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Abstract This paper outlines the common ground between the algebraic approach
to quantum phenomena proposed by Hans Primas and the ideas lying behind David
Bohm’s notion of the implicate and explicate order. The latter emerged from what
he called “an algebraic description of structure- process” which, in terms of formal
logic, was a way to study the relation between a non-Boolean (implicate) quantum
logic and its Boolean (explicate) projections. We show that in the implicate order,
we have two time-evolution equations, one involving a commutator, which is essen-
tially Heisenberg’s equation of motion, and the other involving an anti-commutator
or Jordan product. Explicate orders emerge from projections into, or shadows on,
Boolean sub-structures, a process that Primas has likened to “pattern recognition”.
These projections produce equations that form the basis of what has been called the
de Broglie–Bohm interpretation of quantum mechanics. By exploiting the proper-
ties of the orthogonal Clifford algebras, this model has been generalized to include
relativistic systems with spin, giving a novel insight into the whole approach.

1 Introduction

1.1 The Common Ground

It is a privilege to be invited to contribute to this volume dedicated to Hans Primas
whose work on the foundations of quantum theory has had a strong influence on
my own thinking on the subject. I first came across his ideas on algebraic quantum
mechanics in a bound manuscript entitled Quantum Mechanical System Theory in
David Bohm’s room at Birkbeck College in 1977, one year later published by Primas
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and Müller-Herold (1978). The manuscript was to prove invaluable for my thinking
about quantum theory.

I had been working with David Bohm trying to develop a new way of thinking
about quantum theory based on a process philosophy, which we formulated in terms
of an algebraic structure along the lines of the original proposals of Born and Jordan
(1925).The idea of using an algebraic structure to describe process has an even
longer history going back toHamilton (1967), Grassmann (1894, 1995), and Clifford
(1882). But for one reason or another it fell into disrepute, in spite of its use by
Eddington (1936).

Fortunately today the notion of process as fundamental is undergoing a revival,
particularly with the appearance of category theory especially in the hands of
Abramsky and Coecke (2004) and Coecke (2005), who use the theory in the con-
text of quantum mechanics, explaining in greater detail their motivations for using a
process approach. In this paper I prefer to motivate the algebraic theory along lines
that are more closely linked with the approach developed by Primas. Indeed it was
his manuscript that first drew my attention to the advantages of the more general
C*-algebraic approach, an algebraic structure that I was completely unaware of at
the time.

My interests in an algebraic approach had already been aroused by Penrose (1971)
twistor theory, a generalization of the Dirac-Clifford algebra introduced by Dirac to
describe the relativistic electron. At the time Penrose was in the mathematics depart-
ment at Birkbeck and, together with Bohm, we would meet regularly for seminars
that were concerned with the possibility of developing quantum space-time struc-
tures, a radical idea that we thought necessary in order to unite quantum theory with
general relativity.

Penrose (1971) was also exploring the possibility of developing a description
based on a discrete spin network, thus avoiding the need to assume an a priori given
space-time continuum (Penrose 1967). This idea of a network structure fitted in very
nicely with the topic of my Ph.D. thesis, although that was in a very different field.

My thesis involved investigating certain aspects of the Ising model used in the
study of cooperative phenomena in solid state physics. The simple model that I was
exploring involved determining the thermodynamics of a many-particle lattice sys-
tem with nearest neighbour interactions. It was based on a method of finite clusters,
using an idea first proposed by Domb and Hiley (1962). The evaluation of the par-
tition function, and hence the thermodynamical properties, necessitated developing
a technique for embedding finite graphs in regular tessellations. What I noticed was
that some of these properties, essentially combinatorial in nature, depended only on
the dimensionality of the embedding space and not on the detailed structure of the
tessellation. In other words, simply by counting embeddings, one could determine
the dimensionality of the embedding space (Hiley et al. 1977). Later I became aware
of the fact that the partition function could be obtained much more simply using an
algebraic approach used in knot theory. This approach was described by Kauffman
(2001, p. 373) who illustrated the technique on small clusters.

The phrase “quantum space-time” was a generic term to refer to any structure
that did not take a continuum of points as fundamental, but rather the points were
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assumed to emerge from a deeper structure. That was, in fact, the idea behind the
Penrose twistor which is used to describe a complex of light rays whose intersections
define the points of space-time. He also found that congruences of light rays twisting
around each other could be used to define sets of “extended points” which he hoped
would avoid some of the singularities that plague quantum electrodynamics.

