der-subrepresentation .�1;V1/ of � with

V
P0

x;d.�/C

1 ¤ 0 and d.�1/ � d.�/:

Since � is irreducible, �1 is isomorphic to a GLm.D/-conjugate of � . Conjugation
by g 2 GLm.D/ sends any Moy–Prasad group Py;r to Pg.y/;r. So this operation
preserves depths and

d.�/ D d.�1/ � d.�/: (37)

Suppose now that d.�/ < d.�/. Take a nonzero v 2 VP0

x;d.�/C and consider

Vv WD spanf�.g/v j g 2 Px;d.�/Cg:

As P0x;d.�/C is normal in Px;d.�/C, it acts trivially on Vv , and Vv can be regarded as
representation of

Px;d.�/C=P0x;d.�/C Š Nrd.Px;d.�/C/ � F�:

Hence there is a character � of F� such that ��1 ı Nrd appears in the action of
Px;d.�/C on Vv . Then the irreducible GLm.D/-representation � ˝ � ı Nrd has a
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nonzero vector fixed by Px;d.�/C, so

d.� ˝ � ı Nrd/ � d.�/ < d.�/:

This contradicts the assumptions of proposition, so (37) must be an equality. �

3.3 The Depth of Langlands Parameters for GLm.D/der

The depth of a Langlands parameter � W WF � SL2.C/ ! PGLn.C/ for an inner
form of SLn.F/ is defined as in Sect. 2.3:

d.�/ D inffl 2 R�0 j Gal.Fs=F/lC � ker�g:

The following result may be considered as the non-archimedean analogue of [ChKa,
Theorem 1] in the case of the geometric local Langlands correspondence.

Corollary 3.4. Let � 2 Irr.GLm.D/der/ with Langlands parameter � 2
ˆ.SLn.F//. Then d.�/ � d.�/.

Proof. Let � be as in Proposition 3.3, so d.�/ D d.�/. Put � D recD;m.�/, this is
a lift of � to GLn.C/ and Theorem 2.9 says that d.�/ D d.�/.

We remark that by the compatibility of the LLC with character twists

d.�/ � d.� ˝ / for every character  of WF: (38)

For any lift � 2 ˆ.GLn.F// of � we have ker� � ker�, so d.�/ � d.�/. �

It is possible that the inequality in Corollary 3.4 is strict. The following example
was pointed out to the authors by Mark Reeder.

Example 3.5. Take F D Q2 and a Langlands parameter � W WQ2 ! PGL2.C/
which is trivial on SL2.C/ and has image isomorphic to the symmetric group S4.
(Such a L-parameter exists, see, for example, [Wei].) We claim that d.�/ D 1=3.

Let Ad denote the adjoint representation of PGL2.C/ on sl2.C/ D
Lie.PGL2.C//. Then Adı� is an irreducible three-dimensional representation
of WQ2 . Since PGL2.C/ is the adjoint group of sl2.C/, Adı� has the same kernel
and hence the same depth as �. One can check that Ad.�.IF// Š A4 and that the
image of the wild inertia subgroup PF is isomorphic to the Klein four group. With
the formula [GrRe, (1)] for the Artin conductor we find that a.Ad ı �/ D 4. By
Lemma 2.3 (with n D 3) d.Ad ı �/ D 1=3.

Let � W WQ2 ! GL2.C/ be a lift of �. This is an irreducible two-dimensional
representation. We claim that d.�/ � 1=2.

With a suitable basis transformation we can achieve that

�.PQ2 / D f
	
1 0
0 1



;
	
0 i
i 0



;
	 �i 0
0 i



;
	
0 1�1 0


g � PGL2.C/:
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Let 1;w2;w3;w4 2 PQ2 be preimages of these elements. Irrespective of the choice
of the lift of � we have

Œ�.w3/; �.w4/� D Œ
	 �i 0
0 i



;
	
0 1�1 0



� D 	�1 0

0 �1

 2 GL2.C/:

Now we see the problem: since �jPQ2
is not a sum of characters, commutators pop

up in �jPQ2
, and these will cause more ramification.

Put E D Fker�
s and endow Gal.E=Q2/ Š �.WQ2 / with the lower numbered fil-

tration. The image of PQ2 is Gal.E=Q2/1 and Œw3;w4� 2 ŒGal.E=Q2/1;Gal.E=Q2/1�.
Then Œw3;w4� 2 Gal.E=Q2/3 by [Ser, Proposition IV.2.10], so � is nontrivial on this
ramification group. If we lift � with as little ramification as possible, �.WQ2 / is an
index 2 central extension of S4. Writing dj D j�.Gal.E=Q2/j/j, we have

d0 D 24; d1 D 8; d2 D d3 D 2 and dj D 1 for j > 3:

The formula [GrRe, (1)] gives

a.�/ D dim.�/

d0

X

j�0Wdj>1

dj D 2

24
.24C 8C 2C 2/ D 3:

Now Lemma 2.3 says that d.�/ D 1=2.

To show that Corollary 3.4 is in many cases an equality, we will make use of
several well-known properties of the Artin reciprocity map aF W WF ! F�. In
particular:

Theorem 3.6. aF.Gal.Fs=F/l/ D UdleF for all l 2 R�0.

Proof. For any finite abelian extension E=F, [Ser, Corollary 3 to Theorem XV.2.1]
says that the Artin reciprocity map gives an isomorphism

aFWGal.E=F/l ! UdleF =
	
NE=F.E

�/\ UdleF



: (39)

Let Fab
s be the maximal abelian extension of F contained in Fs. Taking the projective

limit of (39) over all finite subextensions of Fab
s =F, we obtain an isomorphism

aF W Gal.Fab
s =F/l ! UdleF :

We note that Gal.Fab
s =F/ is the quotient of Gal.Fs=F/ modulo the closure of its

commutator subgroup. Hence aF WWF ! F� factors via Gal.Fab
s =F/. �

Recall from [BuHe1] that a Langlands parameter for GLn.F/ is essentially tame
if its restriction to the wild inertia subgroup PF of WF is a direct sum of characters.
Clearly � is essentially tame if and only if �.PF/ lies in a maximal torus of GLn.C/,
which in turn is equivalent to �.PF/ lying in a maximal torus of PGLn.C/.
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Definition 3.7. A Langlands parameter � for an inner form of SLn.F/ is essentially
tame if �.PF/ lies in a maximal torus of PGLn.C/.

An important difference with Example 3.5 is that such a projective representation
of PF can be lifted to a n-dimensional representation of PF with the same depth.
By [BuHe1, Corollary A.4] any L-parameter for (an inner form of) GLn.F/ is
essentially tame if the residual characteristic of F does not divide n. Our definition
is such that the same holds for Langlands parameters for (inner forms of) SLn.F/.

For such L-parameters the LLC does preserve depths:

Theorem 3.8. Let � 2 ˆ.SLn.F// be essentially tame and relevant for GLm.D/der.
Then d.�/ D d.�/ for every � 2 …�.GLm.D/der/.

Proof. Let � be as in (38), so d.�/ D d.�/.
First we consider the case where � is an irreducible n-dimensional representation

of WF . As � is essentially tame, [BuHe1, Theorem A.3] shows that there exist a
finite, tamely ramified Galois extension E=F and a smooth character � WWE ! C

�
such that � D indWF

WE
�. We may and will assume that E is contained in our chosen

separable closure Fs of F. By Mackey’s induction–restriction formula

ResWF
WE
.�/ D

M
s2WF=WE

�s , where �s.w/ D �.s�1ws/:

The elements of WF nWE permute the WE-subrepresentations �s nontrivially, so
they cannot lie in the kernel of �:

ker� DWE \ ker� D fw 2WE W �s.w/ D 1 8s 2WFg:

Let prW GLn.C/! PGLn.C/ be the canonical projection. Then � D pr ı � and

ker� D ��1	Z.GLn.C//

 D fw 2WE W �s.w/ D �.w/ 8s 2WFg: (40)

Suppose that d.�/ > d.�/. In view of the definition of d.�/,

ker� 	WE\Gal.Fs=F/d.�/C, but ker� 6	WE\Gal.Fs=F/d.�/ � ker�: (41)

The relation between the upper and the lower numbering of the filtration subgroups
of WF [Ser, §IV.3], combined with the compatibility of the lower numbering with
subgroups [Ser, Proposition IV.1.2], provides a l 2 R�0 such that

WE \ Gal.Fs=F/d.�/ D Gal.Fs=E/l: (42)

In fact l > 0 because d.�/ > d.�/ � 0. Since ResWF
WE
� is a direct sum of characters,

it factors through the Artin reciprocity map aE WWE ! E�. With (41) we see that

aE.Gal.Fs=E/l/ ¤ aE.Gal.Fs=E/lC/:
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By Theorem 3.6 applied to Fs=E; l must be a positive integer. When we transfer
the conjugation action of WF on WE to E� via Artin reciprocity, it becomes the
standard action of Gal.E=F/ ŠWF=WE on E�. Now (40) says that � is a Gal.E=F/-
invariant character of Ul

E. Since l 2 Z>0 and E=F is tamely ramified, Ul
E is a

cohomologically trivial Gal.E=F/-module. According to [BuHe1, Lemma A.1],
these properties imply that � factors through the norm map NE=F, and there is a
unique smooth character

� 0 of Ul
E \ F� D NE=F.U

l
E/ such that � D � 0 ı NE=F on Ul

E:

Since F�= ker.� 0/ is a finitely generated abelian group and C
� is divisible, we can

extend � 0 to a smooth character of F�. Via Artin reciprocity this yields a character
�F of WF . From (42) and the commutative diagram [Ser, §XI.3]

WE WF

aFaE

E×
NE/F

F×

we see that �F D � on Gal.Fs=E/d.�/ \WE. Then � ˝ ��1F is another lift of � to
ˆ.GLn.F//, and ker� ˝ ��1F contains Gal.Fs=E/d.�/. Thus d.� ˝ ��1F / < d.�/,
which contradicts the definition of �. We have shown that d.�/ D d.�/ if �jWF is
irreducible.

For a general essentially tame parameter � for GLn.F/; �jWF is a direct sum
of irreducible essentially tame parameters  i for GLni.F/, with ni � n. Writing
 i D indWF

WEi
�i as above, we obtain from (40) that

ker� D fw 2 \iWEi W �s
i .w/ D �j.w/ for all i; j and all s 2WFg: (43)

In general this is smaller than

ker.˚ipri ı  i/ D fw 2 \iWEi W �s
i .w/ D �i.w/ for all i and all s 2WFg;

where pri W GLni.C/ ! PGLni.C/ denotes the canonical projection. Comparing all
these kernels we deduce that

max
i

d. i/ D d.�/ � d.�/ � d.˚ipri ı  i/ D max
i

d.pri ı  i/: (44)

However, we cannot just twist � with a character of WF derived from the most
ramified of the  i as in the irreducible case, because that could make the depth of
another  j much larger.
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We suppose once again that d.�/ > d.�/. Then

ker� 	 Gal.Fs=F/d.�/C, but ker� 6	 Gal.Fs=F/d.�/ � ker�:

By (43) all the �i agree on Gal.Fs=F/d.�/. The above method produces characters

� 0i of Udi
Ei
\ F�, which agree on aF

	
Wd.�/

F



. Put � 0 D � 0i jaF

	
Wd.�/

F


. Now the same

argument as in the irreducible case leads to a contradiction with (38). �
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[Tad] M. Tadić, Induced representations of GL.n;A/ for p-adic division algebras A. J. Reine

Angew. Math. 405, 48–77 (1990)
[Tat] J. Tate, Number theoretic background. Proc. Symp. Pure Math 33(2), 3–26 (1979)

[Vog] D. Vogan, The local Langlands conjecture, in Representation Theory of Groups and Alge-
bras. Contemporary Mathematics, vol. 145 (American Mathematical Society, Providence,
RI, 1993), pp. 305–379

[Wei] A. Weil, Exercices dyadiques. Invent. Math. 27, 1–22 (1974)
[Yu1] J.-K. Yu, Bruhat-Tits theory and buildings, in Ottawa Lectures on Admissible Representa-

tions of Reductive p-adic Groups. Fields Institute Monographs (American Mathematical
Society, Providence, RI, 2009), pp. 53–77

[Yu2] J.-K. Yu, On the local Langlands correspondence for tori, in Ottawa Lectures on
Admissible Representations of Reductive p-adic Groups. Fields Institute Monographs
(American Mathematical Society, Providence, RI, 2009), pp. 177–183

[Zel] A.V. Zelevinsky, Induced representations of reductive p-adic groups II. On irreducible
representations of GL.n/. Ann. Sci. École Norm. Sup. (4) 13(2), 165–210 (1980)



Guide to Elliptic Boundary Value Problems
for Dirac-Type Operators

Christian Bär and Werner Ballmann

Dedicated to the memory of Friedrich Hirzebruch

Abstract We present an introduction to boundary value problems for Dirac-type
operators on complete Riemannian manifolds with compact boundary. We introduce
a very general class of boundary conditions which contain local elliptic boundary
conditions in the sense of Lopatinski and Shapiro as well as the Atiyah–Patodi–
Singer boundary conditions. We discuss boundary regularity of solutions and also
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Boundary value problems for elliptic differential equations of second order, such
as the Dirichlet problem for harmonic functions, have been the object of intense
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The situation is much less satisfactory for boundary value problems for first-
order elliptic differential operators such as the Dirac operator. Let us illustrate the
phenomena that arise with the elementary example of holomorphic functions on the
closed unit disk D � C. Holomorphic functions are the solutions of the elliptic
equation N@f D 0. The real and imaginary parts of f are harmonic and they determine
each other up to a constant. Thus for most smooth functions g W @D ! C, the
Dirichlet problem N@f D 0, f j@D D g, is not solvable. Hence such a boundary
condition is too strong for first-order operators.

Ideally, a “good” boundary condition should ensure that the equation N@f D h
has a unique solution for given h. At least we want to have that the kernel and
the cokernel of N@ become finite dimensional, more precisely, that N@ becomes a
Fredholm operator. If we expand the boundary values of f in a Fourier series,
f .eit/ D P1

kD�1 akeikt, then we see a�1 D a�2 D � � � D 0 because otherwise f
would have a pole at z D 0. Therefore it suffices to impose a0 D a1 D a2 D � � � D 0
to make the kernel trivial. Similarly, imposing ak D akC1 D akC2 D � � � D 0

would make the kernel k-dimensional. These are typical examples for the nonlocal
boundary conditions that one has to consider when dealing with elliptic operators of
first order.

A major break-through towards a general theory was achieved in the seminal
article [APS], where Atiyah, Patodi, and Singer obtain an index theorem for a
certain class of first-order elliptic differential operators on compact manifolds with
boundary. This work lies at the heart of many investigations concerning boundary
value problems and L2-index theory for first-order elliptic differential operators.

The aim of the present paper is to provide an introduction to the general theory
of elliptic boundary value problems for Dirac-type operators and to give the reader a
sound working knowledge of this material. To a large extent, we follow [BB] where
all details are worked out but, due to its length and technical complexity, that article
may not be a good first start. Results which we only cite here are marked by a �.
The present paper also contains new additions to the results in [BB]; they are given
full proofs, terminated by a �. For previous results and alternative approaches see
the list of references in [BB].

After some preliminaries on differential operators in Sect. 2, we discuss Dirac-
type operators in Sect. 3. An important class consists of Dirac operators in the sense
of Gromov and Lawson [GL, LM] associated with Dirac bundles. In Sect. 4, we
introduce boundary value problems for Dirac-type operators as defined in [BB].
We discuss their regularity theory. For instance, Theorem 4.9 applied to N@ tells
us, that, for given h 2 C1.D;C/, any solution f of N@f D h satisfying the
boundary conditions described above will be smooth up to the boundary. We explain
that the classical examples, like local elliptic boundary conditions in the sense of
Lopatinski and Shapiro and the boundary conditions introduced by Atiyah, Patodi,
and Singer, belong to our class of boundary value problems. This class also contains
examples which cannot be described by pseudo-differential operators. In Sect. 5,
we investigate the spectral theory associated with boundary conditions. The index
theory for boundary value problems is the topic of Sect. 6. In general, we assume
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that the underlying manifold M is a complete, not necessarily compact, Riemannian
manifold with compact boundary. We discuss coercivity conditions which ensure
the Fredholm property also for noncompact M.

2 Preliminaries

Let M be a Riemannian manifold with compact boundary @M and interior unit
normal vector field � along @M. The Riemannian volume element on M will be
denoted by dV, the one on @M by dS. Denote the interior part of M by VM.

For a vector bundle E over M denote by C1.M;E/ the space of smooth sections
of E and by C1c .M;E/ and C1cc .M;E/ the subspaces of C1.M;E/ which consist

of smooth sections with compact support in M and VM, respectively. Let L2.M;E/
be the Hilbert space (of equivalence classes) of square-integrable sections of E and
L2loc.M;E/ be the space of locally square-integrable sections of E. For any integer
k � 0, denote by Hk

loc.M;E/ the space of sections of E which have weak derivatives
up to order k (with respect to some or any connection on E) that are locally square-
integrable.

2.1 Differential Operators

Let E and F be Hermitian vector bundles over M and

D W C1.M;E/! C1.M;F/

be a differential operator of order (at most) ` from E to F. For simplicity, we only
consider the case of complex vector bundles. If D acts on real vector bundles one
can complexify and thus reduce to the complex case.

Denote by D� the formal adjoint of D. This is the unique differential operator of
order (at most) ` from F to E such that

Z

M
hDˆ;‰i dV D

Z

M
hˆ;D�‰i dV;

for all ˆ 2 C1cc .M;E/ and ‰ 2 C1.M;F/. We say that D is formally self-adjoint if
E D F and D D D�.

Consider D as an unbounded operator, Dcc, from L2.M;E/ to L2.M;F/ with
domain dom Dcc D C1cc .M;E/, and similarly for D�. The minimal extension Dmin

of D is obtained by taking the closure of the graph of Dcc in L2.M;E/˚ L2.M;F/.
In other words, ˆ 2 L2.M;E/ belongs to the domain dom Dmin of Dmin if there is a
sequence .ˆn/ in C1cc .M;E/ which converges to ˆ in L2.M;E/ such that .Dˆn/ is
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a Cauchy sequence in L2.M;F/; then we set Dminˆ WD limn Dˆn. By definition,
C1cc .M;E/ is dense in dom Dmin with respect to the graph norm of Dmin. The
maximal extension Dmax of D is defined to be the adjoint operator of D�cc, that is,ˆ in
L2.M;E/ belongs to the domain dom Dmax of Dmax if there is a section„ 2 L2.M;F/
such that Dˆ D „ in the sense of distributions:

Z

M
h„;‰i dV D

Z

M
hˆ;D�‰i dV;

for all ‰ 2 C1cc .M;F/; then we set Dmaxˆ WD „. In other words, .ˆ;�„/ is per-
pendicular to the graph of D�cc in L2.M;E/ ˚ L2.M;F/. Equivalently, .ˆ;�„/ is
perpendicular to the graph of D�min in L2.M;E/˚ L2.M;F/. It is easy to see that

Dmin � Dmax

in the sense that dom Dmin � dom Dmax and Dmaxjdom Dmin D Dmin. By definition,
Dmin and Dmax are closed operators, meaning that their graphs are closed subspaces
of L2.M;E/ ˚ L2.M;F/. Hence the graph norm, that is, the norm associated with
the scalar product

.ˆ;‰/D WD
Z

M
.hˆ;‰i C hDmaxˆ;Dmax‰i/dV;

turns dom Dmin and dom Dmax into Hilbert spaces. Boundary value problems in our
sense are concerned with closed operators lying between Dmin and Dmax.

2.2 The Principal Symbol

For a differential operator D from E to F of order (at most) ` as above, there is a
field �D W .T�M/` ! Hom.E;F/ of symmetric `-linear maps, the principal symbol
�D of D, defined by the `-fold commutator1

�D.df1; : : : ; df`/ WD 1

`Š
Œ: : : ŒD; f1�; : : : ; f`�;

for all f1; : : : ; f` 2 C1.M;R/. In the case ` D 1, this means that

D.fˆ/ D �D.df /ˆC fDˆ;

for all f 2 C1.M;R/ and ˆ 2 C1.M;E/. The principal symbol �D vanishes
precisely at those points where the order of D is at most `�1. The principal symbol
of D� is

1Here ŒD; f �D D ı .f � idE/� .f � idF/ ı D.
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�D�.�1; : : : ; �k/ D .�1/`�D.�1; : : : ; �`/
�; (1)

for all �1; : : : ; �` 2 T�M. Since �D is symmetric in �1; : : : ; �`, it is determined by its
values along the diagonal; we use �D.�/ as a shorthand notation for �D.�; : : : ; �/.
Then we have, for all � 2 T�M,

�D1D2 .�/ D �D1 .�/ ı �D2 .�/ (2)

for the principal symbol of the composition of differential operators D1 of order `1
and D2 of order `2.

The Riemannian metric induces a vector bundle isomorphism TM ! T�M, X 7!
X[, defined by hX;Yi D X[.Y/ for all Y. The inverse isomorphism T�M ! TM is
denoted by � 7! �].

Proposition 2.1 (Green’s Formula). Let D be a differential operator from E to F
of order one. Then we have, for all ˆ 2 C1c .M;E/ and ‰ 2 C1c .M;F/,
Z

M
hDˆ;‰i dV D

Z

M
hˆ;D�‰i dV �

Z

@M
h�D.�

[/ˆ;‰i dS : �

For a proof see, e.g., [Ta, Proposition 9.1, p. 160].

Examples 2.2. By definition, a connection r on E is a differential operator from E
to T�M ˝ E of order one such that Œr; f �.ˆ/ D df ˝ˆ. We obtain

�r.�/.ˆ/ D � ˝ˆ and �r�.�/.‰/ D �‰.�]/: (3)

Hence all connections on E have the same principal symbol reflecting the fact that
the difference of two connections is of order zero.

There are two natural differential operators of order two associated with r, the
second covariant derivative r2 with principal symbol

�r2 .�/.ˆ/ D � ˝ � ˝ˆ (4)

and the connection Laplacian r�r with principal symbol

�r�r.�/.ˆ/ D �j�j2ˆ; (5)

and both, (4) and (5), are in agreement with (2) and (3).

2.3 Elliptic Operators

We say that D is elliptic if �D.�/ W Ex ! Fx is an isomorphism, for all x 2 M and
nonzero � 2 T�x M. In the above examples,r, r�, and r2 are not elliptic; in fact, the
involved bundles have different rank. On the other hand, the connection Laplacian
is elliptic, by (5).
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Suppose that D is elliptic. Then interior elliptic regularity says that, for any given
integer k � 0, ˆ 2 dom Dmax is contained in HkC`

loc .
VM;E/ if Dmaxˆ belongs to

Hk
loc.
VM;F/. In particular, if ˆ 2 dom Dmax satisfies Dmaxˆ 2 C1. VM;F/, then ˆ 2

C1. VM;E/.
If M is closed and D is elliptic and formally self-adjoint, then the eigenspaces

of D are finite dimensional, contained in C1.M;E/, pairwise perpendicular with
respect to the L2-product, and span L2.M;E/. As an example, the connection
Laplacian is elliptic and formally self-adjoint.

For any differential operator D W C1.M;E/! C1.M;F/ of order one, consider
the fiberwise linear bundle map

AD W T�M ˝ Hom.E;E/! Hom.E;F/; V 7!
X

j
�D.e

�
j / ı V.ej/:

Here .e1; : : : ; en/ is any local tangent frame and .e�1 ; : : : ; e�n / its associated dual
cotangent frame of M. Note that AD does not depend on the choice of frame.

Proposition 2.3. Let D W C1.M;E/ ! C1.M;F/ be a differential operator of
order one such that AD is onto. Then there exists a connection r on E such that

D D
X

j
�D.e

�
j / ı rej ;

for any local tangent frame .e1; : : : ; en/ and the associated dual cotangent frame
.e�1 ; : : : ; e�n / of M.

The proof can be found in Appendix 2.
If D is elliptic, AD is onto: given U 2 Hom.E;F/ put V.e2/ D : : : D V.en/ D 0

and V.e1/ D �D.e�1 /�1 ıU, for instance. Hence Proposition 2.3 applies and we have

Corollary 2.4. Let D W C1.M;E/! C1.M;F/ be an elliptic differential operator
of order one. Then there exists a connection r on E such that

D D
X

j
�D.e

�
j / ı rej ;

for any local tangent frame .e1; : : : ; en/ and the associated dual cotangent frame
.e�1 ; : : : ; e�n / of M. ut

In the special case of Dirac-type operators (see definition below), this corollary
is [AT, Lemma 2.1]. Proposition 2.3 is also useful for nonelliptic operators. For
instance, it applies to Dirac-type operators on Lorentzian manifolds; these are
hyperbolic instead of elliptic.
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3 Dirac-Type Operators

From now on we concentrate on an important special class of first-order elliptic
operators.

3.1 Clifford Relations and Dirac-Type Operators

We say that a differential operator D W C1.M;E/ ! C1.M;F/ of order one is of
Dirac type if its principal symbol �D satisfies the Clifford relations,

�D.�/
��D.�/C �D.�/

��D.�/ D 2 h�; �i � idEx ; (6)

�D.�/�D.�/
� C �D.�/�D.�/

� D 2 h�; �i � idFx ; (7)

for all x 2 M and �; � 2 T�x M.
The classical Dirac operator on a spin manifold is an important example. More

generally, the class of Dirac-type operators contains Dirac operators on Dirac
bundles as in [LM, Chap. II, § 5].

By (1), if D is of Dirac type, then so is D�. Furthermore, by (6) and (7), Dirac-
type operators are elliptic with

�D.�/
�1 D j�j�2�D.�/

�; for all nonzero � 2 T�M. (8)

If D is a formally self-adjoint operator of Dirac type on E, then the endomorphisms
�D.�/ are skewhermitian, � 2 T�M. In this case, the Clifford relations (6) and (7)
may be spelled out as

�D.�/�D.�/C �D.�/�D.�/ D �2 h�; �i � idEx ;

for all x 2 M and �; � 2 T�x M. In other words, the principal symbol turns E into a
bundle of modules over the Clifford algebras Cliff.T�M/.

Proposition 3.1 (Weitzenböck Formula). Let D W C1.M;E/ ! C1.M;F/ be of
Dirac type. Then there exists a unique metric connection r on E with

D�D D r�r CK ; (9)

where K is a field of symmetric endomorphisms of E.

See Appendix 2 for the proof. For special choices for D, this formula is also
known as Bochner formula, Bochner–Kodaira formula, or Lichnerowicz formula.

In general, the connections in Corollary 2.4 and Proposition 3.1 do not coincide.
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3.2 Adapted Operators on the Boundary

Suppose from now on that D is of Dirac type. For x 2 @M, identify T�x @M with the
space of covectors � in T�x M such that �.�.x// D 0. Then, by (6) and (8),

�D.�.x/
[/�1 ı �D.�/ W Ex ! Ex (10)

is skewhermitian, for all x 2 @M and � 2 T�x @M. Hence there exist formally self-
adjoint differential operators A W C1.@M;E/ ! C1.@M;E/ of first order with
principal symbol

�A.�/ D �D.�.x/
[/�1 ı �D.�/: (11)

We call such operators adapted to D. Note that such an operator A is also of Dirac
type and that the zero-order term of A is only unique up to addition of a field of
hermitian endomorphisms of E. By (1) and (10) applied to D�, the principal symbol
of an operator QA adapted to D� is

�QA.�/ D .��D.�.x/
[/�1/� ı .��D.�//

� D �D.�.x/
[/ ı �D.�/

�:

By (11), this implies

�QA.�/ D �D.�.x/
[/ ı .�D.�.x/

[/ ı �A.�//
�

D �D.�.x/
[/ ı �A.�/

� ı �D.�.x/
[/�

D �D.�.x/
[/ ı ��A.�/ ı �D.�.x/

[/�1:

Hence, if A is adapted to D, then

QA D �D.�
[/ ı .�A/ ı �D.�

[/�1 (12)

is adapted to D�. Given A, this choice of QA is the most natural one.

3.3 Formally Self-adjoint Dirac-Type Operators

If the Dirac-type operator D is formally self-adjoint, then there is a particularly
useful choice of adapted boundary operator A.

Lemma 3.2. Let D W C1.M;E/ ! C1.M;E/ be a formally self-adjoint operator
of Dirac type. Then there is an operator A adapted to D along @M such that �D.�

[/

anticommutes with A,

�D.�
[/ ı A D �A ı �D.�

[/: (13)

See Appendix 2 for the proof.
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Remarks 3.3. (1) The operator A in Lemma 3.2 is unique up to addition of a field
of symmetric endomorphisms of E along @M which anticommutes with �D.�

[/.
(2) If A anticommutes with �D.�

[/, then �D.�
[/ induces isomorphisms between the

˙�-eigenspaces of A, for all � 2 R. In particular, ker A is invariant under �D.�
[/

and the �-invariant2 of A vanishes. Moreover,

!.'; / WD .�D.�
[/';  /L2.@M/

is a nondegenerate skewhermitian form on ker A (and also on L2.@M;E/).

4 Boundary Value Problems

In this section we will study boundary value problems. This will be done under the
following:

Standard Setup 4.1.

• M is a complete Riemannian manifold with compact boundary @M;
• � is the interior unit normal vector field along @M;
• E and F are Hermitian vector bundles over M;
• D W C1.M;E/! C1.M;F/ is a Dirac-type operator;
• A W C1.@M;E/! C1.@M;E/ is a boundary operator adapted to D.

4.1 Spectral Subspaces

If A is adapted to D, then A is a formally self-adjoint elliptic operator over the
compact manifold @M. Hence we have, in the sense of Hilbert spaces,

L2.@M;E/ D ˚j C � 'j;

where .'j/ is an orthonormal basis of L2.@M;E/ consisting of eigensections of A,
A'j D �j'j. In terms of such an orthonormal basis, the Sobolev space Hs.@M;E/,
s 2 R, consists of all sections

' D
X

j
aj'j such that

X
j
jajj2.1C �2j /s <1;

2The �-invariant of A is defined as the value of the meromorphic extension of �.s/ DP
�¤0 sign.�/j�j�s at s D 0, see [APS]. Here the sum is taken over all nonzero eigenvalues

of A taking multiplicities into account. Hence the �-invariant is a measure for the asymmetry of the
spectrum.
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where L2.@M;E/ D H0.@M;E/. The natural pairing

Hs.@M;E/ � H�s.@M;E/! C;
	X

j
aj�j;

X
j
bj�j


 D
X

j
Najbj; (14)

is perfect, for all s 2 R. By the Sobolev embedding theorem,

C1.@M;E/ D
\

s2R
Hs.@M;E/:

Rellich’s embedding theorem says that for s1 > s2 the embedding

Hs1.@M;E/ ,! Hs2.@M;E/

is compact. We also set

H�1.@M;E/ WD
[

s2R
Hs.@M;E/:

For I � R, let QI be the associated spectral projection,

QI W
X

j
aj'j 7!

X
�j2I

aj'j: (15)

Then QI is orthogonal and maps Hs.@M;E/ to itself, for all s 2 R. Set

Hs
I .A/ WD QI.H

s.@M;E// � Hs.@M;E/:

For a 2 R, define the hybrid Sobolev spaces

LH.A/ WD H1=2

.�1;a/.A/˚ H�1=2Œa;1/.A/; (16)

OH.A/ WD H�1=2.�1;a/.A/˚ H1=2

Œa;1/.A/: (17)

Note that, as topological vector spaces, LH.A/ and OH.A/ do not depend on the choice
of a. In particular,

OH.A/ D LH.�A/:

Moreover, the natural pairing

LH.A/ � LH.�A/! C;
	X

j
aj�j;

X
j
bj�j


 D
X

j
Najbj;

is perfect, compare (14).
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4.2 The Maximal Domain

Following [BB, Corollary 6.6, Theorem 6.7, Proposition 7.2], we now discuss
properties of the maximal domain of D.

Theorem 4.2. Assume the Standard Setup 4.1. Then the domain of Dmax, equipped
with the graph norm topology, has the following properties:

(1) C1c .M;E/ is dense in dom Dmax;
(2) the trace map Rˆ WD ˆj@M on C1c .M;E/ extends uniquely to a continuous

surjection R W dom Dmax ! LH.A/;
(3) dom Dmin D fˆ 2 dom Dmax j Rˆ D 0g. In particular, R induces an

isomorphism

LH.A/ Š dom Dmax= dom DminI

(4) for any closed subspace B � LH.A/, the operator DB;max with domain

dom DB;max D fˆ 2 dom Dmax j Rˆ 2 Bg

is a closed extension of D between Dmin and Dmax, and any closed extension of D
between Dmin and Dmax is of this form;

(5) for all ˆ 2 dom Dmax and ‰ 2 dom D�max,

Z

M
hDmaxˆ;‰idV D

Z

M
hˆ;D�max‰idV �

Z

@M
h�D.�

[/Rˆ;R‰i dS : �

Remark 4.3. As a topological vector space, LH.A/ does not depend on the choice of
adapted operator A, by Theorem 4.2.3. The pairing in Theorem 4.2.5 is well defined
because �D.�

[/ maps LH.A/ to OH.A/ by (12).

Theorem 4.4 (Boundary Regularity I, [BB, Theorem 6.11]). Assume the Stan-
dard Setup 4.1. Let k � 0 be an integer and ˆ 2 dom Dmax. Then

ˆ 2 HkC1
loc .M;E/” Dˆ 2 Hk

loc.M;F/ and QŒ0;1/Rˆ 2 HkC1=2.@M;E/:

In particular,

ˆ 2 H1
loc.M;E/” QŒ0;1/Rˆ 2 H1=2.@M;E/: �

Note that QŒ0;1/Rˆ 2 H1=2.@M;E/ if and only if Rˆ 2 H1=2.@M;E/, by (16)
and Theorem 4.2.2.
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4.3 Boundary Conditions

Theorem 4.2.4 justifies the following:

Definition 4.5. A boundary condition for D is a closed subspace of LH.A/.
In the notation of Theorem 4.2.3, we write DB;max for the operator with boundary

values in a boundary condition B. This differs from the notation of Atiyah–Patodi–
Singer and others, who would use a projection P with ker P D B to write PRˆ D 0.

Theorem 4.6 (The Adjoint Operator, [BB, Sect. 7.2]). Assume the Standard
Setup 4.1 and that B � LH.A/ is a boundary condition. Let QA be adapted to D�.
Then

Bad WD f 2 LH. QA/ j .�D.�
[/�;  / D 0, for all � 2 Bg

is a closed subspace of LH. QA/, that is, it is a boundary condition for D�. Moreover,
the adjoint operator of DB;max is the operator D�

Bad;max
. �

4.4 D-Elliptic Boundary Conditions

For V � H�1.@M;E/ and s 2 R, let

Vs WD V \ Hs.@M;E//:

For subspaces V;W � L2.@M;E/, we say that a bounded linear operator g W V ! W
is of order zero if

g.Vs/ � Ws;

for all s � 0. For example, spectral projections QI as in (15) are of order zero.

Definition 4.7. A linear subspace B � H1=2.@M;E/ is said to be a D-elliptic
boundary condition if there is an L2-orthogonal decomposition

L2.@M;E/ D V� ˚W� ˚ VC ˚WC (18)

such that

B D WC ˚ fv C gv j v 2 V1=2� g;
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where
(1) W� and WC are finite dimensional and contained in C1.@M;E/;
(2) V� ˚W� � L2.�1;a�.A/ and VC ˚WC � L2Œ�a;1/.A/, for some a 2 R;
(3) g W V� ! VC and its adjoint g� W VC ! V� are operators of order 0.

Remarks 4.8. (1) D-elliptic boundary conditions are closed in LH.A/, and hence they
are boundary conditions in the sense formulated further up.
(2) If B is a D-elliptic boundary condition and a 2 R is given, then the
decomposition (18) can be chosen such that

V� ˚W� D L2.�1;a/.@M;E/ and VC ˚WC D L2Œa;1/.@M;E/:

(3) If B is a D-elliptic boundary condition, then Bad is D�-elliptic. In fact, using QA
as in (12), we get

Bad D �D.�
[/
	
W� ˚ fv � g�v j v 2 V1=2

C g


: (19)

The point of D-ellipticity of a boundary condition is that it ensures good
regularity properties up to boundary just like ellipticity of the differential operator
implies good regularity properties in the interior.

Theorem 4.9 (Boundary Regularity II, [BB, Theorem 7.17]). Assume the Stan-
dard Setup 4.1 and that B � LH.A/ is a D-elliptic boundary condition. Then

ˆ 2 HkC1
loc .M;E/” DB;maxˆ 2 Hk

loc.M;F/;

for allˆ 2 dom DB;max and integers k � 0. In particular,ˆ 2 dom DB;max is smooth
up to the boundary if and only if Dˆ is smooth up to the boundary. �

Theorem 4.10. Assume the Standard Setup 4.1 and that B � LH.A/ is a D-elliptic
boundary condition. Then

C1c .M;EIB/ WD fˆ 2 C1c .M;E/ j R.ˆ/ 2 Bg

is dense in dom DB;max with respect to the graph norm.

Proof. Choose a representation of B as in Remark 4.8.2. Since W� is finite
dimensional and contained in C1.@M;E/, we get that V� \ C1.@M;E/ is dense
in V�, and similarly for VC. Since g is of order 0, we conclude that

fv C gv j v 2 V1=2� g \ C1.@M;E/

is dense in fv C gv j v 2 V1=2� g. Hence B \ C1.@M;E/ is dense in B.
Let ˆ 2 dom DB;max and set ' WD Rˆ. Choose an extension operator E as in

(43) in [BB]. Then ‰ WD ˆ � E ' vanishes along @M, and hence ‰ 2 dom Dmin,
by Theorem 4.2.3. Therefore‰ is the limit of smooth sections in C1cc .M;E/, by the
definition of Dmin.
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It remains to show that E ' can be approximated by smooth sections in
C1.M;EIB/. As explained in the beginning of the proof, there is a sequence .'n/

in B\C1.@M;E/ converging to '. Then E 'n 2 C1.M;EIB/ and E 'n ! E ' with
respect to the graph norm, by Lemma 5.5 in [BB]. �

4.5 Self-adjoint D-Elliptic Boundary Conditions

Assume the Standard Setup 4.1, that E D F and that D is formally self-adjoint.
Choose QA as in (12). Let B � H1=2.@M;E/ be a D-elliptic boundary condition. Then
DBad;max is the adjoint operator of DB;max, where Bad is given by (19). In particular,
DB;max is self-adjoint if and only if B is self-adjoint, that is, if and only if B D Bad.

Note that Bad is the image of the L2-orthogonal complement of B in H1=2.@M;E/
under �D.�

[/. Hence B D Bad if and only if �D.�
[/ interchanges B with its L2-

orthogonal complement in H1=2.@M;E/.

Theorem 4.11. Assume the Standard Setup 4.1, that E D F and that D is formally
self-adjoint. Let B be a self-adjoint D-elliptic boundary condition.

Then D is essentially self-adjoint on

C1c .M;EIB/ D fˆ 2 C1c .M;E/ j Rˆ 2 Bg;
and the closure of D on C1c .M;EIB/ is DB;max.

Proof. By Theorem 4.10, C1c .M;EIB/ is dense in dom DB;max. �
The following result adapts and extends Theorem 1.83 in [BBC] to D-elliptic

boundary conditions as considered here.

Theorem 4.12 (Normal Form for B). Assume the Standard Setup 4.1, that E D F
and that D is formally self-adjoint. Suppose that �D.�

[/ anticommutes with A. Then
a D-elliptic boundary condition B is self-adjoint if and only if there is

(1) an orthogonal decomposition L2.�1;0/.A/ D V ˚ W; where W is a finite
dimensional subspace of C1.@M;E/,

(2) an orthogonal decomposition ker A D L˚ �D.�
[/L,

(3) and a self-adjoint operator g W V ˚ L! V ˚ L of order zero such that

B D �D.�
[/W ˚ fv C �D.�

[/gv j v 2 V1=2 ˚ Lg: �

Remarks 4.13. (1) In Theorem 4.12, the case ker A D f0g is not excluded. In this
latter case, the representation of B as in Theorem 4.12 is unique since V D Q.�1;0/B
and W is the orthogonal complement of V in L2.�1;0/.A/.

(2) Theorem 4.12.2 excludes the existence of self-adjoint boundary conditions in
the case where ker A is of odd dimension. Conversely, if dim ker A is even and the
eigenvalues i and �i of �D.�

[/ have equal multiplicity, then self-adjoint boundary
conditions exist. A simple example is H1=2

.�1;0/.A/ ˚ L, where L is a subspace of
ker A as in Theorem 4.12.2.
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(3) Let E, D, and A be the complexification of a Riemannian vector bundle, a
formally self-adjoint real Dirac-type operator, and a real boundary operator AR,
respectively. Then �D.�

[/ turns the real kernel ker.AR/ into a symplectic vector
space. It follows that the complexification L of any Lagrangian subspace of ker.AR/

will satisfy ker A D L˚�D.�
[/L, and hence self-adjoint elliptic boundary conditions

exist, by the previous remark.
(4) First attempts have been made to relax the condition of compactness of @M.

The results in [GN] apply to the Dirac operator associated with a spinc structure
when M and @M are complete and geometrically bounded in a suitable sense.

4.6 Local and Pseudo-Local Boundary Conditions

Throughout this section, we let M be a complete Riemannian manifold with compact
boundary, E and F be Hermitian vector bundles over M, and D be a Dirac-type
operator from E to F.

Definition 4.14. We say that a linear subspace B � H1=2.@M;E/ is a local
boundary condition if there is a (smooth) subbundle E0 � Ej@M such that

B D H1=2.@M;E0/:

More generally, we say that B is pseudo-local if there is a classical pseudo-
differential operator P of order 0 acting on sections of E over @M which induces
an orthogonal projection on L2.@M;E/ such that

B D P.H1=2.@M;E//:

Theorem 4.15 (Characterization of Pseudo-Local Boundary Conditions, [BB,
Theorem 7.20]). Assume the Standard Setup 4.1. Let P be a classical pseudo-
differential operator of order zero, acting on sections of E over @M. Suppose that P
induces an orthogonal projection in L2.@M;E/. Then the following are equivalent:

(i) B D P.H1=2.@M;E// is a D-elliptic boundary condition.
(ii) For some (and then all) a 2 R,

P �QŒa;1/ W L2.@M;E/! L2.@M;E/

is a Fredholm operator.
(iii) For some (and then all) a 2 R,

P �QŒa;1/ W L2.@M;E/! L2.@M;E/

is an elliptic classical pseudo-differential operator of order zero.
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(iv) For all � 2 T�x @M n f0g, x 2 @M, the principal symbol �P.�/ W Ex !
Ex restricts to an isomorphism from the sum of the eigenspaces for the negative
eigenvalues of i�A.�/ onto its image �P.�/.Ex/. �

Remark 4.16. The projection P is closely related to the Calderón projector P
studied in the literature, see, e.g., [BW]. If the Calderón projector is chosen self-
adjoint as described in [BW, Lemma 12.8], then P D id�P satisfies the conditions
in Theorem 4.15.

Our concept of D-elliptic boundary conditions covers in particular that of
classical elliptic boundary conditions in the sense of Lopatinski and Shapiro.

Corollary 4.17 ([BB, Corollary 7.22]). Let E0 � Ej@M be a subbundle and P W
Ej@M ! E0 be the fiberwise orthogonal projection. If .D; id � P/ is an elliptic
boundary value problem in the classical sense of Lopatinski and Shapiro, then
B D H1=2.@M;E0/ is a local D-elliptic boundary condition.

Proof. Let .D; id�P/ be an elliptic boundary value problem in the classical sense of
Lopatinsky and Shapiro, see, e.g., [Gi, Sect. 1.9]. This means that the rank of E0 is
half of that of E and that, for any x 2 @M, any � 2 T�x @M n f0g, and any � 2 .E0x/?,
there is a unique solution f W Œ0;1/! Ex to the ordinary differential equation

�
i�A.�/C d

dt

�
f .t/ D 0 (20)

subject to the boundary conditions

.id � P/f .0/ D � and lim
t!1 f .t/ D 0:

Recall from Sect. 3.2 that i�A.�/ is Hermitian, hence diagonalizable with real
eigenvalues. The solution to (20) is given by f .t/ D exp.�it�A.�//�. The condition
limt!1 f .t/ D 0 is therefore equivalent to � lying in the sum of the eigenspaces to
the positive eigenvalues of i�A.�/. This shows criterion (iv) of Theorem 4.15. �

As a direct consequence of Theorem 4.15 (iv) we obtain

Corollary 4.18. Let Ej@M D E0 ˚ E00 be a decomposition such that �A.�/ D
�D.�

[/�1�D.�/ interchanges E0 and E00, for all � 2 T�@M. Then B0 WD H1=2.@M;E0/
and B00 WD H1=2.@M;E00/ are local D-elliptic boundary conditions. ut

This corollary applies, in particular, if A itself interchanges sections of E0 and E00.

4.7 Examples

In this section, we discuss some important elliptic boundary conditions.
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Example 4.19 (Differential Forms). Let

E D
nM

jD0
ƒjT�M D ƒ�T�M

be the sum of the bundles of C-valued alternating forms over M. The Dirac-type
operator is given by D D d C d�, where d denotes exterior differentiation.

As before, � is the interior unit normal vector field along the boundary @M and
�[ the associated unit conormal one-form. For each x 2 @M and 0 � j � n, we have
a canonical identification

ƒjT�x M D 	ƒjT�x @M

˚ 	�[.x/ ^ƒj�1T�x @M



; � D � tan C �[ ^ �nor:

The local boundary condition corresponding to the subbundle E0 WD ƒ�@M � Ej@M

is called the absolute boundary condition,

Babs D f� 2 H1=2.@M;E/ j �nor D 0g;
while E00 WD �[ ^ƒ�@M � Ej@M yields the relative boundary condition,

Brel D f� 2 H1=2.@M;E/ j � tan D 0g:

Both boundary conditions are known to be elliptic in the classical sense of
Lopatinski and Shapiro, see, e.g., [Gi, Lemma 4.1.1]. Indeed, for any � 2 T�@M, the
symbol �D.�/ leaves the subbundles E0 and E00 invariant, while �D.�

[/ interchanges
them. Hence �A.�/ interchanges E0 and E00. By Corollary 4.18, both, the absolute
and the relative boundary condition, are local D-elliptic boundary conditions.

Example 4.20 (Boundary Chirality). Let � be an orthogonal involution of E along
@M and denote by Ej@M D EC˚E� the orthogonal splitting into the eigenbundles of
� for the eigenvalues˙1. We say that � is a boundary chirality (with respect to A) if
� anticommutes with A. The associated boundary conditions B˙� D H1=2.@M;E˙/
are D-elliptic, by Corollary 4.18. In fact, �H1=2

.�1;0/.A/ D H1=2

.0;1/.A/ since � anti-
commutes with A, and hence

B˙� D f� 2 ker A j �� D ˙�g ˚ f� ˙ �� j � 2 H1=2

.�1;0/.A/g:

We have B�� D B?� and hence �D.�
[/B�� is the adjoint of B�.

An example of a boundary chirality is � D i�D.�
[/ in the case where D is

formally self-adjoint and A has been chosen to anticommute with � as in Lemma 3.2.
This occurs, for instance, if D is a Dirac operator in the sense of Gromov and Lawson
and A is the canonical boundary operator for D; see Appendix 1.

There is a refinement which is due to Freed [Fr, §2]: enumerate the connected
components of @M as N1; : : : ;Nk and associate a sign "j 2 f�1; 1g to each
component Nj. Then
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�� WD
X

j
i"j�D.�

[/�j;

where �j WD �jjNj is again a boundary chirality. It has the additional property that it
commutes with i�D.�

[/; compare Lemma 6.8 and Theorem 6.10.

Example 4.21 (Generalized Atiyah–Patodi–Singer Boundary Conditions). Let D be
a Dirac-type operator and A an admissible boundary operator. Fix a 2 R and let

V� WD L2.�1;a/.A/; VC WD L2Œa;1/.A/; W� D WC WD f0g; and g D 0:

Then the D-elliptic boundary condition

B.a/ D H1=2

.�1;a/.A/:

is known as a generalized Atiyah–Patodi–Singer boundary condition. The (non-
generalized) Atiyah–Patodi–Singer boundary condition as studied in [APS] is
the special case a D 0. Generalized APS boundary conditions are not local.
However, they are still pseudo-local, by [APS, p. 48] together with [Se] or by [BW,
Proposition 14.2].

Example 4.22 (Modified Atiyah–Patodi–Singer Boundary Conditions). The modi-
fied APS boundary condition, introduced in [HMR], is given by

BmAPS D f� 2 H1=2.@M;E/ j � C �D.�
[/� 2 H1=2

.�1;0/.A/g:

It requires that the spectral parts � D �.�1;0/ C �0 C �.0;1/ of � 2 BmAPS satisfy

�.0;1/ D ��D.�
[/�.�1;0/ and �0 D ��D.�

[/�0:

Since �D.�
[/2 D �1, we get �0 D 0. Thus BmAPS is D-elliptic with the choices

V� D L2.�1;0/.A/; VC D L2.0;1/.A/; W� D ker.A/; WC D f0g; and g D ��D.�
[/:

Example 4.23 (Transmission Conditions). Let M be a complete Riemannian man-
ifold. For the sake of simplicity, assume that the boundary of M is empty, even
though this is not really necessary. Let N � M be a compact hypersurface with
trivial normal bundle. Cut M along N to obtain a Riemannian manifold M0 with
compact boundary. The boundary @M0 consists of two copies N1 and N2 of N. We
may write M0 D .M n N/ t N1 t N2 (Fig. 1).

Let E;F ! M be Hermitian vector bundles and D be a Dirac-type operator
from E to F. We get induced bundles E0 ! M0 and F0 ! M0 and a Dirac-type
operator D0 from E0 to F0. For ˆ 2 H1

loc.M;E/, we get ˆ0 2 H1
loc.M

0;E0/ such that
ˆ0jN1 D ˆ0jN2 . We use this as a boundary condition for D0 on M0. We set

B WD ˚.�; �/ 2 H1=2.N1;E/˚ H1=2.N2;E/ j � 2 H1=2.N;E/
�
;
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Fig. 1 Cutting M along the
hypersurface N M

N

M

N2
N1

where we identify

H1=2.N1;E/ D H1=2.N2;E/ D H1=2.N;E/:

Let A D A0˚�A0 be an adapted boundary operator for D0. Here A0 is a self-adjoint
Dirac-type operator on C1.N;E/ D C1.N1;E0/ and similarly�A0 on C1.N;E/ D
C1.N2;E0/. The sign is due to the opposite relative orientations of N1 and N2 in M0.

To see that B is a D0-elliptic boundary condition, put

VC WD L2.0;1/.A0 ˚�A0/ D L2.0;1/.A0/˚ L2.�1;0/.A0/;

V� WD L2.�1;0/.A0 ˚�A0/ D L2.�1;0/.A0/˚ L2.0;1/.A0/;

WC WD f.�; �/ 2 ker.A0/˚ ker.A0/g;
W� WD f.�;��/ 2 ker.A0/˚ ker.A0/g;

and

g W V1=2� ! V1=2
C ; g D

�
0 id
id 0

�
:

With these choices B is of the form required in Definition 4.7. We call these
boundary conditions transmission conditions. Transmission conditions are not
pseudo-local.

If M has a nonempty boundary and N is disjoint from @M, let us assume that we
are given a D-elliptic boundary condition for @M. Then the same discussion applies
if one keeps the boundary condition on @M and extends B to @M0 D @M t N1 t N2
accordingly.
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5 Spectral Theory

Throughout this section we assume the Standard Setup 4.1.

5.1 Coercivity at Infinity

For spectral and index theory we will also need boundary conditions at infinity if M
is noncompact. Such conditions go under the name coercivity at infinity.

Definitions 5.1 For � > 0, we say that D is �-coercive at infinity if there is a
compact subset K � M such that

�kˆkL2.M/ � kDˆkL2.M/;

for all smooth sections ˆ of E with compact support in M n K. If D is �-coercive at
infinity for some � > 0, then we call D coercive at infinity.

Boundary conditions are irrelevant for coercivity at infinity because the compact set
K can always be chosen such that it contains a neighborhood of @M.

Examples 5.2. (1) If M is compact, then D is �-coercive at infinity, for any � > 0.
Simply choose K D M.

(2) If D is formally self-adjoint and, outside a compact subset K � M, all
eigenvalues of the endomorphism K in the Weitzenböck formula (9) are bounded
below by a constant � > 0, then we have, for all ˆ 2 C1cc .M;E/ with support
disjoint from K,

kDˆk2L2.M/ D krˆk2L2.M/ C .K ˆ;ˆ/L2.M/ � �kˆk2L2.M/:

Hence D is
p
�-coercive at infinity in this case.

(3) Let M D Sn � Œ0;1/ endowed with the product metric g0 C dt2, where g0 is
the standard Riemannian metric of the unit sphere and t is the standard coordinate
on Œ0;1/. Consider the usual Dirac operator D acting on spinors, and denote by r
the Levi-Civita connection on the spinor bundle. The Lichnerowicz formula gives

D2 D r�r C R=4;

where R D n.n � 1/ is the scalar curvature of M (and Sn). It follows that D isp
n.n� 1/=2-coercive at infinity.
(4) Consider the same manifold M D Sn � Œ0;1/, but now equipped with the

warped metric e�2tg0 C dt2. The scalar curvature is easily computed to be

R D R.t/ D n.n� 1/e2t � n.nC 1/!1:

It follows that this time the Dirac operator D is �-coercive at infinity, for any � > 0.
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Theorem 5.3 ([BB, Theorem 8.5]). Assume the Standard Setup 4.1. Then the
following are equivalent:

(i) D is coercive at infinity;
(ii) DB;max W dom DB;max ! L2.M;F/ has finite dimensional kernel and closed

image for some D-elliptic boundary condition B;
(iii) DB;max W dom DB;max ! L2.M;F/ has finite dimensional kernel and closed

image for all D-elliptic boundary conditions B.
In particular, D and D� are coercive at infinity if and only if DB;max and D�

Bad;max
are

Fredholm operators for some/all D-elliptic boundary conditions B. �

Extending the notion of Fredholm operator, we say that a closed operator T
between Banach spaces X and Y is a left- or right-Fredholm operator if the image of
T is closed and, respectively, the kernel or the cokernel of T is of finite dimension.
We say that T is a semi-Fredholm operator if it is a left- or right-Fredholm operator,
compare [Ka, Sect. IV.5.1]. In this terminology, Theorem 5.3 says that DB;max is
a left-Fredholm operator for some/all B if and only if D is coercive at infinity. For
more on this topic, see [Ka, IV.4 and IV.5], [BBC, Appendix A], and [BB, Appendix
A].

In the case X D Y, we get corresponding essential parts of the spectrum of T,
compare [Ka, Sect. IV.5.6] (together with footnotes). We let

specess T � specnlf T � specnf T � spec T

be the set of � 2 C such that T � � is not a semi-Fredholm operator, not a left-
Fredholm operator, not a Fredholm operator, and not an isomorphism from dom T
to X, respectively, where ess stands for essential. In the case where X is a Hilbert
space and where T is self-adjoint, ker T D .im T/? and spec T � R so that, in
particular, specess T D specnf T. Moreover, in this case, spec T n specess T consists
of eigenvalues with finite multiplicities, see Remark 1.11 in [Ka, Sect. X.1.2].

Corollary 5.4. Assume the Standard Setup 4.1 and E D F. Let B � H1=2.@M;E/
be a D-elliptic boundary condition. Let � > 0 and assume that D is �-coercive at
infinity. Then

fz 2 C j jzj < �g \ specnlf DB;max D ;:

If D and D� are �-coercive at infinity, then

fz 2 C j jzj < �g \ specnf DB;max D ;:

Proof. For any z 2 C, the operators D� z and .D � z/� D D� � Nz are of Dirac type
such that .D � z/max D Dmax � z and .D� � Nz/max D D�max � Nz. Moreover, B is a
.D � z/-elliptic and Bad a .D� � Nz/-elliptic boundary condition, one the adjoint of
the other. By the triangle inequality, if D is �-coercive and jzj < �, then D � z is
.� � jzj/-coercive, and similarly for D� � Nz. Thus Theorem 5.3 applies. �
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Corollary 5.5. Assume the Standard Setup 4.1, that E D F, and that D is formally
self-adjoint. Let B � H1=2.@M;E/ be a self-adjoint D-elliptic boundary condition.
If D is �-coercive at infinity for some � > 0, then DB;max is self-adjoint with

.��; �/\ specess DB;max D ;: ut

Corollary 5.6. Assume the Standard Setup 4.1, that E D F, and that D is formally
self-adjoint. Let B � H1=2.@M;E/ be a self-adjoint D-elliptic boundary condition.
If D is �-coercive at infinity for all � > 0, then DB;max is self-adjoint with

specess DB;max D ;:

In particular, the eigenspaces of D are finite dimensional, pairwise L2-orthogonal,
and their sum spans L2.M;E/ in the sense of Hilbert spaces. Moreover, eigensec-
tions of D are smooth on M (up to the boundary). ut
Remark 5.7. If M is compact, then D is �-coercive at infinity for all � > 0.
Hence Corollary 5.6 applies if M is compact with boundary. On the other hand, the
resolvent of DB;max is compact in this case so that the decomposition of L2.M;E/
into finite dimensional eigenspaces is also clear from this perspective.

5.2 Coercivity with Respect to a Boundary Condition

Now we discuss spectral gaps of D about 0. We get interesting results for Dirac
operators in the sense of Gromov and Lawson, see Appendix 1.

Definition 5.8. For � > 0, we say that D is �-coercive with respect to a boundary
condition B if

�kˆkL2.M/ � kDˆkL2.M/;

for all ˆ 2 C1c .M;EIB/.
In contrast to coercivity at infinity, the boundary condition B is now crucial for

the concept of coercivity.

Corollary 5.9. Assume the Standard Setup 4.1, that E D F, and that D is formally
self-adjoint. Let B � H1=2.@M;E/ be a self-adjoint D-elliptic boundary condition.
If D is �-coercive with respect to B, for � > 0, then DB;max is self-adjoint with

.��; �/ \ spec DB;max D ;:

�
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Theorem 5.10. Assume the Standard Setup 4.1 with E D F and that
˘ D is a Dirac operator in the sense of Gromov and Lawson;
˘ B is a D-elliptic boundary condition;
˘ the canonical boundary operator A W C1.@M;E/ ! C1.@M;E/ for D

satisfies

	
.A � n�1

2
H/�; �


 � 0

for all � 2 B, where H is the mean curvature H along @M with respect to the interior
unit normal vector field �;
˘ the endomorphism field K in the Weitzenböck formula (9) satisfies K � � >

0: Then D is
p

n�
n�1 -coercive with respect to B. In particular, if B is self-adjoint, then

�
�
q

n�
n�1 ;

q
n�

n�1
�
\ spec DB;max D ;:

Proof. For any ˆ 2 C1c .M;EIB/ we have by (27) and (28), again writing � D
ˆj@M ,

n�1
n kDˆk2 �

Z

M
hK ˆ;ˆidV �

Z

@M
.A � n�1

2
H/j�j2 dS � �kˆk2: (21)

This proves
p n�

n�1 -coerciveness with respect to B. The statement on the spectrum
now follows from Corollary 5.9. �

Here are some boundary conditions for which Theorem 5.10 applies:

Example 5.11. Let � be a boundary chirality with associated D-elliptic boundary
condition B˙� D H1=2.@M;E˙/ as in Example 4.20. For �; 2 B�, we have

.A�; / D .A��; / D �.�A�; / D �.A�; � / D �.A�; /:

Hence .A�; / D 0, for all �; 2 B�, and similarly for B��. If � anticommutes
with �D.�

[/, then B� and B�� are self-adjoint boundary conditions3. Hence Theo-
rem 5.10 applies if H � 0. In the case of the classical Dirac operator D acting on
spinors, this yields the eigenvalue estimate in [HMR, Theorem 3].

Example 5.12. The Atiyah–Patodi–Singer boundary condition

BAPS D H1=2

.�1;0/.A/

is D-elliptic with adjoint boundary condition

BAPS
ad D BAPS ˚ ker A:

3If � commutes with �D.�
[/, then B� and B�� are adjoint to each other.
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Hence DBAPS;max is symmetric. If ker A is trivial, then DBAPS is self-adjoint and
spec DBAPS � R. By definition of BAPS, we have .A�; �/ � ��1k�k2L2.@M/

for all
� 2 BAPS where ��1 is the largest negative eigenvalue of A. Hence Theorem 5.10
applies if H � � 2

n�1�1.
In the case of the classical Dirac operator D acting on spinors, this yields the

eigenvalue estimate for the APS boundary condition in [HMR, Theorem 2]. Note
that the assumption ker A D 0 is missing in Theorem 2 of [HMR]. In fact, if
ker A is nontrivial, then DBAPS is not self-adjoint and spec DBAPS D C, compare [Ka,
Sect. V.3.4].

If we can choose a subspace L � ker A as in Theorem 4.12.2, then
B D H1=2

.�1;0/.A/ ˚ L is a self-adjoint D-elliptic boundary condition. We have
.A�; �/ � 0 for all � 2 B and Theorem 5.10 applies if H � 0.

Example 5.13. The modified APS boundary condition

BmAPS D f� 2 H1=2.@M;E/ j � C �D.�
[/� 2 H1=2

.�1;0/.A/g
as in Example 4.22 is D-elliptic with adjoint condition

Bad
mAPS D f� 2 H1=2.@M;E/ j �.0;1/ D ��D.�

[/�.�1;0/g
D BmAPS ˚ ker A:

Hence DBmAPS;max is symmetric. The remaining part of the discussion is as in the
previous example, except that we have .A�; / D 0, for all �; 2 Bad

mAPS. In
particular, Theorem 5.10 applies if ker A D 0 and H � 0. In the case of the classical
Dirac operator D acting on spinors, this yields the eigenvalue estimate in [HMR,
Theorem 5]. As in the case of the APS boundary condition, the requirement ker A D
0 needs to be added to the assumptions of Theorem 5 in [HMR].

Next we discuss under which circumstances the “extremal values” ˙p n�
n�1

actually belong to the spectrum. For this purpose, we make the following:

Definition 5.14. Let D be a formally self-adjoint Dirac operator in the sense of
Gromov and Lawson with associated connection r. A section ˆ 2 C1.M;E/ is
called a D-Killing section if

rXˆ D ˛ � �D.X
[/�ˆ (22)

for some constant ˛ 2 R and all X 2 TM. The constant ˛ is called the Killing
constant of ˆ.

Remarks 5.15. (1) If D is the classical Dirac operator, then spinors satisfying (22)
are called Killing spinors. This motivates the terminology.
(2) Equation (22) is overdetermined elliptic. Hence the existence of a nontrivial
solution imposes strong restrictions on the underlying geometry. For instance, if
a Riemannian spin manifold carries a nontrivial Killing spinor, it must be Einstein
[Fri, Theorem B]. See [B] for a classification of manifolds admitting Killing spinors.
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(3) Any D-Killing section with Killing constant ˛ is an eigensection of D for the
eigenvalue n˛:

Dˆ D
nX

jD1
�D.e

[
j /rejˆ D ˛ �

nX

jD1
�D.e

[
j /�D.e

[
j /
�ˆ D n˛ˆ:

(4) Any D-Killing section satisfies the twistor equation (29):

rXˆ D ˛ � �D.X
[/�ˆ D 1

n
� �D.X

[/�Dˆ:

(5) Since �D.X[/ is skewhermitian, the connection OrX D rX � ˛ � �D.X[/� is also
a metric connection. Since D-Killing sections are precisely Or-parallel sections, we
conclude that any D-Killing section ˆ has constant length jˆj.
Theorem 5.16. In addition to the assumptions in Theorem 5.10 assume that M is
compact and that the boundary condition B is self-adjoint.

Then
p

n�
n�1 2 spec.D/ or �p n�

n�1 2 spec.D/ if and only if there is a nontrivial

D-Killing sectionˆ with � D ˆj@M 2 B and Killing constant
q

�
n.n�1/ or�

q
�

n.n�1/ ,
respectively.

Proof. Let
p

n�
n�1 2 spec.D/, the case �p n�

n�1 2 spec.D/ being treated sim-
ilarly. Since M is compact, the spectral value

p
n�

n�1 must be an eigenvalue by
Corollary 5.5. Let ˆ be an eigensection of D for the eigenvalue

p n�
n�1 satisfying

the boundary condition. Then we must have equality everywhere in the chain of
inequalities (21). In particular,ˆ must solve the twistor equation (29). Hence

rXˆ D 1
n�D.X[/�Dˆ D

q
�

n.n�1/�D.X[/�ˆ:

Conversely, if ˆ is a D-Killing section with Killing constant
q

�
n.n�1/ , then ˆ is an

eigensection of D for the eigenvalue
p

n�
n�1 , by Remark 5.15.3. �

Example 5.17. Let M be the closed geodesic ball of radius r 2 .0; �/ about e1 in
the unit sphere Sn. The sectional curvature of M is identically equal to 1, its scalar
curvature to n.n � 1/. The boundary @M is a round sphere of radius sin.r/ (Fig. 2).
Its mean curvature with respect to the interior unit normal is given by H D cot.r/.

We consider the classical Dirac operator acting on spinors. The restriction of
the spinor bundle to the boundary yields the spinor bundle of the boundary if n is
odd and the sum of two copies of the spinor bundle of the boundary if n is even.
Accordingly, the canonical boundary operator is just the classical Dirac operator of
the boundary if n is odd and the direct sum of it and its negative if n is even. The
kernel of the boundary operator is trivial.
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Fig. 2 Geodesic ball of
radius r in the unit sphere

e1

1

sin(r)

r

Theorem 5.10 applies with all the boundary conditions described in Exam-
ples 5.11–5.13 if r � �

2
because then H � 0. Therefore the spectrum of the

Dirac operator on M subject to any of these boundary conditions does not intersect
.� n

2
; n
2
/. The largest negative Dirac eigenvalue of the boundary is given by ��1 D

� n�1
2 sin.r/ . Since we have

n�1
2

H D n�1
2

cot.r/ � � n�1
2

sin.r/ D ��1;

Theorem 5.10 applies in the case of APS boundary conditions (Example 5.12) for
all r 2 .0; �/.

The sphere Sn and hence M do possess nontrivial Killing spinors for both Killing
constants˙ 1

2
. The restriction of such a Killing spinor to @M never satisfies the APS

boundary conditions. Thus the equality case in Theorem 5.10 does not occur and
˙ n
2

cannot lie in the spectrum of D on M subject to APS conditions. Hence, under
APS boundary conditions and for any r 2 .0; �/, the spectrum of D on M does not
intersect Œ� n

2
; n
2
�.

The modified APS boundary conditions are satisfied by the restrictions of the
Killing spinors only if r D �

2
. In this case, n

2
is an eigenvalue of D on M.

6 Index Theory

Throughout this section, assume the Standard Setup 4.1. In Theorem 5.3 we have
seen that DB;max W dom DB;max ! L2.M;F/ is a Fredholm operator for any D-elliptic
boundary condition provided D and D� are coercive at infinity. This is the case if M
is compact, for instance. The index is the number

indDB;max D dim ker DB;max � dim ker D�Bad;max 2 Z:

If B is a D-elliptic boundary condition, then, by Theorems 4.2.4 and 4.4, DB;max has
domain
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dom DB;max D fˆ 2 dom Dmax j Rˆ 2 Bg � H1
loc.M;E/:

Since dom DB;max is contained in H1
loc.M;E/, we will briefly write DB instead of

DB;max.

6.1 Fredholm Property and Index Formulas

As a direct consequence of Theorem 5.3 we get

Corollary 6.1 ([BB, Corollary 8.7]). Assume the Standard Setup 4.1 and that D
and D� are coercive at infinity. Let B be a D-elliptic boundary condition and let LC
be a closed complement of B in LH.A/. Let LP W LH.A/! LH.A/ be the projection with
kernel B and image LC. Then

LL W dom Dmax ! L2.M;F/˚ LC; LLˆ D .Dmaxˆ; LPRˆ/;

is a Fredholm operator with the same index as DB. ut
Corollary 6.2 ([BB, Corollary 8.8]). Assume the Standard Setup 4.1 and that D
and D� are coercive at infinity. Let B1 � B2 � H1=2.@M;E/ be D-elliptic boundary
conditions for D. Then dim.B2=B1/ is finite and

ind.DB2/ D ind.DB1/C dim.B2=B1/: �

Example 6.3. For the generalized Atiyah–Patodi–Singer boundary conditions as in
Example 4.21 and a < b, we have

indDB.b/ D indDB.a/ C dim L2Œa;b/.A/:

The following result says that index computations for D-elliptic boundary con-
ditions can be reduced to the case of generalized Atiyah–Patodi–Singer boundary
conditions.

Theorem 6.4 ([BB, Theorem 8.14]). Assume the Standard Setup 4.1 and that D
and D� are coercive at infinity. Let B � H1=2.@M;E/ be a D-elliptic boundary
condition. Then we have, in the representation of B as in Remark 4.8.2,

indDB D indDB.a/ C dim WC � dim W�:

Sketch of Proof. Replacing g by sg, s 2 Œ0; 1�, yields a continuous 1-parameter
family of D-elliptic boundary conditions. One can show that the index stays constant
under such a deformation of boundary conditions. Therefore, we can assume
without loss of generality that g D 0, i.e., B D WC ˚ V1=2� . Consider one further
boundary condition,
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B0 WD W� ˚WC ˚ V1=2� D H1=2

.�1;a/.A/˚WC D B.a/˚WC:

Applying Corollary 6.2 twice we conclude

ind.DB/ D ind.DB0/� dim W� D ind.DB.a//C dim WC � dim W�: �

6.2 Relative Index Theory

Assume the Standard Setup 4.1 throughout the section. For convenience assume also
that M is connected and that @M D ;. For what follows, compare Example 4.23. Let
N be a closed and two-sided hypersurface in M. Cut M along N to obtain a manifold
M0, possibly connected, whose boundary @M0 consists of two disjoint copies N1 and
N2 of N, see Fig. 1 on page 61. There are natural pull-backs E0, F0, and D0 of E, F,
and D from M to M0. Choose an adapted operator A for D0 along N1. Then �A is an
adapted operator for D0 along N2 and will be used in what follows.

Theorem 6.5 (Splitting Theorem, [BB, Theorem 8.17]). For M, M0, and notation
as above, D and D� are coercive at infinity if and only if D0 and .D0/� are coercive
at infinity. In this case, D and D0B1˚B2

are Fredholm operators with

indD D indD0B1˚B2 ;

where B1 D B.a/ D H1=2

.�1;a/.A/ and B2 D H1=2

Œa;1/.A/, considered as boundary
conditions along N1 and N2, respectively. More generally, we may choose any D-
elliptic boundary condition B1 � H1=2.N;E/ and its L2-orthogonal complement
B2 � H1=2.N;E/. �

Let M1 and M2 be complete Riemannian manifolds without boundary and

Di W C1.Mi;Ei/! C1.Mi;Fi/

be Dirac-type operators. Let K1 � M1 and K2 � M2 be compact subsets. Then
we say that D1 outside K1 agrees with D2 outside K2 if there are an isometry f W
M1 n K1 ! M2 n K2 and smooth fiberwise linear isometries

IE W E1jM1nK1 ! E2jM2nK2 and IF W F1jM1nK1 ! F2jM2nK2
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such that

E1|M1\ K1 E2|M2\ K2

M1\ K1 M2\ K2
f

F1|M1\ K1 F2|M2\ K2

M1\ K1 M2\ K2
f

E F

commute and

IF ı .D1ˆ/ ı f�1 D D2.IE ıˆ ı f�1/

for all smooth sections ˆ of E1 over M1 n K1.
Assume now that D1 and D2 agree outside compact domains Ki � Mi. For

i D 1; 2, choose a decomposition Mi D M0i [ M00i such that Ni D M0i \ M00i is a
compact hypersurface in Mi, Ki is contained in the interior of M0i , f .M001 / D M002 ,
and f .N1/ D N2. Denote the restriction of Di to M0i by D0i. The following result
is a general version of the ˆ-relative index theorem of Gromov and Lawson [GL,
Theorem 4.35].

Theorem 6.6 ([BB, Theorem 1.21]). Under the above assumptions, let B1 �
H1=2.N1;E1/ and B2 � H1=2.N2;E2/ be Di-elliptic boundary conditions which
correspond to each other under the identifications given by f and IE as above.
Assume that D1 and D2 and their formal adjoints are coercive at infinity.

Then D1, D2, D01;B1 , and D02;B2 are Fredholm operators such that

indD1 � indD2 D indD01;B1 � indD02;B2 D
Z

K1

˛D1 �
Z

K2

˛D2 ;

where ˛D1 and ˛D2 are the index densities associated with D1 and D2. �

Remark 6.7. In Theorem 6.6, it is also possible to deal with the situation that M1

and M2 have compact boundary and elliptic boundary conditions B1 and B2 along
their boundaries are given. One then chooses the hypersurface N D Ni such that it
does not intersect the boundary of Mi and such that the boundary of Mi is contained
in M0i . The same arguments as above yield

indD1;B1 � indD2;B2 D indD0
1;B1˚B0

1
� indD0

2;B2˚B0

2
;

where B01 and B02 are elliptic boundary conditions along N1 and N2 which correspond
to each other under the identifications given by f and IE as further up. A similar
remark applies to Theorem 6.5.
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6.3 Boundary Chiralities and Index

Lemma 6.8. Assume the Standard Setup 4.1 and that M is connected. Let D be
formally self-adjoint and let A anticommute with �D.�

[/. Let � be a boundary
chirality as in Example 4.20 which commutes with �D.�

[/. Let E D EC˚E� be the
orthogonal splitting into the eigenbundles of � for the eigenvalues˙1, and write

A D
�
0 A�

AC 0

�

with respect to this splitting. Then, if D is coercive at infinity,

indDB� D 1
2
indAC D � 1

2
indA�;

where B� D H1=2.@M;EC/ is as in Example 4.20.

Proof. Let B˙ D ker A ˚ f� ˙ �� j � 2 H1=2

.�1/.A/. Then B˙ is a D-elliptic
boundary condition and, by Theorem 6.4,

indDB
˙
D indDBAPS C dim ker A:

By Corollary 6.2, we have

indDB
˙�
D indDB

˙
� dim ker A�;

where BC� D B� and B�� D H1=2.@M;E�/. Since B�� D B?� and B�� is invariant
under �D.�

[/, we get that B�� is the adjoint of B�. In conclusion

2indDB� D indDB� � indDB��

D indDBC
� dim ker A� � indDB�

C dim ker AC

D indAC: �

Theorem 6.9 (Cobordism Theorem, [BB, Theorem 1.22]). Assume the Standard
Setup 4.1 and that M is connected. Let D be formally self-adjoint and let A
anticommute with �D.�

[/. Then � D i�D.�
[/ is a boundary chirality. Moreover,

if D is coercive at infinity and with A˙ as in Theorem 6.8, then

indAC D indA� D 0:
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Originally, the cobordism theorem was formulated for compact manifolds M
with boundary and showed the cobordism invariance of the index. This played an
important role in the original proof of the Atiyah–Singer index theorem, compare,
e.g., [Pa, Chap. XVII] and [BW, Chap. 21]. In this case, one can also derive the
cobordism invariance from Roe’s index theorem for partitioned manifolds [Ro, Hi].
We replace compactness of the bordism by the weaker assumption of coercivity
of D.

Sketch of Proof of Theorem 6.9. We show that ker DB� D ker DB�� D 0, then
the assertion follows from Lemma 6.8. Let ˆ 2 ker DB˙;max. By Theorem 4.2.5,
we have

0 D .Dmaxˆ;ˆ/L2.M/ � .ˆ;Dmaxˆ/L2.M/

D �.�D.�
[/Rˆ;Rˆ/L2.@M/

D ˙ikRˆk2L2.@M/;

and henceRˆ D 0. Now an elementary argument involving the unique continuation
for solutions of Dˆ D 0 implies ˆ D 0. �

As an application of Lemma 6.8 and Theorem 6.9, we generalize Freed’s
Theorem B from [Fr] as follows:

Theorem 6.10. Assume the Standard Setup 4.1 and that M is connected. Let D
be formally self-adjoint and let A anticommute with �D.�

[/. Let � be a boundary
chirality as in Example 4.20 which commutes with �D.�

[/. Let E D ECC ˚ EC� ˚
E�C ˚ E�� be the orthogonal splitting into the simultaneous eigenbundles of
i�D.�

[/ and � for the eigenvalues˙1.
Then A maps ECC to E�� and EC� to E�C and conversely. Moreover, with the

corresponding notation for the restrictions of A, we have, if D is coercive at infinity,

indDB� D indACC D �indA��:

Proof. By Theorem 6.9, we have

indACC C indAC� D indA�� C indA�C D 0:

On the other hand, A�� is adjoint to ACC, hence Lemma 6.8 gives

2indDB� D indACC C indA�C D indACC � indA�� D 2indACC: �



74 C. Bär and W. Ballmann

Appendix 1: Dirac Operators in the Sense of Gromov
and Lawson

Here we discuss an important subclass of Dirac-type operators. Note that the
connection in Corollary 2.4 is not metric, in general.

Definition A.1. A formally self-adjoint operator D W C1.M;E/ ! C1.M;E/ of
Dirac type is called a Dirac operator in the sense of Gromov and Lawson if there
exists a metric connection r on E such that

(1) D DPj �D.e�j / ı rej , for any local orthonormal tangent frame .e1; : : : ; en/;
(2) the principal symbol �D of D is parallel with respect to r and to the Levi-

Civita connection.

This is equivalent to the definition of generalized Dirac operators in [GL, Sect. 1]
or to Dirac operators on Dirac bundles in [LM, Chap. II, § 5].

Remark A.2. For a Dirac operator in the sense of Gromov and Lawson, the
connection r in Definition A.1 and the connection in the Weitzenböck formula (9)
coincide and are uniquely determined by these properties. We will call r the
connection associated with the Dirac operator D. Moreover, the endomorphism
field K in the Weitzenböck formula takes the form

K D 1

2

X

i;j

�D.e
�
i / ı �D.e

�
j / ı Rr.ei; ej/

where Rr is the curvature tensor of r. See [GL, Proposition 2.5] for a proof.

Next, we show how to explicitly construct an adapted operator on the boundary
satisfying (13) for a Dirac operator in the sense of Gromov and Lawson. Let r be
the associated connection. Along the boundary we define

A0 WD �D.�
[/�1D � r� D �D.�

[/�1
nX

jD2
�D.e

�
j /rej : (23)

Here .e2; : : : ; en/ is any local tangent frame for @M. Then A0 is a first-order
differential operator acting on section of Ej@M ! @M with principal symbol
�A0 .�/ D �D.�

[/�1�D.�/ as required for an adapted boundary operator. From the
Weitzenböck formula (9) we get, using Proposition 2.1 twice, once for D and once
for r, for all ˆ;‰ 2 C1c .M;E/:

0 D
Z

M

	hD2ˆ;‰i � hr�rˆ;‰i � hK ˆ;‰i
dV

D
Z

M

	hDˆ;D‰i � hrˆ;r‰i � hK ˆ;‰i
dV
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C
Z

@M

	 � h�D.�
[/Dˆ;‰i C h�r�.�[/rˆ;‰i
 dS : (24)

For the boundary contribution we have

�h�D.�
[/Dˆ;‰i C h�r�.�[/rˆ;‰i D h�D.�

[/�1Dˆ;‰i � hrˆ; �r.�[/‰i
D h�D.�

[/�1Dˆ;‰i � hrˆ; �[ ˝‰i
D h�D.�

[/�1Dˆ;‰i � hr�ˆ;‰i
D hA0ˆ;‰i: (25)

Inserting (25) into (24) we get

Z

M

	hDˆ;D‰i � hrˆ;r‰i � hK ˆ;‰i
dV D �
Z

@M
hA0�;  i dS (26)

where � WD ˆj@M and  WD ‰j@M. Since the left-hand side of (26) is symmetric in
ˆ and‰, the right-hand side is symmetric as well, hence A0 is formally self-adjoint.
This shows that A0 is an adapted boundary operator for D.

In general, A0 does not anticommute with �D.�
[/ however. We will rectify this

by adding a suitable zero-order term. First, let us compute the anticommutator of A0
and �D.�

[/:

f�D.�
[/;A0g� D

nX

jD2
�D.e

�
j /rej� C �D.�

[/�1
nX

jD2
�D.e

�
j /rej.�D.�

[/�/

D
nX

jD2

�
�D.e

�
j /rej� C �D.�

[/�1�D.e
�
j /�D.�

[/rej�

C �D.�
[/�1�D.e

�
j /�D.rej�

[/�
�

D �D.�
[/�1

nX

jD2
�D.e

�
j /�D.rej�

[/�:

Now r�� is the negative of the Weingarten map of the boundary with respect to the
normal field �. We choose the orthonormal tangent frame .e2; : : : ; en/ to consist of
eigenvectors of the Weingarten map. The corresponding eigenvalues �2; : : : ; �n are
the principal curvatures of @M. We get

nX

jD2
�D.e

[
j /�D.rej�

[/ D �
nX

jD2
�D.e

[
j /�D.�je

[
j / D

nX

jD2
�j D .n � 1/H;
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where H is the mean curvature of @M with respect to �. Therefore,

f�D.�
[/;A0g D .n � 1/H�D.�

[/�1 D �.n � 1/H�D.�
[/:

Since clearly

f�D.�
[/; .n � 1/Hg D 2.n� 1/H�D.�

[/;

the operator

A WD A0 C n � 1
2

H D �D.�
[/�1D � r� C n� 1

2
H

is an adapted boundary operator for D satisfying (13). From (26) we also have

Z

M

	hDˆ;D‰i�hrˆ;r‰i�hK ˆ;‰i
dV D
Z

@M
h. n�1

2
H�A/�;  i dS : (27)

Definition A.3. For a Dirac operator D in the sense of Gromov and Lawson as
above, we call A the canonical boundary operator for D.

Remark A.4. The canonical boundary operator A is again a Dirac operator in the
sense of Gromov and Lawson. Namely, define a connection on Ej@M by

r@X� WD rX� C 1
2
�D.�

[/�1�D.rX�
[/�:

The Clifford relations (6) show that the term �D.�
[/�1�D.rX�

[/ D �D.�
[/��D.rX�

[/

is skewhermitian, hence r@ is a metric connection. By (23), A0 D Pn
jD2 �A0 .e

�
j / ı

rej . This, �A0 D �A, and

nX

jD2
�A0 .e

�
j /�D.�

[/��D.rej�
[/ D n � 1

2
H

show that

A D
nX

jD2
�A.e

�
j / ı r@ej

:

Moreover, a straightforward computation using the Gauss equation for the Levi-
Civita connectionsrX� D r@X� � �.rX�/�

[ shows that �A is parallel with respect to
the boundary connections r@.
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Remark A.5. The triangle inequality and the Cauchy–Schwarz inequality show

jDˆj2 D ˇ̌
nX

jD1
�D.e

[
j /rejˆ

ˇ̌2 � 	
nX

jD1
j�D.e

[
j /rejˆj


2

� n �
nX

jD1
j�D.e

[
j /rejˆj2 D n �

nX

jD1
h�D.e

[
j /
��D.e

[
j /rejˆ;rejˆi

D n �
nX

jD1
jrejˆj2 D n � jrˆj2; (28)

for any orthonormal tangent frame .e1; : : : ; en/ and all ˆ 2 C1.M;E/.
When does equality hold? Equality in the Cauchy–Schwarz inequality implies

that all summands j�D.e[j /rejˆj are equal, i.e., j�D.e[j /rejˆj D j�D.e[1/re1ˆj.
Equality in the triangle inequality then implies �D.e[j /rejˆ D �D.e[1/re1ˆ for all j.
Thus

�D.e
[
1/re1ˆ D

1

n

nX

jD1
�D.e

[
j /rejˆ D

1

n
Dˆ;

hence re1ˆ D 1
n�D.e[1/

�Dˆ. Since e1 is arbitrary, this shows the twistor equation

rXˆ D 1
n�D.X[/�Dˆ; (29)

for all vector fields X on M. Conversely, if ˆ solves the twistor equation, one sees
directly that equality holds in (28).

Inserting (28) into (27) yields

n�1
n

Z

M
jDˆj2dV �

Z

M
hK ˆ;ˆidVC

Z

@M
h. n�1

2
H � A/�; �i dS;

for all ˆ 2 C1c.M;E/, where � WD ˆj@M . Moreover, equality holds if and only if
ˆ solves the twistor equation (29).

Appendix 2: Proofs of Some Auxiliary Results

In this section we collect the proofs of some of the auxiliary results.

Proof of Proposition 2.3. We start by choosing an arbitrary connection Nr on E and
define

ND W C1.M;E/! C1.M;F/; NDˆ WD
X

j
�D.e

�
j /
Nrejˆ:
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Then ND has the same principal symbol as D and, therefore, the difference S WD D� ND
is of order 0. In other words, S is a field of homomorphisms from E to F.

Since AD is onto, the restriction A of AD to the orthogonal complement of the
kernel of AD is a fiberwise isomorphism. We put V WD A �1.S/ and define a new
connection by

r WD Nr C V:

We compute

X
j
�D.e

�
j / ı rej D

X
j
�D.e

�
j / ı Nrej C

X
j
�D.e

�
j / ı V.ej/

D NDCAD.V/

D NDC S D D: �

Proof of Proposition 3.1. Let er be any metric connection on E. Then F WD D�D �
er�er is formally self-adjoint. Since both, D�D and er�er, have the same principal
symbol�j�j2 �id, the operator F is of order at most one. Any other metric connection
r on E is of the formr D erCB where B is a 1-form with values in skewhermitian
endomorphisms of E. Hence

D�D D .r � B/�.r � B/C F D r�r �r�B � B�r C B�BC F„ ƒ‚ …
DWK

:

In general, K is of first order and we need to show that there is a unique B such
that K is of order zero. Since B�B is of order zero, K is of order zero if and only
if F � r�B� B�r is of order zero, i.e., if and only if �F.�/ D �r�BCB�r.�/ for all
� 2 T�M. We compute, using a local tangent frame e1; : : : ; en,

h�r�BCB�r.�/';  i D
˝	
�r�.�/ ı BC B� ı �r.�/



'; 

˛

D �hB'; �r.�/ i C h�r.�/';B i
D � hB'; � ˝  i C h� ˝ ';B i
D �˝

X

i

e�i ˝ Bei'; � ˝  
˛C ˝� ˝ ';

X

i

e�i ˝ Bei 
˛

D �
X

i

he�i ; �ihBei'; i C
X

i

he�i ; �i h';Bei i

D � ˝B�]';  
˛C ˝';B�] 

˛

D �2 ˝B�]';  
˛
:
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Hence, �r�BCB�r.�/ D �2B�] . Thus, K is of order 0 if and only if

BX D � 12 �F.X
b/

for all X 2 TM. Note that �F.�/ is indeed skewhermitian because F is formally
self-adjoint. �

Proof of Lemma 3.2. Since D is formally self-adjoint and of Dirac type,

� �D.�
[/ D �D.�

[/� D �D.�
[/�1; (30)

by (1) and (8). Let A0 be adapted to D along @M and � 2 T�x @M, as usual extended
to T�x M by �.�.x// D 0. Then, again using (6) and (11),

�A0 .�/C �D.�.x/
[/�A0 .�/�D.�.x/

[/�

D �D.�.x/
[/�1�D.�/C �D.�/�D.�.x/

[/�

D �D.�.x/
[/��D.�/C �D.�/

��D.�.x/
[/

D 2h�.x/[; �i � idE

D 0:

Hence 2S WD A0 C �D.�
[/A0�D.�

[/� is of order 0, that is, S is a field of
endomorphisms of E along @M. Since A0 is formally self-adjoint so is S and, by (30),

�D.�
[/2S D �D.�

[/A0 C A0�D.�
[/ D 2S�D.�

[/:

Hence A WD A0 � S is adapted to D along @M and

�D.�
[/AC A�D.�

[/ D �D.�
[/A0 C A0�D.�

[/� �D.�
[/S � S�D.�

[/

D �D.�
[/
	
A0 � �D.�

[/A0�D.�
[/� 2S




D �D.�
[/
	
A0 C �D.�

[/A0�D.�
[/� � 2S




D 0: �
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Symplectic and Hyperkähler Implosion

Andrew Dancer, Brent Doran, Frances Kirwan, and Andrew Swann

Abstract We review the quiver descriptions of symplectic and hyperkähler
implosion in the case of SU(n) actions. We give quiver descriptions of symplectic
implosion for other classical groups, and discuss some of the issues involved in
obtaining a similar description for hyperkähler implosion.

2000 Mathematics Subject Classification. 53C26, 53D20, 14L24.

1 Introduction

Symplectic implosion is an abelianisation construction in symplectic geometry
invented by Guillemin et al. [GJS]. Given a symplectic manifold M with a
Hamiltonian action of a compact group K, its imploded cross-section Mimpl is a

A. Dancer
Jesus College, Oxford OX1 3DW, UK
e-mail: dancer@maths.ox.ac.uk

B. Doran
Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland
e-mail: brent.doran@math.ethz.ch

F. Kirwan (�)
Balliol College, Oxford OX1 3BJ, UK
e-mail: kirwan@maths.ox.ac.uk

A. Swann
Department of Mathematics, Aarhus University, Ny Munkegade 118, Bldg 1530, DK-8000
Aarhus C, Denmark

CP3-Origins, Centre of Excellence for Cosmology and Particle Physics Phenomenology,
University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
e-mail: swann@math.au.dk

© Springer International Publishing Switzerland 2016
W. Ballmann et al. (eds.), Arbeitstagung Bonn 2013, Progress in Mathematics 319,
DOI 10.1007/978-3-319-43648-7_4

81

mailto:dancer@maths.ox.ac.uk
mailto:brent.doran@math.ethz.ch
mailto:kirwan@maths.ox.ac.uk
mailto:swann@math.au.dk


82 A. Dancer et al.

symplectic stratified space with a Hamiltonian action of a maximal torus T of K,
such that the symplectic reductions of M by K agree with the symplectic reductions
of the implosion by T.

There is a universal example of symplectic implosion, obtained by taking M to
be the cotangent bundle T�K. The imploded space .T�K/impl carries a Hamiltonian
torus action for which the symplectic reductions are the coadjoint orbits of K.
It also carries a Hamiltonian action of K which commutes with the T action, and
the implosion Mimpl of any symplectic manifold M with a Hamiltonian action of K
can be constructed as the symplectic reduction at 0 of the product M� .T�K/impl by
the diagonal action of K.

The universal symplectic implosion .T�K/impl can also be described in a more
algebraic way, as the geometric invariant theory quotient KC==N of the complex-
ification KC of K by a maximal unipotent subgroup N. This is the affine variety
Spec.O.KC/

N/ associated with the algebra of N-invariant regular functions on KC,
and may also be described as the canonical affine completion of the orbit space
KC=N which is a dense open subset of KC==N.

Many constructions in symplectic geometry involving the geometry of moment
maps have analogues in hyperkähler geometry. We recall here that a hyperkähler
structure is given by a Riemannian metric g and a triple of complex structures
satisfying the quaternionic relations. In fact we then acquire a whole two-sphere’s
worth of complex structures, parametrised by the unit sphere in the imaginary
quaternions. The metric is required to be Kähler with respect to each of the complex
structures. In this way a hyperkähler structure defines a two-sphere of symplectic
structures.

Just as the cotangent bundle T�K of a compact Lie group carries a natural
symplectic structure, so, by work of Kronheimer, the cotangent bundle T�KC of
the complexified group carries a hyperkähler structure [Kro1]. Moreover, in a series
of papers Kronheimer, Biquard and Kovalev showed that the coadjoint orbits of KC

admit hyperkähler structures [Kro2, Kro3, Biq, Kov]. These orbits are not, however,
closed in k�

C
(and the hyperkähler metrics are not complete) except in the case of

semisimple orbits.
In [DKS1] and subsequent papers [DKS2, DKS3] we developed a notion of a

universal hyperkähler implosion .T�KC/hkimpl for SU.n/ actions. The hyperkähler
implosion of a general hyperkähler manifold M with a Hamiltonian action of
K D SU.n/ can then be defined as the hyperkähler quotient of M � .T�KC/hkimpl

by the diagonal action of K. As in the symplectic case the universal hyperkähler
implosion carries an action of K � T where K D SU.n/ and T is its standard
maximal torus. As coadjoint orbits for the complex group are no longer closed in
general, and are not uniquely determined by eigenvalues, the hyperkähler quotients
of .T�KC/hkimpl by the torus action need not be single orbits. Instead, they are the
Kostant varieties, that is, the varieties in sl.n;C/� obtained by fixing the values of
the invariant polynomials for this Lie algebra. These varieties are unions of coadjoint
orbits and are closures in sl.n;C/� of the regular coadjoint orbits of KC D SL.n;C/.
We refer to [CG, Kos] for more background on the Kostant varieties.
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Again by analogy with the symplectic case, we can describe the hyperkähler
implosion in terms of geometric invariant theory (GIT) quotients by non-reductive
group actions. Explicitly, the implosion is .SL.n;C/�n0/�N where N is a maximal
unipotent subgroup of KC D SL.n;C/ and n0 is the annihilator in sl.n;C/� of its
Lie algebra n. Thus the universal hyperkähler implosion for K D SU.n/ can be
identified with the complex-symplectic quotient .SL.n;C/� nı/�N of T� SL.n;C/
by N in the GIT sense, just as the symplectic implosion is the GIT quotient of KC

by N.
In the case of K D SU.n/ dealt with in [DKS1], it is possible to describe the

hyperkähler implosion via a purely finite-dimensional construction using quiver
diagrams. This construction was motivated by a quiver description of the symplectic
implosion for SU.n/ we described in §4 of [DKS1].

In this article we shall extend these results concerning symplectic implosion to
other classical groups, that is, the special orthogonal and symplectic groups. Our
approach will be inspired by the description by Lian and Yau [LY] of coadjoint
orbits for compact classical groups using quivers. This suggests ways to extend the
quiver construction of the universal hyperkähler implosion from the case of SU.n/
to general classical groups, and we discuss some of the issues involved here.

Acknowledgements We thank Kevin McGerty and Tom Nevins for bringing the paper [GR] to
our attention. The second author is partially supported by Swiss National Science Foundation grant
200021 138071. The fourth author is partially supported by the Danish Council for Independent
Research, Natural Sciences.

2 Symplectic Quivers

We begin by trying to construct a quiver model for the universal symplectic
implosion in the case of the orthogonal and symplectic groups, as was done in
[DKS1] for special unitary groups.

We consider diagrams of vector spaces and linear maps

0 D V0
˛0! V1

˛1! V2
˛2! � � � ˛r�2! Vr�1

˛r�1! Vr D C
n: (1)

The dimension vector is defined to be n D .n1; : : : ; nr�1; nr D n/ where ni D
dim Vi. We will say that the representation is ordered if 0 6 n1 6 n2 6 � � � 6 nr D n
and strictly ordered if 0 < n1 < n2 < � � � < nr D n.

In [DKS1] we considered Vr D C
n as a representation of SU.n/, or its

complexification SL.n;C/. In this setting we say the quiver is full flag if r D n
and ni D i for each i. We took the geometric invariant theory quotient of the space
of full flag quivers by SL :D Qr�1

iD1 SL.Vi/ (or equivalently, the symplectic quotient
by
Qr�1

iD1 SU.Vi/). The stability conditions imply that the quiver decomposes into
a quiver with zero maps and a quiver with all maps injective. It was therefore
sufficient to analyse the injective quivers up to equivalence. We found that the
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quotient could be stratified into 2n�1 strata, indexing the flag of dimensions of
the injective quivers (after the quivers had been contracted to remove edges where
the maps were isomorphisms). Equivalently, the strata were indexed by the ordered
partitions of n. Each stratum could be identified with SL.n;C/=ŒP;P� where P is the
parabolic associated with the given flag. The upshot was that the full GIT quotient
can be identified as an affine variety with the affine completion SL.n;C/�N D
SpecO.SL.n;C//N of the open stratum SL.n;C/=N.

We now wish to view Vr as a representation of an orthogonal or symplectic
group. This involves introducing the associated bilinear forms. Our approach will
be motivated by the description due to Lian and Yau in [LY] of a quiver approach to
generalised flag varieties for symplectic and orthogonal groups.

Note that for consistency with [DKS1] we have altered the notation of [LY] in
some respects. In particular we use r rather than rC 1 for the top index, and we use
ni rather than di for the dimensions.

In the orthogonal case, we let J denote the matrix with entries

Jij D ınC1�i;j .1 6 i; j 6 n/

which are 1 on the antidiagonal and 0 elsewhere. We therefore have on C
n a

symmetric bilinear form B.v;w/ D vtJw where vt denotes the transpose of v, which
is preserved by

SO.n;C/ D f g W gtJg D J g
We note that the condition for h to be in the Lie algebra so.n;C/ is htJ C Jh D 0,
that is, that h is skew-symmetric about the ANTI-diagonal. In particular, h may have
arbitrary elements in the top left d � d block as long as d 6 n

2
.

Motivated by [LY] let us now consider ordered diagrams where

nr�1 6
n

2

and we impose on ˛r�1 the condition

˛t
r�1J˛r�1 D 0: (2)

Equivalently, this is the condition that the image of ˛r�1 be an isotropic subspace
of Cn with respect to J (which is the reason for the inequality above). The space of
˛r�1 satisfying this condition is of dimension nnr�1 � 1

2
nr�1.nr�1 C 1/.

We let R.n/ be the space of all such diagrams satisfying (2) with dimension
vector n.

Observe that the complexification GL :DQr�1
iD1 GL.Vi/ of QH :DQr�1

iD1 U.Vi/ acts
on R.n/ by

˛i 7! giC1˛ig
�1
i .i D 1; : : : ; r � 2/;

˛r�1 7! ˛r�1g�1r�1:
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There is also a commuting action of SO.n;C/ by left multiplication of ˛r�1; note
that the full group GL.n;C/ does not now act because it does not preserve (2).

