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Abstract Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and

amyotrophic lateral sclerosis are neurodegenerative disorders that are characterized

by a progressive degeneration of nerve cells eventually leading to dementia. While

these diseases affect different neuronal populations and present distinct clinical

features, they share in common several features and signaling pathways. In partic-

ular, energy metabolism defects, oxidative stress, and excitotoxicity are commonly

described and might be correlated with AMP-activated protein kinase (AMPK)

deregulation. AMPK is a master energy sensor which was reported to be

overactivated in the brain of patients affected by these neurodegenerative disorders.

While the exact role played by AMPK in these diseases remains to be clearly

established, several studies reported the implication of AMPK in various signaling

pathways that are involved in these diseases’ progression. In this chapter, we review
the current literature regarding the involvement of AMPK in the development of

these diseases and discuss the common pathways involved.
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7.1 Introduction

Neurodegenerative diseases including Alzheimer’s (AD), Parkinson’s (PD),

Huntington’s (HD), and amyotrophic lateral sclerosis (ALS) are characterized by

the progressive degeneration of nerve cells eventually leading to dementia. While

these disorders affect different neuronal populations, they share in common several

features. For instance, they are characterized by the presence of protein aggregates

in degenerating neurons that likely result from defective clearance mechanisms

including proteasomal dysfunction and lysosomal clearance. In addition, metabolic

alterations, excitotoxicity, and oxidative stress are often described. All of the latter

could participate in the deregulation of AMP-activated protein kinase (AMPK) that

was reported to occur in these diseases (Fig. 7.1). AMPK is a heterotrimer com-

posed of one α, β, and γ subunits, often referred to as a master energy sensor.

Indeed, AMPK possesses on its regulatory γ subunit four CBS (cystathionine-beta-

synthase) domains which are binding sites for adenine nucleotides. Three of these

sites can bind AMP, ADP, and ATP (Sanders et al. 2007; Gowans et al. 2013; Xiao

et al. 2011). Metabolic stresses that increase the AMP:ATP ratio will allow the

preferential binding of AMP to the γ subunit, thereby inducing a conformational

change and favoring the phosphorylation of the residue Thr172 located on the

catalytic α subunit by upstream AMPKs (Sanders et al. 2007; Gowans

et al. 2013). The liver kinase B1 (LKB1) seems to be mostly responsible for

AMPK phosphorylation in these conditions (Hawley et al. 2003; Woods

et al. 2003; Shaw et al. 2004). At least two other kinases were reported to

phosphorylate AMPK on Thr172, the calcium/calmodulin-dependent protein kinase

kinase II (CamKKII) that is regulated by an increase in intracellular calcium levels

(Woods et al. 2005; Hawley et al. 2005; Hurley et al. 2005; Connolly et al. 2014)

and the transforming growth factor β-activated kinase 1 (TAK1) that was reported

to phosphorylate AMPK under oxidative stress conditions (Momcilovic et al. 2006;

Chen et al. 2013). While not much is known about AMPK function in neuronal

cells, studies realized in other cell types demonstrated that AMPK is a very

important hub involved in the regulation of many intracellular pathways. In order

to preserve energy levels, AMPK was described to downregulate many energy-

consuming pathways. These include protein synthesis in particular through the

regulation of mTORC1-mediated translational control (Inoki et al. 2003; Gwinn

et al. 2008) and eukaryotic elongation factor 2 (eEF2)-mediated translation

(Browne et al. 2004; Horman et al. 2002) and fatty acid synthesis through the direct

phosphorylation of acetyl CoA carboxylase 1 (ACC1) and the expression of

enzymes involved in fatty acid synthesis by inhibition of the lipogenic transcription

factor sterol regulatory element-binding protein C1 [SREBP1C; Li et al. (2011)].

On the opposite, AMPK upregulates energy-producing pathways such as mitochon-

drial biogenesis through the activation of the PGC-1α (peroxisome proliferator-

activated receptor-γ coactivator 1α) pathway (Jager et al. 2007); glucose uptake
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through the regulation of glucose transporters expression (Zheng et al. 2001) and

cell surface localization (Russell et al. 1999; Abbud et al. 2000; Weisova

et al. 2009); glucose utilization through the direct phosphorylation of enzymes

involved in the glycolytic pathway including hexokinase (Abnous and Storey

Fig. 7.1 Regulation of AMPK. AMPK is a metabolic sensor which is activated by different

stresses. Excitotoxic and oxidative stresses promote, respectively, the activation of CamKKII and

TAK1 that phosphorylate AMPK on its residue Thr172 which is necessary for its activation.

