
Advances in Intelligent Systems and Computing 504

Lech Madeyski
Michał Śmiałek
Bogumiła Hnatkowska
Zbigniew Huzar Editors

Software
Engineering:
Challenges and
Solutions
Results of the XVIII KKIO 2016
Software Engineering Conference
2016 held at September 15–17 2016 in
Wroclaw, Poland

Advances in Intelligent Systems and Computing

Volume 504

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Lech Madeyski ⋅Michał Śmiałek
Bogumiła Hnatkowska ⋅ Zbigniew Huzar
Editors

Software Engineering:
Challenges and Solutions
Results of the XVIII KKIO 2016 Software
Engineering Conference 2016 held
at September 15–17 2016 in Wroclaw, Poland

123

Editors
Lech Madeyski
Faculty of Computer Science
and Management

Wrocław University of Science
and Technology

Wrocław
Poland

Michał Śmiałek
Faculty of Electrical Engineering
Warsaw University of Technology
Warsaw
Poland

Bogumiła Hnatkowska
Faculty of Computer Science
and Management

Wrocław University of Science
and Technology

Wrocław
Poland

Zbigniew Huzar
Faculty of Computer Science
and Management

Wrocław University of Science
and Technology

Wrocław
Poland

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-43605-0 ISBN 978-3-319-43606-7 (eBook)
DOI 10.1007/978-3-319-43606-7

Library of Congress Control Number: 2016947021

© Springer International Publishing Switzerland 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Back in 1968, the first NATO Conference on Software Engineering has announced
the “software crisis”. Today we can see this as a “chronic affliction” of missed
deadlines, extended budgets (poor productivity) and unsatisfied clients (poor
quality). The cause of this affliction is the inherent complexity of software systems.
Today, we can identify several major areas of research and practice that aim at
overcoming this complexity and thus achieving an increase in productivity and
quality of software in various application domains. First of the areas consists in
increasing levels of abstraction for programming constructs. Recent approaches in
this field include domain-specific languages, various requirements languages and
domain modelling. Second of the areas consists in assuring a better quality of
produced software. It includes various approaches to predict and eliminate defects
by analysing code or by creating new testing methods. Third of the areas consists in
optimising software development and operation cycles. This direction comprises
such elements as continuous product delivery, frequent product releases, high
end-user involvement and feedback, as well as tight integration of teams. The above
three areas of software engineering are reflected in three parts of this volume.

The first part—Requirements and Domain Modelling—treats the problems
concerning initial phases of software development, which are domain or business
modelling, and requirements specification. The basic questions asked in this part
are: “what requirements specification languages should be used?” and “how to
represent requirements specifications in these languages to guarantee that they are
complete and are equally understandable by all stakeholders?” The paper “Business
Rule Patterns Catalog for Structural Business Rules basing on the OMG recom-
mendation Semantics of Business Vocabulary and Business Rules” proposes a
catalogue of patterns for structural business rules. The catalogue is intended to
contain a limited number of patterns, which cover the most typical cases that can be
found by a business analyst during the business rule identification process. The
paper “Sketching Use-case Scenarios Based on Use-Case Goals and Patterns” is in
some sense similar to the previous one but focuses on use cases. It describes and
evaluates the idea of a catalogue containing use-case patterns as a basis for a

v

semi-automatic approach to generate use-case scenarios, and a programming tool
supporting this generation. The next two papers are complementary to one another.
The first one, “Domain Modelling Based on Requirements Specification and
Ontology”, presents an approach to UML class diagram construction on the basis of
a given domain ontology expressed using the SUMO language and a given user
requirements model. The second one, “Semantic Validation of UML Class Dia-
grams with the Use of Domain Ontologies Expressed in OWL 2”, considers how to
check compliance of a given UML class diagram with a given domain ontology
expressed in OWL. The last paper in this part, “RSL-DL: Representing Domain
Knowledge for the Purpose of Code Generation”, proposes a declarative specifi-
cation language to define domain logic, being a new extension to the existing RSL
language. The new language facilitates construction of precise requirements spec-
ifications and their further generation into code structured using the MVP archi-
tectural pattern.

In the next part—Quality Assurance—the main issues under consideration are
prediction of defects, mutation testing and practical problems of measuring the
quality of software. The paper “Assessment of the Software Defect Prediction Cost
Effectiveness in an Industrial Project” deals with a real problem found in the
industry: how the proposed method for predicting defects, assisted by an open
source software measurement framework, affects the cost of software development.
This preliminary investigation is encouraging, indicating the possibility of signifi-
cant financial savings. The paper “Dynamic Stylometry for Defect Prediction”
hypothesises that the indirect measure of software defects can be estimated by the
measures defined for the software development process. The proposed model of
defects prediction is evaluated experimentally on a group of computer science
students. A new idea for mutation testing of Web Services is presented in the paper
“Mutant generation for WSDL”. A tool called Web Services Mutant Generator that
supports mutation testing of Web Services and examples of its usage are presented.
The paper “Improving Measurement Certainty by Using Calibration to Find Sys-
tematic Measurement” states a very practical question: how to reduce the uncer-
tainty of measurement results obtained from instruments with an unknown
measurement method? When answering this question, the authors postulate to
replace standard statistical analysis by an appropriate calibration procedure. The last
paper in this part also refers to practical issues. The aim of the paper “Performance
comparison of CRM systems dedicated to reporting failures to IT department” is to
compare efficiency of a client-side architecture system vs. a server-side architecture
system, under the condition of their significant load. The obtained results confirm
the importance of choosing the client-side architecture for small and medium-sized
systems.

The third part of this volume—Software Process Improvement—discusses
selected aspects and mechanisms conducive to improving quality of software
development. The first paper, “Software Engineering Needs Agile Experimentation:
a New Practice and Supporting Tool”, meets the needs of collecting high-quality
data during lightweight experimentation in real-world software development. It
proposes and assesses a new practice called “agile experimentation”, together with

vi Preface

a dedicated tool supporting the practice. The next paper, “An Industrial Survey on
Business Analysis Problems and Solutions”, analyses a set of business analysis
techniques used in selected industrial projects and their impact on the most often
reported problems encountered by business analysts. The main outcome of the
paper is a recommendation regarding ways in which these techniques should be
applied. The paper “Beyond Software Architecture Knowledge Management
Tools” is a reflection on architecture decision-making tools in isolation from a
particular practical context. It postulates the need for an architecture knowledge
management infrastructure integrated with popular tools that are used for software
development.

The Rational Unified Process is a widely accepted formal software development
methodology. It can be used as a pattern for assessment of process maturity in
software development organisations. The paper “Model of RUP processes maturity
assessment in IT organisations” presents the design of a system that analyses
application of RUP-compliant processes in real organisations within actual projects.
The last paper, “A collaborative approach to developing a part-time Ph.D. program
in IT Architecture with industry cooperation”, concerns the important problem of
professional education at the Ph.D. level. A motivation model for establishing Ph.
D. studies is proposed. Its leading idea is to make an agreement between academy
and industry based on the SWOT analysis.

The above 15 papers constitute a selection from 59 submissions, which gives the
total acceptance rate of less than 26 %. The editors would like to express their
cordial thanks to all the authors for their significant contributions. We are very
grateful to all reviewers for their excellent reviews and comments supporting the
selection process and leveraging the quality of the selected papers.

Wrocław Lech Madeyski
Warsaw Michał Śmiałek
Wrocław Bogumiła Hnadkowska
Wrocław Zbigniew Huzar
May 2016

Preface vii

Reviewers

Zbigniew Banaszak, Warsaw University of Technology, Poland
Włodzimierz Bielecki, West Pomeranian University of Technology, Poland
Miklós Biró, Software Competence Center Hagenberg, Austria
Přemek Brada, University of West Bohemia, Czech Republic
David Budgen, Durham University, United Kingdom
Krzysztof Cetnarowicz, AGH University of Science and Technology, Poland
Zbigniew Czech, Silesia University of Technology, Poland
Włodzimierz Dąbrowski, Warsaw University of Technology, Poland
Mariusz Flasiński, Jagiellonian University, Poland
Jozef Goetz, University of La Verne, USA
Adam Grzech, Wroclaw University of Science and Technology, Poland
Janusz Górski, Gdańsk University of Technology, Poland
Piotr Habela, Polish-Japanese Institute of Information Technology, Poland
Bogumiła Hnatkowska, Wroclaw University of Science and Technology, Poland
Zbigniew Huzar, Wroclaw University of Science and Technology, Poland
Stanisław Jarząbek, Bialystok University of Technology, Poland
Hermann Kaindl, TU Wien, Austria
Barbara Kitchenham, Keele University, United Kingdom
Ludwik Kuźniarz, Blekinge Institute of Technology, Sweden
Piotr Kosiuczenko, Military University of Technology, Poland
Kevin Lano, King’s College London, United Kingdom
Laszlo Lengyel, Budapest University of Technology and Economics, Hungary
Leszek Maciaszek, Wroclaw University of Economics, Poland
Lech Madeyski, Wroclaw University of Science and Technology, Poland
Marek Majchrzak, Wroclaw University of Science and Technology, Poland
Zygmunt Mazur, Wroclaw University of Science and Technology, Poland
Erika Nazaruka, Riga Technical University, Latvia
Ngoc-Thanh Nguyen, Wroclaw University of Science and Technology, Poland
Mirosław Ochodek, Poznań University of Technology, Poland
Cezary Orłowski, Wyższa Szkoła Bankowa Gdańsk
Aneta Poniszewska-Marańda, Lódź University of Technology, Poland

ix

Krzysztof Sacha, Warsaw University of Technology, Poland
Klaus Schmid, University of Hildesheim, Germany
Michał Smiałek, Warsaw University of Technology, Poland
Miroslaw Staron, University of Gothenburg, Sweden
Andrzej Stasiak, Military University of Technology, Poland
Krzysztof Stencel, University of Warsaw, Poland
Jakub Swacha, University of Szczecin, Poland
Tomasz Szmuc, AGH University of Science and Technology, Poland
Lech Tuzinkiewicz, Wroclaw University of Science and Technology, Poland
Bartosz Walter, Poznań University of Technology, Poland
Krzysztof Wnuk, Blekinge Institute of Technology, Sweden
Andrzej Wąsowski, IT University of Copenhagen, Denmark
Janusz Zalewski, Florida Gulf Coast University, USA
Jaroslav Zendulka, Brno University of Technology, Czech Republic
Mel Ó Cinnéide, University College Dublin, Ireland

Additional Reviewers

Dubielewicz, Iwona
Majchrzak, Marek
Kuźniarz, Ludwik

x Reviewers

Contents

Part I Requirements and Domain Modeling

Business Rule Patterns Catalog for Structural Business Rules 3
Bogumiła Hnatkowska and Jose María Alvarez-Rodriguez

Sketching Use-Case Scenarios Based on Use-Case Goals
and Patterns . 17
Mirosław Ochodek, Krystian Koronowski, Adam Matysiak,
Piotr Miklosik and Sylwia Kopczyńska

Domain Modeling Based on Requirements Specification
and Ontology . 31
Iwona Dubielewicz, Bogumiła Hnatkowska, Zbigniew Huzar
and Lech Tuzinkiewicz

Semantic Validation of UML Class Diagrams with the Use
of Domain Ontologies Expressed in OWL 2 . 47
Małgorzata Sadowska and Zbigniew Huzar

RSL-DL: Representing Domain Knowledge for the Purpose
of Code Generation . 61
Kamil Rybiński and Rafał Parol

Part II Quality Assurance

Assessment of the Software Defect Prediction Cost Effectiveness
in an Industrial Project . 77
Jaroslaw Hryszko and Lech Madeyski

Dynamic Stylometry for Defect Prediction . 91
Adam Roman and Rafał Babiarz

Mutant Generation for WSDL . 103
Ilona Bluemke and Wojciech Grudziński

xi

http://dx.doi.org/10.1007/978-3-319-43606-7_1
http://dx.doi.org/10.1007/978-3-319-43606-7_2
http://dx.doi.org/10.1007/978-3-319-43606-7_2
http://dx.doi.org/10.1007/978-3-319-43606-7_3
http://dx.doi.org/10.1007/978-3-319-43606-7_3
http://dx.doi.org/10.1007/978-3-319-43606-7_4
http://dx.doi.org/10.1007/978-3-319-43606-7_4
http://dx.doi.org/10.1007/978-3-319-43606-7_5
http://dx.doi.org/10.1007/978-3-319-43606-7_5
http://dx.doi.org/10.1007/978-3-319-43606-7_6
http://dx.doi.org/10.1007/978-3-319-43606-7_6
http://dx.doi.org/10.1007/978-3-319-43606-7_7
http://dx.doi.org/10.1007/978-3-319-43606-7_8

Improving Measurement Certainty by Using Calibration
to Find Systematic Measurement Error—A Case
of Lines-of-Code Measure. 119
Miroslaw Staron, Darko Durisic and Rakesh Rana

Performance Comparison of CRM Systems Dedicated
to Reporting Failures to IT Department . 133
Hubert Zarzycki, Jacek M. Czerniak, Dawid Lakomski
and Piotr Kardasz

Part III Software Process Improvement

Software Engineering Needs Agile Experimentation:
A New Practice and Supporting Tool . 149
Lech Madeyski and Marcin Kawalerowicz

An Industrial Survey on Business Analysis Problems
and Solutions . 163
Piotr Marciniak and Aleksander Jarzębowicz

Beyond Software Architecture Knowledge Management Tools 177
Andrzej Zalewski

Model of RUP Processes Maturity Assessment in IT Organizations 187
Włodzimierz Wysocki, Cezary Orłowski, Artur Ziółkowski
and Grzegorz Bocewicz

A Collaborative Approach to Developing a Part-Time Ph.D. Program
in IT Architecture with Industry Cooperation . 201
Jan Werewka

Author Index . 215

xii Contents

http://dx.doi.org/10.1007/978-3-319-43606-7_9
http://dx.doi.org/10.1007/978-3-319-43606-7_9
http://dx.doi.org/10.1007/978-3-319-43606-7_9
http://dx.doi.org/10.1007/978-3-319-43606-7_10
http://dx.doi.org/10.1007/978-3-319-43606-7_10
http://dx.doi.org/10.1007/978-3-319-43606-7_11
http://dx.doi.org/10.1007/978-3-319-43606-7_11
http://dx.doi.org/10.1007/978-3-319-43606-7_12
http://dx.doi.org/10.1007/978-3-319-43606-7_12
http://dx.doi.org/10.1007/978-3-319-43606-7_13
http://dx.doi.org/10.1007/978-3-319-43606-7_14
http://dx.doi.org/10.1007/978-3-319-43606-7_15
http://dx.doi.org/10.1007/978-3-319-43606-7_15

Part I
Requirements and Domain Modeling

Business Rule Patterns Catalog
for Structural Business Rules

Bogumiła Hnatkowska and Jose María Alvarez-Rodriguez

Abstract Business rules are substantial citizens of requirement world. Similarly to
software requirements they can be specified with the use of patterns. Business rules
patterns increase the quality of a specification assuring business rules representation
consistency and helping in revealing missing or overlapping rules. The aim of the
paper is to propose a catalog of business rules patterns for structural rules. Such
rules extend the definition of the domain expressing mandatory constraints. The
catalog is constructed with two main assumptions in mind: it should be flexible
enough to cover most of the business rules from that category, and it should not put
too strong constraints on its users. The catalog has been developed as a result of
literature overview including investigation of existing pattern catalogs. The use-
fulness of proposed catalog is then checked by a case study when the business rules
patterns are used to express business rules from existing sources.

Keywords Business rules ⋅ Structural business rules ⋅ Patterns ⋅ Catalog of
patterns

B. Hnatkowska (✉)
Faculty of Computer Science and Management, Wrocław University
of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
e-mail: Bogumila.Hnatkowska@pwr.edu.pl

J.M. Alvarez-Rodriguez
Faculty of Computer Science and Management, Department of Computer Science
and Engineering, Carlos III University of Madrid, Avd. de la Universidad 30,
Leganés, Spain
e-mail: josemaria.alvarez@uc3m.es

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_1

3

1 Introduction

Business rules can be perceived as citizens of requirement world [1, 2] or, at least,
statements that imply requirements [3]. Not every business rule is implemented in
software, but if it is, it is strongly connected with functional requirements that must
behave according to it [3].

Business rules, similarly to software requirements, can be described with the use
of patterns or statement patterns. Application of patterns is of particular importance
at the business level when business rules are formulated by business people in the
language, which is commonly understood by all interested parties, i.e. natural
language, or controlled natural language. Application of patterns can bring several
potential benefits, e.g. [1, 4]:

• Better requirements—with more details, precision (including completeness), and
clarity, and with less ambiguity.

• Better efficiency—you will be able to write requirements more quickly and with
less effort.

• Better management—your requirements will be better structured.

Business Rule Pattern is here defined as an approach to specifying a particular
type of business rules, which aims at better business rules quality, understood as
uniformity of vocabulary, and grammar as well as better readability and analyz-
ability of business rules.

The goal of this research is to propose a catalog of patterns specified in an
implementation-independent language that is focused on structural (definitional)
business rules. This kind of business rules is especially interesting as they represent
invariants that always must be true, and prevent performing actions that violate this
state.

The catalog was designed on the base of literature overview and verified against
its completeness with the use of the freely available set of business rules [5]. The
catalog was prepared with two major assumptions. The intention was to propose a
narrow but representative set of rule patterns that will be sufficient to cover most of
the possible rules from that group (Pareto rule). On the other side, the catalog
should support the process of business rule specification without imposing too
intense demands on the way it is created. To the knowledge of the author such a
catalog for structural business rules does not exist, but one can find other examples
of catalogs for structural rules or their subtypes.

Related works, especially those used for catalog construction, are described in
Sect. 2. The method of catalog construction and validation together with the patter
catalog itself is presented in Sect. 3. Section 4 concludes the paper and shows
further works.

4 B. Hnatkowska and J.M. Alvarez-Rodriguez

2 Related Work

2.1 Business Rules Definitions and Classifications

There are many definitions of a business rule notion. About 20 years ago business
rules were defined as statements that define or constrain some aspect of the business
[6]. Currently, the elements that define some aspect of the business (business
vocabulary) are separated from those that influence the behavior of the business
(business rules), e.g. [3, 7]. According to [3], “a business rule is a criterion used to
guide operational business behavior, shape operational business judgments, or
make operational business decisions”. According to [7], a business rule is a
“proposition that is a claim of obligation or of necessity”, and “is under business
jurisdiction”.

The Business Rules Group (BRG) formulated so-called “Business Rules Man-
ifesto”, which contains a set of 10 articles about business rules. The most important,
in the context of this research, are those stating that: business rules are a first-class
citizens of the requirement world (1.1); they are not processes and not procedures,
and should not be contained in none of these (2.2); are built on facts, and facts are
built on concepts as expressed by terms (3.1); should be expressed declaratively in
natural-languages understood by business people (4.1), in such a way that they can
be validated for correctness by business people (5.2).

There exist many different classifications of business rules. One of the simplest is
proposed in [7], which splits business rules into two categories: structural/
definitional business rules (“claim of necessity”), and operative/behavioral business
rules (“claim of obligation”). In the context of that paper, we are interested in the
first group. “Necessity” means that something must be true, and it relates to the way
the concepts are understood [7]. “Structural rules often, but not always, propose
necessary characteristics of concept” [7]. Those rules are also able to express some
demands about quantities of instances or mandatory constraints. Structural rules
supplement definitions.

On the other side, operational business rules state what should or shouldn’t
happen in particular circumstances, but one can’t guarantee it is true. These rules
can be contravened or ignore by people, so it is why they have so-called “en-
forcement level” (e.g. strict—”if you violate the rule, you cannot escape the
penalty”).

The Semantics of Business Vocabulary and Rules (SBVR) uses another syntax
to distinguish between structural and operational rules, either those based on SBVR
Structured English (“It is necessary …”—structural rules, “It is obligatory …”—

operative rule), or those based on RuleSpeak (“ … always …”—structural rules,
“… must …”—operational rules).

Barbara von Halle defines three categories of rules: derivations, action-enabler
rules, and constraints split into two subcategories: mandatory constraints, and
suggested guidelines [8]. We are mainly interested in derivations (divided into
inference rules and calculations) and mandatory constraints, which are further

Business Rule Patterns Catalog for Structural Business Rules 5

subdivided into data integrity constraints, and business-oriented constraints (those
imposed by the business on its own, based on business policies).

In [9] the following categories belonging to mandatory constraints are defined:

• Referential integrity constraints, e.g. It is impossible to delete a class if it has any
student enrolled.

• Optionality constraints (at least one occurrence of an entity must be related in a
specified way to an occurrence of another entity) e.g. Each contract must be
composed of at least 1 line item.

• Cardinality constraints (no more than one or some other specified number of
occurrences of an entity must be related in a specified way to an occurrence of
another entity), e.g. Each contract must be assigned to only one party.

• An attribute is required to have value when an occurrence of an entity is created,
e.g. Description requires an attribute of asset type.

• An occurrence of a super type must be an occurrence of one and only one
subtype, e.g. a party must be either a person or an organization, but cannot be
both.

Referential integrity constraints in our opinion are unnecessary, as the constraint
can be expressed declaratively, e.g. each student must be enrolled in at least one
class.

Business Rules Group in [6] defines three types of business rules: structural
assertions, action assertions, and derivations. Action assertions specify constraints
on the results that action can produce. Action assertions are divided into three types:

• Integrity constraint—something that must be true about entity, relationship, or
attribute by definition; the rules prevent actions that would violate the constraint.

• Condition—defines a condition under which another rule is applied.
• Authorizations (business rules, what they are really)—only x can do y.

Integrity constraints can be understood as a subset of structural business rules
while others subtypes belong to operative business rules according to SBVR
classification.

Witt, in his book [10], proposes another classification and maps it to existing
ones (e.g. [6, 7]). He introduces four types of business rules: definitional rules, data
rules, activity rules, party rules. His definitional rules include many subtypes, e.g.
formal definitions of particular terms (include derivations, but that name is not
used), enumerations of mutually exclusive set of categories, rules describing the
structure of complex concepts or algorithms for calculating values and definitions
of conversion factors. Data rules impose some constraints on data, e.g. about the
cardinality of data items, mandatory elements, etc. Activity and party rules are out
of the scope of our interest. According to [10], action assertions defined in BRG
classification [6] belong to operative rules, what, in our opinion is only partially true
(see the comment about integrity rules). What is interesting, Witt criticizes the
syntax convention proposed both in SBVR and RuleSpeak for definitional rules,
and defines its own which uses “… by definition …” phrase.

6 B. Hnatkowska and J.M. Alvarez-Rodriguez

Table 1 shows subcategories proposed by different authors that in this paper are
treated as structural rules.

2.2 Business Rules Patterns

The notion of (business rule) pattern is defined differently by different authors, e.g.
as “a collection of model elements relating to a particular situation. It is a fragment
of a model that’s already available, ready for you to incorporate—either as it stands
or with modifications—into your own complete model” [11] or “a pattern is a
structured way of presenting key elements which can be used to create or identify
statements” [12].

We define business rule pattern as an approach to specifying a particular type of
business rule that aims at the better quality (uniformity of vocabulary, grammar,
better readability, and analyzability). It defines a pre-defined structure of elements
involved what limits the way a business rule can be expressed.

The idea of patterns for business rules can be implemented using different
approaches [13]:

• Approach 1: a complete syntax describing all valid patterns.
• Approach 2: valid patterns that allow for fill-in-the-blanks.
• Approach 3: free sentence formulation combined with guidelines about the

patterns.

An example of the approach 1 is presented in [14], where authors present a
controlled language called RuleCNL for Business Rules Specification. The syntax
of the language was defined with the use of Extended-Backus-Naur Form (EBNF).
Particular rules can reference to the entries of existing business vocabulary. The
solution is supported by business rule editor that assists end-users in business rules
writing process and automatic mappings into SBVR standard.

The complexity of proposed solution is quite big as you need to define a complete
grammar, implement it in a parser, build supporting tools, e.g. editors or consistency
checkers. On the other hand, the controlled language constraints the way of language

Table 1 References to
categories of business rules
that are considered as
structural business rules

Classification Business rules category or subcategory

SBVR [7] Structural business rules
Witt [10] Definitional rules

Data rules
Von Halle [8] Derivations

Data integrity constraints
Hay [9] Mandatory constraints
BRG [6] Derivations

Integrity constraints

Business Rule Patterns Catalog for Structural Business Rules 7

usage, what, according to [13], influences negatively the effectiveness of work:
“It forces the author to write complete and correct sentences, which distracts him
from the real content—the knowledge—that he would like to record”.

Another interesting example of the approach 1 is described in [15] which defines
a catalog of patterns for derivation business rules as well as describes a process of
its construction. First of all, the author identified the fundamental constructs of
derivation business rules, and next described their interrelations using a
meta-model. This meta-model formulated the foundation for the creation of pat-
terns, which are formulated with the use of controlled natural language. The author
defined 19 basic patterns that can be employed together to constitute more complex
business rules. As it can be observed the number of patterns is high as they very
often represent small chunks of the business rule statement, e.g. “comparison with
value”.

The application of the approach 1 can also be found in Graham Witt’s book [10].
The author defined a large number of sentence templates for all types of business
rules, among others also structural ones. His approach is more prescriptive than the
others (e.g. Ross [6]), what means “that any two rules of the same type will be
expressed using statements having the same syntax” [16]. To effectively apply his
approach one needs to establish the proper type of rule first. What was mentioned in
the previous chapter, he proposed a new syntax to express definitional rules, other
than RuleSpeak [17] or SBVR Structure English.

An example of the approach 2 is presented in [18]. There is a hybrid approach in
which authors define a formal model to produce patterns “that help domain experts
familiar with the specific domain to express additional knowledge” [18]. These
patterns take a form of sentences of a controlled language with formally defined
grammar and mappings to the elements of formal model. From the user perspective
the patterns have placeholders which can be freely filled, e.g. There is a class of
products named <ProductClass> [18] As it can be seen from the example, the
patterns serve mainly to express facts, not structural business rules. The main
benefit of proposed approach is syntax and semantics separation. In consequence
different languages can be used to express the same knowledge, each one dedicated
to specific audience. The problems encountered during approach implementation
include limitations in terms of the grammatical quality of generated text (proper
expression of multiplicity and gender), what leads to the large number of patterns,
and, in consequence, a significant amount of work. One way of using this approach
is first to select a pattern, next to fill it with proper elements. According to [13] that
may lead to incorrect rules where the patterns are selected prematurely.

Software Requirement Patterns [1] can be referenced as another example of the
approach 2, which is much less formal than the previously described. No controlled
language is here in use. The structure of requirement patterns resembles the
structure of design pattern: we have a pattern name, basic details, applicability,
discussion, content, template(s), examples, extra requirements, considerations for
development, considerations for testing. Patterns belong to different categories, and,
in the context of this paper (patterns for business rules) the most interesting group is
Information Requirement Patterns, which contains following patterns: Data Type

8 B. Hnatkowska and J.M. Alvarez-Rodriguez

Requirement Pattern (field level), Data Structure Requirement Pattern (class level),
ID Requirement Pattern, and Calculation Formula Requirement Pattern. An
exemplary template of the later pattern is shown below [1]:

<<Value description>> shall be calculated as follows:
<<Value name>> = <<Formula>>
Where <<Variable 1 name>> is <<Variable 1 description>>
<<Variable 2 name>> is <<Variable 2 description>>

Tags in “<<>>” can be freely filled.
RuleSpeak Sentence Forms [17] can be referenced as an example of the

approach 3. RuleSpeak is a set of sentence forms for specifying natural-language
business rules in English. The main idea behind is that every type of business rule
contains a proper key word, e.g. must, must not, may only, which points out the fact
that a business rule always removes a degree of freedom. The pattern, except the
keyword, contains almost nothing (“…always …”, “… must …”, “… may … only
…”). The sentence forms “do not represent a formal language or syntax for
implementing business rules using a software platform” [8]. Except a key word, a
business rule should follow some guidelines, e.g. every statement should be a
complete sequence, or every statement should have a subject at the beginning.
RuleSpeak uses the same pattern for all constraints—we can’t distinguish easily
operational from structural rules.

In this paper a catalog that follows the approach 2 is proposed. Its definition is
similar to that used in [1]. The authors’ intention was not to cover all the possible
structural rules or to define a complete syntax (a part of controlled language) for
them. Instead, she aim to offer a tool, which should help in revealing and specifying
typical structural business rules expressed according to RuleSpeak guidelines [19].

3 Definition of a Business Rule Patterns Catalog

3.1 Description of Catalog Design Method

This chapter presents how the catalog of business rule patterns was designed. The
method consisted of three main stages:

1. Literature review to find out:

(a) Definition of structural business rules and their subtypes together with
examples

(b) Definition of business rule patterns for structural business rules and their
subtypes

(c) Examples of structural business rules

2. Definition of business rule patterns catalog for structural business rules
3. Validation of business rule patterns catalog

Business Rule Patterns Catalog for Structural Business Rules 9

3.2 Results of Literature Overview

To define the structural business rule catalog one had to investigate definitions of
structural business rules together with their examples. In this subchapter, the main
findings of literature overview together with resulting specifications of catalog
entries are described. The specifications serve later as a basis for pattern catalog
definition. The wording used in the specification does not follow any particular
notation (will be later changed). The primary sources taken into consideration were
those, referenced in Table 1. The specification relates to notions used in UML
(Unified Modeling Language) class and object diagrams, which are often used for
visualization of business glossary, what makes it more readable.

Definition of structural business rules and their subtypes together with
examples

• Necessary characteristics of a class (concept):

(a) Some feature(s) of related class C must be present (under specific condition
(s))—all instances of that class must have these features defined.

(b) Some feature(s) of related class C must be unique (under specific condition
(s)).

(c) Some feature(s) of related class C must be constant/not changed (under
specific condition(s)).

(d) Some feature(s) of related class C must satisfy condition cond(C.f1, …, C.
fn), where f1….fn are features of C, and the condition defines some con-
straints about features’ ranges, actual values, min, max values, equality,
etc.

(e) Each C1 instance must be in relation R with C2 instance(s) if cond(C1.f1,
C1.f2, …, C2.f1’, C2.f2’), where f1, …, fk are features of class C1, and f1’,
…, fn’ are features of class C2.

• Constraints on quantity of instances:

(f) There is exactly/at most/at least n instances of class C (n = 0 … k).
(g) Each instance of class C has exactly/at most/at least n instances of a

specific feature.
(h) Each instance of class C has, at least, m and most n instances of a specific

feature.
(i) Each instance of class C1 is in relation R with exactly/at most/at least

n other instances of class C2 (n = 0 … k).
(j) Each instance of class C1 is in relation R with at least m and at most n other

instances of class C2 (m = 0 … k, n = 0 … k, m < n, note: C1 and C2
don’t need to be different).

• Inference rules:

(k) Each instance of class C1 must be considered to be a role of class C2 if
condition cond(C1.f1, …, C1.fn) where f1….fn are features of C1.

10 B. Hnatkowska and J.M. Alvarez-Rodriguez

(l) Some feature of class C must be considered to be a characteristic if con-
dition cond(C1.f1, …, C1.fn) where f1….fn are features of C1.

(m) Some feature of class C must be calculated according to a specific formula.

• Constraints on instances (power sets):

(n) None instance of C1 is an instance of C2 (C1 and C2 should have the same
parent).

(o) Each instance of C must be an instance of C1 or C2 (C1 and C2 should be
subclasses of C).

3.2.1 Definition of business rule patterns for structural business rules
and their subtypes

Three sources with business rule patterns were considered to be a source for new
specifications of structural business rule patterns, namely: [1, 10, 15]. However, the
author did not manage to find out such types of rules that haven’t been covered yet
(at least at the general level). Some patterns proposal were irrelevant, e.g. Data
Structure Requirement Pattern that is used “to define a compound data item (one
that comprises multiple individual pieces of information)” [1]; according to SBVR
this is a part of vocabulary definition.

3.2.2 Structural business rule examples

The last source that was used to establish business rule patterns were structural
business rules examples defined in [7]. The document itself contains plenty of
structural business rules which were used as “training set”. Structural business rules
defined in [7] were grouped according to their types what allows discovering some
new groups of rules: Conditional constraints on instances quantity, and Complex
invariants. The group called Conditional constraints on instances quantity contains
extended versions of rules (f)–(i), with condition part.

(i’) Each instance of class C1 satisfying condition cond(C1.f1, …, C1.fk) is in
relation R with exactly/at most/at least n instances of class C2 (n = 0 … k).

Example: Each proposition that is true corresponds to exactly one actuality [7].
Complex invariants contain implications and complicated invariants that traverse

through navigational paths in a complex manner. It is not possible to define a
supporting pattern for that type of rules, or the pattern would be defined at very
general level. Below you have some examples of the rules from this category: “If a
concept1 is coextensive with a concept2 then the extension of the concept1 is the
extension of the concept2”. “The set of characteristics that are incorporated by a
general concept is not the set of characteristics that are incorporated by another
general concept” [7]. Proposed pattern catalog does not cover such rules.

Business Rule Patterns Catalog for Structural Business Rules 11

3.2.3 Summary

Four groups of structural rule patterns specifications were identified. Each of them
contains from 2 to 5 patterns (15 patterns in total). For those who are familiar with
UML and OCL (Object Constraint Language), structural business rules are those
which can be described either directly on a UML class diagram (e.g. multiplicity
constraints, power set constraints) or by OCL expressions (invariants, derivations,
and queries—for calculations).

3.3 Catalog Definition

This chapter brings the definition of catalog for structural business rule patterns (See
Table 2). It is presented with the assumption that the vocabulary is expressed in an
object-oriented manner (e.g. as a simplified version of a class diagram, without
constraints), or a user is familiar with concepts from object-oriented paradigm.

The sentence patterns follow RuleSpeak guidelines [19]. They use tags
(“<<>>”) representing gaps to be filled with elements from a vocabulary. The tag
itself either defines the type of vocabulary entry: i.e. <<Class>> (name of concept
at the higher level), <<Feature>> (name of concept being an attribute or available
through navigational path), <<Role>> (name of associated concept), or is defined
as <<Condition>>—any condition accessible in the context formulated by other
tags, can be both simple and complex (and, or, not).

The pattern uses a simplified BNF-notation, where “[]” is used to describe an
optional element, and “|” is used to describe the alternative. It should be noted than
the patterns are not part of controlled language, so the grammar elements, e.g. plural
names are not taken into consideration.

For each pattern at least one example is given.

3.4 Catalog Validation

The catalog was constructed to help in revealing different types of constraints put
on defined vocabulary. The primary intention was to propose a limited number of
patterns that is expressive enough to cover as many of business rules as possible.
A simple case study was conducted to verify if this aim was achieved.

There exist only a few complete sets of business rules sets (at least those con-
taining structural rules). One of them is [5]. It was used for validation purposes. It
includes 59 structural rules in total, but 27 define inheritance hierarchy, which could
be directly expressed at glossary level (e.g. “The concept corporate renter is
included in Renters by Affiliation”). The rest of rules were classified to pattern
groups (if possible) and rewritten with the usage of patterns, e.g. (Each rental

12 B. Hnatkowska and J.M. Alvarez-Rodriguez

Table 2 Definition of sentence patterns for structural business rules

Group 1: Concept (Class) Necessary Characteristics
Pattern
no

Pattern Example(s)

1.1. [Each] <<Class>> always has
<<Feature>> [[if | when | if and only
if] <<Condition>>]

Each student always has student
number
A rental always has a business currency
(feature) if and only if the business
currency is the currency of the
operating country of the operating
company that includes the local area
that includes the pickup branch of the
rental [SBVR]

1.2. [The] <<Feature>> of [each]
<<Class>> always is unique [if
<<Condition>>]

Student number of each Student always
is unique

1.3. [The] <<Feature>> of [each]
<<Class>> never change [[if | when]
<<Condition>>]

PESEL of Employee never change
Dean of Faculty never change during
holidays

1.4. [The] <<Feature>> of [each]
<<Class>> always <<Condition>>

PESEL of Employee always is 11
characters long
Gender of Person always belongs to the
set {male, female}
Shipment date of Order is always after
order date of Order

1.5. [Each] <<Class>> always is in
relation <<Relation>> with
<<Class>> [if | when | if and only if]
<<Condition>>

Each University always is in relation
“located” with City

Group 2: Instances Quantity Constraints
2.1. There always is [exactly | at most | at

least] N <<Class>> [if
<<Condition>>]

There always is exactly 1 Dean

2.2. [Each] <<Class>> always has [exactly
| at most | at least] N [instances of]
<<Feature>>

Each Employee always has at least 1
Phone number

2.3. [Each] <<Class>> always has at least
M and at most N <<Feature>> [if
<<Condition>>]

Each Employee always has at least 1
and at most 2 surnames

2.4. [Each] <<Class>> [< <Condition>>]
always is in relation <<Relation>>
with [exactly | at most | at least]
N [instances of] <<Class>>

Each Student always is in relation
“enroll” with at most 5 Courses
Each Student that is distinctive always
is in relation “awarded” with at least 1
Award

2.5. [Each] <<Class>> [satisfying
<<Condition>>] always is in relation
<<Relation>> with at least M and at
most N [instances of] <<Class>> [if
<<Condition>>]

Each Student always is in relation
“enroll” with at least 1 and at most 10
Courses

(continued)

Business Rule Patterns Catalog for Structural Business Rules 13

booking always has exactly one booking date/time). After then the number of rules
from each group was counted. Table 3 presents the results.

52 from 57 rule statements from [5] could be expressed with the use of defined
patterns (92 %), what is a satisfied result. 6 rules were not covered, e.g. “A cash
rental price of a rental that is calculated because of EU-Rent price changes and that
is less than the lowest rental price of the rental replaces the lowest rental price of the
rental” [5]. Only one group from defined pattern catalog was not represented.

Some key limitations of the presented work should be outlined. The first is that
the proposed catalog must not be considered complete. It was constructed on the
base on literature overview with the intention to address the typical cases. The

Table 2 (continued)

Group 1: Concept (Class) Necessary Characteristics
Pattern
no

Pattern Example(s)

Group 3: Inference Rules
3.1 [Each | A | An] <<Class>> is to be

considered [a] <<Role>> [if
<<Condition>>]

A location is to be considered a
third-party location if located at
EU-Rent site that is owned by a third
party

3.2 [The] <<Feature>> of [a] <<Class>>
is to be considered <<Characteristic>>
[if <<Condition>>

The car storage capacity of a branch is
to be considered minimal if less than 10

3.3 [The] <<Feature>> of [a] <<Class>>
is to be computed as <<Formula>>

The age of a Person is to be computed
as a difference between the current year
and the year of the birthday of that
Person

Group 4: Power Set
4.1. None [instance of] <<Concept>> is

[an instance of] <<Concept>>
None Student is an instance of Teacher

4.2. [Each [instance of]] <<Concept 1>>
always is [an instance of] <<Concept
2>> or <<Concept 3>> or … (note:
<<Concept 2>>, <<Concept 3>>,….
must be subclasses of <<Concept
1>>)

Each Person always is an instance of
Student or Teacher

Table 3 Verification of
structural rule patterns catalog

Pattern group Instance no/Percentage (of 57) (%)

Group 1 28/49
Group 2 21/36
Group 3 4/7
Group 4 0/0
Sum 53/92

14 B. Hnatkowska and J.M. Alvarez-Rodriguez

second is that the business rules patterns have been defined as a kind of boilerplates,
a sequence of slot restrictions depending on some business vocabulary. Although
these patterns are implementation-independent, they could be transformed into
different languages such as UML and OCL; in such a case the usage of boilerplates
could also lead to a lack of expressivity regarding necessary notions for transfor-
mation purpose, e.g. cardinality of relationships. The third is that the implemen-
tation of the business rules patterns within tools such as e.g. knowledgeMANAGER
is still an open issue. It will help to validate both, the patterns and possible real-
izations of such patterns, i.e. business rules. It will also help to identify and extract
business rules from different sources such as specification documents.

4 Conclusions and Further Work

The paper describes a catalog for structural business rules together with a method of
its construction. The intention of the catalog is to support business analyst during
the business rules identification process as well as assuring the rules are written in a
consistent manner. The catalog was developed on the base on literature overview
including investigation of existing catalogs. One of the main aims was catalog
minimalism, i.e. the catalog should contain only a limited number of patterns, only
those that cover the most obvious cases. According to the case study, described in
Sect. 3, the catalog met this requirement. The proposed catalog consists of only 15
patterns, while, e.g. the catalog that covers only derivation rules [15] contains 19
patterns.

In the proposed catalog some of the business rules patterns are quite restrictive,
preventing the matching of complex business rules. However, it is possible to
extend the patterns with sub-patterns which represent more complicated cases
(restrictions). It is also possible to customize the restrictions for a particular domain
or situation but keeping the original set of high-level business rules patterns.

In the future, the flexibility of proposed pattern catalog will be checked with
other existing sets of structural business rules, e.g. [10]. The catalog will also be
recommended to students taking part in Software Engineering courses. That will
allow answering the questions about practical quality aspects of catalog application:
its readability, completeness, and the real help in reviling and documenting existing
business rules.

We also consider to prepare a formal version of the patterns catalog on top of
existing ontology, and to implement it in the knowledgeMANAGER tool [20], part
of the Requirements Quality Suite (RQS). That would make possible to automat-
ically perform processes for quality analysis (consistency, completeness and cor-
rectness) or recovery traceability links between business rules and any other
software or system artifact. It should also have the potential of being used to
automatically generate source code (e.g. Object Constrained Language constraints),
test cases and to enable cross-domain reuse of business rules (e.g. for certification
purposes).

Business Rule Patterns Catalog for Structural Business Rules 15

Acknowledgments This work was partially supported by the European Commission under the
7th Framework Programme, Coordination and Support Action, Grant Agreement Number 316097,
ENGINE - European research centre of Network intelliGence for INnovation Enhancement.

References

1. Withall, S.: Software Requirement Patterns. Microsoft Press (2007)
2. The Business Rules Manifesto. http://www.businessrulesgroup.org/brmanifesto.htm
3. Ross, R.G., Lam, G.S.: Building Business Solutions: Business Analysis with Business Rules,

Business Rule Solutions, 2nd edn. (2015)
4. Dick J., Llorens, J.: Using statement-level templates to improve the quality of requirements,

White paper (2012). http://www.integrate.biz/downloads/white_paper-templating.pdf
5. http://www.kdmanalytics.com/sbvr/vocabulary.pdf
6. The Business Rules Group: Defining Business Rules—What Are They Really? Final Report,

revision 1.3, (2000). http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
7. Object Management Group: Semantics of Business Vocabulary and Business Rules (SBVR),

v. 1.3 (2015)
8. Von Halle, B.: Business Rules Applied: Building Better Systems Using the Business Rules

Approach, pp. 29–30. Wiley, New York (2001)
9. Hay, D.C.: Requirements Analysis: From Business Views to Architecture, Chapter 8. Prentice

Hall (2002)
10. Witt, G.: Writing Effective Business Rules, A Practical Method, Chapter 4. Elsevier (2012)
11. Morgan, T.: Business Rules and Information Systems: Aligning IT with Business Goals.

Addision-Wesley, London (2002)
12. Zoet, M.: Methods and Concepts for Business Rules Management. Doctoral Thesis.

Universiteit Utrecht, Utrecht (2014)
13. Spreeuwenberg S.: Patterns and the capture of business rules. Bus. Rule J. 14(10) (2013)
14. Njonko, F., Brillant, P., Cardey, S., Greeneld, P., El Abed W.: RuleCNL: a controlled natural

language for business rule specifications in controlled natural language. In: 4th International
Workshop, CNL 2014, Galway, Ireland, August 20–22, 2014. Proceedings. Springer
International Publishing (2014)

15. de Haan, E.Y.: Patterns for Derivation Business Rules, Master Thesis, Utrecht University
(2015)

16. http://dataqualitypro.com/data-quality-pro-blog/how-to-create-effective-business-rules-
graham-witt

17. Ross, R.: Rule speak sentence forms. Specifying natural-language business rules in English.
Bus. Rules J. 10(4) (2009)

18. Spreeuwenberg, S., van Grondelle, J., Heller R., Grijzen, G.: Using CNL techniques and
pattern sentences to involve domain experts in modeling in controlled natural language. In:
Second International Workshop, CNL 2010, Marettimo Island, Italy, September 13–15, 2010.
Revised Papers. Springer, Berlin (2012)

19. Object Management Group: Semantics of Business Vocabulary and Business Rules (SBVR),
v. 1.3. Annex H—The RuleSpeak Business Rule Notation (2015)

20. The Reuse Company Inc., knowlegeMANAGER (KM). knowledgeMANAGE (2014)

16 B. Hnatkowska and J.M. Alvarez-Rodriguez

http://www.businessrulesgroup.org/brmanifesto.htm
http://www.integrate.biz/downloads/white_paper-templating.pdf
http://www.kdmanalytics.com/sbvr/vocabulary.pdf
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf
http://dataqualitypro.com/data-quality-pro-blog/how-to-create-effective-business-rules-graham-witt
http://dataqualitypro.com/data-quality-pro-blog/how-to-create-effective-business-rules-graham-witt

Sketching Use-Case Scenarios Based
on Use-Case Goals and Patterns

Mirosław Ochodek, Krystian Koronowski, Adam Matysiak, Piotr Miklosik
and Sylwia Kopczyńska

Abstract Use cases are a scenario-based technique used to express functional

requirements from the user perspective. They are often elicited using a top-down

approach by first identifying their goals and later documenting their scenarios. In

the paper, we investigate the possibility of supporting analysts in progressing from

definitions of use-case goals to full documentation of their scenarios. We propose a

semi-automatic approach to generate use-case scenarios based on use-case patterns.

The proposed approach is a result of an empirical analysis of 217 use cases from 12

projects. The analysis revealed that a notion of use-case transaction could be used to

organize use-case patterns into a catalog of patterns. We have implemented a pro-

totype tool called UC-Sketch to illustrate the proposed idea. The acceptance of the

proposed approach by its potential users was assessed through the use of Technology

Acceptance Model.

Keywords Use cases ⋅ Use-case patterns ⋅ Use-case transactions ⋅ Technology

acceptance model

1 Introduction

Use cases are a scenario-based technique for expressing functional requirements

from the user perspective. They have gained a lot of attention from the software

engineering community [1, 2] since their introduction in the 1980s [3].

Several authors recommended to elicit use cases according to a top-down and

breadth-before-depth strategy [4, 5]. When following such an approach, firstly,

business-level goals are identified [6], which further gives a basis for determining

user-level goals and sub-functional goals. As a result, a hierarchy of use cases is

created which forms a kind of “unfolding story.” The breadth-before-depth strategy

M. Ochodek (✉) ⋅ K. Koronowski ⋅ A. Matysiak ⋅ P. Miklosik ⋅ S. Kopczyńska

Faculty of Computing, Institute of Computing Science, Poznan University of Technology, Ul.

Piotrowo 2, 60-965 Poznań, Poland

e-mail: Miroslaw.Ochodek@cs.put.poznan.pl

© Springer International Publishing Switzerland 2017

L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,

Advances in Intelligent Systems and Computing 504,

DOI 10.1007/978-3-319-43606-7_2

17

18 M. Ochodek et al.

means that one should elicit use cases at a given level of abstraction before decom-

posing them to into a set of more precise ones. Consequently, the elicitation process

of user-level use cases is often divided into two stages: identification of use cases,

and documentation of their scenarios. The outcome of the first stage is a list of use-

case names, usually visualized using UML use-case diagrams. In the second stage,

use cases are analyzed and documented with scenarios.

Taking into account existing similarities between scenarios of use cases [7, 8], it

would be beneficial to investigate if it is possible to use historical data concerning use

cases to support the process of transitioning between use-case names (which express

goals of use cases) and use-case scenarios. In this context, the following problem can

be formulated:

Problem 1 Given the name of a use case (a definition of its goal), provide a plausible

documentation of its scenarios.

A reasonable approach to address the above-stated problem is to identify and doc-

ument patterns of commonly appearing use cases (or directly copy and modify previ-

ously created ones). Several catalogs of use-case patterns have been proposed so far

[9, 10]. They provide guidance on how to model frequently appearing types of user

goals with use cases, and usually provide some examples or templates. These exam-

ples might be used as a basis for authoring new use cases. However, there are at least

two problems with such an approach. Firstly, (1) the examples need to be manually

rewritten to match the context, and secondly (2) the aforementioned patterns usually

focus on very specific, domain-oriented goals which limits their generalizability.

In the paper, we propose a different approach to organizing catalogs of use-case

patterns. It allows structural patterns of use cases to be defined independently of the

business domain at three levels of abstraction: use-case actions, use-case transac-

tions, and scenarios, and associates them with use-case goals. In addition, we pro-

pose a method and prototype tool that enables semi-automatic generation of use-case

scenarios based on use-case patterns. We call this approach “sketching a use case”

because it allows the creation of an initial version of use-case documentation quickly.

To develop the proposed approach we investigate the following research questions:

∙ RQ1: How to organize a catalog of use-case patterns that binds use-case goals and

scenarios, but is independent of business domain?

∙ RQ2: How to store information about use-case patterns and generate use case

scenarios in a semi-automatic way?

The paper is organized as follows. In Sect. 2, we discuss the related work con-

cerning use-case patterns. Section 3 concerns RQ1 and describes the organization

of a use-case patterns catalog. The following Sect. 4 addresses RQ2 and presents

the process of sketching use cases and prototype tool called UC-Sketch. A prelim-

inary evaluation of the usefulness of the proposed approach is presented in Sect. 5.

Section 6 discusses limitations and generalizability of the study. The paper is con-

cluded in Sect. 7.

Sketching Use-Case Scenarios Based on Use-Case Goals and Patterns 19

2 Related Work

Use-case patterns could be defined at different levels of abstraction, i.e., for a set of

use cases, a single use case, scenario, or step [4]. Also, the form used for express-

ing use-case patterns differs visibly between the existing catalogs of patterns. Some

authors provide exemplary fragments of use-case models that solve some problems;

others define use-case patterns as a set of guidelines.

Probably the most recognized catalog of use-case patterns was proposed by Över-

gaard and Palmkvist [10]. They documented several patterns of use cases and pro-

vided a catalog of blueprints that guides how to compose use-case models for

some common features, e.g., access control, future task, report generation. A similar

approach to documenting use-case patterns was proposed by Issa et al. [7, 9]. From

the perspective of the considered Problem 1, these kinds of patterns could be used by

copying the examples or templates they provide and adjusting them to a particular

context.

Saeki [11] proposed a different approach to derive and organize use-case patterns.

He suggested using the UML generalization relationship to derive a specific use case

from a pattern, or to use the Decorator pattern to adjust existing use-case patterns to

a given context. This approach makes it possible to maintain associations between

use-case patterns and use cases. However, the resulting use-case model might be

difficult to understand by the readers who are IT-laymen, not familiar with the UML

notation.

A different approach to solving the considered problem is to find similarities

between previously created requirements and the ones that are currently being ana-

lyzed. For instance, the problem of similarity analysis between textual requirements

has been considered before by och Dag et al. [12]. In the context of use cases, Kain-

dle et al. [13] proposed to use similarity measures to find commonality between cur-

rently developed and historical use cases. Because the approach relies on previously-

created use cases, it might have even wider applicability than use-case patterns.

Unfortunately, to calculate similarity measures (and find similar use cases) one has

to document at least a part of a new scenario.

There were also several studies focused on generating scenarios. These studies

are not directly related to use cases. However, because use cases are a scenario-

based technique, they seem applicable also in this context. For instance, Rolland et

al. [14] proposed an approach to composing scenarios from so-called requirements

chunks—a pair <Goal, Scenario>, and to use three types of relationships: compo-

sition, alternative, and refinement. However, they mainly focused on guiding goal

modeling rather than documenting and re-using patterns. Ridao et al. [15] studied

different types of episodes in scenarios. They formulated four main scenario pat-

terns, i.e., production, collaboration, service, and negotiation. They also consider

the possibility of automatically generating sets of candidate scenarios. However, the

proposed approach requires the existence of a language extended lexicon (LEL),

thus, it is not directly applicable to use-case names. Watahiki and Saeki [8] focused

on generating scenarios from case frames (an abstract representation of a sentence

20 M. Ochodek et al.

characteristic for a given domain, e.g., [reserve, actor, object]) that fulfill order con-

straints.

At the level of scenario actions, the research focused mainly on linguistic patterns.

For instance, the most recognized are the language patterns proposed by Rolland et

al. in the CREWS project [16]. These studies seem complementary to ours because

the proposed linguistic patterns might be used to formulate action templates in the

proposed approach.

We might conclude that there are at least several approaches that might support

solving Problem 1. However, it seems that they do not provide a holistic approach

that would cover the possibility of defining patterns at different levels of abstraction:

actions, episodes of scenarios, use-case scenarios, and use-case goals. In addition,

most of the existing approaches rely on copying and modifying the proposed exem-

plary use cases or templates to create new instances of use cases.