But surely finding partition functions of a spin lattice is a long way from the
problems of developing a quantum space-time? Not so—because it turns out that
the algebraic techniques lying behind both twistors and the algebraic evaluation of
partition functions are closely related to the seminal work of Vaughn Jones (1986) on
von Neumann algebras. In a remarkable paper, he showed the connection between
these algebras and the combinatorial properties of knots which, as we have already
remarked, lie at the heart of the techniques involved in evaluating the partition func-
tion of finite clusters of spin systems. The connection becomes even more suggestive
when it is realized that the Onsager exact solution (Onsager 1944) for the two-
dimensional Ising model involves a Clifford algebra, an algebra that is one example
of a von Neumann algebra. Note also that these algebras are the very algebras that
Penrose (1971) used to construct his twistors. However all these ideas were then yet
to unfold in the future.

1.2 Structure-Process

In those early days, Bohm (1965, 1971) was developing his notion of “structure-
process” which emphasized the relationships, order and structure of a network of
elementary processes. Not relations that could be embedded in the Cartesian order
of points, but a neworder fromwhich the classical Cartesian order could be abstracted
in some suitable limit. This structure, we believed, would provide a more natural way
of accounting for quantum phenomena.

The basic ideas of “structure” had already been introduced by Eddington (1958)
when he raised the question: “What sort of thing is it that I know”? For him the
answer was structure, structure that could be captured by mathematics. For example,
the concept of space is not an empty “container”, but a relationship of the ensemble of
movements that is experienced as we probe our surroundings, using light signals or
other suitable physical processes. For Eddington, the structure of these experiences
could be captured by a group, which in the relativistic case would be the Lorentz
group, giving rise to Minkowski space-time. Of course in the presence of a gravi-
tational field, this group must be replaced by a larger group, the group of general
coordinate transformations but for Penrose the conformal group was general enough
to be explored initially.When we come to quantum phenomena,Weyl (1931) pointed
out that we must turn our attention not to the group, but to the group algebra.
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1.3 The Role of Clifford Algebras

However, again, I go too fast because initially Bohmand I thought that a naturalmath-
ematical expression of this structure would be provided by combinatorial topology
alone (Bohm et al. 1970). Although this provided some interesting insights, it misses
a vital ingredient, namely, the activity or movement that was necessary to describe
process. But then I noticed that Penrose’s spin network had Clifford algebras at its
heart, the algebra that Onsager used to solve the two-dimensional Isingmodel. Could
it be that the combinatorial aspects could be captured by an algebra itself, so that we
could use algebras to describe a dynamic structure-process?

To my surprise I found that Clifford (1882) was led to his algebra not by thinking
of a quantum system, but by considering the dynamical activity of classical mechan-
ical systems. He noticed that Hamilton’s quaternion algebra, a way of describing
rotations in space through action, could be generalized to capture the Lorentz group
and even leads to the conformal group which is used in twistor theory. Algebraic ele-
ments could be understood in terms of how movements could be combined to form
new movements. Clifford introduced terms like “versors”, “rotators”, and “motors”
emphasizing activity.Unfortunately these ideas seemed to add nothing new to physics
that was not already described more simply by the vector calculus, so the algebraic
approach was ignored. However, that changed when Dirac, faced with the nega-
tive energies appearing in the relativistic generalization of the Schrödinger equation,
rediscovered the Clifford algebra. It provided a description of spin, relativity and the
twistor in one algebraic hierarchy.

Unfortunately the appearance of theDirac-Clifford algebra did not lead to a recon-
sideration of Clifford’s ideas. Rather the algebra was seen as a generalization of the
quantum operator algebra that was already used in the standard Hilbert space for-
malism taught to undergraduates. In that approach the wave function played a key
role and gave rise to the so-called “wave-particle duality”, a notion that I find very
unhelpful, being a totally confused idea. Somehow this wave function is used to
describe the so-called “state of the system” which was, in turn, assumed to evolve in
the Cartesian order of space and time.While this approachwas a predictive success, it
has many, as yet, unsolved interpretational problems, such as the measurement prob-
lem, schizophrenic cats and the like. All of these could be handled as a set of rules
for getting “correct” results, but one is left with the uneasy feeling that something is
not quite right because the nature of the physical processes themselves remains very
unclear.

