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Abstract Given its immense growth, the scientific literature can be explored to reveal
new discoveries, based on as yet undiscovered relations between knowledge from
different, relatively isolated fields of specialization. This chapter presents an approach
to creative knowledge discovery through the mechanism of bisociation. Bisociative
reasoning is at the heart of creative, accidental discovery, i.e., serendipity. Bisociative
knowledge discovery is focused on finding unexpected links by crossing between
different contexts. In this work, bisociative knowledge discovery is explored in the
framework of text mining, addressing cross-domain literature-based discovery. Two
approaches are briefly outlined: the CrossBee approach to cross-domain bridging-
term detection, and the OntoGen approach to bridging-term detection through outlier
document exploration.
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6.1 Introduction

The growing amounts of available knowledge and data exceed human analytic
capabilities. Therefore new technologies that can help in analyzing and extracting
useful information from large amounts of data need to be developed and used
for analytic purposes. Understanding complex phenomena and solving difficult
problems often requires knowledge from different domains to be combined and
cross-domain associations to be considered. While the concept of association is at
the heart of several information technologies, including information retrieval and
data mining, and in particular association rule learning (Agrawal, Mannila, Srikant,
Toivonen, Verkamo, et al., 1996), scientific discovery requires creative thinking
to connect seemingly unrelated information, for example, by using metaphors or
analogies between concepts from different domains. These kinds of context-crossing
associations, called bisociations (Koestler, 1964), are often needed for innovative
discoveries.

This chapter provides an introduction to bisociative knowledge discovery, and
outlines selected approaches to cross-domain literature mining that support experts in
searching for hidden links connecting two seemingly unrelated domains, most notably
the CrossBee approach to cross-domain bridging-term (b-term) detection (Juršič,
Cestnik, Urbančič, & Lavrač, 2012a, 2012b), and the approach to cross-domain
literature mining via outlier document detection and exploration (Petrič, Cestnik,
Lavrač, & Urbančič, 2012; Sluban, Juršič, Cestnik, & Lavrač, 2012).

This chapter is organized as follows. Section 6.2 presents related work in the
area of bisociative knowledge discovery, literature-based discovery (LBD) and the
human–computer interaction (HCI) aspects of creativity support tools. Section 6.3
illustrates the problem of b-term ranking and exploration through a use case scenario,
followed by an overview of the b-term detection and exploration methodology as
implemented in the CrossBee exploration tool, including the ensemble heuristic
used in b-term detection. Section 6.4 presents two approaches to outlier document
detection that can be used to narrow down the search space of b-terms, given the
fact that outlier documents contain most of the cross-domain b-terms, as shown in
our past research. Finally, Section 6.5 concludes with a summary of the methods
presented and directions for further work.

6.2 Related Work

This section presents related work in the area of bisociative knowledge discovery,
LBD and the HCI aspects of creativity support tools.
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6.2.1 Bisociative Knowledge Discovery

Bisociative knowledge discovery is a challenging task motivated by a trend of
over-specialization in research and development, which usually results in deep and
relatively isolated silos of knowledge. Scientific literature too often remains closed,
and cited only in professional subcommunities. Information that is related across
different contexts is difficult to identify using associative approaches, like standard
association rule learning (Agrawal et al., 1996) known from the data-mining and
machine learning literature. Therefore, the ability of literature-mining methods and
software tools to support experts in their knowledge discovery processes – especially
in searching for yet unexplored connections between different domains – is becoming
increasingly important.

Koestler (1964) argued that the essence of creativity lies in “perceiving of a
situation or idea . . . in two self-consistent but habitually incompatible frames of
reference,” and introduced the expression bisociation to characterize this creative act.
More specifically, Koestler’s notion of bisociation was originally defined as follows:

The pattern . . . is the perceiving of a situation or idea, L, in two self-consistent but habitually
incompatible frames of reference, M1 and M2. The event L, in which the two intersect, is
made to vibrate simultaneously on two different wavelengths, as it were. While this unusual
situation lasts, L is not merely linked to one associative context but bisociated with two.

