
Domain Modeling Based on Requirements
Specification and Ontology

Iwona Dubielewicz, Bogumiła Hnatkowska, Zbigniew Huzar
and Lech Tuzinkiewicz

Abstract Domain model plays an important role in software development. Typi-
cally, it is a primary input to elaboration of a system model which in turn is
translated into source code and related database schemas. Effective development of
domain model is a part of requirement engineering during which domain experts are
employed to identify domain entities and relationships among them. We claim that
this task can be supported by the use of domain ontologies from which interesting
knowledge can be extracted. The starting point to knowledge extraction is an
existing requirements specification. In this paper, we investigate how the form of
requirements specification influences the quality of extracted model. Some mea-
sures allowing to assess the quality are introduced. A case study has shown that in
the most cases the simplified version of a requirements specification is enough to
obtain a satisfactory domain model, however if the domain is very complex, the
extended version of requirements specification could be necessary.

Keywords Ontology ⋅ Requirements specification ⋅ Domain modeling ⋅
Knowledge extraction

I. Dubielewicz ⋅ B. Hnatkowska (✉) ⋅ Z. Huzar ⋅ L. Tuzinkiewicz
Faculty of Computer Science and Management, Wrocław University of Science
and Technology, Wyb. Wyspiańskiego, 27, 50-370 Wrocław, Poland
e-mail: Bogumila.Hnatkowska@pwr.edu.pl

I. Dubielewicz
e-mail: Iwona.Dubielewicz@pwr.edu.pl

Z. Huzar
e-mail: Zbigniew.Huzar@pwr.edu.pl

L. Tuzinkiewicz
e-mail: Lech.Tuzinkiewicz@pwr.edu.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_3

31

1 Introduction

Incremental development is one of the approaches to software systems develop-
ment. The software system is developed as a series of increments (builds, releases).
Each new increment adds some functionality to the previous one. Specification,
development, and validation are activities interleaved within single increment
preparation. Incremental development seems to be the most common approach for
software systems, and it is applied both in plan-driven (especially iterative) and
agile methodologies. Its popularity owes to their advantages over classic waterfall
model: reduced cost of implementation of changing requirements; feedback from
customers during development work, and early delivery of running software.

Software development process is initiated by a real problem that occurs in a
given application domain. The software system is intended to bring a solution or at
least to support the problem solution. The software developer must first understand
the problem, and, to this end, must have adequate domain knowledge. Usually, the
needed knowledge is delivered by domain experts. In the paper, it is assumed that
this knowledge can be extracted from a domain ontology. Recall that [12]: An
ontology is a formal (machine-readable), explicit (consensual knowledge) specifi-
cation (concepts, properties, relations, functions, constraints, axioms are explicitly
defined) of a shared conceptualization (abstract model of some phenomenon in the
world). Further, we assume that it is available a consistent and complete domain
ontology respective to the given problem.

The domain problem is usually informally outlined. The domain problem is
described by requirements specification. The requirements specification is the base
for system model design, and next for a code implementation. Symbolically, this
process is depicted as follows (Fig. 1).

In the proposed approach, we demonstrate that the transition from the require-
ments specification to the domain model, which usually is performed by a business
analyst in collaboration with domain experts, may be done semi-automatically with
the use of a domain ontology. It means that the knowledge of the domain expert
may be replaced by the knowledge contained in respective domain ontology pro-
vided that this ontology is consistent and complete. Of course, as in the traditional
approach, the domain model should be validated by a domain expert. In the series
of papers [3–5], we have presented the idea of this approach. Additionally, a set of
programming tools, supporting the approach, have been developed [4, 7].

In this paper, we demonstrate how a form of requirements specifications may
influence the resulting domain model. Our aim is to assess how the form and

Fig. 1 Basic artifacts within development process

32 I. Dubielewicz et al.

granularity of requirements specification influences the quality of the domain model
obtained through knowledge extraction process from a given ontology. There are
introduced some measures enabling assessment of this influence.