As in [DKS1], we shall study the symplectic quotient of R.n/ by the action of

H :D
r�1Y

iD1
SU.Vi/

or equivalently the GIT quotient of R.n/ by its complexification

HC D SL :D
r�1Y

iD1
SL.Vi/;

viewed as a subgroup of GL in the obvious way. This quotient will have residual
actions of the r � 1-dimensional compact torus Tr�1 D .S1/r�1 and its complexifi-
cation, as well as of SO.n;C/.

Let us observe that the dimension nnr�1 � 1
2
nr�1.nr�1 C 1/ of the set of ˛r�1

satisfying (2) equals the dimension of the coset space SO.n;C/= SO.n � nr�1;C/.
In fact, in the orthogonal case with n odd, we can show that this coset space equals
the set of injective ˛r�1 satisfying (2).

For if n is odd SO.n;C/ acts transitively on the set of isotropic subspaces of Cn

of fixed dimension, so ˛r�1 can be put into the form

�
Anr�1�nr�1

0.n�nr�1/�nr�1

�

via the SO.n;C/ action. As nr�1 6 n
2
, we can consider matrices in SO.n;C/ with an

arbitrary invertible nr�1�nr�1 block in the top left corner and a zero .n�nr�1/�nr�1
block in the lower left. So in fact ˛r�1 can be put into the standard form (used also
in the An case in [DKS1])

�
Inr�1�nr�1

0.n�nr�1/�nr�1

�
:

The connected component of the stabiliser of this configuration for the SO.n;C/
action is SO.n � nr�1;C/.

We now obtain a description of quivers in R.n/ with all ˛i injective, modulo
the action of SL. For, combining the above observation with the arguments of §4
of [DKS1], the action of SL�SO.n;C/ can be used to put the maps in standard
form

˛i D
�

Ini�ni

0.niC1�ni/�ni

�
:
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The remaining freedom is a commutator of a parabolic in SO.n;C/ where the
first r � 1 block sizes are niC1 � ni. The blocks in the Levi subgroup lie in
SL.niC1 � ni/ which is why we get the commutator rather than the full parabolic.
Hence the injective quivers with fixed dimension vector n modulo the action of SL
are parametrised by SO.n;C/=ŒP;P�, where P is the parabolic associated with the
dimension vector.

Note that the blocks corresponding to the upper left square of size nr�1 DPr�2
iD0 niC1 � ni will determine the blocks in the lower right square of size nr�1,

at least on Lie algebra level, by the property of being in the orthogonal group.

Remark 2.1. By intersecting the parabolic (rather than its commutator) with the
compact group SO.n/we get

Qr�2
iD0 U.niC1�ni/�SO.n�nr�1/, which is the isotropy

group for the associated compact flag variety. Putting piC1 D niC1 � ni, and ` D
n � nr�1, we get

Pr�1
iD1 pi D n � l, in accordance with the results of [Bes, p. 233,

Sect. 8H].

For a model for the non-reductive GIT quotient KC==N in the Bk case, that is when
n D 2kC1 and K D SO.2kC1/, we can take n equal to .1; 2; 3; : : : ; k; 2kC1/which
will be the full flag condition in this context. We now consider the GIT quotient
R.n/� SL. Note that at this stage the maps ˛i are not assumed to be injective.

As the SL action is the same as in the An case, the stability analysis proceeds
as in [DKS1]. We find that for polystable configurations we may decompose each
vector space Ci as

C
i D ker˛i ˚ C

mi ; (3)

where Cmi D im ˛i�1 if mi ¤ 0. So the quiver decomposes into a zero quiver and an
injective quiver. After contracting legs of the quiver which are isomorphisms, as in
[DKS1], we obtain a strictly ordered injective quiver of the form considered above.
We stratify the quotient R.n/� SL by the flag of dimensions of the injective quiver,
as in the SL.n;C/ case.

We have thus identified the strata of the GIT quotient of the space of full
flag quivers with the strata SO.n;C/=ŒP;P� of the universal symplectic implosion,
or equivalently the non-reductive GIT quotient KC==N (where N is a maximal
unipotent subgroup). As the complement of the open stratum SO.n;C/=N is of
complex codimension strictly greater than one, we see that the implosion KC==N
and the GIT quotient of the space of full flag quivers are affine varieties with the
same coordinate ring O.SO.n;C//N , and so are isomorphic.

Guillemin et al. [GJS] showed that the non-reductive GIT quotient KC==N has a
K � T-invariant Kähler structure such that it can be identified symplectically with
the universal symplectic implosion for K. In order to see this Kähler structure on
R.n/== SL we can put an QH � K-invariant flat Kähler structure on R.n/ and identify
the GIT quotient R.n/== SL with the symplectic quotient R.n/�H. To achieve QH�K-
invariance we use the standard flat Kähler structure on .Cj�1/� ˝ C

j for j 6 r � 1
but the flat Kähler structure defined by J on
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.Cr�1/� ˝ C
n Š .Cn/r�1:

Recall that a polystable quiver decomposes into the sum of a zero quiver and an
injective quiver, and determines for us a partial flag in C

n

W1 
 W2 
 � � � 
 Wr�1 
 C
n;

where Wj D im˛r�1 ı ˛r�2 ı � � � ı ˛j, whose dimension vector .w1 D
dim W1; : : : ;wr�1 D dim Wr�1/ is determined by the injective summand. The
condition that ˛t

r�1J˛r�1 D 0 ensures that Wr�1 is an isotropic subspace of Cn, so
we can use the action of the compact group K D SO.n/ to put this flag into standard
form with Wj spanned by the first wj vectors in the standard basis for Cn. Then we
can use the action of SL to put the polystable quiver into the form where

˛j D

0
BBBBBB@

0 0 : : : 0

�
j
1 0 : : : 0

0 �
j
2 : : : 0

:::
:::
: : :

:::

0 0 : : : �
j
j

1
CCCCCCA

(4)

for j < r � 1 and

˛r�1 D

0

BBBBBBBBBBB@

0 0 : : : 0
:::

:::
:::

0 0 : : : 0

�r�1
1 0 : : : 0

0 �r�1
2 : : : 0

:::
:::
: : :

:::

0 0 : : : �r�1
r�1

1

CCCCCCCCCCCA

with � j
i 2 C. Let RT.n/ denote the subspace of R.n/ consisting of quivers of this

form.
Note that the moment map for the action of the unitary group U.Vj/ on R.n/ takes

a quiver (1) to

N̨ tj˛j � ˛j�1 N̨ tj�1

for 1 6 j 6 r�1, so the moment map for the action of the product QH DQr�1
jD1 U.Vj/

takes RT.n/ into the Lie algebra of the product of the standard (diagonal) maximal
tori TVj of the unitary groups U.Vj/. Thus there is a natural map of symplectic
quotients

�T WRT.n/�HT ! R.n/�H
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where HT D Qr�1
jD1.TVj \ SL.Vj// is a maximal torus of H. Moreover

R.n/�H D K �T.RT.n/�HT/

where K D SO.n/ and RT.n/�HT is a toric variety.
The moment map for the action of the torus Tr�1 D .S1/r�1 on R.n/�H takes a

point represented by a quiver of the form (4) satisfying the moment map equations

0

BBBB@

j� j
1j2 0 : : : 0

0 j� j
2j2 : : : 0

:::
:::

: : :
:::

0 0 : : : j� j
j j2

1

CCCCA
D �Rj I C

0

BBBB@

0 0 : : : 0

0 j� j�1
1 j2 : : : 0

:::
:::

: : :
:::

0 0 : : : j� j�1
j�1 j2

1

CCCCA

for some �R1 ; : : : ; �
R

r�1 2 R, or equivalently

j� j
i j2 D �Rj C �Rj�1 C � � � C �Rj�iC1 if 1 6 i 6 j < n; (5)

to .�R1 ; : : : ; �
R

r�1/ in the Lie algebra of Tr�1, while the moment map for the action
of K takes this point to

0

BBBBBBBBB@

�j�r�1
r�1 j2 : : : 0 0 : : : 0
:::

: : :
:::

:::
:::

0 : : : �j�r�1
1 j2 0 : : : 0

0 : : : 0 j�r�1
1 j2 : : : 0

:::
:::

:::
: : :

:::

0 : : : 0 0 : : : j�r�1
r�1 j2

1

CCCCCCCCCA

;

up to constant scalar factors depending on conventions. The image of the toric
variety RT.n/�HT under this moment map is the positive Weyl chamber tC of
K D SO.n/, and we obtain a symplectic identification of R.n/�H with the universal
symplectic implosion

.T�K/impl D .K � tC/= �

of K D SO.n/, where .k; �/ � .k0; � 0/ if and only if � D � 0, with stabiliser K� under
the coadjoint action of K, and k D k0 Qk for some Qk 2 ŒK� ;K� �.

We may argue in a very similar way for the symplectic group Sp.2k;C/, the
complexification of Sp.2k/. Following [LY] we replace the symmetric bilinear form
by the skew form on C

n D C
2k defined by the matrix
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J2 D
�
0 J
�J 0

�

Once again we find that Sp.2k;C/ acts transitively on the set of ˛r�1 satisfying the
condition

˛t
r�1J2˛r�1 D 0

and the above arguments go through mutatis mutandis.
For SO.n;C/ with n even, the isotropic subspace im ˛r may be self-dual or

anti-self-dual if nr�1 D n
2
. We take the component of the locus defined by (2)

corresponding to the image being self-dual, and now we get the desired transitivity.

Theorem 2.2. Let K be a compact classical group and let us consider full flag
quivers for KC as above. That is, we take n D .n1; : : : ; nr/ to be .1; 2; : : : ; n/ for
K D SU.n/, .1; 2; : : : ; k; 2k C 1/ for SO.2k C 1/, and .1; 2; : : : ; k; 2k/ for SO.2k/
or Sp.k/. Also in the orthogonal and symplectic cases we impose the appropriate
isotropy condition on the top map in the quiver, and take the appropriate component
of the space of isotropic subspaces in the even orthogonal case, to obtain a space
R.n/ of full flag quivers.

Then the symplectic quotient of R.n/ by H.n/ D Qr�1
iD2 SU.ni;C/ can be

identified naturally with the universal symplectic implosion for K, or equivalently
with the non-reductive GIT quotient KC==N. The stratification by quiver diagrams
as above corresponds to the stratification of the universal symplectic implosion
as the disjoint union over the standard parabolic subgroups P of KC of the varieties
KC=ŒP;P�.

Example 2.3. The lowest rank case of the above construction is when the group
is SO.3/. The quiver is now just

0
˛0! C

˛1! C
3

where ˛0 D 0. As H D SU.1/ here there is no quotienting to perform. The matrix J

is
�
0 0 1
0 1 0
1 0 0

�
and, putting ˛1 D .x; y; z/, the isotropy condition ˛t

1J˛1 D 0 becomes

y2 C xz D 0:

This affine surface is a well-known description of the Kleinian singularity C
2=Z2.

This is a valid description of the symplectic implosion for SO.3/, since the
implosion for the double cover SU.2/ is just C2.

Remark 2.4. We mention here an alternative description of symplectic implosions
using the concept of Cox rings [Cox, HK, LV]. If X is an algebraic variety and
L1; : : : ;Ln are generators for Pic.X/, then we form the Cox ring
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Cox.X;L/ D
M

.m1;:::;mn/2Zn

H0.X;m1L1 C � � � CmnLn/ (6)

Hu and Keel [HK] introduced the class of Mori dream spaces—the varieties X
whose Cox ring is finitely generated. These include toric varieties, which are
characterised by Cox.X/ being a polynomial ring. It was proved in [HK] that, as
the name suggests, Mori dream spaces are well behaved from the point of view
of the Minimal Model Programme. After a finite sequence of flips and divisorial
contractions we arrive at a space birational to X which either is a Mori fibre space
or has nef canonical divisor. Mori dream spaces may be realised as GIT quotients
by tori of the affine varieties associated with their Cox rings. The above sequence
of flips and contractions can be expressed in terms of explicit variation of GIT
wall-crossings, and indeed the Mori chambers admit a natural identification with
variation of GIT chambers. Since torus variation of GIT is well-understood, in
principle the Mori theory of a Mori dream space is also well-understood, at least
given an explicit enough presentation of Cox(X).

If K is a compact Lie group and P is a parabolic subgroup of KC, then the Cox
ring of KC=P is the coordinate ring of the quasi-affine variety KC=ŒP;P�, which is
finitely generated. In particular KC=P is a Mori dream space.

Taking P to be a Borel subgroup B, we find that the Cox ring of KC=B is
the finitely generated ring O.KC=N/ D O.KC/

N whose associated affine variety
Spec.O.KC/

N/ is the universal symplectic implosion KC==N.

3 Hyperkähler Quiver Diagrams

For K D SU.n/ actions we developed in [DKS1] a finite-dimensional approach
to constructing the universal hyperkähler implosion for K via quiver diagrams. In
that case the symplectic quivers formed a linear space and we just took the cotangent
bundle, which amounted to putting in maps ˇiWViC1 ! Vi in addition to the ˛iWVi !
ViC1. Writing Vi D C

ni , we thus worked with the flat hyperkähler space

M D M.n/ D
r�1M

iD1
H

niniC1 D
r�1M

iD1
Hom.Cni ;CniC1 /˚ Hom.CniC1 ;Cni/ (7)

with the hyperkähler action of U.n1/ � � � � � U.nr/

˛i 7! giC1˛ig
�1
i ; ˇi 7! giˇig

�1
iC1 .i D 1; : : : r � 1/;

with gi 2 U.ni/ for i D 1; : : : ; r. Right quaternion multiplication was given by

.˛i; ˇi/j D .�ˇ�i ; ˛�i /: (8)
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If each ˇi is zero we recovered a symplectic quiver diagram.
We considered the hyperkähler quotient of M.n/ with respect to the group H DQr�1

iD1 SU.ni/, obtaining a stratified hyperkähler space Q D M�=H, which has a
residual action of the torus Tr�1 D QH=H where QH D Qr�1

iD1 U.ni/, as well as a
commuting action of SU.nr/ D SU.n/. When n D .1; 2; : : : ; n/ we can identify this
torus with the standard maximal torus T of SU.n/ using the simple roots of T.

The universal hyperkähler implosion for SU.n/ is defined to be the hyperkähler
quotient Q D M�=H, where M, H are as above with nj D j, for j D 1; : : : ; n, (i.e.
the case of a full flag quiver).

From the complex-symplectic viewpoint, Q is the GIT quotient, by the complex-
ification

HC D
r�1Y

iD1
SL.ni;C/

of H, of the zero locus of the complex moment map �C for the H action.
The components of this complex moment map �C are given by the tracefree

parts of ˛i�1ˇi�1 � ˇi˛i. The complex moment map equation �C D 0 can thus be
expressed as saying

ˇi˛i � ˛i�1ˇi�1 D �Ci I .i D 1; : : : ; r � 1/; (9)

for some complex scalars �C1 ; : : : ; �
C

r�1, while the real moment map equation is
given by

ˇ�i�1ˇi�1 � ˛i�1˛�i�1 � ˇiˇ
�
i C ˛�i ˛i D �Ri I .i D 1; : : : ; r � 1/; (10)

for some real scalars �R1 ; : : : ; �
R

r�1.
The action of HC is given by

˛i 7! giC1˛ig
�1
i ; ˇi 7! giˇig

�1
iC1 .i D 1; : : : r � 2/;

˛r�1 7! ˛r�1g�1r�1; ˇr�1 7! gr�1ˇr�1;

where gi 2 SL.ni;C/. The residual action of SL.n;C/ D SL.nr;C/ on the quotient
Q is given by

˛r�1 7! gr˛r�1; ˇr�1 7! ˇr�1g�1r :

There is also a residual action of QHC=HC which we can identify, in the full
flag case, with the maximal torus TC of KC. The complex numbers �i combine
to give the complex-symplectic moment map for this complex torus action. We
remark that reduction of Q by the maximal torus at level 0 recovers the construction
of the nilpotent variety [KS, KP1]. While there is a similar quiver description of
the nilpotent variety for the classical algebras so.n;C/ and sp.n;C/ [KS, KP2],
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the construction of an implosion does not directly generalise, partly because the
corresponding groups QH do not have sufficiently large centres.

Note that as Q is a hyperkähler reduction by H at level 0, it also inherits an SU.2/
action that rotates the two-sphere of complex structures (see [DKS1] for details).

Given a quiver .˛; ˇ/ 2 M.n/, the composition

X D ˛r�1ˇr�1 2 Hom.Cn;Cn/:

is invariant under the action of QHC and transforms by conjugation under the residual
SL.n;C/ action. The map Q ! sl.n;C/ given by sending .˛; ˇ/ to the tracefree
part of X is therefore TC-invariant and SL.n;C/-equivariant.

In [DKS1] and [DKS2] we introduced stratifications of the implosion Q, one
reflecting its hyperkähler structure and one reflecting the group structure of SU.n/.
We recall in particular that the open subset of Q consisting of quivers with all ˇ
surjective may be identified with SL.n;C/�N n0 Š SL.n;C/ �N b.

The open stratum Qhks in the hyperkähler stratification of Q consists of the
quivers which are hyperkähler stable; that is, for a generic choice of complex
structure all the maps ˛i are injective and all the maps ˇi are surjective. In this
situation the kernels of the compositions

ˇj ı ˇjC1 ı � � � ı ˇn�1

for 1 6 j 6 n form a full flag in C
n; we can use the action of K D SU.n/ (which

preserves the hyperkähler structure) to put this flag into standard position. Next we
can use the action of SL D HC to put the maps ˇj into the form

ˇj D

0
BBBBBB@

0 �
j
1 0 : : : 0 0

0 0 �
j
2 : : : 0 0

:::
:::
:::
: : :

:::
:::

0 0 0 : : : �
j
j�1 0

0 0 0 : : : 0 �
j
j

1
CCCCCCA

(11)

for some �j
i 2 Cnf0g. Then it follows from the complex moment map equations (9)

that the maps ˛j have the form

˛j D

0

BBBBBBBB@

� � : : : � �
�

j
1 � : : : � �
0 �

j
2 : : : � �

:::
:::
: : :

:::
:::

0 0 : : : �
j�1
j �

0 0 : : : 0 �
j
j

1

CCCCCCCCA

(12)



Symplectic and Hyperkähler Implosion 93

and that the same Eqs. (9) are satisfied if each ˛j is replaced with

˛t
j D

0

BBBBBBBB@

0 0 : : : 0 0

�
j
1 0 : : : 0 0

0 �
j
2 : : : 0 0

:::
:::
: : :

:::
:::

0 0 : : : �
j�1
j 0

0 0 : : : 0 �
j
j

1

CCCCCCCCA

(13)

For a fixed choice of complex structures let us denote by b
.ı/
C the subset of Q

represented by all quivers of the form (12) and (11) satisfying the hyperkähler
moment map equations with �j

i and � j
i nonzero complex numbers. Its K-sweep

K b
.ı/
C in Q is then isomorphic to

K �T b
.ı/
C Š KC �B b

.ı/
C

and consists of all quivers (1) in Q such that for each j the map ˛j is injective and
the map ˇj is surjective and C

n is the direct sum of

ker.ˇj ı ˇjC1 ı � � � ı ˇn�1/

and im.˛n�1 ı � � � ı˛j/. It follows that K b
.ı/
C is open in Q, and its sweep SU.2/K b

.ı/
C

under the action of SU.2/ which rotates the complex structures (and commutes with
the action of K) is the open stratum Qhks of Q.

Associating to a quiver (1) in b
.ı/
C with the maps ˛j and ˇj in the form (12)

and (11) the quiver in which ˛j is replaced with ˛T
j given by (13) defines a map  

from b
.ı/
C to the hypertoric variety QT defined in [DKS2]. This hypertoric variety is

the hyperkähler quotient of the space MT of all quivers of the form (13) and (11)
by the action of the maximal torus HT of H with the induced action of QHT=HT D
.S1/n�1 which is identified with T via the basis of t� Š t corresponding to the
simple roots. The image of the map  is the open subset Q.ı/

T of QT represented by
all quivers of this form with �j

i and � j
i all nonzero.

The restriction to b
.ı/
C of the complex moment map for the action of K associates

to a quiver of the form (12), (11) the upper triangular matrix

˛n�1ˇn�1 � tr.˛n�1ˇn�1/
I

n

and thus takes values in b D tC˚ n. Combining the map  with the projection to n
of this complex moment map gives us isomorphisms

b
.ı/
C Š QıT � n
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and

K b
.ı/
C Š K �T .Q

ı
T � n/:

Under this identification the complex moment map for T is given by the (T-
invariant) complex moment map �WQT ! t�

C
for the action of T on QT , and the

complex moment map for K is given by

Œk; �; �� 7! Ad�k .�.�/C �/
for k 2 K, � 2 QıT and � 2 n.

The hyperkähler moment map for T associates to a quiver satisfying the hyper-
kähler moment map equations (9) and (10) the element .�C1 ; �

R

1 ; : : : ; �
C

n�1; �Rn�1/
of .C ˚ R/n�1 identified with t�˝.C ˚ R/ Š t�˝R3 via the basis of simple
roots. The image of its restriction to Qhks is the open subset of t�˝R3 defined by
.�Cj ; �

R

j / ¤ .0; 0/ for j D 1; : : : ; n � 1, while the image of K b
.ı/
C is the open subset

.t�˝R3/ı defined by �Cj ¤ 0 for j D 1; : : : ; n � 1. Using the same basis the

hypertoric variety QT can be identified with H
n�1 and Q.ı/

T then corresponds to the
open subset

f .a1 C jb1; : : : ; an�1 C jbn�1/ 2 H
n�1 W a`; b` 2 C n f0g g:

Under this identification the hyperkähler moment map �WQ.ı/
T ! t�˝R3 is given by

�.a1 C jb1; : : : ; an�1 C jbn�1/

D .a1b1; ja1j2 � jb1j2; : : : ; an�1bn�1; jan�1j2 � jbn�1j2/I

its fibres are single T-orbits in Q.ı/
T .

From the description of K b
.ı/
C above it follows that the hyperkähler moment map

for T restricts to a locally trivial fibration

Qhks ! SU.2/.t�˝R3/ı

over the open subset SU.2/.t�˝R3/ı of t�˝R3 with fibre K � n.
Similarly the other strata in the hyperkähler stratification of Q are constructed

from hyperkähler stable quivers of the form

0
˛0
�
ˇ0

C
n1

˛1
�
ˇ1

C
n2

˛2
�
ˇ2

: : :
˛r�2

�
ˇr�2

C
nr�1

˛r�1

�
ˇr�1

C
nr D C

n: (14)

Again for generic choices of complex structures for each j the map ˛j is injective
and the map ˇj is surjective and C

n is the direct sum of

ker.ˇj ı ˇjC1 ı � � � ı ˇr�1/
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and im.˛r�1 ı � � � ı ˛j/, and we can use the action of K D SU.n/ to put the flag in
C

n defined by the subspaces ker.ˇj ı ˇjC1 ı � � � ı ˇr�1/ into standard position. Next
we can use the action of

Qr�1
jD1 SL.nj/ to put the maps ˇj into block form of the same

shape as (11) where now each �j
i is a nonzero scalar multiple of an identity matrix.

Again it follows from the complex moment map equations (9) that the maps ˛j have
block form similar to (12) where each � j

i is a nonzero scalar multiple of an identity
matrix, and that the same Eqs. (9) are satisfied if each ˛j is replaced with ˛T

j in block
diagonal form as at (13). We find that the space Qhks

1 of hyperkähler quivers of the
form (14) fibres over an open subset of t�1 ˝R3 (where T1 Š .S1/r�1) with fibre

K �ŒK\P1;K\P1� p
0
1

where P1 is the standard parabolic in KC corresponding to the flag defined by the
subspaces ker.ˇj ıˇjC1 ı � � � ıˇr�1/, and p01 is the annihilator in k�

C
of its Lie algebra

p1. Note that using the standard pairing on kC and identifying b with the annihilator
n0 of n in k�

C
, we have a projection from n Š n� onto the annihilator of p1 in n�, and

this annihilator can be identified with p01 since nC p1 D kC.
By [DKS1, Proposition 6.9] each stratum in Q can be identified with a hyperkäh-

ler modification

OQhks
1 D .Qhks

1 � .H n f0g/`/�=T`

of Qhks
1 for some Q1 as above, and the restriction to this stratum OQhks

1 of the
hyperkähler moment map for T is a locally trivial fibration over an open subset of

Lie.ZK.K \ P1//
� ˝ R

3

(where ZK.K \ P1/ 
 T is the centre of K \ P1 in K) with fibre

K �ŒK\P1;K\P1� p
0
1 :

Using the surjection

K � n! K �ŒK\P1;K\P1� p
0
1 (15)

induced by the projection n Š n� ! p01, we can lift this locally trivial fibration to
one with fibre K � n which surjects onto the stratum OQhks

1 .
In order to patch together these locally trivial fibrations for the different strata,

we can blow up the hypertoric variety QT Š H
n�1, replacing it with QQT Š QHn�1

where QHn�1 is the blowup of H Š C
2 at 0 using the complex structure on H given

by right multiplication by i; this commutes with the hyperkähler complex structures
given by left multiplication by i; j and k and also with the action of the S1 component
of the maximal torus T Š .S1/n�1.
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Note that the hyperkähler moment map for the action of S1 on H induces
an identification of the topological quotient H=S1 with R

3; this pulls back to an
identification of QH=S1 with the manifold with boundary QR3 D .R3 n f0g/ t S2. Let
QQ be the fibre product

QQ �����! Q
??y

??y

t�˝QR3 �����! t�˝R3:
The descriptions above of the hyperkähler strata of Q as the images of surjections
from locally trivial fibrations over subsets of t�˝R3 with fibre K�n patch together
to give a locally trivial fibration

OQ! t�˝ QR3

with fibre K � n over the manifold with corners QR3, and surjections O�W OQ ! QQ and
�W QQ! Q where O� collapses fibres via the surjections (15) and � is the pullback of
the surjection t�˝ QR3 ! t�˝R3.
Remark 3.1. If at (11) we only allow ourselves to use the action of H, not HC, to
put the maps ˇj into standard form, then we are able to ensure that each ˇj is of the
form

ˇj D

0

BBBBBB@

0 �
j
1 � : : : � �

0 0 �
j
2 : : : � �

:::
:::
:::
: : :

:::
:::

0 0 0 : : : �
j
j�1 �

0 0 0 : : : 0 �
j
j

1

CCCCCCA
(16)

for some �j
i 2 C n f0g. It still follows from the complex moment map equations (9)

that the maps ˛j then have the form (12). Similarly an element of any stratum OQhks
1

as above can for generic choices of complex structures be put into block form (12)
and (16) using the action of K � H, where now �

j
i and � j

i denote nonzero scalar
multiples of identity matrices.

4 Properties of Hyperkähler Implosion

In this section we will list some of the main properties of the universal hyperkähler
implosion Q D .T�KC/hkimpl for K D SU.n/ which we expect to be true for more
general compact groups K.
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(1) Q is a stratified hyperkähler space of real dimension 2.dim KCdim T/ where
T is a maximal torus of K. It has an action of K�T which preserves the hyperkähler
structure and has a hyperkähler moment map

�K�T WQ! .k�˚ t�/˝ R
3;

as well as a commuting action of SU.2/ which rotates the complex structures on Q
(see [DKS1] for the case K D SU.n/).

(2) The hyperkähler reduction at 0 of Q by T can be identified for any choice
of complex structure, via the complex moment map for the action of K, with
the nilpotent cone N in kC. We can view this as the statement that the Springer
resolution SL.n;C/ �B n ! N is an affinisation map. The reduction at a generic
point of t�˝R3 is a semisimple coadjoint orbit of KC, and in general the hyperkähler
reduction of Q by T at any point of t�˝R3 can be identified for any choice of
complex structure, via the complex moment map for the action of K, with a Kostant
variety in k�

C
(that is, the closure of a coadjoint orbit). We refer to [DKS1] for the

case K D SU.n/.
(3) When K is semisimple, simply connected and connected (as for special

unitary groups) its universal symplectic implosion embeds in the affine space
M

$2…
V$;

where fV$ W $ 2 … g is the set of fundamental representations of K, as the closure
of the KC-orbit of v D P

$2… v$ for any choice of highest weight vector v$ for
the irreducible representation V$ . When K D SU.n/ it was shown in [DKS3] that
the universal hyperkähler implosion Q embeds in the space

H0.P1; ..k�
C
˚ t�

C
/˝O.2//˚

M

$

V$ ˝O.j.$///

of holomorphic sections of the vector bundle

V D ..k�
C
˚ t�

C
/˝O.2//˚

M

$

V$ ˝O.j.$// (17)

over P
1 for suitable positive integers j.$/. Moreover this embedding induces a

holomorphic and generically injective map from the twistor space ZQ of Q to the
vector bundle V over P1, and the hyperkähler structure can be recovered from this
embedding when K D SU.n/ [DKS3].

(4) Let N be a maximal unipotent subgroup of the complexification KC of K. It
was shown in [DKS1] that when K D SU.n/ the algebra of invariants O.KC � n0/N
is finitely generated and for any choice of complex structures Q is isomorphic to the
affine variety

.KC � n0/�N D SpecO.KC � n0/N
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associated with this algebra of invariants. This variety may be viewed as the
complex-symplectic quotient (in the sense of non-reductive GIT) of T�KC D
KC � k�

C
by the action of N given by .g; �/ 7! .gn�1;Ad.n/�/. With respect to

this identification the complex moment maps for the commuting K and T actions
on Q are the morphisms from .KC � n0/�N induced by the N-invariant morphisms
from KC � n0 to k�

C
and t�

C
given by

.g; �/ 7! Ad�.g/�

and

.g; �/ 7! �T

where �T 2 t�
C

is the restriction of � 2 n0 
 k�
C

to tC.
It has been proved very recently by Ginzburg and Riche [GR, Lemma 3.6.2]

that the algebra of regular functions on T�.G=N/ is finitely generated for a
general reductive G with maximal unipotent subgroup N. Taking G D KC for any
compact group K this cotangent bundle may be identified with KC �N n0, and its
algebra of regular functions is O.KC � n0/N . Hence the non-reductive GIT quotient
.KC � n0/�N D SpecO.KC � n0/N is a well-defined affine variety in general,
and is the canonical affine completion of the quasi-affine variety T�.KC=N/ just
as KC==N is the canonical affine completion of the quasi-affine variety KC=N. It is
enough to consider the case when K is semisimple, connected and simply connected.
Then their proof provides a reasonably explicit set of generators involving the
fundamental representations V$ of K and these give an embedding of the affine
variety .KC � n0/�N D SpecO.KC � n0/N as a closed subvariety of the space of
sections H0.P1;V/ of a vector bundle V over P1 as at (17) above. Note also that
the GIT complex-symplectic quotient at level 0 of .KC � n0/�N may be viewed as
.KC � n/�B which is the nilpotent variety (see the remarks in (2) above). Similarly
reductions at other levels will yield the Kostant varieties (cf. the discussion in §3
of [DKS1]).

Thus we expect that in general, as in the case when K D SU.n/, .KC�n0/�N has
a hyperkähler structure determined by this embedding and can be identified with the
universal hyperkähler implosion for K.

Note that the scaling action of C� on n0 induces an action of C
� on KC � n0

which commutes with the action of N and thus induces an action of C� on .KC �
n0/�N. Since C

� acts on O.KC � n0/, and thus on O.KC � n0/N , with only non-
negative weights, the sum of the strictly positive weight spaces forms an ideal I in
O.KC�n0/N which defines the fixed point set for the action of C� on .KC�n0/�N.
This fixed point set is therefore the affine variety Spec.O.KC � n0/N=I/, which can
be naturally identified with Spec..O.KC � n0/N/C

�

/ and thus with the universal
symplectic implosion KC�N D Spec.O.KC/

N/.
(5) If � D .�1; �2; �3/ 2 k�˝R3 let

K� D K�1 \ K�2 \ K�3
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where K�j is the stabiliser of �j under the coadjoint action, and let N� be the nilpotent
cone in .k�/�C which we identify with .k�/C as usual. By work of Kronheimer [Kro2]
there is a K� � T � SU.2/-equivariant embedding

N� ! k� ˝R3

whose composition with the projection from k� ˝R3 to .k�/C for any choice of
complex structures is the inclusion of the nilpotent cone N� in .k�/C. From the
discussion in Sect. 3 we expect that for any compact group K the image of the
hyperkähler moment map for the action of K on the universal hyperkähler implosion
Q should be the K-sweep of

t.hk/ D f � C � 2 k˝R3 W � 2 t˝R3 and � 2 N� g

and the hyperkähler implosion Xhkimpl D .X�Q/�=K for any hyperkähler manifold X
with a Hamiltonian hyperkähler action of K and hyperkähler moment map �XWX !
k˝R3 should be given by

Xhkimpl D ��1X .t.hk//= � :

Here x � y if and only if �X.x/ D �C� and�X.y/ D w.�C� 0/ for some � 2 t˝R3,
some �; � 0 2 N� 
 k˝R3, some w in the Weyl group W of K, identified with a
finite subgroup of the normaliser of T in K, and moreover x D kw�1y for some
k 2 ŒK� ;K� �.

5 Hyperkähler Implosion for Special Orthogonal
and Symplectic Groups

In the case of K D SU.n/ the quiver model for the universal symplectic implosion
is a symplectic quotient of a flat linear space, so to obtain a quiver model for
the universal hyperkähler implosion we could take its cotangent bundle (replacing
symplectic with hyperkähler quivers) and the corresponding hyperkähler quotient.

We would like to mimic this construction for the orthogonal and symplectic
groups. However we now have the problem that the space of symplectic quivers
has a non-flat piece since the top map ˛r�1 has to satisfy the system of quadrics (2)
given by ˛t

r�1J˛r�1 D 0.
If this system of equations cut out a smooth variety we could appeal to a result

of Feix [Fei] (see also Kaledin [Kal]) that gives a hyperkähler structure on an open
neighbourhood of the zero section of the cotangent bundle of a Kähler manifold with
real-analytic metric. In our case, however, the variety defined by (2) is singular. We
could of course stratify into smooth varieties by the rank of ˛r�1 and apply Feix’s
result stratum by stratum, but to obtain a suitable hyperkähler thickening a more
global approach is required.
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The discussion in Sects. 3 and 4 suggests that we should consider first what the
analogue of the hypertoric variety QT might be when K is a symplectic or special
orthogonal group. As in Sect. 2 let us first consider the case of K D SO.n/ when
n D 2r � 1 is odd.

For the universal symplectic implosion in this case we considered symplectic
quivers

0
˛0! C

˛1! C
2 ˛2! � � � ˛r�2! C

r�1 ˛r�1! C
n (18)

and imposed the constraint ˛t
r�1J˛r�1 D 0; we then took the symplectic quotient

by Hr D Qr�1
jD1 SU.j/ with respect to the standard Kähler structure on .Cj�1/� ˝ C

j

for j 6 r � 1 and the Kähler structure induced by J on .Cr�1/� ˝ C
n Š .Cn/r�1.

We saw that there is a natural map to this symplectic quotient from the toric variety
given by the symplectic quotient of the space of symplectic quivers as above where
each map ˛j has the form

˛j D

0

BBBBBB@

0 0 : : : 0

�
j
1 0 : : : 0

0 �
j
2 : : : 0

:::
:::
: : :

:::

0 0 : : : �
j
j

1

CCCCCCA

for j < r � 1 and

˛r�1 D

0

BBBBBBBBBBB@

0 0 : : : 0
:::

:::
:::

0 0 : : : 0

�r�1
1 0 : : : 0

0 �r�1
2 : : : 0

:::
:::
: : :

:::

0 0 : : : �r�1
r�1

1

CCCCCCCCCCCA

with � j
i 2 C as at (4); notice that a quiver of this form always satisfies the constraint

˛t
r�1J˛r�1 D 0.

By analogy with this and with the hypertoric variety QT described in Sect. 3 for
the case when K D SU.n/, we expect the hypertoric variety QT for K D SO.n/
when n D 2r � 1 to be closely related to the hyperkähler quotient by the standard
maximal torus THr of Hr of the flat space MSO.n/

T given by quiver diagrams

0
˛o

�
ˇo

C

˛1
�
ˇ1

C
2
˛2
�
ˇ2

: : :
˛r�2

�
ˇr�2

C
r�1 ˛r�1

�
ˇr�1

C
n (19)
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where the maps ˛j and ˇj have the form

˛j D

0
BBBBBB@

0 0 : : : 0

�
j
1 0 : : : 0

0 �
j
2 : : : 0

:::
:::
: : :

:::

0 0 : : : �
j
j

1
CCCCCCA

and ˇj D

0
BBBBBB@

0 �
j
1 0 : : : 0 0

0 0 �
j
2 : : : 0 0

:::
:::
:::
: : :

:::
:::

0 0 0 : : : �
j
j�1 0

0 0 0 : : : 0 �
j
j

1
CCCCCCA

if j < r � 1 and

˛r�1 D

0

BBBBBBBBBBB@

0 0 : : : 0
:::

:::
:::

0 0 : : : 0

�r�1
1 0 : : : 0

0 �r�1
2 : : : 0

:::
:::
: : :

:::

0 0 : : : �r�1
r�1

1

CCCCCCCCCCCA

and

ˇr�1 D

0

BBBBB@

0 : : : 0 �r�1
1 0 : : : 0 0

0 : : : 0 0 �r�1
2 : : : 0 0

:::
:::

:::
:::

: : :
:::

:::

0 : : : 0 0 0 : : : �r�1
r�2 0

0 : : : 0 0 0 : : : 0 �r�1
r�1

1

CCCCCA

for some � j
i ; �

j
i 2 C n f0g. Notice that

˛t
r�1J˛r�1 D 0 D ˇr�1Jˇt

r�1 (20)

for any ˛r�1 and ˇr�1 of this form.
Let MSO.n/ be the flat hyperkähler space given by arbitrary quiver diagrams of the

form (19), where the hyperkähler structure is induced by the standard hyperkähler
structure on .Cj�1/�˝C

j˚.Cj/�˝C
j�1 Š H

.j�1/j for j 6 r�1 and the hyperkähler
structure induced by J on .Cr�1/� ˝ C

n ˚ .Cn/� ˝ C
r�1 Š .Hn/r�1. As in the

symplectic case discussed in Sect. 2, the restriction to MSO.n/
T of the hyperkähler

moment map for the action of Hr coincides with the hyperkähler moment map for
the action of THr on MSO.n/

T . Thus

QSO.n/
T D MSO.n/

T �=THr

maps naturally to MSO.n/�=Hr.
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By analogy with the discussion in Sect. 4 we can consider the subset of
MSO.n/�=Hr which is the closure of the KC D SO.n;C/-sweep of the image of
QSO.n/

T . By (20) this is contained in the closed subset defined by the KC-invariant
constraints

˛t
r�1J˛r�1 D 0 D ˇr�1Jˇt

r�1;

and this closed subset has the dimension expected of the universal hyperkähler
implosion. Thus we expect the subset of the hyperkähler quotient MSO.n/�=Hr

defined by these constraints to be closely related to the universal hyperkähler
implosion for K D SO.n/ when n D 2r � 1 is odd. Similarly we expect that
modifications of this construction as described in Sect. 2 for the universal symplectic
implosion will be closely related to the universal hyperkähler implosion for the
special orthogonal groups K D SO.n/when n is even and for the symplectic groups.
The following example, however, provides a warning against over-optimism here.

Example 5.1. Recall that SO.3/ D SU.2/=f˙1g and that the universal symplectic
implosion for SO.3/ is C

2=f˙1g, where C
2 is the universal symplectic implosion

for SU.2/. Moreover the universal hyperkähler implosion for SU.2/ is H2, given by
quiver diagrams of the form

C

˛

�
ˇ

C
2; (21)

(recall that the group H1 here is trivial, as in Example 2.3, so no quotienting occurs).
We thus expect the universal hyperkähler implosion for SO.3/ to be H2=f˙1g.

We can associate to any quiver (21) the quiver

C Š Sym2.C/
˛1
�
ˇ1

Sym2.C2/ Š C
3

where ˛1 D Sym2.˛/ and ˇ1 D Sym2.ˇ/ are the maps between Sym2.C/ and
Sym2.C2/ induced by ˛ and ˇ. This construction gives us a surjection from H

2 to
the subvariety of the space MSO.3/�=H1 D MSO.3/ of quivers

C

˛1
�
ˇ1

C
3

satisfying ˛t
1J˛1 D 0 D ˇ1Jˇt

1, but it gives an identification of this subvariety with
the quotient of H2 by Z2 � Z2, not by Z2 D f˙1g.
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Kazhdan–Lusztig Conjectures and Shadows
of Hodge Theory

Ben Elias and Geordie Williamson

Abstract We give an informal introduction to the authors’ work on some
conjectures of Kazhdan and Lusztig, building on work of Soergel and de Cataldo–
Migliorini. This article is an expanded version of a lecture given by the second
author at the Arbeitstagung in memory of Frederich Hirzebruch.

1 Introduction

It was a surprise and honour to be able to speak about our recent work at the
Arbeitstagung in memory of Hirzebruch. These feelings are heightened by the
fact that the decisive moments in the development of our joint work occurred at
the Max-Planck-Institute in Bonn, which owes its very existence to Hirzebruch.
In the following introduction we have tried to emphasize the aspects of our work
which we believe Hirzebruch would have most enjoyed: compact Lie groups and
the topology of their homogenous spaces; characteristic classes; Hodge theory;
and more generally the remarkable topological properties of projective algebraic
varieties.

Let G be a connected compact Lie group and T a maximal torus. A fundamental
object in mathematics is the flag manifold G=T. We briefly recall Borel’s beautiful
and canonical description of its cohomology. Given a character � W T ! C

� we can
form the line bundle

L� WD G �T C

on G=T, defined as the quotient of G � C by T-action given by t � .g; x/ WD
.gt�1; �.t/x/. Taking the Chern class of L� yields a homomorphism

X.T/! H2.G=T/ W � 7! c1.L�/:
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from the lattice of characters to the second cohomology of G=T. If we identify
X.T/ ˝Z R D .Lie T/� via the differential and extend multiplicatively we get a
morphism of graded algebras

R WD S..Lie T/�/! H�.G=TIR/:

called the Borel homomorphism. (We let R denote the symmetric algebra on the
dual of Lie T.) Borel showed that his homomorphism is surjective and identified its
kernel with the ideal generated by W-invariant polynomials of positive degree. Here
W D NG.T/=T denotes the Weyl group of G which acts on T by conjugation, hence
on Lie T and hence on R.

For example, let G D U.n/ be the unitary group, and T the subgroup of
diagonal matrices (Š .S1/n). Then the coordinate functions give an identification
R D RŒx1; : : : ; xn�, and W is the symmetric group on n-letters acting on R via
permutation of variables. The Borel homomorphism gives an identification

RŒx1; : : : ; xn�=hei j 1 � i � ni D H�.G=TIR/

where ei denotes the ith elementary symmetric polynomial in x1; : : : ; xn.
Let GC denote the complexification of G and choose a Borel subgroup B

containing the complexification of T. (For example, if G D U.n/, then GC D
GLn.C/ and we could take B to be the subgroup of upper-triangular matrices.) A
fundamental fact is that the natural map

G=T ! GC=B

is a diffeomorphism, and GC=B is a projective algebraic variety.
For example, if G D SU.2/ Š S3, then G=T D S2 is the base of the

Hopf fibration, and the above diffeomorphism is S2
	�! P

1
C. More generally for

G D U.n/ the above diffeomorphism can be seen as an instance of Gram-Schmidt
orthogonalization. Fix a Hermitian form on C

n. Then GC=B parametrizes complete
flags on C

n, while G=T parametrizes collections of n ordered orthogonal complex
lines. These spaces are clearly isomorphic.

The fact that G=T D GC=B is a projective algebraic variety means that its
cohomology satisfies a number of deep theorems from complex algebraic geometry.
Set H D H�.GC=BIR/ and let N denote the complex dimension of GC=B. For us
the following two results (the “shadows of Hodge theory” of the title) will be of
fundamental importance.

Theorem 1.1 (Hard Lefschetz Theorem). Let � 2 H2 denote the Chern class of
an ample line bundle on GC=B [i.e. � 2 .Lie T/� is a “dominant weight”, see (3)].
Then for all 0 � i � N multiplication by �N�i gives an isomorphism:

�N�i W Hi 	�! H2N�i:
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Because G=T is a compact manifold, Poincaré duality states that Hi and H2N�i

are non-degenerately paired by the Poincaré pairing h�;�iPoinc. On the other hand,
after fixing � as above the hard Lefschetz theorem gives us a way of identifying Hi

and H2N�i. The upshot is that for 0 � i � N we obtain a non-degenerate Lefschetz
form:

Hi � Hi ! R

.˛; ˇ/ 7! h˛; �N�iˇiPoinc:

On the middle dimensional cohomology the Lefschetz form is just the Poincaré
pairing. This is the only Lefschetz form which does not depend on the choice of
ample class �.

Theorem 1.2 (Hodge-Riemann Bilinear Relations). For 0 � i � N the restric-
tion of the Lefschetz form to Pi WD ker.�N�iC1/ � Hi is .�1/i=2-definite.

Some comments are in order:

(1) The odd cohomology of G=T vanishes as can be seen, for example, from the
surjectivity of the Borel homomorphism. Hence the sign .�1/i=2 makes sense.

(2) For an arbitrary smooth projective algebraic variety the Hodge-Riemann bilin-
ear relations are more complicated, involving the Hodge decomposition and a
Hermitian form on the complex cohomology groups. However, the cohomology
of the flag variety is always in .p; p/-type, so that we may use the simpler
formulation above.

(3) We will not make it explicit, but the Hodge-Riemann bilinear relations give
formulas for the signatures of all Lefschetz forms in terms of the graded
dimension of H.

We now come to the punchline of this survey. The hard Lefschetz theorem
and Hodge-Riemann bilinear relations for H�.G=BIR/ are deep consequences of
Hodge theory. On the other hand, we have seen that the Borel homomorphism
gives us an elementary description of H�.G=BIR/ in terms of commutative algebra
and invariant theory. Can one establish the hard Lefschetz theorem and Hodge-
Riemann bilinear relations for H�.G=BIR/ algebraically? A crucial motivation for
this question is the fact that H�.G=BIR/ has various algebraic cousins (described
in Sect. 5) for which no geometric description is known. Remarkably, these cousins
still satisfy analogs of Theorems 1.1 and 1.2. Establishing these Hodge-theoretic
properties algebraically is the cornerstone of the authors’ approach to conjectures
of Kazhdan–Lusztig and Soergel.

The structure of this (very informal) survey is as follows. In Sect. 2 we give
a lightning introduction to intersection cohomology, which provides an improved
cohomology theory for singular algebraic varieties. In Sect. 3 we discuss Schubert
varieties, certain (usually singular) subvarieties of the flag variety which play an
important role in representation theory. We also discuss Bott–Samelson resolutions
of Schubert varieties. In Sect. 4 we discuss Soergel modules. The point is that one
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can give a purely algebraic/combinatorial description of the intersection cohomol-
ogy of Schubert varieties, which only depends on the underlying Weyl group. In
Sect. 5 we discuss Soergel modules for arbitrary Coxeter groups, which (currently)
have no geometric interpretation. We also state our main theorem that these modules
satisfy the “shadows of Hodge theory”. Finally, in Sect. 6 we discuss the amusing
example of the coinvariant ring of a finite dihedral group.

2 Intersection Cohomology and the Decomposition Theorem

Poincaré duality, the hard Lefschetz theorem and Hodge-Riemann bilinear relations
hold for the cohomology of any smooth projective variety. The statements of these
results usually fail for singular varieties. However, in the 1970s Goresky and
MacPherson invented intersection cohomology [GM80, GM83] and it was later
proven that the analogues of these theorems hold for intersection cohomology. In
this section we will try to give the vaguest of vague ideas as to what is going on,
and hopefully convince the reader to go and read more. (The authors’ favourite
introduction to the theory is [dM09] whose emphasis agrees largely with that of
this survey.1 More information is contained in [Bor94, Rie04, Ara06] with the
bible being [BBD82]. To stay motivated, Kleiman’s excellent history of the subject
[Kle07] is a must.)

Intersection cohomology associates to any complex variety X its “intersection
cohomology groups” IH�.X/ (throughout this article we always take coefficients in
R, however, there are versions of the theory with Q and Z-coefficients). Here are
some basic properties of intersection cohomology:

(1) IH�.X/ is a graded vector space, concentrated in degrees between 0 and 2N,
where N is the complex dimension of X;

(2) if X is smooth, then IH�.X/ D H�.X/;
(3) if X is projective, then IH�.X/ is equipped with a non-degenerate Poincaré

pairing h�;�iPoinc, which is the usual Poincaré pairing for X smooth.

However we caution the reader that:

(1) the assignment X 7! IH�.X/ is not functorial: in general a morphism f W X ! Y
does not induce a pull-back map on intersection cohomology;

(2) IH�.X/ is not a ring, but rather a module over the cohomology ring H�.X/.

(These two “failings” become less worrying when one interprets intersection
cohomology in the language of constructible sheaves.) Finally, we come to the two
key properties that will concern us in this article. We assume that X is a projective
variety (not necessarily smooth):

1Due, no doubt, to the influence which their work has had on the authors.
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(1) multiplication by the first Chern class of an ample line bundle on IH�.X/
satisfies the hard Lefschetz theorem;

(2) the groups IH�.X/ satisfy the Hodge-Riemann bilinear relations.

(To make sense of this second statement, one needs to know that IH�.X/ has a
Hodge decomposition. This is true, but we will not discuss it. Below, we will only
consider varieties whose Hodge decomposition only involves components of type
.p; p/ and so the naive formulation of the Hodge-Riemann bilinear relations in the
form of Theorem 1.2 will be sufficient.)

Example 2.1. Consider the Grassmannian Gr.2; 4/ of planes in C
4. It is a smooth

projective algebraic variety of complex dimension 4. Let 0 � C � C
2 � C

3 � C
4

denote the standard coordinate flag on C
4. For any sequence of natural numbers

a WD .0 D a0 � a1 � a2 � a3 � a4 D 2/ satisfying ai � aiC1 � ai C 1, consider
the subvariety

Ca WD fV 2 Gr.2; 4/ j dim.V \ C
i/ D aig:

It is not difficult (by writing down charts for the Grassmannian) to see that each
Ca is isomorphic to C

d.a/ where d.a/ D 7 � P4
iD0 ai. Hence Gr.2; 4/ has a

cell-decomposition with cells of real dimension 0; 2; 4; 4; 6; 8. The cohomology
H�.Gr.2; 4// is as follows:

0 1 2 3 4 5 6 7 8

R 0 R 0 R
2 0 R 0 R

It is an easy exercise to use Schubert calculus (see, e.g., [Hil82, III.3], which also
discusses Gr.2; 4/ in more detail) to check the hard Lefschetz theorem and Hodge-
Riemann bilinear relations by hand.

Now consider the subvariety

X WD fV 2 Gr.2; 4/ j dim.V \ C
2/ � 1g:

Then X coincides with the closure of the cell C0
0
1
1
2 � Gr.2; 4/ (and thus is an
example of a “Schubert variety”, as we will discuss in the next section). Hence X has
real dimension 6 and has a cell-decomposition with cells of dimension .0; 2; 4; 4; 6/.
Its cohomology is as follows:

0 1 2 3 4 5 6

R 0 R 0 R
2 0 R

We conclude that X cannot satisfy Poincaré duality or the hard Lefschetz theorem.
In particular X must be singular. In fact, X has a unique singular point V0 D C

2. We
will see below that the intersection cohomology IH�.X/ is as follows:

0 1 2 3 4 5 6

R 0 R
2 0 R

2 0 R
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So in this example IH�.X/ seems to fit the bill (at least on the level of Betti numbers)
of rescuing Poincaré duality and the hard Lefschetz theorem in a “minimal” way.

Probably the most fundamental theorem about intersection cohomology is the
decomposition theorem. In its simplest form it says the following:

Theorem 2.2 (Decomposition Theorem [BBD82, Sai89, dCM02, dCM05]). Let
f W eX ! X be a resolution, i.e.,eX is smooth and f is a projective birational morphism
of algebraic varieties. Then IH�.X/ is a direct summand of H�.eX/, as modules over
H�.X/.

The decomposition theorem provides an invaluable tool for calculating intersec-
tion cohomology, which is otherwise a very difficult task.

Example 2.3. In Example 2.1 we discussed the variety

X WD fV 2 Gr.2; 4/ j dim.V \ C
2/ � 1g

which is projective with unique singular point V0 D C
2. Now X has a natural

resolution f W eX ! X where

eX D f.V;W/ 2 Gr.2; 4/ � P.C2/ j W � V \C
2g

and f .V;W/ D V . Clearly f is an isomorphism over X n fV0g and has fibre P
1 D

P.C2/ over the singular point V0. Also, the projection .V;W/ 7! W realizes eX as a
P
2-bundle over P1. In particular,eX is smooth and its cohomology is as follows:

0 1 2 3 4 5 6

R 0 R
2 0 R

2 0 R

We conclude by the decomposition theorem that IH�.X/ is a summand of H�.eX/.
In this case one has equality: IH�.X/ D H�.eX/. One can see this directly as follows:
first one checks that the pull-back map Hi.X/ ! Hi.eX/ is injective. Now, because
IH�.X/ is an H�.X/-stable summand of H�.eX/ containing R D H0.eX/ we conclude
that IHi.X/ D Hi.eX/ for i ¤ 2. Finally, we must have IH2.X/ D H2.eX/ because
IH�.X/ satisfies Poincaré duality.

Let us now discuss the hard Lefschetz theorem and Hodge-Riemann bilinear
relations for IH�.X/. Let � be the class of an ample line bundle on X. Because
IH�.X/ D H�.eX/ in this example, the action of � on IH�.X/ is identified with the
action of f �� on H�.eX/. We would like to know that f �� acting on H�.eX/ satisfies
the hard Lefschetz theorem and Hodge-Riemann bilinear relations even though f ��
is not an ample class oneX. This simple observation is the starting point for beautiful
work of de Cataldo and Migliorini [dCM02, dCM05], who give a Hodge-theoretic
proof of the decomposition theorem.
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3 Schubert Varieties and Bott–Samelson Resolutions

Recall our connected compact Lie group G, its complexification GC, the maximal
torus T � G and the Borel subgroup T � B � GC. To .G;T/ we may associate a
root system ˆ � .Lie T/�. Our choice of Borel subgroup is equivalent to a choice
of simple roots � � ˆ. As we discussed in the introduction, the Weyl group W D
NG.T/=T acts on Lie T as a reflection group. The choice of simple roots � � ˆ

gives a choice of simple reflections S � W. These simple reflections generate W
and with respect to these generators W admits a Coxeter presentation:

W D hs 2 S js2 D id; .st/mst D idi

where mst 2 f2; 3; 4; 6g can be read off the Dynkin diagram of G. Given w 2 W a
reduced expression for w is an expression w D s1 : : : sm with si 2 S, having shortest
length amongst all such expressions. The length `.w/ of w is the length of a reduced
expression. The Weyl group W is finite, with a unique longest element w0.

From now on we will work with the flag variety GC=B in its incarnation as a
projective algebraic variety. It is an important fact (the “Bruhat decomposition”)
that B has finitely many orbits on GC=B which are parametrized by the Weyl group
W. In formulas we write

GC=B D
G

w2W

B � wB=B

Each B-orbit B � wB=B is isomorphic to an affine space and its closure

Xw WD B � wB=B

is a projective variety called a Schubert variety. It is of complex dimension `.w/.
The two extreme cases are Xid D B=B, a point, and Xw0 D GC=B, the full flag
variety.

More generally, given any subset I � S we have a parabolic subgroup B � PI �
G generated by B and (any choice of representatives of) the subset I. The quotient
G=PI is also a projective algebraic variety (called a partial flag variety) and the
Bruhat decomposition takes the form

G=PI WD
G

w2WI

B � wB=PI

where WI denotes a set of minimal length representatives for the cosets W=WI .
Again, the Schubert varieties are the closures XI

w WD B � wB=PI � G=PI , which are
projective algebraic varieties of dimension `.w/.

Example 3.1. We discussed the more general setting of G=PI to make contact with
the Grassmannian in Example 2.1. Indeed, Gr.2; 4/ Š GL4.C/=P where P is the
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stabilizer of the fixed coordinate subspace C
2 � C

4. If B denotes the stabilizer of
the coordinate flag 0 � C

1 � C
2 � C

3 � C
4 (the upper-triangular matrices), then

the cells Ca of Example 2.1 are B-orbits on Gr.2; 4/. Hence our X is an example of
a singular Schubert variety.

Schubert varieties are rarely smooth. We now discuss how to construct resolu-
tions. We will focus on Schubert varieties in the full flag variety, although similar
constructions work for Schubert varieties in partial flag varieties. Choose w 2 W
and fix a reduced expression w D s1s2 : : : sm. For any 1 � i � m let us alter our
notation and write Pi for Pfsig D BsiB, a (minimal) parabolic subgroup associated
with the reflection si. Consider the space

BS.s1; : : : ; sm/ WD P1 �B P2 �B � � � �B Pm=B:

The notation �B indicates that BS.s1; : : : ; sm/ is the quotient of P1 � P2 � � � � � Pm

by the action of Bm via

.b1; b2; : : : ; bm/ � .p1; : : : ; pm/ D .p1b�11 ; b1p2b�12 ; : : : ; bm�1pmb�1m /:

Then BS.s1; : : : ; sm/ is a smooth projective Bott–Samelson variety and the multipli-
cation map P1 � � � � � Pm ! G induces a morphism

f W BS.s1; : : : ; sm/! Xw

which is a resolution of Xw. (See [Dem74, Han73] and [Bri12, Sect. 2] for fur-
ther discussion and applications of Bott–Samelson resolutions. The name Bott–
Samelson resolution comes from [BS58] where related spaces are considered in
the context of loop spaces of compact Lie groups.)

Example 3.2. If GC D GLn, Bott–Samelson resolutions admit a more explicit
description. Recall that GLn=B is the variety of flags V� D .0 D V0 � V1 �
V2 � � � � � Vn D C

n/ with dim Vi D i. We identify W with the symmetric group Sn

and S with the set of simple transpositions fsi D .i; iC 1/ j 1 � i � n� 1g. Given a
reduced expression si1 : : : sim for w 2 W consider the variety fBS.si1 ; : : : ; sim/ of all
m-tuples of flags .Va�/0
a
m such that:

(1) V0� is the coordinate flag Vstd� D .0 � C
1 � � � � � C

n/;
(2) for all 1 � a � m, Va

j D Va�1
j for j ¤ ia.

That is, fBS.si1 ; : : : ; sim/ is the variety of sequences of mC1 flags which begin at the
coordinate flag, and where, in passing from the .j � 1/st to the jth step, we are only
allowed to change the ijth dimensional subspace.

Let p0 D 1. Then the map

.p1; : : : ; pm/ 7! .p0 : : : paVstd� /maD0

gives an isomorphism BS.s1; : : : ; sm/ ! fBS.s1; : : : ; sm/. Under this isomorphism
the map f becomes the projection to the final flag: f ..Va�/maD1/ D Vm� .
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4 Soergel Modules and Intersection Cohomology

In a landmark paper [Soe90], Soergel explained how to calculate the intersection
cohomology of Schubert varieties in a purely algebraic way. Though much less
explicit, one way of viewing this result is as a generalization of Borel’s description
of the cohomology of the flag variety.

The idea is as follows. In the last section we discussed the Bott–Samelson
resolutions of Schubert varieties

f W BS.s1; : : : ; sm/! Xw � GC=B

where w D s1 : : : sm is a reduced expression for w. By the decomposition theorem
IH�.Xw/, the intersection cohomology of the Schubert variety Xw � GC=B, is a
summand of H�.BS.s1; : : : ; sm//. Moreover, we have pull-back maps

H�.GC=B/� H�.Xw/! H�.BS.s1; : : : ; sm//

and IH�.Xw/ is even a summand of H�.BS.s1; : : : ; sm// as an H�.GC=B/-module.
(The surjectivity of the restriction map H�.GC=B/� H�.Xw/ follows because both
spaces have compatible cell-decompositions.) Remarkably, this algebraic structure
already determines the summand IH�.Xw/ (see [Soe90, Erweiterungssatz]):

Theorem 4.1 (Soergel). Let w D s1 : : : sm denote a reduced expression for w as
above. Consider H�.BS.s1; : : : ; sm// as a H�.GC=B/-module. Then IH.Xw/ may be
described as the indecomposable graded H�.GC=B/-module direct summand with
non-trivial degree zero part.

A word of caution: The realization of IH�.Xw/ inside H�.BS.s1; : : : ; sm// is not
canonical in general. We can certainly decompose H�.BS.s1; : : : ; sm// into graded
indecomposable H�.GC=B/-modules. Although this decomposition is not canonical,
the Krull–Schmidt theorem ensures that the isomorphism type and multiplicities of
indecomposable summands do not depend on the chosen decomposition. The above
theorem states that, for any such decomposition, the unique indecomposable module
with non-trivial degree zero part is isomorphic to IH�.Xw/ (as an H�.GC=B/-
module).

We now explain (following Soergel) how one may give an algebraic description
of all players in the above theorem. Recall that R D S..Lie T/�/ denotes the
symmetric algebra on the dual of Lie T, graded so that .Lie T/� has degree 2. The
Weyl group W acts on R, and for any simple reflection s 2 S we denote by Rs the
invariants under s. It is not difficult to see that R is a free graded module of rank
2 over Rs with basis f1; ˛sg, where ˛s is the simple root associated with s 2 S. (In
essence this is the high-school fact that any polynomial can be written as the sum of
its even and odd parts.)



114 B. Elias and G. Williamson

The starting point is the following observation:

Proposition 4.2 (Soergel). One has an isomorphism of graded algebras

H�.BS.s1; : : : ; sm// D R˝Rs1 R˝Rs2 : : :R˝Rsm R˝R R

where the final term is an R-algebra via R Š R=R>0.

For example, for any s 2 S we have BS.s/ D Ps=B Š P
1 and R˝Rs R˝R R D

R˝Rs R is 2-dimensional, with graded basis f1˝1; ˛s˝1g of degrees 0 and 2. More
generally, one can show that

R˝Rs1 R˝Rs2 : : :R˝Rsm R˝R R D R˝Rs1 R˝Rs2 : : :R˝Rsm R

has graded basis ˛"1s1 ˝˛"2s2 ˝ � � �˝˛"m
sm
˝ 1 where ."a/

m
aD1 is any tuple of zeroes and

ones. In particular, its Poincaré polynomial is .1C q2/m.
Recall that in the introduction we described the Borel isomorphism:

H�.G=B/ Š R=.RWC/:

Notice that left multiplication by any invariant polynomial of positive degree acts as
zero on

H�.BS.s1; : : : ; sm// D R˝Rs1 R˝Rs2 : : :R˝Rsm R˝R R:

We conclude that R˝Rs1 : : :R˝Rsm R˝RR is a module over R=.RWC/. Geometrically,
this corresponds to the pull-back map on cohomology

H�.GC=B/! H�.BS.s1; : : : ; sm//

discussed above.
We can now reformulate Theorem 4.1 algebraically as follows:

Theorem 4.3 (Soergel [Soe90]). Let Dw be any indecomposable R=.RWC/-module
direct summand of

H�.BS.s1; : : : ; sm// D R˝Rs1 R˝Rs2 : : :R˝Rsm R˝R R

containing the element 1˝ 1˝ � � �˝ 1, where w D s1 : : : sm is a reduced expression
for w. Then Dw is well-defined up to isomorphism (i.e. does not depend on the choice
of reduced expression) and Dw Š IH�.Xw/.

The modules fDw j w 2 Wg are the (indecomposable) Soergel modules.

Example 4.4. We consider the case of G D GL3.C/ in which case

W D S3 D fid; s1; s2; s1s2; s2s1; s1s2s1g
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(we use the conventions of Example 3.2). In this case it turns out that all Schubert
varieties are smooth. Also, if `.w/ � 2, then any Bott–Samelson resolution is an
isomorphism. We conclude

Did D R

Ds1 D H�.BS.s1// D R˝Rs1 R Ds2 D R˝Rs2 R

Ds1s2 D H�.BS.s1; s2// D R˝Rs1 R˝Rs2 R Ds2s1 D R˝Rs2 R˝Rs1 R

(A pleasant exercise for the reader is to verify that in all these examples above Dx is
a cyclic (hence indecomposable) module over R. This is not usually the case, and is
related to the (rational) smoothness of the Schubert varieties in question.)

The element w0 D s1s2s1 is more interesting. In this case the Bott–Samelson
resolution

BS.s1; s2; s1/! Xw0 D G=B

is not an isomorphism. As previously discussed, the Poincaré polynomial of

H�.BS.s1; s2; s1// D R˝Rs1 R˝Rs2 R˝Rs1 R (1)

is .1C q2/3 whereas the Poincaré polynomial of

IH�.Xw0/ D H�.G=B/ D R=.RWC/ (2)

is .1C q2/.1C q2 C q4/. In this case the reader may verify that (2) is a summand
of (1). In fact one has an isomorphism of graded R=.RWC/-modules:

R˝Rs1 R˝Rs2 R˝Rs1 R D R=.RWC/˚ .R˝Rs R.�2//:

Here R˝Rs R.�2/ denotes the shift of R˝Rs R in the grading such that its generator
1˝1 occurs in degree 2. This extra summand can be embedded into (1) via the map
which sends

f ˝ 1 7! f ˝ ˛s2 ˝ 1˝ 1C f ˝ 1˝ ˛s2 ˝ 1

for f 2 R.

Example 4.5. If w0 denotes the longest element of W, then Xw0 D GC=B, the
(smooth) flag variety of G. In particular

IH�.Xw0/ D H�.GC=B/ D R=.RWC/

by the Borel isomorphism. Theorem 4.3 asserts that R=.RWC/ occurs as a direct
summand of

R˝Rs1 R˝Rs2 ˝ � � � ˝Rsm R
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for any reduced expression w0 D s1 : : : sm. This is by no means obvious! We have
seen an instance of this in the previous example.

Remark 4.6. In this section we could have worked in the category of graded R-
modules, rather than the category of graded R=.RWC/-modules, and it would change
nothing. All the R-modules in question will factor through R=.RWC/. In the next
section, we will work with R-modules instead.

We now discuss hard Lefschetz and the Hodge-Riemann bilinear relations. Recall
that our Borel subgroup B � GC determines a set of simple roots� � ˆ � .Lie T/�
and simple coroots�_ � ˆ_ � Lie T. Under the isomorphism

H2.GC=B/ Š .Lie T/�

the ample cone (i.e. the R>0-stable subset of H2.GC=B/ generated by Chern classes
of ample line bundles on GC=B) is the cone of dominant weights for Lie T:

.Lie T/�C WD f� 2 .Lie T/� j h�; ˛_i > 0 for all ˛_ 2 �_g: (3)

The hard Lefschetz theorem then asserts that left multiplication by any � 2 .Lie T/�C
satisfies the hard Lefschetz theorem on Dw D IH�.Xw/. That is, for all i � 0,
multiplication by �i induces an isomorphism

�i W D`.w/�i
w

	�! D`.w/Ci
w :

To discuss the Hodge-Riemann relations we need to make the Poincaré
pairing h�;�iPoinc explicit for Dw. We first discuss the Poincaré form on
H�.BS.s1; : : : ; sm//. Recall that for any oriented manifold M the Poincaré form
in de Rham cohomology is given by

h˛; ˇi D
Z

M
˛ ^ ˇ:

We imitate this algebraically as follows. By the discussion after Proposition 4.2, the
degree 2m component of

H�.BS.s1; : : : ; sm// D R˝Rs1 R˝Rs2 : : :R˝Rsm R

is one-dimensional and is spanned by the vector ctop WD ˛s1 ˝ ˛s2 ˝ � � � ˝ ˛sm ˝ 1.
We can define a bilinear form h�;�i on R˝Rs1 R˝Rs2 : : :R˝Rsm R via

hf ; gi D Tr.fg/

where fg denotes the term-wise multiplication, and Tr is the functional which returns
the coefficient of ctop. Then h�;�i is a non-degenerate symmetric form which
agrees up to a positive scalar with the intersection form on H�.BS.s1; : : : ; sm//.
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Now recall that Dw is obtained as summand of R˝Rs1 R ˝Rs2 : : :R ˝Rsm R, for
a reduced expression of w. Fixing such an inclusion we obtain a form on Dw via
restriction of the form h�;�i. In fact, this form is well-defined (i.e. depends neither
on the choice of reduced expression nor embedding) up to a positive scalar. One
can show that this form agrees with the Poincaré pairing on Dw D IH�.Xw/ up to a
positive scalar. The Hodge-Riemann bilinear relations then hold for Dw with respect
to this form and left multiplication by any � 2 .Lie T/�C.

5 Soergel Modules for Arbitrary Coxeter Systems

Now let .W; S/ denote an arbitrary Coxeter system. That is, W is a group with a
distinguished set of generators S and a presentation

W D hs 2 S j .st/mst D idi

such that mss D 1 and mst D mts 2 f2; 3; 4; : : : ;1g for all s ¤ t. (We interpret
.st/1 D id as there being no Relation.) As we discussed above, the Weyl groups of
compact Lie groups are Coxeter groups. In the 1930s Coxeter proved that the finite
reflection groups are exactly the finite Coxeter groups, and achieved in this way a
classification. As well as the finite reflection groups arising in Lie theory (of types
A, . . . , G) one has the symmetries of the regular n-gon (a dihedral group of type
I2.n/) for n ¤ 3; 4; 6, the symmetries of the icosahedron (a group of type H3) and
the symmetries of a regular polytope in R

4 with 600 sides (a group of type H4).
It was realized later (by Coxeter, Tits, . . . ) that Coxeter groups form an interesting

class of groups whether or not they are finite. They encompass groups generated
by affine reflections in Euclidean space (affine Weyl groups), certain hyperbolic
reflection groups, etc. One can treat these groups in a uniform way thanks to the
existence of their geometric representation. Let h DLs2S R˛

_
s for formal symbols

˛_s , and define a form on h via

.˛_s ; ˛_t / D � cos.�=mst/:

Although this form is positive definite if and only if W is finite, one can still imagine
that each ˛_s has length 1 and the angle between ˛_s and ˛_t for s ¤ t is .mst �
1/�=mst. It is not difficult to verify (see [Bou68, V.4.1] or [Hum90, 5.3]) that the
assignment

s.v/ WD v � 2.v; ˛_s /˛_s
defines a representation of W on h. In fact it is faithful ([Bou68, V.4.4.2] or [Hum90,
Corollary 5.4]).

If W happens to be the Weyl group of our T � G from the Introduction, then
(by rescaling the coroots so that they all have length 1 with respect to a W-invariant
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form) one may construct a W-equivariant isomorphism

Lie T Š h:

Hence one can think of this setup as providing the action of W on the Lie algebra of
a maximal torus, even though the corresponding Lie group might not exist!

The main point of the previous section is that one may describe the intersection
cohomology, Poincaré pairing and ample cone entirely algebraically, using only
h, its basis and its W-action. That is, let us (re)define R D S.h�/ to be the
symmetric algebra on h� (alias the regular functions on h), graded with degh� D 2.
Then W acts on R via graded algebra automorphisms. Imitating the constructions
of the previous section one obtains graded R-modules Dw (well-defined up to
isomorphism), the only difference being that we work in the category of R-modules
rather than R=.RWC/-modules.2 We call the modules Dw the (indecomposable)
Soergel modules. As in the Weyl group case, the modules Dw are finite dimensional
over R and are equipped with non-degenerate “Poincaré pairings”:

h�;�i W Di
w � D2`.w/�i

w ! R:

Our main theorem is that these modules Dw “look like the intersection cohomol-
ogy of a Schubert variety”. Consider the “ample cone”:

h�C WD f� 2 h� j h�; ˛_s i > 0 for all s 2 Sg:

Theorem 5.1 ([EW12]). For any w 2 W, let Dw be as above.

(1) (Hard Lefschetz theorem) For any i � `.w/, left multiplication by �i for any
� 2 h�C gives an isomorphism

�`.w/�i W Di
w
	�! D2`.w/�i

w

(2) (Hodge-Riemann bilinear relations) For any i � `.w/ and � 2 h�C the
restriction of the form

.f ; g/ WD hf ; �`.w/�igi

on Di
w to Pi D ker�`.w/�iC1 � Di

w is .�1/i=2-definite.

Some remarks:

2Although all the R-modules will factor through R=.RW
C
/, we prefer the ring R for philosophical

reasons. When W is infinite, the ring R=.RW
C
/ is infinite dimensional, as RW has the “wrong”

transcendence degree, and the Chevalley theorem does not hold. The ring R behaves in a uniform
way for all Coxeter groups, while the quotient ring R=.RW

C
/ does not.
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(1) The graded modules Dw are zero in odd-degree (as is immediate from their
definition as a summand of R ˝Rs1 � � � ˝Rsm R) and so the sign .�1/i=2 makes
sense.

(2) The motivation behind establishing the above theorem is a conjecture made
by Soergel in [Soe07, Vermutung 1.13]. In fact, the above theorem forms
part of a complicated inductive proof of Soergel’s conjecture. Soergel was
led to his conjecture as an algebraic means of understanding the Kazhdan–
Lusztig basis of the Hecke algebra and the Kazhdan–Lusztig conjecture on
characters of simple highest weight modules over complex semi-simple Lie
algebras. The definition of the Kazhdan–Lusztig basis and the statement of
the Kazhdan–Lusztig conjecture is “elementary” but, prior to the above results,
needed powerful tools from algebraic geometry (e.g. Deligne’s proof of the Weil
conjectures) for its resolution. Because of this reliance on algebraic geometry,
these methods break down for arbitrary Coxeter systems, for which no flag
variety exists. In some sense the above theorem is interesting because it provides
a “geometry” for Kazhdan–Lusztig theory for Coxeter groups which do not
come from Lie groups or generalizations (affine, Kac–Moody, . . . ) thereof. This
was Soergel’s aim in formulating his conjecture.

(3) Our proof is inspired by the beautiful work of de Cataldo and Migliorini
[dCM02, dCM05], which proves the decomposition theorem using only clas-
sical Hodge theory.

(4) The idea of considering the “intersection cohomology” of a Schubert variety
associated with any element in a Coxeter group has also been pursued by Dyer
[Dye95, Dye09] and Fiebig [Fie08]. There is also a closely related theory non-
rational polytopes (where the associated toric variety is missing) [BL03, Kar04,
BF07].

(5) In Example 4.5 we saw that if W is a Weyl group, then an important example of
a Soergel module is

Dw0 Š R=.RWC/:

In fact this isomorphism holds for any finite Coxeter group W with longest
element w0. The “coinvariant”3 algebra R=.RWC/ has been studied by many
authors from many points of view. However even in this basic example it seems
to be difficult to check the hard Lefschetz theorem or Hodge-Riemann bilinear
relations directly. In the next section we will do this by hand when W is a
dihedral group.

(6) In [EW12] we work with h a slightly larger representation containing the
geometric representation. We do this for technical reasons (to ensure that the
category of Soergel bimodules is well-behaved). However, one can deduce
Theorem 5.1 from the results of [EW12]. The idea of using the results for the

3W. Soergel pointed out that this is a bad name, as it has nothing whatsoever to do with coinvariants.



120 B. Elias and G. Williamson

slightly larger representation to deduce results for the geometric representation
goes back to Libedinsky [Lib08].

(7) (For the experts.) In [EW12] we prove the results above for certain R-modules
Bw, whose definition differs subtly from that of Dw. However, given that Bw

is indecomposable as an R-module, one can show easily that Bw and Dw are
isomorphic. This will be explained elsewhere.

6 The Flag Variety of a Dihedral Group

In this final section we amuse ourselves with the coinvariant ring of a finite dihedral
group. We check the hard Lefschetz property and Hodge-Riemann bilinear relations
directly.

6.1 Gauß’s q-Numbers

We start by recalling Gauß’s q-numbers. By definition

Œn� WD q�nC1 C q�nC3 C � � � C qn�3 C qn�1 D qn � q�n

q � q�1
2 ZŒq˙1�:

Many identities between numbers can be lifted to identities between q-numbers. We
will need

Œ2�Œn� D ŒnC 1�C Œn � 1� (4)

Œn�2 D Œ2n � 1�C Œ2n � 3�C � � � C Œ1�: (5)

Œn�ŒnC 1� D Œ2n�C Œ2n � 2�C � � � C Œ2�: (6)

For the representation theorist, Œn� is the character of the simple sl2.C/-module of
dimension n and the relations above are instances of the Clebsch–Gordan formula.

If � D e2� i=2m 2 C, then we can specialize q D � to obtain algebraic integers
Œn�� 2 R. Because �m D �1 we have

Œm�� D 0; Œi�� D Œm � i�� ; ŒiC m�� D �Œi�� : (7)

Because �n has positive imaginary part for n < m, it is clear that

Œn�� is positive for 0 < n < m: (8)

We use this positivity in a crucial way below. Had we foolishly chosen � to be a
primitive 2mth root of unity with non-maximal real part, (8) would fail.
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6.2 The Reflection Representation of a Dihedral Group

Now let W be a finite dihedral group of order 2m. That is S D fs1; s2g and

W D hs1; s2 j s21 D s22 D .s1s2/m D idi:

Let h D R˛_1 ˚ R˛_2 be the geometric representation of .W; S/, as in Sect. 5.
Because W is finite the form .�;�/ on h is non-degenerate. We define simple roots
˛1; ˛2 2 h� by ˛1 D 2.˛_1 ;�/ and ˛2 D 2.˛_2 ;�/. Then the “Cartan” matrix is

.h˛_i ; ˛ji/i;j2f1;2g D
�
2 �'
�' 2

�
(9)

where ' D 2 cos.�=m/. Note that ' D � C ��1 where � D e2� i=2m 2 C. Hence
' D Œ2�� is the notation of the previous section. In particular it is an algebraic
integer.

Example 6.1. Throughout we will use the first non-Weyl-group case m D 5 to
illustrate what is going on. In this case Œ2�� D Œ3�� and the relation Œ2�2 D Œ3�C Œ1�
gives '2 D ' C 1. Thus ' is the golden ratio.

For all v 2 h� we have

s1.v/ D v � hv; ˛_1 i˛1 and s2.v/ D v � hv; ˛_2 i˛2:

It is a pleasant exercise for the reader to verify that the set ˆ D W � f˛1; ˛2g gives
something like a root system in h�. We have ˆ D ˆC [ �ˆC where

ˆC D fŒi��˛1 C Œi � 1��˛2 j 1 � i � mg: (10)

α1α2

ϕα1 + α2

ϕα1 + ϕα2

α1 + ϕα2

Let T WD S
wSw�1. Then T are precisely the elements of W which act as

reflections on h (and h�). One has a bijection

T
	�! ˆC W t 7! ˛t

such that t.˛t/ D �˛t for all t 2 T.
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6.3 Schubert Calculus

In the following we describe Schubert calculus for the coinvariant ring. Most of
what we say here is valid for any finite Coxeter group. A good reference for the
unproved statements below is [Hil82].

Let R denote the symmetric algebra on h� and H the coinvariant algebra

H WD R=.RWC/:

For each s 2 S consider the divided difference operator

@s.f / D f � s.f /

˛s
:

Then @s preserves R and decreases degrees by 2. Given x 2 W we define

@x D @s1 : : : @sm

where x D s1 : : : sm is a reduced expression for x. The operators @s satisfy the
braid relations, and therefore @x is well-defined. The operators @x kill invariant
polynomials and hence commute with multiplication by invariants. In particular they
preserve the ideal .RWC/ and induce operators on H.

Let � WD …˛2ˆC˛ denote the product of the positive roots. For any x 2 W define
Yx 2 H as the image of @x.�/ in H. Because � has degree 2`.w0/, Yx has degree
deg Yx D 2.`.w0/� `.x//.
Theorem 6.3. The elements fYx j x 2 Wg give a basis for H.

This basis is called the Schubert basis. When W is a Weyl group each Yx

maps under the Borel isomorphism to the fundamental class of a Schubert variety
[BGG73].

We can define a bilinear form h�;�i on H as follows:

hf ; gi WD 1

2m
@w0 .fg/

Then for all x; z 2 W one has:

hYx;Yzi D ıw0;x�1z: (11)

In particular h�;�i is a non-degenerate form on H.
The following “Chevalley” formula describes the action of an element f 2 h� in

the basis fYxg:

f � Yx D
X

t2T
`.tx/D`.x/�1

hf ; ˛_t iYtx (12)
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Yid

Yw0

Ys1s2

Ys2s1s2

Ys2s1s2s1Ys1s2s1s2

Ys1s2s1

Ys1s2

Ys1
Ys2

α ∨
2

α
∨
1

α
∨
1

α
∨
1

α
∨
1

α
∨
1

α∨
2

α ∨
2

α∨
2

α ∨
2

ϕα∨
1 + ϕα∨

2ϕα∨
2 + ϕα∨

1

α∨
2 + ϕα∨

1 α∨
1 + ϕα∨

2

ϕα∨
1 + α∨

2ϕα∨
2 + α∨

1

Fig. 1 The Chevalley formula for the dihedral group with m D 5

Example 6.4. Figure 1 depicts the case m D 5. Each edge is labelled with the coroot
which, when paired against f , gives the scalar coefficient that describes the action
of f . Using (10) the reader can guess what the picture looks like for general m.

Proposition 6.5. Suppose that � 2 h� is such that h˛_i ; �i > 0 for i D 1; 2.
Then multiplication by � on H satisfies the hard Lefschetz theorem, and the Hodge-
Riemann bilinear relations hold.

Proof. It is immediate from (12) that if � is as in the proposition and if x ¤ id
then �Yx is a sum of various Yz with strictly positive coefficients (two terms occur
if `.x/ < m � 1 and one term occurs if `.x/ D m � 1). Hence �mYw0 is a strictly
positive constant times Yid. In particular �m W H0 D RYw0 ! H2m D RYid is an
isomorphism. By (11) we have

hYw0 ; �
mYw0i > 0

and hence the Lefschetz form is positive definite on H0.
We now fix 1 � i < m � 1 and consider multiplication by f 2 h� as a map

H2i ! H2iC2. The following diagram depicts the effect in the Schubert basis:
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YbYa

Ys2aYs1b

[i + 1] + [+ i ]ζα
∨
2[ i ]ζα

∨
1 ζα

∨
1[i + 1]ζα

∨
2 α

∨
1

α∨
2

(13)
where a and b (resp. s2a and s1b) are the unique elements of length `.w0/ � i � 1
(resp. `.w0/ � i). Remember that ˛_i here represents the scalar hf ; ˛_i i. We now
calculate the determinant:

det

�
Œi��˛_1 C ŒiC 1��˛_2 ˛_2

˛_1 ŒiC 1��˛_1 C Œi��˛_2

�

D Œi�� ŒiC 1��.˛_1 /2 C .Œi�2� C ŒiC 1�2� � 1/˛_1 ˛_2 C Œi�� ŒiC 1��.˛_2 /2

D Œi�� ŒiC 1��.˛_1 /2 C Œ2�� Œi�� ŒiC 1��˛_1 ˛_2 C Œi�� ŒiC 1��.˛_2 /2

(using (4), (5) and (6)). All q-numbers appearing here are positive by (8).
If � is as in the proposition, then the determinant of multiplication by � is

positive. So � gives an isomorphism H2i 	�! H2iC2 for each 1 � i � m � 2, and

�m�2 gives an isomorphism H2 	�! H2m�2. Therefore the hard Lefschetz theorem
holds for �, with primitive classes occurring only in degrees 0 and 2.

It remains to check the Hodge-Riemann bilinear relations. We have already
seen that the Lefschetz form on H0 is positive definite. We need to know that
the restriction of the Lefschetz form on H2 to ker�m�1 is negative definite. Now
.�Yw0 ; �Yw0 / D .Yw0 ;Yw0 / > 0, and if  2 H2 denotes a generator for ker�m�1
then .�Yw0 ; / D h�Yw0 ; �

m�2i D hYw0 ; �
m�1i D 0. Hence the Hodge-Riemann

relations hold if and only if the signature of the Lefschetz form on H2 is zero.
From the definition of the Lefschetz form, it is immediate that � W H2i ! H2iC2

is an isometry with respect to the Lefschetz forms, so long as 2 � 2i � m� 2. Thus
when m is even (resp. odd) it is enough to show that the signature of the Lefschetz
form is zero on Hm (resp. Hm�1).

Suppose m is even. The Lefschetz form on the middle dimension Hm is the same
as the pairing. By (11) this form has Gram matrix

�
0 1

1 0

�

which has signature 0.
Suppose m D 2k C 1 is odd; we check the signature of the Lefschetz form on

Hm�1. We are reduced to studying 13 with `.a/ D `.b/ D k and `.s2a/ D `.s1b/ D
kC1. We see by (11) that Ys1b;Ys2a is a basis dual to Yb, Ya. We get that the Lefschetz
form on Hm�1 is given by
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�
˛_1 ŒkC 1��˛_1 C Œk��˛_2

Œk��˛_1 C Œk C 1��˛_2 ˛_2

�
;

and Œk� D Œk C 1� is positive. For any � as in the proposition, this is a symmetric
matrix with strictly positive entries and negative determinant (by our calculation
above). Hence its signature is zero and the Hodge-Riemann relations are satisfied as
claimed. ut
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Abstract Let � � PSL2.R/ be a Fuchsian subgroup of the first kind acting
by fractional linear transformations on the upper half-plane H. Consider the
d-dimensional space of cusp forms S�2k of weight 2k for � , and let ff1; : : : ; fdg be
an orthonormal basis of S�2k with respect to the Petersson inner product. In this
paper we show that the sup-norm of the quantity S�2k.z/ WD

Pd
jD1 jfj.z/j2 Im.z/2k is

bounded as O�.k/ in the cocompact setting, and as O�.k3=2/ in the cofinite case,
where the implied constants depend solely on � . We also show that the implied
constants are uniform if � is replaced by a subgroup of finite index.
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1 Introduction

1.1 Motivation

Let M denote a compact Riemann surface of genus g � 2. From the uniformization
theorem there is a unique metric on M, which is compatible with its complex
structure and which has constant Gauss curvature equal to �1. On the other hand,
from complex algebraic geometry, there is a canonical metric on M obtained by
pull-back through the Abel–Jacobi map from M into its Jacobian variety Jac.M/. Let
�hyp and �can denote the .1; 1/-forms associated with the hyperbolic and canonical
metrics, respectively. A natural question to consider is to compare �hyp with �can,
in whatever manner possible for general compact Riemann surfaces M of genus
g � 2. Since M has volume 1 with respect to �can, let us rescale the hyperbolic
metric by a multiplicative constant so that the associated .1; 1/-form�shyp also gives
M volume 1. After some reflection upon the question in hand, one concludes that
perhaps the most approachable manner in which one can compare the two metrics is
to consider the sup-norm of the function �can=�shyp on M viewed as a finite degree
cover of some fixed base Riemann surface M0.

In [JK04], the authors proved the following (optimal) result. If M is a compact
Riemann surface of genus g � 2, which is a finite degree cover of a fixed compact
Riemann surface M0, then the bound

sup
z2M

�
�can.z/

�shyp.z/

�
D OM0 .1/ (1)

holds. To be precise, the main result of [JK04] applies whenever M is a finite
degree cover of M0, which has finite hyperbolic volume and need not necessarily
be compact. In the setting of arithmetic geometry, the ratio sup

z2M
�can.z/=�shyp.z/

appears as an analytic invariant in the Arakelov theory of algebraic curves, and
the bound (1) plays an important role in [JK09], where the authors derived bounds
for Faltings’s delta function and, subsequently, for the Faltings height of Jacobians
associated with modular curves. Further comments on the significance of (1) as well
as related results will be given in Sect. 1.3 below.

From the point of view of automorphic forms, the ratio�can=�shyp roughly equals
the sum of squared norms of an orthonormal basis of cusp forms of weight 2 on M.
From this point of view, we can extend the bound (1) in two regards: first, we
can consider the sum of squared norms of an orthonormal basis of cusp forms of
arbitrary weight 2k on M, and second, we can develop bounds which are uniform in
the weight. The study of these two questions is the subject of the present article.
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1.2 Statement of Results

Let � � PSL2.R/ be a Fuchsian subgroup of the first kind acting by fractional linear
transformations on the upper half-plane H, and let M WD �nH be the corresponding
quotient space. We then consider the C-vector space S�2k of cusp forms of weight 2k
for� , and let ff1; : : : ; fdg be an orthonormal basis of S�2k with respect to the Petersson
inner product; here d WD dimC.S�2k/. With these notations, we put for z 2 H

S�2k.z/ WD
dX

jD1
jfj.z/j2 Im.z/2k:

In this article, we prove optimal L1-bounds for S�2k.z/ in two different directions,
namely uniform L1-bounds with regard to the weight 2k, as well as uniform
L1-bounds through finite degree covers of M. More precisely, the following
statement is proven:

Let �0 � PSL2.R/ be a fixed Fuchsian subgroup of the first kind and let � 
 �0
be any subgroup of finite index. For any k 2 N>0, we then have the bound

sup
z2M

	
S�2k.z/


 D O�0.k
3=2/; (2)

where the implied constant depends solely on �0. Moreover, if �0 is cocompact,
then we have the improved bound

sup
z2M

	
S�2k.z/


 D O�0.k/; (3)

where, again, the implied constant depends solely on �0.
We were somewhat surprised to find different orders of growth in the weight com-

paring the cocompact to the general cofinite case. With regard to this phenomenon,
we prove the following auxiliary result in Proposition 5.1, which indicates where
the maximal values occur in the cofinite case:

For a cofinite Fuchsian subgroup � of the first kind and k 2 N>0, let " > 0 be
such that the neighborhoods of area " around the cusps of M are disjoint. Assuming
that 0 < " < 2�=k, we have the bound

sup
z2M

	
S�2k.z/


 D O�;".k/;

where the implied constant depends solely on � and ".
Moreover, as far as the bounds (2) and (3) are concerned, we are able to show that

the results are optimal in both cases, at least up to an additive term in the exponent
of the form �" for any " > 0.
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1.3 Related Results

As stated, the origin of the problems considered in the present article comes from
[JK04], which studies the case of cusp forms of weight 2, i.e., k D 1 in the present
notation. In this respect, we recall that in the case �0 D PSL2.Z/ and � D �0.N/,
as a first step the main result of [AU95] proved for any " > 0 that

sup
z2M

	
S�0.N/2 .z/


 D O.N2C"/;

which was improved to O.N1C"/ in [MU98]. In [JK04], the bound was finally
improved to O�0.1/, not only for the above-mentioned setting, but also to the case
when neither � nor �0 possess any arithmetic properties. With this stated, the
present article generalizes the results of [JK04] to cusp forms of arbitrary even
weight and for arbitrary Fuchsian subgroups � � PSL2.R/ of the first kind.

In a related direction, there has been considerable interest in obtaining sup-norm
bounds for individual Hecke eigenforms, with the most recent results coming from
the setting when the groups under consideration are arithmetic. For example, the
holomorphic setting of the quantum unique ergodicity (QUE) problem has been
studied in [LS03, Lau] and [HS10]. In [HS10], it is proven for � D PSL2.Z/
that normalized Hecke eigenforms of weight 2k converge weakly to the constant
function 3=� as k tends to infinity. In another direction, the authors prove in [HT13]
the so far best known bound for the L1-norm of L2-normalized Hecke eigenforms
for the congruence subgroups �0.N/ for squarefree N. Specifically, it is shown that

kfk1 �" k
11
2 N�

1
6C";

with an implied constant which only depends on " > 0. We refer to the introduction
as well as the bibliography of the paper [HT13], which gives an excellent account
on the improvements of the bounds for the L1-norm of L2-normalized Hecke
eigenforms for the congruence subgroups �0.N/.

When comparing the results of the above articles to the main theorem of [JK04]
and the present article, one comes to the conclusion that the various results are
complementary. From the main result in the present paper in the case � D PSL2.Z/,
one obtains a bound for individual cusp forms which is weaker than in the theorems
of the above-mentioned articles. When taking the average results from the above-
mentioned articles, one obtains an average bound which is weaker than the main
theorem in the present paper.

More recently, a number of articles have appeared whose results are closely
related to the contents of [JK04, JK13], or the present article. In [Javanpeykar,
Kaenel1, Kaenel2], and [Pazuki], the authors study various fundamental problems in
arithmetic, such as Shafarevich-type conjectures using certain aspects of Arakelov
theory, including bounds for certain analytic invariants such as (1) as well as
effective bounds for Faltings’s delta function (see [JK13]). In [BF13], the authors
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prove an arithmetic analogue of the Hilbert–Samuel theorem, which has far-
reaching potential; the main result of the present article is related to the Bergman
measure studied in Sect. 2.5 therein.

Finally, we refer the reader to the interesting article [Templier], in which the
author proves the existence of cusp forms which, in the (not necessarily squarefree)
level aspect, have large modulus, thus disproving a “folklore” conjecture asserting
that all forms should be uniformly small.

1.4 Outline of the Paper

In Sect. 2, we establish notations and recall background material. In Sect. 3, we
prove technical results for the heat kernel associated with the Laplacian �k acting
on Maass forms of weight k for � . In Sect. 4, we provide a proof of the bound (3)
for � D �0. By an additional investigation in the neighborhoods of the cusps, we
arrive in Sect. 5 at a proof of the bound (2), again in the case that � D �0. Finally, in
Sect. 6, we are able to establish the uniformity of our bounds (2) and (3) with regard
to finite index subgroups � in �0. To complete the article, we show that our bounds
are optimal, which is the content of Sect. 7.

2 Background Material

2.1 Hyperbolic Metric

Let � � PSL2.R/ be any Fuchsian subgroup of the first kind acting by fractional
linear transformations on the upper half-planeH WD fz 2 C j z D xCiy ; y > 0g. Let
M be the quotient space �nH and g the genus of M. Denote by T the set of elliptic
fixed points of M and by C the set of cusps of M; we put t WD jT j and c WD jCj. If
p 2 T , we let mp denote the order of the elliptic fixed point p; we set mp D 1, if p
is a regular point of M. Locally, away from the elliptic fixed points, we identify M
with its universal cover H, and hence, denote the points on M n T by the same letter
as the points on H.

We denote by ds2hyp.z/ the line element and by �hyp.z/ the volume form
corresponding to the hyperbolic metric on M, which is compatible with the complex
structure of M and has constant curvature equal to �1. Locally on M n T , we have

ds2hyp.z/ D
dx2 C dy2

y2
and �hyp.z/ D dx ^ dy

y2
:
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We denote the hyperbolic distance between z;w 2 M by disthyp.z;w/ and we recall
that the hyperbolic volume volhyp.M/ of M is given by the formula

volhyp.M/ D 2�
�
2g� 2C cC

X

p2T

�
1 � 1

mp

��
:

2.2 Cusp Forms of Higher Weights

For k 2 N>0, we let S�2k denote the space of cusp forms of weight 2k for � , i.e.,
the space of holomorphic functions f W H �! C, which have the transformation
behavior

f .z/ D .czC d/2kf .z/

for all  D 	
a b
c d


 2 � , and which vanish at all the cusps of M. The space S�2k is
equipped with the inner product

hf1; f2i WD
Z

M

f1.z/f2.z/ y2k�hyp.z/ .f1; f2 2 S�2k/:

By letting d WD dimC.S�2k/ and choosing an orthonormal basis ff1; : : : ; fdg of S�2k,
we define the quantity

S�2k.z/ WD
dX

jD1
jfj.z/j2 y2k:

The main result of this paper consists in giving optimal bounds for the quantity
S�2k.z/ as z ranges throughout M.

2.3 Maass Forms of Higher Weights

Following [Fay] or [Fischer], we introduce for any k 2 N the space V�k of functions
' W H �! C, which have the transformation behavior

'.z/ D
�

czC d

cNzC d

�k

'.z/ D e2ik arg .czCd/'.z/
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for all  D 	 a b
c d


 2 � . For ' 2 V�k , we set

k'k2 WD
Z

M

j'.z/j2�hyp.z/;

whenever it is defined. We then introduce the Hilbert space

H�
k WD

˚
' 2 V�k

ˇ̌ k'k <1�

equipped with the inner product

h'1; '2i WD
Z

M

'1.z/'2.z/�hyp.z/ .'1; '2 2 H�
k /:

The generalized Laplacian

�k WD �y2
�
@2

@x2
C @2

@y2

�
C 2iky

@

@x

acts on the smooth functions of H�
k and extends to an essentially self-adjoint linear

operator acting on a dense subspace of H�
k .

From [Fay] or [Fischer], we quote that the eigenvalues for the equation

�k'.z/ D �'.z/ .' 2 H�
k /

satisfy the inequality � � k.1 � k/.
Furthermore, if � D k.1 � k/, then the corresponding eigenfunction ' is of the

form '.z/ D f .z/yk, where f is a cusp form of weight 2k for � , i.e., we have an
isomorphism of C-vector spaces

ker
	
�k � k.1 � k/


 Š S�2k:

2.4 Heat Kernels of Higher Weights

The heat kernel on H associated with �k is computed in [Oshima] and corrects a
corresponding formula in [Fay]. It is given by

Kk.tI 
/ D
p
2 e�t=4

.4�t/3=2

1Z




re�r2=.4t/

p
cosh.r/ � cosh.
/

T2k

�
cosh.r=2/

cosh.
=2/

�
dr ;

where

T2k.X/ WD cosh.2k arccosh.X//
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denotes the 2kth Chebyshev polynomial.
The heat kernel on M associated with �k is defined by (see [Fay, p. 153])

K�
k .tI z;w/ WD

X

2�

�
c NwC d

cwC d

�k� z �  Nw
w � Nz

�k

Kk.tI 
 Iz;w/;

where 
 Iz;w WD disthyp.z; w/. If z D w, we put 
 Iz WD 
 Iz;z and K�
k .tI z/ WD

K�
k .tI z; z/.