Koestler found bisociation to be the basis for human creativity in seemingly
diverse human endeavors, such as humor, science, and the arts. As an example of
bisociative scientific discovery, Koestler (p. 105) cites the “Eureka” discovery of
Archimedes, bisociating the measurement of the volume of nonregular solids with
the displacement of water:

No doubt he had observed many times that the level of the [bath] water rose whenever he got
into it; but this fact, and the distance between the two levels, was totally irrelevant to him
– until it suddenly became bisociated with his problem. At that instant he realised that the
amount of rise of the water-level was a simple measure of the volume of his own complicated
body.

The concept of bisociation is illustrated in Fig. 6.1. It should be noted that context
crossing is subjective, since the user has to move from their “normal”’ context (frame
of reference) to a habitually incompatible context to find the bisociative link. In
Koestler’s terms (Fig. 6.1), a habitual frame of reference (plane M1) corresponds
to the domain defined by the user. Other domains represents different, habitually
incompatible contexts (in general, there may be several planes M2). The creative
act here is to find links (from S to the target T ) which lead “out-of-the-plane” via
intermediate, bridging concepts (L). Thus, contextualization and link discovery are
two of the fundamental mechanisms in bisociative reasoning.

In summary, according to Koestler (1964), bisociative thinking occurs when a
problem, idea, event, or situation is perceived simultaneously in two or more “matri-
ces of thought” or domains. When two matrices of thought interact with each other,
the result is either their fusion in a novel intellectual synthesis or their confrontation
in a new esthetic experience. Koestler regarded many different mental phenomena
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Fig. 6.1 Koestler’s schema of bisociative discovery in science (Koestler, 1964, p. 107).

that are based on comparison (such as analogies, metaphors, jokes, identification,
and anthropomorphism) as special cases of bisociation.

More recently, this work was followed by researchers interested in so-called biso-
ciative knowledge discovery, where – according to Berthold (2012) – two concepts
are bisociated if there is no direct, obvious evidence linking them and if one has to
cross different domains to find the link, where a new link must provide some novel
insight into the problem addressed. Bisociative knowledge discovery has become a
topic of extensive research, addressing the discovery of bridging links or bridging
concepts crossing between different domains and representations.

In modern terms (Berthold, 2012), bisociative knowledge discovery thus addresses
a data-mining task where two or more domains of interest are searched for bisociative
links or bridging concepts (i.e., individual context-bridging terms). Note that in this
context, a single domain does not necessary refer to a single feature space; instead,
we use this term to denote that the objects under analysis all represent properties with
respect to one – more or less specific – aspect, even with multiple representations of
the same space of objects (multiview learning, parallel universes, and redescription
mining are well-known techniques addressing multiple representations of objects
in the same domain of discourse). In contrast, bisociative knowledge discovery
looks for connections between different domains of discourse, using either the same
representation of different domains or different domain representations, where –
according to Berthold (2012) – bridging concepts can be detected as nodes bridging
different graphs, as subgraphs linking different graphs, as bridging links in terms of
graph similarity, or as bridging terms appearing in different document corpora. The
latter, referred to as bridging-term discovery, is the focus of the research described in
this chapter.
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6.2.2 Literature-Based Discovery

In LBD (Bruza & Weeber, 2008) – and, in particular, in cross-domain literature
mining, which addresses knowledge discovery in two (or several) initially separate
document corpora – a crucial step is the identification of interesting b-terms that
carry the potential tp revealing the links connecting the separate domains. As shown
by Petrič et al. (2012), LBD (Bruza & Weeber, 2008) is closely related to bisociative
knowledge discovery (Berthold, 2012); for example, the b-terms known from the
LBD literature directly correspond to Koestler’s notion of bridging concepts L,
introduced in the previous section.

The early work in LBD was due to Swanson (1990) and Smalheiser and Swanson
(1998), who developed an approach to assist a user in LBD by detecting interesting
cross-domain terms with the goal of uncovering the possible relations between
previously unrelated concepts. The ARROWSMITH online system, developed by
Smalheiser and Swanson (1998), takes as input two sets of titles of scientific papers
from disjoint domains (disjoint document corpora) A and C, and lists terms that are
common to A and C; the resulting b-terms are investigated further by the user for their
potential to generate new scientific hypotheses.1 Their approach, known as the “ABC
model of knowledge discovery”, addresses several settings, including the closed
discovery setting (Weeber, Klein, de Jong-van den Berg, Vos, et al., 2001), where
two initially separate domains A and C are specified by the user at the beginning of
the discovery process, and the goal is to search for a bridging concept (term) b in B
in order to support the validation of the hypothesized connection between A and C.
The closed discovery setting, which is the most frequently addressed LBD setting, is
illustrated in Fig. 6.2.

