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    Chapter 16   
 Exploiting Nanocarriers for Combination 
Cancer Therapy                     

     Yi     Wen     Kong*    ,     Erik     C.     Dreaden*    ,     Paula     T.     Hammond     , and     Michael     B.     Yaffe    

    Abstract     Combination chemotherapy has vastly improved patient outcomes fol-
lowing treatment for cancer. Combining multiple drugs with non-overlapping 
mechanisms of action has been shown to forestall the development of drug resis-
tance, leading to increased effi cacy. Emerging insights into cancer pathophysiology 
from tumor genomics, metabolomics, and proteomics now present us with unprec-
edented opportunities to combine targeted molecular therapies together, or to com-
bine molecular therapies with cytotoxic chemotherapy in a rationally designed 
manner based on unique molecular signatures. However, the clinical implementa-
tion of these improved drug combinations is frequently limited by overlapping drug 
toxicities. By using new nanotechnology platforms to enhance tumor targeting, and 
provide precise spatial and temporal control of drug delivery for each agent within 
a multi- drug regimen, it should be possible to mitigate these toxicity limitations and 
treat tumors with increasing safety, effi cacy and durability. This chapter discusses 
recent efforts in developing nanoparticles to deliver multiple types of drugs for tem-
porally-sequenced concurrent or sequential combination chemotherapy.  
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  Abbreviations 

   17-AAG    17-allylamino-17-demethoxygeldanamycin   
  5-FU    5-fl uorouracil   
  6MP    6-mercaptopurine (6MP)   
  AlClPc    aluminum chloride phthalocyanine   
  dsRNA    double-stranded RNA   
  EGFR    epidermal growth factor receptor   
  EPR    enhanced permeability and retention   
  HMSNs    hollow mesoporous silica nanoparticles   
  LbL    Layer-by-Layer   
  miRNA    microRNA   
  mRNA    messenger RNA   
  MMs    macromonomers   
  MOMP    nitrogen mustard with vincristine, methotrexate, and prednisone   
  MOPP    nitrogen mustard with vincristine, procarbazine, and prednisone   
  MPS    mononuclear phagocyte system   
  MSNs    mesoporous silica nanoparticles   
  MTD    maximum-tolerated-dose   
  NSAIDSs    nonsteroidal anti-infl ammatory drugs   
  PCL    poly caprolactone   
  PDT    photodynamic therapy   
  PEG    poly(ethylene glycol)   
  PGLA    poly( d , l -lactide-co-glycolide)   
  PLA    polylactic acid   
  RNAi    RNA interference   
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  siRNA    small interfering RNA   
  SSRIs    serotonin reuptake inhibitors   
  TNBC    triple-negative breast cancer   
  UCNs    upconversion nanoparticles   
  UV    ultraviolet   
  VAMP    vincristine, amethopterin, 6MP, and prednisone   

16.1          Introduction 

 Cancer is a complex collection of diseases that through deregulation of myriad cel-
lular pathways achieves unchecked growth, metabolism, and migration, thus mak-
ing it the second leading cause of death in the United States. Solid tumors in 
particular have complex cyto-architecture and diverse microenvironments, making 
single-agent therapy largely ineffective due to sub-populations of cells that are 
resistant to a given agent (Burrell et al.  2013 ; Hainaut and Plymoth  2013 ; Hanahan 
and Weinberg  2000 ,  2011 ). Efforts have been taken to better understand the genetic 
alterations and complex molecular mechanisms in cancer to identify more effective 
therapies. 

 Due to the past failure of mono-therapies, most cancer patients now receive some 
form of combination therapy as the standard of care treatment for their tumor and 
this approach has improved patient outcomes. However, for the most part, current 
regimens were not “designed”, rather, they were empirically determined to be com-
binations of drugs with non-overlapping toxicities, so that each drug could be 
administered at near-maximal dosage. Since these drugs generally have different 
mechanisms of action, there tends to be minimal cross-resistance, decreasing the 
emergence of drug resistant tumors (Mayer and Janoff  2007 ; Harasym et al.  2007 ; 
Ramsey  2005 ; Zoli et al.  2001 ). Importantly, however, this does not mean that cur-
rent combinations are the best cocktail of drugs to achieve lasting remissions in 
patients. Rather they are the best cocktail of drugs identifi ed to date that avoid 
unmanageable toxicity. Recent advances in nano-scale drug carriers that can target 
tumors preferentially and limit systemic toxicity are now revolutionizing the way 
we approach combination therapy.  

16.2     Drug Combinations for Cancer Treatment 

16.2.1     A Brief History of Combination Cancer Therapy 

16.2.1.1     Combinations of Independently Active Drugs 

 Following the discovery of  cytotoxic chemotherapy  by Goodman et al. ( 1946 ; 
Gilman and Philips  1946 ) in 1943 and Farber et al. ( 1948 ) in 1947, researchers and 
clinicians began focusing on strategies to prolong cancer remissions in patients and 

16 Exploiting Nanocarriers for Combination Cancer Therapy



378

to delay drug resistance. Inspired by the observation of synergism between 
6- mercaptopurine (6MP) and azaserine (O-diazoacetyl- l -serine), as well as 6MP 
and antifolates (Skipper et al.  1954 ) in preclinical mouse models of leukemia, 
Burchenal and colleagues conducted pilot studies (Burchenal et al.  1954 ) and later 
a randomized trial (Heyn et al.  1960 ) in children with acute leukemia receiving 
sequential combinations of 6MP, azaserine, and steroids (Fig.  16.1 ). While wide-
spread improvements in overall survival were not observed, Frei et al. later demon-
strated greatly enhanced remission rates in children with acute leukemia treated 
with 6MP and antifolates in 1961 – noting that “advantage derives from the two 
drugs acting independently on the patient” (Frei et al.  1961 ). With the discovery of 
antineoplastic activity from plant alkaloids from  Vinca rosea  at Eli Lilly, Freireich 
et al. ( 1964 ) quickly developed a “quadruple combination therapy” known as VAMP 
(vincristine, amethopterin, 6MP, and prednisone) which augmented remission rates 
in patients with acute leukemia treated in 1964. VAMP soon gave way to MOMP 
(Devita et al.  1965 ) (nitrogen mustard with vincristine, methotrexate, and predni-
sone) and then to MOPP (Devita et al.  1970 ) (nitrogen mustard with vincristine, 
procarbazine, and prednisone), the latter of which demonstrated startling activity in 
patients with Hodgkin’s lymphoma – nearly 80 % displayed complete remission, 
and of these, 60 % demonstrated disease free survival. Throughout the advent of 
MOPP, the rationale for combination chemotherapy relied heavily on two funda-
mental underlying concepts: independent drug action and non-overlapping toxicity. 
As stated by Vincent DeVita: “ differing mechanisms of action and various dose-
limiting toxicities could presumably overcome [low therapeutic index] ” (Devita 
et al.  1970 ).

