
Chapter 5
Understanding Irregular Satellites

Beginning with this Chapter, we start to consider various phenomena due to the
LKE in astronomical and astrophysical systems. Historically, the first theoretical
works on this mechanism by Lidov (1961) were devoted to planetary satellites, both
natural and artificial; that is why we start with an overview of the most pronounced
LK-phenomena in the satellite dynamics, namely, with the LKE in the dynamics of
irregular satellites of giant planets.

For a planetary satellite, the qualitative LK-mechanism can be described as
following: the secular variations in the eccentricity and inclination are coupled,1 as
integral (3.23) certifies, if the R3BP conditions are fulfilled at least approximately.
The dynamical cause of the effect lies in the presence of a distant perturber; in the
given case, it is the Sun, or some other massive satellite (e.g., the Moon in the Earth–
Moon system). Therefore, if a satellite’s orbit is inclined initially high enough with
respect to the orbital plane of the host planet, the satellite’s eccentricity may strongly
(depending on initial conditions) oscillate on the secular timescale, and, when the
eccentricity is maximum, the pericentric and apocentric distances are, respectively,
minimum and maximum. Therefore, at the pericenter, the satellite may be destroyed
by planetary tides or may collide with a large regular moon or with the planet itself.
On the other hand, at the apocenter, the satellite may leave the planet’s Hill sphere
and escape.

The Hill sphere of a planet engulfs a zone of the planet’s gravitational dominance:
inside it, the planet’s gravity dominates over the Solar perturbations, and the latter
cannot enforce the satellites’ escape. For example, in the Earth case, the Hill radius
(radius of the Hill sphere) is about four (�3.9) times greater than the orbital
semimajor axis of the Moon, that is why the Moon is safe with us.

The Hill radius can be estimated by means of an analysis of the locations of the
libration points in the three-body problem (see, e.g., Murray and Dermott 1999). In

1They are in antiphase, if the inclination i < �=2, and in phase, if i > �=2.
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a planet–Sun system, if the planet’s orbit is circular, the Hill radius is given by

Rcirc
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ap; (5.1)

where mp and mSun are the masses of the planet and the Sun, respectively, and ap is
the semimajor axis of the planet’s orbit.

If the orbit of the secondary (planet) is eccentric, then the radius of the
stability zone is approximately equal to Rcirc

H calculated at the secondary’s pericenter
(Hamilton and Burns 1992):
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where ep is the eccentricity of the secondary. This formula expresses the so-called
Hill sphere at pericenter scaling.

As established in astronomical observations of satellites of the giant planets
(Jupiter, Saturn, Uranus, and Neptune), the satellites with orbits inside �0.05 of the
Hill radius of the parent planet tend to be in close-to-circular prograde equatorial
orbits.2 These are called “regular” satellites. Conversely, the satellites with orbits
outside �0.05 of the Hill radius tend to have large eccentricities and inclinations,
and many are retrograde. These are called “irregular” satellites.

A more rigourous definition can be adopted: Nesvorný et al. (2003) define an
irregular as a satellite that has the orbital semimajor axis large enough for the
precession of the satellite’s orbit to be controlled by the Sun, not by the parent
planet’s oblateness; i.e., the Solar perturbations dominate over the perturbations
caused by the planet’s non-sphericity.3 Thus, a satellite is irregular if its orbital
semimajor axis is greater than the Laplace radius (defined above in Sect. 3.4, see
formula (3.91)), i.e., it satisfies the inequality

a & rL �
�

J2R2
pa3

p
mp

mSun

�1=5

(5.3)

(Burns 1986; Nesvorný et al. 2003), where J2, Rp, ap, and mp are the planet’s
parameters: its second zonal harmonic coefficient, mean radius, orbital semimajor
axis, mass, respectively; mSun is the Solar mass.