a

c

b1

b2

bn

Fig. 6.2 Closed discovery
process defined by Weeber,
Klein, de Jong-van den Berg,
Vos, et al. (2001).

migraine

magnesium

serotonin
vasospasm

calcium channel blocker

Fig. 6.3 Closed discovery when exploring migraine and magne-
sium documents, with b-terms identified by Swanson, Smalheiser,
and Torvik (2006).

1 In the ABC model, uppercase letter symbols A, B, and C are used to represent concepts (or sets of
terms), and lowercase symbols a, b, and c to represent single terms.
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Swanson’s seminal work showed that databases such as PubMed can serve as a
rich source of hidden relations between usually unrelated topics, potentially leading
to novel insights and discoveries. By studying two separate literatures – the literature
on migraine headache and the articles on magnesium – Swanson (1988) discovered
“Eleven neglected connections”, all of them supportive of the hypothesis that mag-
nesium deficiency might cause migraine headache. Figure 6.3 illustrates the closed
discovery setting for Swanson’s task of finding the terms linking the “migraine” and
“magnesium” domains. Swanson’s literature-mining results were later confirmed by
laboratory and clinical investigations. This well-known example has become the gold
standard in the literature-mining field and has been used as a benchmark in several
studies (Juršič et al., 2012b; Lindsay & Gordon, 1999; Srinivasan, 2004; Weeber
et al., 2001).

Inspired by this early work, literature-mining approaches were developed further
and successfully applied to different problems, such as finding associations between
genes and diseases (Hristovski, Peterlin, Mitchell, & Humphrey, 2005), between dis-
eases and chemicals (Yetisgen-Yildiz & Pratt, 2006), and others. Holzinger, Yildirim,
Geier, and Simonic (2013) described several quality-oriented web-based tools for
the analysis of the biomedical literature, which include analysis of terms (biomedical
entities such as diseases, drugs, genes, proteins, and organs) and provide concepts
associated with a given term. A more recent approach by Kastrin, Rindflesch, and
Hristovski (2014) is complementary to the other LBD approaches, as it uses different
similarity measures (such as common neighbors, the Jaccard index, and preferential
attachment) for link prediction of implicit relationships in the Semantic MEDLINE
network.

Supporting the user in effectively searching for b-terms provided a motivation
for developing the CrossBee approach to b-term detection applicable in the closed
discovery setting (Juršič et al., 2012b), implemented through ensemble-based term
ranking, where an ensemble heuristic composed of six elementary heuristics was
constructed for term evaluation. This approach is described in more detail in Sec-
tion 6.3. Furthermore, the research conducted by Petrič et al. (2012) and Sluban et al.
(2012) suggests that b-terms are more frequent in documents that are in some sense
different from the majority of documents in a given domain. For example, Sluban et
al. (2012) have shown that such documents, considered as outlier documents of their
own domain, contain a substantially larger amount of bridging/linking terms than
the regular nonoutlier documents. This approach, using the OntoGen tool (Fortuna,
Grobelnik, & Mladenić, 2006), is described in more detail in Section 6.4.

In conclusion, let us summarize the relationship between bisociative knowledge
discovery and Swanson’s ABC model of literature-based discovery, where the partic-
ular focus of interest is the relationship between Koestler’s bisociative link discovery
framework and Weeber’s closed discovery framework. Petrič et al. (2012) have pre-
sented a unifying view that establishes relationships between the two frameworks, as
summarized in Table 6.1. Similarly to a bisociation, which, according to Koestler, is
a result of processes of the mind when making new associations between concepts
S and T from usually separated contexts (illustrated in Fig. 6.1), literature-based
discoveries in Swanson’s ABC model are a result of uncovering links between con-
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Table 6.1 Unifying Koestler’s and Swanson’s models of creative knowledge discovery (Petrič,
Cestnik, Lavrač, & Urbančič, 2012)