3 Use-Case Patterns Catalog

To answer RQ1, we have to find a way to associate use-case goals and appropriate

patterns of scenarios. The classification of goals should be, as much as possible,

independent of business domain.

We decided to investigate this question empirically, by analyzing a set of 217 use

cases coming from 12 software projects that developed web applications [17]. In

particular, we aimed at investigating the relationship between goals of use cases and

use-case transactions forming their scenarios.

Use-case transaction is defined as “the smallest unit of activity that is meaningful

from the actor’s point of view that is self-contained and leaves the business of the

application being sized in a consistent state.” [18] In our previous studies [17, 19],

we proposed a categorization scheme of transactions that consist of twelve types of

use-case transactions: Create (C), Retrieve (R), Update (U), Delete (D), Link (L),

Delete Link (DL), Asynchronous Retrieve (AR), Dynamic Retrieve (DR), Transfer

(T), Check Object (CO), Complex Internal Activity (CIA), and Change State (CS).

These types refer to general tasks and are not bound to any specific business domain.

During the analysis of the sample of use cases, we observed that more than half

of user-level use cases (55 %) consisted of a single transaction that corresponded to

the goal of a use case. We also observed that use cases consisting of more than one

transaction usually had a dominant transaction that reflected the goal of a use case

and a set of auxiliary transactions. For instance, in a use case entitled “modify a

product,” the modification of the product could be preceded by the presentation of

the products that could be modified. In such a case, a dominant transaction would

be Update and Retrieve would play a supportive role. Therefore, we assume that the
type of dominant transaction might be used to summarize the goal of a use case. The

only exceptions from this rule were the CRUD (Create, Retrieve, Update, Delete) use

cases that have more than one type of dominating transaction. Thus, we extended the

Sketching Use-Case Scenarios Based on Use-Case Goals and Patterns 21

Use-case-goal type
(a dominant type of transaction)

Create, Retrieve, Update, ...

Scenarios
structures

{C} {C, R} ...

59% 15%

C1 C2 C1
R1

C2
R1

...

Use-case templates

Use-case transactions templates

C1 - Create variant 1
 1. ChoiceOfOption
 2. ActorAsksForData
 3. ...
...

Use-case actions templates

ChoiceOfOption
 @actor chooses the @option.
...

Fig. 1 Organization of the use-case patterns catalog

set of goals categories with CRUD. In fact, the set of categories can be extended if

new types of goals are identified.

The resulting structure of a use-case catalog is shown in Fig. 1. It is organized into

three layers. The first layer consists of categories of use-case goals. In the second

layer, the goals are associated with the structures of use cases. We define structure

by providing a set of acronyms of types of transactions it includes (e.g., {C, R}

consists of Create and Retrieve). The additional benefit is that we could augment

the catalog with the information about the probability of a given structure appearing

in the use case of a given type of goal. This information might be used to suggest

analyst the most probable pattern. In the third layer, each structure of scenario is

associated with a set of use-case templates. Such templates are defined at three levels.

The smallest unit is called action template. These templates are used to compose

transaction templates that are used to define scenarios in use-case templates.

In the analyzed set of use cases, we identified 57 different structures of use-case

scenarios. The most frequently appearing ones are presented in Table 1. They seem

to be good candidates for use-case patterns.

3.1 Action Templates

Use-case action represents the smallest unit of activity in a use-case scenario perform

by an actor. Each action template has a unique identifier, name, parameters, and

language transforms.

Parameters are used to determine the fragments of a template that can be con-

figured while generating the text based on the template. A parameter can have a

set of default values (one per supported natural language). For instance, a parameter

@actor in the action “select object” might have a default value “uytkownik” in Polish

and “user” in English.

22 M. Ochodek et al.

Table 1 The most frequently appearing of configurations of transactions among the analyzed set

of 217 use cases from 12 software projects

Goal of use

case

Structure of

scenarios

Frequency Goal of use

case

Structure of

scenarios

Frequency

C {C} 0.59 L {L} 0.60

{C,R} 0.15 {DL,L,R} 0.16

R {R} 0.47 {L,R} 0.08

{DR,R,R} 0.13 DL {DL} 1.00

{R,R} 0.08 AR {AR} 1.00

U {U} 0.73 DR {DR} 0.86

{R,U} 0.15 {DR,R} 0.14

D {D} 1.00 CIA {CIA} 1.00

T {T} 0.60 CS {CS} 0.55

{R,T} 0.20 {CS,R} 0.27

{R,T,U} 0.20 C,D,R,U {C,D,R,U} 0.41

CO {CO} 0.80 {C,D,U} 0.31

{CO,R} 0.20 {C,D,L,U} 0.10

Language transforms are boilerplates that are used to generate instances of actions

in a given language. They may include references to parameters with the specifica-

tion of their linguistic forms (e.g., the number—singular, plural; form—normative,

accusative, etc.).

Parameters and transforms are important in the context of RQ2 because they pro-

vide a simple natural language generation (NLG) mechanism.

The execution of an action might be interrupted by events, which are described in

the extensions section of a use case. Event templates are defined similarly to action

templates.

3.2 Transaction Templates

Transaction template is defined by a unique identifier, name, name of type, and

description. Similarly to actions, they can define parameters.

The structure of transaction is defined by a sequence of actions and correspond-

ing extensions. Actions templates are included by referring to their unique identifiers

discussed before. Also, values of parameters can be passed between transaction and

action templates, which is similar to invoking a programming function with parame-

ters. One can also bind the values of parameters defined at the level of transactions

with the parameters in the action template. For instance, if a parameter @actor is

defined at the level of transaction, one can bind its value with the parameter @actor

defined by the action “select object” that is included in the transaction’s template.

Sketching Use-Case Scenarios Based on Use-Case Goals and Patterns 23

This mechanism allows the flow of data between templates defined at the higher

level of abstraction and the ones at the lower levels.

Extensions consists of an event that may occur while performing an action, and

a sequence of actions/transactions describing the alternative scenario, and a set of

parameters. Optionally, one can state which transaction should be performed after

executing the alternative scenario.

3.3 Use-Case Templates

Use-case template has a unique identifier, name, definition of goal, and description
giving the purpose of the use-case pattern.

Similarly to definitions of templates at other levels, it can also define a set of

parameters. The scenario of a use case is a sequence of transactions and optional

extensions. The parameters at the level of a use case can be bound with the parameters

of included transactions and extensions (in the same way as for transactions and

actions).

4 Sketching a Use Case Based on Its Goal

The process of sketching a use case based on use-case pattern is presented in Fig. 2

and consists of the following steps:

1. The goal of a use case is identified and documented as a use-case name.

2. Based on the goal, an analyst determines the dominant type of transaction in the

use cases, chooses one of the structures of use-case scenarios available for the

goal and one of the associated use-case templates.

3. A set of templates parameters that might be modified by the analyst is determined.

This process begins with identifying parameters in the included action templates.

Afterward, the parameters of transaction templates are determined. If any of these

parameters is bound to the parameters of included actions, the action parameter

is excluded from a set of modifiable parameters because its value will be auto-

matically determined based on the transaction’s parameter. In the following step,

the actions’ transforms are analyzed to determined the required linguistic form of

a parameter. Finally, the analyst is provided with the default values of parameters

and asked to modify them appropriately.

4. The values of parameters and transforms are merged to generate the text in a given

natural language.

The above-described process of sketching use cases was implemented in a proto-

type tool called UC-Sketch
1

(see Fig. 3). The tool provides most of the features pre-

1
https://ucsketch.cs.put.poznan.pl.

https://ucsketch.cs.put.poznan.pl

24 M. Ochodek et al.

Analyst

Web store

User

Add a comment

Remove a
comment

Use case diagram (UCD)

11

Catalog of use-case
patterns

Create, ...

{C} {C, R} ...

59% 15%

C1 C2 C1
R1

C2
R1

Analyst

C (59%) or {C, R} (15%)?

C (template C1)12

ChoiceOfOption(actor, option)
 @actor chooses the @option.

ActorAsksForData(actor, object)
 @actor asks for the @object.

ActorProvidesData(actor, object)
 @actor provides the @object.

SystemStoresData(system, object)
 @system stores the @object.

ActorInforms(actor, what)
 @actor informs that @what.

C1(actor, system, object)
Main scenario:
 1. ChoiceOfOption(@actor,
 {en: "option to add the @object"})
 2. ActorAsksForData(@system, @object)
 3. ActorProvidesData(@actor, @object)
 4. SystemStoresData(@system, @object)
 5. ActorInforms(@system,
 {en: "the @object was added"})
Extensions:
 Event(ref=3):RequiredDataNotProvided:
 Required data was not provided.
 1. ActorInforms(@system,
 {en: "the required data is missing"})
 2. GoTo(ref=2)

Use-case transaction templates Use-case actions templates

UseCase: C1(actor, system, object)
Main scenario:
 1. C1(@actor, @system, @object)

Use-case template

actor="user"
system="system"

object="comment"

option = {en: "option to add the @object"}
...

Add a comment
Main scenario:
 1. User chooses the option to add the comment.
 2. System asks for the comment.
 3. User provides the comment.
 4. System stores the comment.
 5. System informs that the comment was added.
Extensions:
 3.A. Required data was not provided.
 3.A.1. System informs that the required data is missing.
 3.A.2. Go to step 2.

Analyst

actor=?
system=?
object=?

...
option = {en: "option to add the @object"}

what1 = {en: "the @object was added"}
what2 = {en: "the required data is missing"}

Analyst

14

13

Add a comment

Fig. 2 The overview of the process of sketching a use case based on use-case pattern

sented in the paper and some additional ones increasing its usability. For instance,

it predicts the type of dominant transaction based on use-case names. It is also inte-

grated with Wiktionary,
2

which is used to fetch the required linguistic forms of

words.

The built-in catalog of use-case patterns provides a set of patterns identified dur-

ing the study (available in Polish and English). The patterns are stored using a dedi-

cated XML-schema and can be changed through a back-end of the system.

2
https://www.wiktionary.org.

https://www.wiktionary.org

Sketching Use-Case Scenarios Based on Use-Case Goals and Patterns 25

Fig. 3 UC-sketch use-case editor—sketching a use case view

5 Preliminary Evaluation

We decided to perform a technology acceptance forecasting study based on Tech-

nology Acceptance Model (TAM) [20] to investigate if the proposed approach and

tool have a chance to be accepted by its potential users.

TAM is an information system theory that models how users come to accept and

use technology. The purpose of this model is to predict the acceptability of informa-

tion system and to identify the modifications which must be brought to the system to

make it acceptable to the users. The model assumes that the acceptability of a system

could be determined by measuring two main factors:

∙ perceived usefulness (PU) which is “the degree to which a person believes that

using a particular system would enhance his or her job performance.”

∙ perceived ease of use (PEOU) which is “the degree to which a person believes

that using a particular system would be free from effort.”

Devis [20] proposed to measure PU and PEOU using six Likert’s items per each of

them. All items create a summated rating scale. The answers for each item is treated

as being expressed on a 7-point interval scale. The final score of a respondent is the

sum of his/her answers to all items.

We conducted the TAM survey based on questionnaires provided in the appendix

of Davis’s work [20] within three groups of potential users of UC-Sketch:

∙ 3rd-year B.Sc. computer science students.

26 M. Ochodek et al.

Table 2 Demographic information of the sample (values in brackets: 3rd-year students/4th-year

students/practitioners)

Variables Number (N) Percent (%)

Research group

Bachelor students 39 61.90

Master students 5 7.94

Professionals 19 30.16

Years of experience

0–2 39 (32/3/4) 61.90

3–5 17 (6/1/10) 26.98

6–8 6 (1/1/4) 9.52

9–11 0 (0/0/0) 0.00

12 or more 1 (0/0/1) 1.59

Use case experience

Never heard 0 (0/0/0) 0.00

Heard, but not used 2 (1/0/1) 3.17

Wrote a few UC 32 (30/2/0) 50.79

Used in one project 14 (4/3/7) 22.22

Used in many projects 15 (4/0/11) 23.81

Work experience (multiple answers possible or blank)

Programmer 52 (28/5/19) 82.54

Architect 12 (4/1/7) 19.05

Analyst 12 (4/2/6) 19.05

Project Manager 8 (1/1/6) 12.70

∙ 4th-year students of M.Sc. degree in Software Engineering.

∙ Professionals working in software development industry (we did not include stu-

dents who are working in IT companies).

Demographic information of the sample is presented in Table 2. Most of the par-

ticipants have authored few use cases in their career. Unfortunately, only 16.67 % of

respondents performed the role of an analyst (four of them were 3rd-year students,

who had less than two years of experience in IT projects).

We began the analysis by verifying reliability and validity of the measurement

instrument. To measure reliability we used Cronbach’s alpha. It is agreed that the

acceptable level of the alpha measure should be equal to 0.70 or above. We calculated

alpha for each variable and group of respondents and received values between 0.89

and 0.98. Therefore, the measurement instrument seemed reliable. To verify validity

we used Factor Analysis [21], which confirmed that two factors were measured by

the instrument.

Sketching Use-Case Scenarios Based on Use-Case Goals and Patterns 27

●

●

●

●

●

PU+PEOU scores
PU

+P
EO

U
 sc

or
e

●●

●●

●

●●
●●●●
●

●●
●
●
●
●●
●
●●●
●
●
●●●●
●●●●
●●
●●●
●●
●
●
●

●●
●●
●
●●●
●●●●

●

●

●
●

●●
●●

●

●

●
●

●●●

●
●
●

●
●

●
●
●
●
●

●

●

●

●

●
●

●

●

●●

●●
●●●
●

●●
●
●
●
●●
●
●●

●
●●●●

●
●
●

●
●

●●
●●

●

●
●

●
●●

●●

●

●●
●
●

●●
●
●
●
●
●
●●

●●●
●

●
●

●
●●

●
●●

●

●
●

●
●●

●

●

●●●

●

●
●
●
●●●●
●
●
●●●
●

●
●

●

●
●●
●●

●

●

A
ll

re
sp

on
de

nt
s

Pr
of

es
sio

na
ls

4t
h−

ye
ar

 st
ud

en
ts

3r
d−

ye
ar

 st
ud

en
ts

U
se
−c

as
e

no
vi

ce
s

U
se
−c

as
e

ex
pe

rie
nc

ed
●

●

PU scores

PU
 sc

or
e

●

●●

●

●

●●●●●

●

●●●

●●

●●●●●

●●●●

●●●

●●●

●

●●●

●●●●●

●●

●●

●

●●●

●●●●●●●

●●

●

●●●●●

●●●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●●●●●

●

●●●

●●

●●

●●

●●

●

●●

●●

●

●

●●

●●●

●

●

●●●●

●

●

●

●

●●●

●

●●●

●

●●

●●

●

●

●

●●

●

●

●●

●●●

●

●

●●●●

●

●●

●

●●●

●●

●●

●●●

●●

●●●

●●

●

●

●●●●

●

●

A
ll

re
sp

on
de

nt
s

Pr
of

es
sio

na
ls

4t
h−

ye
ar

 st
ud

en
ts

3r
d−

ye
ar

 st
ud

en
ts

U
se
−c

as
e

no
vi

ce
s

U
se
−c

as
e

ex
pe

rie
nc

ed

●

●
●

●

●

●

●

●

●

● ●

●
●

●

10
20

30
40

50
60

70
80

5
10

15
20

25
30

35
40

5
10

15
20

25
30

35
40

PEOU scores

PE
O

U
 sc

or
e

●

●

●

●

●●

●

●

●

●●

●●●●●●●●●

●●●●

●●●●●●

●●●●●

●●●●●

●●●●

●●●●●

●●●●

●●

●

●

●●

●●

●●

●

●

●●

●

●●

●●●●

●●

●●

●●

●

●

●

●●●

●

●

●●

●

●

●

●●

●●●●●●●

●

●●●●●

●●●

●

●●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●●

●●●●

●●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●●

●●

●●●

●●●●

●●

●●●

●●

●

●

●

A
ll

re
sp

on
de

nt
s

Pr
of

es
sio

na
ls

4t
h−

ye
ar

 st
ud

en
ts

3r
d−

ye
ar

 st
ud

en
ts

U
se
−c

as
e

no
vi

ce
s

U
se
−c

as
e

ex
pe

rie
nc

ed

Fig. 4 The results of TAM analysis: PU, PEOU, and PU+PEOU scores (dashed line: a central

point of the scale)

Finally, to interpret the results we summed up the scores for each participant. The

scale ranged from 6 to 42 (6 items × 1:7) for a single variable and from 12 to 84 for

two variables together.

The distributions of scores are presented in Fig. 4. The overall average score of

participants was ca. 58 for all groups, which is 10 points above the midpoint of the

scale, and could be interpreted as 69 % of the maximum value. From the two variables

PU and PEOU, the higher results were observed for PEOU (according to the model

it also affects PU). However, even PU was higher than the midpoint of the scale. It

was higher for professionals and master students than for 3rd-year students. Similar

results were observed when we divided participants based on their experience in

applying use cases.

Based on the results, we might conclude that the respondents seemed positive

towards using the proposed tool.

However, there are at least two threats to validity. First of all, the sample was

not a homogeneous sample of analysts—the most appropriate respondents. The sec-

ond problem is that the TAM method assesses the product rather than the concept.

Therefore, it might be difficult to state whether participants liked/disliked the idea

or particular features of the software tool.

28 M. Ochodek et al.

6 Limitations and Generalizability

Although the results of the TAM analysis shows that the proposed approach to

sketching use cases is perceived as useful, there are some limitations of the proposed

approach.

First of all, the process of generating use-case scenarios based on use-case goals

at early stages of requirements analysis is subjected to the risk of proposing a mis-

leading scenario because of the uncertainty related to requirements. The other issue

is the accuracy of the out-of-the-box generated scenarios. In some cases, the gen-

erated scenarios might be perceived as correct although they miss some important

details. Therefore, a generated scenarios should be treated as a “sketch” and should

be revisited and refined later on.

An important threat to the generalizability of the proposed approach is the

approach used to author use cases. The use cases analyzed in the study were written

in accordance with the state-of-the-art guidelines for writing use cases [4, 5]. There-

fore, at the moment, we can generalize our observations only to such use cases.

7 Conclusions

In the paper, we investigated the problem of semi-automatic generation of use-case

scenarios based on use-case goals with the use of use-case patterns.

We propose a new approach to organizing catalogs of use-case patterns and use

this information to support analyst in documenting use cases by generating proposals

of use-case scenarios.

The analysis presented in the paper allow us to provide the following answers to

the research questions:

RQ1: How to organize a catalog of use-case patterns that binds use-case goals and
scenarios, but is independent of business domain?

Based on the analysis of 217 use cases, we proposed a three-layered organization

of use-case patterns catalog. The categorization is based on the concept of semantic

type of use-case transaction. The considered types of transactions seem general and

not bound to any particular business domain. The first layer of the catalog character-

izes use-case goals based on dominant types of transactions in their scenarios. The

second layer consists of structures of scenarios (types of transactions) that appear

in use cases with a given type of goal. In the third layer, we store templates of use

cases.

RQ2: How to store information about use-case patterns and generate use case sce-
narios in a semi-automatic way?

We proposed to store templates of use-cases at three levels: actions, transactions,

and use cases. The templates on a higher level are created by including (referring to)

the templates on the lower level. The two important mechanisms that allow semi-

Sketching Use-Case Scenarios Based on Use-Case Goals and Patterns 29

automatic generation of use-case scenarios are parameters which can be passed and

bound between templates and language transforms that are used to generate text in

the natural language.

We call the proposed approach sketching a use case because it allows generating

initial documentation (a sketch) of use-case scenarios, which can be further altered

by an analyst (e.g., by providing values of parameters, modifying the generated text).

To evaluate the potential acceptance of the proposed approach, we developed a

prototype tool called UC-Sketch and performed an acceptance forecasting study on

63 potential users, with the use of Technology Acceptance Model (TAM). The results

of the study suggest that the target users of the proposed approach are willing to use it.

References

1. Neill, C., Laplante, P.: Requirements engineering: the state of the practice. IEEE Softw. 20(6),

40–45 (2003)

2. Tiwari, S., Gupta, A.: A systematic literature review of use case specifications research. Inf.

Softw. Technol. 67, 128–158 (2015)

3. Jacobson, I.: Object-oriented development in an industrial environment. ACM SIGPLAN

Notices 22(12), 183–191 (1987)

4. Adolph, S., Bramble, P., Cockburn, A., Pols, A.: Patterns for Effective Use Cases. Addison-

Wesley (2002)

5. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston (2001)

6. Nawrocki, J., Nedza, T., Ochodek, M., Olek, Ł.: Describing business processes with use cases.

In: Abramowicz, W. (ed.) Proceedings of the Business Information Systems Conference. Lec-

ture Notes in Informatics, vol. P–85, pp. 13–27. Koellen Druck+Verlag (2006)

7. Issa, A., Al-Ali, A.: Use case patterns driven requirements engineering. In: 2010 Second Inter-

national Conference on Computer Research and Development, pp. 307–313. IEEE (2010)

8. Watahiki, K., Saeki, M.: Scenario patterns based on case grammar approach. In: Fifth IEEE

International Symposium on Requirements Engineering, 2001. Proceedings, pp. 300–301.

IEEE (2001)

9. Issa, A., AlAli, A.: Automated requirements engineering: use case patterns-driven approach.

IET Softw. 5(3), 287–303 (2011)

10. Övergaard, G., Palmkvist, K.: Use Cases: Patterns and Blueprints. Addison Wesley Profes-

sional (2004)

11. Saeki, M.: Reusing use case descriptions for requirements specification: towards use case

patterns. In: Software Engineering Conference, 1999. (APSEC’99) Proceedings. Sixth Asia

Pacific, pp. 309–316. IEEE (1999)

12. och Dag, N.J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: Evaluating automated

support for requirements similarity analysis in market-driven development. In: 7th Interna-

tional Workshop on Requirements Engineering: Foundation for Software Quality (REFSQ’01),

pp. 190–201 (2001)

13. Kaindl, H., Smiałek, M., Nowakowski, W.: Case-based reuse with partial requirements spec-

ifications. In: 2010 18th IEEE International Requirements Engineering Conference (RE), pp.

399–400. IEEE (2010)

14. Rolland, C., Souveyet, C., Achour, C.: Guiding goal modeling using scenarios. IEEE Trans.

Softw. Eng. 24(12), 1055–1071 (1998)

15. Ridao, M., Doorn, J., do Prado Leite, J.: Domain independent regularities in scenarios. In:

Fifth IEEE International Symposium on Requirements Engineering, 2001. Proceedings, pp.

120–127. IEEE (2001)

30 M. Ochodek et al.

16. Rolland, C., Achour, C.: Guiding the construction of textual use case specifications. Data

Knowl. Eng. 25(1), 125–160 (1998)

17. Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on use case

points. Inf. Softw. Technol. 53(3), 200–213 (2011)

18. Diev, S.: Software estimation in the maintenance context. ACM SIGSOFT Softw. Eng. Notes

31(2), 1–8 (2006)

19. Ochodek, M., Alchimowicz, B., Jurkiewicz, J., Nawrocki, J.: Improving the reliability of trans-

action identification in use cases. Inf. Softw. Technol. 53(8), 885–897 (2011)

20. Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of information

technology. MIS Q. pp. 319–340 (1989)

21. Spearman, C.: "General intelligence," objectively determined and measured. Am. J. Psychol.

15(2), 201–293 (1904)

Domain Modeling Based on Requirements
Specification and Ontology

Iwona Dubielewicz, Bogumiła Hnatkowska, Zbigniew Huzar
and Lech Tuzinkiewicz

Abstract Domain model plays an important role in software development. Typi-
cally, it is a primary input to elaboration of a system model which in turn is
translated into source code and related database schemas. Effective development of
domain model is a part of requirement engineering during which domain experts are
employed to identify domain entities and relationships among them. We claim that
this task can be supported by the use of domain ontologies from which interesting
knowledge can be extracted. The starting point to knowledge extraction is an
existing requirements specification. In this paper, we investigate how the form of
requirements specification influences the quality of extracted model. Some mea-
sures allowing to assess the quality are introduced. A case study has shown that in
the most cases the simplified version of a requirements specification is enough to
obtain a satisfactory domain model, however if the domain is very complex, the
extended version of requirements specification could be necessary.

Keywords Ontology ⋅ Requirements specification ⋅ Domain modeling ⋅
Knowledge extraction

I. Dubielewicz ⋅ B. Hnatkowska (✉) ⋅ Z. Huzar ⋅ L. Tuzinkiewicz
Faculty of Computer Science and Management, Wrocław University of Science
and Technology, Wyb. Wyspiańskiego, 27, 50-370 Wrocław, Poland
e-mail: Bogumila.Hnatkowska@pwr.edu.pl

I. Dubielewicz
e-mail: Iwona.Dubielewicz@pwr.edu.pl

Z. Huzar
e-mail: Zbigniew.Huzar@pwr.edu.pl

L. Tuzinkiewicz
e-mail: Lech.Tuzinkiewicz@pwr.edu.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_3

31

1 Introduction

Incremental development is one of the approaches to software systems develop-
ment. The software system is developed as a series of increments (builds, releases).
Each new increment adds some functionality to the previous one. Specification,
development, and validation are activities interleaved within single increment
preparation. Incremental development seems to be the most common approach for
software systems, and it is applied both in plan-driven (especially iterative) and
agile methodologies. Its popularity owes to their advantages over classic waterfall
model: reduced cost of implementation of changing requirements; feedback from
customers during development work, and early delivery of running software.

Software development process is initiated by a real problem that occurs in a
given application domain. The software system is intended to bring a solution or at
least to support the problem solution. The software developer must first understand
the problem, and, to this end, must have adequate domain knowledge. Usually, the
needed knowledge is delivered by domain experts. In the paper, it is assumed that
this knowledge can be extracted from a domain ontology. Recall that [12]: An
ontology is a formal (machine-readable), explicit (consensual knowledge) specifi-
cation (concepts, properties, relations, functions, constraints, axioms are explicitly
defined) of a shared conceptualization (abstract model of some phenomenon in the
world). Further, we assume that it is available a consistent and complete domain
ontology respective to the given problem.

The domain problem is usually informally outlined. The domain problem is
described by requirements specification. The requirements specification is the base
for system model design, and next for a code implementation. Symbolically, this
process is depicted as follows (Fig. 1).

In the proposed approach, we demonstrate that the transition from the require-
ments specification to the domain model, which usually is performed by a business
analyst in collaboration with domain experts, may be done semi-automatically with
the use of a domain ontology. It means that the knowledge of the domain expert
may be replaced by the knowledge contained in respective domain ontology pro-
vided that this ontology is consistent and complete. Of course, as in the traditional
approach, the domain model should be validated by a domain expert. In the series
of papers [3–5], we have presented the idea of this approach. Additionally, a set of
programming tools, supporting the approach, have been developed [4, 7].

In this paper, we demonstrate how a form of requirements specifications may
influence the resulting domain model. Our aim is to assess how the form and

Fig. 1 Basic artifacts within development process

32 I. Dubielewicz et al.

granularity of requirements specification influences the quality of the domain model
obtained through knowledge extraction process from a given ontology. There are
introduced some measures enabling assessment of this influence.

In Sect. 2 we present the forms of requirements specification assumed to be
inputs to the knowledge extraction from existing ontologies. In Sect. 3 we shortly
describe the extraction process as well as propose measures to access its results.
Section 4 presents a case study, in which we try to answer the question if and how
the form of requirements specification influences the quality of the resulting domain
model. Section 4 gives the found conclusions and some comments on future works.

2 User Requirements Specifications

The notion of “requirement” has not unique meaning. According to IEEE [9], it is
“A condition or capability needed by a stakeholder to solve a problem or achieve
objectives”. It can be found a variety of taxonomies for requirements, but the
interesting one is this where requirements are defined for the product development
and for the process which leads to this product development. As in the paper we
concentrate on the product development process we consider taxonomy given in
BABOK® [1]: business requirements, stakeholder (user) requirements, solution (or
system) and transition requirements. Another requirements taxonomy is proposed in
ISO/IEC 25030:2007 [10] but it is limited only to software system requirements.

In practice, the distinction between them remains problematic—while the
business requirements are usually well discriminated from the others, distinguishing
between user and system requirements is much more difficult.

Independently of software development approach, the requirements definition
process is the of primary importance. In general, it consists of three sub-processes:
requirement elicitation, analysis and specification (they all are generalized to the
concept “requirement engineering”) [2, 14]. Nowadays commonly used software
development models are based on incremental and, more often adaptive approa-
ches. Activities performed within one increment (release) form a kind of a
mini-waterfall model. It means that the requirements for the release should be
completely defined before the design of that release, and thus, the whole require-
ments elicitation process is performed iteratively.

Each new increment brings its releasable product (release). Within each incre-
ment, requirements are documented and analyzed. The specification of elicited
requirements takes a form of plain text or sometimes more formal form—an use
case model. They are expressed by a mixture of notions from the IT and business
areas as in the iterative approach it is easy to cross the border between stakeholder
and system requirements. The analysis aims at deciding whether the notions used in
the requirements documentation are well-understood by all stakeholders and

Domain Modeling Based on Requirements Specification and Ontology 33

whether these notions are consistent to the given application domain. In this
analysis, a domain model elaborated on the base of the requirements specification
and a respective domain ontology may be used.

A specific approach to requirement elicitation, analysis, and specification has
been proposed in adaptive (agile) methodologies. The requirements specification
takes a form called User stories or eventually Epic (just a large user story that needs
to be broken down into) and represent a high-level description of a capability that
the system needs to provide [2]. They are expressed only with the business notions
and served as a basis for effort/cost estimation. After once picked up for being
worked on, the user story is described with a lot of details given directly by the
future user (and thus some IT notions can appear in its description). It only happens
when they start to be subject to implementation. At that time also the acceptance
criteria for the user stories are defined for they could be tested as “done” at the end
of the iteration.

Another approach can be seen in the Use Case v.2.0 concept proposed by
Jacobson [11]. For matching the incremental (precisely-agile) approach, he has
suggested defining the use case scenarios progressively. Instead of specifying all
scenarios at the beginning one can select (and define and implement) only some of
them according to the order specified by the user (“a priority driven” approach). The
scenarios specified in such a way has been called use case slices, and they corre-
spond to the user stories defined with many details.

Further, we assume that the requirements specification is expressed in the form
of user stories, usually presented in the context of a system vision [13]. User stories
are presented as statements in a standardized “role-feature-reason” form. Exemplary
variants of the forms are:

As a <type of user>, I want <some goal> so that <some reason>.
As a <role>, I want <goal/desire> so that <benefit>.

Description of each user story may be augmented with test cases. There are
many schemas of test case description. We have chosen the one marked “given-
when-then” which has the form:

GIVEN: Set up the object to be tested
WHEN: act on the object
THEN: Make claims about the object, its collaborators/parameters or global state.

Summarizing, we assume that requirements specification rs is defined as:

rs= < h1, tc1 > , . . . , < hn, tcn >f g ð1Þ

where h1, . . . , hn are user stories (histories), and tc1, . . . , tcn are sets of test cases.
Both user stories and test cases may be presented using above notations.

34 I. Dubielewicz et al.

3 Towards Domain Model

Practical approach to requirements specification begins with the initial list of user
stories h1, . . . , hn, The stories are ordered according to their decreasing pri-
orities. On the base of the arbitral decision of an specifier, first n stories with the
highest priority are selected to form first user requirements specification. This
specification usually contains only user stories, but for the sake of unique notation,
it will be written as in (1), where the sets of test cases may be empty.

The requirements specification, as a set of documents in natural language,
contains some words or phrases that represent notions related to a given problem
within an application domain. In the presented approach [8], we concentrated on
nouns and noun phrases as the most likely elements relating to a structural aspect of
the considered problem. The set of these elements is called a set of initial domain
notions.

The specification rs contains a set of initial domain notions DSN, which some of
them are domain and other are systems’ or native notions. DNS forms a glossary of
terms within a considered domain. The expert should define a function
EQ:DNS→ONT , which maps glossary terms into their equivalent ontology con-
cepts ONT. We assume that such domain ontology relevant to the considered
problem is given. The ontology should be consistent; additionally, its completeness
is strongly required.

The EQ function is usually a partial function because only the terms which
represent domain notions may have equivalents in the set of ontology concepts; the
domain of EQ (dom(EQ)) is marked in Fig. 2 by the gray oval within DSN while
the codomain of EQ (ran(EQ)) is marked by the gray oval within ONT.

A well-defined domain ontology should rather not contain specific notions
related to information systems.

EQ

TR

Fig. 2 Schema of transformations from a requirements specification to a domain model

Domain Modeling Based on Requirements Specification and Ontology 35

The value:

coverage=
cardðdom EQð ÞÞ
cardðDNSÞ ð2Þ

where card(X) means cardinality of the set X, is the measure how terms of the
glossary are covered by ontology notions.

The set of ontology notions defined by the EQ function, i.e. the set representing
its range ran(EQ), is the base for extracting additional knowledge from the
ontology ONT. The additional notions are extracted by knowledge extraction
algorithm [8], which abstractly is represented as a function
KEðran EQð Þ, ontÞ⊆ONT . The set of ontology notions extracted from the ontology
is represented in Fig. 2 as a range of the function KE, i.e. ran(KE). Informally, ran
(KE) may be called a sub-ontology of the ontology ONT. Of course, this set
contains ran EQð Þ as its subset.

The value:

enrichment =
cardðranðKEÞ\ranðEQÞÞ

cardðran KEð ÞÞ ð3Þ

may be treated as a measure how the ontology enriches the initial mapping of
glossary terms.

The set ran(KE), represented by the dark gray oval in Fig. 2, is a base for
automatic UML class diagram generation [3]. The algorithm generating a class
diagram is abstractly represented as a function TR ran KEð Þð Þ. The generated class
diagram ranðTRÞ is represented in Fig. 2 by dark gray oval, a subset of DM. DM
represents a final domain model, also represented in the form of UML class dia-
gram, which is obtained by modification of ranðTRÞ. The modification is the result
of two activities performed by an analyst/domain experts. Within these activities, it
is decided which elements of the ranðTRÞ on the class diagram are irrelevant, and
which elements are missing with respect to the requirements specification.

An element e∈ ranðTRÞ is said to be irrelevant to the requirements specification
if e is not used in the description of any user story or any test case. The set of
irrelevant and missing elements are denoted by DMirr and DMmis, respectively. The
following are measures of irrelevance:

irrelevance=
cardðDMirrÞ
cardðranðTRÞÞ ð4Þ

and missing:

missing=
cardðDMmisÞ

card ranðTRÞ\DMirrð Þ+ cardðDMmisÞ ð5Þ

36 I. Dubielewicz et al.

In the incremental and iterative software life-cycle model, the requirements
specification prepared in one iteration may be modified by extension or refinement
in the next iteration. Requirements specification rs1 may be developed in subse-
quent iterations. The specification rs2 is an extension of rs1 if
rs2 = rs1 ∪ < hn+1, tcn+1 > . . .g. It means that new user stories are added to the
previous specification rs1. The specification rs2 is a refinement of rs1 if some test
case tci assigned to the user story hi (i = 1, …, n) from rs1 is replaced by tc

0
i such

that tci ⊂ tc
0
i. In practice, one modification step may contain both requirements

extension and its refinement.
Summarizing, after a series of iterations, we have a sequence of requirements

specifications: rs1, rs2, . . . , rsn accompanying with a sequence of respective
sub-ontologies: ont1, ont2, . . . , ontn, and a sequence of domain models:
dm1, dm2, . . . , dmn.

The way how requirements specifications are constructed shows that
DNSi ⊆DNSi+1. Therefore also ONTi ⊆ONTi+1, where ONTi is the set of ontology
notions for the sub-ontology onti, and DMi ⊆DMi+1, where DMi is the set of
domain model notions for the domain model dmi.

Now the question begs: how, in the context of the ontology, the form of rs
influences the quality of dm. It is difficult to answer the question directly, but we
may examine how the increment of the set of initial domain notions influences the
set of ontology and domain model notions. For example, if for some i = 1, 2, …,
n the condition holds:

cardðDNSi+1Þ
cardðDNSiÞ >

cardðONTi+1Þ
cardðONTiÞ >

cardðDMi+1Þ
cardðDMiÞ

it may be interpreted that each subsequent requirements specification has a weaker
influence on the subsequent domain model.

It should be noted that from the domain expert perspective, it would be not
convenient to prepare a domain model in incremental approach by creating a
sequences of sub-ontologies. It is rather suggested that the sub-ontology should be
created only ones on the base of the most developed requirements specification. Of
course, the postulate of incremental system model and software release develop-
ment remains still valid.

4 Case Study

The aim of the case study is to answer the question if and how the form of
requirements specification influences the quality of the domain model obtained
through knowledge extraction process from existing ontologies. We would like to
know if a domain model of acceptable quality can be retrieved from existing
ontologies at early stages of software development, when requirements

Domain Modeling Based on Requirements Specification and Ontology 37

specification doesn’t contain many details, or if we should refine as many
requirements as possible to obtain better results.

The study starts with a simplified version of requirements specification which
consists of two user stories with accompanying test cases (see Sect. 4.1). The user
stories refer to hotel reservation domain where a potential customer wants to browse
a hotel offer and later, to check the availability of specific room type in a given
period. Next, we follow the same extraction procedure twice, for two forms of
requirements specification—the first contains only user stories (see Sect. 4.2), while
the second also test-cases (see Sect. 4.3). The domain ontologies from which the
knowledge is extracted are included into the following SUMO [15] files: Merge.kif,
Mid-level-ontology.kif, Hotel.kif, Dining.kif, Catalog.kif. The first two files are
upper ontologies while the last two are domain ontologies referenced by Hotel.kif.
The models obtained in both cases are modified: missing elements (according to the
test cases) are added, and irrelevant found out and marked. The proposed metrics
are calculated what allows us to derive some conclusions.

4.1 Case Study—Requirements Specification

This subsection contains the definition of two user stories accompanied by test
cases. Test cases are written in Gherkin language—“a business readable, domain
specific language that lets you describe software’s behavior without detailing how
that behavior is implemented” [6].
User Story 1: As a potential customer, I want to see information about hotel,1 hotel
rooms, rooms’ amenities and prices so that I can decide whether to become a
customer.

Test cases for User Story 1:
Scenario 1: Basic information about hotel
Given that a hotel is defined with: <name>, <postal address>, and <category>
When a customer navigates to the main hotel page
Then he/she should be informed about hotel <name>, <postal address>, and
<category>.

Examples (basic information about hotel):

Name Postal address Category
Hostel Bema Street 5, Wroclaw, Poland ***

1Domain notions are written in italics.

38 I. Dubielewicz et al.

Scenario 2: List of hotel rooms
Given that a hotel rents rooms of types defined with: <room type>, <capacity>,
<price per night>, <amenities>
When a customer navigates from main hotel page to the list of room types page
Than he/she should be informed about the hotel room types.

Examples (types of hotel rooms):

User Story 2: As a potential customer, I want to check availability of selected room
type (room availability) in a given reservation period so that to be able to decide if
to make reservation or not.

Test cases for User Story 2:
Scenario 1: No room of a given room type is available in selected period
Given that a hotel has reservations for rooms of <room type>
And that <room type> is reserved from <dateFrom> to <dateTo>
And that the hotel has <nr instances> of rooms of <room type>
When a customer asks for the <room type> availability from <given dateFrom> to
<given dateTo>
Than he/she is informed that no room of specific <room type> is available from
<given dateFrom> to <given dateTo>.

Examples:

Scenario 2: There is a room of a given room type available in selected period
Given that a hotel has reservations for <room type>
And that <room type> is reserved from <dateFrom> to <dateTo>
And that the hotel has <nr instances> of rooms of <room type>
When a customer asks for <room type> availability from <given dateFrom> to
<given dateTo>
Then he/she is informed that a room of <room type> is available from <given
dateFrom> to <given dateTo>.

room type | capacity | price per night | amenities
single | 1 | 230 zł | TV, sejf
double | 2 | 300 zł | balcony, TV, sejf

Input:
room type: single given dateFrom: 1-1-2016 given dateTo: 2-1-2016

| | reservation period
room type | no instances | dateFrom | dateTo
single | 2 | 1-1-2016 | 3-1-2016

| 31-12-2015 | 2-1-2016

Domain Modeling Based on Requirements Specification and Ontology 39

Examples:

4.2 Domain Model Built Basing on the User Stories

This subsection describes the inputs/outputs of the functions involved in the
extraction process. We start from the definition of DNS set:

DNS = {hotel, hotel room, room amenity, price per night, room availability,
reservation, reservation period, customer, potential customer}.

The notions that, according to a domain expert, describe business notions at that
moment, are mapped by him to SUMO ontology. List of mappings from DSN to
ONT (EQ function) is as follows:

{hotel → HotelBuilding, hotel room → HotelRoom, room amenity → room-
Amenity, price per night → price, room availability → reserved-Room, reserva-
tion → HotelReservation, reservation period → (reservationStart,
reservationEnd)}.

It can be noticed that two of DNS notions are treated as the system notions and
are not mapped to the ontology notions.

Further the ontology notions are used to extract additional knowledge from
ontology (with EQ function) and to translate extracted notions to a UML class
diagram (with TR function). The translation maps each ontology element into an
appropriate UML element (the mapping is one to one). Figure 3 presents the results
of automatic UML class diagram generation. Please note, that HotelUnitType, and
PhysicalType are UML PowerTypes.

After generation, the domain model is investigated by a system analyst to find
out missing and irrelevant elements. Missing elements are presented in Fig. 4 in
bold (relations) or are written with Courier font (attributes, classes), while irrelevant
elements are drawn by dashed line (classes) or by thinner lines (relations). The
generated domain model doesn’t contain many details that are necessary to realize
all test cases, e.g. we lack the definition of properties like hotel name or category as
well as the definition of some relationships, e.g. hotel building consists of hotel
units. There is only one irrelevant element—we don’t need to know who has
defined a price for a hotel unit.

The values of basic measures for that scenario are listed in Table 1.

Input:
room type: single given dateFrom: 1-1-2016 given dateTo: 2-1-2016

 | | reservation period
room type | no instances | dateFrom | dateTo
single | 2 | 1-1-2016 | 3-1-2016

| 31-12-2015 | 1-1-2016

40 I. Dubielewicz et al.

4.3 Domain Model Built Basing on the User Stories
and Test Cases

Similarly, to the previous section we start with the definition of DNS set. In
comparison to the previous case, it contains additional notions, e.g. name, and
address.

Fig. 3 Automatically obtained domain model (according to Scenario 1)

Fig. 4 Revised version of domain model (according to scenario 1)

Table 1 Basic measures
counted for scenario 1
(columns refer to cardinality
of defined sets)

DNS dom
(EQ)

ran
(EQ)

ran
(KE)

ran
(TR)

DMirr DMmis

9 7 8 20 20a 1 13b
a11 classes, 7 relations, 2 inheritance relationships
b2 classes, 5 attributes (1 unnecessary − \no of instances),
2 relations, 3 inheritance rel

Domain Modeling Based on Requirements Specification and Ontology 41

DNS = {hotel, hotel room, room amenity, price per night, room availability,
reservation, reservation period, name, address, category, capacity}.

The list of mappings from DSN to ONT (EQ function) is as follow:

{hotel → HotelBuilding, hotel room → HotelRoom, room amenity → room-
Amenity, price per night → price, room availability → reservedRoom, reservation
→ HotelReservation, reservation period → (reservationStart, reservationEnd),
name → names, address → postAddressText, category → HotelRating, capacity
→ maxRoomCapacity}.

Figure 5 presents a refined version of UML class diagram—both missing and
irrelevant elements are marked here in the same way as in Fig. 4.

The values of basic measures for that scenario are listed in Table 2.

4.4 Comparison

In this section, we present the values of derived measures calculated for both
scenarios of our case study—see Table 3.

Fig. 5 Revised version of domain model (according to Scenario 2)

Table 2 Basic measures
counted for scenario 2
(columns refer to cardinality
of defined sets)

DNS dom
(EQ)

ran
(EQ)

ran
(KE)

ran
(TR)

DMirr DMmis

13 11 12 47 47a 10b 9c
aClasses, 14 relations, 10 inheritance (2 between relations)
b5 classes, 3 relations, 2 inheritance relations
c2 classes, 1 attribute (unnecessary: “\no of instances”), 1 relation,
5 inheritance relationships (most are defined in ontology)

42 I. Dubielewicz et al.

When our DNS set contains more elements (scenario 2) more of them are
considered to be domain notions (84 %) in comparison to the scenario 1 (77 %). It
seems that this observation should be valid also in the context of incremental
development, where, in an increment, a new user-stories are added or refined.
Scenario 2 also allows extracting more elements from existing ontology (enrich-
ment is equal to 74 % in comparison to 60 %). The extraction process is not ideal as
it produces some irrelevant elements. The likelihood that irrelevant elements will
appear is higher for scenario 2 (irrelevance is equal to 21 % in comparison to 5 %).
On the other hand, the number of missing elements decreases when the input is
richer (missing is equal to 19 % in comparison to 41 %).

The case study allows us to derive some preliminary conclusions. For the simple
domains it should be enough to start with user stories only. A domain model
resulting from the extraction procedure should be not complicated (only a few
irrelevant elements), and relatively easy for extension by a domain expert. The
missing elements can be added iteratively, on demand. For a complex domain, it is
worth to invest with a more detailed requirements specification, which allows to
obtain a domain model with less number of missing elements but possibly some out
of scope. It is easier to cross out unnecessary parts and have an opportunity to
familiarize deeper with the domain (from the perspective of a business analyst) than
to ask domain experts for identification of all lacking elements.

5 Conclusions

The aim of the paper is to present an approach to the knowledge extraction from an
ontology to create appropriate domain model and to evaluate the influence of the
requirements specification on the quality of the resulting model. The main problems
analyzed and discussed in this work are related to the evaluation of the possibility
and potential benefits of using ontology in the process of creating domain models in
the context of defined requirements (given in the form of the user stories). Defined
measures: enrichment, irrelevance, and missing, allow to evaluate the quality of the
extracted domain model.

Examples of knowledge extraction described in the case study show that the
created domain model can contain redundant elements (irrelevance > 0). On the
other side, one cannot assure that the resulting model fully meets user expectations
(missing > 0). Everything depends on the quality of requirements specification as

Table 3 Derived measures calculated for both scenarios

Measure Scenario 1: user stories Scenario 2: user stories + test cases

Coverage 0.77 0.84
Enrichment 0.60 0.74
Irrelevance 0.05 0.21
Missing 0.41 0.19

Domain Modeling Based on Requirements Specification and Ontology 43

well as the completeness of the selected ontology. In most cases the simplified
version of requirements specification is enough to obtain a satisfied domain model,
however, if the domain is very complex, an extended version of requirements
specification could be necessary.

Expected benefits of the proposed approach is to reduce the commitment and
costs of participation of experts in the process of domain knowledge extraction. It is
possible due to a partial automation of domain modeling process using ontology,
and the permanent access to the knowledge domain by IT developers. Experts
responsibilities may be limited to:

• mapping of DNS notions to ontology concepts,
• validation and possibly extension of created domain model.

The other benefit is a better quality of resulting domain model, which—by
construction—is consistent with ontology from which it was created.

Future works are concentrated on experiments aiming at improving effectiveness
and precision of the knowledge extraction algorithm from ontology which is used in
the process of generating domain models. Moreover, the results of experiments with
SUMO ontology challenged our assumption about the completeness of this
ontology and therefore it is also planned utilization of OWL ontologies in further
research.

References

1. A Guide to the Business Analysis Body of Knowledge
®

(BABOK
®

Guide) v2
2. Cobb, Ch.G.: Making Sense of Agile Project Management: Balancing Control and Agility.

Wiley (2011)
3. Dubielewicz, I., Hnatkowska, B., Huzar, Z., Tuzinkiewicz, L.: Domain modeling in the

context of ontology. Found. Comput. Decis. Sci. 40(1), 3–15 (2015)
4. Dubielewicz, I., Hnatkowska, B., Huzar, Z., Tuzinkiewicz, L.: Development of domain model

based on SUMO ontology. In: Zamojski, W., et al. (eds.) Proceedings of the 10th International
Conference on Dependability and Complex Systems DepCoS-RELCOMEX, pp. 163–173.
Springer (2015)

5. Dubielewicz I., Hnatkowska B., Huzar Z., Tuzinkiewicz L.: Problems of SUMO-like ontology
usage in domain modelling. In: Nguyen, N.T., et al. (eds.) 6th Asian Conference, ACIIDS
2014, Lecture Notes in Computer Science, vol. 8397, pp 352–363, Springer (2014)

6. Gherkin: http://docs.behat.org/en/v2.5/guides/1.gherkin.html
7. Hnatkowska, B.: Towards automatic SUMO to UML translation. In: Kościuczenko, P.,

Śmiałek, M. (eds.) From Requirements to Software, Research and Practice, pp. 87–100.
Polskie Towarzystwo Informatyczne (2015)

8. Hnatkowska, B., Dubielewicz, I., Huzar, Z., Tuzinkiewicz, L.: Conceptual modeling using
knowledge of domain ontology. In: Nguyen, N.T., et al. (eds.) 8th Asian Conference,
Intelligent Information and Database Systems, Proceedings, Part II, pp. 558–566. Springer
(2016)

9. ISO/IEC/IEEE 29148-2011—Systems and software engineering—Life cycle processes—
Requirements engineering. 2011

10. ISO/IEC 25030:2007 Software engineering—Software product Quality Requirements and
Evaluation (SQuaRE)—Quality requirements

44 I. Dubielewicz et al.

http://docs.behat.org/en/v2.5/guides/1.gherkin.html

11. Jacobson, I.: Use Case 2.0. A Guide to Succeeding with Use Cases. https://www.ivarjacobson.
com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf. Accessed 10 Apr 2016

12. Studer, R., Benjamins, V., Fensel, D.: Knowledge engineering: principles and methods. Data
Knowl. Eng. 25, 161–197 (1998)

13. Wikipedia: Vision document—wikipedia, the free encyclopedia, 2015. Accessed 4 Apr 2016
14. Wikipedia: Requirements engineering—wikipedia, the free encyclopedia, 2016. https://en.

wikipedia.org/wiki/Requirements_engineering. Accessed 4 Apr 2016
15. Wikipedia: Suggested upper merged ontology—wikipedia, the free encyclopedia, 2016.

Accessed 10 Apr 2016

Domain Modeling Based on Requirements Specification and Ontology 45

https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf
https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-case_2_0_jan11.pdf
https://en.wikipedia.org/wiki/Requirements_engineering
https://en.wikipedia.org/wiki/Requirements_engineering

Semantic Validation of UML Class Diagrams
with the Use of Domain Ontologies Expressed
in OWL 2

Małgorzata Sadowska and Zbigniew Huzar

Abstract The article proposes an algorithmic method for semantic validation of

UML class diagrams. The method checks the compliance of the diagrams with the

field described by the domain ontology expressed in OWL 2. More specifically, it

allows for an automatic validation if all diagram elements and their relationships are

contained or at least are not contradictory with the domain knowledge extracted from

the selected domain ontology. A semantic correctness of UML class diagrams can

be partly validated without involving domain experts in the process of validation of

the diagrams.

Keywords UML ⋅ OWL 2 ⋅ Semantic validation

1 Introduction

A Unified Modeling Language (UML) [1] is a popular and commonly used mod-

elling standard. It defines several types of diagrams among which UML class dia-

grams are in focus of this article. UML class diagrams are used to describe a sta-

tic structure of a system [2]. The aim of this article is to present a method for an

automatic validation of UML class diagrams if they are compliant with the field

described by the domain ontology. Lindland et al. [3] in the framework for model

quality distinguished between pragmatic quality (comprehensibility for the intended

users), syntax quality (adhering to the rules in the language) and semantic quality

(correct meaning and relations) with its two goals: validity and completeness. Lind-

land et al. [3] describe validity as an indicator if all statements made by the model

are correct and relevant to the problem.

M. Sadowska (✉) ⋅ Z. Huzar

Faculty of Computer Science and Management, Wroclaw University of Science

and Technology, Wrocław, Poland

e-mail: m.sadowska@pwr.edu.pl

Z. Huzar

e-mail: zbigniew.huzar@pwr.edu.pl

© Springer International Publishing Switzerland 2017

L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,

DOI 10.1007/978-3-319-43606-7_4

47

48 M. Sadowska and Z. Huzar

In the proposed method, the UML is supported by the OWL 2 Web Ontology

Language (OWL 2) [4], which is a popular knowledge representation language for

defining ontologies. Despite the fact that UML and OWL 2 languages have differ-

ent purposes, they also have many similar or equivalent elements (e.g. [5, 6]). For

example, both languages have a concept of a Class and a Datatype, in UML one can

specify multiplicity and in OWL 2 cardinality, UML offers class generalization and

OWL 2 contains SubClassOf axiom, and so on. The similarities allow for translating

UML class-based modelling into description logic, which gives UML class-based

modelling a model-theoretic semantic [6].