The Hill and Laplace radii for the Solar system planets are given in Table 5.1.
An inspection of this Table testifies that the approximate and rigourous definitions
of irregulars are similar indeed: for all giant planets, the value of rL=rH belongs to

2The term “prograde” designates the planetocentric motion co-directional with the host planet’s
heliocentric orbital motion; “retrograde” designates the motion opposite to the prograde one.
3Note that the given definitions of an irregular satellite apply only to the satellite systems of Jovian
planets; otherwise the Moon should be also called irregular.
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Table 5.1 Masses, figures, and critical radii for the Solar system planets

Planet
Mass mp

.1027g/
Mean radius

Rp.km/
Obliquity

.ı/
J2 � 106 J4 � 106 rH=Rp rL=Rp

Mercury 0:3301 2440 � 0:1 60 : : : 90:4 2:66

Venus 4:8673 6052 177:3 4 2 167 2:24

Earth 5:9722 6371 23:45 1083 �2 235 8:41

Mars 0:64169 3390 25:19 1960 �19 320 11:4

Jupiter 1898:1 69;911 3:12 14;696 �587 743 35:4

Saturn 568:32 58;232 26:73 16;291 �915 1080 48:4

Uranus 86:810 25;362 97:86 3343 �29 2680 64:0

Neptune 102:41 24;622 29:56 341 �35 4600 93:2

Notes: Obliquity is the angle between the planet’s equatorial and orbital planes; J2 and J4 are the
second and fourth zonal harmonic coefficients; rH and rL are the Hill and Laplace radii. The Table
is compiled based on data given in the JPL Database (http://jpl.nasa.gov/), Murray and Dermott
(1999), and Tremaine et al. (2009). The values of rH and rL for Mercury, Venus, Earth, and Mars
are given as calculated by the author. The stated value of rL for the Earth is formal because the
Lunar perturbations are not taken into account

the interval between 0:02 and 0:05. It is interesting that, in case the rocky planets
also had irregulars, the approximate definition of irregulars for them would be still
valid: as follows from the Table, for Mercury, Earth, and Mars, rL=rH is still in the
range 0:02–0:05, for Venus it is 0:013. Thus, all planets in the Solar system have
similar (by the order of magnitude) values of rL=rH. The basic reason is that rL and
rH depend on the planetary parameters rather weakly.

The irregular satellites are mostly small in size, their diameters D � 1–10 km.
However, each giant planet has one irregular moon with D > 100 km, these moons
are: JVI Himalia, SIX Phoebe, UXVII Sycorax, and NII Nereid. Nereid is the largest
one (D � 340 km).

The irregulars comprise the majority (in number, but not in mass) of the total
satellite population in the Solar system: �110 out of the total count of �170 (as
known in the year of publication of this book).

As we shall see in this Chapter, the orbital distributions of irregulars around
parent planets are controlled by the LKE. As established by Carruba et al. (2002) and
Nesvorný et al. (2003), the most general property of these distributions is that, due
to the LKE, most orbits with i � 90ı are short-lived, and thus no irregular satellites
have inclinations in the range between �50ı and �140ı, except two Neptunian
moons N9 Halimede and N11 Sao. On the other hand, the secular orbital dynamics
of two Saturnian moons S22 Ijiraq and S24 Kiviuq and Jovian moon J34 Euporie is
most probably controlled by the LKE.

We consider the irregular satellite systems of Jupiter and Saturn in two separate
sections, whereas the satellite systems of Uranus and Neptune are analyzed in a
single one, because the two latter systems are mutually similar, though different
from the Jovian and Saturnian systems. The major difference is that the non-
survivability of orbits due to the LKE occur in the systems of Uranus and Neptune
in a narrower inclination range than in the systems of Jupiter and Saturn.

http://jpl.nasa.gov/
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5.1 Irregular Satellites: Origin and Orbits

5.1.1 Where They Came From

While the orbits of regular satellites lie deep inside the Hill spheres of their parent
planets, the orbits of irregular satellites occupy substantial fractions of inner space
of these spheres. What is more, whereas the orbital architecture of regulars is
qualitatively similar to that of the Solar system planets (i.e., the orbits are mostly
coplanar and close-to-circular), the orbital distributions of the irregulars are strongly
disordered.

That is why the origin of irregular satellites is thought to be very different in
comparison with that of regulars. The regulars are supposed to be formed in just the
same way as planets, i.e., by means of accretion of solids in protodisks (Stevenson
et al. 1986). The origin of irregulars seems to be totally different. Indeed, in contrast
to regulars, most of them follow retrograde orbits, and this sole fact certifies that they
cannot originate from a single nebula. Besides, their eccentricities and inclinations
are too large in general to be an outcome of the standard accretion process in a
flattened disk.