Koestler’s model Swanson’s model
Bisociative link discovery process Closed discovery process
Frames of reference (contexts) M1 and M2 Domains of interest A and C
Bisociative cross-context link L ∈M1∩M2 Bridging term b ∈ terms(A)∩ terms(C)

cepts a and c from disjoint literatures A and C (illustrated in Fig. 6.2). In terms of
Koestler’s model, the two domains A and C, investigated in the closed LBD frame-
work, correspond to the two habitually incompatible frames of reference, M1 and M2.
Moreover, the b-terms b1,b2, . . . ,bn that are common to literatures A and C, clearly
correspond to Koestler’s notion of a situation or idea, L, which is not merely linked
to one associative context but bisociated with two contexts M1 and M2.

6.2.3 Creativity Support Tools and HCI

CrossBee and the outlier detection tools developed can be viewed as creativity
support tools, which are closely related to the field of HCI, as stated by Resnick et al.
(2005) when summarizing the aims of designing creativity support tools (CSTs) as
follows:

Our goal is to develop improved software and user interfaces that empower users to be not
only more productive, but more innovative.

The work of Shneiderman (2007, 2009) provides a structured set of design principles
for CSTs, outlined below:

• Support exploration. To be successful in discovery and innovation, users should
have access to improved search services providing rich mechanisms for organiz-
ing search results by ranking, clustering, and partitioning, with ample tools for
annotation, tagging, and marking.

• Enable collaboration. While the actual discovery moments in innovation can be
very personal, the processes that lead to them are often highly collaborative.
• Provide rich history-keeping. The benefits of rich history-keeping are that users

have a record of which alternatives they have tried, they can compare the many
alternatives, and they can go back to earlier alternatives to make modifications.

• Design with low thresholds, high ceilings, and wide walls. CSTs should have
a short learning curve for novices (low threshold), yet provide sophisticated
functionality that experts need (high ceilings), and also deliver a wide range of
supplementary services to choose from (wide walls).

These principles were followed in our implementations and used in the evaluation
of our approaches outlined in Sections 6.3 and 6.4 below, using two creativity support
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tools CrossBee (Juršič et al., 2012a, 2012b) and OntoGen (Fortuna et al., 2006),
respectively:

• CrossBee (Juršič et al., 2012a, 2012b) is an off-the-shelf solution for finding
bisociations bridging two user-defined domains (separate domain literatures).
CrossBee is a system that suggests b-terms using an ensemble-based term-
ranking methodology. The tool also helps experts in searching for hidden links
that connect two seemingly unrelated domains. In addition to this core function-
ality, supplementary functionality and content presentations have been added,
which make the CrossBee web application a user-friendly tool for the ranking
and exploration of prospective cross-context links. This enables the user not
only to spot but also to efficiently investigate the cross-domain links discovered.
The CrossBee user-friendly human–computer interface is briefly presented in
Section 6.3.4.

• OntoGen (Fortuna et al., 2006) is a semiautomatic data-driven interactive text-
mining tool that aids the user during the creative process of topic ontology
construction. In essence, it is a text-mining tool for grouping documents into
cohesive clusters, which can be considered as concepts in an automatically
constructed topic ontology. The underlying methodology is k-means clustering,
which is a particularly popular technique, since only the parameter k needs to be
chosen to determine the number of categories in to which the documents will be
clustered. A particularly appealing feature is OntoGen’s user-friendly human–
computer interface. The “main window” provides ontology visualization, where
each concept is represented by the top three keywords (automatically assigned
names of clusters, which can be manually edited), while the “concept hierarchy”
window offers a quick overview of all the concepts with their positions in the
concept hierarchy, which can also be directly manipulated. A particular use of
OntoGen for outlier document detection is described in Section 6.4.2.

6.3 Bridging-Term Detection in Literature-Based Discovery

This section briefly describes our previous work on bisociative knowledge discovery
in the area of literature mining, focusing on the CrossBee methodology for b-term
detection, outlined in Juršič et al. (2012a, 2012b).