This view was shared by Hans Primas who posed the question: Why a Hilbert
spacemodel? He then explained that Hilbert spacewas but a particular representation
of a more general quantum mechanics. The algebra emphasizes a non-commutative
structure, a structure that has its origins in the early work of Born and Jordan (1925).
For Primas and Müller-Herold (1978)1

1Note that what they called a B*-algebra in 1978 is nowadays usually referred to as a C*-algebra.
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algebraic quantum mechanics starts with an abstract B*-algebra, A, of observables. From
this algebraic realization of quantummechanics, we can get the corresponding Hilbert-space
model H... as the universal representation (π,H) of the B*-algebra A.

Thus Hilbert space is a mere representation, but a representation of what? Could
algebraic structure itself provide a description of structure-process and in doing so,
clarify the nature of quantum processes?

2 The Propositional Calculus and Algebraic Idempotents

2.1 Von Neumann Algebras and a Propositional Calculus

We now come to the point where algebra meets logic. Primas highlighted the close
relationship between the vonNeumann algebras and orthomodular lattices of the type
used in the analysis of formal logic. In fact the set of projections in a von Neumann
algebra forms a complete orthomodular lattice so that investigating the properties of
this lattice gives a different insight into the algebraic structure.

Projection operators are idempotents, E2 = E and because their eigenvalues are
0 and 1, they can be used to define the truth or falsity of a set of propositions. We
thus have an alternative method of analysing the Schrödinger formalism in terms of
a non-Boolean logic, a generalization of the Boolean logic of classical physics.

The generalized non-Boolean logic contains a new notion of incompatible propo-
sitions, tied intimately to the appearance of non-commuting operators. This differ-
ence led Finkelstein (1968) to conclude that the appearance of quantum processes
causes a fracture in physical logic. IndeedFinkelstein showed that in this non-Boolean
logic, the distributivity law of classical logic was violated.

This raises the important question as to whether this change in logic has to do with
the fact thatwe canonlyobtain incomplete knowledgeof a quantumsystemorwhether
this fact stems from a profound change in the basic reality underlying quantum
phenomena. Bohr offered an epistemological interpretation inwhich he proposed that
the incompatibility of propositions arises from our inability, in principle, to obtain
complete knowledge of the system. For Bohr, quantum phenomena confirmed that
there was a new principle of epistemology, namely the principle of complementarity
to which all knowledge must conform. If this was a fundamental principle then,
no matter what underlies appearance, it would be impossible, even in principle, to
construct intuitive pictures of this underlying reality, pictures of the type used in the
classical world.

However quantumphenomena occurwithout the need for anyone to interpret them
or have knowledge of them. There is an actual process unfolding, independent of any
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observer and this fact demands an underlying ontology.As Primas andMüller-Herold
(1978) insist

... practically all high-level theories adopt some kind of scientific realism i.e. the view
that biological, chemical and physical objects have existence independent of some mind
perceiving them.

The key question is then, what form this ontology is going to take. Is it going to be
a “veiled reality” as suggested by d’Espagnat (2003). or do we follow Primas (1977)
and insist that “the most fundamental theory has to be phrased in an individual and
ontic interpretation?Our hopewas that the notion of structure-processwould provide
the intuitive basis of such a fundamental theory. Any generalized theory must be
based on non-commutative algebras that lie at the heart of quantum processes. Since
geometry forms the basis of classical physics, its generalization, non-commutative
geometry, must be the way forward to explore the nature of the underlying ontology.

Such a possibility had already been anticipated by Murray and von Neumann
(1936), who presented a very detailed, but intimidating mathematical discussion of
what are now called von Neumann algebras, algebras that would play a fundamental
role in non-commutative geometry (Khalkhali 2009). Fortunately for the purposes of
this paperwewill not require this detailed knowledge aswe can illustrate the essential
ideas using the orthogonal Clifford algebra, a specific von Neumann algebra but one
with which physicists and chemists are very familiar through the use of the Pauli
σ-matrices and the Dirac γ-matrices.

