Chapter 2
Averaging and Normalization in Celestial
Mechanics

Near-integrable Hamiltonian systems (i.e., the systems composed by an integrable
part and a small perturbation) are a common model currently used to study the
dynamics of celestial bodies. This is the study of such systems that Poincaré
called the “general problem of dynamics” (Poincaré 1899). Usually the so-called
perturbation approach is used to transfer the perturbation to higher orders of the
Hamiltonian expansion, by means of a canonical transformation close to identity.
Then, neglecting the remainder, one can use the truncated Hamiltonian for the
analysis of the effects characterizing the system dynamics over long time intervals.
Since in Celestial Mechanics these effects are called secular, the construction of a
suitable transformation can be interpreted as a development of a secular theory of
the dynamical phenomena under consideration.

In this book, mostly the restricted three-body problem (R3BP) is considered,
in which a massless particle moves under gravitational attraction of two bodies
(the primaries),' orbiting around their barycenter. There are several cases when the
motion of the massless particle (the tertiary) can be treated as a slightly perturbed
Keplerian motion: (1) the distance between the tertiary and one of the primaries is
always much less than the distance between the primaries; (2) the distance between
the tertiary and the primaries’ barycenter is always much greater than the distance
between the primaries; (3) the mass of the primary is much greater than the mass of
the secondary.

To write down the Hamiltonian of R3BP in the form convenient for application of
the perturbation technique, one needs to introduce the Delaunay variables. Then the
Hamiltonian becomes a sum of an integrable part, corresponding to the Keplerian

I'The three bodies are called the primary, the secondary, and the tertiary in accord (usually) with the
hierarchy of their masses. However, other ways of enumeration are also possible, e.g., according
to the hierarchy of the geometric configuration. This is usually clear from the context. The two
“primaries” comprise the primary and the secondary.
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14 2 Averaging and Normalization

motion, and a small perturbation. A consequent formal averaging of the perturbation
over the fast variables allows one to construct a first-order theory describing the
secular effect in the particle dynamics outside resonances with the primaries.

Basic concepts of the perturbation approach in Hamiltonian dynamics are
discussed in many monographs and reviews; see, in particular, Poincaré (1899,
1905), Murray and Dermott (1999), Morbidelli (2002), Arnold et al. (2006), and
Ferraz-Mello (2007). These sources are used for the material presentation in this
section.

2.1 The Hamiltonian Formalism

In the subsequent analytical treatments, we usually use the equations of motion in
the Hamiltonian formulation. Therefore, let us recall how basic problems of celestial
mechanics can be expressed in the Hamiltonian “language”.

A first-order system of 27 ordinary differential equations (ODEs)?

dx
o = F(x) 2.1)

(where x is a vector variable, F(x) an arbitrary vector function) is said to have a
Hamiltonian form, if there exists a scalar function H(x), called the Hamiltonian,
such that the system can be represented in the form

dpi _ 0H(X) dgi | IH(x) .
5 b dr =+ i (i=1,...,n, 2.2)

or, equivalently, in the vector form,
p=-VHE, q=+V,H(X), 2.3)

where x = (q,p) = (q1,---.4nP1,---,Pn); t is an independent variable (time).
The variables qi,...,q, and py,...,p, are called the canonical coordinates and
momenta of the system, respectively; n is called the number of degrees of freedom
of the system. The canonical variables q and p are called to be conjugate to each
other.