In Sect. 2 we present the forms of requirements specification assumed to be
inputs to the knowledge extraction from existing ontologies. In Sect. 3 we shortly
describe the extraction process as well as propose measures to access its results.
Section 4 presents a case study, in which we try to answer the question if and how
the form of requirements specification influences the quality of the resulting domain
model. Section 4 gives the found conclusions and some comments on future works.

2 User Requirements Specifications

The notion of “requirement” has not unique meaning. According to IEEE [9], it is
“A condition or capability needed by a stakeholder to solve a problem or achieve
objectives”. It can be found a variety of taxonomies for requirements, but the
interesting one is this where requirements are defined for the product development
and for the process which leads to this product development. As in the paper we
concentrate on the product development process we consider taxonomy given in
BABOK® [1]: business requirements, stakeholder (user) requirements, solution (or
system) and transition requirements. Another requirements taxonomy is proposed in
ISO/IEC 25030:2007 [10] but it is limited only to software system requirements.

In practice, the distinction between them remains problematic—while the
business requirements are usually well discriminated from the others, distinguishing
between user and system requirements is much more difficult.

Independently of software development approach, the requirements definition
process is the of primary importance. In general, it consists of three sub-processes:
requirement elicitation, analysis and specification (they all are generalized to the
concept “requirement engineering”) [2, 14]. Nowadays commonly used software
development models are based on incremental and, more often adaptive approa-
ches. Activities performed within one increment (release) form a kind of a
mini-waterfall model. It means that the requirements for the release should be
completely defined before the design of that release, and thus, the whole require-
ments elicitation process is performed iteratively.

Each new increment brings its releasable product (release). Within each incre-
ment, requirements are documented and analyzed. The specification of elicited
requirements takes a form of plain text or sometimes more formal form—an use
case model. They are expressed by a mixture of notions from the IT and business
areas as in the iterative approach it is easy to cross the border between stakeholder
and system requirements. The analysis aims at deciding whether the notions used in
the requirements documentation are well-understood by all stakeholders and

Domain Modeling Based on Requirements Specification and Ontology 33

whether these notions are consistent to the given application domain. In this
analysis, a domain model elaborated on the base of the requirements specification
and a respective domain ontology may be used.

A specific approach to requirement elicitation, analysis, and specification has
been proposed in adaptive (agile) methodologies. The requirements specification
takes a form called User stories or eventually Epic (just a large user story that needs
to be broken down into) and represent a high-level description of a capability that
the system needs to provide [2]. They are expressed only with the business notions
and served as a basis for effort/cost estimation. After once picked up for being
worked on, the user story is described with a lot of details given directly by the
future user (and thus some IT notions can appear in its description). It only happens
when they start to be subject to implementation. At that time also the acceptance
criteria for the user stories are defined for they could be tested as “done” at the end
of the iteration.

Another approach can be seen in the Use Case v.2.0 concept proposed by
Jacobson [11]. For matching the incremental (precisely-agile) approach, he has
suggested defining the use case scenarios progressively. Instead of specifying all
scenarios at the beginning one can select (and define and implement) only some of
them according to the order specified by the user (“a priority driven” approach). The
scenarios specified in such a way has been called use case slices, and they corre-
spond to the user stories defined with many details.

Further, we assume that the requirements specification is expressed in the form
of user stories, usually presented in the context of a system vision [13]. User stories
are presented as statements in a standardized “role-feature-reason” form. Exemplary
variants of the forms are:

As a <type of user>, I want <some goal> so that <some reason>.
As a <role>, I want <goal/desire> so that <benefit>.

Description of each user story may be augmented with test cases. There are
many schemas of test case description. We have chosen the one marked “given-
when-then” which has the form:

GIVEN: Set up the object to be tested
WHEN: act on the object
THEN: Make claims about the object, its collaborators/parameters or global state.

Summarizing, we assume that requirements specification rs is defined as:

rs= < h1, tc1 > , . . . , < hn, tcn >f g ð1Þ

where h1, . . . , hn are user stories (histories), and tc1, . . . , tcn are sets of test cases.
Both user stories and test cases may be presented using above notations.