6.3.1 CrossBee Methodology

In cross-domain knowledge discovery, estimating which of the terms have a high
potential for interesting discoveries is a challenging research question. It is especially
important for cross-context scientific discovery such as understanding complex
medical phenomena or finding new drugs for illnesses yet not fully understood.
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The ensemble-based ranking methodology for b-term detection is illustrated in
Fig. 6.4, showing the term ranking using an ensemble heuristic. Figure 6.5 shows the
list of b-terms ranked by voting of an ensemble of heuristics, where the ranked list
presented is the actual output produced by the CrossBee b-term exploration system
using the gold standard dataset in literature mining, i.e., the combined migraine–
magnesium dataset (Swanson, 1988). The ranked list of b-term candidates, shown in
Figure 6.5, provides the user with some additional information, including the votes
of the individual base heuristics in the ensemble and the domain occurrence statistics
of the terms in both domains.

6.3.2 Heuristics for Bridging-Term Discovery

Several different elementary and ensemble heuristics for b-term ranking are available
in CrossBee. The heuristics are defined as functions that numerically evaluate the
quality of a term by assigning a bisociation score to it (measuring the potential that a
term is actually a b-term). For the definition of an appropriate set of heuristics, we
define a set of special (mainly statistical) properties of terms, which are aimed at
distinguishing b-terms from regular terms; thus, these heuristics can also be viewed
as advanced term statistics.

Formally, a heuristic is a function with two inputs, i.e., a set of domain-labeled
documents D and a term t appearing in those documents, and one output, i.e, a score
that represents the term’s bisociation potential. All of the heuristics operate on data
retrieved from the documents in text preprocessing. While term ranking using scores
calculated by an ideal heuristic should result in ranking all the b-terms at the top of
the ranked list, this ideal scenario is not realistic; nevertheless, ranking by heuristic
scores should at least increase the proportion of b-terms at the top of the ranked term
list.

We use the following notation: to state that a term’s bisociation score b score is
equal to the result of a heuristic named heurX , we can write b score = heurX(D, t).
However, since the set of input documents is static when we are dealing with a

Fig. 6.4 Term-ranking approach: first, ensemble heuristics vote for terms, and next, terms are sorted
according to their b-term potential (as shown on the left). Consequently, b-terms with the highest
b-term potential should receive the highest scores (as shown on the right).
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Fig. 6.5 The ensemble-heuristic-based ranking page, indicating with a cross (X) which elementary
heuristics have identified the term as a potential b-term. This example shows the 20 top-ranked
terms from the migraine–magnesium domain according to the selected heuristics.

concrete dataset, we can – for the sake of simplicity – omit the set of input documents
from the notation for the heuristic and use b score = heurX(t). Whenever we need
to explicitly specify the set of documents to which a function is applied (this is
never needed for a heuristic, but sometimes needed for auxiliary functions used in
the formula for the heuristic), we write it as f uncXD(t). To specify the function’s
input document set, we have two options: we can either use Du, which stands for
the (union) set of all the documents from all the domains, or use Dn : n ∈ {1..N},
which stands for the set of documents from the given domain n. In general, the
following statement holds: Du = ∪N

n=1Dn, where N is the number of domains. In the
most common scenario, when there are exactly two distinct domains, we also use
the notation DA for D1 and DC for D2, similarly to Swanson’s notation using the
symbols A and C as representatives of the initial and the target domain in the closed
discovery setting, as mentioned in Section 6.2.

We defined four sets of base heuristics: six frequency-based, four TF-IDF-weight-
based (“TF-IDF” denotes the product of term frequency and inverse document
frequency weights, frequently used in document vector representations in text mining
(Salton & Buckley, 1988)), three similarity-based, and eight outlier-based heuristics.
Most of the heuristics that we developed work in a fundamentally similar way – they
all manipulate solely the data present in the term and document vectors and derive the
bisociation score of the terms. The exceptions to this are the outlier-based heuristics,
which first evaluate outlier documents and only later use the information from the
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term vectors for b-term evaluation. Using these base heurisctics, we developed the
ensemble heuristic described below.

6.3.3 Ensemble Heuristic

The ensemble heuristic for b-term discovery, which we constructed based on the
experiments, is constructed as a sum of two parts, st = svote

t + spos
t , i.e., the ensemble

voting score svote
t and the ensemble position score spos

t , which are summed together
to give the final ensemble score for every term in the corpus vocabulary. Each term
score represents the term’s potential for linking the two disjoint domains.