The advantage of the Hamiltonian formalism is that it allows one to perform all
analytic operations with the scalar Hamiltonian function, instead of analyzing the
whole set of equations of motion. Many equations in mechanics (including celestial
mechanics) and physics can be set in Hamiltonian form. In particular, the equations
of motion in a potential U(r) (where r = (x, y, z) is the position vector of a particle

Note that in this book all vector quantities are set in bold font.
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in a Cartesian frame), namely,

d’r
@ = —Vr U(l'), (24)
where the gradient operator V, = (%, B_ay a%)’ can be written down in form (2.2),
setting
dr Ipll?
= 5 = _’ H = — U . 2.5
q=r. p=_ ;- tU@ (2.5)

2.2 The Two-Body Problem in a Hamiltonian Form

Consider first a Hamiltonian formulation of the two-body problem. Recall that,
in this problem, two point masses my and m; move under mutual gravitational
attraction. The Newtonian equations of motion in an orthogonal frame are given by

dzll() gml dzlll Qmo
= (u; —uy) , = (wp —uy), (2.6)
2wy —up|® a2 g —w |

where ug and u; are the bodies’ positions in an inertial frame, G is the gravitational
constant; ||x|| = (2 + x3 + x%)l/2 is the length (norm) of vector x (see, e.g.,
Szebehely 1967).

If a frame is centered on the center of mass of the system, then the frame is called
barycentric. Such a frame is inertial. If a frame is centered on the primary, it is called
heliocentric, or geocentric, or selenocentric, etc., depending on the primary body.
Such a frame is non-inertial. The relative position of bodies is r = u; — ug; the
barycenter is located at s = (moug + myuy)/(mg + my).

Thus, r is the position vector of m; with respect to mg, and s is the absolute
position vector of the barycenter. From Equations (2.6) one has

d2

dr_ Gl tm), 2.7

dr el
d’s

7 =0 2.8)

Equation (2.7) describes the relative motion of bodies, and equation (2.8) means
simply that the barycenter moves inertially.
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Equations (2.7) are straightforwardly reducible to a Hamiltonian form with the
Hamiltonian

M = P> GOmo +m)
epler —
’ 2 la]

where canonical coordinates q are the Cartesian primary-centric coordinates, and

canonical momenta p = Ccll—‘tl.

The Hamiltonian equations of motion are

: 2.9)

q = +VPHKCPICD p = _VqHKeplen (2.10)

where the gradient operators

9 9 9 9 9
Vo=|—,—,— ), Vo=|—,—,— . 2.11
P (3px apy 3pz) d (3x dy 31) 1D

The Hamiltonian Hgepler is nothing but the total energy of the system, equal to the
sum of its kinetic and potential energies. It does not depend on time explicitly; such
types of Hamiltonian systems are called autonomous. It is easy to show that, for
such systems, H is conserved.

2.3 An N-Body Problem in a Hamiltonian Form

Consider the motion of a massless particle in the gravitation field of the Sun and N
planets; thus, there are N perturbers. This is a restricted many-body problem (strictly
speaking, a restricted N + 2-body problem, because the total number of bodies is
equal to N 4+ 2). If the perturbers are set to move in fixed orbits, the Newtonian
equations of the particle’s motion, written down in a primary-centric (heliocentric)
Cartesian frame, are given by

N

d’r Gmy ( ri—r r; )
— =——r+ Gm; 2.12
dr? Ir))? 2 12

3 3
=1 [ri —xf|” x|

(see, e.g., Morbidelli 2002; Murray and Dermott 1999), where r and r; (i =
1,...,N) are the primary-centric positions of the particle and N gravitating
perturbers (with masses m;), respectively. Note that the first term in the parentheses
(under the sum) corresponds to an obvious direct perturbation from planet m;, and
the second term to a less obvious indirect perturbation from the same planet. The
indirect perturbation arises due to the gravitational effect of the planet on the Sun,
implying a shift in the position of the system’s center of mass.
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The right-hand side of Equations (2.12) is representable as —V,U(r) with

r-r;
_ _ rry 2.13
v = || T o3 (nr—rn 3) @13)

pu [l

where r - r; is the scalar product of r and r;. Consequently, in accord with
Equation (2.4), the system’s Hamiltonian is written as

Ipl*  Gmo ( q-n-)
H= -G , (2.14)
2l Z; la—rill ;)
where the canonical conjugate variables are coordinates ¢ = r and momenta
_ dq
P =3

2

According to formula (2.14), H = Ho + H1, where Hy = @ — % coincides
with Hamiltonian (2.9) of the two-body problem if one sets m; to zero, and term H,
can be regarded as a perturbation to the two-body problem. With respect to H,, the
relative strength of the perturbation is of the order of ratio of the perturbers’ mass to
that of the primary.