2.5 Spectral Expansions

The resolvent kernel on M associated with �k is the integral kernel G�
k .sI z;w/,

which inverts the operator�k � s.1� s/ (see [Fischer, p. 27, Theorem 1.4.10]). The
heat kernel and the resolvent kernel on M associated with�k are related through the
expression

G�
k .sI z;w/ D

1Z

0

e�.s�1=2/2tet=4K�
k .tI z;w/; (4)

which holds for s 2 C such that Re..s � 1=2/2/ is sufficiently large. In other
words, (4) expresses the resolvent kernel on M associated with �k as the Laplace
transform of the heat kernel on M associated with �k, with an appropriate change
of variables. Conversely, one then can express the heat kernel on M as an inverse
Laplace transform, with an appropriate change of variables, of the resolvent kernel
on M.

The spectral expansion of the resolvent kernel on M associated with �k is given
on p. 40 of [Fischer], which is established as an example of a more general spectral
expansion theorem given on p. 37 of [Fischer]. Using the inverse Laplace transform,
one then obtains the spectral expansion for the heat kernel on M associated with�k;
we leave the details for the derivation to the interested reader. For the purposes of
the present article, we derive from the spectral expansion of K�

k .tI z/ and the fact
that the smallest eigenvalue of �k is given by k.1 � k/ and that the corresponding
eigenfunctions are related to S�2k, the important relation

S�2k.z/ D lim
t!1 e�k.k�1/tK�

k .tI z/:

Furthermore, it is evident from the spectral expansion of the heat kernel that
e�k.k�1/tK�

k .tI z/ is a monotone decreasing function for any t > 0, hence we arrive
at the estimate

ek.k�1/tS�2k.z/ � K�
k .tI z/ (5)

for any t > 0 and z 2 H.
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3 Heat Kernel Analysis

Lemma 3.1. For t > 0, 
 > 0, and r � 
, let

Fk.tI 
; r/ WD re�r2=.4t/

sinh.r/
T2k

�
cosh.r=2/

cosh.
=2/

�
:

Then, for all values of t, 
, r in the given range, we have

sinh.r/
@

@

Fk.tI 
; r/C sinh.
/

@

@r
Fk.tI 
; r/ < 0:

Proof. We put

X WD cosh.r=2/

cosh.
=2/
;

and compute

sinh.r/
@

@

Fk.tI 
; r/C sinh.
/

@

@r
Fk.tI 
; r/

D sinh.
/Fk.tI 
; r/
�
1

r
� r

2t
� cosh.r/

sinh.r/

�

C re�r2=.4t/

sinh.r/
T 02k.X/

�
sinh.r/

@X

@

C sinh.
/

@X

@r

�
:

It is now easy to see that

1

r
� r

2t
� cosh.r/

sinh.r/
< 0

for all t > 0 and r > 0. Since r � 
, we have X � 1, and hence

T2k.X/ D cosh.2k arccosh.X// � 1;

from which we conclude that

sinh.
/Fk.tI 
; r/
�
1

r
� r

2t
� cosh.r/

sinh.r/

�
< 0:

Furthermore, since T2k.X/ is an increasing, positive function, its derivative T 02k.X/
is again a positive function. To complete the proof of the lemma, we are therefore
left to show that
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sinh.r/
@X

@

C sinh.
/

@X

@r
� 0:

For this we compute

sinh.r/
@X

@

C sinh.
/

@X

@r

D � sinh.r/
cosh.r=2/ sinh.
=2/

2 cosh2.
=2/
C sinh.
/

sinh.r=2/

2 cosh.
=2/

D 1

2 cosh2.
=2/

	 � sinh.r/ cosh.r=2/ sinh.
=2/C sinh.
/ cosh.
=2/ sinh.r=2/



D 1

2 cosh2.
=2/

	 � 2 sinh.r=2/ cosh2.r=2/ sinh.
=2/

C 2 sinh.
=2/ cosh2.
=2/ sinh.r=2/



D sinh.r=2/ sinh.
=2/

cosh2.
=2/

	 � cosh2.r=2/C cosh2.
=2/


;

which is negative for r > 
 and vanishes for r D 
. ut
Proposition 3.2. For any t > 0, the heat kernel Kk.tI 
/ on H associated with �k

is strictly monotone decreasing for 
 > 0.

Proof. We will prove that @=@
Kk.tI 
/ < 0 for 
 > 0. To simplify notations, we
put

c.t/ WD
p
2e�t=4

.4�t/3=2
:

In the notation of Lemma 3.1, we then have, using integration by parts,

Kk.tI 
/ D c.t/

1Z




Fk.tI 
; r/ sinh.r/
p

cosh.r/ � cosh.
/
dr

D �2c.t/

1Z




@

@r
Fk.tI 
; r/

p
cosh.r/ � cosh.
/ dr :

We now apply the Leibniz rule of differentiation to write

@

@

Kk.tI 
/ D �2c.t/

1Z




@2

@r @

Fk.tI 
; r/

p
cosh.r/ � cosh.
/ dr

C c.t/

1Z




@

@r
Fk.tI 
; r/ sinh.
/

p
cosh.r/ � cosh.
/

dr :
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Using integration by parts on the first term once again, yields the identity

@

@

Kk.tI 
/ D c.t/

1Z




�
sinh.r/

@

@

Fk.tI 
; r/C sinh.
/

@

@r
Fk.tI 
; r/

�

� dr
p

cosh.r/ � cosh.
/
:

With Lemma 3.1 we conclude that @=@
Kk.tI 
/ < 0 for 
 > 0, which proves the
claim. ut
Proposition 3.3. For given � , k 2 N, and t > 0, the heat kernel K�

k .tI z/ on M
associated with�k converges absolutely and uniformly on compact subsets K of M.

Proof. Let K 
 M be a compact subset. In order to prove the absolute and uniform
convergence of the heat kernel K�

k .tI z/ on M associated with �k for t > 0 and
z 2 K, we have to show the convergence of

X

2�
Kk.tI 
 Iz/

for t > 0 and z 2 K. To do this, we introduce for 
 > 0 and z 2 K the counting
function

N.
I z/ WD #
˚
 2 � j 
 Iz D disthyp.z; z/ < 


�
: (6)

By arguing as in the proof of Lemma 2.3 (a) of [JL95], one proves that

N.
I z/ D O�;K.e

/; (7)

uniformly for all z 2 K with an implied constant depending solely on � and K. The
dependence on � is given by the maximal order of elliptic elements of � .

By means of the counting function N.
I z/, we obtain the following Stieltjes
integral representation of the quantity under consideration:

X

2�
Kk.tI 
 Iz/ D

1Z

0

Kk.tI 
/ dN.
I z/:

Since Kk.tI 
/ is a non-negative, continuous, and, by Proposition 3.2, monotone
decreasing function of 
, an elementary argument allows one to derive from (7)
the bound
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1Z

0

Kk.tI 
/ dN.
I z/ D O�;K

� 1Z

0

Kk.tI 
/ e
 d


�
; (8)

again uniformly for all z 2 K with an implied constant depending solely on � and K.
We are thus left to find a suitable bound for Kk.tI 
/. For this we observe the

inequality

r2

4t
� r2

8t
C 
2

8t

for r � 
, which gives

Kk.tI 
/ D
p
2 e�t=4

.4�t/3=2

1Z




re�r2=.4t/

p
cosh.r/� cosh.
/

T2k

�
cosh.r=2/

cosh.
=2/

�
dr

� e�
2=.8t/

p
2 e�t=4

.4�t/3=2

1Z




re�r2=.8t/

p
cosh.r/ � cosh.
/

T2k

�
cosh.r=2/

cosh.
=2/

�
dr

� e�
2=.8t/

p
2 e�t=4

.4�t/3=2

1Z

0

re�r2=.8t/

p
cosh.r/ � 1 T2k.cosh.r=2// dr I (9)

for the last inequality we used that the preceding integral is monotone decreasing
in 
, which follows along the same lines as the proof of Proposition 3.2. Using the
equalities

cosh.r/ � 1 D 2 sinh2.r=2/ and T2k.cosh.r=2// D cosh.kr/ ;

the estimate (9) leads to the bound

Kk.tI 
/ � e�
2=.8t/ Gk.t/ (10)

with the function Gk.t/ given by

Gk.t/ WD e�t=4

.4�t/3=2

1Z

0

re�r2=.8t/

sinh.r=2/
cosh.kr/ dr:

Introducing the function

H.t/ WD
1Z

0

e�
2=.8t/e
 d
 ;
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the bound (10) in combination with (8) yields

X

2�
Kk.tI 
 Iz/ D O�;K

	
Gk.t/H.t/



;

where the implied constant equals the implied constant in (8). From this the claim
of the proposition follows. ut
Corollary 3.4. For any Fuchsian subgroup � of the first kind and k 2 N>0, we have
the bound

S�2k.z/ �
X

2�
Kk.tI 
 Iz/

for any t > 0 and z 2 H, where the right-hand side converges uniformly on compact
subsets of M.

Proof. Since k 2 N>0 and

ˇ̌
ˇ̌
�

cNzC d

czC d

�k� z �  Nz
z � Nz

�k ˇ̌
ˇ̌ D 1

for any  D 	 a b
c d


 2 � , we deduce for any t > 0 and z 2 H from (5) that

S�2k.z/ � ek.k�1/t S�2k.z/ � K�
k .tI z/ �

X

2�
Kk.tI 
 Iz/; (11)

where the right-hand side of (11) converges uniformly on compact subsets by
Proposition 3.3. This proves the claim. ut

4 Bounds in the Cocompact Setting

Proposition 4.1. For any ı > 0, there is a constant Cı > 0, such that for any
Fuchsian subgroup � of the first kind and k 2 N>0, we have the bound

S�2k.z/ � k
X

2�

Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�

Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
;

where we recall that 
 Iz D disthyp.z; z/ with z 2 H and  2 � .
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Proof. From Corollary 3.4, we recall for any t > 0 and z 2 H the inequality

S�2k.z/ �
X

2�
Kk.tI 
 Iz/: (12)

We proceed by estimating the right-hand side of (12), i.e., by giving a suitable
bound for

Kk.tI 
 Iz/ D
p
2 e�t=4

.4�t/3=2

1Z


Iz

re�r2=.4t/

p
cosh.r/� cosh.
 Iz/

T2k

�
cosh.r=2/

cosh.
 Iz=2/

�
dr :

We start with some elementary bounds for the Chebyshev polynomials T2k.X/ D
cosh.2k arccosh.X//. Using that

arccosh.X/ D log
	
X C
p

X2 � 1
;

we find

arccosh

�
cosh.r=2/

cosh.
 Iz=2/

�

D log

�
1

cosh.
 Iz=2/

�
cosh.r=2/C

q
cosh2.r=2/� cosh2.
 Iz=2/

��

� log

�
1

cosh.
 Iz=2/

�
cosh.r=2/C

q
cosh2.r=2/� 1

��

D r=2 � log
	

cosh.
 Iz=2/


:

Therefore, we obtain the bound

T2k

�
cosh.r=2/

cosh.
 Iz=2/

�
D cosh

�
2k arccosh

�
cosh.r=2/

cosh.
 Iz=2/

��
� ekr

cosh2k.
 Iz=2/
;

and hence arrive at

S�2k.z/ �
p
2 e�t=4

.4�t/3=2
X

2�

1Z


Iz

re�r2=.4t/

p
cosh.r/ � cosh.
 Iz/

ekr

cosh2k.
 Iz=2/
dr

D
p
2 e�t=4

.4�t/3=2
X

2�

1

cosh2k.
 Iz=2/

1Z


Iz

re�r2=.4t/Ckr

p
cosh.r/ � cosh.
 Iz/

dr: (13)
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We next multiply both sides of inequality (13) by te�s.s�1/t with s 2 R, s > k, and
integrate from t D 0 to t D 1. Recalling from [GR81], formula 3.325, namely

1Z

0

e�a2 te�b2=.4t/ t1=2
dt

t
D
p
�

a
e�ab;

we arrive with a D s � 1=2 and b D r at the bound

S�2k.z/

.s.s � 1/� k.k � 1//2 �
p
2�

.4�/3=2.s � 1=2/
X

2�

1

cosh2k.
 Iz=2/

�
1Z


Iz

re�.s�1=2/rCkr

p
cosh.r/� cosh.
 Iz/

dr:

Now, let s D kC 1, to get

S�2k.z/ �
p
2

2�

k2

kC 1=2
X

2�

1

cosh2k.
 Iz=2/

1Z


Iz

re�r=2

p
cosh.r/� cosh.
 Iz/

dr: (14)

To finish, we will estimate the integral in (14) in a manner similar to the proof of
Lemma 4.2 in [JK13]. We start by first considering the case, where 
 � ı. Let us
then use the decomposition

1Z


Iz

� � � D

IzClog.4/Z


Iz

� � � C
1Z


IzClog.4/

� � �

For r 2 Œ
 Wz; 
 Iz C log.4/�, we have the bound

cosh.r/ � cosh.
 Iz/ D .r � 
 Iz/ sinh.r�/ � .r � 
 Iz/ sinh.
 Iz/;

where r� 2 Œ
 Iz; 
 Iz C log.4/�. With this in mind, we have the estimate


IzClog.4/Z


Iz

re�r=2

p
cosh.r/� cosh.
 Iz/

dr � .
 Iz C log.4//e�
Iz=2

p
sinh.
 Iz/


IzClog.4/Z


Iz

drp
r � 
 Iz

D 2
p

log.4/
.
 Iz C log.4//e�
Iz=2

p
sinh.
 Iz/

: (15)
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If r � 
 Iz C log.4/, we have

cosh.r/

2
� cosh.
 Iz C log.4//

2
� cosh.
 Iz/ cosh.log.4//

2
� cosh.
 Iz/;

so then

cosh.r/� cosh.
 Iz/ � 1

2
cosh.r/ � er

4
;

hence

1Z


IzClog.4/

re�r=2

p
cosh.r/ � cosh.
 Iz/

dr � 2
1Z


IzClog.4/

re�r dr

D .
 Iz C log.4/C 1/e�
Iz

2
: (16)

Combining inequalities (15) and (16), we find for 
 Iz � ı a suitable constant Cı >
0 depending on ı such that

1Z


Iz

re�r=2

p
cosh.r/ � cosh.
 Iz/

dr � 2plog.4/
.
 Iz C log.4//e�
Iz=2

p
sinh.
 Iz/

C .
 Iz C log.4/C 1/e�
Iz

2
� Cı 
 Iz e�
Iz :

From inequality (14), we thus obtain the bound

S�2k.z/ � k
X

2�

Iz<ı

1

cosh2k.
 Iz=2/

1Z


Iz

re�r=2

p
cosh.r/� cosh.
 Iz/

dr

C Cı k
X

2�

Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
: (17)

In order to estimate the finite sum in (17), we introduce the function

h.
/ WD
1Z




re�r=2

p
cosh.r/ � cosh.
/

dr D �2
1Z




p
cosh.r/� cosh.
/

d

dr

�
re�r=2

sinh.r/

�
dr:
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We have

d

d

h.
/ D

1Z




sinh.
/p
cosh.r/� cosh.
/

d

dr

�
re�r=2

sinh.r/

�
dr

D
1Z




sinh.
/
p

cosh.r/� cosh.
/

re�r=2

sinh.r/

�
1

r
� 1
2
� coth.r/

�
dr:

Since tanh.r/ � r, we have that coth.r/ � 1=r, so then 1=r � 1=2 � coth.r/ �
�1=2 < 0, hence the function h.
/ is monotone decreasing. Therefore, (17)
simplifies to

S�2k.z/ � k
X

2�

Iz<ı

1

cosh2k.
 Iz=2/

1Z

0

re�r=2

p
cosh.r/ � 1 drC Cı k

X

2�

Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
:

Using the fact that sinh.r/ � r, we have that

1Z

0

re�r=2

p
cosh.r/� 1 dr D

1Z

0

re�r=2

p
2 sinh.r=2/

dr � p2
1Z

0

e�r=2 dr D 2p2:

Therefore, we arrive at the bound

S�2k.z/ � k
X

2�

Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�

Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
;

as claimed. ut
Theorem 4.2. For any Fuchsian subgroup � of the first kind, k 2 N>0, and any
compact subset K 
 M, we have the bound

sup
z2K

	
S�2k.z/


 D O�;K.k/;

where the implied constant depends solely on � and K.

Proof. From Proposition 4.1, we have the bound

S�2k.z/ � k
X

2�

Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�

Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
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� k
X

2�

Iz<ı

2
p
2

cosh2.
 Iz=2/
C Cı k

X

2�

Iz�ı


 Iz e�
Iz

cosh2.
 Iz=2/
: (18)

In order to estimate the first summand in (18), we observe that the sum is finite and
hence is a well-defined continuous function on M, which has a maximum C0�;K;ı > 0
on K, depending solely on � , K, and ı. For z 2 K, we thus have

k
X

2�

Iz<ı

2
p
2

cosh2.
 Iz=2/
� C0�;K;ı k: (19)

To finish, we use the counting function N.
I z/ defined by (6) and its bound (7). For
the second summand in (18), we then find a constant C00�;K;ı > 0 depending solely
on � , K, and ı such that

Cı k
X

2�

Iz�ı


 Iz e�
Iz

cosh2.
 Iz=2/
� 4Cı k

X

2�

Iz�ı


 Iz e�2
Iz � C00�;K;ı k

1Z

0


 e�2
e
 d


D C00�;K;ı k: (20)

Adding up inequalities (19) and (20) yields the claim keeping in mind that ı can be
chosen universally. ut
Corollary 4.3. For any cocompact Fuchsian subgroup � of the first kind and k 2
N>0, we have the bound

sup
z2M

	
S�2k.z/


 D O�.k/;

where the implied constant depends solely on � .

Proof. The proof is an immediate consequence of Theorem 4.2. ut

5 Bounds in the Cofinite Setting

Proposition 5.1. For a cofinite Fuchsian subgroup � of the first kind and k 2 N>0,
let " > 0 be such that the neighborhoods of area " around the cusps of M are
disjoint. Assuming that 0 < " < 2�=k, we have the bound

sup
z2M

	
S�2k.z/


 D O�;".k/;

where the implied constant depends solely on � and ".
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Proof. For a cusp p 2 C, we denote by U".p/ the neighborhood of area " centered
at p. By means of the neighborhoods U".p/, we have the compact subset

K" WD M n
[

p2C
U".p/

of M. We will now estimate the quantity S�2k.z/ for z ranging through K" and U".p/
(p 2 C), respectively.

In the first case, we obtain from Theorem 4.2 that

sup
z2K"

	
S�2k.z/


 D O�;K" .k/;

where the implied constant depends solely on � and K".
In order to prove the claim in the second case, we may assume without loss of

generality that p is the cusp at infinity and the neighborhood U".p/ is given by the
strip

S1=" WD fz 2 H j 0 � x < 1; y > 1="g:

For a cusp form f 2 S�2k of weight 2k for � , we then consider the expression

jf .z/j2 y2k D
ˇ̌
ˇ̌ f .z/

e2� iz

ˇ̌
ˇ̌
2 y2k

e4�y
:

The function jf .z/=e2� izj2 is subharmonic and bounded in the strip S1=" and, hence,
takes its maximum on the boundary

@S1=" D fz 2 H j 0 � x < 1; y D 1="g

of S1=", by the strong maximum principle for subharmonic functions. On the
other hand, an elementary calculation shows that the function y2k=e4�y takes its
maximum at

y D k

2�
<
1

"
;

and is monotone decreasing for y > k=.2�/. Therefore, we have

sup
z2S1="

	jf .z/j2 y2k

 D sup

z2@S1="

	jf .z/j2 y2k


:

From this we conclude that

sup
z2M

	
S�2k.z/


 D sup
z2K"

	
S�2k.z/


 D O�;K" .k/:
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Since the compact subset K" depends only on M, i.e., on � , and on ", the claim of
the proposition follows. ut
Theorem 5.2. For a cofinite Fuchsian subgroup � of the first kind and k 2 N>0,
we have the bound

sup
z2M

	
S�2k.z/


 D O�.k
3=2/;

where the implied constant depends solely on � .

Proof. As in the proof of Proposition 5.1, we choose " > 0 such that the
neighborhoods U".p/ of area " around the cusps p 2 C are disjoint. These
neighborhoods give rise to the compact subset

K" WD M n
[

p2C
U".p/

of M. As before, we will estimate the quantity S�2k.z/ for z ranging through K" and
U".p/ (p 2 C), respectively. As in the proof of Proposition 5.1, we obtain

sup
z2K"

	
S�2k.z/


 D O�;K" .k/; (21)

where the implied constant depends solely on � and K". Since the choice of "
depends only on M, the implied constant depends in the end solely on � .

In order to establish the claimed bound for the cuspidal neighborhoods, we
distinguish two cases.

(i) If 0 < " < 2�=k, the bound for S�2k.z/ in the cuspidal neighborhoods U".p/
(p 2 C) is reduced to the bound (21) as in the proof of Proposition 5.1. The
proof of the theorem follows in this case.

(ii) If " � 2�=k, we have to modify the estimates for S�2k.z/ in the cuspidal
neighborhoods U".p/ (p 2 C). As before, we may assume without loss of
generality that p is the cusp at infinity and the neighborhood U".p/ is given
by the strip

S1=" WD fz 2 H j 0 � x < 1; y > 1="g:

From the argument given in the proof of Proposition 5.1, we find that

sup
z2Sk=.2�/

	
S�2k.z/


 D sup
z2@Sk=.2�/

	
S�2k.z/



;

where Sk=.2�/ is the subset of S1=" given by

Sk=.2�/ WD fz 2 H j 0 � x < 1; y > k=.2�/g:
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Therefore, we are reduced to estimate the quantity S�2k.z/ for z ranging through the
set

S1=" n Sk=.2�/ D fz 2 H j 0 � x < 1; 1=" < y � k=.2�/g:

For this, we will use the bound

S�2k.z/ � k
X

2�

Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�

Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
(22)

obtained in Proposition 4.1 with an arbitrarily, but fixed chosen ı > 0. By means of
the stabilizer subgroup

�1 WD
��
1 n
0 1

� ˇ̌
ˇ̌ n 2 Z

�

of the cusp at infinity, we can rewrite inequality (22) as

S�2k.z/ � k
X

2�1


Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�1


Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/

C k
X

2�n�1


Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�n�1


Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
: (23)

Using the formula

cosh2
�

disthyp.z;w/

2

�
D jz� Nwj2
4 Im.z/ Im.w/

;

the first two summands on the right-hand side of (23) can be bounded as

k
X

2�1


Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�1


Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/

� k.2
p
2C Cı=e/C 2k

1X

nD1

2
p
2C Cı=e

	
.n=2y/2 C 1
k :
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By an integral test, we have (recalling formula 3.251.2 from [GR81])

1X

nD1

1
	
.n=2y/2C 1
k

1

2y
�
1Z

0

1
	
1C �2
k

d� D
p
� �.k � 1=2/
2 �.k/

;

which leads to the bound

k
X

2�1


Iz<ı

2
p
2

cosh2k.
 Iz=2/
C Cı k

X

2�1


Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/

D O

�
k y
�.k � 1=2/
�.k/

�
D O

	
k3=2



;

keeping in mind that y � k=.2�/ and using Stirling’s formula.
We now turn to estimate the third summand on the right-hand side of (23).

For fixed z 2 S1=" n Sk=.2�/, the sum in question is finite and bounded by the
corresponding sum with k D 1. Letting z more generally range across the compact
subset given by the closure of S1=", the latter sum takes its maximum on that compact
set, which depends solely on � , ", and ı. In summary, we obtain

k
X

2�n�1


Iz<ı

2
p
2

cosh2k.
 Iz=2/
D O�.k/; (24)

where the implied constant depends solely on � .
We are left to estimate the fourth summand on the right-hand side of (23).

Eventually, by shrinking ", we may assume that we have Im.z/ < 1=" for all
 2 � n �1; this process depends only on � . We then find

Cı k
X

2�n�1


Iz�ı


 Iz e�
Iz

cosh2k.
 Iz=2/
� Cı k

X

2�n�1


Iz�ı

e�
Iz=2

cosh2k.
 Iz=2/

� Cı k
X

2�n�1

e�
Iz;"=2

cosh2.
 Iz;"=2/
; (25)

where


 Iz;" WD disthyp
	
z; @S1="



:

Using a counting function similar to (6) with a bound similar to (7), the right-hand
side of (25) can be bounded as O�;".Cı k/with an implied constant depending solely
on � and ", hence solely on � .

This completes the proof of the theorem. ut
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6 Bounds for Covers

In this section, we fix a Fuchsian subgroup �0 � PSL2.R/ of the first kind with
quotient space M0 WD �0nH. We then consider subgroups � 
 �0, which are of
finite index. The quotient space M D �nH then is a finite degree cover of M0. Our
main goal in this section is to give uniform bounds for the quantity S�2k.z/ depending
solely on k and �0.

Theorem 6.1. Let �0 be a fixed Fuchsian subgroup of PSL2.R/ of the first kind and
� 
 �0 any subgroup of finite index. For any k 2 N>0, we then have the bound

sup
z2M

	
S�2k.z/


 D O�0.k
3=2/;

where the implied constant depends solely on �0.

Proof. Denote by � W M �! M0 the covering map and by C0 the set of cusps of M0.
As before, we choose " > 0 such that the neighborhoods U".p0/ of area " around
the cusps p0 2 C0 are disjoint. These neighborhoods give rise to the compact subset

K0;" WD M0 n
[

p02C0
U".p0/

of M0. By means of K0;" we obtain the compact subset K" WD ��1.K0;"/ of M. For z
ranging through K", we use Corollary 3.4 to obtain

S�2k.z/ �
X

2�
Kk.tI 
 Iz/ �

X

2�0
Kk.tI 
 Iz/: (26)

The proofs of Proposition 4.1 and Theorem 4.2 with � and K" replaced by �0
and K0;", respectively, now show that the right-hand side of inequality (26) can be
uniformly bounded as O�0 .k/, keeping in mind that the choice of " and, hence of the
compact subset K0;", depend solely on �0.

We are thus left to bound S�2k.z/ in the neighborhoods of the cusps of M obtained
by pulling back the neighborhoods U".p0/ for p0 2 C0 to M. In order to do this, we
can again assume that p0 is the cusp at infinity and U".p0/ is given as the strip

S1;1=" WD
˚
z 2 H

ˇ̌
0 � x < 1; y > 1="

�
:

Furthermore, we may also assume that the cusp p 2 C of M lying over the cusp p0
is also at infinity of ramification index a, say. The pull-back of the neighborhood
U".p0/ to p via � is then modeled by the strip

Sa;1=" WD
˚
z 2 H

ˇ̌
0 � x < a; y > 1="

�
;
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which contains the strip

Sa;a=" WD
˚
z 2 H

ˇ̌
0 � x < a; y > a="

�

of area ". As in the proof of Theorem 5.2, we distinguish two cases.

(i) If 0 < " < 2�=k, i.e., a=" > ak=.2�/, we show as in Proposition 5.1 that

sup
z2Sa;a="

	
S�2k.z/


 D sup
z2@Sa;a="

	
S�2k.z/



;

and we are reduced to bound S�2k.z/ in the annulus Sa;1=" n Sa;a=", which will be
done below.

(ii) If " � 2�=k, i.e., a=" � ak=.2�/, we proceed as in the corresponding part of
the proof of Theorem 5.2 to find

sup
z2Sa;ak=.2�/

	
S�2k.z/


 D sup
z2@Sa;ak=.2�/

	
S�2k.z/



;

where Sa;ak=.2�/ is the strip

Sa;ak=.2�/ WD
˚
z 2 H

ˇ̌
0 � x < a; y > ak=.2�/

�
;

which reduces the problem to bound S�2k.z/ to the region Sa;a=" nSa;ak=.2�/. As in
the proof of Theorem 5.2, we next use inequality (23), observing that we now
have

�1 D
��
1 an
0 1

� ˇ̌
ˇ̌ n 2 Z

�
:

The first two summands in (23) can be bounded by an obvious adaption as O.k3=2/
as z ranges through the set Sa;a=" n Sa;ak=.2�/, where we use in particular that
y � ak=.2�/. Furthermore, by increasing the range of summation in the sums (24)
and (25) by replacing � n �1 by �0 n �0;1, the argument given in the proof of
Theorem 5.2 shows that the third and fourth summand in (23) can both be bounded
as O�0.k/. All in all, we obtain in case (ii)

sup
z2Sa;a="

	
S�2k.z/


 D O�0.k
3=2/;

and we are also in this case reduced to bound S�2k.z/ in the annulus Sa;1=" n Sa;a=",
which we do next.

To this end, we make again use of the estimate (23) with z ranging through
Sa;1=" n Sa;a=". By estimating the third and the fourth summand in (23) as in (24)
and (25) with � n�1 replaced by �0 n�0;1, respectively, these two summands can
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be bounded as O�0.k/. By proceeding as in the proof of Theorem 5.2, the first and
the second summand in (23) can be estimated as O.k1=2="/ using that y � a=".

By adding up all the above estimates, the proof of the theorem is complete. ut
Remark 6.2. We note that, if in addition to the hypotheses of Theorem 6.1, the fixed
Fuchsian subgroup �0 of PSL2.R/ of the first kind is cocompact and, hence the
subgroup � 
 �0 of finite index is also cocompact, then the proof of Theorem 6.1
in combination with Corollary 4.3 shows that for any k 2 N>0, we then have the
bound

sup
z2M

	
S�2k.z/


 D O�0.k/;

where the implied constant depends solely on �0.

7 Optimality of the Bounds

In this section we show that the bounds obtained in Corollary 4.3 and Theorem 5.2
are optimal, at least in certain cases.

7.1 Optimality in the Cocompact Setting

In order to address optimality in case that the Fuchsian subgroup � of the first kind
under consideration is cocompact, we assume in addition that � does not contain
elliptic elements. We then let ! denote the Hodge bundle on M. For k large enough,
we then have by the Riemann–Roch theorem that

d D dimC

	
S�2k


 D dimC

	
H0.M; !˝2k/


 D 2k deg.!/C 1 � g

D 2k
volhyp.M/

4�
C 1 � g:

From this we derive for k large enough

sup
z2M

	
S�2k.z/



volhyp.M/ �

Z

M

S�2k.z/ �hyp.z/ D d D 2k
volhyp.M/

4�
C 1 � g:

Dividing by volhyp.M/ D 4�.g � 1/, yields

sup
z2M

	
S�2k.z/


 � 2k � 1
4�

;

which shows that the bound obtained in Corollary 4.3 is optimal for k being large
enough.
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7.2 Optimality in the Cofinite Setting

In this subsection we will show that the bound obtained in Theorem 5.2 in the
cofinite setting is optimal in case that � D PSL2.Z/. For this, let f 2 S�2k be an
L2-normalized, primitive, Hecke eigenform with Fourier expansion

f .z/ D
1X

nD1
�f .n/ e2� inz:

In [Xia], letting " > 0, the author proves as the main result the bounds

k1=2�" �" sup
z2M

	jf .z/j2 y2k

�" k1=2C";

with an implied constant depending only on ". The lower bound, which is of interest
for this subsection, is obtained as follows. For fixed y > 0, we compute

1Z

0

jf .xC iy/j2 y2k dx D
1X

nD1
j�f .n/j2 y2k e�4�ny � j�f .1/j2 y2k e�4�y: (27)

From [Xia], we then recall the formula

j�f .1/j2 D �

2

.4�/2k

�.2k/

1

L
	
Sym2.f /; 1


 ;

where L
	
Sym2.f /; s



(s 2 C) denotes the symmetric square L-function associated

with the primitive Hecke eigenform f , which can be bounded as

k�" �" L
	
Sym2.f /; 1


�" k"

for any " > 0. Using Stirling’s formula, we arrive at the estimate

j�f .1/j2 " .2k/1=2�"
�
4�e

2k

�2k

: (28)

Using (28), we derive from (27) the lower bound

1Z

0

jf .xC iy/j2 y2k dx" .2k/1=2�"
�
2�e

k

�2k y2k

e4�y
: (29)
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Evaluating (29) at y D k=.2�/, we thus obtain the claimed lower bound

sup
z2M

	jf .z/j2 y2k

 �

1Z

0

jf .xC iy/j2 y2k dx" k1=2�"

for k large enough with an implied constant depending on the choice of " > 0.
Let now ff1; : : : ; fdg be an orthonormal basis of S�2k consisting of primitive Hecke

eigenforms. Since d k, we arrive with y D k=.2�/ at

sup
z2M

	
S�2k.z/


 �
dX

jD1

1Z

0

ˇ̌
fj.xC iy/j2 y2k dx" k3=2�"

for k large enough with an implied constant depending on the choice of " > 0.
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Fivebranes and 4-Manifolds

Abhijit Gadde, Sergei Gukov, and Pavel Putrov

Abstract We describe rules for building 2d theories labeled by 4-manifolds. Using
the proposed dictionary between building blocks of 4-manifolds and 2d N D .0; 2/
theories, we obtain a number of results, which include new 3d N D 2 theories TŒM3�

associated with rational homology spheres and new results for Vafa–Witten partition
functions on 4-manifolds. In particular, we point out that the gluing measure for the
latter is precisely the superconformal index of 2d .0; 2/ vector multiplet and relate
the basic building blocks with coset branching functions. We also offer a new look at
the fusion of defect lines/walls, and a physical interpretation of the 4d and 3d Kirby
calculus as dualities of 2d N D .0; 2/ theories and 3d N D 2 theories, respectively.

CALT 68-2904

1 Introduction

We study a class of 2d N D .0; 2/ theories TŒM4� labeled by 4-manifolds (with
boundary) that enjoys all the standard operations on 4-manifolds, such as cutting,
gluing, and the Kirby moves [GS99]. Since the world-sheet SCFT of a heterotic
string is a prominent member of this class of 2d N D .0; 2/ theories we shall call it
“class H” in what follows. By analogy with theories of class S and class R that can
be thought of as compactifications of six-dimensional .2; 0/ theory on 2-manifolds
[GMN10, Gai12, AGT10] and 3-manifolds [DGH11, DGG1, CCV], respectively,
a theory TŒM4� of class H can be viewed as the effective two-dimensional theory
describing the physics of fivebranes wrapped on a 4-manifold M4.

If 2d theories TŒM4� are labeled by 4-manifolds, then what are 4-manifolds
labeled by? Unlike the classification of 2-manifolds and 3-manifolds that was of
great help in taming the zoo of theories TŒM2� and TŒM3�, the world of 4-manifolds
is much richer and less understood. In particular, the answer to the above question

A. Gadde • S. Gukov (�) • P. Putrov
California Institute of Technology, Pasadena, CA 91125, USA
e-mail: gukov@theory.caltech.edu

© Springer International Publishing Switzerland 2016
W. Ballmann et al. (eds.), Arbeitstagung Bonn 2013, Progress in Mathematics 319,
DOI 10.1007/978-3-319-43648-7_7

155

mailto:gukov@theory.caltech.edu


156 A. Gadde et al.

is not known at present if by a 4-manifold one means a smooth 4-manifold. And,
not surprisingly, there will be many points in our journey where this richness of
the world of 4-manifolds will translate into rich physics of 2d N D .0; 2/ theories
TŒM4�. We hope that exploring the duality between 4-manifolds and theories TŒM4�

sufficiently far will provide insights into classification of smooth structures in
dimension four.

In dimensions� 6, every combinatorial manifold—a.k.a. simplicial complex or a
manifold with piecewise linear (PL) structure—admits a unique compatible smooth
(DIFF) structure. However, not every topological 4-manifold admits a smooth
structure:

DIFF D PL � TOP (1)

and, furthermore, the smooth structure on a given topological 4-manifold may not be
unique (in fact, M4 can admit infinitely many smooth structures). When developing
a dictionary between M4 and TŒM4�, we will use various tools from string theory
and quantum field theory which directly or indirectly involve derivatives of various
fields on M4. Therefore, in our duality between M4 and TŒM4� all 4-manifolds are
assumed to be smooth, but not necessarily compact. In particular, it makes sense to
ask what the choice of smooth or PL structure on M4 means for the 2d theory TŒM4�,
when the 4-manifold admits multiple smooth structures.

Returning to the above question, the basic topological invariants of a (compact)
4-manifold M4 are the Betti numbers bi.M4/ or combinations thereof, such as the
Euler characteristic and the signature:

b2 D bC2 C b�2

� D bC2 � b�2 D
1

3

Z

M4

p1 (2)

� D 2 � 2b1 C bC2 C b�2

At least in this paper, we will aim to understand fivebranes on simply connected
4-manifolds. In particular, all compact 4-manifolds considered below will have
b1.M4/ D 0. We will be forced, however, to deviate from this assumption (in a
minimal way) when discussing cutting and gluing, where non-trivial fundamental
groups j�1.M4/j <1 will show up.

As long as b1 D 0, there are only two non-trivial integer invariants in (2), which
sometimes are replaced by the following topological invariants:

�h.M4/ D �.M4/C �.M4/

4
(3)

c.M4/ D 2�.M4/C 3�.M4/ .D c21 when M4 is a complex surface/
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also used in the literature on 4-manifolds. These two integer invariants (or, simply
b2 and �) determine the rank and the signature of the bilinear intersection form

QM4 W � ˝ � ! Z (4)

on the homology lattice

� D H2.M4IZ/=Tors (5)

The intersection pairing QM4 (or, simply, Q) is a nondegenerate symmetric bilinear
integer-valued form, whose basic characteristics include the rank, the signature, and
the parity (or type). While the first two are determined by b2.M4/ and �.M4/, the
type is defined as follows. The form Q is called even if all diagonal entries in its
matrix are even; otherwise it is odd. We also define

�� D H2.M4IZ/=Tors (6)

The relation between the two lattices � and �� will play an important role in
construction of theories TŒM4� and will be discussed in Sect. 2.

For example, the intersection form for the Kümmer surface has a matrix
representation

E8 ˚ E8 ˚ 3
�
0 1

1 0

�
(7)

where
	
0 1
1 0



is the intersection form for S2 � S2 and E8 is minus the Cartan matrix

for the exceptional Lie algebra by the same name. A form Q is called positive (resp.
negative) definite if �.Q/ D rank.Q/ (resp. �.Q/ D �rank.Q/) or, equivalently,
if Q.; / > 0 (resp. Q.; / < 0) for all non-zero  2 � . There are finitely
many unimodular1 definite forms of a fixed rank. Thus, in the above example
the intersection form for S2 � S2 is indefinite and odd, whereas E8 is the unique
unimodular negative definite even form of rank 8.

If M4 is a closed simply connected oriented 4-manifold, its homeomorphism
type is completely determined by Q. To be a little more precise, according to
the famous theorem of Michael Freedman [Fre82], compact simply connected
topological 4-manifolds are completely characterized by an integral unimodular
symmetric bilinear form Q and the Kirby–Siebenmann triangulation obstruction
invariant ˛.M4/ 2 H4.M4IZ2/ Š Z2, such that �

8
� ˛ mod 2 if Q is even. In

particular, there is a unique topological 4-manifold with the intersection pairing E8.
This manifold, however, does not admit a smooth structure. Indeed, by Rokhlin’s
theorem, if a simply connected smooth 4-manifold has an even intersection form Q,

1That is, det Q D˙1.
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then �.M4/ is divisible by 16. There is, however, a non-compact smooth manifold
with E8 intersection form that will be one of our examples below: it corresponds to
a nice 2d theory TŒE8�, which for a single fivebrane we propose to be a realization
of level-1 E8 current algebra used in the world-sheet SCFT of a heterotic string
[GSW87, Sect. 6] or in the construction of E-strings [MNVW98]:

TŒE8� D (bosonization of) 8 Fermi multiplets (8)

In the case of compact smooth 4-manifolds, the story is a lot more complicated
and the complete classification is not known at present. One major result that will
be important to us in what follows is the Donaldson’s theorem [Don83], which
states that the intersection form Q of a smooth simply connected positive (resp.
negative) definite 4-manifold is equivalent over integers to the standard diagonal
form diag.1; 1; : : : ; 1/ or diag.�1;�1; : : : ;�1/, respectively. (This result applies
to compact M4 and admits a generalization to 4-manifolds bounded by homology
spheres, which we will also need in the study of 2d theories TŒM4�.) In particular,
since E8˚E8 is not diagonalizable over integers, the unique topological 4-manifold
with this intersection form does not admit a smooth structure.2 Curiously, this, in
turn, implies that R4 does not have a unique differentiable structure.

We conclude this brief introduction to the wild world of 4-manifolds by noting
that any non-compact topological 4-manifold admits a smooth structure [Qui82]. In
fact, an interesting feature of non-compact 4-manifolds considered in this paper—
that can be viewed either as a good news or as a bad news—is that they all admit
uncountably many smooth structures.

In order to preserve supersymmetry in two remaining dimensions, the 6d theory
must be partially “twisted” along the M4. The standard way to achieve this is
to combine the Euclidean Spin.4/ symmetry of the 4-manifold with (part of) the
R-symmetry. Then, different choices—labeled by homomorphisms from Spin.4/ to
the R-symmetry group, briefly summarized in Appendix 1—lead to qualitatively dif-
ferent theories TŒM4�, with different amount of supersymmetry in two dimensions,
etc. The choice we are going to consider in this paper is essentially (the 6d lift of)
the topological twist introduced by Vafa and Witten [VW94], which leads to .0; 2/
supersymmetry in two dimensions. In fact, the partition function of the Vafa–Witten
TQFT that, under certain conditions, computes Euler characteristics of instanton
moduli spaces also plays an important role in the dictionary between 4-manifolds
and the corresponding 2d N D .0; 2/ theories TŒM4�.

The basic “protected quantity” of any two-dimensional theory with at least N D
.0; 1/ supersymmetry is the elliptic genus [Wit87] defined as a partition function
on a 2-torus T2 with periodic (Ramond) boundary conditions for fermions. In the
present case, it carries information about all left-moving states of the 2d N D .0; 2/
theory TŒM4� coupled to the supersymmetric Ramond ground states from the right.

2Note, this cannot be deduced from the Rokhlin’s theorem as in the case of the E8 manifold.
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To be more precise, we shall consider the “flavored” version of the elliptic genus
(studied in this context, e.g., in [GGP13, BEHT13]),

ITŒM4 �.q; x/ WD TrH.�1/FqL0xf ; (9)

that follows the standard definition of the superconformal index in radial quan-
tization and carries extra information about the flavor symmetry charges f . In
general, the flavor symmetry group of TŒM4� is U.1/b2 � G3d, where the second
factor is associated with the boundary M3 D @M4 and is gauged upon gluing
operations. Defined as a supersymmetric partition function on a torus T2 with a
modular parameter � (where, as usual, q D e2� i� ), the index ITŒM4 �.qI x/ has a nice
interpretation as an invariant of the 4-manifold computed by the topological theory
on M4.

Indeed, since the theory TŒM4� was obtained by compactification from six
dimensions on a 4-manifold, its supersymmetric partition function on a torus can
be identified with the partition function of the 6d .2; 0/ theory on T2�M4. As usual,
by exchanging the order of compactification, we obtain two perspectives on this
fivebrane partition function

6d .2; 0/ theory
on T2 �M4

. &
N D 4 super-Yang-Mills 2d .0; 2/ theory TŒM4�

on M4 on T2

that are expected to produce the same result. If we compactify first on M4, we
obtain a 2d theory TŒM4�, whose partition function on T2 is precisely the flavored
elliptic genus (9). On the other hand, if we first compactify on T2, we get N D 4

super-Yang-Mills3 with the Vafa–Witten twist on M4 and coupling constant � . This
suggests the following natural relation:

ZG
VWŒM4�.q; x/ D ITŒM4 IG�.q; x/ (10)

that will be one of our main tools in matching 4-manifolds with 2d N D .0; 2/

theories TŒM4�. Note, this in particular requires M4 to be a smooth 4-manifold. Both
sides of (10) are known to exhibit nice modular properties under certain favorable
assumptions [VW94, Wit87] that we illustrate in numerous examples below.

In this paper, we approach the correspondence between 4-manifolds and 2d
N D .0; 2/ theories TŒM4� mainly from the viewpoint of cutting and gluing.

3Sometimes, to avoid clutter, we suppress the choice of the gauge group, G, which in most of our
applications will be either G D U.N/ or G D SU.N/ for some N � 1. It would be interesting to
see if generalization to G of Cartan type D or E leads to new phenomena. We will not aim to do
this analysis here.
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For this reason, not only 4-manifolds with boundary are unavoidable, but they are
also the main subject of interest. As a result, interesting new phenomena, such as
a generalization of the Freed–Witten anomaly [FW99] to manifolds with boundary,
come into play. It also affects the relation (10), where the left-hand side naturally
becomes a function of boundary conditions, and leads to one interesting novelty
discussed in Sect. 3.10. Namely, in order to interpret the Vafa–Witten partition
function on a non-compact 4-manifold as the index (9), it is convenient to make a
certain transformation—somewhat akin to a change of basis familiar in the literature
on the superconformal index [GRRY11]—changing discrete labels associated with
boundary conditions to continuous variables.

The type of the topological twist that leads to 2d .0; 2/ theory TŒM4�, namely
the Vafa–Witten twist, can be realized on the world-volume of fivebranes wrapped
on a coassociative submanifold M4 inside a seven-dimensional manifold with G2

holonomy [BVS95, BT96]. Locally, in the vicinity of M4, this seven-dimensional
manifold always looks like the bundle of self-dual 2-forms over M4 (see, e.g.,
[AG04] for a pedagogical review). This realization of the 6d .2; 0/ theory on
the world-volume of M-theory fivebranes embedded in 11d space-time can provide
some useful clues about the 2d superconformal theory TŒM4�, especially when the
number of fivebranes is large, N  1, and the system admits a holographic dual
supergravity description (cf. Appendix 1 for a brief survey).

In the case of fivebranes on coassociative 4-manifolds, the existence of the
holographic dual supergravity solution [GKW00, GK02, BB13] requires M4 to
admit a conformally half-flat structure, i.e., metric with anti-self-dual Weyl tensor.
Since the signature of the 4-manifold can be expressed as the integral

�.M4/ D 1

12�2

Z

M4

	jWCj2 � jW�j2



(11)

where W˙ are the self-dual and anti-self-dual components of the Weyl tensor, it
suggests to focus on 2d N D .0; 2/ superconformal theories TŒM4� associated
with negative definite M4. As we explained earlier, negative definite 4-manifolds
are very simple in the smooth category and, curiously, WC D 0 also happens to
be the condition under which instantons on M4 admit a description [AW77] that
involves holomorphic vector bundles (on the twistor space of M4), monads, and
other standard tools from .0; 2/model building.

The holographic dual and the anomaly of the fivebrane system also allow to
express left and right moving central charges of the 2d N D .0; 2/ superconformal
theory TŒM4� via basic topological invariants (2) of the 4-manifold. Thus, in the case
of the 6d .2; 0/ theory of type G one finds [BB13, ABT10]:

cR D 3

2
.�C �/rG C .2�C 3�/dGhG

cL D �rG C .2�C 3�/dGhG (12)
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Table 1 The dictionary
between geometry and
physics

4-Manifold M4 2d .0; 2/ theory TŒM4�

Handle slides Dualities of TŒM4�

Boundary conditions Vacua of TŒM3�

3d Kirby calculus Dualities of TŒM3�

Cobordism Domain wall (interface)

From M�

3 to MC

3 Between TŒM�

3 � and TŒMC

3 �

Gluing Fusion

Vafa–Witten Flavored (equivariant)

Partition function Elliptic genus

ZVW.cobordism/ Branching function

Instanton number L0
Embedded surfaces Chiral operators

Donaldson polynomials Chiral ring relations

where rG D rank.G/, dG D dim.G/, and hG is the Coxeter number. In particular,
for a single fivebrane (rG D 1 and dGhG D 0) these expressions give cL D � and
cR D 3 C 3bC2 , suggesting that b�2 is the number of Fermi multiplets4 in the 2d
N D .0; 2/ theory TŒM4IU.1/�. This conclusion agrees with the direct counting of
bosonic and fermionic Kaluza–Klein modes [Gan96] and confirms (8). As we shall
see in the rest of this paper, the basic building blocks of 2d theories TŒM4� are indeed
very simple and, in many cases, can be reduced to Fermi multiplets charged under
global flavor symmetries (that are gauged in gluing operations). However, the most
interesting part of the story is about operations on 2d .0; 2/ theories that correspond
to gluing.

The paper is organized as follows. In Sect. 2 we describe the general ideas
relating 4-manifolds and the corresponding theories TŒM4�, fleshing out the basic
elements of the dictionary in Table 1. Then, we study the proposed rules in more
detail and present various tests as well as new predictions for Vafa–Witten partition
functions on 4-manifolds (in Sect. 3) and for 2d walls and boundaries in 3d N D 2
theories (in Sect. 4).

The relation between Donaldson invariants of M4 and QC-cohomology of the
corresponding 2d .0; 2/ theory TŒM4� will be discussed elsewhere. More generally,
and as we already remarked earlier, it would be interesting to study to what extent
TŒM4�, viewed as an invariant of 4-manifolds, can detect smooth structures. In
particular, it would be interesting to explore the relation between TŒM4� and other
invariants of smooth 4-manifolds originating from physics, such as the celebrated
Seiberg–Witten invariants [SW94, Wit94] or various attempts based on gravity
[Roh89, Ass96, Pfe04, Sla09].

4Recall, that a free Fermi multiplet contributes to the central charge .cL; cR/ D .1; 0/.
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2 2d Theories Labeled by 4-Manifolds

Building theories TŒM4� in many ways follows the same set of rules and tricks
as building 4-manifolds. Here, we describe some of the basic operations in the
world of 4-manifolds and propose their realization in the world of supersymmetric
gauge theories. While the emphasis is certainly on explaining the general rules,
we supplement each part with concrete examples and/or new calculations. More
examples, with further details, and new predictions based on the proposed relations
in Table 1 will be discussed in Sects. 3 and 4.

2.1 Kirby Diagrams and Plumbing

We start by reviewing the standard construction of 4-manifolds, based on a
handle decomposition, mostly following [GS99] (see also [Akb12]). Thus, if M4

is connected, we take a single 0-handle (Š D4) and successively attach to it k-
handles (Š Dk�D4�k) with k D 1; 2; 3. Then, depending on the application in mind,
we can either stop at this stage (if we are interesting in constructing non-compact
4-manifolds) or cap it off with a 4-handle (Š D4) if the goal is to build a compact
4-manifold.

The data associated with this process is usually depicted in the form of a Kirby
diagram, on which every k-handle (Š Dk � D4�k) is represented by its attaching
region, Sk�1 � D4�k, or by its attaching sphere, Sk�1. To be a little more precise, a
Kirby diagram of a smooth connected 4-manifold M4 usually shows only 1-handles
and 2-handles because 3-handles and 4-handles attach essentially in a unique way
[LP72]. Moreover, in our applications we typically will not see 1-handles either (due
to our intention to work with simply connected 4-manifolds). Indeed, regarding a
handle decomposition of M4 as a cell complex, its k-th homology group becomes
an easy computation in which k-handles give rise to generators and .kC 1/-handles
give rise to relations. The same interpretation of the handlebody as a cell complex
can be also used for the computation of the fundamental group, where 1-handles
correspond to generators and 2-handles lead to relations. Therefore, the easiest way
to ensure that M4 is simply connected is to avoid using 1-handles at all.

Then, for this class of 4-manifolds, Kirby diagrams only contain framed circles,
i.e., attaching spheres of 2-handles, that can be knotted and linked inside S3 (=
boundary of the 0-handle). To summarize, we shall mostly work with 4-manifolds
labeled by framed links in a 3-sphere,

M4 W Ka1
1 Ka2

2 : : : Kan
n (13)

where Ki denotes the i-th component of the link and ai 2 Z is the corresponding
framing coefficient. Examples of Kirby diagrams for simple 4-manifolds are shown
in Figs. 1, 2, and 3.



Fivebranes and 4-Manifolds 163

a1 a2 an
a1 a2 an

=.... ....

Fig. 1 A Kirby diagram and the corresponding plumbing graph for the plumbing 4-manifold
associated with the string .a1; a2; : : : ; an/

E8 =
−2  −2  −2  −2  −2  −2  −2

=
−2  −2  −2  −2  −2  −2  −2

−2
−2

Fig. 2 A Kirby diagram and the corresponding plumbing graph for the E8 manifold with b2 D
�� D 8 and @E8 � †.2; 3; 5/

Fig. 3 Kirby diagram of a
4-manifold bounded by a
3-torus T3

0

0

0

At this stage, it is important to emphasize that Kirby diagrams are not quite
unique: there are certain moves which relate different presentations of the same 4-
manifold. We refer the reader to excellent monographs [GS99, Akb12] on Kirby
calculus, of which most relevant to us is the basic tool called 2-handle slide.
Indeed, since our assumptions led us to consider 4-manifolds built out of 2-
handles,5 occasionally we will encounter the operation of sliding a 2-handle i over a
2-handle j. It changes the Kirby diagram and, in particular, the framing coefficients:

aj 7! ai C aj ˙ 2lk.Ki;Kj/

ai 7! ai (14)

where the sign depends on the choice of orientation (“C” for handle addition and
“�” for handle subtraction) and lk.Ki;Kj/ denotes the linking number. We will see in
what follows that this operation corresponds to changing the basis of flavor charges.

In the class of non-compact simply connected 4-manifolds (13) labeled by
framed links, the simplest examples clearly correspond to Kirby diagrams where all

5Another nice property of such 4-manifolds is that they admit an achiral Lefschetz fibration over
the disk [Har79].
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Ki are copies of the unknot. Many6 such 4-manifolds can be equivalently represented
by graphs with integer “weights” assigned to the vertices, somewhat similar to
quiver diagrams that conveniently encode the spectrum of fields and interactions
in a large class of gauge theories. The 4-manifolds in question are constructed by
gluing together n copies of disk bundles over 2-spheres, D2

i ! S2i , each labeled
by an integer Euler class ai 2 Z. Switching the role of the base and the fiber in
the gluing process, one builds a simply connected 4-manifold M4, called plumbing,
whose handle decomposition involves n two-handles (besides the “universal” 0-
handle at the bottom). As usual, we represent such 4-manifolds by Kirby diagrams
drawing the attaching framed circles Ki of 2-handles inside S3.

The simplest non-trivial plumbing manifold corresponds to the Kirby diagram:

−p

(15)

In other words, its handlebody decomposition contains only one 2-handle with
framing �p, and the resulting manifold M4 is a twisted D2 bundle over S2 or, as
a complex manifold, the total space of the O.�p/ bundle over CP1,

M4 W O.�p/! CP1 (16)

For p > 0, which we are going to assume in what follows, M4 is a negative definite
plumbing manifold bounded by the Lens space L.p; 1/.

Another, equivalent way to encode the same data is by a plumbing graph ‡ .
In this presentation, each attaching circle Ki of a 2-handle is replaced by a vertex
with an integer label ai, and an edge between two vertices i and j indicates that the
corresponding attaching circles Ki and Kj are linked. Implicit in the plumbing graph
is the orientation of edges, which, unless noted otherwise, is assumed to be such that
all linking numbers areC1. More generally, one can consider plumbings of twisted
D2 bundles over higher-genus Riemann surfaces, see, e.g., [Akb12, Sect. 2.1], in
which case vertices of the corresponding plumbing graphs are labeled by Riemann
surfaces (not necessarily orientable) in addition to the integer labels ai. However,
such 4-manifolds typically have non-trivial fundamental group and we will not
consider these generalizations here, focusing mainly on plumbings of 2-spheres.

The topology of a 4-manifold M4 constructed via plumbing of 2-spheres is easy to
read off from its Kirby diagram or the corresponding plumbing graph. Specifically,
M4 is a non-compact simply connected 4-manifold, and one can think of Ki as
generators of � D H2.M4IZ/ with the intersection pairing

6But not all! See Fig. 3 for an instructive (counter)example.
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Qij D
(

lk.Ki;Kj/; if i ¤ j

ai; if i D j
(17)

For example, the Kirby diagram in Fig. 1 corresponds to

Q D

0
BBBBBBB@

a1 1 0 � � � 0

1 a2 1
:::

0 1
: : : 0

:::
: : :

: : : 1

0 � � � 0 1 an

1
CCCCCCCA

(18)

A further specialization to .a1; a2; : : : ; an/ D .�2;�2; : : : ;�2/ for obvious reasons
is usually referred to as An, whereas that in Fig. 2 is called E8.

Similarly, given a weighted graph ‡ , one can plumb disk bundles with Euler
numbers ai over 2-spheres together to produce a 4-manifold M4.‡/ with boundary
M3.‡/ D @M4.‡/, such that

b1.M4/ D b1.‡/ (19a)

b2.M4/ D #fvertices of ‡g (19b)

In particular, aiming to construct simply connected 4-manifolds, we will avoid
plumbing graphs that have loops or self-plumbing constructions. Therefore, in what
follows we typically assume that ‡ is a tree, relegating generalizations to future
work. Besides the basic topological invariants (19), the plumbing tree ‡ also gives
a nice visual presentation of the intersection matrix Q.‡/ D .Qij/, which in the
natural basis of H2.M4IZ/ has entries

Qij D

8
ˆ̂<

ˆ̂:

ai; if i D j

1; if i is connected to j by an edge

0; otherwise

(20)

The eigenvalues and the determinant of the intersection form Q can be also easily
extracted from ‡ by using the algorithm described below in (32) and illustrated
in Fig. 4.

Note, this construction of non-compact 4-manifolds admits vast generalizations
that do not spoil any of our assumptions (including the simple connectivity of
M4). Thus, in a Kirby diagram of an arbitrary plumbing tree, we can replace every
framed unknot (= attaching circle of a 2-handle) by a framed knot, with a framing
coefficient ai. This does not change the homotopy type of the 4-manifold, but does
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a1 a2 an

a20 an

b

a
2

a
n

....

....

a1

a1 an

a2 an....

b

....

b

c

1
- - -.... 1

....
1

c

-1

Fig. 4 For a plumbing tree, the eigenvalues (and, therefore, the determinant) of the intersection
form Q can be computed by orienting the edges toward a single vertex and then successively
eliminating them using the two rules shown here

affect the boundary M3 D @M4. Put differently, all the interesting information about
the knot can only be seen at the boundary.

Another important remark is that, although the description of 4-manifolds via
plumbing graphs is very nice and simple, it has certain limitations that were
already mentioned in the footnote 6. Indeed, if the 4-manifold has self-plumbings
or ‡ has loops, it may not be possible to consistently convert the Kirby diagram
into a plumbing graph without introducing additional labels. An example of such
Kirby diagram is shown in Fig. 3, where each pair of the attaching circles Ki with
framing ai D 0 has linking number zero. The corresponding 4-manifold, however,
is different from that associated with three unlinked copies of the unknot (with
plumbing graph that has three vertices and no edges) and the same values of framing
coefficients.

Finally, we point out that, since all 4-manifolds constructed in this section have
a boundary M3 D @M4, the corresponding 2d N D .0; 2/ theory TŒM4� that will
be described below should properly be viewed as a boundary condition for the 3d
N D 2 theory TŒM3�. For example, the plumbing on An has the Lens space boundary
M3 D L.n C 1; n/, while the plumbing on E8 has the Poincaré sphere boundary
M3 D †.2; 3; 5/, where

†.a; b; c/ WD S5 \ f.x; y; z/ 2 C
3 j xa C yb C zc D 0g (21)
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is the standard notation for a family of Brieskorn spheres. This remark naturally
leads us to the study of boundaries M3 and the corresponding theories TŒM3� for
more general sphere plumbings and 4-manifolds (13) labeled by framed links.

2.2 TŒM4� as a Boundary Condition

Since we want to build 4-manifolds as well as the corresponding theories TŒM4� by
gluing basic pieces, it is important to develop the physics-geometry dictionary for
manifolds with boundary, which will play a key role in gluing and other operations.

2.3 Vacua of the 3d N D 2 Theory TŒM3�

Our first goal is to describe supersymmetric vacua of the 3d N D 2 theory TŒM3�

associated with the boundary7 of the 4-manifold M4,

M3 D @M4 (22)

This relation between M3 and M4 translates into the statement that 2d N D .0; 2/

theory TŒM4� is a boundary theory for the 3d N D 2 theory TŒM3� on a half-space
RC � R

2. In order to see this, it is convenient to recall that both theories TŒM3� and
TŒM4� can be defined as fivebrane configurations (or, compactifications of 6d .2; 0/
theory) on the corresponding manifolds, M3 and M4. This gives a coupled system of
2d-3d theories TŒM4� and TŒM3� since both originate from the same configuration in
six dimensions, which looks like M3�RC�R2 near the boundary and M4�R2 away
from the boundary. In other words, a 4-manifold M4 with a boundary M3 defines a
half-BPS (B-type) boundary condition in a 3d N D 2 theory TŒM3�.

Therefore, in order to understand a 2d theory TŒM4� we need to identify a 3d
theory TŒM3� or, at least, its necessary elements.8 One important characteristic of
a 3d N D 2 theory TŒM3� is the space of its supersymmetric vacua, either in flat

7Depending on the context, sometimes M3 will refer to a single component of the boundary.
8While this problem has been successfully solved for a large class of 3-manifolds [DGG1, CCV,
DGG2], unfortunately it will not be enough for our purposes here and we need to resort to matching
M3 with TŒM3� based on identification of vacua, as was originally proposed in [DGH11]. One
reason is that the methods of loc. cit. work best for 3-manifolds with sufficiently large boundary
and/or fundamental group, whereas in our present context M3 is itself a boundary and, in many
cases, is a rational homology sphere. As we shall see below, 3d N D 2 theories TŒM3� seem to
be qualitatively different in these two cases; typically, they are (deformations of) superconformal
theories in the former case and massive 3d N D 2 theories in the latter. Another, more serious
issue is that 3d theories TŒM3� constructed in [DGG1] do not account for all flat connections on M3,
which will be crucial in our applications below. This second issue can be avoided by considering
larger 3d theories T.ref/ŒM3� that have to do with refinement/categorification and mix all branches
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space-time R3, or on a circle, i.e., in space-time S1 �R
2. This will be the subject of

our discussion here.
Specifically, when 3d N D 2 theory TŒM3IG� is considered on a circle,

its supersymmetric ground states are in one-to-one correspondence with gauge
equivalence classes of flat GC connections on M3 [DGH11]:

dACA ^A D 0 (23)

This follows from the duality between fivebranes on S1 and D4-branes combined
with the fact that D4-brane theory is partially twisted along the 3-manifold M3. The
partial twist in the directions of M3 is the dimensional reduction of the Vafa–Witten
twist [VW94] as well as the GL twist [KW07] of the N D 4 super-Yang-Mills in
four dimensions. The resulting NT D 4 three-dimensional topological gauge theory
on M3 is the equivariant version of the Blau–Thompson theory [BT96, BT97] that
localizes on solutions of (23), where A D AC iB is the Lie.GC/-valued connection.

From the viewpoint of the topological Vafa–Witten theory on M4, solutions to
Eq. (23) provide boundary conditions for PDEs in four dimensions. To summarize,

boundary conditions

on M4

 ! complex flat

connections on M3

 ! vacua of TŒM3�

In general, complex flat connections on M3 are labeled by representations of the
fundamental group �1.M3/ into GC, modulo conjugation,

VTŒM3 IG� D Rep .�1.M3/! GC/ =conj. (24)

In particular, in the basic case of abelian theory (i.e., a single fivebrane), the vacua
of the 3d N D 2 theory TŒM3� are simply abelian representations of �1.M3/, i.e.,
elements of H1.M3/. In the non-abelian case, GC flat connection on M3 is described
by nice algebraic equations, which play an important role in complex Chern–Simons
theory and its relation to quantum group invariants [Guk05].

As will become clear shortly, for many simply connected 4-manifolds (13) built
from 2-handles—such as sphere plumbings represented by trees (i.e., graphs without
loops)—the boundary M3 is a rational homology sphere (b1.M3/ D 0) in which case
the theory TŒM3IU.1/� has finitely many isolated vacua,

#fvacua of TŒM3IU.1/�g D jH1.M3IZ/j (25)

Therefore, the basic piece of data that characterizes M3 D @M4 and the corre-
sponding 3d theory TŒM3� is the first homology group H1.M3IZ/. Equivalently,
when H1.M3IZ/ is torsion, by the Universal Coefficient Theorem we can label

of flat connections [FGSA, FGP13]. Pursuing this approach should lead to new relations with rich
algebraic structure and functoriality of knot homologies.
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the vacua of TŒM3IU.1/� by elements of H2.M3IZ/. Indeed, given a 1-cycle �
in M3, the Poincaré dual class Œ�� 2 H2.M3IZ/ can be interpreted as the first Chern
class c1.L/ D Œ�� of a complex line bundle L, which admits a flat connection
whenever the first Chern class is torsion. The (co)homology groups of the boundary
3-manifold M3—that, according to (25), determine the vacua of TŒM3�—are usually
easy to read off from the Kirby diagram of M4.

Now, once we explained the physical role of the boundary M3 D @M4, we need
to discuss its topology in more detail that will allow us to describe complex flat
connections on M3 and, therefore, determine the vacua of the 3d N D 2 theory
TŒM3�. In general, the boundary of a simply connected 4-manifold (13) labeled by
a framed link is an integral surgery on that link in S3. This operation consists of
removing the tubular neighborhood N.Ki/ Š S1 � D2 of each link component and
then gluing it back in a different way, labeled by a non-trivial self-diffeomorphism
� W T2 ! T2 of the boundary torus @N.Ki/ Š T2.

This description of the boundary 3-manifold M3 is also very convenient for
describing complex flat connections. Namely, from the viewpoint of T2 that divides
M3 into two parts, complex flat connections on M3 are those which can be
simultaneously extended from the boundary torus to M3 n Ki and N.Ki/ Š S1 �D2,
equivalently, the intersection points

VTŒM3� D VTŒM3nK� \ �
	
VTŒS1�D2�



(26)

Here, the representation varieties of the knot complement and the solid torus can
be interpreted as .A;B;A/ branes in the moduli space of G Higgs bundles on T2.
In this interpretation, � acts as an autoequivalence on the category of branes, see,
e.g., [Guk07] for some explicit examples and the computation of (26) in the case
GC D SL.2;C/.

Coming back to the vacua (25), the cohomology group H2.M3IZ/ can be
easily deduced from the long exact sequence for the pair .M4;M3/ with integer
coefficients:

0! H2.M4;M3/! H2.M4/ ! H2.M3/! H3.M4;M3/! H3.M4/! 0

k k k k
Z

b2 ˚ T2 Z
b2 ˚ T1 T1 T2

(27)

where T1 and T2 are torsion groups. Since T2 ! T1 is injective, one can introduce
t D jT1j=jT2j. Then,

jH1.M3IZ/j D t2j det Qj (28)

In particular, when both torsion groups T1 and T2 are trivial, we simply have a short
exact sequence

0 �! �
Q��! �� �! H2.M3/ �! 0 (29)
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so that H1.M3/ Š H2.M3/ is isomorphic to Z
b2=Q.Zb2 /, generated by the meridians

�i of the link components Ki, modulo relations imposed by the intersection form Q
of the 4-manifold (13):

H1.M3IZ/ D ZŒ�1; : : : ; �n�=imQ (30)

It follows that, in the case of G D U.1/ (i.e., a single fivebrane), the representation
variety (24) is parametrized by the eigenvalues xi 2 C

� of the GC-valued
holonomies along the 1-cycles �i, subject to the relations in (30):

nY

iD1
x

Qij

i D 1 8j D 1; : : : ; n (31)

There is a similar description of VTŒM3IG� for non-abelian groups as well [Guk05].
One important consequence of this calculation is that H1.M3IZ/ is finite and,
therefore, the 3d N D 2 theory TŒM3� has finitely many vacua if and only if all
eigenvalues of the intersection form QM4 are non-zero. If Q has zero eigenvalues,
then H1.M3IZ/ contains free factors. This happens, for example, for knots with
zero framing coefficients, a D 0. Every such Kirby diagram leads to a boundary 3-
manifold M3, whose first homology group is generated by the meridian� of the knot
K with no relations. This clarifies, for instance, why the boundary of a 4-manifold
shown in Fig. 3 has H1.M3IZ/ Š Z

3.
If M4 is a sphere plumbing represented by a plumbing tree ‡ , then the

eigenvalues of Q can be obtained using a version of the Gauss algorithm that consists
of the following two simple steps (see, e.g., [Sav02]):

1. Pick any vertex in ‡ and orient all edges toward it. Since ‡ is a tree, this is
always possible.

2. Recursively applying the rules in Fig. 4 remove the edges, replacing the integer
weights ai (= framing coefficients of the original Kirby diagram) by rational
weights.

In the end of this process, when there are no more edges left, the rational weights
ri are precisely the eigenvalues of the intersection form Q and

det.Q/ D
Y

i

ri (32a)

sign.Q/ D #fijri > 0g � #fijri < 0g (32b)

For example, applying this algorithm to the plumbing tree in Fig. 5 we get

det.Q/ D
 

bC
kX

iD1

qi

pi

!
�

kY

iD1
pi (33)
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Fig. 5 Plumbing tree of a
4-manifold bounded by a
Seifert fibration. We assume
b 
 �1 and aij 
 �2

a11 a12

....

b

....

....

....
a1n

1

a21 a22
a2n

2

ak1 ak2
akn

k

where � pi
qi
D Œai1; : : : ; aini � are given by the continued fractions

� pi

qi
D ai1 �

1

ai2 �
1

: : : � 1

aini

(34)

The boundary 3-manifold in this case is the Seifert fibered homology 3-sphere
M3.bI .p1; q1/; : : : ; .pk; qk// with singular fibers of orders pi � 1. It is known that
any Seifert fibred rational homology sphere bounds at least one definite form. In
our applications here, we are mostly interested in the choice of orientation, such
that a Seifert manifold M3 bounds a plumbed 4-manifold with negative definite
intersection form. Then, M3 is the link of a complex surface singularity.

2.4 Quiver Chern–Simons Theory

We already mentioned a striking similarity between plumbing graphs and quivers.
The latter are often used to communicate quickly and conveniently the field content
of gauge theories, in a way that each node of the quiver diagram represents a simple
Lie group and every edge corresponds to a bifundamental matter. Here, we take this
hint a little bit more seriously and, with a slight modification of the standard rules,
associate a 3d N D 2 gauge theory to a plumbing graph ‡ , which will turn out to
be an example of the sought-after theory TŒM3�.

Much as in the familiar quiver gauge theories, to every vertex of ‡ we are going
to associate a gauge group factor. Usually, the integer label of the vertex represents
the rank. In our present example, however, we assign to each vertex a gauge group
U.1/ with pure N D 2 Chern–Simons action at level k determined by the integer
weight (= the framing coefficient) of that vertex:

S D k

4�

Z
d3xd4� V†

D k

4�

Z
.A ^ dA � ��C 2D�/ (35)
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Here, V D .A�; �; �;D/ is the three-dimensional N D 2 vector superfield and
† D D

˛
D˛V is the field strength superfield.

Similarly, to every edge of ‡ that connects a vertex “i” with a vertex “j” we
associate 3d N D 2 Chern–Simons coupling between the corresponding vector
superfields Vi and Vj:

S D 1

2�

Z
d3xd4� Vi†j (36)

Both of these basic building blocks can be combined together with the help of the
symmetric bilinear form (20). As a result, to a plumbing graph ‡ we associate the
following 3d N D 2 theory:

TŒM3IU.1/� D

8
ˆ̂<

ˆ̂:

U.1/n quiver Chern–Simons theory with Lagrangian

L D
nX

i;jD1

Z
d4�

Qij

4�
Vi†j D 1

4�

Z
Q.A; dA/C : : :

(37)

where n D rank.Q/ and the ellipses represent N D 2 supersymmetric completion
of the bosonic Chern–Simons action. Note, since the gauge group is abelian, the
fermions in the N D 2 supersymmetric completion of this Lagrangian decouple.
As for the bosonic part, quantum-mechanically it only depends on the discriminant
group of the lattice .�;Q/,

D D H1.M3IZ/ (38)

and a Q=Z-valued quadratic form q on D [KS11].
We claim that the quiver Chern–Simons theory (37) provides a Lagrangian

description of the 3d N D 2 theory TŒM3IU.1/� for any boundary 3-manifold M3.
Indeed, by a theorem of Rokhlin, every closed oriented 3-manifold M3 bounds a
4-manifold of the form (13) and can be realized as an integral surgery on some
link in S3. Denoting by Q the intersection form (resp. the linking matrix) of
the corresponding 4-manifold (resp. its Kirby diagram), we propose 3d N D 2

theory (37) with Chern–Simons coefficients Qij to be a Lagrangian description of
the boundary theory TŒM3IU.1/�.

To justify this proposal, we note that supersymmetric vacua of the theory (37)
on S1 � R

2 are in one-to-one correspondence with solutions to (31). Indeed, upon
reduction on a circle, each 3d N D 2 vector multiplet becomes a twisted chiral
multiplet, whose complex scalar component we denote �i D log xi. The Chern–
Simons coupling (37) becomes the twisted chiral superpotential, see, e.g., [DGG1,
FGP13]:

eW D
nX

i;jD1

Qij

2
log xi � log xj (39)
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Extremizing the twisted superpotential with respect to the dynamical fields �i D
log xi gives equations for supersymmetric vacua:

exp

 
@eW
@ log xi

!
D 1 (40)

which reproduce (31).

2.5 The Lens Space Theory

Of particular importance to the construction of two-dimensional theories TŒM4� are
special cases that correspond to 4-manifolds bounded by Lens spaces L.p; q/. We
remind that the Lens space L.p; q/ is defined as the quotient of S3 D f.z1; z2/ 2
C
2 j jz1j2 C jz2j2 D 1g by a Zp-action generated by

.z1; z2/ � .e2� i=pz1; e
2� iq=pz2/ (41)

We assume p and q to be coprime integers in order to ensure that Zp-action is free
and the quotient is smooth. Two Len’s spaces L.p; q1/ and L.p; q2/ are homotopy
equivalent if and only if q1q2 � ˙n2 mod p for some n 2 N, and homeomorphic if
and only if q1 � ˙q˙12 mod p. Reversing orientation means L.p;�q/ D �L.p; q/.
Note, supersymmetry (of the cone built on the Lens space) requires q C 1 � 0

mod p.
In the previous discussion we already encountered several examples of

4-manifolds bounded by Lens spaces. These include the disk bundle over S2 with
the Kirby diagram (15) and the linear plumbing on Ap�1, which are bounded by
L.p; 1/ and L.p;�1/, respectively. In particular, for future reference we write

@Ap D L.pC 1; p/ (42)

In fact, a more general linear plumbing of oriented circle bundles over spheres with
Euler numbers a1; a2; : : : ; an (see Fig. 1) is bounded by a Lens space L.p; q/, such
that Œa1; a2; : : : ; an� is a continued fraction expansion for � p

q ,

� p

q
D a1 �

1

a2 �
1

: : : � 1

an

(43)

When p > q > 0 we may restrict the continued fraction coefficients to be integers
ai � �2, for all i D 1; : : : ; n, so that L.p; q/ is the oriented boundary of the negative
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definite plumbing associated with the string .a1; a2; : : : ; an/. With these orientation
conventions, the Lens space L.p; q/ is defined by a .� p

q /-surgery on an unknot in

S3. We also point out that any lens space L.p; q/ bounds both positive and negative
definite forms Q. (Note, according to the Donaldson’s theorem [Don83], the only
definite forms that S3 bounds are the diagonal unimodular forms.)

Next, let us discuss 3d N D 2 theory TŒM3IG� for M3 D L.p; q/ and G D U.N/.
First, since H1.M3/ D Zp we immediately obtain the number of vacua on S1 � R

2,
cf. (25):

#fvacua of TŒL.p; q/IU.N/�g D .N C p � 1/Š
NŠ.p � 1/Š (44)

which, according to (24), is obtained by counting U.N/ flat connections on S3=Zp.
Incidentally, this also equals the number of SU.p/ representations at level N, which
is crucial for identifying Vafa–Witten partition functions on ALE spaces with WZW
characters [Nak94, VW94].

There are several ways to approach the theory TŒL.p; q/IU.N/�, in particular, to
give a Lagrangian description, that we illustrate starting with the simple case of
N D 1 and q D 1. For example, one approach is to make use of the Hopf fibration
structure on the Lens space L.p; 1/ D S3=Zp and to reduce the M-theory setup
with a fivebrane on the S1 fiber. This reduction was very effective, e.g., in analyzing
a similar system of fivebranes on Lens spaces with half as much supersymmetry
[AV01]. It yields type IIA string theory with a D4-brane wrapped on the base S2 of
the Hopf fibration with �p units of Ramond–Ramond 2-form flux through the S2.
The effective theory on the D4-brane is 3d N D 2 theory with U.1/ gauge group
and supersymmetric Chern–Simons coupling at level �p induced by the RR 2-form
flux, thus, motivating the following proposal:

TŒL.p; 1/IU.1/� D U.1/ SUSY Chern–Simons theory at level � p (45)

To be more precise, this theory as well as quiver Chern–Simons theories (37) labeled
by plumbing graphs in addition includes free chiral multiplets, one for each vertex
in the plumbing graph. Since in the abelian, G D U.1/ case these chiral multiplets
decouple and do not affect the counting of GC flat connections, we tacitly omit
them in our present discussion. However, they play an important role and need to be
included in the case of G D U.N/.

Another approach, that also leads to (45), is based on the Heegaard splitting of
M3. Indeed, as we already mentioned earlier, L.p; q/ is a Dehn surgery on the unknot
in S3 with the coefficient � p

q . It means that M3 D L.p; q/ can be glued from two

copies of the solid torus, S1�D2, whose boundaries are identified via non-trivial map
� W T2 ! T2. The latter is determined by its action on homology H1.T2IZ/ Š Z˚Z
which, as usual, we represent by a 2 � 2 matrix
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Fig. 6 (a) A genus-1
Heegaard splitting of a
3-manifold M3 becomes a 4d
N D 4 super-Yang-Mills
theory (b) coupled to
three-dimensional N D 2

theories TŒM�

3 � and TŒMC

3 � at
the boundary

4d3d
T[M3

–]

M3
–

a b
3d
T[M3

+ ]

M3
+

� D
�

p r
q s

�
(46)

with ps � qr D 1. If .� p
q / D Œa1; a2; : : : ; an� is given by the continued fraction

expansion (43), we can explicitly write

�
p r
q s

�
D
��a1 �1
1 0

���a2 �1
1 0

�
: : :

��an �1
1 0

�
(47)

This genus-1 Heegaard decomposition has a simple translation to physics,
illustrated in Fig. 6. Again, let us first consider the simple case with N D 1

and q D 1. Then, the 6d .0; 2/ theory on T2 gives 4d N D 4 supersymmetric
Maxwell theory, in which the SL.2;Z/ action (46) on a torus is realized as the
electric–magnetic duality transformation. On the other hand, each copy of the solid
torus defines a “Lagrangian” boundary condition that imposes Dirichlet boundary
condition on half of the N D 4 vector multiplet and Neumann boundary condition
on the other half. Hence, the combined system that corresponds to the Heegaard
splitting of L.p; 1/ is 4d N D 4Maxwell theory on the interval with two Lagrangian
boundary conditions that are related by an S-duality transformation � D 	 p �1

1 0



and

altogether preserve N D 2 supersymmetry in three non-compact dimensions.
Following the standard techniques [HW97, GW09], this theory can be realized

on the world-volume of a D3-brane stretched between two fivebranes, which impose
suitable boundary conditions at the two ends of the interval. If both boundary
conditions were the same, we could take both fivebranes to be NS5-branes.
However, since in this brane approach the S-duality of N D 4 gauge theory is
realized as S-duality of type IIB string theory, it means that the two fivebranes on
which D3-brane ends are related by a transformation (46). In particular, if we choose
one of the fivebranes to be NS5, then the second fivebrane must be a .p; q/ fivebrane,
with D5-brane charge p and NS5-brane charge q, as shown in Fig. 7. In the present
case, q D 1 and the effective theory on the D3-brane stretched between NS5-brane
and a 5-brane of type .p; 1/ is indeed N D 2 abelian Chern–Simons theory (35) at
level �p, in agreement with (45).

This approach based on Heegaard splitting and the brane construction suggests
that TŒL.p; q/IU.1/� associated with a more general gluing automorphism (46)
should be a 3d N D 2 theory on the D3-brane stretched between NS5-brane
and a 5-brane of type .p; q/. This theory on the D3-brane, shown in Fig. 7, indeed
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(p,q)

D3

NS5

Fig. 7 The effective 3d N D 2 theory on a D3-brane stretched between NS5-brane and a 5-brane
of type .p; q/ is a Chern–Simons theory at level k D � p

q . We describe it as a “quiver Chern–Simons

theory” with integer levels ai given by the continued fraction � p
q D Œa1; : : : ; an�

has the effective Chern–Simons coupling at level � p
q [KOO99, BHKK99, Oht99].

However, a better way to think about this N D 2 theory—that avoids using
fractional Chern–Simons levels and that we take as a proper Lagrangian formulation
of TŒL.p; q/IU.1/�—is based on writing the general SL.2;Z/ element (46) as a word
in standard S and T generators that obey S4 D .ST/3 D id,

� D S Ta1 S Ta2 � � � S Tan (48)

and implementing it as a sequence of operations on the 3d N D 2 abelian gauge
theory a la [Wit03]. Specifically, the T element of SL.2;Z/ acts by adding a level-1
Chern–Simons term,

T W �L D 1

4�

Z
d4� V† D 1

4�
A ^ dAC � � � (49)

while the S transformation introduces a new U.1/ gauge (super)field eA coupled to
the “old” gauge (super)field A via Chern–Simons term

S W �L D 1

2�

Z
d4� eV† D 1

2�
eA ^ dAC � � � (50)

Equivalently, the new vector superfield containing eA couples to the “topological”
current �F D �dA carried by the magnetic charges for A.

Using this SL.2;Z/ action on abelian theories in three dimensions, we propose
the following candidate for the generalization of the Lens space theory (45) to
jqj � 1:

TŒL.p; q/IU.1/� D U.1/n theory with Chern–Simons coefficients Qij (51)

where the matrix Q is given by (18) and � p
q D Œa1; : : : ; an� is the continued

fraction expansion (43). Note, the matrix of Chern–Simons coefficients in this Lens
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space theory can be conveniently represented by a quiver diagram identical to the
plumbing graph in Fig. 1. The proposal (51) for the Lens space theory is, in fact, a
special case of (37) and can be justified in the same way, by comparing the critical
points of the twisted superpotential (39) with solutions to (31).

Both methods that we used to derive the basic 3d N D 2 Lens space theory (45)
suggest a natural generalization to G D U.N/:

TŒL.p; 1/IU.N/� D
(

U.N/ SUSY Chern–Simons theory at level � p

with a chiral multiplet in the adjoint representation
(52)

which corresponds to replacing a single D3-brane in the brane construction on Fig. 7
by a stack of N D3-branes. Indeed, the Witten index ofN D 2Chern–Simons theory
with gauge group SU.N/ and level p (with or without super-Yang-Mills term) is
equal to the number of level p representations of affine SU.N/, see [Wit99] and also
[BHKK99, Oht99, Smi10]:

ISU.N/p D
.N C p � 1/Š
.N � 1/ŠpŠ (53)

After multiplying by p
N to pass from the gauge group SU.N/ to U.N/ D U.1/�SU.N/

ZN
we get the number of SU.p/N representations (44), which matches the number
of U.N/ flat connections on the Lens space L.p; 1/. Note that the role of the
level and the rank are interchanged compared to what one might naturally expect.
An alternative UV Lagrangian for the theory (52), that makes contact with the
cohomology of the Grassmannian [Wit93, KW13], is a N D 2U.N/ Chern–Simons
action at level � p

2
coupled to a chiral multiplet in the adjoint representation and p

chiral multiplets in the anti-fundamental representation. This theory was studied
in detail in [GP15], where further connections to integrable systems and quantum
equivariant K-theory of vortex moduli spaces were found.

2.6 3d N D 2 Theory TŒM3IG� for General M3 and G

Now it is clear how to tackle the general case of N fivebranes on a 4-manifold M4

with boundary M3 D @M4. This setup leads to a 2d N D .0; 2/ theory TŒM4IG� on
the boundary of the half-space coupled to a 3d N D 2 theory TŒM3IG� in the bulk,
with the group G of rank N and Cartan type A, D, or E.

For a general class of 4-manifolds (13) considered here, the boundary 3-manifold
is an integral surgery on a link K in S3. As usual, we denote the link components Ki,
i D 1; : : : ; n. Therefore, the corresponding theory TŒM3� can be built by “gluing”
the 3d N D 2 theory TŒS3 n K� associated with the link complement with n copies
of the 3d N D 2 theory TŒS1 �D2� associated with the solid torus:
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TŒM3� D TŒS3 n K� ˝
�
�a1 ı TŒS1 �D2�

�
˝ : : : ˝

�
�an ı TŒS1 � D2�

�

„ ƒ‚ …
n copies

(54)

As pointed out in the footnote 8, it is important that the theory TŒS3 n K� accounts
for all flat GC connections on the link complement, including the abelian ones.
Such theories are known for GC D SL.2;C/ and for many simple knots and
links [NRXS12, FGSS], in fact, even in a more “refined” form that knows about
categorification and necessarily incorporates all branches of flat connections. For
GC of higher rank, it would be interesting to work out such TŒS3 n K� following
[DGG13]. In particular, the results of [DGG13] elucidate one virtue of 3d N D 2

theories TŒM3IG�: they always seem to admit a UV description with only U.1/
gauge fields (but possibly complicated matter content and interactions). This will
be especially important to us in Sect. 4: in order to identify a 2d .0; 2/ theory
TŒM4� associated with a 4-manifold M4 bounded by M3 we only need to understand
boundary conditions of abelian 3d N D 2 theories.

The second basic ingredient in (54) is the theory TŒS1 � D2� associated with the
solid torus. This theory is very simple for any N � 1 and corresponds to the Dirichlet
(D5-brane) boundary condition of N D 4 super-Yang-Mills theory, cf., Fig. 6. To
be more precise, if we denote by T � G the maximal torus of G, then GC flat
connections on T2 D @

	
S1 � D2



are parametrized by two TC-valued holonomies,

modulo the Weyl group W of G,

.x; y/ 2 .TC � TC/ =W (55)

Only a middle dimensional subvariety in this space corresponds to GC flat connec-
tions that can be extended to the solid torus S1�D2. Namely, since one of the cycles
of T2 (the meridian of Ki) is contractible in N.Ki/ Š S1 � D2, the GC holonomy on
that cycle must be trivial, i.e.,

VTŒS1�D2� D
�
.xi; yi/ 2 TC � TC

W

ˇ̌
ˇ xi D 1

�
(56)

The SL.2;Z/ transformation �ai gives a slightly more interesting theory �ai ıTŒS1�
D2�, whose space of supersymmetric vacua (24) is simply an SL.2;Z/ transform
of (56):

V�aiıTŒS1�D2� D
�
.xi; yi/ 2 TC � TC

W

ˇ̌
ˇ xai

i yi D 1
�

(57)

See, e.g., [Guk05] for more details on Dehn surgery in the context of complex
Chern–Simons theory.

The space of vacua (57) essentially corresponds to N D 2 Chern–Simons theory
at level ai. Therefore, when performing a surgery on Ki, the operation of gluing
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back N.Ki/ Š S1 � D2 with a twist �ai 2 SL.2;Z/ means gauging the i-th global
symmetry of the 3d N D 2 theory TŒS3 n K� and introducing a Chern–Simons term
at level ai. Before this operation, in the theory TŒS3 n K� associated with the link
complement, the twisted masses and Fayet–Iliopoulos parameters .log xi; log yi/ are
expectation values of real scalars in background vector multiplets that couple to
flavor and topological currents, respectively

For instance, when GC D SL.2;C/ and K is a knot (i.e., a link with a single
component), the holonomy eigenvalues x and y are both C

�-valued, and the space
of vacua VTŒS3nK� is the algebraic curve AK.x; y/ D 0, the zero locus of the A-
polynomial. Therefore, modulo certain technical details, the vacua of the combined
theory (54), in this case can be identified with the intersection points of the two
algebraic curves, cf. (26):

VTŒM3� D fAK.x; y/ D 0g \ fxay D 1g (58)

modulo Z2 action of the SL.2;C/ Weyl group .x; y/ 7! .x�1; y�1/. Note, both the
A-polynomial AK.x; y/ of any knot and the equation xay D 1 are invariant under this
symmetry. In particular, if K is the unknot we have A.unknot/ D y � 1 and these
two conditions give an SL.2;C/ analogue of (31).

As a simple illustration one can consider, say, a negative definite 4-manifold
whose Kirby diagram consists of the left-handed trefoil knot K D 31 with the
framing coefficient a D �1:

−1

(59)

Using standard tools in Kirby calculus (that we review shortly), it is easy to verify
that the boundary of this 4-manifold is the Poincaré homology sphere †.2; 3; 5/,
cf. (21), realized here as a �1 surgery on the trefoil knot in S3. Therefore,
the corresponding theory TŒ†.2; 3; 5/� can be constructed as in (54). The knot
complement theory that accounts for all flat connections is well known in this case
[FGSS]; in fact, [FGSS] gives two dual descriptions of TŒS3 n 31�. In this theory, the
twisted mass log x is the vev of the real scalar in background vector multiplet V that
couples to the U.1/x flavor symmetry current. Gauging the flavor symmetry U.1/x
by adding a N D 2 Chern–Simons term for V at level a D �1 gives the desired
Poincaré sphere theory:

LTŒ†.2;3;5/� D LTŒS3n31� �
1

4�

Z
d4� V† (60)

Upon compactification on S1, the field � D log x is complexified and the critical
points (40) of the twisted superpotential in the effective 2d N D .2; 2/ theory
TŒ†.2; 3; 5/�,
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exp
@

@ log x

�
eWTŒS3nK� C

a

2
.log x/2

�
D 1 ; (61)

automatically reproduce Eq. (58) for flat SL.2;C/ connections.

2.7 Gluing Along a Common Boundary

Given two manifolds MC4 and M�4 which have the same boundary (component) M3,
there is a natural way to build a new 4-manifold labeled by a map ' W M3 ! M3

that provides an identification of the two boundaries:

M4 D M�4 [' MC4 (62)

For example, let M�4 be the negative E8 plumbing, and let M
C
4 be the handlebody

on the left-handed trefoil knot with the framing coefficient a D �1. As we already
mentioned earlier, both of these 4-manifolds are bounded by the Poincaré homology
sphere†.2; 3; 5/, i.e.,

E8
∂≈

−1

(63)

Therefore, in order to glue these 4-manifolds “back-to-back” as illustrated in Fig. 8,
we need to reverse the orientation of one of them, which in the language of Kirby
diagrams amounts to replacing all knots with mirror images and flipping the sign of
all framing numbers:

M4.K
a1
1 ; : : : ;K

an
n /

orientation�������!
reversal

M4.K
�a1
1 ; : : : ;K

�an

n / (64)

Thus, in our example we need to change the left-handed trefoil knot K D 31 with
framing a D �1 to the right-handed trefoil knot K with framing coefficient C1.
The resulting 4-manifold MC4 with a single 2-handle that corresponds to this Kirby
diagram has boundary M3 D @MC4 D �@M�4 , so that now it can be glued to M�4 D
E8 plumbing.

Gluing 4-manifolds along a common boundary, as in (62), has a nice physical
interpretation. Namely, it corresponds to the following operation on the 2d N D
.0; 2/ theories TŒM4̇ � that produces a new theory TŒM4� associated with the resulting
4-manifold M4 D M�4 [' MC4 . As we already explained in Sect. 2.2, partial
topological reduction of the 6d fivebrane theory on a 4-manifold with a boundary
M3 leads to a coupled 2d-3d system of 3d N D 2 theory TŒM3� with a B-type
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Fig. 8 (a) Two 4-manifolds glued along a common boundary M3 D ˙@M˙

4 correspond to (b)
three-dimensional N D 2 theory TŒM3� on the interval coupled to two-dimensional N D .0; 2/

theories TŒM�

4 � and TŒMC

4 � at the boundaries of the interval

boundary condition determined by the 4-manifold. (If the 4-manifold in question
has other boundary components, besides M3, then the reduction of the 6d fivebrane
theory leads to a wall/interface between TŒM3� and other 3d N D 2 theories; this
more general possibility will be discussed in the next section.)

In the case at hand, we have two such 4-manifolds, M�4 and MC4 , with oppositely
oriented boundaries @M4̇ D ˙M3. What this means is that TŒMC4 � defines a B-type
boundary condition — with 2d N D .0; 2/ supersymmetry on the boundary—in 3d
N D 2 theory TŒM3�, while TŒM�4 � likewise defines a B-type boundary condition in
the theory TŒ�M3�. Equivalently, TŒ�M3� can be viewed as a theory TŒM3� with the
reversed parity:

TŒ�M3� D P ı TŒM3� (65)

where P W .x0; x1; x2/ ! .x0; x1;�x2/. This operation, in particular, changes the
signs of all Chern–Simons couplings in TŒM3�.

Therefore, thanks to (65), we can couple TŒM�4 � and TŒMC4 � to the same 3d N D
2 theory TŒM3� considered in space-time R2� I, where I is the interval. In this setup,
illustrated in Fig. 8, theories TŒM4̇ � define boundary conditions at the two ends of
the interval I. As a result, we get a layer of 3d N D 2 theory TŒM3� on R

2 � I
sandwiched between TŒM�4 � and TŒMC4 �. Since the 3d space-time has only two non-
compact directions of R2, in the infra-red this system flows to a 2d N D .0; 2/

theory, which we claim to be TŒM4�.
The only element that we need to explain is the map ' W M3 ! M3 that enters the

construction (62) of the 4-manifold M4. If exist, non-trivial self-diffeomorphisms of
M3 correspond to self-equivalences (a.k.a. dualities) of the theory TŒM3�. Therefore,
a choice of the map ' W M3 ! M3 in (62) means coupling theories TŒM4̇ � to
different descriptions/duality frames of the 3d N D 2 theory TŒM3� or, equivalently,
inserting a duality wall (determined by ') into the sandwich of TŒM�4 �, TŒM3�, and
TŒMC4 �. Of course, one choice of ' W M3 ! M3 that always exists is the identity
map; it corresponds to the most natural coupling of theories TŒM4̇ � to the same
description of TŒM3�. Since ' W M3 ! M3 can be viewed as a special case of a
more general cobordism between two different 3-manifolds that will be discussed
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in Sect. 2.10, when talking about gluing 4-manifolds we assume that ' D id unless
noted otherwise. Then, we only need to know which 4-manifolds have the same
boundary.

2.8 3d Kirby Moves

Since our list of operations includes gluing 4-manifolds along their common
boundary components, it is important to understand how M3.‡/ depends on the
plumbing graph ‡ and which 4-manifolds M4.‡/ have the same boundary (so
that they can be glued together). Not surprisingly, the set of moves that preserve
the boundary M3.‡/ D @M4.‡/ is larger than the set of moves that preserve the
4-manifold M4.‡/.

Specifically, plumbing graphs ‡1 and ‡2 describe the same 3-manifold
M3.‡1/ Š M3.‡2/ if and only if they can be related by a sequence of “blowing
up” or “blowing down” operations shown in Fig. 9, as well as the moves in Fig. 10.
The blowing up (resp. blowing down) operations include adding (resp. deleting) a
component of ‡ that consists of a single vertex with label ˙1. Such blow ups have
a simple geometric interpretation as boundary connected sum operations with very

simple 4-manifolds CP2 n fptg and CP
2 n fptg, both of which have S3 as a boundary

and, therefore, only change M4 but not M3 D @M4. As will be discussed shortly,
this also has a simple physical counterpart in physics of 3d N D 2 theory TŒM3�,
where the blowup operation adds a decoupled “trivial’ ’ N D 2 Chern–Simons
term (52) at level ˙1, which carries only boundary degrees of freedom and has a
single vacuum, cf. (44). For this reason, blowing up and blowing down does not
change TŒM3IG� and only changes TŒM4IG� by free Fermi multiplets, for abelian
as well as non-abelian G.

Applying these moves inductively, it is easy to derive a useful set of rules
illustrated in Fig. 11 that, for purposes of describing the boundary of M4, allow to
collapse linear chains of sphere plumbings with arbitrary framing coefficients ai via
continued fractions

...
.

a1 a2

blow up

blow down

blow up

blow down...
.

...
.

...
.

...
.

a ± 1  ± 1

 ± 1

a1 ± 1  a2 ± 1

...
. a

Fig. 9 Blowing up and blowing down does not change the boundary M3 D @M4
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(66)

To illustrate how this works, let us demonstrate that the An�1 plumbing, as in Fig. 1,
with ai D �2 can be glued to a disc bundle with Euler number �n over S2 to

produce a smooth 4-manifold .CP
2
/#n. In particular, we need to show that these

two 4-manifolds we are gluing naturally have the same boundary with opposite
orientation. This is a simple exercise in Kirby calculus.

Starting with the An�1 linear plumbing, we can take advantage of the fact that˙1
vertices can be added for free and consider instead

C1� �2� �2� �2� � � � �2� (67)

Clearly, this operation (of blowing up) changes the 4-manifold, but not the bound-
ary M3. Now, we slide the new C1 handle over the �2 handle. According to (14),
this preserves the framingC1 of the new handle and changes the framing of the �2
handle to �2C 1 D �1 (since they were originally unlinked), resulting in
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C1� �1� �2� �2� � � � �2� (68)

Note, this plumbing graph with n vertices is a result of applying the first move in
Fig. 9 to the An�1 linear plumbing, which we have explained “in slow motion.” Since
we now have a vertex with weight �1, we can apply the second move in Fig. 9 to
remove this vertex at the cost of increasing the weights of the two adjacent vertices
byC1, which gives

C2� �1� �2� � � � �2� (69)

This last step made the plumbing graph shorter, of length n � 1, and there is a new
vertex with weight �2 C 1 D �1 on which we can apply the blow down again.
Doing so will change the weight of the leftmost vertex from C2 to C3 and after
n � 3 more steps we end up with a plumbing graph

n� 1� �1� (70)

Applying the first move in Fig. 9 we finally get the desired relation

An�1
@� Cn� (71)

Since reversing orientation on the 4-manifold is equivalent (64) to replacing all
knots with mirror images and flipping the sign of all framing numbers, this shows
that An�1 linear plumbing has the same Lens space boundary as the disc bundle with
Euler number�n over S2, but with opposite orientation. In particular, it follows that
these 4-manifolds with boundary can be glued along their common boundary in a
natural way. (No additional orientation reversal or other operation is needed.)