The ensemble voting score (svote
t ) of a given term t is an integer, which denotes

how many base heuristics voted for the term: each term can be given a score svote
t j
∈

{0,1,2, . . . ,k}, where k is the number of base heuristics used in the ensemble. The
ensemble voting score of term t j at position p j in the ranked list of n terms is
computed as a sum of the voting scores of the individual heuristics:

svote
t j

=
k

∑
i=1

svote
t j ,hi

=
k

∑
i=1

{
1, p j < n/3,
0, otherwise.

(6.1)

The ensemble position score (spos
t ) is calculated as an average of the position

scores of the individual base heuristics. For each heuristic hi, the term’s position
score spos

t j ,hi
is calculated as n− p j/n, which results in the position scores being in

the interval [0,1). For an ensemble of k heuristics, the ensemble position score is
computed as an average of the position scores of the individual heuristics:

spos
t j =

1
k

k

∑
i=1

spos
t j ,hi

=
1
k

k

∑
i=1

n− p j

n
. (6.2)

The method of constructing the ensemble score described above looks rather intri-
cate; however, the calculation of the ensemble score by our method is well justified
by extensive experimental results (Juršič et al., 2012a, 2012b) on the migraine–
magnesium dataset (Swanson, 1988). Based on the experimental results, the final
set of elementary heuristics included in the ensemble consisted of the following
heuristics:

• outFreqRelRF, the relative frequency of term t in the outlier document set
detected by a random forest classifier;

• outFreqRelSVM, the relative frequency of term t in the outlier document set
detected by a support vector machine classifier;

• outFreqRelCS, the relative frequency of term t in the outlier document set
detected by a centroid similarity classifier;

• outFreqSum, the sum of the frequencies of term t in all three outlier document
sets;
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• tfidfDomnSum, the sum of the TF-IDF weights of term t in the two domains;
and

• freqRatio, the term-to-document frequency ratio.

A detailed justification for the choice of this particular combination of heuristics is
presented in Juršič (2015).

6.3.4 The CrossBee HCI Interface

The user-friendly CrossBee web interface can be used to efficiently investigate
cross-domain links ranked by the ensemble-based ranking methodology. CrossBee’s
document-focused exploration empowers the user to filter and order the documents
by various criteria, including a detailed document view that provides a more detailed
presentation of a single document, including various term statistics. Methodology
performance analysis supports the evaluation of the methodology by providing
various data which can be used to measure the quality of the results, for example
data for plotting ROC curves. High-ranked-term emphasis marks the terms according
to their bisociation score calculated by the ensemble heuristic. When this feature
is used, all high-ranked terms are emphasized throughout the whole application,
thus making them easier to spot (see the different font sizes in Fig. 6.6). B-term
emphasis marks the terms defined as b-terms by the user (terms highlighted in yellow
in Fig. 6.6). Domain separation is a simple but effective option which colors all
documents from the same domain in the same color, making an obvious distinction
between the documents from the two domains (different colors in Fig. 6.6). User
interface customization enables the user to decrease or increase the intensity of
the following features: high-ranked term emphasis, b-term emphasis, and domain
separation.

The user can inspect the actual appearances of the selected term in both domains,
using side-by-side document inspection as shown in Fig. 6.6. In this way, they can
verify whether their rationale behind selecting this term as a b-term can be justified
based on the contents of the documents inspected.

6.4 Exploring Outlier Documents in Literature-Based Discovery

This section outlines the exploration of outlier documents as means for cross-domain
LBD (Petrič et al., 2012; Sluban et al., 2012).Here, we use the term “outlier detection”
to refer to the task of finding irregular or unusual data instances (documents in the
case of literature mining) that do not conform to the expected distribution.

Outlier detection is an established area of data mining (Aggarwal, 2013). Con-
ceptually, an outlier is an unexpected event or entity, or – in our case – an irregular
document. We are especially interested in outlier documents since they frequently
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embody new information that is hard to explain in the context of existing knowledge.
Moreover, in data mining, an outlier is occasionally a primary object of study, as
it can potentially lead to the discovery of new knowledge. These assumptions are
well aligned with the bisociation potential that we wish to optimize; thus, we have
constructed several heuristics that harvest the information possibly residing in outlier
documents.