OWL 2 ontologies consist of entities, expressions and axioms [4]. Entities

(classes, properties and individuals) form primitive terms of an ontology, expres-

sions (e.g. a class expression) represent complex notions and axioms are used to pro-

vide information about classes and properties (e.g. a subclass axiom). Direct model-

theoretic semantics of OWL 2 is compatible with the description logic SROIQ [4].

Following [7], SROIQ is a fragment of first order logic with useful computational

properties so that it can be exploited by OWL 2 tools. Ontologies that can be trans-

lated into a SROIQ knowledge base are called OWL 2 DL ontologies [7], and are

the focus of this article.

UML [1] modelling language is semi-formal because it has a formally defined

syntax using a subset of UML and informally defined semantics in natural language.

The semantics in UML class diagrams have a reference to a selected reality and

describes meaning of the used terms (classes and their relationships). OWL 2 [4]

is a formal language with a model-theoretic semantics. However, the semantics of

ontologies expressed in OWL 2 have a relation to the entities in the specific domain,

similarly as it is in case of UML class diagrams. In this article, the concept of seman-

tics refers to the elements from both descriptions (UML class diagram and OWL 2

ontology) with respect to the same domain of application.

The UML class diagram is an essential part of designing a compound business

model [8]. Due to this fact, it is especially important if the diagram is compliant with

the needed domain reality. A domain knowledge can be obtained from a number of

sources. For example, it can be provided by domain experts, described in different

documents, or contained in domain ontologies (as it is proposed in this article). In our

approach UML class diagram needs to be confronted with the ontology expressed in

OWL 2.

The approach proposed in this article does not assume that the designed class

diagram is complete and is not able to state whether the diagram correctly addresses

the user’s needs. However, the approach will verify if all diagram elements and the

relationships among the elements are contained (or not) in the domain knowledge.

From this perspective, the method will automatically validate the model semantics

if it is correct in accordance with the domain, and therefore if the designed diagram

is meaningful.

The rest of the paper is organized as follows: Sect. 2 presents related works, Sect. 3

introduces necessary definitions and gives the outline of the proposed method of

semantic validation of UML class diagrams, Sect. 4 concludes the paper and presents

an outlook for future work.

Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies . . . 49

2 Related Works

Transformation rules that convert UML class diagrams to OWL 2 representation

are important in the presented approach to model validation against the domain

they describe. A number of publications: [5, 9–15] present transformation rules

of selected elements of UML diagrams to OWL 2. The transformation rules cover

mapping of the most important elements of a UML class diagrams, i.e. classes with

attributes, associations and generalizations. A revision and extension of the state of

the art transformation rules for UML class diagrams is not in the scope of the paper

and is planned as future work. In [12], the rules are used to check the internal con-

sistency between several UML diagrams. Felfernig et al. [16] define transformation

rules from the conceptual model to the logical model. More specifically, Felfernig

et al. [16] define a logic based formal semantic for UML constructs, which allow to

generate logical sentences and to process them by a problem solver.

Some approaches of manual validation of UML class diagrams are described

in the literature. Unhelkar [17], presents three traditional quality techniques which

are used to validate semantics of UML models. The techniques are: walkthroughs,

inspections and reviews. All of them require judgement of domain experts. Follow-

ing Unhelkar [17], a walkthrough is the least rigorous method and is more helpful to

detect syntax errors rather than semantic ones. Inspections can identify both syntax

and semantic errors. Also, Lindland et al. [3] and Bertolino et al. [18] indicate that

validation if the model correctly captures the intended domain knowledge mostly

entails manual inspection of the model. In [17], reviews are explained as a method

with increased formality and focused mostly on detecting semantics and aesthetics

problems in the model. Bertolino et al. [18] present a method and a tool for model

validation, which generate a set of yes/no questions from the model. The approach

still requires judgement of the domain expert in every case but the validation process

is partially automated.

Letelier and Snchez [19] propose a method of validation of UML classes through

animation and present a preliminary tool supporting the method. The tool generates

a prototype from the conceptual model and executes scenarios obtained from stake-

holders. When the prototype is started the behaviour of objects may be examined by

observing the occurring actions and the reached states. As a result, one can compare

the expected behaviour from the scenarios with the obtained result and correct the

initial model, if needed.

3 Method of Validation

A necessary preliminary requirement before the method can be applied is that the

UML class diagram and the domain ontology must follow one agreed domain vocab-

ulary. Additionally, the domain ontology must be consistent, as it will serve as a

knowledge base for the application area. Ontology consistency is one of the infer-

50 M. Sadowska and Z. Huzar

Fig. 1 Illustration of the method of semantic validation of UML class diagrams

ence problems that can be answered by OWL reasoners [7]. A consistency reasoning

task in [20] is defined as: “given an ontology, decide whether it is contradictory (i.e.,

has any models)”. In the following sections, OWL always means OWL 2, if not stated

differently.

The proposed method of semantic validation of a UML class diagram requires a

translation of the UML class diagram to OWL representation. The translation of the

diagram is conducted with the use of the so called transformation and verification

rules (the relevant definitions and examples are presented in the following subsec-

tions). Both the domain ontology and the class diagram are presented in the same

notation in the form of OWL axioms.

The validation method is graphically illustrated in Fig. 1. The figure at the top

shows inputs to the validation method and at the bottom presents an output. The

rectangles symbolize artifacts and the rounded rectangles stand for transitions. The

transitions related to transformation and verification rules, assign to each element

from the UML class diagram corresponding set of OWL axioms.

The proposed method of validation compares two sets of OWL axioms (the

domain ontology and the OWL representation of UML class diagram) for their com-

pliance. OWL representation of UML class diagram consists of two parts: the trans-

formational part and the verificational part. The initial domain ontology is itera-

tively modified by adding, one by one, axioms from the transformational part of

OWL representation of UML class diagram. The modified domain ontology at some

point may contain not only the domain knowledge but also (in the last iteration) the

knowledge from the new source of information i.e. the validated UML class diagram.

Each new axiom added to the domain ontology entails a risk of making the modi-

fied domain ontology inconsistent. Therefore, after adding every new axiom to the

modified domain ontology, a reasoner is run in order to check its consistency.

It should be underlined that the modified domain ontology is only treated as a

working artefact, which is used check the compliance of the model with the original

ontology. In particular, the finding that the modified domain ontology is not consis-

tent means that the UML class diagram is not compliant with the domain ontology.

Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies . . . 51

Table 1 UML class generalization with transformation rules

UML class diagram element Class generalization

UML graphical symbol

Transformation rules SubClassOf(:Manager :Employee)

Related works: [5, 10, 12, 13, 21]

Table 2 UML generalization between associations with transformation rules

UML class diagram element Generalization between associations

UML graphical symbol

Transformation rules InverseObjectProperties(:works :employee)

InverseObjectProperties(:manages :boss)

SubObjectPropertyOf(:manages :works)

SubObjectPropertyOf(:boss :employee)

Related works: [5, 12, 13]

The important parts of the method are the transformation and verification rules.

A result of applying rules to the UML class diagram are OWL axioms, here written

with the use of the functional-style syntax [12]. The goal of the rules is to carry

information from the UML class diagram to the domain ontology, in order to extend

the knowledge contained in the original domain ontology. Due to the limited space,

the article presents only two examples of the diagram elements with the defined

transformation and verification rules (please refer to Tables 1, 2, 4 and 5). The tables

include citations of the literature in which the selected transformation rules were

initially introduced.

3.1 Transformation Rules

Definition 1 (Transformation rule) The transformation rule tr converts an element

e of UML class diagram to a set tr(e) of OWL axioms preserving semantics of the

UML element.

The set CDTr−OWL defined by Eq. 1 is called a transformational part of OWL rep-

resentation of UML class diagram. CDTr−OWL constitutes a union of sets of results

of applying transformation rules tr to all elements e of the UML class diagram CD.

CDTr−OWL =
⋃

e∈CD
tr(e) (1)

52 M. Sadowska and Z. Huzar

Table 3 Motivating example presenting the need for verification rules

Example extract from domain

ontology

... SubClassOf(:Manager :Employee) ...

Example ID Example 1 Example 2
Example extract from UML

class diagram

Result of applying

transformation rules from

Table 1

SubClassOf(:Manager

:Employee)

SubClassOf(:Employee

:Manager)

Modified domain ontology

(transformation axiom is

added)

SubClassOf(:Manager

:Employee)

...

(no new elements added)

SubClassOf(:Manager

:Employee)

SubClassOf(:Employee

:Manager)

...

(one new element added)

Result of consistency check of

the modified domain ontology

Result: The modified domain

ontology is consistent because

no axioms were added

Result: The modified domain

ontology is also consistent

Reengineering of the modified

domain ontology to UML class

diagram Result: The reengineered

UML class diagram is correct

Result: The reengineered

UML class diagram

is incorrect with respect to the

semantics of the generalization

relationship in UML

3.2 Motivating Example for Verification Rules

The following example aims to present the intention behind introducing verification

rules. It shows that transformation rules themselves are not informative enough to

validate UML class diagrams with the use of domain ontology. Table 3 contains two

extracts from UML class diagrams and an extract from the domain ontology. The

same domain ontology is used for both example diagrams. A last row in Table 3

presents a result of reengineering of the modified domain ontologies to UML class

diagrams. The row is not a part of the method but is aimed to illustrate, what verifi-

cation rules are and why they are needed in the proposed approach.

In the first example in Table 3, Manager class is generalized by Employee class.

The transformation rule applied to this diagram results in the axiom: SubClassOf(
:Manager :Employee). The axiom, after being added to the domain ontology, does

not change the ontology as the ontology previously contained this axiom. The con-

sistency check conducted by OWL reasoner shows that the ontology is consistent.

In the second example in Table 3, Employee class is generalized by Manager
class. The transformation rule applied to this diagram results in the axiom: SubClas-
sOf(:Employee :Manager). The axiom, after being added to the domain ontology,

Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies . . . 53

changes the ontology but the consistency check conducted by OWL reasoner would

also indicate that the ontology is consistent. The ontology is indeed still consistent

because the reasoner only marks that Employee and Manager entities are equivalent.

UML follows a Unique Name Assumption [13], unlike the OWL [22] and such a

result would change the original meaning contained in the UML class diagram. This

means that the reverse transformation (reengineering) from the modified domain

ontology to the UML class diagram may result in obtaining a contradiction with

UML semantics, what was shown in the second example.

A conclusion from the motivating example is that relying only on the transfor-

mation rules, may result in an incorrect UML diagram after reengineering from the

modified domain ontology to UML class diagram. The information obtained from

the reasoner that the modified domain ontology is still consistent is not enough to

state that the original UML class diagram is compliant with the domain ontology.

If the domain ontology is consistent the validation rules are required to check if the

axioms from transformation rules after being added to the ontology have not changed

the original UML semantics, and hence the final interpretation of the obtained result.

The observation that the transformation rules are not enough to validate UML

class diagrams, and the verification rules are needed, is a major contribution of this

article. This observation constitutes an important complement to the transformation

rules described in the literature. The literature presents a transformation of selected

elements of UML class diagrams to OWL representation. For this purpose verifica-

tion rules are not needed, but they are very important in verification if the UML class

diagram (and its OWL representation) is compliant with the OWL domain ontology.

3.3 Verification Rules

As it was shown in Sect. 3.2, the verification rules are crucial for the validation

method. The verification rules are used to check if specific axioms exist in the domain

ontology. The existence of any axiom indicated by the verification rules in the ontol-

ogy means that the reengineering transformation (from the ontology to the diagram)

would remain in conflict with the semantics of UML class diagram. The example of

such a conflict is presented in Table 3 in Example 2, where a reengineered transfor-

mation resulted in incorrect cross generalization between the UML classes.

Definition 2 (Verification rules) The verification rule vr converts an element e of

UML class diagram to a set vr(e) of OWL axioms which presence in the ontol-

ogy means that the reengineering transformation (from the ontology to the diagram)

would remain in conflict with the semantics of UML class diagram.

The verification rules are designed with the aim of supporting the transformation

axioms and they assure that the diagram obtained as a result of reengineering from

the modified domain ontology still preserves the semantics of the original UML class

diagram (see Tables 4 and 5 for examples).

54 M. Sadowska and Z. Huzar

Table 4 UML class generalization with verification rules

UML class diagram element Class generalization

UML graphical symbol

Verification rules (1) SubClassOf(:Employee :Manager)

(2) EquivalentClasses(:Manager :Employee)

Table 5 UML generalization between associations with verification rules

UML class diagram element Generalization between associations

UML graphical symbol

Verification rules (1) SubObjectPropertyOf(:works :manages)

(2) SubObjectPropertyOf(:employee :boss)

(3) EquivalentObjectProperties(:manages

:works)

(4) EquivalentObjectProperties(:boss

:employee)

The set CDVr−OWL defined by Eq. (2) is called a verificational part of OWL repre-

sentation of UML class diagram. CDVr−OWL constitutes a union of sets of results of

applying verification rules vr to all elements e of the UML class diagram CD. Each

verification axiom must be associated with some transformation axioms.

CDVr−OWL =
⋃

e∈CD
vr(e) (2)

3.4 Result of Validation

The consistency checks are used in the validation method in order to verify the UML

class diagram against the domain ontology. Following [23], a consistency checker

takes an ontology as input and returns a decision as either Consistent, Inconsistent or

Unknown. In accordance with W3C recommendation [23], anUnknown result should

not be returned by OWL 2 consistency checker. In practical realizations of OWL 2

reasoners theUnknown value is frequently omitted, for example, HermiT
1

and Pellet
2

reasoners return a Boolean value as a result of a method for checking consistency.

Therefore, the Unknown value is also omitted in the proposed validation method and

the results of the validation are stated on the basis of Consistent or Inconsistent result

1
HermiT OWL Reasoner website: http://www.hermit-reasoner.com.

2
Pellet website: https://github.com/Complexible/pellet.

http://www.hermit-reasoner.com
https://github.com/Complexible/pellet

Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies . . . 55

Fig. 2 A situation when the UML class diagram is compliant with the domain ontology

Fig. 3 A situation when the UML class diagram is not contradictory with the domain ontology

from the reasoner. Definitions 3–5 specify three possible results of the validation

method.

Definition 3 (Compliant diagram) A UML class diagram is compliant with the

domain ontology, only if all axioms from the transformational part of OWL rep-

resentation of UML class diagram are contained in the axioms from the domain

ontology AND the domain ontology does not contain any verification axioms.

Figure 2 presents a situation, when the UML class diagram is compliant with the

domain ontology. This situation only appears when all axioms from CDTr−OWL are

intersected with ONTOWL and CDVr−OWL is not intersected with ONTOWL.

Definition 4 (Not contradictory diagram) A UML class diagram which is not a

compliant diagram, is also a not contradictory with the domain ontology, only if

after adding all axioms from the transformational part of OWL representation of

UML class diagram to the domain ontology, the domain ontology is consistent AND

the domain ontology does not contain any verification axioms.

Figure 3 presents a situation, when the UML class diagram is not contradic-

tory with the modified domain ontology. This situation only appears if CDTr−OWL
intersected with ONTOWL remains the modified domain ontology consistent and

CDVr−OWL is not intersected with ONTOWL. It can be noted that if the UML class dia-

gram is not contradictory with the modified domain ontology, the modified domain

ontology contains axioms that are a union of: OWLONT ∪ CDTr−OWL.

56 M. Sadowska and Z. Huzar

Fig. 4 Two situations when the UML class diagram is contradictory with the domain ontology

Definition 5 (Contradictory diagram) A UML class diagram which is not a com-

pliant diagram, is a contradictory with the domain ontology, if at least one axiom

from the transformational part of OWL representation of UML class diagram after

being added to the domain ontology, causes the domain ontology to be inconsistent

OR the domain ontology contains at least one verification axiom.

Figure 4 presents two situations, when the UML class diagram is contradictory

with the domain ontology. This situation appears when either CDTr−OWL intersected

with ONTOWL remains the modified domain ontology inconsistent, or ONTOWL is

intersected with CDVr−OWL. UML class diagram is always contradictory with the

domain ontology if the diagram and the ontology describe two different realities or

the vocabulary between the ontology and the model was not initially agreed, what is

a preliminary requirement to the method.

3.5 Prototype Tool

The proposed method for validation of UML class diagrams is implemented in a pre-

liminary version of a tool (plug-in to Visual Paradigm
3
). The choice of the concrete

UML class diagram (which needs to be validated) and the concrete domain ontol-

ogy in OWL (which serves as a knowledge base) is made by a user of the tool. More

specifically, the user decides which model and which domain ontology in OWL he

or she would like to work with.

In the tool, the result of the validation is communicated visually to the user and

the validation warnings are shown for diagram elements that have validation prob-

lems. Figure 5 presents an example result of an incorrect generalization detected by

the tool in accordance with the selected domain ontology. The tool currently con-

tains only selected transformation and verification rules which are related to classes

with attributes, associations and generalizations. The current research is focused on

further extension of the tool and the transformation and verification rules.

3
Visual Paradigm for UML website: https://www.visual-paradigm.com.

https://www.visual-paradigm.com

Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies . . . 57

Fig. 5 Incorrect generalization detected by the prototype tool

4 Conclusions

As presented in the article, domain ontologies and OWL reasoners can support the

process of validation of the UML class diagrams. Currently, ontologies are more

and more frequently used as a support for modelling in software development (e.g.

[24, 25]), including business [26] and conceptual modelling [27]. There are a lot of

databases and online libraries with OWL domain ontologies.
4

Reusing of domain ontologies allows to draw upon specific domain knowledge

without the necessity of constant involvement of domain experts.

A major contribution of this article is an observation that the transformation rules

are not enough to validate UML class diagrams, and the additional rules (here called

verification rules) are needed. It was discovered during implementation of the pro-

totype tool.

The proposed method for validation of the semantic correctness of the mod-

els retrieves the domain knowledge captured in the domain ontologies expressed

in OWL. The method, is based on changing the domain ontology by adding new

axioms to it—one by one from the transformational part of OWL representation of

UML class diagram—and on subsequent verification if the modified domain ontol-

ogy is still consistent. If the modified domain ontology is consistent, all associated

verification axioms are one by one checked for the existence in the ontology. The

existence of any axiom indicated by the verification rules in the modified domain

ontology means that a reengineering transformation (from the ontology to the dia-

gram) would remain in conflict with the semantics of UML class diagram.

4
Some examples of online OWL databases and libraries are as follows: The OBO Foundry database:

http://www.obofoundry.org/, Information Systems Group Ontologies: http://www.cs.ox.ac.uk/isg/

ontologies/, Protege Ontology Library: http://protegewiki.stanford.edu/wiki/Protege_Ontology_

Library.

http://www.obofoundry.org/
http://www.cs.ox.ac.uk/isg/ontologies/
http://www.cs.ox.ac.uk/isg/ontologies/
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
http://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

58 M. Sadowska and Z. Huzar

A full overview with a revision and extension of the state of the art transformation

rules for UML class diagrams is a subject of the related article, which is currently

in preparation. The current research is also focused on proposing verification rules

and on extending the prototype tool in order to validate full UML class diagrams.

The tool is aimed to automatically check the compliance of the UML class diagram

with the field described by the domain ontology expressed in OWL. Thanks to this

solution, the modellers will obtain a method for automatic validation of UML class

diagrams against the domain they describe. Future work is also focused on extending

the UML class diagrams by the knowledge from the OWL domain ontologies. The

domain ontology may serve as a source of information that is not yet presented in

the UML model but is worth considering to be included.

References

1. OMG, Unified Modeling Language,Version 2.5, Doc. No.: ptc/2013-09-05 (2015). http://www.

omg.org/spec/UML/2.5

2. Niittgens, M., Fold, T., Zimmermann, V.: Business process modeling with EPC and UML:

transformation or integration. In: Schader, M., Korthaus, A. [36], pp. 250–261 (1998)

3. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling. Softw.

IEEE 11(2), 42–49 (1994)

4. OWL 2 Web Ontology Language. Direct Semantics (Second Edition). W3c Recommendation

11 December 2012 (2012). http://www.w3.org/tr/owl2-syntax/

5. Atkinson, C., Kiko, K.: A detailed comparison of UML and OWL. Technischer Bericht 4,

Department of Mathematics and Computer Science. University of Mannheim (2008)

6. Parreiras, F.S., Staab, S., Winter, A.: On marrying ontological and metamodeling technical

spaces. In: Proceedings of the the 6th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,

pp. 439–448. ACM (2007)

7. OWL 2 Web Ontology Language Document Overview (Second Edition). W3c Recommenda-

tion 11 December 2012 (2012). https://www.w3.org/tr/owl2-overview/

8. Huzar, Z., Sadowska, M.: Towards creating complete business process models. In Chapter 5

In: From Requirements to Software: Research and Practice, pp. 77–86 (2015)

9. Bahaj, M., Bakkas, J.: Automatic conversion method of class diagrams to ontologies maintain-

ing their semantic features. Int. J. Soft Comput. Eng. (IJSCE) 2 (2013)

10. Belghiat, A., Bourahla, M.: Transformation of uml models towards owl ontologies. In: 2012

6th International Conference on Sciences of Electronics, Technologies of Information and

Telecommunications (SETIT), pp. 840–846. IEEE (2012)

11. Jesper, Z., Luttenberger, N.: Conceptual modelling in UML and OWL-2. Int. J. Adv. Soft. 7(1

& 2) (2014)

12. Khan, A.H., Porres, I.: Consistency of uml class, object and statechart diagrams using ontology

reasoners. J. Vis. Lang. Comput. 26, 42–65 (2015)

13. Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Knowledge Technology, pp.

154–163. Springer, Berlin (2012)

14. Zedlitz, J., Luttenberger, N.: Transforming between uml conceptual models and owl 2 ontolo-

gies. In: Terra Cognita 2012 Workshop, vol. 6, p. 15 (2012)

15. Zedlitz, J., Luttenberger, N.: Data types in UML and OWL-2. In: Presented at the Semapro

2013: The Seventh International Conference on Advances in Semantic Processing (2013)

16. Felfernig, A., Friedrich, G.E., Jannach, D.: UML as domain specific language for the construc-

tion of knowledge-based configuration systems. Int. J. Soft. Eng. Knowl. Eng. 10(04), 449–469

(2000)

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://www.w3.org/tr/owl2-syntax/
https://www.w3.org/tr/owl2-overview/

Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies . . . 59

17. Unhelkar, B.: Verification and validation for quality of UML 2.0 models, vol. 42. Wiley (2005)

18. Bertolino, A., De Angelis, G., Di Sandro, A., Sabetta, A.: Is my model right? Let me ask the

expert. J. Syst. Softw. 84(7), 1089–1099 (2011)

19. Letelier, P., Snchez, P.: Validation of UML classes through animation. In: Advanced Concep-

tual Modeling Techniques, pp. 300–311. Springer, Berlin (2002)

20. OWL 2 Web Ontology Language: Profiles. W3c Working Draft 11 April 2008 (2008). https://

www.w3.org/tr/2008/wd-owl2-profiles-20080411/

21. Gherabi, N., Bahaj, M.: A new method for mapping UML class into OWL ontology. Spec. Issue

Int. J. Comput. Appl. (0975 8887) Soft. Eng. Databases Expert Syst. SEDEXS 5–9 (2012)

22. OWL 2 Web Ontology Language Profiles (Second Edition). W3c Recommendation 11 Decem-

ber 2012 (2008). https://www.w3.org/tr/owl2-profiles/

23. OWL Web Ontology Language. Test Cases. W3c Recommendation 10 February 2004 (2004).

https://www.w3.org/tr/owl-test/#consistencychecker

24. Ga, D., Djuric, D., Deved, V.: Model Driven Architecture and Ontology Development. Springer

Science & Business Media (2006)

25. Parreiras, F.S., Staab, S., Ebert, J., Pan, J.Z., Miksa, K., Kühn, H., Zivkovic, S., Tinella, S.,

Assmann, U., Henriksson, J.: Semantics of software modeling. Semant. Comput. pp. 229–247

(2010)

26. Gailly, F., Poels, G.: Ontology-driven business modelling: improving the conceptual represen-

tation of the REA ontology. In: Conceptual Modeling-ER 2007, pp. 407–422. Springer, Berlin

(2007)

27. Hnatkowska, B., Huzar, Z., Dubielewicz, I., Tuzinkiewicz, L.: Problems of SUMO-like ontol-

ogy usage in domain modelling. In: Intelligent Information and Database Systems, pp. 352–

363. Springer international publishing edn. (2014)

https://www.w3.org/tr/2008/wd-owl2-profiles-20080411/
https://www.w3.org/tr/2008/wd-owl2-profiles-20080411/
https://www.w3.org/tr/owl2-profiles/
https://www.w3.org/tr/owl-test/#consistencychecker

RSL-DL: Representing Domain Knowledge
for the Purpose of Code Generation

Kamil Rybiński and Rafał Parol

Abstract In the paper a new extension to the existing RSL (Requirements Spec-

ification Language) language has been proposed, called RSL-DL (Requirements

Specification Language-Domain Logic). Based on the declarative paradigm of pro-

gramming its aim is to enable defining ontologies at the requirements level and as

a consequence also describing the domain logic part of requirements specification.

Being fully complement with RSL it supplements ReDSeeDS (Requirements-Driven

Software Development System) technology with a possibility to generate by far miss-

ing code of the Model layer of standard MVP architectural pattern. The main idea

of the solution has been described, together with the definition of the key language

elements, in terms of syntax, notation and semantics as well. Additionally the role of

the RSL-DL within the whole ReDSeeDS technology framework has been precisely

defined and comparison with other languages has also been included.

1 Introduction

Functional requirements formulation, even nowadays in times of growing popularity

of agile software development practices, is one of the most important tasks during the

software development process, having a huge impact on the final quality of the appli-

cation, as well as on the fact if the project ends with success or not. The possibility of

transforming the requirements specification into fully or nearly working code could

provide lots of benefits, including shortening the length of the project development

cycle and reducing the effort of software architects, designers and programmers.

This is exactly what the ReDSeeDS (Requirements-Driven Software Development

System) technology [2] aims to do. With the use of dedicated language with well-

defined syntax named RSL (Requirements Specification Language) [10] for specify-

ing requirements, some set of transformation rules depending on the target technol-

ogy (programming language, architectural framework) and transformation program

K. Rybiński (✉) ⋅ R. Parol

Warsaw University of Technology, Warsaw, Poland

e-mail: rybinskk@iem.pw.edu.pl

© Springer International Publishing Switzerland 2017

L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,

DOI 10.1007/978-3-319-43606-7_5

61

62 K. Rybiński and R. Parol

implementation written in MOLA language [11] it generates the majority of the code

that is needed to run the properly working application. Most transformations try to

apply the MVP architectural pattern and by far only the code of View and Presenter

layers is being generated [17]. To fill with necessary code the classes and methods

of the Model layer we need to find a way to describe the domain logic of the ana-

lyzed problem and possibly propose some extension to RSL language. Because such

an extension should be understandable even for non-programmers (just like RSL

language is) some declarative approaches, aiming at building ontologies and mak-

ing the use of reasoning mechanisms should probably be considered. Therefore, in

this paper we propose the RSL-DL (Requirements Specification Language-Domain

Logic) extension of the RSL, a language following the declarative paradigm of pro-

gramming using easy to understand graphical notation.

2 Overview of Knowledge Representation Languages

Before we propose a new language, we should check first if maybe some existing

ones satisfy our needs. There are many options to choose from if we need a lan-

guage appropriate for the task of modelling the knowledge representation or build-

ing ontologies. For the purpose of our analysis, we can distinguish three categories

of such solutions. First one contains languages supporting semantic web idea such

as RDF [12] or OWL [9, 14]. Second one is related to languages focused on knowl-

edge representation and automatic reasoning such as OCML [15] or LOOM [3, 13].

Third one includes logic programming languages such as Prolog [4, 5]. Below we

present a description of selected knowledge representation languages, specifically

representative ones of each of mentioned categories.

2.1 OWL

The OWL (Web Ontology Language) language is discussed here as example of

languages belonging to the first of previously listed categories. Its main idea is to

make it possible to build a comprehensive taxonomy of classes, define relations

between them and then try to classify different well-described individuals appearing

in queries as instances of particular classes or not. Classes are described in relation to

other classes (being a subclass of, belonging to set of disjoint classes), often in a very

complex way with the use of logical class constructors (union of classes, intersec-

tion of classes, complement to a class), and by relations in which each class member

participates. Such relations are called properties and can be used to connect objects

with objects or objects with data values. Properties can also be defined in a very

precise way: they can be for example classified as functional ones (the object can be

linked by such a property with at most one another), symmetric ones or as inverses

of other properties. The names appearing in OWL take the form of IRI (International

RSL-DL: Representing Domain Knowledge for the Purpose . . . 63

Fig. 1 Example of OWL code (based on example from [9])

Resource Identifiers) format [8]. Some sorts of abbreviations can also be used. We

can see some example of relatively complex definitions of classes in Fig. 1.

We can find out from the example that a childless person is a one who is at the

same time a person and not a parent. In turn, orphan is an individual who is charac-

terized by the fact that he participates in relationships of being a child as an object

(not as a subject) only with individuals who are already dead.

2.2 LOOM

LOOM language can be considered as a good example from the second category.

It can also be characterized as a mix of rule-based and frame-based solutions.

Generally, in the case of rule-based approaches the reasoning mechanism infers on

the basis of some conditions that have to be satisfied to draw particular conclusions.

Frame-based solutions rely on providing some kind of detailed descriptions of the

objects in terms of values of their attributes and relationships between them, which

results in ontologies modelled in a very precise way. Similarly as in the case of OWL,

each concept (that is how LOOM calls the class of objects) can be defined directly in

terms of other more general concepts, as well as by relations in which it participates

with other classes of objects. In a typical situation after implementing the program

(using TBox part of the language—the one for describing concepts and relations),

the user tries to describe some individual object and then asks a computer (all of

this can be done with the ABox part of the language—the one for asserting facts and

executing queries) if the individual (taking into account its individual definition) can

be classified as a member of particular class. We can observe it in Fig. 2. The code

Fig. 2 Example of LOOM code (based on example from [3])

64 K. Rybiński and R. Parol

Fig. 3 Example of Prolog

code (based on example

from [4])

has so intuitive syntax that almost no additional explanations are needed. Of course

the statement that Robby is a robot is going to be evaluated to be true.

2.3 Prolog

Prolog can be treated as an example language belonging to the third of the mentioned

categories. As every other language presented here Prolog is a declarative one—

when writing a code we tell the computer what we want to achieve, but not how it

should be done. An example of Prolog code can be seen in Fig. 3.

The typical program written in Prolog consists of two types of clauses: facts and

rules. The facts describe particular relations between different concrete objects. Plac-

ing the facts within the lines of the program aims to provide the computer with some

explicitly given static knowledge about the nature of analyzed problem. For exam-

ple the fact (P1) informs the computer that objects named matthew and david are in

some relation with each other called parent. In turn, the rules represent the knowl-

edge that makes it possible to the computer to discover new observations that are not

explicitly given. For example the rule (A1) means that if variables X and Y, which

can represent any objects, are in relation called parent it is a sufficient condition to

make the statement that also the relation ancestor(X, Y) is true. Generally speaking

each rule says that relation on the left takes place and is evaluated to be true only if

all the conditions on the right are proven to be true. Rules can also be expressed in a

recursive manner as we can see in the case of rule (A2).

Having such a piece of code as in Fig. 3 we can try to ask the computer some

questions, for example “?- ancestor(joshua, david).” (Is Joshua ancestor of David?).

To prove the statement contained in the question, we have to make use of some

corresponding fact or appropriate rule from the program. It means that we need to

find explicit fact saying that joshua is ancestor of david or the general rule that can be

proven to be true if respective variablesX and Y are bound to those values (joshua and

david). Making the use of rules involves performing reasoning tasks. Prolog is able

to infer as well forwards (forward chaining—proving new statements on the basis of

the already known ones until we prove the one we are interested in) as backwards

(backward chaining—checking if we are able to prove all the statements necessary

to prove the one we are interested in). Eventually, our question is of course evaluated

to be true.

RSL-DL: Representing Domain Knowledge for the Purpose . . . 65

2.4 Disadvantages of Described Languages

Every single language has its own pros and cons. The detailed comparison of dif-

ferent languages (including the ones described above) can be found in [6, 7, 16].

Here we only focus on the properties important from the point of view of the ana-

lyzed issue. First it should be noticed that since one of the huge advantages of RSL

language is making the use of the syntax that is easily understandable even for non-

programmers (scenario sentences expressed in a language similar to the natural one,

use case and domain notions models drawn as diagrams with the use of intuitive

graphical notations), the syntax used to define the domain logic should follow this

approach. Furthermore, the domain logic for specific problems sometimes turns out

to be really complicated, so it seems to be a good idea to illustrate all the complex-

ity with the use of diagrams. Unfortunately all previously described languages use

some kind of textual notation. Moreover even if someone could say, that the syntax

of LOOM and OWL can be treated as easily understandable, that is true only for pro-

grammers, especially the ones familiar with the object-oriented paradigm. We should

also remember that our final goal is to generate some (fully or nearly) working code

from our domain logic description. In most cases programs in other languages are

rather interpreted within dedicated integrated environments and not transformed to

any other form of code (executable or not). Also in most cases the other languages

are dedicated to operate on knowledge bases defined inside the code, whereas typ-

ical business applications are strongly dependent on external data sources, such as

databases or files. Maybe only languages from the first category are some kind of

exception here, since for example every individual in OWL is identified by its name

being an IRI, which means that it can be any object in the whole Internet. However

even in that case there is no definition of internal data structure of such an object

which is required to use the object and its data inside the domain logic code. Finally,

sometimes there is a need to make use of constructs typical for procedural style of

programming, like loops or functions. Even if some languages, like LOOM, contain

them, they are most often not really intuitive to use.

3 ReDSeeDS Technology

To understand why we need the RSL–DL extension of the RSL language we must

consider it within the context of ReDSeeDS technology, which aim is to generate

(fully or nearly) working code from the level of requirements specification. Any

transformation from requirements to code is not possible if requirements are written

in unconstrained natural language. Therefore, we need some kind of special purpose

constrained language with well–defined syntax. RSL language has been defined to

satisfy these demands. The task of specifying the requirements starts with identifi-

cation of use cases. We can see an example of decomposition of the small part of

the system functionality to a set of single use cases in the Fig. 4. Every use case, like

66 K. Rybiński and R. Parol

Fig. 4 Example of RSL specification

“Find pet” or “Create new visit” in the considered example of pet clinic supporting

system, has to be then described by a set of scenarios showing how the goal of a use

case can be achieved (or not) from the point of view of communication of the user

with the system. An example of such scenario for the “Create new visit” use case is

shown in the same figure. Scenarios can end with success or with a failure depend-

ing on the data entered by the user, his decisions and some other specific conditions.

Each scenario is a set of simple sentences written in SVO notation (Subject–Verb–

Object). Possibly some special invocation sentences, join sentences and condition

sentences can be included as well. The Subject of a SVO sentence (like “System” in

the sentence no. 8) is always either the actor of a use case or the system itself. The

Verb (like “saves” in the same sentence) may be chosen as a one from the set of some

predefined verb types (“saves” is of a “Create” type), but it can be also any other verb

that describes performed action well. Any word (or set of words) can also appear

in the sentence as the Object (like “visit data”). However it needs to be classified

to the one of some predefined groups (“visit data” is of a “Simple View” type). On

the basis of the choice of Subject, Verb and Object different kinds of sentences can

be distinguished (like “System to Simple View”). Every single kind causes different

parts of the code within the range of particular architectural layers to be generated.

Although the sentences written in RSL must follow some well–defined syntax rules,

they are nearly as easy to understand as natural language sentences. Finally, the use

RSL-DL: Representing Domain Knowledge for the Purpose . . . 67

Fig. 5 Core fragment of RSL-DL meta-model

case model together with scenario sets has to be complemented with the domain

notions model describing all the notions playing the role of Objects in the sentences

and relationships between them. The example of such a domain model, precisely a

part of it related to the “Create new visit” use case, has also been shown in Fig. 4.

All the necessary parts of requirements specification (use case model, scenarios

sets, domain notions model) can be prepared with the use of dedicated tool (editor)

being a part of ReDSeedS technology. When our specification is ready, the ReD-

SeeDS tool is able to invoke the transformation engine. Most of existing transfor-

mation programmes try to apply the MVP architectural pattern in the final code.

It assumes that the set of all classes should be logically divided into three layers:

Model layer, View layer and Presenter layer. By far the best existing transformation

programmes are able to generate all the classes, methods and code needed to imple-

ment the tasks of the View and the Presenter layers. In the case of the Model layer

all the classes with necessary methods are being generated, but by far no code in

the bodies of these methods is being provided. For example the sentence no. 8 in the

main scenario of “Create new visit” use case says that system should be able to “save

visit data” if needed. According to that sentence and standard transformation rules

for MVP architectural pattern [17] a class named MVisitData belonging to the Model

layer should be generated, responsible for performing all the tasks regarding to the

visit data abstract concept. Also the method “save” needs to be generated inside the

MVisitData class. However, by far the requirements specification coded in RSL does

not provide us with any necessary information enabling to do much more. Because

the user delivers some information on how he understands the “visit data” notion

with the use of domain notions model we should be able to generate the code related

to all the database access operations, which may be even combined with generating

68 K. Rybiński and R. Parol

the database schema. However we also need to express in RSL what the user means,

for example by saying that the “visit data” needs to be “verified” (sentence no. 7).

As we see, without any doubts we need some extension of RSL language being able

to express information related to the domain logic.

4 Solution Overview

As the RSL-DL is intended to supplement ReDSeeDS code generation capabilities,

its general structure is based on corresponding part of RSL language used by that

system. However, in order to adapt better to the task of specifying domain knowl-

edge, introduction of a few adjustments is necessary. General division into notions

(“DLNotion”), reflecting occurring concepts, and relationships (“DLRelationship”),

reflecting associations between them, has been preserved, although the way of repre-

senting the latter ones needs proper modification. As it can be seen in the meta-model

in Fig. 5, separate meta-class for representing participation in relationship (“DLRe-

lationshipParticipation”) has been extracted, which enables more convenient way of

modelling multipart relationships and more precise description of each element’s

role in them. Some adjustments in language concrete syntax have also been intro-

duced by representing relationships as hexagon figures. Additionally each notion and

relationship can be assigned to proper domain (“DLDomain”) regarding to the area of

interest that is being described. Similarly new meta-class(“DLPrimitive”) has been

introduced for representing global concepts not related to any particular domain, like

for example current date.

Moreover a few further clarifications have been made. As can be seen in Fig. 6

relationships have been further divided into groups to define their roles and meaning

more precisely. First level division distinguishes references (“DLReference”), which

reflect how notions are related to each other, from transitions (“DLTransition”),

that define how to traverse between them or transform one into another. The first

Fig. 6 Relationships in RSL-DL meta-model

RSL-DL: Representing Domain Knowledge for the Purpose . . . 69

group is further divided into pattern-based references (“DLPatternBasedReference”)

and data-based references (“DLDataBasedReference”). Pattern-based references are

used to model situations when relations between notions can be inferred from the

set of rules. For example “siblings” can be defined as two separate individuals who

have the same mother and father. Data-based references are to be applied when

information about associations between notions is contained in some external data

source, like relational database. The relationship between books and their authors

could serve as an example of that type of reference. The second group of relations

is also further divided into pattern-based transitions (“DLPatternBasedTransition”)

and algorithmic transitions (“DLAlghoritmicTransition”). Pattern-based transitions

are the ones that can be described by a set of static rules or formulas. For exam-

ple, basing on the knowledge about the distance between two points and the time

needed to move from one to another we can use pattern-based transition to determine

the object’s velocity. Additionally such transitions can be also marked as reversible

or irreversible ones. Algorithmic transitions are the ones which cannot be easily

described in a previous way and require executing a given number of steps in a par-

ticular order to determine the counterpart in the relationship. A transition between

unsorted list and sorted one with the use of bubble sort algorithm could be a good

example.

As it can be seen in Fig. 7 notions are also divided into subclasses: entities

(“DLEntity”) and properties (“DLProperty”). Properties are simple concepts asso-

ciated with some specified values assigned to them, whereas entities represent inde-

pendent, presumably more complex elements of the represented domain. “Person”,

“student” or “physical body” can be seen as examples of entities while “name” and

“speed” are examples of properties. In order to save space the enumeration presenting

possible value types for properties is omitted on the diagram, as it is similar to the one

from classical RSL. Each notion can be also described more precisely by assigning

to it some additional conditions. There are three types of them: inheritance condi-

Fig. 7 Notions in RSL-DL

meta-model

70 K. Rybiński and R. Parol

tions (“DLInheritanceCondition”), identity conditions (“DLIdentityCondition”) and

validity conditions (“DLValidityCondition”). Inheritance conditions reflect special-

isation dependencies between notions: for example every “student” is also a “per-

son”. Identity conditions specify all other types of conditions which define notions

identities, for example the object can be classified as a book if it has ISBN num-

ber having exactly thirteen digits. Validity conditions provide additional informa-

tion which can be used to check notions validity, for example valid ISBN numbers

should have proper check digits. Additionally properties can be assigned to entities as

their attributes by attribute links (“DLAttributeLink”)—for example “name” prop-

erty can be added as an attribute to the “person” entity. Objects can also be marked as

belonging to the classes of different entities in many ways, depending on persistence

of such an assignment and object’s life cycle. If a given notion is of an “identity”

type, it means that particular object has to be a member of that class (notion) from

the very beginning (creation of the object) to the end. In the case of two other types,

the class (notion) membership can be assigned during the object’s life cycle. It means

that object may become the member of the class (notion) temporarily (“temporary

role” type of a notion) or persistently (“persistent role” type of a notion). “Person”

could be treated as an example of “identity” type, “student” as an example of “per-

sistent role” type that can be assigned to the object during its life cycle and “physical

body” as an example of “temporary role” type used only for purpose of some cal-

culations. It is worth noting that the permanence of object’s role (like in the case of

being a “student”) does not imply its immutability, but only the permanence of its

assignment, until it is directly changed.

Described language allows for storing domain rules, but proper selection of the

ones needed to generate the code for given methods in the Model layer is equally

important task. To achieve that goal inference engine is going to be used. With the

use of forward or backward chaining proper tree structure representing the graph of

needed rules has to be build based on particular references and transitions, as well as

definitions of their possible inputs and outputs. In order to become independent from

the form of given rules, symbolic computation can also be used to convert them in

Fig. 8 Transformation scheme

RSL-DL: Representing Domain Knowledge for the Purpose . . . 71

any convenient way. Then such a tree structure of rules should be transformed into

code of proper methods. Additionally, on the basis of the taxonomy of notions and

conditions the relevant structure of classes has to be also created. Together with

current ReDSeeDS tool capabilities it should provide a possibility of a full code

generation. Overview of the whole transformation process is shown in Fig. 8.

5 RSL-DL Model Example

A more comprehensive example is shown in Fig. 9. It presents domain model com-

prised of elements related to registration and evaluation processes in typical uni-

versity. It consists of three major entities: “Student”, “Subject” and “Partial grade”,

where “Student” is an example of “persistent role” which can be added to any

“Person” and “Partial grade” is a specific kind of a grade, which not only has a

value, but also a weight. Both value and weight are represented by valid properties—

weight by a simple property of an integer type and value by a property of a float

type constrained by identity condition determining available grade values. Based on

these elements appropriate transformation can generate domain logic classes, where

attributes will be based on properties and their value types and inheritance condi-

tions together with role types will indicate proper definitions of class constructors.

The example also contains three important relationships. First two of them, “Reg-

istration” and “Grade”, represent associations between “Students” and “Subjects”

and “Students”, “Subjects” and “Partial grades” respectively, defined by means of

external data sources—as a result they both belong to the data-based reference rela-

tionship subtype. Existence of these relationships allows for generation of proper

database schemas and data access objects. Also proper methods for participating

classes enabling them operations on such data set will be generated. The third rela-

tionship “Weighted average grade” is a pattern-based transition illustrating the way

of computing the value of “Average grade” for given “Subject” and given “Student”.

Direction of arrows representing participations in that relationship indicates possible

direction of computations and additional names accompanying the arrows allow for

more concise specification of formulas. In our example only one direction of such

computation is possible (given transition is irreversible one) and the expression is

already given in a proper format (there is no need of using symbolic computation to

transform any formulas in this case), so only the method to compute average grade

for given student and given subject will be generated. Realization of all mentioned

classes and methods can be observed in Fig. 10. At the same time, it also reveals

the translational semantics of our solution, showing how RSL-DL concepts can be

expressed in other languages (like UML or Java) with precise, well-known and well-

defined meaning of particular constructs comprising them.

72 K. Rybiński and R. Parol

Fig. 9 RSL-DL example

Fig. 10 Code example

RSL-DL: Representing Domain Knowledge for the Purpose . . . 73

6 Conclusions and Further Work

Attempts that have been already made seem to indicate that proposed classification

of notions and relationships will make it possible to define proper models with all the

necessary data processing rules for different domains. The possibility to make use

of procedural style constructs (when needed) in an intuitive way, together with the

ability of the language to refer to external data sources allows for greater flexibility in

defining the domain logic. As we see in examples the use of graphical notation makes

the domain logic description also easily understandable. For that purpose (drawing

the RSL-DL diagrams) dedicated graphical editor has already been implemented,

with the use of GMF Framework [1]. Our further work will focus on making the

transformation rules definition and the transformation engine implementation, which

are both currently in the advanced development stage, complete. In the future dedi-

cated query language for the RSL-DL has to be formulated, together with procedures

of mapping between RSL scenario sentences and such queries and their results.

References

1. Graphical Modeling Project. http://www.eclipse.org/modeling/gmp/

2. ReDSeeDS project home page. http://redseeds.eu/

3. Loom User’s Guide. Technical report, ISX Corporation (1991)

4. Bramer, M.: Logic Programming with Prolog. Springer, London (2013)

5. Colmeraner, A., Kanoui, H., Pasero, R., Roussel, P.: Un systeme de communication homme-

machine en francais. Luminy (1973)

6. Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Methodologies, tools and languages for

building ontologies. Where is their meeting point? Data Knowl. Eng. 46(1), 41–64 (2003)

7. Corcho, O., Gómez-Pérez, A.: Evaluating knowledge representation and reasoning capabilites

of ontology specification languages. In: Proceedings of the ECAI’00 Workshop on Applica-

tions of Ontologies and Problem Solving Methods (2000)

8. Dürst, M., Suignard, M.: Internationalized Resource Identifiers (IRIs). Technical report (2004)

9. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology

Language Primer. Technical report (2012)

10. Kaindl, H., Śmiałek, M., Wagner, P., et al.: Requirements Specification Language Definition.

Technical Report D2.4.2, ReDSeeDS Project (2009)

11. Kalnins, A., Barzdins, J., Celms, E.: Model Transformation Language MOLA. Lect. Notes

Comput. Sci. 3599, 14–28 (2005)

12. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax Specifi-

cation (1999)

13. MacGregor, R., Bates, R.: The Loom Knowledge Representation Language. Technical report,

DTIC Document (1987)

14. McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. World Wide

Web Consortium (W3C) Recommendation (2004)

15. Motta, E.: An overview of the OCML modelling language. In: the 8th Workshop on Methods

and Languages (1998)

16. Slimani, T.: Ontology development: a comparing study on tools, languages and formalisms.

Indian J. Sci. Technol. 8(24) (2015)

17. Śmiałek, M., Nowakowski, W.: From Requirements to Java in a Snap. Springer International

Publishing (2015)

http://www.eclipse.org/modeling/gmp/
http://redseeds.eu/

Part II
Quality Assurance

Assessment of the Software Defect Prediction
Cost Effectiveness in an Industrial Project

Jaroslaw Hryszko and Lech Madeyski

Abstract Software defect prediction is a promising, new approach to increase both,

software quality and development pace. Unfortunately, the cost effectiveness of soft-

ware defect prediction in industrial settings is not eagerly shared by the pioneering

companies. In particular, the cost effectiveness of using the DePress open source

software measurement framework, developed by Wroclaw University of Science and

Technology, and Capgemini software development company, for defect prediction

in commercial software development projects have not been previously investigated.

Thus, in this paper, we explore whether defect prediction can positively impact an

industrial software development project by generating profits. To meet this goal, we

conducted a defect prediction and simulated potential quality assurance costs based

on the best prediction result, as well as the proposed Quality Assurance (QA) strat-

egy. Results of our investigation were optimistic: we estimated that quality assurance

costs can be reduced by almost 30 % when proposed approach will be used, while

estimated DePress tool usage Return on Investment (ROI) is fully 73 (7300 %), and

Benefits Cost Ratio (BCR) is 74. Such promising results have caused the acceptance

of continued usage of the DePress-based software defect prediction for actual indus-

trial projects run by Volvo Group.

J. Hryszko (✉) ⋅ L. Madeyski (✉)

Faculty of Computer Science and Management, Wroclaw University of Science

and Technology, Wrocław, Poland

e-mail: jaroslaw.hryszko@pwr.edu.pl

L. Madeyski

e-mail: lech.madeyski@pwr.edu.pl

J. Hryszko

Volvo Group, Gothenburg, Sweden

© Springer International Publishing Switzerland 2017

L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,

Advances in Intelligent Systems and Computing 504,

DOI 10.1007/978-3-319-43606-7_6

77

78 J. Hryszko and L. Madeyski

1 Introduction

Until recently, software defect prediction process has been considered to be too com-

plex, expensive and time-consuming, as well as there have been lack of solutions

for wrapping required tools into one, universal, defect prediction framework which

could be used for different software projects.

To fill this gap, Madeyski and Majchrzak [1] proposed a new, extensible (plugin-

based) framework called DePress. DePress (Defect Prediction for Software Systems)

builds upon the KNIME framework [2] and allows development of graphical work-

flows and uses an intuitive, user-friendly interface. Being intuitive and highly cus-

tomizable, the DePress makes itself a perfect tool which can be conveniently uti-

lized (thanks to its user-friendly interface and a wide range of plugins) in different

commercial software development projects for software defect prediction. Detailed

description of DePress framework and its capabilities can be found on DePress web-

site [3] or in the article by Madeyski and Majchrzak [1].

Potential benefits of using the DePress framework for defect prediction in com-

mercial software development projects have not been investigated [1]. To fill this

gap, our study aimed to answer the following research questions:

RQ1: What is the highest level of defect prediction, measured by F-measure,
achievable by the DePress tool (using a default, non-tweaked configuration) in an
industrial software project?

The possible benefit varies, depending on the potential prediction effectiveness.

This implies the need of first verifying what is the highest F-measure (harmonic

mean of precision and recall [4]) value of the defect prediction process handled

entirely by the DePress tool. DePress can be highly customizable thanks to its plugin-

based architecture, as well as its open source nature. However, such adjustments can

generate additional costs. Therefore, for the sake of simplicity, we decided to restrict

the DePress usage only to its default set-up.

RQ2: How cost effective is defect prediction using the DePress framework, in the
default configuration, for defect prediction in an industrial software development
project?

The next step is to verify what will be the profit from the best prediction achiev-

able using the default DePress’ set-up. To achieve this, we used value of the recall
measure corresponding to the highest F-measure value.

RQ3: Will usage of the DePress framework pay off for an industrial project?
To answer this question, we had to compare the costs of introducing and using

the DePress based defect prediction to the potential benefits generated by its intro-

duction. To achieve this, we used values such as return on investment (ROI) and

benefit-cost ratio (BCR) [5].

Assessment of the Software Defect Prediction Cost Effectiveness . . . 79

1.1 Project Context and Target Software

Volvo Group, one of the leading automotive companies, was invited to take part in

this research. The primary motivation for Volvo Group’s interest was to verify, if their

company can use DePress and its software defect prediction to increase quality and

cost-effectiveness of quality assurance (QA) in their software development projects.

During our previous research, we recognized elements occurring in software

projects that hindered or prevented completion of defect prediction [6]. A project

selected finally as a research subject—an initiative which develops and maintains an

application called Texas—was chosen due to absence of aforementioned elements.

Within the considered project, we can observe three stages of the software life-

cycle (project phases): development, testing, and post-release phase.