Following these arguments, it is easy to show a more general version of the first
move in Fig. 9 called slam-dunk:

p=q� a� � � � @�
a � q

p� � � � (72)

which, of course, is just a special case of the boundary diffeomorphism in Fig. 11.
Another useful rule in 3d Kirby calculus that can be deduced by the same argument
allows to collapse a (sub)chain of .�2/’s:

a� �2� � � � �2�
„ ƒ‚ …

n times

b� @� aC 1� nC 1� bC 1�

which is a generalization of (71).
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2.9 Physical Interpretation of 3d Kirby Moves

All these moves that preserve the boundary 3-manifold M3.‡/ D @M4.‡/ have an
elegant and simple interpretation as equivalences (dualities) of the corresponding 3d
N D 2 theory TŒM3.‡/IU.N/�. Let us illustrate this in the basic case of N D 1, i.e.,
a single fivebrane. Then, as we explained in Sect. 2.2, all theories TŒM3.‡/IU.1/�
admit a description as supersymmetric Chern–Simons theories, and 3d Kirby moves
are precisely the equivalence relations on the matrix of Chern–Simons coefficients
in the quantum theory.

Indeed, the simplest version of blowing up (resp. blowing down) operation that
adds (resp. removes) an isolated vertex with label˙1 in the theory TŒM3.‡/IU.1/�
correspond to changing the matrix of Chern–Simons coefficients

Q ! Q˚ h˙1i (73)

that is, adds (resp. removes) a U.1/ vector multiplet V with the Lagrangian

�L D ˙ 1

4�

Z
d4� V† D ˙ 1

4�
A ^ dAC � � � (74)

A theory defined by this Lagrangian is trivial. In particular, it has one-dimensional
Hilbert space. Therefore, tensor products with copies of this trivial theory are indeed
equivalences of TŒM3.‡/IU.1/�. The same is true in the non-abelian case as well,
where blowups change TŒM3IG� by “trivial” Chern–Simons terms at level ˙1 that
carry only boundary degrees of freedom (and, therefore, only affect the physics of
the 2d boundary theory TŒM4IG�, but not the 3d bulk theory TŒM3IG�).

Similarly, we can consider blowing up and blowing down operations shown in
Fig. 9. If in the plumbing graph‡ a vertex with label˙1 is only linked by one edge
to another vertex with label a ˙ 1, it means that the Lagrangian of the 3d N D 2

theory TŒM3.‡/IU.1/� has the following terms:

L D 1

4�

Z
d4�

	˙V†C 2eV†C .a˙ 1/eVe†C � � � 
 (75)

where ellipses stand for terms that do not involve the vector superfield V or its field
strength†. Since the action is Gaussian in V , we can integrate it out by solving the
equations of motion˙V CeV D 0. The resulting Lagrangian is

L0 D 1

4�

Z
d4�

	˙eVe†� 2eVe†C .a˙ 1/eVe†C � � � 
 D 1

4�

Z
d4�

	
aeVe†C � � � 


(76)

This gives a physics realization of the blowing up and blowing down operations in
the top part of Fig. 9. We can easily generalize it to that in the lower part of Fig. 9.
Starting with the right side of the relation, the terms in the Lagrangian which involve
the superfield V at Chern–Simons level˙1 look like
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L D 1

4�

Z
d4� .˙V†C 2V1†C .a1 ˙ 1/V1†1 C 2V2†C .a2 ˙ 1/V2†2 C � � � /

(77)
Integrating out V yields˙V C V1 C V2 D 0 and the effective Lagrangian

L0 D 1

4�

Z
d4� .a1V1†1 � 2V1†2 C a2V2†2 C � � � / (78)

which, as expected, describes the left side of the relation in the lower part of Fig. 9.
From this physical interpretation of the blowing up and blowing down operations
in the N D 1 case one can draw a more general lesson: the reason that 2-handles
with framing coefficients a D ˙1 are “nice” corresponds to the fact that 3d N D 2
theory T

�
M3

	˙1
�

�

is trivial.
The physical interpretation of 3d Kirby moves in Fig. 10 is even simpler: 2-

handles with framing coefficients ai D 0 correspond to superfields in 3d theory
TŒM3.‡/� that serve as Lagrange multipliers. Again, let us explain this in the basic
case of a single fivebrane (N D 1). Let us consider the first move in Fig. 10 and, as
in the previous discussion, denote by V the U.1/ vector superfield associated with a
2-handle (vertex) with framing label 0. Then, the relevant terms in the Lagrangian
of the theory TŒM3.‡/IU.1/� associated with the right part of the diagram are

L D 1

4�

Z
d4�

	
2Ve†C aeVe†C � � � 
 (79)

Note, there is no Chern–Simons term for V itself, and it indeed plays the role of the
Lagrange multiplier for the condition e† D 0. Therefore, integrating out V makes
eV pure gauge and removes all Chern–Simons couplings involvingeV . The resulting
quiver Chern–Simons theory is precisely the one associated with the left diagram in
the upper part of Fig. 10.

Now, let us consider the second move in Fig. 10, again starting from the right-
hand side. The relevant part of the Lagrangian for TŒM3.‡/IU.1/� looks like

L D 1

4�

Z
d4� .2V†1 C a1V1†1 C 2V†2 C a2V2†2 C � � � / (80)

where the dependence on V is again only linear. Hence, integrating it out makes the
“diagonal” combination V1 C V2 pure gauge, and for V 0 D V1 D �V2 we get

L0 D 1

4�

Z
d4�

	
.a1 C a2/V

0†0 C � � � 
 (81)

which is precisely the Lagrangian of the quiver Chern–Simons theory associated
with the plumbing graph in the lower left corner of Fig. 10.

Finally, since all other boundary diffeomorphisms in 3d Kirby calculus follow
from these basic moves, it should not be surprising that the manipulation in Fig. 11
as well as the slam-dunk move (72) also admit an elegant physical interpretation.
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However, for completeness, and to practice a little more with the dictionary between
3d Kirby calculus and equivalences of 3d N D 2 theories, we present the
details here. Based on the experience with the basic moves, the reader might have
(correctly) guessed that both the boundary diffeomorphism in Fig. 11 and the slam-
dunk move (72) correspond to integrating out vector multiplets.

Specifically, for the plumbing graph on the left side of (72) the relevant terms in
the Lagrangian of the theory TŒM3.‡/IU.1/� look like

L D 1

4�

Z
d4�

�
p

q
V†C 2eV†C aeVe†C � � �

�
(82)

Since there are no other terms in the Lagrangian of TŒM3.‡/IU.1/� that contain the
superfield V or its (super)field strength †, we can integrate it out. Replacing V by
the solution to the equation p

q V C eV D 0 gives the Lagrangian for the remaining
fields

L D 1

4�

Z
d4�

�	
a � q

p


eVe†C � � �
�

(83)

which is an equivalent description of the theory TŒM3.‡/IU.1/�, in fact, the one
associated with the right-hand side of the slam-dunk move (72). By now it should
be clear what is going on. In particular, by iterating this process and integrating in or
integrating out U.1/ vector superfields, it is easy to show that quiver Chern–Simons
theories associated with Kirby diagrams in Fig. 11 are indeed equivalent.

2.10 Cobordisms and Domain Walls

Now, it is straightforward to generalize the discussion in previous sections to
4-manifolds with two (or more) boundary components. The lesson we learned is
that each boundary component of M4 corresponds to a coupling with 3d N D 2

theory labeled by that component.
In general, when a 4-manifold M4 has one or more boundary components, it is

convenient to view it as a (co)bordism from M�3 to MC3 , where M3̇ is allowed to
be empty or contain several connected components, see Fig. 12a. If M�3 D ; (or
MC3 D ;), then the corresponding 3d N D 2 theory TŒM�3 � (resp. TŒMC3 �) is trivial.
And, when M3̇ has more than one connected component, the corresponding theory
TŒM3̇ � is simply a tensor product of 3d N D 2 theories associated with those
components. (In fact, we already encountered similar situations, e.g., in (54), when
we discussed 3-manifolds with several boundary components.)

What kind of 2d theory TŒM4� corresponds to a cobordism from M�3 to MC3 ?
There are several ways to look at it. First, trying to erase any distinction between
MC3 and M�3 , we can view any such 4-manifold as a cobordism from ; to MC3 t�M�3 ,
i.e., as a 4-manifold with boundary M3 D MC3 t�M�3 , thus reducing the problem to
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Fig. 12 (a) A cobordism between 3-manifolds M�
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the one already considered. Indeed, using (65), to a 4-manifold M4 with boundary
MC3 t�M�3 we associate a 3d N D 2 theory TŒMC3 �˝

	
P ı TŒM�3 �



on a half-space

RC � R
2 coupled to a boundary theory TŒM4�. In turn, this product 3d theory on a

half-space is equivalent—via the so-called folding trick [WA94, OA97, BdDO02]—
to a 3d theory TŒMC3 � or TŒM�3 � in two regions of the full three-dimensional space
R
3, separated by a 2d interface (that in 3d context might be naturally called a “defect

wall”). This gives another, perhaps more natural way to think of 2d N D .0; 2/

theory TŒM4� associated with a cobordism from M�3 to MC3 , as a theory trapped on
the interface separating two 3d N D 2 theories TŒM�3 � or TŒMC3 �, as illustrated
in Fig. 12.

In order to understand the physics of fivebranes on 4-manifolds, it is often
convenient to compactify one more direction, i.e., consider the fivebrane world-
volume to be S1 � R � M4. In the present context, it leads to an effective
two-dimensional theory with N D .2; 2/ supersymmetry and a B-type defect9

labeled by M4. In fact, we already discussed this reduction on a circle in Sect. 2.2,
where it was noted that the effective 2d N D .2; 2/ theory—which, with some abuse
of notations, we still denote TŒM3�—is characterized by the twisted superpotential
eW.xi/. Therefore, following the standard description of B-type defects in N D
.2; 2/ Landau–Ginzburg models [HW04, BR07, BJR08, CR10], one might expect
that a defect TŒM4� between two theories TŒM�3 � and TŒMC3 � can be described as a
matrix (bi-)factorization of the difference of the corresponding superpotentials

eW
TŒMC

3 �
.xi/ � eWTŒM�

3 �
.yi/ (84)

While conceptually quite helpful, this approach is less useful for practical descrip-
tion of the defect walls between TŒM�3 � and TŒMC3 �, which we typically achieve by
other methods. The reason, in part, is that superpotentials eW are non-polynomial

9The converse is not true since some line defects in 2d come from line operators in 3d.
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for most theories TŒM3�. We revisit this approach and make additional comments in
Sect. 4.

Note, if 2d theories in question were N D .2; 2/ sigma-models based on target
manifolds X

TŒMC

3 �
and XTŒM�

3 �
, respectively, then B-type defects between them could

be similarly represented by correspondences, or (complexes of) coherent sheaves,
or sometimes simply by holomorphic submanifolds

� � X
TŒMC

3 �
� XTŒM�

3 �
(85)

Much like defect lines in 2d, defect walls in 3d can be classified according to their
properties and the symmetries they preserve: topological, conformal, reflective or
transmissive, parameter walls, (duality) transformation walls, etc. Various examples
of such walls in 3d N D 2 theories were studied in [GGP13]. For instance,
parameter walls are labeled by (homotopy types of) paths on the moduli space
VTŒM3� and correspond to (autoequivalence) functors acting on the category of B-type
boundary conditions. Transformation walls, on the other hand, in general change 3d
N D 2 theory, e.g., by implementing the SL.2;Z/ action [Wit03] described in (49)–
(50). Topological defects in abelian Chern–Simons theories—which, according to
our proposal (37), are relevant to cobordisms between 3-manifolds—have been
studied, e.g., in [KS11, KS10, FSV12]. In supersymmetric theories, topological
defects are quite special as they are of A-type and B-type at the same time.

The next best thing to topological defects are conformal ones, which in 2d
are usually characterized by their reflective or transmissive properties. Extending
this terminology to walls in 3d, below we consider two extreme examples, which,
much like Neumann and Dirichlet boundary conditions, provide basic ingredients
for building mixed types. See Fig. 13a for an illustration of a generic defect wall
(neither totally reflective nor fully transmissive).
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3d3d 2d
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Fig. 13 A generic defect wall between two 3d N D 2 theories (a) in flat space-time and (b) the
corresponding configuration on S1� S2. The index of the latter system is obtained from two copies
of the “half-index” IS1�qD˙ .T˙/ ' Zvortex.T˙/ convoluted via the index (flavored elliptic genus)

of the defect wall supported on S1�S1eq, where D˙ is the disk covering right (resp. left) hemisphere

of the S2 and S1eq WD @DC D �@D� is the equator of the S2
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2.11 Fully Transmissive Walls

The simplest example of a totally transmissive wall (which is also conformal) is
a trivial wall between the theory TŒM3� and itself. It corresponds to the identity
cobordism M3� I and in the language of boundary conditions (85) is represented by
the “diagonal”

�X � X � X (86)

and similarly for the LG models (84).
In view of (37) and (52), more interesting examples of maximally transmissive

defects are walls between N D 2 Chern–Simons theories with gauge groups G
and H � G that have H-symmetry throughout. Such defects can be constructed by
decomposing the Lie algebra

g D .g=h/? ˚ hk (87)

and imposing Dirichlet type boundary conditions on the coset degrees of freedom
and Neumann boundary conditions on degrees of freedom for H � G. Equivalently,
via the level-rank or, in the supersymmetric context, Giveon–Kutasov duality
[GK09] equally important are level-changing defect walls in N D 2 Chern–Simons
theories. See, e.g., [FSV12] for the study of defect walls with these properties in a
purely bosonic theory and [QS02, BM09] for various constructions in closely related
WZW models one dimension lower.

2.12 Maximally Reflective Walls

Maximally reflective domain walls between 3d theories TŒM�3 � or TŒMC3 � do not
allow these theories to communicate at all. Typical examples of such walls are
products of boundary conditions, B� and BC, for TŒM�3 � and TŒMC3 �, respectively:

TŒM4� D B� ˝ BC (88)

In the correspondence between 4-manifolds and 2d N D .0; 2/ theories trapped on
the walls, they correspond to disjoint unions M4 D M�4 tMC4 , such that @M4̇ D M3̇ .

2.13 Fusion

Finally, the last general aspect of domain walls labeled by cobordisms that we wish
to mention is composition (or, fusion), Illustrated, e.g., in Fig. 15. As we explain
in the next section, the importance of this operation is that any 4-manifold of the
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form (13) and, therefore, any 2d N D .0; 2/ theory associated with it can built—
in general, in more than one way—as a sequence of basic fusions. Notice, while
colliding general defect walls can be singular, the fusion of B-type walls on S1�R2
is smooth (since they are compatible with the topological twist along R

2).

2.14 Adding a 2-Handle

We introduced many essential elements of the dictionary (in Table 1) between
4-manifolds and the corresponding 2d theories TŒM4�, and illustrated some of them
in simple examples. Further aspects of this dictionary and more examples will be
given in later sections and future work. One crucial aspect—which, hopefully, is
already becoming clear at this stage—is that a basic building block is a 2-handle.
Indeed, adding 2-handles one-by-one, we can build any 4-manifold of the form (13)!
And the corresponding 2d theory TŒM4� can be built in exactly the same way,
following a sequence of basic steps, each of which corresponds to adding a new
2-handle.

In this section, we shall look into details of this basic operation and, in particular,
explain that adding a new 2-handle at any part of the Kirby diagram can be
represented by a cobordism. Then, using the dictionary between cobordisms and
walls (interfaces) in 3d, that we already explained in Sect. 2.10, we learn that the
operation of adding a 2-handle can be described by a fusion with the corresponding
wall, as illustrated in Figs. 14 and 15.

This interpretation of adding 2-handles is very convenient and very powerful,
especially for practical ways of building theories TŒM4�. For instance, it can be
used to turn a small sample of concrete examples into a large factory for producing
many new ones. Indeed, suppose one has a good understanding of a (possibly rather
small) family of 4-manifolds that can be obtained from one another by adding 2-
handles. Then, by extracting10 the “difference” one gets a key to a much larger
class of 4-manifolds and the corresponding theories TŒM4� that can be constructed
by composing the basic steps (of adding 2-handles) in a variety of new ways, thus,
potentially taking us well outside of the original family. A good starting point for
implementing this algorithm and deducing the set of basic cobordisms (resp. the
2d .0; 2/ domain wall theories) can be a class of ADE sphere plumbings, as in
Figs. 1 and 2, for which the Vafa–Witten partition function is known to be the
level N character of the corresponding WZW model [Nak94, VW94]. We pursue
this approach in Sect. 3 and identify the corresponding basic operations of adding
2-handles with certain coset models.

Suppose our starting point is a 4-manifold M�4 with boundary

@M�4 D M�3 (89)

10Explaining how to do this is precisely the goal of the present section.
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Fig. 14 The operation of attaching a 2-handle to M�

4 can be represented by a cobordism, namely
the closure of MC

4 n M�

4 . This operation corresponds to fusing a 2d wall (interface) determined
by the cobordism with a boundary theory TŒM�

4 � to produce a new boundary theory TŒMC

4 �.
Equivalently, the system on the left—with a domain wall sandwiched between 3d N D 2 theories
TŒM�

3 � and TŒMC

3 �—flows in the infra-red to a new boundary condition determined by TŒMC

4 �

Attaching to it an extra 2-handle we obtain a new 4-manifold MC4 with a new
boundary

@MC4 D MC3 (90)

A convenient way to describe this operation—which admits various generalizations
and a direct translation into operations on TŒM�4 �—is to think of (the closure of)
MC4 nM�4 as a (co)bordism, B, from M�3 to MC3 . In other words, we can think of MC4
as a 4-manifolds obtained by gluing M�4 to a cobordism B with boundary

@B D �M�3 [MC3 (91)

Therefore,

MC4 D M�4 [' B (92)

where ' W M3 ! M3 is assumed to be the identity map, unless noted otherwise.
We have H3.M

C
4 ;B/ Š H3.M�4 ;M�3 / Š H1.M�4 / by Poincaré duality. The latter

is trivial, H1.M�4 / D 0. Then, comparing the exact sequence for the pair .MC4 ;B/
with the exact sequence for the triple .MC4 ;B;M

C
3 / we get the following diagram:
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Fig. 15 The process of building a 4-manifold M4 labeled by a plumbing tree can be represented by
a sequence of basic cobordisms with b2 D 1, where each step adds a new 2-handle. Each cobordism
corresponds to a 2d wall (interface), and the process of building M4 corresponds to defining TŒM4�

as the IR limit of the layered system of 3d theories trapped between walls shown on the lower part
of the figure. Note, in general, there are many equivalent ways of building the same 4-manifold M4

by attaching 2-handles in a different order; they correspond to equivalent descriptions (dualities)
of the same 2d .0; 2/ theory TŒM4�

0! H2.B/ ! H2.M
C
4 / ! H2.M

C
4 ;B/

k # # k
0! H2.B;M

C
3 /! H2.M

C
4 ;M

C
3 / ! H2.M

C
4 ;B/ ! H1.B;M

C
3 / D 0

ok P:D: ok
H2.MC4 / H2.M�4 ;M�3 /
ok ok P:D:

H2.M
C
4 /
� ����! H2.M�4 /�

(93)

In this diagram, the map from H2.M
C
4 / to its dual H2.M

C
4 /
� Š H2.MC4 / is given by

the intersection form QC � Q
MC

4
. Therefore, we get

0! H2.B/! H2.M
C
4 /

QC

���! H2.M
C
4 /
� ����! H2.M

�
4 /
� (94)
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Since the second map, from H2.B/ to H2.M
C
4 /, is injective, it follows that

H2.B/ D ker
	
�� ı QC



(95)

This useful result can tell us everything we want to know about the cobordism B
from the data of M�4 and MC4 .

In particular, when both MC4 and M�4 are sphere plumbings, and the plumbing
tree of the former is obtained by adding a new vertex (with an edge) to the plumbing
tree of the latter, as in Fig. 15, the second homology of the cobordism B is one-
dimensional,

b2.X/ D 1 ; (96)

and, therefore, its intersection form is determined by the self-intersection of a single
generator s 2 H2.B/. Thus, introducing a natural basis fsig for H2.M

C
4 /, such that

the intersection pairing

QC.si; si/ D QCij (97)

is determined by the (weighted) plumbing tree, the generator s 2 H2.B/ can be
expressed as a linear combination

s D
b2.M

C

4 /X

iD1
kisi (98)

where the coefficients ki 2 Z are determined by (95):

QC.s; x/ D 0 ; 8x 2 H2.M
�
4 / (99)

In practice, of course, it suffices to verify this orthogonality condition only on the
basis elements of H2.M�4 /. Then, it determines the cohomology generator (98) and,
therefore, the self-intersection number QC.s; s/.

As a warm-up, let us illustrate how this works in the case of a linear plumbing in
Fig. 1, where for simplicity we start with the case where all Euler numbers ai D �2.
Namely, if M�4 has a linear plumbing graph with n� 1 vertices and MC4 has a linear
plumbing graph with n vertices, then the condition (99) becomes

Q.s; si/ D 0 ; i D 1; : : : ; n � 1 (100)

or, more explicitly,

� 2k1 C k2 D 0 (101)

ki�1 � 2ki C kiC1 D 0 i D 2; : : : ; n � 1
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Solving these equations we find the generator s 2 H2.B/,

s D s1 C 2s2 C 3s3 C � � � C nsn (102)

for the cobordism B that relates An�1 and An linear plumbings. Now, the self-
intersection is easy to compute:

QC.s; s/ D �n.nC 1/ (103)

It is easy to generalize this calculation to linear plumbings with arbitrary framing
coefficients ai, as well as plumbing graphs which are not necessarily linear. As the
simplest example of the latter, let us consider a 2-handle attachment in the first step
of Fig. 15 that turns a linear plumbing graph with three vertices

M�4 W
a� b� c� (104)

into a non-linear plumbing graph with a trivalent vertex:

MC4 W
d�

a� �
b

c�
(105)

In order to determine the cobordism B that does the job we are again going to
use (95) or, better yet, its more explicit version (99) suitable for arbitrary plumbing
trees. As before, denoting by si the generators of H2.M

C
4 / with the intersection

pairing (97), which is easy to read off from (105), we get the system of linear
equations (99) that determines the generator (98) of the cobordism B:

QC.s; s1/ D ak1 C k2 D 0

QC.s; s2/ D k1 C bk2 C k3 C k4 D 0 (106)

QC.s; s3/ D k2 C ck3 D 0

Of course, in case of negative-definite 4-manifolds a, b, c, and d are all supposed to
be negative. Solving these equations we find the integer coefficients in (98),

k1 D c

gcd.a; c/
; k2 D � ac

gcd.a; c/
; k3 D a

gcd.a; c/
; k4 D abc� a � c

gcd.a; c/
(107)

which, in turn, determine the intersection form on B:

QC.s; s/ D .abcd � ac � ad � cd/.abc� a � c/

gcd.a; c/2
(108)

For instance, if a D b D c D d D �2, we get QB D h�4i.
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3 Top-Down Approach: Fivebranes and Instantons

In this section we approach the correspondence between 4-manifolds and 2d
N D .0; 2/ theories TŒM4IG� by studying the (flavored) elliptic genus (9) which,
according to (10), should match the Vafa–Witten partition function.

In particular, we propose the “gluing rules” that follow operations on 4-manifolds
introduced in Sect. 2 and identify the set of basic cobordisms with branching
functions in certain coset models. In the non-abelian case, the key ingredient in the
gluing construction is the integration measure, which we propose to be the index
of a 2d .0; 2/ vector multiplet. Another key ingredient, which plays an important
role in (10) for non-compact 4-manifolds, is a relation between discrete basis and
continuous basis introduced in Sect. 3.10.

3.1 Vafa–Witten Theory

In order to realize the Vafa–Witten twist of 4d N D 4 super-Yang-Mills [VW94]
in M-theory, we start with the six-dimensional .2; 0/ theory realized on the world-
volume of N fivebranes. The R-symmetry group of the .2; 0/ theory is Sp.2/r Š
SO.5/r and can be viewed as a group of rotations in the five-dimensional space
transverse to the fivebranes. A .2; 0/ tensor multiplet in six dimensions contains 5
scalars, 2 Weyl fermions and a chiral 2-form, which under Sp.2/r transform as 5, 4,
and 1, respectively.

We are interested in the situation when the M-theory space is S1 �Rt �M7 �C,
where M7 is a 7-manifold with G2 holonomy and Rt may be considered as the time
direction. We introduce a stack of N fivebranes supported on the subspace S1�Rt�
M4, where M4 is a coassociative cycle in M7. This means that the normal bundle of
M4 inside M7 is isomorphic to the self-dual part of ƒ2T�M4:

TM7=M4 Š ƒ2CT�M4 : (109)

Moreover, the neighborhood of M4 in M7 is isomorphic (as a G2-manifold) to the
neighborhood of the zero section of ƒ2CT�M4.

Since both the 11-dimensional space-time and the fivebrane world-volume in
this setup have S1 as a factor, we can reduce on this circle to obtain N D4-branes
supported on R �M4 in type IIA string theory. The D4-brane world-volume theory
is maximally supersymmetric (N D 2) super-Yang-Mills in five dimensions with
the following field content:
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spectrum of 5d super-Yang-Mills

Spin.5/E Sp.2/r
1-form 5 1
scalars 1 5
fermions 4 4

The rotation symmetry in the tangent bundle of M4 is Spin.4/E Š SU.2/L� SU.2/R
subgroup of the Spin.5/E symmetry of the Euclidean five-dimensional theory. Five
normal direction to the branes are decomposed into three directions normal to
M4 inside M7 and two directions of C-plane. This corresponds to the following
decomposition of the R-symmetry group:

SO.5/r ! SO.3/A � SO.2/U Š SU.2/A � U.1/U: (110)

The fields of the 5d super-Yang-Mills transform under the resulting SU.2/L �
SU.2/R � SU.2/A �U.1/U symmetry group as

bosons W .5; 1/˚ .1; 5/! .2; 2; 1/0 ˚ .1; 1; 1/0 ˚ .1; 1; 3/0 ˚ .1; 1; 1/˙2
fermions W .4; 4/! .2; 1; 2/˙1 ˚ .1; 2; 2/˙1

(111)

Non-trivial embedding of the D4-branes in space-time with the normal bundle (109)
corresponds [BVS95] to identifying SU.2/L with SU.2/A and gives precisely the
topological twist introduced by Vafa in Witten [VW94]. The spectrum of the
resulting theory looks like:

bosons W .2; 2/0 ˚ .1; 1/0 ˚ .3; 1/0 ˚ .1; 1/˙2
fermions W .1; 1/˙1 ˚ .3; 1/˙1 ˚ .2; 2/˙1 (112)

where we indicate transformation under the symmetry group SU.2/0L � SU.2/R �
U.1/U. Here, the subgroup SU.2/0L � SU.2/R is the new rotation symmetry along
M4, whereas U.1/U is the R-symmetry11 of the effective N D 2 supersymmetric
quantum mechanics T1dŒM4� on Rt. The U.1/U quantum number is called the ghost
number.

From (112) it is clear that the resulting supersymmetric quantum mechanics
T1dŒM4� has two supercharges, which are scalar from the viewpoint of the 4-
manifold M4 and which carry ghost number U D C1 and U D �1, respectively.
When the quantum mechanics is lifted to the 2d theory TŒM4� on S1�Rt they become
supercharges of N D .0; 2/ SUSY. Among the bosons, two states .1; 1/˙2 with non-
zero ghost number are scalars � and � that are not affected by the twist, the state
.3; 1/0 is the self-dual 2-form field B, and finally the state .1; 1/0 is the scalar field

11Note, in [VW94] the symmetry group U.1/U is enhanced to the global symmetry group SU.2/U
due to larger R-symmetry of the starting point.
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C, all transforming in the adjoint representation of the gauge group. The state .2; 2/0

is, of course, the gauge connection on M4:

.2; 2/0 gauge connection A

.3; 1/0 self-dual 2-form B

.1; 1/˙2 complex scalar �

.1; 1/0 real scalar C

(113)

Now let us consider a situation where the time direction is also compactified to
a circle: Rt  S1t in a way that allows the M-theory circle S1 to fiber non-trivially
over S1t , so that the twisted product S1 Ì S1t is a torus with the complex modulus
� . Then, the theory on the fivebranes can be described as a theory on D4-branes
supported on M4, i.e., the four-dimensional topologically twisted N D 4 SYM with
coupling constant � [VW94].

The path integral of the Vafa–Witten theory localizes on the solutions to the
following equations:

FCA �
1

2
ŒB � B�C ŒC;B� D 0

d�AB � dAC D 0
where

A 2 GP

B 2 �2;C.M4I adP/

C 2 �0.M4I adP/

(114)

where GP denotes the space of connections of a principal bundle P. Under certain
conditions (see [VW94] for details) the only non-trivial solutions are given by
configurations with vanishing self-dual part of the curvature

FCA D 0 (115)

and trivial other fields (B D 0 and dAC D 0). The partition function is then given by
the generating function of the Euler numbers of instanton moduli spaces:

ZVWŒM4�.q/ D
X

m

�.Mm/q
m� c

24 (116)

where

Mm D
�

A 2 GP W FCA D 0; hch; ŒM4�i � 1

8�2

Z

M4

Tr F2 D m

�
=Gauge ;

q D e2� i�

and c is a constant that depends on the topology of M4. In [VW94] it was proposed
that

c D N � �.M4/ (117)
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where N is the rank of the gauge group and �.M4/ is the Euler characteristic12 of
M4. The constant c can be interpreted as the left-moving central charge cL of the
dual 2d .0; 2/ theory TŒM4�.

In general, when the manifold M4 is not compact and the gauge group is U.N/,
anti-self-dual configurations can also be distinguished by the first Chern class c1
and the boundary conditions at infinity. In order to have finite action, the connection
should be asymptotically flat:

AjM. 4
D A
; FA
 D 0 : (118)

Therefore, as we already mentioned in Sect. 2.2, different asymptotics can be labeled
by flat connections on the boundary 3-manifold M3 D @M4:


 2MflatŒM3� � Hom.�1.M3/;U.N// =Gauge : (119)

The dependence on the first Chern class can be captured by introducing the
following topological term in the action, cf. [DHSV07]:

�S D 1

2�

Z

�

Tr F � hc1; �i (120)

where � 2 H2.M4/˝ C. It is useful to define the following exponential map:

exp W H2.M4/˝ C �! .C�/b2
� 7�! x

(121)

such that ker.exp/ D H2.M4;Z/ and also the “power” operation

.C�/b2 � H2.M4/ �! C
�

.x; h/ 7�! xh � e2� ihh;�i (122)

for some preimage � of x. The refined Vafa–Witten partition function then depends
on b2.M4/ additional fugacities and is given by

ZVWŒM4�
.q; x/ D
X

m;c1

�.Mm;c1;
/ qm� c
24 xc1 (123)

where

Mm;c1;
 D
˚
A 2 GP W FCA D 0; hch; ŒM4�i

D m; ŒTr F� D 2�c1; AjM3 D A

�
=Gauge:

12When M4 is non-compact �.M4/ should be replaced by the regularized Euler characteristic, and
when G D U.N/ one needs to remove by hand the zero-mode to ensure that the partition function
does not vanish identically.
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From the point of view of the 2d theory TŒM4IU.N/�, the fugacities x in (123)
play the role of flavor fugacities in the elliptic genus. This tells us that TŒM4IU.N/�
has flavor symmetry of rank b2 associated with 2-cycles of M4.

In what follows, if not explicitly stated otherwise, we will consider 4-
manifolds (13) with

bC2 .M4/ D 0 ; �1.M4/ D 0 ; H2.M3;Z/ D 0 ; H1.M3;R/ D 0
� � H2.M4;Z/ Š Z

b2 ; �� � H2.M4;Z/ Š Z
b2

(124)
The last two conditions mean that there is no torsion in second (co)homology. As
explained in Sect. 2.1, such manifolds are uniquely defined by the intersection form
or, alternatively, by the plumbing graph.

3.2 Gluing Along 3-Manifolds

In this section we will describe how the Vafa–Witten partition function behaves
under cutting and gluing of 4-manifolds. Suppose one can produce a 4-manifold M4

by gluing MC4 and M�4 along a common boundary component M3. For simplicity,
in the following we actually assume that M3 is the only boundary component for
both MC4 and M�4 (that is, the resulting manifold M4 does not have any boundary).
The generalization to the case when M4̇ have other boundary components (that will
become boundary components of M4 after the gluing) is straightforward. For the
same reason we will also suppress the dependence of the moduli spaces on the first
Chern class c1 or, equivalently, the dependence of the Vafa–Witten partition function
on the fugacities x in (123).

Since for bC2 > 1 we expect the topology of the instanton moduli spaces to be
independent under smooth deformations of the 4-manifold, consider the situation
where the boundary neighborhoods of M4̇ look like long “half-necks” of the form
RC �M3, as illustrated in Fig. 16. Very naively the Vafa–Witten partition function
on M4 is given by a sum of products of partition functions on M4̇ with identified

Fig. 16 Gluing of MC

4 and M�

4 along the common boundary M3
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boundary conditions. However in this way we count instantons living on the long
neck M3 � R twice and we need to cancel out this contribution.

Let us address this issue more systematically. Let fM˛ˇ
m be the moduli space of m

instantons13 on M3�R with boundary conditions ˛; ˇ 2MflatŒM3�. One can always
factor out the part of the moduli space associated with translations along R:

fM˛ˇ
m DM˛ˇ

m � R: (125)

Let us denote the corresponding generating function for Euler characteristics as
follows:

K˛ˇŒM3� �
X

m

�.fM˛ˇ
m /q

m: (126)

Now let Mm and Mṁ;˛ be instanton moduli spaces for M4 and M4̇ , respectively.
Then

Mm D
[

˛
mCCm�Dm

MC
mC;˛
�M�

m�;˛
: (127)

The problem, however, is that this union is not disjoint. Various terms have com-
mon boundary components corresponding to particular degeneration of instanton
configurations. Common codimension-1 boundary components have the following
form:

MC
mC;˛
�M˛ˇ

� �M�
m�;ˇ
�

@
�
MC

mCC�;ˇ �M�
m�;ˇ

�

and

@
�
MC

mC;˛
�M�

�Cm�;˛

�
:

(128)

The first case can be intuitively understood from a limit when we separate a localized
configuration with instanton number � in MC4 and push it to the boundary. And in
the second case we do the same for M�4 . Similarly, there are common codimension-2
boundary components:

MC
mC;˛
�M˛ˇ

�1
�Mˇ

�2
�M�

m�;
�

@
�
MC

mCC�1C�2; �M�
m�;

�

@
�
MC

mCC�1;ˇ �M�
�2Cm�;ˇ

�

@
�
MC

mC;˛
�M�

�1C�2Cm�;˛

� (129)

and so on.

13Here and in what follows the instanton number is not necessarily an integer.
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Then, applying inclusion–exclusion principle for Euler characteristic we get

�.Mm/ D
X

˛
mCCm�Dm

�
�
MC

mC;˛
�M�

m�;˛

�

�
X

˛;ˇI �>0
mCC�Cm�Dm

�
�
MC

mC;˛
�M˛ˇ

� �M�
m�;ˇ

�
(130)

C
X

˛;ˇ; I �1;2>0
mCC�1C�2Cm�Dm

�
�
MC

mC;˛
�M˛ˇ

�1
�Mˇ

�2
�M�

m�;

�
� � � �

which translates into the following relation for the generating functions:

ZVWŒM4� D
X

˛

ZVWŒM
C
4 �˛ZVWŒM

�
4 �˛ �

X

˛;ˇ

ZVWŒM
C
4 �˛.K

˛ˇŒM3� � ı˛ˇ/ZVWŒM
�
4 �ˇ

C
X

˛;ˇ;

ZVWŒM
C
4 �˛.K

˛ˇŒM3� � ı˛ˇ/.Kˇ ŒM3� � ıˇ /ZVWŒM
�
4 � � � � �

D
X

˛;ˇ

ZVWŒM
C
4 �˛.K

�1ŒM3�/
˛ˇZVWŒM

�
4 �ˇ (131)

where K�1ŒM3� denotes the matrix inverse to KŒM3� defined in (126). The rela-
tion (131) obviously holds when M4 D MC4 D M�4 D M3 � R. Let us note that
in the case when M3 is a lens space the “gluing kernel” KŒM3� can be explicitly
computed using the results of [Aus90, FH90].

For later convenience, let us define a modified Vafa–Witten partition with an
upper index denoting the boundary condition:

ZVWŒM
�
4 �
˛ �

X

ˇ

.K�1ŒM3�/
˛ˇZVWŒM

�
4 �ˇ: (132)

Intuitively this modification can be understood as excluding instantons approaching
the boundary. Then the relation between partition functions takes the following
simple form:

ZVWŒM4� D
X

˛

ZVWŒM
C
4 �˛ZVWŒM

�
4 �
˛: (133)
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3.3 Relation to Affine Lie Algebras

Before we discuss cobordisms, let us review the relation between Vafa–Witten
theory on ALE spaces and affine Lie algebras [Nak94, VW94, DHSV07], that will
be our starting point for constructing generalizations. Namely, let M4 be a hyper-
Kähler ALE space obtained by a resolution of the quotient singularity C

2=H, where
H is a finite subgroup of SU.2/. According to the McKay correspondence, finite
subgroups of SU.2/ have ADE classification and therefore for each H there is
a corresponding simple Lie algebra g of the same ADE type. From the work of
Nakajima [Nak94] it follows that the partition function of the Vafa–Witten theory
with the gauge group U.N/ is given by the character of the integrable representation
of the corresponding affine Lie algebra Og at level N:

ZU.N/
VW ŒM4�
.q; x/ D � OgN


 .q; x/ : (134)

Let us explain in some detail the role of the parameters 
, q, and x on the right-hand
side of this formula. First, the formula (134) exploits the fact that there is a one-to-
one correspondence between U.N/ flat connections on M3 Š S3=H and integrable
representations of OgN . The right-hand side of (134) can then be understood as a
character of OgN for a given representation 
. Let us consider how the identification
between flat connections and integrable representations works in a simple case when
H D Zp, M4 D Ap�1 and g D su.p/. The set of flat connections (119) in this
case is given by the ordered partitions of N with p parts, which are in one-to-one
correspondence with Young diagrams that have at most p � 1 rows and N columns:

Hom(Zp, U(N))/U(N) =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

z1 0
. . .

0 zN

⎞

⎟
⎠

p

= 1

⎫
⎪⎬

⎪⎭
/SN =

⎧
⎪⎨

⎪⎩
diag(1, . . . , 1

N0

, e
2πi
p , . . . , e

2πi
p

N1

, . . . , e
2πi p−1

p , . . . , e
2πi p−1

p

Np−1

)

⎫
⎪⎬

⎪⎭

∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(135)

Young diagrams of such type indeed describe integrable representation of bsu.p/N .
The variables .q; x/ in the right-hand side of (134) play the role of coordinates on the
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(complexified) torus corresponding to the Cartan subalgebra Oh of OgN . In particular, �
is a coordinate on Oh in the direction of L0 and x can be interpreted as coordinates on
the (complexified) maximal torus of the Lie group G corresponding to the ordinary
Lie algebra g. This is in agreement with the fact that the lattice �� for an ALE space
of the ADE type is the same as the weight lattice of the corresponding simple Lie
algebra g and � in (122) is then the element of the dual space. The dual lattice �
is the same as the root lattice of g and the intersection form Q plays the role of
the normalized Killing form. It follows that the abelian quiver CS with coefficients
Qij is the same as the ordinary CS with the gauge group G restricted to the Cartan
subalgebra, which can be interpreted as a level-rank duality.

Now let us describe the gluing of 4-manifolds considered in Sect. 2.7 in the
language of (affine) Lie algebras. Suppose the manifold MC4 with boundary MC3 is
defined by a plumbing graph of ADE type which can be interpreted as a Dynkin
diagram of Lie algebra gC with root lattice �C � H2.M

C
4 /. Let us pick up a

subalgebra g� � gC and consider the manifold MC4 with properties (124) such that
the lattice �� � H2.M�4 / is the root lattice of g�. The lattice �� is a sublattice of
�C and the manifold MC4 can be obtained by gluing M�4 with a certain (co)bordism
B such that B. D M�3 tMC3 along the common boundary component M�3 , cf. (92). In
the rest of the paper we will sometimes use the following schematic (but intuitive)
notation for the process of obtaining a manifold MC4 by gluing a cobordism B
to M�4 :

M�4 B MC4 : (136)

From the gluing principle described in the previous section we have:

ZU.N/
VW ŒMC3 �
.q; x/ D

X

�

ZU.N/
VW ŒB��
.q; x

?/ ZU.N/
VW ŒM�3 ��.q; xk/ (137)

where the splitting of the parameters x D .x?; xk/ corresponds to the splitting14 of
the homology groups H2.M

C
4 /˝C D H2.B/˝C˚H2.M�4 /˝C. Using (134) one

has

�
OgC

N

 .q; x/ D

X

�

ZU.N/
VW ŒB��
.�; x

?/ � Og
�

N
� .q; xk/ : (138)

Therefore, ZU.N/
VW ŒB��
 are given by the branching functions of the embedding

g� � gC,

ZU.N/
VW ŒB��
 D �

OgC

N = Og�

N
�;
 (139)

14Let us note that H2.M
C

4 / ¤ H2.B/˚ H2.M
�

4 /. However, the lattice H2.M
C

4 / can be obtained
from the lattice H2.B/˚H2.M

�

4 / by the so-called gluing procedure that will be described in detail
shortly.
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Table 2 Dictionary between Vafa–Witten theory and (affine) Lie
algebras

Physics and geometry Algebra

Plumbing graph Dynkin diagram of g

Fugacities x Maximal torus of G

Coupling � Coordinate on Oh along L0
Intersection form Normalized Killing form of g

b2.M4/ Rank of g

H2.M4/ Root lattice of g

H2.M4/ Weight lattice of g

Boundary condition Integrable representation of Og
Rank of the gauge group Level of Og
ZVWŒM4� Character of Og
Cobordism B: MC

4 D B[M�

4 Embedding g� � gC

ZVWŒB� Branching functions

Let us consider a particular example: MC4 D Ap and M�4 D Ap�1. As was shown
in Sect. 2.14 via a variant of the “Norman trick” [Nor69, Qui79], the cobordism B
in this case is a 4-manifold in family (124) with a single 2-cycle of self-intersection
�.pC 1/p and the boundary L.p;�1/ t L.pC 1;�1/. The partition function on B
is then given by the characters of su.pC 1/=su.p/ cosets:

ZU.N/
VW ŒB��
 D �

bsu.pC1/N=bsu.p/N
�;
 : (140)

The relation between Vafa–Witten theory and (affine) Lie algebras is summarized
in Table 2 and will play an important role in the following sections. In the next
section we consider in detail the case of the gauge group U.1/. Then, in Sect. 3.9,
we will make some proposals about the non-abelian case.

3.4 Cobordisms and Gluing in the Abelian Case

For a 4-manifold M4 that satisfies (124) one has the short exact sequence (29):

0 �! H2.M4/
Q�! H2.M4/

i�M3�! H2.M3/ �! 0 (141)

where the map Q is given by the intersection matrix and iM3 is the inclusion map of
the boundary M3 D M. 4 into M4. Equivalently, H2.M3/ Š cokerQ.

In the case of abelian theory self-duality condition implies that

dF D 0 ; d�F D 0: (142)
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For manifolds with asymptotically cylindrical or conical ends it has been shown
(under certain assumptions) [APS73, Loc87] that the space of L2 integrable 2-forms
satisfying conditions (142) coincides with the space harmonic 2-forms H2.M4/ and
is isomorphic to the image of the natural map H2.M4;M3;R/ �! H2.M4;R/. In
our case this map is an isomorphism. Since bC2 .M4/ D 0 the space H2.M4/ is an
eigenspace of the Hodge � operator with eigenvalue �1.

For an ordinary U.1/ gauge theory the Dirac quantization condition implies
that ŒF=2�� 2 H2.M4/ � ��. However, since we are interested in gauge theory
on the world-volume of a D4-brane in type IIA string theory setup, we need to
take into account the Freed–Witten anomaly [FW99]. Specifically, the two-form
F D dA should be viewed as a curvature of the U.1/ part of a connection on a
Spinc.4/ � Spin.4/�Z2U.1/ principal bundle over M4 obtained by a lift of the SO.4/
orthonormal frame bundle. Let us note that such a lift is possible for any 4-manifold,
i.e., any 4-manifold is Spinc. Not any 4-manifold, though, has a Spin structure.
The obstruction is given by the second Stiefel–Whitney class w2 2 H2.M4;Z2/.
Therefore, as in [GVW00, GST02] we have a shifted quantization condition for the
magnetic flux through a 2-cycle C � M4:

Z

C

F

2�
D 1

2

Z

C
w2 D 1

2
Q.C;C/ mod Z (143)

where the second equality is the Wu’s formula. The class ŒF=2�� then takes values
in the shifted lattice:


F

2�

�
2 e�� � �� C� (144)

where 2� is a lift15 of w2 with respect to the map �� � H2.M4;Z/! H2.M4;Z2/.
From the Wu’s formula it follows that w2 D 0 or, equivalently, the manifold M4 is
Spin, if and only if the lattice � is even.

Let us note that since �1.M4/ D 0 there are no non-trivial flat connections
and therefore fixing ŒF=2�� in e�� completely determines the anti-self-dual gauge
connection. On the boundary FjM3 D 0 and therefore AjM3 is a flat connection on M3

which determines ŒF=2�� modulo H2.M4;M3/ � � . It is easy to see that the coset
spacee��=� coincides with the space of flat connections. From (141) it follows that
H1.M3/ is a finite abelian group of order j det Qj. All such groups are isomorphic to
a direct sum of finite cyclic groups. Therefore the space of flat connections on the
boundary is given by

Hom.�1.M3/;U.1// Š Hom.H1.M3/;U.1// Š H2.M3/ Š ��=� Š e��=�
(145)

where the last equality follows from (141) and (144).

15Such lift exists because the manifold is Spinc.
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The Vafa–Witten partition for U.1/ gauge group can be calculated explicitly for
general 4-manifold M4 in the family (124) for a prescribed boundary condition 
 2
e��=� and a fugacity x 2 H2.M4;R/, cf. [Wit96, DVV02]:

ZU.1/
VW ŒM4�
.q; x/ D 1

��.M4/.q/

X

ŒF=2��2e��

ŒF=2��D
 mod �

q
1

8�2

R
F^FxŒF=2��

D 1

��.M4/.q/

X

ŒF=2��2e��

ŒF=2��D
 mod �

q� 12Q�1.ŒF=2��;ŒF=2��/xŒF=2��

D 1

��.M4/.q/

X

2�
q� 12Q�1.QC
;QC
/xQC


D 1

��.M4/.q/

X

2�
q�

1
2Q.CQ�1
;CQ�1
/xQC
: (146)

The overall factor

1

��.M4/.q/
D q�

�.M4/
24

1X

mD0
�.HilbŒm�.M4// qm (147)

is the contribution of point-like instantons. Let us remind that the moduli space of
m point-like instantons is given by the Hilbert scheme HilbŒm�.M4/ which can be
understood as a regularization of the configuration space of m points on M4.

Since the quadratic form �Q is positive definite one can always assume that the
lattices � and �� are embedded in the Euclidean space Rb2 so that

�� D fni!ijni 2 Zg � R
b2 :

and

� D fni�ijni 2 Zg � �� � R
b2

The basis vectors of these lattices are chosen so that .�i; �j/ D �Qij and .!i; �j/ D
ıij where .�; �/ is the standard Euclidean scalar product. The shift due to the Freed–
Witten anomaly can be represented then by the vector � D 1

2

P
i k�ik2!i. In this

setup (146) reads simply as:

ZU.1/
VW ŒM4�
.q; x/ D 1

��.M4/.q/

X

2��Rb2

q
1
2 kC
C�k2xC
C�

� �
.
C�/
� .xI q/
��.M4/.q/

; 
 2 ��=�: (148)
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where �.
C�/� stands for the theta function of the lattice � with the shift 
C�. The
regularized Euler characteristic �.M4/ coincides with dimension of the lattice b2.

3.5 Number of Vacua

As in [GVW00, GST02], the quantum mechanics T1dŒM4� on Rt obtained by
reduction of an M5-brane on S1 � M4 is specified by a flat connection A
 on the
boundary and the flux at infinity which, up to constant depending on the topology
of M4 � M7, is given by

ˆ1 D ND0 � 1

8�2

Z

M4

F ^ F (149)

Here, ND0 is a non-negative integer denoting the number of point-like instantons.
The origin of the last term is the Wess–Zumino part of the D4-brane action:

IWZ D �
Z

R�M4

C� ^ ch.F/ ^
s
bA.TM4/

bA.NM4/
: (150)

Once we picked ˆ1 and fixed the value of ŒF=2�� modulo � which specify the
theory T1dŒM4�
;ˆ1

, its supersymmetric vacua are obtained by finding ND0 � 0 and
ŒF=2�� which solve (149). Note, the effective theory is massive when ND0 D 0. If
ND0 > 0 there are moduli of point-like abelian on M4. The number of vacua is given
by the corresponding coefficient of (123):

#fvacua of T1dŒM4�
;ˆ1
g D ZVWŒM4�
.q; 0/jcoefficient of qˆ1�

c
24

(151)

Let us consider M4 D Ap�1 as an example. The lattice � is even in this case
and therefore e�� D ��. As was mentioned earlier, � and �� can be interpreted as
the root and weight lattices of su.p/. These lattices can be naturally embedded into
R

p�1, which in turn can be considered as the subspace of Rp orthogonal to the vector
.1; : : : ; 1/. The root lattice can be generated by simple roots satisfying k�ik2 D 2

and .�i; �iC1/ D �1. The weight lattice can be generated by !r; r D 1; : : : ; p � 1,
the highest weights of the fundamental representations which can be realized as
ƒr

C
p. Let us also define !0 � 0. In the coset ��=� Š Zp one has !r � r!1. For

a given boundary condition r D 0; : : : ; p � 1 the flux at infinity has the following
form:

ˆ1 D ND0 C 1

2

�����

p�1X

iD1
ni�i C !r

�����

2

; ni 2 Z : (152)
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The massive vacua of the theory T1dŒAp�1�
;ˆ1
correspond to the weights w DPp�1

iD1 ni�i C !r that minimize (152) when ND0 D 0. The set of such weights is
precisely the set of weights of the fundamental representation of su.p/ with the
highest weight !r . Therefore one has

#fvacua of T1dŒAp�1�rg D dimƒr
C

p D pŠ

rŠ.p � r/Š
: (153)

Up to a permutation, these weights have the following coordinates:

w �
Sp

.1 � r

p
; : : : ; 1 � r

p„ ƒ‚ …
r

;� r

p
; : : : ;� r

p„ ƒ‚ …
p�r

/: (154)

The minimal value of the flux at infinity equals then

ˆ1 D .p � r/r

2p
: (155)

3.6 Gluing in the Abelian Case

Consider two 4-manifolds (not necessarily connected) M4̇ , both satisfying (124),
with boundaries M. 4̇ D M3̇ . Let us denote �˙ � H2.M4̇ / and T˙ � H2.M3̇ / Š
H1.M3̇ / so that

0 �! �˙ ,! � �̇
�

˙�! T˙ �! 0: (156)

Suppose that MC4 can be obtained from M�4 by gluing to the latter a certain
(co)bordism B with boundary B. D �M�3 tMC3 .

Also, let us suppose that b2.B/ D 0 and the torsion groups in the long exact
sequence (27) for the pair .B;B. / are T2 D 0 and T1 � T. This means that the only
non-trivial cohomology of B and B. is contained in the following finite groups:

H2.B;B. / Š H2.B/ D T (157)

H1.B/ Š H3.B;B. / D T (158)

H1.B. / Š H2.B. / D T� ˚ TC (159)

The sequence (27) then reduces to the following short exact sequence of finite
abelian groups:

0 �����! T
�D��˚�C�������! T� ˚ TC

 �����! T �����! 0 (160)
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Let us denote the family of all such “basic” cobordisms by B. From the Mayer–
Vietoris sequence for the pair of manifolds M�4 and B glued along M�3 one can
deduce the following commutative diagram:

0 �����! ��C �����! ��� ˚ T �����! T� �����! 0
??y�C

??y.�����/˚�C

??yid

0 �����! TC �����! T� ˚ TC �����! T� �����! 0

(161)

where both horizontal lines form short exact sequences. From the snake lemma it
follows that �C D ker�C can be realized as a sublattice of ���:

�C D ker.�� � ��/˚ �C D ��1�
�
im ��jker�C

�

D f˛ 2 ��� j 9
 2 T s.t. ˛ mod �� D ��.
/; �C.
/ D 0g : (162)

Let us now briefly review the notion of gluing of lattices described in detail in,
e.g., [GL91]. Consider some integer lattice � embedded into a Euclidean space and
a finite family of glue vectors gi 2 ��. Then one can define the glued lattice

� 0 D f C
X

i

nigi j  2 �; ni 2 Zg � ��: (163)

The finite abelian group J � � 0=� is called the glue group. It is a subgroup of��=�
generated by the equivalence classes Œgi�. As was considered in detail in [GL92,
GL92], the gluing operation produces identities on the corresponding theta functions
defined as in (148):

�
.
/

�0 D
X

�2J

�
.
C�/
� (164)

One can see that in our case � 0 D �C is the gluing of � D �� with the glue group

im ��jker�C
� ���=�� (165)

Since b2.B/ D 0 the only solutions of (142) are given by flat connections. The
flat connections on B correspond to the elements of T D H2.B/, while the flat
connections on B. D �M�3 tMC3 are in bijection with the elements of T� ˚ TC. In
the case of an ordinary U.1/ gauge theory without Freed–Witten anomaly, the short
exact sequence (160) determines which flat connections on the boundary can be
extended to flat connections in the bulk B. Namely, a flat connection on the boundary
given by .�; �/ 2 H2.B. / D T� ˚ TC originates from a flat connection in B if it is
in the image of the map � or, equivalently, in the kernel of  . The Vafa–Witten
partition function of a cobordism B 2 B in this case is simply given by
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ZU.1/
VW ŒB��;� D ı .�;�/ (166)

where

ı� D
�
1; � D 0
0; otherwise

(167)

In the case when the U.1/ connection is replaced by the U.1/ part of the Spinc.4/

connection one has to take into account the appropriate shift  0:

ZU.1/
VW ŒB��;� D ı .�;�/� 0 : (168)

In the abelian case the “gluing kernel” defined in Sect. 3.2 is trivial: K˛ˇŒM3� D
ı˛ˇ (therefore there is no difference between partition functions with upper and
lower indices). Then we should have the following relation between the Vafa–Witten
partition function on MC4 , M�4 , and B, cf. (92):

ZU.1/
VW ŒMC4 �� D

X

�2T�

ZU.1/
VW ŒB��;� ZU.1/

VW ŒM�4 �� : (169)

Since the abelian Vafa–Witten partition function on an arbitrary four-manifold of the
form (13) is given by the theta function of the corresponding lattice (17), Eq. (169)
can be viewed as the identity (164) that relates theta functions of the lattice �� to
the theta function of glued lattice �C.

3.7 Composing Cobordisms

Now let us consider two four-manifolds M.1/
4 ; M.2/

4 , both satisfying (124), such that

M.
.1/
4 D Ma

3 t Mb
3 and M.

.2/
4 D Mb

3 t Mc
3. The 3-manifold Mb

3 is supposed to be

connected and have an opposite orientation in M.1/
4 and M.2/

4 . The manifolds Ma
3 and

Mc
3 can be empty. Then the new manifold MC4 D M.1/

4 [M.2/
4 obtained by gluing M.1/

4

and M.2/
4 along Mb

3 also has the properties (124). If we interpret M.1/
4 as a cobordism

between 3-manifolds Mb
3 and Ma

3 , and M.2/
4 as a cobordism between Mc

3 and Mb
3 , then

the resulting manifold MC4 is the composition of these two cobordisms. It is easy to
see that this composition is a particular case of gluing described in the previous
section. Namely, the manifold MC4 can be obtained by gluing M�4 D M.1/

4 t M.2/
4

with a basic cobordism, illustrated in Fig. 17,

B Š Ma
3 � I tMb

3 � I tMc
3 � I 2 B (170)
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Fig. 17 Composition of cobordisms M
.1/
4 ı M

.2/
4 D MC

4 can be constructed by gluing M�

4 D
M.1/
4 tM.2/

4 with a basic cobordism BŠ Ma
3 � I tMb

3 � I tMc
3 � I 2 B

where I is the interval. Let us denote Ti D H2.Mi
3/, where i D a; b; c. Then, in the

notations of the previous section, we have

T D Ta ˚ Tb ˚ Tc

T� D Ta ˚ Tb ˚ Tb ˚ Tc (171)

TC D Ta ˚ Tc

�� W �˚ �˚ � 7�! �˚ �˚ .��/˚ �; (172a)

�C W �˚ �˚ � 7�! �˚ �:v (172b)

As usual, let us denote �i � H2.M
.i/
4 / and ��i � H2.M.i/

4 /. Then, the lattice �C is
obtained by gluing of �1 ˚ �2 with the glue group

Tb diag
,! ��1 =�1 ˚ ��2 =�2 Š .Ta ˚ Tb/˚ .Tb ˚ Tc/: (173)

That is

�C D ˚.˛ C �; ˇ � �/ j ˛ 2 �1; ˇ 2 �2; � 2 Tb
�
: (174)

The Vafa–Witten partition functions of the manifolds M.1/
4 and M.2/

4 are given by:
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ZU.1/
VW ŒM.1/

4 �
�
�.q; x/ D

X

˛2�1
q
1
2 k˛C�C�k2x˛C�C� ; .�; �/ 2 Ta˚Tb ; (175a)

ZU.1/
VW ŒM.2/

4 �
�
� .q; y/ D

X

ˇ2�2
q
1
2 kˇ��C�0C�k2yˇC�C� ; .�; �/ 2 Tb ˚ Tc ;

(175b)

where the boundary condition� on the boundary component Mb
3 of M.1/

4 is identified

with the boundary condition��C�0 on Mb
3 � M.

.2/
4 . The identity (169) in this case

reads as:

X

�

ZU.1/
VW ŒM.1/

4 �
�
�.q; x/ ZU.1/

VW ŒM.2/
4 �

�
� .q; y/

D
X

˛2�1; ˇ2�2; �
q
1
2 k˛C�C�Cı1k2C 1

2 kˇ��C�0C�C�2k2x˛C�C�C�1yˇ��C�0C�C�2

D
X

2�C

q
1
2 kC.�C�1/˚.�C�2C�0/k2 .x; y/C.�C�1/˚.�C�2C�0/

D ZU.1/
VW ŒMC4 �

�
� .q; .x; y// ; .�; �/ 2 Ta ˚ Tc : (176)

so that the new shift due to the Freed–Witten anomaly is given by� D �1˚ .�2C
�0/.

3.8 Examples

Let us denote the 4-manifold associated with the Lie algebra g of the ADE type as
M4.g/ and the 4-manifold with the plumbing graph‡ by M4.‡/, as in Sect. 2.1. For
example,

Ap�1 D M4.su.p// D M4.
�2�� � � � ��2�„ ƒ‚ …

p�1
/; (177)

O.�p/
#

CP1
D M4.

�p� /; (178)

CP
2
# : : : #CP

2

„ ƒ‚ …
p

nfptg D M4.
�1� : : : �1�„ ƒ‚ …

p

/: (179)

As was previously mentioned, the lattice � for the 4-manifold M4.g/ coincides with
the root lattice of g, while �� is given by the corresponding weight lattice. The
lattice � is always even and, therefore, M4.g/ is Spin and � D 0. Since level-1
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characters are given by theta functions on the root lattice [KP], the formula (134)
with N D 1,

ZU.1/
VW ŒM4.g/�� D �

Og1
� ; (180)

also follows from (148). The abelian Vafa–Witten partition function of the Ap

manifold was studied in detail in [DS08].
Let us point out that there is also the following relation between Vafa–Witten

partition functions and affine characters:

ZU.1/
VW ŒM4.

�p� /��.q; x/ D
1

�.�/

X

n2Z
q
1
2p .pnC�/2xpnC� � �

Ou.1/p
� ; � 2 Zp

(181)

when p is even. This relation is a natural generalization of (180) since the one-
dimensional lattice H2.M4.

�p� // can be interpreted as a weight lattice of Ou.1/p. Let
us note that it is also consistent with the fact that A1 D M4.

�2� / since

�
bsu.2/1
� D � Ou.1/2� : (182)

For general p one can write

ZU.1/
VW ŒM4.

�p� /��.q; x/ D
1

�.�/

X

n2Z
q
1
2p .pnC�C�/2xpnC�C� � Q� Ou.1/p� ; � 2 Zp

(183)

where � D 0 if p is even and � D 1
2

if p is odd. Let us call Q� Ou.1/p the “twisted”
Ou.1/p character.

In Table 3 we present various examples of the gluing procedure described earlier.
The corresponding gluings of lattices for many of these (and other) examples can
be found in [GL92, GL92]. Let us note that in Example 3 one can choose the gluing
cobordism to be a cylinder with a hole B D S3=Zp � I X pt, i.e., one can just glue
two components of M�4 along their boundaries (and then cut out a hole) in order
to obtain MC4 . In Examples 8, 9 the cobordism B is homologically equivalent to a
cylinder with a hole, but not topologically, since the boundaries of E8�n and An are
only homologically equivalent. Consider Example 2 in some detail. In general it is
not possible to glue M4.

�k� / with M4.
�k� /, because although the boundaries are the

same, they do not have opposite orientations. However, when k D p2 C 1 for some
integer p there exists an orientation reversing diffeomorphism ' of L.k; 1/ such that

'� W H2.L.k; 1// �! H2.L.k; 1// Š Zk


 7�! p

(184)
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Table 3 Examples of gluing M�

4

B MC

4

Original 4-manifold
M�

4

End result MC

4 Homological data of B 2 B (b2.B/ D 0)

T� D H2.M.
�

4 / TC D H2.M.
C

4 / T D H2.B/

� W T !
T� ˚ TC;  W
T� ˚ TC ! T

1 M4.
�p2� / M4.

�1� / Zp
�.
/ D p


T� D Zp2 TC D 0  .�/ D .� mod p/

2 M4.
�p2�1� / t

M4.
�p2�1� /

M4.
�1� �1� / Zp2C1 �.
/ D 
˚ p


T� D Zp2C1 TC D 0  .�˚�/ D .p���/
3 Ap�1 tM4.

�p� / M4.
�1� : : :�1�„ ƒ‚ …

p

/ Zp �.
/ D 
˚ 


T� D Zp ˚ Zp TC D 0  .�˚ �/ D .�� �/

4 Ap�1 tM4.
�p.pC1/� / Ap

Zp ˚ ZpC1

�.
˚ �/ D

˚ 
˚ �˚ �

T� D
Zp ˚ Zp ˚ ZpC1

TC D ZpC1

 .�˚ �˚ 
˚�/ D
.�� �/˚ .
 � �/

5 M4.
�a1�� � � � ��an� / t

M4.
�pnpnC1� /

M4.
�a1�� � � � ��anC1� /

Zpn ˚ ZpnC1

�.
˚ �/ D

˚ 
˚ �˚ �

where
pnC1 D anpn � pn�1

TC D ZpnC1

 .�˚ �˚ 
˚�/ D
.�� �/˚ .
 � �/

T� D
Zpn ˚ Zpn ˚ ZpnC1

6 A3 tM4.
�4� / D4

Z4 ˚ Z2
�.�˚ �/

T� D Z4 ˚ Z4 TC D Z2 ˚ Z2

D �˚ .�C2�/˚ .�
mod 2/˚ �
 .�˚ �˚ 
˚�/ D
.� � �� 2�/˚ ..�
mod 2/� 
/

7 D8 E8
Z2

�.
/ D 
˚ 0
T� D Z2 ˚ Z2 TC D 0  .�˚ �/ D �

8 E7 t A1 E8
Z2

�.
/ D 
˚ 

T� D Z2 ˚ Z2 TC D 0  .�˚ �/ D .�� �/

9 E6 t A2 E8
Z3

�.
/ D 
˚ 

T� D Z3 ˚ Z3 TC D 0  .�˚ �/ D .�� �/

10 A8 E8
Z3

�.
/ D 3


T� D Z9 TC D 0  .�/ D .� mod 3/
11 A4 t A4 E8

Z5
�.
/ D 
˚ 2


T� D Z5 ˚ Z5 TC D 0  .�˚�/ D .2���/
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Fig. 18 Gluing of A1 and
M4.

�6� / gives A2

Fig. 19 Gluing of M4.
�5� /

and M4.
�5� / gives M4.

�1� �1� /

It is an automorphism ofZk because p and k D p2C1 are coprime. One can also glue
Ap2 with Ap2 using the same prescription (cf. Example 11). The gluings of lattices
in Examples 2 and 3 are illustrated in Figs. 18 and 19.

Let us consider in some detail the gluing in Example 3 when p is even. This
example is rather interesting because both of the original 4-manifolds Ap�1 and
M4.
�p� / are Spin, but the resulting 4-manifold M4.

�1� : : : �1� / is not Spin (since the
corresponding lattice Zp is not even). What is going on here? The explanation is very
instructive and reveals new aspects of the Freed–Witten anomaly in the presence of
boundaries.

Each of the original “pieces”, Ap�1 and M4.
�p� /, admits a unique Spin structure.

However, the restrictions of these Spin structures to the boundary 3-manifold M3,
along which one must glue these pieces in order to produce M4.

�1� : : : �1� /, are
different. To be a little more precise, as in (92) consider the gluing map between
the boundaries:

' W A. p�1 ! M. 4.
�p� / (185)

If we introduce Spin structures on Ap�1 and M4.
�p� /, the map ' does not lift to a map

between the restrictions of the Spin structures on the boundaries. This is why it is
not possible to construct a Spin structure on M4.

�1� : : : �1� / from the Spin structures
on Ap�1 and M4.

�p� /.
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Nevertheless, it is possible to lift ' to a map between the restrictions of Spinc

structures on Ap�1 and M4.
�p� /. Since Spin.4/ holonomies on the boundaries do not

match, the holonomies of the U.1/ part of Spinc.4/ should be identified with �1
factor which corresponds to the shift by p

2
in the Zp space of flat connections on the

boundaries. One can check that indeed

X

�2Zp

ZU.1/
VW ŒM4.

�p� /��Cp=2.q; x
?/ ZU.1/

VW ŒM4.
�p� /��.q; xk/

D
X

�2Zp

�
Ou.1/p
�Cp=2.q; x

?/ �bsu.p/1� .q; xk/ D Q� Ou.p/1 .q; x/ �
pY

iD1
Q� Ou.1/1 .q; xi/

D ZU.1/
VW ŒM4.

�1� � � ��1�„ ƒ‚ …
p

/� (186)

where the splitting of parameters x D .x?; xk/ is such that x? D .
Q

i xi/
1=p. A

version of this relation without shifts due to Freed–Witten anomaly was considered
in [DHSV07, DS08].

In general, a gluing of the form

M4.g
.1// t : : : tM4.g

.n// tM4.
�p1� / t : : : tM4.

�pm� / B M4.g/ (187)

where all pi are even, g.j/ and g are of ADE type, corresponds to the embedding of
the associated algebras:

g
.1/
1 ˚ : : :˚ g

.n/
1 ˚ u.1/p1 ˚ : : :˚ u.1/pm � g (188)

where the subscripts denote the indices of the embeddings.
Let us recall that the index ` of the embedding k` � g is defined as the ratio

between the normalized Killing form of g restricted to the subspace k and the
normalized Killing form of k. In other words, the root lattice of k is rescaled by
the factor of

p
` when embedded into the root lattice of g. For the corresponding

affine Lie algebras, representations of Og at level k decompose into representations of
Ok at level `k:

�
Ogk
� D

X

�

b�� �
Ok`k
� : (189)

The coefficients b�� are called branching functions of the embedding k` � g.
If B 2 B, that is b2.B/ D 0, the total rank on both sides of (188) is the same:

nX

iD1
rankg.i/ C m D rankg: (190)
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Then, taking into account (180) and (183), the identity (169) can be interpreted as a
decomposition of the characters:

�
Og1
� D

X

�;


ZU.1/
VW ŒB��1:::�n
1:::
m

� �
Og.1/1
�1 � � �� Og

.n/
1
�n �

Ou.1/p1

1 � � �� Ou.1/pm


m (191)

so that the Vafa–Witten partition function of B plays the role of branching functions
for the embedding (188) at level 1. As was shown earlier, the abelian Vafa–Witten
partition function of B 2 B does not depend on � . This corresponds to the fact that
the embedding (188) is always conformal at level 1.

Now let us defineeB as B glued with M4.
�p1� / t : : : tM4.

�pm� / along the common
boundary components. This 4-manifoldeB is no longer in B and has b2.eB/ D m. It
can be considered as a cobordism for the following gluing:

M4.g
.1// t : : : tM4.g

.n// eB M4.g/ : (192)

The identity (191) can be rewritten as

�
Og1
� D

X

�

ZU.1/
VW

�eB
��1:::�n

�
�
Og.1/1
�1 � � �� Og

.n/
1
�n (193)

and, therefore, ZU.1/
VW ŒeB� plays the role of the level-1 branching functions for the

embedding

g
.1/
1 ˚ : : :˚ g

.n/
1 � g (194)

where all Lie algebras are of ADE type.

3.9 Non-abelian Generalizations

As was already mentioned in Sect. 3.3, the non-abelian generalization of (180) is
given by

ZU.N/
VW ŒM4.g/�
 D � OgN


 (195)

Hence, the Vafa–Witten partition function of a cobordismeB in (192) should coincide
with the branching functions for the embedding (194) at level N:

ZU.N/
VW

�eB
��1:::�n

�
D branching function b�1:::�n

�
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Since the lattice H2.M4.
�p� // is one-dimensional it is natural to expect that the

corresponding Vafa–Witten partition function can be expressed in terms of Ou.1/
characters. As a non-abelian generalization of (183) one can propose that

ZU.N/
VW ŒM4.

�p� /��.q; x/ D
X

�

C�

� .q/ Q� Ou.1/pN
� .q; x/ (196)

with some coefficients C�

� independent of x. This is consistent with the fact that
M4.
�2� / D A1 because the characters of bsu.2/ can be decomposed in terms of the

Ou.1/ characters, where u.1/ is embedded as a Cartan subalgebra of su.2/ with index
2:

ZU.N/
VW ŒM4.

�2� /��.q; x/ D ZU.N/
VW ŒA1��.q; x/ D �bsu.2/N� .q; x/ D

X

�

C�

� .q/�
Ou.1/2N
� .q; x/

(197)

Hence, in this case C�

� are the branching functions for the embedding u.1/2 � su.2/.
The formula (196) is also in agreement with the results of [AOSV05].

From (196) and (195) it follows that ZU.N/
VW ŒB� for the cobordism B in (187)

is given, up to coefficients C, by level-N characters of the coset for the embed-
ding (188):

G

G.1/ � : : : �G.n/ � U.1/ � : : : � U.1/„ ƒ‚ …
m

: (198)

Note, such coset spaces are Kähler manifolds because of the property (190). This
suggests that the corresponding 2d theories TŒB� may have a realization in terms of
.0; 2/ gauged WZW theories studied in [Joh95, BJKZ96].

Now let us discuss various consequences and consistency checks of the proposed
relation between cobordisms and branching functions. In [VW94] it was argued that

under the blow up of M4 (that is taking the connected sum with CP
2
) the SU.N/

partition function on M4 is multiplied by the character of bsu.N/1:

ZSU.N/
VW ŒM4#CP

2
� D ZSU.N/

VW ŒM4� �
bsu.N/1 : (199)

Based on our experience with abelian theory discussed in the previous section, it
is then natural to propose the following generalization to the case of U.N/ gauge
group and non-compact 4-manifolds:

ZU.N/
VW

h
M4\

�
CP

2 n fptg
�i
.�; x/ D ZU.N/

VW ŒM4�.�; x
k/ Q� Ou.N/1 .�; x?/ (200)

where \ denotes the boundary connected sum, x D .xk; x?/, xk 2 exp.H2.M4/˝C/,

and x? 2 exp.H2.CP
2 n fptg/ ˝ C/ Š C

�. The “twisted” Ou.N/1 character Q� Ou.N/1
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is defined as in (186). The parameter x 2 C
� plays the role of the coordinate along

the diagonal u.1/ of u.N/, and the coordinates in the other directions of the Cartan
subalgebra are set to zero. If the manifold M4 is constructed by the plumbing graph
‡ , the relation (200) looks like

ZU.N/
VW ŒM4.‡ t �1� /� D ZU.N/

VW ŒM4.‡/� Q� Ou.N/1 : (201)

In particular:

ZU.N/
VW ŒM4.

�1� � � ��1�„ ƒ‚ …
p

/� D
pY

iD1
Q� Ou.N/1 .q; xi/: (202)

Let us note that the “twisted” Ou.N/1 character is given by the product of N
standard theta functions with odd characteristics:

Q� Ou.N/1.q; z/ D
NY

jD1

1

�.q/

X

nj2Z
q
.njC1=2/2

2 znjC1=2 �
NY

jD1

�2.q; zj/

�.q/
: (203)

Therefore, (202) can be rewritten as

ZU.N/
VW ŒM4.

�1� � � ��1�„ ƒ‚ …
p

/�.q; x/ D
pY

iD1

NY

jD1

�2.q; xi/

�.q/
D Q� Ou.Np/1.q; x/ (204)

where the components xi play the role of the coordinates in the diagonal directions
of p copies of the u.N/ subalgebra in u.Np/. In [DHSV07] it was shown that the
embedding (which is conformal at level 1)

su.N/p ˚ u.1/pN ˚ su.p/N � u.Np/ ; (205)

leads to the following relation between the “untwisted” characters:

pY

iD1

NY

jD1

�3.q; xiyj/

�.q/
� � Ou.Np/1.q; fx; yg/

D
X

Œ��

NX

aD1

pX

bD1
�
bsu.N/p
�a

N .�/
.q; yk/� Ou.1/Np

j�jCapCbN.x
?y?/�bsu.p/N

�b
p .�

t/
.q; xk/ (206)

where x? D .
Q

i xi/
N , y? D .

Q
j xj/

p, �N and �p denote the generators of outer
automorphisms groups ZN and Zp of bsu.N/ and bsu.p/, respectively, � denotes
an integrable representation of bsu.p/N associated with a Young diagram, and �t



Fivebranes and 4-Manifolds 221

denotes an integrable representation of bsu.N/p associate to the transposed Young
diagram. The first sum on the right-hand side of this expression is performed over
the orbits Œ�� of � with respect to the action of the outer automorphism group.
Finally, j�j stands for the number of boxes in the Young diagram associated with
�. See [DHSV07] for the details.

When p D 1 and y D 0, it follows from (206) that

ZU.N/
VW ŒM4.

�1� /� D � Ou.N/1 .q; x/ D
X

�

�
bsu.N/1
� .q; 0/ � Ou.1/N� .q; x/ (207)

and, therefore, the coefficients C in (196) in the case p D 1 are given by the
characters of bsu.N/1.

Now let us consider the Example 3 from Table 3:

Ap�1 tM4.
�p� / B M4.

�1� � � ��1�„ ƒ‚ …
p

/: (208)

As was mentioned earlier, B is topologically a cylinder with a hole: B Š L.p; 1/ �
I n fptg. One can expect the following identify for the corresponding non-abelian
Vafa–Witten partition functions:

ZU.N/
VW ŒM4.

�1� � � ��1�„ ƒ‚ …
p

/�.q; x/

D
X

�;�

ZU.N/
VW ŒM4.

�p� /��.q; x?/ ZU.N/
VW ŒB��;�.q/ ZU.N/

VW ŒAp�1��.q; xk/ : (209)

Taking into account

ZU.N/
VW ŒAp�1��.q; xk/ D �bsu.p/N� .q; xk/ (210)

combined with (202) and (196), one can interpret (209) as the “twisted” version of
the identity (206) in the case where y is set to zero.

3.10 Linear Plumbings and Quiver Structure

From Example 5 in Table 3 it follows that one can build the plumbing a1�� � � � �an�
step by step, attaching one node at a time. Moreover, as we explained in Sect. 2.2,
the boundary 3-manifold is the Lens space, M3.

a1�� � � � �an�/ D L.pn; qn/, where
pn=qn is given by the continued fraction (43) associated with the string of integers
.a1; : : : ; an/. Therefore, the gluing discussed in Sects. 2.14 and 3.4
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M4.
a1�� � � � �an�/  M4.

a1�� � � � �an� anC1� / (211)

can be achieved with a certain cobordism B
pnC1;qnC1
pn;qn from the family (124), which is

uniquely determined by the properties

B.
pnC1;qnC1
pn;qn D �L.pn; qn/ t L.pnC1; qnC1/ (212)

b2.B
pnC1;qnC1
pn;qn / D 1

The cobordism B
pnC1;qnC1
pn;qn can be obtained by joining the cobordism B in Exam-

ple 5 of Table 3 with M4.
�pnpnC1� /. Let us note that the Lens spaces L.p; q/ are

homologically equivalent for different values of q and have H1.L.p; q// D Zp. A
manifestation of this fact is that the abelian Vafa–Witten partition function of the
cobordism Bp0;q0

p;q depends only on p and p0, and is given by

ZU.1/
VW ŒBp0;q0

p;q �
j0

j D
X

n2Z
q

pp0

2

�
n� j

pC j0

p0

�2
xpp0n�p0jCpj0 ; j 2 Zp; j0 2 Zp0 (213)

when p and p0 are even.
This gluing procedure can be formally encoded in a quiver diagram where every

vertex is labeled by pair of integers. This quiver can be interpreted as a quiver
description of the corresponding 2d theory TŒM4�. A four-manifold with L.p; q/
boundary has a “flavor symmetry vertex” p; q :When the cobordism Bp0;q0

p;q is glued

to it to produce the L.p0; q0/ boundary, we “gauge” the p; q vertex with the p; q

vertex of the “bifundamental” p; q p0; q0 :
Let us illustrate this gluing procedure with an example. Consider the plumbing

a1� a2� . We start with the node a1� . The corresponding manifold M4.
a1�/ can be

considered as a cobordism from the empty space to L.a1; 1/. Therefore, the quiver
associated with it looks like

a1; 1 (214)

The boundary of the space after adding the plumbing node a2� is another Lens
space L.a1a2 � 1; a2/. This space is obtained by gluing M4.

a1�/ with Ba1;1
a1a2�1;a2 . After

“gauging” the node a1; 1 we get the quiver

a1, 1 a1a2−1, a2

(215)
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Clearly, the associated quiver in general depends on the plumbing sequence. We
expect each quiver to give a 2d N D .0; 2/ theory and theories associated with the
same plumbing to be dual to each other. For the purposes of computing ZVW, the
“flavor symmetry node” stands for a boundary condition label. “Gauging” this node
means summing over all such labels.

Let us consider in more detail how this works in the case when all ai D �2. The
4-manifold constructed by the plumbing with n nodes is then An, and adding one
extra node (cf. Example 4 in Table 3) can be realized by the cobordism BnC2;nC1

nC1;n .
As was explained in Sect. 3.3, the relevant ingredients have the form:

ZU.N/
VW ŒAnC1�
.q; x/ D

X

�

ZU.N/
VW ŒBnC2;nC1

nC1;n ��
.q; x
?/ ZU.N/

VW ŒAn��.q; x
k/ ; (216)

ZU.N/
VW ŒAn�� D �

bsu.nC1/N
� ; (217)

ZU.N/
VW ŒBnC2;nC1

nC1;n ��
 D �
bsu.nC2/N=bsu.nC1/N
�;
 : (218)

This suggests that TŒBnC2;nC1
nC1;n � may have a realization in terms of bsu.nC 2/N=bsu

.nC 1/N coset WZW. Direct realization in terms of .0; 2/WZW models considered
in [Joh95, BJKZ96] is difficult because the coset space does not have a complex
structure. However, as we will show below, it is easy to interpret the Vafa–
Witten partition function on BnC2;nC1

nC1;n if we make a certain transformation changing
discrete labels associated with boundary conditions to continuous variables. This
transformation can be interpreted as a change of basis in TQFT Hilbert spaces
associated with boundaries. Namely, let us define the Vafa–Witten partition function
on An in the continuous basis as

ZU.N/
VW ŒAn�1�.q; xjz/ WD

X




�
Ou.N/n
Q
 .q; z/ ZU.N/

VW ŒAn�1�
.q; x/ (219)

where we used that, due to the level-rank duality, there is a one-to-one correspon-
dence 
 $ Q
 between integrable representations of bsu.n/N and Ou.N/n realized by
transposing the corresponding Young diagrams. Namely,

�
Ou.N/n
Q
 .q; z/ D

NX

aD1
�
Ou.1/Nn

j
jCan.q; z
?/ �bsu.N/n

�a
N .


t/
.q; zk/ (220)

in the notations of the formula (206).
The fugacities z in (219) can be interpreted as fugacities for flavor symmetry

of TŒM4� associated with the boundary M3 D @M4. This symmetry is the gauge
symmetry of TŒM3�. Gluing two 4-manifolds with along the common boundary M3

corresponds to integrating over z, that is gauging the common flavor symmetry
associated with z. Naively, the fugacities x have different nature since they are
associated with 2-cycles, not three-dimensional boundaries. However, one can
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expect a relation between them since one can always produce a three-dimensional
boundary by excising a tabular neighborhood of a 2-cycle.

It is convenient to introduce the q-theta function defined as:

�.wI q/ WD
1Y

rD0
.1 � qrw/.1 � qrC1=w/ D .wI q/1.q=wI q/1 (221)

where

.wI q/s WD
s�1Y

rD0
.1 � wqr/ (222)

is the q-Pochhammer symbol. From (206) it follows then that in the continuous basis
the Vafa–Witten partition function takes a remarkably simple form:

ZU.N/
VW ŒAn�1�.q; xjz/ D q�

nN
24

nY

iD1

NY

jD1
�.�q

1
2 xizjI q/ (223)

where the fugacities x are represented by xi 2 C
�; i D 1 : : : n satisfyingQn

iD1 xi D 1.
Now, in the continuous basis, the right-hand side of (223) can be interpreted as

the flavored elliptic genus (9) of nN Fermi multiplets, possibly with a superpotential
(to account for the q shift in the argument). In [DHSV07] the transition from the
Ou.Nn/1 character in the right-hand side of (223) to the bsu.n/N character in the right-
hand side of (217) was interpreted as gauging degrees of freedom of D4-branes
obtained by a compactification of M5-branes.

As we show explicitly in Appendix 2 for N D 2 and conjecture for general N,
the characters satisfy the following orthogonality condition:

I
dz

2�iz
IU.N/

V .q; z/ � Ou.N/n� .q; z/ � Ou.N/n�0 .q; z/ D C�.q/ı�;�0 (224)

where

IU.N/
V .q; z/ D .qI q/2N1

Y

i¤j

�.zi=zjI q/ (225)

is precisely the index (9) of a 2d N D .0; 2/ vector multiplet for the gauge group
G D U.N/. Let us note that the transformation between the continuous basis and
the discrete basis is similar to the transformation considered in [GRRY11] where
ordinary, non-affine characters were used.
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If the Vafa–Witten partition function for the cobordism in the continuous basis is
defined as

ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/
D
X

�;


�
Ou.N/nC2

� .q; z0/ � ZU.N/
VW ŒBnC2;nC1

nC1;n ��
.q; y/ � � Ou.N/nC1

 .q; z/ � C�1
 .q/ (226)

the relation (216) in the continuous basis should translate into the following
property:

ZU.N/
VW ŒAnC1�.q; fynC1; x1=y; : : : ; xnC1=ygjz0/

D
I NY

jD1

dzj

2�izj
IU.N/

V .q; z/ ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/

� ZU.N/
VW ŒAn�.q; fx1; : : : ; xnC1gjz/ (227)

or, explicitly,

NY

jD1

�
�.�q

1
2 ynC1z0jI q/

nC1Y

iD1
�.�q

1
2 xiz
0
j=yI q/

�

D
I NY

jD1

dzj

2�izj
.qI q/2N1

nC1Y

iD1
�.�q

1
2 xizjI q/

Y

i¤j

�.zi=zjI q/ ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/:

(228)

The contour prescription is important and we take it to mean as evaluating the
residue of the leading pole. If this is the case, then the following ansatz for
ZU.N/

VW ŒBnC2;nC1
nC1;n � solves Eq. (228):

ZU.N/
VW ŒBnC2;nC1

nC1;n �.q; yjz0; z/ D
NY

jD1
�.�q

1
2 ynC1z0jI q/

NY

i;jD1

1

�.z0i=.zjy/I q/ : (229)

The poles of the integral come from the denominator. They are at zi D z0�.i/=y for
some permutation � . After summing over all poles we end up with the desired result.
From the form of the partition function we see that the cobordism corresponds to the
theory of bifundamental chiral multiplets along with a fundamental Fermi multiplet.
The Fermi multiplet itself can be associated with the 2-cycle in the cobordism which
increases the second Betti number b2 by 1.

Following the same reasoning one can deduce the partition function of the
cobordism B transforming An1�1 t : : : t Ans�1  An1C:::Cns�1. Consider s D 2
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for simplicity. Then, ZU.N/
VW ŒB� must satisfy

ZU.N/
VW ŒAkCl�1�.q; fylx1; : : : ; x

lxk; y
�kw1; : : : ; y

�kwlgjz0/

D
I NY

jD1

dzj

2�izj

dQzj

2�iQzj
IU.N/

V .q; z/ IU.N/
V .q; Qz/ ZU.N/

VW ŒB�.q; yjz0; z; Qz/

� ZU.N/
VW ŒAk�1�.q; fx1; : : : ; xkgjz/ ZU.N/

VW ŒAl�1�.q; fw1; : : : ;wlgjz/ (230)

NY

jD1

kY

iD1
�.�q

1
2 ylxiz

0
jI q/

lY

iD1
�.�q

1
2 x�kwiz

0
jI q/

D
I NY

jD1

dzj

2�izj
.qI q/2N1

Y

i¤j

�.zi=zjI q/
NY

jD1

kY

iD1
�.�q

1
2 xizjI q/

�
I

dQzj

2�iQzj
.qI q/2N1

Y

i¤j

�.Qzi=QzjI q/
NY

jD1

lY

iD1
�.�q

1
2 wiQzjI q/

� ZU.N/
VW ŒB�.q; yjz0; z; Qz/ (231)

In this case, the following ansatz solves the equation:

ZU.N/
VW ŒB�.q; yjz0; z; Qz/ D

Y

i;j

1

�.ylz0i=zjI q/
Y

i;j

1

�.y�kz0i=QzjI q/ : (232)

As we can see, this is the index of two sets of bifundamental chiral multiplets,
cf. [GGP13]. For a general cobordism An1�1 t : : : t Ans�1  An1C:::Cns�1, the
corresponding 2d N D .0; 2/ theory is that of s sets of bifundamental chiral
multiplets.

3.11 Handle Slides

Another source of identities on the partition functions is handle slide moves
described in Sect. 2. Consider the following simple example. First, let us note that
since L.p; p � 1/ Š L.p; 1/ the cobordism B for

M4.
�p� / B M4.

�p� �1� / (233)

is the same (although we glue along the different component of B. ) as for

Ap�2 B Ap�1 (234)



Fivebranes and 4-Manifolds 227

Therefore,

ZU.N/
VW ŒB��
 D �

bsu.p/N=bsu.p�1/N
�;
 : (235)

as we argued in Sect. 3.3. On the other hand, sliding a 2-handle gives the following
relation, cf. (14):

M4.
�p� �1� / Š M4.

�.p�1/� �1� / : (236)

Taking into account (201) one can expect that

X




�
bsu.p/N=bsu.p�1/N
�;
 ZU.N/

VW ŒM4.
�p� /�
 D Q� Ou.N/1 ZU.N/

VW ŒM4.
�.p�1/� /�� : (237)

One can consider more complicated handle slides, for example:

�p� �1� �! �p� �.p�1/ �.p�1/� �! �4pC3� �2.p�1/ �.p�1/� (238)

which gives the equation

X




ZU.N/
VW ŒBp�1;1

4p�3;1�
�

 ZU.N/

VW ŒM4.
�4pC3� /�
 D Q� Ou.N/1 ZU.N/

VW ŒM4.
�.p�1/� /�� :

4 Bottom-Up Approach: From 2d .0; 2/ Theories
to 4-Manifolds

As explained in Sect. 2, a 4-manifold M4 with boundary M3 D @M4 defines a half-
BPS (B-type) boundary condition in a 3d N D 2 theory TŒM3�, such that the
boundary degrees of freedom are described by a 2d N D .0; 2/ theory TŒM4�.
Similarly, a cobordism between M�3 and MC3 corresponds to a wall between 3d
N D 2 theories TŒM�3 � and TŒMC3 � or, equivalently (via the “folding trick”), to a
B-type boundary condition in the theory TŒMC3 � � TŒ�M�3 �, etc.

Therefore, one natural way to approach the correspondence between 4-manifolds
and 2d .0; 2/ theories TŒM4� is by studying half-BPS boundary conditions in 3d N D
2 theories. For this, one needs to develop sufficient technology for constructing such
boundary conditions, which will be the goal of the present section.
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4.1 Chiral Multiplets and 3d Lift of the Warner Problem

The basic building blocks of 3d N D 2 theories, at least those needed for building
theories TŒM3�, are matter multiplets (chiral superfields) and gauge multiplets
(vector superfields) with various interaction terms: superpotential terms, Fayet–
Iliopoulos terms, Chern–Simons couplings, etc.

Therefore, we start by describing B-type boundary conditions in a theory of n
chiral multiplets that parametrize a Kähler target manifold X. Examples of such
boundary conditions were recently studied in [OY13] and will be a useful starting
point for our analysis here. After reformulating these boundary conditions in a
more geometric language, we generalize this analysis in a number of directions by
including gauge fields and various interaction terms.

In order to describe boundary conditions that preserve N D .0; 2/ supersym-
metry on the boundary it is convenient to decompose 3d N D 2 multiplets into
multiplets of 2d N D .0; 2/ supersymmetry algebra, see, e.g., [Witt93]. Thus, each
3d N D 2 chiral multiplet decomposes into a bosonic 2d .0; 2/ chiral multiplet ˆ
and a fermionic chiral multiplet ‰, as illustrated in Table 4. Then, there are two
obvious choices of boundary conditions that either impose Neumann conditions
on ˆ and Dirichlet conditions on ‰, or vice versa. In the first case, the surviving
.0; 2/ multiplet parametrizes a certain holomorphic submanifold Y � X, whereas
the second choice leads to left-moving fermions that furnish a holomorphic bundle
E over Y. Put differently, a choice of a Kähler submanifold Y � X determines a B-
type boundary condition in a 3d N D 2 sigma-model on X, such that 2d boundary
theory is a .0; 2/ sigma-model with the target space Y and a holomorphic bundle
E D TX=Y , the normal bundle to Y in X:

ˆi W Neumann

‰i W Dirichlet

)
) Y � X (239)

ˆi W Dirichlet

‰i W Neumann

)
) E D TX=Y (240)

Now let us include superpotential interactions.

Table 4 Decomposition of
N D .2; 2/ superfields and
couplings into .0; 2/
superfields and couplings

N D .2; 2/ supersymmetry N D .0; 2/ supersymmetry

Vector superfield Fermi + adjoint chiral

(twisted chiral superfield) .ƒ;†/

Chiral superfield Chiral + Fermi

.ˆ;‰/

Superpotential .0; 2/ superpotential

W.ˆ/ J D @W
@ˆ

Charge qˆ E D i
p
2 qˆ †ˆ
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4.2 3d Matrix Factorizations

In general, there are three types of holomorphic couplings in 2d .0; 2/ theories that
play the role of a superpotential. The first type already appears in the conditions that
define bosonic and fermionic chiral multiplets:

DCˆi D 0 ; DC‰j D
p
2Ej.ˆ/ (241)

Here, Ej.ˆ/ are holomorphic functions of chiral superfields ˆi. The second type
of holomorphic couplings Ji.ˆ/ can be introduced by the following terms in the
action:

SJ D
Z

d2xd�C‰iJ
i.ˆ/C c:c: (242)

where, as in the familiar superpotential terms, the integral is over half of the
superspace. In a purely two-dimensional .0; 2/ theory, supersymmetry requires

X

i

EiJ
i D 0 (243)

However, if a 2d .0; 2/ theory is realized on the boundary of a 3d N D 2 theory that
has a superpotential W.ˆ/, then the orthogonality condition E �J D 0 is modified to

E.ˆ/ � J.ˆ/ D W.ˆ/ (244)

This modification comes from a three-dimensional analog of the “Warner problem”
[War95], and reduces to it upon compactification on a circle. It also leads to a nice
class of boundary conditions that are labeled by factorizations (or, “matrix factor-
izations”) of the superpotentialW.ˆ/ and preserve N D .0; 2/ supersymmetry. For
example, a 3d N D 2 theory with a single chiral superfield and a superpotential
W D �k has kC 1 basic boundary conditions, with .0; 2/ superpotential terms

J.�/ D �m ; E.�/ D �k�m ; m D 0; : : : ; k (245)

To introduce the last type of holomorphic “superpotential” couplings in .0; 2/
theories, we note that in 2d theories with .2; 2/ supersymmetry there are two
types of F-terms: the superpotential W and the twisted superpotential eW . In a
dimensional reduction from 3d, the latter comes from Chern–Simons couplings. The
distinction between these two types of F-terms is absent in theories with only .0; 2/
supersymmetry. In particular, they both correspond to couplings of the form (242)

with J D @W
@ˆ

oreJ D @eW
@†

, except in the latter case one really deals with the field-
dependent Fayet–Iliopoulos (FI) terms:
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SFI D
Z

d2xd�CƒieJi.†;ˆ/C c:c: (246)

where the Fermi multipletƒi is the gauge field strength of the i-th vector superfield.
The possibility of such holomorphic couplings is very natural from the (mirror)
symmetry between the superpotential and twisted superpotential in .2; 2/ models.
However, the importance of such terms and, in particular, the fact that they
can depend on charged chiral fields was emphasized only recently [MQSS12].
The novelty of these models is that classically they are not gauge invariant, but
nevertheless can be saved by quantum effects. This brings us to our next topic.

4.3 Anomaly Inflow

Now we wish to explain that not only the coupling of a 2d N D .0; 2/ theory TŒM4�

to a 3d N D 2 theory TŒM3� on a half-space is convenient, but in many cases it
is also necessary. In other words, by itself a 2d theory TŒM4� associated with a 4-
manifold with boundary may be anomalous. Such theories, however, do appear as
building blocks in our story since the anomaly can be cancelled by inflow from the
3d space-time where TŒM3� lives [CH85].

In this mechanism, the one-loop gauge anomaly generated by fermions in the
2d .0; 2/ theory TŒM4� is typically balanced against the boundary term picked up
by anomalous gauge variation of the classical Chern–Simons action in 3d N D 2

theory TŒM3�. Essentially the same anomaly cancellation mechanism—with Chern–
Simons action in extra dimensions replaced by a WZW model—was used in a
wide variety of hybrid .0; 2/ models [GPS93, Joh95, BJKZ96, DS10, AG], where
the chiral fermion anomaly and the classical anomaly of the gauged WZW model
were set to cancel each other out. In particular, our combined 2d-3d system of
theories TŒM4� and TŒM3� provides a natural home to the “fibered WZW models”
of [DS10], where the holomorphic WZW component is now interpreted as Chern–
Simons theory in extra dimension.

The simplest example—already considered in this context in [GGP13]—is an
abelian 3d N D 2 Chern–Simons theory at level k. In the presence of a boundary,
it has k units of anomaly inflow which must be cancelled by coupling to an
“anomalous heterotic theory”

@�J� D AR �AL

2�
˛���F�� (247)

whose left-moving and right-moving anomaly coefficients are out of balance by k
units:

AR �AL D k (248)
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4.4 Boundary Conditions for N D 2 Chern–Simons Theories

In general, there can be several contributions to the anomaly coefficients AL;R

and, correspondingly, different ways of meeting the anomaly cancellation condition
like (248). In the case of a single U.1/ gauge symmetry, there is, of course, a
familiar contribution from fermions transforming in chiral representations of the
gauge group,

AR D
X

rWchiral

Qq2r (249a)

AL D
X

`WFermi

q2` (249b)

where Qqr and q` are the charges of .0; 2/ chiral and Fermi multiplets, respectively.
Besides the chiral anomaly generated by charged Weyl fermions, there can

be an additional contribution to (248) from field-dependent Fayet–Iliopoulos cou-
plings (246), such as “charged log interactions”:

eJ D i

8�

X

r

Nr log .ˆr/ (250)

which spoils gauge invariance at the classical level. As explained in [MQSS12] such
terms contribute to the anomaly

�AR D �
X

rWchiral

QqrNr (251)

and arise from integrating out massive pairs of .0; 2/ multiplets with unequal
charges. Note the sign difference in (249a) compared to (251).

This can be easily generalized to a 2d-3d coupled system with gauge symmetry
U.1/n. Namely, let us suppose that 3d N D 2 theory in this combined system
contains Chern–Simons interactions with a matrix of “level” coefficients kij, much
like our quiver Chern–Simons theory (37) associated with a plumbing graph‡ . And
suppose that on a boundary of the 3d space-time it is coupled to some interacting
system of .0; 2/ chiral and Fermi multipets that, respectively, carry charges Qqi

r and
qi
` under U.1/n symmetry, i D 1; : : : ; n. In addition, for the sake of generality

we assume that the Lagrangian of the 2d .0; 2/ boundary theory contains field-
dependent FI terms (246) with

eJi D i

8�

X

r

Ni
r log .ˆr/ (252)
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Then, the total anomaly cancellation condition for the coupled 2d-3d system—that
combines all types of contributions (248), (249), and (251)—has the following form:

X

rWchiral

Qqi
r Qqj

r �
X

`WFermi

qi
`q

j
` �

X

rWchiral

Qq.ir Nj/
r D kij (253)

which must be satisfied for all values of i; j D 1; : : : ; n. Note that each of the
contributions on the left-hand side can be viewed as a “matrix factorization” of
the matrix of Chern–Simons coefficients. In particular, the term

P Qq.ir Nj/
r is simply

the (symmetrized) product of the matrix of chiral multiplet charges and the matrix
of the boundary superpotential coefficients, which altogether can be viewed as a
“twisted superpotential version” of the condition (244), with (39) and (252).