Here the perturbers are assumed to move in fixed (unperturbed) orbits, i.e., the
r;(¢) are given functions. Thus, H = H(p, q,1). As it depends explicitly on time,
the system is non-autonomous.

2.4 The Delaunay Variables

It is often desirable in celestial mechanics to work in canonical variables that
are straightforwardly expressible through osculating® Keplerian orbital elements.
(Definitions of the Keplerian orbital elements are given in Sect. 1.1. The Keplerian
elements in the two-body problem do not form themselves a canonical set, as it is
easy to check.)

What is more, it is often desirable to work with variables that are straight-
forwardly connected to basic dynamical quantities, such as energy and angular
momentum; in order that one could expect the corresponding variables to be
approximately conserved when the motion is “perturbed”.

A set of such useful canonical variables, which is most popular now, was
introduced by Delaunay. In the two-body problem, the Delaunay variables are

3 Approximating the orbital motion of a body at a given instant in a best way (in some sense; see,
e.g., Murray and Dermott 1999).
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defined as
L = [G(my+m)a)'’?, 1 =M,
G = L(1 —e»)/?, g=w,
2.15
H = Gcosi, h=Q, ( )

where L and /, G and g, H and & form three pairs of conjugate “action-angle”
variables. In what concerns actions L, G, and H, the first of them, L, is a function
of sole a (semimajor axis) and thus can be expressed through the total energy;
G is the module of the reduced (per unit of mass) angular momentum; and H is
the reduced angular momentum vector’s vertical component. Indeed, the reduced
angular momentum of the system is r x dr/dz. Its norm G and its projection H on
the vertical axis z are given by

G = [G(my + my)a(1 —e*)]V?, H = Gcosi. (2.16)

Thus, the actions are all conserved in the two-body problem. The conjugate angles
[, g, and h are just the mean anomaly M, argument of pericenter w, and longitude of
ascending node €2, respectively. In the two-body problem, g and % are also constants
of motion, and / circulates with a constant frequency (the mean motion 7).

The angles /, g, and & are poorly defined at the inclinations or eccentricities close
to zero; the modified Delaunay variables, given by

A =L = [G(my + my)a]'/?, A=l4+g+h=M+ w,
P=L-G=L[1-(1-e)"*,p=-g—h=-w,

) 2.17
Q =G—H =2Gsin’ £, g =—h=-Q, 217

evade this disadvantage (e.g., Morbidelli 2002).
When expressed in the Delaunay variables (2.15), the Hamiltonian of the two-
body problem is given by

G*(mo + m)? __Glmo +m)

2.18
212 2a ( )

HKepler = -

As immediately follows from the corresponding Hamiltonian equations of motion,
the variables g, i, L, G, and H are conserved. In what concerns /, it varies according
to the equation

d G*(moy + my)?
dr oL L3 ‘

d 0H Kepler
— 4 IHepter _ (2.19)
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2.5 Near-Integrable Systems

If a Hamiltonian function depends merely on canonical momenta, i.e.,

H(p,q) = H(p), (2.20)

then the system is integrable and the trajectories are given by simple formulas,
namely,

p = const, q = wo! + =), (2.21)

where wg = VpH.

If a Hamiltonian system is near-integrable, i.e., close (in the sense of a small
parameter) to the integrable one, given by Equation (2.20), this means (by definition)
that it can be represented in the form

H(p.q) = Ho(p) + €Hi(p.q) , (2.22)

where € is the small unitless parameter, € < 1.

Assume also that VyHo ~ VpH; by the order of magnitude. Under such
conditions, one can treat H, as a so-called integrable approximation, and H,; as a
perturbation (Arnold et al. 2002, 2006; Morbidelli 2002). Therefore, system (2.22)
is called near-integrable. Of course, any system that is reducible by a canonical
transformation to form (2.22) is also near-integrable.