Therefore, the irregulars are thought to be minor bodies (e.g., asteroids) captured
somehow from heliocentric orbits. They had not formed in vicinities of parent
planets, but arrived from other realms of the Solar system. Thus, rigorously
speaking, the “parent planet” (around which an irregular orbits) is really not a parent
one. The capture in the three-body problem (the Sun–planet–asteroid problem, in
particular) is a complicated, though a thoroughly studied process; see, e.g., Belbruno
(2004). Due to the Hamiltonian nature of the three-body problem, such a capture is
reversible, and the captured body is doomed to become free again, sooner or later.
To make the capture irreversible, non-Hamiltonian perturbations (e.g., gas drag or
light pressure) ought to be active.

Several mechanisms of transformation of a body-intruder into an irregular have
been proposed: collisional scenario (Colombo and Franklin 1971; Gladman et al.
2001), pull-down capture (Heppenheimer and Porco 1977; Saha and Tremaine
1993), and gas-drag capture (Pollack et al. 1979, 1991). The collisional scenario
postulates a disruption of a parent regular satellite by a body passing in a heliocentric
orbit; this explains naturally that irregulars cluster in swarms of bodies with similar
orbital elements. In the pull-down capture scenario, a body coorbital with a planet
is captured by the planet due to mass growth of the latter, as the planet accretes
matter at an early stage of its cosmogonical evolution and its Hill sphere swells. In
the gas-drag capture scenario, an outer body enters the planet’s gas envelope (also
at an early evolutionary stage) and slowly spirals down; when the gas depletes, the
orbit “freezes”.
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5.1.2 Orbital Distributions

As established already in the beginning of 2000s, there exists a broad gap in the
inclination distribution (with respect to the ecliptic plane) of the known irregular
satellites: almost no object has the inclination in the range between �50ı and
�140ı; see Fig. 5.1. A plausible explanation of this fact is that orbits with i � 90ı
are subject to destruction due to the LKE (Carruba et al. 2002; Nesvorný et al. 2003).

The LKE can produce this gap in two ways (Carruba et al. 2002): (1) the
pericenter distance q D a.1�e/ may decrease until the orbit starts to cross the orbits
of massive inner regular moons (e.g., the orbit of Callisto in the case of the Jovian
system), or even until it falls on the parent planet, i.e., until the equality q D Rp starts
to hold, where Rp is the planet’s radius; (2) the apocenter distance Q D a.1 C e/

Fig. 5.1 The irregular moons (known up to 2002) of Jupiter, Saturn, Uranus, and Neptune,
presented in “polar coordinates”: the angular position (with respect to the horizontal axis) of a
satellite in the diagram is equal to the satellite’s inclination i to the ecliptic plane, and the radial
position is equal to the satellite’s orbital semimajor axis a in units of the parent planet’s Hill radius
RH. The center-pointing straight line intervals represent the pericenter–apocenter variations in the
orbital radii. The symbol size characterizes physical sizes of the moons, namely, diameters in the
logarithmic scale. The moons on the right side of the diagram are prograde, and those on the left
side are retrograde. A broad gap in the inclinations, centered on i D 90ı , is evident. The dashed
curves indicate the borders of the regions where any satellite in a close-to-polar orbit is removed by
the LKE (Figure 1 from Gladman et al. (2001). With permission from Nature Publishing Group)
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may increase up to Q � RH (the Hill radius), where Solar perturbations destabilize
the orbit.

At present, this cosmogonical process is over: Nesvorný et al. (2003) performed
long-term numerical integrations of the orbits of all known (at that time) irregulars,
taking into account all relevant perturbations, and showed that the known irregular
moons are dynamically long-lived.

5.2 Jovian System

Jupiter has 59 irregulars, among them only 7 prograde (see Table 5.2). They form
several swarms consisting of moons with similar orbital elements. For example, the
Himalia group comprises five moons with semimajor axes a � 0:2RH (where RH

is Jupiter’s Hill radius, RH D 51 mln km D 0:34 AU), eccentricities e � 0:2, and
inclinations i � 30ı (see Table 5.2). This similarity certifies their common (most
probably collisional) origin. The Ananke, Carme, and Pasiphae groups contain
moons of smaller physical sizes, but comprise more than a dozen members each.