Suppose for simplicity that we have a theory of free chiral and Fermi multiplets.
The elliptic genus of this theory is simply

I.q; x/ D
Q
`WFermi �.

Q
i x

qi
`

i I q/Q
rWchiral �.

Q
i x
Qqi

r
i I q/

(254)

In [BDP] it was argued that the right-hand side can be interpreted as the “half-
index” of CS theory, that is, the partition function on S1 �q D which has boundary
S1 �q S1 Š T2 with modulus � . Following [GGP13] one can argue that this theory
is equivalent to the quiver CS theory with coefficients kij living in the half-space on
the left of 2d world-volume. That is, the original 2d-3d system is equivalent to CS
theory in the whole space. The relation

kij D
X

rWchiral

Qqi
r Qqj

r �
X

`WFermi

qi
`q

j
` (255)

can be deduced by considering the limit q ! 1 using that �.xI q/ �
expf�.log x/2=.2 log q/g

Now, one can apply this to 3d N D 2 theories TŒM3IG� that come from
fivebranes on 3-manifolds. Luckily, many of these theories—even the ones coming
from multiple fivebranes, i.e., associated with non-abelian G—admit a purely
abelian UV description, for which (253) should suffice. Hence, using the tools
explained here one can match 4-manifolds to specific boundary conditions that
preserve N D .0; 2/ supersymmetry in two dimensions.

4.5 From Boundary Conditions to 4-Manifolds

Let us start with boundary conditions that can be described by free fermions. Clearly,
these will give us the simplest examples of 2d .0; 2/ theories TŒM4�, some of which
have been already anticipated from the discussion in the previous sections.
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In particular, we expect to find free fermion description of theories TŒM4.‡/�

for certain plumbing graphs ‡ . In the bottom-up approach of the present section,
we construct such theories as boundary conditions in 3d N D 2 theories TŒM3�

associated with M3 D @M4. Thus, aiming to produce a boundary condition for the
N D 2 quiver Chern–Simons theory (37), let us associate a symmetry group U.1/i
to every vertex i 2 ‡ of the plumbing graph. Similarly, to every edge between
vertices “i” and “j” we associate a Fermi multiplet carrying charges .C1;�1/
under U.1/i � U.1/j. Then, its contribution to the gauge anomaly (253) is given
by the matrix of anomaly coefficients that is non-trivial only in a 2 � 2 block (that
corresponds to rows and columns with labels “i” and “j”):

�AL D
��1 1

1 �1
�

(256)

To ensure cancellation of the total anomaly, a combination of such contributions
must be set to equal the matrix of Chern–Simons coefficients kij, which for the quiver
Chern–Simons theory (37) is given by the symmetric bilinear form (20). Therefore,
by comparing (256) with (20), we immediately see that assigning U.1/ factors to
vertices of the plumbing graph ‡ and “bifundamental” charged Fermi multiplets to
edges already accounts for all off-diagonal terms (with i ¤ j) in the intersection
form Q.

Also, note that contributions of charged Fermi multiplets to the diagonal
elements of the anomaly matrix are always negative, no matter what combination
of contributions (256) or more general charge assignments in (253) we take. This
conclusion, of course, relies crucially on the signs in (253) and has an important
consequence: only negative definite intersection forms Q can be realized by free
Fermi multiplets.

For example, in the case of the An plumbing graph shown in Fig. 1, we have M3 D
L.nC 1; n/, and the N D 2 quiver Chern–Simons theory TŒL.n C 1; n/IU.1/� has
matrix of Chern–Simons coefficients of the form (18) with ai D �2, i D 1; : : : ; n.
By combining (256) with two extra Fermi multiplets of charges ˙1 under the first
and the last U.1/ factors, we can realize the An intersection form as the anomaly
matrix in the following 2d N D .0; 2/ theory:

TŒM4.An/IU.1/� D Fermi multiplets ‰`D0;:::;n (257)

with charges

q.‰`/ D

8
ˆ̂<

ˆ̂:

C1 under U.1/1; if ` D 0
.�1;C1/ under U.1/` �U.1/`C1; if 1 � ` < n

�1 under U.1/n; if ` D n

(258)

Note, the total number of Fermi multiplets in this theory is nC 1, which is precisely
the number of Taub-NUT centers in the ALE space of type An.
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Let us briefly pause to discuss the structure of the charge matrix .qi
`/

iD1;:::;n
`D0;:::;n

in (258). First, it is easy to see that each of the U.1/n gauge symmetries is “vector-
like” in a sense that the charges add up to zero for every U.1/ factor. Also note that
redefining the charges qn

` 7! q1` C 2q2` C 3q3` C � � � C nqn
` for all Fermi multiplets

as in (102) gives a new matrix of charges that, via (253), leads to a new matrix of
Chern–Simons coefficients:

Q D An�1 ˚ h�n.nC 1/i (259)

which splits into a matrix of Chern–Simons coefficients for a similar U.1/n�1 theory
and an extra N D 2 Chern–Simons term at level �n.n C 1/. In this basis we
recognize the statement—explained in Sect. 2.14 through a variant of the “Norman
trick” [Nor69, Qui79]—that a sphere plumbing with ‡ D An can be built from the
An�1 sphere plumbing by a cobordism (attaching a 2-handle) with the intersection
form QB D h�n.nC 1/i, cf. (103).

This observation has a nice physical interpretation in the coupled 2d-3d system
described in Sect. 2.14 and illustrated in Figs. 14 and 15. Namely, the system of
Fermi multiplets (257)–(258) without ‰n is simply the 2d N D .0; 2/ theory
TŒM4.An�1/IU.1/� that can cancel anomaly and define a consistent boundary
condition in the 3d N D 2 Chern–Simons theory TŒM3.An�1/IU.1/� associated
with the plumbing graph ‡ D An�1 by the general rule (37). In the new basis, the
extra U.1/iDn symmetry (which is not gauged in TŒM3.An�1/IU.1/�) is, in fact, an
axial symmetry under which all‰`D0;:::;n�1 have chargeC1. Gauging this symmetry
and adding an extra Fermi multiplet that in the new basis has charge �n under
U.1/iDn gives precisely the 2d-3d system of 3d N D 2 quiver Chern–Simons
theory TŒM3.An/IU.1/� coupled to the 2d N D .0; 2/ theory TŒM4.An/IU.1/� on the
boundary. This way of building TŒM4.An/IU.1/� corresponds to a fusion of the fully
transmissive domain wall that carries‰n with a boundary theory TŒM4.An�1/IU.1/�,
as illustrated in Figs. 14 and 15.

And, last but not least, in the matrix of charges .qi
`/

iD1;:::;n
`D0;:::;n given in (258) one

can recognize simple roots ˛iD1;:::;n of the An root system. This suggests immediate
generalizations. For instance, for a 4-manifold (105) whose plumbing graph ‡ D
D4 contains a trivalent vertex, we propose the “trinion theory” TŒ?� to be a theory of
four Fermi multiplets with the following charge assignments under the U.1/4 flavor
symmetry group:

�2�

�2� ��2
�2�

W .qi
`/trinion D

0
BB@

1 �1 0 0

0 1 �1 0

0 0 1 �1
0 0 1 1

1
CCA (260)

The rows of this matrix are simple roots of the D4 root system associated with the
plumbing graph‡ , while the columns are the charge vectors of the Fermi multiplets
‰`D1;:::;4. Substituting this into (253), we conclude that this 2d trinion theory can
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precisely cancel the anomaly of the 3d N D 2 Chern–Simons theory with gauge
group U.1/4 and the matrix of Chern–Simons coefficients:

.Qij/ D

0

BB@

�2 1 0 0

1 �2 1 1

0 1 �2 0

0 1 0 �2

1

CCA (261)

which equals minus the Cartan matrix of the D4 root system. This is in complete
agreement with our general proposal (37) that TŒM4.‡/� defines a consistent, non-
anomalous boundary condition for the 3d N D 2 theory TŒM3.‡/�, which in the
present case is simply the quiver Chern–Simons theory defined by the symmetric
bilinear form (20).

In Sect. 2.7 we saw that An linear plumbing can be naturally glued to a twisted
D2 bundle over S2 with Euler number �.nC 1/ since they share the same boundary
(with opposite orientation, as required for gluing). In particular, the latter 4-manifold
is represented by the Kirby diagram (15) with p D nC 1 and has boundary M3 D
L.nC 1; 1/.

The corresponding 3d N D 2 theory TŒL.nC 1; 1/IU.1/� was derived in (45): it
is a U.1/ Chern–Simons theory at level �.nC 1/. This theory can be related to the
U.1/n quiver Chern–Simons theory TŒL.nC 1; n/IU.1/�, cf. (51), by a sequence of
dualities (3d Kirby moves) described in Sect. 2.7. In particular, this chain of dualities
shows that TŒL.n C 1; n/IU.1/� and TŒL.n C 1; 1/IU.1/� are related by a parity
transformation (65):

TŒL.nC 1; n/� ' P ı TŒL.nC 1; 1/� (262)

which, of course, is expected to hold for any G, not just G D U.1/.
Given the explicit description of the 3d N D 2 theory TŒL.n C 1; 1/IU.1/�,

one can study B-type boundary conditions and try to match those with 4-manifolds
bounded by L.nC 1; 1/. The anomaly cancellation condition (253) suggests several
possible candidates for the .0; 2/ boundary theory TŒM4�:

(a) nC 1 Fermi multiplets of charge˙1 (or, more generally, a collection of Fermi
multiplets whose charges squared add up to nC 1);

(b) a single .0; 2/ chiral multiplet ˆ of charge Qqˆ D C1 and charged log
interaction (252) with Nˆ D nC 2.

4.6 Non-abelian Generalizations and Cobordisms

It is straightforward to extend this discussion to boundary theories and theories
TŒM4IG� trapped on walls for non-abelian G. Even if G is non-abelian, theories
TŒM4IG� and TŒM3IG� often admit (multiple) UV definitions that only involve
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abelian gauge fields. In some cases, however, it is convenient to build TŒM4IG�
and TŒM3IG� using non-abelian gauge symmetries. For instance, the Lens space
theory (52) proposed in Sect. 2.2 is a good example.

In order to accommodate such examples, we need to discuss 2d .0; 2/ theories
with non-abelian gauge symmetries, which by itself is a very interesting subject
that does not appear to be explored in the literature on .0; 2/ heterotic models.
Specifically, consider a general 2d theory with .0; 2/ chiral multiplets ˆr that
transform in representations eRr of the gauge group G and Fermi multiplets ‰` in
representations R`. The corresponding fermions couple to the non-abelian gauge
field via the usual covariant derivatives, e.g., for left-moving fermions in Fermi
multiplets we have

.Dz/ij D ıij@z C
X

a

Aa
z .T

a
R`
/ij

and similarly for chiral multiplets. Here, Ta
R are matrices of size dim.R/�dim.R/ that

obey the same commutation relations as the generators Ta of the Lie algebra Lie .G/.
(The latter correspond to the fundamental representation.) Then, the anomaly
cancellation condition in such a theory has the form, cf. (253),

X

rWchiral

Tr ŒTa
eRr

Tb
eRr
� �

X

`WFermi

Tr ŒTa
R`

Tb
R`
� D .kC � k�/ � Tr ŒTaTb� (263)

where, in order to diversify our applications, we now assumed that the inflow from
three dimensions has two contributions, from Chern–Simons couplings at levels kC
and k�, respectively. This more general form of the anomaly inflow is realized in
a 2d .0; 2/ theory trapped on a domain wall between 3d N D 2 theories TŒMC3 �
and TŒM�3 �.

The anomaly cancellation condition (263) can be written more succinctly by
using the index C.R/ of a representation R defined via Tr

	
Ta

RTb
R


 D C.R/ıab. For
example, for the fundamental and adjoint representations of G D SU.N/ we have
C.fund/ D 1

2
and C.Adj/ D N, respectively. In general,

C.R/ D hR
dim.R/

dim.Adj/
(264)

where hR is the quadratic Casimir of the representation R.
Now we can apply (263), say, to the Lens space theory (52). We conclude that a

domain wall that carries a Fermi multiplet ‰ in the fundamental representation of
G D U.N/ changes the level of the N D 2 Chern–Simons theory by one unit,

kC � k� D �1 (265)

This is consistent with our proposal, based on matching the Vafa–Witten partition
function with the superconformal index, that the cobordism B that relates Ap and
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ApC1 sphere plumbings corresponds to a domain wall which carries 2d .0; 2/ theory

TŒBIU.N/� D Fermi multiplet ‰ in the fundamental representation (266)

The fusion of such domain walls is clearly non-singular and gives

TŒM4.Ap/IU.N/� D pC 1 Fermi multiplets ‰`D0;:::;p in N-dimn’l representation

In fact, the wall in this example is fully transmissive. Notice, as in (257), the total
number of Fermi multiplets in this theory is greater (by one) than the number of
2-handles in M4 and equals the number of Taub-NUT centers in the ALE space of
type Ap.

5 Future Directions

There are many avenues along which one can continue studying 2d N D .0; 2/

theories TŒM4� labeled by 4-manifolds. The most obvious and/or interesting items
on the list include:

• Examples: While focusing on the general structure, we presented a number
of concrete (abelian and non-abelian) examples of: (a) theories labeled by 4-
manifolds and 3-manifolds, (b) dualities that correspond to Kirby moves, (c)
relations between cosets and Vafa–Witten partition functions, and (d) B-type
walls and boundary conditions in 3d N D 2 theories. Needless to say, it would
certainly be interesting to extend our list of examples in each case.

In particular, it would be interesting to study 2d N D .0; 2/ theories TŒM4�

associated with 4-manifolds that are not definite or not simply connected. Such
examples clearly exist (e.g., for M4 D T2 � †g or M4 D K3, possibly with
“frozen singularities” [Wit98, dDHKM02]), but still remain rather isolated and
beg for a more systematic understanding, similar to theories labeled by a large
class of negative definite simply connected 4-manifolds (13) considered in this
paper. Thus, in Sect. 2 we briefly discussed a natural generalization to plumbings
of twisted D2 bundles over genus-g Riemann surfaces. It would be interesting to
see what happens to the corresponding theories TŒM4� when Riemann surfaces
have boundaries/punctures and to make contact with [GRRY11].

• 4-manifolds with corners: Closely related to the last remark is the study of
4-manifolds with corners. Although such situations were encountered at the
intermediate stages in Sect. 2.2, we quickly tried to get rid of 3-manifolds with
boundaries performing Dehn fillings. It would be interesting to study whether
Vafa–Witten theory admits the structure of extended TQFT and, if it does, pursue
the connection with gluing discussed in Sect. 2.2.

• Smooth structures: As was already pointed out in the introduction, it would
be interesting to understand what the existence of a smooth structure on M4

means for the corresponding 2d N D .0; 2/ theory TŒM4�. We plan to tackle
this problem by studying surface operators in the fivebrane theory.
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• Large N limit: It would be interesting to study the large N behavior of the
Vafa–Witten partition function on plumbing 4-manifolds and make contact with
holographic duals.

• Non-abelian .0; 2/ models: It appears that not much is known about non-
abelian 2d .0; 2/ gauge dynamics. While in general abelian (gauge) symmetries
suffice for building theories TŒM4� and TŒM3�, in Sects. 2.2 and 4.5 we saw some
examples where using non-abelian symmetries is convenient.

• Defect junctions: One important property of defect lines and walls is that they
can form complicated networks and foam-like structures. Following the hints
from Sects. 2.2–2.10 it would be interesting to understand if these play any role
in the correspondence between 4-manifolds and 2d .0; 2/ theories.

• Triangulations: Since a basic d-dimensional simplex has d C 1 vertices, the
Pachner moves in d dimensions involve adding one more vertex and then
subdividing the resulting .dC2/-gon into basic simplices. In particular, for d D 4
such subdivisions always give a total of 6 simplices, resulting in 3–3 and 2–4
Pachner moves for 4-manifolds [Mac99]. It would be interesting to find a special
function (analogous to the quantum dilogarithm for 2–3 Pachner moves in case
of 3-manifolds) that enjoys such identities. Pursuing this approach, however, one
should keep in mind that not every 4-manifold can be triangulated. Examples of
non-triangulable 4-manifolds include some natural cases (such as Freedman’s
E8 manifold mentioned in the Introduction) on which the fivebrane theory is
expected to be well defined and interesting.
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Appendix 1: M5-Branes on Calibrated Submanifolds
and Topological Twists

We study the twisted compactification of 6d .2; 0/ theory on a four-manifold M4. In
each of the cases listed in Table 5, such compactification produces a superconformal
theory TŒM4� in the two non-compact dimensions. Via the computation of the
T2 partition function explained in the main text, the cases (a)–(c) correspond to
previously studied topological twists of N D 4 super-Yang-Mills which, in turn,
are summarized in Table 6.

Specifically, in the first case (a) the N D 4 SYM is thought of as an N D 2 gauge
theory with an extra adjoint multiplet and the Donaldson–Witten twist [Wit88]. Its
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Table 5 Supersymmetric M5 brane compactifications on a negatively curved 4-manifold M4

R-symmetry SO.5/  Embedding of M4 SUSY Solution Metric on M4

(a) SO.4/  SU.2/ � SU.2/ Cayley in Spin.7/ .0; 1/ AdS3 �M4 Conf. half-flat

(b) SO.4/ Lagrangian in CY4 .1; 1/ AdS3 �M4 Const. curvature

(c) SO.2/� SO.3/ Coassociative in G2 .0; 2/ AdS3 �M4 Conf. half-flat

(d) SO.2/ � SO.2/ Kähler in CY4 .0; 2/ AdS3 �M4 Kähler–Einstein

(e) SO.4/  U.2/  U.1/ Kähler in CY3 .0; 4/ AdS3 � S2 � CY3 Kähler–Einstein

(f) SO.4/  U.2/ Complex Lagrangian in .1; 2/ AdS3 �M4 Kähler-Einstein w/

d D 8 hyper-Kähler Const. hol. sec. curv.

(g) SO.4/  SO.2/ � SO.2/ .M2 � CY2/ � .M0

2 � CY2/ .2; 2/ AdS3 �M2 �M0

2 Const. curvature

In the first column we box the subgroup of SO.5/ R-symmetry of the M5 brane theory that is
used to twist away the holonomy (or its subgroup) on M4. Except in the case (e), all the AdS3
solutions are already found in 7d supergravity and can be lifted to 11d by fibering S4 over M4,
see, e.g., [GKW00, GK02, BB13]. In the case (e), the solution is found only in 11d supergravity.
For manifolds M4 with general holonomy (but still some restrictions on the metric), only the
compactifications (a)–(c) are allowed. In this paper, we focus on the case (c) as it produces
.0; 2/ superconformal theory in two dimensions. In this case, M4 is conformally half-flat; see,
e.g., [Ito93] for moduli of conformally half-flat structures

Table 6 Topological twists of N D 4 super-Yang-Mills

R symmetry SO.6/  Name Equations

(a) SO.2/ � SU.2/ � SU.2/ Donaldson–Witten FC

˛ˇ C ŒM.˛ ;Mˇ/�D 0

D˛ P̨ M˛ D 0

(b) SO.2/ � SU.2/ � SU.2/ Marcus/GL FC

�� � iŒV�;V� �C D 0

.DŒ�V��/� D 0 D D�V�

(c) SO.3/ � SO.3/ Vafa–Witten D�CCp2D�BC

�� D 0

FC

�� � i
2
ŒBC

�� ;B
C�
� �� i

p

2
ŒBC

�� ;C�D 0

path integral localizes on solutions to the non-abelian monopole equations. The
untwisted rotation group of the DW theory is then twisted by the remaining SU.2/
symmetry to obtain the case (b). This twist (a.k.a. GL twist) was first considered by
Marcus [Mar95] and related to the geometric Langlands program in [KW07]. The
last case (c) is of most interest to us as it corresponds to .0; 2/ SCFT in 2d. On a
4-manifold M4, this twist is the standard Vafa–Witten twist [VW94].

Appendix 2: Orthogonality of Affine Characters

The Weyl–Kac formula for affine characters of bsu.2/k is
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�
bsu.2/k
� .q; a/ D ‚

.kC2/
�C1 .aI q/�‚.kC2/

���1.aI q/
‚
.2/
1 .aI q/�‚.2/

�1.aI q/
(267)

where

‚
.k/
� .aI q/ WD e�2� ikt

X

n2ZC�=2k

qkn2akn D e�2� iktq
�2

4k

X

n

qkn2C�naknC� (268)

Using the Weyl–Kac denominator formula the character can be rewritten as

�
bsu.2/k
� .q; a/ D e�2�i.kC2/tq

.�C1/2

4.kC2/
P

n q.kC2/n2a.kC2/n.q.�C1/na.�C1/ � q�.�C1/na�.�C1//

a�1.qI q/�.a2I q/ :

(269)
Consider the integral

I
da

2�ia
.qI q/21�.a2I q/�.a�2I q/�bsu.2/k� .q; a/�bsu.2/k�0 .q; a/

D e�2� i.kC2/tq
.�C1/2

4.kC2/C .�0
C1/2

4.kC2/

�
X

n;m


q.kC2/.n2Cm2/C.�C1/nC.�0C1/m

I
da

2�ia
a.kC2/.nCm/C.�C1/C.�0C1/

� q.kC2/.n2Cm2/C.�C1/n�.�0C1/m
I

da

2�ia
a.kC2/.n�m/C.�C1/�.�0C1/

� q.kC2/.n2Cm2/�.�C1/nC.�0C1/m
I

da

2�ia
a.kC2/.�nCm/�.�C1/C.�0C1/

C q.kC2/.n2Cm2/�.�C1/n�.�0C1/m
I

da

2�ia
a.kC2/.�n�m/�.�C1/�.�0C1/ / ı�;�0

(270)

This shows that bsu.2/k characters are orthogonal with respect to the measure

.qI q/21�.a2I q/�.a�2I q/ (271)

but this measure is exactly the index of SU.2/ .0; 2/ vector multiplet. The
orthogonality of Ou.1/k characters can be verified in a similar way. We conjecture
that bsu.N/k ( Ou.N/k) characters are orthogonal with respect to SU.N/ (U.N/) vector
multiplet measure as well.
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Higgs Bundles and Characteristic Classes

Nigel Hitchin

Dedicated to the Memory of Friedrich Hirzebruch

1 Introduction

Sixty years ago Hirzebruch observed how the vanishing of the Stiefel–Whitney class
w2 led to integrality of the OA-genus of an algebraic variety [Hirz1]. This was one
motivation for the Atiyah–Singer index theorem but also for my own thesis about
Dirac operators and Kähler manifolds. Indeed the interaction between topology and
algebraic geometry which he developed has been a constant theme in virtually all
my work.

This article is also about w2, characteristic classes and algebraic geometry, but
in a rather different context. We consider a compact oriented surface † of genus g,
a real Lie group Gr and the character variety Hom.�1.†/;Gr/=Gr, equivalently the
moduli space of flat Gr-connections on†. If U is the maximal compact subgroup of
Gr, then each principal Gr-bundle has a characteristic class in H2.†; �1.U// which
helps to determine in which connected component of the character variety it lies.

A well-known example is the case Gr D SL.2;R/ where we have U D SO.2/
and a class c 2 H2.†; �1.SO.2/// Š Z. It satisfies the Milnor–Wood inequality
jcj � 2g � 2 and there is one component for each c for which strict inequality
holds, but when jcj D 2g � 2 there are 22g connected components, each a copy of
Teichmüller space.

Here we shall consider the groups SL.n;R/ and Sp.2m;R/, higher dimensional
generalizations of SL.2;R/ D Sp.2;R/. In the first case we have a characteristic
class in H2.†; �1.SO.n/// which, for n > 2, is a Stiefel–Whitney class w2 2 Z2
and in the second a Chern class c1 in H2.†; �1.U.m/// Š Z.

We approach this question using the moduli space of Higgs bundles. For a
complex group Gc and a complex structure on †, gauge-theoretic equations enable
us to describe the Gc-character variety in terms of a holomorphic principal bundle
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and a holomorphic sectionˆ of g˝K where K is the canonical bundle. This moduli
space has the structure of a completely integrable Hamiltonian system—a proper
map to an affine space, whose generic fibre is an abelian variety. The Gr-character
variety is realized as the fixed point set of a holomorphic involution and for the real
groups in question the involution acts trivially on the base and its fixed points can be
identified with the elements of order 2 in the abelian variety. The main problem we
address is to evaluate the characteristic class as a function on this Z2-vector space.
For SL.n;R/, w2 is a quadratic function related to the mod 2 index theorem and
for Sp.2m;R/ the characteristic class is determined by the orbit of an action of a
symmetric group under its permutation representation over Z2.

The above results provide the background for testing the predictions of mirror
symmetry for the hyperkähler Higgs bundle moduli space, and this we approach
in the final section of this paper. A component of the Gr-character variety is an
example of what is known as a BAA-brane. The SYZ approach to mirror symmetry
says that its mirror should be a BBB-brane. In this context, a BBB-brane is a
hyperholomorphic bundle over a hyperkähler submanifold. Now it is known that
mirror symmetry for these moduli spaces is closely related to Langlands duality
and the duality of the abelian varieties in the integrable system. How this works
for the two real forms above is still a mystery, but we shall indicate a conjectural
mirror for the real form Gr D U.m;m/ � GL.2m;C/. There is again an integral
characteristic class here and our candidate for the mirror is, for each allowable value,
a hyperholomorphic bundle over the moduli space of Sp.2m;C/-Higgs bundles
considered as a hyperkähler submanifold of the GL.2m;C/-moduli space. It is trivial
only for the components of the moduli space where the characteristic class takes its
maximum absolute value.

2 Higgs Bundles

We summarize here the basic facts about Higgs bundles [Hit1, Sim]. A crucial fea-
ture is the hyperkähler structure which provides the non-holomorphic isomorphism
between the character variety and the moduli space of Higgs bundles. This arises
from an infinite-dimensional quotient construction.

Let † be a compact oriented Riemann surface of genus g > 1 and P a principal
bundle for the compact real form G of a complex semi-simple Lie group Gc. The
space of connections on P is an affine space A with group of translations�1.†; g/
and a symplectic form given by integrating B.a ^ b/ where B is an invariant metric
on G. The complex structure on† gives this the structure of an infinite-dimensional
flat Kähler manifold with complex tangent space �0;1.†; g/. The group G of gauge
transformations acts isometrically. The cotangent bundle T�A D A��1;0.†; g/ is
a flat hyperkähler manifold and the induced gauge group action has a hyperkähler
moment map, which applied to .A; ˆ/ 2 A ��1;0.†; g/ is

�.A; ˆ/ D .FA C Œˆ;ˆ��; N@Aˆ/; (1)
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where FA is the curvature and ˆ 7! ˆ� for a general group is the antiholomorphic
involution coming from the compact real form.

The zero set gives firstly N@Aˆ D 0, so the Higgs field ˆ is a holomorphic section
of g ˝ K, and secondly the equation FA C Œˆ;ˆ�� D 0 which is equivalent to a
stability condition. The quotient of this zero set by G is the moduli space of pairs
.A; ˆ/, and it has an induced hyperkähler structure. This is a metric compatible with
complex structures I; J;K satisfying the relations of the quaternions. If I denotes the
complex structure of pairs .A; ˆ/, then J;K are the complex structures for the Gc-
connections rA CˆC ˆ�;rA C iˆ � iˆ�, respectively. Setting (1) to zero shows
that these are flat connections and by considering the holonomy, the moduli space
with complex structure J or K can be identified with the Gc-character variety.

The integrable system for Gc D GL.n;C/ is defined by the characteristic
polynomial of the Higgs field in its defining representation: det.x � ˆ/ D xn C
a1xn�1 C � � � C an where ai 2 H0.†;Ki/. This maps the moduli space M to the
vector space

L
1
i
n H0.†;Ki/: it is proper and the functions defined by it Poisson-

commute with respect to the natural symplectic structure. The generic fibre is then a
complex torus but it can be identified with the Jacobian of the curve with equation
det.x �ˆ/ D 0. For complex linear groups the fibres correspond to certain abelian
subvarieties of the Jacobian.

To obtain the character variety for the real form Gr in the Higgs bundle
realization, we need the connection A to have holonomy in U, the maximal compact
subgroup of Gr and, with g D u ˚ m, the Higgs field must lie in H0.†;m ˝ K/.
So for Gr D SL.n;R/, we have U D SO.n/ and the Higgs bundle is defined by a
rank n holomorphic vector bundle V with an orthogonal structure and ƒnV trivial.
The Higgs field ˆ must then be symmetric with respect to this inner product [Hit3].
The characteristic class here is w2 2 Z2: the obstruction to lifting the SO.n;C/-
frame bundle to Spin.n;C/.

For Gr D Sp.2m;R/, the maximal compact is U D U.m/ and this means the
vector bundle V D W ˚ W� with W a rank m vector bundle [PG, GGM], the
pairing between W and W� defining the symplectic structure. Here the Higgs field
has the off-diagonal form ˆ.w; �/ D .ˇ.�/; .w// where ˇ W W� ! W ˝ K and
 W W ! W� ˝ K are symmetric. The characteristic class here is c1.W/ 2 Z.

3 The Canonical Section

As shown in [Hit3], there are canonical sections of the integrable system, each point
of which gives a Higgs bundle for the split real form Gr. In particular, this gives a
distinguished point in the generic fibre which we can regard as the identity element
in an abelian variety. We spell this out next in our two cases which are indeed split
real forms.

For SL.n;R/ and n D 2mC 1 the vector bundle is given by

V D K�m ˚ K1�m ˚ � � � ˚ Km
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and for n D 2m by

V D K�.2m�1/=2 ˚ K1�.2m�1/=2 ˚ � � � ˚ K.2m�1/=2;

where for n odd we have to choose a square root of the canonical bundle K (a theta
characteristic in classical terms, or a spin structure [MFA1] in the language of
topology). The pairing of K˙` or K˙`=2 defines an orthogonal structure on V and
ƒnV is trivial so it has structure group SO.n/.

The subbundle K1=2˚ � � � ˚K.2m�1/=2 when n D 2m or K˚ � � � ˚Km when n D
2mC 1 is maximal isotropic and a spin structure for V is defined by a holomorphic
square root of the top exterior power of a maximal isotropic subbundle. This in
the two cases is Km2=2 and Km.mC1/=2. These have Chern classes m2.g � 1/ and
m.mC 1/.g� 1/. The latter is even and so in odd dimensions w2 D c1 mod 2 D 0.
When n D 2m, w2 D 0 if g is odd and if g is even w2 D m mod 2.

The Higgs field must be symmetric with respect to this orthogonal structure.
We set:

ˆ D

0

BBBBBBBBB@

0 1 0 : : : 0

a2 0 1 : : : 0

a3 a2 0 1 : : : 0
:::

: : :
:::

an�1
: : : 1

an an�1 : : : a3 a2 0

1

CCCCCCCCCA

; (2)

where ai 2 H0.†;Ki/.

Remark. In [Hit3, p. 456] it was claimed that this is conjugate to the companion
matrix of the polynomial xn C a2xn�2 C � � � C an which is incorrect. However, the
coefficients of the characteristic polynomial are universal polynomials in the ai and
can be thought of as simply changing the basis of invariant polynomials on sl.n/.
The actual characteristic polynomial can be viewed as follows (see [Tr]). Set p.x/ D
1 � �x C a2x2 C � � � C anxn, then p.x/ and xn have no common factor so there are
unique polynomials a.x/; b.x/ of degree� .n� 1/ such that a.x/p.x/C b.x/xn D 1.
Then b.0/ D det.� �ˆ/.

For Sp.2m;R/ the vector bundle is given by

V D K�.2m�1/=2 ˚ K1�.2m�1/=2 ˚ � � � ˚ K.2m�1/=2

where now we use the pairing between K˙`=2 to define a symplectic structure.
Putting W D K.2m�1/=2˚K.2m�1/=2�2˚� � �˚K�.2m�3/=2 gives the form V D W˚W�
above. Then c1.W/ D m.g � 1/.

We need for the Higgs field sections ˇ;  of S2W ˝ K; S2W� ˝ K, respectively.
Since W D W� ˝ K, we set  D 1. Then we take for ˆ the matrix of the form
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ˆ D
�
0 1

A 0

�
;

where

A D

0

BBBBBBBBB@

a2 1 0 : : : 0

a4 a2 1 0 : : : 0
:::

: : :
:::

: : :

1

a2m : : : a6 a4 a2

1

CCCCCCCCCA

: (3)

Then det.� � ˆ/ D det.�2 � A/ and the coefficients are again universal
polynomials in the ai, providing another basis for the invariant polynomials. In fact,
since Sp.2m;R/ � SL.2m;R/ the automorphisms of V generated by the ai take the
Higgs field for Sp.2m;R/ above into one of the form (2).

4 Spectral Data

Given a Higgs bundle for a linear group the spectral curve S is defined by the
characteristic equation 0 D det.x � ˆ/ D xn C a1xn�1 C � � � C an, where
ai 2 H0.†;Ki/. It is a divisor of the line bundle ��Kn on the total space of K,
where x is the tautological section of ��K on K, and since the canonical bundle of
a cotangent bundle is trivial, KS Š ��Kn by adjunction. In particular the genus of S
is given by gS � 1 D n2.g � 1/. When S is smooth, the cokernel of ��ˆ � xI on S
defines a line bundle L��K.D L˝ ��K/ and the vector bundle V can be recovered
as V D ��L, the direct image sheaf. The direct image of x W L! L��K is then the
Higgs fieldˆ. The direct image of the trivial bundle is O˚K�1˚K�2˚� � �˚K�.n�1/
[BNR].

In generalƒnV Š Nm.L/K�n.n�1/=2 [BNR] where Nm W Pic.S/! Pic.†/ is the
norm map which associates to a divisor

P
nipi on S the divisor

P
ni�.pi/ on †.

Thus, to get an SL.n;C/-Higgs bundle we take L Š U��K.n�1/=2 where U lies in
the Prym variety, the kernel of the homomorphism Nm W Pic0.S/ ! Pic0.†/. The
canonical section described above is obtained by taking U to be the trivial bundle.

For the symplectic group Sp.2m;C/, the eigenvalues of ˆ occur in pairs˙� and
the equation for the spectral curve has the form x2mCa2x2m�2C� � �Ca2m D 0. Thus
S has an involution �.x/ D �x. In this case the bundle U must satisfy ��U Š U�
[Hit2]. This is the Prym variety for the map to the quotient S! NS D S=� .

These are the spectral data for the complex groups, next we need to find the
restrictions for the real forms. For the group SL.m;R/, we need V to be orthogonal
and ˆ to be symmetric. This is a fixed point of a holomorphic involution on
the Higgs bundle moduli space: .V; ˆ/ 7! .V�; ˆT /. Since the real dimension
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of .Hom.�1.†/; SL.m;R//=SL.m;R/ is 2.g � 1/ dim SL.m;R/, each component
of the fixed point set has complex dimension dimM=2. The canonical Higgs
bundle lies in the fixed point set as we have seen, and so the C1-eigenspace of
the action on the tangent space at this point has dimension dimM=2. However,
det.x�ˆT / D det.x�ˆ/ so the involution acts trivially on the base of the integrable
system, which means the action on the tangent space to the fibre is �1. Since
the fibre is known to be connected, by exponentiation the fixed points correspond to
the elements of order 2 in the Prym variety. In fact, this argument holds for any split
real form and is dealt with in [LS].

To see more concretely how the direct image ��L acquires an orthogonal
structure when U2 is trivial we use relative duality, with the equivalent condition
L2 Š ��Kn�1 Š KS�

�K�.
Relative duality in our situation states that for any vector bundle W on S,

.��W/� Š ��.W� ˝ KS�
�K�/: Explicitly, over a regular value p of � ,

.��W/p D
M

�.u/Dp

Wu

and at each point u 2 S we have the derivative d�u 2 .KS�
�K�/u. Then given

v 2 .��W/p, � 2 ��.W� ˝ KS�
�K�/p the non-degenerate pairing is

hv; �i D
M

�.u/Dp

�.v/u

d�u
:

At a branch point with the local form z 7! w D zk we write a local holomorphic
section of ��W as f .z/ D b0.w/C zb1.w/C � � � C zk�1bk�1.w/ and then, if g.z/ D
c0.w/Czc1.w/C� � �Czk�1ck�1.w/ is a local section of ��.W�˝KS�

�K�/ we have
a contribution of

lim
z!0

k�1X

iD0

1

k!�izk�1 hf .!iz/; g.!iz/i D
X

jC`Dk�1
hbj; c`i;

where ! is a primitive kth root of unity.
So, returning to the case L2 Š KS�

�K�, the duality V Š V� is expressed by the
quadratic form

.s; s/p D
M

�.u/Dp

s2u
d�u

(4)

which is naturally a sum of squares over regular values. The Higgs field is the direct
image of s 7! xs and since .xs/tu D s.xt/u, ˆ is symmetric.

In the symplectic case ��U Š U� and since L Š U��K.n�1/=2 we have

��L Š L���Kn�1 Š L�KS�
�K�:
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Here, we have a non-degenerate bilinear form

hv;wi D
M

�.u/Dp

��v.w/
d�u

(5)

which is skew-symmetric since d� has opposite signs at u; �.u/.
We also have the condition that U2 is trivial and so L2 Š KS�

�K� . This means
that ��L Š L and we have an action of � (well-defined modulo ˙1) on L. Given
an open set A � †, ��1.A/ � S is invariant under � and this means that the
decomposition of H0.��1.A/;L/ into invariant and anti-invariant parts descends to
a decomposition V D W1˚W2. Since � interchanges in pairs the 2m fibres, rk W1 D
rk W2 D m.

Now if s; t 2 W1 they are represented by local invariant sections of L. Then
from (5), .��s/t is invariant but the denominator d�u is anti-invariant and hence
W1 is Lagrangian, and hence W2 Š W�1 . We therefore have the required form for
V D W ˚ W�. Now since �.x/ D �x, ˆ interchanges W and W� and as before
.xs/t D s.xt/ is symmetric.

5 Characteristic Classes for SL.n; R/

In the previous section we saw how the direct image of a line bundle U of order 2
on the curve S defines an orthogonal bundle V on †. There are two characteristic
classes w1.V/ and w2.V/ but w1 D 0 if U lies in the Prym variety of � W S ! †.
Topologically this means that if we take the dual homology class u 2 H1.S;Z2/ of
U 2 H1.S;Z2/, then ��.u/ D 0.

The second Stiefel–Whitney class is more complicated.
To discuss the topology of orthogonal bundles on a surface† we use KO-theory,

following [MFA1]. For a compact surface †

KO.†/ Š Z˚ H1.†;Z2/˚ H2.†;Z2/;

where the total Stiefel–Whitney class w D 1 C w1 C w2 gives an isomorphism of
the additive group QKO.†/ to the multiplicative group 1˚H1.†;Z2/˚H2.†;Z2/.

Generators are given by holomorphic line bundles L such that L2 Š O and the
class � D Op CO�p � 2 where Op is the holomorphic line bundle given by a point
p 2 †. We write ˛.x/ 2 KO.†/ for the class of the line bundle corresponding to
x 2 H1.†;Z2/. Then ˛.0/ D 1 and

˛.xC y/ D ˛.x/C ˛.y/ � 1C .x; y/�

This is nonlinear as it corresponds to the tensor product of line bundles. We have
w1.˛.x// D x;w1.�/ D 0;w2.�/ D c1.Op/ mod 2=Œ†�.
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For an arbitrary rank n orthogonal bundle V we have

ŒV� D n � 1C ˛.w1.V//C w2.V/�:

Now choose a theta characteristic K1=2 on †. This is a spin structure and defines
a KO-orientation. The map to a point gives an invariant which is a spin cobordism
characteristic number, an additive homomorphism ' W KO.†/! Z2.

Given a holomorphic bundle V with an orthogonal structure, ' is an analytic
mod 2 index '.ŒV�/ D dim H0.†;V ˝K1=2/ mod 2. For V D Op CO�p , then (as in
[MFA1]), Riemann–Roch and Serre duality gives

1 D dim H0.†;OpK1=2/� dim H0.†;O�p K1=2/

and so '.V/ D 1 D '.�/.
Theorem 1. Let S be a smooth curve in the total space of � W K ! † given by
an equation xn C a1xn�1 C � � � C an D 0 and let L be a line bundle on S such that
L2 Š KS�

�K�. Define V D ��L, the direct image bundle given the orthogonal
structure described above.

Let K1=2 be a theta characteristic on † with '†.1/ D 0, and K1=2
S D L��K1=2

the corresponding theta characteristic on S. Then

w2.V/ D 'S.1/C '†.˛.w1.V///:

Proof. The class of V in KO.†/ is n � 1C ˛.w1.V//C w2.V/� so

w2.V/ D .n � 1/'†.1/C '†.˛.w1.V//C '†.V/

and '†.1/ D 0 by the choice of K1=2.
Now, the defining property of the direct image is that H0.A; ��L/ D

H0.��1.A/;L/ for any open set A � † so with A D †

H0.S;K1=2
S / D H0.S;L��K1=2/ D H0.†; ��L˝ K1=2/

which gives 'S.1/ D '†.V/. �

Remarks.

1. There is an alternative approach to deriving this formula using the topological
definition of the mod 2 index due to Thurston (see [AGH] p. 291). Away from
the branch locus B, the monodromy of a loop in †nB preserves the orthogonal
structure on the direct image as a sum of squares and so lies in the group B.n/,
the semi-direct product of the symmetric group S.n/ and .Z2/n. This group is a
subgroup of O.n/ and has a double covering C.n/ � Pin.n/ which is a central
extension by Z2. The authors of [EOP] relate the mod 2 invariant to lifting issues
related to this group. In our context it clearly corresponds to the question of
whether the structure group of V lifts to Spin.n/, i.e., whether w2.V/ D 0 or not.
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2. The characteristic class w2 is independent of which spin structure K1=2 we
choose, (which was why it was convenient to take an even one in the theorem).
A better way to formulate this fact is to regard the isomorphism L2 Š KS�

�K�
as a KO-theory orientation on the map � W S! †. There is then a push-forward
map �Š W KO.S/! KO.†/ and ŒV� D �Š.1/.
Given the formula in Theorem 1 we need to determine how many points of order

2 give w2.V/ D 0. The interpretation of w2 via 'S tells us that this is an affine
quadratic function  on PŒ2�, the elements of order 2 in the Prym variety. Choosing
an origin such that  .0/ D 0 this means that  .x C y/ D  .x/ C  .y/ C .x; y/
using the intersection form on H1.S;Z2/ restricted to PŒ2�.

The quadratic functions xy and x2 C xy C y2 on .Z2/2 have the same bilinear
form but are not equivalent and for quadratic functions associated with a non-
degenerate bilinear form there are two canonical forms: a sum of k terms xy or a
sum of .k � 1/ such terms plus a single term x2 C xyC y2. They are distinguished
by their Arf invariant 2 Z2 which is zero in the first case and 1 in the second. When
the Arf invariant is 0,  has 2k�1.2k C 1/ zeros and otherwise 2k�1.2k � 1/. This
interpretation shows that the invariant is independent of any choice of origin. The
invariant is additive under orthogonal direct sum since x2CxyCy2Cu2CuvCv2 D
.xC u/.xC yC u/C .yC v/.yC uC v/:

Note in what follows that �� W H1.†;Z2/ ! H1.S;Z2/ is injective: indeed,
(as in [BNR]), given a degree zero line bundle L on † with ��L trivial, we have a
section of ����L D L˚ LK�1 ˚ : : : . Since L has degree 0 and g > 1 this must be
a section of L which is therefore trivial.

Proposition 2. In the context of Theorem 1, when n is odd there are 22p�1 C 2p�1
choices of L which give w1.V/ D w2.V/ D 0; and when n D 2m there are
22p�1 C .�1/m.g�1/2pCg�1 choices, where p D .g � 1/.n2 � 1/.
Proof. We have already observed that w1.V/ D 0 if U lies in the Prym variety P.

1. First consider the case where n D 2mC 1 is odd.

The Prym variety has polarization .1; 1; 1; : : : ; n; n; : : : n/ with g copies of n (see
[BNR]) so since n is odd the intersection matrix mod 2 is non-degenerate. Moreover,
since Nm��.x/ D .2mC 1/x D x if 2x D 0, then H1.S;Z2/ is an orthogonal direct
sum ��H1.†;Z2/˚ PŒ2�.

From Theorem 1 we have w2.V/ D 'S.1/ as a function of theta characteristics
of the form K1=2

S D LK1=2. By [MFA1] for all choices of K1=2
S the Arf invariant is

0. But the invariant is additive under orthogonal direct sum, and if we take K1=2
S D

��.UKmC1=2/ for U 2 H1.†;Z2/, then taking the direct image,

dim H0.S;K1=2
S / D dim H0.†;U ˝ .K�mC1=2 ˚ � � � ˚ KmC1=2//

D dim H0.†;U ˝ K1=2/C 2.g� 1/C � � � C 2m.g � 1/
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which is dim H0.†;U˝K1=2/mod 2. This is the standard quadratic function for the
Riemann surface † so the Arf invariant is zero and by additivity so is the invariant
on PŒ2�.

We have dim H0.†;K1=2/ D 0 mod 2 by choice, the origin, and so it follows that
there are 2p�1.2p C 1/ zeros where p D .g � 1/ dim SL.n/ D .g � 1/.n2 � 1/ is the
dimension of the Prym variety.

2. Now assume n D 2m.

In this case Nm��.x/ D 2mx D 0 and ��H1.†;Z2/ lies inside PŒ2�, as the
degeneracy subspace of the intersection form. In this case taking K1=2

S D ��.UKm/

for U 2 H1.†;Z2/ we have

dim H0.S;K1=2
S / D dim H0.†;U ˝ .K�mC1 ˚ � � � ˚ Km//

D dim H0.†;U/C H0.†;UK/C 3.g � 1/C : : :
C.2m � 1/.g� 1/

which by Riemann–Roch and Serre duality is m.g � 1/ mod 2.
From the proof of Theorem 1 in this case w2.V/ D 'S.1/C 2m'†.1/ D 'S.1/

independently of the choice of K1=2. In particular this means that 'SjPŒ2� is invariant
under the action of U 2 ��H1.†;Z2/ and hence for y 2 PŒ2� and x 2 ��H1.†;Z2/,
 .xC y/ D  .y/, and so  .x/ D 0 and .x; y/ D 0.

Choose a transverse 2p � 2g-dimensional subspace X to ��H1.†;Z2/ and
consider the quadratic function  restricted to X. Then from the canonical form
there is a basis yi; zi of X such that the function is

Pp�g
iD1 aibi or

Pp�g
iD2 aibi C a21 C

a1b1 C b21:
Take a basis x1; : : : ; x2g for ��H1.†;Z2/, then by non-degeneracy of the

intersection form on H1.S;Z2/ there are elements wi such that .xi;wj/ D ıij.
Take

Qw1 D w1 C
X

i

.w1; yi/zi C
X

i

.w1; zi/yi

which makes Qw1 orthogonal to X. Since each xi is orthogonal to PŒ2� the 2-
dimensional space spanned by x1; Qw1 is orthogonal to X. Then since  .x1/ D 0

 .a Qw1 C bx1/ D a2 . Qw1/C b2 .x1/C ab D a.a . Qw1/C b/

and so on the space spanned by X and these two vectors we are adding an xy term,
which means we have the same Arf invariant. By induction so does the full space.

Now, as we showed above, for U 2 ��H1.†;Z2/ we have dim H0.S;K1=2
S / D

m.g� 1/ mod 2, so the number of zeros on X is 2p�g�1.2p�g C .�1/m.g�1//. Acting
by U 2 ��H1.†;Z2/ gives all of PŒ2� and hence the total number of zeros is

22g � 2p�g�1.2p�g C .�1/m.g�1// D 22p�1 C .�1/m.g�1/2pCg�1 (6)

�
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6 Characteristic Classes for Sp.2m; R/

We have already seen in Sect. 4 that a Higgs bundle for the group Sp.2m;R/ is
obtained from the spectral curve S defined by x2mC a2x2m�2C � � � C a2m D 0 as the
direct image V D W ˚W� of a line bundle L Š U��K.n�1/=2 such that ��U Š U
and U2 is trivial. Moreover W is the direct image of the invariant sections of L. The
characteristic class here is c1.W/, and we need to evaluate this as a function of PŒ2�
for the Prym variety of p W S! S=� D NS.

Note first that, as in the case of SL.2m;R/, p�H1.NS;Z2/ lies in the Prym variety.
The map p� is also injective. This is a similar argument to the one above. In this case
the invariant and anti-invariant parts decompose the direct image of p�U as U ˚U0
where U0 has negative degree. So if p�U has a section, so does U. The dimension
of the Z2-vector space PŒ2�=p�H1.NS;Z2/ is therefore 2.gS � 2gNS/, but by Riemann–
Hurwitz, since S! NS has 4m.g�1/ branch points, 2�2gS D 2.2�2gNS/�4m.g�1/
and so

dim PŒ2�=p�H1.NS;Z2/ D 4m.g � 1/� 2:

We now use the condition ��U Š U, so that the involution lifts to the line
bundle U. There are two lifts˙� but fix attention on one for the moment. Following
[LS1], we consider the action˙1 of � on the fibre of U at a fixed point.

Proposition 1. Suppose the action is �1 at ` fixed points, then c1.W/ D �`=2C
m.g � 1/.
Proof. The fixed point set of � is the intersection of the zero section of K with S.
Setting x D 0 in the equation x2m C a2x2m�2 C � � � C a2m D 0, these points are
the images of the 4m.g � 1/ zeros of am 2 H0.†;K2m/ under the zero section. The
action is �1 at ` of these points.

Choose a line bundle M on† of large enough degree that the higher cohomology
groups vanish and then applying the holomorphic Lefschetz formula [AB] we obtain

dim H0.S;L��M/C � dim H0.S;L��M/� D 1

2
.�`C .4m.g� 1/� `//

where the superscript denotes the ˙1 eigenspace under the action of � . Riemann–
Roch gives

dim H0.S;L��M/CCdim H0.S;L��M/� D dim H0.†;V˝M/ D 2m.1�gCc1.M//

since V is symplectic and deg V D 0. Hence

dim H0.S;L˝ ��M/C D �`
2
C mc1.M/
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But by the definition of W this is dim H0.†;W˝M/ and Riemann–Roch and the
vanishing of H1 give the value m.1 � g/C c1.W/C mc1.M/ and so

c1.W/ D �`
2
C m.g � 1/: (7)

�

Remarks.

1. Since 0 � ` � 4m.g�1/we have jc1.W/j � m.g�1/which is the Milnor–Wood
inequality for this group [PG, GGM].

2. Taking the action �� instead of � changes ` in the formula to 4m.g� 1/� ` and
c1.W/ to �c1.W/, and the roles of W and W� are interchanged. Choosing one or
the other is simply a choice of generator in �1.U.m// D Z.

The formula (7) above clearly requires ` to be even, but there is a reason for this.
If ` D 0 and the action is trivial at all fixed points, then U is the pull-back of a
flat line bundle of order 2 on the quotient NS. In general, let B denote the subset of
` points in the branch locus of S ! NS, then the line bundle corresponds to a flat
line bundle on NSnB where the local holonomy around each b 2 B is �1. The global
holonomy defines a homomorphism 
 W �1.†nB/ ! Z2 where the fundamental
group has generators Ai;Bi, 1 � i � g and ıj, 1 � j � N, each ıi defining a loop
around a branch point. These satisfy the relation

Y

i

ŒAi;Bi�
Y

j

ıj D 1

but then, with values in the abelian group Z2 we must have
Q

j ıj D 1 and hence an
even number of �1 terms.

This interpretation helps to understand which of the 22p (where p D dim P.S; †//
elements in the Prym variety yield a given characteristic class. Let Z be the
4m.g� 1/-element set of zeros of the section a2m of K2m and let C.Z/ be the space
of Z2-valued functions on Z, and C0.Z/ the subspace of those whose integral is zero,
i.e., takes the value 1 an even number of times. The constant function 1 lies in C0.Z/
and let H.Z/ be the .4m.g � 1/� 2/-dimensional quotient.

For a line bundle U 2 PŒ2� let A be the subset of Z over which the action of �
is �1. (The set A � † is in bijection with B � NS since B lies in the zero section
of Km.) As noted above, A has an even number of elements and so its characteristic
function �A lies in C0.Z/. Define f .U/ 2 H.Z/ to be its equivalence class. Since we
take the quotient by the constant function 1, this is independent of the choice of lift
of � .

Proposition 2. The homomorphism f from PŒ2� to H.Z/ is surjective and has kernel
p�H1.NS;Z2/ � PŒ2�.
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Proof. Given any subset of the zeros of a2m with an even number of elements we can
choose ıi D �1 as above and get a flat line bundle U 2 H1.S;Z2/ and an action of
� which acts as �1 at those points, so the homomorphism is surjective. The kernel
consists of line bundles with trivial action at all fixed points and these are precisely
those pulled back from the quotient NS. �

Since H.Z/ and PŒ2�=p�H1.NS;Z2/ have the same number of elements we see from
the proposition that they are isomorphic.

We can now count the points in PŒ2� with fixed characteristic class. This is, from
Eq. (7), c1.W/ D m.g � 1/ � `=2 and involves a choice between W and W� or
equivalently a choice of lifting of the involution � , or the subset A � Z with an
even number ` of elements. Thus the number of such elements in PŒ2� is, from
Proposition 2,

 
4m.g � 1/

`

!
� 22q;

where q D gNS D .2m2 � m/.g � 1/C 1.

Remarks.

1. The Z2-vector space H.Z/ is a representation of the symmetric group
S.4m.g� 1//, the permutations of the 4m.g � 1/ branch points, and we may
describe the above result by saying that the characteristic class is determined
by the orbit of the symmetric group on this space. In the case of n D 2 this
picture was derived via the monodromy action of the family of abelian varieties
in [LS0].

2. For n D 2 the two groups coincide, so we may use the formula above to compare
with the SL.2;R/ case. Here S is a double cover of † and so NS D †, hence
H.Z/ D PŒ2�=��H1.†;Z2/. Equation (7) gives c1.W/ D �`=2C .g � 1/ and
w2 D c1.W/ mod 2, but here we don’t distinguish between W and W� so the
number with w2 D 0 is

1

2

X

`�.2g�2/mod 4

 
4.g� 1/

`

!
� 22g:

If .g � 1/ is even this is

22g�3..1C 1/4.g�1/ C .1C i/4.g�1/ C .1� 1/4.g�1/ C .1 � i/4.g�1//

and if .g� 1/ is odd

22g�3..1C 1/4.g�1/ C .1C i/4.g�1/ � .1 � 1/4.g�1/ � .1 � i/4.g�1//:

Using ei�=4 D .1C i/=
p
2 this gives 26g�7 C 24g�4 or 26g�7 � 24g�4 which checks

with (6).
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7 Mirror Symmetry

A hyperkähler manifold has not only three complex structures I; J;K but also
three symplectic forms, the corresponding Kähler forms !1; !2; !3. A brane for
a complex manifold (a B-brane) is roughly speaking a holomorphic bundle over
a complex submanifold and for a symplectic manifold (an A-brane) it is a flat
vector bundle over a Lagrangian submanifold. For a hyperkähler manifold a BAA-
brane is a B-brane for the complex structure I and an A-brane for the symplectic
structures !2; !3. The trivial bundle over a component of the Gr-character variety
is an example. As the fixed point set of an antiholomorphic isometry for complex
structures J;K it is Lagrangian for the Kähler forms !2; !3, and it is holomorphic
with respect to I.

Mirror symmetry should transform a BAA-brane on a hyperkähler manifold M to
a BBB-brane on its mirror OM (I am indebted to Sergei Gukov for this information).
A BBB-brane is a holomorphic bundle over a complex submanifold with respect
to all complex structures I; J and K, equivalently a hyperkähler submanifold with
a hyperholomorphic bundle over it. A hyperholomorphic bundle is a bundle with
connection whose curvature is of type .1; 1/ with respect to all complex structures.
Such connections (generalizations of instantons in four dimensions) are quite rare
and so it is intriguing to seek such an object as the mirror of a Gr-character variety.
We shall attempt this now for the group Gr D U.m;m/ � GL.2m;C/.

The Higgs bundle and spectral data description of U.m;m/ will be familiar
from our previous discussion of Sp.2m;R/. Details can be found in [LS1]. The
Higgs bundle is of the form V D W1 ˚ W2 and the Higgs field ˆ is off-diagonal:
ˆ.w1;w2/ D .ˇ.w2/; .w1//. There is a characteristic class c1.W1/, and to keep
the link with flat connections we need c1.V/ D 0 and so c1.W1/ D �c1.W2/ 2 Z.
The spectral curve S has the form x2m C a2x2m�2 C � � � C a2m D 0 and hence an
involution �.x/ D �x and the spectral data consist of taking a line bundle L on
S such that ��L Š L. As in Sect. 6, the characteristic class is determined by the
number of points on x D 0 at which the lifted action of � is �1. The difference here
with the Sp.2m;R/-case is that the fibre is not discrete but is instead the disjoint
union of a finite number of abelian varieties. In fact if L1;L2 are two line bundles
with the same subset of fixed points at which � acts as �1, then the action on L�1L2
is trivial and so it is pulled back from the quotient NS. Thus the fibre is isomorphic
to the disjoint union of N copies of Pic0.NS/ where N D 24m.g�1/�1 is the number of
subsets of the zero set Z of a2m with an even number of elements.

For a Calabi–Yau manifold with a special Lagrangian fibration mirror symmetry
is effected via the Strominger–Yau–Zaslow approach of replacing each nonsingular
torus fibre by its dual, and hoping that it can be extended over the discriminant
locus in the base. The Higgs bundle integrable system fits into this framework as
first investigated in [HT]. As in [Hit4] for certain cases and [DP] in general, it
corresponds to replacing the group Gc by its Langlands dual group LGc.

We now consider the structure on the dual fibration relevant for U.m;m/ �
GL.2m;C/. The abelian variety for GL.2m;C/ is the Jacobian, or Pic0.S/, and since
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Jacobians are self-dual, and the norm map is the adjoint of the pull-back, dualizing
the inclusion Pic0.NS/ � Pic0.S/ gives

0! P.S; NS/! Pic0.S/! Pic0.NS/! 0

and the Prym variety P.S; NS/ is a distinguished subvariety of Pic0.S/. In terms of
duality it parametrizes line bundles on Pic0.S/ which are trivial on Pic0.NS/.

If mirror symmetry is to work as predicted this family of abelian varieties
over the space of polynomials x2m C a2x2m�2 C � � � C a2m should extend to a
hyperkähler submanifold of the Higgs bundle moduli space for the Langlands dual
of GL.2m;C/, which is again GL.2m;C/. But in Sect. 4 we saw that the Sp.2m;C/-
moduli space had an integrable system over this base whose generic fibre was
P.S; NS/. The inclusion of a group gives a hyperkähler subspace of the moduli space
so the symplectic Higgs bundles form a hyperkähler subspace of the moduli space of
GL.2m;C/-Higgs bundles. We therefore have the first requirement of the mirror—
the hyperkähler support for a hyperholomorphic bundle.

The remaining task is to find a hyperholomorphic vector bundle over the
Sp.2m;C/-moduli space, or rather several, one for each characteristic class. There
are relatively few constructions of such bundles but there is one which involves a
Dirac-type operator, and which we describe next. More information may be found
in [Hit5, Bon].

For each .A; ˆ/ satisfying the Higgs bundle equations for a compact group G, we
take a vector bundle V associated with the principal G-bundle via a representation
of G and define an elliptic operator D� W V ˝ .K ˚ NK/! V ˝ .K NK ˚ K NK/ by

D� D
� N@A ˆ

ˆ� @A

�
:

The equation FA C Œˆ;ˆ�� D 0 yields a vanishing theorem for irreducible
connections and the index theorem gives dim ker D� D .2g�2/ rk V . For the adjoint
representation the null-space can be viewed as the tangent space of the moduli space.

Let M be the Higgs bundle moduli space for a linear group—the moduli space
of pairs .V; ˆ/ with possible extra structure. Given a universal bundle over M�†,
the family of null-spaces for D� defines a rank .2g � 2/ rk V vector bundle on M,
and since D� acts on one-forms with values in a Hermitian bundle V , there is a
conformally invariant L2 inner product which defines by projection a connection on
this bundle. It turns out that this connection is hyperholomorphic: for the adjoint
representation it is the Levi–Civita connection. We shall leave till later the issue of
the existence of a universal bundle—locally these exist and connections are locally
determined.

The null-space of D� can be viewed in different ways according to the complex
structures I; J;K. For J the operator D� is the Hodge operator for the de Rham
complex of the flat connection rA C ˆC ˆ�; for I it is the Hodge operator for the
total differential N@˙ˆ in the double complex
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�0;�.V/ ˆ! �0;�.V/:

In this latter case ker D� is identified with the hypercohomology group H1. Trading
the Dolbeault viewpoint for the Čech approach, it is the hypercohomology for the
complex of sheaves

O.V/ ˆ! O.V ˝ K/:

Now take V to be associated with the defining representation of Sp.m/, and .A; ˆ/
to lie in a generic fibre of the integrable system. Thenˆ W V ! V˝K is generically
an isomorphism and the spectral sequence for the complex of sheaves identifies the
hypercohomology group H1 with sections of a sheaf supported on the zero set of
detˆ. For a smooth spectral curve, detˆ D a2m has 4m.g� 1/ distinct zeros Z and
we have

H1 Š
M

z2Z

cokerˆz:

From the spectral data, L��K D coker.x�ˆ/, so identifying Z with the intersection
of the spectral curve S with the zero section x D 0 of K we have

H1 Š
M

z2Z

.L��K/z

(note in particular the dimension checks with the index theory calculation).
To summarize, what we have here is a hyperholomorphic bundle V over the

Sp.2m;C/-moduli space whose fibre at a point defined by a nonsingular spectral
curve S and line bundle L is given by˚z2Z.L��K/z.

Now observe that the components of the fibre in the U.m;m/-character variety
with a fixed characteristic class correspond to the subsets of ` D 2k elements in Z,
and, at a point in the Sp.2m;C/-moduli space over the same point in the base

ƒ2kV Š
M

fz1;:::;z2kg�Z

.L��K/z1.L��K/z2 � � � .L��K/z2k

is a sum over all such subsets. This bundle, with its induced hyperholomorphic
connection, seems a natural choice for the mirror: as a direct sum over components
of the fibre it is analogous to the Fourier–Mukai transform yet it is well-defined
on the whole moduli space apart from the issue of the universal bundle, which we
consider next.

The Sp.2m;C/-moduli space has no universal bundle: the obstruction lies in
H2.M;Z2/. To be more concrete, for an open covering fU˛g of M there is a local
universal bundle V˛ on U˛ �† and on U˛ \Uˇ there is a line bundle L˛ˇ of order 2
such that Vˇ Š V˛ ˝ L˛ˇ with compatibility conditions on the isomorphisms. This
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describes the gerbe which is the obstruction. The D� null-spaces define bundles
V˛ over U˛ with a hyperholomorphic connection and these are related on the
intersection U˛ \ Uˇ by the flat line bundle L˛ˇ . However, the even exterior power
ƒ2kV˛ is insensitive to this ambiguity and so is well-defined globally.

Remarks.

1. The operator D� may be regarded as a quaternionic operator (see [Hit5]) with
coefficients in the bundle V whose structure group is Sp.m/ hence also quater-
nionic. This means the null-space has a real structure and a Hermitian structure,
equivalently an orthogonal structure. In particular we have an isomorphism as
bundles with connection ƒ2kV Š ƒ4m.g�1/�2kV. As we have seen it is only the
choice of lifting of the involution � that distinguishes a 2k-element subset of Z
and its complement, so this is expected.

2. From the point of view of the spectral data there is a natural orthogonal
structure which is almost certainly the same as the above differential-geometric
description. At each point z 2 Z we have a2m.z/ D 0 and the derivative at a
simple zero defines da2m.z/ 2 K2mC1

z . But L Š U��K.2m�1/=2 and ��U Š U�,
so at the fixed point z of � we have a non-zero vector uz in U�2z . Given
s 2 .L��K/z we can define s2uz=da2m.z/ 2 C and summing these get a non-
degenerate quadratic form on V.

3. The cases k D 0 or k D 2m.g � 1/ correspond to the maximum absolute value
of the characteristic class allowed and here the hyperholomorphic bundle is the
trivial line bundleƒ0V˛. Maximal representations play a special role in the study
of character varieties (see, e.g., [Burg]).
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Hirzebruch–Milnor Classes and Steenbrink
Spectra of Certain Projective Hypersurfaces

Laurentiu Maxim, Morihiko Saito, and Jörg Schürmann

To the Memory of Friedrich Hirzebruch

Abstract We show that the Hirzebruch–Milnor class of a projective hypersurface,
which gives the difference between the Hirzebruch class and the virtual one, can
be calculated by using the Steenbrink spectra of local defining functions of the
hypersurface if certain good conditions are satisfied, e.g., in the case of projective
hyperplane arrangements, where we can give a more explicit formula. This is a
natural continuation of our previous paper on the Hirzebruch–Milnor classes of
complete intersections.

1 Introduction

In his classical book [Hi], Hirzebruch introduced the cohomology Hirzebruch
characteristic class T�y .TX/ of the tangent bundle TX of a compact complex manifold
X, see also Sect. 2.1 below. It belongs to H�.X/Œ y� where Hk.X/ D H2k.X;Q/.
By specializing to y D �1, 0, 1, it specializes to the Chern class c�.TX/, the
Todd class td�.TX/, and the Thom–Hirzebruch L-class L�.TX/, respectively, see
[HiBeJu, Sect. 5.4]. Its highest degree part, which is called the Ty-genus in [Hi,
10.2], was mainly interested there by the relation with his Riemann–Roch theorem.
This coincides with the �y-genus
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�y.X/ WD
X

p

�.�
p
X/ yp 2 ZŒ y�;

which specializes to the Euler characteristic, the arithmetic genus, and the signature
of X for y D �1, 0, 1. The cohomology class T�y .TX/ is identified by Poincaré
duality with the homology Hirzebruch class Ty�.X/ in the smooth case. It is
generalized to the singular case by [BrScYo] (see Sect. 2.2 below).

Hirzebruch also introduced there the virtual Ty-genus (or Ty-characteristic)
which gives the Ty-genus of smooth complete intersections X in smooth projective
varieties Y. We can define the virtual Hirzebruch class T vir

y� .X/ of any complete
intersection X like the virtual Ty-genus even if X is singular. In this paper we adopt
a more sophisticated construction as in [BrScYo], see Sects. 2.2–2.3 below. This is
compatible with the construction in [Hi, 11.2], see Sect. 2.4 below. In [MaSaSc1] we
proved that the difference between the Hirzebruch class and the virtual one is given
by the Hirzebruch–Milnor class My.X/ supported on the singular locus of X, and
gave an inductive formula in the case of global complete intersections with arbitrary
singularities.

In this paper, we restrict to the case of projective hypersurfaces (i.e., the
codimension is one) satisfying certain good conditions in order to prove a formula
for the Hirzebruch–Milnor class My.X/ by using the Steenbrink spectra (see
[St1, St2]) of local defining functions of X in Y. This is a natural continuation of the
last section of [MaSaSc1]. (Note that the implication of the calculations in loc. cit.
was not explained there.) More precisely, let Y be a smooth complex projective
variety having a very ample line bundle L. Set

X D s�1.0/ with s 2 �. Y;L˝m/ for some positive integer m:

Let s01; : : : ; s0nC1 be sufficiently general sections of L, where n WD dim X. Take
sufficiently general nonzero complex numbers aj with jajj sufficiently small (j 2
Œ1; n�/. For j 2 Œ1; nC 1�, set

sa;j WD s� a1s
0m
1 � � � � � aj�1s0mj�1; fa;j WD

	
sa;j=s0mj /jYnX0

j
; X0j WD s0 �1j .0/;

Xa;j WD s�1a;j .0/; †j WD Sing Xa;j

0

@D
\

k<j

X0k \†
1

A ; † WD †1:

Set r WD maxf j j †j ¤ ;g. By [MaSaSc1, MaSaSc2], there is the Hirzebruch–
Milnor class My.X/ 2 H�.†/Œ y�with Hk.†/ D HBM

2k .†;Q/ or CHk.†/Q, satisfying

T vir
y� .X/� Ty�.X/ D .i†;X/�My.X/; (1)

My.X/ D
rX

jD1
Ty�
	
.i†jnX0

j ;†
/Š 'fa;jQh;YnX0

j



; (2)
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where iA;B W A ,! B denotes the inclusion for A � B in general. In this paper,
'fa;jQh;YnX0

j
denotes a mixed Hodge module up to a shift of complex on †j n X0j

such that its underlying Q-complex is the vanishing cycles 'fa;jQYnX0

j
in [De3], see

[Sa1, Sa2]. For the definition of Ty�.M�/ with M� a bounded complex of mixed
Hodge modules, see (12) below. In [MaSaSc1] we assumed m D 1, but it is not
difficult to generalize the argument there to the case m > 1 by using Sect. 3.4 below,
see [MaSaSc2] for details. By [Sch, Proposition 5.21], this formula specializes at
y D �1 to a formula for the Chern classes, which was conjectured by Yokura [Yo2],
and was proved by Parusiński and Pragacz [PaPr] (where m D 1).

In the case of hyperplane arrangements, we may assume

fa;j D gj C xm
1 C � � � C xm

j�1;

for some coordinates x1; : : : ; xnC1 of Y nX0j D CnC1, where gj defines the restriction
of the hyperplane arrangement to Y n X0j . We have a topologically trivial one-
parameter family

gj.�x1; : : : ; �xj�1; xj; : : : ; xnC1/C xm
1 C � � � C xm

j�1 .� 2 C/;

and apply the Thom–Sebastiani theorem [Sa3] at � D 0 (together with
[DiMaSaTo]). This argument can be extended to the general case by using the
deformation to the normal cone. Set Yj WD S

k<j X0k, ga;j WD fa;jjYjnX0

j
. For the

calculation of the right-hand side of (2), it is then sufficient to calculate 'ga;j Qh;YjnX0

j

together with the action of the semisimple part of the monodromy Ts, see [MaSaSc2]
for details. From now on, we fix j 2 Œ1; r�, and denote ga;j, Yj, Yj \ X0j , †j,
respectively, by f , Y, X0, † to simplify the notation.

Let S be a complex algebraic stratification of † n X0 such that the Hj
S WD

Hj'f QYnX0 jS are local systems for any strata S 2 S (which are assumed smooth).
These local systems canonically underlie admissible variations of mixed Hodge
structure Hj

S, since 'f CYnX0 underlies a mixed Hodge module up to a shift of
complex 'h;f QYnX0 . Let Hj

S;� � Hj
S be the �-eigenspace by the action of the

semisimple part Ts of the Milnor monodromy T (which is defined as the monodromy
of the local system on a punctured disk associated with the Milnor fibration, see
[De3]). The local system monodromy of Hj

S;x around X0 coincides with the mth
power of the Milnor monodromy where we take x 2 S sufficiently near X0 so that
we have a loop around X0 passing through x. (This can be reduced to Lemma 4.3
below by using the expression f D .s=s0m/jYnX0 together with the deformation to the
normal cone of X0.) So the situation is quite different from the one in [CaMaScSh]
where X is a fiber of a morphism to a curve, and a formula for the Hirzebruch–
Milnor class is given by using the mixed Hodge structure on each stalk of the
vanishing cycles under the assumption on the triviality of the global monodromies
of the local systems.
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In this paper we prove a variant of it by using the Steenbrink spectrum (see
Sect. 2.5 below):

Sp. f ; x/ D
X

˛2Q

nf ;x;˛ t˛ .x 2 † n X0/:

Here nf ;x;˛ 2 Z is independent of x 2 S, and will be denoted by nf ;S;˛ . We say
that a compactification QS of S is good if D QS WD QS n S is a divisor with simple
normal crossings on a smooth projective variety QS and the natural inclusion S ,! †

extends to a (unique) morphism � QS W QS ! †. Using the results in the last section
of [MaSaSc1], we get the following.

Theorem 1.1. Assume the following two conditions W
.a/ Every Hj

S is a locally constant variation of mixed Hodge structure on S.
.b/ Each Hj

S;� is isomorphic to a direct sum of copies of a rank 1 local system LS;�

which is independent of j.

Let LQS;� be the Deligne extension of LS;� as an O QS-module with a logarithmic
connection such that the eigenvalues of the residues of the connection are contained
in .0; 1� where QS is any good compactification of S. Then

Ty�
	
.i†nX0 ;†/Š 'f Qh;YnX0




D
X

S;˛;q

.�1/qCn�1 nf ;S;˛ .� QS/�td.1Cy/�
�
L QS;e.�˛/ ˝O QS

�
q
QS.log D QS/

�
.�y/bn�˛cCq;

(3)

where e.˛/ WD exp.2�i˛/, bn � ˛c denotes the integer part (see (27) below), and
td.1Cy/� is as in (13) below.

Here the sign .�1/n�1 comes from the definition of spectrum, see (26) below.
Note that the assertion for the Chern–Milnor class M.X/ corresponding to Theo-
rem 1.1 (or deduced from it by specializing to y D �1) is essentially a corollary of
[PaPr], and holds without assuming conditions .a/, .b/, see Sect. 3.5 below.

Condition .a/ in Theorem 1.1 is satisfied if X is locally analytically trivial along
each stratum S (e.g., if the intersection of X with transversal slices to any S has only
isolated singularities of type A, D, E) or if the Hodge filtration F on any Hj

S;�˝C OS

is trivial (e.g., if every nonzero Hj
S;� has rank 1). As for condition .b/, we have the

following:

Proposition 1.2. Condition .b/ is satisfied if the following two conditions hold W
.c/ Every S 2 S has a simply connected good compactification QS.
.d/ The local monodromy of Hj

S;� around each irreducible component D QS;i of

D QS D QS n S is the multiplication by a constant number cS;i;� which is
independent of j.
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Conditions .a/, .c/, .d/ are satisfied, for instance, in the case X is a projective
hyperplane arrangement in Pn (see Proposition 1.4 below), or the projective
compactification of the affine cone of a hypersurface in Pn�1 which has only
isolated singularities with semisimple Milnor monodromies. In these examples, the
following conditions are satisfied for any S 2 S W

cS;i;� D ��m0

S;i with m0S;i 2 Z; (4)

X \ ZS D g�1S .0/ with gS a homogeneous polynomial, (5)

where ZS � Y is an analytic transversal slice to S which intersects S transversally
at a sufficiently general point of S. We assume that ZS is sufficiently small, and has
some coordinates to express gS.

Set

ƒS WD f� 2 C� j Hj
S;� ¤ 0 .9 j 2 N/g:

Let GS � C� be the subgroup generated by � 2 ƒS. It corresponds to a finitely
generated Z-submodule of Q by ˛ 7! e.˛/ D exp.2�i˛/, and is generated by
e.1=m0S/ with m0S 2 Z>0. Note that the m0S;i are well-defined mod m0S, and we
sometimes assume

m0S;i=m0S 2 Œ0; 1/: (6)

However, it is not necessarily easy to give m0S explicitly in general (even in the
hyperplane arrangement case). If condition (5) is satisfied, then Hj

S;� D 0 unless
�mS D 1, and we get

mS WD deg gS 2 Z m0S: (7)

Here the equality mS D m0S does not always hold (e.g., if f D y21y
2
2 with mS D 4,

m0S D 2). We will assume (6) with m0S replaced by mS in case m0S is not explicitly
given.

Proposition 1.3. (i) Assume conditions (c), (d) and (4), (6) hold. Then there is a
rank 1 local system L0S on S such that the eigenvalues of its local monodromies
cS;i;� satisfy (4) with � D e.1=m0S/ and we have LS;� Š L0˝k

S for any
� D e.k=m0S/ 2 ƒS. Let L0QS be the Deligne extension of L0S on QS such that
the eigenvalues of the residues are contained in Œ0; 1/. Then

LQS;� D L0˝k
QS ˝OQS

OQS
	X

i

.dk m0S;i=m0Se � 1/DQS;i



for � D e.k=m0S/ 2 ƒS;

(8)
where d�e is as in (27) below.
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(ii) With the above assumption, assume further that condition (5) holds and there is
a rank 1 local system LS on S such that the eigenvalues of its local monodromies
cS;i;� satisfy (4) with � D e.1=mS/. Then the assertion of (i) together with (6)
holds with L0S, L0QS, m0S replaced, respectively, by LS, LQS, mS.

There is a certain similarity between (8) and [BuSa2, 1.4.3]. The difference
between d�e � 1 in (8) and b�c in loc. cit. comes from the difference between jŠ
and Rj� if j denotes the open embedding S ,! QS. (It is also related to [BuSa1,
Theorem 4.2] and [Sa2, 3.10.9]).

In the hyperplane arrangement case, an explicit formula for the nf ;S;˛ is given by
[BuSa2] in the case X is reduced and codimY S 6 3, and we have the following (see
Propositions 4.2 and 4.7 below):

Proposition 1.4. If X is a projective hyperplane arrangement in Pn, then condi-
tions (a), (c), (d) and (4), (5) are all satisfied, and LS exists so that (6) and (8) hold
with L0 QS, m0S replaced by L QS, mS. Moreover, QS, L QS, m0S;i are described explicitly,
and the Hirzebruch–Milnor class is a combinatorial invariant of the hyperplane
arrangement.

The proof of the last assertion follows from an argument similar to [BuSa2],
where the combinatorial property of the spectrum is shown by using the Hirzebruch–
Riemann–Roch theorem together with [DCPr]. Here we use Hk.X/ WD CHk.X/Q,
since the structure of CHk.†/Q is quite simple (see Proposition 4.6 below).

In Sect. 2 we review some basics of Hirzebruch characteristic classes and
Steenbrink spectra of hypersurfaces. In Sect. 3 we give the proofs of Theorem 1.1
and Propositions 1.2 and 1.3. In Sect. 4 we treat the hyperplane arrangement case.

2 Preliminaries

In this section we review some basics of Hirzebruch characteristic classes and
Steenbrink spectra of hypersurfaces.

2.1 Cohomology Hirzebruch Classes

In [Hi], Hirzebruch introduced the cohomology Hirzebruch characteristic class
T�y .TX/ of the tangent bundle TX of a compact complex manifold X of dimension
n. By using the formal Chern roots f˛ig for TX satisfying

nY

iD1
.1C ˛it/ D

nX

jD0
cj.TX/ tj;

it can be defined by
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T�y .TX/ WD
nY

iD1
Qy.˛i/ 2 H�.X/Œ y�: (9)

Here we use the formal power series in QŒ y�ŒŒ˛��

Qy.˛/ WD ˛.1C y/

1 � e�˛.1Cy/
� ˛y; QQy.˛/ WD ˛.1C ye�˛/

1 � e�˛
; Ry.˛/ D e˛.1Cy/ � 1

e˛.1Cy/ C y
;

(10)
see [Hi, 10.2 and 11.1]. These have the relation

Qy.˛/ D .1C y/�1 QQy.˛.1C y// D ˛=Ry.˛/: (11)

By specializing to y D �1, 0, 1, the power series Qy.˛/ becomes, respectively,

1C ˛; ˛=.1 � e�˛/; ˛= tanh˛;

and hence T�y .TX/ specializes to the Chern class c�.TX/, the Todd class td�.TX/,
and the Thom–Hirzebruch L-class L�.TX/, see [HiBeJu, Sect. 5.4].

2.2 Homology Hirzebruch Classes

The cohomology class T�y .TX/ is identified by Poincaré duality with the (Borel–
Moore) homology class T�y .TX/\ ŒX�, and this gives the definition of the homology
Hirzebruch class Ty�.X/ in the smooth case. It is generalized to the singular
case by [BrScYo]. Here we can use either the du Bois complex in [dB] or the
bounded complex of mixed Hodge modules Qh;X whose underlying Q-complex is
the constant sheaf QX in [Sa2].

Let MHM.X/ be the abelian category of mixed Hodge modules on a complex
algebraic variety X (see [Sa1, Sa2]). For M� 2 DbMHM.X/, its homology
Hirzebruch characteristic class is defined by

Ty�.M�/ WD td.1Cy/�
	
DRyŒM��


2 H�.X/


y;

1

y. yC 1/
�

with

DRyŒM�� WD
X

i;p

.�1/i �HiGrp
FDR.M�/

�
.�y/p 2 K0.X/Œ y; y

�1�;
(12)

where Hk.X/ WD HBM
2k .X;Q/ or CHk.X/Q, and

td.1Cy/� W K0.X/Œ y; y�1�! H�.X/


y;

1

y. yC 1/
�

(13)
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is given by the scalar extension of the Todd class transformation

td� W K0.X/! H�.X/;

(which is denoted by � in [BaFuMa]) followed by the multiplication by .1 C y/�k

on the degree k part (see [BrScYo]). The last multiplication is closely related with
the first equality of (11). By [Sch, Proposition 5.21], we have

Ty�.M�/ 2 H�.X/Œ y; y
�1�:

The homology Hirzebruch characteristic class Ty�.X/ of a complex algebraic
variety X is defined by applying the above definition to the case M� D Qh;X (see
[BrScYo]), i.e.,

Ty�.X/ WD Ty�.Qh;X/ D td.1Cy/�DRyŒX� 2 H�.X/Œ y�; with

DRyŒX� WD DRyŒQh;X �:

This coincides with the definition using the du Bois complex [dB]. It is known that
Ty�.X/ belongs to H�.X/Œ y�, see [BrScYo]. In case X is smooth, we have

DRyŒX� D ƒyŒT
�X�; (14)

where we set for a vector bundle V on X

ƒyŒV� WD
X

p>0
ŒƒpV� yp 2 K0.X/Œ y�; (15)

In fact, we have

DR.Qh;X/ D DR.OX/Œ�n� D ��

X with n WD dim X; (16)

where the Hodge filtration Fp on ��

X is defined by the truncation �>p as in [De2].
(For the proof of the coincidence with the above definition of Ty�.X/ in the
smooth case, we have to use the first equality of (11) and some calculation about
Hirzebruch’s power series Qy.˛/ as in [HiBeJu, Sect. 5.4], or in the proof of [Yo1],
Lemma 2.3.7, which is closely related with the generalized Hirzebruch–Riemann–
Roch theorem as in [Hi, Theorem 21.3.1].)

2.3 Virtual Hirzebruch Classes

Hirzebruch [Hi] also introduced the virtual Ty-genus (or Ty-characteristic) which
gives the Ty-genus of smooth complete intersections in smooth projective varieties.
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Let X be any complete intersection in a smooth projective variety Y. We can define
the virtual Hirzebruch characteristic class T vir

y� .X/ by

T vir
y� .X/ WD td.1Cy/�DRvir

y ŒX� 2 H�.X/Œ y�; (17)

with DRvir
y ŒX� the image in K0.X/ŒŒ y�� of

ƒy.T
�
virX/ D ƒyŒT

�YjX �=ƒyŒN
�
X=Y � 2 K0.X/ŒŒ y��: (18)

Here N�X=Y is defined by the locally free sheaf IX=I2X on X with IX � OY the ideal
sheaf of the subvariety X of Y, and we set for a virtual vector bundle V on X

ƒyV WD
X

p>0
ƒpV yp 2 K0.X/ŒŒ y��: (19)

Note that DRvir
y ŒX� belongs to K0.X/Œ y�, see [MaSaSc1, Proposition 3.4]. (We denote

by K0.X/ and K0.X/ the Grothendieck group of locally free sheaves of finite length
and that of coherent sheaves, respectively.)

We have the equality Ty�.X/ D T vir
y� .X/ if X is smooth. So the problem is how to

describe their difference in the singular case, and this is given by the Hirzebruch–
Milnor class as is explained in the introduction where only the hypersurface case is
treated, see [MaSaSc1] for the complete intersection case. (For the degree-zero part,
i.e., on the level of Hodge polynomials, see also [LiMa].)

2.4 Relation with Hirzebruch’s Construction [Hi]

The image of the above virtual Ty-characteristic class of X by the trace morphism
TrX W H�.X/! Q coincides with the virtual Ty-genus of X constructed in [Hi, 11.2],
where X is a (global) complete intersection of codimension r in a smooth complex
projective variety Y with i W X ,! Y the natural inclusion. For this we have to recall
the cohomological transformation T�y (as in [CaMaScSh] in the hypersurface case)
applied to the virtual tangent bundle

TvirX WD ŒTYjX � � ŒNX=Y � 2 K0.X/:

This can be defined by

T�y .TvirX/ WD
Q

i Qy.˛i/Q
j Qy.ˇj/

ˇ̌
ˇ̌
X

D T�y .TY/
Q

j Qy.ˇj/

ˇ̌
ˇ̌
X

: (20)

Here the ˛i are the formal Chern roots of TY, and the ˇj (j 2 Œ1; r�) are the
cohomology classes of hypersurfaces of Y whose intersection is X.
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By [MaSaSc1, Proposition 1.3.1] we have the equality

Tvir
y� .X/ D T�y .TvirX/\ ŒX�: (21)

This can be shown by using the first equality of (11) together with an argument
similar to [Yo1, Lemma 2.3.7]. By the projection formula, we then get

i�
	
Tvir

y� .X/

 D T�y .TY/

Q
j Qy.ˇj/

\ i�ŒX�: (22)

We have moreover

i�ŒX� D .ˇ1 [ � � � [ ˇr/\ ŒY�: (23)

This follows, for instance, from the compatibility of the cycle class map CH�.Y/!
H2�.Y/ with the multiplicative structures, see [Fu]. (Here X is defined scheme-
theoretically by using a regular sequence, and we have ŒX� DPk mkŒXk� with Xk the
reduced irreducible components of X and mk the multiplicities. The equality (23) is
well known in the X smooth case.) Recall that we have by (11)

Ry.ˇj/ D ˇj

Qy.ˇj/
:

We thus get

i�
	
Tvir

y� .X/

 D

0

@
Y

j

Ry.ˇj/[ T�y .TY/

1

A \ ŒY�: (24)

By applying the trace morphism TrY W H�.Y/ ! Q, this implies the compatibility
with Hirzebruch’s construction [Hi, 11.2]

TrX
	
Tvir

y� .X/

 D

Z

Y

Y

j

Ry.ˇj/[ T�y .TY/: (25)

Here
R

Y W H2 dim Y.Y/ ! Q denotes the canonical morphism (which is also called
the trace morphism), and the right-hand side of (25) is equal to Ty.ˇ1; : : : ; ˇr/Y in
the notation of [Hi, 11.2] where Y and ˇj are, respectively, denoted by M and vj.

Note that the above argument is mostly useful for the degree-zero part of the
(homology) Hirzebruch class unless the natural morphism i� W H�.X/ ! H�.Y/ is
injective since the information may be lost in the other case.
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2.5 Spectrum

Let f be a holomorphic function on a complex manifold Y of dimension n. Let
x 2 X WD f�1.0/ � Y. We have the Steenbrink spectrum

Sp. f ; x/ D
X

˛2Q

nf ;x;˛ t˛ with nf ;x;˛ WD
X

j

.�1/j�nC1hp;j�p
f ;x;� ;

hp;j�p
f ;x;� WD dim Grp

F
QHj.Ff ;x;C/�

	
p D bn� ˛c; � D exp.�2�i˛/



:

(26)

Here F is the Hodge filtration of the canonical mixed Hodge structure on the
reduced Milnor cohomology QHj.Ff ;x;C/ with Ff ;x the Milnor fiber of f around x,
and QHj.Ff ;x;C/� is the �-eigenspace of the cohomology by the semisimple part Ts

of the Milnor monodromy T, see [St1, St2]. Recall that

b˛c WD maxf i 2 Z j i 6 ˛g; d˛e WD minf i 2 Z j i > ˛g: (27)

Let ix W fxg ,! X denote the inclusion. Then we have an isomorphism of mixed
Hodge structures

QHj.Ff ;x;Q/ D Hji�x 'f Qh;Y ; (28)

which is compatible with the action of the semisimple part Ts of the Milnor
monodromy T. Here the category of mixed Hodge modules on a point is identified
with the category of graded-polarizable mixed Q-Hodge structures [De2], see [Sa2].
In fact, (28) is actually the definition of the mixed Hodge structure on the left-hand
side.

3 Proofs of the Main Assertions

In this section we give the proofs of Theorem 1.1 and Propositions 1.2 and 1.3.

3.1 Proof of Proposition 1.2

Fix a base point s0 2 S. Associated with the local system Hj
S;�, we have the

monodromy representation



j
S;� W �1.S; s0/! Aut.Hj

S;�;s0
/: (29)

Any  2 �1.S; s0/ is represented by a piecewise linear path (using local coor-
dinates). It is contractible inside QS by condition .c/. We may assume that this
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contraction is also given by a piecewise linear one, and intersects D QS D QS n S
transversally at smooth points. (Here it may be better to use a sufficiently fine
triangulation of QS compatible with D QS.) Then, using condition .d/, we see that the
image of  by 
j

S;� is given by the multiplication by

Y

i

.cS;i;�/
ai./ 2 C�; (30)

since the multiplication by cS;i;� belongs to the center of Aut.Hj
S;�;s0

/. Here ai./ 2
Z depends only on the contraction of  , and is independent of j.

This argument implies that we have a monodromy representation


S;� W �1.S; s0/! C�
	D Aut.C/



; (31)

such that any nonzero 
j
S;� is isomorphic to a direct sum of copies of 
S;�. Let LS;�

be the local system corresponding to 
S;�. Then the assertion follows. This finishes
the proof of Proposition 1.2.

3.2 Proof of Proposition 1.3

By condition (4) together with (30), the monodromy representation (31) is
compatible with the product between the � 2 ƒS. Note that ƒS is stable by inverse.
(In fact, the local systems Hj

S are defined over Q so that ƒS is stable by complex
conjugation, and the eigenvalues of the Milnor monodromies are roots of unity.) We
then get the monodromy representation for any � 2 GS


S;� W �1.S; s0/! C�; (32)

in a compatible way with the product between the � 2 GS. We define L0S to be the
rank 1 local system corresponding to 
S;e.1=m0

S/
.

By conditions (4) and (6) the eigenvalues of the residues of the connection of
L0˝k
QS along DQS;i are given by

km0S;i=m0S: (33)

In fact, we have m0S;i=m0S 2 Œ0; 1/ for k D 1 by condition (6). So (8) follows, and the
assertion (i) is proved. The argument is similar for the assertion (ii). This finishes
the proof of Proposition 1.3.
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3.3 Proof of Theorem 1.1

Let Mj
QS;� be the Deligne extension of the local systemHj

S;� such that the eigenvalues

of the residues of the connection are contained in .0; 1� (see [De1]). By [MaSaSc1],
Propositions 5.1.1 and 5.2.1, we have

Ty�
	
.i†nX0 ;†/Š 'f Qh;YnX0




D
X

S;j;p;q;�

.�1/jCq .� QS/�td.1Cy/�
�
Grp

FM
j
QS;� ˝O QS

�
q
QS.log D QS/

�
.�y/pCq;

(34)

By conditions .a/ and .b/ together with (26) and (28), we then get

Ty�
	
.i†nX0;†/Š 'f Qh;YnX0




D
X

S;j;p;q;�

.�1/jCq hp;j�p
f ;S;� .� QS/�td.1Cy/�

�
L QS;� ˝O QS

�
q
QS.logD QS/

�
.�y/pCq;

(35)

with

hp;j�p
f ;S;� WD hp;j�p

f ;x;� for any x 2 S:

In fact, condition .a/ implies that the Hodge filtration F is defined on the level of
local systems, and the graded pieces of the filtration F are still direct sums of rank
1 local systems as in condition .b/. The assertion now follows from (35) and (26).
This finishes the proof of Theorem 1.1.

3.4 Proof of [MaSaSc1, Proposition 4.1] in the Case m > 1

By the same argument as in [MaSaSc1], the assertion is reduced to the normal
crossing case. Then it is enough to show the vanishing of the reduced cohomology of

U";t WD
(
. y1; : : : ; yn/ 2 Cn

ˇ̌
ˇ̌
ˇ

n�1X

iD1

j yij2 < "2; j ynj < "; g D ym
n t

)
.0 < jtj � "� 1/;

by using the fundamental neighborhood system of 0 2 Cn given by

U" WD
(
. y1; : : : ; yn/ 2 Cn

ˇ̌
ˇ̌
ˇ

n�1X

iD1
j yij2 < "2; j ynj < "

)
.0 < "� 1/;
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where g DQr
iD1 ymi

i with r < n. Consider

V";t WD
(
. y1; : : : ; yn�1/ 2 Cn�1

ˇ̌
ˇ̌
ˇ

n�1X

iD1
j yij2 < "2; jgj < "mjtj

)
.0 < jtj � "� 1/:

It is contractible (see [Mi]), and U";t is a ramified covering of V";t which is ramified
over the normal crossing divisor V";t \ g�1.0/. Then V";t and U";t retract to V";t \
g�1.0/, and the assertion follows.

3.5 Formula for the Chern–Milnor Classes

Let M.X/ 2 H�.†/ be the Chern–Milnor class M.X/ as in [PaPr] (which can be
obtained by specializing My.X/ to y D �1). Then, without assuming conditions .a/,
.b/, we have

M.X/ D
X

S2S
Q�.Ff ;S/ c�.1S/

D
X

S2S
Q�.Ff ;S/ .� QS/�

	
c�
	
�1
QS.log D QS/

_
\ŒQS�
: (36)

Here c�.1S/ 2 H�.†/ is as in [Mac], and

Q�.Ff ;S/ WD �.Ff ;S/ � 1;

with Ff ;S the Milnor fiber of f around a sufficiently general x 2 S. The second
equality of (36) follows from [Al, GoPa]. Note that the Q�.Ff ;S/ (S 2 S) give the
constructible function associated with the vanishing cycle complex 'f QYnX0 .

It is well known that if the restriction of X to a transversal slice to S at x is locally
defined by a homogeneous polynomial gS of degree mS, then

�.Ff ;S/ D �
	
P cS�1 n g�1S .0/



mS; (37)

where cS WD codim S.
In the hyperplane arrangement case, it is known (see [ScTeVa]) that

�
	
P cS�1 n g�1S .0/


D 0 if and only if S is not a dense edge, (38)

in the notation of (4.1) below.
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4 Hyperplane Arrangement Case

In this section we treat the hyperplane arrangement case.

Notation 4.1. Assume X is a projective hyperplane arrangement in Y D Pn,
where L D OPn and X0 is a sufficiently general hyperplane. Let Xj be the irreducible
components of X with multiplicities mj (j D 1; : : : ; r). Note that

m D
X

j

mj;

and

Xj � † if mj > 1:

We have a canonical stratification S D S†0 of †0 WD † n X0 such that

S D
\

j2I.S/

Xj; S D S n
0

@
[

j…I.S/

Xj [ X0
1

A with I.S/ WD f j j Xj 	 Sg: (39)

For the proof of Proposition 1.4, we have to consider also the canonical stratification
SX of X such that (39) holds by deleting X0. Here S is called an edge of the
hyperplane arrangement X.

Let C.X/ denote the corresponding central hyperplane arrangement of V WD
CnC1 with irreducible components C.Xj/ and multiplicities mj. Here C.Xj/ denotes
the cone of Xj. Set

VS WD V=VS with VS WD C.S/:

For each S 2 S, we have the quotient central hyperplane arrangement

C.X/S � VS

defined by the affine hyperplanes

C.Xj/
S WD C.Xj/=VS � VS for j 2 I.S/;

where the irreducible components C.Xj/
S have the induced multiplicities mj.

For each S 2 S, we also have the induced projective hyperplane arrangement

XS WD
[

j…I.S/

Xj \ S � S;
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such that XS n† has the induced stratification

SS WD fS0 2 S j S0 � XSg:

Here each S0 2 SS (especially for codimSS0 D 1) has the induced multiplicity

mS0;S WD
X

j2I.S0/nI.S/
mj:

Let f S be a homogeneous polynomial defining C.X/S � VS. This is essentially
identified with gS in (5), and

mS D deg f S D
X

j2I.S/

mj 2 Z m0S; (40)

where m0S is as in (6). Note that there is a shift of indices of the spectral numbers

nf ;S;˛ D .�1/dim Snf S ;0;ˇ with ˇ D ˛ � dim S; (41)

and a formula for nf S;0;ˇ in the reduced case with dim VS 6 3 can be found in
[BuSa2].

As for the good compactification QS of S 2 S, it can be obtained by blowing-up
S � Pn along the edges S0 of XS � S with codimSS0 > 2 by decreasing induction on
the codimension of the edges, where we restrict to the S0 such that XS is not a divisor
with normal crossings on any neighborhood of S0 in S as in [BuSa2]. (However, we
do not restrict to the dense edges as in [ScTeVa], see Remark 4.4(i) below for the
definition of dense edge.)

Let QES0 ;QS be the proper transform of the exceptional divisor of the blow-up along

S0 in S if codimSS0 > 2 (where we assume that XS � S is not a divisor with normal
crossings on any neighborhood of S0 as above). If codimSS0 D 1, then QES0 ;QS denotes
the proper transform of S0 � S. Let QX1;QS be the proper transform of X1;S WD X0 \
S � S. These are the irreducible components DQS;i of DQS � QS. The integers m0S;i in (4)
for the components QES0;QS and QX1;QS will be denoted, respectively, by

m0S0 ;S; m01;S:

Proposition 4.2. With the above notation, condition (4) holds with

m0S0 ;S=mS D fmS0;S=mSg; m01;S=mS D f�m=mSg; (42)

where f˛g WD ˛ � b˛c. Moreover, LS in Proposition 2 (ii) exists, and we have
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L QS D ��QS OS

0

@�
2
666

X

j…I.S/

mj=mS

3
777

1

A˝O QS
O QS

 
X

S0�S

bmS0;S=mSc QES0;QS

!
; (43)

where OS.k/ denotes the pull-back of OPn.k/ by S ,! Pn.