1.2 Related Work

The first publication related to an industrial application of defect prediction was pub-

lished in 1997 by Khoshgoftaar et al. [7]. It was a case study of quality modeling for

a very large telecommunications system. Two other publications of Khoshgoftaar

and Seliya from 2004 [8] and 2005 [9] continued with the previous concept and

focused on commercial data analysis, but were not applied to a real-world environ-

ment. A similar approach can be found in publications by Ostrand and Weyuker [10],

Ostrand et al. [11], Tosun et al. [12], Turhan et al. [13, 14]. Examples of indus-

trial applications of information gathered by using defect prediction can be found

in publications by Wong et al. [15], Succi et al. [16] and Kläs et al. [17]. Com-

plete cases describing the introduction of defect prediction in industrial environments

were presented by Ostrand et al. [18], Li et al. [19] and Tosun et al. [20]. Unfortu-

nately, none of the aforementioned works contain information on cost effectiveness

of applied prediction techniques and tools. To the best of our knowledge, the only

research focused on the cost effectiveness of software defect prediction in an indus-

trial project, is conducted by Monden et al. [21]. However, they investigated cost

effectiveness only from the acceptance testing effort perspective and do not use any

quantitative measure of potential cost of quality assurance-focused work and cost

of investment during the entire software life-cycle period. Thus, in our research we

also followed approaches used when cost effectiveness of other than defect predic-

tion quality assurance technique was investigated, such as Test-Driven Development

return on investment research conducted by Müller and Padberg [5].

80 J. Hryszko and L. Madeyski

2 Assessment Method

To investigate the cost effectiveness of defect prediction applied to an industrial soft-

ware development project using the DePress framework, we developed the following

plan to follow:

1. Development of a QA effort allocation strategy, based on defect prediction pro-

vided by DePress;

2. Analysis of actual, real-life costs of quality assurance for the selected release of

the Texas project (4.0.0);

3. Building software prediction models for the chosen release;

4. Selection of the highest prediction F-measure and the corresponding recall mea-

sure;

5. Usage of an effort allocation strategy, based on the prediction effectiveness char-

acterized by recall, to simulate a prediction-based quality assurance scenario;

6. Results analysis.

2.1 Quality Assurance Effort Allocation Strategy

In the case investigated (the release 4.0.0 of the Texas software), developers agreed

that all the modules that caused 2 and more registered defects are considered as

“high risk” modules. These modules accounted for 22.4 % of all modules and were

responsible for 80.36 % of all registered errors and the aim was to eliminate the maxi-

mum number of software defects using the available resources within a limited time

period. A similar distribution of defects in the software modules was observed by

different authors [22–24] and can be interpreted as the Pareto principle existence in

software quality. Additionally, in 1976 Boehm argued that defect fixing costs are the

more expensive the later defects are removed [25]. That observation, which is widely

called Boehm’s Law [22], results in another important consequence of smart quality

assurance efforts allocation: the earlier the QA actions will take place, the better it

is from the perspective of the software development project’s budget.

Considering the above facts, we proposed a strategy which would use the predic-

tion model to indicate as much as possible of the mentioned “high risk” software

modules (22.4 % in our case) responsible for most of the defects (80.36 % in our

case), therefore helping to integrate as much as possible the QA efforts into the cod-

ing stage of the software development, while defect fixing cost is still relatively low.

Such an approach should ideally decrease the total cost of bug fixing in the project

and generate savings for the total project’s budget [26].

If we denote Mtotal as the total number of testable software modules and Htotal as

the total number of discoverable defects, we can say that, in the project we analyzed,

approximately 0.8Htotal comes from approximately 0.22Mtotal.

Assessment of the Software Defect Prediction Cost Effectiveness . . . 81

The impact of the prediction effectiveness on the overall effort allocation strategy

can be reflected by using the recall measure (Rec)—the proportion of code units

predicted as defective that were actually defective [27].

We can expect that:

0 < Rec < 1 (1)

where Rec is the measured recall value corresponding to highest possible F-measure
of defect prediction performed using the DePress framework [1]. Then, expected

number of predicted modules Mi, responsible for 80 % of discoverable defects,

should be:

Mi = 0.22 × Rec × Mtotal (2)

Accordingly, we should expect that if the machine learning mechanism will be

able to point out the “high risk” 22 % of software modules with the measured recall
(Rec), the number of defects which can be avoided by allocation of the best quality

assurance efforts on the first (development) project’s phase, shall be:

H′
1 = 0.8 × Rec × Htotal (3)

Number of defects expected to be detected in the second and the third phase of the

project:

H′
2+3 = Htotal − H′

1 (4)

2.1.1 Return on Investment

To investigate if usage of the DePress will pay off, we will use Return on Investment

(ROI) [5]:

ROI =
Benefit − Investment

Investment
(5)

If the investment will not pay off, ROI is negative, otherwise positive. In our

evaluation of defect prediction cost-effectiveness we will focus on potential benefits

that method will generate:

Benefit = Ctotal − C′
total (6)

where C′
total is the simulated total quality assurance cost in the project with defect

prediction applied, and Ctotal is the actual QA cost in the project, without defect

prediction.

Investment is defined as the total cost of defect prediction introduction. Moreover,

NetReturn is calculated as Benefit reduced by Investment:

NetReturn = Ctotal − (C′
total + Investment) = Benefit − Investment (7)

82 J. Hryszko and L. Madeyski

2.1.2 Benefit Cost Ratio

To analyze potential benefits from the usage of defect prediction, we will use the

Benefit Cost Ratio (BCR) [5]:

BCR =
Benefit

Investment
(8)

Values larger than 1 for the BCR mean a monetary gain from the DePress based

defect prediction usage, while values smaller than 1 mean denote a loss.

2.2 Actual Project’s Quality Assurance Costs

The Volvo Group policy did not allow us to publish the real costs of work invested

in the project. For the purpose of research, we agreed that the man-hour cost of work

by a software developer Cd will be marked as:

Cd = x (9)

In that case, the average man-hour cost of work by a software tester Ct shall be,

calculated according to current labor market data rates [28]:

Ct = 0.85x (10)

That means, that when a tester and a developer are working together on bug fixing

during the later stages of the project (not in the coding phase), the average cost per

man-hour should be:

Cd+t =
Cd + Ct

2
= 0.925x (11)

Other costs, such as infrastructure and hardware, will remain constant for the real-

life and alternative (prediction-based) scenario, so they will be omitted.

Time spent on project work was traced by every team member using the JIRA

tool. As a result of analysis of that data, we could obtain an average of the total time

spent on fixing a single defect for each phase of the project (Table 1). The amount of

time spent on quality assurance, together with the number of hours spent and number

of defects fixed, divided by phases, are shown in Table 2.

According to the data in Table 2, the total number of defects discovered in release

4.0.0 are:

Htotal =
∑

Hphase = 190 + 383 + 264 = 837 (12)

Assessment of the Software Defect Prediction Cost Effectiveness . . . 83

Table 1 Average defect fixing costs

Phase 1. Development 2. Testing 3. Post-release

Team members involved Developer Developer tester Developer tester

Average fixing time per

one defect [hours], T
1 3 3

Assumed cost of

man-hour Chour

Cd Cd+t Cd+t

Cost per one defect

Cdefect = T × Chour

x 2.775x 2.775x

Table 2 Actual resources consumed on defect fixing

Phase 1. Development 2. Testing 3. Post-release

Number of defects discovered Hphase 190 383 264

QA cost per one defect Cdefect x 2.775x 2.775x

QA cost per phase

Cphase = Hphase × Cdefect

190x 1063x 733x

Accordingly, the total quality assurance cost is:

Ctotal =
∑

Cphase = 190x + 1063x + 733x = 1985x (13)

The ratio between defects fixed in testing and those fixed during the post-release

stages is:

H2
H3

= 383
264

≈ 3
2

(14)

2.3 Model Construction and Prediction

Since prediction results are categorical (faulty or not-faulty), we decided to use

F-measure and recall to evaluate classifiers often used in software defect predic-

tion [29–32], which are available in the basic package of KNIME: Naive Bayes,

Probabilistic Neural Network and Decision Tree.

For each classifier, four different experimental setup preparations were possible,

thanks to the module-based architecture of the DePress tool.

84 J. Hryszko and L. Madeyski

Table 3 Prediction results: F-measure values for all experimental set-ups

Classifier Without feature selection With feature selection

Class imbalance Class balance Class imbalance Class balance

Probabilistic

neural network

0.167 0.72 0.24 0.74

Decision tree 0.279 0.667 0.357 0.682

Naive Bayes 0.237 0.621 0.412 0.766

2.4 The Highest F-Measure Value and the Corresponding
Recall

Using the approach described in the previous section, defect prediction was per-

formed and its F-measure collected (Table 3) for all four experimental set-ups, clas-

sifiers and samples. The best prediction results (the highest F-measure values) were

obtained for the balanced class sample, slightly better with the feature selection step.

Hence, we are able to answer RQ1: The highest F-measure (based on the Naive

Bayes algorithm) was 0.766. The corresponding recall was:

Rec = 0.783 (15)

2.5 Prediction-Based Costs Simulation

For the purpose of cost simulation in this scenario, where defect prediction is intro-

duced to the project using the DePress framework, we assumed that:

∙ The total number of discoverable defects in release 4.0.0 (Eq. 12) is a constant

value;

∙ The defects distribution among code is preserved;

∙ Average fixing cost per one defect (Table 1) is also true for the considered scenario;

∙ Information on location of “high risk” software modules, with recall Rec, will be

available in the first phase of the project;

∙ Ratio (Eq. 14) is preserved.

Considering the recall value for best prediction achieved (characterized by the

highest F-measure value) for release 4.0.0 as a result of the prediction models devel-

opment (Eq. 15) and the total number of discovered defects in that release (Eq. 12),

based on the proposed strategy (Eq. 3) we should expect, that the number of software

issues which can be solved by allocation of the best quality assurance practices in

the first, development phase of the project is:

H′
1 = 0.8 × 0.783 × 837 = 524 (16)

Assessment of the Software Defect Prediction Cost Effectiveness . . . 85

Table 4 Simulated QA costs, with defect prediction used

Phase 1. Development 2. Testing 3. Post-release

Number of defects fixed H′

phase 524 188 125

QA cost per one defect Cdefect x 2.775x 2.775x

QA cost per

phaseC′

phase = H′

phase × Cdefect

524x 522x 347x

Regarding the number of defects which are expected to be found in later phases

of the project (Eq. 4):

H′
2+3 = 837 − 524 = 313 (17)

As we assumed that ratio in Eq. (14) is preserved, the number of defects which

are expected to be found in the project’s second and third phase (connected) are:

H′
2 = 313 × 0.6 = 188 (18)

H′
3 = 313 × 0.4 = 125 (19)

Considering the above values, we simulated quality assurance costs assuming that

the machine learning mechanism will be able to point out the “high risk” 22 % of

software modules with the measured recall (Eq. 15), and the best quality assurance

efforts will be allocated to the development phase to avoid the calculated number of

defects (Eq. 16). Results of that simulation are presented in Table 4.

Total quality assurance cost in this scenario will be:

C′
total =

∑
C′

phase = 524x + 522x + 347x = 1393x (20)

2.5.1 Cost of Investment

Costs of defect prediction introduction were calculated as the sum of such elementary

costs:

Tool acquisition and installation costs of the case investigated shall be considered

as zero costs. In Volvo’s organization, the DePress can be ordered and installed on

user’s computers without any additional costs for the project.

Training time costs—after measuring time spent on training a single person, we

can state that: a developer needs to spend a maximum of 4 h on training, 1–2 h of

general introduction plus another 1–2 h of training in DePress tool usage.

Data collection cost is mostly the man-hour cost of exporting the proper data from

data sources and code metrics generation for two selected releases. After measuring

time spent on that activity, we found that it took no more than 2 man-hours.

86 J. Hryszko and L. Madeyski

Table 5 Defect prediction investment costs

Activity Time required

[hours]

Cost [man-hours]

The DePress tool acquiring and installation costs 0 0

Training time costs 4 4x

Data collection cost 3 3x

Defect prediction preparation cost 1 x

TOTAL (Investment) 8 8x

Defect prediction preparation cost is the man-hour cost of defect prediction

preparation (workflow creation) using the DePress tool. Results of time measurement

say that creation of a proper workflow should not take more than one man-hour.

Summary of investment costs is presented in Table 5.

2.6 Results Analysis

Here, with respect to research questions RQ2 and RQ3 we summarize the results of

our simulation (research question RQ1 was answered in Sect. 2.4).

RQ2: How cost effective is defect prediction using the DePress framework, in the
default configuration, for defect prediction in an industrial software development
project?

As shown in Table 5, the expected total investment cost of the DePress tool-based

defect prediction application in software development project is:

Investment = 8x (21)

Benefit Cost Ratio (8) calculated using (6) and (21) values:

BCR = 592x
8x

= 74 (22)

Such BCR value shows that we should expect a high monetary gain from the

DePress tool usage for supporting quality assurance with defect prediction. More-

over, NetReturn (Eq. 7) from the simulated defect prediction application is:

NetReturn = 592x − 8x = 584x (23)

Answering research question RQ2, when the defect prediction application strat-

egy proposed in Sect. 2.1 is applied and recall of the prediction model will be 0.783,

such an approach can result in reduction of final QA costs by almost 30 %:

Assessment of the Software Defect Prediction Cost Effectiveness . . . 87

1 −
C′

total

Ctotal
= 1 − 1393x

1985x
= 0.298 (24)

Such result can be achieved only after fixing 62.6 % of the detectable bugs (Eq. 16)

by effective use of quality assurance practices in the first, developmental phase of the

project, on predicted “high risk” software modules.

RQ3: Will usage of the DePress framework pay off for an industrial project?
Simulation shows, that we should expect Benefit (Eq. 6) from the DePress usage

in the project:

Benefit = 1985x − 1393x = 592x (25)

Accordingly, expected Return on Investment (5):

ROI = 592x − 8x
8x

= 73 (26)

As ROI is positive, we can state that investment will pay off.

3 Threats to Validity

In this paper, defects are not distinguished according to their severity (minor, major,

etc.) and use an average, fixed time for each single defect. Omitting the severity mea-

sure in defect prediction studies is a frequent practice [33], however it can be impor-

tant when simulated QA cost calculation will be compared to real-life values. In our

simulation we assumed equal severity for each defect, which is reflected in an equal,

average cost (see Table 1). However, when we apply the proposed effort allocation

strategy into a real-life environment, we can deal with the situation when defects left

undetected until the later phases of testing and after-deployment will be character-

ized by higher severities than defects resolved while within the coding phase. Such a

situation would negatively impact overall quality assurance costs, when the DePress

tool would be used for defect prediction purposes, in comparison to simulated values.

This threat opens an interesting opportunity for further research.

4 Discussion

Cost effectiveness within the simulated scenario is strictly related to the quality of

prediction when measured with recall (Rec). Based on the simulation presented, it

is possible to calculate the NetReturn of using a proposed quality assurance effort

allocation strategy for a series of defect prediction recall values. In such a way, we can

observe how NetReturn depends on Rec in terms of the proposed QA effort allocation

strategy.

88 J. Hryszko and L. Madeyski

In industrial software development projects, quality assurance (defect fixing) con-

sumes a significant amount of time and resources. By using the defect prediction

technique, project members can obtain information on possible defect-prone ele-

ments of the software, before defects will occur, to optimally plan their quality assur-

ance process. What is proposed in this paper, is a simple effort allocation strategy

which is based on the DePress framework-driven defect prediction, defects distri-

bution and the Boehm’s Law, and which eliminates most of the quality assurance

work during late (after-development) project’s phases. Such an approach signifi-

cantly increases quality assurance costs in development phase, however overall, QA

costs will decrease in comparison to actual, real-life costs observed in the inves-

tigated project, as significantly less discoverable defects are left to be fixed in the

later phases, where, according to Boehm’s Law, bug-fixing costs are considerably

higher. At the same time, we need to mention the low investment costs, when the

open source DePress framework is used for defect prediction purposes. Low invest-

ment costs and high recall of even simple defect prediction performed by default in

DePress, can result with high NetReturn of DePress-aided quality assurance planned

on a basis of the proposed effort allocation strategy. More sophisticated prediction

models, especially ones using software process metrics [34, 35], may help to achieve

even more impressive results. It is also worth mentioning that cross-project software

defect prediction [36, 37] is sometimes used to reduce costs.

References

1. Madeyski, L., Majchrzak, M.: Software measurement and defect prediction with depress exten-

sible framework. Found. Comput. Decis. Sci. 39(4), 249–270 (2014). http://dx.doi.org/10.

2478/fcds-2014-0014, doi:10.2478/fcds-2014-0014

2. KNIME.COM AG: KNIME Framework Documentation (2016). https://tech.knime.org/

documentation/, Accessed 06 May 2016

3. Madeyski, L., Majchrzak, M.: ImpressiveCode DePress (Defect Prediction for software sys-

tems) Extensible Framework (2016). https://github.com/ImpressiveCode/ic-depress

4. Rijsbergen, C.J.V.: Information Retrieval. Butterworth-Heinemann Newton (1979)

5. Müller, M.M., Padberg, F.: About the return on investment of test-driven development. In:

International Workshop on Economics-Driven Software Engineering Research EDSER-5, pp.

26–31 (2003)

6. Hryszko, J., Madeyski, L.: Bottlenecks in Software defect prediction implementation in indus-

trial projects. Found. Comput. Decis. Sci. 40(1), 17–33 (2015). http://dx.doi.org/10.1515/fcds-

2015-0002, doi:10.1515/fcds-2015-0002

7. Khoshgoftaar, T.M., Allen, E.B., Hudepohl, J.P., Aud, S.J.: Application of neural networks to

software quality modelling of a very large telecommunications system. IEEE Trans. Neural

Netw. 8(4), 902–909 (1997)

8. Khoshgoftaar, T.M., Seliya, N.: Comparative assessment of software quality classification

techniques: an empirical case study. Empir. Softw. Eng. 9(3), 229–257 (2004)

9. Khoshgoftaar, T.M., Seliya, N.: Assessment of a new three-group software quality classifica-

tion technique: an empirical case study. Empir. Softw. Eng. 10(2), 183–218 (2005)

10. Ostrand, T.J., Weyuker, E.J.: The distribution of faults in a large industrial software system.

SIGSOFT Softw. Eng. Notes 27, 55–64 (2002)

http://dx.doi.org/10.2478/fcds-2014-0014
http://dx.doi.org/10.2478/fcds-2014-0014
http://dx.doi.org/10.2478/fcds-2014-0014
https://tech.knime.org/documentation/
https://tech.knime.org/documentation/
https://github.com/ImpressiveCode/ic-depress
http://dx.doi.org/10.1515/fcds-2015-0002
http://dx.doi.org/10.1515/fcds-2015-0002
http://dx.doi.org/10.1515/fcds-2015-0002

Assessment of the Software Defect Prediction Cost Effectiveness . . . 89

11. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Programmer-based fault prediction. In: Proceedings

of the Sixth International Conference on Predictive Models in Software Engineering, pp. 1–10

(2010)

12. Tosun, A., Bener, A., Turhan, B., Menzies, T.: Practical considerations in deploying statistical

methods for defect prediction: a case study within the Turkish telecommunications industry.

Inf. Softw. Technol. 52(11), 1242–1257 (2010)

13. Turhan, B., Kocak, G., Bener, A.: Data mining source code for locating software bugs: a case

study in telecommunication industry. Expert Syst. Appl. 36(6), 9986–9990 (2009)

14. Turhan, B., Menzies, T., Bener, A., Stefano, J.D.: On the relative value of cross-company and

within-company data for defect prediction. Empir. Softw. Eng. 14(5), 540–578 (2009)

15. Wong, W.E., Horgan, J., Syring, M., Zage, W., Zage, D.: Applying design metrics to predict

fault-proneness: a case study on a large-scale software system. Softw. Pract. Exp. 30(14), 1587–

1608 (2000)

16. Succi, G., Pedrycz, W., Stefanovic, M., Miller, J.: Practical assessment of the models for iden-

tification of defect-prone classes in object-oriented commercial systems using design metrics.

J. Syst. Softw. 65(1), 1–12 (2003)

17. Kläs, M., Nakao, H., Elberzhager, F., Münch, J.: Predicting defect content and quality assurance

effectiveness by combining expert judgment and defect data-a case study. In: Proceedings of

the 19th International Symposium on Software Reliability Engineering, pp. 17–26 (2008)

18. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults in large

software systems. IEEE Trans. Softw. Eng. 31(4), 340–355 (2005)

19. Li, P.L., Herbsleb, J., Shaw, M., Robinson, B.: Experiences and results from initiating field

defect prediction and product test prioritization efforts at ABB Inc. In: Proceedings of the 28th

International Conference on Software Engineering, pp. 413–422 (2006)

20. Tosun, A., Turhan, B., Bener, A.: Practical considerations in deploying AI for defect predic-

tion: a case study within the Turkish telecommunication industry. In: Proceedings of the Fifth

International Conference on Predictor Models in Software Engineering, p. 11 (2009)

21. Monden, A., Shinoda, S., Shirai, K., Yoshida, J., Barker, M., Matsumoto, K.: Assessing the

cost effectiveness of fault prediction in acceptance testing. IEEE Trans. Softw. Eng. 39(10),

1345–1357 (2013)

22. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering. Addison-Wesley

(2003)

23. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw-Hill (2010)

24. Rizwan, M., Iqbal, M.: Application of 80/20 rule in software engineering waterfall model. In:

Proceedings of the International Conference on Information and Communication Technologies

‘09 (2009)

25. Boehm, B.W.: Software engineering. IEEE Trans. Comput. 25(12), 1226–1241 (1976)

26. Slaughter, S.A., Harter, D.E., Krishnan, M.S.: Evaluating the cost of software quality. Com-

mun. ACM 41(8), 67–73 (1998)

27. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann (2005)

28. Source of Information on Salaries in Poland (2015), http://wynagrodzenia.pl/, Accessed 28

Feb 2015

29. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault

prediction performance in software engineering. IEEE Trans. Softw. Eng. 38(6), 1276–1304

(2012)

30. Khoshgoftaar, T.M., Pandya, A.S., Lanning, D.L.: Application of neural networks for predict-

ing faults. Ann. Softw. Eng. 1(1), 141–154 (1995)

31. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change metrics

and static code attributes for defect prediction. In: ACM/IEEE 30th International Conference

on Software Engineering, 2008. ICSE ’08, pp. 181–190 (2008)

32. Selby, R.W., Porter, A.: Learning from examples: generation and evaluation of decision trees

for software resource analysis. IEEE Trans. Softw. Eng. 14(12), 1743–1756 (1988)

http://wynagrodzenia.pl/

90 J. Hryszko and L. Madeyski

33. Menzies, T., Jalali, O., Hihn, J., Baker, D., Lum, K.: Stable rankings for different effort models.

Autom. Softw. Eng. 17(4), 409–437 (2010)

34. Jureczko, M., Madeyski, L.: A review of process metrics in defect prediction studies. Metody

Informatyki Stosowanej 30(5), 133–145 (2011). http://madeyski.e-informatyka.pl/download/

Madeyski11.pdf

35. Madeyski, L., Jureczko, M.: Which process metrics can significantly improve defect prediction

models? An empirical study. Softw. Qual. J. 23(3), 393–422 (2015). http://dx.doi.org/10.1007/

s11219-014-9241-7, doi:10.1007/s11219-014-9241-7

36. Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to defect

prediction. In: Proceedings of the 6th International Conference on Predictive Models in Soft-

ware Engineering. pp. 9:1–9:10. PROMISE ’10, ACM, New York, USA (2010). http://dx.doi.

org/10.1145/1868328.1868342, doi:10.1145/1868328.1868342

37. Jureczko, M., Madeyski, L.: Cross–project defect prediction with respect to code ownership

model: an empirical study. e-Informatica Softw. Eng. J. 9(1), 21–35 (2015). http://dx.doi.org/

10.5277/e-Inf150102, doi:10.5277/e-Inf150102

http://madeyski.e-informatyka.pl/download/Madeyski11.pdf
http://madeyski.e-informatyka.pl/download/Madeyski11.pdf
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.1145/1868328.1868342
http://dx.doi.org/10.5277/e-Inf150102
http://dx.doi.org/10.5277/e-Inf150102
http://dx.doi.org/10.5277/e-Inf150102

Dynamic Stylometry for Defect Prediction

Adam Roman and Rafał Babiarz

Abstract All metrics used by QAs to assess code quality describe the characteristics

of a ready-made code. In this article we propose a novel, different approach which

tries to catch the dynamics of the coding process. For this purpose we utilize some

basic ideas from the science of stylometry. We show how to quantify the process

dynamics using several simple metrics. We also present the results of an experiment

performed on a group of CS students to validate the prediction power of the proposed

model.

1 Introduction

Accurate prediction of software quality, number of defects and their location in the

source code has been a holy grail for software quality engineers since the very begin-

ning of QA discipline. The ability to assess these values gives us many great oppor-

tunities for improving both software development and software quality processes.

Among others, it allows us:

∙ to distinguish between good and error-prone modules,

∙ to prioritize the modules for testing and other QA activities,

∙ to estimate the effort for testing,

∙ to assess project progress and plan defect detection activities for the project man-

ager [5],

A. Roman (✉)

Institute of Computer Science, Jagiellonian University, Kraków, Poland

e-mail: roman@ii.uj.edu.pl

A. Roman

Rivet Group, Warsaw, Poland

R. Babiarz

UBS, Kraków, Poland

© Springer International Publishing Switzerland 2017

L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,

DOI 10.1007/978-3-319-43606-7_7

91

92 A. Roman and R. Babiarz

∙ to estimate the final product quality level, together with the number of defects

remaining in the code [5],

∙ to improve capability and assess process performance for process management [5].

The ability to control and describe the actual and predicted final software quality

is a crucial tool for defining the cost and economics of software quality and their

relationship to business value [10]. In this article we understand the software quality

in the simplest possible way: as the defect density, that is, the number of defects per

LOC.

There exist many defect models for predicting software quality. The vast majority

are parametric models of the form y = f (x1,… , xn). Here y stands for the predicted

defect density and xi values correspond usually to metrics describing some static

properties of the code (cyclomatic complexity, Lorenz & CK metrics for OO pro-

grams etc.) or to design metrics that predict complexity of the yet non-existent code

(function points, object points and so on). We measure all xi values, put them into the

formula and compute the value of y, which is the model prediction of defect density

for a given input. There is also a statistical approach that utilizes the distribution of

defect detection in time. The most classical among such models are Rayleigh [17,

18] (used for the whole life cycle), exponential (used only for the late, testing phases)

or S-shaped [19]. The problem with parametric models is that their accuracy heavily

depends on the environment, programming language used, project type, team expe-

rience and other factors not included explicitly in the model formula. A model can be

quite accurate for some type of projects and—at the same time—it can return com-

pletely incorrect values for projects of different type. If statistical model is to be used,

we have to feed it with some initial data, so it cannot be used in the initial project

phases. More information on parametric and statistical models can be found in [11].

A survey on other approaches can be found in [1]. Table 1 gathers some examples of

well-known metrics used in defect models, together with their pros and cons.

Another approach for predicting software quality utilizes mutation analysis. Muta-

tion involves program modification by introducing small changes to the code. A

change is injected into the code by a so-called mutation operator (for example, arith-

metic mutation operator may replace expression x=x+y with x=x-y, x=x*y etc.).

Each mutant simulates a programmer’s mistake. If, for a given SUT P, its mutant

M, and test t the output of P run on t differs from the output of M run on t, we say

that the mutant was killed by t, because we detected an error [4]. Having a set T of

tests and SUT P we generate n mutants of P and run all tests on all mutants. Assume

that our test suite T detected k defects in P and killed m out of n mutants. We may

estimate now that T is able to find m∕n ⋅ 100% of all defects. If it detects k real

defects, we estimate that their total number was k ⋅ n∕m, so after removing these k
defects there should remain k ⋅ (n − m)∕m defects in the code. This approach works

fine if we are able to provide a good set of mutation operators (meaning that muta-

tions reflect the real mistakes done by developers) and we have a good test suite in

advance. Unfortunately, although very effective, mutation analysis is very time- and

resource consuming. Also, some mutants may be equivalent to the original program,

Dynamic Stylometry for Defect Prediction 93

Table 1 Examples of metrics used in different defect models

Metric Remarks

LOC, KLOC [3] Measures volume of the source code in terms of number of lines.

Before using this metric one needs to define precisely what is

understood by the “line of code” (executable lines? physical

instructions? lines in the program text? comments?

etc., see [9]). Once the definition is established, collecting this

metric is easy, cheap and simple

Cyclomatic complexity [15] Also known as McCabe complexity. Measures the complexity of

the code structure in terms of the number of independent paths in

a control flow graph for a given program. Another way to

measure it is by counting the number of decision points in the

code plus one. Relies only on a code structure and does not take

into account other aspects of the code, like data flow, syntax

structures etc.

Halstead’s [7] A set of metrics that take under account the number of lexemes

(tokens) used in the code. Lexem can be operator or operand.

There is a controversy about so-called Halstead’s Software

Science that uses these metrics, because the predicted values in

Halstead models (like program size) are directly related to the

metrics values, so the correlation between these two is

apparent—it holds by definition

Function points [2] Similar to LOC/KLOC, but instead of the physical size of the

program they measure its ‘amount of functionality’. FP metric

can be computed having only software architecture plan, without

a single line of code written, so it is useful in prediction. From

the other hand, the methodology for computing FP is quite

complex and the whole process is time consuming

Code churn [12, 16] They measure the degree to which the program—understood as a

set of modules or files—has changed during the development. In

order to compute them one needs to have at least several versions

of each file, so they cannot be used at the beginning of the

development process

CK, Lorenz [4, 13] Classical CK (Chidamber-Kemerer) and Lorenz sets of metrics

are used to describe the structure and dependencies between

artifacts created within the object oriented paradigm. The

examples of these metrics are: weighted number of methods in

class, depth of inheritance tree, coupling between objects, lack of

cohesion, LOC per method etc.

which may influence the analysis results. It is known that, in general, the mutant

equivalence problem is undecidable. See [8] for the survey on mutation testing.

Finally, there is an approach that utilizes not product, but process metrics. A few

examples of such metrics are [14]:

∙ number of revisions,

∙ number of distinct committers,

94 A. Roman and R. Babiarz

∙ number of modified lines,

∙ number of defects in previous version.

Some examples of models built on this approach can be found in [12, 16]. They

are able to estimate the defect density by analyzing the code churn which measures

the changes made to a component over a period of time. This approach belongs to the

family of parametric models, but the model variables describe metrics like churned

LOC, deleted LOC, files churned etc. instead of the values related to structural prop-

erties of the source code itself. The model can be used only if we are able to collect

large enough repository containing many versions of each analyzed file. Therefore,

it cannot be used in the initial phases of the project, neither in the small projects with

only a few planned releases.

All models described above utilize static properties of the code. Even the churn

model, which takes into account the differences between consecutive versions of

modules, operates on static fragments of already written pieces of code. But no pro-

gram is created in a flash. It is a process extended in time and this process consists

entirely of particular developer activities. Therefore, we asked ourselves the follow-

ing question:

Does the way the program is created affect the final product quality?

Look at how programmer works: she does not write code in a uniform, steady

way. She may start writhing the code from the middle of the module, then jump to

the beginning, copy and paste some portion of the code, delete some lines, replace

one instruction with another, slow down, speed up, go away from the computer for

some time, and so on. It is a very dynamic process which can be described by some

“low-level” metrics (see Fig. 1). It seems reasonable to assume that the coding style

Fig. 1 Metrics taxonomy regarding two dimensions: level of dynamics and level of detail. The pro-

posed new metrics are dynamic, but unlike code churn metrics they focus on a low-level developer

activities, not static properties of the whole, already written modules

Dynamic Stylometry for Defect Prediction 95

of a professional, experienced developer who rarely makes mistakes differs from the

coding style of a first-year graduate CS student writing buggy programs. So, does

all these programmer activities influence on the probability of making a mistake?

To check this hypothesis we designed a set of so-called dynamic stylometry metrics

(see Sect. 2) that quantitatively measure the dynamics of code creation. Then we

conducted an experiment on a group of CS students (see Sect. 3). The experiment

was necessary, as—to the best of our knowledge—there are no publicly available

data describing the dynamics of a coding process. The collected data was used to

build a mathematical model (described in Sect. 4) that predicts defect density. In

Sect. 5 we present the conclusions and future work.

2 Dynamic Stylometry Metrics

We describe the coding process with nine simple metrics based on the six types of

actions (see Table 2).

The action in our model represents a single unit of programmer’s work and intro-

duces one change, but can result in changing more than one character in the source

code. The actions allow us to completely recreate the coding process. Each action

corresponds to the metric describing the total time spent on a given activity. We

denote these six metrics in the same way as the actions (T , BT , R, BR, RP, FL).

Let A1,A2,… be the consecutive programmer’s actions. Because the real time of

inserting, replacing or deleting text is close to 0, we define the time of An as the time

Table 2 The set of six dynamic stylometry actions

Action Action name Description

T Type Corresponds to entering a single character in the editor. May

result by pressing a key on a keyboard or by pasting one letter

BT Bulk type Corresponds to a situation, when a single action results in

appearance of more than one character in the editor. Usually

results from copy and paste operation or from using statement

completion popular in most programming IDEs

R Remove Complementary to typing. Corresponds to removing a single

character by pressing Delete or Backspace key when no large

portion of text is highlighted

BR Bulk remove Corresponds to removing more than one character from the

editor. Caused by highlighting a large portion of text and

pressing Delete or Backspace key

RP Replace Corresponds to simultaneous (bulk) remove and (bulk) type.

Caused by highlighting a large portion of text and invoking

‘paste’ operation

FL Focus lost Corresponds to a situation, when user switches from IDE to

another application

96 A. Roman and R. Babiarz

between An−1 and An. Time of A1 is equal to time between IDE startup and timestamp

of action execution. We ignore time of every action directly preceding focus lost FL,

because the real time of FL is itself non-zero, so we are not able to split it between

FL and the action that follows it.

Apart from metrics T ,BT ,R,BR,RP,FL we define three other ones:

∙ BTAL—average length of bulk-typed text,

∙ BRAL—average length of bulk-removed text,

∙ CU—code used (computed as the ratio of the final code size and the total size of

the code that was written).

Low values of CU may indicate that the programmer was not well prepared to

the programming task or that she didn’t understand properly the architectural design

of the created module. Figure 2 presents the exemplary session of code creation.

Underlined solid line denotes action BT (bulk type) and dashed line denotes action

T (type). The process shown in Fig. 2 can be described by the following set of actions:

T , (BT),FL,T12
,R3

,T10
,BT ,RP,T5

,BR,

whereXn
denotes n repetitions of action X. According to the rules given above, we do

not count time for actions in parentheses. Assuming that the time between each two

actions is 1000msfd (except for FL, for which it is 2500ms) we have the following

metrics values:

T = 28000ms, BT = 1000ms, R = 3000ms, BR = 1000ms, RP = 1000ms,

FL = 2500ms, BTAL = (2 + 7)∕2 = 4.5, BRAL = 2∕1 = 2, CU = 32∕44 ≈ 0.73.

Fig. 2 The dynamics of code creation and its relation to dynamic stylometry actions

Dynamic Stylometry for Defect Prediction 97

3 The Experiment

In order to verify our hypothesis that the way the program is created influences its

final quality, we had to build the model and validate it. Unfortunately—to the best of

our knowledge—there is no publicly available data that could allow us to compute

our metrics. Therefore, we had to build such dataset from scratch. It required to

perform an experiment, which we did on a group of Computer Science students.

Most of them were 2nd year undergraduate. Each of them had to implement several

Java methods for a program called ‘Electronic Timetable’. The application was a

timetable manager for a municipal transportation company. It also had to provide a

content for electronic screens displaying the nearest bus arrival times according to a

predefined set of rules.

Students were implementing the system in Eclipse environment with a special

plug-in that was responsible for gathering the data needed to compute all our nine

metrics. We received 86 solutions out of which 20 failed on compilation or did not

fulfill any of the task requirements. Further 15 solutions were removed due to the

very poor code quality resulting in failing on almost all tests. Hence, the final dataset

for the analysis consisted of 51 valid solutions. Apart from the solutions themselves,

all participants had to perform a self assessment about their programming abilities.

They had to grade it on a 5-level Likert scale (1 = almost no experience in program-

ming, 5 = an expert in programming).

In order to measure the quality, all received programs were tested using JUnit

framework with a set of 93 unit tests. Tests were carefully designed in order to cover

all functionalities and possible boundary values, decisions and conditions that might

occur in the submitted solutions. Figure 3 shows a noticeable relation between the

self assessed programming skills and the fraction of failed tests. This means that stu-

dents were able to accurately predict their real abilities as programmers. The frac-

tions of students with grade resp. 1, 2, 3, 4, 5 are resp. 6 %, 18 %, 47 %, 27 % and 2 %.

Fig. 3 Students self assessment versus percentage of failed tests in their solutions

98 A. Roman and R. Babiarz

It guarantees that our model described in the next section was trained on programs

written by programmers with a wide spectrum of experience.

4 Model and Experiment Results

For all statistical computations we used the R Statistical Package tool. Predictive

models should be as simple as possible—that is why we decided to build a simple,

linear model of the form y =
∑

i 𝛼ixi. The dependent variable y represents the defect

density (number of defects per LOC). As we were not capable to count defects in

all submitted solutions, we represented defect density as a ratio of failed tests and

LOC. We took all 9 metrics and all 9 ⋅ 8 = 72 possible ratios between them as the

candidates for independent variables xi. Next, we used R procedure glmulti to

choose the best possible subset of them, that is, a subset that gave us the best model

in terms of the Akaike Information Criterion. This criterion takes into account not

only the model error, but also the number of model parameters (the smaller, the

better). Each ratio represents one main effect, that is, a factor that impacts on the

final defect density. We allowed the model to include not only main effects, but also

pairwise interactions between them. The final model for our data has the following

form:

DD = −0.76 ⋅ CU + 0.035 ⋅ BTAL + .0182 ⋅ F∕R + 0.008 ⋅ CU ⋅ BRAL
−0.0003 ⋅ BTAL ⋅ BRAL + 5.09 ⋅ CU ⋅ BR∕T − 0.18 ⋅ BTAL ⋅ BR∕T
+0.004 ⋅ CU ⋅ BT∕F + .177 ⋅ CU ⋅ RP∕BR − 0.004 ⋅ BTAL ⋅ RP∕BR
−0.054 ⋅ (F∕R) ⋅ (RP∕BR),

where DD is the predicted defect density and CU, BAL, BRAL, BR, BT , T , RP, F and

R are nine dynamic stylometry metrics. Notice the high negative impact of CU on

the dependent value. This result seems to confirm our hypothesis from Sect. 2 that

low values of CU may reflect unpreparedness of the developer and hence, the low

quality of her work.

The correlations between the independent variables are mostly between −0.3
and 0.3. This means that the predictors seem to be independent and that there is

no collinearity between variables. All 11 estimations of model variables were sta-

tistically significant. Residual standard error was 0.085 on 40 degrees of freedom.

Adjusted multiple R-squared value was 0.91, which means that our model explains

ca. 90 % of the total variance in the dataset. Figure 4 shows the relation between the

real defect density and the predicted one. Correlation between these two values is

high (Pearson r coefficient equals 0.68).

Dynamic Stylometry for Defect Prediction 99

5 Conclusions

In this paper we presented a new set of software metrics which may be used as pre-

dictors in software defect prediction models. It is a well-known fact that such models

receive much critique. The models are weak “because of their inability to cope with

the, as yet, unknown relationship between defects and failures” [6]. However, it was

not our intention to build a complete and mature defect prediction model. Rather we

wanted to present a new type of metric and show that it may have a potential to be

a good defect predictor. The simple experiment performed on a group of students

seems to support this claim. The regression coefficient of the linear regression for

data points in Fig. 4 is statistically significant. This means that the higher the defect

prediction is, the higher is the real one. In comparison to classical metrics, stylom-

etry metrics reflect a more holistic view on the software development process and

are independent of many (often problematic) technical issues. They concentrate on

the design process performed by developer, which makes them more universal than

“static” metrics.

5.1 Threats to Validity

Presented model seems to work quite well, although we are aware of several caveats.

First, the defect density is not computed directly, but using the number of failed tests

metric. We decided to choose this approach, because in many submitted solutions

there were large parts of functionality missing. However, this might cause the over-

estimation of the real defect values. For example, one “elementary” bug might result

in a failure of (almost) all tests for a given class.

Fig. 4 Relation between the

real defect density and its

prediction from our model.

Each point represents one

submitted solution. The

values concentrate around

y = x line, which shows good

model accuracy

100 A. Roman and R. Babiarz

Second, the average size of all submitted programs was very small. Students had

to implement 10 functions in 2 h. This certainly cannot be compared to the real pro-

grams developed in the IT industry. Also, students were not professional developers.

Some of the submitted programs failed to compile. Hence, the sample size was rel-

atively small. We were able to analyze only 51 out of 86 submitted solutions.

Third, the response variable in our model is not normal (p-value for the Shapiro-

Wilk test was around 0.002): the distribution is slightly right-skewed. Of course we

could use some statistical transformations to normalize the variable (e.g. Box-Cox

transformation) or use a general linear model with Poisson-type response. However,

our intent was just to check in general whether the stylometry metrics are able to pre-

dict defect density. Therefore, we have used a simple linear model slightly abusing its

assumptions. Another approach would be to use some more sophisticated, nonlinear

model, like neural network, nonlinear regression or regression trees.

Finally, there is an important psychological argument that may make the whole

measurement process difficult. In order to measure the stylometry metrics, the devel-

opers’ IDE needs to be instrumented: we need to use a tool, similar to the keylogger

applications, that collects data from this IDE. This may be an issue, especially for

the companies with strict security policies. Second, no one likes to be controlled: if

a developer is aware that all her actions are recorded, this may impact on her produc-

tivity. It is therefore crucial for developer to understand what type of information is

recorded, why it is recorded and that no private information will be logged.

5.2 Discussion

Despite these shortcomings, there are also some good news. First, the model does not

necessarily need to predict the exact defect density. Even if burdened with prediction

error, it can still allow us to prioritize the analyzed modules regarding the defect

density. Having such prioritization we can group modules into several classes: the

heavily error-prone ones that require intense QA activities (like exploratory testing,

inspections, code reviews etc.); “fair enough quality” modules that don’t necessarily

need to go through a careful QA process; “clean” modules that probably have no (or

low number of) defects; and so on. Using the Pareto rule we can select and analyze

small sample of modules that contain majority of all defects, therefore optimizing

somehow the trade-off between our effort and possible profit in terms of quality level.

Second, notice that we did not use any metric regarded as a good defect predictor

(like FP, CK metrics, cyclomatic complexity and so on) in our model, and yet we

were still able to obtain a good prediction rate. This means that the dynamic sty-

lometry metrics may also serve as good defect predictors. It may be worthwhile to

build a model that contains both classical, well-known metrics and dynamic stylom-

etry metrics. Such combined models may be much more accurate. Our metrics can

also be used in classification models, where each class/module/unit is classified as

error-prone or as a clean one.

Dynamic Stylometry for Defect Prediction 101

Third, the way of creating programs should be independent of the established

project methodology, product life-cycle, programming language used and other envi-

ronmental factors. At least, the environment impact on the dynamic stylometry

model should be much smaller than in case of models using classical, well-known

metrics like LOC, cyclomatic complexity, function points and so on. This makes the

stylometry metrics more universal. We think that a stylometry model trained on the

data from one particular project done in a particular company should predict well the

defect density in other projects done in other companies, as stylometry factors should

be environment-independent. Unfortunately, verifying this hypothesis requires a lot

of experimental work, which we were unable to perform.

5.3 Future Work

The successive work on dynamic stylometry metrics should focus on a wide research

performed in a real IT development environment. The experiment like the one

described in this paper should be repeated on a large group of professional program-

mers. The model should also contain metrics recognized in a literature as good defect

predictors. It should be checked if adding a stylometric metric to the known models

improve the model accuracy. We believe that such approach will allow us to predict

the defect density yet more accurately.

Acknowledgments Both collected data and the detailed description of the exercise used in our

experiment are available for other researchers from www.ii.uj.edu.pl/~roman/DynamicStylometry.

References

1. Abaei, G., Selamat, A.: A survey on software fault detection based on different prediction

appoaches. Vietnam J. Comput. Sci. 1, 79–95 (2014)

2. Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the Joint

SHARE, GUIDE, and IBM Application Development Symposium, California, pp. 83–92

(1979)

3. Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)

4. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE Trans. Softw.

Eng. 20, 476–493 (1994)

5. Clark, B., Zubrow, D.: How good is the Software: a review of defect prediction techniques. In:

Software Engineering Symposium, Carreige Mellon University (2001)

6. Fenton, N.E., Neil, M.: A critique of software defect prediction models. IEEE Trans. Softw.

Eng. 25(5), 675–689 (1999)

7. Halstead, M.H.: Elements of Software Science. Elsevier (1977)

8. Jia, Y.: An analysis and survey of the development of mutation testing. IEEE Trans. Softw.

Eng. 37(5), 649–678 (2011)

9. Jones, C.: Programming Productivity. McGraw-Hill, New York (1986)

10. Jones, C., Bonsignour, O.: The Economics of Software Quality. Addison-Wesley, Upper Saddle

River, NJ (2012)

www.ii.uj.edu.pl/~roman/DynamicStylometry

102 A. Roman and R. Babiarz

11. Kan, S.: Metrics and Models in Software Quality Engineering, 2nd edn. Pearson Education,

Boston (2003)

12. Kpodjeto, S., et al.: Design evolution metrics for defect prediction in object oriented systems.

Empir. Softw. Eng. 16(1), 141–175 (2011)

13. Lorenz, M.: Object-Oriented Software Development: A Practical Guide. Prentice Hall (1993)

14. Madeyski, L., Jureczko, M.: Which process metrics can significantly improve defect prediction

models? An empircal study. Softw. Qual. J. 23, 393–422 (2015)

15. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2(4), 308–320 (1976)

16. Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., Murphy, B.: Change bursts as defect

predictors. In: Software Reliability Engineering, pp. 309–318 (2010)

17. Putnam, L.H.: A general empirical solution to the macro software sizing and estimating prob-

lem. IEEE Trans. Softw. Eng. SE-4, 345–361 (1978)

18. Putnam, L.H., Myers, W.: Measures for Excellence: Reliable Software on Time Within Budget.

Yourdon Press, Englewood Cliffs (1992)

19. Yamada, S., Ohba, M., Osaki, S.: S-shaped software reliability growth models and their appli-

cations. IEEE Trans. Reliab. 33(4), 289–292 (1984)

Mutant Generation for WSDL

Ilona Bluemke and Wojciech Grudziński

Abstract Web Service technology is becoming increasingly popular because it
simplifies the use and integration of existing applications and creation of new
services. Because available services should be of high quality effective testing of
Web Services is essential. The idea of mutation testing of Web Services is discussed
in this paper and some mutation operators are described. A tool named Web Ser-
vices Mutant Generator (WSMG), supporting the mutation testing of Web Services,
is also presented. This tool accepts files with the description of Web Services
written in WSDL (Web Services Description Language) and generates altered
(mutated) versions of services using four mutation operators: OTCE, OTCA, STCE
and STCA. The architecture and the implementation of the WSMG tool is shortly
described and an example of its application is included.

Keywords Mutation testing ⋅ Mutation operators ⋅ Web services ⋅ WSDL

1 Introduction

The W3C [1] (World Wide Web Consortium) defines Web Service as “a software
system designed to support interoperable machine-to-machine interaction over a
network”. Web Services are independent Internet applications based on SOAP [2]
and XML [3] technology. Several protocols and standards, such as the Web Service
Description Language (WSDL) [4], the Universal Description Discovery and
Integration (UDDI) [5] protocol or the Web Service Inspection Language (WSIL)
[6], and the Simple Object Access Protocol (SOAP) [1] are used to describe what
the Web Service delivers and how it interacts with other services. As WSDL,

I. Bluemke (✉) ⋅ W. Grudziński
Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland
e-mail: I.Bluemke@ii.pw.edu.pl

W. Grudziński
e-mail: W.Grudzinski@stud.elka.pw.edu.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_8

103

UDDI, WSIL, and SOAP are all based on XML, the Web Service does not depend
on a hardware platform, a language and a service vendor. Therefore, developers of a
Web Service can’t assume which clients will use the Web Service, also the
developers at the client side, are not aware of the platform and the language used at
the server side. A Web Service and client software using it often is implemented in
different programming languages and on different platforms.

WSDL (Web Service Description Language [4]), a standard established by the
W3C [1], is usually used to describe Web Services. Interfaces with operations and
data types used or returned by Web Services are specified in WSDL. Some system
use SOAP [2] messages to interact with Web Services, in a manner defined by the
WSDL description.

Because of general availability of Web Services, they normally need to be of
high quality, so they need to be thoroughly tested. The cost of testing is usually a
significant part of the total cost of the software development and sometimes this
cost constitutes more than 50 % of the overall amount [7]. The testing of services is
especially difficult due to service architecture, organization and collaboration of
services. Mutation testing is one of approaches to the testing of software, that was
proposed more than 40 years ago. In mutation testing the faults are deliberately
introduced into the program and a set of faulty programs called mutants are built.
Each mutant program is produced by a particular change in the original program.
This change is defined by a mutant operator e.g. substitution of the multiplication
by the division operator. Mutants are executed against the set of input data to check,
if inserted faults can be detected, and this process enables to assess the quality of a
given set of tests. Jia and Harman prepared a very good survey of mutation tech-
niques [8].

The goal of our research was to examine mutation testing of Web Service
described by its WSDL document.

An application, named WSMG—Web Services Mutant Generator, supporting
the mutation testing of Web Services has been designed and is being implemented
at the Institute of Computer Science, Warsaw University of Technology. Currently,
it is responsible only for the first part of the mutation testing process: generates
mutated versions of WSDL description. The tool is still under development and
components, which are used in further steps of the testing process, are being
implemented.

The organization of this paper is as follows. Key features of Web Services
testing are identified in Sect. 2. WSDL is also briefly described there. Section 3
discusses mutation testing of Web Services as well as some mutation operators and
testing approaches. Section 4 focuses on the architecture of the developed mutant
generator (WSMG) and presents some examples of using the developed tool.
Finally, Sect. 5 contains some conclusions and future research directions.

104 I. Bluemke and W. Grudziński

2 Testing Web Services

Precise separation of roles between the users and the provider, the owner, and the
developers of a service, as well as the dynamic nature of Web Service cause new
challenges to the testing of service system. Canfora and Di Penta [9] discussed
special characteristics of services, that increase the complexity of the testing
process.

2.1 Levels of Testing

The testing of Web Services, similarly to testing any other software, can be per-
formed at different levels:

• testing of atomic services (unit testing),
• testing the composition of services,
• testing the integration and the interoperability of services,
• regression testing,
• testing of non-functional properties.

Testing of services has been receiving a lot of attention in recent years. Papers
published in this area are dealing with different levels of testing, unit testing of
services and orchestrations, integration testing, testing of non-functional properties
and regression testing. Some research is also dedicated to the improvement of
testability of services and service-oriented systems. Canfora and Di Penta [9] sur-
vey research in testing of services and identified several problems, which remain
open and need more work. These problems are concerned with validating decen-
tralized systems, improving testability, integrating testing and run-time verification,
etc. Others surveys on testing of Web Services are given in [10–13]. Ladan [10]
classifies approaches to testing Web Services as:

1. WSDL-based test case generation,
2. mutation-based test case generation (e.g. [14, 15]),
3. test modeling (e.g. [16]),
4. XML-based approaches (e.g. [17]).

A framework, that can be used to test the robustness of a Web Service, was
proposed by Hanna and Munro [18]. The analysis of the Web Service Description
Language (WSDL) document of service gives information helping for the identi-
fication of faults. These faults could affect the robustness, so test cases detecting
them can be designed. The WSDL document is also used by Bai and Dong [19] to
generate tests in a testing framework that contains test case generation, test con-
troller, test agents and test evaluator. An example of a tool (named WSDLTest) for
automatic testing of Web Services based on WSDL documents is described in [20].
This tool can support testing Web Services described in WSDL 1.1 or WSDL 2.0

Mutant Generation for WSDL 105

document. In [21] another tool, but of the same name, is described. In this tool,
WSDL schemas are used to generate service requests. The tester writes
pre-condition assertions to which the generated requests are adjusted. The tool
dispatches the requests and captures the responses and after testing verifies the
response against the post-condition assertions prepared by the tester.

It often happens that a single service is not able to fully satisfy the user but a
composition of some existing services may be satisfying. The process of integrating
services is called Web Service Composition (WSC). The discovery, selection and
composition of Web Services attracted many researchers but the testing of Web
Service composition is still immature [22]. An interesting overview and evaluation
of current approaches to WSC testing was published by Rusli et al. [13]. Surveys on
Web Service composition include Bucchiarone et al. [23] and Zakaria et al. [24].

2.2 Types of Testing

Different categorization of Web Services, proposed by Chen et al. [25] identifies the
following types of testing:

• WSDL document testing,
• SOAP message testing,
• testing published features and bindings of an SOA system,
• testing synchronous Remote Procedure Call (RPC) and the asynchronous

notification of Web Services,
• testing the intermediary capability of the SOAP messages, monitoring the SLA

(service-level agreement) and the Quality of Service (QoS) levels,
• performance testing of Web Services.