34 I. Dubielewicz et al.

3 Towards Domain Model

Practical approach to requirements specification begins with the initial list of user
stories h1, . . . , hn, The stories are ordered according to their decreasing pri-
orities. On the base of the arbitral decision of an specifier, first n stories with the
highest priority are selected to form first user requirements specification. This
specification usually contains only user stories, but for the sake of unique notation,
it will be written as in (1), where the sets of test cases may be empty.

The requirements specification, as a set of documents in natural language,
contains some words or phrases that represent notions related to a given problem
within an application domain. In the presented approach [8], we concentrated on
nouns and noun phrases as the most likely elements relating to a structural aspect of
the considered problem. The set of these elements is called a set of initial domain
notions.

The specification rs contains a set of initial domain notions DSN, which some of
them are domain and other are systems’ or native notions. DNS forms a glossary of
terms within a considered domain. The expert should define a function
EQ:DNS→ONT , which maps glossary terms into their equivalent ontology con-
cepts ONT. We assume that such domain ontology relevant to the considered
problem is given. The ontology should be consistent; additionally, its completeness
is strongly required.

The EQ function is usually a partial function because only the terms which
represent domain notions may have equivalents in the set of ontology concepts; the
domain of EQ (dom(EQ)) is marked in Fig. 2 by the gray oval within DSN while
the codomain of EQ (ran(EQ)) is marked by the gray oval within ONT.

A well-defined domain ontology should rather not contain specific notions
related to information systems.

EQ

TR

Fig. 2 Schema of transformations from a requirements specification to a domain model

Domain Modeling Based on Requirements Specification and Ontology 35

The value:

coverage=
cardðdom EQð ÞÞ
cardðDNSÞ ð2Þ

where card(X) means cardinality of the set X, is the measure how terms of the
glossary are covered by ontology notions.

The set of ontology notions defined by the EQ function, i.e. the set representing
its range ran(EQ), is the base for extracting additional knowledge from the
ontology ONT. The additional notions are extracted by knowledge extraction
algorithm [8], which abstractly is represented as a function
KEðran EQð Þ, ontÞ⊆ONT . The set of ontology notions extracted from the ontology
is represented in Fig. 2 as a range of the function KE, i.e. ran(KE). Informally, ran
(KE) may be called a sub-ontology of the ontology ONT. Of course, this set
contains ran EQð Þ as its subset.

The value:

enrichment =
cardðranðKEÞ\ranðEQÞÞ

cardðran KEð ÞÞ ð3Þ

may be treated as a measure how the ontology enriches the initial mapping of
glossary terms.

The set ran(KE), represented by the dark gray oval in Fig. 2, is a base for
automatic UML class diagram generation [3]. The algorithm generating a class
diagram is abstractly represented as a function TR ran KEð Þð Þ. The generated class
diagram ranðTRÞ is represented in Fig. 2 by dark gray oval, a subset of DM. DM
represents a final domain model, also represented in the form of UML class dia-
gram, which is obtained by modification of ranðTRÞ. The modification is the result
of two activities performed by an analyst/domain experts. Within these activities, it
is decided which elements of the ranðTRÞ on the class diagram are irrelevant, and
which elements are missing with respect to the requirements specification.

An element e∈ ranðTRÞ is said to be irrelevant to the requirements specification
if e is not used in the description of any user story or any test case. The set of
irrelevant and missing elements are denoted by DMirr and DMmis, respectively. The
following are measures of irrelevance:

irrelevance=
cardðDMirrÞ
cardðranðTRÞÞ ð4Þ

and missing:

missing=
cardðDMmisÞ

card ranðTRÞ\DMirrð Þ+ cardðDMmisÞ ð5Þ

36 I. Dubielewicz et al.

In the incremental and iterative software life-cycle model, the requirements
specification prepared in one iteration may be modified by extension or refinement
in the next iteration. Requirements specification rs1 may be developed in subse-
quent iterations. The specification rs2 is an extension of rs1 if
rs2 = rs1 ∪ < hn+1, tcn+1 > . . .g. It means that new user stories are added to the
previous specification rs1. The specification rs2 is a refinement of rs1 if some test
case tci assigned to the user story hi (i = 1, …, n) from rs1 is replaced by tc

0
i such

that tci ⊂ tc
0
i. In practice, one modification step may contain both requirements

extension and its refinement.
Summarizing, after a series of iterations, we have a sequence of requirements

specifications: rs1, rs2, . . . , rsn accompanying with a sequence of respective
sub-ontologies: ont1, ont2, . . . , ontn, and a sequence of domain models:
dm1, dm2, . . . , dmn.