  Fig. 16.1    An early example of sequential combination cancer therapy c.1954. Treatment regimen 
and corresponding blood counts for a 4 year old male with 6-mercaptopurine-resistent acute leu-
kemia receiving amethopterin (antifolate), 6-mercaptopurine (purine antagonist), cortisone (ste-
roid), and azaserine/P-165 (purine antagonist) at the Sloan-Kettering Institute (Reproduced with 
permission from Burchenal et al. ( 1954 ) .  Copyright 1954 John Wiley and Sons)       
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16.2.1.2        Rational Drug Combinations Targeting a Shared Mechanism 
of Action 

 In 1982,  in vitro  studies demonstrated that pretreatment of cells with leucovorin 
(folinic acid), an innocuous nontoxic agent, to cancer cells could enhance the bio-
chemical effects of the nucleoside analog, 5-fl uorouracil (5-FU). Researchers found 
that leucovorin augmented inhibition of thymidylate synthase, the canonical target 
of 5-FU, depleting cellular nucleotide levels and inducing apoptosis (Pritchard et al. 
 2013 ; Longley et al.  2003 ). Preclinical studies in tumor xenograft-bearing mice, and 
later pilot studies in patients (Machover et al.  1982 ) showed clear benefi ts in 
response rates from the combination therapy versus that seen after treatment with 
5-FU alone, although the improvements in overall survival were more moderate. 
The combination, still applied today as part of FOLFOX, FOLFIRI, and 
FOLFIRINOX treatment regimens, marked a signifi cant departure from the strategy 
originally established by Frei, Freireich, and Zubrod. These drug combinations 
came about from “trial and error”/empirical testing in patients and are used not 
because they are the most effective treatment for tumor killing, but because they are 
capable of achieving the maximal tumor reduction within the maximal toxicity tol-
erated by patients. With the advancement of targeted drug delivery, “rational drug 
combinations” can now be used. Rather than combining drugs with independent 
activity or dose-limiting toxic effects,  rational drug combinations  could act coop-
eratively on overlapping molecular targets to selectively to kill cancer cells.  

16.2.1.3     Molecularly Targeted Therapies 

 The discovery that multidrug transporter proteins could play a key role in the devel-
opment of  adaptive resistance  to chemotherapy (Rothenberg and Ling  1989 ), led to 
the initiation of clinical trials in the late 1980s to concurrently inhibit promiscuous 
drug effl ux pumps during the administration of cytotoxic anti-tumor agents. Here, 
competitive substrates of the multidrug transporters – already approved to treat 
other conditions (e.g. cyclosporine and verapamil) – were co-administered in 
patients with refractory disease. Although these trials, and those that followed over 
multiple generations of inhibitors, were largely disappointing (Fletcher et al.  2010 ; 
Kaye  1993 ), the general strategy of identifying and preemptively blocking the bio-
logical mechanisms responsible for adaptive resistance continued to guide a signifi -
cant portion of subsequent work. 

 During this same period in the late 1980s, researchers were also beginning to 
understand structure-activity relationships for a novel small molecule contraceptive 
agent that showed unusually selective antitumor activity in breast cancer patients – 
tamoxifen (Jordan  2003 ). The drug was found to selectively inhibit the estrogen 
receptor, its ‘target’ protein, in breast tumors. These fi ndings led to a shift in the 
focus of commercial anti-cancer drug discovery away from enhanced non-specifi c 
cell killing towards rational target inhibition. So-called ‘molecularly  targeted ther-
apies ’ against the BCR-ABL fusion protein (i.e. imatinib/Gleevec) (Capdeville 

16 Exploiting Nanocarriers for Combination Cancer Therapy



380

et al.  2002 ),  monoclonal antibody  therapies (e.g. trastuzumab/Herceptin, and 
related molecules targeting EGFR family members) (Hudis  2007 ), and  recombi-
nant proteins  (e.g. interleukin-2) (Dranoff  2004 ) followed soon afterward. Rational 
drug combinations incorporating these molecularly-targeted drugs added further 
complexity to prior combination therapeutic approaches.  

16.2.1.4     Large-Scale Screens, Nucleic Acid Therapies, and Beyond 

 Later, with the discovery of RNA interference in mammalian cells in 2001 (Elbashir 
et al.  2001 ), large scale loss-of-function screens were used to identify a subset of 
new molecular targets for cancer therapy (Ngo et al.  2006 ; Luo et al.  2008 ), as well 
as new gene combinations whose pairwise loss blocked cancer cell survival, result-
ing in ‘ synthetic lethality ’ (Kaelin  2005 ; Luo et al.  2009 ). A number of these early 
discoveries were complicated by poor reproducibility, despite improvements in 
 small interfering RNA  (siRNA) and  messenger RNA  (mRNA) delivery (Kormann 
et al.  2011 ). Improvements in  CRISPR-Cas9  technology have overcome many of 
these diffi culties (Platt et al.  2014 ), further expanding this toolkit to include ampli-
fi ed or synthetic protein expression, in addition to genetic loss of function. Although 
it is currently unclear to what extent  epigenetic modifi ers  (e.g. chromatin regula-
tors) (Floyd et al.  2013 ; Keung et al.  2014 ),  immune checkpoint antagonists  
(Mahoney et al.  2015 ), or  chimeric proteins/receptors  (Kalos et al.  2011 ; Morsut 
et al.  2016 ) will contribute to future multiplexed combination therapies, the number 
of possible pairwise combinations of the above drug classes alone provides ample 
opportunities for the creation of new and highly potent therapies with durable treat-
ment responses.   