Proof. By using the blowing-ups along the S0 in Pn, the assertion (42) is reduced to
Lemma 4.3 below. The integrable connection corresponding to the local system LS

can be constructed easily on S � S n X0 Š Cdim S, see, e.g., [EsScVi].

For the proof of (43), it is then enough to show

L˝mS
QS D ��QS OS

0

@�mS

2

666

X

j…I.S/

mj=mS

3

777

1

A˝O QS
O QS

 
X

S0�S

mSbmS0;S=mSc QES0 ;QS

!
:

(44)
(Indeed, the simply connectedness implies that CH1.QS/ is torsion-free, since it
implies that H1.QS;Z/ D 0 and H2.QS;Z/ is torsion-free.) The left-hand side of (44) is
a line bundle with a logarithmic connection such that the eigenvalues of the residues
along QES0;QS and QX1;QS are, respectively, m0S0;S and m01;S [since m0S0 ;S=mS; m01;S=mS 2
Œ0; 1/ by (42)]. So we get

L˝mS
QS D O QS

 
�
X

S0�S

m0S0;S
QES0 ;QS �m01;S QX1;QS

!
:

On the other hand, setting Xj;S WD Xj \ S, we have

��QS OS

0

@�mS

2

666

X

j…I.S/

mj=mS

3

777

1

A D ��QS OS

0

@�
X

j…I.S/

mjXj;S � m01;SX1;S

1

A

D O QS

 
�
X

S0�S

mS0 ;S QES0;QS � m01;S QX1; QS
!
:

Here the first isomorphism follows from the second equality of (42) (which implies
that m01;S 2 Œ0;mS/), since we have by the definition of m and mS

X

j…I.S/

mj D m mod mS:

The second isomorphism is obtained by calculating the total transform of the divisor.
So the assertion follows from (42) which implies that

m0S0;S D mS0;S �mSbmS0;S=mSc:
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Lemma 4.3. Let g be a holomorphic function on a complex manifold Y. Set X WD
Y�C�, and f WD gza where z is the coordinate of C and a 2 Z. Then the monodromy
of the local system Hj f QXjf yg�C� for y 2 Y is given by T�a, where T is the Milnor
monodromy.

Proof. Since f�1.0/ is analytic-locally trivial along f yg � C�, we can calculate
Hj. f QX/.y;z/ by the cohomology of

˚
y0 2 Y

ˇ̌ jj y0jj < "; g. y0/ D z�at
�

.0 < jtj � "� 1/:

Here jj y0jj is defined by taking local coordinates of Y around y, and we may assume
jzj D 1 for the calculation of the monodromy. Then the assertion is clear. This
finishes the proofs of Lemma 4.3 and Proposition 4.2.

Remarks 4.4. (i) An edge S of a hyperplane arrangement X is called dense (see
[ScTeVa]) if its associated quotient central hyperplane arrangement C.X/S is
indecomposable. Note that a central hyperplane arrangement is called indecom-
posable if it is not a union of hyperplane arrangements coming from Cn1 and Cn1

via the projections

Cn ! Cn1 ; Cn ! Cn2 ;

where n D n1 C n2 and n1; n2 > 0.
(ii) If Y is a simply connected smooth variety and Z � Y is a closed subvariety of

codimension at least two, then Y n Z is simply connected. (Indeed, a contraction
of a path has real dimension 2, and can be modified so that it does not intersect
Z.)

This implies that if Y is a simply connected smooth variety and Y 0 ! Y
is a proper birational morphism from a smooth variety, then Y 0 is also simply
connected. (Indeed, if a smooth variety has a dense Zariski-open subvariety
which is simply connected, then it is also simply connected. This follows from
the fact that a path has real dimension 1, and may be modified so that it is
contained in the open subvariety.)

(iii) The image of the cycle map is contained in

GrW�2kH2k.†;Q/ � H2k.†;Q/;

and so is the image of td�. Moreover, the structures of GrW�2kH2k.†;Q/ and
CHk.X/Q in the projective hyperplane arrangement case are quite simple as
below.

Proposition 4.5. Let X be a projective hyperplane arrangement in Pn with Xj . j 2
Œ1; r�/ the irreducible components. Let W be the weight filtration of the canonical
mixed Hodge structure on Hk.X;Q/ (which is the dual of Hk.X;Q/). Then we have
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GrW�kHk.X;Q/ D

8
ˆ̂<

ˆ̂:

L
16j6r QŒXj� if k D 2n � 2;

Q.k=2/ if k 2 2Z\ Œ0; 2n � 4�;
0 otherwise,

(45)

where ŒXj� denotes the class of Xj .and QŒXj� is not a polynomial algebra/. Moreover
we have the canonical isomorphisms

GrW�kHk.X;Q/
	�! Hk.Pn;Q/.k=2/ .0 6 k < 2n� 2/: (46)

Proof. We have a long exact sequence

! HBM
kC1.Pn n X;Q/! Hk.X;Q/! Hk.Pn;Q/!;

together with

HBM
kC1.Pn n X;Q/ D H2n�k�1.Pn n X;Q/.n/:

Here Hp.Pn n X;Q/ vanishes for p > n, and has type .p; p/ for p 6 n by [Bri].
(In fact, an integral logarithmic p-form has type .p; p/ by [De4, Theorem 8.2.4 (i)],
since the latter implies that it induces a morphism of mixed Hodge structures from
Q.�p/ to the pth cohomology group.)

Setting p D 2n� k� 1, we see that HBM
kC1.Pn nX;Q/ D 0 if kC 1 < n, and it has

type

.n � k � 1; n� k � 1/; if kC 1 > n:

Here we have

2n � 2k � 2 > �k for k 2 Œ0; 2n � 3�:

So we get (46) and also (45) except for k D 2n � 2. In the last case, the above
argument shows that H2n�2.X;Q/ has type .1 � n; 1 � n/, and has dimension r by
using [Bri]. So the assertion follows.

Proposition 4.6. With the notation of 4.1 and Proposition 4.5 above, set

†1 WD
[

Xj�†
Xj; †2 WD † n†1; S.i/ WD fS 2 S j codimYS D ig;

Sa WD fS 2 S j S 2 †ag; S.i/a WD Sa \ S.i/ .a D 1; 2/:

Then we have
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CHk.X/Q D
(L

16j6r QŒXj� if k D n � 1;
Q if k 2 Œ0; n � 2�: (47)

CHk.†/Q D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

L
S2S.1/1 QŒS� if k D n � 1;

L
S2S.2/2 QŒS�˚Q if k D n � 2 and †1 ¤ ;;

L
S2S.2/2 QŒS� if k D n � 2 and †1 D ;;

Q if k 2 Œ0; n � 3�:

(48)

Moreover, for S 2 S.i/ with i > 3, we have the canonical isomorphisms

CHk.S/Q
	�! CHk.†/Q

	�! CHk.Pn/Q .0 6 k 6 dim S 6 n � 3/; (49)

CHn�2.S/Q
	�! CHn�2.†1/Q

	�! CHk.Pn/Q if S 2 S.2/1 ; (50)

and Q in (48) for k D n � 2 and †1 ¤ ; is given by the image of CHn�2.†1/Q
in (50).

Proof. Since dim†1 D n�1 and dim†2 D n�2, the assertions easily follow from
the well-known facts that we have for S0 � S � Pn

CHk.S/ D Q for k 2 Œ0; dim S�; (51)

CHk.S
0/ 	�! CHk.S//

	�! CHk.Pn/ for k 2 Œ0; dim S0�: (52)

For instance, (52) implies that the image of ŒS0� in CHn�2.†1/Q is independent of

S0 2 S.2/1 (by applying it to the S 2 S.1/1 ). So (50) follows. The proofs of the other
assertions are similar. This finishes the proof of Proposition 4.6.

Proposition 4.7. The Hirzebruch–Milnor class My.X/ of a hyperplane arrange-
ment X in Pn is a combinatorial invariant, where H�.†/ D CH�.†/Q and
Proposition 4.6 is used.

Proof. Let EQS;˛;q be a vector bundle on QS defined by

E QS;˛;q WD L QS;e.�˛/ ˝O QS
�

q
QS.logD QS/:

By Theorem 1.1, Proposition 4.6 and [BuSa2] (which implies that the nf ;S;˛ are
combinatorial invariants) together with the definition of td.1Cy/� in (12), it is enough
to show that the following is a combinatorial invariant for any S; ˛; q W

.� QS;S/�td�.E QS;˛;q/ 2 H�.S/ D Qdim SC1: (53)
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Here �QS;S W QS ! S is the canonical morphism, and (51) is used for the last

isomorphism. Since S is projective space, we may assume for the proof of (53)

H�.S/ D H2�.S;Q/; H�.S/ D H2�.S;Q/;

and similarly for QS. By [BaFuMa] we have

td�.E QS;˛;q/ D
	
ch.E QS;˛;q/ [ td�.T QS/
\Œ QS� in H�.QS/:

This means that td�.E QS;˛;q/ is identified by Poincaré duality with

ch.E QS;˛;q/ [ td�.T QS/ 2 H�.QS/:

Moreover, the pushforward by �QS;S is calculated by the top degree part of

ch.E QS;˛;q/ [ td�.T QS/[ ��QS;Sek;

where ek is the canonical generator of Hk.S/ (k 2 Œ0; dim S�). These can be
calculated by the method in [BuSa2], Sect. 5 using the combinatorial description
of the cohomology ring as in [DCPr]. Here Œ QES0; QS�, Œ��QS;Se� 2 H1. QS/ correspond

to eV .V ¤ 0/ and �e0 in [BuSa2, 5.3]. Moreover c�.�q
QS.log D QS/ and td�.T QS/

are combinatorially expressed [BuSa2, 5.4] by using certain universal polynomials.
Combining these with Propositions 1.3 (ii) and 4.2, it follows that (53) is a
combinatorial invariant. Here it is not necessary to use the full result of [DCPr],
since we need only the fact that the multiple-intersection numbers of the eV are
independent of the position of the irreducible components, and are determined
combinatorially (together with certain relations among the eV ). This finishes the
proof of Proposition 4.7.
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On Lusztig’s q-Analogues of All Weight
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1 Introduction

The ground field k is algebraically closed and of characteristic zero. Let G be
a connected semisimple algebraic group, and T a maximal torus inside a Borel
subgroup B. Write g; t, and b for their Lie algebras. If V is a finite-dimensional
rational G-module, then V D ˚�2t�V

� is the weight decomposition with respect
to T (or t). If V D V� is a simple G-module with highest weight �, then
m�

� D dim.V��/. In this article, we present some results on Lusztig’s q-analogues
M

�

�.q/ of weight multiplicities m�

� . The polynomial M�

� .q/ is defined algebraically
as an alternating sum over the Weyl group, through the q-analogue of Kostant’s
partition function. Initially, Lusztig introduced q-analogues only for dominant
weights � [Lu83, (9.4)]. However, this constraint is unnecessary and M

�

�.q/ is
a non-trivial polynomial for any � such that � � � is a linear combination of
positive roots with nonnegative coefficients; in particular, for all weights of V�.
A relationship with certain Kazhdan–Lusztig polynomials [Ka82] implies that
M

�

�.q/ has nonnegative coefficients whenever � is dominant. For instance, if V�
has the zero weight, with m0

� D n, then M0
�.q/ D

Pn
iD1 qmi.�/ and m1.�/; : : : ;mn.�/

are the generalised exponents of V�. These numbers were first considered by
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Kostant [Ko63, n. 5] in connection with the graded G-module structure of the
ring kŒN �, where N � g is the nilpotent cone. The interpretation of Kostant’s
generalised exponents via polynomials M0

�.q/ is due to Hesselink [He80] and
D. Peterson (unpublished).

In Sect. 2, we gather basic properties of the polynomials M�

� .q/ and recall their
relationship to cohomology of line bundles on G �B u. We emphasise the role
of results of Broer on the nonnegativity of coefficients of M�

�.q/ [Br93] and the
induction lemma for computing M

�

�.q/ [br94]. Using Broer’s results allows us
to quickly recover some known results on coefficients of degenerate Cherednik
kernel that appear in work of Bazlov et al. [Ba01, Ion04, V06]. We also prove that
M

�

�.qC 1/ is a polynomial in q with nonnegative coefficients.
In Sect. 3, g is assumed to be simple, and then � is the highest root. We determine

Lusztig’s q-analogues for all roots of g D V� . Furthermore, if g has two root
lengths, then the short dominant root �s determines a representation that is called
little adjoint, and we also compute q-analogues for all weights of V�s . Then we
obtain a formula for the weighted sum

P
� m�

�M
�

� .q/, which implies that it depends
only on M0

� .q/ and the Coxeter number of g. A similar result is valid for V�s .
In Sect. 4, we prove that, for any simple G-modules V� and V , the sumP
� m�

M
�

�.q/ is equal to the q-analogue of the zero weight multiplicity for
the (reducible) G-module V� ˝ V

�
 (Theorem 4.2). Therefore,

P
� m�

M
�

� .q/ DP
� m�

�M
�
 .q/ and this also provides another formula for the ZŒq�-valued symmetric

bilinear form on the character ring of g that was introduced by R. Gupta (Brylinski)
in [G87-2]. As a by-product, we obtain that such a weighted sum is always a poly-
nomial with nonnegative coefficients. Comparing two formulae for

P
� m�

�s
M

�

�s
.q/

yields a curious identity involving the Poincaré polynomial for W�s , the Weyl group
stabiliser of �s, and M0

�s
.q/ (Corollary 4.6). We hope that there are other interesting

results pertaining to q-analogues of all weights of a representation.
If g is simple and �i is the number of positive roots of height i, then the

partition formed by the exponents of g is dual (conjugate) to the partition formed
by the �i’s, see [Ko59, Ion04, V06]. Section 5 contains a geometric explanation and
generalisation to this result. Let e 2 g be a principal nilpotent element. We prove
that if dimV

e
� D dimV

t
�, then the “positive” weights of V� exhibit the similar

phenomenon relative to the generalised exponents of V�.

1.1 Main Notation

Throughout, G is a connected semisimple algebraic group with Lie G D g. We fix
a Borel subgroup B and a maximal torus T � B, and consider the corresponding
triangular decomposition g D u˚ t˚ u�, where Lie B D u˚ t. Then

– � is the root system of .g; t/, �C is the set of positive roots corresponding to u,
… D f˛1; : : : ; ˛rg is the set of simple roots in �C, and 
 D 1

2

P
�2�C �;

– X is the lattice of integral weights of T and t�
Q

is the Q-vector subspace of t�
generated by X, Q D ˚r

iD1Z˛i � X is the root lattice, and QC is the monoid
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generated by ˛1; : : : ; ˛r . If  D Pr
iD1 ci˛i 2 QC, then ht./ D Pr

iD1 ci is the
height of  .

– XC is the monoid of dominant weights and 'i 2 XC is the fundamental weight
corresponding to ˛i 2 …;

– W is the Weyl group of .g; t/ and . ; / is a W-invariant positive-definite inner
product on t�

Q
. As usual, �_ D 2�=.�;�/ is the coroot for � 2 �.

– If � 2 XC, then V� is the simple G-module with highest weight �, V�� is its dual,
and �� 2 XC is defined by V�� D V

�
� .

For ˛ 2 …, we let s˛ denote the corresponding simple reflection in W. If ˛ D ˛i,
then we also write si D s˛i . The length function on W with respect to s1; : : : ; sr is
denoted by `.

2 Generalities on q-Analogues of Weight Multiplicities

If � 2 XC, then V
�

� is the �-weight space of V�, m�

� D dimV
�

� , and �� D
ch.V�/ D P

� m�

�e� 2 ZŒX� is the character of V�. Let ".w/ D .�1/`.w/ be the

sign of w 2 W. By Weyl’s character formula, ch.V�/ D
P

w2W ".w/e
w.�C
/

e

Q
2�C.1 � e� /

. For

�;  2 X, we write � 4  , if  � � 2 QC.
Define functions Pq.�/ by the equation

1Q
˛2�C

.1 � qe˛/
DW

X

�2QC

Pq.�/e
� :

Then Pq.�/ is a polynomial in q with degPq.�/ D ht.�/ and � 7! P.�/ WD
Pq.�/jqD1 is the usual Kostant’s partition function. For �;� 2 XC, Lusztig [Lu83,
(9.4)] (see also [Ka82, (1.2)]) introduced a fundamental q-analogue of weight
multiplicities m�

� :

M
�

� .q/ D
X

w2W

".w/Pq.w.�C 
/ � .�C 
//: (1)

For series Ar, these are the classical Kostka–Foulkes polynomials. Therefore, this
name is sometimes used in the general situation. It is also known that M�

� .q/ are
related to certain Kazhdan–Lusztig polynomials associated with the corresponding
affine Weyl group [Lu83], [Ka82, Theorem 1.8]. However, one needn’t restrict one-
self with only dominant weights �, and the polynomials M�

�.q/ can be considered
for arbitrary � 2 X. It is easily seen that

• M
�

� .q/ � 0 unless � < �;
• if � < �, then M

�

� .q/ is a monic polynomial and degM�

� .q/ D ht.� � �/;
therefore, M�

�.q/ � 1;
• M

�

� .1/ D m�

� .
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In particular, if � 4 �, but � is not a weight of V�, then M
�

� .1/ D 0 and therefore
M

�

�.q/ has negative coefficients. If � is dominant, then the relationship with
Kazhdan–Lusztig polynomials implies that M

�

� .q/ has nonnegative coefficients.
The most general result on nonnegativity of the coefficients of M�

�.q/, whose proof
exploits the cohomological interpretation, is due to Broer [Br93], see Theorem 2.2
below.

2.1 A Relationship to Cohomology of Line Bundles

Let Z be the cotangent bundle of G=B, i.e., Z D G �B u. Recall that the
corresponding collapsing Z! Gu DW N � g is birational and H0.Z;OZ/ D kŒN �
[He76]. Here N is the cone of nilpotent elements of g. For � 2 X, let k� denote the
corresponding one-dimensional B-module. We consider line bundles on Z induced
from homogeneous line bundles on G=B, i.e., line bundles of the form

G �B .u˚ k�/! G �B u D Z:

The (invertible) sheaf of sections of this bundle is denoted by LZ.k�/. More
generally, if N is a rational B-module, then

G �B .u˚ N/! G �B u D Z

is a vector bundle on Z of rank dim N and the corresponding sheaf of sections
(locally free OZ-module) is LZ.N/. If E is a locally free OZ-module, then E? is
its dual. For instance, LZ.N/? D LZ.N�/, where N� is the dual B-module.

The cohomology groups of LZ.N/ have a natural structure of a graded G-
module by

Hi.G �B u;LG�Bu.N// '
1M

jD0
Hi.G=B;LG=B.S ju� ˝ N//;

where S ju� is the j-th symmetric power of the dual of u. Set Hi.�/ WD
Hi.Z;LZ.�/

?/. It is a graded G-module with

.Hi.�//j D Hi.G=B;LG=B.S ju˝ k�/
?/:

As dim.Hi.�//j <1, the graded character of Hi.�/ is well defined:

chq.H
i.�// D

X

j

X

�2XC

dim HomG
	
V�; .H

i.�//j


��qj 2 ZŒX�ŒŒq��:

The reader is referred to work of Broer and Brylinski for more details [Br93, br94,
B89].
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Theorem 2.1 ([B89, Lemma 6.1]). For any � 2 X, we have
X

i

.�1/ichchq.H
i.�// D

X

�2XC

M
�

� .q/�
�
�:

A more general version of this relation, where n � g is replaced with a B-stable
subspace of an arbitrary G-module V�, appears in [P10, Theorem 3.8].

For � D 0, we have LZ.0/ D OZ and Hi.Z;OZ/ D 0 for i > 0

[He76]. Therefore, the sum
P

�2XC

M0
�.q/�

�
� represents the graded character of

H0.Z;OZ/ ' kŒN � [He80].
For � 2 X, we write �C for the unique element in W� \XC.

Theorem 2.2 (Broer’s Criterion [Br93, Br97]). The following conditions are
equivalent for � 2 X:

(1) M
�

�.q/ has nonnegative coefficients for all � 2 XC;
(2) if � 4  4 �C and  2 XC, then  D �C;
(3) .�; �_/ > �1 for all � 2 �C.

The equivalence of (1) and (2) is proved in [Br93, Theorem 2.4]; the underlying
reason is that, for such �, higher cohomology of LZ.�/

? vanishes. The equivalence
of (2) and (3) appears in [Br97, Proposition 2(iii)].

Remark 2.3. The required equivalence of (2) and (3) is correctly proved by Broer,
but we have noticed some other assertions of Proposition 2 in [Br97] are false.
Namely, in part (iii) Broer claims the equivalence of certain conditions (a)–(c),
where (a) and (b) are just our conditions (2) and (3). But condition (c) must be
excluded from that list. Moreover, part (ii) in [Br97, Proposition 2] is also false. In
both cases, a counterexample is given, e.g., by ˇ D �'1 for g D slrC1, r > 2. This
ˇ satisfies Broer’s conditions (a) and (b), but not (c); and part (ii) also fails for ˇ.
More generally, if � 2 XC is minuscule, then ˇ D �� provides a counterexample
to Broer’s assertions.

Recall that m0
� ¤ 0 if and only if � 2 XC\Q. Then M0

�.q/ D
Pn

jD1 qmj.�/ (n D m0
�)

is a polynomial with nonnegative coefficients and the integers m1.�/; : : : ;mn.�/ are
called the generalised exponents ofV�. If g is simple andV� D g, then they coincide
with the usual exponents of g (= of W) [He80].

2.2 Broer’s Induction Lemma and Degenerate
Cherednik Kernel

The following fundamental result of Broer is a powerful tool for computing q-
analogues of weight multiplicities. Unfortunately, it did not attract the attention
it deserves. Perhaps the reason is that Broer formulates it as a relation in “the
Grothendieck group of finitely generated graded kŒN �-modules with a compatible
G-module structure”. However, extracting the coefficients of ��� , one obtains the
following down-to-earth description:
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Theorem 2.4 (Induction Lemma, cf. [br94, Proposition 3.15]). Let � 2 XC. If
 2 X and .; ˛_/ D �n < 0 for some ˛ 2 … (hence s˛./ D  C n˛), then

M


�.q/CM
s˛./�˛
� .q/ D q.MC˛

� .q/CM
s˛./
� .q//: (2)

In particular, for n D 1, this formula contains only  and  C ˛ and one merely
obtains M



�.q/ D qMC˛
� .q/. Broer’s proof of the Induction Lemma exploits

the cohomological interpretation of Lusztig’s q-analogues discussed above, and
includes the passage from G=B to G=P˛, where P˛ is the minimal parabolic
subgroup corresponding to ˛.

Actually, the name “Induction Lemma” is assigned in [br94] to a certain
preparatory result. But, we feel that it is more appropriate to associate such a name
with Broer’s Proposition 3.15.

It is observed in [G87-1, 5.1] that Lusztig’s q-analogues M
�

� .q/ satisfy the
identity

X

�W�4�
M

�

� .q/e
� D

P
w2W ".w/e

w.�C
/

e

Q
2�C.1 � qe� /

D �� �
Y

2�C

.1 � e� /
.1 � qe� /

D ���q : (3)

Here �q D
Y

2�C

1 � e�

1 � qe�
is the degenerate Cherednik kernel, and for � D 0 one

obtains

�q D
X

�2QC

M
��
0 .q/e��: (4)

Thus, the coefficients of �q are certain Lusztig’s q-analogues. As an application
of the Induction Lemma, we easily recover some known results on coefficients
of �q, cf. Bazlov [Ba01, Theorem 3], Ion [Ion04, Eq. (5.35)], and Viswanath [V06,
Proposition 1]. We also write Œe���.�q/ for the coefficient of e�� in �q.

Proposition 2.5. If � 2 �C, then Œe���.�q/ DM
��
0 .q/ D qht.�/ � qht.�/�1.

Proof. We argue by induction on ht.�/.

1) Base: if � 2 �C is simple, then it is easily seen that Œe���.�q/ D q � 1.
2) Step: Suppose that ht.�/ > 2 and the assertion holds for all  2 �C with

ht./ < ht.�/. Take any ˛ 2 … such that .�; ˛_/ D n > 0. Then s˛.�/ D
�� n˛ 2 �C and applying (2) with  D �� we obtain

M
��
0 .q/CM

��C.n�1/˛
� .q/ D q.M��C˛� .q/CM

��Cn˛
� .q//:

Since � � ˛ and � � .n � 1/˛ are also positive roots, of smaller height, using the
induction assumption yields the desired expression for M��0 .q/. ut
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Remark 2.6. Bazlov and Ion work with the usual (2-parameter) Cherednik kernel,
and then specialise their formulae to one-parameter case. They use the general
theory of Macdonald polynomials, whereas Viswanath provides a direct elementary
approach to computing coefficients of �q. One can notice that Viswanath’s note
[V06] contains implicitly an inductive formula for the coefficients of �q. His
argument essentially proves that if ˇ 2 QC and si.ˇ/ D ˇ � k˛i (k > 0), then

M
�ˇ
0 .q/ D .q � 1/

k�1X

jD1
M
�ˇCj˛i
0 .q/C q�M�si.ˇ/

0 .q/: (5)

Actually, one needn’t assume here that si.ˇ/ 2 QC. If some of ˇ � j˛i do not
belong to QC, then the corresponding q-analogues are replaced by zero. It is a simple
exercise to deduce (5) from (2) with � D 0, and vice versa. [Left to the reader.]

Substituting (4) in the equality
P

�W�4�M
�

�.q/e
� D ���q, we obtain

M
�

� .q/ D
X

 W <�
m

�M
��
0 .q/; (6)

so that all q-analogues for V� can (theoretically) be computed once we know
enough coefficients of �q and the usual weight multiplicities. But even for the adjoint
representation, this approach requires more than merely the knowledge of M��0 .q/
for � 2 �C. For,  � � need not be a root in the above formula. However, Eq. (6)
has a curious consequence.

Lemma 2.7. The polynomials M�

�.qC 1/ have nonnegative coefficients for all �.
If � is a weight of V� and � ¤ �, then M

�

�.0/ D 0.

Proof. 1) By the very definition of �q, we have �q D
Y

2�C

	
1C
X

n>0
qn.q�1/e.nC1/
.

Whence all polynomials M�
0.q C 1/, the coefficients of �qC1 have nonnegative

coefficients. Using Eq. (6), we carry it over to arbitrary � 2 XC.
2) By Weyl’s denominator formula, �qjqD0 D P

w2W ".w/e
w
�
. Therefore,

M�
0.0/ D ".w/ if � D w
 � 
, and is zero otherwise. Hence M

�

�.0/ DP
w2W ".w/m

�C
�w

� . For a weight � of V�, the latter equals ı�� by Klimyk’s

formula, see, e.g., [S90, § 3.8, Proposition C].
[One can also refer directly to Eq. (1).] ut

3 All q-Analogues for the Adjoint and Little Adjoint
Representations

In this section, g is simple, � is the highest root, and �s is the short dominant root in
�C. Here we compute q-analogues for all weight multiplicities of the adjoint and
little adjoint representations of g and show that their sum depends essentially only
on the q-analogue of the zero weight multiplicity and the Coxeter number of g.
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Let mi D mi.�/, i D 1; : : : ; r, be the exponents of (the adjoint representation of)
g and h the Coxeter number of g. We assume that m1 6 m2 6 : : : 6 mr, hence
m1 D 1 and mr D h � 1 D ht.�/. In the simply laced case, all roots are assumed
to be short. That is, the argument referring to long roots has to be omitted if g is of
type A-D-E.

Theorem 3.1. For any� 2 �[f0g, the polynomialM�

� .q/ depends only on ht.��
�/, i.e., on ht.�/. More precisely,

(i) M0
� .q/ D qm1 C � � � C qmr ;

(ii) If � 2 �C, then M
�

� .q/ D qht.���/ D qh�1�ht.�/;
(iii) if ˛ 2 …, then M�˛� .q/ D .q � 1/M0

� .q/C qh�1;
(iv) If � 2 �C, then M

��
� .q/ D qht.�/�1�M�˛� .q/.

Proof. (i) This is well known and goes back to Hesselink [He80] and Peterson.
See also [Ion04, Theorem 5.5] and [V06, p. 2].

(ii) If � 2 �C is short, then .�; _/ > �1 for all  2 �C and therefore
M

�

� .q/ has nonnegative coefficients by Broer’s criterion (Theorem 2.2). Since
degM�

� .q/ D ht.� � �/ and m�

� D 1, one has the only possibility for M�

� .q/.
If � has two root lengths and � 2 �C is long, then we argue by induction

in ht.� � �/. For � D � , one has M�
� .q/ D 1. To perform the induction step,

assume that M�

� .q/ D qht.���/ for some � and � 62 …. Then there is ˛ 2 …
such that .˛; �/ > 0 and hence s˛.�/ 2 �C and ht.s˛.�// < ht.�/. Here
� D s˛.�/Cn˛ with n 2 f1; 2; 3g, and by the Induction Lemma (Theorem 2.4)
applied to  D s˛.�/ we have

M
s˛.�/
� .q/CM

��˛
� .q/ D q.Ms˛.�/C˛

� .q/CM
�

� .q//:

For n D 1, we immediately obtain that Ms˛.�/
� .q/ D qM�

� .q/ D qht.��s˛.�//.
For n D 2 or 3, we get the same conclusion using the fact that the roots s˛.�/C
˛ and � � ˛ are short (and hence the corresponding q-analogues are already
known).

(iii) Passing from ˛ 2 … to �˛ (crossing over 0) is also accomplished via the use
of the Induction Lemma. Since s˛.�˛/ D �˛ C 2˛, we have

M�˛� .q/CM0
� .q/ D q.M0

� .q/CM˛
� .q//;

and it is already proved in part (ii) that M˛
� .q/ D qht.��˛/ D qh�2.

(iv) Going down from �˛ (˛ 2 …), we again use the Induction Lemma. First, we
prove the assertion for all negative short roots using the fact that if � 2 �C
is short and � ¤ �s, then there is ˛ 2 … such that .�; ˛_/ D �1 and hence
s˛.��/ D ��� ˛. Afterwards, we prove the assertion for the long roots, as it
was done in part (ii).

ut
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Remark 3.2. The simplest formula for M�˛� .q/, ˛ 2 …, occurs if g D slrC1, where
there are only three summands. Namely, M�˛� .q/ D qrC1Cqr�q. But for g D sp2r

or so2rC1, r > 2, we obtain M�˛� .q/ D q2C q4C� � �C q2r � .qC q3C� � �C q2r�3/.

The notation � a V� means that � is a weight of V�.

Theorem 3.3. We have
X

�ag
M

�

� .q/ DM0
� .q/.M

0
� .q/� rC1/CM0

� .q/

q
�1 � qh

1 � q
or,

equivalently,

X

�ag
m�

�M
�

� .q/ DM0
� .q/

2 C M0
� .q/

q
� 1 � qh

1 � q
: (7)

Proof. Since m�

� D 1 for � 2 � and m0
� D r, both formulae are equivalent. In fact,

we compute separately the sums

SC D
X

�2�C

M
�

� .q/ and S� D
X

�2��

M
�

� .q/:

Recall that the partition .mr; : : : ;m1/ is dual to the partition .n1; n2; : : : /, where
ni D #f 2 �C j ht./ D ig [Ko59]. Therefore, �C can be partitioned into the
strings of roots of lengths m1;m2; : : : ;mr such that the i-th string contains the roots
of height 1; 2; : : : ;mi. Then, by Theorem 3.1(ii), the sum over the i-th string equals

qmr�1 C qmr�2 C � � � C qmr�mi D qmr�mi � qmr

1 � q
:

Since mi C mr�iC1 D mr C 1 D h, the total sum over�C can be written as

SC D
rX

iD1

qmi�1 � qh�1

1 � q
D

rX

iD1

qmi � qh

q.1 � q/
D M0

� .q/� rqh

q.1 � q/
:

Likewise, using the corresponding strings of negative roots, one proves that

S� D ..q � 1/M0
� .q/C qh�1/�r �M0

� .q/

1 � q
:

It then remains to simplify the sums SCCM0
� .q/CS� and SCCrM0

� .q/CS�. ut
Similar results are valid for the little adjoint representation of G. Let �s denote

the set of all short roots, hence f�sg D �s \XC. Set …s D … \�s and l D #.…s/.
Recall that the set of weights of V�s is �s [ f0g, m0

�s
D l, and m�

�s
D 1 for � 2 �s.

The following observation is a particular case of [Ion04, Theorem 5.5], and we
provide a proof for the reader’s convenience.



298 D.I. Panyushev

Lemma 3.4. Let .n1s; n2s; : : : / be the partition of #.�Cs / with ni;s D #f 2 �Cs j
ht./ D ig, in particular, �1;s D l. If .e1; e2; : : : ; el/ is the dual partition, then
M0

�s
.q/ D qe1 C � � � C qel .

Proof. By Proposition 2.5 and (6), we have

M0
�s
.q/ D

X

2QC

m

�s
M
�
0 .q/ D lC

X

�2�C

s

.qht.�/ � qht.�/�1/:

Since #.…s/ D l, the term l cancels out and the coefficient of qj equals nj;s � njC1;s
for j > 1. On the other hand, the number of parts j in the dual partition also equals
nj;s � njC1;s. ut

An easy verification shows that, for the root systems with two root lengths, the
generalised exponents e1; : : : ; el of the little adjoint representation are

Bn – n .l D 1/; Cn – 2; 4; : : : ; 2n�2 .l D n�1/; F4 – 4; 8 .l D 2/; G2 –
3 .l D 1/.

In particular, if e1 6 � � � 6 el, then ei C elC1�i D h for all i.

Theorem 3.5. For any � 2 �s [ f0g, the polynomial M�

�s
.q/ depends only on

ht.�s � �/, i.e., on ht.�/. More precisely,

(i) M0
�s
.q/ D qe1 C � � � C qel ;

(ii) If � 2 �Cs , then M
�

�s
.q/ D qht.�s��/;

(iii) if ˛ 2 …s, then M�˛�s
.q/ D .q � 1/M0

�s
.q/C qht.�s/;

(iv) If  2 �Cs , then M
�
� .q/ D qht./�1�M�˛�s

.q/.

Proof. Part (i) is the subject of Lemma 3.4. The proof of other parts is similar to
those of Theorem 3.1. ut

Theorem 3.6. We have
X

�aV�s
M

�

�s
.q/ DM0

�s
.q/.M0

�s
.q/� lC1/C M0

� .q/

qh�ht.�s/
�1 � qh

1 � q

or, equivalently,

X

�aV�s
m�

�s
M

�

�s
.q/ DM0

�s
.q/2 C M0

�s
.q/

qh�ht.�s/
� 1 � qh

1 � q
: (8)

Proof. Our argument is similar to that of Theorem 3.3. Since .el; el�1; : : : ; e1/ and
.n1;s; n2;s; : : : / are dual partitions, we present �Cs as a union of l strings of roots,
where the i-th string consists of roots of height 1; 2; : : : ; ei. Then, using the fact
that ej C el�jC1 D h for all j, one computes that the sums of q-analogues of weight

multiplicities over�Cs and��Cs are equal to
M0

�s
.q/� lqh

qh�ht.�s/.1 � q/
and ..q�1/M0

�s
.q/C

qht.�s//
l �M0

�s
.q/

.1 � q/
, respectively. ut
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Remark 3.7. It follows from this theorem that
M0

�s
.q/

qh�ht.�s/
is a polynomial in q.

Remark 3.8. In the simply laced case, we have l D r, � D �s, and h � ht.�s/ D 1.
Then Theorems 3.3 and 3.6 yield the same formulae.

Remark 3.9. Recall that the singular locus N sg of N is irreducible (and the dense
G-orbit in N sg is said to be subregular). For any ˛ 2 …s and � 2 Q \ XC, Broer
proves that the collapsing G �P˛ n˛ ! N sg, where n˛ is the nilradical of Lie P˛ ,
is birational and M0

�.q/ � qht.˛C/M˛C

� .q/ is the Poincaré polynomial counting the
occurrences of V�� in the graded ring kŒN sg�, i.e.,

M0
�.q/� qht.˛C/M˛C

� .q/ D
X

i

dimk HomG.V
�
�;kŒN sg�i/ qi

[Br93, Corollary 4.7]. In particular, m0
� � m˛

� is the multiplicity of V�� in kŒN sg�.

Using the Induction Lemma, we can prove that qM˛
�.q/ D qht.˛C/M˛C

� .q/.
Therefore, this Poincaré polynomial is also equal to M0

�.q/�qM˛
�.q/ D qM0

�.q/�
M�˛� .q/.

For the long simple root ˛, the collapsing G �P˛ n˛ ! N sg is not birational and
the ring kŒN sg� should be replaced with kŒG �P˛ n˛�.

4 A Weighted Sum of q-Analogues of All Weight
Multiplicities

For a (possibly reducible) G-module V DPj ajV�j , we set M0
V.q/ D

P
j ajM

0
�j
.q/.

In [G87-2], R. Gupta (Brylinski) considered a ZŒq�-valued symmetric bilinear form
hh ; ii on the character ring of g:

hhch.V1/; ch.V2/ii DM0
V1˝V�

2
.q/:

She proved that this form has a nice expression via the q-analogues of dominant
weights occurring in both V1 and V2. For any � 2 XC, consider the stabiliser W� �
W and the restriction of the length function ` to W� . Set t�.q/ D P

w2W�
q`.w/, the

Poincaré polynomial of W� . In particular, t0.q/ is the Poincaré polynomial of W.
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Theorem 4.1 ([G87-2, Corollary 2.4]). For all �;  2 XC, one has

hhch.V�/; ch.V /ii D
X

�2XC

M�
�.q/M

�
 .q/

t0.q/

t�.q/
:

We provide here another formula for this bilinear form that involves the usual weight
multiplicities for one representation and q-analogues of all weight multiplicities for
the other representation. Below, we write M0

��˝ .q/ in place of M0
V��˝V

.q/.

Theorem 4.2. For all �;  2 XC, we have

X

�aV
m�
M

�

� .q/ D
X

�aV�
m�

�M
�
 .q/ DM0

��˝ .q/ D
X

�2XC

M�
 .q/M

�
�.q/�

t0.q/

t�.q/
:

Proof. The last equality here is the above-mentioned result of R. Brylinski; the first
equality stems from the symmetry of the last expression with respect to � and  .
Hence our task is to prove the second equality. Consider the vector bundle G �B

.u˚ V
�
�/ ! Z and the corresponding sheaf LZ.V

�
�/ of graded kŒN �-modules. As

in case of line bundles on Z (see Sect. 2), the graded character of Hi.Z;LZ.V�/
?/

is well defined and we say that

gec .V�/ D
X

i

.�1/ichq
	
Hi.Z;LZ.V�/

?/



is the graded Euler characteristic (of LZ.V�/
?). Let us compute gec .V�/ in two

different ways.
First, we can replace V� with the completely reducible B-module eV� D

˚�m�

� k�, which does not change the graded Euler characteristic. Then

gec .V�/ D gec .eV�/ D
X

�aV�
m�

� gec .k�/ D
X

�aV�

X

�2XC

m�

�M
�
� .q/�

�
� ; (9)

where the last equality follows by Theorem 2.1.
On the other hand, V� is a G-module, therefore G �B .u˚ V

�
�/ ' Z � V

�
� and

gec .V�/ ' ch.V��/ � gec .k0/ D ��� �
X

�2XC

M0
�.q/�

�
� : (10)

Now, equating the coefficients of �� in (9) and (10), we will obtain the assertion.
The required coefficient in (9) equals

P
�aV� m�

�M
�
 .q/. Expanding the product

������ D
P

�2XC

c�
������ , we see that the coefficient of �� in (10) equals

P
�2XC

c
�

����M0
�.q/. Since c

�

���� D c�
��

, this sum also equals M0
��˝ .q/. ut
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Corollary 4.3. For any � 2 XC, we have
X

�aV�
m�

�M
�

�.q/ D
X

�2XC

M�
�.q/

2� t0.q/
t�.q/

.

(Note that for � 2 XC, M�
�.q/ is nonzero if and only if � a V�.) This

equality shows that the weighted sum
P

�aV� m�

�M
�

�.q/ is a more natural object
than just

P
�aV� M

�

� .q/. Actually, we do not know any closed expression for the
latter. Moreover, the weighted sum of q-analogues of all weight multiplicities is a
polynomial with nonnegative coefficients, whereas this is not always the case for
the plain sum (use Theorem 3.3 and look at the adjoint representation of slrC1 with
r > 4).

Remark 4.4. It was tempting to conjecture that Corollary 4.3 could be refined so
that one takes the sum over a sole Weyl group orbit W� in the LHS and pick the
summand corresponding to �C in the RHS. But this doesn’t work! For instance, if
� D 0 a V�, then the corresponding summands are m0

�M
0
�.q/ (left) and M0

�.q/
2

(right).

Corollary 4.5. 1) If � 2 XC is minuscule, then
X

�aV�
M

�

� .q/ D
X

�aV�
qht.���/ D

t0.q/

t�.q/
;

2) More generally, if V� is weight multiplicity free (i.e., m�

� D 1 for all � a V�),
then

X

�aV�
M

�

�.q/ D
X

�aV�
qht.���/:

Proof. 1) In this case all weight multiplicities are equal to one and � is the only
dominant weight of V�. Moreover, all the weights � satisfy the condition (3) of
Theorem 2.2 and therefore M�

�.q/ D qht.���/.
2) Since m�

� D 1 for all �, using Theorem 2.4, one easily proves by induction on
ht.� � �/ that M�

� .q/ D qht.���/.
ut

This corollary shows that, for the weight multiplicity free case,
P

�aV� M
�

�.q/
equals the Dynkin polynomial of V�, see [P04, Sect. 3].

Corollary 4.6. (i) If g is simply laced, then
t0.q/

t� .q/
D M0

� .q/

q
�1 � qh

1 � q
.

(ii) More generally, for any simple Lie algebra g, we have
t0.q/

t�s.q/
D

M0
�s
.q/

qh�ht.�s/
�1 � qh

1 � q
and

t0.q/

t� .q/
D M0

�_.q/

qh�ht.�_/
�1 � qh

1 � q
, where �_ is regarded as

the short dominant root in �_.
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Proof. In the simply laced case, � D �s and ht.�s/ D ht.�_/ D h � 1. Therefore,
it suffices to prove part (ii). For the first equality in (ii), we combine Eq. (8) and
Corollary 4.3 with � D �s, and also use the fact that the only dominant weights of
V�s are �s and 0. The second equality stems from the similar argument for the dual
Lie algebra g_ and the fact that t� .q/ D t�_.q/. ut
Remark 4.7. The last corollary can be verified by a direct calculation. Recall that
if d1.�/; : : : ; dr.�/ are the degrees of basic invariants of the reflection group W� �
GL.t/, then t�.q/ D

rY

iD1

1 � qdi.�/

1 � q
. In particular, di.0/ D mi C 1. It is a kind of

miracle that the complicated fraction
t0.q/

t�s.q/
D

rY

iD1

1 � qdi.0/

1 � qdi.�s/
simplifies to rather a

simple expression!

5 Generalised Exponents and the Height of Weights

In Sect. 3, we used the fact that the generalised exponents of g D V� and V�s are
determined via the height of “positive weights (roots)”. Here we provide a geometric
condition for this phenomenon and point out some other irreducible representation
having the similar property. This relies on results of R. Brylinski on the principal
filtration of a weight space and “jump” polynomials [B89].

Let e be a principal nilpotent element of g and fe; Qh; f g a corresponding principal
sl2-triple in g. Without loss of generality, we assume that e is the sum of root vectors
corresponding to … and hence ˛.Qh/ D 2 for all ˛ 2 … [Ko59, Ko63]. This means
that upon the identification of t and t�, 1

2
Qh is nothing but 
_ WD 1

2

P
2�C _ and

. 1
2
Qh/ D .; 
_/ D ht./ for all  2 QC.

Let s D he; Qh; f i be the corresponding simple subalgebra of g. We write Rn

for the simple s-module of dimension n C 1, so that the Qh-eigenvalues in Rn are
n; n� 2; : : : ;�n.

In what follows, V D V�, P.V/ is the set of weights of V, and

P.V/C D f� 2 P.V/ j �.Qh/ > 0g:

We also write BP.V/C for the multiset of weights in P.V/C, where each � appears
with multiplicity m�

�. It is assumed below that � 2 XC \ Q, so that P.V/ � Q and
m0
� ¤ 0.

Theorem 5.1. Suppose that dimV
t D dimV

e.DW n/. Then

(i) P.V/ D P.V/C[f0g[.�P.V/C/; moreover, each nonzero weight is a multiple
of a root.
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(ii)
Y

2AP.V/C

1 � qht./C1

1 � qht./
D

nY

iD1

1 � qmi.�/C1

1 � q
.

Proof. (i) Considering V as s-module, we obtain a decomposition Vjs DLn
jD1Rlj . Since dimV

e > dimV
Qh > dimV

t, the hypothesis implies that

each Rlj has a zero-weight space (hence each lj D 2kj is even) and V
t D V

Qh.
Consequently, if � 2 P.V/ and � ¤ 0, then �.Qh/ ¤ 0, which proves the
partition formula. Letting V˙ D ˚2P.V/

˙
V
 , we see that V

t generates
V

t ˚ VC as e-module, whence P.V/C � QC. Now, it is easily seen that
if  2 QC is not proportional to a root, then there exists w 2 W such that
w./ 62 QC [ .�QC/.

(ii) By the above decomposition of Vjs, the multiset of positive 1
2
Qh-eigenvalues in

V, i.e., the multiset fht./ j  2BP.V/Cg consists of f1; 2; : : : ; k1; 1; 2; : : : ; k2;
: : : ; 1; 2; : : : ; kng. Therefore, most of the factors cancel out in the LHS and we

are left with the product
nY

jD1

1 � qkiC1

1 � q
.

On the other hand, the theory of R. Brylinski [B89] shows that the generalised
exponents of V are determined by the e-filtration on V

t and are equal to the 1
2
Qh-

eigenvalues in Vz.e/, where z.e/ is the centraliser of e in g. Since dimV
z.e/ D dimV

t

for the simple G-modules having zero weight [B89, Corollary 2.7], it follows that
V

z.e/ D V
e in our situation, and the eigenvalues in question are k1; k2; : : : ; kn. This

yields the desired equality in part (ii). ut
Remark 5.2. A formal consequence of relation (ii) is that the partition	
m1.�/; : : : ;mn.�/



is dual to the partition formed by the numbers #f 2BP.V/C j

ht./ D ig. For V D g and P.V/C D �C, formula (ii) is sometimes called
the Kostant-Macdonald identity, see [AC89]; we also refer to [AC12] for a recent
generalisation related to Schubert varieties.

Remark 5.3. If V is a simple G-module with non-trivial zero-weight space, then

dimV
e > dimV

z.e/ D dimV
t 6 dimV

Qh

and dimV
e > dimV

Qh. Therefore the hypothesis of Theorem 5.1 implies that all
these spaces have one and the same dimension. It is also known that, for any
simple G-moduleV, dimV

z.e/ equals the dimension of a largest weight space, which
is achieved for either the unique dominant minuscule weight or zero, see [gr92,
Remark 1.6].

Making use of the above coincidences and Theorem 5.1(i), one easily proves
that the hypothesis of the theorem holds exactly for the following pairs .g; �/ with
simple g:
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• .g; �/ and .g; �s/, i.e., the adjoint and little adjoint representations of g;
• .Br; 2'1/, .G2; 2'1/, .A1; 2m'1/, m 2 N.

The generalised exponents for the first two cases in the second line are
2; 4; : : : ; 2r and 2; 4; 6, respectively.
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The Triangulation of Manifolds: Topology,
Gauge Theory, and History

Frank Quinn

Abstract A mostly expository account of old questions about the relationship
between polyhedra and topological manifolds. Topics are old topological results,
new gauge theory results (with speculations about next directions), and history of
the questions.

MR classifications 57Q15, 01A60, 57R58.

1 Introduction

This is a survey of the current state of triangulation questions posed by Kneser in
1924:

(1) Is a polyhedron with the local homology properties of Euclidean space, locally
homeomorphic to Euclidean space?

(2) Is a space locally homeomorphic to Euclidean space, triangulable (homeomor-
phic to some polyhedron)?

(3) If there are two such triangulations, must they be PL equivalent?

Topological work on the topic is described in Sects. 2–3. This work was mature and
essentially complete by 1980, but leaves open questions about H-cobordism classes
of homology 3-spheres. Gauge theory has had some success with these, with the
most substantial progress for the triangulation questions made in a recent paper of
Manolescu [mano13]. Manolescu’s paper is discussed in Sect. 4. This area is not yet
mature, and one objective is to suggest other perspectives.

Section 5 recounts some of the history of Kneser’s questions. Kneser posed them
as an attempt to provide foundations for Poincaré’s insights 20 years before, but
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they turned out to be a dead end. They were fruitful challenges to technology as it
developed, and much of the progress of the subject can be traced out in applications
to these questions, but they do not themselves have significant applications. Here
we have a different concern: why did Kneser point his contemporaries into a dead
end? Or was he trying to get them to face the fact that it was a dead end? The
question gives a fascinating window into the transition from pre-modern to modern
mathematics in the early twentieth century.

The remainder of the introduction gives modern context for the questions and
describes the organization of the technical parts of the paper.

1.1 Modern Context

The relevant main-line topics are PL manifolds, topological manifolds, and ANR
homology manifolds.1 Polyhedra that are homology manifolds, referred to here
as “PL homology manifolds,” are mixed-category objects, and Kneser’s questions
amount to asking how these are related to the main-line categories.

PL manifold
⊂

⊂
Topological

⊂

PL homology

ANR homology

⊂?

The standard categories differ radically in flavor and technique, but turn out to be
almost equivalent. For the purposes here, topological and ANR homology manifolds
are equivalent.2 PL and topological manifolds differ by the Kirby–Siebenmann
invariant ksm.M/ 2 H4.MIZ=2/. This is in a single cohomology group, with the
smallest possible coefficients, so is about as small as an obstruction can be without
actually being zero. This means the image of PL homology manifolds in the main-
line picture is highly constrained, and on the image level the answers to the questions
can’t be much different from “yes.” Unfortunately it turns out that there are a great
many PL homology manifolds in each image equivalence class.

1ANR D “Absolute Neighborhood Retract.” For finite-dimensional spaces this is equivalent to
“locally contractible,” and is used to rule out local point-set pathology.
2There are “exotic” homology manifolds not equivalent to topological manifolds, [BFMW] but
they are extremely difficult to construct and are not produced by any known natural process.



The Triangulation of Manifolds: Topology, Gauge Theory, and History 309

1.2 Topology

PL homology manifolds have two types of singularities: dimension 0 (problematic
links of vertices) and codimension 4 (problematic links of .n� 4/-simplices). Four-
manifolds are special, in part because these two types coincide. Vertex singularities
can be canonically resolved, so are topologically inessential. This is described in
Sect. 2 and provides an answer to Kneser’s first question.

The real difficulties come from the codimension 4 singularities, and these involve
homology spheres. We denote the group of homology H-cobordism classes of
homology 3-spheres by ‚. The full official name is ‚H

3 , but the decorations are
omitted here because they don’t change. Several descriptions of this group are given
in Sect. 3.1.

A PL homology manifold K has an easily defined Cohen–Saito–Sullivan coho-
mology class css.K/ 2 H4.KI‚/ [sullSing, cohen]; see Sect. 3.6. The Rokhlin
homomorphism rokW‚! Z=2 induces a change-of-coefficients exact sequence

H4(K; ker(rok)) H4(K; Θ) rok
H4(K;Z/2)

β
H5(K; ker(rok))

with Bokstein connecting homomorphism ˇ. The image of the Cohen–Saito–
Sullivan class is the Kirby–Siebenmann class. The baby version of the main
theorem is

Theorem 1 ([gs]). If M is a topological manifold of dimension¤ 4 (and boundary
of dimension ¤ 4 if it is nonempty), then concordance classes of homeomorphisms
to polyhedra correspond to lifts of the Kirby–Siebenmann class to H4.MI‚/.

This is the baby version because serious applications (if there were any) would
require the relative version, Theorem 3.1. A corollary is that a triangulation exists if
and only if the Bokstein of the Kirby–Siebenmann invariant is trivial. Note that if the
Kirby–Siebenmann class lifts to a class with integer coefficients, then it lifts to any
coefficient group, and it follows that the manifold is triangulable. Similarly, if the
Kirby–Siebenmann class lifts to coefficients Z=k but no further, then triangulability
of the manifold depends on whether or not there is an element in ‚ of order k and
nontrivial Rokhlin invariant. Finally, triangulations are classified up to concordance
by H4.KI ker.rok//.

These results reduce the geometric questions to questions about the group‚ and
the Rokhlin homomorphism. This part of the picture was essentially complete by
1980, but ‚ is opaque to traditional topological methods. It has grudgingly yielded
some of its secrets to sophisticated gauge theory; an overview is given in Sect. 4. It
is infinitely generated and lots of these generators have infinite order. This means if
there is a triangulation of M and H4.MIZ/ ¤ 0, then there are a great many different
ones. Manolescu’s recent advance is that the Rokhlin homomorphism does not split.
This implies that there are manifolds (e.g., the ones identified by Galewski–Stern
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[gs5]) that cannot be triangulated. Manolescu’s paper is described in Sect. 4. This
theory is in a relatively early stage of development so the section gives speculations
about future directions.

It seems reasonable to speculate that homology spheres with nontrivial Rokhlin
invariant must have infinite order. Indeed, it seems reasonable to expect ‚ to be
torsion-free. Either would imply that M has a triangulation if and only if the integral
Bokstein ˇWH4.MIZ=2/ ! H5.MIZ/ is trivial on the Kirby–Siebenmann class.
Proof of existence of triangulations in such cases should be easier than cases that
might involve torsion.

2 Homology Manifolds are Essentially Manifolds

We begin with Kneser’s first question because the answer is easy (now) and sets the
stage for the others.

2.1 Singular Vertices

Suppose L is a PL homology n-manifold with homology isomorphic to the
homology of the n-sphere. Then the cone on L is a PL homology .nC 1/-manifold
(with boundary). However if the dimension is greater than 1 (to exclude circles) and
L is not simply connected, then the cone point is not a manifold point. The reason is
that the relative homotopy group

�2.cone; cone� �/ ' �1.L/ ¤ f1g

is nontrivial, and this is impossible for a point in a manifold.
The lowest dimension in which non-simply connected homology spheres occur

is 3, and the oldest and most famous 3-dimensional example was described by
Poincaré, see Kirby–Scharlemann [kscharlemann79]. There are examples in all
higher dimensions but the 3-dimensional ones are the most problematic. These cone
points turn out to be the only topological singularities:

Theorem 2.1. A PL homology manifold is a topological manifold except at vertices
with non-simply connected links of dimension greater than 2.

This statement is for manifolds without boundary, but extends easily. Boundary
point is singular if either the link in the boundary, or the link in the whole manifold,
is non-simply connected.

We give a quick proof using mature tools from the study of ANR homology
manifolds. Most homology manifolds are not manifolds, and some of them are quite
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ghastly.3 Nonetheless they are close to being manifolds. There is a single obstruction
in H0.XIZ/ whose vanishing corresponds to the existence of a map M ! X with
essentially contractible point inverses, and M a topological manifold [Q1]. These are
called resolutions by analogy with resolution of singularities in algebraic geometry.
When a resolution exists it is unique, essentially up to homeomorphism. Roughly
speaking this gives an equivalence of categories, and the global theories are the
same.

The obstruction is so robust that a heroic effort was required to show that exotic
examples exist [BFMW]. Existence of a manifold point implies the obstruction
vanishes, so PL homology manifolds have resolutions.

Next, Edwards’ CE approximation theorem asserts that if X is an ANR homol-
ogy manifold of dimension at least 5, and rWM ! X is a resolution, then r
can be approximated by a homeomorphism if and only if X has the “disjoint
2-disk property,” see [daverman]. It is easy to see that PL homology manifolds of
dimension at least 5 have the disjoint disk property everywhere except at �1-bad
vertices. This completes the proof except in dimension 4, where the only question
is with cones on homotopy spheres. Perelman has shown that these are actually
standard, so the cone is a PL 4-ball and the cone point is a PL manifold point.
The weaker assertion that they are topologically standard also follows from the next
section.

This proof seems effortless because we are using big hammers on small nails.
The job could be done with much smaller hammers, but this is more complicated
and might give the impression that we don’t have big hammers. Also, as mentioned
in the introduction, there is a rich history of partial results not recounted here.

2.2 Resolutions with Collared Singularities

The proof given above uses the fact that singularities in ANR homology manifolds
can be “resolved.” The next theorem gives a precise refinement for the PL case,
based on the following lemma:

Lemma 2.2. Suppose L is a PL homology manifold with the homology of a sphere.
Then L bounds a contractible manifold in the sense that there is a contractible
ANR homology manifold W with @W D L, L has a collar neighborhood in W, and
W � L is a topological manifold. Further, any two such W are homeomorphic rel a
neighborhood of the boundary.

The only novelty is that we have not assumed L is a manifold. The proof of
the 4-dimensional case given in [fq, Corollary 9.3C] extends easily. We sketch the
proof.

3There is a technical definition of “ghastly” in [davermanwalsh] that lives up to the name.
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The standard triangulation of L � Œ0; 1� has no vertices in the interior so, by the
Theorem above, the interior is a manifold. Do the plus construction [fq, §11.1] to
kill the fundamental group. The result is M with manifold interior, collared boundary
L� Œ0; 1�, and proper homotopy equivalent to a sphere. Replace each L� Œn; nC1� �
L � Œ0;1/ by a copy of M and denote the result by W. If W is a manifold except
at the singularities of L, then the standard manifold proof shows that the 1-point
compactification is contractible, and a manifold except for these same singularities.
It also shows that this manifold is unique up to homeomorphism rel boundary. The
modification required in the older proof is verification that the interior of W is a
manifold.

W is a manifold except possibly at vertices in L� fng where the copies are glued
together. If n > 0, then L � fng has a collar on each side, so has a neighborhood
homeomorphic to L � R, which is a manifold. Thus the only non-manifold points
are in L � f0g. This completes the proof.

We use the lemma to define models for “collared singular points.” Suppose W is
as in the lemma, with boundary collar L� Œ0; 1/! W. Identify the complement of a
smaller open collar to a point to get W ! W=.W�L� Œ0; 1=2//. The quotient is the
cone L�Œ0; 1=2�=.L�f1=2g/, the map is a homeomorphism except at the cone point,
and the preimage of this point is a smaller copy of W and therefore contractible. In
particular this is a resolution.

Now define a “resolution with collared singular points” to be M ! K, that is, a
homeomorphism except at a discrete set of points in K, and near each of these points
is equivalent to a standard model. The lemma easily implies:

Theorem 2.3. A PL homology manifold K has a topological resolution with
collared singular points, and singular images the �1-bad vertices of K. This
resolution is well-defined up to homeomorphism commuting with the maps to K.

The mapping cylinder of a resolution is a homology manifold, and can be thought
of as a “concordance” between domain and range. In these terms the theorem asserts
that a PL homology manifold is concordant in a strong sense to a manifold.

The unusually strong uniqueness (commuting exactly with maps to K, not just
arbitrarily close) results from the fact that two such resolutions have the same
singular images, and the uniqueness in Lemma 2.2. This statement is true for
manifolds with boundary if the definition of “collared singularity” is extended in
the straightforward way.

3 Triangulation

The main theorem is stated after the obstruction group is defined. The proof has two
parts: first, enough structure of homology manifolds is developed to see the Cohen–
Saito–Sullivan invariant. Both cohomology and homology versions are described,
in part to clarify the role of orientations. The second part is the converse, due to
Galewski and Stern.
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3.1 The Group

‚ is usually defined as the set of oriented homology 3-spheres modulo homology
H-cobordism. Connected sum defines an abelian monoid structure, and this is a
group because reversing orientation gives additive inverses. As mentioned in the
introduction, the full name of this group is ‚H

3 , but analogous groups ‚H
k for

k � 3 are, fortunately, trivial. Roughly speaking, nontriviality would come from
fundamental groups, and in higher dimensions we can kill these (e.g., with plus
constructions).

Geometric constructions give disjoint unions of homology spheres, not single
spheres. These can be joined by connected sum to give an element in the usual
definition of the group, but there are a number of advantages to using a definition
that accepts disjoint unions directly. In this view ‚ is a quotient of the free abelian
group generated by homology 3-spheres. Elements in the kernel are boundaries of
oriented PL four-manifolds that are homologically like D4 minus the interiors of
finitely many disjoint 4-balls. These boundaries are disjoint unions of homology
3-spheres, and we identify disjoint unions with formal sums in the abelian group.
Elements of the standard version are generators in the expanded version. It is an
easy exercise to see that this inclusion gives an isomorphism of groups.

In either definition it is important that the equivalence relation be defined by
PL manifolds, not just homology manifolds. The goal is to organize cone.L/-
type singularities, and allowing singularities in the equivalences would defeat this.
There may eventually be applications in which “concordances” can have limited
singularities and the corresponding obstruction group should have these singularities
factored out. For instance, Gromov limits of Riemannian manifolds with special
metrics might allow variation by cones on homology spheres with special metrics.

The Rokhlin invariant is a homomorphism rokW‚ ! Z=2 defined using
signatures of spin four-manifolds bounding homology 3-spheres, cf., [kirby]. This
connects with the Kirby–Siebenmann invariant, as described next.

Theorem 3.1 (Main Theorem).

(1) (CSS invariant) A PL homology manifold K has a “Cohen–Saito–Sullivan”
invariant css.K/ 2 H4.KI‚/;

(2) (Relation to Kirby–Siebenmann) If rWM ! K is a topological resolution of a
PL homology manifold, then ksm.M/ D rok.r�.css.K//; and

(3) (Realization: Galewski–Stern [gs]) Suppose M is a topological manifold, not
dimension 4, and a homeomorphism @M ! L to a polyhedron is given. If there
is a lift ` of ksm.M/ to ‚ that extends css.L/, then there is a polyhedral pair
.K;L/ and a homeomorphism M ! K that extends the homeomorphism on @M,
and css.K/ D `.

Here, a “lift” is an element `:



314 F. Quinn

Dual of edge

Dual of vertex
Triangulation

Fig. 1 Dual cones in a simplicial complex

` ��

��

css.@K/

��

in H3.MI‚/ @�

��

rok
��

H3.@KI‚/

rok
��

ksm.M/ �� ksm.@M/ H3.MIZ=2/ @�

�� H3.@KIZ=2/

There is a slightly sharper version in which “lift” is interpreted as a cochain
representing such a cohomology class. Another extension is that if the map @M ! L
is a resolution instead of a homeomorphism, then the conclusion is that it extends
to M ! K, that is, a homeomorphism on M � @M. The significance is that vertex
singularities in L (where @M ! L cannot be a homeomorphism) do not affect the
codimension-4 obstructions. Finally, the fact that four-manifolds are smoothable
in the complement of points [ends3] can be used to alter definitions to give a
formulation that includes dimension 4. We await guidance from applications to see
which of these refinements is worth writing out.

The proof of parts (1) and (2) are given in the remainder of this section. The
Galewski–Stern proof of (3) follows the pattern developed to classify smooth and
PL structures [ks], so is more elaborate than really needed. I did not find a proof
short enough to include here, however.

3.2 Structure of Polyhedra

We review the structure of polyhedra needed for homology manifolds. Suppose
� is a simplex in a simplicial complex. The dual cone of � is a subcomplex
of the barycentric subdivision of the complex. Specifically, it is the collection of
simplices that intersect � in exactly the barycenter. The link is the subcomplex of
this consisting of faces opposite to the barycenter point (Fig.1).

It is easy to see that the dual cone is the cone on the link, with cone point the
barycenter of � . This extends to an embedding of the join of the link and � , using
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linearity in the simplex. Here we only need the weaker conclusion that the interior
of � has a neighborhood isomorphic to the product int.�/ � cone.link.�//.

3.3 Links in PL Homology Manifolds

Recall that X is a homology n-manifold (without boundary) if for each x 2 X,
H�.X;X�xIZ/ ' H�.Rn;Rn�oIZ/. A pair is a homology manifold with boundary
if X� @X is a homology n-manifold, @X is a homology .n� 1/-manifold, and points
in the boundary have the same local homology as points in the boundary of an n-ball
(i.e., trivial).

PL homology manifolds have much more structure.

Lemma 3.2. A polyhedron K is a homology n-manifold (without boundary) if and
only if link of every simplex is a homology manifold, and has the homology of an
.n � k � 1/-sphere, where k is the dimension of the simplex.

The statement about homology of links is an easy suspension argument. The
assertion that links are homology manifolds follows from this and the fact that links
in a link also appear as links in the whole space (easy after unwinding definitions).
This statement is easily extended to a version for manifolds with boundary.

3.6 The Cohomology Picture

We begin with the cohomological version of the codimension-4 invariant.
In a homology manifold the cones have the relative homology of disks, so they

give a model for the chain complex. Specifically, define the conical chain group
Ccone

n .K/ to be the free abelian group generated by n-dimensional cones together
with a choice of orientation. Boundary homomorphisms in this complex come from
homology exact sequences in a standard way.

Define a homomorphism ZŒoriented 4-d cones�! ‚ by

.cone.L/; ˛/ 7! ŒL; @˛�

where ˛ denotes the orientation of the (4-dimensional) cone, and @˛ the correspond-
ing orientation of the (3-dimensional) homology sphere. It is not hard to see that this
defines a cohomology class [cohen], and we denote it by css.K/ 2 H4.KI‚/.

This definition includes manifolds with boundary, and the invariant of the
boundary is css.@K/ D i�css.K/, where i�WH4.K/ ! H4.@K/ is induced by
inclusion. The key result is that the Rokhlin homomorphism relates the Kirby–
Siebenmann and CSS invariants:
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Proposition 3.3. If rWM ! K is a manifold resolution of a PL homology manifold,
then r�.rok.css.K// D ksm.M/.

The usual formulation is for the special case with r a homeomorphism. The addi-
tional information in the resolution version is that including the vertex singularities
makes no difference. They neither contribute additional problems, nor do they give
a way to avoid any of these problems.

The description of css should make this result very plausible, and if the definition
of the Kirby–Siebenmann invariant is understood (which we won’t do here),
the homeomorphism version should be obvious. The resolution version follows
easily from the homeomorphism version and the uniqueness of resolutions up to
homeomorphism.

3.8 The Homology Picture

The dual homology class is sometimes easier to work with but takes more care to
define correctly. The basic idea is to use simplicial chains and represent the class
in ZŒ.n � 4/-simplices� ˝ ‚ by using the class of the link of a simplex � as the
coefficient on � . There is a problem with this: an orientation is required to define
an element in ‚, but the data provides an orientation for the simplex rather than
the dual cone. An orientation of the manifold can be used to transform simplex
orientations to dual-cone orientations, but being too casual with this invites another
mistake: the invariant is in twisted homology.

A homology manifold has a double cover with a canonical orientation, OK ! K.
The group of covering transformations is Z=2 and the generator acts on OK by
interchanging sheets and (therefore) reversing orientation. Consider the simplicial
chains C�. OK/ as a free complex over the group ring ZŒZ=2�, and suppose A is
a ZŒZ=2� module. We define the homology Hn. OKIA/ to be the homology of the
complex C�. OK/˝ A, where the tensor product is taken over ZŒZ=2�.

If Z=2 acts trivially on A, then the tensor product kills the action on the chains
of OK and the result is ordinary homology. We will be concerned with the opposite
extreme, A D Z with Z=2 acting by multiplication by �1.

After this preparation we can define the Cohen–Saito–Sullivan homology class
by

css�.K/ D †�� � Œlink.�/� 2 Hn�4. OK; @ OKI‚/

where Z=2 acts on ‚ by reversing orientation, and the orientation of link.�/ is
induced by the orientation of � and the canonical orientation of OK.

This definition also includes manifolds with boundary, and the invariant of the
boundary is given by the boundary homomorphism in the long exact sequence of
the pair.
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The homology and cohomology definitions are Poincaré dual. Duality between
simplices and dual cones is particularly clear: each simplex intersects exactly one
dual cone (its own) in a single point, and this pairing gives a chain isomorphism
between simplicial homology and dual-cone cohomology when links are homology
spheres.4 This pairing matches up the two definitions.

4 Gauge Theory

The Casson invariant (see [am]) gave the first hint that something like gauge theory
would play a role in this story. Casson used representation varieties and Heegard
decompositions to define an integer-valued invariant of homology 3-spheres, and
showed that the mod 2 reduction is the Rokhlin invariant. However it is a invariant
of diffeomorphism type, not homology H-cobordism. It does not define a function
‚! Z, and has little consequence for the triangulation questions.

Fintushel and Stern [fintstern90] used the Floer theory associated with Donald-
son’s anti-self-dual Yang–Mills theory to show that certain families of Seifert fibered
homology 3-spheres are linearly independent in ‚. The families are infinite so ‚
has infinite rank. This implies that most manifolds have vastly many concordance
classes of triangulations, but does not clarify the existence question because all these
homology 3-spheres are in the kernel of the Rokhlin homomorphism.

There has been quite a bit of work done since Fintushel–Stern, with invariants
derived from gradings in various Floer homology theories; see Manolescu’s discus-
sion of Frøyshov correction terms. The next qualitatively new progress, however,
is in Manolescu’s paper. The outcome is three functions ‚ ! Z which are not
homomorphisms, but have enough structure to show that a homology sphere with
nontrivial Rokhlin cannot have order 2 in ‚. This implies that manifolds whose
Kirby–Siebenmann classes do not lift to mod 4 cohomology, cannot be triangulated.
See [gs5] for a 5-dimensional example. Somewhat more elaborate arguments with
these functions seem to show that many Rokhlin-nontrivial spheres have infinite
order. The full consequences are not yet known.

Sections 4.1–4.6 give a qualitative outline of the preprint version of Manolescu’s
paper. The published version may be different. References such as “[mano13,
§3.1]” are abbreviated to “M3.1,” and readers who want to see things like the
Chern-Simons-Dirac functional written out should refer to this paper. Alternate
perspectives for experts are suggested in Sects. 4.7–4.8

4This is, in fact, Poincaré’s picture of duality, and will be discussed further in the history section.
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4.1 Physics Description

The idea, on the physics level of rigor, is that the Floer homology theory associated
with the Seiberg–Witten equations is given by the Chern-Simons-Dirac functional
on an appropriate function space. This functional is invariant under a big symmetry
group. Divide by the symmetry group, then we want to think of the induced
function on the quotient as a sort of Morse function and study its gradient flow.
More specifically, we are concerned with the finite-energy trajectories. The quotient
is infinite-dimensional, but we can enclose the finite-energy trajectories in an
essentially finite-dimensional box. Invariants of the system come from algebraic-
topological invariants of this box.

This description offers an alarmingly large number of ways to misunderstand
the construction, and one goal is to clarify the strategy and logical structure of
the process. For instance, finite-dimensional differential and algebraic topology are
mature subjects with a lot of sharp tools. It is useful to see the infinite-dimensional
part of the analysis as a sequence of reductions designed to bring part of the
structure within range of these sharp tools. Another, possibly dubious, goal is to
try to clarify features of the technical details and how they might be sharpened, but
without actually describing the details. Finally, the analysis described is for three-
manifolds whose first homology is torsion (b1 D 0/. The analysis in the general
case is considerably more elaborate.

4.2 The Coulomb Slice

The first step in the heuristic description is to “divide by an infinite group of
symmetries.” It is almost impossible to make literal sense of this, and in M3.1
Manolescu uses the Coulomb slice to avoid it. There is a (“normalized”) subgroup
of the full symmetry group with the property that each orbit intersects this slice in
exactly one point. The slice is therefore a model for the quotient by this subgroup,
and projection to the slice reduces the symmetry to the quotient of whole group by
the subgroup. The quotient is the compact Lie group Pin.2/.

Since it is compact, dividing by Pin.2/ makes good sense, but it introduces
singularities that are much more painful than symmetry groups. The plan is therefore
to do a nonsingular equivariant reduction to finite dimensions, and the long-term
strategy is roughly “let the finite-dimensional people deal with the group action.”

Manolescu explicitly describes the restriction of the Chern-Simons-Dirac func-
tional to the Coulomb slice, and describes a projected Riemannian metric that
converts the derivative of the functional to a gradient vectorfield with the property
that the projection preserves gradient flows. This description usually gives non-
specialists the wrong picture because the “Riemannian metric” is not complete.
The slice is a Frechét space of C1 functions, and there is no existence theorem
for flows in this context. In fact, in most directions the gradient vectorfield does not
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have a flow, even for short time, and the flow trajectories exploited by Floer and
others exist due to a regularity theorem for solutions of a differential equation with
boundary conditions. In other words there is only a small and precious fragment
of a flow for this vectorfield, and this is not Morse theory with a globally defined
flow. The observation that projection to the Coulomb slice preserves flows means it
preserves this small and precious fragment, not something global.

This explanation is still not quite right. Manolescu doesn’t actually identify
the flow fragment in infinite dimensions, so saying that the projection preserves
whatever part of the flow that happens to exist is a heuristic summary. On a technical
level the projection preserves reasons the fragment exists and it is these reasons, not
the flow itself, that power the rest of the argument.

4.3 Sobolev Completions

In the last paragraph of M3.1 the space V.k/ is defined as the completion of the
Coulomb slice, using the L2 Sobolev norm on the first k derivatives. This gives
Hilbert spaces but still doesn’t give us a flow because the “vectorfield” now changes
spaces: it is of the form

`C cWV.kC1/ ! V.k/

with ` linear Fredholm and c compact.5 The index shift corresponds to a loss of
a derivative, reflecting the fact that we are working with a differential equation.
The maneuvering (bootstrapping) needed to more-or-less recover this lost derivative
is a crucial analytic ingredient. Almost nothing is said about this in [mano13],
but some details are in [mano03, Sect. 3 and 4], phrased in terms of flows rather
than vectorfields. Manolescu’s next step is projection to finite-dimensional spaces
where there are well-behaved flows. There would be significant advantages to
connecting directly with Morse theory in an infinite-dimensional setting rather than
in projections; see section “Hilbert, or SC Manifolds” for further comments.

4.4 Eigenspace Projections

In section M3.2 Manolescu defines V�
� to be the subspace of V spanned by

eigenvectors of `with eigenvalues in the interval .�; ��. This uses the fact, prominent
in [mano03] but unmentioned in [mano13], that ` is self-adjoint. In particular its
eigenvalues are real and eigenspaces are spanned by eigenvectors. These spaces are

5The spaces V are vector spaces and ` linear because we are assuming b1 D 0 (homology sphere).
The general situation is more complicated.
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finite-dimensional because ` is Fredholm. Finally, the symmetry group Pin.2/ acts
on them because they are defined using equivariant data.

There is a technical modification that deserves comment. The orthogonal pro-
jections V ! V�

� give a function from the parameter space f� < �g to linear
maps V ! V . This takes discrete values (depending only on the eigenvalues
in the interval) so is highly discontinuous. Manolescu smooths this function: the
dimension of the image still jumps but when it does, the projection on the new part
is multiplied by a very small number. The result is continuous as a function into the
space of linear maps. This implies that the finite projections of the CSD vectorfield
become smooth functions of the eigenvalue parameters. This is useful in showing
that parts of the qualitative structure of the output do not depend on the parameters
once they are sufficiently large.

The final modification of the flow is done in section M3.7. There is a unique
reducible solution of the equations, and non-free points of the Pin.2/ action come
from this. The functional is perturbed slightly (following the earlier [mano03]) to
make the reducible solution a nondegenerate critical point. The irreducible critical
points can also be made nondegenerate in an appropriate equivariant (Bott) sense.

This is one of the places where the Seiberg–Witten theory diverges in a qualitative
way from the Donaldson theory. The finite-energy trajectories in the Donaldson–
Floer theory cannot be made nondegenerate, and the analysis takes place on a center
manifold. This is rather more delicate.

4.5 Isolated Invariant Sets

The last structural input from the infinite-dimensional context is specification of the
“precious fragment” of the flow supposed to have come from infinite dimensions.
This is done by Proposition M3.1 in [mano13], which is a reference back to
Proposition 3 of [mano03]. The flow fragment is the union of trajectories that stay
in a ball of a certain radius, and the key fact is that it is isolated in the sense that it
is the same as the union of trajectories that stay in a ball of twice the radius.

We comment on the logic of the reduction. Defining the invariant uses only the
answer (the form of the explicit finite-dimensional approximations) and the proof
in Proposition M3.1 that the trajectories-in-a-ball construction gives an isolated
invariant set. This does not use the construction of a flow fragment in infinite
dimensions, so the demonstration that such a flow fragment would have been
preserved by the projection is not actually used. This demonstration does, however,
give a tight connection between this construction and those of Floer et.al. that do
use the infinite-dimensional flow.
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4.6 Equivariant Stable Homotopy Theory

The plan is to enclose the isolated invariant set identified in the previous step in a
nice box, and extract information about the system from algebraic and geometric
topology of the box. The box is a subspace (or submanifold) of a finite-dimensional
vector space so this is the point at which the problem enters the finite-dimensional
world. Manolescu is not a native of this world, however, and his treatment could
be refined. We briefly sketch Manolescu’s definition of the invariants in this
section. The main difficulties come in showing that these are well-defined and have
good properties. The next section hints at some of these difficulties and suggests
approaches that may be better adapted.

Manolescu uses the Conley Index construction to get a “box” enclosing the
isolated invariant set. The output is a pair of spaces that depends on choices or,
by taking the quotient, a pointed space that the choices change only by homotopy
equivalence. This takes place in an eigenvalue projection V�

� and changing � and
� changes the pointed-space output by suspension. The object associated with the
system is therefore a spectrum in the homotopy-theory sense. Finally, all these
things have Pin.2/ actions, and the suspensions are by Pin.2/ representations. The
proper setting for all this is evidently some sort of equivariant stable homotopy
theory. The most coherent account in the literature is Lewis–May–Steinberger
[may86], and Manolescu uses this version. The next step is to extract numerical
invariants from these Pin.2/-equivariant spectra using Borel homology.

To a first approximation the homology appropriate to a G-space X is the
homology of the quotient X=G. This works well for free actions but undervalues
fixed sets. The Borel remedy is to make the action free by product with a contractible
free G-space EG, and take the homology of the quotient .X � EG/=G. The free
part of X is unchanged by this but points fixed by a subgroup H � G are blown
up to copies of the classifying space EG=H. These classifying spaces are usually
homologically infinite-dimensional, so fixed sets become quite prominent. Another
benefit of the Borel construction is that the homology of .X � EG/=G is a module
over the cohomology of BGWD EG=G. These facts are illustrated by a localization
theorem quoted in M2.1: suppose X is a finite G-complex6 and the action is free
on the complement of A � X. A localization that kills finite-dimensional H�.BG/
modules kills the relative Borel homology of .X;A/, so the inclusion A ! X
induces an isomorphism on localizations. There is a difficulty that Borel homology
is not fully invariant under equivariant suspensions. Manolescu finesses this with F2
coefficients, but eventually it must be instituted.

In the case at hand the G-objects are spectra rather than single spaces. X can
be thought of as the equivariant suspension spectrum of a finite G-complex and
the sub-spectrum A of non-free points is essentially the suspension spectrum of
a point. Inclusion therefore gives a H�.BG/-module homomorphism H�.BG/ !

6The finiteness hypothesis on X is missing in the statement in [mano13].
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H�..X � EG/=G/. Finiteness of X implies that the third term in the long exact
sequence (the homology of the free pair .X;A/) is finite-dimensional. In particular
the kernel of H�.BG/! H�..X�EG/=G/ is a finite-dimensional H�.BG/-module.
When G D Pin.2/ these submodules are characterized by three integers ˛; ˇ;  , and
these are Manolescu’s invariants. The algebraic details give a pretty picture, and
readers should refer to Manolescu’s paper for this.

4.7 Handcrafted Contexts

Both stable homotopy theory and equivariant topology are sprawling, complicated
subjects. Off-the-shelf versions tend to be optimized for particular applications
and often use shortcuts or sloppy constructions that can cause trouble in other
circumstances. The best practice is to handcraft a theory that fits the application,
but this requires insider expertise. In this section we suggest such a handcrafted
context for the finite-dimensional part of Manolescu’s development.

Lyapunov Blocks

The first step is to be more precise about the data at the transition from analysis to
finite-dimensional topology. Manolescu uses the Conley index construction to get a
“box” enclosing an isolated invariant set in a flow on a manifold V . We recommend
instead an object we call a Lyapunov block. These were introduced and shown to
exist using Lyapunov functions by Wilson and Yorke [wilsonyorke73], and shown to
be essentially equivalent to Lyapunov functions by Wilson [wilson80]. Wilson and
Yorke call these “isolating blocks,” but a more distinctive name seems to be needed.
This construction has been revisited recently by Cornea [cornea], Rot–Vandervorst
[rotvdh], and others.

A Lyapunov block for an invariant set in a flow is a compact smooth
codimension-0 submanifold-with-corners B � V with boundary divided into
submanifolds @�B [ @0B [ @CB. Trajectories intersect B in arcs. Trajectories
enter through the incoming boundary @CB, exit through the outgoing boundary
@�B. The transient boundary @0B is a union of intersections with trajectories, and
the trajectory arcs give a product structure @0B ' @0;CB � I; see Fig. 2. Finally, the
trajectories completely contained in B are those in the original invariant set. The
underlying smooth manifold structure can be thought of as a smooth manifold triad
.B; @CB; @�B/. @0B is a collar so absorbing it into either @�B or @CB (or half into
each) changes them only by canonical diffeomorphism.

These blocks are not well-defined: different choices in a truncation step give
B that differ by addition or deletion of plugs of the form P � I, that intersects
trajectories in product arcs fpg� I. This implies that the pairs .B; @CB/ and .B; @�B/
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Fig. 2 A Lyapunov block for
a flow
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have well-defined relative homotopy types.7 To relate this to Manolescu’s version,
.B; @�B/ is a particularly nice Conley index pair for the flow, and the index itself is
the pointed space B=@�B. The quotient B=@CB is a Conley index for the reversed
flow. The manifold triad therefore gives both Conley indices and precisely encodes
their relationship.

Smooth Manifold Triads

The handcrafted context appropriate to this situation seems to be a stable category
defined using equivariant smooth manifold triads. It is “stable” in the sense that the
objects are families of triads related by equivariant suspensions that are “internal” in
the sense that they come from eigenvalue-range changes (see below). This context
receives Lyapunov blocks without further processing. It has many other virtues, as
we explain next, and in fact we like Lyapunov blocks because they permit use of
this context.

This context does not follow the standard practice of dividing to get pointed
spaces. Data from geometric situations often comes as pairs with structure that does
not gracefully extend to pointed-space quotients. Bundles on pairs, for instance,
rarely extend to the pointed space. This means they have to be described as “bundles
over the complement of the basepoint,” and to work with them one must recover the
pair by deleting a neighborhood of the basepoint. Group actions can be extended
to have the quotient basepoint as a fixed point, but this is often just cosmetic. In
many geometric applications, for instance, algebraic topology is done equivariantly
on the universal cover. The fact that the action is free is essential. The pointed-space
quotient therefore must be described as an action free in the complement of the
basepoint, and again much of the work requires deleting the basepoint to recover a
pair with a free action. Having to delete the basepoint is a clue that dividing to get a
basepoint was a mistake. In some cases the pair information can be recovered stably
without explicitly deleting the basepoint, but it is usually a lot of work.

The second advantage of this context is that in the manifold-triad world, Spanier–
Whitehead duality is implemented by interchanging the two boundary components.

7Blocks can be modified to eliminate the transient boundary [rotvdh], but it is best not to make this
part of the definition because it makes the “plug” variation hard to formulate.
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Interchanging boundaries in a Lyapunov block corresponds to reversing the flow, so
it is obvious that the flow and its reverse have S-W dual blocks. In the pointed-space
context there is a stable description in terms of maps from a smash product to a
sphere, but this is a characterization, not the definition, and it does not work in all
cases. Manolescu quotes this version in M2.4, and cites references that show that the
stable and unstable Conley indices are S-W dual in this sense. But these references
use Lyapunov blocks, so the net effect is “discard the Conley constructions and
redo the whole thing with manifold triads.” Going back to Conley indices not only
is inefficient but also introduces troublesome ambiguities about suspensions. This
difficulty is discussed next.

The final wrinkle in this context has to do with the meaning of “suspension.”
Enlarging the range of eigenvalues changes the projection by product with a
representation of Pin.2/, and changes the Lyapunov block by suspension with
the ball in this representation. This is an “internal” suspension because it is
specified by the analytic data. Understanding how internal suspensions change,
for instance, when the metric on the original manifold is varied, is a job for
analysis. External suspensions used to define equivariant invariants are specified
differently, and the two types of suspensions should be kept separate. In particular
the eigenvalue-change suspensions should not be seen as instances of external
suspension operations. To explain this, note that the equivariant theory of Lewis
et al. [may86] (used by Manolescu) is handcrafted to give a setting for homology
theories and classifying spaces. Roughly speaking, they want to grade homology
theories by equivalence classes of objects in the category of representations.
When objects have nontrivial automorphisms, equivalence classes of objects do
not form objects in a useful category. The standard fix for this is to use a skeleton
subcategory with one object in each equivalence class. In the equivariant setting
this means choosing one representation in each equivalence class, and always
suspending by exactly this representation. This is fine for external suspensions, but
representations that come internally from eigenvalue projections have no canonical
way to be identified with randomly chosen representatives. If the group is S1, as in
most previous work on Seiberg–Witten–Floer theory, then there are essentially no
automorphisms and this issue can be finessed. Manolescu’s key insight, however, is
that Pin.2/ is the right symmetry for this problem,8 and these representations have
automorphisms that make identifications problematic. The solution is to avoid using
external suspensions in describing the geometric invariant. Lyapunov blocks do this.

4.8 Next Goals

Floer homology is, to a degree, a solution in search of worthy problems. Distinguish-
ing knots is a baby problem whose persistence just reflects the lack of real work to
do. The triangulation problem is useful for teething technology but, as explained in

8The Pin.2/ symmetry was observed much earlier, cf., [bauerFuruta], but not fully exploited.
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the History section, is a backwater with no important application. This weakness
is reflected in the structure of Manolescu’s invariant: detailed information about
homology spheres lies in the part of the moduli space on which Pin.2/ acts freely,
but the invariant discards all this except the levels at which it cancels homology
coming from the fixed point. This is not a gateway to something deeper. We have
several suggestions for further work.

Complicated Geometric Structure

The first suggestion is motivated by internal structure of the analytic arguments.
Analysis associates to a homology 3-sphere a complicated Pin.2/-equivariant
gadget. We expect this to reveal something about geometric properties of the three-
manifold, but neither the properties nor the mechanisms of revelation are clear.
A useful intermediate step would be a complicated Pin.2/-equivariant gadget
derived more directly from the topological object. The two equivariant gadgets
might be related by a sort of index theorem. The point is that sometimes it is easier to
relate two complicated things than to understand either in detail, and the connection
can be a powerful aid to understand. We suggest maps from the homology sphere to
S3 ' SU.2/ as the topological gadget. Pin.2/ acts on this because it is a subgroup
of SU.2/, and these maps should connect to geometric structure by a form of
generalized Morse theory, cf., [gaykirby].

Hilbert, or SC Manifolds

The key analytic goal is to situate the objects of interest in a context accessible to
“finite-dimensional” geometric and algebraic topology. The context does not have to
be literally finite-dimensional to use the techniques, however, and a context that does
not require finite-dimensional projections would simplify formulation of invariants.
The first requirement for such a context is an effective global existence theorem for
flows. There seem to be at two possibilities that are, in a sense, at opposite extremes.

Manolescu begins (see Sect. 4.2) by restricting the Chern-Simons-Dirac func-
tional to the Coulomb slice, and using a Riemannian metric to convert the derivative
of the functional to a vector field. It would be quite natural to complete with
respect to this metric, to get a vectorfield on a separable Hilbert manifold. The
problem is that current estimates are not good enough to show that the finite-
energy trajectories form an isolated invariant set in this topology. There are heuristic
reasons to worry that they are not isolated in general. A perturbation of the system
to be “nondegenerate” in some sense might help. Eventually the geometric invariant
would be a Lyapunov block in the Hilbert manifold, together with an equivalence
class of structures related to the finite-dimensional projections. This would clarify
that the objects obtained by projection are fragments of a structure on the invariant
object, not the invariant object itself. A Hilbert-manifold formulation should be
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much easier to extend to things like Hilbert-manifold bundles over H1.XIR/, which
may be necessary for three-manifolds with ˇ1 ¤ 0.

Another possible context is the Banach-scale manifolds developed by Hofer,
Wysocki, and Zehnder. The Hilbert approach takes place at a fixed level of
differentiability, while the Banach-scale approach organizes the way in which
function spaces of increasing differentiability approach C1. It is “handcrafted”
in the sense of Sect. 4.7 to formalize and exploit the bootstrapping common in
applications.

The first comment is that the Hofer–Wysocki–Zehnder “polyfold” theory is not
appropriate here. This was developed to handle closure problems in quotients.
Here this is handled by taking the quotient by a subgroup of the full gauge group
which, since it has a global slice, has no closure problems. This leaves a residual
gauge action by Pin.2/. Dividing by this does introduce orbit-closure problems but
(1) these seem to be outside the reach of the Hofer–Wysocki–Zehnder polyfold
theory, and (2) by now it should be quite clear that equivariant nonsingular objects
are more effective than trying to describe some sort of structure on singular
quotients. The second comment is that a useful version of “Lyapunov block” would
be needed, and this may require negotiation with the topological theory that has
to use it. The final comment is that this may give a setting for the germ-near-a-
compact-set suggestion in the next section.

Stay in Dimension 4

The motivation for the final suggestion is external to the analysis. The best guides
to development of a theory are deep potential applications. Floer homology of
three-manifolds is supposed to organize boundary values and glueing properties of
gauge theories on smooth four-manifolds but, in general, three-manifolds slices and
boundaries do not adequately reflect the complexity of smooth four-manifolds. We
explain this in a context that ideally would connect with homology 3-spheres.

Suppose M is a smooth four-manifold with a submanifold V homeomorphic to
S3 � R. If M is compact, simply connected, and V separates M, then a relatively
soft argument [freedmanTaylor] shows that M also contains a smooth homology
3-sphere homologous to S3 � f0g. But this is usually not true if M is either
noncompact or not simply connected. For instance, a compact four-manifold has
a smooth structure in the complement of a point, and this point has a neighborhood
homeomorphic to S3 � R, but almost none of these contain smooth homology
spheres. When there is an appropriate homology sphere in M it is usually not in
the given V .

Another soft argument shows that in the compact simply connected case any two
homology 3-spheres arising as above are homology H-cobordant, but not “in M”.
Note that disjoint homologous homology spheres have a region between them that
is a H-cobordism. Ideally, if we have two homology spheres, then we would find a
third homology sphere disjoint from both. The first two would both be H-cobordism
to the third, so the first two would be H-cobordant by a composition of embedded
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H-cobordisms. Unfortunately we can usually not find a third disjoint sphere, and the
soft argument does not give embedded H-cobordisms.

The moral of this story is that we can use transversality to get smooth three-
manifold splittings, but these three-manifolds usually cannot reflect the global
homotopy theory of the manifold even up to homology. A glueing theory that
depends on finding nice slices (e.g., smooth homology spheres in topological
connected sums) therefore cannot be an effective general setting.

A better setting for glueing 4-d theories should be some sort of “germs of necks”
that locally separate the four-manifold. We have much better criteria for finding
good topological slices in four-manifolds, so a first approximation would be “germs
near X � f0g of smooth structures on X � R,” where X is a closed three-manifold,
but the smooth structure on X � R is not the product structure.

Smooth neighborhoods of topological embeddings are the sort of mixed-category
thing that (according to the History section) is probably a bad idea in the long
term, but it gives a concise starting point. The homotopy data required to find a
topological slice in a “neck” are non-obvious and fairly elaborate. The data needed
to find a “virtual analytic slice” may also be elaborate, so speculations should wait
on feedback from analysis. In any case the point for the present discussion is that the
best next step in Floer-type theory is probably gauge theory on 4-d “neck germs,”
not gauge theory on three-manifolds.

5 History

Poincaré’s insights about the homology of manifolds, at the end of the nineteenth
century, are usually celebrated as the starting point of modern topology. But many
of his insights were wrong in detail, and his methodology was so deficient that
it could not be used as a foundation for further development. His contemporaries
found it inconceivable that the Emperor might have no clothes, so they spent the
next quarter-century trying to see them. Kneser’s triangulation questions are precise
formulations of what it would take to make Poincaré’s arguments sensible. Labeling
one of them “the Hauptvermutung” suggests that he still hoped it would all work out.
But it did not. As interesting as these questions seem, they are a technical dead end.
Not only are they not a foundation for manifold theory, but they seem not to have
significant applications. Details of this story, and how topology finally recovered
from Poincaré’s influence, are told in this section.

5.1 Pre-modern Methodology

Poincaré worked during the period when modern infinite-precision mathemat-
ics was being developed [rev]. He was not part of this development, however,
but worked in—and strongly defended—the older heuristic and intuitive style.
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His explanations often included the technical keys needed for a modern proof of
a modern interpretation of his assertion. But he often omitted hypotheses necessary
for his assertions to be correct, and his arguments were too casual to reveal the need
for these hypotheses. He gave examples, but did not use precise definitions and
often did not verify that the examples satisfied the properties he ascribed to them.
This casual approach, and the philosophical convictions that underlay it, made for a
difficult start for the subject.

For instance, Poincaré proceeded on the presumption that the choice of analytic,
combinatorial, or topological tools would be dictated by the task at hand rather than
the type of object. Functionally this amounts to an implicit claim that topological,
PL, and smooth manifolds are all the same. Clearly anything built on this foundation
was doomed. But identifying this as a flaw in Poincaré’s work would have invited
strong political and philosophical attack and the new methodologies were not secure
enough for this. Kneser’s triangulation questions 25 years were precise technical
formulations of what would be needed to justify Poincaré’s work, but he still did not
identify this as a gap in the work.

Not only was it hard to know which parts of Poincaré’s work were solid, but also
apparently it was hard to track which parts were actually known to be false. For
instance, in a 1912 paper of Veblen and Alexander [veblenAlex12] we find

Poincaré has proved that any manifold Mn may be completely characterized from a
topological point of view by means of suitably chosen matrices . . .

This refers to the 1895 claim that the incidence matrices of a triangulation (now
called boundary homomorphisms in the chain complex) characterized manifolds
up to homeomorphism. We overlook this blunder today because Poincaré himself
disproved it not long after, by using the fundamental group to show the “Poincaré
sphere” is not S3 even though it has equivalent chains. But more than 10 years later
Veblen and Alexander seem to have been unaware of this refutation.

5.2 Poincaré’s Duality

An explicit example of Poincaré’s methodology is provided by his description of
duality. He observed the beautiful pairing of simplices and dual cones explained
in Sect. 3.8. But he called these dual cones “cells,” and implicitly presumed that
they were equivalent (in an unspecified sense) to disks. Instead of seeing this as a
general PL construction that might or might not give a cell, it was seen as a manifold
construction that “failed” if the output was not a cell. This convention makes
arguments with dual cells logically sensible, but it hides the necessity of showing
that the construction does not fail in specific instances. One of Poincaré’s classes
of examples was inverse images of regular values of smooth maps Rn ! Rk. In
what sense can these be triangulated, and why are the dual objects cells? Whitehead
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sorted this out some 40 years later [whitehead40]. The proof was probably beyond
Poincaré’s ability, but the real problem was that he did not notice (or acknowledge)
that there was a gap.

Another difficulty is that Poincaré’s duality relates different objects: homology
(or Betti numbers) based on simplices, on one hand, and homology based on dual
cells, on the other hand. In order to get duality as a symmetry of a single object,
these must be identified in some other way. This time Poincaré got it wrong: dual
cells actually give cohomology so, as we know now, duality gives an isomorphism
between homology and cohomology. The homology/cohomology distinction (in
the group formulation) together with the Universal Coefficient Theorem explain
why the torsion has symmetry shifted one dimension from the Betti-number
symmetry. Poincaré missed this, and found a patch only after Heegard pointed out
a contradiction. In another direction, duality requires some sort of orientation and
(as we saw with ‚ in Sect. 3.8) may be twisted even when there is an orientation.
When the manifold has boundary, or is not compact, duality pairs homology with
rel-boundary or compact-support homology. Homology of the boundary appears as
an error term for full symmetry. Again these results were beyond Poincaré’s intuitive
definitions and heuristic arguments, but the real problem was that he did not notice
(or acknowledge) that more precision was needed.

5.3 Point-Set Topology

Schoenfliss and others were developing point-set topology around the same time,
and the relationship between the two efforts is instructive.

An important point-set goal was to settle the status of the Jordan Curve theorem.
This is not hard to prove for smooth or PL curves, but an intuitive extrapolation
to continuous curves was discredited by the discovery of continuous space-filling
curves by Peano and others. The continuous version had important implications for
the emerging role of topology as a setting for analysis. For instance, integration
along a closed curve around a “hole” in the plane was a vital tool in complex
analysis. Integration required piecewise-smooth curves. The question was: were
“analytic holes” identified by piecewise smooth curves the same as “topological
holes” identified with continuous curves? If not then the role of general topology
would probably be quite limited.

Addressing the Jordan Curve problem turned out to be difficult, and fixing gaps
in attempted proofs required quite a bit of precision about open sets, topologies,
separation properties, etc. In short, it required modern infinite-precision techniques.
Wilder [hist] found it curious that Shoenfliss never mentioned Poincaré or his work,
since nowadays the Jordan Curve theorem and high-dimensional analogues are seen
as immediate consequences of a homological duality theorem. But this makes sense:
Shoenfliss was trying to fix a problem in a heuristic argument, and Poincaré used
heuristic arguments. The duality approach was not available to Shoenfliss because—
for good reason—he could not trust Poincaré’s statements about duality.
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5.4 Constrained by Philosophy

The general question in this section is: why did it take Poincaré’s successors so long
to find their way past his confusions? The short answer is that they were in the very
early part of the modern period and still vulnerable to old and counterproductive
convictions. We go through some of the details for what they reveal about the short
answer: what were the counterproductive nineteenth-century convictions, and how
did they inhibit mathematical development?