Testing facilities in Chaos Monkey [26] can also be used for checking already
operational Web Services. Chaos Monkey service identifies groups of operating
programs and randomly terminates one program from a group. The service operates
during business hours so the staff can immediately locate and correct the error. This
approach can’t be used at the early stages of the service development as above listed
approaches.

Several tools, supporting the testing of Web Services, are available on the market
and the most noticeable among them are: HP QuickTest Professional [27], Parasoft
SOAtest [28], SOAPSonar [29], SoapUI [30].

The focus of this paper is the WSDL-based and mutation-based approach to the
testing of Web Services.

106 I. Bluemke and W. Grudziński

2.3 WSDL

WSDL [4], Web Services Description Language based on XML, defines functions
provided by a Web Service and its environment. WSDL contains all details about
the service, for example, the required parameters and the returned results. XML
Schema contains the description, in WSDL, of messages sent and received from the
service. SOAP messages are used for the communication with the Web Service and
they are described by WSDL as operations. WSDL specifies the format of inter-
faces, it can also describe the interactivity of a service. WSDL description contains
the possible but not necessarily required interactions. W3C [1] currently recom-
mends WSDL in version 2.0 but the older version—WSDL 1.1 is still common and
some software supports only this version. The structures of these versions are
shown in Fig. 1.

A WSDL document consists of the following sections (based on [32]):

• Definition: a container, inside of which the remaining sections are located. It
defines the name of the service, declares multiple name spaces used throughout
the remainder of the document, and contains all service elements described
below.

• Data types: the data types used in the messages are in the form of XML
schemas. When simple types are used the document does not need to have a
types section.

• Message: an abstract definition of the data, in the form of a message presented
either as an entire document or as arguments to be mapped to a method
invocation.

Fig. 1 Structure of WSDL documents (based on [31])

Mutant Generation for WSDL 107

• Operation: abstract definition of the operation for a message, such as naming a
method, message queue, or business process, that will accept and process the
message.

• Port type: abstract set of operations mapped to one or more end-points, defining
the collection of operations for a binding; the collection of operations, as it is
abstract, can be mapped to multiple transports through various bindings.

• Binding: protocol and data formats for the operations and messages defined for
a particular port type.

• Port: a combination of a binding and a network address, providing the target
address of the service communication.

• Service: a collection of related end-points encompassing the service definitions
in the file; the services map the binding to the port.

Additionally, the WSDL specification also defines the following sections (based
on [32]):

• Documentation: contains comments, documentation and can be included inside
any other WSDL element.

• Import: used to import other WSDL documents or XML Schemas.

3 Mutation Testing of Web Services

The general idea of mutation testing of Web Services is presented in Fig. 2. The
tester provides a WSDL document with a Web Service to be tested. The mutation
tool applies the mutant operators (marked as “A”) selected by the tester. For each
mutant, SOAP messages are also generated (marked as “B”) and respective clients
are created. The tool sends these SOAP messages to the Web Service under testing,
receives responses (marked as “C”) and presents them to the tester so that they can
be analyzed.

Nine mutation operators were suggested by Siblini and Mansour in [14]:

• Switch Types Complex Type Element (STCE),
• Switch Types Complex Type Attribute (STCA),
• Occurrence Types Complex Type Element (OTCE),
• Occurrence Types Complex Type Attribute (OTCA),
• Special Types Element Nil (STEN),
• Switch Types Simple Type Element (STSE),
• Switch Types Simple Type Attribute (STSA),
• Switch Messages Part (SMP),
• Switch Port Type Message (SPM).

The first four were implemented (STCE, STCA, OTCE, OTCA) in our WSMG
tool. The chosen group of operators is responsible for manipulating the complex

108 I. Bluemke and W. Grudziński

Fig. 2 Mutation testing of WS based on [15]

Mutant Generation for WSDL 109

types part of a WSDL document and they represent possible faults related to the
Web Service implementation.

The Switch Types Complex Type Element (STCE) operator is defined as the
operator that will switch elements of the same type (e.g. strings, integers) within a
single complex type element that could be defined in the types section of the WSDL
document.

The Switch Types Complex Type Attribute (STCA) operator is defined as the
operator that will switch attributes of the same type (strings, integers) within a
single Complex Type element that could be defined in the types section of the
WSDL document. The operation of the Switch Types Complex Type Attribute
operator is similar to STCE. The only difference is in the switched parts—in case of
STCA, attributes of the same type are switched instead of elements.

The Occurrence Types Complex Type Element (OTCE) operator adds or deletes
an occurrence of an element in the complex type element in the types part of a
WSDL document. This operator can be applied only if there are several elements in
the complex type.

The Occurrence Types Complex Type Attribute (OTCA) operator adds or
deletes an occurrence of an attribute in the complex type element that could be
defined in the types part of a WSDL document. The operator can be applied only if
there is more than one element in the complex type. Similar relation as in STCE and
STCA operators occurs in OTCE and OTCA. The difference between these two lies
in the part being added or deleted—in case of OTCE it is an element, whereas in
OTCA—an attribute.

Other mutations operators were proposed by Solino and Vergilio in [15]:

• changeServiceSigning (similar to STCE)—changes the order of parameters of a
service,

• changeTypeonServiceSigning—similar to changeServiceSigning, the difference
is that this operator changes the type of parameters,

• changeTypeofMessageElement—modifies the type of an element present in a
message by changing it into another type of an element also present in the same
WSDL document.

• changeInputOutput—modifies the type of an input message by changing it by
the type of an output message of the same transaction.

Other approach in mutation testing of Web Services and completely different
mutation operators are presented in [25]. The authors propose to mutate SOAP
message parameters and create combined mutants, using more than one mutation
operator at a time. They also built a tool enabling the proposed type of testing.

110 I. Bluemke and W. Grudziński

4 WSMG

In Fig. 3 the general operation of WSMG tool is presented. A WSDL file or its
URL needs to be supplied, mutation operators must be chosen and the output
location needs to be set. WSMG generates mutated versions of WSDL files and
their corresponding difference files. The difference files (with .diff extension)
indicate what alterations have been made in each mutant in comparison with the
original WSDL file. In the output location, pointed by the user, new folders named
as the mutation operators are created and mutated WSDL and diff files are stored.

The WSMG Tool consists of the Mutant Generator, a WSDL Parser and a
Graphical User Interface (GUI) (Fig. 4) and is implemented in Java. The Mutant
Generator (MG) requires a WSDL Parser to read the WSDL document and to create
mutants. There are several WSDL parsers available e.g. Apache Woden [33],
EasyWSDL [34], Membrane SOA Model [35]. The Membrane SOA Model was
chosen for the implementation of WSMG. It contains a Java API for WSDL and
XML Schema and tools to compare and analyze WSDL and Schema documents. It
allows to create, parse and manipulate a WSDL document and to compare two
WSDL files. It is the only WSDL parser able to create a SOAP request. The last
feature is very useful in the development of further steps of mutation testing
(Fig. 2). Membrane uses WSDL 1.1, so the WSMG tool accepts only WSDL 1.1.
The main screen of our tool is shown in Fig. 5.

Mutant Generator is responsible for:

• reading the WSDL from the file specified in GUI,
• transforming the WSDL into an object model using the WSDL Parser,
• generating mutants using mutation operators selected in the GUI checkboxes,
• saving mutants into files in directories named after mutation operators,

Fig. 3 Operation of WSMG

Fig. 4 Main parts of WSMG

Mutant Generation for WSDL 111

• creating files showing the differences between each mutant and the original
WSDL,

• passing output information to the GUI logger.

As Membrane SOA is able to compare two WSDL files so a file containing
differences between a particular mutant and the original WSDL structure is also
generated.

4.1 Reduction of Mutants

Originally, in the STCE and STCA operators, all possible permutations of elements
of the same types are used for the generation of new WSDL files. Such method, for
n elements of the same type generates n! mutants of WSDL documents. Executing
all these mutants will be time consuming so we propose to reduce the number of
mutants and eliminate some permutations. We propose to swap only the neigh-
boring elements. An element at position i is swapped with an element at position
(i + 1) or (i − 1). Such approach, for a sequence of length 3, generates only three
mutants instead of six ones in the Siblini and Mansour [14] approach. If all per-
mutations are generated then different faults in WSDL documents that do not
represent little mistakes made by programmers will be also introduced. The solution
proposed by us uses hints given in [36] by DeMillo and others for the test data
selection: “Programmers create programs that are close to be correct” and coupling

Fig. 5 Main screen of WSMG

112 I. Bluemke and W. Grudziński

effect “complex errors are coupled to simple ones”. The swapping algorithm is
given in Fig. 6.

In the tested WSDL document (presented in Fig. 7) this algorithm reduced the
number of mutants from 23 to 4 and as it was designed on the basis of hints widely
used for many years we expect that the efficiency of mutation testing will not be
decreased.

Input: n - the upper boundary of the sequence, length of the generated
sequences
Output: A set of permutations of the sequence (1,2,…,n) referred to as
Fn, size of Fn denoted as |Fn|

For n=1 there is only one element, so only F1={1} is generated; |F1|=1
For n>1 the algorithm has two steps:

1. Take all sequences from Fn-1 and append n at the end
(|Fn|=| Fn-1|)

2. Take all sequences from Fn-1 whose last element is n-1 and ap-
pend pair (n,n-1) at the end
(|Fn|=| Fn-1|+| Fn-2|)

Fig. 6 Swapping algorithm

1 <wsdl:types>
2 <xsd:schema attributeFormDefault="unqualified"

elementFormDefault="qualified" targetNamespace
="http://thomas-bayer.com/blz/">

3 <xsd:element name="getBank" type="tns:getBankType"></xsd:element>
4 <xsd:element name="getBankResponse"

type="tns:getBankResponseType">
</xsd:element>

5 <xsd:complexType name="getBankType">
6 <xsd:sequence>
7 <xsd:element name="blz" type="xsd:string"></xsd:element>
8 </xsd:sequence>
9 </xsd:complexType>
10 <xsd:complexType name="getBankResponseType">
11 <xsd:sequence>
12 <xsd:element name="details"

type="tns:detailsType"></xsd:element>
13 </xsd:sequence>
14 </xsd:complexType>
15 <xsd:complexType name="detailsType">
16 <xsd:sequence>
17 <xsd:element minOccurs="0" name="bezeichnung" type="xsd:string">

</xsd:element>
18 <xsd:element minOccurs="0" name="bic"

type="xsd:string"></xsd:element>
19 <xsd:element minOccurs="0" name="ort"

type="xsd:string"></xsd:element>
20 <xsd:element minOccurs="0" name="plz"

type="xsd:string"></xsd:element>
21 </xsd:sequence>
22 </xsd:complexType>
23 </xsd:schema>
24</wsdl:types>

Fig. 7 Types section of BLZ Web Service [37]

Mutant Generation for WSDL 113

4.2 Example

In Fig. 7 the types section of WSDL document describing BLZService [37] is
given. This service was used in tests. There are three complex types, but only one
(detailsType, lines 15–22) contains a sequence of multiple elements. The
detailsType complex type has 4 elements, all of the same type string. While
generating mutants using all possible permutations there should be 4! − 1 = 23
mutants.

If the “Swap only with neighbours” mode is selected the number of mutants
should be equal to the 4th element (diminished by one) of the Fibonacci sequence
with initial elements equal to 1 and 2. The 3rd element is equal to 1 + 2 = 3 and
the 4th equals 2 + 3 = 5. Hence, there are 24 − 1 = 23 STCE mutants in case of
generating all permutations and 5 − 1 = 4 in case of “Swapping neighbours only”
mode. The number of OTCE mutants is the same regardless of the mode of
operation and should be equal to the number of elements in the complex type (four
in this case).

The logger outputs are presented in Fig. 8 (using neighbours only mode on the
left) and without neighbours only mode (on the right).

In Fig. 9 part of the STCE mutant is shown, lines correspond to lines 15–22
from the WSDL description of the BLZService given in Fig. 6.

Our tool WSMG generates also files with .diff extensions in which the differ-
ences between a particular mutant and the original WSDL file are listed. The .diff

Fig. 8 Screens of WSMG—swapping and no swapping mode

1 <xsd:complexType name='detailsType'>
2 <xsd:sequence minOccurs='1' maxOccurs='1'>
3 <xsd:element name='ort' type='xsd:string' minOccurs='0' />
4 <xsd:element name='bezeichnung' type='xsd:string' minOccurs='0' />
5 <xsd:element name='plz' type='xsd:string' minOccurs='0' />
6 <xsd:element name='bic' type='xsd:string' minOccurs='0' />
7 </xsd:sequence>
8 </xsd:complexType>

Fig. 9 Part of STCE mutant

114 I. Bluemke and W. Grudziński

files are saved in the same directory as mutant files, they are named according to the
rule: mutant_X.wsdl.diff, where X is replaced by a number of mutant. Every
operator saves its mutants in the directory named the same as the operator. An
exemplary .diff file is shown in Fig. 10.

In Fig. 11 two examples of errors detected while parsing WSDL files are given.
In the first file the prefix was missing and the second file was containing WSDL 2.0
document which is not supported yet by the parser.

5 Conclusions

In this work the mutation testing of Web Services is described and WSMG—tool
generating four mutation operators proposed by Siblini and Mansour [14] is pre-
sented. The tool uses a WSDL file describing a Web Service and generates mutants
files for STCE, STCA, OTCE, OTCA (described in Sect. 3) mutation operators. We
also proposed the “swapping” algorithm reducing significantly the number of
generated mutants (Sect. 4.1).

1 Definitions:
2 Types:
3 Schema http://thomas-bayer.com/blz/ has changed:
4 ComplexType detailsType:
5 Sequence:
6 Position of element bezeichnung changed from 1 to 2.
7 Position of element bic changed from 2 to 4.
8 Position of element ort changed from 3 to 1.
9 Position of element plz changed from 4 to 3.

Fig. 10 Example of. diff file associated with mutant from Fig. 8

Fig. 11 Examples of errors

Mutant Generation for WSDL 115

Currently this tool is not able yet to fully perform the task of mutation testing of
Web Services as it implements only the first step i.e. the generation of mutants. In
the near future the SOAP messages generator and a SOAP client will be added to
enable the whole process of testing. Also other mutations operators e.g. Special
Types Element Nil (STEN), Switch Types Simple Type Element (STSE), Switch
Types Simple Type Attribute (STSA), Switch Messages Part (SMP) and Switch
Port Type Message (SPM) proposed in [14] or in [15] can be easily added. Cur-
rently WSMG operates on WSDL documents in version 1.1, in the near future
WSDL documents in version 2.0 should also be accepted.

Tools for mutations testing of Web Services are unique. Only Solini and Vergilo
implemented a tool WSeTT [15] generating mutants for theirs operators. Siblini and
Mansour proposed mutation operators [14] but we were not able to find a tool
implementing theirs operators, so we think it is worth to implement theirs mutation
operators and do some experiments evaluating the usefulness of mutation testing of
Web Services.

References

1. W3C Official Website. http://www.w3.org/
2. SOAP: Simple Object Access Protocol. http://www.w3.org/TR/soap/
3. XML—Extensible Markup Language. http://www.w3.org/XML/
4. WSDL. http://www.w3.org/TR/wsdl
5. UDDI. http://uddi.xml.org/
6. WSIL. http://www.ibm.com/developerworks/library/ws-wsilover/
7. Elberzhager, F., Rosbach, A., Eschbach, R., Münch, J.: Reducing test effort: a systematic

mapping study on existing approaches. Inf. Softw. Technol. 54(10), 1092–1106 (2012)
8. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE

Trans. on Soft. Eng. 37(5), 649–678 (2011)
9. Canfora, G., Di Penta, M.: Service-oriented architectures testing: a survey. In: De Lucia, A.,

Ferrucci, F. (eds.) Software Engineering, pp. 78–105. Springer (2009)
10. Ladan, M.I.: Web services testing approaches: a survey and a classification. In: Zavoral, F.,

et al. (eds.) NDT 2010, Part II, CCIS 88, pp. 70–79. Springer, Berlin, Heidelberg (2010)
11. Bozkurt, M., Harman, M., Hassoun, Y.: Testing web services: a survey. Technical Report,

King’s College London (2010)
12. Metzger, A., Benbernou, S., Carro M., Driss, M., Kecskemeti, G., Kazhamiakin, R., Krytikos,

K., Mocci, A., Di Nitto, A.E., Wetzstein, B., Silvestri, F.: Analytical quality assurance. In:
Papazoglou, M., Pohl, K., Parkin, M., Metzger, A. (eds.) Service Research Challenges and
Solutions for the Future Internet, pp. 209–270. Springer (2010)

13. Rusli, H.M., Puteg, M., Ibrahim, S., Tabatabaei, S.G.H.: A comparative evaluation of
state-of-the-art web service composition testing approaches. In: International Workshop on
Automation of Software Test, pp. 29–35 (2011)

14. Siblini, R., Mansour, N.: Testing web services. In: 3rd ACS/IEEE International Conference on
Computer Systems and Applications (2005)

15. da Silva Solino, A.L., Vergilio, S.R.: Mutation based testing of web services. In: 10th Latin
American Test Workshop, pp. 1–6 (2009)

16. Feudjio, A.G.V., Schieferdecker, I.: Availability Testing for Web Services. ISSN: 0085-7130
Telektronikk (2009)

116 I. Bluemke and W. Grudziński

http://www.w3.org/
http://www.w3.org/TR/soap/
http://www.w3.org/XML/
http://www.w3.org/TR/wsdl
http://uddi.xml.org/
http://www.ibm.com/developerworks/library/ws-wsilover/

17. Tsai, W.T., Paul, R., Song, W., Cao, Z.: An XML-based framework for web services testing.
In: Proceedings of 7th IEEE International Symposium on High Assurance Systems
Engineering, pp. 173–174 (2002)

18. Hanna, S., Munro, M.: An approach for WSDL-based automated robustness testing of web
services. In: Information Systems Development Challenges in Practice, Theory, and
Education, vol. 2, pp. 1093–1104, Springer (2008)

19. Bai, X., Dong, W.: WSDL-based automatic test case generation for web services testing. In:
IEEE International Workshop on Service-Oriented System Engineering (SOSE’05),
pp. 207–212 (2005)

20. Bluemke, I., Kurek, M., Purwin, M.: Tool for automatic testing of web services. In:
Proceedings of the 2014 Federated Conference on Computer Science and Information
Systems, Ganzha M., Maciaszek, L., Paprzycki, M. (eds.) Annals of Computer Science and
Information Systems, vol. 3 (2014)

21. Sneed, H.M., Huang, S.: WSDLTest—a tool for testing web services. In: Eighth IEEE
International Symposium on Web Site Evolution (WSE’06), pp. 14–21 (2006)

22. Canfora, G., Di Penta, M.: Testing services and service-centric systems: challenges and
opportunities. IT Prof. 8(2), 10–17 (2006)

23. Bucchiarone, A., Melgratti, H., Severoni, F.: Testing service composition. In: Proceedings of
the 8th Argentine Symposium on Software Engineering, Argentina, ASSE 2007 (2007)

24. Zakaria, Z., Atan, R., Ghani, A.A., Sani, N.F.M.: Unit testing approaches for BPEL: a
systematic review. In: Proceedings of the 2009 Asia-Pacific Software Engineering Conference,
Penang, Malaysia, 1–3 Dec, pp. 316–322 (2009)

25. Chen, J., Li, Q., Mao, C., Towey, D., Zhan, Y., Wang, H.: A Web services vulnerability
testing approach based on combinatorial mutation and SOAP message mutation. SOCA 8,
1–13 (2014)

26. https://insights.sei.cmu.edu/devops/2015/04/devops-case-study-netflix-and-the-chaos-
monkey.html

27. HP QuickTest Professional. http://www8.hp.com/us/en/software-solutions/unified-functional-
testing-automation/

28. Parasoft. http://www.parasoft.com/soatest
29. SOAPSonar. http://www.crosschecknet.com/products/soapsonar.php
30. SoapUI. http://www.soapui.org/
31. Java Solution Architect: WSDL 2.0 VS WSDL 1.1. http://javasolutionarchitect.blogspot.com/

2013/11/wsdl-20-vs-wsdl-11.html
32. WSDL elements. http://www.tutorialspoint.com/wsdl/wsdl_elements.htm
33. Woden. http://ws.apache.org/woden/
34. EasyWSDL Toolbox. http://easywsdl.ow2.org/
35. Membrane SOA Model. http://membrane-soa.org/soa-model/index.htm
36. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the practicing

programmer. Computer 11(4), 34–41 (1978)
37. BLZService WSDL Document. http://www.thomas-bayer.com/axis2/services/BLZService?

wsdl

Mutant Generation for WSDL 117

https://insights.sei.cmu.edu/devops/2015/04/devops-case-study-netflix-and-the-chaos-monkey.html
https://insights.sei.cmu.edu/devops/2015/04/devops-case-study-netflix-and-the-chaos-monkey.html
http://www8.hp.com/us/en/software-solutions/unified-functional-testing-automation/
http://www8.hp.com/us/en/software-solutions/unified-functional-testing-automation/
http://www.parasoft.com/soatest
http://www.crosschecknet.com/products/soapsonar.php
http://www.soapui.org/
http://javasolutionarchitect.blogspot.com/2013/11/wsdl-20-vs-wsdl-11.html
http://javasolutionarchitect.blogspot.com/2013/11/wsdl-20-vs-wsdl-11.html
http://www.tutorialspoint.com/wsdl/wsdl_elements.htm
http://ws.apache.org/woden/
http://easywsdl.ow2.org/
http://membrane-soa.org/soa-model/index.htm
http://www.thomas-bayer.com/axis2/services/BLZService%3fwsdl
http://www.thomas-bayer.com/axis2/services/BLZService%3fwsdl

Improving Measurement Certainty
by Using Calibration to Find Systematic
Measurement Error—A Case
of Lines-of-Code Measure

Miroslaw Staron, Darko Durisic and Rakesh Rana

Abstract Base measures such as the number of lines-of-code are often used to make

predictions about such phenomena as project effort, product quality or maintenance

effort. However, quite often we rely on the measurement instruments where the exact

algorithm for calculating the value of the measure is not known. The objective of our

research is to explore how we can increase the certainty of base measures in soft-

ware engineering. We conduct a benchmarking study where we use four measure-

ment instruments for lines-of-code measurement with unknown certainty to measure

five code bases. Our results show that we can adjust the measurement values by as

much as 20 % knowing the systematic error of the tool. We conclude that calibrat-

ing the measurement instruments can significantly contribute to increased accuracy

in measurement processes in software engineering. This will impact the accuracy

of predictions (e.g. of effort in software projects) and therefore increase the cost-

efficiency of software engineering processes.

1 Introduction

With the introduction of the measurement information model in the international

ISO/IEC 15939 standard for measurement processes the discipline of software engi-

neering evolved from discussing metrics in general to categorizing them into three

categories—base measures, derived measures and indicators. The use of base mea-

sures is fundamental for the construction of derived measures and indicators. The

base measures are also the types of measures which are collected directly and are a

M. Staron (✉) ⋅ R. Rana

Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden

e-mail: miroslaw.staron@gu.se

R. Rana

e-mail: rakesh.rana@gu.se

D. Durisic

Volvo Car Group, Gothenburg, Sweden

e-mail: darko.durisic@volvocars.com

© Springer International Publishing Switzerland 2017

L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,

DOI 10.1007/978-3-319-43606-7_9

119

120 M. Staron et al.

result of a measurement method. In many cases this measurement method is an auto-

mated algorithm (e.g. a script) which we can refer to as the measurement instrument
which quantifies an attribute of interest into a number.

Since in software engineering we do not have reference measurement etalons as

we do in other disciplines (e.g. kilogram or meter for physics), we often rely on

arbitrary definitions of the base quantities. One of such quantities is the size of pro-

grams measured as the number of lines of code. Even though the number of lines of

code of a given program is a deterministic and fully quantifiable number the result

of applying different measurement instruments to obtain the number might differ.

The difference can be caused by a number of factors, such as: (i) difference in imple-

mentation of the same measurement method, (ii) difference in the definition/design

of the measurement method, or (iii) faults in the measurement instruments. Since

we do not know the true value without the measurement procedure we need to find

what the accuracy (certainty) of the measured value is. When using measurement

instruments it is often not possible to explore the measurement methods in details

by analyzing the implementation of the measurement method (in practice the mea-

surement instruments are provided as compiled code), which means that the mea-

surement engineer needs to either accept the fact that the uncertainty is unknown

or estimate the uncertainty. The latter leads to more benefits in terms of improved

quality of the measurement results and therefore it is of interest for our work, which

addresses the following research question:

How to reduce the uncertainty of measurement results obtained from measure-
ment instruments with an unknown measurement method?

This research question is addressed by constructing a benchmarking study where

we use four different measurement instruments which quantify the number of phys-

ical lines of code of a program. We use these measurement instruments on five dif-

ferent open-source code bases in order to explore the deviations between the results

obtained from these tools. We also use a simple program with a known number of

physical lines of code in order to estimate the systematic error of the tools and then

we use that number (converted to a percentage) to reduce the error of the measure-

ment obtained in the first step.

In the study we use the lines-of-code measure because of its practicality and

availability of measurement instruments (both open source and proprietary) with

unknown measurement method [2]. Another practical advantage is the fact that the

lines-of-code measure is usually calculated using automated software tools which

provide deterministic results and redefine the notion of the error for this measure. In

other engineering disciplines the measurement tools are prone to systematic errors

(related to calibration of the tools) and random errors (related to the measurement

process). When using automated tools for measuring such quantities as LOC the

measurement process always results in the same value when measuring the same

entity—therefore seemingly without the random error. Calibrating the tools is some-

times difficult, which results in not being able to distinguish the systematic errors for

measurement from the random ones. The measure has been both widely used in soft-

ware engineering for calculating the size of programs [8], software complexity [7]

Improving Measurement Certainty by Using Calibration . . . 121

or to predict software size [4]. The wide use of the measure has resulted in multiple

variants of the definition—e.g. non-commented lines of code, total lines of code,

or source statements. Although the different variants of the measure should not be

mixed, it is often the case that these definitions are not recognizable in measure-

ment tools (also known as measurement instruments) and thus result in measurement

errors.

Our results show that using this simple approach we can reduce the uncertainty

to 1.85 from 20 % in some cases. We perceive this type of uncertainty reduction to

be applicable to many other base measures (i.e. other than the lines-of-code measure

used in this study) and have a potential to increase the validity of the prediction

models using these base measures (e.g. COCOMO or defect density, [11]).

The paper is structured as follows. Section 2 outlines the most relevant work in

the field. Section 3 presents the concept of the measurement error used in this paper.

Section 4 presents the measure of lines of code. Section 5 presents the evaluation of

the different definitions of errors on a set of open source programs. Section 6 provides

recommendations on how to use the LOC measure in practice and Sect. 7 presents

the conclusions.

2 Related Work

We review work in three areas—standardization in the area of measurement in soft-

ware engineering, measurement theory (in general and its applications in software

engineering) and the overview of critical articles of measurement in software engi-

neering.

Lincke et al. [10] studied the deviations of results from measurement tools for

sizing object-oriented designs. Their results showed significant deviations between

tools. Their work shows how important the notion of systematic and random mea-

surement errors are and can to a large extent be explained by the work presented in

our paper.

The recent advances in the field of metrology have also started to arrive in the field

of software engineering. Abran [1] used a combination of the ISO VIM standard to

discuss the validity of the most common metrics used in software engineering e.g.

software complexity or the function points measures. Although the developments are

recent, they are based on the previously defined needs for more precise terminology

and validation of software metrics, e.g. [1]. One of the major current trends identified

by Abran is the search for etalons—elementary units—in software engineering.

The basic concepts of measurement theory for software engineering have been

redefined by Briand et al. [5]—for example the concepts of relational systems,

mappings and scales. Similar to the definition of relational systems one can define

properties of software measures, which are a foundation for defining a general mea-

surement instrument model. Such properties are defined by Briand et al. [6] based

on the general properties of measures defined by Weyuker [19], Zuse [21] and Tian

and Zelkowitz [15]. Although the property-based definition of measures addresses

122 M. Staron et al.

the problem of correct definition of software metrics, it does not address the issues

of uncertainty of the measurement process in practice (i.e. the instantiation of the

mapping between the empirical world and the relational systems).

Measurement theory has been used as a basis for the main international stan-

dard in measurement on common vocabulary in metrology—VIM [16]. The stan-

dard defines such concepts as measurement uncertainty, measurand and quantifica-

tion. These definitions capture the meaning of the concepts from the measurement

theory in engineering.

VIM standardizes the most important concepts which influence measurement

processes, for example:

∙ Measuring instrument: device used for making measurements, alone or in con-

junction with supplementary device(s)

∙ Instrumental measurement uncertainty: component of measurement uncertainty

arising from the measuring instrument or measuring system in use, and obtained

by its calibration

∙ Measuring system: set of one or more measuring instruments and often other

devices, including any reagent and supply, assembled and adapted to give mea-

sured quantity values within specified intervals for quantities of specified kinds

VIM does standardize the vocabulary, but the international standard ISO/IEC

15939:2007 [12] (Systems and Software Engineering - Measurement Processes)

focuses on the processes of measuring—data collection, processing and analysis.

The ISO/IEC 15939 standard has an impact on the definition of metrics and mea-

surement guidelines for the ISO/IEC 25000 series of standards. However, none of

these two standards addresses the actual problem of measurement errors.

3 The Concept of Measurement Error

Measurement error is defined in measurement theory as the deviation between the

real value of the measurand and the value obtained from the measurement process.

It is derived from the concept of measurement uncertainty which is the dispersion of

the values attributed to the measurand. The main definition is provided in ISO/IEC

17045 (General requirements for the competence of testing and calibration labora-

tories, [17]) and later on used in software engineering in ISO/IEC 25000 series of

standards [18].

The measured quantity can be referred to as the estimator as the true value of the

measurand always remains unknown because of the finite accuracy of the measure-

ment instruments. In general the estimators (X) combine both the expected value of

the measurement (M) plus the error (E)—see formula 1.

̂X = ̂M + ̂E (1)

Improving Measurement Certainty by Using Calibration . . . 123

The measurement error is combined of two types of errors—the systematic error

(S) and the random error (R)—formula 2.

̂E = ̂S + ̂R (2)

The systematic error is usually caused by the miscalibration of the measurement

instruments and is the same for all measurements taken by the instrument. The mean

of the systematic error is expected to be non-zero, and causes skewness of the mea-

surement results. In order to minimize the systematic errors the measurement instru-

ments are calibrated—adjusted to show the correct results when measuring entities

of known properties.

The random error, on the other hand, is different for each measurement taken. The

mean value of the random measurement error is expected to be zero and it causes

the distribution of the measurement results to be wider.

In general it seems easy to distinguish between these two types of errors, but in

practice it might be very difficult. In Sect. 5 we show examples of this problem.

3.1 Impact of Measurement Error on Predictions—Standard
Error of the Estimate

Software measures are usually used within various models designed for monitoring

and forecasting [13, 14]. When using these measures within prediction models, the

other major source of errors come from estimation error. Every estimation method

involves an estimation error, which comes from the simple fact that the real quantity

generally differs from its estimated quantity.

Taking an example of simple prediction model with single predictor (x) and pre-

dicted variable (y) have a linear relationship between them (y ∼ m ∗ x, where m =

2), two scenarios of prediction model can be shown as in Fig. 1.

Fig. 1 Regression models with different accuracy of prediction

124 M. Staron et al.

As evident from Fig. 1, the prediction model A seems more accurate then predic-

tion model B, or in other terms the estimation error is expected to be lower for model

A compared to mode B.

The standard error of the estimate (or SEE) is the measure of accuracy of pre-

dictions. For estimations using linear regression minimizes the sum of squared devi-

ations of prediction (also referred to as Sum of Squared Errors, or SSE). Thus the

standard error of estimate for method of least squares (linear or non-linear models)

is equal to SSE, which can be calculated as:

𝜎est =

√
Σ(Ya − Yp)2

N
(3)

where 𝜎est is the standard error of estimate, Ya is the actual value, Yp is the predicted

value, and N is the number of observations.

4 Lines of Code (LOC)

In this paper we use the measure of Lines of Code (LOC) as an example to illus-

trate the concept of measurement error. The measure has been used in practice since

1950 s and there is substantial body of research on it, [3]. It is also used as a input

variable to many prediction models—e.g. the Constructive Cost Model (COCOMO)

and its newer versions [4].

LOC measure is often also called SLOC (Source Lines of Code) as an acronym

and has multiple variations, for example:

1. Physical (Source) Lines of Code—measure of all lines, including comments, but

excluding blanks

2. Effective Lines of Code—measure of all lines, excluding: comments, blanks,

standalone braces, parentheses.

3. Logical Lines of Code—measure of those lines which form code statements

The variations of the measure are used for specific purposes and can be regarded

as measures of the same entity, but with different measurement methods according

to the definitions included in ISO/IEC 15939 [12]. We can also observe that these

measures are liable to systematic errors in different ways—for example the number of

physical lines of code will include comments which do not add to the complexity of

the algorithm, but may impact the effort needed to develop the program; the logical

lines of code will naturally not be sensitive to the same type of error (i.e. comments).

Improving Measurement Certainty by Using Calibration . . . 125

5 Empirical Evaluation

In order to assess what the effects of different ways of calculating measurement error

have on the results, we designed a benchmarking study of calculating LOC on a num-

ber of open source projects. For the calculations we chose a set of tools which calcu-

late the effective lines of code and should be comparable. The goal of the evaluation

was to evaluate the impact of the systematic and random measurement errors on the

result of the measurement process from the perspective of a quality manager.

5.1 Design

For the purpose of the evaluation we randomly chose four measurement instruments:

∙ Unified CodeCount (UCC), Release 2011.10, http://sunset.usc.edu/research/

CODECOUNT/

∙ Understand, http://www.scitools.com/download/

∙ Code Analyzer, Version 0.7.0, http://sourceforge.net/projects/codeanalyze-gpl/

∙ SLOCCount, Version 2.26, http://www.dwheeler.com/sloccount/

We also chose five different source code packages in order to capture variability

in the programming styles:

∙ Linux Kernel, Release 3.13.6

∙ Mozilla Firefox, 27.0.1

∙ Open Office, V4.0.1 R1524958

∙ Android, V4.0.3 R1

∙ Chrome, V18.0.1025123

The size of the measured programs was more than a few hundred lines of code,

which was important for the estimations—the size was too large for a person to count

the number of lines of code manually and the estimates were needed.

The process of our benchmarking study was as follows. First we calculated the

LOC for all software packages and calculated the median for each package. The

median was chosen as it is the value that is in-between the middle data points (or

the mid data point in case of odd number of data points) and therefore is can be the

value that has been measured by one tool. Once we calculated the median we calcu-

lated the absolute error which is the difference between each measurement and the

median. Then we calculated the relative error as a ratio between the absolute error

and the median, which we use later on for comparison. Then we calculated the sys-

tematic error by using a pre-defined program as a measured entity for each measure-

ment instrument. Then we used the measured systematic error to adjust the values of

the LOC measurements from the five software packages and repeated the procedure

with finding the median and calculating the absolute and the relative errors. We then

compared the differences between these two calculations and discussed them.

http://sunset.usc.edu/research/CODECOUNT/
http://sunset.usc.edu/research/CODECOUNT/
http://www.scitools.com/download/
http://sourceforge.net/projects/codeanalyze-gpl/
http://www.dwheeler.com/sloccount/

126 M. Staron et al.

5.2 Results

The results are presented in Table 1 and are predictably correct—all measurement

tools provide different measurement results. We do not know the systematic and

the random measurement error for these programs. Therefore it is not possible to

distinguish the differences between these two types of errors.

Table 2 shows the results from calculating the absolute relative error using the

median as the substitute for the true value of the measurement. We chose median

instead of arithmetic mean as it has the property of being the middle value in the

data set (if the number of elements is odd). This means that it is a value which exists

in the data set whereas the arithmetic mean has the property of being in the middle,

but most often it does not exist in reality.

The error values shown in Table 2 indicate that there is a large discrepancy in

which tools present the lowest and the highest results—visible for the measurement

results for the Android source code.

Table 3 presents the percentage—the relative measurement error for the same

measurement results.

The results presented in Table 3 shows that the relative error could be as large as

18.58 % for the example data set (Android code measured using Understand). It is

natural that this kind of error is unacceptable for any evaluation and that this kind

of magnitude of the error could be caused by a systematic error combined with the

total size of the software (i.e. low numbers combined with large systematic error will

result in large percentage of relative error).

Table 1 Results from measuring five source code repositories with four different tools

Source code UCC Understand Code analyzer Universal

CLC

Median

Linux Kernel 11 631 288 9 466 175 11 650 363 11 207 899 11 419 931

Mozilla

Firefox

5 066 234 4 282 587 5 457 003 4 966 983 5 016 609

Open Office 4 855 090 4 431 717 5 231 869 4 742 033 4 798 562

Android 878 157 878 041 876 795 871 710 877 418

Chrome 5 502 768 4 460 016 6 263 157 5 453 027 5 419 742

Table 2 Absolute measurement error when using median as the estimator of the true value

Source code UCC Understand Code analyzer Universal CLC

Linux Kernel 211 695 −1 953 419 230 770 −211 695

Mozilla Firefox 49 626 −734 022 440 395 −49 626

Open Office 56 529 −366 845 433 308 −56 529

Android 739 623 −623 −5 708

Chrome 24 871 −1 017 882 785 260 −24 871

Improving Measurement Certainty by Using Calibration . . . 127

Table 3 Relative measurement error when using median as the estimator of the true value

Source code UCC (%) Understand (%) Code analyzer

(%)

Universal CLC

(%)

Linux Kernel 1.85 17.11 2.02 1.85

Mozilla Firefox 0.99 14.63 8.78 0.99

Open Office 1.18 7.64 9.03 1.18

Android 0.08 0 0.07 0.65

Chrome 0.45 18.58 14.34 0.45

Table 4 Results from measuring 5 source code repositories with 5 different tools

Measurement

instrument

Measured LOC Systematic error Systematic error

(relative) (%)

UCC 10 0 0

Understand 8 2 20

Code Analyzer 10 0 0

Universal CLC 9 1 10

Table 4 shows the results from calibrating the measurement tool on a small C++

program with 21 lines of code as shown in Fig. 2. The program has 10 lines of exe-

cutable code and the code is written with extra white spaces (e.g. after { after the

main procedure). Each line which is counted as a LOC has a number in bracket next

to it (e.g. “#include <stdio.h>(1)”).

The results shown in Table 4 show that several of the programs provide the results

which count the lines of executable code as we intended—e.g. UCC and Code Ana-

lyzer. The tool Understand does not even count the curly brackets and therefore can

be seen as the one with a negative systematic error—the number of LOC is 8 for that

program.

One observation which we can make by comparing the relative error and the sys-

tematic error is the difference between these two. For example let’s consider the tool

Understand, which has a difference of 2 LOC in Table 4 with the calibration results.

2 LOC is 20 % of 10 LOC of the program used for the calibration. In Table 3 that

tool shows a relative error in the range of 0.07–18.58 %. This means that knowing

an estimate of a systematic error allows to reduce the random error from as much

as 18.58–1.42 % (calculated as (20–18.58 %). If we apply the same approach to all

measures in Table 3, we get the results as presented in Table 5.

We could see that the tools which have the largest systematic error still have the

largest error in total (e.g. Understand). Now, that we know the systematic error and its

direction (underestimation) we can take that into the account and change the values

of the LOC measurement from Table 1 and redo the calculations which results in the

following number of the relative error as presented in Table 6.

128 M. Staron et al.

Fig. 2 Example program used for calibration of the tools

Table 5 Relative measurement error when using median as the estimator of the true value reduced

by the systematic error from Table 4

Source code UCC (%) Understand (%) Code analyzer

(%)

Universal CLC

(%)

Linux Kernel 1.85 2.89 2.02 8.15

Mozilla Firefox 0.99 5.37 8.78 9.01

Open Office 1.18 12.36 9.03 8.82

Android 0.08 19.93 0.07 9.35

Chrome 0.45 1.42 14.34 9.55

Table 6 Relative measurement error when using median as the estimator of the true value reduced

by the systematic error from Table 4

Source code (%) UCC (%) Understand (%) Code analyzer

(%)

Universal CLC

(%)

Linux Kernel 0.08 2.42 0.08 5.91

Mozilla Firefox 4.38 3.00 3.00 3.13

Open Office 7.06 1.80 0.15 0.15

Android 4.39 14.71 4.54 4.39

Chrome 4.31 6.93 8.91 4.31

The results should be compared with Table 3 as they are recalculated in the same

way, given the new median (as the LOC measurement for Understand and Universal

CLC are increased by 20 % and 10 % respectively). What the results show is that we

Improving Measurement Certainty by Using Calibration . . . 129

can decrease the uncertainty (compared to Table 5) as we only have the relative error

component in the measurement.

Naturally more studies are needed to use different programming styles when

defining the programs used to calibrate the tools, but even this small example shows

that the calibration has a significant impact on the measurement error and thus on

the estimation formulas where the measure value is used (e.g. in the COCOMO esti-

mation model).

5.3 Threats to Validity

The empirical validation of the results have a number of validity threats as any other

empirical study. We use the framework of Wohlin et al. [20].

The main threat to the external validity is the fact that we only used open source

code in the evaluation. Although this threat can indicate a potential bias, we under-

stand that the coding style differs enough between the open source projects (e.g.

code written by different consortia) in order to make claim which can be generalized

to other types of programs. The study by Lincke et al. [10] showed the same types

of deviations as we observed in our work (but using higher-level, object-oriented

metric suite), which was an independent study. This increases the validity of our

conclusions as it is in fact a triangulation of the approach. However, we believe that

more evaluations on more base measures to explore if our conclusions are valid in

more contexts. We also plan to expand this study in the future to allow to draw the

calibration code sample from the code base and therefore have consistency between

the calibration code and the code base.

The main threat to the conclusion validity is the size of the sample—i.e. the num-

ber of measurement instruments (code counting tools) and the number of open source

programs. We used a simple calibration program in order to establish the baseline

for the systematic error in the measurement. Since our main goal was to understand

the scale of the measurement error in practice, the small sample size does not lower

the validity of our conclusions.

The main threat to the construct validity stems from the assumption that there

is a difference between systematic and random error in software engineering. Both

concepts are established in the measurement theory and they are based on the

assumption that there is some degree of non-determinism in the measurement. The

non-determinism assumption can be debatable, though, in software engineering (due

to automated measurement instruments). Given the fact that the tools used in our

study produced a result we treated them as correct (i.e. free from bugs), but this does

not have to hold for all measurement instruments. Having bugs in the measurement

instruments contributes to the presence of random error and therefore we plan to

investigate it more in the next steps. The goal of this study was to investigate whether

this assumption is correct and the results of our study show that these concepts are

present.

130 M. Staron et al.

The main threat to the internal validity is the choice of measurement tools and

programs. They were chosen randomly based on internet search given the criteria

that they can calculate the same type of LOC measure. Since there were differences

between the measurement tools we believe that the internal validity is not jeopar-

dized; had this not been the case, i.e. there were no differences we would require to

expand the study to more tools.

6 Recommendations

Measurement errors are present in almost every measurement taken, including mea-

surements in software engineering. The notion of the errors in software engineering

is similar to the same notions in other disciplines and we provide the following rec-

ommendations:

∙ Calibrate the instrument using small programs: Calibration is the most impor-

tant part of measurement and provides the possibility to calculate the errors with

the “true” value of the estimator known (which is not the case of measurement of

larger entities). Small program allow to manually calculate the values which can

be used for calibration.

∙ For the calibration, use the same programming style as the code base: Drawing

the sample of the calibration code from the measured code base allows for consis-

tency between the programming styles between the measured code and the cali-

bration code—the same programmers usually write the code in the same way [9].

7 Conclusions

The goal of this paper was to study how the notion of measurement error can be

defined for metrics in software engineering to enable correct measurement. In order

to study this concept we chose one of the most used and the simplest metrics—Lines

of Code. As the metric is designed to measure source code we could link the results

of measuring a program to a number. This metric allowed us also to discuss the

measurement error based on a small calibration program.

The results showed that both the systematic and random errors are present and that

the key to distinguish between these is to use calibration of measurement tools. These

results mean that the measurement processes can be significantly improved when

using calibration. Instead of using the concepts of standard deviations and average

to estimate the LOC in the programs, which are based on assumptions of normal

distribution of the metric, calibration provides a better estimate of measurement error

and thus a better estimate of the true value of LOC.

Improving Measurement Certainty by Using Calibration . . . 131

In the future we plan to expand our approach by taking into considerations the

influence of the assumptions made in this work—one of these assumptions being

the consistency in programming styles between the code base and the calibration

code. To account for that we plan to draw the sample code for calibration from the

measured code base and calculate the influence of certain programming constructs

on the measurement. For example we can count the number of lines containing only

the curly brackets,or the number of lines containing only white spaces to capture

different programming styles.

Acknowledgments The authors would like to thank the doctoral students in the “Measurement in

Software Engineering” course at the University of Gothenburg for the discussions on the topic of

measurement error and measurement theory.

References

1. Abran, A.: Software Metrics and Software Metrology. Wiley (2010)

2. Albrecht, A.J., Gaffney, J.E.: Software function, source lines of code, and development effort

prediction: a software science validation. IEEE Trans. Softw. Eng. 6, 639–648 (1983)

3. Boehm, B.: Managing software productivity and reuse. Computer 32(9), 111–113 (1999)

4. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost models for

future software life cycle processes: Cocomo 2.0. Ann. Softw. Eng. 1(1), 57–94 (1995)

5. Briand, L., El Emam, K., Morasca, S.: On the application of measurement theory in software

engineering. Empir. Softw. Eng. 1(1), 61–88 (1996)

6. Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering measurement.

IEEE Tran. Softw. Eng. 22(1), 68–86 (1996)

7. Davis, J.S., LeBlanc, R.J.: A study of the applicability of complexity measures. IEEE Trans.

Softw. Eng. 14(9), 1366–1372 (1988)

8. Khoshgoftaar, T.M., Munson, J.C.: The lines of code metric as a predictor of program faults: a

critical analysis. In: Fourteenth Annual International on Computer Software and Applications

Conference, 1990. COMPSAC90. Proceedings, pp. 408–413. IEEE (1990)

9. Kuzniarz, L., Staron, M.: Inconsistencies in student designs. In: The Proceedings of The 2nd

Workshop on Consistency Problems in UML-based Software Development, San Francisco,

CA, pp. 9–18. Citeseer (2003)

10. Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: Proceedings of the

2008 International Symposium on Software Testing and Analysis, pp. 131–142. ACM (2008)

11. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density.

In: 27th International Conference on Software Engineering, 2005. ICSE 2005. Proceedings,

pp. 284–292. IEEE (2005)

12. Organization, I.S., Commission, I.E.: Software and systems engineering, software measure-

ment process. Technical report. ISO/IEC (2007)

13. Rana, R., Staron, M., Berger, C., Hansson, J., Nilsson, M., Torner, F.: Evaluating long-term

predictive power of standard reliability growth models on automotive systems. In: 2013 IEEE

24th International Symposium on Software Reliability Engineering (ISSRE), pp. 228–237.

IEEE (2013)

14. Staron, M.: Critical role of measures in decision processes: managerial and technical measures

in the context of large software development organizations. Inf. Softw. Technol. 54(8), 887–

899 (2012)

15. Tian, J., Zelkowitz, M.V.: A formal program complexity model and its application. J. Syst.

Softw. 17(3), 253–266 (1992)

132 M. Staron et al.

16. International Bureau of Weights and Measures: International Vocabulary of Basic and General

Terms in Metrology, 2nd edn. International Organization for Standardization, Genve, Switzer-

land (1993)

17. International Bureau of Weights and Measures: General requirements for the Competence of

Testing and Calibration Laboratories, 1st edn. International Organization for Standardization,

Genve, Switzerland (2005)

18. International Bureau of Weights and Measures: Systems and software engineering—Systems

and software Quality Requirements and Evaluation (SQuaRE)—Guide to SQuaRE, 2nd edn.

International Organization for Standardization, Genve, Switzerland (2014)

19. Weyuker, E.J.: Evaluating software complexity measures. IEEE Trans. Softw. Eng. 14(9),

1357–1365 (1988)

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation

in Software Engineering. Springer (2012)

21. Zuse, H.: A Framework of Software Measurement. Walter de Gruyter, Berlin (1998)

Performance Comparison of CRM Systems
Dedicated to Reporting Failures to IT
Department

Hubert Zarzycki, Jacek M. Czerniak, Dawid Lakomski and Piotr Kardasz

Abstract This paper contains study to confirm advantage of database systems in the

client-side architecture for certain applications. Research investigates whether the

client-side architecture systems can be more efficient at the significant load as com-

pared to server-side architectures systems. The experiments were carried out for two

types of servers and clients for a variety of tasks and servers load. For the purpose

of experiments a two-part database system for reporting failures to IT department

has been developed in Visual C# language according to former design assumptions.

Then it was compared with the same system developed using PHP in the server-side

architecture. The study has proven the advantage of client-side architecture systems

in case of servers under high load and confirmed importance of using such archi-

tecture for small and medium-sized systems. Additionally, it indicated the necessity

to optimize queries in order to accelerate operation of both kinds of applications as

well as the need to use optimum network setup of the server.

Keywords Database ⋅MySQL ⋅MsSQL ⋅ C# ⋅ Visual Studio.NET ⋅ PHP ⋅ ERP ⋅
CRM ⋅ Client-side ⋅ Server-side

H. Zarzycki

Department of Computer Science, Wroclaw School of Information Technology,

ul. Wejherowska 28, 54-239 Wrocław, Poland

e-mail: hzarzycki@horyzont.eu

J.M. Czerniak (✉) ⋅ D. Lakomski

AIRlab Artificial Intelligence and Robotics Laboratory,

Institute of Technology, Casimir the Great University in Bydgoszcz,

ul. Kopernika 1, 85-064 Bydgoszcz, Poland

e-mail: jczerniak@ukw.edu.pl

P. Kardasz

Cluster of Research, Development and Innovation,

ul. Pisudskiego 74, 50-020 Wrocław, Poland

e-mail: p.kardasz@klasterbri.pl

© Springer International Publishing Switzerland 2017

L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,

DOI 10.1007/978-3-319-43606-7_10

133

134 H. Zarzycki et al.

1 Introduction

Database systems are now the basis for the activities of each medium or large

company. Nowadays, where information is power and the efficiency of information

processing often means the success or failure in the market, it is difficult to imagine

efficient management [7, 12, 14, 17] without any support from the database com-

puter systems whether in dealing with customers (CRM [4, 13, 25]), financial and

accounting software, or the complex ERP systems [6, 9, 13, 15]. Over the years,

these systems were created in various architectures and had various forms, which

have a close relationship with the development of hardware, operating systems and

the computer science as a field of science. These systems were developed starting

from relatively simple from relatively simple applications written in text mode, usu-

ally in the architecture of client-side (fat client) through complex windowing ap-

plications [1, 4, 5, 8, 10] (first CRM and ERP systems) gradually passing on the

architecture of server-side (slim client) until relatively new and quite controversial

trend of web browser based applications [2, 10, 22]. Currently, complex database

systems from a programmer point of view are created basically using the same key

assumptions. Usually they are constructed using one of several popular database

management systems such as MS SQL, MySQL, Oracle, PostgreSQL, etc. In the

vast majority they have a modular design which allows one to meet full scalability

requirement, i.e. allows relatively easily to adapt applications to their rapid expansion

and to fulfill further customer needs [2, 8]. Most common public database systems

operate primarily on server-side architecture. At the present time server-side type of

architecture [1, 11, 24] is a dominant solution which forces out client-side type of

solutions to the margins of the market. There are many reasons for this, but it seems

that the most important are:

∙ performing complex calculations on server side. It spare user’s machine comput-

ing power. This allows to adapt applications to a large number of users including

those not equipped with the latest hardware,

∙ reducing overhead on the communications, and thus reduce the network load by

eliminating a large number of queries,

∙ theoretically easy procedure to change the behavior of a particular function by

modification of the procedure only on the server side. This eliminates the need for

distribution of the new software version to users.

In contrast, the most important advantages of client-side may include:

∙ there is no need to maintain continuous communication between the client and the

server. This is particularly important in the case of bandwidth intensive applica-

tions,

∙ client-side architecture should behave relatively well when the server is over-

loaded, However, the client computer must be suitably efficient,

∙ some operating systems and applications are unable to run on server-side archi-

tecture. Fat clients can deal with them because they have their own resources.

Performance Comparison of CRM Systems Dedicated . . . 135

Despite these strengths of server-side type of solutions applications running in the

client-side architecture have not been forced out of the market completely. They cover

the market segment where the above-mentioned advantages of server-side architec-

ture are mitigated or even eliminated completely. These are typically medium-sized

applications, usually fulfilling auxiliary functions. Examples of such applications

are systems reporting failures used to communicate users with the IT departments

[11, 16, 21], both within a single organization and to report failures related to the

ERP/CRM to the company responsible for the support. Such systems provide a good

material to compare both types of architecture in typical applications and use scenar-

ios and to analyze their advantages and disadvantages. In a further part of the paper

two systems reporting failures made in two different architectures will be presented

along with a comparative analysis of their performance in typical scenarios where

performance is modified by server load conditions, task type, server power and client

computer power.