16.2.2     Challenges in Delivering Drug Combinations to Tumors 

16.2.2.1     Co-delivery 

 Implementation of drug combinations generally requires co-localization of each 
agent within the malignant cells for effi cient tumor cell killing. This presents a vari-
ety of complex intrinsic challenges due to the unique physiochemical properties of 
each drug such as size, charge, hydrophobicity, and stability, among others. For 
example, current frontline two-agent therapy for ovarian cancer requires co-delivery 
of cisplatin and paclitaxel. Although both drugs are roughly neutral at physiological 
pH, paclitaxel is more than double the molecular weight of cisplatin and its relative 
hydrophobicity (octanol:water partition coeffi cient) is more than fi ve logs higher 
than cisplatin. Cellular colocalization in the complex tumor microenvironment is 
thus severely constrained. Further challenges include colocalization of either drug 
with bevacizumab – a monoclonal antibody directed against the pro-angiogenic 
cytokine VEGF-A, which is 1000 times larger in molecular weight, as part of 
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platinum- sensitive disease therapy, or liposomal doxorubicin, a topoisomerase 
inhibitor whose nanoparticle is almost 10,000 times larger than the free small mol-
ecule paclitaxel – as part of platinum-insensitive disease therapy. Interestingly, 
Wittrup and coworkers (Schmidt and Wittrup  2009 ) have modeled tumor uptake 
data for biomolecules of varying size and affi nity and found that intermediate-sized 
targeting agents (ca. 25 kDa, 5.3 nm dia) exhibit the lowest tumor uptake, whereas 
higher tumor uptake levels are observed for either smaller agents (e.g. peptides and 
small molecules) and larger agents (e.g. IgG, liposomes). Bawendi, Jain, and 
Fukumura (Stylianopoulos et al.  2012 ) have similarly examined size-dependent 
penetration of nanoscale particles into the interstitium of tumor xenografts and 
found that drug size is inversely correlated with tumor penetration (Fig.  16.2a ). 
Because intratumoral distribution profi les of drugs are often heterogeneous, 
enhanced or diminished cell killing can thus occur in a spatially dependent manner. 
Using inorganic colloids as model drug carriers, Chan and coworkers also found 
that 20 nm particles effi ciently penetrate and are retained in the tumor interstitium 
at signifi cantly greater depths than comparable 40–100 nm particles (Perrault et al. 
 2009 ).

16.2.2.2        Stoichiometry/Ratiometric Dosing 

 Historically, combinations of free drugs are administered at their respective 
maximum- tolerated-doses (MTDs); however, it is now widely acknowledged that 
drug combinations can act synergistically at specifi c drug ratios, as well as addi-
tively or even antagonistically at other drug stoichiometries. For example, Dreaden 
et al. found that MEK and PI3K inhibitors, when co-administered, exhibit 
stoichiometry- dependent drug synergy  in vitro  (Fig.  16.2b ). Likewise, optimally 
synergistic pairwise combinations of irinotecan/fl oxuridine (Batist et al.  2009 ), 
cytarabine/daunorubicin (Tardi et al.  2009a ), irinotecan/cisplatin (Tardi et al. 
 2009b ), paclitaxel/tanespimycin (17-AAG) (Katragadda et al.  2013 ), and quercetin/
vincristine (Wong et al.  2010 ) have also been identifi ed.  

16.2.2.3     Drug Sequence and Timing 

 Cellular responses to perturbations occur in a time-dependent manner and drug 
combinations that exploit these response networks can often maximize therapeutic 
potential through sequence- and time-staggered delivery. Although conventional 
delivery methods such as intravenous or intraperitoneal infusion can be staged man-
ually, poor drug colocalization and unfavorable drug stoichiometry within tumors 
can abrogate the therapeutic potential of even the most potent rational combination 
therapies. Lee et al. ( 2012 ), for example, recently employed a systems-based 
approach to understand how targeted cancer therapies rewire oncogenic cell signal-
ing networks, and methods by which this ‘dynamic rewiring’ can be exploited to 
improve tumor cell killing (Fig.  16.2c ). Interesting, they found that time-staggered 
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inhibition of epidermal growth factor receptor (EGFR), but not simultaneous co- 
administration, could sensitize a subset of triple negative breast cancer cells to DNA 
damaging chemotherapy. Not only was sequence a critical determinant for enhanced 
cell death, but a time delay of as little as 4 h could dramatically alter apoptotic 
response  in vitro . In a related approach, Seino et al. ( 2016 ) recently found that JNK 
pathway may play a key role in adaptive resistance of ovarian cancer cells towards 
frontline platinum/taxane therapy. Although concurrent targeted inhibition of JNK 
induced contrasting effects on cisplatin (enhanced cytotoxicity) and paclitaxel 
(decreased cytotoxicity), time-staggered inhibition of JNK prior to chemotherapy 