6.4.1 Outlier Document Detection and B-term Identification
Through Document Classification

The technique proposed by Sluban et al. (2012) to detect outlier documents using
classification algorithms, works as follows. Having documents from two domains of
interest, we first train a classification model that distinguishes between the documents
from these domains. Using the model constructed we classify all the documents. The
documents that are misclassified – according to their domain of origin – are declared
to be outlier documents, since according to the classification model they do not belong
to their domain of origin. These domain outliers are actually borderline documents,
as they were considered by the model to be more similar to the other domain than
their originating domain. Hence they can be regarded as bridging documents between
the two domains.

Fig. 6.6 One of the useful features of the CrossBee interface is the side-by-side view of documents
from the two domains under investigation. The analysis of the b-term “stress” from the migraine–
magnesium domain is shown. The view presented enables efficient comparison of two documents,
the left one from the migraine domain and the right one from the magnesium domain.
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In our work, we thus used noise detection approaches to find outlier documents
containing cross-domain b-terms between two different domains. When exploring
a domain pair dataset, we searched for a set of outlier documents using different
classification-noise-filtering approaches (Brodley & Friedl, 1999), implemented and
adapted for this purpose.

Classification noise filtering is based on the idea of using a classifier as a tool for
detecting noisy and outlier instances in data. In this work, the simple classifiers used
by Brodley and Friedl (1999) were replaced by new, better-performing classifiers, as
the noise filter should, as much as possible, trust the classifiers that they will be able
to correctly predict the class of a data instance. In this way, the incorrectly classified
instances are considered to be noise/outliers. In other words, if an instance of class A
is classified in the opposite class C, we consider it to be an outlier of domain A, and
vice versa. We denote the two sets of domain outlier documents by O(A) and O(C),
respectively. Figure 6.7 illustrates the principle.

Fig. 6.7 Detecting outliers of a domain pair dataset using document classification.

We evaluated whether domain outliers obtained by classification noise filtering
have the potential for bridging different concepts. We tested this on the migraine–
magnesium (Swanson, Smalheiser, & Torvik, 2006) and autism–calcineurin (Petrič,
Urbančič, Cestnik, & Macedoni-Lukšič, 2009) domain pair datasets, which have
lists of confirmed concept b-terms. The experimental results showed that the sets
of detected outlier documents were relatively small – including less than 5% of the
entire datasets – and that they contained a great majority of b-terms; the number of
b-terms in them was significantly higher than in same-sized random subsets. These
results are summarized in Fig. 6.8. Hence the effort needed for finding cross-domain
links is substantially reduced, as it requires one to explore a much smaller subset of
documents, where a great majority of the b-terms are present and these terms are
more frequent.
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Fig. 6.8 Presence of b-terms in the detected outlier sets of two domain pair datasets.

Fig. 6.9 Target domain documents from literatures A and C, clustered according to OntoGen’s two-
step approach, using first unsupervised and then supervised clustering to obtain outlier documents
O(A) and O(C) of literatures A and C, respectively.

6.4.2 Outlier Document Detection and B-term Identification
Through Document Clustering

The approach proposed by Petrič et al. (2012) concentrates on a specific type of
outlier – the domain outliers – i.e., the documents that tend to be more similar to the
documents in the opposite domain than to those in their own domain. In this approach,
document clustering is used to find outlier documents. The approach consists of two
steps. In the first step, the OntoGen clustering algorithm (Fortuna et al., 2006) is
applied to cluster the merged document set A∪C, consisting of documents from
both of the domains A and C. The result of unsupervised clustering is two document
clusters: A′ = Classified as A (i.e., documents from A∪C classified as A), and C′

= Classified as C (i.e., documents from A∪C classified as C). Then, in the second
step, for each of the clusters, a supervised clustering approach is applied taking into
account the original domains A and C of the documents. As a result, a two-level tree
hierarchy of clusters is generated. The approach is illustrated in Fig. 6.9.
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Fig. 6.10 Graph representing instances (documents) of literature A and instances (documents) of
literature C according to their content similarity to a prototypical document of literature A, as
suggested in Petrič, Cestnik, Lavrač, and Urbančič (2012). In this graph, outliers of literature C
are positioned closer to the typical representatives of literature A than to the central documents of
literature C.