To be more specific, a mathematician with modern training would probably
respond to Poincaré’s work with something like

The setting seems to be polyhedra, and the key property seems to be that the dual of a
simplex should be a cell. Let’s take this as the working definition of ‘manifold’, and see
where it takes us. Later we may see something better, but this is a way to get started.

We now know that the basic theory of PL manifolds is more elementary and
accessible than either smooth or topological manifolds, and this working definition
is a pretty good pointer to the theory. Why were Poincaré’s successors slow to
approach the subject this way, and when they did, why did it not work as well as we
might have expected?

The first problem was that Poincaré and other nineteenth-century mathematicians
objected to the use of explicit definitions. The objection goes back 2400 years to
Pythagoras and Plato, and is roughly that accepting a definition is like accepting
a religious doctrine: you get locked in and blocked from any direct (intuitive)
connection to “reality.” The precise-definition movement reflects practice in science:
established definitions are distillations of the discoveries of our predecessors, and
working definitions provide precise input needed for high-precision reasoning. It is
odd that this aspect of scientific practice came so late to mathematics, but recall
that in the nineteenth century there was still a strong linkage between mathematics
and philosophy. And still to this day, accepting a definition in philosophy is like
accepting a religious doctrine.

An interesting transitional form appears in a long essay by Tietze in 1908
([tietze]; see the translation at [tietzeTrans]). He defined manifolds as polyhedra
such that the link of a simplex is simply connected, but did not define “simply
connected.” It is hard to imagine that he meant this literally. The use of the
terminology “simply connected” indicates familiarity with Poincaré’s work with the
fundamental group, but Poincaré asks explicitly if it is possible for a three-manifold
“to be simply connected and yet not a sphere.” Simply connected is obviously
wrong one dimension higher. His use of the term seems to have been a deliberately
ambiguous placeholder in a proposal for a “big-picture” view of manifolds. This
reflects the philosophical idea that big pictures should be independent of details, and
the goal of heuristic arguments in the nineteenth-century tradition was to convince
people that this was the right intuition, not actually prove things. On a practical level,
Tieze may have been mindful of the advantages ambiguity had for Poincaré. People
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worked hard trying to find interpretations of Poincaré’s ideas that would make them
correct, but could not have been so generous if he had tried to be more precise and
guessed wrong.

The next milestone we mention is the introduction of PL homology manifolds as
a precise setting for the study of duality. Wilder [wilder] attributes this to Veblen in
1916. They knew these were not always locally Euclidean so would not be the final
context for geometric work, but they would serve for algebraic topology until the
geometric people got their acts together.

In the geometric line at that time, people were experimenting with various
precise replacements for Tieze’s placeholder. The favorite was “stars homeomorphic
to Euclidean space.” Today we would see this as a mixed-category idea that for
general reasons is unlikely to be correct and in any case is inappropriate for a basic
definition. This experience was not available at the time, of course, but they were not
having success with homeomorphisms and there were clues that an all-PL version
would have advantages. Why did they stick with homeomorphisms for so long?
There were two philosophical concerns and a technical problem.

The first philosophical concern was that a “manifold” should be a thing.
A topological space was considered a primitive thing,9 and a space that satisfies
a property (e.g., locally homeomorphic to Euclidean space) is a thing. A simplicial
complex is also a thing. A polyhedron, however, is a space with an equivalence
class of triangulations. This is a structure on a thing, not a primitive thing, so
for philosophical reasons could not qualify as a correct definition of “manifold.”
This objection also blocked the use of coordinate charts to globalize differential
structures.

The second philosophical objection to PL manifolds has to do with the “recog-
nition problem.” A simplicial complex is a finite set of data. Suppose someone sent
you one in the mail. How would you know whether or not links of simplices were
PL equivalent to spheres? Suppose the sender enclosed a note asserting that this was
so. How could you check to be sure it was true? Bertrand Russell summarized the
philosophical attitude toward such things [russell, p. 71]

The method of “postulating” what we want has many advantages; they are the same as the
advantages of theft over honest toil.

The manly thing to do, then, is to prove links are PL spheres, and assuming this
is cowardly and philosophically dishonest. Today we might wonder that assuming
that a space is locally Euclidean (rather than recognizing it as being so) is ok, while
assuming PL is not. At any rate one consequence was that the generalized Poincaré
conjecture10 (then referred to as “the sphere problem”) seemed to be essential to
justify work in higher-dimensional PL manifolds. The effect was to paralyze the
field.

9We now think of a topological space as a structure (a topology) on a set. In the Poincaré tradition,
spaces were primitive objects with properties extrapolated from those of subsets of Euclidean
spaces.
10The generalized Poincaré conjecture is the assertion that a polyhedron that is known to be a PL
manifold and that has the homotopy type of the sphere is PL equivalent to the sphere.
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The technical problem had to do with the definition of “PL equivalence” of
simplicial complexes. The modern definition is that they should have a common
subdivision. This is very convenient technically because if you show some invariant
does not change under a single subdivision then it must be a PL invariant. For
traditionalists, however, it seemed uncomfortably existential. Equivalence of smooth
or topological objects uses a nice concrete function with specific local properties;
shouldn’t PL follow this pattern? Brouwer, the great intuitionist, intuited a direct
simplicial criterion for stars in simplicial complexes to be “Euclidean” and proposed
this as a replacement for Tietze’s placeholder. His intuition was ineffective, however,
and later shown to be wrong.11

We finally come to Kneser’s triangulation questions. In 1924 he gave precise
formulations of what would have to be done to show that “polyhedron locally
homeomorphic with Euclidean space” really did give a theory as envisioned by
Poincaré, Tietze, et al. Whether he intended it or not, one message was roughly
“enough sterile big-picture speculation; time to focus on what it would take to
make it work.” In particular, since Poincaré’s use of dual cells gives duality
between homologies defined with two different triangulations, the uniqueness of
triangulations was needed to show Poincaré’s claims about duality were correct. It
must have seemed scandalous that this was still unresolved a quarter-century after
Poincaré made the claims. We might also see Hilbert’s influence in the concise
straight-to-the-point formulations.

When Van der Vaerden surveyed manifold theory in 1928 he described it as a
“battlefield of techniques.” There had been advances in methodology but still no
effective definitions and big issues were still unsettled. In fact the situation was
already improving. In 1926 Newman [newman26] had published a version in which
stars were still assumed homeomorphic to Euclidean space, but with complicated
combinatorial conditions. This still didn’t work, but in 1928 he published a revision
[newman28] in which this was replaced by the common-subdivision version still
used in the mature theory. PL topology was finally launched but, as it turned out, a
bit too late.

5.5 Overtaken

Manifolds were supposed to be a setting for global questions in analysis, so smooth
manifolds were the main goal. We have been following the PL topology developed
to make sense of Poincaré’s combinatorial ideas, but there are two other approaches
that would have done this. The most effective is singular homology. This requires
some algebraic machinery, but it is simpler than the PL development, much more

11In 1941, after the dust had settled, J. H. C. Whitehead reviewed the various proposals from the
1920s. Brouwer’s proposal was particularly dysfunctional, and one has to wonder if he had actually
tried to work with it in any serious way.
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general, and connects better with analytic use of sheaves, currents, and deRham
cohomology. The second is less effective but closer to Poincaré’s ideas: show
that smooth manifolds have standard (piecewise-smooth) triangulations. Remember
that Kneser called the uniqueness-of-triangulations question “the Hauptvermutung”
(principal assertion) because it would show that simplicial homology is independent
of the triangulation. Either of the other approaches would have accomplished
this, and therefore achieved the principal motivation of the PL development. The
historical question should be: given the obvious importance of the questions, why
did it take so long to find any of these solutions12? Slow development in the PL track
is only interesting because the others were slow as well.

Singular homology probably developed slowly because it is so far outside the
received wisdom from Poincaré. It requires algebraic apparatus and while we now
see plenty of clues about this in Poincaré’s work, these only became visible after
Noether’s promotion of abstract algebra as a context for such things. Čech’s open-
cover approach to homology also pushed things in this direction, but again this was
outside Poincaré’s vision.

The lack of an effective definition held up development of smooth manifolds, just
as it held up development of PL. And, like PL and unlike the singular theory, no huge
technical leaps were necessary: the main obstructions were ineffective intuitions and
philosophical objections to structures defined with coordinate charts. These were
finally overcome by Veben and Whitehead [vebWhitehead32] in 1932, and we can
identify two things that made the advance possible. The first was a change to a more
modern style that better reflects mathematical structure. Veblen and Whitehead did
not give a philosophical argument or a speculative “big picture”; they developed
enough basic structure (with technical details) to demonstrate conclusively that this
was an effective setting for differential geometry. The second change was in the
mathematical community. Young people were attracted by the power and depth of
precise definitions and full-precision reasoning, and were more than ready to trade
philosophy for success, while the old people committed to philosophy were fading
away. These changes led to a great flowering of the differential theory, and it was
the setting for some of the deepest and most remarkable discoveries of the second
half of the twentieth century.

One consequence of the smooth-manifold flowering, and the development of
singular homology, was a near abandonment of PL topology for several decades.
It continued to be used in low dimensions due to low-dimensional simplifications
(homology identifies two-manifolds). Enough of a community had been established
to sustain some general activity, but it lacked the guidance of an important goal.

The 1950s and 1960s saw a renascence in PL topology. Smale’s development
of handlebody theory, and particularly his proof of a form of the generalized
Poincaré conjecture, electrified the manifold communities. Smale’s work was in
the smooth world, coming from a study of the dynamics of Morse functions, but
“handles” appear much more easily and naturally in PL. Milnor’s discovery of

12Existence of piecewise-smooth triangulations was shown in 1940 by Whitehead [whitehead40].
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multiple smooth structures on the 7-sphere [milnor56] was a huge boost. The reason
was that Smale had proved that high-dimensional smooth homotopy spheres were
homeomorphic to the sphere. Stallings then used PL techniques to show that high-
dimensional PL homotopy spheres were homeomorphic to the sphere. Both of these
had the defect that the conclusions were in a different category from the hypotheses.
Smale improved on this by using PL versions of his techniques to show that high-
dimensional PL homotopy spheres are PL isomorphic to spheres. Milnor’s discovery
showed that this is false in the smooth world, so PL is genuinely simpler and closer
to the original intuitions.13 All this took place in the modern links-are-PL-spheres
context. Kneser’s questions played no role and, as far as the main-line developments
were concerned, were a dead-end curiosity.

By the end of the 1960s PL was again overshadowed, this time by development
of purely topological manifold theory. Basic topological techniques are much more
complicated than PL, almost insanely so in some cases, but the outcomes are more
systematic and coherent. Further progress on what seemed to be PL issues also
required outside techniques: the 3-dimensional Poincaré conjecture was settled by
Perelman with delicate analytic arguments almost 80 years after Kneser’s work, and
100 years after Poincaré hinted that this might be the key to further progress. The
4-dimensional case is still open in 2014, and no resolution is in sight. Finally, as we
have seen here, insight into the structure of homology 3-spheres seems to require
gauge theory.

5.6 Summary

Kneser’s triangulation questions were a careful formulation of what it would take to
develop a theory of manifolds that followed Poincaré’s intuitions and nineteenth-
century philosophy. Not long after, more fruitful approaches emerged based on
full-precision twentieth-century methodology. Kneser’s questions proved to be
a curiosity: a nice challenge for developing technology, but apparently without
significant implications.

Acknowledgements This work was partially supported by the Max Planck Institute for Mathe-
matics, in Bonn.

13Milnor’s discovery also invalidated the intuition, inherited from Poincaré, that there would be a
single world of “manifolds” where all techniques would be available. Subsequent developments,
as we have seen here, revealed how confining that intuition had been.
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Elliptic Calabi–Yau Threefolds over a del
Pezzo Surface

Simon Rose and Noriko Yui

Abstract We consider certain elliptic threefolds over the projective plane (more
generally over certain rational surfaces) with a section in Weierstrass normal form.
In particular, over a del Pezzo surface of degree 8, these elliptic threefolds are
Calabi–Yau threefolds. We will discuss especially the generating functions of
Gromov–Witten and Gopakumar–Vafa invariants.
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1 Introduction

During a visit to Max-Planck-Institut für Mathematik Bonn in the spring of 2004,
Professor Hirzebruch showed the second author a specific construction of Calabi–
Yau threefolds, which are elliptic threefolds over a del Pezzo surface of degree 8 in
Weierstrass normal form, that is a family of elliptic curves over a del Pezzo surface
of degree 8 (a rational surface) [H], although the construction was known previously
in [KMV]. The purpose of this short note is to discuss the generating functions of
Gromov–Witten and Gopakumar–Vafa invariants.

This paper was completed while both authors were in residence at the Fields
Institute for the thematic program on Calabi–Yau varieties; Arithmetic, Geometry,
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2 A del Pezzo Surface of Degree 8

First we will give a definition of a del Pezzo surface. A good reference is Manin
[M].

Definition 2.1. A del Pezzo surface S is a smooth projective geometrically irre-
ducible surface whose anti-canonical bundle is ample, i.e., �KS is ample.

The degree of S is a positive integer defined by

deg S WD KS � KS:

That is, the degree of S is the self-intersection of its canonical class.

Remark 2.2.

(1) Every del Pezzo surface is geometrically rational. Therefore, it is birationally
equivalent to the projective plane, P2.

(2) Let S be a del Pezzo surface. Then 1 � deg S � 9.
(3) If deg S > 2, then its anti-canonical bundle �KS is very ample.

Here is a classification results of del Pezzo surfaces according to their degrees.

Theorem 2.3. Let S be a del Pezzo surface.

(a) If deg S D 4, S is birationally equivalent to a complete intersection of two
quadrics in P

4.
(b) If deg S D 3, S is birationally equivalent to a cubic surface in P

3.
(c) If deg S D 2, S is birationally equivalent to a hypersurface of degree 4 in the

weighted projective 2-space P.2; 1; 1; 1/.
(d) If deg S D 1, S is birationally equivalent to a hypersurface of degree 6 in the

weighted projective 2-space P.3; 2; 1; 1/.
(e) Any smooth surface as in (a),(b),(c) or (d) is del Pezzo surface of the expected

degree.
(f) Let P1;P2; � � � ;Pr with r � 8 be generic points in P

2. Let S WD BrP1:��� ;Pr.P
2/

be the blow-up of P2 at Pi; 1 � i � r. Then S is a del Pezzo surface of degree
9 � r.

To obtain a del Pezzo surface of degree 8, we blow-up P
2 in one point.

Corollary 2.4. Pick a point P 2 P
2, and a line H � P

2 not passing through P.
Then

�KP2 D 3H; and KP2 � KP2 D 9H2 D 9:
Let S WD BlP.P2/ be the blow-up of P

2 at P. Furthermore, let E denote the
exceptional curve replacing P; then E � E D �1. Let � W S ! P

2 be the blow-
up map. Then

KS D ��.KP2 /C E
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and

KS � KS D ��.KP2 / � ��.KP2 /C 2��.KP2 / � EC E � E
D KP2 � KP2 C E � E
D 9 � 1 D 8:

Then S is a del Pezzo surface of degree 8.

Remark 2.5. Let S be a del Pezzo surface of degree d. Then

(1) Every irreducible curve on S is exceptional.
(2) If S has no exceptional curves, then either d D 9 and S is isomorphic to P

2, or
d D 8 and S is isomorphic to P

1 � P
1.

(3) If S is not isomorphic to P
1 � P

1, then the Picard group Pic.S/ is isomorphic to
Z
10�d . In particular, if d D 8, Pic.S/ ' Z

2 and is spanned by H and E.

3 The Construction of Elliptic Threefolds over S

Let � W X ! S be an elliptic fibration, and let L be a line bundle on S with L �L D 8.
Take

g2 2 H0.S;L4/; and g3 2 H0.S;L6/;

i.e.,

g2 D 4L and g3 D 6L

and let

X W y2z D 4x3 � g2xz2 � g3z
3:

Then the canonical bundle KX is given by

KX D ��.KX=S C KS/ with KX=S ' L�1:

We want X to be a Calabi–Yau threefold. The Calabi–Yau condition imposes that

KX ' OX ” KS D L�1”�KS D L:

Now

KS D �3H C E” L D 3H � E

so that

4L D 4.3H � E/ and 6L D 6.3H � E/:
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Let Œz0 W z1 W z2� be the projective coordinate for P2. Then g2 D g2.z0; z1; z2/ 2 4L
and is of degree 12. While g3 D g3.z0; z1; z2/ 2 6L and is of degree 18. Put � D
4g32 � 27g23. Then � D �.z0; z1; z2/ 2 12L and is of degree 36.

4 Calculation of the Euler Characteristic and the Hodge
Numbers

Let X be an elliptic threefold constructed above. Then by the construction, the
geometric genus of X is pg.X/ D 1 and h1;0.X/ D h2;0.X/ D 0. So X is a Calabi–Yau
threefold. Now we calculate the Euler characteristic e.X/ of X.

Lemma 4.1. Let Y be a complex surface (possibly with singularities). Then the
Euler characteristic e.Y/.D/ for any divisor D is given by

e.Y/.D/ D KY � D � D � DC Contribution from singularities:

In particular, if Y is smooth,

e.Y/.D/ D 2 � 2g.Y/

which is independent of a choice of a divisor D.

Proposition 4.2. Let X W y2z D 4x3 � g2xz2 � g3z3 be a Calabi–Yau threefold over
a del Pezzo surface S, and let � D 4g32 � 27g23. Then the Euler characteristic e.X/
of X is given by the formula

e.X/ D e.�/C #cusps

where the Euler characteristic e.�/ of f� D 0g is given by

e.�/ D �degK� D 2 � 2g.�/C 2#cusps

where g.�/ denotes the genus of f� D 0g.
Moreover, we can compute that

#cusps D 192 and g.�/ D 595:
Finally, we obtain

e.X/ D �480:

Proof. First recall that L D �KS and that L � L D 8. Then we have

K� D .KS C�/ �� D .�LC 12L/ � 12L

D 11L � 12L D .11 � 12/.L � L/ D 11 � 12 � 8 D 1056:
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The number of cusps is given by

4L � 6L D 24.L � L/ D 24 � 8 D 192:
Then

e.�/ D �1056C 2 � 192 D �1056C 384 D �672:
Now we need to calculate the Euler characteristic of resolutions of singularities.

If f� D 0g is smooth, its resolution is an elliptic curve E, and the Euler characteristic
e.E/ D 0. If f� D 0g is a node, the Euler characteristic of its resolution is 1, and if
f� D 0g is a cusp, the Euler characteristic of its resolution is 2.

Then we have

e.X/ D
0

@
e.E/ � e.P2 n�/

Ce.� n fcuspsg/ � e.resolution of a node/
C#cusps� e.resolution of a cusp/

1

A

D e.�/� #cuspsC 2#cusps D e.�/C #cusps:

Finally we obtain

e.X/ D �672C 192 D �480:
ut

The Hodge numbers h1;1.X/ and h2;1.X/ have been calculated by Hulek and
Kloosterman [HK] (Sect. 11). This is done by calculating the Mordell–Weil rank
of the elliptic curve � W X ! S, which turns out to be 0.

Lemma 4.3.

h1;1.X/ D 3; and h2;1.X/ D 243:
The topological Euler characteristic is e.X/ D �480.

Thus the Hodge diamond is given by

1 B0.X/ D 1
0 0 B1.X/ D 0

0 3 0 B2.X/ D 3
1 243 243 1 B3.X/ D 488
0 3 0 B4.X/ D 3
0 0 B5.X/ D 0
1 B6.X/ D 1

Recall X is defined by a Weierstrass equation over the del Pezzo surface S of
degree 8 which is birational to P

2,

y2z D 4x3 � g2xz2 � g3z
3 where g2; g3 2 C.S/
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the j-invariant of X is defined by

j D 1728g32
�

where � D 4g32 � 27g23:

As for these elliptic threefolds, we have

Lemma 4.4. The j-invariant is a moduli for X.

We are also interested in the modularity question for the Galois representation
associated with X. However, the Betti number B3.X/ D 488 is too large to make
this practical. Thus, we are interested in constructing a topological mirror Calabi–
Yau threefold LX.

For a topological mirror partner LX of our elliptic Calabi–Yau threefold X, the
Hodge numbers are

h1;1. LX/ D 243; h2;1. LX/ D 3

and the Euler characteristic is

e. LX/ D 480:

The Betti numbers are

B2. LX/ D 243; B3. LX/ D 8:

In this case, the modularity of the Galois representation may at least somewhat
be tractable. This leads us to ask: How can we construct such a mirror Calabi–Yau
threefold?

The Calabi–Yau threefold X with the Hodge numbers h1;1.X/ D 3 and h2;1.X/ D
243 can be realized in terms of a hypersurface in a toric variety; in fact, it may
be realized as a degree 24 hypersurface in weighted projective space with weight
.1; 1; 2; 8; 12/. Then Batyrev’s mirror construction yields 1572 admissible weights
which yield not only one but 1572 mirror Calabi–Yau threefolds LX with the Hodge
numbers h1;1. LX/ D 243 and h2;1. LX/ D 3.

5 Gromov–Witten and Gopakumar–Vafa Invariants

We are naturally interested in the Gromov–Witten invariants of the threefold X.
These are obtained via integration against the virtual fundamental class of the
moduli space of stable maps into X. That is, we define

NX
g;ˇ D

Z

ŒMg;n.X;ˇ/�vir
1:
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In the best of cases, these invariants are positive integers and count the number of
curves in X in the homology class ˇ. In many cases, however, since Mg;n.X; ˇ/ is a
stack, the invariants are only rational numbers.

Naturally, we organize these invariants into a generating function as follows. Let
FX

g .q/ and FX.q; �/ be defined as

FX
g .q/ D

X

ˇ2H2.X/

NX
g;ˇqˇ

FX.q; �/ D
1X

gD0
�2g�2FX

g .q/:

We can now define the Gopakumar–Vafa/BPS invariants via the equality

FX.q; �/ D
1X

gD0

X

ˇ2H2.X/

nX
g;ˇ

1X

mD1

1

k

�
2 sin

�
k�

2

��2g�2
qkˇ:

For example, the g D 0 portion of this reads

NX
0;ˇ D

X

�2H2.X/
k�Dˇ

1

k3
nX
0;�:

These invariants nX
g;ˇ are defined recursively in terms of the Gromov–Witten

invariants NX
g;ˇ , and a priori these are only rational numbers. It is a conjecture (see

[GV, K]) that they are integers for all X; g; ˇ. We work with them because in the case
of the Calabi–Yau threefold X, the formulæ for them turn out to be much simpler;
the Gromov–Witten invariants can then be reconstructed from them.

In the case that a class ˇ is primitive, the invariants NX
0;ˇ and nX

0;ˇ coincide.

6 The Geometry of X

In order to compute these invariants, we need a bit more of a description of the
geometry of the threefold X. We begin with the following fact. The del Pezzo surface
S is in fact isomorphic to the Hirzebruch surface F1 D P

	
O ˚ O.1/



. This is a

P
1 bundle over the base P

1, with a .�1/-curve as a section. Let C0;F0 denote the
homology classes in S of the section and fibre, respectively.

Consider now the following composition

X
p1

π

S
p2

C.

The generic fibre of this is an elliptically fibred K3 surface with 24 I1 fibres.



344 S. Rose and N. Yui

Let now XF denote one such generic fibre, and let XC denote the restriction of
X to the section C. This latter surface is a rational elliptic surface with 12 I1 fibres
(which physicists call a 1

2
K3). Similarly, let C00;E00 denote the class of the section

and fibre in XC, respectively.
We want to have a description of the Picard group and a basis of H2.X;Z/. So

consider first the line bundles

L1 D O.S/ L2 D O.XC/ L3 D O.XF/

and let �1; �2; �3 denote the respective inclusions of S;XC;XF . We now define the
homology classes

C D .�1/�.C0/ D .�2/�.C00/
E D .�2/�.E00/

F D .�1/�.F0/:

Lemma 6.1. The line bundles L1;L2;L3 form a basis of the Picard group of X, and
the classes C;E;F form a basis of H2.X;Z/ (which are all effective).

Proof. We can compute the intersection pairing of these bundles with these curves,
which we find to be

C F E

L1 �1 �2 1

L2 �1 1 0

L3 1 0 0

which clearly has determinant �1. It follows (since h1;1 D 3) that the lattices that
these generate must be the whole lattice. ut

We will further need the triple intersections �ijk D
R

X Li ^ Lj ^ Lk, which are
computed as follows.

Lemma 6.2. The triple intersections are given by the following.

�111 D 8 �112 D �1 �113 D �2
�122 D �1 �123 D 1 �133 D 0
�222 D 0 �223 D 0 �233 D 0

�333 D 0

Proof. These are computed simply by restricting the line bundles to the smooth
representatives S;XC;XF , where the intersections are easy to compute. ut
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6.1 The Rational Elliptic Surface

The rational elliptic surface XC is realizable as the blowup of P2 at 9 points in general
position; as such, its intersection form is �1;9, where �a;b is the lattice with diagonal
intersection form given by

diag.1; : : : ; 1„ ƒ‚ …
a

;�1; : : : ;�1„ ƒ‚ …
b

/:

Let H;C0; : : : ;C8 denote the classes of the line and exceptional curves, respectively.
Then 3H �P8

iD0 Ci and C0 span a sublattice which is isomorphic to �1;1 (of dis-
criminant 1), and hence we have a splitting

�1;9 Š �1;1 ˚ E8

where E8 is the unique even, unimodular, negative-definite lattice corresponding to
the Dynkin diagram E8. We should remark that the classes C0 and 3H�P8

iD0 Ci are
the same as the base and fibre classes C00;E00 of the rational elliptic surface discussed
earlier.

Remark 6.3. The canonical divisor on the surface XC is given by

KXC D �3H C
8X

iD0
Ci D �E00:

This allows us now to compute the relationship between the groups H2.XC;Z/

and H2.X;Z/, which we will need later.

Lemma 6.4. The map H2.XC;Z/! H2.X;Z/ is given by

H2.XC;Z/ Š �1;1 ˚ E8
proj��! �1;1 
 H2.X;Z/

where �1;1 includes via the identification C WD .�2/�C00;E WD .�2/�.E00/ described
earlier.

Proof. We first claim that .�2/�Ci D C C E for 1 � i � 8, and that .�2/�H D
3.CC E/. This can be seen simply by using the push–pull formula and noting that

��2L1 D C0 ��2L2 D �E00 ��2L3 D E00:

Now, an element aH CP8
iD0 biCi is in the orthogonal complement of the lattice

spanned by E00 D 3H �P8
iD0 Ci;C00 D C0 if and only if

(1) b0 D 0
(2) 3aCP8

iD0 bi D 0.
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Thus, we have that

.�2/�

 
aH C

8X

iD0
biCi

!
D 3a.CC E/C

8X

iD0
bi.CC E/

D
 
3aC

8X

iD0
bi

!
.CC E/ D 0

as claimed. ut
Finally, we need one fact about effectivity of classes in H2.XC;Z/.

Lemma 6.5. Let ˇ D C00CnE00C� 2 H2.XC;Z/, where � 2 E8. Then ˇ is effective
if and only if � � � � �2n.

Proof. This is a straightforward application of Riemann–Roch. For a divisor D
on XC, this reads as

�.D/ D 1C 1

2
D � .D � KXC /:

In particular, for D D C00 C nE00 C �, we find that

h0.D/C h2.KXC � D/ D 1C nC 1

2
� � �:

Thus since KXC �D will never be effective, it follows that as long as nC 1
2
� �� � 0,

that D will have a section, and hence be effective. ut

6.2 The K3 Fibration

To compute the Gopakumar–Vafa invariants of X in the fibre-wise classes (i.e., those
which project down to 0 under the map � W X ! C), we use the machinery of
[KMPS, MP], which we will review here. Moreover, the ideas in this section closely
follow the ideas of [KMPS]. For more detail, that article is strongly recommended.

Definition 6.6. Letƒ be a rank r lattice. A family ofƒ-polarized K3 surfaces over
a base curve † is a scheme Z over † together with a collection of line bundles
L1; : : : ;Lr such that, for each b 2 †, the fibre .Xb;L1jXb ; : : : ;LrjXb/ is aƒ-polarized
K3 surface.

Such a family Z
��! † yields a map �� to the moduli space Mƒ of ƒ-polarized

K3 surfaces. Intersecting the image of the curve with certain divisors in Mƒ (see
again, [KMPS, MP]) will produce the Noether–Lefschetz numbers. These are given
as follows.
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The Noether–Lefschetz divisors consist of those ƒ-polarized K3 surfaces which
jump in Picard rank; these are determined by

(1) an integer h, such that the square of the new class ˇ is 2h� 2
(2) r integers d1; : : : ; dr which are given by di D

R
ˇ

Li.

We denote such a divisor by DhId1;:::;dr , and we then define

NL�.hId1;:::;dr/
D
Z

��†

DhId1;:::;dr :

It should be remarked that, by the Hodge index theorem, this will be only be non-
zero if the discriminant

�.hI d1; : : : ; dr/ D .�1/r det

0
BBB@

d1

ƒ
:::

dr

d1 � � � dr 2h � 2

1
CCCA

is non-negative.
Let r0;h denote the reduced Gopakumar–Vafa invariants of a K3 surface in a class

ˇ such that ˇ �ˇ D 2h�2. From [KMPS], these only depend on the square of ˇ (and
not its divisibility, as one might expect), and they satisfy the Yau–Zaslow formula
(see [BL, G, KMPS, YZ])

1X

hD0
r0;hqh�1 D 1

�.q/
D 1

�.q/24
D q�1 C 24C 324qC 3200q2 C � � � :

It should be remarked that the power of 24 that shows up in this formula is due to
the presence of the 24 nodal fibres in our elliptically fibred K3 surfaces.

Let nZ
.d1;:::;dr/

denote the Gopakumar–Vafa invariants of the threefold Z defined by

nZ
.d1;:::;dr/

D
X

ˇ2H2.Z/R
ˇ LiDdi

nZ
ˇ:

We have the following relation between these invariants.

Theorem 6.7 ([MP, Theorem 1�]). The invariants nZ
.d1;:::;dr/

; r0;h, and NL�hId1;:::;dr

satisfy the following relationship.

nZ
.d1;:::;dr/

D
1X

hD0
r0;hNL�hId1;:::;dr
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Consider now the restriction of L1;L2 to XF. We can compute their intersections
via Lemma 6.2 to find that we have

�
L1 � L1 L1 � L2
L2 � L1 L2 � L2

�
D
��2 1
1 0

�

„ ƒ‚ …
ƒ

where in this case the rank r ofƒ is 2.
What we would like to have is that the triple .X;L1;L2/ is a family ofƒ-polarized

K3 surfaces. However, due to the presence of singular fibres (due to the singularities
of � D 4g32 � 27g23) this is not the case. However, we can “resolve” this threefold

(see [KMPS, MP]) to obtain a threefold QX Q��! C which is such a family. We can
then relate the invariants of the two families as follows, allowing us to compute the
Gopakumar–Vafa invariants of X as desired.

Lemma 6.8. The invariants of X; QX satisfy

n QX.d1;d2/ D 2nX
.d1;d2/

:

Our final ingredient is to note that the Noether-Lefschetz numbers are coefficients
of a modular form of weight 22�r

2
D 10; that is, they are the coefficients of some

multiple E4.z/E6.z/ D E10.z/ D 1 � 264q � 135432q2 � � � �. Thus we need to
only compute a single such coefficient to determine all of the Noether-Lefschetz
numbers.

Definition 6.9. Let f .z/ DP1nD0 anzn. Then we will use the notation

Œn�f .z/ D an

to denote the coefficient of zn in f .z/.

Using this notation, we have the following lemma.

Lemma 6.10. We have that

NLQX0I0;0 D 1056

and so consequently we have that

NL Q�hId1;d2 D �4

�.hI d1; d2/

2

�
E10.z/:

Proof. The proof of this is identical to the proofs of Lemma 2 and Proposition 2 of
[KMPS], and thus we omit it. ut
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7 Computations of the Generating Functions

We are now ready to compute the generating functions for the Gopakumar–Vafa
invariants. The generating functions we are interested are those of the following
form.

Choose ˇ D mC0 C rF0 2 H2.S/ (which we will identify from now on for
simplicity’s sake with its image in H2.X;Z/). Define

Fˇ.q/ D
1X

nD0
nX
ˇCnEqn�m� 12 r:

Remark 7.1. We choose this shift in the exponent of q to match the results in
[KMW]. This ensures that the generating functions that we obtain below will be
modular, but we don’t have a better interpretation of this shifted power.

We then have the following theorem.

Theorem 7.2. We have the following expressions for generating functions Fˇ.q/:

FF.q/ D �2E10.q/

�.q/
D �2q�1 C 480C 282888qC 17058560q2C; � � �

FC.q/ D E4.q/p
�.q/

D q�
1
2 C 252q

1
2 C 5130q

3
2 C 54760q

5
2 C � � �

Each of these is a meromorphic modular form of weight �2, and moreover each
of the generating functions FmF.qm/ is also (meromorphic) modular of the same
weight, but for the group �1.m2/.

The first two of these generating functions are conjectured (with physical
justification) in the papers [KMW, KMV], along with a few others (in particular,
[AS], where these arise as their initial conditions to compute the higher genus
topological string amplitudes). We have not found any prior description of the third,
although it is an easy generalization of the first.

We will split the proof of this theorem up into several parts.

Theorem 7.3. We have the equality

FF.q/ D �2E10.q/

�.q/
:

Proof. We will compute first the function FF.q/. Since we have that the class FCnE
is determined uniquely by its integration against L1;L2, we have that

nX
FCnE D nX

.n�2;1/:
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Combining Lemmata 6.10, 6.8, and Theorem 6.7, our generating function FF.q/ is
given by

FF.q/ D
1X

nD0
nX
.n�2;1/qn�1

D
1X

nD0
1
2
n QX.n�2;1/qn�1

D 1

2

1X

nD0

1X

hD0
r0;hNL Q�hIn�2;1qn�1:

We can compute the discriminant �.hI n � 2; 1/ D 2n � 2h which must be non-
negative, so the summation is really over those n; h � 0 with n � h. Thus we can
write this as

FF.q/ D 1

2

1X

hD0
r0;h

1X

nDh

NL Q�hIn�2;1qn�1

D 1

2

1X

hD0
r0;hqh�1

1X

nDh

.�4/

2n � 2h

2

�
E10.z/q

n�h

D �2
1X

hD0
r0;hqh�1

1X

nDh

Œn � h�E10.z/q
n�h

D �2
1X

hD0
r0;hqh�1E10.q/

D �2E10.q/

�.q/
:

ut
To prove the next formula, we need the following computation of the Gromov–

Witten invariants (for primitive classes) of a rational elliptic surface.

Theorem 7.4 ([BL], Theorem 6.2). The generating function for the Gopakumar–
Vafa invariants of the rational elliptic surface XC in the classes C00 C nE00 is given
by

1X

nD0
nXC

C00CnE00qn� 12 D 1
p
�.q/

:

We now prove the following.

Theorem 7.5. We have the equality

FC.q/ D E4.q/p
�.q/

:
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Proof. Recall from Lemma 6.4 that the map .�2/� W H2.XC;Z/ Š �1;1 ˚ E8 !
H2.X;Z/ is essentially the projection onto the �1;1 factor.

Now, we obtain curves in X in the class C C nE by considering curves in XC in
some effective class which pushes forward to this class; from Lemma 6.4, these will
be curves of the form ˇ D C00CnE00C� where � 2 E8. From Lemma 6.5, we know
that the effective ones are those with n � � 1

2
� � �.

We can now compute that

FC.q/ D
1X

nD0
nX

CCnEqn� 12

D
X

nD0

X

ˇ2H2.XC/
.�2/�ˇDCCnE

nXC
ˇ qn� 12

D
1X

nD0

X

�2E8����
2n

nXC
C00CnE00C�qn� 12 :

Now, morally similar to the case of K3 surfaces, from primitive curve classes
the invariants nXC

ˇ only depend on the square of ˇ. In particular, any such curve
can be transformed into one of the form ˇ D C00 C nE00 by a series of Cremona
transformations and permutations of the exceptional classes (see [GP]). It follows
then that

nXC
C00CnE00C� D nXC

C00C
�

nC 1
2
���

�
E00

and so the generating function becomes

FC.q/ D
1X

nD0

X

�2E8����
2n

nXC

C0C.nC 1
2 ���/E

qn� 12

D
X

�2E8

q� 12 ���
1X

nD� 12 ���
nXC

C0C.nC 12 ���/E
qnC 1

2 ���� 1
2

D
X

�2E8

q�
1
2 ���

1X

nD0
nXC

C0CnEqn� 12

D ‚E8.q/
� 1p

�.q/

�
D E4.q/p

�.q/

as claimed (with the last equality being due to the well-known fact that ‚E8.q/ D
E4.q/). ut
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To prove the last statement in the theorem, we need a little extra notation.

Definition 7.6. Let f .z/ D P
anzn be a power series, and let m; k be integers with

0 � k < m. We define then

fm;k.z/ D
X

n�k
.mod m/

anzn D
1X

nD0
amnCkzmnCk:

We should note that in the case that f .z/ is a modular form of weight r for SL2.Z/,
then each of the functions fm;k.z/ is also modular of the same weight for the subgroup
�1.m2/.

Furthermore, we can expand this definition for values of k outside of the given
range by replacing k with a suitable integer congruent to k .mod m/ within that
range. For example, fm;�1.z/ D fm;m�1.z/.

We can now state more precisely our final theorem.

Theorem 7.7. Let m > 1. Then the generating function FmF.q/ is given by

FmF.q/ D
1X

nD0
nmFCnEqn�m D �2

m�1X

`D0

�
1

�.u/

�

m;`�1

	
E10.u/



m;1�`

where q D um.

Proof. This proof follows very similarly to the proof of Theorem 7.3. We similarly
begin with noting that nX

mFCnE D nX
.n�2m;m/, which allows us to write

FmF.q/ D
1X

nD0
nX
.n�2m;m/q

n�m

D
1X

nD0
1
2
n QX.n�2m;m/q

n�m

D 1

2

1X

nD0

1X

hD0
r0;hNL Q�hIn�2m;mqn�m:

In this case, the discriminant �.hI n � 2m;m/ D 2 � 2h C 2nm � 2m2 which as
usual must be non-negative, leaving us summing over all pairs .h; n/ such that n �
mC h�1

m . Thus we obtain

FmF.q/ D �2
1X

hD0
r0;h

X

n�mC h�1
m

Œ1 � hC nm � m2�E10.z/q
n�m:
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To simplify this further, we split the summation over h into a sum over congruence
classes mod m. If we let q D um, then this yields the following.

FmF.q/ D �2
m�1X

`D0

1X

hD0

r0;mhC`

X

n�mChC
`�1

m

Œ1� `C m.n� h� m/�E10.z/u
nm�m2

D �2
m�1X

`D0

1X

hD0

r0;mhC`u
mhC`�1

X

n�mChC
`�1

m

Œ1� `C m.n� h� m/�E10.z/u
m.n�h�m/�`C1

D �2
m�1X

`D0

1X

hD0

r0;mhC`u
mhC`�1

	
E10/m;1�`.u/

D �2
m�1X

`D0

�
1

�.u/

�

m;`�1

	
E10.u/



m;1�`

which ends the proof. ut
The above results show that we end up with meromorphic modular forms when

we consider generating functions for Gopakumar–Vafa invariants for curve classes
of the form mFC nE and CC nE. From the conjectured results in [KMW], it seems
that we should end up with similar results for curve classes of the form rC C nE;
a natural approach to study these would be to use the recursion of [GP], which we
will look to do at a future date.
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Remarks on Cohomological Hall Algebras
and Their Representations

Yan Soibelman

Dedicated to the memory of F. Hirzebruch

1 Introduction

The aim of this paper is to discuss a class of representations of Cohomological Hall
algebras related to the notion of framed stable object of a category. The paper is an
extended version of the talk the author gave at the workshop on Donaldson–Thomas
invariants at the University Paris-7 in June 2013 and at the conference “Algebra,
Geometry, Physics” dedicated to Maxim Kontsevich (June 2014, IHES). Because of
the origin of the paper it contains more speculations than proofs.

1.1 Cohomological Hall Algebras and Their Representations:
Motivations

The notion of Cohomological Hall algebra (COHA for short) for quivers with
potential was introduced in [KoSo5].1 Since a quiver with potential defines a
3-dimensional Calabi–Yau category (3CY category for short), it was expected that
COHA could be defined for “good” subcategories of 3-dimensional Calabi–Yau
categories endowed with additional data (most notably, orientation data introduced

1In fact we considered in the loc. cit. more general case of formally smooth algebras with potential.
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in [KoSo1]), or, more generally, for an ind-constructible locally regular 3CY
category in the sense of [KoSo1]. At the time of writing this general goal has not
been achieved, although there have been some progress in special cases.2

The definition of COHA given in [KoSo5] is similar to the definition of
conventional (constructible) Hall algebra (see, e.g., [Sch1]) or its motivic version
(see [KoSo1]). Instead of spaces of constructible functions on the stack of objects
of an abelian category we considered in [KoSo5] cohomology groups. Certain
correspondences define “structure constants” of the multiplication. There are many
versions of COHA depending on a choice of “cohomology theory” (see [KoSo5]).
It is expected that there is an upgrade of COHA to a dg-algebra in the (triangulated
version of the) category of exponential motives (see [KoSo5]). Then all other
versions will appear as “realizations” of this dg-algebra.

By analogy with conventional Hall algebra of a quiver, which gives a quantization
of the “positive” part of the corresponding Lie algebra, one may want to define “full”
(or “double”) COHA, for which the one defined in [KoSo5] will be just the “positive
part.” At this time we do not know the comultiplication which makes COHA into
a bialgebra. Hence we cannot follow Drinfeld double construction (which works in
the case of constructible Hall algebras).

On the other hand, we can try to define full COHA by means of representation
theory, similarly to the classical approach of Nakajima to the infinite Heisenberg
algebras (see [Nak2]). In this way one hopes to reconstruct full COHA from its
representation theory.

One of the motivations for COHA comes from supersymmetric Quantum Field
Theory and String Theory, where spaces of BPS states can be often identified with
the cohomology groups of various moduli spaces. From this perspective COHA can
be thought of as a mathematical implementation of the idea of BPS algebra (see
[HaMo1, HaMo2]). Representation theory of BPS algebras has not been developed
by physicists, although such a theory should have interesting applications. Further-
more, various dualities in physics can lead to natural mathematical questions about
COHA, otherwise unmotivated. For example, our approach to COHA is based on 3-
dimensional Calabi–Yau categories. The latter appear in the geometric engineering
story on the string-theoretic side. Taking seriously the idea that COHA (or its
double) is the BPS algebra, one can ask about the corresponding structures on the
gauge-theoretic (i.e., “instanton”) side of the geometric engineering. There is some
interesting mathematical work related to this question (see, e.g., [Nak1, SchV, So1,
Sz2]).

In any case the author believes that the representation theory of COHA should
be developed further in order to approach some of the above-mentioned problems.

2For example, I heard from Dominic Joyce about the work in progress of Oren Ben-Bassat in
which COHA would be defined for the derived moduli stack of perfect complexes on a compact
Calabi–Yau three-fold.
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1.2 COHA and Sheaf of Vanishing Cycles

Below we will give a very schematic description of COHA assuming that the above-
mentioned “good” category is abelian.

Let k be a perfect field. Suppose C is a k-linear triangulated A1-category, which
is ind-constructible and locally regular in the sense of Sect. 3 of [KoSo1].3 It is
explained in Sect. 3.2 of loc. cit. that one can associate with C the ind-constructible
stack MC of objects of C. Local regularity implies that MC is locally presented as
an ind-Artin stack over k. Let A � C be an abelian subcategory. Then we have an
ind-constructible substack MA �MC of objects of A, which is locally ind-Artin.

Hypothetical definition of COHA depends on an ind-constructible sheaf ˆ on
MC (more precisely, a perverse sheaf). In the case of 3CY categories one takes
ˆ D �W , which is the sheaf of vanishing cycles of the potential W (we recall
the definition of the potential in Sect. 2.1). For the sheaf of vanishing cycles to be
well-defined on MC , the 3CY-category C has to be endowed with an orientation
data. The latter is an ind-constructible super line bundle L over MC , such that
for the fiber over a point of MC corresponding to an object E 2 Ob.C/ one has
L˝2E D sdet.Ext�.E;E//. Furthermore, it is required that LE behaves naturally on
exact triangles (see [KoSo1], Sect. 5 for the details). It follows from local regularity
that L is (locally) a line bundle over an ind-Artin stack.

Let i WMA �MC be the natural embedding. Then the pull-back i�.ˆ/ is an ind-
constructible sheaf on MA. Let Z �MA �MA be the “Hecke correspondence,”
which is the stack consisting of pairs of objects .E;F/ such that E � F. There
are projections pn W Z ! MA; n D 1; 2; 3 such that p1.E;F/ D E; p2.E;F/ D
F; p3.E;F/ D E=F. One of the properties that we require from “good” abelian
categoryA is that the projection p2 is a locally proper morphism of ind-Artin stacks.

As a vector space COHA of MA is defined as H WD HA D H�.MA; i�.ˆ//.
For that one chooses an appropriate cohomology theory H� of Artin stacks with
coefficients in constructible sheaves. The product m W HA ˝HA ! HA is defined
by the formula p2� ı .p�1 ˝ p�3 /.i�.ˆ/˝ i�.ˆ//.

For the sheaf of vanishing cycles �W associativity of the product depends on the
Thom–Sebastiani theorem for the chosen cohomology theory.4

Remark 1.2.1. As a part of the data we fix an abstract version of Chern character
(called the class map in [KoSo1]). It is a homomorphism of abelian groups cl W
K0.C/! � , where � ' Zn is a free abelian group, such that connected components
of MC are parametrized by � , while classes cl.E/;E 2 Ob.A/ form an additive
submonoid �C � � . Then COHA of A will be �C-graded algebra.

3Calabi–Yau structure which we will discuss later leads to the requirement char.k/ D 0. For
simplicity we will often assume that k D C.
4As explained in Sect. 7 of [KoSo5], it is more convenient to work with compactly supported
cohomology and then apply the duality functor.
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In the case of smooth algebras with potential considered in [KoSo5] the stack
MA is a countable union of smooth quotient stacks, and the foundational questions
are resolved positively. For some ideas about the general case one can look at
[DyKap]. Natural class of examples for which COHA should be defined comes
from the theory of graded symplectic manifolds (see [PaToVaVe] about foundational
material and [BuJoMe] about some progress in the definition of �W ).

1.3 Stable Framed Objects and Modules over COHA

It is natural to ask whether one can realize representations of COHA in the
cohomology groups of some natural schemes (or stacks), which might also depend
on a choice of stability condition on A. Let us explain how it can be achieved.5

First we define the moduli space Mfr;st
 ;  2 �C of “ stable framed objects

of class ” (in applications those can be framed stable sheaves, framed stable
representations of quivers, framed special Lagrangian submanifolds, etc.). This
notion depends on a choice of stability condition on A. It is expected (see [KoSo7])
that the sheaf �W “descends” to each moduli space Mfr;st

 .
For a pair of classes 1; 2 2 �C let us consider the Hecke correspondenceZ1;2

of pairs .E1C2 ;E2/ (the subscripts denote the Chern classes) of framed stable
objects such that E2 is a quotient of E1C2 . Let us denote the cohomology theory
we used in the definition of COHA by H�. It descends to each Mfr;st

 . Furthermore,
similarly to the definition of COHA we have three projections of Z1;2 :

(a) to Mfr;st
2

;
(b) to the moduli space M1 of all (not framed) objects with fixed 1;
(c) to Mfr;st

1C2 .

Using the pull-back and pushforward construction as in the previous subsection,
we obtain a structure of HA D ˚H�.M ; �W/-module over COHA of A on the
space˚H�.Mfr;st

 ; �W/.
We are going to discuss stable framed objects in Sect. 3. We will show there

that the moduli stacks of stable framed objects are in fact schemes. Hence graded
components of our representations of COHA are finite-dimensional vector spaces.
As a version of the above considerations we can drop the stability assumption and
consider stacks of framed (but not necessarily stable framed) objects. Then we
still obtain representations of COHA. But this time the graded components of the
representation spaces will be in general infinite-dimensional.

5We warn the reader that even in the case of quivers our moduli spaces are not Nakajima quiver
varieties.
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1.4 Modules over COHA Motivated by Physics

As we have already mentioned, COHA can be thought of as a mathematical
incarnation of the algebra of (closed) BPS states envisioned in [HaMo1, HaMo2].
According to [KoSo5] (refined) BPS-invariants can be computed as virtual Poincaré
polynomials of graded components of COHA. One can ask about the meaning of
the algebra structure on COHA.

Motivated by the ideas of S. Gukov (see, e.g., [GuSto]) we would like to
think about representations of COHA described in the previous subsection as of
representations of the algebra of closed BPS states on the vector space of open BPS
states. We are going to speculate about applications of this point of view in the
last section of the paper. We plan to discuss the relationship between COHA and
BPS-algebras more systematically in separate projects jointly with E. Diaconescu,
S.Gukov, N. Saulina.

Here we just mention three interesting classes of representations of COHA which
have geometric origin and should have interesting applications to gauge theory and
knot invariants:

(a) Representation of COHA of the resolved conifold X D tot.OP1.�1/˚OP1.�1//
realized in the cohomology of moduli spaces of C-framed stable sheaves in the
sense of [DiHuSo]. Those modules should have applications in the theory of
algebraic knots and Hilbert schemes of curves (see [ORS, DiHuSo, Mau1]).

(b) Modules over COHAs of the Fukaya categories of non-compact Calabi–Yau
three-folds associated with spectral curves of Hitchin integrable systems. Those
should serve as BPS algebras of some gauge theories from the class S (see, e.g.,
[GaMoNe-2, Ga1] about the latter).

(c) This class of examples was already mentioned above. Based on the ideas
of geometric engineering we hope for a class of representations of COHA
related to the moduli spaces of (framed, possibly ramified) instantons on P2.
One can hope to understand the relationship between the algebras of Hecke
operators proposed in [Nak1] and those proposed in [So1]. Currently we can see
COHA on the “Calabi–Yau side” of geometric engineering and the (seemingly
unrelated) conventional (“motivic”) Hall algebra on the “instanton side” (cf.,
also [SchV, Sz2]).

The relationship between various classes of gauge theories might give non-
trivial results about corresponding COHAs and their representations (including the
relations between (a), (b), (c)).

1.5 Contents of the Paper

Section 2 is a reminder on COHA in the framework of quivers with potential.
Section 3 is devoted to stable framed objects in triangulated and abelian categories.
In Sect. 4 we discuss representations of COHA realized in the cohomology of the
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moduli spaces of stable framed representations. We also discuss an approach to the
definition of “full COHA” based on the representation theory in the cohomology
of moduli of stable framed objects. In Sect. 5 we speculate about representations of
COHA motivated by knot theory and physics.

2 Cohomological Hall Algebra: Reminder

This section is a reminder of some basic facts about the notion of Cohomological
Hall algebra. Most of the material is borrowed from [KoSo5], and we refer the reader
to loc. cit. for more details and proofs.

2.1 COHA and 3CY Categories

Suppose we are given an ind-constructible locally regular 3CY category C over
the field k; char.k/ D 0 (see [KoSo1]). As explained in Sect. 3.2 of loc. cit.,
one can associate with such a category the stack of objects, which is a countable
disjoint union of schemes over k of finite type acted by affine algebraic groups. For
simplicity of the exposition we take the ground field k D C.

Some examples of such categories are listed in the Introduction of [KoSo1].
They include various categories of D-branes popular in string theory (e.g., the
Fukaya category of a compact or local Calabi–Yau three-fold, the category of perfect
sheaves on such a three-fold, the category of finite-dimensional representations of a
quiver with potential, etc.).

In order to define COHA one has to choose orientation data (see [KoSo1],
Sect. 5) on C as well as a “good” t-structure with the ind-Artin heart. Let us denote
it by A. The existence of mutation-invariant orientation data is known for a class of
3CY categories associated with a quiver without potential (see [Dav1]). There are
partial existence results for the derived category of coherent sheaves on a compact
Calabi–Yau three-fold (see, e.g., [Hu]). Probably Dominic Joyce with collaborators
will construct soon an orientation data on the stack of objects of the category of
perfect complexes on a Calabi–Yau three-fold. But the general case is still open.
In the present paper we will assume the existence of the orientation data as a part
of the “foundational” package. Also, we do not discuss in detail the meaning of
the notion of “good” t-structure. As we mentioned in the Introduction, the latter
includes properness of the morphisms which appear in the definition of the product
on COHA.

We assume as part of the data the “class map” cl W K0.C/ ! � (see [KoSo1]),
where � ' Zn is a free abelian group endowed with integer skew-symmetric form
h�; �i (Poisson lattice). We also assume that the class map respects the Euler form
�.E;F/ DPi.�1/idim Exti.E;F/ on K0.C/ and the form h�; �i on � . The lattice �
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plays a role of topological K-theory of the category C. Finally, we assume that we
have fixed an additive submonoid �C � � generated by cl.E/;E 2 Ob.A/.

When the above choices are made, one can define COHA of A as an associative
algebra graded by �C. Graded components are given by the cohomology of the
moduli stacks of objects with the given class  2 � with the coefficients in the
sheaf of vanishing cycles of the potential of C restricted to A.

For completeness we recall here the notion of potential of a 3CY category. Using
the A1-structure on C as well as the Calabi–Yau pairing .�; �/ (see [KoSo1]) one
defines the potential of an object E as a formal series:

WE.a/ D
X

n�1

.mn.a; : : : ; a/; a/

nC 1 ;

where mn are higher composition maps, and the element a belongs to Hom1.E;E/
which is the subspace in the graded space Hom.E;E/ consisting of elements of
degree 1. By our assumptions the potential WE is a locally regular function with
respect to E. Hence we have a partially formal function W defined by the family of
series WE.

Remark 2.1.1. If C is “minimal on the diagonal” (see [KoSo1]), we can replace
Hom.E;E/ by its cohomology with respect to the differential m1. In this case we
may assume that a 2 Ext1.E;E/, which can be thought of as the “tangent space to
the moduli stack of formal deformations of E”. Hence one can think of the potential
as a function on the moduli stack of objects which is locally regular along the stack
of objects (this follows from the “locally regular” assumption) and formal in the
transversal direction.

Then COHA is a �-graded vector space

H WD ˚2�H ;

where H D H�G
.S ;W /, and S is the stack of objects E such that cl.E/ D  .

Recall that we use an appropriate stack version of the cohomology theory H�.X; f /
of a scheme X endowed with a regular function f . There are several choices for such
theory. They are discussed in [KoSo5], where the above approach made rigorous in
the case of 3CY categories arising from quivers (more generally, formally smooth
algebras) with potential. A version of the cohomology theory which is suitable in the
framework of categories is called “critical cohomology” in loc. cit. It is defined by
means of the compactly supported cohomology of X with coefficients in the sheaf
of vanishing cycles of f . Sometimes (e.g., for quivers with potential) the function
f WD W is regular. In such a case one can use de Rham cohomology defined via the
twisted de Rham differential dC dW ^ .�/ or Betti cohomology which is generated
by “integration cycles” for the exponential differential forms of the type exp.W/�.
More generally, one can define “motivic” version of COHA. In that case COHA H
is an object of the tensor category of exponential mixed Hodge structures, and the
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concrete choice of the cohomology theory corresponds to a tensor functor to graded
vector spaces (“realization”). It is explained in [KoSo5] that in all realizations H
carries an associative algebra structure with “structure constants” defined by means
of the cohomology of certain “Hecke correspondences” with coefficients in the
sheaves of vanishing cycles of the potential W D .W /2� .

Let us illustrate the above considerations in the case of a quiver Q with potential
W, which is the main example in [KoSo5]. We set k D C. If I is the set of vertices of
Q, then � D ZI; �C D ZI�0. For any  D . i/i2I 2 �C we consider  -dimensional

representations of Q in coordinate vector spaces .C i
/i2I . It is an affine scheme

M naturally acted by the affine algebraic group G D Q
i2I GL. i;C/. Then the

corresponding stack of objects is a countable union (over all dimension vectors  2
�C) of algebraic varieties Crit.W / of the critical points of the functions W D
Tr.W/ W M ! C. Then COHA is the direct sum ˚2�C

H�G
.M ;W / with the

product defined in the loc. cit. In the next three subsections we are going to recall
more explicit descriptions of the product in some examples.

2.2 COHA for Quivers Without Potential

COHA is non-trivial even if W D 0. In the latter case

H WD H�G
.M /:

Since M is equivariantly contractible, and the quotient of each GL. i;C/ by the
normalizer of the maximal torus is homotopy equivalent to the point, one can
use the toric localization and obtain an explicit formula for the product which
expresses COHA as a shuffle algebra. In the formula below we identify equivariant
cohomology of a point with respect to the trivial action of the group GL. i;C/ with
the space of symmetric polynomials in the corresponding group of  i variables.

Theorem 2.2.1. The product f1 � f2 of elements fi 2 Hi ; i D 1; 2 is given by the
symmetric function g..xi;˛/i2I;˛2f1;:::; ig/, where  WD 1 C 2, obtained from the
following function in variables .x0i;˛/i2I;˛2f1;:::; i

1g and .x00i;˛/i2I;˛2f1;:::; i
2g:

f1..x
0
i;˛// f2..x

00
i;˛//

Q
i;j2I

Q i
1

˛1D1
Q

j
2

˛2D1.x
00
j;˛2
� x0i;˛1/

aij

Q
i2I

Q i
1

˛1D1
Q i

2

˛2D1.x
00
i;˛2
� x0i;˛1 /

;

by taking the sum over all shuffles for any given i 2 I of the variables x0i;˛; x00i;˛ (the

sum is over
Q

i2I

	 i

 i
1



shuffles).

Here aij is the number of arrows in Q from the vertex i to vertex j.
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For example, let Q D Qd be a quiver with just one vertex and d � 0 loops. Then
the product formula specializes to

.f1 � f2/.x1; : : : ; xnCm/

WD
X

i1;:::;jm

f1.xi1 ; : : : ; xin/ f2.xj1 ; : : : ; xjm/

 
nY

kD1

mY

lD1
.xjl � xik /

!d�1

for symmetric polynomials, where f1 has n variables, and f2 has m variables. The sum
is taken over all fi1 < � � � < in; j1 < � � � < jm; fi1; : : : ; in; j1; : : : ; jmg D f1; : : : ; nC
mg. The product f1 � f2 is a symmetric polynomial in nCm variables. One can show
that for even d the algebra is isomorphic to the infinite Grassmann algebra, while
for odd d one gets an infinite symmetric algebra.

We introduce a double grading on algebra H, by declaring that a homogeneous
symmetric polynomial of degree k in n variables has bigrading .n; 2kC .1 � d/n2/.
Equivalently, one can shift the cohomological grading in H�.BGL.n;C// by Œ.d �
1/n2�. In general, even for quivers without potential each componentH has also the
grading by cohomological degree. Total � �Z-grading can be further refined, since
H carries the weight filtration (as an object of the category of exponential mixed
Hodge structures, see [KoSo5]). Hence typically COHA has � � Z � Z-grading
(which is not compatible with the product). More precisely, it is shown in [KoSo5]
that for W D 0 COHA is graded by the Heisenberg group.

Finally, we remark that in the case of Dynkin quivers there are other interesting
explicit formulas for the product in COHA (see [Rim]).

2.3 COHA for Quiver A2

The quiver A2 has two vertices f1; 2g and one arrow 1  2. The Cohomological
Hall algebra H of this quiver contains two subalgebras HL; HR corresponding
to representations supported at the vertices 1 and 2, respectively. Clearly each
subalgebra HL; HR is isomorphic to the Cohomological Hall algebra for the quiver
A1 D Q0. Hence it is an infinite Grassmann algebra. Let us denote the generators
by �i; i D 0; 1; : : : for the vertex 1 and by �i; i D 0; 1; : : : for the vertex
2. Each generator �i or �i corresponds to an additive generator of the group
H2i.BGL.1;C// ' Z �xi. Then one can check that �i; �j; i; j > 0 satisfy the relations

�i�j C �j�i D �i�j C �j�i D 0 ; �i �j D �jC1�i � �j�iC1 :

Let us introduce the elements �1i D �0�i ; i > 0 and �2i D �i�0 ; i > 0. It is easy
to see that �1i �

1
j C �1j �1i D 0, and similarly the generators �2i anticommute. Thus we

have two infinite Grassmann subalgebras in H corresponding to these two choices:
H.1/ ' V.�1i /i>0 and

H.2/ 'V.�2i /i>0. One can directly check the following result.
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Proposition 2.3.1. The multiplication (from the left to the right) induces isomor-
phisms of graded vector spaces:

HL ˝HR
	�! H; HR ˝H.i/ ˝HL

	�! H ; i D 1; 2 :

2.4 COHA for Jordan Quiver with Polynomial Potential

Let us consider the quiver Q1 which has one vertex and one loop l (Jordan quiver),
and choose as the potential W D PN

iD0 cili; cN ¤ 0 an arbitrary polynomial of
degree N 2 Z>0 in one variable.

In the case N D 0, the question about COHA reduces to the quiver Q1 without
potential. This case was considered before. The algebra H is the symmetric algebra
of infinitely many variables.

In the case N D 1 COHA is one-dimensional.
In the case N D 2 we may assume without loss of generality that W D �l2. Then

COHA H D H.Q1;W/ is the exterior algebra with infinitely many generators (infinite
Grassmann algebra). This can be shown directly.

In the case when the degree N > 3, one can show that the bigraded algebra H is
isomorphic to the .N � 1/-st tensor power of the infinite Grassmann algebra of the
case N D 2.

Basically the above examples are the only cases in which we know COHA
explicitly. On the other hand, generating functions for the dimensions of its graded
components (we call them motivic DT-series in [KoSo1, KoSo5]) are known in many
cases.

2.5 Stability Conditions and Motivic DT-Invariants

Definition of COHA depends on the abelian category A but does not depend on the
central charge, which is a homomorphism of groups Z W � ! C. This raises the
question about the role of Bridgeland stability condition in the structure of COHA.

Let us fix a stability condition on a 3CY-category C. We understand the stability
condition in the sense of [KoSo1] (it differs from the conventional Bridgeland’s
axiomatics by axiomatizing the “class map” cl W K0.C/ ! � ' Zn and by the
so-called Support Property axiom). According to Bridgeland, a choice of stability
condition is equivalent to a choice of t-structure and a central charge. Let A be
the heart of the t-structure, and Z W � ! C be the central charge. Then for each
strict sector V � R2 with the vertex at the origin we can define a full subcategory
AV � A generated (using extensions) by the zero object and semistable objects with
the central charge sitting in V . For example, we can take V D l to be a ray. Taking V
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to be the upper-half plane we recover A. In these two cases the categories generated
by semistables are abelian. For other sectors V it is not the case in general.

As explained in [KoSo5], for a fixed strict sector V , one can define a �-graded
vector space

H.V/ WD ˚2�H .V/ :

This space is an algebra only in the cases when V D l or V is an upper-half plane.
For other sectors V one has faces the problem of properness of morphisms of the
corresponding stacks.

It was observed in [KoSo5], Sect. 5.2 that the algebras Hl WD H.l/ resemble
universal enveloping algebras of some Lie algebras gl which are analogous to the
“positive root” Lie algebras g˛; ˛ > 0 of Kac-Moody algebras. Then similarly to
the isomorphism U.nC/ ' ˝˛>0U.g˛/ (which depends on a chosen order on the
set of positive roots) one should expect an isomorphism H.V/ ' ˝l�VHl where
the tensor product is taken in the clockwise order over all rays in the sector V .
This was demonstrated in [Rim] in the case of Dynkin quivers without potential.
In particular, taking V to be the upper-half plane we obtain a factorization of the
COHA H into the tensor product of COHAs for individual rays. COHA for each
ray l is typically commutative. It can be computed from the knowledge of space of
semistable objects in the fixed t-structure whose central charges belong to l. For a
generic central charge we have two possibilities: either l does not contain Z./ for
 2 � , or l contains only multiples nZ.0/; n > 0 for some primitive vector 0 (an
furthermore, only vectors n0; n 2 Z>0 are mapped by Z to l). In this case Hl is
indeed commutative and can be computed explicitly in many cases.

The notion of motivic DT-series (i.e., virtual Poincaré series of H) does not
depend on the central charge. On the other hand, motivic DT-invariants �mot./

(they correspond in physics to refined BPS invariants) can be defined only after a
choice of stability condition (i.e., the central charge in case of quivers). Definition of
DT-invariants is based on the theory of factorization systems developed in [KoSo5].
It follows from loc. cit. that the motivic DT-series factorizes as a product of the
powers of shifted quantum dilogarithms. Those powers are motivic DT-invariants.

As a side remark we mention that factorization systems appear in different
disguises when mathematicians try to make sense of the operator product expansion
in physics (we can mention, e.g., the work of Beilinson and Drinfeld on chiral
algebras or the work of Costello and others on OPE in QFT). From this point of
view it is not quite clear why factorization systems appear in our story.

2.6 Generators of COHA

For different t-structures the corresponding COHAs are not necessarily isomorphic.
For example, if we start with a pair .Q;W/ consisting of a quiver Q with potential
W and make a mutation at a vertex i0 2 I, then COHA for the mutated pair .Q0;W 0/
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is different from the one for .Q;W/. On the other hand, we can compute motivic
DT-series for the mutated quiver with potential. As was explained in [KoSo1] and
[KoSo5], if we make a mutation at the vertex i0 2 I, then the motivic DT-series
for .Q;W/ and .Q0;W 0/ are related by the conjugation by the motivic DT-series
corresponding to the ray l0 D R>0 � Z.i0 / (which is essentially the quantum
dilogarithm).

2.6.0 How to define COHA for a triangulated 3CY category C?
We do not know the answer to this question, but we can see some structures which
should be incorporated in the definition.

For example, let us consider all COHAs corresponding to all possible mutations.
Let M be the orbit of the pair .Q;W/ under the action of the group of mutations.
Then to any m 2 M we can assign COHA Hm. More generally, we can consider
rotations Z 7! Zei� of the central charge and get the corresponding COHA Hei� .
This defines a structure of cosheaf of algebras over S1. Each stalk is the COHA for
the corresponding t-structure.

Next question is about the space of generators of COHA. Recall the following
conjecture from [KoSo5] which was proved by Efimov (see [Ef]). It is formulated for
symmetric quivers. Such quivers arise naturally in relation to 2-dimensional Calabi–
Yau categories and Kac-Moody algebras.

Theorem 2.6.2. Let H be the COHA (considered as an algebra over Q) for the
abelian category of finite-dimensional representations of a symmetric quiver Q.
Then H is a free supercommutative algebra generated by a graded vector space
V over Q of the form V D V 0 ˝ QŒx�, where x is an even variable of bidegree
.0; 2/ 2 ZI�0 � Z, and for any given  the space V 0;k ¤ 0 is non-zero (and finite-
dimensional) only for finitely many k 2 Z.

In general we expect (see [KoSo5] for the precise question) that H is isomorphic
to the universal enveloping algebra of a graded Lie algebra V WD V 0 ˝ CŒx� which
satisfies the conditions of the Theorem 2.6.2. Mutations act on V , hence we obtain
a collection of vector spaces Vm (one for each t-structure m). From the point of
view of chamber structure of the space of stability conditions, we can say that with
every chamber we associate its own COHA. Change of the chamber corresponds
to the wall-crossing, which at the level of COHA is a conjugation (with a shift of
grading). More structural results generalizing on COHA, including generalizations
of the above Theorem 2.6.2 and their applications (e.g., to Kac conjecture) can be
found in recent papers by B. Davison (see [Dav2, Dav3]).

3 Framed and Stable Framed Objects

In this section we present a definition of stable framed objects following [KoSo7]
as well as a related construction of modules over COHA of the same authors
(unpublished).
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3.1 Stable Framed Objects in Triangulated Categories

We recall the definition of stable framed object from [KoSo7] in the case of
triangulated categories. Then we discuss some versions in the case of abelian
categories.

Let C be a triangulated A1-category over the ground field k, which we assume
to be an algebraically closed of characteristic zero. We fix a stability condition � 2
Stab.C/. Let ˆ W C ! Db.Vectk/ be an exact functor to the triangulated category of
bounded complexes of k-vector spaces.

For a fixed ray l in the upper-half plane with the vertex at the origin, we denote by
Cl WD Css

l the abelian category of �-semistable objects having the central charge in l.
We will impose the following assumption:ˆ maps Cl to the complexes concentrated
in non-negative degrees.

Definition 3.1.1. Framed object (or ˆ-framed object, if we want to stress depen-
dence on the framing functor) is a pair .E; f / where E 2 Ob.Cl/ and f 2 H0.ˆ.E//.

Let .E1; f1/ and .E2; f2/ be two framed objects. We define a morphism � W
.E1; f1/ ! .E2; f2/ as a morphism E1 ! E2 such that the induced map
H0.ˆ.E1// ! H0.ˆ.E2// maps f1 to f2. Framed objects naturally form a category,
and hence there is a notion of isomorphic framed objects.

Definition 3.1.2. We call the framed object .E; f / stable is there is no exact triangle
E0 ! E! E00 in C with E0 non-isomorphic to E such that both E0;E00 2 Ob.Cl/ and
such that there is f 0 2 H0.ˆ.E0// which is mapped to f 2 H0.ˆ.E//.

Then one deduces the following result (see [KoSo7]), proof of which we
reproduce here for completeness.

Proposition 3.1.3. If .E; f / is a stable framed object, then Aut.E; f / D f1g.
Proof. Let h 2 Aut.E/ satisfies the property that its image ˆ.h/ preserves f . We
may assume that h 2 Hom0.E;E/. We would like to prove that h D id. Assume the
contrary. Let h1 WD h� id ¤ 0. Thenˆ.h1/.f / D 0. Since the category Cl is abelian,
the morphism h1 ¤ 0 gives rise to a short exact sequence in Cl:

0! Ker.h1/! E! Im.h1/! 0;

where Im.h1/ ¤ 0. Hence there exists an exact triangle E0 ! E ! E00 in C with
E0 D Ker.h1/ non-isomorphic to E and E00 D Im.h1/. Let us consider an exact
sequence in Cl given by

0! Ker.h1/! E! E! Coker.h1/! 0;

where the morphism E ! E is h1. Using exactness of the functorˆ one can derive
a long exact sequence of vector spaces
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H0.Ker.ˆ.h1///! H0.ˆ.E//! H0.ˆ.E//

! H0.Ker.ˆ.h1///! H1.Ker.ˆ.h1///! : : : :

In any case, we remark that since ˆ maps Cl to complexes with non-negative
cohomology, we conclude that if E0 ! E ! E00 is an exact triangle, then in the
induced exact sequence

H�1.ˆ.E00//! H0.ˆ.E0//! H0.ˆ.E//! : : :

the first terms are trivial. Hence the functor H0ˆ maps monomorphisms in Cl to
monomorphisms in the category Vectk of k-vector spaces.

Let us decompose h1 into a composition of the morphism  W E ! Im.h1/ and
the natural embedding j W Im.h1/ ! E. Applying ˆ, and using ˆ.h1/.f / D 0 and
the above remark we conclude that ˆ. /.f / D 0.

Finally, applyingˆ to the short exact sequence

0! Ker.h1/! E! Im.h1/! 0;

we obtain a short exact sequence in Vectk:

H0.Ker.ˆ.h1///! H0.ˆ.E//! H0.ˆ.Im.h1///;

where the last arrow is ˆ. /. Since ˆ. /.f / D 0 we conclude that there exists
f1 2 H0.Ker.ˆ.h1/// which is mapped into f . This contradicts to the assumption
that the pair .E; f / is framed stable. The Proposition is proved. �

The above Proposition makes plausible the following result:

Corollary 3.1.4. The moduli stack of stable framed objects is in fact a scheme.

In many examples it is a smooth projective scheme (cf., [Re1]).

3.2 Stable Framed Objects and Torsion Pairs

The above definitions can be repeated almost word by word, if we replace an ind-
Artin (or locally regular) triangulated category C by an ind-Artin abelian categoryA.
Then we have a definition of the framed and stable framed objects in the framework
of abelian categories. Let us discuss its relation to the classical notion of torsion pair
(see, e.g., [H] for a short introduction).

Recall that a torsion pair for the abelian category A is given by a pairs of two full
subcategories T ;F � A such that Hom.T;F/ D 0 for any pair T 2 Ob.T /;F 2
Ob.F/ and such that any object E 2 Ob.F/ admits (a unique) decomposition
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0! T ! E! F ! 0

with the same meaning of F and T. Here T is called the torsion part of E and F
is called the torsion-free part of E. The origin of the terminology is clear from the
theory of abelian groups or theory of coherent sheaves on curves.

Let us assume as before that our abelian categoryA is k-linear. Suppose we
are given a stability condition on A with the central charge Z. Fix � 2 .0; �/.
Then the pair of full subcategories T� D fT 2 Ob.AjArg.Z.T// > �g, F� D
fF 2 Ob.AjArg.Z.F// � �g define (under some additional conditions on Harder–
Narasimhan subquotients of objects in each of the two categories, see Remark 3.2.2
below)6 a torsion pair forA (one can exchange strict and non-strict inequality signs).
Let us fix a non-zero object P 2 Ob.A/. It defines a functor F� ! Vectk given by
ˆ.E/ D Hom.P;E/. Framed objects are pairs .E; f W P ! E/. Then we can give
the following version of the notion of stable framed object: .E; f / is stable framed if
either f is epimorphism or Coker.f / is a non-zero object of T� .

Then the above Proposition 3.1.3 still holds, and the proof is much simpler.

Proposition 3.2.1. The automorphism group of a stable framed object is trivial.

Proof. Let h W E! E be an automorphism such that hıf D f . Then .h�id/ vanishes
on the image of f . If f is an epimorphism, we conclude that h D id. Otherwise,
assume h ¤ id. Then .h � id/ defines a non-trivial morphism Coker.f /! E which
contradicts to the assumption on Coker.f / and the definition of torsion pair. Hence
h D id. �

From this Proposition we again conclude that stable framed objects form a
scheme, not a stack.

Remark 3.2.2. Notice that in the proof of Proposition 3.2.1 we did not really use
a fixed slope � , we rather worked with an individual object E. Hence we can give
the following version of the notion of stable framed object for the framing functor
defined by means of an object P: stable framed object is a pair .E; f / such that E
is a non-zero object of category A, f W P ! E is a morphism which is either an
epimorphism or a morphism with non-zero cokernel satisfying the condition that
Arg.Coker.f // > Arg.E/, and the same inequality holds for all subquotients of
these objects (we denote Arg.Z.E// by Arg.E/ to simplify the notation). Yet another
possibility is to require that all Harder–Narasimhan factors of E belong to T� (or
require that all HN factors of E have arguments strictly bigger than the Arg.E/). For
all described versions the Corollary 3.1.4 remains true.

6I thank the referee for the comments on those conditions.
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3.3 Stable Framed Representations of Quivers

Let k be an algebraically closed field.
In the case of quivers without potential there is a well-known way (exploited by

Nakajima and Reineke among others) to construct framed objects by adding a new
vertex i0 and di new arrows i0 ! i for each vertex i 2 I of the quiver Q. If we denote
by Wi the vector space spanned by di arrows, then the framing functorˆ assigns to a
representation E D .Ei/i2I the vector space

Q
i2I Hom.Wi;Ei/. Let  D . i/ 2 ZI�0

be a dimension vector.
Then a framed representation of Q is given by a representation of the extended

quiverbQ with the set of vertices Itfi0g of dimension . i0 D 1; . i/i2I/, a collection
of new di arrows i0 ! i; i 2 I.

Let us fix a central charge Z W ZI ! C and a ray l WD l� D R>0ei� ; 0 < � � � .
Recall that we have the category Cl of semistable representations of Q with the
central charge in l. A framed representation E 2 Cl is stable framed if the following
condition is satisfied (see [Re1]):

the representation E is semistable, and any subrepresentation E0 which contains
the images of all vector spaces Wi; i 2 I has a strictly smaller argument of the
central charge.

There are many versions of the above criterion. For example, one can start with
several additional vertices instead of just one. Also, one can restate the above
criterion in terms of stable representations of the extended quiver bQ. The later
approach makes it clear why the notion of stable framed representation can be
thought of as a generalization of the notion of a cyclic representation.

Remark 3.3.1. Let us set d1 D 1 in the above notation. For the quiver Q2 with one
vertex and two loops there are no nontrivial stability conditions. Then stable framed
objects is the same as left ideals of finite codimension in the path algebra of Q2. The
moduli space of stable framed objects is known as the non-commutative Hilbert
scheme of k2.

4 Modules over COHA from Stable Framed Objects

4.1 Quiver Case

Let k be an algebraically closed field.
Let us fix a quiver Q with the set of vertices I as well as a central charge Z W

ZI ! C. We also fix a slope 0 < � � � and the corresponding ray l D l� D
R>0 � ei� . In order to specify the framing we fix a collection .di/i2I of non-negative
integer numbers. An additional (framing) vertex is denoted by i0. The corresponding
extended quiver will be denoted by bQ WD Qi0 ..di/i2I/.

Given a dimension vector  2 ZI�0 we denote by Mst
;.di/i2I

WD Mst;l
;.di/i2I

the
scheme of stable framed representations of dimension  having Z./ 2 l. We denote
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by M;.di/i2I WD Ml
;.di/i2I

the bigger space of framed representations (no stability

conditions are imposed). The group G D Q
i GL. i;k/ acts freely on Mst

;.di/i2I
.

We denote by Vl
;.di/i2I

D V�
;.di/i2I

the graded vector space H�G
.Mst

;.di/i2I
/ D

H�.Mst
;.di/i2I

=G/.
Recall that with the ray l D l� we can associate COHA

Hl D ˚2ZI
�0;Z./2lH

�
G
.Mss

 /:

Let us denote by S WD S1;2;3;.di/i2I the scheme of short exact sequences

0! E1 ! E2 ! E3 ! 0

of such representations of the extended quiver bQ that dim.Ei/ D i 2 ZItfi0g�0 ; i D
1; 2; 3, E2;E3 stable framed, and the morphism E2 ! E3 is equal to the identity at
the vertex i0.

There is a projection �13 W S ! M1 � Mst
3;.di/i2I

which sends the short exact
sequence 0 ! E1 ! E2 ! E3 ! 0 to the pair .E1;E3/, where we treat E1 as a
representation of Q. Similarly we have a projection �2 to E2. Notice that the latter is
a proper morphism of S to Mst

2;.di/i2I
. Since the automorphism group of the moduli

space of stable framed objects is trivial, we see that the morphism �2���13 gives rise
to a map of cohomology groups

H�G1

	
M1


˝ H�.Mst
3;.di/i2I

/! H�
�
Mst
2;.di/i2I

�
:

Proposition 4.1.1. The above map gives rise to a (left) Hl-modules structure on the
vector space Vl WD Vl

.di/i2I
D ˚Vl

;.di/i2I
.

Proof. Similar to the proof of associativity of the product on COHA given in
[KoSo5]. �

Remark 4.1.2. The above considerations can be generalized to the case of quivers
with potential.

Example 4.1.3. In the case of the quiver Q2 (one vertex and two loops) and d1 D 1
the moduli space Mst

;d1
;  2 Z�0 is the same as the moduli space of representations

of the free algebra khx1; x2i of dimension  which are cyclic. In other words, it is
the moduli space of codimension  ideals in the free algebra with two generators,
i.e., it is the non-commutative Hilbert scheme. The above Proposition claims that it
carries a structure of module over the COHA for Q2 (which is the infinite Grassmann
algebra). Explicit formulas for this module structure (and their generalization to the
case of arbitrary number of loops) can be found in [Fra].

Consider COHA H of a quiver which has at least one vertex i0 without loops.
Then H is a module over the infinite Grassmann algebra (a.k.a free fermion algebra)
ƒ�. Indeed, consider i0 as a quiver Q0 (one vertex, no loops). We know that COHA
of Q0 is ƒ�. Since it is a subalgebra of H, it acts on H by left multiplication.
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Let Q be a quiver with the set of vertices I. Let us fix a set of non-negative integers
d D .di/i2I (not all equal to zero)and the dimension vector  D . i/i2I . Then we
have an extended quiver bQ with the set of vertices I t i0 and di arrows from i0 to
i 2 I. For a fixed central charge Z W ZI ! C the moduli space Mst;l

;d of stable framed
representations of Q of dimension  such that Z./ 2 l is a non-empty smooth
variety of pure dimension

P
i2I di i � �.; /, where �.˛; ˇ/ is the Euler–Ringel

bilinear form of Q (see [EnRe], Proposition 3.6). Moreover it admits a projective
morphism to the moduli space of polystables of fixed slope.

4.2 Representations of COHA in General Case

We will give a sketch of the construction.
Let A be “good’ abelian subcategory in the 3CY category C. We assume the

conditions on the potential W which guarantee existence of COHA of A as well
as moduli spaces of stable framed objects. Then considerations from the previous
subsection can be generalized to this situation provided A satisfies some extra
conditions, e.g., that classes cl.E/ of objects of A belong to an additive monoid
�C which is mapped to Zn�0 under the chosen identification � ' Zn.

Next, let us fix a ray l D R�0 � ei� in the upper-half plane, and a stability function
Z W � ! C such that Z.�C/ belongs to the upper-half plane. Then we have the
categoryAl of semistables with the central charge in l. Let us fix the framing functor
ˆ. Then we can speak about framed and stable framed objects.

Recall that there is a notion of morphism of framed objects .E2; f2/ ! .E3; f3/.
An epimorphism .E2; f2/! .E3; f3/ is a morphism in the category of framed objects
which induces a homomorphism H0.ˆ.E2//! H0.ˆ.E3// which sends f2 to f3 (see
Sect. 3.1 for the notation).

Assume that E2 and E3 are semistable objects with central charges in the ray l.
Then the kernel of the epimorphism .E2; f2/ ! .E3; f3/ of framed objects does not
have to be framed. Let us consider the stack Z1;2 of triples .E1; .E2; f2/; .E3; f3//
where:

(a) cl.E1/ D 1, and Z.1/ 2 l;
(b) .E2; f2/ is stable framed, cl.E2/ D 1 C 2, Z.cl.E2/ 2 l;
(c) .E3; f3/ is stable framed, cl.E3/ D 2, Z.cl.E2/ 2 l;
(d) there is a epimorphism of framed objects .E2; f2/! .E3; f3/ such that it induces

(in the category of semistable objects with the central charge in l) a short exact
sequence

0! E1 ! E2 ! E3 ! 0:

Recall that stable framed objects with fixed class  2 �C form a scheme which
we denote by Mst;fr

 . Then we have natural projections p2 W Z1;2 ! Mst;fr
1C2

and p3 W Z1;2 ! Mst;fr
2

which are morphisms of stacks. Furthermore, let M
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denotes the moduli stack of objects of Al. Then we have the natural projection
p1 W Z1;2 !M1 .

We will assume that:

(i) if we consider the analog of the above situation with all fi D 0; i D 1; 2; 3

(i.e., we work just in the abelian category Al), then the restriction of p2 to
p�11 .E1/ \ p�13 .E3/ is a morphism of smooth proper stacks;

(ii) in general, for fixed E1 and .E3; f3/ as above, the restriction of p2 to p�11 .E1/ \
p�13 ..E3; f3// is a morphism of smooth proper stacks.

By condition (i) COHA Hl of the category Al is well-defined as an associative
algebra. For that we use the critical version of the cohomology from [KoSo5] with
trivial potential. Furthermore, repeating the construction from the previous subsec-
tion we obtain a structure of (left) Hl-module on V WD Vl D ˚2�C

H�.Mst;fr
 /.

Remark 4.2.1. More generally, we can construct modules over COHA by consider-
ing the stack of objects whose Harder–Narasimhan filtration has consecutive factors
with arguments of the central charge belonging to the interval Œ�; ��. If we have an
exact short sequence

0! E1 ! E2 ! E3 ! 0;

such that Arg Z.E2/ 2 Œ�; ��, then Arg Z.E3/ belongs to the same interval, while
Arg Z.Ea/ 2 Œ0; ��. Assume that all HN subquotients of E2 have arguments in
Œ�; ��.7 Then by the above construction we obtain a representation of COHA
in the cohomology of the stack of objects generated by semistables E such that
Arg Z.E/ 2 Œ�; ��.

Similarly, one can show that if V is a strict sector in the plane, then the graded
“Cohomological Hall vector space” H.V/ bounded from the left by a ray l is a
module over the COHA Hl associated with the ray.

Furthermore, suppose that our abelian category A is a “good” subcategory of an
ind-Artin 3CY category C endowed with orientation data. Let W be the potential
for C. It gives rise to the sheaf of vanishing cycles �W on the stack of objects
of C. Then the pull-backs of �W to the stack of objects of A and subsequently to
M and Mst;fr

 are well-defined. Then, similarly to [KoSo5] (and under the above
assumption), the above construction (but this time with cohomology groups with
coefficients in �W ) gives rise to the module V WD Vl D ˚2�C

H�.Mst;fr
 ; �W/ over

the COHA Hl of Al. The details will be explained elsewhere.

7I thank the referee for pointing out on this condition.
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4.3 Hecke Operators Associated with Simple Objects

In the classical Nakajima construction of the infinite Heisenberg algebra (see
[Nak2]) one considers pairs of ideal sheaves .J2; J3/ on a surface S such that J2 � J3
and Supp.J3=J2/ D fxg, where x is a fixed point. Then one has an epimorphism
OS=J2 ! OS=J3. Let us compare this observation with the above construction of
modules over COHA. We see that a fixation of K-theory classes i; i D 1; 2 for a
pair of objects .E2;E3/ along with an epimorphism E2 ! E3 corresponds in the
Nakajima’s construction to the fixation of ni; i D 2; 3 such that Ji 2 Hilbni.S/ and
to the above-mentioned epimorphism of the quotient sheaves.

In the construction of the module structure on the cohomology of stable framed
objects we used the pushforward map associated with the projection to the middle
term in the moduli space of short exact sequences

0! E1 ! E2 ! E3 ! 0;

where E2;E3 are stable framed (we omit here fi; i D 2; 3 from the notation). As
a result, our construction gives rise to the “raising degree” operators H1 ˝ V2 !
V1C2 for the COHA action H˝V ! V . There are no “lowering degree” operators,
which would correspond to the projection to the term E3 D E2=E1. The reason is
similar to the one in the Nakajima’s construction: such a projection is not proper.

Originally Nakajima solved the problem by considering points x 2 S which
belong to a compact subset in S. We can use this idea and consider short exact
sequences as above, where E1 is a simple object which runs through a compact (in
analytic topology) subset in the moduli scheme of simple objects of our abelian
category A.

Let us illustrate the construction in the case of quivers without potential and
trivial stability condition. In that case stable framed objects are cyclic modules over
the path algebra of the quiver. Then we should prove that there are sufficiently many
cyclic modules with the fixed simple submodule and fixed cyclic quotient. This is
guaranteed by the following result.

Proposition 4.3.1. Let A be an associative algebra, .M2; v2/; .M3; v3/ be A-
modules with marked elements vi 2 Mi; i D 2; 3 such that v3 is a cyclic vector
for M3. Let f W M2 ! M3 be an epimorphism of A-modules such that f .v2/ D v3
and such that W D Ker.f / is a simple A-module. Suppose that the extension

0! W ! M2 ! M3 ! 0

is non-trivial. Then v2 is a cyclic vector for M2.

Proof. Let M02 � M2 be the A-submodule generated by v2. If M02 D M2, then we
are done. Otherwise we have a non-trivial epimorphism g W W ! M2=M02 of A-
modules. Its kernel is a submodule of W. It must be trivial, since W is simple. Hence
g is an isomorphism. Then the submodules W and M02 determine the direct sum
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decomposition M2 D W ˚M02, where M02 ' M3. Hence the extension 0 ! W !
M2 ! M3 ! 0 is trivial. This contradiction shows that v2 is a cyclic vector.�

Corollary 4.3.2. For fixed W;M3 the stack of cyclic modules M2 which are middle
terms in the above short exact sequence is a smooth projective scheme isomorphic
to the projective space P.Ext1.M3;W//.

Proof. Follows from the Proposition. �

Remark 4.3.3. Similar result holds in case when M3 is stable framed and S is simple.

Let now Msimp WDMsimp
A be the moduli space of simple objects in the heart A

of the “good” t-structure of an ind-Artin 3CY category C endowed with orientation
data. Then Msimp

A is a smooth separated scheme. Let H�c .Msimp/ denotes compactly
supported cohomology. As before we have projections �1; �2; �3. In particular, �1
is the map to the moduli space Msimp of simple objects and �3 is the map to the
moduli space Mst of stable framed objects correspondingly. Then the composition
�3� ı .��1 ˝��2 / defines a collection of operations on H�.Mst/ parametrized by the
elements of H�c .Msimp/. The above Proposition (or rather its analog for non-trivial
stability condition) ensures that the operations are well-defined. Differently from
the action of COHA defined in the previous subsection, these operations decrease
the degree  2 � .

Remark 4.3.4. Let us recall that for any i 2 ˙Z>0 Nakajima defines an operator
PŒi�which corresponds to the i-th generator of the infinite Heisenberg algebra. In the
above discussion the operator PŒi� corresponds to the direct sum iS WD S˚S˚: : : :˚S
of˙i > 0 of copies of the simple object S.

Using the above construction one can extend a representation of COHA to
a representation of a bigger algebra, which we call “full COHA” (or double of
COHA). We do not know yet how to define this algebra intrinsically. Our approach
is similar to the Nakajima’s construction of the infinite Heisenberg algebra from
two representations of the symmetric algebra: one is given by creation operators
and another one is given by annihilation operators. Commuting creation and
annihilation representations in the representation space Nakajima recovers the
infinite Heisenberg algebra. One can also compare the above construction with the
one in [Re1].

Remark 4.3.5. As we already mentioned, differently from the case of constructible
Hall algebras, we do not know a compatible comultiplication on COHA. This would
help to define full COHA by means of the Drinfeld double construction. Having in
mind that in the case of quivers without potential COHA is a shuffle algebra, one
can hope for explicit formulas similar to those in [Neg] (see also [Dav2]).
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4.4 Full COHA: An Example

It is well known that one can obtain finite-dimensional representations of a quan-
tized enveloping algebra of finite-dimensional semisimple Lie algebra using framed
stable representations of quivers and constructible Hall algebra (see, e.g., [Re1]
where this idea which goes back to Nakajima was implemented for representations
of the “positive” part of a quantum group).

Let us recall how one can recover the quantized enveloping algebra Uq.sl.2// by
combining two representations of the Hall algebra for quiver A1.

Recall that if for a quiver Q we take the stability function ‚ D 0, then
every finite-dimensional representation of Q is semistable. The moduli space of
stable framed representations admits in this case a simple description in terms of
Grassmannians (see, e.g., [Re1], Proposition 3.9).

For the quiver A1 (one vertex i1 and no arrows) the framing consists of a new
vertex i0 and d arrows i0 ! i1. The stability function is trivial automatically,
and one can easily see that for each dimension vector  2 Z�0 the moduli space
M;d D M�D0;st

 of framed stable representations of dimension  is isomorphic to
the Grassmannian Gr.d � ; d/ ' Gr.; d/. Hence it is non-empty for  � d only.
Let us denote by Gr.d/ the “full Grassmannian” consisting of vector subspaces of Cd

of all dimensions (this space is disconnected). Then the moduli space of d-framed
semistable representations of A1 is Gr.d/.

The space of GL.d/-invariant functions with finite support FunGL.d/.Gr.d// is a
module over the constructible Hall algebra of A1. The constructible Hall algebra
of the quiver A1 is the polynomial algebra with one generator z WD 1C, where the
generator z corresponds to the characteristic function 11 of M1 in the stack M D
t�0M . Indeed the Hall product gives an isomorphism of the constructible Hall
algebra with the polynomial ring CŒz�. In each Gr.k; d/ we have only one GL.d/-
orbit of the standard coordinate vector subspace Ck � Cd. Let us denote by vk; 0 �
k � d the characteristic function of the corresponding GL.d/-orbit.

Let us consider the “minus” Hecke correspondence given by pairs .Vk�1 � Vk/

with 1-dimensional factor V1 and project to Vk�1. Equivalently, we consider the
projection to the first terms from the set of short exact sequences

0! Vk�1 ! Vk ! V1 ! 0:

Using the pull-back/pushforward construction discussed previously, we obtain a

representation of the algebra CŒz� given by 
�.z/vk D qk�q�k

q�q�1 vk�1; 1 � k � d,
and 
�.z/v0 D 0, where the factor comes from the normalization of the cocycle
c.M;N/ above as q�.M;N/. The Euler–Ringel form � on the pair of representations E
of dimension a and F of dimension b is given by �.E;F/ D ab. Similarly, consider
the “plus” Hecke correspondence .Vk � VkC1/ and project to VkC1. Then we get a
representation of CŒz� in Fn given by
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C.z/vk D qkC1 � q�k�1

q � q�1
vkC1; 0 � k � d � 1; 
C.z/vd D 0:

Combining 
� and 
C together we obtain the standard d-dimensional representation
of the quantized enveloping algebra Uq.sl.2// where the “positive” generator E is
represented by 
�.z/while the “negative” generator F is represented by 
C.z/. Then

the commutator ŒE;F� maps vk to q2k�q2k

q�q�1 vk. From this formula one can recover the

action of the Cartan generators K;K�1.
Let us apply similar considerations in the case of COHA of the quiver A1. Recall,

in this case COHA is isomorphic to the algebra ƒ� D ƒ�.�1; �2; : : : :/; deg �i D
2i � 1; i � 1. Since for the trivial stability function the COHA associated with the
ray � D 0 coincides with whole COHA, we obtain a representation of the infinite
Grassmann algebra ƒ� in the finite-dimensional vector space V WD H�.Gr.d// D
˚0
k
dH�.Gr.k; d//. One can write down explicitly the action of the generators of
ƒ� on the cohomology classes of Schubert cells.

Following the general definition, we consider the moduli stack of short exact
sequences

0! E1 ! E2 ! E3 ! 0;

where E2 and E3 are stable framed of the same slope, and E1 is a representation
without framing. First we consider the representation of COHA coming from the
projection to E2.

In order to write down the corresponding representation explicitly let us choose
a subspace in each H�.Gr.k; d//; 0 � k � d spanned by the cohomology classes
corresponding to .C�/d-fixed points. We denote this basis by ej WD 1Cj1;:::jk

(recall
that the fixed points correspond to coordinate subspaces Cj1;:::jk � Cd spanned by
the standard basis vectors fj1 ; : : : ; fjk ; j1 < j2 < : : : < jk). We can identify the
graded vector space V with the quotient ƒ�.�1; : : : ; �d/=Id, where Id is the ideal
generated by �i; i � dC1. Then the pull-back/pushforward construction gives us the
representation ofƒ� in V by “creation” operators: a�n W ej 7! �n ^ ej (see also [Fra]).

Second, we consider the representation of COHA coming from the projection
to E3. This gives a representation of ƒ� on V by “annihilation” operators an W ej 7!
i�n.ej/, where i�n is the contraction operator which deletes the variable �n from the
monomial ej.

Then, similarly to the consideration with the constructible Hall algebra, we
combine both representations of COHA into a single one. In this way recovers
the representation of the Lie algebras DdC1 (see [Xi]). This leads to the following
conjecture:

Conjecture 4.4.1. Full COHA for the quiver which has one vertex and m arrows is
isomorphic for even m to the infinite Clifford algebra Clc with generators �ṅ ; n 2
2Z C 1 and the central element c, subject to the anticommuting relations between
�Cn (resp. ��n ) as well as the relation �Cn ��m C ��m �Cn D ınmc.
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In the case of odd m full COHA is isomorphic to the infinite (graded) Heisenberg
algebra (in the above formulas change anticommuting brackets by the commuting
ones).

In the case of finite-dimensional representations we have c 7! 0 and two
representations of the infinite Grassmann algebra, which are combined in the
representations of the orthogonal Lie algebra as explained above. Notice that Clc

is the Clifford algebra associated with the positive part of the affine Lie algebra
sl.2/. This might explain the relation of the full COHA to the quiver A1.

5 Some Representations of COHA Motivated by Physics
and Knot Theory

In this section we are going to describe some interesting classes of representations of
COHA. Details of the constructions will appear elsewhere. The reader can consider
this section as a collection of speculations.

5.1 Fukaya Categories of Conic Bundles and Gauge Theories
from Class S

We are going to illustrate the idea in the case of SL.2/ Hitchin integrable sys-
tems. Our motivation is the general conjecture (F.1) from the Introduction of
[ChDiManMoSo]. In this particular case it admits a very precise interpretation.
Namely, with a point of the universal cover of the base of Hitchin system on a
complex curve, say, C one can associate a compact Fukaya category endowed with
a stability structure (“compact” means that it is generated by local systems supported
on compact Lagrangian submanifolds). It is the Fukaya category of a non-compact
Calabi–Yau three-fold X described by the corresponding spectral curve (see [KoSo8]
for a more general framework). The compact Fukaya category is endowed with
the natural t-structure generated by SLAGs which are 3-dimensional Lagrangian
spheres. The central charge of the corresponding stability condition is given by the
period map of the Liouville form on T�C restricted to the spectral curve. According
to the general theory developed in Sect. 8 of [KoSo1] categories generated by
spherical collections are in one-to-one correspondence with pairs .Q;W/, i.e.,
quivers with potential. Hence we can speak about corresponding COHA and its
representations in the cohomology of the moduli spaces of stable framed objects of
the category Crit.W/. This would give an interesting class of representations of the
BPS algebra of the corresponding gauge theory from class S.