  Fig. 16.2    Challenges in delivering drug combinations .  ( a ) Drugs with differing targets often dis-
play disparate physiochemical properties that, here, affect intratumoral distribution, but also phar-
macokinetics, pharmacodynamics, and tissue disposition. Model drug A is 10-fold smaller than B 
and penetrates more deeply into HT1080 tumor xenografts at 6 h as measured by fl uorescence 
microscopy of hitological tissue sections. ( b ) In many canses, multiplexed combinations exhibit 
optimally synergistic drug stoichiometry that is diffi cult to recapitulate using free drug compounds. 
Here, small molecule inhibitors of Mek and PI3K are synergistic toxic only over a narrow range of 
drug ratios  in vitro  as measured by CellTiter Glo. ( c ) The sequence and timing with which drugs 
modulate (rewire) complex cell signaling networks also determines capacity for cell killing. Here, 
combinations of the cytotoxic chemotherapeutic, doxorubicin, and erlotinib, an inhibitor of EGFR, 
optimally induce apoptosis (double positive fl ow cytometry) in a sequence-dependent manner 
 in vitro . ( d ) Dose-limiting toxic effects can also act synergistically, here increasing the relative risk 
of gastrointestinal bleeding 19 % beyond additivity when selective serotonin reuptake inhibitors 
(SSRIs) and nonsteroidal anti-infl ammatory drugs (NSAIDSs) are combined in patients 
(n = 223,336) (Reproduced with permission from ( a ) Stylianopoulos et al. ( 2012 ), ( b ) Dreaden 
et al. ( 2015 ), ( c ) Lee et al. ( 2012 ), (d) Anglin et al. ( 2014 ). Copyright ( a ) 2012 Elsevier, ( b ) 2015 
American Association of Cancer Research, ( c ) 2012 Cell Press, ( d ) 2014 Nature Publishing Group)       
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greatly augmented  in vitro  cell killing in a time-dependent manner. These fi ndings 
also suggest that basal JNK activity may correlate with drug resistance in ovarian 
cancer. Sengupta and coworkers (Goldman et al.  2015 ) have also examined drug- 
induced tumor cell perturbations and found that taxane therapy induces a transient 
cell state characterized by Src family kinase (SFK)/Hck pathway activation and 
suppression of apoptosis. By studying the  in vivo  induction kinetics of this transient 
state, the authors could preemptively block anti-apoptotic responses  in vivo  through 
targeted inhibition of SFK/Hck staggered approximately 6 days after taxane 
therapy.  

16.2.2.4     Compounding and Overlapping Toxicity 

 As the focus of combination cancer therapies shifts towards synergy and network 
rewiring, compounded dose-limiting toxic effects again present a signifi cant chal-
lenge to multi-drug treatment regimens. Drug interactions are often complex to pre-
dict, and dose-limiting toxic effects – like therapeutic effects – can occur 
synergistically. For example, combined administration of common therapeutics 
such as nonsteroidal anti-infl ammatory drugs (NSAIDSs) with selective serotonin 
reuptake inhibitors (SSRIs) increases the relative risk of gastrointestinal bleeding 
19 % beyond the additive expectation (Anglin et al.  2014 ) (Fig.  16.2d ). Similarly, 
doxocubicin and trastuzumab (anti-HER2/ErbB2; Herceptin) – commonly co- 
administered in breast cancer patients – are known to induce Type I and Type II 
cardiotoxicity, respectively, effects which compound the risk of dose-limiting car-
diotoxic events in patients (Cardinale et al.  2010 ). More recently, combined block-
ade of MAPK and PI3K pathway signaling has been shown to synergistically kill a 
variety of solid tumors  and  pre-emptively block resistance-associated signaling in 
preclinical animal models (Engelman et al.  2008 ). A retrospective Phase I clinical 
study of patients with advanced solid tumors receiving small molecule inhibitors of 
MAPK or PI3K pathway signaling, alone or in combination, found that simultane-
ous blockade signifi cantly decreased average tumor burden relative to monotherapy 
(Shimizu et al.  2012 ); however, these favorable outcomes were accompanied by a 
2.0-fold increase in the prevalence of dose-limiting toxicity and a 3.0-fold increase 
in the prevalence of drug-related high grade (>III) adverse events, primarily 
hepatic-related.    

16.3     Nanoparticle Formulations to Optimize Anti-cancer 
Combination Therapies 

 Nanomaterials can be used to co-deliver multimodal cancer therapeutic agents to 
achieve maximum therapeutic effects (Hu and Zhang  2012 ). Some of the nanoma-
terials used to study combination therapy include liposomes, polymer-drug conju-
gates, dendrimers, and polymeric micelles (Peer et al.  2007 ). We will discuss a few 
notable examples in detail below. 
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16.3.1     Mesoporous Silica Nanoparticles 

 Mesoporous silica nanoparticles (MSNs) exhibit a range of features that are 
amenable to drug delivery (Baek et al.  2015 ). They have high surface area, which 
allows for large amounts of drug loading, tunable porosity and size, structural diver-
sity, easily modifi able chemistry and suitability for functionalization, and are bio-
compatible. MSNs have been used extensively as multifunctional nanocarrier 
systems by combination or hybridization with biomolecules, drugs, and other 
nanoparticles, and can be stimulated by signals such as pH, optical signal, redox 
reaction, òr electric and magnetic fi elds (Baek et al.  2015 ). 

 Lipid-coated MSN have recently been used to delivery synergistic gemcitabine 
and paclitaxel to both subcutaneous and orthotopic pancreatic tumors in mice. Mice 
with both subcutaneous and orthotopic tumors receiving systemic gemcitabine and 
paclitaxel loaded MSN achieved more effective tumor shrinkage than those receiv-
ing individual or free drug. The authors also observed elimination of metastatic foci 
without evidence of local or systemic toxicity (Meng et al.  2015 ). 

 Another way to use MSNs is for the combination of photodynamic and chemo-
therapies. One such example is the use of MSNs loaded with aluminum chloride 
phthalocyanine (AlClPc) and cisplatin for cancer treatment. Vivero-Escoto and col-
leagues showed that these MSNs are taken up by HeLa cells, and upon light expo-
sure, the AlClPc-cisplatin-MSN combination was more cytotoxic then the 
AlClPc-MSN and cisplatin-MSN controls. These data suggest that there is great 
potential for the use of MSN platforms as nanocarriers for combination photody-
namic and chemotherapies to treat cancer (Vivero-Escoto and Elnagheeb  2015 ). In 
another example, Zhang and colleagues synthesized a polymeric prodrug 
(doxorubicin)-coated hollow mesoporous silica nanoparticles (HMSNs) with an 
NIR absorbing dye IR825 loaded into the hollow cavity of the HMSN to form a 
multifunctional hybrid HMSNs-DOX/IR825 (Zhang et al.  2016 ). Cancer cells effi -
ciently took up the hybrid nanoparticle, and the conjugated doxorubcin was suc-
cessfully released in the cellular environment.  In vitro  cytotoxicity study showed 
that anticancer activity of HMSNs-DOX/IR825 was signifi cantly improved by the 
NIR irradiation, suggesting that the hybrid nanoparticle could potentially be used 
for combined photothermal- chemotherapy of cancer (Zhang et al.  2016 ).  