The way how requirements specifications are constructed shows that
DNSi ⊆DNSi+1. Therefore also ONTi ⊆ONTi+1, where ONTi is the set of ontology
notions for the sub-ontology onti, and DMi ⊆DMi+1, where DMi is the set of
domain model notions for the domain model dmi.

Now the question begs: how, in the context of the ontology, the form of rs
influences the quality of dm. It is difficult to answer the question directly, but we
may examine how the increment of the set of initial domain notions influences the
set of ontology and domain model notions. For example, if for some i = 1, 2, …,
n the condition holds:

cardðDNSi+1Þ
cardðDNSiÞ >

cardðONTi+1Þ
cardðONTiÞ >

cardðDMi+1Þ
cardðDMiÞ

it may be interpreted that each subsequent requirements specification has a weaker
influence on the subsequent domain model.

It should be noted that from the domain expert perspective, it would be not
convenient to prepare a domain model in incremental approach by creating a
sequences of sub-ontologies. It is rather suggested that the sub-ontology should be
created only ones on the base of the most developed requirements specification. Of
course, the postulate of incremental system model and software release develop-
ment remains still valid.

4 Case Study

The aim of the case study is to answer the question if and how the form of
requirements specification influences the quality of the domain model obtained
through knowledge extraction process from existing ontologies. We would like to
know if a domain model of acceptable quality can be retrieved from existing
ontologies at early stages of software development, when requirements

Domain Modeling Based on Requirements Specification and Ontology 37

specification doesn’t contain many details, or if we should refine as many
requirements as possible to obtain better results.

The study starts with a simplified version of requirements specification which
consists of two user stories with accompanying test cases (see Sect. 4.1). The user
stories refer to hotel reservation domain where a potential customer wants to browse
a hotel offer and later, to check the availability of specific room type in a given
period. Next, we follow the same extraction procedure twice, for two forms of
requirements specification—the first contains only user stories (see Sect. 4.2), while
the second also test-cases (see Sect. 4.3). The domain ontologies from which the
knowledge is extracted are included into the following SUMO [15] files: Merge.kif,
Mid-level-ontology.kif, Hotel.kif, Dining.kif, Catalog.kif. The first two files are
upper ontologies while the last two are domain ontologies referenced by Hotel.kif.
The models obtained in both cases are modified: missing elements (according to the
test cases) are added, and irrelevant found out and marked. The proposed metrics
are calculated what allows us to derive some conclusions.

4.1 Case Study—Requirements Specification

This subsection contains the definition of two user stories accompanied by test
cases. Test cases are written in Gherkin language—“a business readable, domain
specific language that lets you describe software’s behavior without detailing how
that behavior is implemented” [6].
User Story 1: As a potential customer, I want to see information about hotel,1 hotel
rooms, rooms’ amenities and prices so that I can decide whether to become a
customer.

Test cases for User Story 1:
Scenario 1: Basic information about hotel
Given that a hotel is defined with: <name>, <postal address>, and <category>
When a customer navigates to the main hotel page
Then he/she should be informed about hotel <name>, <postal address>, and
<category>.

Examples (basic information about hotel):

Name Postal address Category
Hostel Bema Street 5, Wroclaw, Poland ***

1Domain notions are written in italics.

38 I. Dubielewicz et al.

Scenario 2: List of hotel rooms
Given that a hotel rents rooms of types defined with: <room type>, <capacity>,
<price per night>, <amenities>
When a customer navigates from main hotel page to the list of room types page
Than he/she should be informed about the hotel room types.

Examples (types of hotel rooms):

User Story 2: As a potential customer, I want to check availability of selected room
type (room availability) in a given reservation period so that to be able to decide if
to make reservation or not.