Metabolic stress induces an increase of the AMP/ATP ratio that promotes AMP binding to the γ
subunit of AMPK. This induces a conformational change that allows the phosphorylation of

AMPK by LKB1. Once activated, AMPK triggers catabolic pathways and represses anabolic

pathways in order to maintain energetic homeostasis. ROS reactive oxygen species, CamKKII
Calcium/calmodulin kinase kinase II, LKB1 liver kinase B1, TAK1 transforming growth factor

β-activated kinase 1, NMDAR N-methyl D-aspartate receptor. Figure was produced in part using

Servier MedicalArt
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2008), 6-phosphofructo-2-kinase [PFK-2, Marsin et al. (2000)], and pyruvate

dehydrogenase kinase [PDK, Wu et al. (2013)]; and autophagy through the inhibi-

tion of ULK1 (Egan et al. 2011; Kim et al. 2011) and mTORC1 complex [review in

Shaw (2009)].

In this chapter, we review the current literature regarding AMPK involvement in

the development of main neurodegenerative diseases that include Alzheimer’s,
Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis and discuss the possi-

ble common pathological mechanisms involved. It is also important to note that

AMPK is also studied in the context of ischemic stroke in animal models. While

ischemic stroke can be considered as a neurodegenerative disease, the involvement

of AMPK in this context has already been the subject of many reviews (Manwani

and McCullough 2013; Weisova et al. 2011) and will not be discussed here.

7.2 AMPK in Neurodegenerative Diseases

7.2.1 Alzheimer’s Disease

AD is a progressive neurodegenerative disorder characterized by memory loss and

behavioral abnormalities that are correlated with neuronal and synaptic degenera-

tion in specific brain areas. Brain regions are sequentially affected by the pathology

starting from the entorhinal cortex to the hippocampus and whole neocortex

following cortico-cortical connections. At the histological level, AD is character-

ized by the presence of senile plaques and neurofibrillary tangles in the brain. Senile

plaques result from the extracellular aggregation of a peptide called Amyloid-β
(Aβ). Aβ peptides are produced upon the sequential proteolytic processing of its

precursor protein (APP) by β- and γ-secretases. Neurofibrillary tangles are com-

posed of paired helical filaments that result from the intracellular aggregation of

hyper- and abnormally phosphorylated tau proteins. Tau is a microtubule-associ-

ated protein whose main function which is regulated by phosphorylation consists of

the regulation of microtubule dynamics. While the exact role of APP remains to be

clearly established, there are some rare familial forms of AD which present

mutations in APP, Presenilin-1 or Presenilin-2 genes; the latter two being the

core components of the γ-secretase complex. However, the vast majorities of AD

cases are of sporadic origin and are likely driven by a combination of genetic and

environmental factors. The main genetic risk factor is the allele ε4 of APOE (coding

for Apolipoprotein E). In addition, other risks factors have been identified following

genome-wide association studies and include CLU (coding for clusterin), CR1
(coding for the complement component receptor 1), PICALM, and BIN1 (Lambert

et al. 2009; Harold et al. 2009; Seshadri et al. 2010). Environmental factors include

age, arterial hypertension, obesity, diabetes, and metabolic syndrome [review in

Barberger-Gateau et al. (2013)].
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Besides senile plaques and neurofibrillary tangles, perturbations in calcium

homeostasis, oxidative stress, and energy metabolism defects are observed in the

brain of AD patients (Bezprozvanny and Mattson 2008; Green and LaFerla 2008;

Mattson 2007; Sayre et al. 2008). For instance, positron emission tomography

(PET) imaging with the 2-[18F]-fluorodeoxyglucose (FDG) tracer is used as a

diagnostic marker in AD where reduced glucose energy metabolism can be

observed even at early stages of the disease (Mosconi 2005; Ferreira et al. 2010).

Additionally, mitochondrial dysfunctions are also commonly described to be asso-

ciated with AD [for a review, see Cabezas-Opazo et al. (2015)]. These include

mitochondrial morphology, dynamics, and bioenergetics defects (DuBoff

et al. 2013; Bubber et al. 2005; Garcia-Escudero et al. 2013). Interestingly, these

mitochondrial abnormalities were found to be restricted to vulnerable neurons and

to occur in neurons lacking neurofibrillary tangles, thus suggesting that they could

represent an early event in AD (Hirai et al. 2001). Additionally, mitochondrial

axonal transport is also impaired (Wang et al. 2015; Sheng 2014). Both amyloid and

tau proteins have been shown to induce mitochondrial dysfunctions (Grimm

et al. 2016). Conversely, studies also report that mitochondrial complexes I and

III dysfunctions associated with reactive oxygen species (ROS) generation enhance

Aβ production both in vitro and in vivo (Leuner et al. 2012).