16.3.2     Self-Assembly Copolymer Carriers – Micelles 

 Many self-assembling molecules are amphiphilic, comprising of both hydrophobic 
and hydrophilic domains. Amphiphilic copolymers can self-assemble into micelles, 
vesicles, and molecular gels composed of tubules, fi brils, and fi bers (Giddi et al. 
 2007 ; Nishiyama and Kataoka  2006 ; Rösler et al.  2001 ). 

 Micelles are amphiphilic molecules that self-assemble into a spherical structure 
with a hydrophobic core and hydrophilic exterior making it suitable for encapsulat-
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ing hydrophobic cancer drugs (Jhaveri and Torchilin  2014 ). It is estimated that 
about 40 % of marketed drugs and up to 75 % compounds under development are 
poorly water soluble (Jhaveri and Torchilin  2014 ; Di et al.  2009 ; Williams et al. 
 2013 ). Polymeric micelles can be used for combination therapy by loading multiple 
anticancer agents in polymeric micelles in a one-step drug-loading process without 
chemical modifi cation of drugs (Shin et al.  2011 ). Multi-drug release may occur by 
simple hydrolysis or be triggered by an acidic pH and/or lysosomal enzymes, and 
can be tuned by chemical linkage for concurrent or sequential delivery (Duncan 
 2006 ; Greco and Vicent  2009 ). 

 Shin and colleagues showed that they could encapsulate paclitaxel, rapamycin, 
and 17-allylamino-17-demethoxygeldanamycin (17-AAG) in PEG- b -PLA micelles 
without changing the pharmacokinetics of each drug at low doses. The pharmacoki-
netic profi les were however altered when drugs are delivered at higher doses (Shin 
et al.  2012 ). Rapamycin and 17-AAG acts concurrently to inhibit the  PI3K/Akt/
mTOR and Ras/Raf/MEK/ERK signaling pathways, enhancing cancer cell killing 
by paclitaxel. Bae and colleagues directly conjugated doxorubicin and 17- hydroxy
ethylamino- 17-demethoxygeldanamycin (GDM-OH) to a poly(ethylene glycol)-
poly(aspartate hydrazide) block copolymers through acid-labile hydrazone bonds. 
The pH-sensitive micelles were combined and appeared to minimize a schedule- 
dependent change in combined drug effi cacy when compared to the free drug com-
bination (Bae et al.  2010 ). Karaca and colleagues, reported the use of methoxy 
poly(ethyleneglycol)-block-ploy(2-methyl-2-carboxyl-propylenecarbonate)-graft-
dodecanol (mPEG-b-PCC-g-DC) copolymer to conjugate gemcitabine and encap-
sulate a Hedgehog inhibitor, Vismodegib (GDC-0449) into its hydrophobic core for 
the treatment of pancreatic ductal adenocarcinoma (PDAC). The  in vivo  stability of 
gemcitabine increased signifi cantly after conjugation, and the drug combination, 
when administered to athymic nude mice bearing subcutaneous tumors generated 
using MIA PaCa-2 cells, effi ciently inhibited tumor growth (Karaca et al.  2016 ).  

16.3.3     Nanotechnology Approaches to Enhance Co-delivery 

 By physically confi ning drug combinations within a single carrier, pharmacokinet-
ics for multiple drugs can be unifi ed, ensuring all particle-treated cells receive a 
pairwise combination of drugs – maximizing therapeutic potential. One key chal-
lenge in this area involves combining three general categories of drugs, all of which 
display differing combinations of physiochemical properties: (i) large and hydro-
philic proteins, (ii) small and hydrophobic small molecules, and (iii) moderately 
sized, hydrophilic, and highly anionic nucleic acids. Targeted, nanoscale delivery of 
therapeutic proteins remains an area currently underexplored in cancer therapy – 
particularly immunotherapy. Fahmy and coworkers recently addressed this chal-
lenge in the development of a combination cancer immunotherapy that reverts 
immunosuppressive tumor microenvironments (Fig.  16.3a ) (Park et al.  2012 ). Using 
the cytokine, IL-2, which stimulates NK cell and cytotoxic T lymphocyte activity, 
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  Fig. 16.3    Nanomedicines Overcome Challenges in Combination Drug Delivery. ( a ) Bulky and 
hydrophilic proteins are notably diffi cult to co-deliver with small, hydrophobic molecular inhibi-
tors. Here, IL-2 is entrapped in a photo-polymerizable hydrogel matrix composed of poly(ethylene 
glycol), polylactide, and a small molecule/β-cyclodextrin inclusion complex. The hydrogel core is 
encapsulated by a liposomal shell and photocured under ultraviolet light. Systemically adminis-
tered ‘nanolipogels’ decreased tumor burden and improved overall survival better than single drug- 
loaded particles or intratumoral injection of free drugs in immunocompetent, subcutaneous tumor 
xenograft mouse models (B16-F10). IL-2 promotes a hostile tumor microenvironment by stimulat-
ing NK cell and cytotoxic T lymphocyte activity, while a TGF-β signal blockade (SB505124) does 
the same while additionally depleting tumor-promoting regulatory T lymphocytes (Tregs). ( b ) The 
delivery of synergistic drug ratios can also be ‘pre-programmed’ into nanoscale drug carriers. Here, 
a hydrophobic inhibitor of MAPK pathway signaling is co-encapsulated with a hydrophilic inhibi-
tor of the PI3K pathway at a pre-defi ned synergistic drug ratio. Layer-by-Layer (LbL) polymer 
assembly around the drug-containing liposomal core facilitated both affi nity-based and 
microenvironment- responsive tumor targeting, while simultaneously blocking both pathways and 
enhancing drug synergy beyond that of the free drug combination  in vitro  and  in vivo . ( c ) Time- 
staggared delivery can be achieved through structural partitioning of drugs within nanoscale drug 
carriers. Here, a hydrophobic inhibitor of EGFR (erlotinib) partitions into the lipid bilayer of a 
nanoscale lipid vesicle, while a hydrophilic genotoxic agent, doxorubicin, is loaded into the aque-
ous particle core. Initial release of erlotinib ‘dynamically rewires’ cell signaling in lung and breast 
tumors in a manner that enhances subsequent cell killing by doxorubicin in a time-dependent man-
ner. Systemically administered, folate receptor-targeting constructs induce a partial response in 
lung (A549) and breast (BT-20) tumor xenograft-bearing mice, while mice receiving single drug- 
loaded particles (doxorubicin) exhibit progressive disease. ( d ) Nanomedicines can also mitigate 
dose-limiting side effects of drugs with overlapping toxicity profi les. Although, doxocubicin and 
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in combination with TGF-β signal blockade, which does the same while addition-
ally depleting tumor-promoting regulatory T lymphocytes (Tregs), the authors were 
able to develop a systemically administerable drug carrier that decreased tumor 
burden and improved overall survival when compared to single drug-loaded parti-
cles or to intratumoral injection of free drugs in immunocompetent, subcutaneous 
tumor xenograft mouse models (B16-F10). To achieve this, IL-2 was entrapped in a 
photo-polymerizable hydrogel matrix composed of poly(ethylene glycol) (PEG), 
polylactide, and a small molecule/β-cyclodextrin inclusion complex. The hydrogel 
core is encapsulated by a liposomal shell and photocured under ultraviolet light to 
obtain PEG-stabilized ‘nanolipogels’. A variety of other novel co-delivered drug 
combinations are listed in Table  16.1 .