2 Failure Reporting Systems

2.1 Failure Reporting System.NET

Failure Reporting System.NET is an application written in C# .NET [2, 3, 19] for the

IT department of Drozapol—Profile S.A. company. It’s built on the client-side archi-

tecture using MySQL database. The application consists of two closely cooperating

parts (administration console and end-user application) and has a quasi-modular con-

struction (adding a new module is conducted by adding a new form to the project

and updating publication). The application has a number of modules to extend the

functionality, among others, these are:

∙ search engine module,

∙ module to manually add failure message,

∙ allocation and management of tasks module (the Head)

∙ messages publication module,

∙ administration module.

The application for actual implementation had to fulfill many design assumptions

[5]. These included, among others, ease of use and intuitive client application, pass-

word security for administration console, implementation of procedures to recognize

end users, etc. For the experiments we used the administrative console version 1.42

and the 1.0 version of the client.

136 H. Zarzycki et al.

2.2 PHP Failure Reporting System

PHP Failure reporting system as the name suggests is written in PHP language [3, 7].

It has the server-side type of architecture and is an application using a Web browser.

This system is logically divided into two parts: one used to report failures by users

and other password-protected used for administration of failure reporting and user

management. The system has an extensive search engine, the possibility delayed reg-

istration of failures, and the ability to export reports to PDF. In the specified above

company, PHP Failure Reporting System was introduced as first, but executives de-

cided on its modernization [23] because due to performance and other issues it was

ill perceived among the users.

3 Purpose and Method of the Experiment

3.1 Aims of the Project

The aim of the experiment was to prove the thesis that the client-side architecture

systems can be more efficient in specific applications at the significant load of server

as compared to server-side architectures systems in a particular software group.

For the purposes of the experiment 5 basic factors were chosen:

∙ Architecture type with two levels: client (C#), server (PHP).

∙ Server Type with two levels: new hardware (S2) or old hardware (S1).

∙ Client Test Computer with two levels: new hardware (TC1) or old hardware (TC2).

∙ Server load with three levels: no load, normal load, over load

∙ Task Type with two levels: search or display.

Therefore, it was decided therefore to examine: the impact of server load on the

running time of each application (depending on the speed of the server), and the sec-

ond to examine the impact of configuration of the user’s computer on the application

action running time (depending on the server load). Both experiments are designed

to simulate the work of both applications in ideal (servers without load) and actual

conditions (servers running under load or overload) and thus allow the assessment

of the suitability of both application, depending on the environment in which they

work.

3.2 Test Platform

Preparing a suitable environment for testing experimentation is very important [20].

The authors using previous experiences [18, 21] proposed a test platform which

consists of:

Performance Comparison of CRM Systems Dedicated . . . 137

The test platform consists of:

∙ Server 1: PC with Intel®Core™i7-6700T Processor, 8 GB RAM, 500 GB disk

and running Windows 8.1 Professional and software Xampp Lite which includes,

among others, Apache, and MySQL database.

∙ Server 2: PC with Intel®Core™i7-6700K Processor, 8 GB of RAM, disk 2x1TB

RAID 10 and running Windows 8.1 Professional version and software Xampp Lite

which includes, among others, Apache, and MySQL database, as well as software

to man-age the server echoVNC.

∙ Test computer 1: PC with Intel®Core™i5-6402P Processor, 6 GB of RAM,

500 GB disk and running Windows 10 Professional with administration software.

∙ Test computer 2: PC with Intel®Core™i5-6500T Processor, 4 GB of RAM,

320 GB disk and running Windows 10 Professional and a typical user software

(ERP system client application, user applications, company applications, etc.).

∙ PHP Failure Reporting System version 0.3 written in PHP for the Department of

Computer Science of DROZAPOL—PROFILE SA company.

∙ Failure Reporting System II version 1.42 written in C# based on .NET technol-

ogy created in Department of Computer Science of DROZAPOL—PROFILE SA

company.

∙ Everest by Lavalys version Corporate.

∙ Consume by Microsoft.

3.3 The Experiment

Experiment was carried out in two stages. The first was to compare two studied so-

lutions on two different servers in three states: no load, normal load and overload. In

the state of no-load server doesn’t run any application; load state is running the Ever-

est Stability Test module (CPU load, RAM memory, hard disk, cache, and chipset

motherboard) and overload, additional CPU load with program Consume (option “-

cpu-time”). Both applications running on Test Computer 1. The second stage uses

only the Server machine 2 and workstation labeled Test Computer 2. The purpose

of this stage was to check how similar tasks will perform on regular computer and

equipment of older generation. For the tests a working copy of the actual data from

the database of failure reporting system were used. The test procedure consisted of

measuring the time to display:

(a) search results of the entire database (3257 records)

(b) “daily” reports (22 records)

Stage I

Both parts of table Table 1 presents the results of measurements performed on

Server 1 and Server 2 while performing search tasks on the database. Both servers

were in the no-load state.

138 H. Zarzycki et al.

Table 1 Results of the experiment, state no-load during the search

Server 1 in no-load state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 6,367 6,272 7,196 6,194 6,379 6,482

C# 2,343 2,59 2,453 2,343 2,451 2,436

Server 2 in no-load state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 6,432 6,601 6,96 6,424 7,229 6,729

C# 2,328 2,296 2,281 2,315 2,343 2,313

Table 2 Results of experiment, state no-load during operations on selected records

Server 1 in no-load state

Time to display the records in the [s]

Measurement

number

1 2 3 4 5 Average

PHP 0,113 0,119 0,103 0,101 0,1 0,107

C# 0,31 0,21 0,31 0,315 0,315 0,29

Server 2 in no-load state

Time to display the records in the [s]

Measurement

number

1 2 3 4 5 Average

PHP 0,107 0,106 0,108 0,105 0,109 0,107

C# 0,031 0,031 0,031 0,032 0,031 0,031

Table 2 presents the results of measurements performed on Server 1 and Server

2 made during the execution of tasks to display selected records from the database.

Both servers were in the no-load state.

Table 3 presents the results of measurements performed on Server 1 and Server 2

while performing search tasks on the database. Both servers were in the normal load

state.

The results presented in Table 4 show the measurements performed on Server 1

and Server 2 made during the execution of tasks to display selected records from the

database. Both servers were in the normal load state.

The data in the tables signed Table 5 and Table 6 relate to the measurement of exe-

cution time, respectively, search for information in the database and display records.

Tasks were performed on the test machines Server 1 and Server 2 operating in an

overload condition.

Performance Comparison of CRM Systems Dedicated . . . 139

Table 3 Results of the experiment, state normal load during the search

Server 1 in normal load state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 10,71 8,082 7,531 6,917 9,43 8,535

C# 2,487 2,515 2,68 2,95 2,5 2,626

Server 2 in normal load state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 8,549 6,423 7,123 5,498 5,984 6,715

C# 2,515 2,5 2,437 2,484 2,45 2,477

Table 4 Results of experiment, state normal load during operations on selected records

Server 1 in normal load state

Time to display the records in the [s]

Measurement

number

1 2 3 4 5 Average

PHP 3,04 1,069 1,074 2,095 1,019 1,659

C# 0,171 0,171 0,171 0,187 1,562 0,452

Server 2 in normal load state

Time to display the records in the [s]

Measurement

number

1 2 3 4 5 Average

PHP 0,995 0,642 1,054 0,733 0,613 0,807

C# 0,171 0,187 0,328 0,185 0,171 0,208

Table 5 Results of the experiment, state overload during the search

Server 1 in overload state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 25,25 27,62 29,42 23,42 19,1 24,963

C# 3,25 3,32 3,59 2,984 3,965 2,822

Server 2 in overload state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 23,66 26,84 25,87 26,87 22,12 25,073

C# 3,6 3,862 3,421 3,451 3,421 3,551

140 H. Zarzycki et al.

Table 6 Results of experiment, state overload during operations on selected records

Server 1 in overload state

Time to display the records in the [s]

Measurement

number

1 2 3 4 5 Average

PHP 15,11 16,12 14,99 17,1 13,64 15,391

C# 0,859 0,453 0,515 0,84 0,671 0,668

Server 2 in overload state

Time to display the records in the [s]

Measurement

number

1 2 3 4 5 Average

PHP 11,25 11,87 10,96 14,85 12,85 12,358

C# 1,5 0,852 1,15 1,2 1,31 1,202

Stage II

For a full spectrum of results both applications were examined on an older gener-

ation computer (Test computer No. 2). Measurements were made for the three load

states for the Server No. 2 and overload state for the Server No. 1. All the other

conditions were the same (search and display selected records). The results of these

experiments are given in the last three tables (Tables 7, 8, 9 and 10).

Table 7 Results of the experiment, state no-load during on an older generation computer

Server 2 in no-load state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 12,67 11,73 13,68 13,42 14,5 13,201

C# 14,99 13,57 13,61 13,53 13,58 13,855

Server 2 in no-load state

Time to display the records in [s]

Measurement

number

1 2 3 4 5 Average

PHP 0,16 0,162 0,167 0,165 0,17 0,165

C# 2,42 2,4 2,41 2,34 2,34 2,382

Performance Comparison of CRM Systems Dedicated . . . 141

Table 8 Results of the experiment, state normal during operations on an older generation computer

Server 2 in normal load state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 13,14 12,85 13,55 13,84 13,57 13,389

C# 11,46 13,64 14,14 14,58 13,23 13,409

Server 2 in normal load state

Time to display the records in [s]

Measurement

number

1 2 3 4 5 Average

PHP 0,786 0,713 0,866 0,841 0,71 0,783

C# 2,78 3,31 3,14 2,866 2,473 2,914

Table 9 Results of experiment, state overload during operations on an older generation computer

Server 2 in overload state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 19,74 21,43 16,73 18,43 19,67 19,201

C# 14,74 14,12 14,45 14,27 14,82 14,481

Server 2 in overload state

Time to display the records in [s]

Measurement

number

1 2 3 4 5 Average

PHP 8,633 7,543 6,922 10,12 8,42 8,328

C# 3,625 3,737 3,652 3,781 3,412 3,641

Table 10 Results of experiment, state overload during operations on Server 1 and an older gener-

ation computer

Server 1 in overload state

Search time in [s]

Measurement

number

1 2 3 4 5 Average

PHP 21,07 22,12 19,03 16,27 16,98 19,1

C# 13,4 12,14 15,16 12,87 14,31 13,58

Server 1 in overload state

Time to display the records in [s]

Measurement

number

1 2 3 4 5 Average

PHP 11,6 10,24 9,47 11,32 8,94 10,31

C# 2,08 1,83 1,64 2,47 1,75 1,95

142 H. Zarzycki et al.

4 Analysis of the Results

Preliminary analysis the numbers representing the input parameters indicates, that

the results change significantly with the load on the server. As for job type, i.e. search

time and display time, one can see a large differences especially for server in no-

load state. In fact performing one task can be several times faster than performing

the other. The power of the client computer is particularly important for applications

written in C#. Without fast client computer application in C# does not perform too

well. The power of the server and the server, and the second affects relatively in the

slightest on the final results changing them by an average of less than thirty percent.

From the point of view of individual measurements there is no statistically significant

difference between the performance of the two applications.

Analyzing the results of measurements in Tables 7–10, illustrated in the charts,

is easy to see a pattern: the cooperation between the two servers with a relatively

fast machine time to generate results for C# based system were lower than those pro-

vided with the system written in PHP. This happened both in the case of displaying

“daily records” and carrying out more complicated question whose task was to dis-

play several thousand of records. However, while the measurements on the no-load

machine vary from tenths of seconds as a result of the operation displaying selected

records (and thus virtually imperceptible to users), in the case of generating search

results these times were, in the case of a PHP program, almost three times higher

while the server was busy with program Everest. The times generated by a program

written in PHP tested on both servers, when viewing selected records, were twice

higher that C# program. An interesting curiosity is the second result of displaying

selected records, where the times to generate the results did not differ too much from

the results of the previous measurement—no-load state of the server. This may be

related to the complexity of the question, the quantity of the necessary comparisons

to perform and thus the degree of load on the MySQL database server (which, in-

cidentally, is controlled by a system service, and therefore high priority process).

During the last measurement made on the overloaded server results are radically dif-

ferent: while the system written in C# does not show a significant increase in time

to display the results in comparison to previous cases, the system implemented on

the server side generates a very large measurement time to display the results: from

fifteen times longer than in the case of selected records for almost twenty five higher

in the case of database search. In practice, this prevents the efficient use of the system

(Fig. 1).

The reason for this phenomenon is easy to explain: in the case of system written in

C# program performs all calculations associated with a graphical display of records

on a computer, database takes only small portions of the data used to populate eg. the

components and of course to generate results. In contrast, a system written in PHP is

generated entirely on the server side, including both the calculations and generating

the query results Fig. 1 (that is, there is a de facto collaboration of two Apache and

MySQL servers) and displaying already finished internet page is conducted by user’s

browser. High load of server will therefore delay the job at the expense of other

server processes. In confirmation of these results, one can see that for the old type

Performance Comparison of CRM Systems Dedicated . . . 143

Fig. 1 Average times in [s] of operations on selected records, servers in overload state

Fig. 2 Average times in [s] of operations on selected records on an older generation computer,

servers in no-load state

of computer and overloaded servers 1 and 2 give there is only a slight advantage of

application in C# (Fig. 2).

As for the results of stage II—the conclusions are not so obvious. Less powerful

machine equipped with a previous generation processor cooperating with servers

was used. Results obtained for the display of selected records—see Fig. 2—indicate

that the PHP program needed less time than the program created in C# (reached an

average of 2 s while PHP had less than 0.2 s). Similar results were obtained, when

the server was in loaded state. Only with overload server the times for C# were lower,

but not in such a spectacular way as in the previous studies. It can be concluded that

for less powerful machines on the user side, the advantage in the form of shorter

calculation runtime is largely counteracted. The reason in this case is the design

of .NET platform which includes C# language and is a base of executed programs.

.NET needs large amount of memory and requires a large amount of other resources.

When used with older generation effects are not impressive (Fig. 3).

144 H. Zarzycki et al.

Fig. 3 Average times in [s] of operations on selected records on an older generation computer,

servers in overload state

As an interesting fact one can provide the result of additional testing that the au-

thors of this work carried out at the end of the experiment: to the overloaded server

with programs Everest and Consume another process Consume was added with “-

kernel” parameter (see Fig. 3). This parameter additionally attach more work to ker-

nel. The result was a complete stop of GUI server, which resulted in the stopping of

the Apache server application and disabled the display of pages. A big surprise was

that the .NET Failure Report System continued its work on a level comparable to

that observed when working with overloaded server. This can be explained by lesser

resistance of Apache web server to the unstable work of the MySQL server.

5 Conclusions

In summary, one can conclude that, client-side database systems in the case of faster

machines are much more efficient than the systems based on server-side type of ar-

chitecture. However this is not the case on older generation machines. Server-side

database systems, if they have access to efficient data centers are more optimal so-

lution than dedicated user machines with limited capabilities. When working under

normal load and processing small amounts of data, both types of systems do not differ

significantly in terms of performance. However, in case of large portions of data and a

relatively less powerful server user-side systems presents a much greater efficiency.

In addition, one have to mention that the server-side system require administrator

attention to provide robust server security, because these are the systems available

through the website which is associated with a higher risk of attacks. It is obvious

server-side systems are much less resistant to overload of the server, Denial of Ser-

vice (DoS) attacks [3–5], or delay on the links. User-side systems are much more

economical, they do not need expensive equipment to operate: with small databases

it is enough to use regular PC and a free database such as MySQL. Summarizing

Performance Comparison of CRM Systems Dedicated . . . 145

experimental part and analyzing above observations one can come to the conclusion

that there is no universal platform on which to build data processing systems. Both

systems have their advantages and disadvantages which manifest themselves in spe-

cific situations and specific environments. However, based on literature and exper-

imental research one can suggest to large organizations which can afford their own

large server farms (or dedicated servers) and are able to simultaneously handle sev-

eral hundreds or thousands of queries and also need a system capable of working on

less powerful workstation that systems based on web page are best solution for them.

The experience of many companies confirm that these are relatively cheap solutions

and available from any place without specialized software. An alternative to expen-

sive hardware solutions in this case is renting space on a server or the recently very

popular “cloud computing.” In this case, however, reckon with the possible overload

of these machines, a delay on links and other such issues which may adversely affect

the viability of the system.

Systems written in languages such as C# or Java are a quite good solution for

companies which have a relatively good machines designed to work with ordinary

users and haven’t got extensive data center infrastructure. However, they have one

or two servers with less impressive hardware specifications, which run multiple ser-

vices. Statistics published in the country, and for the small and medium enterprises

(SME) shows that most companies in this sector does not invest large sums in the

development of IT and server products. The advantages of these solutions are very

low delays, ease of implementation and use, and in the case of simpler systems their

cost is relatively small and is (depending on the number of licenses) in the range

from a few hundred up to several thousand PLN.

References

1. Adamczyk, J.: The CRM in a classic and web context (in Polish) (2009)

2. Angryk, R.A., Czerniak, J.: Heuristic algorithm for interpretation of multi-valued attributes in

similarity-based fuzzy relational databases. Int. J. Approx. Reason. 51(8), 895–911 (2010)

3. Apiecionek, L., Czerniak, J.M.: QoS solution for network resource protection. In: Informatics

2013: Proceedings of the Twelfth International Conference on Informatics, pp. 73–76 (2013)

4. Apiecionek, L., Czerniak, J.M., Dobrosielski, W.T.: Quality of services method as a DDoS

protection tool. In: Intelligent Systems’2014, Tools, Architectures, Systems, Applications, vol.

2, pp. 323, 225–234 (2015)

5. Apiecionek, L., Czerniak, J.M., Zarzycki, H.: Protection tool for distributed denial of services

attack. In: Beyond Databases, Architectures and Structures, BDAS, 2014, vol. 424, 405–414

(2014)

6. Bojar, W., Drelichowski, L., Lewandowski, R., Oszuscik, G., Zarzycki, H.: A comparative

analysis of polish economic development across the eu countries with the use of olap tools

during 1994–2009. In: Studies and Proceedings of Polish Association for Knowledge Manage-

ment, vol. 59, pp. 124–147 (2012)

7. Converse, T., Park, J., Morgan, C.: PHP5 i MySql Bible. Helion, Gliwice (2005)

8. Czerniak, J., Zarzycki, H.: Application of rough sets in the presumptive diagnosis of urinary

system diseases. Artif. Intell. Secur. Comput. Syst. 752, 41–51 (2003)

9. Czerniak, J.: Evolutionary approach to data discretization for rough sets theory. Fundamenta

Informaticae 92(1–2), 43–61 (2009)

146 H. Zarzycki et al.

10. Czerniak, J.M., Apiecionek, L., Zarzycki, H.: Application of ordered fuzzy numbers in a new

ofnant algorithm based on ant colony optimization. In: Beyond Databases, Architectures and

Structures, BDAS, 2014, vol. (424), pp. 259–270 (2014)

11. Czerniak, J.M., Dobrosielski, W., Zarzycki, H., Apiecionek, L.: A proposal of the new owlant

method for determining the distance between terms in ontology. In: Intelligent Systems’2014,

Tools, Architectures, Systems, Applications, vol. 2, pp. 323, 235–246 (2015)

12. Czerniak, J., Dobrosielski, W., Apiecionek, L.: Representation of a trend in OFN during fuzzy

observance of the water level from the crisis control center. In: Proceedings of the Federated

Conference on Computer Science and Information Systems, IEEE Digital Library, ACSIS, vol.

5, pp. 443–447 (2015)

13. Czerniak, J., Macko, M., Ewald, D.: The cutmag as a new hybrid method for multi-edge grinder

design optimization. Adv. Intell. Syst. Comput. 401, 327–337 (2016)

14. Czerniak, J., Smigielski, G., Ewald, D., Paprzycki, M.: New proposed implementation of ABC

method to optimization of water capsule flight. In: Proceedings of the Federated Conference on

Computer Science and Information Systems, IEEE Digital Library, ACSIS, vol. 5, pp. 489–493

(2015)

15. Dejnaka, A.: CRM. Zarzadzanie relacjami z klientami, Helion, Gliwice (2002)

16. Ewald, D., Czerniak, J.M., Zarzycki, H.: Approach to solve a criteria problem of the ABC

algorithm used to the WBDP multicriteria optimization. In: Intelligent Systems’2014, Mathe-

matical Foundations, Theory, Analyses, vol. 1, pp. 322, 129–137 (2015)

17. Kozik, R., Choraś, M., Flizikowski, A., Theocharidou, M., Rosato, V., Rome, E.: Advanced

services for critical infrastructures protection. J. Ambient Intell. Hum. Comput. 6(6), 783–795

(2015). http://dx.doi.org/10.1007/s12652-015-0283-x

18. Owedyk, J., Mathia, Z., Zarzycki, H.: Optimization algorithm supported on minimizing the

Kullback-Leibler information divergence in some dynamical systems. Wroclaw Sch. Technol.

Sci. Bull. 5, 12–19 (2015)

19. Solis, D.: Ilustrated C#. Apress (2008)

20. Swierczewski, L.: Intel manycore testing lab—hardware and software environment focused on

didactic of development and efficiency testing in software parallelin. Wroclaw Sch. Technol.

Sci. Bull. 3, 32–36 (2013)

21. Walser, K.: Auswirkungen des CRM auf die IT-integration. Eul Verlag (2006)

22. Yuan, S., Chang, W.: Mixed-initiative synthesized learning approach for web-based CRM.

Expert Syst. Appl. 20(2), 187–200 (2001)

23. Zakrzewski, P.: How to prepare the implementation of CRM (in Polish). Magazyn Modern

Mark. 7, 38–42 (2001)

24. Zarzycki, H.: Enterprise resource planning systems application and implementation on the

example of simple.erp software package. Adv. Inf. Syst. Manage. AITM 205, 281–291 (2011)

25. Zarzycki, H., Fronczak, E.: A practical approach to computer system architecture for an agro-

food industry information center. PSZW 33, 248–255 (2010)

http://dx.doi.org/10.1007/s12652-015-0283-x

Part III
Software Process Improvement

Software Engineering Needs Agile
Experimentation: A New Practice
and Supporting Tool

Lech Madeyski and Marcin Kawalerowicz

Abstract This article proposes a novel software engineering practice called Agile
Experimentation. It aims mostly small experiments in a business driven software
engineering environment where a developer is a scarce resource and the impact of
the experimentation on the return-of-investment driven software project needs to be
minimal. In such environment the tools used for the sake of research need to have
virtually no negative impact on the developers, but simultaneously those tools need
to collect high quality data to perform sound enough quantitative analyses. In order
to fulfill those requirements, and to support the Agile Experimentation practice, we
co-developed a tool calledNActivitySensor that gathers the data about the developers
activities in awidely used IntegratedDevelopment Environment—Visual Studio. The
proposed Agile Experimentation practice and the developed tool complement each
other to support lightweight experimentation in real-world software development
settings.

Keywords Agile experimentation · Empirical software engineering ·
Experimentation in software engineering · NActivitySensor

1 Introduction

Performing experiments in industrial software development environment is difficult
and quite expensive [8]. It is usually hard to replicate the software engineering exper-
iments [1]. The same problem is magnified in Software Engineering experiments

L. Madeyski
Faculty of Computer Science and Management, Wroclaw University
of Science and Technology, Wyb.Wyspianskiego 27, 50-370 Wrocław, Poland
e-mail: Lech.Madeyski@pwr.edu.pl

M. Kawalerowicz (B)
Faculty of Electrical Engineering, Automatic Control and Informatics,
Opole University of Technology, ul. Sosnkowskiego 31, 45-272 Opole, Poland
e-mail: m.kawalerowicz@po.opole.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_11

149

150 L. Madeyski and M. Kawalerowicz

conducted in industrial environment. There is usually no budget for conducting the
experiment twice, with a classic method (used to date) as well as using the new
approach (the one being evaluated). It takes a rich country and research institute to
perform controlled replication experiment in real software project with professional
developers [23]. It seems like in last years the software engineering scientists real-
ized that there is a need for experimentation. In fact, nowadays it is more and more
difficult to publish research papers that do not include an empirical evaluation of new
methods, practices, technologies or tools.

While we notice the research activities concerning experimentation in software
engineering of the large multinational corporations like IBM (http://research.ibm.
com/—213 publications in “Programming Languages and Software Engineering”
area), Microsoft (http://research.microsoft.com/–203 research projects in “Software
development, programming principles, tools, and languages” area) or Google (http://
research.google.com/—177 publications in “Software Systems” area),1 we do see
the lack of research motivation in smaller companies all around the world. Running
real world software engineering project is a business with many interested parties,
the most important of which is the customer. Unfortunately, the main priority for a
customer is the return of investment (ROI), not the experimentation with a new soft-
ware engineering method. Despite it could be beneficial in later projects. Customers
fear that it will cost too much and there will be too much hassle while performing
the experiments. For example developers will be pulled away from their actual job
and software development tasks they should focus on. The developers themselves
fear they will have more responsibilities in they day-to-day work. To overcome such
difficulties and to fill the existing gap with regard to lack of software engineering
experimentation practices and supporting tools, we call for something we denomi-
nated Agile Experimentation (more after simple definition from Merriam-Webster’s
Learner’s Dictionary: “quick, smart, and clever” than after Agile Software Develop-
ment). It is a way to perform empirical studies and research in real-world software
projects with no or minimal impact on people involved in those projects and their
schedules. But in the same time what we propose should give researchers the way to
perform effective experimentation to reach reliable enough conclusions on a subject
being investigated (e.g., the impact of a new practice, method or tool).

In this paper, we start from our motivation, presented in Sect. 2, on which we
build our agile experimentation “manifesto” formulated in Sect. 3, where the idea is
thoroughly explained. Then we focus on a tool that we co-developed to aid the agile
experimentation. It is called NActivitySensor after its predecessor called Activity
Sensor [18–20] that was developed under the supervision of one of the authors of
this paper. The new tool was built for the Microsoft .NET Framework development,
while its predecessor was built for Java. We describe the new tool in detail in Sect. 4
and in Appendix A. Discussion and future work can be found in Sect. 5.

1The numbers gathered in May 2016.

http://research.ibm.com/
http://research.ibm.com/
http://research.microsoft.com/
http://research.google.com/
http://research.google.com/

Software Engineering Needs Agile Experimentation … 151

2 Motivation

The reasons given by scientists and professionals for not experimenting in software
engineering are greatly outlined in the article “Should computer scientists experiment
more?” by Tichy [22]. Among them are:

• Traditional scientific method is not applicable.
• The current level of experimentation is good enough.
• Experiments cost too much.
• Demonstration till suffice.
• There is too much noise in the way.
• Progress will slow.
• Technology changes too fast.
• You will never get published.

Tichy fights those excuses one by one in his paper with argumentation that will
most likely resonate with average scientist but not a business person. It is because
the researcher is most likely to aim at the scientific excellence and businessman is
most likely to be interested in ROI. The argument that “experiments cost too much”
is the hardest to fight in a ROI-oriented environment such as industrial software
development. It is a fact that performing an experiment costs. It might be beneficial
in a long term, but in terms of immediateROI, it is always burdenedwith an additional
cost. It is the reason why so few smaller companies are willing to take the additional
experimentation costs into consideration while racing for the customer on highly
competitive market. For the same reason there are so few industrial professionals
available for experimentation. They are considered to be valuable resource to waste
their time for additional tasks like taking part in experiments. The professionals
themselves seem to be rather ambivalent to the idea of taking part in experiments.
From one point of view, they know that the results are potentially beneficial but from
the other, they fear they will have less time for their duties towards the employer.

Thomke in his article “Enlightened Experimentation - The New Imperative for
Innovation” names the cost of the experimentation themain damper for the companies
to create great products [21]. His list of “Essentials for EnlightenedExperimentation”
gives four rules for companies to be more innovative:

1. Organize for rapid experimentation.
2. Fail early and often, but avoid mistakes.
3. Anticipate and exploit early information.
4. Combine new and traditional technologies.

3 Agile Experimentation “Manifesto”

We think it is a time to give both the business professionals and researchers ready
to use tool-set to align their goals in software engineering. Researchers want to
perform controlled experiments that will give reliable enough conclusions leading

152 L. Madeyski and M. Kawalerowicz

to improvements in software engineering. Business professionals (e.g., an engineer
working on a project or manager supervising it) are mostly interested in return of
investment. The work done should make the customer happy and bring benefit for
the organization. The results of potential experimentation is interesting for them only
if the main goal is met and the additional experimentation cost is acceptably low. We
want to give the methods and tools they can use to better meet those requirements.
We gathered those methods and tools in popular nowadays form of “manifesto”
[2, 3, 6, 7]. We have played with the form and proposed Agile Experimentation
“Manifesto”. The target of our “manifesto” are both the researcher as well as the
practitioner willing to perform experiments. Some of the items might seem obvious
for an experienced researcher but they are not necessary so obvious for an average
practitioner. Thus the abstraction level of the items. Our “manifesto” contains the
following rules:

1. Use small-n and single case experiments rather than large scale experiments to
cut costs and enable experimentation.

2. Care about the power of your experiments to reduce waste.
3. Search for the best experiment design that fits your settings.
4. Use friction free tools for data gathering to not interfere with the real-world

development environment.
5. Use just-in-time quantitative data rather than late, post project qualitative surveys

to enable early informed decisions (on a basis of quantitative data instead of late
anecdotal information).

What really hides behind those statements? How are they important for a busi-
ness professional or a researcher wanting to do experiment in a real-world software
engineering project.

3.1 Small-n and Single Case Experiments

As we mentioned earlier in this paper the main driver of a real-live business software
engineering project is ROI, which is what the customer is most interested in. He puts
his money into the project and expects to get the best possible software in exchange.
There is no place for large scale experimentation in such project. There is no money
for an experiment with a large number of professional developers. In fact there can be
a problem with finding large number of professional developers willing to sacrifice
their precious time for any kind of experiment. What can be done to change this
situation? There is a way used by pharmacists and medical scientists for years. It
is called small-n and single case experimentation [5, 10]. Those are special kind
of experiments designed especially for very small samples (small-n) or even one
participant (single-case). They are very helpful in clinical trails where the researcher
do not have a large set of patients or when you study human behaviour. Often such
kind of experiments are done as a low cost pre-studies before large scale and more
expensive experiments.

Software Engineering Needs Agile Experimentation … 153

This method took inroads into the software engineering already [24]. The reason-
ing is simple. Software development team is usually a small group of people (small-n)
working on a single software project. In fact every developer working in a project
is a case for itself. If psychologists are using small-n and single case experiments to
study human behaviour why not use it in software engineering?

We are using this approach to study our extension to TDD (Test Driven Develop-
ment) that we called CTDD (Continuous Test Driven Development) [17] in a real,
industrial software development environment. We have promising results using the
agile experimentation to study TDD versus CTDD. In fact the idea for agile experi-
mentation was actively trialed during this experiment. We have used our own princi-
ples to design and conduct the TDD versus CTDD experiment. We are intending to
publish a paper discussing the results and our experience with agile experimentation
as soon as we finish the ongoing experiment.

The idea behind our experiment it to extend the commonly used TDD chain of
actions:

write the test → execute it → see if it fails → satisfy the test → run the test →
see if it succeeds → refactor → run the test → see if it still succeeds.

The extension involves using continuous testing (unit tests performed on a back-
ground thread in the development environment). Thanks to that technique we can
eliminate the need of manually starting the tests and thus improve software develop-
ment. This kind of improvement can be seen as a modification of the existing TDD
practice in contrast to combining different software development practices together
(e.g., the TDD and pair programming practices [13–15]). In CTDD the chain of
actions is shorter:

write the test → see if it fails → satisfy the test → see if it succeeds → refactor
→ see if it still succeeds.

The reasoning is that a small increase of productivity in an individual developer can
make a big impact in the whole developers community. The question is how omitting
the need of manually executing the tests will impact the overall performance of the
developer. That is what we want to estimate by conducting research following the
idea of agile experimentation. We had to our disposal only one small (measured in
terms of developers) project where only two developers were contracted. An ideal
small-n experimentwith two conditions (conditionA: TDDand conditionB:CTDD).
But doing small-n and single case experimentation is challenging in another aspect.
Precisely because of the small number of participants the researcher needs to be
extra caution to be able to achieve enough statistical power to detect the difference
between two conditions (software development practices, TDD and CTDD, in this
particular case).

3.2 Care About Power of Your Experiments

The so called A/B experiments [12] are quite popular in the mainstream web devel-
opment lately. They are used to perform simple online test where a new version of

154 L. Madeyski and M. Kawalerowicz

an existing website is created with, e.g., slightly different layout, colours, button
orientation or alike and taken online alongside the old version. The old version (A—
baseline) is showed to a randomly assigned part of the online audience and the new
version (B—with intervention) to the other. The visitors behaviour is then recorded.
Is the new layout causing them to stay on the page longer? Are they “liking” the
page more if the colours are different? Do they click the “order” button more often
in the new version? What is done here is a randomized controlled experiment, using
between-subject design, where two groups of subjects are simultaneously tested: one
being the control group (A) and one being under “treatment” (B). The subjects are
simultaneously tested but assigned randomly to one of the groups, A or B. What
is important is the ability to detect statistically significant difference between the
treatments, i.e., the statistical power of the experiment is crucial. The power of any
test of statistical significance is formally defined as the probability that a false null
hypothesis will be rejected if there is no difference between the treatment and the
baseline.

Researchers should be interested if the recorded difference between A and B is
in fact statistically significant and, last but not least, what is the size of the effect
[11, 15, 16]. The power of the test is especially important if performing small-n
and single case experiments, see Sect. 3.1. To detect an effect of reasonable size
the person performing agile experimentation will have to analyze power taking into
consideration the small sample size. Another important aspect is generalization from
such experiments. Agile experimentation may impede generalisation, but the threads
to external validity can beminimized by the fact that agile experiments are conducted
in a real world environment, by real software developers, not in a laboratory envi-
ronment by inexperienced student subjects as is often the case.

In a simple online A/B test the, so called, random allocation is used. A visitor is
randomly put into a group that sees A or B version of a web site. It is enough for such
a simple experiment, but what if a researcher performs a more sophisticated small-n
or single case experiment? In such case, the more possible experiment arrangements
the better. The researcher needs to eliminate all competing explanations for the effect
he is observing.

Let us consider an experiment with four phases. Every phase is either a baseline
(A) or a treatment condition (B). The moment when to switch between A and B can
be randomly chosen. This way the possible arrangements are: switch after the first
phase—ABBB, switch after the second phase—AABB, or after the third phase—
AAAB. The set of possible arrangements is quite small. What if the researcher
decides to use a completely random approach? This means to simply choose every
phase randomly? Using this approach he will get 16 (24) possible arrangements like
this: AAAA, BAAA, ABAA, AABA, AAAB, BBAA, ABBA, AABB and so on.
But some of the arrangements are not desirable from the beginning (like AAAA or
BBBB). In that case the researcher can decide to gather the phases in blocks. For
example always in pairs like AABBAA, AAAABB, BBAAAA, and so on.

Let us consider the TDD versus CTDD experiment. Lets assume we have 8 mod-
ules to do. We have 2 software developers so each one may get 4 modules to write.
There are 6 possible arrangements within these 4 modules (4 observations, 2 for A

Software Engineering Needs Agile Experimentation … 155

and 2 for B): AABB, ABBA, BBAA, BAAB, ABAB, BABA. For 2 developers there
is 6 ∗ 6 = 36 possible arrangements. Maybe switching from the module/package
level to the class level (the number of classes is usually larger than the number of
packages in Java or solutions in .NET) in the TDD versus CTDD experiment will
be give us higher power to detect the difference? Maybe another design of exper-
iment will be better (for example randomized block design)? This kind of a priori
consideration can pay off if the researcher strives for reliable results.

3.3 Searching Best Experiment Design

Finding an appropriate design for a given experiment in software engineering is
not an easy task. If it is an small-n or single case experiment it might be even
harder because it is not common in software engineering. There might be a need
to extrapolate the types of experiments from different fields of study onto software
engineering. For example, Dugard et al. [4] give a set of example experimental
designs. There is a lot to choose from: single-case/small-n one way, single-case
randomize block design, small-n repeated measures, small-n repeated measures with
replicates, two-way factorial single-case/small-n, single-case AB, single-case ABA,
multiple baseline AB, multiple baseline ABA. One design may be better for one kind
of experiment and the other for another type. But how to choose the right one? The
one that will answer the posed research question in the best way? There is not an
easy way to choose a design. There is no tool for searching the available design given
project and research constrains. For example in our research aboutTDDversusCTDD
we had a small project that was contracted for 2 developers, having 160h/month in
the period of at least one year, with estimated 37 modules (400 classes) to write. We
searched the possible set of designs answering the following important questions [4]:

• Do we have at least two participants? Yes, we have.
• Do we have two conditions to compare? Yes.
• Will each participant receive each of the condition on at least two occasions?
Also yes (we have a lot of modules/classes to write and if we consider one as an
“occasion” then we are good to go).

• Is it possible to randomly assign conditions to each participant? Yes—we canwrite
a software tool that will randomly assign a class to a given treatment.

“A small-n repeated measure design with replicates” experimental design seemed
to be the most suitable for our needs.

3.4 Use Friction Free Tools for Data Gathering

Software developers refer to tools that do not need much attention while in use as
“friction free tools”. It is because “friction free tools” are not generating “resistance”

156 L. Madeyski and M. Kawalerowicz

while in use. Meaning they need no special attention from the developer. It is quite
important to use such tools in agile experimentation while gathering data. Agile
experimentation tools should work without the developer attention. They have to
integrate seamlessly with the developer environment. After simple installation and
minimal configuration they should be up and running. Such friction free data gath-
ering software tools need to be quite resilient. If the data gathering relies on network
communication and the developer decides to work from home, they have to provide
fall back scenarios so the data will not be lost.

What kind of tools will be needed in any given research depends on the planned
experiment. There is quite a number of tools already written and available for var-
ious range of experiments. That was the case in our empirical evaluation of new
approaches to software engineering—TDD versus CTDD. We found very good con-
tinuous testing plug-in for IDE that was used in the project under investigation. We
needed only to extend it with the data gathering capabilities. It was an open source
project so we “forked it”, meaning created our branch of source code and added a
small data gathering part. We saved measurements like: when, what test and with
what outcome were run, how long it took to complete them. The detailed description
of the tool we called AutoTest.NET4CTDD can be found in [17].

The second tool we created was a small randomized block generation. We men-
tioned it in Sect. 3.2. It was a tool that randomly assign a condition to a given class. It
simply assigned a newly created class to TDD or CTDD group by adding a specially
formatted line at the beginning of the file. The linewas read byAutoTest.NET4CTDD
and the plug-in acted accordingly. It automatically turned on or off the continuous
testing.

We needed one more tool: reliable event recorder for our IDE. We were quite
surprised when we realized there is none available. So in this case we have written
it from scratch and open sourced it for the community. The NActivitySensor tool is
described in Sect. 4.

3.5 Use Just-in-Time Quantitative Data

Wedonot advocate discontinuing the traditional research approaches involving semi-
quantitative or qualitative data gathered after the experiment using various kinds of
surveys.We suggest to enrich this kind of datawith a quantitative data based on exper-
iments, both, large and small scale (e.g., small-n, single-case). We strongly believe
that such data can be gathered during the research without an additional effort from
the researcher and the subject. This data gathering can occur in a just-in-timemanner.
Meaning the data is gathered in real-time as it happens and is logged immediately
for researcher to be used in his convenience. We have build our TDD versus CTDD
research tools in that way. Both AutoTest.NET4CTDD2 and NActivitySensor3 are
storing the data in a central database fromwhere they can be used as they are needed.

2Available at https://github.com/ImpressiveCode/ic-AutoTest.NET4CTDD.
3Available at https://github.com/ImpressiveCode/ic-NActivitySensor.

https://github.com/ImpressiveCode/ic-AutoTest.NET4CTDD
https://github.com/ImpressiveCode/ic-NActivitySensor

Software Engineering Needs Agile Experimentation … 157

4 NActivitySensor

For the purpose of this agile experimentation we created a tool called NActivity-
Sensor. It is a “friction free” kind of software tool we described in Sect. 3.4. It is
designed to gather the real-time quantitative data while working. NActivitySensor
was developed with the third and forth Agile Experimentation rule in mind. It was
co-developed at the software development company one of the authors is running.
The company is a mostly Microsoft .NET shop that uses C# as his primary language.
The main IDE for .NET is Microsoft Visual Studio (VS). Investigation of the VS
extensions showed no tool that can be used to record the developer actions in IDE.
The data recorded by such tool could then be used in different type of agile experi-
mentation. One of the authors of this paper supervised the creation of similar tool that
integrated with Java IDE Eclipse. This tool was called Activity Sensor and developed
back in 2006 at Wrocław University of Technology. We decided to name the new
tool NActivitySensor. N in the name is often used in the .NET tools and libraries as
the indication of the, in most cases, Java based ancestors. NActivitySensor integrates
with VS IDE and hooks to Development Tools Environment (DTE) and its “Test
subsystem”.

We are currently using the NActivitySensor to gather data for our research on
Continuous Test Driven Development (CTDD) [17]. The detailed description of
NActivitySensor is given in Appendix A.

5 Discussion and Future Work

The proposed agile experimentation practice and supporting tool are proposed to
make experimentation in real-world, industrial settings more widely adapted. The
agile experimentation practice and supporting tool set will be refined as part of
our further research. We are currently working on a new publication where we are
discussing the TDD versus CTDD experimentation. This research is done solely
according to the agile experimentation principles. The overall experiences regarding
agile experimentation from this ongoing project are promising. We were able to
harness the most of our “manifesto” principles to action. In this research we are
targeting professional developers in business driven projects. It is not easy to get
the permission to experiment in such environment. Thus if permission is granted it
is advisable (to say the least) to make the most of it. By using well known small-
case and single-n experiments designs (1) and to take care about the power of the
experiment up front (2). The act of experimenting should not impact the work of the
developers much (4). With this goal in mind the NActivitySensor was developed. It
gathers the information about developer activities in the Visual Studio IDE without
disturbing developer’s work. The data is then gathered immediately for the sake of

158 L. Madeyski and M. Kawalerowicz

quantitative research.Wewill work further on the agile experimentation idea in order
to provide a tool for searching the best experiment design for a given project and
research constraints (3).

Appendix A—NActivitySensor

This appendix contains description of the details of NActivitySensor Visual Stu-
dio Add-in. NActivitySensor is available as an extension [9] at Visual Studio
Gallery. Visual Studio Gallery is a tools, controls, and templates distribution plat-
form used in Visual Studio. NActivitySensor is maintained and supported as a
free extension by its creators. It can be installed from withing Visual Studio
by using “Extension and Updates…” from the “Tools” menu (see Fig. 1). After
successful installation NActivitySensor writes the activities log to a new output
window with the same name (see Fig. 2). It is possible to configure the exten-
sion to write the activity log into a database. The database engine supported
in NActivitySensor is Microsoft SQL Server. The database connection string is
set in NActivitySensor.dll.config in the extension installation directory (which is
C:Users\Account_Name\AppData\Local\Microsoft\VisualStudio
14.0\Extensions). The key for the connection string is stored in NActivity-
Sensor.MSSql.ConnectionString. Also it is possible to configure the extension on a
project level. In order to do it a configuration file in the Visual Studio solution direc-
tory is needed. It needs to be called NActivitySensor.config. Example configuration
file is showed on Listing 1.

Fig. 1 NActivitySensor installation in Visual studio 2015

Software Engineering Needs Agile Experimentation … 159

Fig. 2 NActivitySensor output window in Visual studio 2015 IDE

Listing 1 NActivitySensor.config file
<?xml version="1.0"?>
<configuration >

<appSettings >
<add key="NActivitySensor.MSSql.ConnectionString"

value="Data Source =192.168.1.102;
Initial Catalog=ExCalcNActivitySensorReports;
User Id=NActivitySensor;
Password=NActivitySensor;
MultipleActiveResultSets=True"/>

</appSettings >
</configuration >

The internal storage format for the activities is JSON. JSON stands for (JavaScript
Object Notation) and is a widely used as a data exchange format. It was used because
it is both: (1) easy to read and write by a human and a machine and (2) its struc-
ture does not have to be defined beforehand. We are using JSON to store various
activities with varied format. For example Listing 2 shows the log for the activity
‘DocumentOpened’ (opening a document in IDE) and Listing 3 shows the ‘Build-
Begin’ (starting of project building in Visual Studio).

Listing 2 DocumentOpened activity example log
[22.03.2016 15:24:21] [DocumentOpened] {

"Name": "Examples.cs",
"Kind": "{8 E7B96A8 -E33D -11D0 -A6D5 -00 C04FB67F6A}",
"Path": "C:\\Dev\\ ClaToDot \\ ClaToDot.Demo \\" }

160 L. Madeyski and M. Kawalerowicz

Ta
bl
e
1

M
ic
ro
so
ft
V
is
ua
lS

tu
di
o
ev
en
ts
ho
ok
ed

in
N
A
ct
iv
ity

Se
ns
or

E
ve
nt

gr
ou
p

E
ve
nt

E
ve
nt

gr
ou
p

E
ve
nt

So
lu
tio

nE
ve
nt

So
lu
tio

nO
pe
ne
d,

So
lu
tio

nB
ef
or
eC

lo
si
ng
,

So
lu
tio

nR
en
am

ed
,S

ol
ut
io
n-

Q
ue
ry
C
lo
se
,S
ol
ut
io
nP

ro
je
ct
R
en
am

ed
,

So
lu
tio

nP
ro
je
ct
R
em

ov
ed
,

So
lu
tio

nP
ro
je
ct
A
dd
ed
,

Te
xt
E
di
to
rE
ve
nt

L
in
eC

ha
ng
ed

B
ui
ld
E
ve
nt

B
ui
ld
D
on
e,
B
ui
ld
Pr
oj
C
on
fig

D
on
e,

B
ui
ld
B
eg
in
,B

ui
ld
Pr
oj
C
on

fig
B
eg
in

Ta
sk
E
ve
nt

Ta
sk
R
em

ov
ed
,T

as
kN

av
ig
at
ed
,

Ta
sk
M
od
ifi
ed
,T

as
kA

dd
ed

U
se
rE
ve
nt

U
se
rI
na
ct
iv
e,
U
se
rA

ct
iv
eA

ga
in

Fi
le
It
em

E
ve
nt

Fi
le
It
em

R
en
am

ed
,F

ile
It
em

R
em

ov
ed
,

Fi
le
It
em

A
dd

ed

Pl
ug
in
E
ve
nt

C
on
ne
ct
,C

on
ne
ct
io
n,

D
is
co
nn
ec
tio

n,
A
dd
In
sU

pd
at
e,
St
ar
tu
pC

om
pl
et
e,

B
eg
in
Sh

ut
do
w
n

Fi
nd
E
ve
nt

Fi
nd
D
on
e

W
in
do
w
E
ve
nt

W
in
do
w
M
ov
ed
,W

in
do
w
C
re
at
ed
,

W
in
do
w
C
lo
si
ng
,W

in
do
w
A
ct
iv
at
ed
,

W
in
do
w
Pa
ne
U
pd
at
ed
,

W
in
do
w
Pa
ne
C
le
ar
in
g,

W
in
do
w
Pa
ne
A
dd
ed

D
eb
ug
ge
rE
ve
nt

D
eb
ug
ge
rE
xc
ep
tio

nT
hr
ow

n,
D
eb
ug
ge
rE
xc
ep
tio

n-
N
ot
H
an
dl
ed
,

D
eb
ug
ge
rE
nt
er
R
un
M
od
e,

D
eb
ug
ge
rE
nt
er
D
es
ig
nM

od
e,

D
eb
ug
ge
rE
nt
er
B
re
ak
M
od
e,

D
eb
ug
ge
rC
on
te
xt
C
ha
ng
ed

Se
le
ct
io
nE

ve
nt

Se
le
ct
io
nC

ha
ng

e
C
om

m
an
dE

ve
nt

C
om

m
an
dB

ef
or
eE

xe
cu
te
,

C
om

m
an
dA

ft
er
E
xe
cu
te

D
oc
um

en
tE
ve
nt

D
oc
um

en
tC
lo
si
ng
,D

oc
um

en
tS
av
ed
,

D
oc
um

en
tO
pe
ne
d

Software Engineering Needs Agile Experimentation … 161

Listing 3 BuildBegin activity example log
[22.03.2016 15:28:27] [BuildBegin] {

"Scope": "vsBuildScopeSolution",
"Action": "vsBuildActionRebuildAll" }

Table1 shows all hooked-up events recorded by the NActivitySensor.
The data is stored in the Microsoft SQL Server database. Additionally the data is

echoed back into VS output windows as a fall-back for non functioning database or
network (it is possible to record the data from the output window to a file).