Note that the inclination values cited in this chapter for irregulars of all planets
are all measured with respect to the local Laplace plane, defined in Sect. 3.4.
Irregulars usually have orbits much greater in size than the Laplace radius (also
defined in Sect. 3.4; for its specific planetary values see Table 5.1). At such large
distances, the Laplace plane coincides approximately with the ecliptic plane.

Carruba et al. (2002) performed massive numerical experiments, integrating
orbits of a variety of hypothetical Jovian satellites on a long timescale (109 years).
It turned out that the LKE due to the Solar perturbations plays the most prominent
role in the secular orbital evolution, either driving the pericenters of the satellites
with 70ı . i . 110ı into the domain of massive regulars (where the satellites
are eliminated on the timescale of 107–109 years, due to collisions or gravitational
scattering), or driving the apocenters of the satellites out of the planet’s Hill sphere.
When one takes into account all relevant perturbations, the gap broadens up to
55ı . i . 130ı (from � 70ı . i . 110ı).

Thus, the LKE has produced a major “footprint” in the global orbital architecture
of the Jovian irregulars. What is more, the LKE seems to be still operational in the
orbital dynamics of some of them. Namely, the secular dynamics of the Jovian moon
J34 Euporie seems to be controlled by the LKE, the pericenter argument ! librating
around 90ı with the full amplitude of 60ı, nearly constant over 108 years (Nesvorný
et al. 2003).

Besides, according to Carruba et al. (2002), there exists a “stable phase space”
with orbits surviving on the timescale of 10 Myr for any moon trapped in the LK-
resonance (i.e., a moon with the pericenter locked in libration around ˙90ı). It
contains �10 % of all stable orbits, suggesting that at high inclinations there may
exist moons that have not yet been discovered.

Based on analytical (in the framework of the double-averaged Hill problem),
numerical (direct numerical integrations), and numerical-analytical approaches,
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Table 5.2 Irregular moons of Jupiter

Satellite a (km) e i (ı) D (km)

JXVIII Themisto 7;393;216 0:2115 45:762 8

JXIII Leda 11;187;781 0:1673 27:562 16

JVI Himalia 11;451;971 0:1513 30:486 170

JX Lysithea 11;740;560 0:1322 27:006 36

JVII Elara 11;778;034 0:1948 29:691 86

JLIII Dia 12;570;424 0:2058 27:584 4

JXLVI Carpo 17;144;873 0:2735 56:001 3

S/2003 J12 17;739;539 0:4449 142:680 1

JXXXIV Euporie 19;088;434 0:0960 144:694 2

S/2003 J3 19;621;780 0:2507 146:363 2

S/2003 J18 19;812;577 0:1569 147:401 2

S/2011 J1 20;155;290 0:2963 162:8 1

JLII S/2010 J2 20;307;150 0:307 150:4 1

JXLII Thelxinoe 20;453;753 0:2684 151:292 2

JXXXIII Euanthe 20;464;854 0:2000 143:409 3

JXLV Helike 20;540;266 0:1374 154:586 4

JXXXV Orthosie 20;567;971 0:2433 142:366 2

JXXIV Iocaste 20;722;566 0:2874 147:248 5

S/2003 J16 20;743;779 0:3184 150:769 2

JXXVII Praxidike 20;823;948 0:1840 144:205 7

JXXII Harpalyke 21;063;814 0:2440 147:223 4

JXL Mneme 21;129;786 0:3169 149:732 2

JXXX Hermippe 21;182;086 0:2290 151:242 4

JXXIX Thyone 21;405;570 0:2525 147:276 4

JXII Ananke 21;454;952 0:3445 151:564 28

JL Herse 22;134;306 0:2379 162:490 2

JXXXI Aitne 22;285;161 0:3927 165:562 3

JXXXVII Kale 22;409;207 0:2011 165:378 2

JXX Taygete 22;438;648 0:3678 164:890 5

S/2003 J19 22;709;061 0:1961 164:727 2

JXXI Chaldene 22;713;444 0:2916 167:070 4

S/2003 J15 22;720;999 0:0932 141:812 2

S/2003 J10 22;730;813 0:3438 163:813 2

S/2003 J23 22;739;654 0:3930 148:849 2

JXXV Erinome 22;986;266 0:2552 163:737 3

JXLI Aoede 23;044;175 0:6011 160:482 4

JXLIV Kallichore 23;111;823 0:2041 164:605 2

JXXIII Kalyke 23;180;773 0:2139 165:505 5

JXI Carme 23;197;992 0:2342 165:047 46

JXVII Callirrhoe 23;214;986 0:2582 139:849 9

JXXXII Eurydome 23;230;858 0:3769 149:324 3

(continued)
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Table 5.2 (continued)