AMPK was found to be deregulated in AD brains where immunohistochemistry

studies revealed that activated AMPK co-localized with hyper-phosphorylated tau

in pre-tangle and tangle-bearing neurons (Vingtdeux et al. 2011b). In addition,

AMPK activation in AD was also demonstrated by Western blotting where phos-

phorylated AMPK was significantly upregulated in AD brains as well as in APP
SWE,IND(J20) and APPSWE/PS1dE9 mice models of the disease (Ma et al. 2014;

Mairet-Coello et al. 2013; Son et al. 2012). AMPK deregulation was also observed

in Tauopathies, a subset of neurodegenerative disorders characterized by the pres-

ence of abnormally and hyper-phosphorylated tau proteins, including tangle-

predominant dementia, Guam Parkinson dementia complex, Pick’s disease,

frontotemporal dementia with Parkinsonism linked to chromosome 17, corticobasal

degeneration, progressive supranuclear palsy, and argyrophilic grain disease

(Vingtdeux et al. 2011b).

The exact role played by AMPK in AD remains controversial. The fact that

AMPK co-localizes with hyper-phosphorylated tau in AD led to the hypothesis that

AMPK could represent a new tau kinase. Indeed, in vitro studies using recombinant

proteins showed that AMPK could phosphorylate tau at several epitopes including

Thr231, Ser262, Ser356, and Ser396/404 (Thornton et al. 2011; Vingtdeux et al. 2011b).

In cellular models, AMPK was also found to phosphorylate tau under stress

conditions (Domise et al. 2016; Thornton et al. 2011). More particularly, Aβ
oligomers were found to induce specifically AMPK α1 subunit activation by

increasing intracellular calcium concentration and subsequent CamKKII activation.

This Aβ oligomer-mediated AMPK activation was suggested to induce tau phos-

phorylation at epitopes Ser262 and Ser396/404 in primary neuronal cultures (Thornton

et al. 2011). In addition, it was postulated that this pathway was responsible for the

toxic effects induced by Aβ oligomers on translational block (Yoon et al. 2012),

dendritic spines (Mairet-Coello et al. 2013), and synaptic plasticity (Ma et al. 2014).
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Indeed, AMPK activation following 2-deoxy-D-glucose (2-DG) or Aβ oligomers

treatment was found to impair long-term potentiation (LTP) in ex vivo hippocampal

slices (Potter et al. 2010; Ma et al. 2014). These results were corroborated in

APPSWE/PS1dE9 transgenic animals where AMPK inhibition was found to rescue

the LTP impairments mediated by Aβ (Ma et al. 2014). In these studies, AMPK

negative effects on synaptic plasticity were found to be the result of decreased

protein synthesis through mTORC1 and eEF2 pathways, respectively (Potter

et al. 2010; Ma et al. 2014). In addition, AMPK was recently found to modulate

tau pathology in vivo (Domise et al. 2016). On the contrary, other studies reported

that AMPK activation induced by leptin or metformin reduced tau phosphorylation

(Greco et al. 2009, 2011; Kickstein et al. 2010). The effect of metformin might,

however, be AMPK independent. Indeed, metformin was suggested to induce

protein phosphatase 2A (PP2A) activation, thereby leading to tau dephosphoryla-

tion (Kickstein et al. 2010). In a recent study, AMPKmodulation was also related to

tau dephosphorylation and rather correlated to AMPK phosphorylation at Ser485,

which is thought to be an inhibitory AMPK phosphorylation site prohibiting further

phosphorylation at epitope Thr172 (Horman et al. 2006). In conditions of metabolic

syndrome, insulin resistance or glucose depletion, tau phosphorylation might be

differently regulated either because AMPK activation status could differ or because

other tau kinases and phosphatases might be involved (Kim et al. 2015). While

these findings are somehow controversial, it is clear that tau is an AMPK target

either direct or indirect depending on the environmental conditions. Tau epitopes

regulated by AMPK include Ser262 and Ser356 which are KXGS domains located in

tau microtubules binding repeat regions. Phosphorylation of these particular epi-

topes regulates tau affinity for microtubules (Fischer et al. 2009). As a consequence,

AMPK-mediated tau phosphorylation might control tau binding with microtubules

and thereby axonal transport of cargos including mitochondria (Sato-Harada

et al. 1996; Reddy 2011). Tau Thr231 is another central epitope since it was reported

to serve as a priming site for GSK3β, a very important tau kinase participating to tau

hyper-phosphorylation and aggregation (Lin et al. 2007).

AMPK was also found to be involved in APP metabolism. A decrease of Aβ
production was reported in primary neurons after AICAR (5-aminoimidazole-4-

carboxamide ribonucleotide)-dependent AMPK stimulation; conversely, Aβ levels

were increased in primary neurons lacking the AMPK α2 subunit (Won et al. 2010).