What the physicist or the chemist may not realize, however, is that a Clifford
algebra over a complex field is a particular example of a type II1 von Neumann
algebra with a Jones index of 4 cos2(π/4) (Jones 2003). From the comments above,
it should be clear that theClifford algebrawill play an important role in our discussion
of a non-commutative geometry, a point of view shared by Finkelstein (1987) when
he writes, “I am strongly tempted by the example of Clifford”.

2.2 The Role of the Clifford Algebra in Non-commutative
Quantum Geometry

Aswehave indicated, the conventional viewamongphysicists is to regard theClifford
algebramerely as a formalmathematical device, but our introductory remarks suggest
that it is more than that, describing an underlying structure-process. However, to
proceed down that route means wemust give up, as a fundamental form, the classical
notion of a particle evolving along a well defined trajectory in an a priori given space-
time. Instead we should adopt a thoroughgoing process philosophy along the lines
suggested by Eddington (1958), Finkelstein (1996) and Bohm (1980).
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2.3 What Are Quantum Particles?

To summarize then, in a process philosophy, we must give up the common sense idea
that the world consists of material objects with definite size, shape and properties.
But this notion has already been called into question in special relativity where we
are forced to adopt a description based on the notion of a point event. There is no
consistent description of an extended rigid object; a particle must be treated as a
complex structure of events that can be regarded as forming a “world tube”. The tube
itself cannot have a sharp boundary but must be identified with a pattern of events,
distinguishable, but not separate from, a complex of interrelated background events.
In this approach the “particle” is a semi-stable, quasi-local feature that can preserve its
form in time. However, under suitable conditions it can undergo not only quantitative
changes, but also qualitative changes, in its basic elements, a phenomenon that is
well-known in high energy particle physics.

In passing, note that Primas (1977) also has a similar structural notion of a
“particle”. He stresses that the so-called “fundamental” entities, such as electrons,
protons, or quarks,must not be taken as the building blocks of reality. They aremerely
what he calls patterns of reality. For Primas these patterns emerge operationally from
the empirical domain, a point to which I will return later.

A limitation of the notion of an elementary “rock-like” particle becomes even
more apparent in the quantum domain. To bring the difficulty out clearly, consider
the following example inspired by Weyl. Suppose we retain the classical notion of
a particle with specific properties. To keep things simple, consider a quantum world
in which we have a collection of objects with two distinct shapes, either spheres
or cubes, and two distinct colours, either red or blue. Our task is to separate these
objects into four distinct groups—red spheres, blue spheres, red cubes and blue
cubes. In a classical world there is no problem, but in this quantum world, shape
and color are observables, represented by non-commuting operators, their “values”
being represented by their corresponding eigenvalues. This means that to separate
colors and shapes, we must have two different types of observing instruments. In our
case we call these instruments “spectacles”.

Suppose we require to collect together an ensemble of red spheres. First we put
on the “shape-distinguishing” spectacles and collect together spheres, discarding all
the cubes. Then we put on the “color-distinguishing” spectacles and collect together
the red spheres, discarding all the rest. We are done; we have a collection of red
spheres. So what is the problem? Just recheck that the objects in the ensemble are
still spheres. We use the first pair of glasses again and find that half of the objects are
now cubes! No permanent either–or in this world. No permanent both–and either!

Clearly quantum phenomena do not have their existence defined in terms of classi-
cal objects with well-defined properties! Finkelstein has already stressed this feature
and argues that “to speak about the wave function of the system is a syntactic error”
(Finkelstein 1987, 1996). We do not simply “find” the state of a system. We have
to “probe” the system with another physical process, the “observing instrument”.
In other words, our instruments are part of the underlying structure-process and
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therefore change the system itself, or better still, change the process that is the sys-
tem. How, then, do we encompass these radically new ideas without losing features
of the standard formalism that have been used with outstanding success?

Let us begin by following Eddington (1958) who suggests that the elements of
existence, the individuals, in a process world, should be described by idempotents,
E2 = E . The eigenvalues,λe, of an idempotent are 1 or 0, existence or non-existence.
In symbols

E2 = E, with λe = 1 or 0.

If all idempotents commute, as in classical physics, existence is always well defined.
We have a Boolean logic. In quantum theory we have a difference, idempotents do
not always commute

[Ea, Eb] �= 0.

What then of existence?

Either Ea or Eb, never both Ea and Eb.

Existence, non-existence and in between? This is the consequence of a non-Boolean
logic.