16.3.4         Nanotechnology Solutions: Stoichiometry/Ratiometric 
Dosing 

 Through ratiometric drug loading into nanoscale carriers, intracellular drug concen-
trations can be ‘pre-programmed’ for drug synergy, thus maximizing therapeutic 
potential and avoiding possible antagonistic interactions resulting from spatially 
and temporally heterogeneous delivery of free drug compounds. For example, 
Dreaden et al  2015  .  co-encapsulated a hydrophobic inhibitor of MAPK pathway 
signaling with a hydrophilic inhibitor of the PI3K pathway at a pre-defi ned syner-
gistic drug ratio (Fig.  16.3b ) (Dreaden et al.  2015 ). Layer-by-Layer (LbL) polymer 
assembly around the drug-containing liposomal core facilitated both affi nity-based 
and microenvironment-responsive tumor targeting, while simultaneously blocking 
both pathways and enhancing drug synergy beyond that of the free drug combina-
tion  in vitro  and  in vivo . A related therapeutic in clinical development, liposomal 
irinotecan/fl oxuridine (CPX-1, 1:1 mol; Celator), co-encapsulates drugs at a previ-
ously identifi ed synergistic drug ratio and maintains this drug stoichiometry both in 
plasma and in the tumor bed (Batist et al.  2009 ). Interestingly, effi cacy of the lipo-
somal formulation in tumor-bearing mice was superior to both free drugs dosed at 
their respective MTDs and the additive expectation from both singly loaded 

Fig. 16.3 (continued) trastuzumab (anti-HER2/ErbB2; Herceptin) – alone – induce Type I and 
Type II cardiotoxicity, respectively, the two are often co-administered in breast cancer patients. 
Engineering of an trastuzumab- doxorubicin antibody drug conjugate (ADC) rescues doxorubicin 
toxicity towards human primary cardiomyocytes by limiting cellular uptake to HER2-expressing 
cells. Here, a heterobifunctional linker (SMCC) containing an amine-reactive NHS ester and a 
thiol-reactive malimide crosslinks doxorubicin and IgG, respectively (Reprinted with permission 
from (a) Park et al.  2012 , (b) Dreaden et al.  2015 , (c) Morton et al.  2014 , and (d) Zhang et al.  2013 ). 
Copyright ( a ) 2012 Nature Publishing Group, ( b ) 2015 American Association of Cancer Research, 
( c ) 2014 American Association for the Advancement of Science, and ( d ) 2013 original authors 
under the Creative Commons Attribution License)       
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liposomes. Strikingly, a liposomal formulation encapsulating a previously identifi ed 
antagonistic drug ratio (10:1 mol) was less effective than its singly loaded counter-
part, suggesting a putative role for heterogeneous combination drug delivery in pro-
moting resistance to therapy. Similar approaches employing cytarabine/daunorubicin 
(CPX-351, 5:1 mol) (Tardi et al.  2009a ), irinotecan/cisplatin (CPX-571, 7:1 mol) 
(Tardi et al.  2009b ), and paclitaxel/tanespimycin (17-AAG) (Katragadda et al. 
 2013 ), quercetin/vincristine (1:2 mol), and doxorubicin/camptothecin/Pt (1:2.5:3.6 
mol) (Liao et al.  2014 ) are currently under investigation.  

16.3.5     Nanotechnology Approaches to Tailor Drug 
Combination Timing and Sequence 

 Another powerful property of nanoscale drug carriers is their capacity to not only 
spatially regulate drug release in the body, but also to temporally control the 
sequence and kinetics of therapeutics released. To exploit the observation by Lee 
et al. that time-staggered inhibition of EGFR could sensitize breast cancer cells to 
DNA damaging chemotherapy, Yaffe, Hammond, and coworkers engineered a 
nanoscale drug carrier which achieved staged drug delivery through structural par-
titioning of drugs within a liposomal vesicle (Fig.  16.3c ) (Morton et al.  2014 ). Here, 
a hydrophobic inhibitor of EGFR, erlotinib, partitions into the lipid bilayer of the 
vesicle, while a hydrophilic genotoxic agent, doxorubicin, is loaded into the aque-
ous particle core. The initial release of erlotinib from these nanoparticles ‘dynami-
cally rewired’ cell signaling in lung and breast tumors in a manner that recapitulates 
optimally staggered delivery kinetics seen with free drug administration, enhancing 
subsequent cell killing by doxorubicin. Systemically administered, folate receptor-
targeted Erlotinib/doxorubicin nanoparticles were shown to induce a partial 
response in both lung (A549) and breast (BT-20) tumor xenografts in nude mice, 
while mice receiving only single drug-loaded nanoparticles (doxorubicin) exhibited 
progressive disease. 