Opposite results have also been obtained, and for instance, AMPK activation

following metformin treatment was reported to increase the transcription of

BACE1, one of the enzymes involved in Aβ production and hence to be associated

with increased Aβ levels (Chen et al. 2009). The effect of AMPK on Aβ production
and/or degradation is likely to be controlled by energy status given that depending

on the extracellular glucose concentrations opposite results are obtained (Yang

et al. 2015). As a master regulator of autophagy, AMPK activation following

resveratrol or AICAR treatment was found to reduce Aβ secretion by increasing

its degradation through the autophagic/lysosomal pathway (Vingtdeux et al. 2010,

2011a). In general, AMPK activation might be beneficial by helping clearing

protein aggregates through autophagy induction. However, in latter stages of the

disease, lysosomal-mediated degradation is impaired (Nixon and Yang 2011),
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consequently, increasing autophagosomes production without increasing

autophagic flux might have deleterious consequences. Indeed, inhibition of

autophagic flux will decrease the degradation of misfolded proteins including Aβ
and tau (Pickford et al. 2008; Wang et al. 2010) as well as dysfunctional mitochon-

dria. In addition, autophagosomes accumulation might be a source for Aβ produc-

tion (Yu et al. 2005), thereby inducing a vicious circle.

In conclusion, these data support a role for AMPK in AD as an upstream player

in the pathology development. Overall, AMPK could play a role in AD by partic-

ipating in Aβ production and/or clearance as well as on tau phosphorylation, the two
hallmarks of AD. Additionally, AMPK was found to mediate the toxic effects of Aβ
on synapses number and synaptic plasticity. These detrimental effects of AMPK in

the latter stages of AD are summarized in Fig. 7.2.

Fig. 7.2 Harmful roles of AMPK in the late stages of Alzheimer’s disease. Alzheimer’s disease is
characterized by excitotoxicity as well as metabolic and oxidative stresses. Mitochondrial dys-

function eventually leads to the production of ROS and to the increase of the AMP/ATP ratio that

correspond, respectively, to oxidative and metabolic stresses. These two events activate AMPK

which in turn decreases protein synthesis ultimately leading to synaptic loss and LTP impairments

that contribute to memory loss. AMPK is also involved in tau and amyloid pathologies. On one

side, AMPK phosphorylates tau protein thereby altering microtubules assembly and as a result

axonal transport of vesicles and mitochondria. On the other side, AMPK plays a part in the

production and degradation of Aβ peptides. Finally, Aβ and tau might contribute to the chronic

activation of AMPK by inducing mitochondrial impairments and excitotoxicity. LTP long-term

potentiation, ROS reactive oxygen species. Figure was produced in part using Servier Medical Art
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7.2.2 Parkinson’s Disease

PD is characterized by resting tremor, rigidity, bradykinesia, gait disturbance, and

postural instability. Pathological features include loss of dopaminergic neurons in

the substantia nigra associated with Lewy bodies inclusions (Beitz 2014). These

Lewy bodies are mainly composed of aggregated α-synuclein. PD etiology involves

many genetic and environmental factors (Olanow and Tatton 1999; Verstraeten

et al. 2015). While the majority of cases are sporadic, mutations in a number of

genes were identified to be responsible for rare familial forms of the disease. These

genes include SNCA (coding for α-synuclein), Park2 (coding for the cytosolic E3

ubiquitin ligase Parkin), and PINK1 (coding for PTEN-induced kinase 1). In

addition, genetic variants have been identified as PD risk alleles in LRRK2
(leucine-rich repeat kinase 2), SNCA, H1 haplotype of microtubule-associated

protein tau, and GBA (coding for beta acid glucosidase) [for a review, see

Verstraeten et al. (2015)]. Environmental factors include exposure to environmen-

tal toxins (pesticides, herbicides, and industrial chemicals) and drugs of abuse

(Olanow and Tatton 1999).

Interestingly, many of these genetic and environmental factors are linked to

mitochondrial function. For example, PINK1 is localized to the mitochondria where

it exerts a protective role that is abolished by mutations, overall resulting in a

cellular increased susceptibility to stress (Valente et al. 2004). Parkin is a protein

that was found to be recruited specifically to dysfunctional mitochondria to promote

their degradation by the autophagic pathway (Narendra et al. 2008), referred to as

mitophagy [for a review, see Youle and Narendra (2011)]. In addition, PINK1 was

found to activate Parkin on impaired mitochondria (Narendra et al. 2010). There-

fore, it was proposed that Parkin might be involved in mitochondrial quality control

as a way to remove damaged mitochondria. Additionally, α-synuclein itself was

also reported to induce mitochondrial alterations in neuronal cells and transgenic

mice (Hsu et al. 2000; Martin et al. 2006). As for sporadic cases, a decrease in the

activity of mitochondrial respiratory chain complex I was found in the substantia

nigra of PD patients brain (Schapira et al. 1990). Complex I was found to be

functionally impaired, i.e., oxidatively damaged and misassembled (Keeney

et al. 2006). In addition, regarding environmental risk factors, many pesticides

and 1-methyl-4-1,2,3,6-tetrahydropyridine (MPTP) share the common mechanism

of causing mitochondrial dysfunction (Sherer et al. 2002). Finally, FDG–PET

studies also demonstrated marked reductions in glucose metabolism in the brain

of PD patients (Eckert et al. 2005).