2.4 Idempotents and Clifford Algebras

The suggestion is that the idempotent will provide a means of focusing on the sub-
process that is the individual. The individual is a process that is continually changing
into itself, E · E = E . While probing the individual, the process may change the
quality of the idempotent, it nevertheless remains an idempotent, enabling us to track
the individual as a sub-process within the whole structure-process. In an algebra, an
idempotent can be used to define a set of elements within a minimal left ideal of
the total algebra. These elements carry all the information contained in the “wave”
function but now have the advantage of being an integral part of the whole algebra.

In a semi-simple algebra, we can always form an element of such an ideal by
writing �L(A) = ψL(A)E . Mathematically we are constructing a left module or
left vector space, but we need not be familiar with this mathematical structure to
see how it works. Consider a spin-half system which requires the observables to be
expressed in terms of the Pauli spin matrices. As is well known the spin “wave”
function is a column two-matrix, the spinor,

� =
(

ψ1

ψ2

)
.
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From the algebraic point of view, the Pauli spin matrices define the Clifford algebra
C3,0(σ) generated by the three Pauli spin matrices σi . An element of a minimal left
ideal can be written in the form �L(σ) = ψL(σ)E where E is some idempotent. It is
conventional to choose E = (1 + σ3)/2, which breaks the rotational symmetry and
defines a preferred z-axis while ψL(σ) ∈ A.

If we then polar decompose the algebraic spinor, we can write �L(σ) = RU
where U = U † and R is a positive definite matrix. It is then easy to show that the
spinor can be written in the form

�L(σ) = g0 + g1σ23 + g2σ13 + g3σ12, gi ∈ R.

Here we have written the elements of the algebra in terms of Pauli matrices, σi j =
σiσ j , a rotor. To make contact with the usual spinor, we have the identities

g0 = (ψ∗
1 + ψ1)/2, g1 = i(ψ∗

2 − ψ2)/2,

g2 = (ψ∗
2 + ψ2)/2, g3 = i(ψ∗

1 − ψ1)/2. (1)

Let us emphasize again that we have chosen the specific idempotent
E = (1 + σ3)/2, which means that we have broken the spherical symmetry by pick-
ing a specific direction, conventionally the z-axis. This is usually done by introducing
a homogeneous magnetic field, so the choice of idempotent is defined operationally,
just as Primas’ patterns are defined operationally. In other words we are changing the
process that is the system under investigation. In Wheeler’s words (Wheeler 1991,
p. 286), we are participating in the process to induce a change in the process that
constitutes the system.

This is exactly what we need to account for our toy model of a quantum world
using “shapes” and “colors”. The change that we find when checking the content of
the final ensemble arises from the participatory nature of our “instrument”. Looking
through the “quantum spectacles” is not a passive process, it is an action, which
must not be thought of as a mere “disturbance”. It is an inescapable change in the
structure-process that is the system. More details of this idea will be found in Hiley
and Frescura (1980) and in Hiley and Callaghan (2010).

This example explains very succinctly how the Pauli algebraic spinor appears and
is used in the description of the algebra. It is easily generalized to theDirac spinor and
indeed the twistor, which is a semi-spinor of the conformal Clifford algebra. These
Clifford algebras form a hierarchy or tower of algebras,C3,0 → C1,3 → C4,1 → C2,4

of the type considered by Jones (1986). It is interesting to note that the Schrödinger
“wave” function can also be considered as an element of a minimal left ideal in the
Clifford algebra C0,1, with the quaternions appearing in C0,2.

In addition to elements of the left ideal, we also have dual elements, �R(A) =
EψR(A), chosen from an appropriate minimal right ideal. This enables us to give a
complete specification of the structure-process of an individual system by writing

ρc(A) = �L(A)�̃L(A)
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where ρc(A) is an element that characterizes the system. It is the algebraic analog
of the density matrix.

If we define �̃L(A) = �R(A) = Eψ̃L(A) then, by a suitable choice of the tilde
operation, we find ρ2c = ρc, a signature of what is known in the standard approach as
a pure state. It should be noted that the corresponding dual element introduced by
Primas and M?ller-Herold was called a normalized positive linear functional. Using
this additional mathematical structure, we have the possibility of a generalization to
mixed states, but in this paper we confine our attention to pure states for simplicity.