 Gnanasammandhan and colleagues described a noninvasive method to deliver 
drugs that allow for a high degree of spatial and temporal control. Upconversion 
nanoparticles (UCNs) were used to convert deeply penetrating near-infrared (NIR) 
light to UV-visible wavelengths that match the absorption spectrum of photosensitive 
therapeutics. This allowed for the use of deep-penetrating and biologically friendly 
NIR light for photoactivation (Gnanasammandhan et al.  2016 ). The UCNs were used 
for photodynamic therapy (PDT) and photoactivated control of gene expression. For 
PDT, the UCNs are coated with polyethylene glycol (PEG) for stabilization and folic 
acid for tumor targeting and then loaded with photosensitizers that would be expected 
to kill cells by singlet oxygen production, whereas for the photoactivated control of 
gene expression, knockdown of essential tumor genes is achieved using UCNs 
loaded with caged nucleic acid (Gnanasammandhan et al.  2016 ). 

 To achieve controlled release of drugs, Liao and colleagues recently used two 
novel macromonomers (MMs) and a novel cross-linker as building blocks for the 
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construction of a multi-drug-loaded nanoparticle.  CPT-MM  and  DOX-MM  are 
branched MMs that release unmodifi ed CPT and DOX in response to cell culture 
media and long-wavelength ultraviolet (UV) light, respectively (Liao et al.  2014 ).  

16.3.6     Nanotechnology Approaches to Limit Compounding 
and Overlapping Toxicity 

 Combination drug carriers can overcome challenges from overlapping toxicity pro-
fi les by biasing tissue disposition away from off-target tissues or by decelerating 
bolus drug release in vital organs. To address cardiotoxicity from doxorubicin and 
trastuzumab (anti-HER2/ErbB2; Herceptin) combination therapy, Zhang et al .  engi-
neered an antibody-drug conjugate from the pair, thereby limiting cytotoxic doxo-
rubicin delivery to cells expressing high levels of HER2, while blocking the 
compounded toxicity towards human primary cardiomyocytes (Zhang et al.  2013 ) 
(Fig.  16.3d ). To address dose-limiting hepatotoxic effects from combined MAPK 
and PI3K pathway inhibition, Dreaden et al. engineered LbL nanoparticles that 
biased tissue disposition towards solid tumors and rescued both hepatic and renal 
tissue damage while improving antitumor effi cacy  in vivo . Similarly, Farokhzad and 
coworkers have found that aptamer-targeted PLGA nanoparticles can rescue the 
nephrotoxic effects of platinum chemotherapeutics while maintaining equivalent 
antitumor activity  in vivo  (Dhar et al.  2011 ; Kolishetti et al.  2010 ) and also accom-
modating the chemotherapeutic, docetaxel, in polylactide containing particles (Xu 
et al.  2013 ).  

16.3.7     Combining Nucleic Acid Therapies with Other Drug 
Combinations 

 Since the discovery of RNA interference (RNAi) in 1997, there has been great inter-
est in harnessing RNAi for the treatment of disease. RNAi is activated by double- 
stranded RNA (dsRNA), which includes short interfering RNA (siRNA) and 
microRNA (miRNA) and utilizes the endogenous RNAi pathway for the post- 
transcriptional silencing of gene expression. MicroRNAs form central nodal points 
in cancer development pathways and exert their effects by targeting various onco-
genes and tumor suppressors (Kong et al.  2012 ; Zhang et al.  2007 ), while siRNAs 
can be used to effi ciently silence the expression of any gene with high specifi city. 
These include targets that are considered to be diffi cult to drug. Here we describe 
some platforms used to deliver RNAi-drug combinations. 

 One particular tumor type, for example, that could greatly benefi t from RNAi 
therapy is triple-negative breast cancer (TNBC), which is characterized by the lack 
of progesterone, estrogen and HER2 receptors. It is non-responsive to conventional 
hormonal therapy (such as tamoxifen or aromatase inhibitors) or therapies that 
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target HER2 receptors, such as Herceptin (trastuzumab) (Foulkes et al.  2010 ).  
RNAi-based approaches can therefore be benefi cial for the treatment of TNBC. One 
way to accomplish this is by modulating endogenous miRNA levels in TNBC. miR-
221 and miR-205 have been shown to be up and down regulated in TNBC respec-
tively (Nassirpour et al.  2013 ; Piovan et al.  2012 ). Conde and colleagues recently 
showed that they could deliver a miR-205 mimic and an antagomiRNA (miRNA 
inhibitor) using a self-assembled RNA-triple-helix structure which is conjugated to 
dendrimers to form stable triplex nanoparticles that can achieve nearly 90 % tumor 
shrinkage 2 weeks post-gel implantation in a triple-negative breast cancer mouse 
model (Conde et al.  2016 ). 

 A promising approach made available by nanotechnology is to combine siRNA 
and chemotherapeutics in a single platform. Deng and colleagues used a controlled 
layer-by-layer process to co-deliver siRNA against a drug-resistance pathway (mul-
tidrug resistance protein 1) and a chemotherapy drug (doxorubicin) to challenge a 
highly aggressive form of triple-negative breast cancer resulting in an 8-fold 
decrease in tumor volume compared to control treatments with no toxicity observed 
(Deng et al.  2013 ). Xu and colleagues combined siRNA against targets involved in 
error-prone translesion DNA synthesis pathway (REV1 and REV3L) with conven-
tional DNA-damaging chemotherapy (cisplatin prodrug) through self-assembly of a 
biodegradable poly(lactide-coglycolide)-b-poly(ethylene glycol) diblock copoly-
mer and a self-synthesized cationic lipid. This nanoparticle formulation had a syn-
ergistic effect on tumor inhibition in a xenograft mouse model of human lymph 
node carcinoma of the prostate that was noticeably more effective than platinum 
monotherapy (Xu et al.  2013 ). 