The solution of a system with Hamiltonian H, approximates the solution of the
perturbed system with accuracy ~ €%, where « < 1 is some constant whose value
depends on the system properties and initial conditions (see Arnold et al. 2002,
2006). This means that the divergence of the approximate solution from the exact
one is of the order € on the unit interval of time. Conversely, on the time interval
equal to €%, the divergence is of order of unity. Therefore, on a long-enough
timescale the integrable approximation, given by H,, fails. Then, to describe the
motion correctly, one must take into account the perturbation. Perturbation theories
and corresponding perturbative approaches allow one to do this analytically, or to
diminish the amount of the corresponding numerical work substantially.

The Hamiltonians of the restricted and planetary problems both are reducible to
form (2.22), where € is of the order of the perturbers’ mass. In case of the Solar
system, € ~ 1073, because the ratio of masses of Jupiter and Sun is ~1/1047.
Similar small perturbations are characteristic for many satellite and exoplanetary
systems. That is why the perturbative approach is often so useful and fruitful,
allowing one to provide an analytical description to many complicated dynamical
phenomena.

One of the basic tasks of the perturbative approaches consists in elimination of
dependences of a Hamiltonian on fast variables, by means of a canonical transfor-
mation. As soon as they are eliminated, they become cyclic (by definition), and the
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conjugate transformed momenta become constant, to the order of transformation.
In fact, if all momenta of the system are constant, the solution of the transformed
system is given by formulas (2.21), and the solution of the original system can be
found by substituting the inverse transformation of variables into these formulas.
In celestial mechanics, the role of the fast variables is usually played by the mean
longitudes or anomalies. The procedure of elimination of a fast variable is called
averaging of the system in this variable.

The notion of averaging is related to a (superior) notion of normalization. The
normalization procedure consists in reducing the Hamiltonian to some “simple”
form; e.g., to the Birkhoff normal form, in which all dependences on the canonical
angles are eliminated in all orders of the Hamiltonian expansion in powers of a small
parameter.

To keep the system Hamiltonian, the normalizing transformation must be
canonical. Usually it is required to find: the normal form of the Hamiltonian up
to a specified order; the generating function of the normalizing transformation;
the formulae of direct and inverse transformations of the canonical variables. In
all applications to the three-body problem, the procedure implies cumbersome
analytical calculations. That is why the normalization is often accomplished by
means of computer algebra.

2.6 The von Zeipel Method

Among the methods used for averaging and normalization in celestial mechanics,
the von Zeipel method (von Zeipel 1916)* and the Hori-Deprit method (Deprit
1969; Hori 1966) are most popular. Though less convenient algorithmically, the
first of them is an older one and it is analytically straightforward, that is why we
describe it first. What is more, it was just the von Zeipel method that was mostly
used by researchers for the averaging purposes in developments of the Lidov-Kozai
theory.

In fact, the “von Zeipel method” was introduced by Poincaré (1899), who
called it the “Lindstedt method”. Von Zeipel used it extensively in studies in
celestial mechanics, that is why the method is usually called now after his name.
The method is described in a number of monographs, in particular, in Giacaglia
(1972), Hagihara (1972), Kholshevnikov (1985), Zhuravlev and Klimov (1988), and
Marchal (1990). Here we give a brief synopsis, based mostly on reviews in Giacaglia
(1972), Zhuravlev and Klimov (1988), and Morbidelli (2002). The designations are
generally such as adopted in Morbidelli (2002).

As a first step, any perturbative treatment of a near-integrable Hamiltonian
system aims to find a close-to-identity canonical transformation

p=p' +efi(p'.q"), q=4q'+eg(p'.q"), (2.23)

*The method was originally introduced by Poincaré (1899).
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that allows one to transform Hamiltonian (2.22) to
K@'.q") = Ho(p") + €Ki (p") + Ka(p' . ¢') . (2.24)

where K; is nothing but the term 7{, averaged over the angles q, and X', is a new
function of the order not greater than #,. The Hamiltonian #y + €/C; provides an
integrable approximation (of order €?) of the original dynamical system.