AMPK deregulation was observed in the brain of PD patients where activated

AMPK was found near the rim of Lewy bodies in the cytoplasm as opposed to

control individuals where AMPK was mainly nuclear (Jiang et al. 2013). AMPK

activation was also reported in animal models of PD induced by intra-striatal

injection of 6-hydroxydopamine (6-OHDA) or MPTP (Kim et al. 2013; Choi

et al. 2010). On the contrary, α-synuclein expression in cell models was reported

to downregulate AMPK activation (Dulovic et al. 2014). Whether AMPK
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activation is beneficial or detrimental in PD remains controversial. AMPK activa-

tion was reported in some instance to be detrimental given that further activation of

AMPK, for example, following metformin administration significantly enhanced

dopaminergic neuron degeneration induced by 6-OHDA, whereas overexpression

of a dominant-negative AMPK in the striatum reduced dopaminergic neuron

degeneration following 6-OHDA (Kim et al. 2013). In cellular models, PD toxins

(6-OHDA,MPPþ, or rotenone) induced AMPK activation and Akt inactivation that

cooperatively contributed to the downregulation of mTOR-mediated S6K1 (ribo-

somal p70 S6 kinase) and 4E-BP1 (eukaryotic initiation factor 4E binding protein

1), thereby leading to neuronal cell death (Xu et al. 2014). AMPK might also

participate in Lewy bodies’ accumulation through direct phosphorylation of

α-synuclein (Jiang et al. 2013) that could impair the clearance of its aggregates

(Tenreiro et al. 2014). On the opposite, AMPK activation using AICAR or metfor-

min was reported to reduce the toxicity mediated by α-synuclein (Dulovic

et al. 2014). AMPK also protected cells against rotenone toxicity by enhancing

autophagy (Hou et al. 2015). This AMPK-induced autophagic pathway also regu-

lates α-synuclein degradation following resveratrol treatment (Wu et al. 2011).

AMPK might also participate in mitochondrial function regulation in PD. Results

obtained in Drosophila melanogaster models suggest that AMPK activation could

be beneficial for familial forms of PD that present mutations in Parkin or LRRK2.

Indeed, genetic inactivation of AMPK was reported to reduce the beneficial effects

of epigallocatechin gallate (EGCG), an antioxidant found in green tea, in mutant

LRRK2 and Parkin-null flies (Ng et al. 2012). In addition, results obtained from

patient’s primary fibroblasts presenting Park2 mutations also suggest that the

beneficial effects on mitochondrial function and autophagy induced by resveratrol

were due to AMPK activation (Ferretta et al. 2014).

Altogether, these studies highlight the potential double role that can be played by

AMPK in PD (Fig. 7.3). On one side, AMPK could be neuroprotective by partic-

ipating, for example, in mitochondrial quality control; yet under other circum-

stances, AMPK could participate in neurodegeneration.

7.2.3 Huntington’s Disease

Clinical manifestations of HD include motor disturbances comprising chorea and

dystonia and cognitive and behavioral dysfunctions. HD is characterized by the loss

of medium spiny neurons in the striatum and eventually more widespread loss of

cortical, thalamic, hippocampal, and hypothalamic neurons. Another characteristic

of the disease is the appearance of nuclear and cytoplasmic inclusions that contain

mutant huntingtin and polyglutamine (Walker 2007). HD is an autosomal dominant

genetic disease that is induced by the repetition of a polyglutamine CAG triplet

repeat in the exon 1 of the huntingtin (Htt) gene with 41 or more polyQ repeats

being fully penetrant. (The Huntington’s Disease Collaborative Research Group

1993.) These repeats might confer a toxic gain of function for mutant Htt (mHtt) or
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a loss of normal Htt function (Zuccato et al. 2010). The physiological role of Htt

remains poorly understood; however, it was suggested to be involved in axonal,

vesicular, and mitochondrial transport (Smith et al. 2009; Tian et al. 2014).

In HD, mitochondrial dynamics, fusion and fission mechanisms as well as the

activity of enzymes involved in oxidative phosphorylation are disturbed (Shirendeb

et al. 2011; Song et al. 2011; Browne et al. 1997; Gu et al. 1996). These perturba-

tions have for consequence to increase the accumulation of fragmented and dam-

aged mitochondria eventually leading to oxidative stress. Additionally, mitophagy

defects were also proposed to participate in the disease progression (Wong and

Holzbaur 2014). A selective impairment of glycolytic metabolism in the striatum of

HD patient early in the course of their disease was observed by in vivo PET

measurements (Powers et al. 2007). This glucose hypometabolism in the early

stages of the disease was also reported in the cerebral cortex and in the brain

Fig. 7.3 Dual role of AMPK in Parkinson’s disease. Environmental and genetic risk factors are

involved in the buildup of mitochondrial alterations. These alterations eventually lead to oxidative

stress through the production of ROS and metabolic stress via an increase of the AMP/ATP ratio.