 Other carriers that have been used to deliver the siRNA based combinations 
include liposomes (Gabizon et al.  1994 ; Chen et al.  2009a ,  b ,  2010a ,  b ; Li et al. 
 2008 ), micelles (Zheng et al.  2013 ; Shim et al.  2011 ; Zhu et al.  2010 ), polymers 
poly ( d , l -lactide-co-glycolide) (PLGA) (Li et al.  2001 ; Fonseca et al.  2002 ), poly 
lactic acid (PLA) (Tobío et al.  1998 ; Dong and Feng  2004 ), polycapro lactone (PCL) 
(Yang et al.  2006 ), dendrimers (Biswas et al.  2013 ; Kaneshiro and Lu  2009 ; Kulhari 
et al.  2011 ), natural chitosan polymeric nanoparticles (Wei et al.  2013 ; Nagpal et al. 
 2010 ), silica (Santra et al.  2001 ; Qhobosheane et al.  2001 ; Kneuer et al.  2000 ) and 
other inorganic nanoparticles e.g calcium, gold, quantum dots, etc. (Sokolova and 
Epple  2008 ).   

16.4     Limitations to Developing Combination 
Chemotherapeutics, Tumor-Specifi c Targeting, 
and Enabling Approaches 

 Like Frei, Freireich, and Zubrod, drug discovery has historically focused on the 
development of compounds with independent antitumor activity – those intended 
for use as monotherapies. Modern approaches to combination development have, in 
contrast, been largely limited to off-patent cytotoxic drugs. To address the challenge 
of integrating patent-protected targeted therapies in combination approaches, 
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Merck and AstraZeneca initiated a seminal partnership in 2009 to share the costs of 
developing combination candidates, for example, AstraZeneca’s MEK inhibitor 
(AZD6244) and Merck’s protein kinase B inhibitor (MK-22060). Merck and Sanofi  
later followed with a similar agreement to investigate Merck’s MEK inhibitor, 
MSC1936369B, in combination with Sanofi ’s PI3K/mTOR inhibitor, SAR245409, 
and class I PI3K inhibitor, SAR245408 . Bristol-Myers Squibb and Roche have 
likewise established agreements to combine Roche’s vemurafenib (Zelboraf) with 
BMS’s ipilimumab (Yervoy) for BRAF mutant metastatic melanoma. While highly 
promising, dose-limiting hepatotoxicity from the latter two combination approaches 
in Phase I clinical trials (Xu et al.  2013 ) highlights a key weakness of this approach: 
by neglecting combination effects during the discovery phase, more safe and/or 
effective combination candidates may be discarded simply as a result of exhibiting 
less potent independent antitumor activity. Although small molecule targeted thera-
pies, in the past, have provided less incentive for early combination development 
(due to their single agent effi cacy), the recent resurgence of cancer immunotherapy 
development will likely accelerate the integration of combination approaches ear-
lier in the development pipeline, providing opportunities for the investigation of 
combinations with weak independent activity, but potent and safe combined thera-
peutic effects in the future. 

 A major but as-yet incompletely realized opportunity for nanoparticle therapeu-
tics is the potential for tumor-specifi c targeting. Compounded organ-specifi c toxic 
effects such as those described above highlight a potential intrinsic advantage of – 
and challenge to – nanoscale drug delivery, whereby dose-limiting toxicities could 
be mitigated through nanoparticle-altered pharmacokinetics combined with favor-
able tumor tissue targeting profi les. The latter phenomenon can occur through size- 
dependent ‘passive’ tumor targeting or the ‘active’ targeting of tissues via 
stimuli-responsive behavior or affi nity directed accumulation. While a number of 
recent publications seek to revisit the importance and prevalence of passive target-
ing in tumor delivery (Prabhakar et al.  2013 ; Park  2013 ) – largely attributed to the 
so-called enhanced permeability and retention (EPR) effect (Matsumura and Maeda 
 1986 ; Matsumoto et al.  2016 ) – nanoparticles are well known to preferentially accu-
mulate in organs of the mononuclear phagocyte system (MPS), namely the liver and 
spleen, and to augment the accumulation of renally excreted drugs (i.e. <10 nm) in 
solid tumors. This property can be advantageous when designing treatments for 
hepatocellular carcinoma or immunotherapies, respectively; however, affi nity 
directed targeting of tumor tissues remains an integral and underexplored challenge 
to the fi eld. Chan and coworkers (Wilhelm et al.  2016 ), highlight this disparity in a 
recent retrospective literature analysis, noting only modest (0.5-fold) improvements 
in median tumor accumulation afforded by active targeting across multiple studies. 
In contrast, relatively smaller antibody-drug conjugates (ADCs) (Vaklavas and 
Forero-Torres  2012 ) and molecular polyconjugates (Rozema et al.  2007 ), while less 
prevalent, have demonstrated notably reproducible in vivo targeting capabilities. 
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Future research investigating specifi c targeting ligands including small molecules 
(e.g. folic acid, bisphosphonate, carbohydrates), peptides (e.g. GE11, RGD, knot-
tin), and proteins (e.g. IgG, Fab fragments, Centyrins), is expected to improve both 
the effectiveness and reproducibility of affi nity targeting strategies employed by the 
fi eld, as well as subsequent treatment outcomes from rational drug combinations.  

16.5     Outlook and Conclusions 

 The intersection between cancer biology and nanotechnology is an exciting and 
emerging area of current academic and industrial research. With ongoing efforts in 
both fi elds, combination anticancer treatments are continuing to evolve, raising 
hopes for unprecedented antitumor responses and reduced toxicity. The emergence 
of newly engineered combination drug delivery platforms should allow us to com-
bine different classes of drugs into a single nanoparticle with tunable functionality 
over local or temporal control of drug delivery increasing safety, effi cacy, and dura-
bility. The co-delivery of different cancer therapeutic agents provides promising 
options to overcome chemoresistance. Recent reports provide strong evidence that 
combining different drugs using nanoparticles improves tumor killing compared to 
single agent therapy. While these approaches hold great promise, there still remain 
key limitations in their proof of concept. Most nanocarrier studies are currently 
performed in preclinical models, and desperately need to be translated into human 
clinical trials, particularly since the biodistribution, localization, and release profi les 
of these drugs may differ in humans. It is also pertinent for the safety profi les of the 
various carriers used for the delivery of these therapeutic agents to be further stud-
ied, with special focus on their toxicity and immune response. Given the progress 
that has been made in the fi eld during the past 5 years, the future of rationally 
designed and personalized combination therapy using customizable nanoparticle 
delivery platforms looks promising.     
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