The experimental results obtained in the gold standard migraine–magnesium
domain, as well as in the autism–calcineurin domain pair, confirm the hypothesis
that most b-terms appear in outlier documents and that, by considering only outlier
documents, the search space for b-term identification can be greatly reduced. More-
over, the user can employ the document similarity graph – schematically presented in
Fig. 6.10 – to identify the most irregular documents in their own domain and start the
search for b-terms from these outlier documents, belonging to subclusters O(C) and
O(A). In this way, the search space for finding b-term candidates can be substantially
reduced.

6.4.3 Relating Outlier Document Detection to CrossBee Heuristics

The outlier document detection approaches described above inspired the development
of outlier-based heuristics for the CrossBee b-term detection engine. As mentioned
in Section 6.3.3, six heuristics (outFreqRelRF, outFreqRelSVM, outFreqRelCS,
outFreqSum, tfidfDomnSum, and freqRatio) are used in the CrossBee ensemble
heuristic. The outlier-based heuristics proved to be very effective. Note that four
of these (outFreqRelRF, outFreqRelSVM, outFreqRelCS, and outFreqSum) are
based on term frequencies in outlier documents; three of them were inspired by the
classification-based approach (outFreqRelRF, outFreqRelSVM, and outFreqRelCS)
and one by the OntoGen clustering approach (outFreqSum) to outlier document
detection.
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6.5 Conclusions and Further Work

This chapter has presented selected information technologies for creative knowledge
discovery, developed to uncover previously unknown links between facts in different
contexts, potentially leading to new insights and new knowledge. The approaches
described are based on the Koestler’s notion of bisociations, connecting domains that
are usually considered as separate. When the domains investigated are described by
texts, for example a set of documents, bisociative literature-mining methods can point
towards novel chains of thoughts by identifying bridging terms with high potential
for new discoveries resulting from putting existing pieces of knowledge together into
a novel, interesting and reasonable whole.

The identification of cross-context links or bridging terms leading to new insights
and discoveries is not an easy task, owing to the huge search space of possibilities,
similar to looking for a needle in a haystack. One of the possible solutions is to
identify the parts of the search space with an increased probability of finding good
candidate terms/concepts with, the aim of restricting the huge amount of existing
literature to a more manageable amount of sources to be explored first. This is
the approach taken in our research in cross-domain literature mining via outlier
document detection and exploration, presented in Section 6.4. The other option is to
estimate the potential of candidate links for new discoveries and to concentrate on
the most promising ones. This is the approach taken in the development of the online
CrossBee application, supporting the user in the search and detection of cross-domain
bridging terms, outlined in Section 6.3. The information technologies outlined, and
other related approaches to bisociative link discovery that help in uncovering new
connections between existing pieces of knowledge in the literature, can be used to
assist researchers in their creative process by suggesting and even ranking candidate
bridging terms.

Note that IT tools that implement literature-based discovery to enable a researcher
to guide the discovery process by using his or her background knowledge enable
the researcher to explore the literature more efficiently, but may also trigger the
researcher’s own human creativity. IT-supported literature exploration may provoke
the researcher’s own ‘Koestler-style’ bisociations to be triggered in this process.
These bisociations may better specify or redirect the focus of further steps in the
literature-based discovery process. The history of science and engineering offers
numerous examples showing that Koestler’s bisociative principle of thought has been
an important element of new discoveries, based on innovative connections between
already known ideas. As described above, literature-based discovery and bisociative
knowledge discovery can complement each other, offering immense possibilities
for new discoveries that we have only started to explore, but have already seen this
process working at its best.

In future work we will introduce additional user interface options for data vi-
sualization and exploration as well as advance the term ranking methodology by
adding new sophisticated heuristics, which will take into account also the seman-
tic aspects of the data. Besides, we will apply the system to new domain pairs to
exhibit its generality, investigate the need and possibilities of dealing with domain
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specific background knowledge, and assist researchers in different disciplines in their
explorations which may lead to new scientific discoveries. We will also propose a
further extension of the literature based discovery methodology by facilitating the
use of controlled vocabularies, enhancing the heuristics capability to rank the actual
b-terms at the top of the ranked term list.
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