As well as rotational symmetries, we must also consider translational symme-
tries, which implies turning our attention to the Heisenberg algebra. Here there is a
technical problem because this algebra is nilpotent and therefore does not contain
any idempotents. However, Schönberg (1957), and later Hiley (2001), showed that
it was possible to extend this algebra by adding sets of idempotents to form a sym-
plectic Clifford algebra (Crumeyrolle 1990). This then enables us to employ similar
techniques to those used in the orthogonal Clifford algebra. One is then able to find
time evolution equations that correspond to the Heisenberg equations of motion.

The characteristic element ρc(A) can now be subjected to both left and right
translations to determine two fundamental time evolution equations,

i[(∂t�L)�̃L + �L(∂t�̃L)] = i∂tρc = (
−→
H�L)�̃L − �L(�̃L

←−
H ) (2)

and

i[(∂t�L)�̃L − �L(∂t�̃L)] = (
−→
H�L)�̃L + �L(�̃L

←−
H ). (3)

We now have the possibility of two forms of Hamiltonian
−→
H = −→

H (
−→
D , V,m) and←−

H = ←−
H (

←−
D , V,m), emphasizing the distinction between left and right translations.

Wewill not derive these equations here (see Hiley and Callaghan 2010); nevertheless
we will use them in the next section. We merely note that Eq. (2) is the quantum
Liouville equation expressing the conservation of probability, while Eq. (3) is the
quantumHamilton-Jacobi equation expressing the conservation of energy. A detailed
discussion of these equations will be found in Hiley (2015).

3 The Implicate and Explicate Order

We must now return to discuss the relation between the non-Boolean structure and
its Boolean substructures. Primas (1977) offers a formal way to understand the rela-
tionship between these two logics in terms of a specific physical process. We will
explain his position in the following way.

We have argued that there is no such thing as a direct, faithful observation in a
quantum process. However, as Bohr has pointed out, the results of any observation
must be unambiguously described in terms of a Boolean structure. This is the only
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way we can unambiguously communicate the results of an experiment. How then do
we understand the Boolean aspects of a fundamentally non-Boolean process?

Primas suggests that the results of an experiment can be understood as a pattern
that is formed by detaching ourselves, and our instruments, from properties that we
consider to be non-essential. He calls the total process, the factual domainFα, which
he distinguishes from the empirical domain Eα defined operationally as the result
of the αth pattern recognition technique. The factual domain is non-Boolean and a-
local, while the empirical domain is a Boolean and local structure. The link between
theory and experiment is then regarded as a mappingFα → Eα which is not required
to be one-to-one.

Bohm (1980) has made, in essence, a similar proposal to understand the relation
between Boolean and non-Boolean aspects of physical processes, but in terms of a
more general language. Structure-process is defined in terms of an algebra in which
the individual elements of the algebra, like words, take their implicit meaning from
the way in which the algebra as a whole is used. For example the symbols in the Pauli
Clifford algebra take their meaning from the rotational symmetries we experience as
we rotate in space.

In such a structure, all the spin components cannot be made explicit by the same
action. The spin in the z-direction can be made explicit, while the other compo-
nents remain implicit. More generally, as is well known, an ensemble of properties
corresponding to mutually commuting observables can be made explicit together.
This subset of elements forms a Boolean substructure within the more general non-
Boolean structure. Bohm called these substructures explicate orders, while the total
non-Boolean structure was called the implicate order.

I have used examples from gestalt psychology as a metaphor to illustrate the
notions of the implicate and explicate order. The young lady/old lady gestalt illus-
trates succinctly what is involved. Our perception constructs or “explicates” a
Boolean pattern, say the young lady, by ignoring some of the details in the drawing.
When none of the details are ignored, we have a non-Boolean structure. However,
metaphors are limited and a deeper analysis based on Eq. (3) shows that a projec-
tion actually creates the explicate order. It creates a Boolean substructure within the
non-Boolean totality.

To see how the projection comes in, let us write Eqs. (2) and (3) in a more familiar
notation,

i∂ρ = (H |φ〉)〈φ| − |φ〉(φ|H) (4)

and

i[(∂t |φ〉)〈φ| − |φ〉(∂t 〈φ|)] = (H |φ〉)〈φ| + |φ〉(φ|H). (5)

Now introduce the projection operator Pa = |a〉〈a| and take the trace so that Eq. (4)
becomes
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∂P(a)

∂t
+ 〈[ρc, H ]−〉a = 0 (6)

while Eq. (5) becomes

2P(a)
∂Sa
∂t

+ 〈[ρc, H ]+〉a = 0. (7)

To bring out what this means, let us consider an harmonic oscillator Hamiltonian
Ĥ = p̂2/2m + K x̂2/2 and choose the projection operator Px = |x〉〈x | so that Eq. (6)
becomes

∂Px
∂t

+ ∇x .