References

1. Basili, V.R.: What’s so hard about replication of software engineering experiments? https://
www.cs.umd.edu/~basili/presentations/RESER (2011). Accessed 18 Mar 2016

2. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-
ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Development (2001)

3. Bonr, J., Farley, D., Kuhn, R., Thompson, M.: The reactive manifesto. http://www.
reactivemanifesto.org/ (2014). Accessed 29 Mar 2016

4. Dugard, P., File, P., Todman, J.: Single-case and Small-n Experimental Designs: A Practical
Guide to Randomization Tests, 2nd edn. Routledge (2012)

5. Gast, D., Ledford, J.: Single Case Research Methodology: Applications in Special Education
and Behavioral Sciences. Taylor & Francis (2014)

6. Guevara, P.C.: Manifesto for minimalist software engineers. http://minifesto.org/ (2013).
Accessed 29 Mar 2016

7. Harman,M., Jia,Y., Langdon,W.B.:AManifesto for higher ordermutation testing. In: Proceed-
ings of the Third International Conference on Software Testing, Verification, and Validation
Workshops. ICSTW’10, pp. 80–89. IEEE (2010)

8. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation, 1st edn. Springer
Publishing Company, Incorporated (2010)

9. Kawalerowicz, M., CODEFUSION: microsoft visual studio extension NActivitySensor.
https://visualstudiogallery.msdn.microsoft.com/4675d6fb-2608-48ed-ae0a-320b3a756047
(2013–2016). Accessed 18 Mar 2016

10. Kazdin, A.E.: Single-case Research Designs: Methods for Clinical and Applied Settings.
Oxford University Press (2011)

11. Kitchenham, B.A., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S., Gibbs,
S., Pohthong, A.: Robust Statistical Methods for Empirical Software Engineering. Empirical
SoftwareEngineering (in press) (2016). http://dx.doi.org/10.1007/s10664-016-9437-5. doi:10.
1007/s10664-016-9437-5

12. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practical guide. Data Min. Knowl. Discov. 18(1), 140–181 (2008). http://dx.
doi.org/10.1007/s10618-008-0114-1

13. Madeyski, L.: On the effects of pair programming on thoroughness and fault-finding effec-
tiveness of unit tests. In: Münch, J., Abrahamsson, P. (eds.) Product-Focused Software
Process Improvement, Lecture Notes in Computer Science, vol. 4589, pp. 207–221. Springer,
Berlin, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-73460-4_20. doi:10.1007/
978-3-540-73460-4_20

14. Madeyski, L.: Impact of pair programming on thoroughness and fault detection effectiveness
of unit test suites. Softw. Process: Improve. Pract. 13(3), 281–295 (2008). http://dx.doi.org/10.
1002/spip.382. doi:10.1002/spip.382

https://www.cs.umd.edu/~basili/presentations/RESER
https://www.cs.umd.edu/~basili/presentations/RESER
http://www.reactivemanifesto.org/
http://www.reactivemanifesto.org/
http://minifesto.org/
https://visualstudiogallery.msdn.microsoft.com/4675d6fb-2608-48ed-ae0a-320b3a756047
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1007/s10618-008-0114-1
http://dx.doi.org/10.1007/978-3-540-73460-4_20
http://dx.doi.org/10.1007/978-3-540-73460-4_20
http://dx.doi.org/10.1007/978-3-540-73460-4_20
http://dx.doi.org/10.1002/spip.382
http://dx.doi.org/10.1002/spip.382
http://dx.doi.org/10.1002/spip.382

162 L. Madeyski and M. Kawalerowicz

15. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Practice. Springer,
Heidelberg, London, NewYork (2010). http://dx.doi.org/10.1007/978-3-642-04288-1. doi:10.
1007/978-3-642-04288-1

16. Madeyski, L., Jureczko, M.:Which process metrics can significantly improve defect prediction
models? An empirical study. Softw. Qual. J. 23(3), 393–422 (2015). http://dx.doi.org/10.1007/
s11219-014-9241-7. doi:10.1007/s11219-014-9241-7

17. Madeyski, L., Kawalerowicz, M.: Continuous test-driven developmenta novel agile soft-
ware development practice and supporting tool. In: Maciaszek, L., Filipe, J. (eds.) ENASE
2013—Proceedings of the 8th International Conference on Evaluation of Novel Approaches
to Software Engineering, pp. 260–267 (2013). http://madeyski.e-informatyka.pl/download/
Madeyski13ENASE.pdf. doi:10.5220/0004587202600267

18. Madeyski, L., Piechowiak, A.: Exclipse plug-in activity sensor. http://sens.e-informatyka.pl/
projekty/activity-sensor/ (2006). Accessed 18 Mar 2016

19. Madeyski, L., Szała, Ł.: Impact of aspect-oriented programming on software development
efficiency and design quality: an empirical study. IET Softw. 1(5), 180–187 (2007). http://dx.
doi.org/10.1049/iet-sen:20060071. doi:10.1049/iet-sen:20060071

20. Madeyski, L., Szała, Ł.: The impact of test-driven development on software development
productivity—an empirical study. In: Abrahamsson, P., Baddoo, N., Margaria, T., Messnarz,
R. (eds.) Software Process Improvement, Lecture Notes in Computer Science, vol. 4764, pp.
200–211. Springer, Berlin, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-75381-0_
18. doi:10.1007/978-3-540-75381-0_18

21. Thomke, S.: Enlightened experimentation—the new imperative for innovation. Harv. Bus. Rev.
79(2), 66–75 (2001)

22. Tichy, W.F.: Should computer scientists experiment more? Computer 31(5), 32–40 (1998)
23. Vokáč, M., Tichy,W., Sjøberg, D.I.K., Arisholm, E., Aldrin, M.: A controlled experiment com-

paring the maintainability of programs designed with and without design patterns–a replication
in a real programming environment. Empir. Softw. Eng. 9(3), 149–195 (2004)

24. Zendler, A., Horn, E., Schwärtzel, H., Plödereder, E.: Demonstrating the usage of single-case
designs in experimental software engineering. Inf. Softw. Technol. 43(12), 681–691 (2001).
http://dx.doi.org/10.1016/S0950-5849(01)00177-X. doi:10.1016/S0950-5849(01)00177-X

http://dx.doi.org/10.1007/978-3-642-04288-1
http://dx.doi.org/10.1007/978-3-642-04288-1
http://dx.doi.org/10.1007/978-3-642-04288-1
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://dx.doi.org/10.1007/s11219-014-9241-7
http://madeyski.e-informatyka.pl/download/Madeyski13ENASE.pdf
http://madeyski.e-informatyka.pl/download/Madeyski13ENASE.pdf
http://dx.doi.org/10.5220/0004587202600267
http://sens.e-informatyka.pl/projekty/activity-sensor/
http://sens.e-informatyka.pl/projekty/activity-sensor/
http://dx.doi.org/10.1049/iet-sen:20060071
http://dx.doi.org/10.1049/iet-sen:20060071
http://dx.doi.org/10.1049/iet-sen:20060071
http://dx.doi.org/10.1007/978-3-540-75381-0_18
http://dx.doi.org/10.1007/978-3-540-75381-0_18
http://dx.doi.org/10.1007/978-3-540-75381-0_18
http://dx.doi.org/10.1016/S0950-5849(01)00177-X
http://dx.doi.org/10.1016/S0950-5849(01)00177-X

An Industrial Survey on Business Analysis
Problems and Solutions

Piotr Marciniak and Aleksander Jarzębowicz

Abstract The paper focuses on the problems reported by business analysts which
have a negative impact on their work and on the applicability of available business
analysis (BA) techniques as solutions to such problems. A unified set of BA
techniques was developed on the basis of 3 industrial standards associated with
IIBA, REQB and IREB certification schemes. A group of 8 business analysts was
surveyed to list problems they encounter in their work activities and assess their
frequency. A subset of most frequent problems was further analyzed and solutions
were proposed by selecting the most suitable BA techniques. Solution proposals
were validated through follow-up discussions with business analysts. The results
indicate that the unified set of techniques addresses the problems reported by
practitioners and solution proposals are generally accepted as valid, although sev-
eral techniques can be used interchangeably.

Keywords Requirements engineering ⋅ Business analysis ⋅ Certification
schemes ⋅ Industrial standards ⋅ Survey

1 Introduction

Since the software crisis in 1960s, requirements engineering (RE) is recognized as
one of the crucial aspects of software projects. Also currently, requirements engi-
neering and business analysis (BA—understood as a broader term, which encom-
passes more activities) strongly influence project’s results. The post-mortem

P. Marciniak
Active Code Piotr Marciniak, Gdańsk, Poland
e-mail: chm.pm@hotmail.com

A. Jarzębowicz (✉)
Department of Software Engineering, Faculty of Electronics,
Telecommunications and Informatics, Gdańsk University of Technology,
Gdańsk, Poland
e-mail: olek@eti.pg.gda.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_12

163

reviews of software project failures and the reasons behind them reveal that RE/BA
issues are among top factors contributing to project success or failure [1, 2].

The importance of this subject is widely recognized, which can be confirmed by
issued standards, published books, presence among topics of software engineering
conferences and a growing number of certification schemes (and certificates issued)
for RE/BA practitioners.

As the research reported in this paper concern Polish software industry, we
would like to focus more on the local context. The recognition of RE/BA is also
visible in Poland and a trend of growing interest can be noticed. Dedicated job
positions of “business analyst”, “system analyst” or similar are becoming more
common. The available certification paths associated with International Institute of
Business Analysis, International Requirements Engineering Board and Require-
ments Engineering Qualifications Board are becoming more popular (partially
thanks to Polish versions of training materials). A significant number of training
courses is offered—some dedicated to particular certification exams, while others
more general, based on several sources. Another sign of interest are the recently
published books entirely dedicated to requirements, either being (promptly) trans-
lated from international publications [3] or written by Polish authors [4].

As a result, many sources of knowledge about RE/BA became available and
numerous BA techniques dedicated to requirements elicitation, analysis, specifi-
cation and validation are described in the literature. On the other hand, RE/BA is
still perceived as a difficult and error-prone part of the software project and the
problems related to e.g. cooperation with stakeholders, obtaining the necessary
information or scope creep are quite common. Therefore, the question we would
like to ask is how well do available BA techniques address the problems encoun-
tered by the business analysts in their everyday work. For this purpose we planned
and conducted a research study involving practitioners from Polish IT industry.

2 Related Work

Our research included: identifying frequent problems encountered in BA activities,
analyzing state of the art BA techniques and selecting the techniques which provide
solutions to particular problems. Two main areas of related work are: surveying the
industry about RE/BA related issues and comparing RE/BA techniques.

A number of surveys (based on questionnaires or interviews) about requirements
engineering in the industry are available, but most of them focus more on learning
about processes and practices actually used [5, 6] than on problems encountered.
Davey and Parker [7] provides a summary of surveys related on requirements
elicitation problems, but it does not cover other RE/BA areas like requirements
analysis or validation. A list of most common requirements problems is included in
[8], however it is only based on the author’s industrial experience, instead of a
wider survey. The most similar approach is reported in [9], which describes a
survey on problems and practices of the software industry in Malaysia. It is also

164 P. Marciniak and A. Jarzębowicz

worth mentioning that we are not aware of any recent survey research on RE/BA in
Polish industry, except [10], which focuses on a particular issue (hidden require-
ments anti-pattern).

Several works comparing RE/BA techniques gathered from different sources are
available [11, 12], however the referenced sources are original papers describing new
techniques and/or RE textbooks, no comparison between present industrial standards
has been found. A comparison of BABOK, IREB and SWEBOK is provided in [13],
but with respect to the general approaches, terms used etc., not techniques included.
Selected techniques dedicated to requirements elicitation [14, 15] or prioritization
[16] were assessed, but with respect to the predefined criteria or measurements in
controlled experiments, not applicability to particular problem situations.

3 Research Study

Our research aimed at addressing the following questions:

• Which BA techniques are recommended by the state-of-the-art sources?
• What problems affecting BA are perceived as most frequent by business

analysts?
• Are the available techniques effective in coping with such problems according to

business analysts’ opinions?

It should be stressed that we sought for the problems from the perspective of
business analyst (not e.g. company or customer) and from the practical viewpoint
(real life experiences). As for the BA techniques, we decided to focus on areas of
requirements development (elicitation, analysis, specification and validation) and to
exclude requirements management.

The research was conducted in a number of steps. Each of the steps included
several subsequent activities. This process is illustrated in Fig. 1.

3.1 Step 1—Development of a Unified Set of BA Techniques

The prerequisite to fulfill the aim of step 1 was to identify the candidate sources of
knowledge and to choose the basis for further work. At first, we tried the inter-
national standards. However, the current main requirements engineering standard
(ISO/IEEE 29148:2011 [17]) is not very elaborate in regard to this matter. It lists
and briefly summarizes several techniques for e.g. elicitation (page 22) or validation
(page 31), but mainly focuses on other issues like requirements engineering process
or SRS contents. The previous standards (ISO/IEEE 830:1998 [18] and ISO/IEEE
1033:1998 [19]), superseded by 29148, contain even less information about par-
ticular techniques.

An Industrial Survey on Business Analysis Problems and Solutions 165

We turned to certification schemes and associated “industrial standards” instead.
We consider them as representative to the present industrial practice—the growing
numbers of certificates issued indicate the interest of practitioners and the
syllabi/examination criteria are updated to reflect the current trends. Also, an
important factor from the point of view of our research was that many particular BA
techniques are described in these sources. We decided not to rely on one certifi-
cation scheme only, but to analyze several ones, compare them with respect to the

Step 1: Development of the unified set of BA techniques

1. Identification of sources
2. Selection of sources
3. Extraction of BA techniques from sources
4. Unification of techniques
5. Assignment of techniques to areas

Step 2: Identification of problems by interviewing
business analysts

1. Selection and involvement of participants
2. Questioning about problems and collecting answers
3. Processing answers
4. Assignment of problems to RE areas

Step 3: Analysis of problems and selection of techniques
addressing each of them

1. Review of unified set of BA techniques
2. Selection of techniques for each problem

Step 4: Validation through interviews with the selected
representatives of previously interviewed group

1. Statement of the problem
2. Solution proposals by the interviewee
3. Solution proposals by the researcher
4. Discussion and conclusion

Fig. 1 The overview of the research process

166 P. Marciniak and A. Jarzębowicz

recommended BA techniques and to develop a unified list of such techniques based
on all analyzed sources. We selected certification approaches established by
International Requirements Engineering Board (IREB), Requirements Engineering
Qualifications Board (REQB) and International Institute of Business Analysis
(IIBA). The following documents describing these 3 approaches were used:

• IIBA BABOK Guide ver. 2 [20],
• IREB CPRE Foundation level syllabus ver. 2.2 [21],
• IREB CPRE Elicitation and Consolidation, Advanced Level syllabus ver. 1.0

[22],
• REQB CPRE Foundation Level syllabus ver. 2.1 [23],
• REQB CPRE Advanced Level Requirements Manager ver. 1.0 [24].

We used the documents which were available at the time and e.g. IREB CPRE
Advanced Level Requirements Modeling syllabus was published later. As for
BABOK, its current version (3) was published when our work was already in
progress (and the standard was not immediately available to us), so we decided to
proceed with BABOK 2. Of course, our comparison of 3 approaches can be updated
to reflect changes in BABOK contents, but in the interview-based study
(Sects. 3.2–3.4) we used techniques from BABOK 2, so we do not introduce such
change to this paper for consistency sake.

All the documents were reviewed to identify particular BA techniques. This task
was not as straightforward as it may appear. In BABOK most of BA techniques are
explicitly listed and described in separate sections, but some techniques e.g. RACI
Matrix are not included in the list, only mentioned in the text. The other two sources
do not as explicitly focus on techniques. REQB enumerates most of them in tables
or as bullet items, but some are only mentioned in accompanying description (e.g.
several analysis techniques based on various models are listed in Table 4 on p. 76
[23], but prototyping is only mentioned on p. 79). For IREB, [21] only enumerates
the techniques, while descriptions are provided in [22], but these two sets of
techniques have some differences. Such differences can also be spotted in REQB
sources e.g. [23] lists and describes 11 elicitation techniques, while [24] omits one
of them: use cases.

The review of the sources was not just about extracting the name of each technique
mentioned in the text—we aimed at developing a unified list of techniques based on 3
sources. It required several actions and decisions to bemade. Thefirst and easiest issue
were language differences—quite often similar techniques are given different names
e.g. Observation (BABOK) and Field Observation (REQB and IREB); Functional
Perspective (IREB), Functional Decomposition (BABOK) and Logical Analysis
including Functional Decomposition (REQB). Sometimes however, the difference
was not just about names e.g. Document Analysis (BABOK) and System Archaeol-
ogy (IREB) look similar, but the latter includes analysis of existing system code, while
the former does not explicitly mention it and is more document-oriented.

Another issue was to decide if some variants of a more general technique should
be recognized as separate techniques. For example, Brainstorming is listed as one of

An Industrial Survey on Business Analysis Problems and Solutions 167

elicitation techniques both in BABOK and REQB, while IREB provides several
variants of brainstorming and creativity techniques e.g. Method 6-3-5 or 6 Thinking
Hats. A similar situation is about reviews because different sources explicitly
mention various kinds of this technique (peer review, technical review, informal
review etc.). There is no space available here to describe each decision we had to
make, in general we tended to merge very detailed variants into one (e.g. Reviews),
but we were careful not to step too far (e.g. we distinguish Reviews and
Walkthroughs).

The techniques were also assigned to requirements development areas [3, 25]:
elicitation, analysis, specification, validation. Specification area differs from the
others—neither of sources provides details on SRS contents. BABOK enumerates
several kinds of specification documents, IREB refers to IEEE 29148:2011 [17],
while REQB to the older standard (IEEE 830:1998 [18]). We compared two latter
ones, but it is de facto a comparison between two ISO standards with respect to SRS
contents and requirements categories. As example, the resulting set of techniques
(only the ones assigned to elicitation area) and their traceability to sources are
shown in Table 1.

For each item of the resulting unified set of techniques, an analysis of their
applicability according to sources (advantages, limitations) was made. Information
from all sources which included a given technique was compiled into a more
comprehensive description of its applicability.

3.2 Step 2—Identification of Problems

Step 2 aimed at identification of problems encountered in business analysts’ pro-
fessional experience. It started with gathering a group of analysts and making
arrangements for interviews.

The participating analysts represented two companies (4 analysts from each one).
For confidentiality sake we will use names Company A and Company B. Com-
pany A employs about 140 staff and specializes in outsourcing of IT services and
development of web-based solutions for business. Projects are mostly run using agile
methodology, by relatively small teams (4–10 persons per project). Company B
employs over 350 persons and is mainly active in the financial industry, but includes
its own IT department (30 persons) responsible for IT infrastructure, data storage and
software development. Software projects are managed using various approaches and
methodologies e.g. waterfall model, V model, agile—depending on project’s size
and other constraints. Project teams vary greatly (from 3 to 20 persons) and some
projects, especially maintenance-oriented ones, are rather short-staffed.

These two companies were selected because of their different profiles. A number
of business analysts from both companies were initially identified as potential
interviewees through the network of professional contacts of one of us. Only per-
sons with designated job position as business analyst and experience in this field
were approached. The participants of the study were recruited by contacting them in

168 P. Marciniak and A. Jarzębowicz

person or via email, explaining the rationale and scope of the study and asking them
to participate. Initially more people were asked, but some either refused to par-
ticipate or proved uncooperative. The participation was entirely voluntary, the study
was not e.g. endorsed by the management.

The final group consisted of 8 people with a substantial experience in the field of
business analysis:

• 5 persons with more than 5 years of experience;
• 3 persons with the experience between 2 and 5 years.

Table 1 Requirements
elicitation techniques from
IREB, REQB and IIBA
sources

Technique IREB REQB IIBA

Apprenticing X X
Benchmarking X
Brainstorming X X X
Context modeling X X X
Contextual inquiry X
Customer representative on site X
Decision analysis X
Document analysis X X X
Elevator pitch X
Focus groups X
Functional decomposition X X X
Interface analysis X
Interviews X X X

Observation X X X
Organization modeling X
Persona X X
Perspective-based reading X
Problem tracking X
Process analysis/modeling X X X
Prototyping X X X
Questionnaires/surveys X X X
RACI matrix X
Reuse of requirements X X X
Scenarios X X
Self-recording X
Stakeholder map/classification X X X
Storyboards X
Use cases X X X
User stories X X X
User-Centered Design X
Walkthrough X X X
Workshop X X X

An Industrial Survey on Business Analysis Problems and Solutions 169

Each of 8 participants was individually asked about the problems encountered in
his/her job experience using an open question: “As an analyst, what problems do
you encounter most often in your work?”. The participant was supposed to list as
many problems as he/she could think of. Also, he/she was asked to evaluate each of
the mentioned problems with respect to the frequency of its occurrence. The fre-
quency was measured using an ordinal scale (1—least frequent, 10—most fre-
quent). Answers were collected within two weeks by e-mail.

After collecting all answers, a “data processing” activity was conducted.
Answers for an open question usually require some clarification and this case was
no exception. In particular, it was essential to merge the answers which reported the
same problem, but using different natural language expressions.

For example, one interviewee listed as problems: “Functional changes after user
acceptance tests” and “Additional requirements issued during customer-analyst
meetings, compared to already agreed and prioritized requirements”, while another
one reported “Changes of functionality during the whole project”. These 3 sen-
tences were merged into a more encompassing one: “Changing requirements”.

In all such cases the problem was only listed once (preferably under the most
meaningful name), but with a sum of all frequency scores. Sometimes a clarification
and/or refinement was required when we had doubts about the meaning of a par-
ticular problem or the problem was too generic (e.g. “communication problems”).
In such cases, a participant was contacted to clarify doubts and/or provide addi-
tional details. Also, the problems that turned out not directly related to RE/BA (but
to e.g. company politics or interpersonal issues instead) were rejected or refined.

Next, a classification of problems into the particular areas (elicitation, analysis,
specification, validation) was done. A given problem could be assigned to one or
more areas (e.g. “Lack of stakeholders’ commitment” problem was assigned to
elicitation and validation areas, while “Changing requirements” problem was
considered to affect all four areas). Four problems were revealed to belong to
requirements management area (excluded from study scope) and were omitted from
further analysis.

Some reported problems were quite surprising to us, because their source turned
out to be the analyst, not the customer, market situation or other independent factor.
For example: “An analyst prematurely assumes that he/she understands stake-
holder’s requirements” (resulting in lack of commitment to pursue the issue fur-
ther), or “An analyst skips recording some requirements during elicitation phase”.
At first, we intended to exclude such problems from the further analysis, as it
appeared that they stem from analyst’s negligence. If so, then no advanced BA
technique, but rather a more responsible approach of the analyst to his/her duties is
required. However, follow-up contacts and requests for explanation revealed that
the interviewees encountered such problems working together with their fellow
analysts (often less experienced ones) and believed that application of a technique
capable of preventing such errors would be beneficial. Finally, we decided to treat
those problems like all others and try to find appropriate solutions to them.

The final list of problems reported by interviewees included 49 items, together
with 86 frequency scores. The top 15 items of the list ordered by summarized

170 P. Marciniak and A. Jarzębowicz

frequency scores are presented in Table 2. For each problem the areas it concerns
(elicitation, analysis, specification, validation) are also marked. It is visible from the
summary scores (and the ratio: 49 items—86 scores) that the sets of problems stated
by particular interviewees differ from each other. This is obviously the result of an
“ad hoc” manner of identifying problems, however it was intentional—we wanted
not to restrict the potential outcome by e.g. providing a checklist of problems. We
assumed, that if a particular issue is really a frequent problem in the analyst’s
working activities, then he/she will remember about it and include it in the list.

3.3 Step 3—Solution Proposals

In step 3, the analysis of gathered problems and available BA techniques was
planned to propose solution to each problem. However, because of such a signif-
icant number of reported problems, we decided to exclude some of them and focus
on the ones with higher frequency scores (28 out of 49).

The search for appropriate solutions to problems was based on the guidelines for
applying each particular technique (description, pros and cons) compiled from 3

Table 2 Results of interviews—problems with the highest summary scores

Problem Score E A S V

1 Changing requirements 30 X X X X
2 Too short deadlines to complete BA 30 X X X X
3 Lack of the authorized stakeholders (capable of

making decisions)
30 X

4 The stakeholders are unable to express their
needs/requirements

29 X

5 Analyzing undocumented existing system 28 X X
6 Lack of stakeholders’ commitment 19 X X
7 The stakeholders completely do not know what they

want
15 X

8 The stakeholders express requirements which are
outside system’s scope

14 X

9 Failure to identify an essential stakeholder 13 X
10 The stakeholders are unavailable, difficult/delayed

contact
13 X

11 The software developers ignore specified
requirements

13 X

12 Low quality of specified requirements (e.g.
incomplete, too generic)

12 X

13 The stakeholders avoid participating in Verification
and Validation activities

12 X

14 Conflicting requirements 12 X X
15 Ambiguous requirements’ descriptions 12 X

An Industrial Survey on Business Analysis Problems and Solutions 171

sources described in Sect. 3.1. The process was iterative, first several candidate
techniques were considered, then a selection of the most promising solutions (up to
3 techniques) was made. The process was based on the analysis of issues expressed
in natural language, therefore it is hardly possible to describe it in an algorithmic
form, with precise decision criteria.

Only some of the techniques were selected as solutions to considered problems.
Table 3 shows how many techniques from particular areas were finally used.

3.4 Step 4—Validation

Step 4 focused on validation—finding out whether the solutions developed using
guidelines from recognized sources are useful in practice from the business ana-
lyst’s point of view. Interviews were chosen as the method of validation. Two
analysts from the previous group of 8 were contacted. They were among the most
active participants who contributed the highest numbers of problems. Also, they
worked for different companies (A and B) and held different positions (A—senior
analyst, B—junior analyst). Validation interviews were arranged separately with
each analyst. During the interview each of 28 considered problems was discussed
using the following scheme:

1. The researcher asked the interviewed analyst to come up with proposal of
solutions to a given problem.

2. The researcher revealed his own proposal developed in step 3.
3. A comparison of the proposals by both participants took place, followed by a

discussion to reach a consensus.

In some cases the proposals of the researcher and the interviewee were exactly
the same, so no discussion was necessary, but mostly there were at least partial
differences. Incidentally, the interviewee admitted he had no idea which technique
to apply for a given problem (literally 2 cases). The outcome of the discussion could
be either:

1. The interviewee admitted that the proposals of the researcher are a better
solution (or at least not worse—quite often the conclusion was that different
techniques can be used as equivalent solutions).

2. The interviewee convinced the researcher that his proposal should be changed or
at least extended by applying additional technique.

Table 3 Techniques used as solutions to problems

Elicitation Analysis Specification Validation

Total no. of techniques in the unified set 32 16 35 6
No. of techniques used 11 8 8 2

172 P. Marciniak and A. Jarzębowicz

The researcher took detailed notes documenting the discussions and afterwards
summarized the outcomes for each of the problems. An example is presented
below.

Name of the problem: Lack of stakeholders’ commitment.
Author: Two different solutions can be applied. A more “friendly” approach is

to facilitate workshops or brainstorming and therefore to stimulate the stake-
holders to be more active and creative in requirements elicitation. These techniques
were selected, because they are generally known to stimulate creativity and involve
participants. An alternative approach results in a more confrontational way and
includes usage of the stakeholders map technique. The map enables the analyst to
understand the organizational hierarchy of a company or project and to contact a
superior of an uncooperative stakeholders who can deal with them or find a
replacement.

Analyst A: The first analyst was inclined to apply workshops or brainstorming
with an emphasis on choosing the ones with a more attractive form. He said that an
approach which includes a creative way of eliciting requirements and is considered
fun would be more profitable than a standard “boring” meeting. During the dis-
cussion, the researcher presented his solutions including the “unpleasant way”
with using a stakeholders map, but the analyst disagreed with that approach.

Analyst B: The second analyst also proposed workshops and brainstorming,
but he also suggested using prototypes as a way to capture stakeholders’ attention
and as result effectively elicit requirements. After hearing researchers’ proposals,
the analyst agreed that they are suitable.

Conclusion: In all 3 cases, the preferable solution was to stimulate stake-
holders’ initiative by using creativity-based techniques like workshops, brain-
storming and prototyping. The researcher decided to add prototyping to the short
list of suitable solutions to this problem. On the other hand, the idea of using
stakeholders map was discarded as a result of validation. The researcher was
convinced by the argument of Analyst A, that it could result in a negative attitude
and harm relationships between the project team and the stakeholders.

Depending on the outcomes of the interviews, the following course of action
could be taken to incorporate validation results into the proposed set of solutions:

1. No change—validation confirmed that the proposal is sound, no
counter-proposals were issued by the interviewees (12 problems).

2. Extension—another technique was added as part of the solution, especially if it
reinforced the techniques already included in the solution (14 problems).

3. Alteration—the initial solution proposal was modified by substituting one or
more techniques with others, as suggested by one or both interviewees
(2 problems).

All the techniques proposed by the interviewees and included as extensions or
alterations could be found in the unified set based on 3 certification sources, there
was no case that would require modification of the outcome of step 1. The example
results of validated solutions to problems are included in Table 4. The table also

An Industrial Survey on Business Analysis Problems and Solutions 173

shows changes resulting from validation—the techniques added to the initial pro-
posal and removed from it are distinguished by underline and strikethrough
respectively.

4 Conclusions and Further Work

The review of the state of the art RE/BA knowledge sources resulted in a large set
of recommended BA techniques. A side effect of this work is the observation that
apart from the “core” established and well known techniques (like prototyping,
questionnaires or observations), the reviewed industrial standards recommend dif-
ferent techniques as tools for business analysts.

The study uncovered a number of problems expressed by a group of business
analysts and related to their work activities. For each of frequent problems a
solution in the form of one or more BA techniques was proposed. Validation shows
that the set of BA techniques developed by unifying contents of 3 selected sources
was sufficient to address each of the problems considered. Moreover, the guidelines
on applicability of particular techniques compiled from 3 sources allowed to select
the right techniques (only 2 out of 28 proposals were rejected by business analysts
participating in validation). The substantial number of proposals which were
extended with additional techniques as result of validation suggest that the set of

Table 4 Techniques assigned as solutions (examples)

Problem Techniques assigned (after validation)

Analyzing undocumented existing system Document analysis, observation,
“Stakeholders” section of SRS

Changing requirements Requirement diagram, cost-value prioritization,
prototyping

Failure to identify an essential stakeholder Stakeholder map, RACI matrix, Process
modeling

Lack of authorized stakeholders (capable of
making decisions)

Stakeholder map, RACI matrix

Lack of stakeholders’ commitment Stakeholder map, brainstorming, workshop,
Prototyping

Low quality of specified requirements (e.g.
incomplete, too generic)

Non-functional requirements analysis, user
stories, scenarios, process modeling

The stakeholders completely do not know
what they want

Brainstorming, interviews, workshop

The stakeholders express requirements
which are outside system’s scope

Scope modeling, process modeling

The stakeholders are unable to express their
needs/requirements

Observation

Too short deadlines to complete BA Timeboxing, MoSCoW prioritization

174 P. Marciniak and A. Jarzębowicz

available techniques includes many items which can be used interchangeably, as
replacements for each other.

The main threat to the validity of the results is a relatively small group of study
participants and the fact that they all come from Polish software industry. The
reported small-scale study (conducted as part of the M.Sc. thesis [26]) was designed
from the beginning to target Polish IT sector. We do not make any assumptions
whether conditions of business analyst’s work in Poland are significantly different
than elsewhere or not—we simply report our results. Within the scope of our study,
we made some effort to include representative participants (different companies and
profiles of BA practitioners). Another potential threat is the subjectivity of
assessments made by interviewees about problems’ frequencies and applicability of
solutions, however subjectivity is an integral part of the selected survey approach.

As for future work, we consider reviewing additional sources e.g. SWEBOK or
PMI Guide—even if the current set of techniques seems to be “sufficient”, more
guidelines and hints about which one to apply would be helpful (especially in case
of similar techniques). Also, a study involving a larger number of participants and
companies (preferably from different countries) is a possible direction of research.
As our approach of asking open questions about problems proved to have its
drawbacks (low similarity of problems reported), it is worth to consider using a
combined approach—a list of problems (based on literature analysis) available to
the participant, together with the opportunity to add problems not present on the list.

References

1. The Standish Group International: Chaos Report 2014 (2014)
2. Charette, R.N.: Why software fails. IEEE Spectrum 42(9), 42–49 (2005)
3. Wiegers, K., Beatty, J.: Software, 1st edn. Microsoft Press (2013)
4. Chrabski, B., Zmitrowicz, K.: Inżynieria Wymagań w Praktyce (in Polish—Requirements

Engineering in Practice). Wydawnictwo Naukowe PWN, Warsaw (2015)
5. Neill, C., Laplante, P.: Requirements engineering: the state of the practice. IEEE Softw. 20(6),

40–45 (2003)
6. Sommerville, I., Ransom, J.: An empirical study of industrial requirements engineering

process assessment and improvement. ACM Trans. Softw. Eng. Methodol. (TOSEM) 14(1),
85–117 (2005)

7. Davey, B., Parker, K.: Requirements elicitation problems: a literature analysis. Issues Inf. Sci.
Inf. Technol. 12, 71–82 (2015)

8. Firesmith, D.: Common requirements problems, their negative consequences and the industry
best practices to help solve them. J. Object Technol. 6(1), 17–33 (2007)

9. Solemon, B., Sahibuddin, S., Ghani, A.: Requirements engineering problems and practices in
software companies: an industrial survey. In: Ślęzak, D., Kim, T.H., Kiumi, A., Jiang, T.,
Verner, J., Abrahão, S. (eds.) Advances in Software Engineering, Communications in
Computer and Information Science, vol. 59, pp. 70–77. Springer, Heidelberg (2009)

10. Bobkowska, A., Wyrzykowski, K.: Model Działania Analityka Biznesowego w Administracji
Publicznej w Celu Przeciwdziałania Ukrytym Wymaganiom. In: Proceedings of 7th TIAPISZ
Conference (Technologie informatyczne w administracji publicznej i służbie zdrowia),
Warsaw (2015)

An Industrial Survey on Business Analysis Problems and Solutions 175

11. Cheng, B., Atlee, J.: Research directions in requirements engineering. In: International
Conference on Software Engineering (ICSE’07), IEEE Computer Society, pp. 285–303. IEEE
Computer Society, Washington DC (2007)

12. Yousuf, M., Asger, M.: Comparison of various requirements elicitation techniques. Int.
J. Comput. Appl. 116(4) (2015)

13. Aoyama, M., Nakatani, T., Saito, S., Suzuki, M., Fujita, K., Nakazaki, H., Suzuki, R.: A
model and architecture of REBOK (requirements engineering body of knowledge) and its
evaluation. In: Proceedings of 17th Asia Pacific Software Engineering Conference. IEEE
(2010)

14. Besrour, S., Bin Ab Rahim, L., Dominic, P.: Assessment and evaluation of requirements
elicitation techniques using analysis determination requirements framework. In: 2014
International Conference on Computer and Information Sciences, pp. 1–6 (2014)

15. Wellsandt, S., Hribernik, K., Thoben, K.: Qualitative comparison of requirements elicitation
techniques that are used to collect feedback information about product use. In: Proceedings of
24th CIRP Design Conference, pp. 212–217 (2014)

16. Vestola, M.: A Comparison of Nine Basic Techniques for Requirements Prioritization.
Helsinki University of Technology (2010)

17. ISO/IEC/IEEE Standard 29148-2011. Systems and Software Engineering—Life Cycle
Processes—Requirements Engineering (2011)

18. IEEE Standard 830-1998. IEEE Recommended Practice for Software Requirements
Specifications (1998)

19. IEEE Standard 1233-1998. IEEE Guide for Developing System Requirements Specifications
(1998)

20. International Institute of Business Analysis: A Guide to the Business Analysis Body of
Knowledge (BABOK Guide) v2.0 (2009)

21. International Requirements Engineering Board: IREB CPRE Foundation Level Syllabus ver.
2.2 (2015)

22. International Requirements Engineering Board: IREB CPRE: Elicitation and Consolidation,
Advanced Level Syllabus ver. 1.0 (2012)

23. Requirements Engineering Qualifications Board: REQB CPRE Foundation Level Syllabus
ver. 2.1 (2014)

24. Requirements Engineering Qualifications Board: REQB CPRE Advanced Level Requirements
Manager ver. 1.0 (2011)

25. IEEE: A Guide to Software Engineering Body of Knowledge 3.0 (2014)
26. Marciniak, P.: The Role of Business Analyst in IT Companies. M.Sc. thesis, Gdańsk

University of Technology (2015)

176 P. Marciniak and A. Jarzębowicz

Beyond Software Architecture Knowledge
Management Tools

Andrzej Zalewski

Abstract Research into architecture decision-making tools has so far been focused
on validating the research concepts underlying architectural knowledge manage-
ment in a practical context, rather than on delivering tools that are suitable for
conditions of the real-world software development. At the same time, much
research effort has been devoted to the exploration of architects’ expectations with
regard to architecture decision-making tools. The main idea promoted here is that
instead of separate architecture knowledge management tools we need an archi-
tecture knowledge management infrastructure that connects producers and con-
sumers of architectural knowledge and easily integrates with tools they use for
software development. It should be designed so that it seamlessly integrates with
the software development environment. The study of the architecture of such a
system reveals important challenges facing academia and the software industry with
respect to the popularisation of architecture knowledge management.

Keywords Architectural knowledge management ⋅ Software architecture deci-
sions ⋅ Architecture decision making tools

1 Introduction

The recent survey by Capilla et al. [1] shows that the impressive research on
software architectural knowledge (AK) and architecture decision (AD) making [2]
has not resulted in a broad adoption of AK management practices by the software
industry. The factors that hinder the wider industrial application of AK management
can be traced back to the complicated nature and properties of AK management and
AD making [3], to the lack of a convincing business case for including AK man-
agement as a day-to-day practice, to the reluctance of the participants of the

A. Zalewski (✉)
Institute of Automatic Control and Computational Engineering, Warsaw University
of Technology, Warsaw, Poland
e-mail: a.zalewski@elka.pw.edu.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_13

177

software development process to expand their duties with AK management, or to
the lack of adequate tools [1]. All these factors form a vicious circle that has to be
broken at some point in order to resolve all the issues.

The lack of appropriate tools that support AK management [1] seems to be of
primary importance because it strengthens the other factors itemised above. Lack of
adequate tools makes it generally difficult to include AK management into software
development processes, increases the cost of AK management, hinders to observe
the benefits resulting from AK management as well as makes developers reluctant
to apply practices, which they perceive as immature for the industrial use due to
lack of tool support.

The primary idea promoted in this paper is that in order to introduce AK
management into real-world software development organisation, we need to build
an entire AK management infrastructure, which enables flow of AK between
producers and consumers, and at the same time seamlessly integrates with the
various tools supporting real-world software development.

A top-level architecture of such an AK management system has been envisaged
in this paper. Although, the architecture is presented and discussed on rather a high
abstraction level, it reveals the challenges that have to be met both by academia and
the software industry in order to make AK management a common software
development practice, similar to requirements analysis or testing, for example.

The rest of the paper is organised as follows: Sect. 2 presents shortly related
work, the set of architectural drivers is presented in Sect. 3, Sect. 4 describes the
envisaged architecture of the AK management system, which is discussed against
the background of related work in Sect. 5, Sect. 6 provides a summary and outlines
further research.

2 Related Work

The research on AK management tools has been summarised in the book by Ali
Babar et al. [2] and papers by Capilla et al. [1], Tang et al. [4], Manteuffel et al. [5],
Shahin et al. [6]. The tools developed during recent 10 years are either stand-alone
systems, such as Archium, PAKME, ADDSS, Eagle, Adkwik, ADDM, ADDSS v.
2.0/2.1, SAW, ADvISE and RGT or plugins into: modelling tool (AREL, Decision
Architect), software development kit (SEURAT) or popular office software
(Knowledge Architect).

The engagement of ABB company in the development and validation of Deci-
sion Architect [4, 7] clearly marks the shift from tools developed in order to provide
a test-bed for AK management concepts to AK management systems that are
suitable for industrial applications.

178 A. Zalewski

3 Architectural Drivers for an Industrial Architecture
Knowledge Management System

The drivers that shape the architecture of an AK Management System that can be
easily accepted in the software industry reflect the important facets of modern
software development practices.

A. AK management systems should support a variety of implementation
frameworks, technologies and modelling tools etc.

A variety of tools are used in modern software development projects, namely,
modelling/architecting tools, software development kits, test support tools,
requirements management tools (compare [8] for example) etc. It is also remarkable
that in large developments many software development technologies as well as
programming frameworks and libraries are employed. This makes real-world
software development environments heterogeneous in terms of the applied software
technologies and tools.

“Software architecture is an abstraction of a software system, which is perfectly
suitable for communicating, reasoning, and learning about important system ele-
ments and properties” [9], therefore, software architecture is perceived as a com-
munication medium between the project stakeholders. This role should be
supported by the AK management tools, which should provide a medium for the
exchange of AK between producers and consumers, who may be using many
different tools and implementation technologies.

B. Architects are neither the only producers nor the only consumers of AK

Although architects usually play an important role in the creation and con-
sumption of AK, they are obviously not the only stakeholders participating in these
activities. van Heesch et al. [10] provide a list of stakeholders who have concerns
related to ADs. Apart from architects, the list also includes reviewers, managers,
customers, requirements engineers, new project members and domain experts who
are in generally consumers of AK knowledge. Based on real world observations, I
would argue that the list of producers and consumers of AK is much longer (an
asterisk indicates producers and consumers of AK added to the above list in this
paper):

• Producers: architects, developers*, vendors of software development
frameworks/technologies/libraries*;

• Consumers: architects, requirements engineers, developers*, quality assurance
team members (testers, reviewers), various managers (change, development,
top-level), clients, new project members, domain experts.

While consumers generally use AK for their own purposes (e.g. QA team
members use it for architecture assessment or developing test cases, while new
members need AK in order to get acquainted with the architecture of a system being
developed etc.), the list of producers requires more attention. In many development

Beyond Software Architecture Knowledge Management Tools 179

projects there are no architects at all, and architectural decisions are made at the
coding level by the team of programmers. They focus on producing design
knowledge (compare categories of AK in Tang et al. [4]), though they must also
make architectural decisions, and hence, produce reasoning AK that usually
remains tacit.

If an architect is involved in the project, developers can also use reasoning
knowledge in order to consult their choices with the architecture established by the
architects. On the other hand, architects and QA need design knowledge to perform
architecture assessment and to verify that the developed software is consistent with
the crafted architecture.

C. AK is not created entirely during the development projects, but also
brought in with the chosen programming frameworks/technologies/
libraries/component sets

Modern software is extremely rarely developed from scratch. Software devel-
opment starts nowadays from configuring the development landscape by choosing
software development kits (not necessary a single one!), programming frameworks,
libraries or sets of the components. Such crucial choices belong to the reasoning
AK, but substantial amounts of architectural knowledge are also contained in the
chosen programming frameworks, libraries or components. Why should we capture
this AK again from scratch? Architectural knowledge could be captured while
developing programming frameworks and delivered as a predefined AK. It could
take, for example, the form of a set of templates of architectural decisions com-
prising all the architectural choices available in a given framework.

D. AK management system has to scale well between development organisa-
tions of different sizes

In order to make AK management a common industrial practice, it should
become available and affordable for every development organisation. This means
that AK management systems should be highly versatile, easy to deploy and to
integrate into the tools used by a given development organisation. It should also be
easy to scale the scope of AK system’s deployment to the specific conditions of a
given software development organisation. This implies a highly modular structure
with plug-ins enabling the AK capability in the existing software development and
modelling tools.

E. AK management system is distributed

Software development is an activity distributed among various roles and various
people, more and more often between various locations. The role of AK manage-
ment systems is to integrate these distributed activities.

180 A. Zalewski

4 The Architecture of Architecture Knowledge
Management Infrastructure

The proposed AK management system (Fig. 1) should comprise the following
architectural elements:

• Modelling tool plug-in—enables architectural decision making functionality
similar to, for example, Decision Architect or AREL, integrated with the regular
functionality of a modelling tool (e.g. UML diagram drawing). It should also
support downloading the predefined architectural knowledge supplied with
development frameworks, libraries etc. into the modelling tool for further pro-
cessing (e.g. capturing design or reasoning knowledge). On the other hand, it
allows AK stored in other modelling tools and software development kit
(SDK) to be accessed and searched.

• Software Development Environment (SDE) plug-in—enables the developers to:
(1) document AK and facilitates the use of the predefined AK delivered together
with software development frameworks, ready components or libraries, (2) ac-
cess and search through AK stored in the same SDE or elsewhere.

• AK broker—the core of the entire architecture, enables the flow and exchange of
AK between the entities of a system. Its role is also to impose AK exchange
standards on other architectural elements.

• AK stand-alone browser—it allows to look into the AK stored in the system
without a modelling tool or SDE. This may be useful for testers, clients and
team newcomers.

Fig. 1 The proposed
architecture for AK
management system

Beyond Software Architecture Knowledge Management Tools 181

• AK indexing and traceability server—it plays a role of a search engine and
enables traceability links to be established and explored between various AK
elements and design artefacts. It would turn out to be necessary in large software
development environments, in which searching through multiple, distributed
stores of AK would impede the performance of the AK management system.

• Plug-ins to other systems employed to support software development (testing
management, requirements management systems, for example)—as they are
used by the consumers of AK they should enable to look into the AK, directly
from the tools, into which plugin is installed.

AK will actually be distributed among the repositories of modelling tools and
software development kits. As a result, AK is stored near the place, in which it is
created. Distributed AK is accessed via an AK broker, which can also be named the
Architectural Knowledge Bus.

The following configurations of the above architecture are imaginable:

• Small development organisation, single development team—installs only a
plug-in into the SDK and uses its features to capture AK, mainly by exploiting
the predefined AK delivered with the chosen programming frameworks, COTS
or libraries;

• Medium-size development organisation, e.g. small software houses—install
plug-ins into the SDKs that they use, install plug-ins into modelling tools and
the AK broker;

• Large development organisations—install all the components of the AK man-
agement system.

5 Discussion

The presented architecture follows the well-known system integration pattern—
broker (bus). It also consumes the well-established ideas of AK management plu-
gins and stand-alone AK management tools (see: Sect. 2). The novel idea is that we
should go beyond a single AK management tool by developing an entire AK
management infrastructure, which connects various tools, which support software
development, in order to ensure AK flow between producers and consumers. The
novelty is also the concept of predefined architectural knowledge, which should be
delivered (and even sold) together with the software development frameworks,
software libraries etc.

Let us look how the envisaged system addresses the barriers to industrial
adoption of AK listed by Capilla et al. [1]:

• “B1. Lack of motivation”—this has been addressed to some extent—a system
compatible with the existing software development environment can encourage
the introduction of the AK management on an organisation scale;

182 A. Zalewski

• “B2. Lack of adequate tools”—naturally, the success of the AK management
system depends hugely on its detailed functionality. Here, only issues connected
with the integration with established tools and practices are addressed. Let us
observe that integration between heterogeneous tools requires developing
standards for documentation and the exchange of AK knowledge;

• “B3. What to capture?”, “B4. Effort in capturing AK”, “B5. Disrupting the
design flow”—using the predefined AK should simplify the capture of AK in
comparison with a “from scratch” approach. This should minimise additional
effort and clarify what should be documented and what should not. However,
this raises another challenge, as such a knowledge base has to be developed and
delivered by the vendors or developers of implementation frameworks etc.

• “B6. Lack of stakeholder understanding”—this is unfortunately out of the range
of any AK management tool.

Let us observe that the proposed AK knowledge management support follows
three out of the four recommendations found in Capilla et al. [1]:

• “R1. Encourage and convince stakeholders”—compare barriers B1, B4 below.
• “R3. Lean approaches for capturing AK”—the use of the predefined AK

knowledge will substantially speed up AD making, by providing templates of
AD comprising at least definitions of typical problems and available solutions,
together with recommendations for which option to choose in certain conditions;

• “R4. Embed the design rationale with current modelling approaches and
tools”—this is achieved through plugins into SDKs and modelling tools.

In order to develop the AK management system for which the architecture has
been sketched in this paper, the following changes has to be met:

• Developing a standard for AK storage, retrieval and exchange, the challenge is
that it should support a variety of forms of AK representation. This would lead
to either a generic solution, which would impede developing tools exploiting the
details of AK elements, or to specialised, varied solutions that cannot be
integrated;

• Making the above standard accepted by the industry, which is probably even
more challenging, as there currently exist many competing AD representation
concepts [11];

• Modelling tools and SDK should be ready for AK plug-ins, which fortunately is
becoming common (compare, for example, leading modelling tools—Enterprise
Architect, IBM Rational, Eclipse);

• Participation of commercial industry and open source development communities
in capturing the predefined AK included in the development frameworks etc. has
to be ensured.

The above challenges fall under the category of managerial and organisational
problems. They precede many technical and theoretical problems that will have to
be resolved when standards of AK documentation and exchange are established and
accepted, and the support of the industry is assured. The list of such problems

Beyond Software Architecture Knowledge Management Tools 183

includes: ensuring support for architectural decision making, defining mechanism
enabling search through AK distributed among system’s nodes, defining the scope
and form, in which predefined AK is delivered as well as mechanisms enabling its
further use, technical details of AK capturing mechanisms included in SDK and
modelling tool plugins.

6 Conclusion, Research and Development Outlook

The architecture of an AK management system suitable for software industry has
been envisaged. It turned out to follow the well-known systems integration pattern,
namely, a broker or service bus ensuring the flow of AK between producers and
consumers.

The proposed architecture is aimed at supporting the capture of AK at the level
of both architectural and detailed (code) design as well as the consumption of AK
by various stakeholders. The AK may be presented to the consumers, traditionally,
using textual representation or visualisation techniques such as those presented in
[11] or for example the diagrammatic notation such as MAD proposed in [12, 13].
This is an important step, as architects are usually kept away from the detailed
design developed on the source coding level. The observation that important parts
of AK are brought in with the choice of the software development frameworks, if
properly exploited, may enable the development of tools that substantially reduce
the amount of work necessary to document AK.

Finally, the success of AK management systems requires tight and effective
collaboration between academia and industry in developing AK representation and
exchange standards, as well as the components of the envisaged AK management
system. This seems to be a challenge for the next 10 years of AK knowledge
management.

References

1. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Ali Babar, M.: 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. (Available on line
2015) (in press)

2. Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H.: Architecture knowledge management.
Theory and Practice. Springer, Berlin, Heidelberg (2009)

3. Zalewski, A., Kijas, S.: Architecture decision-making in support of complexity control. In:
Software Architecture; 4th European Conference, ECSA 2010, Copenhagen, Denmark, 23–26
Aug 2010, LNCS, vol. 6285, pp. 501–504 (2010)

4. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., Ali Babar, M.: A comparative study of
architecture knowledge management tools. J. Syst. Softw. 83(3), 352–370 (2010)

5. Manteuffel, Ch., Tofan, D., Avgeriou, P., Koziolek, H., Goldschmidt, T.: Decision architect—
a decision documentation tool for industry. J. Syst. Softw. 112, 181–198 (2016)

184 A. Zalewski

6. Shahin, M., Peng, L., Khayyambashi, M.R.: Architectural design decision: existing models
and tools. In: Joint Working IEEE/IFIP Conference on Software Architecture, 2009 and
European Conference on Software Architecture. WICSA/ECSA 2009, pp. 293–296. IEEE
(2009)

7. Manteuffel, C., Tofan, D., Koziolek, H., Goldschmidt, T., Avgeriou, P.: Industrial
implementation of a documentation framework for architectural decisions. In: Software
Architecture (WICSA), 2014 IEEE/IFIP Conference on, pp. 225–234 (2014)

8. Jansen, A., de Vries, T., Avgeriou, P., van Veelen, M.: Sharing the architectural knowledge of
quantitative analysis. In: QoSA 2008, LNCS 5281, pp. 220–234. Springer (2008)

9. Weinreich, R., Buchgeher, G.: Towards supporting the software architecture life cycle. J. Syst.
Softw. 85(3), 546–561 (2012)

10. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for architecture
decisions. J. Syst. Softw. 85(4), 795–820 (2012)

11. Shahin, M., Liang, P., Ali Babar, M.: A systematic review of software architecture
visualization techniques. J. Syst. Softw. 94, 161–185 (2014)

12. Zalewski, A., Kijas, S., Sokołowska, D.: Capturing architecture evolution with maps of
architectural decisions 2.0. In: ECSA 2011, Essen, Germany, 13–16 Sept 2011. Lecture Notes
in Computer Science, vol. 6903, pp. 83–96 (2011)

13. Zalewski, A., Ludzia, M.: Diagrammatic modeling of architectural decisions. In: Software
Architecture, Second European Conference, ECSA 2008 Paphos, Cyprus, 29 Sept–1 Oct,
Proceedings. Lecture Notes in Computer Science, vol. 5292, pp. 350–353 (2008)

Beyond Software Architecture Knowledge Management Tools 185

Model of RUP Processes Maturity
Assessment in IT Organizations

Włodzimierz Wysocki, Cezary Orłowski, Artur Ziółkowski
and Grzegorz Bocewicz

Abstract A crucial problem in modern software engineering is maturity assess-
ment of organizations developing software. We propose utilizing a process model
of RUP development methodology, as a pattern for comparing it with the examined
process. Percent values of accordance coefficient determine the task accordance of
the examined process with the pattern of activities flow. The above mentioned RUP
model concept is based on a multi-agent based simulation (MABS). It presents
goals and behaviors of agents as well as components of the agent system envi-
ronment. To confirm the usefulness of the method for assessment of organization’s
maturity, a two-fold experiment was undertaken. The results confirm the usefulness
of the model in maturity assessment. First part consisted of tuning the simulation
internal parameters to the development process. In the second part accordance
coefficient values of the sample project were obtained by comparing it with the
results of the simulated model.

Keywords IT organization maturity ⋅ Software development processes ⋅
Rational unified process ⋅ Maturity assessment ⋅ Software process simulation ⋅
Multi-agent ⋅ MABS ⋅ JADE

W. Wysocki (✉) ⋅ G. Bocewicz
Technical University of Koszalin, Koszalin, Poland
e-mail: wlodzimierz.wysocki@tu.koszalin.pl; wlodek.wysocki@gmail.com

G. Bocewicz
e-mail: bocewicz@ie.tu.koszalin.pl

C. Orłowski (✉) ⋅ A. Ziółkowski (✉)
WSB University, Gdańsk, Poland
e-mail: corlowski@wsb.gda.pl

A. Ziółkowski
e-mail: Artur.Ziolkowski@wsb.gda.pl; aziolkowski@wsb.gda.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_14

187

1 Introduction

In recent years we have seen a rise in interest regarding transformation problems of
IT organizations from the traditional Rational Unified Processes RUP [5], to agile
methodologies, such as SCRUM [9], XP [1]. Interest in the processes of transfor-
mation is the result of a large number of failed projects implemented by these
organizations. Hence, IT organizations are looking for solutions to ensure the
effectiveness of agile transformation. Conducted research of transformation pro-
cesses is focused on the analysis of transformation paths, (technology, process,
design and organizational culture) and the methods used to determine an organi-
zation’s readiness for starting the process of agile transformation [6–8]. In the latter
case, it is assumed that the achievement of the organization’s particular state of
readiness is a necessary condition for the start of the transformation process.
Analysis of the state of preparedness is the challenge for the authors of this article.

This analysis considers the relationship between the maturity of the development
processes and its impact on the readiness state of organizations for agile transforma-
tion. The use of an agent-object system is proposed for analysis of an example RUP
development methodology. RUP describes both development and management pro-
cesses, as well as determines their performance and the utilization in the various phases
and iterations of the development process. Process roles are defined as well. Hence,
RUP is an excellent example for the description of the development process, as well as
a formal description, which can be the basis for its simulation using agent systems.

This integration of RUP and the agent system formed the basis for construction
of the agent-object system simulating the workflow of the development team. In the
first phase, it was assumed that the research system will be used by project man-
agers to predict scheduling of software development projects. It turned out, how-
ever, that in the course of work on the issues of transformation of IT organizations,
from the point of view of managers of those IT organizations, examining the state
of readiness utilizing the agent-object system is more valuable. Therefore, the
authors have proposed to treat the forecasts of the agent-object system as a measure
of organizational readiness for the processes of agile transformation.

Because of that, the article is divided into three main parts. In Sect. 2 we
presented an agent-object model of the RUP process. In Sect. 3 we present the
experiment confirming the usefulness of this method. In Sect. 4 we summarize the
results of the experiment and draw conclusions.