Test cases for User Story 2:
Scenario 1: No room of a given room type is available in selected period
Given that a hotel has reservations for rooms of <room type>
And that <room type> is reserved from <dateFrom> to <dateTo>
And that the hotel has <nr instances> of rooms of <room type>
When a customer asks for the <room type> availability from <given dateFrom> to
<given dateTo>
Than he/she is informed that no room of specific <room type> is available from
<given dateFrom> to <given dateTo>.

Examples:

Scenario 2: There is a room of a given room type available in selected period
Given that a hotel has reservations for <room type>
And that <room type> is reserved from <dateFrom> to <dateTo>
And that the hotel has <nr instances> of rooms of <room type>
When a customer asks for <room type> availability from <given dateFrom> to
<given dateTo>
Then he/she is informed that a room of <room type> is available from <given
dateFrom> to <given dateTo>.

room type | capacity | price per night | amenities
single | 1 | 230 zł | TV, sejf
double | 2 | 300 zł | balcony, TV, sejf

Input:
room type: single given dateFrom: 1-1-2016 given dateTo: 2-1-2016

| | reservation period
room type | no instances | dateFrom | dateTo
single | 2 | 1-1-2016 | 3-1-2016

| 31-12-2015 | 2-1-2016

Domain Modeling Based on Requirements Specification and Ontology 39

Examples:

4.2 Domain Model Built Basing on the User Stories

This subsection describes the inputs/outputs of the functions involved in the
extraction process. We start from the definition of DNS set:

DNS = {hotel, hotel room, room amenity, price per night, room availability,
reservation, reservation period, customer, potential customer}.

The notions that, according to a domain expert, describe business notions at that
moment, are mapped by him to SUMO ontology. List of mappings from DSN to
ONT (EQ function) is as follows:

{hotel → HotelBuilding, hotel room → HotelRoom, room amenity → room-
Amenity, price per night → price, room availability → reserved-Room, reserva-
tion → HotelReservation, reservation period → (reservationStart,
reservationEnd)}.

It can be noticed that two of DNS notions are treated as the system notions and
are not mapped to the ontology notions.

Further the ontology notions are used to extract additional knowledge from
ontology (with EQ function) and to translate extracted notions to a UML class
diagram (with TR function). The translation maps each ontology element into an
appropriate UML element (the mapping is one to one). Figure 3 presents the results
of automatic UML class diagram generation. Please note, that HotelUnitType, and
PhysicalType are UML PowerTypes.

After generation, the domain model is investigated by a system analyst to find
out missing and irrelevant elements. Missing elements are presented in Fig. 4 in
bold (relations) or are written with Courier font (attributes, classes), while irrelevant
elements are drawn by dashed line (classes) or by thinner lines (relations). The
generated domain model doesn’t contain many details that are necessary to realize
all test cases, e.g. we lack the definition of properties like hotel name or category as
well as the definition of some relationships, e.g. hotel building consists of hotel
units. There is only one irrelevant element—we don’t need to know who has
defined a price for a hotel unit.

The values of basic measures for that scenario are listed in Table 1.

Input:
room type: single given dateFrom: 1-1-2016 given dateTo: 2-1-2016

 | | reservation period
room type | no instances | dateFrom | dateTo
single | 2 | 1-1-2016 | 3-1-2016

| 31-12-2015 | 1-1-2016

40 I. Dubielewicz et al.

4.3 Domain Model Built Basing on the User Stories
and Test Cases

Similarly, to the previous section we start with the definition of DNS set. In
comparison to the previous case, it contains additional notions, e.g. name, and
address.

Fig. 3 Automatically obtained domain model (according to Scenario 1)

Fig. 4 Revised version of domain model (according to scenario 1)

Table 1 Basic measures
counted for scenario 1
(columns refer to cardinality
of defined sets)

DNS dom
(EQ)

ran
(EQ)

ran
(KE)

ran
(TR)

DMirr DMmis

9 7 8 20 20a 1 13b
a11 classes, 7 relations, 2 inheritance relationships
b2 classes, 5 attributes (1 unnecessary − \no of instances),
2 relations, 3 inheritance rel

Domain Modeling Based on Requirements Specification and Ontology 41

DNS = {hotel, hotel room, room amenity, price per night, room availability,
reservation, reservation period, name, address, category, capacity}.