Recall that surface defects in physics correspond to points of the curve C. In
terms of the corresponding non-compact Calabi–Yau three-fold they are complex
2-dimensional submanifolds of X. Consider the moduli space of SLAGs with the
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boundary which belongs to such a submanifold S. The corresponding category
F.X; S/ can be thought of as a version of Fukaya–Seidel category of thimbles (see
[Se]) with the (analog of the) potential being the natural map X ! C.

Furthermore, the operation of connected Lagrangian sum plays a role of an
extension in the compact Fukaya category F.X/. This operation underlies the
product structure on the COHA HQ;W .

Let us observe that there is an operation of taking the connected Lagrangian
sum of a Lagrangian submanifold without boundary and the one with the boundary
on S. Mimicking the definition of the product on COHA with the “moduli space
of Lagrangian connected sums” instead of the subvariety M1;2 � M1C2 (see
[KoSo2], Sect. 2), one obtains the HQ;W -module structure on the cohomology of the
moduli space of SLAGs with the boundary on S.8

5.2 Resolved Conifold and Quivers

Let X D tot.O.�1/˚O.�1// be the resolved conifold. We denote the zero section
of the corresponding vector bundle by C0 ' P1. Let us fix a point p0 WD 0 2 C0.

Let A be the abelian category of perverse coherent sheaves on X topologically
supported on C0 (see, e.g., [NagNak, Tod] for descriptions convenient for our
purposes; in [NagNak] our category A was denoted by Perc.X=Y/, where X ! Y is
the crepant resolution of the conifold singularity Y D fxy� zw D 0g).

It is known (see, e.g., [NagNak]) that A is equivalent to the abelian category
Crit.W/ associated with the pair .Q;W/, where Q is a quiver with two vertices i1; i2
two arrows a1; a2 W i1 ! i2, two arrows b1; b2 W i2 ! i1 and “Klebanov-Witten
potential” W D a1b1a2b2 � a1b2a2b1. In particular, for any  D .1; 2/ 2 Z2�0
the stack of objects of Crit.W/ of dimension  is equivalent to the stack of such
representations of Q of dimension  in coordinate vector spaces, which belong to
the critical locus of the function Tr.W/.

We recall that the category of perverse coherent sheaves carries a family of
geometrically defined weak stability conditions (see, e.g., [Tod]). In the case of the
category Crit.W/ there is a class of stability conditions associated with the slope
function.

Equivalence of these two categories gives rise to the “chamber” structure of the
space of stability conditions on A described in [NagNak]: some of the (infinitely
many) chambers correspond to the quiver-type stability conditions, while “at
infinity” we have chambers of geometric origin corresponding to different choices
of the weak stability condition.

8Alternatively, following Paul Seidel, one can consider the double cover of the Calabi–Yau three-
fold branched along the divisor given by the complex surface. Then Lagrangian submanifolds
with boundary lift to closed ones in the branched cover. One can form an equivariant Lagrangian
connected sum, and then interpret it as an operation on the original Lagrangian submanifolds with
boundary.
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One has a similar story when the framing is taken into account. Then one deals
with framed perverse coherent sheaves and framed representations of .Q;W/ (i.e.,
critical points of the function Tr.W/ considered as a function on the space of
representations of the extended quiverbQ obtained from Q by adding an extra vertex
i0 and an arrow i0 ! i1.)

In the “quiver chamber,” we can (after a choice of a stability condition on A
which belongs to the above class) speak about the moduli space of stable framed
objects of the fixed slope. For a given .l; n/ 2 Z�0 � Z and a choice of certain
stability condition on the category Rep.Q/ of finite-dimensional representations of
Q, and a choice of an angle � (which depends on .l; n/), the space of stable framed
representations of .Q;W/ with the slope � becomes isomorphic to the moduli space
of Pandharipande–Thomas stable pairs P.l; n/ (see [NagNak]). There is no single �
which serves all .l; n/.

It follows from the previous section that:

Proposition 5.2.1. For a choice of stability conditions in the “quiver chamber,”
COHA H.Q;W/ acts on the cohomology of the moduli space of stable framed
representations of .Q;W/ having fixed slope.

Let us observe that if we have a morphism f W E2 ! E3 of PT stable pairs
which is surjective in degree zero (i.e., on the sheaves supported on C0), then
Ker.f / is a coherent sheaf scheme-theoretically supported on C0. Passing to the
cohomology groups we reformulate the above Proposition by saying that COHA
of the corresponding category acts on the cohomology of the moduli space of PT
stable pairs. We expect the same result to hold in “geometric chambers,” were one
uses weak stability conditions.

5.3 Vertically Framed Sheaves and Algebraic Knots

Motivated by [GuSchVa] and many other physics papers on the relation between
knot theory and BPS states for the resolved conifold, one can hope for an application
of the representation theory of COHA of the resolved conifold to knot invariants.
Among mathematical motivations we can mention the main conjecture from [ORS],
its reformulation in [DiHuSo] and its proof in [Mau1] (in the “unrefined” form).
In this subsection we discuss appropriate moduli spaces following [DiHuSo] and
speculate about corresponding representation of COHA.

Let K be an algebraic knot or link which is obtained by Milnor construction, i.e.,
via the intersection of a plane singular curve CK with the S3-boundary of a small
ball around the singularity. If we would like to incorporate algebraic knots in the
story, we should add to the story coherent sheaves on X supported on the curve CK

placed in the fiber of the projection X ! C0 D P1.
More precisely we consider coherent sheaves which are “vertically framed”

along CK (see details [DiHuSo]). Stable vertically framed coherent sheaves provide
a natural generalization of PT stable pairs from [PT1] see also [? ] for some physics
arguments.
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Let us recall some general definitions and details following [DiHuSo].
Let X D tot.O.�1/ ˚ O.�1// be the resolved conifold, C a planar complex

algebraic curve with the only singular point p.
The abelian category of C-framed perverse coherent sheaves is a full subcategory

AC � Db.Coh.X//. Roughly speaking, AC consists of complexes E of coherent
sheaves on X such that the cohomology sheaves Hi.E/ are non-trivial for i 2 f0;�1g
only, and those cohomology sheaves are topologically supported one the union
C [ C0 D P1 (see, loc. cit., Sect. 2.2 and below for more precise description).
The category AC is closed under extensions, and it is a full subcategory of the
category of perverse coherent sheaves A � Db.X/. After fixing Kähler class ! on
the compactification X defined in [DiHuSo], one defines a family of weak stability
conditions on AC associated with an explicitly given family of slope functions
�b WD �.!;b!/ described in the loc. cit. Then one can speak about C-framed
(semi)stable sheaves, meaning weakly (semi)stable objects of AC with respect to
the slope function �b.9

For “very negative” value of b the moduli space P s
b.X;C; r; n/ of C-framed �b-

stable objects E with ch.E/ D .�1; 0; ŒC� C rŒC0�; n/ is isomorphic to the moduli
space of stable framed pairs on X in the sense of Pandharipande and Thomas which
are C-framed. If we move the value of b from b D �1 to a small positive number
(which depend on r) the above moduli space of�b-stable objects experiences finitely
many wall-crossings. One of the main results of [DiHuSo] is a theorem which relates
the moduli space of �b-stable objects of AC for small b > 0 with the punctual
Hilbert schemes from [ORS]. This relates the DT-invariants of the category of C-
framed stable sheaves with HOMFLY polynomials of algebraic knots. The moduli
space P ss

b .X;C; r; n/ of �b semistable objects is a C�-gerbe over P s
b.X;C; r; n/.

Let us fix .r; n/ 2 Z�0 � Z and consider the full subcategory AC
r;n � AC

consisting of objects E such that ch.E/ D .�1; 0; ŒC�C rŒC0�; n/. Let E1 be a pure
dimension one sheaf on X supported on C0 (hence it belongs to AC as well), and let
E3 2 Ob.AC

r3;n3 /. Then we see that the middle term E2 of an extension in AC

0! E1 ! E2 ! E3 ! 0

belongs to AC
r2;n2

for some r2; n2.
Let MC WD [r;nMC

r;n be the moduli space (stack) of the objects E which belong
the category AC

r;n for some r; n. Let MC0 be the moduli space (stack) of objects
of the category CohC0 .X/ of coherent sheaves on X supported on the zero section
C0 D P1. Let N be the moduli space (stack) of short exact sequences as above.

We have the following projections: �13 W N ! MC �Mc0 ; .E1;E2;E3/ 7!
.E1;E3/ and �2 W N !MC; .E1;E2;E3/ 7! E2.

9In [DiHuSo] the authors considered stable vertically framed sheaves on the compactification X.
The corresponding moduli spaces were projective. Considerations with non-compact submanifold
X give rise to quasi-projective moduli spaces. We ignore these technicalities here.
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Then we can apply the same procedure as for framed representations of quivers
using the composition �2���13. Then, e.g., in the case of COHA it gives us the
module structure H�.MC0/˝H�.MC/! H�.MC/ over the COHA of the category
CohC0 .X/, where by H� we denote an appropriate cohomology theory.

Now we can use the weak stability condition defined by the slope function �b.
More precisely, let us choose a stability parameter b satisfying the condition .3:1/
of Lemma 3.1 from [DiHuSo] and consider �b-semistable objects E of AC such that
ch.E/ D .�1; 0; ŒC�CrŒC0�; n/, where .r; n/ 2 Z�0�Z is fixed. Then we can repeat
the above definition but this time in the exact sequence

0! E1 ! E2 ! E3 ! 0

we will assume that E2 and E3 are weakly semistable objects with respect to �b, and
E1, as before, is an arbitrary coherent sheaf on X supported on C0.

There is an explicit description of �b-semistable and �b-stable objects of AC
r;n

for sufficiently small positive b given in [DiHuSo], Sect. 3. For example, a �b-stable
object E fits into an exact short sequence

0! EC ! E! OC0 .�1/r ! 0;

where EC D .OX ! FC/ is a stable pair on X in the sense of Pandharipande and
Thomas, with the sheaf FC scheme theoretically supported on C (and satisfying
some non-degeneracy conditions, see [DiHuSo], Proposition 3.3 for the details).
Similarly, any �b-semistable object fits into an exact sequence where instead of
OC0 .�1/r one has a sheaf G topologically supported on C0 (and ch2.G/ D rŒC0�)
which is a direct image (under the embedding i W C0 ! X) of the vector bundle
˚1
j
mO.aj/

rj with a1 > : : : > am � �1. The Harder–Narasimhan filtration of G
(with respect to the !-slope defined by �.G/=r) therefore has consecutive factors
with slopes aj=r.

Based on the above considerations one can hope that C-framed stable sheaves
play a role similar to the one played by stable framed objects in the abelian
categories. In particular, cohomology groups of the moduli spaces of C-framed
stable sheaves should give rise to representations of COHA of X. It is not clear
at this time how far this idea can be developed. In fact computations made by E.
Diaconescu show that if in the short exact sequence 0 ! F ! E1 ! E2 ! 0 the
terms E1;E2 are C-framed stable, then F is isomorphic to O.�2/n. It seems plausible
that in order to obtain interesting representations of the full COHA, one should also
include in considerations short exact sequences of the type 0! E1 ! E2 ! F !
0, where E1;E2 are C-framed stable. This should lead to the representation of the
full COHA in the way discussed previously. We expect that in this way we obtain
affine sl.2/.

Remark 5.3.1. The above story with C-framed sheaves is related to algebraic knots.
As for more general knots, one can hope that the following picture can be made
mathematically precise.
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For any non-compact real-analytic Lagrangian submanifold L � X with “good
behavior at infinity” there should be a well-defined stack Coh
1.X;L/ of real-
analytic sheaves on X (considered as a real-analytic manifold) with the following
properties:

(a) Every F 2 Coh
1.X;L/ has topological support, which is an immersed 2-
dimensional real-analytic submanifold of X. Moreover, the support without
boundary is an immersed non-compact complex analytic curve. The restriction
of F to the complement of the boundary is a coherent sheaf on the corresponding
complex manifold.

(b) The boundary of the support of each F 2 Coh
1.X;L/ belongs to L.
(c) The stack Coh
1.X;L/ is a countable union of real-analytic stacks of finite type.

It is naturally the stack of objects of the abelian category of real-analytic sheaves
on X satisfying conditions (a) and (b).

In particular, sheaves F with pure support are those for which the support is an
immersed “bordered Riemann surfaces” in the sense of [KatzLiu].

One can hope that despite of the analytic nature of objects, there is a theory of
stability structures for this category, as well as the notion of stable framed object.

Notice that we can consider extensions 0 ! F ! E1 ! E2 ! 0, where E1;E2
are objects of Coh
1.X;L/, while F is the usual coherent sheaf on X with support
on C0 D P1. We expect that this operation leads to the action of COHA on the
cohomology of framed stable objects in Coh
1.X;L/, similarly to the case of C-
framed stable sheaves.

Finally, if the above discussion about representations of COHA of the resolved
conifold makes sense, then one can hope that it is related to the representation theory
of DAHA discussed in [GorORS].
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A Stratification on the Moduli of K3 Surfaces
in Positive Characteristic

Gerard van der Geer

Dedicated to the memory of Fritz Hirzebruch

Abstract We review the results on the cycle classes of the strata defined by the
height and the Artin invariant on the moduli of K3 surfaces in positive characteristic
obtained in joint work with Katsura and Ekedahl. In addition we prove a new
irreducibility result for these strata.

1 Introduction

Moduli spaces in positive characteristic often possess stratifications for which we do
not know characteristic 0 analogues. A good example is the moduli space of elliptic
curves in characteristic p > 0. If E is an elliptic curve over an algebraically closed
field k of characteristic p, then multiplication by p on E factors as

�p W E F�! E.p/
V�! E;

where Frobenius F is inseparable and Verschiebung V can be separable or insep-
arable. If V is separable, then E is called ordinary, while if V is inseparable E is
called supersingular. In the moduli space A1 ˝ k of elliptic curves over k there
are finitely many points corresponding to supersingular elliptic curves, and a well-
known formula by Deuring, dating from 1941, gives their (weighted) number:

X

E=k supers:=Šk

1

#Autk.E/
D p � 1

24
;

where the sum is over the isomorphism classes of supersingular elliptic curves
and each curve is counted with a weight. We thus find a stratification of the
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moduli A1 ˝ Fp of elliptic curves with two strata: the ordinary stratum and the
supersingular stratum. This stratification generalizes to the moduli of principally
polarized abelian varieties of dimension g in positive characteristic where it leads
to two stratifications, the Ekedahl-Oort stratification with 2g strata and the Newton-
polygon stratification. These stratifications have been the focus of much study in
recent years (see, for example, [O, vdG, E-vdG1, Mo, R, C-O]). The dimension
of these strata is known and in the case of the Ekedahl-Oort stratification we also
know by [E-vdG1] the cycle classes of these strata in the Chow groups of a suitable
compactification. The formulas for such cycle classes can be seen as a generalization
of the formula of Deuring.

Besides abelian varieties, K3 surfaces form another generalization of elliptic
curves. The stratification on the moduli of elliptic curves in positive characteristic
generalizes to a stratification of the moduli Fg of primitively polarized K3 surfaces
of degree 2g � 2 in positive characteristic. In fact, in the 1970s Artin and Mazur
obtained in [A-M] an invariant of K3 surfaces by looking at the formal Brauer
group of a K3 surface. For an elliptic curve the distinction between ordinary and
supersingular can be formulated by looking at the formal group, that is, the infinite
infinitesimal neighborhood of the origin with the inherited group law. If t is a local
parameter at the origin, then multiplication by p is given by

Œp� t D a tph C higher order terms (1)

with a ¤ 0. Since multiplication by p on E is of degree p2 and inseparable, we
have 1 � h � 2 and h D 1 if E is ordinary and h D 2 if E is supersingular. The
formal group allows a functorial description as the functor on spectra S of local
Artin k-algebras with residue field k given by

S 7! kerfH1
et.E � S;Gm/! H1

et.E;Gm/g;

where H1
et.E;Gm/ Š H1.E;O�E/ classifies line bundles on E. The invariant of Artin

and Mazur generalizes this. For a K3 surface X they looked at the functor of local
Artinian schemes over k with residue field k given by

S 7! kerfH2
et.X � S;Gm/! H2

et.X;Gm/g;

and showed that it is representable by a formal Lie group, called the formal Brauer
group. Its tangent space is H2.X;OX/, so we have a 1-dimensional formal group.
Now over an algebraically closed field 1-dimensional formal groups are classified
by their height: in terms of a local coordinate t multiplication by p is either zero or
takes the form Œp� t D a tphC higher order terms, with a ¤ 0. If multiplication by
p vanishes we say h D 1, and then we have the formal additive group OGa and if
h <1 we have a p-divisible formal group.

Artin and Mazur connected this invariant h.X/ to the geometry of the K3 surface
by proving that if h.X/ ¤ 1 then
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.X/ � 22 � 2h.X/; (2)

where 
.X/ is the Picard number of X. In particular, either we have 
 D 22 (and
then necessarily h D1), or 
 � 20.

The case that 
 D 22 can occur in positive characteristic as Tate observed: for
example, in characteristic p � 3 .mod4/ the Fermat surface x4 C y4 C z4 C w4 D 0
has 
 D 22 (see [T, S]).

If h.X/ D 1, then the K3 surface X is called supersingular. By the result of
Artin and Mazur a K3 surface X with 
.X/ D 22 must be supersingular. In 1974
Artin conjectured the converse ([A]): a supersingular K3 surface has 
.X/ D 22.
This has now been proved by Maulik, Charles, and Madapusi Pera for p � 3, see
[M, C, P2]. In the 1980s Rudakov, Shafarevich, and Zink proved that supersingular
K3 surfaces with a polarization of degree 2 have 
 D 22 in characteristic p � 5, see
[R-S-Z].

The height is upper semi-continuous in families. The case h D 1 is the
generic case; in particular, the K3 surfaces with h D 1 form an open set. By the
inequality (2) we have

1 � h � 10 or h D1:

In the moduli space Fg of primitively polarized K3 surfaces of genus g (or
equivalently, of degree 2g� 2) with 2g� 2 prime to p, the locus of K3 surfaces with
height � h is locally closed and has codimension h � 1 and we thus have 11 strata
in the 19-dimensional moduli space Fg. The supersingular locus has dimension 9.
Artin showed that it is further stratified by the Artin invariant �0: assuming that

 D 22 one looks at the Néron–Severi group NS.X/ with its intersection pairing;
it turns out that the discriminant group NS.X/_=NS.X/ is an elementary p-group
isomorphic to .Z=pZ/2�0 and one thus obtains another invariant. The idea behind
this is that, though 
 D 22 stays fixed, divisor classes in the limit might become
divisible by p, thus changing the Néron–Severi lattice and �0. The invariant �0 is
lower semi-continuous. The generic case (supersingular) is where �0 D 10 and the
most degenerate case is the so-called superspecial case �0 D 1.

In total one obtains a stratification on the moduli space Fg of K3 surfaces with a
primitive polarization of genus g with 20 strata Vj with 1 � j � 20

Vj D fŒX� 2 Fg W h.X/ � jg 1 � j � 10;

and

Vj D fŒX� 2 Fg W h.X/ D 1; �0.X/ � 21 � jg 11 � j � 20 ;

the closures Vj of which are linearly ordered by inclusion. In joint work with Katsura
[vdG-K1] we determined the cycle classes of the strata Vj (j D 1; : : : ; 10) of height
h � j
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ŒVj� D .p � 1/.p2 � 1/ � � � .pj�1 � 1/ �j�1
1 ; 1 � j � 10 (3)

where �1 D c1.��.�2
X =Fg

// is the Hodge class with � W X ! Fg the universal

family. We also determined the class of the supersingular locus V11. Moreover, we
proved that the singular locus of Vj is contained in the stratum of the supersingular
locus where the Artin invariant is at most j � 1, see [vdG-K1, Theorem 14.2].
Ogus made this more precise in [Og2]. For more on the moduli of supersingular
K3 surfaces we also refer to [Og1, R-S2, L].

But the cycle classes of the other strata Vj for j D 12; : : : ; 20 [A-SD, H, L,
Og1, R-S, R-S2] given by the Artin invariant turned out to be elusive. In joint
work with Ekedahl [E-vdG2] we developed a uniform approach by applying the
philosophy of [vdG, E-vdG1] of interpreting these stratifications in terms of flags
on the cohomology and eventually were able to determine all cycle classes. All these
cycle classes are multiples of powers of the Hodge class �1.

Our approach uses flags on the de Rham cohomology, here on H2
dR as opposed

to H1
dR for abelian varieties. The space H2

dR.X/ is provided with a non-degenerate
intersection form and it carries a filtration, the Hodge filtration. But in positive
characteristic it carries a second filtration deriving from the fact that we do not have
a Poincaré lemma, or in other words, it derives from the Leray spectral sequence
applied to the relative Frobenius morphism X ! X.p/. See later for more on this so-
called conjugate filtration. We thus find two filtrations on H2

dR.X/ and these are not
necessarily transversal. We say that X is ordinary if the two filtrations are transversal
and that X is superspecial if the two filtrations coincide. These are two extremal
cases, but by considering the relative position of flags refining the two flags one
obtains a further discrete invariant and one retrieves in a uniform way the invariants
encountered above, the height h and the Artin invariant �0.

For applications it is important that we consider moduli of K3 surfaces together
with an embedding of a non-degenerate lattice N in the Néron–Severi group of X
such that it contains a semi-ample class of degree prime to the characteristic p, and
then look at the primitive part of the de Rham cohomology. If the dimension n of
this primitive cohomology is even, this forces us to deal with very subtle questions
related to the distinction of orthogonal group O.n/ versus the special orthogonal
group SO.n/.

Instead of working directly on the moduli spaces of K3 surfaces, we work on
the space of flags on the primitive part of H2

dR, that is, we work on a flag bundle
over the moduli space. The reason is that the strata that are defined on this space are
much better behaved than the strata on the moduli of K3 surfaces itself. In fact, up
to infinitesimal order p the strata on the flag space over Fg look like the strata (the
Schubert cycles) on the flag space for the orthogonal group. These strata are indexed
by elements of a Weyl group.

In order to get the cycle classes of the strata on the moduli of K3 surfaces we
note that these latter strata are linearly ordered. This allows us to apply fruitfully
a Pieri type formula which expresses the intersection product of a cycle class with
a first Chern class (the Hodge class in our case) as a sum of cycle classes of one
dimension less.
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We apply this on the flag space and then project it down. There are many more
strata on the flag space of the primitive cohomology than on the moduli space. Some
of these strata, the so-called final ones, map in an étale way to their image in the
moduli space; for the non-final ones, either the image is lower-dimensional, and
hence its cycle class can be ignored, or the map is inseparable and factors through
a final stratum and the degree of the inseparable map can be calculated. In this way
one arrives at closed formulas for the cycle classes of the strata on the moduli space.

We give an example of the formula for the cycle classes from [E-vdG2] in the
following special case. Let p > 2 and � W X ! Fg be the universal family of
K3 surfaces with a primitive polarization of degree d D 2g � 2 with d prime to p.
Then there are 20 strata on the 19-dimensional moduli space Fg parametrized by
so-called final elements wi with 1 � i � 20 in the Weyl group of SO.21/. These are
ordered by their length `.wi/ (in the sense of length in Weyl groups) starting with
the longest one. The strata Vwi for i D 1; : : : 10 are the strata of height h D i, the
stratum Vw11 is the supersingular stratum, while the strata Vwi for i D 11; : : : ; 20 are
the strata where the Artin invariant satisfies �0 D 21� i.

Theorem 1.1. The cycle class of the closed stratum Vwi on the moduli space Fg is
given by

.i/ ŒVwk � D .p � 1/.p2 � 1/ � � � .pk�1 � 1/�k�1
1 if 1 � k � 10,

.ii/ ŒVw11 � D
1

2
.p � 1/.p2 � 1/ � � � .p10 � 1/�101 ;

.iii/ ŒVw10Ck � D
1

2

.p2k � 1/.p2.kC1/ � 1/ � � � .p20 � 1/
.pC 1/ � � � .p11�k C 1/ �9Ck

1 if 2 � k � 10.

Here �1 D c1.L/ with L D ��.�2
X =Fg

/ is the Hodge class. Sections of L˝r

correspond to modular forms of weight r. It is known (cf. [vdG-K2]) that the class
�181 2 CH18

Q
.Fg/ vanishes on Fg. But the formulas can be made to work also on

the closure of the image Fg embedded in projective space by the sections of a
sufficiently high power of L, so that the last two formulas (involving �181 and �191 )
are non-trivial and still make sense. Note here that �1 is an ample class; this is well
known by Baily-Borel in characteristic 0, but now we know it too in characteristic
p � 3 by work of Madapusi-Pera [P1] and Maulik [M].

In particular, we can give an explicit formula for the weighted number of
superspecial K3 surfaces of genus g by using a formula for deg.�191 / from [G-H-S].
We consider the situation where we have a primitive polarization of degree d D 2d0
inside N with

N? D 2U?m E8.�1/?h�di ; (4)

where U is a hyperbolic plane and m D 0 or m D 2.
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Theorem 1.2. The weighted number

X

X superspecial=Š

1

#Autk.X/

of superspecial K3 surfaces with a primitive polarization N of degree d D 2d0 prime
to the characteristic p with N? as in (1), is given by

�1
24mC1

p8mC4 � 1
pC 1

0

@.d0/10
Y

`jd0

.1C `�4m�2/

1

A �.�1/�.�3/ � � ��.�8m � 3/

where � denotes the Riemann zeta function and ` runs over the primes dividing d0.

For m D 0 this formula can be applied to count the number of Kummer surfaces
coming from superspecial principally polarized abelian surfaces and the formula
then agrees with the formulas of [E, vdG].

Formulas like those given in (3) and in Theorem 1.1 for the classes of the height
strata were obtained in joint work with Katsura [vdG-K1] by different (ad hoc)
methods using formal groups and Witt vector cohomology; but these methods did
not suffice to calculate the cycle classes of the Artin invariant strata.

A simple corollary is (see [E-vdG2, Proposition 13.1]).

Corollary 1.3. A supersingular (quasi-)elliptic K3 surface with a section cannot
have Artin invariant �0 D 10.

This result was obtained independently by Kondo and Shimada using a different
method in [K-S, Corollary 1.6].

In addition to reviewing the results from [E-vdG2] we prove irreducibility results
for the strata; about half of the strata on the moduli space Fg are shown to be
irreducible. Here we use the local structure of the strata on the flag space.

Theorem 1.4. Let p � 3 prime to the degree d D 2g � 2. For a final element
w 2 WB

m (resp. w 2 WD
m / of length `.w/ � m the stratum Vw in Fg is irreducible.

So the strata above the supersingular locus are all irreducible. We have a similar
result in FN .

The formulas we derived deal with the group SO.n/; for K3 surfaces we can
restrict n � 21, but the formulas for larger n might find applications to the moduli of
hyperkähler varieties in positive characteristic (by looking at the middle dimensional
de Rham cohomology or at H2

dR equipped with the Beauville-Bogomolov form).
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2 Filtrations on the de Rham Cohomology of a K3 Surface

Let X be a K3 surface over an algebraically closed field of characteristic p > 2

and let N ,! NS.X/ be an isometric embedding of a non-degenerate lattice in the
Néron–Severi group NS.X/ (equal to the Picard group for a K3 surface) and assume
that N contains a semi-ample line bundle and that the discriminant of N is coprime
with p (that is, p does not divide #N_=N). We let N? be the primitive cohomology,
that is, the orthogonal complement of the image of c1.N/ of N in H2

dR.X/. It carries
a Hodge filtration

0 D U�1 � U0 � U1 � U2 D N?

of dimensions 0; 1; n � 1; n and comes with a non-degenerate intersection form for
which the Hodge filtration is self-dual: U?0 D U1. Now in positive characteristic we
have another filtration

0 D Uc�1 � Uc
0 � Uc

1 � Uc
2 D N? ;

the conjugate filtration; it is self-dual too. The reason for its existence is that the
Poincaré lemma does not hold in positive characteristic. If F W X ! X.p/ is the
relative Frobenius morphism, then we have a canonical (Cartier) isomorphism

C W Hj.F���X=k/ Š �j
X.p/=k

and we get a non-trivial spectral sequence from this: the second spectral
sequence of hypercohomology with E2-term Eij

2 D Hi.X.p/;Hj.��// which by
the inverse Cartier isomorphism C�1 W �j

X.p/
' Hj.F�.��X=k// can be rewritten as

Hi.X.p/; �j
X.p/=k

/, degenerating at the E2-term and abutting to HiCj
dR .X=k/. This leads

to a second filtration on the de Rham cohomology.
The inverse Cartier operator gives an isomorphism

F�.Ui=Ui�1/ Š Uc
2�i=Uc

1�i :

As a result we have two (incomplete) flags forming a so-called F-zip in the sense
of [M-W]. Unlike the characteristic zero situation where the Hodge flag and its
complex conjugate are transversal, the two flags in our situation are not necessarily
transversal. In fact, the K3 surface X is called ordinary if these flags are transversal
and superspecial if they coincide. These are just two extremal cases among more
possibilities.

Before we deal with these further possibilities, we recall some facts about
isotropic flags in a non-degenerate orthogonal space. Let V be a non-degenerate
orthogonal space of dimension n over a field of characteristic p > 2. We have to
distinguish the cases n odd and n even, the latter being more subtle. We look at
isotropic flags
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.0/ D V0 � V1 � � � � � Vr

with dim Vi D i in V , that is, we require that the intersection form vanishes on
Vr. We call the flag maximal if r D Œn=2�. We can complete a maximal flag by
putting Vn�j D V?j . Now if n D 2m is even, a complete isotropic flag V� determines
another complete isotropic flag by putting V 0i D Vi for i < n=2 and by taking for V 0m
the unique maximal isotropic space containing Vm�1 but different from Vm. We call
this flag V 0� the twist of V�.

In fact, if n is even, the group SO.n/ does not act transitively on complete flags.
Given two complete isotropic flags their relative position is given by an element

of a Weyl group. If n is odd, we let WB
m be the Weyl group of SO.2mC 1/. It can be

identified with the following subgroup of the symmetric group S2mC1

f� 2 S2mC1 W �.i/C �.2mC 2 � i/ D 2mC 2 for all 1 � i � 2mC 1g:

The fact is now that the SO.2m C 1/-orbits of pairs of totally isotropic complete
flags are in 1-1 correspondence with the elements of WB

m given by

w ! 	X

j
i

k � ej;
X

j
i

k � ew�1.j/




with the ei a fixed orthogonal basis with hei; eji D ıi;2mC2�j. The simple reflections
si 2 WB

m for i D 1; : : : ;m are given by si D .i; iC1/.2mC1� i; 2mC2� i/ if i < m
and by sm D .m;mC 2/, and will play an important role here.

But in the case that n D 2m is even we have to replace the Weyl group WC
m

(of O.2m/) given by

˚
� 2 S2m W �.i/C �.2mC 1 � i/ D 2mC 1 for all 1 � i � 2m

�

by the index 2 subgroup WD
m given by the extra parity condition

#f1 � i � m W �.i/ > mg � 0 .mod2/:

The simple reflections si 2 WD
m are given by si D .i; i C 1/.2m � i; 2m C 1 � i/

for i < m and by sm D .m � 1;mC 1/.m;mC 2/. In the larger group WC
m we have

the simple reflections si with 1 � i � m � 1 and s0m D .m;m C 1/. Note that s0m
commutes with the si for i D 1; : : : ;m � 2 and conjugation by it interchanges sm�1
and sm.

The SO.2m/-orbits of pairs of totally isotropic complete flags are in bijection
with the elements of WC

m given by

w ! 	X

j
i

k � ej;
X

j
i

k � ew�1.j/




with basis ei with hei; eji D ıi;2mC1�j. Twisting the first (resp. second) flag
corresponds to changing w to ws0m (resp. s0mw).
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Back to K3 surfaces. We can refine the conjugate flag on H2
dR.X/ to a full

(increasing) flag D� and use the Cartier operator to transfer it back to a decreasing
flag C� on the Hodge filtration U�. We thus get two full flags.

Definition 2.1. A full flag refining the conjugate filtration is called stable if
Dj \ Ui C Ui�1 is an element of the C� filtration or of its twist. A flag is called
final if it is stable and complete.

Final flags correspond to the so-called final elements in the Weyl group defined as
follows. Elements in the Weyl group WB

m (resp. WD
m ) which are reduced with respect

to the set of roots obtained after removing the first root [so that the remaining roots
form a root system of type Bm�1 (resp. Dm�1)] are called final elements.

If n D 2mC 1 is odd, we have 2m final elements in WB
m. These are the elements

� given by Œ�.1/; �.2/; : : : ; �.m/� and we can list these as w1 D Œ2mC 1; 2; 3; : : :�,
w2 D Œ2m; 1; 3; : : :�; : : : ;w2m D Œ1; 2; : : : ;m�. These final elements wj are linearly
ordered by their length `.wj/ D 2m � j, with w1 being the longest element and w2m

equal to the identity element.
If n D 2m, then we also have 2m final elements in WC

m , but these are no longer
linearly ordered by their length, but the picture is rather

wm+1

w1 w2 · · · wm−1 wm+2 · · · w2m

wm

Conjugation by s0m interchanges the two final elements of length m � 1. This
corresponds to twisting a complete isotropic flag. We shall denote wjs0m by w0j and
we shall call these twisted final elements.

The following theorem shows that we can read off the height h.X/ of the formal
Brauer group and the Artin invariant �0.X/ from these final filtrations on H2

dR.
The following theorem is proven in [E-vdG2]. Recall that the discriminant of N
is assumed to be prime to p.

Theorem 2.2. Let X be a K3 surface with an embedding N ,! NS.X/ and let
H � H2

dR be the primitive part of the cohomology with n D dim.H/ and m D Œn=2�.
Then H possesses a final filtration; all final filtrations are of the same combinatorial
type w. Moreover,

(i) X has finite height h < n=2 if and only if w D wh or w0h.
(ii) X has finite height h D n=2 if and only if w D w0m.

(iii) X has Artin invariant �0 < n=2 if and only if w D w2mC1��0 or w D w02mC1��0 .
(iv) X has Artin invariant �0 D n=2 if and only if w D wmC1.



396 G. van der Geer

In case (i) [resp. in case (iii)] we can distinguish these cases w D wh or w D w0h
(resp. w D wn��0 or w D w0n��0) for even n by looking whether the so-called middle
part of the cohomology is split, or equivalently, by the sign of the permutation w.
We get w0h in case (i) exactly if w is an odd permutation and in case (iii) we get
w D wn��0 exactly if w is an even permutation.

Looking at the diagram above one sees that the theorem excludes one of the two
possibilities corresponding to the two final elements wm and wmC1 of length m. This
is analyzed in detail in [E-vdG2, Sect. 5]. It then agrees with the fact that the (closed)
strata defined by the height and the Artin invariant are linearly ordered by inclusion,
whereas the final wi in the above diagram are not.

3 Strata on the Flag Space

Suppose that we have a family f W X ! S of N-marked K3 surfaces over a smooth
base S. We shall make a versality assumption. At a geometric point s of S we have
the Kodaira-Spencer map TsS! H1.Xs;T1Xs

/. We have a natural map H1.Xs;T1Xs
/!

Hom.H0.Xs; �
2
Xs
/;H1.Xs; �

1
Xs
// and we can project H1.Xs; �

1
Xs
/ to the orthogonal

complement P of the image of N ,! NS.Xs/ in H1.Xs; �
1
Xs
/.

Assumption 3.1. The versality assumption is the requirement that the resulting map

TsS! Hom.H0.Xs; �
2
Xs
/;P/

is surjective.

The primitive cohomology forms a vector bundle H of rank n over S. It comes with
two partial orthogonal isotropic flags: the conjugate flag and the Hodge flag. If we
choose a complete orthogonal flag refining the conjugate filtration and transfer it to
the Hodge filtration by the Cartier operator we get two flags and we can measure
the relative position. This defines strata on S. This implies that we have to choose a
flag and we are thus forced to work on the flag space B over S (or BN over FN) of
complete isotropic flags refining the Hodge filtration. (Since we are using FN for the
moduli space of N-polarized K3 surfaces we use another letter for the flag space;
say BN for banner).

To define the strata scheme-theoretically we consider the general case of a semi-
simple Lie group G and a Borel subgroup B and a G=B-bundle R ! Y over some
scheme Y with G as structure group. Let ri W Y ! R (i D 1; 2) be two sections. If w
is an element of the Weyl group W of G we define a locally closed subscheme Uw of
Y as follows. We choose locally (possibly in the étale topology) a trivialization of R
such that r1 is a constant section. Then r2 corresponds to a map Y ! G=B and we
define Uw (resp. Uw) to be the inverse image of the B-orbit BwB (resp. of its closure).

We thus find strata Uw and Uw of BN ; it turns out that Uw is the closure of Uw.
It might seem that working on the flag space brings us farther from the goal of
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defining and studying strata on the base space S or on the moduli spaces. However,
working with the strata on the flag space has the advantage that the strata are much
better behaved there.

The space BN together with the strata Uw is a stratified space. The space F ln
of complete self-dual flags on an orthogonal space V also carries a stratification,
namely by Schubert cells. It is fiber space over the space of maximal isotropic
subspaces In.

The main idea is now that our space BN over FN locally at a point up to the
.p � 1/st infinitesimal neighborhood looks like F ln ! In at a suitable point as
stratified spaces. This idea was developed in [E-vdG1] and here it profitably can be
used too.

If .R;m/ is a local ring the height 1 hull of R (resp. of S D Spec.R/) is R=m.p/

(resp. Spec.R=m.p//) with m.p/ the ideal generated by the pth powers of elements of
m. It defines the height 1 neighborhood of the point given by m. We call two local
rings height 1-isomorphic if their height 1 hulls are isomorphic.

Theorem 3.2. Let k be a perfect field of characteristic p. For each k-point x of BN

there exists a k-point y of F ln such that the height 1 neighborhood of x is isomorphic
(as stratified spaces) to the height 1 neighborhood of y.

Indeed, we can trivialize the de Rham cohomology with its Gauss–Manin
connection on the height 1 neighborhood of x (because the ideal of x has a divided
power structure for which divided powers of degree � p are zero). This has strong
consequences for our strata, cf. the following result from [E-vdG2].

Theorem 3.3. The strata Uw on the flag space BN satisfy the following
properties:

(1) The stratum Uw is smooth of dimension equal to the length `.w/ of w.
(2) The closed stratum Uw is reduced, Cohen-Macaulay and normal of dimension

`.w/ and equals the closure of Uw.
(3) If w is a final element, then the restriction ofBN ! FN toUw is a finite surjective

étale covering from Uw to its image Vw.

The degrees of the maps �w W Uw ! Vw for final w coincide with the
number of final filtrations of type w and these numbers can be calculated explicitly.
For example, for wi 2 WB

m with 1 � i < m we have

deg�wi= deg�wiC1
D p2m�2i�1 C p2m�2i�2 C � � � C 1:

4 The Cycle Classes

We consider a family of N-polarized K3 surfaces X ! S with S smooth and
satisfying the versality Assumption 3.1. Our strategy in [E-vdG2] is to apply
inductively a Pieri formula to the final strata, which expresses the intersection
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�1 � ŒUw� as a sum over the classes ŒU v�, where v is running through the elements of
the Weyl group of the form v D ws˛ with s˛ simple and `.ws˛/ D `.w/� 1. In fact,
we use a Pieri formula due to Pittie and Ram [P-R]. In general these elements v of
colength 1 are not final and this forces us to analyze what happens with the strata
Uv under the projection BN ! FN . It turns out that for a non-final stratum either the
projection is to a lower-dimensional stratum or factors through an inseparable map
to a final stratum. The degree of these inseparable maps can be calculated. In the
case of a map to a lower dimensional stratum we can neglect these for the cycle
class calculation.

So suppose that for an element w in the Weyl group we have `.wsi/ D `.w/ � 1
for some 1 < i � m. This means that if A� and B� denote the two flags, that the
image of Bw.iC1/ \ AiC1 in AiC1=Ai is 1-dimensional and thus we can change the
flag A� to a flag A0� by setting A0j D Aj for j ¤ i and A0i=Ai�1 equal to the image of
Bw.iC1/ \ AiC1. This gives us a map

�w;i W Uw ! FN ; .A�;B�/ 7! .A0�;B�/:

In this situation the image depends on the length `.siwsi/:

Lemma 4.1. If `.siwsi/ D `.w/, then the image of �w;i is equal to Usiwsi and the
map is purely inseparable of degree p. If `.siwsi/ D `.w/ � 2, then �w;i maps onto
Uwsi [ Usiwsi and the map �w;i is not generically finite.

We then analyze in detail the colength 1 elements occurring and whether they
give rise to projections that lose dimension or are inseparable to final strata. This is
carried out in detail in [E-vdG2, Sects. 9–11]. In this way the Pieri formula enables
us to calculate the cycle classes.

The result for the cycle classes of the strata Vwi in the case that n is odd (and with
m D Œn=2�) reads (cf. [E-vdG2]):

Theorem 4.2. The cycle classes of the final strata Vw on the base S are polynomials
in �1 with coefficients that are polynomials in 1

2
ZŒp� given by

.i/ ŒVwk � D .p � 1/.p2 � 1/ � � � .pk�1 � 1/�k�1
1 if 1 � k � m,

.ii/ ŒVwmC1
� D 1

2
.p � 1/.p2 � 1/ � � � .pm � 1/�m

1 ;

.iii/ ŒVwmCk � D
1

2

.p2k � 1/.p2.kC1/ � 1/ � � � .p2m � 1/
.pC 1/ � � � .pm�kC1 C 1/ �mCk�1

1 if 2 � k � m.

In the case where n is even the result for the untwisted final elements is the
following:

Theorem 4.3. The cycle classes of the final strata Vw for final elements w D wj 2
WD

m on the base S are powers of �1 times polynomials in 1
2
ZŒp� given by
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.i/ ŒVwk � D .p � 1/.p2 � 1/ � � � .pk�1 � 1/�k�1
1 if k � m � 1,

.ii/ ŒVwmC1
� D .p � 1/.p2 � 1/ � � � .pm�1 � 1/�m�1

1 ;

.iii/ ŒVwmCk � D
1

2

Qm�1
iD1 .pi � 1/Qm

iDm�kC2.pi C 1/
Qk�2

iD1.pi C 1/Qk�1
iD1.pi � 1/ �mCk�2

1 if 2 � k � m.

Furthermore, we have that Vwm D ;.

Finally in the twisted even case we have

Theorem 4.4. The cycle classes of the final strata Vw for twisted final elements
w D wj 2 WD

m s0m on the base S are powers in �1 with coefficients that are
polynomials in 1

2
ZŒp� given by

.i/ ŒVwk � D .p � 1/.p2 � 1/ � � � .pk�1 � 1/�k�1
1 if k � m � 1,

.ii/ ŒVwm � D .p � 1/.p2 � 1/ � � � .pm � 1/�m�1
1 ;

.iii/ ŒVwmCk � D
1

2

Qm
iD1.pi � 1/Qm�1

iDm�kC2.pi C 1/
Qk�1

iD1.pi C 1/Qk�2
iD1.pi � 1/ �mCk�2

1 if 2 � k � m.

Furthermore, we have VwmC1
D ;.

5 Irreducibility

In this section we shall show that about half of the 2m strata Vwi on our moduli space
FN of N-polarized K3 surfaces are irreducible (m strata in the B-case, m � 1 in the
D-case).

Theorem 5.1. Let p � 3 and assume that FN is the moduli space of primitively
N-polarized K3 surfaces where N_=N has order prime to p. If w 2 WB

m (resp. w 2
WD

m or w 2 WD
m s0m) is a (twisted) final element with length `.w/ � m, then the locus

Vw in FN is irreducible.

Proof. (We do the B-case, leaving the other case to the reader.) The idea behind the
proof is to show that for 1 � i � m the stratum Uwi is connected in the flag space
BN . Note that FN is connected by our assumptions. By Theorem 3.3 the stratum Uwi

is normal, so if it is connected it must be irreducible. But then its image Vwi in FN

is irreducible as well. This shows the advantage of working on the flag space.
To show that Uwi is connected in BN we use that its 1-skeleton is connected, that

is, that the union of the 1-dimensional strata that it contains, is connected and that
every irreducible component of Uwi intersects the 1-skeleton. To do that we prove
the following facts:

(1) The loci Vwi in FN are connected for i < 2m (that is, for wi ¤ 1).
(2) Any irreducible component of any Uw contains a point of U1.
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(3) The union [m
iD2 U si intersected with a fiber of BN ! FN over a point of the

superspecial locus V1 is connected.
(4) For 1 � i � m the locus Uwi contains [m

iD1U si .

In the proof we use the fact that the closure of strata on the flag space is given
by the Bruhat order in the Weyl group: Uv occurs in the closure of Uw if v � w in
the Bruhat order. Furthermore, we observe that one knows by [M, P1] that �1 is an
ample class.

Together (1) and (3) will prove that the locus [m
iD1U si (whose image in FN is

V2m�1) is connected. We begin by proving (1).
Sections of a sufficiently high multiple of �1 embed FN into projective space and

we take its closure FN . By the result of Theorem 4.2 (resp. 4.3 and 4.4) we know
that the cycle class ŒVwi � is a multiple of �i�1

1 , so these loci are connected in FN for
i � 1 < dimFN . In particular, the 1-dimensional locus Vw2m�1 in FN (which equals
its closure in FN) is connected. On any irreducible component of Y of Vwi in FN

with i < 2m � 1 the intersection with Vw2m�1 is cut out by a multiple of a positive
power of �1, hence it intersects this locus (in FN). Since Vwi contains Vw2m�1 for
i < 2m � 1 the connectedness follows.

To prove (4) consider the reduced expression for wi for i � m: it is
sisiC1 � � � smsm�1 � � � s1, see [E-vdG2, Lemma 11.1]. This shows that all the si occur
in it and we see that the U si for i D 1; : : : ;m occur in the closure of Uwi .

The proof of (2) is similar to the proof of [E-vdG1, Proposition 6.1] and uses
induction on the Bruhat order. If `.w/ � 2m � 2 then Uw is proper in BN . If an
irreducible component has a non-empty intersection with a Uw0 with w0 > w, then
induction provides a point of U1; otherwise, we can apply a version of the Raynaud
trick as in [E-vdG1, Lemma 6.2] and conclude that w D 1. If `.w/ D 2m � 1, then
the image of any irreducible component Y of Uw in FN is either contained in Vw3
and then Y is proper in BN or the image coincides with Vw2 . In the latter case it
maps in a generically finite way to it and therefore any irreducible component Y of
Uw intersects the fibers over the superspecial points, hence by induction contains a
point of U1.

For (3) we now look in the fiber Z of the flag space over the image of a point of
U1. This corresponds to a K3 surfaces for which the Hodge filtration U�1 � U0 �
U1 � U2 D H coincides with the conjugate filtration Uc�1 � Uc

0 � Uc
1 � Uc

2 D H.
Moreover, we have the identifications

F�.U0/ Š .Uc
2=Uc

1/ D .Uc
0/
_ D U_0 ;

given by Cartier and the intersection pairing and similarly

F�.U1=U0/ Š .U1=U0/
_;

giving U0 and U1=U0 (and also U2=U1/) the structure of a p-unitary space. Indeed, if
S is an Fp-scheme then a p-unitary vector bundle E over S is a vector bundle together
with an isomorphism F�.E/ Š E� with F the absolute Frobenius. This gives rise to a
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bi-additive map h ; i W E � E ! OS satisfying hfx; yi D f phx; yi and hx; fyi D f hx; yi
for f a section of OS. In the étale topology this notion is equivalent to a local system
of Fp2-vector spaces, cf. [E-vdG1, Proposition 7.2].

In case that S D Spec.Fp2 / we can then consider the flag space Z of complete
p-unitary flags on U1=U0. The smallest p-unitary stratum there is the stratum of flags
that coincide with their p-unitary dual. Such flags are defined over Fp2 as one sees
by taking the dual once more.

So we look now at self-dual flags A� D fA1 � A2 � � � � � A2m�1g on A D U1=U0

and we compare the flag A.p/� with the flag A�. (Note that the indices i now run
from 1 to m � 1 instead of from 1 to m since we leave U0 fixed.) For an element
s D .i; i C 1/ with 1 � i � m � 2 we look at the intersection of the stratum U s

with the fiber Z. It consists of those flags A� with the property that the steps Aj for
j ¤ i and j ¤ 2m � 1 � i are Fp2-rational and that for all j we have Aj D A?2m�1�j.
We see that we can choose Ai freely by prescribing its image in AiC1=Ai�1, hence
this locus is a P

1. In case s D .m � 1;mC 1/ we have to choose a space Am�1 and
its orthogonal Am D A?m�1 in Am�1 � Am�1 � Am � AmC1. Now all non-degenerate
p-unitary forms are equivalent, so we may choose the form xpC1 C ypC1 C zpC1 on
the 3-dimensional space AmC1=Am�2. So in this case U s is isomorphic to the Fermat
curve. The points of U1 are the Fp2-rational points on it.

In case the space A D U1=U0 is even-dimensional, say dim A D 2m�2 the same
argument works for si with 1 � i � m� 2. For s D .m� 2;m/.m� 1;mC 1/ (resp.
for s D .m � 1;m/) we remark that it equals s0sm�2s0 with s0 D .m � 1;m/, hence
we find a P

1 by picking a flag Am�2 � Am�1 � Am.

This shows that we remain in the same connected component of U .1/ \ Z, with
U .1/ the union of the 1-dimensional strata Uv , if we change the flag A� at place i

and 2m� 1� i compatibly. By Lemma 7.6 of [E-vdG1] this implies that U .1/ \ Z is
connected. ut
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The Right Adjoint of the Parabolic Induction

Marie-France Vignéras

Abstract We extend the results of Emerton on the ordinary part functor to the
category of the smooth representations over a general commutative ring R, of a
general reductive p-adic group G (rational points of a reductive connected group
over a local non-archimedean field F of residual characteristic p). In Emerton’s
work, the characteristic of F is 0, R is a complete artinian local Zp-algebra having a
finite residual field, and the representations are admissible. We show:

The smooth parabolic induction functor admits a right adjoint. The center-locally
finite part of the smooth right adjoint is equal to the admissible right adjoint of
the admissible parabolic induction functor when R is noetherian. The smooth and
admissible parabolic induction functors are fully faithful when p is nilpotent in R.

1 Introduction

Let R be a commutative ring, let F be a local non-archimedean field of finite residual
field of characteristic p, let G be a reductive connected F-group. Let P;P be two
opposite parabolic F-subgroups of unipotent radicals N;N and same Levi subgroup
M D P \ P. Let AM be the maximal F-split central subtorus of M. The groups of
F-points are denoted by the same letter but not in bold. The parabolic induction
functor IndG

P W Mod1R .M/ ! Mod1R .G/ between the categories of smooth R-
representations of M and of G, is the right adjoint of the N-coinvariant functor,
and respects admissibility.

For any .R;F;G/, we show that IndG
P admits a right adjoint RG

P .
When R is noetherian, we show that the AM-locally finite part of RG

P respects
admissibility, hence is the right adjoint of the functor IndG

P between admissible
R-representations.

When 0 is the only infinitely p-divisible element in R, we show that the counit of
the adjoint pair .�N ; IndG

P /, is an isomorphism. Therefore, IndG
P is fully faithful and

the unit of the adjoint pair .IndG
P ;R

G
P / is an isomorphism.
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The results of this paper have already be used in [HV] to compare the parabolic
and compact inductions of smooth representations over an algebraically closed field
R of characteristic p for any pair .F;G/, following the arguments of Herzig when
the characteristic of F is 0 and G is split. The comparison is a basic step in the
classification of the non-supersingular admissible irreducible representations of G
(work in progress1 with Abe, Henniart, and Herzig, see also Ly’s work [Ly] for
GL.n;D/ where D=F is a finite dimensional division algebra).

When p is invertible in R, it was known that IndG
P has a right adjoint, called

also the “second adjoint.” When R is the field of complex numbers, Casselman for
admissible representations, and Bernstein in general proved that the right adjoint
is equal to the N-coinvariant functor multiplied by the modulus of P. Another
proof was published by Bushnell [Bu]. Both proofs rely on the property that the
category ModC.G/ is noetherian. Conversely, Dat [Dat] proved that the second
adjointness implies the noetheriannity of ModR.G/ and prove it assuming the
existence of certain idempotents (constructed using the theory of types for linear
groups, classical groups if p ¤ 2, and groups of semi-simple rank 1). Under
this hypothesis on G, Dat showed also that the N-coinvariant functor respects
admissibility.

When the characteristic of F is 0 and R is a complete artinian local Zp-algebra
having finite residual field, Emerton [Emerton] showed that IndG

P restricted to
admissible representations has a right adjoint equal to the ordinary part functor
OrdP. Introducing the derived ordinary functors he showed also that the N-
coinvariant functor respects admissibility [Emerton2, 3.6.7 Cor].

In Sect. 2 we give precise definitions and references to the literature on adjoint
functors and on grothendieck abelian categories.

In Sects. 3 and 4, the existence of a right adjoint of IndG
P W Mod1R .M/ !

Mod1R .G/ is proved using that Mod1R .G/ is a grothendieck abelian category and
that IndG

P is an exact functor commuting with small direct sums. This method does
not apply to the functor IndG

P W Modadm
R .M/ ! Modadm

R .G/ because the category of
smooth admissible R-representations is not grothendieck in general. It is not even
known if it is an abelian category when R is a field of characteristic p as well as F.

In Sect. 5, we assume that p is nilpotent in R; we show the vanishing of the
N-coinvariants of indPgP

P when PgP ¤ P and that the counit of the adjunction
.�N ; IndG

P / is an isomorphism; the general arguments of Sect. 2 imply that the unit
of the adjunction .IndG

P ;R
G
P / is an isomorphism and that IndG

P is fully faithful. When
R is noetherian, IndG

P W Modadm
R .M/! Modadm

R .G/ is also obviously fully faithful.
In Sect. 6, we replace G by its open dense subset PP. The partial compact

induction functor indPP
P W Mod1R .M/ ! Mod1R .P/ admits a right adjoint RPP

P by
the general method of Sect. 2. Let ResG

P
W ModR.G/ ! ModR.P/ be the restriction

functor. Let AM be the split center of M. We fix an element z 2 AM strictly
contracting N. We prove that the z-locally finite parts of RG

P and of RPP
P ı ResG

P
are

1This work is now written in N. Abe, Noriyuki, G. Henniart, F. Herzig, M.-F. Vignéras - A
classification of admissible irreducible modulo p representations of reductive p-adic groups. To
appear in Journal of the A.M.S. 2016.
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isomorphic. The right adjoint RPP
P
W Mod1R .P/! Mod1R .M/ of indPP

P
is explicit: it

is the smooth part of the functor HomRŒN�.C1c .N;R/;�/.
In Sect. 7, following Casselman and Emerton, we give the Hecke description

of the above functor RPP
P
W Mod1R P ! Mod1R .M/. We fix an open compact

subgroup N0 of N. The submonoid MC of elements of M contracting N0 acts
on VN0 by the Hecke action. We have the smooth induction functor IndM

MC
W

Mod1R .MC/ ! Mod1R .M/. We show that RPP
P

is the functor V 7! IndM
MC
.VN0 /.

The AM-locally finite part of this functor is the Emerton’s ordinary part functor
OrdP W Mod1R P! Mod1R .M/.

In Sect. 8 we assume that R is noetherian and we show that OrdP.V/ is admissible
when V is an admissible R-representation of G. Therefore the parabolic induction
functor IndG

P W Modadm
R M ! Modadm

R G admits a right adjoint equal to the functor
OrdG

P
W OrdP ıResG

P
. The unit of the adjunction .IndG

P ;OrdP/ is an isomorphism2.
I thank Noriyuki Abe, Florian Herzig, Guy Henniart, and Michael Rapoport for

their comments and questions, and the referee for an excellent report, allowing me
to improve the paper and to correct some mistakes.

2 Review on Adjunction Between Grothendieck
Abelian Categories

We fix a universe U and we denote by Set the category of U-sets, i.e., belonging to
U . In a small category, the set of objects is U-small, i.e., isomorphic to a U-set, as
well as the set of morphisms Hom.A;B/ for any objects A and B. In a locally small
category, only the set Hom.A;B/ is supposed to be U-small. (In [KS, 1.1, 1.2], small
is called U-small, and a locally small category is called a U-category.)

Let I be a small category and let C;D be locally small categories. We denote
by Cop the opposite category of C and by DC the category of functors C ! D. A
contravariant functor C ! D is a functor Cop ! D. The categories SetC

op
;SetC are

not locally small in general (if C is not small) [KS, Definition 1.4.2].

Proposition 2.1 ([KS, Definition 1.2.11, Corollary 1.4.4]). The contravariant
Yoneda functor : C 7! Hom.C;�/ W C ! SetC and the covariant Yoneda functor :
C 7! Hom.�;C/ W C ! SetC

op
are fully faithful.

A functor F in SetC or in SetC
op

is called representable when it is isomorphic to
the image of an object C 2 C by the Yoneda functor [KS, Definition 1.4.8]. The
object C which is unique modulo unique isomorphism is called a representative
of F.

2We know now that RG
P respects the admissibility (N. Abe, Noriyuki, G. Henniart, F. Herzig, M.-F.

Vignéras - Mod p representations of reductive p-adic groups: functorial properties. In progress,
2016.)
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A functor F W I ! C defines functors

lim�! F 2 SetC C 7! HomCI .F; ctC/; lim � F 2 SetC
op

C 7! HomCI .ctC;F/;

where ctC W I ! C is the constant functor defined by C 2 C. When the functor
lim�!F is representable, a representative is called the injective limit (or colimit or
direct limit) of F, is denoted also by lim�!F, and we have natural isomorphism [ML,
III.4 (2), (3)]

lim�!F.C/ D HomCI .F; ctC/ ' HomC.lim�!F;C/:

When the functor lim �F is representable, a representative is called the projective
limit (or inverse limit or limit) of F, is denoted also by lim �F, and we have natural
isomorphism

lim �F.C/ D HomCI .ctC;F/ ' HomC.C; lim �F/:

One says also that .F.i//i2I is an inductive or projective system in C indexed by I
or Iop and one writes lim�!.F.i//i2I or lim �.F.i//i2Iop for the object lim�!F or lim �F.

Example 2.2. (1) A set of objects .Ci/i2I of C indexed by a set I can be viewed
as a functor F W I ! C where I is identified with a discrete category (the only
morphisms are the identities). When they exist, lim�!F D ˚i2ICi is the direct
sum, or coproduct, or disjoint union ti2ICi, and lim �F D Q

i2I Ci is the direct
product.

(2) When I has two objects and two parallel morphisms other than the identities, a
functor F W I ! C is nothing but two parallels arrows C1�!�!g

f C2 in C. When
they are representable, lim�!F is the cokernel of .f ; g/ and lim �F is its kernel [KS,
Definition 2.2.2].

(3) When they are representable, it is possible to construct the inductive (resp.
projective) limit of a functor F W I 7! C, using only coproduct and cokernels
(resp. products and kernels) [KS, Proposition 2.2.9]. If Hom.I/ denotes the set
of morphisms s W �.s/! �.s/ with �.s/; �.s/ 2 I, of the category I,

lim�!F is the cokernel of f ; g W ˚s2Hom.I/F.�.s//
g�!�!
f
˚i2IF.i/; (1)

where f ; g correspond, respectively, to the two morphisms idF.�.s//;F.s/, for
s 2 Hom.I/,

lim �F is the kernel of
Y

i2I
F.i/

g�!�!
f

Y

s2Hom.I/
F.�.s//;

where f ; g are deduced from the morphisms idF.�.s//;F.s/ W F.�.s// �
F.�.s//

g�!�!
f

F.�.s// for s 2 Hom.I/.
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A non-empty category C is called filtrant if, for any two objects C1;C2 there exist

morphisms C1 ! C3;C2 ! C3, and for any parallel morphisms C1
g�!�!
f

C2, there

exists a morphism h W C2 ! C3 such that h ı f D h ı g [KS, Definition 3.1.1].
Let F W C 7! D be a functor. For U 2 D, we have the category CU whose objects

are the pairs .X; u/ with X 2 C; u W F.X/ ! U in Hom.D/. We say that F is right
exact if the category CU is filtrant for any U 2 D, and that F is left exact if the
functor Fop W Dop ! Cop is right exact [KS, 3.3.1].

Proposition 2.3. Let a functor F W C 7! D.

(1) When C admits finite projective limits, F is left exact if and only if it commutes
with finite projective limits. In this case, F commutes with the kernel of parallel
arrows.

(2) When C admits small projective limits, F is left exact and commutes with small
direct products, if and only if F commutes with small projective limits.

(3) The similar statements hold true for right exact functors, inductive limits, small
direct sums, and cokernels.

Proof. (1) See [KS, Proposition 3.3.3, Corollary 3.3.4].
(2) If F preserves small projective limits, F is left exact and preserves small direct

products [Example 2.2 (1)]. Conversely, from (1), a left exact functor which
commutes with small direct products preserves small projective limits because
it commutes with the kernel of the parallel arrows.

(3) Replace C by Cop. ut
Let F W C ! D and G W D ! C be two functors. Then .F;G/ is a pair of adjoint

functors, or F is the left adjoint of G, or G is the right adjoint if F, if their exists an
isomorphism of bifunctors from Cop � C to Set

HomD.F.:/; :/ ' HomC.:;G.://;

called the adjunction isomorphism [KS, Definition 1.5.2]. The functor F determines
the functor G up to unique isomorphism and G determines F up to unique
isomorphism [KS, Theorem 1.5.3]. For X 2 C, the image of the identity idF.X/ 2
HomD.F.X/;F.X// by the adjunction isomorphism is a morphism X 7! G ı F.X/.
Similarly, for Y 2 D, the image of idG.Y/ is a morphism F ı G.Y/ ! Y. The
morphisms are functorial in X and Y. The corresponding morphisms of functors are
called the unit and the counit :

� W 1C ! G ı F; � W F ı G! 1D:

Proposition 2.4. Let .F;G/ be a pair of adjoint functors.
F is fully faithful if and only if the unit � W 1! G ı F is an isomorphism.
G is fully faithful if and only if the counit � W F ı G! 1 is an isomorphism.
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F and G are fully faithful if and only if F is an equivalence (fully faithful
and essentially surjective [KS, Definition 1.2.11,1.3.13] if and only if G is an
equivalence. In this case F and G are quasi-inverse one to each other.

Proof. See [KS, Proposition 1.5.6]. ut
Proposition 2.5. Let .F;G/ be a pair of adjoint functors. Then F is right exact and
G is left exact.

Proof. See [KS, Proposition 3.3.6]. ut
Let A be a locally small abelian category. A generator of A is an object E 2 A

such that the functor Hom.E;�/ W A ! Set is faithful (i.e., any object of A is a
quotient of a small direct sum ˚iE). If A admits small inductive limits, the functor
between abelian categories

F 7! lim�! F W AI ! A

is additive and right exact.

Definition 2.6 ([KS, Definition 8.3.24]). A locally small abelian category A is
called grothendieck if it admits a generator, small inductive limits, and the small
filtered inductive limits are exact.

Example 2.7. Given a ring R 2 U , the category of left R-modules in U is small,
abelian, and grothendieck with generator R.

Proof. See [KS, Example 8.3.25]. ut
Proposition 2.8. A grothendieck abelian locally small category admits small pro-
jective limits.

Proof. See [KS, Proposition 8.3.27]. ut
Proposition 2.9. Let a functor F W A ! C where A is a grothendieck abelian
locally small category. The following properties are equivalent:

(1) F admits a right adjoint,
(2) F commutes with small inductive limits,
(3) F is right exact and commutes with small direct sums.

Proof. See [KS, Proposition 8.3.27]. ut
A similar statement characterizes the existence of a left adjoint.

3 The Category Mod1
R .G/

Let R be a commutative ring, let G be a second countable locally profinite group
(for instance, a parabolic subgroup of a reductive p-adic group), and let .Kn/n2N be a
strictly decreasing sequence of pro-p-open subgroups of G, with trivial intersection,
such that Kn normal in K0 for all n.
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3.1 Mod1
R .G/ is Grothendieck

A R-representation V of G is a left RŒG�-module. A vector v 2 V is called smooth
when it is fixed by an open subgroup of G. The set of smooth vectors of V is a
RŒG�-submodule of V , equal to V1 D [n2NVKn where VKn is the submodule of
v 2 V fixed by Kn. When every vector of V is smooth, V is called smooth. [The
same definition applies to a locally profinite monoid (the maximal subgroup is open
and locally profinite).]

Example 3.1. The module Cc.G;R/ of functions f W G ! R with compact support
is a RŒG � G�-module for the left and right translations. For n 2 N, the submodule
Cc.KnnG;R/ of compactly supported functions left invariant by Kn is a smooth
representation of G for the right translation. These submodules form a strictly
increasing sequence of union the smooth part C1c .G;R/ of Cc.G;R/.

We allow only the R-modules of cardinal < c for some uncountable strong
limit cardinal c > jRj, so that the R-representations of G form a set rather than
a proper class (we work in the same artinian universe Uc [SGA4, Exposé 1, p. 4];
the cardinal of HomRG.V;V 0/ is < c for two R-representations V;V 0 of G). The
abelian category ModR.G/ of left RŒG�-modules is small, grothendieck of generator
RŒG� (Example 2.7), and contains the abelian full subcategory Mod1R .G/ of smooth
R-representations of G.

Lemma 3.2. Mod1R .G/ is a grothendieck category of generator˚n2NCc.KnnG;R/.
Proof. An arbitrary direct sum of smooth R-representations of G is smooth. The
cokernel of two parallel arrows in Mod1R .G/ is smooth hence Mod1R .G/ admits
small inductive limits [Example 2.2 (3)]. Small filtered inductive limits are exact
because they are already exact in the grothendieck category ModR.G/. ut

For W 2 Mod1R .G/;V 2 ModR.G/we have HomRŒG�.W;V/ D HomRŒG�.W;V1/.
The smoothification

V 7! V1 W ModR.G/! Mod1R .G/

is the right adjoint of the inclusion Mod1R .G/ ! ModR.G/, hence is left exact
(Proposition 2.5). The smoothification is never right exact if G is not the trivial
group [Viglivre, I.4.3] hence does not have a right adjoint (Proposition 2.5).

3.2 Admissibility and z-Finiteness

Definition 3.3. An R-representation V of G is called admissible when it is smooth
and for any compact open subgroup H of G, the R-module VH of H-fixed elements
of V is finitely generated.

When R is a noetherian ring, we consider the category Modadm
R .G/. It may not

have a generator or small inductive limits. Worse, it may be not abelian.
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Example 3.4. Let R be an algebraically closed field of characteristic p and G D
G.F/ a group as in the introduction. Given an open pro-p-subgroup I of G, a non-
zero smooth R-representation of G contains a non-zero vector fixed by I; the set
of irreducible admissible R-representations of G (modulo isomorphism) is infinite.
Therefore their direct sum is not admissible. But it is a quotient of a generator of
Modadm

R .G/, if a generator exists. If the quotient of an admissible representation
remains admissible, a generator cannot exist. The admissibility is preserved by
quotient when the characteristic of F is zero [VigLang], but this is unknown when
the characteristic of F is p.

Let H any subset of the center of G, and let V 2 ModR.G/.

Definition 3.5. An element v 2 V is called H-finite if the R-module RŒH�v is
contained in a finitely generated R-submodule of V .

The subset VH-lf of H-finite elements is a R-subrepresentation of V , called the H-
locally finite part of V . When every element of V is H-finite, V is called H-locally
finite. The category ModH-lf

R .G/ of H-locally finite smooth R-representations of G
is a full abelian subcategory of Mod1R .G/. The H-locally finite functor

V 7! VH-lf W Mod1R .G/! ModH-lf
R .G/ (2)

is the right adjoint of the inclusion ModH-lf
R .G/! Mod1R .G/.

Lemma 3.6. If V is admissible, then V is H-locally finite.

Proof. Let v 2 V . As V is smooth, v 2 VKn for some n 2 N. As V is admissible,
VKn is a finitely generated R-module. As H is central, VKn is H-stable. ut

4 The Right Adjoint RG
P of IndG

P W Mod1
R .M/ ! Mod1

R .G/

Let F be a local non-archimedean field of finite residue field of characteristic p, let
G be a reductive connected F-group. We fix a maximal F-split subtorus S of G,
and a minimal parabolic F-subgroup B of G containing S. We suppose that S is
not trivial. Let U be the unipotent radical of B. The G-centralizer Z of S is a Levi
subgroup of B. We choose a pair of opposite parabolic F-subgroups P;P of G with
P containing B, of unipotent radicals N;N and Levi subgroup M D P \ P. Let
AM � S be the maximal F-split central subtorus of M. We denote by X the group of
F-rational points of an algebraic group X over F, with the exception that we write
NG.S/ for the group of F-rational points of the G-normalizer NG.S/ of S. The finite
Weyl group is W0 D NG.S/=Z D NG.S/=Z. We fix a strictly decreasing sequence
.Kn/n2N of pro-p-open subgroups of G with trivial intersection, such that for all n,
Kn is normal in K0 and has an Iwahori decomposition

Kn D NnMnNn D NnMnNn; (3)

where Mn WD Kn \M;Nn WD Kn \ N;Nn WD Kn \ N.
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For W 2 Mod1R .M/, the representation IndG
P .W/ 2 Mod1R .G/ smoothly

parabolically induced by W is the R-module of functions f W G ! W such that
f .mngx/ D mf .g/ for m 2 M; n 2 N; g 2 G; x 2 Kn where n 2 N depends on f ,
with G acting by right translations. The smooth parabolic induction

IndG
P W Mod1R .M/! Mod1R .G/

is the right adjoint of the N-coinvariant functor [Viglivre, I.5.7 (i), I.A.3 Proposition]

V 7! VN W Mod1R .G/! Mod1R .M/ :

The N-coinvariant functor ModR.P/! ModR.M/ is the left adjoint of the inflation
functor InflP

M W ModR.M/! ModR.P/ sending a representation of M D P=N to the
natural representation of P trivial on N.

Remark 4.1. The N-coinvariants of the inflation functor InflP
M is the identity functor

of ModR M (the counit �N ı InflP
M ! 1 of the adjunction .�N ; InflP

M/ is an
isomorphism).

Proposition 4.2. The smooth parabolic induction functor IndG
P W Mod1R .M/ !

Mod1R .G/ is exact, and admits a right adjoint

RG
P W Mod1R .G/! Mod1R .M/:

Proof. For W 2 Mod1R .M/, we write C1.PnG;W/ for the R-module of locally
constant functions on the compact set PnG with values in W. We fix a continuous
section

' W PnG! G: (4)

The R-linear map

f 7! f ı ' W IndG
P .W/! C1.PnG;W/ (5)

is an isomorphism. We have a natural isomorphism

C1.PnG;W/ ' C1.PnG;R/˝R W ' C1.PnG;Z/˝Z W: (6)

The Z-module C1.PnG;Z/ is free, because it is the union of the increasing
sequence of the Z-modules Ln WD C1.PnG=Kn;Z/ for n 2 N, which are free
of finite rank as well as the quotients Ln=LnC1. Hence the tensor product by
C1.PnG;Z/ is exact, and IndG

P is also exact.
The smooth parabolic induction commutes with small direct sums ˚i2IWi

because a function f 2 C1.PnG;W/ takes only finitely many values.
Applying Proposition 2.9 and Lemma 3.2, the parabolic induction admits a right

adjoint. ut
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Remark 4.3. When p is invertible in R, Dat [Dat, between Corollary 3.7 and
Proposition 3.8] showed that

RG
P .V/ D .ŒHomRŒG�.C

1
c .G;R/;V/�

N/1 .V 2 Mod1R .G//:

The modulus ıP of P is well defined. When R is the field of complex numbers
(Bernstein) or when G is a linear group, a classical group when p ¤ 2, or of semi-
simple rank 1 [Dat], we have:

RG
P .V/ ' ıPVN :

Let g 2 G and Q an arbitrary closed subgroup of G. The partial compact smooth
parabolic induction functor

indPgQ
P W Mod1R .M/! Mod1R .Q/

associates to W 2 Mod1R .M/ the smooth representation indPgQ
P .W/ of Q by right

translation on the module of functions f W PgQ! W with compact support modulo
left multiplication by P (PnPgQ is generally not closed in the compact set PnG)
such that f .mnghx/ D mf .gh/ for m 2 M; n 2 N; h 2 Q; x 2 Kn \ Q where n 2 N

depends on f .

Remark 4.4. When PgP D P, the functor indP
P W Mod1R .M/ ! Mod1R .P/ is the

inflation functor InflP
M .

Proposition 4.5. The functor indPgQ
P is exact, and admits a right adjoint

RPgQ
P W Mod1R .Q/! Mod1R .M/:

Proof. Same proof as for the functor IndG
P (Proposition 4.2). ut

Lemma 4.6. W 2 Mod1R .M/ is admissible if and only if IndG
P .W/ 2 Mod1R .G/ is

admissible.

Proof. This is well known and follows from the decomposition [Viglivre, I.5.6,
II.2.1]:

.IndG
P W/Kn ' ˚PgKn.IndPgKn

P W/Kn ' ˚PgKnWM\gKng�1

.n 2 N; g 2 G/;

where the sum is finite and IndPgKn
P W � IndG

P W is the R-submodule of functions
with support contained in PgKn. ut

Corollary 4.7. When the ring R is noetherian, the smooth parabolic induction
restricts to a functor, called the admissible parabolic induction,

IndG
P W Modadm

R .M/! Modadm
R .G/:

We will later show that the admissible parabolic induction admits also a right
adjoint.



The Right Adjoint of the Parabolic Induction 415

5 IndG
P is Fully Faithful if p is nilpotent in R

We keep the notation of the preceding section. Let ˆG be the set of roots of S in G.
We write U˛ for the subgroup of G associated with a root ˛ 2 ˆG (the group U.˛/

in [Bo, 21.9]).

Definition 5.1. The p-ordinary part Rp�ord of R is the subset of x 2 R which are
infinitely p-divisible.

By [Viglivre, I (2.3.1)], Rp�ord D f0g if and only if there exists no Haar measure
on U˛ with values in R. But p is nilpotent in R if and only if RŒ1=p� D f0g if and
only if

C1c .U˛;R/U˛ D 0: (7)

When R is a field, Rp�ord D f0g if and only if p is nilpotent in R if and only if the
characteristic of R is¤ p.

Proposition 5.2. We suppose that p is nilpotent in R. Let W 2 Mod1R M and g 2 G.
The N-coinvariants of indPgP

P .W/ is 0 if PgP ¤ P.

Proof. We identify indPgP
P .W/ with C1c .PnPgP;R/ ˝R W as in (5). The action

of N on C1c .PnPgP;R/ ˝R W is trivial on W and is the right translation on
C1c .PnPgP;R/. Therefore

.indPgP
P .W//N D C1c .PnPgP;R/N ˝R W;

and we can forget W. To show that C1c .PnPgP;R/N D 0 if PgP ¤ P, we prove
that there exists a B-positive root ˛ such that U˛ � N and the space PnPgP is of the
form X � U˛ where the right action of U˛ on PnPgP is trivial on X and equals the
natural right action on U˛ . Therefore

C1c .PnPgP;R/U˛ D C1c .X;R/˝R C1c .U˛;R/U˛ :

Applying (7), we obtain C1c .PnPgP/U˛ D 0 hence C1c .PnPgP;R/N D 0.
It remains to explain the existence of such an ˛. As .B;NG.S// is a Tits system

in G [BT1, 1.2.6], we have PgP D P�P for an element � 2 NG.S/; we can suppose
that the image w of � in W0 has minimal length in the double coset W0;MwW0;M

(where W0;M WD NM.S/=Z). This implies that the fixator N� WD fn 2 N j P�n D P�g
of P� in N is generated by the U˛ for the roots ˛ 2 ˆG �ˆM such that ˛ and w.˛/
are reduced, B-positive. The fixator of P� in M is a parabolic subgroup Q and the
fixator of P� in P is QN� . The group N is directly spanned by the Uˇ (ˇ 2 ˆG�ˆM

positive and reduced) taken in any order [Bo, 21.12]. As PgP ¤ P, i.e., w ¤ 1, there
exists a reduced positive root ˛ 2 ˆG �ˆM such that U˛ 6� N� . Such an ˛ satisfies
all the properties that we want. ut



416 M.-F. Vignéras

Theorem 5.3. We suppose that p is nilpotent in R. Then

1. The parabolic induction IndG
P W Mod1R .M/! Mod1R .G/ is fully faithful,

2. The unit idMod1

R .M/ ! RG
PıIndG

P of the adjoint pair .IndG
P ;R

G
P / is an isomorphism.

3. The counit � W �N ı IndG
P ! idMod1

R .M/ of the adjoint pair .�N ; IndG
P / is an

isomorphism.

Proof. By Lemma 3.2 and Proposition 2.4, the three properties are equivalent. We
prove that the counit � of the adjoint pair .�N ; IndG

P / is an isomorphism.

(a) It is well known that IndG
P admits a finite filtration F1 � : : : � Fr of quotients

indPgP
P , with last quotient indP

P, associated with PnG=P.
(b) Being a right adjoint, the N-coinvariant functor Mod1R .P/ ! Mod1R .M/ is

right exact.
(c) Apply Proposition 5.2 and Remarks 4.1, 4.4. ut

6 z-Locally Finite Parts of RG
P and of RPP

P ı ResG
P

are Equal

We keep the notation of the preceding section. We fix an element z 2 AM

strictly contracting N : the sequence .znN0z�n/n2Z is strictly decreasing of trivial
intersection and union N. We denote Nn WD znN0z�n when n < 0 (Nn for n � 0 is
defined in Sect. 4).

We compare the right adjoint RG
P W Mod1R .G/ ! Mod1R .M/ of the parabolic

induction IndG
P to the functor RPP

P ı ResG
P

, where ResG
P
W Mod1R .G/ ! Mod1R P is

the restriction functor and RPP
P W Mod1R .P/! Mod1R .M/ is the right adjoint of the

partial compact parabolic induction indPP
P . We denote by

RG;z-lf
P W Mod1R G! Modz-lf

R M; RPP;z-lf
P W Mod1R P! Modz-lf

R M;

the z-locally finite parts of RG
P and of RPP

P .

Theorem 6.1. The functors RG;z-lf
P and RPP;z-lf

P ı ResG
P

are isomorphic.

Proof. We want to prove that there exists an isomorphism

HomRŒM�.W;R
G;z-lf
P .V//! HomRŒM�.W;R

PP;z-lf
P .V// (8)

functorial in .W;V/ 2 Modz-lf
R .M/ �Mod1R .G/. We may replace RG;z-lf

P ;RPP;z-lf
P by

RG
P ;R

PP
P in (8) (recall (2)). Then using the adjunctions .IndG

P ;R
G
P / and .indPP

P ;R
PP
P /,

we reduce to find an isomorphism

HomRŒG�.IndG
P W;V/! HomRŒP�.indPP

P W;V/ (9)
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functorial in .W;V/ 2 Modz-lf
R .M/ � Mod1R .G/. There is an obvious functorial

homomorphism because indPP
P W is a submodule of IndG

P W. This homomorphism,
denoted by J, sends a RŒG�-homomorphism IndG

P W ! V to its restriction to

indPP
P W. The homomorphism J is injective because an arbitrary open subset of PnG

is a finite disjoint union of G-translates of compact open subsets of PnPP [SVZ,
Proposition 5.3]. To show that J is surjective, we introduce more notations.

Let .g; r; n;w/ 2 G � N � N �W. We say that .g; r; n;w/ is admissible if

w 2 WMr ; PNrg D PNrn:

Let fr;n;w 2 indPP
P .W/ be the function supported on PNrn and equal to w on Nrn. The

function gfr;n;w 2 IndG
P .W/ is supported on PNrng�1.

We fix an element ˆ 2 HomRŒP�.indPP
P W;V/. We show that ˆ belongs to the

image of J if W is z-locally finite following Emerton’s method [Emerton, 4.4.6,
resp. 4.4.3] in two steps:

(1) ˆ belongs to the image of J when ˆ.gfr;n;w/ D gˆ.fr;n;w/ for all admissible
.g; r; n;w/.

(2) ˆ.gfr;n;w/ D gˆ.fr;n;w/ for all admissible .g; r; n;w/ if W is z-locally finite.

Proof of (1) Let g1; : : : ; gn in G and non-zero functions f1; : : : ; fn in indPP
P .W/.

We show that
P

i giˆ.fi/ D ˆ.
P

i gifi/. We choose r 2 N large enough such that
the fi, viewed as elements of C1c .N;W/, are left Nr-invariant with values in WMr .
We fix a subset Xr of G such that

G D th2Xr PNrh; PP D th2Xr\NPNrh:

Let Yi � Xr \ N such that the support of fi is tn2Yi PNrn. For n 2 Yi, we have

fijPNrn D fr;n;fi.n/:

Since G D th2Xr PNrhgi, fi viewed as an element of indG
P W is equal to

fi D
X

h2Xr

fijPNrhgi

where h 2 Xr contributes to a nonzero term if and only if PNrhgi D PNrn for some
n 2 Yi; when this happens fijPNrhgi

D fr;n;fi.n/ hence giˆ.fijPNrhgi
/ D ˆ.gi.fijPNrhgi

//

by the assumption of (1). We compute

X

i

giˆ.fi/ D
X

h

X

i

giˆ.fijPNrhgi
/ D

X

h

X

i

ˆ.gi.fijPNrhgi
//
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D ˆ
 
X

i

gi

 
X

h

fijPNrhgi

!!
D ˆ

 
X

i

gifi

!
:

Therefore
P

i giˆ.fi/ D ˆ.Pi gifi/ for all g1; : : : ; gn in G and f1; : : : ; fn in indPP
P .W/,

henceˆ belongs to the image of J.
Proof of (2). We assume W 2 Modz-lf

R .M/ and we proveˆ.gfr;n;w/ D gˆ.fr;n;w/.
We reduce to n D 1, as fr;n;w D n�1fr;1;w, .gn�1; r; 1;w/ is admissible, and ˆ is
N-equivariant.

Let .g; r; 1;w/ admissible. We may suppose w ¤ 0. We choose .r0; r00; a/ 2
Z � N � N as follows. The integer r0 2 Z depending on .g; r/ is chosen so
that the projection of the compact subset Nrg�1 � PNr onto N via the natural
homeomorphism PN ! N � P is contained in Nr0 , i.e., Nrg�1 � Nr0 P. The integer
r00 2 N depending on .r;w/ and on our fixed element z 2 AM , is chosen so that
the R-submodule of V 2 Mod1R .G/, generated by ˆ.fr;1;w0/ for w0 in the finitely
generated R-submodule RŒz�w, is contained in VKr00 , and r00 � r. Finally, the integer
a 2 N depending on r; r00 is chosen so that zaNr0z�a � Nr00 � Nr .

Let v 2 Nr . The set Pz�aNrzav D PNrzav is contained in PNr as z�1 2 AM

contracts N. The restriction of fr;1;w to PNrzav is fr;zav;za.w/. We deduce

fr;1;w D
X

v2z�aNrzanNr

.zav/�1fr;1;za.w/:

We are reduced to prove ˆ.gv�1z�afr;1;za.w// D gˆ.v�1z�afr;1;za.w//. As ˆ is left
P-equivariant, gˆ.v�1z�afr;1;za.w// D gv�1z�aˆ.fr;1;za.w//. The set gNr is contained
in PNr0 and we may write gv�1z�a D pnr0z�a with nr0 2 Nr0 ; p 2 P. Using again
that ˆ is left P-equivariant, we are reduced to prove

ˆ.nr0z�afr;1;za.w// D nr0z�aˆ.fr;1;za.w//:

Applying za, we are reduced to prove

ˆ.zanr0z�afr;1;za.w// D zanr0z�aˆ.fr;1;za.w//:

Let w0 2 RŒz�w and v 2 Nr. The function fr;1;w0 viewed in IndG
P .W/, of support PNr

and equal to w0 2 WMr on Nr, is fixed by Kr . The element ˆ.fr;1;w0/ 2 V is fixed by
Kr00 . As zaNr0z�a � Nr00 � Nr , both elements fr;1;za.w/ and ˆ.fr;1;za.w// are fixed by
zanr0z�a, and the equality is obvious. ut
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7 The Hecke Description of RPP
P

W Mod1
R .P/ ! Mod1

R .M/

We keep the notation of the preceding section. The submonoid MC � M contracting
the open compact subgroup N0 of N is the set of m 2 M such that mN0m�1 � N0;
it contains the open compact subgroup M0 of M. The union [a2Nz�aMC is equal
to M.

The right adjoint of the restriction functor ModR.M/ ! ModR.MC/ is the
induction functor

IM
MC
W ModR.M

C/! ModR.M/

sending W 2 ModR.MC/ to the module IM
MC
.W/ of R-linear maps W M ! W such

that  .mx/ D m .x/ for all m 2 MC; x 2 M, where M acts by right translations.
The smoothification of IM

MC
is the smooth induction functor

IndM
MC
W Mod1R .MC/! Mod1R .M/:

Definition 7.1. Let V 2 Mod1R .P/. The monoid MC acts on VN0 by the Hecke
action .m; v/ 7! hN0;m.v/,

hN0;m.v/ D
X

n2N0=mN0m�1

nmv .m 2 MC; v 2 VN0 /: (10)

The Hecke action of MC on VN0 is smooth because it extends the natural action
of M0 on VN0 .

Theorem 7.1. The functor

V 7! IndM
MC
.VN0 / W Mod1R .P/! Mod1R .M/ (11)

is right adjoint to the functor indPP
P

.

The theorem says that the functors IndM
MC
.�N0 / and RPP

P
are isomorphic. Their

z-locally finite parts are also isomorphic. The Emerton’s ordinary functor OrdP is
the AM-locally finite part of the functor IndM

MC
.�N0 /:

OrdP D .IndM
MC
.�N0 //AM-lf W Mod1R .P/! ModAM-lf

R .M/;

or also the functor OrdG
P WD OrdP ıResG

P W Mod1R .G/ ! ModAM-lf
R .M/: Applying

Theorem 6.1, we obtain:
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Corollary 7.3. The functor RG;z-lf
P

is isomorphic to the functor

V 7! .IndM
MC
.VN0 //z-lf W Mod1R .G/! Modz-lf

R .M/

The functor RG;AM-lf
P

is isomorphic to the Emerton’s ordinary functor OrdG
P .

To prove that .indPP
P
; IndM

MC
.�N0 // is an adjoint pair, we view indPP

P
as

C1c .N;R/˝R � W Mod1R .M/! Mod1R .P/;

where P D MN acts on C1c .N;R/ by:

mf W x 7! f .m�1xm/; nf W x 7! f .xn/; .m; n; f / 2 M � N � C1c .N;R/:

(In particular m1N0 D 1mN0m�1 ; n1N0 D 1N0n�1). The right adjoint is well known:

Lemma 7.4. The smoothification of the functor

HomRŒN�.C
1
c .N;R/;�/ W Mod1R .P/! ModR.M/

is the right adjoint of the functor indPP
P

.

The following proposition 7.5 implies that the functors HomRŒN�.C1c .N;R/;�/
and

IM
MC
.�N0 / W Mod1R .P/! ModR.M/:

are isomorphic. Therefore the same is true for their smoothifications, RPP
P

and

indM
MC
.�N0 /, and Theorem 7.1 is proved.

Let V 2 Mod1R .P/. We check that the value at 1N0

f 7! f .1N0 / W HomRŒN�.C
1
c .N;R/;V/! VN0

is MC-equivariant. As usual, p 2 P acts on f by pf D p ı f ı p�1. In particular, for
m 2 M,

.mf /.1N0 / D mf .m�11N0/ D mf .1m�1N0m/:

For m 2 MC, we obtain

.mf /.1N0/ D m
X

n�12N0nm�1N0m

f .1N0n�1 / D
X

n�12N0nm�1N0m

mnf .1N0 /

D
X

n2N0=mN0m�1

nmf .1N0/ D hN0;m.f .1N0// :
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By the adjunction .ResM
MC
; IM

MC
/, the value at 1N0 induces an M-equivariant map

ˆ W HomRŒN�.C
1
c .N;R/;V/! IM

MC
.VN0 / f 7! ˆ.f /.m/ D .mf /.1N0 / .m 2 M/:

(12)

Proposition 7.5. The map ˆ is an isomorphism of RŒM�-modules.

Proof. ˆ is injective because the RŒP�-module C1c .N;R/ is generated by 1N0 .
Indeed let f 2 HomRŒN�.C1c .N;R/;V/ such that ˆ.f / D 0. Then f .m1N0/ D
f .1m�1N0m/ D 0 for all m 2 M. As f is N-equivariant, 0 D f ..mn/�11N0/ D
f .1m�1N0mn/ for all n 2 N, hence f D 0.
ˆ is surjective because for  2 IM

MC
.VN0 /, there exists f 2 HomRŒN�.C1c .N;R/;

V/ such that f .m1N0 / D m. .m�1// for all m 2 M. We have ˆ.f / D  . The
function f exists because, for all a 2 N,

za. .z�a// D za. .zz�a�1// D
X

n2zaN0z�a=zaC1N0z�a�1

nzaC1. .z�a�1//:

(Note that the RŒN�-module C1c .N;R/ is generated by .1zaN0z�a/a2N, and that the
values at 1zaN0z�a D za1N0 identify HomRŒN�.C1c .N;R/;V/ with the set of sequences
.va/a2N in V such that va DPn2zaN0z�a=zaC1N0z�a�1 nvaC1.) ut
Remark 7.6. For V 2 Mod1R .P/, a z�1-finite element ' 2 IM

MC
.VN0 / is smooth:

.IndM
MC
.VN0 //z

�1-lf D .IM
MC
.VN0//z

�1-lf:

Proof. By hypothesis RŒz�1�' is contained in a finitely generated R-submodule W'

of IM
MC
.VN0 /. The image of W' by the map f 7! f .1/ is a finitely generated R-

submodule of VN0 containing '.z�a/ for all a 2 N. Since the Hecke action of MC
on VN0 is smooth, there exists a large integer r 2 N such that Mr fixes '.z�a/ for all
a 2 N. As M D [a2NMCz�a, two elements of IM

MC
.VN0 / equal on z�a for all a 2 N

are equal. Hence ' is fixed by Mr, ' is smooth. ut
Remark 7.7. Let W 2 Mod1R .MC/ and r 2 N. An element f 2 IM

MC
.W/ is fixed by

Mr if and only if f .za/ is fixed by Mr for all a 2 Z. The map

f 7! f jzZ W .IM
MC

W/Mr ! IzZ

zN
.WMr /

is an RŒzZ�-isomorphism.

Proof. This is an easy consequence of .mrf /.mCza/ D f .mCzamr/ D f .mCmrza/ D
mCmr.f .za// for .mC;mr; a/ 2 MC �Mr � Z. ut
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8 The Right Adjoint OrdP of
IndG

P W Modadm
R .M/ ! Modadm

R .G/

Theorem 8.1. For V 2 Modadm
R .G/, the representation .IM

MC
.VN0 //z

�1-lf of M is
admissible.

Proof. By Remark 7.6, the representation .IM
MC
.VN0 //z

�1-lf of M is smooth. Let
r 2 N. Note that MrN0 is a group. By Remark 7.7, the map f 7! f jzZ is an RŒzZ�-
isomorphism from the Mr-fixed elements of .IM

MC
.VN0 //z

�1-lf to

X D .IzZ

zN
.VN0Mr//z

�1-lf:

We have X � IzZ

zN
.Y/ where Y is the image of X by f 7! f .1/, and is a zN-submodule

of VN0Mr (for the Hecke action) containing f .za/ for all a 2 Z. We have the compact
open subgroup NrMrN0. We will prove (Proposition 8.2) that

Y � VNrMrN0 :

Admitting this, Y is a finitely generated R-module because V is admissible and R
is noetherian. The action hN0;z of z on Y is surjective because, for f 2 X we have
f .1/ D f .zz�1/ D hN0;zf .z

�1/. A surjective endomorphism of a finitely generated
R-module is bijective (this is an application of Nakayama lemma [Matsumura,
Theorem 2.4]). Hence the action of z on Y is bijective. Hence Y ' IzZ

zN
.Y/ is a

finitely generated R-module. As R is noetherian, X is a finitely generated R-module.
Therefore .IM

MC
.VN0 //z

�1-lf is admissible. ut
Proposition 8.2. If f 2 .IzZ

zN
.VMrN0 //z

�1-lf, then f .1/ 2 VNrMrN0 .

Proof. We have

VMrN0 D [t�rV
NtMrN0 ; (13)

where NtMrN0 D KtMrN0 � G is a compact open subgroup as MrN0 � K0
normalizes Kt, and the sequence .NtMrN0/t�r is strictly decreasing of intersection
MrN0. We write n.r; t/ 2 N for the smallest integer such that z�nNrzn � Nt � Nr

for n � n.r; t/. The proof of the proposition is split into three steps.

(1) hN0;zn.VNtMrN0 / is fixed by NrMrN0 when n � n.r; t/.

Let v 2 VNtMrN0 and n � n.r; t/. The element znv is fixed by NrMr as NrMrzn �
znNtMr. Let nr 2 Nr and .ni/i2I a system of representatives of N0=znN0z�n. Using
the Iwahori decomposition NrMrN0 D N0NrMr we write nrni D n0ibi with n0i 2
N0; bi 2 NrMr. We compute:
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nrhN0;zn.v/ D
X

i2I

nrniz
nv D

X

i2I

n0ibiz
nv D

X

i2I

n0iznv: (14)

We show that .n0i/i2I is a system of representatives of N0=znN0z�n, hence that nr

fixes hN0;zn.v/, hence (1). We have to prove that n0i
�1n0j 2 znN0z�n implies i D j.

We write n0i
�1n0j D bin�1i njb

�1
j and we assume that bin�1i njb

�1
j 2 znN0z�n. Then

n�1i nj belongs to the group generated by NrMr and znN0z�n, which is contained in
the group znNrMrN0z�n. Hence n�1i nj 2 znN0z�n. This implies i D j.

(2) VNtMrN0 is stable by hN0;z (hence by hN0;zn for n 2 N).
When t D r, this follows from (1) because n.t; t/ D 0. This is true for any

large t D r. Hence the intersection VMrN0 \ VNtMtN0 is stable by hN0;z. But this
intersection is VNtMrN0 because the group generated by MrN0 and NtMtN0 is
NtMrN0, as Mr contains Mt and normalizes Nt;Mt;N0. Hence (2).

(3) Let f be a z�1-finite element of IzZ

zN
.VMrN0 /. The R-module generated by f .z�a/

for a 2 N is contained in a finitely generated R-submodule of VMrN0 . There
exists t � r such that f .z�a/ is contained in VNtMrN0 for all a 2 N. By (2), f 2
IzZ

zN
.VNtMrN0 /. We have f .1/ 2 \n�1hN0;zn.VNtMrN0 /. By (1), hN0;zn.VNtMrN0 / �

VNrMrN0 when n � n.r; t/. Hence f .1/ 2 VNrMrN0 . The proposition is proved.
ut

This ends the proof of Theorem 8.1. An admissible representation of M is AM-
locally finite (Lemma 3.6). By Theorem 8.1, Remark 7.6, and Corollary 7.3, we
deduce:

Corollary 8.3. The (admissible) parabolic induction IndG
P W Modadm

R .M/ !
Modadm

R .G/ admits a right adjoint, equal to

.RG
P /

AM-lf ' OrdG
P
W Modadm

R .G/! Modadm
R .M/:

Corollary 8.4. When p is nilpotent in R, the admissible parabolic induction IndG
P

is fully faithful, and the unit id 7! OrdG
P
ı IndG

P of the adjunction .IndG
P ;OrdG

P
/ is an

isomorphism.

Proof. Lemma 4.6, Corollary 5.3. ut
It is not known if the N-coinvariant functor respects admissibility when the

characteristic of F is p. When R is a field where p is invertible, the N-coinvariant
functor respects admissibility. For the convenience of the reader, we give the proof
which is a variant of the proof of [Viglivre, II.3.4].

(i) Let R be a commutative ring (we do not assume that R is noetherian) and V 2
Mod1R .G/. For v 2 VN0 and a 2 N, we have hN0;za.v/ DPn2N0=zaN0z�a nzav D
za
P

n2z�aN0za=N0
nv. Applying the map � W V ! VN , we get

�.hN0;za.v// D ŒN0 W zaN0z
�a�za�.v/: (15)
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The index ŒN0 W zaN0z�a� is a power of p which goes to infinity with a. (Note
that when a power of p vanishes in R, �.hN0;za.v// D 0when a is large.) For r 2
N we have �.VMrN0 / � .VN/

Mr because m�.v/ D �.mv/ for m 2 M; v 2 V .
(ii) We assume now that p is invertible in R. The above inclusion for r 2 N is an

equality

�.VMrN0 / D .VN/
Mr : (16)

Indeed, let w 2 .VN/
Mr and v 2 V with �.v/ D w. The fixator Hr of v in

the pro-p-group MrN0 is open of index a power of p. The element ŒMrN0 W
Hr�
�1P

b2MrN0=Hr
bv is well defined, is fixed by MrN0, and has image w in VN .

Hence (16). As VN is a smooth representation of M and VN0 D [r2NVMrN0 ,
(16) implies �.VN0 / D VN and by (13),

[t�r �.V
NtMrN0 / D .VN/

Mr : (17)

Assume a � n.r; t/, by (15) and by the proof of Proposition 8.2,

za�.VNtMrN0 / D �.hN0;za.VNtMrN0 // � �.VNrMrN0 /: (18)

If X is a finitely generated R-submodule of VMr
N , there exists t 2 N such that

X � �.VNtMrN0 /, hence by (18) there exists a 2 N such that

zaX � �.VNrMrN0 /: (19)

(iii) We assume now that R is a field where p is invertible and V 2 Modadm
R .G/.

By (19) the dimensions of the finite dimensional subspaces of VMr
N are bounded,

hence VMr
N is finite dimensional. This is true for all r 2 N therefore VN 2

Modadm
R .M/.
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