These stresses induce the activation of AMPK which phosphorylates α-synuclein, the latter

promoting its aggregation and ultimately neurodegeneration. Neurodegeneration might also result

from decreased protein synthesis triggered by AMPK activation. On the contrary, AMPK could

also exert a neuroprotective effect in particular by inducing the degradation of damaged mito-

chondria and α-synuclein aggregates via autophagy. ROS reactive oxygen species. Figure was

produced in part using Servier Medical Art
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caudate (Shin et al. 2013; Ciarmiello et al. 2012). Deficits in glycolysis have also

been reported in striatal neurons in a rat model of the disease (Gouarne et al. 2013).

Huntingtin itself might play a role in glycolysis. Indeed, Htt was found to interact

with the glycolytic enzyme GAPDH (glyceraldehyde-3-phosphate dehydrogenase)

(Burke et al. 1996). However, studies of HD patients’ brains did not conclusively

find an alteration of GAPDH activity (Browne et al. 1997; Tabrizi et al. 1999; Kish

et al. 1998; Olah et al. 2008). GAPDH was described to bear additional functions

unrelated to its energetic role. GAPDH might act in concert with the ubiquitin-E3-

ligase Siah1 to induce mHtt neurotoxicity by assisting its nuclear translocation (Bae

et al. 2006). Huntingtin could also be involved in fast axonal transport by scaffold-

ing GAPDH on vesicles, thereby providing onboard energy (Zala et al. 2013).

Finally, a recent study demonstrated that mHtt interfered with mitophagy. Indeed,

mHtt was found to affect GAPDH-driven mitophagy, thereby leading to the accu-

mulation of damaged mitochondria (Hwang et al. 2015).

The α1 subunit of AMPK seems to be particularly involved in HD pathogenesis.

Indeed, it was found to be activated in the nucleus of striatal neurons where it was

suggested to downregulate the antiapoptotic protein Bcl2, thus inducing cell death

(Ju et al. 2011) (Fig. 7.4). Accumulation of activated AMPK was also reported in

the striatum of transgenic mouse models of HD, R6/2 mice harboring exon 1 of the

human Htt gene with 144 CAG repeats (Chou et al. 2005; Mochel et al. 2012; Ju

et al. 2014). This overactivation of AMPK could be reversed by activating A2A

receptors using an agonist, additionally diminishing the HD-like pathology in these

animals (Chou et al. 2005; Ju et al. 2011). A2A receptors signaling pathway involves

PKA activation. PKA was reported to phosphorylate AMPK α1 at residue Ser173,

thereby preventing the activating phosphorylation at Thr172 (Djouder et al. 2010).

Additionally, AMPK activation in this mouse model might also result from

increased oxidative stress (Ju et al. 2014). On the contrary, in cellular models,

AMPK activation through viniferin treatment was reported to provide

neuroprotection against mHtt (Fu et al. 2012). Finally, metformin, which can

activate AMPK was reported to be beneficial in male R6/2 mice (Ma et al. 2007).

However, the exact mechanism behind metformin’s beneficial effects remains to be

determined.

Overall, these studies also highlight AMPK signaling pathway as a potential

player in the pathology of HD.

7.2.4 Amyotrophic Lateral Sclerosis

Amyotrophic Lateral Sclerosis (ALS) is characterized by the progressive loss of

upper and lower motor neurons at the spinal or bulbar level (Rowland and Shneider

2001). The most common symptoms of ALS are muscle weakness, muscular

atrophy, spasticity, and eventually paralysis. While the exact cause of the disease
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is unknown, around 10% of familial forms exist involving, for example, the SOD1
gene (superoxide dismutase 1), TARDBP (encoding TAR DNA-binding protein

43), FUS (fused in sarcoma), and hexanucleotide repeat expansion in C9ORF72
(Zarei et al. 2015; Renton et al. 2014). The sporadic forms of the disease might be

driven by genetic and lifestyle risk factors (Ingre et al. 2015). At the histological

level, ALS is characterized by the aggregation of ubiquitinated proteins that can

include TDP43, p62, and FUS in affected neurons (Blokhuis et al. 2013). ALS is

associated with defects in energy metabolism comprising weight loss, increased

resting energy expenditure (hypermetabolism), and hyperlipidemia (Dupuis

et al. 2011). The precise origin of these metabolic dysfunctions remains unclear.