Satellite a (km) e i (ı) D (km)

S/2011 J2 23;329;710 0:3867 151:8 1

JXXXVIII Pasithee 23;307;318 0:3288 165:759 2

JLI S/2010 J1 23;314;335 0:320 163:2 2

JXLIX Kore 23;345;093 0:1951 137:371 2

JXLVIII Cyllene 23;396;269 0:4115 140:148 2

JXLVII Eukelade 23;483;694 0:2828 163:996 4

S/2003 J4 23;570;790 0:3003 147:175 2

JVIII Pasiphae 23;609;042 0:3743 141:803 60

JXXXIX Hegemone 23;702;511 0:4077 152:506 3

JXLIII Arche 23;717;051 0:1492 164:587 3

JXXVI Isonoe 23;800;647 0:1775 165:127 4

S/2003 J9 23;857;808 0:2761 164:980 1

S/2003 J5 23;973;926 0:3070 165:549 4

JIX Sinope 24;057;865 0:2750 153:778 38

JXXXVI Sponde 24;252;627 0:4431 154:372 2

JXXVIII Autonoe 24;264;445 0:3690 151:058 4

JXIX Megaclite 24;687;239 0:3077 150:398 5

S/2003 J2 30;290;846 0:1882 153:521 2

Notes: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

Vashkovyak and Teslenko (2008a) performed a systematic study of the orbital
evolution of all irregulars of Jupiter, known up to 2008, and inferred that the Jovian
moon J46 Carpo satisfied the Lidov-Kozai resonance conditions c1 < 3=5 and
c2 < 0 (Vashkovyak 1999, 2005), where the classical integrals

c1 D .1 � e2/ cos2 i; (5.4)

c2 D e2

�
2

5
� sin2 i sin2 !

�
(5.5)

(see Equations (3.23) and (3.24) or (5.4) and (5.5)). In the diagrams “i–!” and “i–e”
(Fig. 5.2), J46 Carpo is clearly identifiable as an !-librator. Satellites J34 Euporie,
J49 Kore, and S/2003 J3 are very close to !-libration. By means of monitoring the
long-term behaviour of the pericenter argument, Vashkovyak and Teslenko (2008a)
identified J18 Themisto as another !-librator.

Using new precise data on initial values of elements, Emelyanov and Vashkovyak
(2012) performed direct numerical integrations of non-averaged equations of motion
on timescales of several thousand years and showed that J34 Euporie and J46 Carpo
were indeed in !-libration, whereas J18 Themisto and J49 Kore circulated.

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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Fig. 5.2 The irregulars of Jupiter in the planes of initial conditions (i0, e0) and (i0, !0). The
symbols designate moons, and the curves trace constant values of c1 (in the upper panel) and
c2 (in the lower panel). Omega-librators are identified (Figure 55 from Vashkovyak and Teslenko
(2008a). With permission from Pleiades Publishing Inc)

Thus, at least four Jovian moons reside in LK-resonance or are close to it at
present. In Table 5.2, those Jovian satellites that are observed to be in !-libration,
or close to this state, are distinguished in bold font.

5.3 Saturnian System

Saturn has 38 irregulars, among which only 9 are prograde (see Table 5.3). In total,
Saturn’s irregulars have semimajor axes in the range 0:16–0:36RH, where Saturn’s
Hill radius RH D 69 mln km D 0:46 AU. The Saturnian irregulars form three
swarms of moons with similar orbital elements, namely, the Inuit, Norse, and Gallic
groups. Some of them were shown to be remnants (most likely) of larger objects,
captured by the planet and then collisionally disrupted (Gladman et al. 2001).

In the framework of the double-averaged Hill problem, Vashkovyak (2001)
identified !-libration in the long-term behaviour of S20 Paaliaq, S22 Ijiraq, S24
Kiviuq, and S29 Siarnaq. However, the phase trajectories of S20 Paaliaq and S29
Siarnaq in the “!–e” plane were too close to the LK-separatrix (i.e., c2 � 0

for them), and in a more precise model of evolution they turned out to circulate
(Vashkovyak 2003).