The list of mappings from DSN to ONT (EQ function) is as follow:

{hotel → HotelBuilding, hotel room → HotelRoom, room amenity → room-
Amenity, price per night → price, room availability → reservedRoom, reservation
→ HotelReservation, reservation period → (reservationStart, reservationEnd),
name → names, address → postAddressText, category → HotelRating, capacity
→ maxRoomCapacity}.

Figure 5 presents a refined version of UML class diagram—both missing and
irrelevant elements are marked here in the same way as in Fig. 4.

The values of basic measures for that scenario are listed in Table 2.

4.4 Comparison

In this section, we present the values of derived measures calculated for both
scenarios of our case study—see Table 3.

Fig. 5 Revised version of domain model (according to Scenario 2)

Table 2 Basic measures
counted for scenario 2
(columns refer to cardinality
of defined sets)

DNS dom
(EQ)

ran
(EQ)

ran
(KE)

ran
(TR)

DMirr DMmis

13 11 12 47 47a 10b 9c
aClasses, 14 relations, 10 inheritance (2 between relations)
b5 classes, 3 relations, 2 inheritance relations
c2 classes, 1 attribute (unnecessary: “\no of instances”), 1 relation,
5 inheritance relationships (most are defined in ontology)

42 I. Dubielewicz et al.

When our DNS set contains more elements (scenario 2) more of them are
considered to be domain notions (84 %) in comparison to the scenario 1 (77 %). It
seems that this observation should be valid also in the context of incremental
development, where, in an increment, a new user-stories are added or refined.
Scenario 2 also allows extracting more elements from existing ontology (enrich-
ment is equal to 74 % in comparison to 60 %). The extraction process is not ideal as
it produces some irrelevant elements. The likelihood that irrelevant elements will
appear is higher for scenario 2 (irrelevance is equal to 21 % in comparison to 5 %).
On the other hand, the number of missing elements decreases when the input is
richer (missing is equal to 19 % in comparison to 41 %).

The case study allows us to derive some preliminary conclusions. For the simple
domains it should be enough to start with user stories only. A domain model
resulting from the extraction procedure should be not complicated (only a few
irrelevant elements), and relatively easy for extension by a domain expert. The
missing elements can be added iteratively, on demand. For a complex domain, it is
worth to invest with a more detailed requirements specification, which allows to
obtain a domain model with less number of missing elements but possibly some out
of scope. It is easier to cross out unnecessary parts and have an opportunity to
familiarize deeper with the domain (from the perspective of a business analyst) than
to ask domain experts for identification of all lacking elements.

5 Conclusions

The aim of the paper is to present an approach to the knowledge extraction from an
ontology to create appropriate domain model and to evaluate the influence of the
requirements specification on the quality of the resulting model. The main problems
analyzed and discussed in this work are related to the evaluation of the possibility
and potential benefits of using ontology in the process of creating domain models in
the context of defined requirements (given in the form of the user stories). Defined
measures: enrichment, irrelevance, and missing, allow to evaluate the quality of the
extracted domain model.

Examples of knowledge extraction described in the case study show that the
created domain model can contain redundant elements (irrelevance > 0). On the
other side, one cannot assure that the resulting model fully meets user expectations
(missing > 0). Everything depends on the quality of requirements specification as

Table 3 Derived measures calculated for both scenarios

Measure Scenario 1: user stories Scenario 2: user stories + test cases

Coverage 0.77 0.84
Enrichment 0.60 0.74
Irrelevance 0.05 0.21
Missing 0.41 0.19

Domain Modeling Based on Requirements Specification and Ontology 43

well as the completeness of the selected ontology. In most cases the simplified
version of requirements specification is enough to obtain a satisfied domain model,
however, if the domain is very complex, an extended version of requirements
specification could be necessary.

Expected benefits of the proposed approach is to reduce the commitment and
costs of participation of experts in the process of domain knowledge extraction. It is
possible due to a partial automation of domain modeling process using ontology,
and the permanent access to the knowledge domain by IT developers. Experts
responsibilities may be limited to:

• mapping of DNS notions to ontology concepts,
• validation and possibly extension of created domain model.