Fig. 7.4 Model of AMPK-mediated apoptosis in Huntington’s disease. Mutant Huntingtin

induces mitochondrial alterations that lead to oxidative stress and hypometabolism. These partic-

ipate in the activation of AMPK and its translocation from the cytoplasm to the nucleus where

AMPK downregulates the antiapoptotic protein Bcl2. This pathway promotes apoptosis and

thereby neurodegeneration. ROS reactive oxygen species, Htt Huntingtin. Schematic is adapted

from Ju et al. (2011). Figure was produced in part using Servier Medical Art
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AMPK activation was found to be deregulated in motor neurons of ALS patients

(Liu et al. 2015b). In cells and mouse models of the disease, AMPK regulation

differs according to the model used. In the mSOD1G93A mouse model, AMPK

activity is increased in spinal cords from symptom onset (Lim et al. 2012; Perera

et al. 2014; Zhao et al. 2015). Similar results were obtained in vitro, in spinal cord

cultures, in motor neuron cell lines expressing mutant SOD1, and in embryonic

neural stem cells derived from SOD1G93A mice (Lim et al. 2012; Perera et al. 2014;

Sui et al. 2014). On the opposite, AMPK activation was reported to be

downregulated in mutant TDP43A315T mouse models of spinal cord and brain

(Perera et al. 2014). Similar results were also obtained in motor neuronal cell

lines expressing mutant TDP-43, probably as a consequence of increased PP2A

activity (Perera et al. 2014). On the contrary, AMPK activity was reported to be

increased in the spinal cord of a mouse model overexpressing wild-type TDP43

(Liu et al. 2015b). AMPK was also suggested to be involved in TDP-43

mislocalization from the nucleus to the cytoplasm (Liu et al. 2015a). Similarly,

AMPK activation was described to induce the human antigen R [HuR, a major

mRNA stabilizer recently shown to regulate TDP-43 and FUS (Lu et al. 2014)]

delocalization by directly phosphorylating importin-α1 (Liu et al. 2015b). The

impact of AMPK activation in this disease remains a matter of debate. Indeed,

modulation of AMPK activity in these various models has given conflicting data.

Metformin administration in SOD1G93A mice accelerated disease onset and pro-

gression in females only (Davis and Lin 2011), while resveratrol was found to

provide beneficial effects (Mancuso et al. 2014; Song et al. 2014). The beneficial

effect of resveratrol could act in part through an increase of Sirtuin 1 expression,

normalization of autophagic flux, and reduced oxidative stress (Mancuso

et al. 2014; Song et al. 2014). Similarly, preconditioning with latrepirdine, a

small molecule shown to activate AMPK (Weisova et al. 2013), was reported to

delay symptoms onset and increase the lifespan of SODG93A mice (Coughlan

et al. 2015). Decreasing AMPK activity in cell cultures or in Caenorhabditis
elegans expressing mutant SOD1 or TDP43 was reported to be beneficial (Mancuso

et al. 2014) and to rescue TDP43 mislocalization in motor neuronal cells and to

delay disease progression in TDP43 wild-type mice (Liu et al. 2015b). Finally,

AMPK α2-deficient mice were recently described to present gait abnormalities

resembling early stages of ALS supporting a key role for AMPK in the development

of this disease (Vergouts et al. 2015).

In conclusion, the role played by AMPK in ALS might vary according to the

nature of the disease as mutations in SOD1 and TDP43 were reported to affect

differently the kinase.
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7.3 General Considerations

The specific vulnerability of the neuronal populations affected in each of these

diseases is likely to be driven by both genetic and environmental factors. Interest-

ingly, many of these factors converge to an impairment of cellular energy metab-

olism. This is the case, for instance, of mutations in genes that are directly involved

in mitochondrial function or clearance (such as SOD1, PINK1, and Parkin). These

mitochondrial dysfunctions might contribute to the increase in neuronal

excitotoxicity and AMPK deregulation. In addition to impairing energy metabo-

lism, mitochondrial insults can cause an imbalance between ROS production and

removal, thereby participating in oxidative stress, another common factor of these

diseases (Sayre et al. 2008). This oxidative stress through the activation of TAK1

might also contribute to the chronic activation of AMPK. Conversely, given its role

on mitochondria function, biogenesis, and degradation, it is also possible that

AMPK participates in the establishment of mitochondrial dysfunctions that are

observed in these diseases. Whether AMPK deregulation is triggered by these

metabolic perturbations or could be involved in their development will be an

important issue to investigate.

While AMPK is highly expressed in neurons, its physiological function remains

poorly studied. Nonetheless, AMPK is vital for neuronal survival. Indeed, results

obtained in Drosophila demonstrated that genetic ablation of AMPK subunits γ
[lochrig mutant, Tschape et al. (2002)] or β [alicorn mutant, Spasic et al. (2008)]

induces progressive neurodegeneration. Although it is becoming increasingly evi-

dent that AMPK might participate in these neurodegenerative diseases develop-

ment, whether this activation is beneficial or detrimental remains matter of debate.