Nesvorný et al. (2003) performed direct numerical integrations of orbits of the
Saturnian moons, monitoring the behaviour of various resonance angles allowed
by the D’Alembert rules (defined, e.g., in Morbidelli 2002; see also Ferraz-Mello
2007; Kholshevnikov 1997, 2001). The Lidov-Kozai resonance angle (the pericenter
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Table 5.3 Irregular moons of Saturn

Satellite a (km) e i (ı) D (km)

SXXIV Kiviuq 11;294;800 0:3288 49:087 16

SXXII Ijiraq 11;355;316 0:3161 50:212 12

SIX Phoebe 12;869;700 0:156242 173:047 213

SXX Paaliaq 15;103;400 0:3631 46:151 22

SXXVII Skathi 15;672;500 0:246 149:084 8

SXXVI Albiorix 16;266;700 0:477 38:042 32

S/2007 S2 16;560;000 0:2418 176:68 6

SXXXVII Bebhionn 17;153;520 0:333 40:484 6

SXXVIII Erriapus 17;236;900 0:4724 38:109 10

SXLVII Skoll 17;473;800 0:418 155:624 6

SXXIX Siarnaq 17;776;600 0:24961 45:798 40

SLII Tarqeq 17;910;600 0:1081 49:904 7

S/2004 S13 18;056;300 0:261 167:379 6

SLI Greip 18;065;700 0:3735 172:666 6

SXLIV Hyrrokkin 18;168;300 0:3604 153:272 8

SL Jarnsaxa 18;556;900 0:1918 162:861 6

SXXI Tarvos 18;562;800 0:5305 34:679 15

SXXV Mundilfari 18;725;800 0:198 169:378 7

S/2006 S1 18;930;200 0:1303 154:232 6

S/2004 S17 19;099;200 0:226 166:881 4

SXXXVIII Bergelmir 19;104;000 0:152 157:384 6

SXXXI Narvi 19;395;200 0:320 137:292 7

SXXIII Suttungr 19;579;000 0:131 174:321 7

SXLIII Hati 19;709;300 0:291 163:131 6

S/2004 S12 19;905;900 0:396 164:042 5

SXL Farbauti 19;984;800 0:209 158:361 5

SXXX Thrymr 20;278;100 0:453 174:524 7

SXXXVI Aegir 20;482;900 0:237 167:425 6

S/2007 S3 20;518;500 0:130 177:22 5

SXXXIX Bestla 20;570;000 0:5145 147:395 7

S/2004 S7 20;576;700 0:5299 165:596 6

S/2006 S3 21;076;300 0:4710 150:817 6

SXLI Fenrir 21;930;644 0:131 162:832 4

SXLVIII Surtur 22;288;916 0:3680 166:918 6

SXLV Kari 22;321;200 0:3405 148:384 7

SXIX Ymir 22;429;673 0:3349 172:143 18

SXLVI Loge 22;984;322 0:1390 166:539 6

SXLII Fornjot 24;504;879 0:186 167:886 6

Note: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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Fig. 5.3 The irregulars of Saturn, Uranus, and Neptune in the planes of initial conditions (i0, e0)
and (i0, !0). The symbols designate moons, and the curves trace constant values of c1 (in the upper
panel) and c2 (in the lower panel). Omega-librators are identified (Figure 53 from Vashkovyak and
Teslenko (2008b). With permission from Pleiades Publishing Inc)

argument) was monitored in particular. It was found that the LKE controls the
secular orbital dynamics of two Saturnian moons, namely, S22 Ijiraq and S24
Kiviuq: the pericenter argument ! librates in both cases around 90ı with the
full amplitude of 60ı, nearly constant over 108 years, certifying that this resonant
behaviour is very likely primordial.

Vashkovyak and Teslenko (2008b) integrated numerically the orbits of all
irregulars of Saturn, known up to 2008, and confirmed that the moons S22 Ijiraq and
S24 Kiviuq satisfied the Lidov-Kozai resonance conditions c1 < 3=5 and c2 < 0

(Equations (3.23) and (3.24) or (5.4) and (5.5)). In the diagrams “i–!” and “i–e”
(Fig. 5.3), the !-librators are identified. One can see that S20 Paaliaq is close to
!-libration. In Table 5.3, those Saturnian satellites that are observed to be in !-
libration, or close to this state, are distinguished in bold font.