The other benefit is a better quality of resulting domain model, which—by
construction—is consistent with ontology from which it was created.

Future works are concentrated on experiments aiming at improving effectiveness
and precision of the knowledge extraction algorithm from ontology which is used in
the process of generating domain models. Moreover, the results of experiments with
SUMO ontology challenged our assumption about the completeness of this
ontology and therefore it is also planned utilization of OWL ontologies in further
research.

References

1. A Guide to the Business Analysis Body of Knowledge
®

(BABOK
®

Guide) v2
2. Cobb, Ch.G.: Making Sense of Agile Project Management: Balancing Control and Agility.

Wiley (2011)
3. Dubielewicz, I., Hnatkowska, B., Huzar, Z., Tuzinkiewicz, L.: Domain modeling in the

context of ontology. Found. Comput. Decis. Sci. 40(1), 3–15 (2015)
4. Dubielewicz, I., Hnatkowska, B., Huzar, Z., Tuzinkiewicz, L.: Development of domain model

based on SUMO ontology. In: Zamojski, W., et al. (eds.) Proceedings of the 10th International
Conference on Dependability and Complex Systems DepCoS-RELCOMEX, pp. 163–173.
Springer (2015)

5. Dubielewicz I., Hnatkowska B., Huzar Z., Tuzinkiewicz L.: Problems of SUMO-like ontology
usage in domain modelling. In: Nguyen, N.T., et al. (eds.) 6th Asian Conference, ACIIDS
2014, Lecture Notes in Computer Science, vol. 8397, pp 352–363, Springer (2014)

6. Gherkin: http://docs.behat.org/en/v2.5/guides/1.gherkin.html
7. Hnatkowska, B.: Towards automatic SUMO to UML translation. In: Kościuczenko, P.,

Śmiałek, M. (eds.) From Requirements to Software, Research and Practice, pp. 87–100.
Polskie Towarzystwo Informatyczne (2015)

8. Hnatkowska, B., Dubielewicz, I., Huzar, Z., Tuzinkiewicz, L.: Conceptual modeling using
knowledge of domain ontology. In: Nguyen, N.T., et al. (eds.) 8th Asian Conference,
Intelligent Information and Database Systems, Proceedings, Part II, pp. 558–566. Springer
(2016)

9. ISO/IEC/IEEE 29148-2011—Systems and software engineering—Life cycle processes—
Requirements engineering. 2011

10. ISO/IEC 25030:2007 Software engineering—Software product Quality Requirements and
Evaluation (SQuaRE)—Quality requirements

44 I. Dubielewicz et al.

http://docs.behat.org/en/v2.5/guides/1.gherkin.html

11. Jacobson, I.: Use Case 2.0. A Guide to Succeeding with Use Cases. https://www.ivarjacobson.
com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf. Accessed 10 Apr 2016

12. Studer, R., Benjamins, V., Fensel, D.: Knowledge engineering: principles and methods. Data
Knowl. Eng. 25, 161–197 (1998)

13. Wikipedia: Vision document—wikipedia, the free encyclopedia, 2015. Accessed 4 Apr 2016
14. Wikipedia: Requirements engineering—wikipedia, the free encyclopedia, 2016. https://en.

wikipedia.org/wiki/Requirements_engineering. Accessed 4 Apr 2016
15. Wikipedia: Suggested upper merged ontology—wikipedia, the free encyclopedia, 2016.

Accessed 10 Apr 2016

Domain Modeling Based on Requirements Specification and Ontology 45

https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf
https://en.wikipedia.org/wiki/Requirements_engineering
https://en.wikipedia.org/wiki/Requirements_engineering

	3 Domain Modeling Based on Requirements Specification and Ontology
	Abstract
	1 Introduction
	2 User Requirements Specifications
	3 Towards Domain Model
	4 Case Study
	4.1 Case Study—Requirements Specification
	4.2 Domain Model Built Basing on the User Stories
	4.3 Domain Model Built Basing on the User Stories and Test Cases
	4.4 Comparison

	5 Conclusions
	References