In general, the contradictory results that have been obtained in vivo regarding the

beneficial or detrimental role of AMPK could also be due to peripheral AMPK

activity. Several papers reported beneficial effects of peripheral AMPK activation

on cognition. For instance, it was shown that AMPK activation following AICAR

administration in mice enhanced endurance and spatial memory in the Morris water

maze (Kobilo et al. 2014). AICAR blood–brain barrier permeability is very low

(Marangos et al. 1990); therefore, its effects on cognition or on the brain in general

are likely to be indirect. The beneficial effects of AICAR reported in the Kobilo

et al.’s study were demonstrated to be mediated by muscle AMPK activation since

mice overexpressing a muscle-specific dominant negative of AMPK α2 did not

show any improvements following AICAR administration. These behavioral

improvements were suggested to result from enhanced dentate gyrus neurogenesis

in AICAR-treated animals (Kobilo et al. 2011). On the contrary, direct administra-

tion of AICAR in the brain by means of intracerebral infusions was found to impair

memory functions (Dash et al. 2006) and lead to excitotoxicity in an HD mouse

model (Ju et al. 2011). As a consequence, it is very important to take into account

the drug used to activate or inhibit AMPK and its administration route to determine

the impact of peripheral AMPK activation in addition to its central regulation

before drawing conclusions.
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It is very likely that AMPK could act both as a friend and as a foe during the

course of these neurodegenerative diseases’ progression. Indeed, AMPK might be

activated in the early stages of these diseases to help maintain or restore neuronal

energy metabolism. However, chronic AMPK activation would eventually become

detrimental to brain functions by repressing pathways that consume energy. Over-

all, several common mechanisms regulated by AMPK can be identified and are

summarized in Fig. 7.5. For instance, the beneficial effects of AMPK often involve

an increase of the autophagy pathway that might be involved in the clearance of

misfolded proteins, protein aggregates, or defective mitochondria. It was also

reported that AMPK might activate PP2A, thereby reducing the phosphorylation

status of tau and α-synuclein. On the opposite, the deleterious impact of AMPK

implies the phosphorylation of proteins which aggregates represent the common

hallmarks of these diseases, including tau, Aβ, and α-synuclein. Additionally,
AMPK chronic activation by repressing protein synthesis could, on the long term,

impair synaptic integrity and plasticity and eventually lead to cell death.

Fig. 7.5 AMPK in neurodegenerative diseases, friend or foe? At the onset of neurodegenerative

diseases, activation of AMPK might be beneficial since it allows the restoration of energetic

homeostasis and the elimination of protein aggregates which are often reported to be toxic for

neurons. Indeed, AMPK promotes the formation of autophagosomes in order to induce protein

aggregates and impaired mitochondria degradation through the autophagy/lysosomal pathway. On

the other hand, in the late stages of these diseases, chronic AMPK activation becomes disadvan-

tageous for neurons. This overactivation of AMPK could lead to neurodegeneration through

several signaling pathways. Decreasing protein synthesis could drive synaptic loss and impair

synaptic plasticity subsequently leading to neurodegeneration. Decreasing antiapoptotic factors

could lead to induction of apoptosis and neurodegeneration. Finally, the production of

autophagosomes combined with an alteration of lysosomal clearance (which is often reported to

occur in these disorders), in the end, leads to the accumulation of autophagosomes and contributes

to upsurge the levels of toxic protein aggregates and defective mitochondria
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7.4 Conclusion

While the clinical manifestations, neuronal populations affected and proteins

involved differ widely between these diseases, energy metabolism perturbations

are often reported early in the course of these diseases’ progression. These meta-

bolic perturbations might result from the various environmental and genetic risk

factors that drive these pathologies as it is already well acknowledged for mutations

that affect directly mitochondrial functions. As a consequence, one can expect

AMPK overactivation to be an additional early feature of these disorders. Hence,

AMPK was suggested to participate in these diseases’ progression by contributing

in the establishment of the observed lesions mainly by regulating the clearance and

posttranslational modifications of the proteins forming the respective aggregates.

Additionally, AMPK chronic overactivation might participate in neurodegeneration

by repressing energy-consuming pathways.

Given the demographic trend towards an aging population, the prevalence of

these neurodegenerative diseases and thus their socioeconomic burden will con-

tinue to increase dramatically in the next decades. The current treatments are only

symptomatic; there are no therapies available to cure these diseases. As a conse-

quence, there is a need to better understand the underlying disease mechanisms in

order to underpin the development of new diagnostic and therapeutic approaches. In

this context, AMPK signaling pathways might be particularly interesting.
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