5.4 Uranian and Neptunian Systems

The Uranian and Neptunian systems are mutually similar, but they are not like those
described above. The major difference in comparison with the Jovian and Saturnian
systems is that the instabilities due to the LKE occur in a narrower inclination range.

Uranus has nine irregulars, all retrograde except one (U23 Margaret, see
Table 5.4). Their semimajor axes are in the range 0:06–0:29RH, where Uranus’s
Hill radius RH D 73 mln km D 0:49 AU. In contrast to the Jovian and Saturnian
systems, a large and uniform spread of the moons in the semimajor axis does not
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Table 5.4 Irregular moons of Uranus

Satellite a (km) e i (ı) D (km)

UXXII Francisco 4;276;000 0:1459 147:459 22

UXVI Caliban 7;230;000 0:1587 139:885 72

UXX Stephano 8;002;000 0:2292 141:873 32

UXXI Trinculo 8;571;000 0:2200 166:252 18

UXVII Sycorax 12;179;000 0:5224 152:456 150

UXXIII Margaret 14;345;000 0:6608 51:455 20

UXVIII Prospero 16;418;000 0:4448 146:017 50

UXIX Setebos 17;459;000 0:5914 145:883 48

UXXIV Ferdinand 20;900;000 0:3682 167:346 20

Note: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

Table 5.5 Irregular moons of Neptune

Satellite a (km) e i (ı) D (km)

NII Nereid 5;513;818 0:7507 7:090 340

NIX Halimede 16;611;000 0:2646 112:898 62

NXI Sao 22;228;000 0:1365 49:907 44

NXII Laomedeia 23;567;000 0:3969 34:049 42

NX Psamathe 48;096;000 0:3809 137:679 40

NXIII Neso 49;285;000 0:5714 131:265 60

Note: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

allow one to identify any clustering that would suggest a common origin for a group
of objects; i.e., the Uranian moons, most probably, have formed independently from
each other.

Neptune has 6 irregulars, among which 3 are prograde and 3 retrograde (see
Table 5.5), with semimajor axes 0:05–0:42RH, where Neptune’s Hill radius RH D
116 mln km D 0:78 AU. Neptune’s most famous (due to its record eccentricity e �
0:75) irregular moon N2 Nereid is prograde. Goldreich et al. (1989) suggested that
Nereid’s high eccentricity is due to perturbations of formerly captured Triton. While
migrating, Triton might have also disrupted orbits of other satellites of Neptune, if
they have ever existed.

The orbital distributions of the Uranian and Neptunian moons (except two
Neptunian moons N9 Halimede and N11 Sao) are consistent with the broad gap
in the compiled inclination distribution4 of the known irregulars in the Jovian and
Saturnian systems: no object has inclination in the range between �50ı and �140ı.
Again, a plausible explanation is that most orbits with i � 90ı are unstable due to
the LKE (Carruba et al. 2002; Nesvorný et al. 2003).

4With respect to the ecliptic plane.

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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Vashkovyak and Teslenko (2008b) integrated numerically the orbits of all
irregulars of Uranus and Neptune, known up to 2008, and inferred that U23 Margaret
and N11 Sao satisfied the Lidov-Kozai resonance conditions c1 < 3=5 and c2 < 0.
In the diagrams “i–!” and “i–e” (Fig. 5.3), the !-librators are identified. N13
Neso is apparently close to !-libration. In Tables 5.4 and 5.5, those Uranian and
Neptunian satellites that are observed to be in !-libration, or close to this state, are
distinguished in bold font.

Finally, note that if an additional perturbation dominates over the LK-term in the
Hamiltonian of the motion, then the LKE may be quenched, as discussed above in
Sect. 3.3. Such a suppression explains, e.g., the stable existence of regular satellites
of Uranus (Lidov 1963b). The regular Uranian moons move in orbits close to the
planet’s equatorial plane, which is inclined by 98ı with respect to the orbital plane.
The LKE driven by Solar perturbations would enforce the satellites to fall onto the
planet, but this does not occur because the frequencies of orbital precession (caused
by the planet’s oblateness and mutual perturbations between the moons) are large
enough to suppress the LKE.
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