(
Px

∇x Sx
m

)
= 0.

This is just the equation for the conservation of probability in position space.
Using the same procedure on Eq. (7) finally gives us

∂Sx
∂t

+ 1

2m

(
∂Sx
∂x

)2

− 1

2mRx

(
∂2Rx

∂x2

)
+ Kx2

2
= 0

which is just the quantum Hamilton-Jacobi equation for the harmonic oscillator.
This is simply the equation Bohm obtained by taking the real part of the Schrödinger
equation under polar decomposition of the wave function. This equation contains the
quantum potential

Q = − 1

2mRx

(
∂2Rx

∂x2

)
. (8)

Notice that this potential does not appear in the algebraic equation (3) which we
are regarding as a description of the implicate order. It only appears in the projected
space. This space is a Boolean phase space constructed with (x, pB(x))where pB(x)
is the Bohm or local momentum. It is in this phase space that trajectories have been
constructed byPhilippidis et al. (1979). Thuswehave constructed aBoolean explicate
order.

We could choose another projection operator Pp = |p〉〈p| so that the two Eqs. (2)
and (3) now become

∂Pp

∂t
+ ∇p.

(
Pp

∇pSp

m

)
= 0
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and

∂Sp

∂t
+ p2

2m
+ K

2

(
∂Sp

∂ p

)2

− K

2Rp

(
∂2Rp

∂ p2

)
= 0.

This enables us to project out another Boolean phase space based, this time, on

(xB(p), p) where xB(p) = −
(

∂Sp
∂ p

)
. Thus, using the momentum representation we

have constructed another explicate order and thereby revealed x, p symmetry—a
symmetry that Heisenberg (1958, p. 118) claimed was not present in the Bohm
approach.

Bohm chose the x-representation as a preferred representation simply because
he saw a problem in representing the Coulomb potential in the p-representation.
However, for other potentials there is no difficulty. Indeed Brown and Hiley (2000)
showed how the approach worked in the particular case of a cubic potential.

Another criticism that is often made of the Bohm approach is that it does not work
for the relativistic Dirac particle. However Hiley and Callaghan (2012) have shown
that we can obtain Lorentz invariant analogs of Eqs. (2) and (3) which can then be
put into the form of a relativistic quantum Hamilton-Jacobi equation. To do this we
need to use the orthogonal Clifford algebra C1,3. The expression for the quantum
potential is more complicated but can be shown to reduce to the expression (8) in the
non-relativistic limit (Hiley and Callaghan 2012).

These examples show what is involved in what Primas calls pattern recognition.
It is not a “passive” recognition, it actually involves an active construction of the
Boolean pattern. But in doing so new features can be introduced, as Primas points
out. In the case of the Boolean phase space considered above, it is the appearance of
the quantum potential which can be considered as the appearance of a force.

This is not unlike the nature of the gravitational forcewhich only appears whenwe
project the curved space-timegeodesic to aflatMinkowski space-time.However there
is a significant difference in that the curvature of space-time is universal, whereas
the quantum potential is, in a sense, “private”, being shared by a group of entangled
particles.We could have a situation arising where the quantum potential of one group
of entangled particles can be very different from the quantum potential of another
entangled group if the groups are non-interacting but nevertheless share the same
region of space-time. The groups do not experience a common quantum potential, it
is not universal since they only experience the quantum potential of their own group.

4 Conclusion

In this paper I have given a brief view of a new way of looking at quantum phe-
nomena that Hans Primas was one of the first to draw to our attention. His and my
approaches did not develop in parallel after his pioneering contributions addressed
in this paper—other articles in this volume focus on his use of later developments of
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non-commutative mathematics after the 1970s. However, I will always be grateful
to Hans for his early work and our subsequent discussions which, although at times
heated, always provided new insights.

Acknowledgments I should like to thank Glen Dennis for his suggestions and helpful comments.
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