2 Agent-Object RUP Process Model

For the analysis of the project and its development processes, compatible with the
RUP model, it is proposed to use the agent-object system.

188 W. Wysocki et al.

The developed system is based on the model of design environment, which
consists of:

• project plan model (based on RUP standards),
• artefact repository,
• development team model.

At the outset, the model was built, and was subjected to the process of imple-
mentation using the Jade environment. The simulation model has been designed as
a multi-agent system [11]. Members of the project team are mapped as agents
performing the tasks assigned to them, in corresponding project roles, according to
the project plan and activities flow.

The task involves processing the input artefacts located in the repository into
output artefacts and saving them to the repository. Fig. 1 shows the agent-object
system model.

Inside the model, dynamic components are represented by the agents placed in
an agent environment, containing passive objects to which agents have access and
which perform operations that comprise the mapping of the software development
process.

Agents can be approximated as a stand-alone computer programs, operating
independently of each other, having the ability to communicate among themselves,
observing the environment in which they are located, as well as decision-making,
and having an impact on the environment. Classes of agents and objects in the
system simulation:

Person Agents. Project team model is a collection of person agents

G= giji=1 . . . pf g ð1Þ

where the agent is characterized by the following sequence:

gi = fri, kjk=1 . . . sg, fbi, kjk=1 . . . rgð Þ ð2Þ

which defines the role set of an agent, as well as its behaviour set.
Person agent behaviours are supporting:

• searching for types of tasks to be performed, that are appropriate to their
assigned roles in the project

• creating and executing tasks based on the searched type of task
• saving information about the work done in the Worktime Register
• cooperation with other agents for joint execution of tasks

Simulator Agent. Controls the execution of the project plan. It is responsible for:

• initializing of the agent environment and the creation of agents
• switching of activities and iterations in the project plan
• storing information about changes to current activities and iterations in Activity

Change Register

Model of RUP Processes Maturity Assessment in IT Organizations 189

• ending the simulation, the removal of agents, and storing the course and final
state of the simulation

Simulation Clock Agent. It determines the simulation time and synchronizes
operation of all agents in the system. One simulation clock cycle represents 15 min
of project time. This value has been chosen since the shortest work period intended
for the task takes about 15 min.

Project Plan Object. This is the model input data. Information stored in the
Project Plan was initially discussed in the description of the inputs and outputs of
the simulation model.

Project plan model is understood as a set of iterations performed during the
project:

PP= fIiji=1 . . . ng ð3Þ

where: Ii—ith iteration of project plan PP
According to RUP terminology, iteration Ii consist of activities Oi, k defined as

subsets of elementary tasks E:

Ii = fOi, kjk=1 . . .mg ð4Þ

where: Oi, k ⊂E
Elementary task set E contains base (indivisible) operations which can be

implemented in a given development environment, i.e. Find Actors And Use Cases.
Task el ∈ E is described by a sequence: el = rl, ail, aol, dlð Þ defining the role of an
agent (rl), which can accomplish the task, a collection of input artefacts required to
start the task (ail⊆A), a collection of artefacts obtained after the completion of the
task (aol⊆A), the duration of the task (dl—measured in units of agreed time, u.a.t.).

Development Team Object. This is the model’s input described above. Based on
information about the members of the project team Agent Simulator creates the
agents representing team members.

Artefact Repository Object. It is a part of the model state. The repository is
responsible for storing instances of artefacts by type, assigning artefacts unique
identifiers, creating specified type of an artefact instance, and search for instances of
artefacts according to the specified type.

In the model, the ability to carry out the elementary tasks el depends on access to
the required artefacts ail. The types and number of available artefacts in the system
simulation is determined as a pair defined in the repository:

R= A,φð Þ ð5Þ

where: A—is a collection of design environment artefacts, φ a, tð Þ=φa, t—function
specifying the number of type a artefacts a∈A at a discrete point in time t.

Worktime Register Object. It is a part of the process state. The register stores
information about which type of a task was performed by the agent, as well as when
it began the task and when it finished.

190 W. Wysocki et al.

Activity Change Register Object. This is the model output and an element of
model state. The register stores information about the changes in the flow of the
project. Information about the active iteration of the project, current activities, and
simulation time at which the change occurred are stored.

In the context of the above definition, simulation system SS can be represented
as a sequence containing the project plan PP defined on the set of elementary tasks
E, artefact repository R and agent set G:

SS= PP,E,R,Gð Þ ð6Þ

Behaviour of the simulation system is a set of work performed during the project
simulation:

S= fWS
i ji=1 . . . ng ð7Þ

where: WS
i —ith task of simulation S

The simulation is related to the schedule for completion of elementary tasks:

Xs = xi, j, kji=1 . . . n, j=1 . . .m, k=1 . . . z
� � ð8Þ

where: xi, j, k—and start time of the ith task, in regard to activity jth and elementary
task kth

Based on the schedule of elementary tasks, a schedule of activities can be
defined, which is used as a process pattern to examine the accordance of the actual
design process with the RUP model:

XS = fxi, jji=1 . . . n, j=1 . . .mg ð9Þ

where: xi, j =min xi, j, 1 . . . xi, j, z
� �

.

2.1 RUP Process Implementation in a Agent-Object System

Fig. 2 shows utilization of agent-object system as a simulation of RUP. Two sets of
information are passed as input of the model, according to RUP. The first relates to
the project team, the second, project plan.

Each person has a specific name, assigned design roles and periods of
employment in the project. The period of employment is made up of a start date,
end date, and weekly hours of work that person performs for the project.

The project plan PP includes a range of information and the iterations of each
phase of the project. The scope of the project is represented as a number of use
cases calculated in accordance with the method for estimating the effort of the
project in Use Case Points. The size of the project at the input of the simulation is a

Model of RUP Processes Maturity Assessment in IT Organizations 191

scaled result of estimating UCP, so that one point corresponds to one Use Case
artefact in the system simulation.

For each iteration of the development project, a name, phase and growing
percentage targets for disciplines are determined. Iteration also includes the activ-
ities workflow of the project. The flow is properly configured and tailored to the
needs of the project. The internal parameters of the simulation are responsible for
the duration of the different types of tasks.

At the output of the model groups of variables are defined and aggregated to the
RUP process state and process pattern XS. The state of the simulated project is
marked on the diagram so that it can be modified according to the current state of
the real project.

This allows the use of simulation to support the decision of the project manager
not only at the beginning of the project, but also in the process of software
development.

2.2 Implementation of the Agent-Object Model System
in a Software Environment

JADE was chosen for the implementation of the agent-object system—it is written
in Java as open source code and licensed under GNU. The system is actively
developed by Telecom Italia and the international community [2, 4].

Multi-agent system had to be adapted for use as a runtime multi-agent simulation
(MABS) [10]. The JADE system lacks the solution for simulation of time.
Therefore we use a proprietary solution of the central timing simulation with a fixed
step, which is an extension of the concept of clock simulation in the Jadex package
[3]. Simulation clock has been extended to determine the order of sending time
information to groups of agents, with the introduction of a multi-phase clock cycle.
This solution has reduced entropy and produced a better result reproducibility of
RUP process simulation.

3 Application of the Agent-Object System to an Actual
RUP Project

The aim of the experiment was to use the agent-object system to assess the maturity
of the actual development process that is in accordance with RUP.

The experiment consisted of two phases. The first stage was planned to measure
the size of the project, preparation of information about completed tasks and tuning
parameters of the internal model to the actual process.

Second stage was planned to use the fine-tuned simulation as a pattern to assess
the maturity of the development process in the tested process.

192 W. Wysocki et al.

The input for the experiment was detailed data on the course of the development
process of a large information system in the field of insurance. The system was
created as an extension of a previous version, with significant changes in archi-
tecture and functionality. The development process lasted for 5 years, the project
team employed to design consisted of 30–210 people. The number of tasks per-
formed during the development of the system was over 24,000. The duration of the
project simulation was about 40 min.

3.1 The First Stage of the Experiment Using
the Agent-Object Model to Assess RUP Process Maturity

The aim of the first stage is to obtain a process pattern matching the RUP process.
To do this, size of the project was estimated and internal parameters of the simu-
lation were adjusted.

Estimating the size of the project using the UCP method. Preliminary esti-
mation of the size of the project in order to agree on the scope, time and budget are
carried out using the Use Case Points method. The total size of the system is: 6480
UCP. Based on the analysis of documents produced after the meetings and
requirement workshops it was estimated that the size of the modernization of the
system is 549 UCP. Therefore, most of the requirements of the system were
obtained from a previous version of the software and the project size is 5931 UCP.

The total size of the system agrees with this calculated effort, which amounts to
319,130 man-hours. The coefficient calculated from this data is 10.2 h for one UCP
point, which is the correct value for experienced project teams.

The result was consistent data provided in Table 1, which complemented with
the project plan and information about the project team, facilitated simulation of the
examined project.

Measuring the effort of project tasks. Available records of the work done
during the project had only text descriptions of the work performed. On their basis
categories were introduced, from which it was possible to determine the structure of
effort and it allowed for tuning of the internal parameters of the model.

Table 1 Project size input data

Input variable Value

The size of the project according to the UCP method 6480
The size of the new part of the system according to the UCP method 549
The size of the requirements recovered from a previous version of the project
according to UCP method

5931

Model of RUP Processes Maturity Assessment in IT Organizations 193

Fifteen categories of project tasks were introduced and according to them, the
structure of labour was determined. With this structure, internal parameters defining
the processing times of task types in RUP can be estimated.

Tuning the number of artefacts in the model. The time to complete tasks and
simulation effort depends on the number artefacts in input. Therefore, the first step
was tuning simulation’s internal parameters, in order to get the number of artefacts
created in the simulation close to the tested project. There are results provided in
Table 2.

The effort of tasks by category. Each category was assigned appropriate
activity types. Internal parameters defining the execution time of task types have
been selected, in order to simulate the effort close to the real project values.
The results are given in Table 3.

Table 2 Results of the first part of the experiment

Output variable Actual value Simulation result Relative error (%)

Number of artefacts 15517 14945 3.70
Effort of project 319130 308703 3.30

Table 3 Effort of tasks by category results

Category Actual
man-hours

Simulated
man-hours

Relative error
(%)

Architecture project 1240 1274 2.7
Architecture prototype 4593 4474 2.6
System integration 1792 2405 25.5
Consultations 3244 – –

Configuration management 2579 2699 4.4
Implementation and bug fixing 159419 158780 0.4
Design 7353 7350 0.0
Analytical project 5906 5261 10.9
Database project 4614 4499 2.5
Graphic interface project 3282 2226 32.2

Testing 57738 56891 1.5
Use case model 45377 40618 10.5
Requirements workshops and
interviews

6900 13518 49.0

Project management 9573 8708 9.0
Other work 5520 – –

Total 319130 308703 3.3

194 W. Wysocki et al.

3.2 The Second Phase of the Experiment—Utilizing
Agent-Object Model to Assess RUP Process Maturity

In the second stage of the experiment we used results of the RUP simulation
process as a pattern for comparison with the course of the tested project.

The tested project is defined as a set of task performed during the project:

P= fWP
i ji=1 . . . ng ð10Þ

where: WP
i —ith task of tested project P, is defined analogously to the simulation

results (7).
The project is related to its schedule:

XP = xi, kji=1 . . . n, k=1 . . .mf g ð11Þ

where: xi, k—start time of ith task, kth activity of project P
The accordance of the project task with the simulated task is marked: ≡ and

defined as such:

WP
i ≡WS

i if ∃oi ∈OS
i , for which ðxPi, j ≥ xSi, JÞ∧ ðxPi, j ≤ xSi, J + dSi, jÞ ð12Þ

where: OS
i—activity set, dSi, j—timespan of ith task, with regards to jth activity in the

simulation result.
Activity accordance Z is defined as the percentage ratio of the number of tasks in

accordance Lz the total number of tasks Lw. There are results provided in Table 4.

Z =100%
Lz
Lw

ð13Þ

Detailed comparison results of the process tested with the process pattern are
presented in Fig. 3. The schedule shown in the figure is approximated for read-
ability. The application comparing the test process with the pattern allows to check
the cause of non-accordance.

In the figure sample tasks are indicated by a number in the circle. The reasons for
the inconsistencies are presented below:

1. At the beginning of the inception phase the task of developing the system
architecture was performed, which is against the flow of RUP process.

Table 4 The results of the
comparison between tested
process and the process
pattern

Variable Description Value

Lz Number of tasks in accordance 33396
Lw Total number of tasks 51701
Z Activity accordance coefficient 65 %

Model of RUP Processes Maturity Assessment in IT Organizations 195

2. In the latter part of the inception phase the task of designing the database was
performed, which is against the flow of RUP process.

3. At the beginning of the first iteration in the construction stage, the task of project
management was started, which is consistent with the flow of RUP, but man-
agement activities were not performed at this point in simulation.

Fig. 1 The agent-object system model for project status analysis of the RUP process

Fig. 2 Utilization of the agent-object system in the RUP process

196 W. Wysocki et al.

4. In a further iteration of the construction the task of design was started, which is
in line with the flow of RUP, but management activities were not performed at
this time of simulation.

4 Conclusions

The aim of the research was to use the agent-object system developed by the
authors to analyse the RUP process in an IT organization. It was assumed, that the
use of the system will show the maturity of an IT organization using RUP, for the
eventual transformation process, based on the internal parameters of the simulation.
The article presents the design of the model, showing its verification environment,
as well as the use of the system in the in implementation of an actual IT project. The
research experiment, the aim of which was verification of the developed model
consisted of two phases. Preliminary, under which the system was used for
fine-tuning, and the second, which was used as a pattern for comparison with the
course of the test project.

The results in the first phase of the experiment showed that the parameters of the
project: the size of the project measured by the UCP method, effort of the project
activities, the number of artefacts and effort by category of tasks, has created
conditions to tune the system so that the relative error was small. It can therefore be

Fig. 3 Magnified fragment of comparison between the actual development process and the result
of the RUP process model

Model of RUP Processes Maturity Assessment in IT Organizations 197

assumed that the proposed internal parameters of the simulation can be used to
assess the readiness of the organization of the process agile transformation.

The results of the experiment in the second phase indicated that the development
processes ended earlier than the actual ones analysed. Therefore, there is a large
discrepancy in activities at the end of the development process.

The agent-object system proposed in the article, allows the analysis of causes,
for which investigated task is not in accordance with the process pattern. For
example, the non-accordance of tasks at the beginning of the process arises from the
fact, that those tasks concern the system architecture design and implementation of
the system architecture, which is contrary to the description of the RUP process,
since this work must be carried out at the stage of elaboration phase.

The evaluation method of the RUP process using the agent-object system was
checked not only at the level of synthetic assessment in the form of coefficient of
accordance which shows the overall assessment of RUP process maturity but also
allowing for the preparation of detailed analysis

Therefore, in view of further assessment studies of an organization’s readiness
for agile processes of transformation, it must be considered how parameters typical
for a mature organization’s performance may provide a basis for classifying it in
assessing the readiness of the organization.

The results obtained in the first and second phase of the experiment indicate on
one hand, the ability to forecast the state of the project using the tuning of the
agent-object system parameters, yielding a small relative forecast error, but on the
other do not create the conditions for accurate assessments of RUP processes.

This may mean that since the organization is not able to predict the state of its
processes so its maturity is low in synthetic terms.

It may also mean that the adopted internal parameters of the simulation can be a
preliminary measure of an organization’s readiness for agile transformation, which
means that the readiness state of the organization analysed in article is low.

This does not mean, however, that if the organization is not mature, the risk of
agile transformation is high. Such research was not conducted by the authors.

They assumed that the maturity analysis for the start of agile transformation
should be carried out before the management decides to implement an such a
transformation.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addison-Wesley, Boston, MA (2005)

2. Bellifemine, F.L.: Developing Multi-agent Systems with Jade. John Wiley, Hoboken, NJ
(2007)

3. Braubach, L., Pokahr A.: The Jadex Project: Simulation. In Multiagent Systems and
Applications, pp. 107–28. Springer (2013)

4. Jade—Java Agent Development Framework. http://jade.tilab.com/. Accessed 21 May 2016

198 W. Wysocki et al.

http://jade.tilab.com/

5. Kroll, P., Kruchten, P.: The Rational Unified Process Made Easy? A Practitioner’s Guide to
the RUP. Addison-Wesley, Boston (2003)

6. Orłowski, C., Deręgowski, T., Kurzawski, M., Ziółkowski, A.: A model for shaping IT project
management process to raise the readiness of an IT organization for agile transformation. (in
Polish). In: XIX Conference on Innovation in Production Management and Engineering,
Zakopane 2016, the Polish Association of Production Management (PTZP) (2016)

7. Orłowski, C., Deręgowski, T., Kurzawski, M., Ossowska, K., Ziółkowski, A.: The use of
complexity measures of the project to assess the state of evolution of the IT organization. (in
Polish). In: XIX Conference on Innovation in Production Management and Engineering,
Zakopane 2016, the Polish Association of Production Management (PTZP) (2016)

8. Ossowska, K., Orłowski, C., Ziółkowski, A., Deręgowski, T., Kurzawski, M.: The aggregate
evaluation measure of the organization’s state of maturity in the process of its evolution. (in
Polish). In: XIX Conference on Innovation in Production Management and Engineering,
Zakopane 2016, the Polish Association of Production Management (PTZP) (2016)

9. Schwaber, K., Beedle M.: Agile Software Development with Scrum. Series in Agile Software
Development. Prentice Hall, Upper Saddle River (2002)

10. Uhrmacher, A., Weyns D. (eds.): Multi-Agent Systems: Simulation and Applications.
Computational Analysis, Synthesis, and Design of Dynamic Models Series. Boca Raton: CRC
Press/Taylor and Francis (2009)

11. Wooldridge, M.J.: An Introduction to Multiagent Systems, 2nd edn. Wiley, Chichester (2009)

Model of RUP Processes Maturity Assessment in IT Organizations 199

A Collaborative Approach to Developing
a Part-Time Ph.D. Program in IT
Architecture with Industry Cooperation

Jan Werewka

Abstract Ph.D. studies seem to become more and more attractive to industry
professionals. Government policies in most countries advocate close mutual ben-
eficial cooperation between industry and universities. In case of IT professionals,
Ph.D. studies should be focused on strategic domains, advances in software engi-
neering, and software system engineering. Moreover, development of IT architec-
tures is crucial for software companies, and should become a vital area in the
program of Ph.D. studies. This paper focuses on establishing a Ph.D. program in
computer science in the context of collaboration with IT companies. The paper
begins by discussing comparison of different characteristics of part-time and
full-time studies. The motivation model includes main stakeholders, drivers,
assumptions, principles and assessment methods that are the basis for the proposed
Ph.D. project. Possible successful completion of the project is investigated through
force field and SWOT analysis. The evaluation of the Ph.D. program takes into
account preconditions for applicants, selection of the area of studies and its quality.
The paper concludes that some attitude changes at universities and in the IT sector
are necessary to carry out the project successfully.

Keywords Ph.D. studies ⋅ IT architecture ⋅ Software architecture ⋅ Computer
science ⋅ Education

1 Introduction

The paper presents a proposal for Ph.D. studies for IT professionals interested in the
topics of IT architecture and development of software systems. The IT architecture
concept needs to be considered broadly and includes developing enterprise, busi-
ness, application, and infrastructure architectures. The paper considers establishing

J. Werewka (✉)
Department of Applied Computer Science, AGH University of Science
and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: Jan.Werewka@agh.edu.pl

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7_15

201

part-time Ph.D. studies focusing on IT Architecture (abbreviated as ITAPhD; IT
Architecture Ph.D. studies) and considers the following aspects: (1) How the
studies should be organized in order to fit the needs of employees in the IT sector?
(2) How to identify Ph.D. studies that are especially relevant for cooperation with
industry? (3) How to achieve high quality of the studies? (4) How the cooperation
between the industry and the university should be structured to give significant
benefits to both sides?

An important question concerns why mainstream computer science Ph.D.
studies do not develop IT architecture scientists. An example specialization are
Ph.D. studies on trustworthy systems. In [1], the field of trustworthy systems is
analyzed, and Ph.D. programs in this area in the US are examined. The discussion
considers what is needed to produce competent professionals able to protect health
of current cyber systems. This example shows that specialization of Ph.D. studies in
computer science is possible and can be important for companies from the IT sector.

To better understand the problem, Table 1 shows a basic comparison between
ITAPhD and selected existing full-time Ph.D. programs in computer science (ab-
breviated as RefPhD; Reference Ph.D.). The area of the referenced studies is
described in [2]. The success of ITAPhD will lead to research concentrating on
strategic solutions for the IT sectors, and educating industry experts with a scientific
background. The fee for Ph.D. studies depends on different factors. In Table 1, it is
assumed that the standard fee for a Ph.D. student for the first year is 100 %. This
corresponds to a monetary value of €2,000, which is a reference value for further
calculations.

2 Related Work

The problem of the suitability of Ph.D. studies was analyzed from different points
of view. In the “Bologna Declaration” [3] the European Union (EU) promotes
consistency and mobility related to higher education. In the declaration, a frame-
work is proposed for achieving compatibility by introducing a clear division of

Table 1 Comparison between ITAPhD and RefPhD studies

Feature ITAPhD RefPhD

Activities per week Weekends Workdays
Ph.D. students as teachers 10 h/Year 60 h/Year
Interaction with taught students Support, teaching Regular teaching
Length of the studies 3 years 4 years
Total hours 1st/2nd/3rd/4th pro year 224/224/65/0 555 + (5ECTS)
Student numbers Min. 20 10 this year
Ph.D. thesis fee ≈150 % No fee during studies
Language of instruction English (domestic) Domestic
Tuition fee for national students per year 100 %/100 %/50 % 0 %

202 J. Werewka

studies into 3 levels: undergraduate, graduate and doctoral degree studies. The
report [4] proposes a set of recommendations to strengthen US graduate (including
Ph.D.) education in partnership with industry and the government. The Polish
Ministry of Science and Higher Education insists on extensive cooperation between
educational establishments and industry, which should be followed by the com-
mercialization of learning outcomes. This cooperation should also be developed in
the field of doctoral studies in order to produce experts in the field of IT, and
alliances should be fostered with industry to support such cooperation. The Sci-
entific Board of the Polish Information Processing Society published a book [5] on
professional IT Qualifications. This work describes a model of proposed solutions
for both IT professionals and users of information technology.

Research in paper [6] focused on explaining the elements of the process of
developing interest in obtaining a Ph.D. degree in engineering. Certain universities
have developed or intend to develop education research centers and Ph.D. programs
[7] in engineering basing on the Collaboratory for Engineering Education Research
(CLEERhub.org) project with the goal of exchanging information. Another project,
ELLEIEC [8] concentrated on Electrical and Information Engineering, and inves-
tigated the position of Ph.D. students in Europe with the aim to explain distinctions
between academic institution regulations and requirements for obtaining Ph.D.
degrees. The goal of the mentioned project was also to clarify important topics [9]
aimed at facilitating mobility and exchange programs related to Ph.D. studies in
Europe. Another example presents an innovative project supported by the European
Union [10]. The project promotes quality research in aeronautics and international
Ph.D. education on the base of a collaborative research network. Its participants
comprise of leading universities, research centers, and the Air Traffic Management
industry. The IT sector requires innovative leaders with robust research and theo-
retical foundations who can effectively contribute to the global development of
economy [11]. The mentioned paper highlights possible gaps in the availability of
Ph.D. educational opportunities related to industry specialists working full time and
simultaneously attending Ph.D. studies. Domain and also non-domain character-
istics [12] of Ph.D. studies are of great importance for industry professionals. This
means that part-time Ph.D. studies should be attractive for professionals not only in
the area of their research, but also with respect to non-domain features, such as
organization efficiency.

3 Importance of the IT Architect Profession

Part-time Ph.D. studies are mostly designated for employees from the IT branch,
therefore, they should concentrate on research aspects including new solutions in
software system engineering, developing efficient software, or system and enter-
prise architectures. In IT companies, system architecture design has strategic
importance in delivering valuable software products. This brings up the following
essential questions: which competences should architects have, and, on the basis of

A Collaborative Approach to Developing a Part-Time Ph.D. … 203

http://CLEERhub.org

their competences, where should they be located in decision-making structures?
The study [13] presents a systematic approach to assessing and developing vital
competences that could be leveraged in software companies. Another issue is the
definition of the process of career path development, as well as the definition of the
organizational structure supporting this process.

In IT companies, the methodologies of development and the assessment of
competencies may be built on the basis of their own solutions or existing standards.
The normative methodology of the Architecture Skills Framework (ASF), which is
part of a broader TOGAF methodology [14], is an example of a standard reference
solution. Figure 1 presents the average levels of competencies calculated for the
ASF TOGAF set within a category for individual architecture roles.

Universities providing education in the broadly defined field of computer science
should investigate the development paths of architects in companies in order to take
into account the needs of the industry. The proposed approach [13] was verified at
an IT company where it had been implemented by means of the ORRCA archi-
tectural governance methodology.

4 Motivation Model of Part-Time Ph.D. Studies

ArchiMate notation [15] has been used for defining a motivation model for the
establishment of ITAPhD studies because the elements of the notation seem to be
self-explanatory and the notation is not very extensive.

In the first instance, it is important to know the major stakeholders and their
drivers (Fig. 2). We can distinguish the main stakeholders and their drivers as
follows: IT industry employees who intend to gain scientific and practical knowl-
edge in order to have better competences and employee market value; Ph.D. stu-
dents who need an effective and well-organized way to access valuable knowledge;
university professors who gain additional support for research and feedback from
industry; faculties which gain new education qualities and a competitive position in

Fig. 1 Averaged IT architects’ competence scale

204 J. Werewka

relation to IT sector demands; IT companies which gain scientific software experts
who can make proper analysis and decisions; IT sector vendors whose techno-
logical solutions are promoted by education; the Ministry of Science and Higher
Education, which supports co-operation with industry and the commercialization of
research results.

A motivation model was developed in ArchiMate (Fig. 2) for the ITAPhD A
properly defined motivation model will support the development of the business
layer of the proposed Ph.D. studies.

5 Force Field and SWOT Analysis for Offering Ph.D.
Studies

For the introduction of a new type of doctoral studies, a force field and SWOT
analysis was performed.

Fig. 2 Part-time Ph.D. studies motivation and business layers

A Collaborative Approach to Developing a Part-Time Ph.D. … 205

5.1 Force Field Analysis

The driving forces are: new Ministry of Science and Higher Education regulations,
designed to support co-operation with industry and commercialize research results;
the fact that science needs investors from outside the budget sector, while entre-
preneurs seek cooperation with scientists; new opportunities; MOOCs technology
and e-learning supporting remote work; domestic and foreign competition; the
acceleration of change in global IT technology; industrial sector expectations; the
creation of additional sources of revenue.

Restraining forces are: resistance to change and the fact that University staff and
industry managers are accustomed to old ways; passivity, as university staff and
industry managers only concentrate on current problems; the risk of loss of position
or image; lack of knowledge of what the competition is doing, the needs of the
industry, and the economic situation; the need for financing because projects cannot
be self-financing; low IT sector interest.

5.2 SWOT Analysis

SWOT analysis takes into consideration internal strengths and weaknesses, external
opportunities, and threats.

Table 2 presents internal strengths and weaknesses and Table 3 shows external
opportunities and threats for the proposed Ph.D. study.

In the considered case, the weight of distinguished strengths, weaknesses,
opportunities and threats are determined based on discussion with experts. In the
next step, influence matrix coefficients are determined, based on four (yes, no)
questions:

Table 2 Strengths and weaknesses of organization of Ph.D. studies

Strengths Weight Weaknesses Weight

s1 Experience in having
full-time Ph.D. studies

0.3 w1 Available scientific resources are
overloaded with other tasks

0.3

s2 Experience in supervising
of Ph.D. thesis

0.3 w2 Scientific research partially does not
correspond to IT sector needs

0.2

s3 Competences in computer
science research

0.2 w3 Dispersed scientific knowledge on
different IT research fields

0.2

s4 Experience in cooperation
with IT sector

0.1 w4 Inertia and resistance to change 0.2

s5 Available e-learning
system with base
functions

0.1 w5 No specialized distance learning
courses

0.1

206 J. Werewka

• Can identified strengths take advantage of the opportunities?
• Can identified weaknesses preclude taking advantage of the opportunities?
• Can identified strengths overcome threats?
• Can identified weaknesses exacerbate threats?

Table 4 presents the SWOT influence matrix with the values 1 (yes), 0 (no).
The weighted coefficients of strengths, weaknesses, opportunities, and threats are

denoted correspondingly as si, wi, oi, ti.
The influence of strengths on opportunities, strengths on threats, weaknesses on

opportunities, and weaknesses on threats is denoted by matrix elements corre-
spondingly denoted as soij, stij, woij, wtij.

Table 3 Opportunities and threats of organization of Ph.D. studies

Opportunities Weight Threats Weight

o1 Large number of IT companies
in the neighborhood

0.3 t1 Companies concentrating only
on business activities

0.3

o2 IT Sector specialists seek to
gain knowledge on IT
architecture and be
distinguished by Ph.D. degrees

0.2 t2 Companies own research
groups concentrating on
specialized tasks which find
cooperation with university
inefficient

0.2

o3 Increasing trends for
cooperation between industry
and universities

0.2 t3 Strong research confidentially
in IT sector companies

0.2

o4 Positive attitude towards
internationalization of studies

0.2 t4 Broad study domain (instead
more specialization e.g.
trustworthy IT systems)

0.2

o5 Extension of HR cooperation to
Ph.D. level

0.1 t5 Narrow study domain (instead
e.g. interdisciplinary studies)

0.1

Table 4 SWOT influence matrix

s1 s2 s3 s4 s5 w1 w2 w3 w4 w5

soij 0.3 0.3 0.2 0.1 0.1 woij 0.3 0.2 0.2 0.2 0.1
o1 0.3 1 0 1 1 0 0.3 0 1 1 0 0
o2 0.2 1 1 1 0 1 0.2 1 1 1 1 1
o3 0.2 0 0 1 1 0 0.2 1 1 1 1 0
o4 0.2 0 1 0 0 1 0.2 0 0 1 0 1
o5 0.1 0 1 1 1 0 0.1 0 0 1 0 0

stij 0.3 0.3 0.2 0.1 0.1 wtij 0.3 0.2 0.2 0.2 0.1
t1 0.3 0 0 0 1 0 0.3 1 1 0 1 0
t2 0.2 0 0 1 0 0 0.2 1 1 0 1 0
t3 0.2 0 0 1 1 0 0.2 1 1 0 1 0
t4 0.2 1 1 1 0 0 0.2 0 0 0 0 0
t5 0.1 1 1 1 0 0 0.1 0 0 0 0 0

A Collaborative Approach to Developing a Part-Time Ph.D. … 207

The estimated values of strategies are obtained by the corresponding formulas:

SOv = ∑
i, j
sisoi, joj ð1Þ

STv = ∑
i, j
sisti, jtj ð2Þ

WOv = ∑
i, j
wiwoi, joj ð3Þ

WTv = ∑
i, j
wiwti, jtj ð4Þ

The calculation (1–4) of strategies for best strategy determination was based on
the subjective value of coefficients for strengths, weaknesses, opportunities,
weaknesses and the influence of dependencies between them. Analysis of the
current situation shows that conservative (WOv = 5.6) and aggressive (SOv = 5.4)
strategies seem be the best suited to the project. 4 classic SWOT strategies are
considered for the project, presented in Table 5. The aggressive strategy is based on
growth and attack and uses strengths to maximize opportunities. The conservative
strategy is based on competition and defense and uses strengths to minimize threats.
The competitive strategy is based on improvement and attack and minimizes
weakness by taking advantage of opportunities. The defensive strategy is based on
change and retreat to minimize weakness and avoid threats.

The SWOT analysis was performed under some subjective assumptions
regarding IT-sector needs relating to ITAPhD studies. The subjective opinion is
based on the author’s experience of being CEO for 17 years of a large software

Table 5 SWOT strategies

Aggressive strategy Conservative strategy

Use strengths to take advantage of opportunities.
SOv = 5.4

Overcome weaknesses by taking advantage
of opportunities. WOv = 5.6

∙ Open part-time Ph.D. studies
∙ Start closer cooperation with IT companies
∙ Prepare programs suitable for industry
specialists
∙ Use e-learning
∙ Eventually combine selected courses from
the 1st and 2nd year to reduce costs

∙ Start recruiting later. (officially open
studies)
∙ Start preparation and cooperation with
industry for the next year
∙ Prepare more for e-learning

Competitive strategy Defensive strategy

Use strengths to avoid threats. STv = 3.6 Minimize weaknesses and avoid
threats. WTv = 4.5

∙ Compete with others by combining part time and full-time
studies (reduces cost of studies,
but studies’ goals will be only partially met)
∙ Join efforts with other similar Ph.D. studies

∙ Do not start the studies
∙ Start cooperation with industry

208 J. Werewka

development company, discussion with IT experts which resulted in varying
(positive and negative) opinions regarding Ph.D. study needs, and the author’s
experience in leading post graduate studies. For the proper alignment of Ph.D.
studies to IT-sector needs, additional surveys will be run. Risk will be mitigated by
developing some collaboration models discussed in a later section.

6 Evaluation of Ph.D. Studies

The evaluation of Ph.D. studies is based on: preconditions for their inception, the
area of studies (width and depth), and their quality, including considerations of the
value of the program to the IT industry.

6.1 Preconditions for Applicants

The candidate must be a graduate of an M.Sc. program in the field of technical
sciences, economics, or natural science, and should demonstrate necessary poten-
tial, willingness and determination to carry out research and education at the
doctoral level. The applicant should be interested in research in the field of IT, be
willing to use a systematic approach in his work, be able to formulate research
problems and hypothesis, and exhibit experience in software development or in the
application of information technologies. For applicants with significant curriculum
differences, additional classes are proposed to obtain 6 ECTS points. This may be
achieved by attending selected classes at the graduate level or IT Architecture
Academy courses [16], that offer knowledge included in the approaches proposed
by the Open Group, SEI and ISAQB.

6.2 Selecting the Areas for Ph.D. Studies

The areas selected for the ITAPhD study program should be closely related to
solutions that are of current value for the IT sector and based on well-defined
standards; for example, the IEEE Computer Society established a Guide to the
Software Engineering Body of Knowledge (SWEBOK Guide [17]). An important
SWEBOK goal is to offer curricula to undergraduate, graduate, and continuing
education students. 15 SWEBOK KAs (Knowledge Areas) are distinguished.

Finally, three main areas are selected for the ITAPhD studies:

• Software system engineering related to systems and software. In this area, the
following issues may be considered: System research; Ontologies of systems;

A Collaborative Approach to Developing a Part-Time Ph.D. … 209

Methods, tools and experimental studies related to requirements, designing,
architecture, verification and validation, maintenance and evolution of software.

• Software engineering related to the development and improvement of software
development processes.

• Enterprise architectures related to: designing IT systems for enterprises, cor-
porate architectures and application concepts in various branches of industry,
inter-enterprise cooperation, collaborative development, virtual enterprise, cor-
porate architecture design, service-oriented architecture (SOA), model-driven
architecture (MDA), cloud computing, big data analytics (BDA),
component-oriented architecture, systems integration, integrated manufacturing
systems, industrial IT.

For evaluation and comparison purposes, a Ph.D. studies landscape is proposed.
The landscape consists of segments (columns) and products and services (rows).
The products and services can be divided into three groups: research results
(Table 6), education, and research workshops.

6.3 Quality of Ph.D. Studies

The quality requirements are similar to full-time studies, as students are required to
obtain a positive evaluation from their scientific coordinator for each academic year,
must pass mandatory and selected optional subjects, and must receive formal
approval of their selected doctoral research. Students should pass all the required
doctoral exams in the third year of studies.

The performance measures of scientific entities in Poland are based on regula-
tions from the Ministry of Science and Higher Education consisting of 4 basic
criteria: scientific and/or creative achievements; scientific potential; concrete ben-
efits of the scientific activity; intangible benefits of the scientific activity. In liter-
ature, this issue is investigated in greater depth [18]. Publishing of scientific papers
is required in order to obtain formal approval of the conducted doctoral research

Table 6 Basic research
landscape for Ph.D. studies

Layers Research results

Business Product commercialization
Publications
Knowledge services

Application Methods development
Software development
Software development environment

Infrastructure System Integration and building
System support and Maintenance
Infrastructure development

210 J. Werewka

and to defend a Ph.D. thesis successfully. Each year the Ministry publishes the
number of credits assigned for publications in scientific journals.

It is important that part-time Ph.D. Studies should not waste students’ time and
should be finally completed after a formal approval of the thesis. The proposed
metrics for the efficiency of studies could be the completion rate and the number of
years taken to complete.

7 Collaboration Models

Many attractive non-academic career paths exist for Ph.D. graduates. An important
issue is to align curricula at universities to the needs of the IT industry. For uni-
versities, the development of curricula and forms of education is important to attain
the appropriate attractiveness of studies and compliance with the needs of the IT
industry. This is important because the level of the adjustment of studies to the
requirements of the labor markets is considered during university assessment and
accreditation. Talent management has been introduced in many IT companies, an
example of which is given in the paper [19], which proposes career paths for IT
architects.

The proposed ITAPhD studies should use different collaboration models. The
main models are discussed below.

Collaboration with industry—cooperation models:

• Industry experts working on topics suitable for Ph.D. theses. Having talented IT
sector specialists on Ph.D. studies is important in order to bring industry
cooperation to a new level.

• Knowledge exchange or common project realization in cases where industry and
universities are interested in the same research. Students taking Ph.D. studies
should collaborate on challenging projects

• Ph.D. study programs are adapted for industry needs. This adaptation can be
achieved with the support of other university units.

Working in the industry and undertaking Ph.D. research not related to the current
work will be difficult.

Collaboration with on-line learning organizations and librarian institutions:

• Virtual team cooperation supported by e-learning
• Video teaching materials from university staff
• Up-to-date scientific materials from libraries

There is also an intention to collaborate with international organizations in order
to broaden the education offer. Collaboration with other universities and institutions
could include:

• Assistance from experts (teachers, video lectures)
• Support for Ph.D. paths from professors

A Collaborative Approach to Developing a Part-Time Ph.D. … 211

• Clusters. An interesting template for this may be the Cluster Hiring Initiative
[20], which was designed to foster collaborative research, education, and out-
reach by creating new interdisciplinary areas of knowledge that are not restricted
by the boundaries of existing academic departments

Other forms of collaboration should be proposed, such as the invitation of
international students (e.g. tuition is in English) and interdisciplinary cooperation in
the faculty.

8 Conclusions

The proposed part-time Ph.D. study program should be attractive for professionals
from the IT branch, which means they must have good organization, be effective,
and be based on new technological solutions and innovative research. The con-
sidered part-time program [21] allows their participants to reconcile professional
activity with the possibility of developing new abilities of significant value. The
course’s orientation towards the IT sector’s needs ensures that many issues that
would-be Ph.D. students face will be included in the course curriculum.

Studies quality can be accomplished through proper organization and definition,
and setting high levels of excellence. Some shifts in attitude at universities and in
the IT sector are necessary to carry out the ITAPhD project successfully. Estab-
lishing Ph.D. studies faces two main collaboration problems. For university
researchers, it may be difficult to collaborate with stakeholders and concentrate on
values important to industry that coincide with university performance measures.
For professionals from the industry, it may be difficult to contribute to research
projects without obtaining instant results. The proposed solutions are designed to be
internationally recognized.

The Ph.D. studies initiative has the following features: the official confirmation
of the program and offer of Ph.D. studies; developing cooperation with industry in
the fields of interest, taking into account possible candidate profiles and expecta-
tions relating to research; using e-learning platform including prepared video
courses.

References

1. Yasinsac, A., Irvine, C.: Help! is there a trustworthy-systems doctor in the house? IEEE Secur.
Priv. 73–77 (2013)

2. Tadeusiewicz, R.: Programme of the Ph.D. Studies at the Faculty of Electrical Engineering,
Automatics, Computer Science and Electronics. AGH-UST, Attyka, Kraków (2011) (in
Polish)

3. Bologna Declaration. http://en.wikipedia.org/wiki/Bologna_declaration

212 J. Werewka

http://en.wikipedia.org/wiki/Bologna_declaration

4. The Path Forward The Future of Graduate Education in the United States. Council of Graduate
Schools and Educational Testing Service, p. 71. http://www.fgereport.org/rsc/pdf/CFGE_
report.pdf (2010)

5. Szyjewski, Z. (ed.): Professional IT qualifications, Scientific Board of Polish Information
Processing Society, p. 280 (in Polish). http://zbc.ksiaznica.szczecin.pl/dlibra/docmetadata?id=
33572 (2015). ISBN 9788394269104

6. Howell Smith, M.C.: It’s not what you think: a theory for understanding the lack of interest
among domestic students in the engineering Ph.D. In: 41st ASEE/IEEE Frontiers in Education
Conference (2011)

7. Smith, K.A., Streveler, R.A.: Special session—connecting and expanding the Emerging
Engineering Education Research (EER) and Engineering Education Innovation
(EEI) Communities. In: 41st ASEE/IEEE Frontiers in Education Conference (2011)

8. Bonnaud, O., Fremont, H., Thiriet, J.-M., Yahoui, H.: Ph.D. in Electrical and Information
Engineering in Europe: towards a harmonization including LifeLong Learning. In:
International Conference on Information Technology Based Higher Education and Training
(ITHET) (2012)

9. Bonnaud, O., Fremont, H., Thiriet, J.-M.: On the way of harmonization of Ph.D. in Europe in
Electrical and Information Engineering: status and recommendations. In: 23rd EAEEIE
Annual Conference, p. 5 (2012)

10. Valdés, R.A., Moreno, J.C., García, F.J.S.E.: Educating engineering Ph.D. students for a
Global World. In: Global Engineering Education Conference (EDUCON) (2012)

11. Djuricic, A., Grady, H.M., Graham, W.G.: The information economy: educational
opportunities for industry-based professionals. In: IEEE International Professional
Communication Conference (2008)

12. Werewka, J., Turek, M.: Computer science Ph.D. program evaluation proposal based on
domain and non-domain characteristics. In: Świątek, J., Borzemski, L., Grzech, A.,
Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Proceedings of
36th International Conference on Information Systems Architecture and Technology—ISAT
2015—Part III, pp. 177–187. Springer International Publishing. http://link.springer.com/
chapter/10.1007/978-3-319-28564-1_15 (2016)

13. Jamróz, K., Pitulej, D., Werewka, J.: Adapting enterprise architecture at a software
development company and the resultant benefits. In: Avgeriou, P., Zdun, U. (eds.) ECSA
2014, LNCS 8627, pp. 170–185 (2014)

14. TOGAF® Version 9.1, Open Group Standard, The Open Group, 2009–2011, p. 692
15. The Open Group: ArchiMate 2.1 Specification. http://pubs.opengroup.org/architecture/

archimate2-doc/toc.html (2013). Accessed 18 May 2016
16. IT Architecture Academy. http://www.it-architecture.agh.edu.pl
17. Guide to the Software Engineering Body of Knowledge, Version 3.0, SWEBOK®. In:

Bourque, P., (Dick) Fairley, R.E. (eds.) A Project of the IEEE Computer Society, (2014)
p. 335

18. Koczkodaj, W., Kułakowski, K., Ligęza, A.: On the quality evaluation of scientific entities in
Poland supported by consistency-driven pairwise comparisons method. Scientometrics (2014)

19. Turek, M., Werewka, J.: Motivation modeling and metrics evaluation of IT Architect
certification programs. In: Kozielski, S., Dariusz, M., Małysiak-Mrozek, B. (eds.) Beyond
Databases, Architectures, and Structures, pp. 463–472. Springer International Publishing
(2015)

20. Cluster Hiring Initiative. University of Wisconsin-Madison. http://clusters.wisc.edu
21. IT Ph.D. Studies.http://www.it-phd-studies.agh.edu.pl/home (2016). Accessed 20 May 2016

A Collaborative Approach to Developing a Part-Time Ph.D. … 213

http://www.fgereport.org/rsc/pdf/CFGE_report.pdf
http://www.fgereport.org/rsc/pdf/CFGE_report.pdf
http://zbc.ksiaznica.szczecin.pl/dlibra/docmetadata?id=33572
http://zbc.ksiaznica.szczecin.pl/dlibra/docmetadata?id=33572
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-28564-1_15
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-319-28564-1_15
http://pubs.opengroup.org/architecture/archimate2-doc/toc.html
http://pubs.opengroup.org/architecture/archimate2-doc/toc.html
http://www.it-architecture.agh.edu.pl
http://clusters.wisc.edu
http://www.it-phd-studies.agh.edu.pl/home

Author Index

A
Alvarez-Rodriguez, Jose María, 3

B
Babiarz, Rafał, 91
Bluemke, Ilona, 103
Bocewicz, Grzegorz, 187

C
Czerniak, Jacek M., 133

D
Dubielewicz, Iwona, 31
Durisic, Darko, 119

G
Grudziński, Wojciech, 103

H
Hnatkowska, Bogumiła, 3, 31
Hryszko, Jaroslaw, 77
Huzar, Zbigniew, 31, 47

J
Jarzębowicz, Aleksander, 163

K
Kardasz, Piotr, 133
Kawalerowicz, Marcin, 149
Kopczyńska, Sylwia, 17
Koronowski, Krystian, 17

L
Lakomski, Dawid, 133

M
Madeyski, Lech, 77, 149
Marciniak, Piotr, 163
Matysiak, Adam, 17
Miklosik, Piotr, 17

O
Ochodek, Mirosław, 17
Orłowski, Cezary, 187

P
Parol, Rafał, 61

R
Rana, Rakesh, 119
Roman, Adam, 91
Rybiński, Kamil, 61

S
Sadowska, Małgorzata, 47
Staron, Miroslaw, 119

T
Tuzinkiewicz, Lech, 31

W
Werewka, Jan, 201
Wysocki, Włodzimierz, 187

Z
Zalewski, Andrzej, 177
Zarzycki, Hubert, 133
Ziółkowski, Artur, 187

© Springer International Publishing Switzerland 2017
L. Madeyski et al. (eds.), Software Engineering: Challenges and Solutions,
Advances in Intelligent Systems and Computing 504,
DOI 10.1007/978-3-319-43606-7

215

	Preface
	Reviewers
	Additional Reviewers

	Contents
	Requirements and Domain Modeling
	1 Business Rule Patterns Catalog for Structural Business Rules
	Abstract
	1 Introduction
	2 Related Work
	2.1 Business Rules Definitions and Classifications
	2.2 Business Rules Patterns

	3 Definition of a Business Rule Patterns Catalog
	3.1 Description of Catalog Design Method
	3.2 Results of Literature Overview
	3.2.1 Definition of business rule patterns for structural business rules and their subtypes
	3.2.2 Structural business rule examples
	3.2.3 Summary

	3.3 Catalog Definition
	3.4 Catalog Validation

	4 Conclusions and Further Work
	Acknowledgments
	References

	Sketching Use-Case Scenarios Based on Use-Case Goals and Patterns
	1 Introduction
	2 Related Work
	3 Use-Case Patterns Catalog
	3.1 Action Templates
	3.2 Transaction Templates
	3.3 Use-Case Templates

	4 Sketching a Use Case Based on Its Goal
	5 Preliminary Evaluation
	6 Limitations and Generalizability
	7 Conclusions
	References

	3 Domain Modeling Based on Requirements Specification and Ontology
	Abstract
	1 Introduction
	2 User Requirements Specifications
	3 Towards Domain Model
	4 Case Study
	4.1 Case Study—Requirements Specification
	4.2 Domain Model Built Basing on the User Stories
	4.3 Domain Model Built Basing on the User Stories and Test Cases
	4.4 Comparison

	5 Conclusions
	References

	Semantic Validation of UML Class Diagrams with the Use of Domain Ontologies Expressed in OWL 2
	1 Introduction
	2 Related Works
	3 Method of Validation
	3.1 Transformation Rules
	3.2 Motivating Example for Verification Rules
	3.3 Verification Rules
	3.4 Result of Validation
	3.5 Prototype Tool

	4 Conclusions
	References

	RSL-DL: Representing Domain Knowledge for the Purpose of Code Generation
	1 Introduction
	2 Overview of Knowledge Representation Languages
	2.1 OWL
	2.2 LOOM
	2.3 Prolog
	2.4 Disadvantages of Described Languages

	3 ReDSeeDS Technology
	4 Solution Overview
	5 RSL-DL Model Example
	6 Conclusions and Further Work
	References

	Quality Assurance
	Assessment of the Software Defect Prediction Cost Effectiveness in an Industrial Project
	1 Introduction
	1.1 Project Context and Target Software
	1.2 Related Work

	2 Assessment Method
	2.1 Quality Assurance Effort Allocation Strategy
	2.2 Actual Project's Quality Assurance Costs
	2.3 Model Construction and Prediction
	2.4 The Highest F-Measure Value and the Corresponding Recall
	2.5 Prediction-Based Costs Simulation
	2.6 Results Analysis

	3 Threats to Validity
	4 Discussion
	References

	Dynamic Stylometry for Defect Prediction
	1 Introduction
	2 Dynamic Stylometry Metrics
	3 The Experiment
	4 Model and Experiment Results
	5 Conclusions
	5.1 Threats to Validity
	5.2 Discussion
	5.3 Future Work

	References

	8 Mutant Generation for WSDL
	Abstract
	1 Introduction
	2 Testing Web Services
	2.1 Levels of Testing
	2.2 Types of Testing
	2.3 WSDL

	3 Mutation Testing of Web Services
	4 WSMG
	4.1 Reduction of Mutants
	4.2 Example

	5 Conclusions
	References

	Improving Measurement Certainty by Using Calibration to Find Systematic Measurement Error---A Case of Lines-of-Code Measure
	1 Introduction
	2 Related Work
	3 The Concept of Measurement Error
	3.1 Impact of Measurement Error on Predictions---Standard Error of the Estimate

	4 Lines of Code (LOC)
	5 Empirical Evaluation
	5.1 Design
	5.2 Results
	5.3 Threats to Validity

	6 Recommendations
	7 Conclusions
	References

	Performance Comparison of CRM Systems Dedicated to Reporting Failures to IT Department
	1 Introduction
	2 Failure Reporting Systems
	2.1 Failure Reporting System.NET
	2.2 PHP Failure Reporting System

	3 Purpose and Method of the Experiment
	3.1 Aims of the Project
	3.2 Test Platform
	3.3 The Experiment

	4 Analysis of the Results
	5 Conclusions
	References

	Software Process Improvement
	Software Engineering Needs Agile Experimentation: A New Practice and Supporting Tool
	1 Introduction
	2 Motivation
	3 Agile Experimentation ``Manifesto''
	3.1 Small-n and Single Case Experiments
	3.2 Care About Power of Your Experiments
	3.3 Searching Best Experiment Design
	3.4 Use Friction Free Tools for Data Gathering
	3.5 Use Just-in-Time Quantitative Data

	4 NActivitySensor
	5 Discussion and Future Work
	References

	12 An Industrial Survey on Business Analysis Problems and Solutions
	Abstract
	1 Introduction
	2 Related Work
	3 Research Study
	3.1 Step 1—Development of a Unified Set of BA Techniques
	3.2 Step 2—Identification of Problems
	3.3 Step 3—Solution Proposals
	3.4 Step 4—Validation

	4 Conclusions and Further Work
	References

	13 Beyond Software Architecture Knowledge Management Tools
	Abstract
	1 Introduction
	2 Related Work
	3 Architectural Drivers for an Industrial Architecture Knowledge Management System
	4 The Architecture of Architecture Knowledge Management Infrastructure
	5 Discussion
	6 Conclusion, Research and Development Outlook
	References

	14 Model of RUP Processes Maturity Assessment in IT Organizations
	Abstract
	1 Introduction
	2 Agent-Object RUP Process Model
	2.1 RUP Process Implementation in a Agent-Object System
	2.2 Implementation of the Agent-Object Model System in a Software Environment

	3 Application of the Agent-Object System to an Actual RUP Project
	3.1 The First Stage of the Experiment Using the Agent-Object Model to Assess RUP Process Maturity
	3.2 The Second Phase of the Experiment—Utilizing Agent-Object Model to Assess RUP Process Maturity

	4 Conclusions
	References

	15 A Collaborative Approach to Developing a Part-Time Ph.D. Program in IT Architecture with Industry Cooperation
	Abstract
	1 Introduction
	2 Related Work
	3 Importance of the IT Architect Profession
	4 Motivation Model of Part-Time Ph.D. Studies
	5 Force Field and SWOT Analysis for Offering Ph.D. Studies
	5.1 Force Field Analysis
	5.2 SWOT Analysis

	6 Evaluation of Ph.D. Studies
	6.1 Preconditions for Applicants
	6.2 Selecting the Areas for Ph.D. Studies
	6.3 Quality of Ph.D. Studies

	7 Collaboration Models
	8 Conclusions
	References

	Author Index