To achieve a higher level of approximation of the motion, one can iterate, looking
at each consecutive step for the canonical transformation

Pl=p L), T =q +eg 0 q), (2.25)
such that the Hamiltonian obtains the Birkhoff normal form
K(p") = Ho(@") + L1 (p") + -+ €K, (p") + O™ ) . (2.26)

Thus, at any consecutive step r of the procedure (at any consecutive order r in €),
the system’s approximation is integrable, and the solution is given by

p" =const, q =@'1+q o, (2.27)
where
" = Vy[Ho(p") + eKi(p") + -+ + 'K, (p)] . (2.28)

Constructing the inverse composition of all iterated transformations of the variables,
one obtains the solution in the original variables p and q.

Let us see how these perturbation techniques are realized in the von Zeipel
algorithm. Consider Hamiltonian system (2.3) with Hamiltonian (2.22), i.e., a near-
integrable original system. Our aim is to transform its Hamiltonian to normal
form (2.26). To distinguish the transformed canonical variables and Hamiltonian
from the original ones, we designate them by P, Q, and X:

KP) = Ko(P) + €K1 (P) + -+ + €K, (P) + O™ . (2.29)
To the second order in €, the sought Hamiltonian is
K(P) = Ko(P) + €K1 (P) + €22 (P) . (2.30)

In the von Zeipel algorithm, the normalizing canonical transformation is deter-
mined by a generating function S(q, P, €):

p=VS(q.Pe), Q=VpS(q,P,e€), (2.31)
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which is sought in the form of a power series in €:
S(q.P.€) =q-P+eSi(q.P) + €25:(q.P) + ... . (2.32)
As needed, the generated transformation is close to identity; at € = 0 it is strictly

identical: p =P, q = Q.
Evidently, the generating function must satisfy the equation

H(q, V¢S, €) = K(P) = const . (2.33)

Expanding #, S, and K in power series in €, one has at each consequent order (0,
2,...)ofe:

Ho(P) = Ko (P) , (2.34)

VoHo - VgSi + Hi(q. V4So) = K1 (P) (2.35)

Z 9*Ho 951 881

VoHo - VaSy + VoHy - VaS) +
pHo V& 4 VpFty - Voo1 + dpidp; dg; 0

+ Ha(q, V¢So) = Ka2(P) ,

(2.36)

)

where | < i < n,1 < j < n (and n is the number of degrees of freedom).
Substituting VqSo = P and VyHy = K(P), we arrive at a sequence of linear
equations in partial derivatives. Starting with order one in €, this sequence is
given by

K(P)-VyS1 + Hi(q.P) = Ki(P), (2.37)
K®P) - V¢S + F2(q, P, VS)) = KL (P) (2.38)
K(P) - VyS; + F3(q, P, VyS1, V¢S) = K3(P) (2.39)

Taking into account that the original Hamiltonian is periodic in angles q, it is
straightforward to choose KC;(P) equal to H,(q,P) averaged over q: Ki(P) =
‘H(P). Then, one has an equation for S;:

K(P) - V¢Si(q.P) = H,(P) — Hi(q.P) . (2.40)

This equation can be solved with respect to S; by expanding H(q, P) in the Fourier
series in q (recall that #;(q, P) is periodic in q), and seeking for S; also in the
form of a Fourier series. (Such a procedure is described in the next section for an
analogous situation.)
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Substituting the determined S; and /C,(P) = F,(P) in Equation (2.38), one
arrives at an equation for S>(q, P):

@(P) - VSa(q,P) = Fo(P) — Fo(q, P, VyS) (2.41)

This equation is analogous to (2.40) and is solved in the same manner.

At each higher consecutive order in €, the step algorithm is completely analo-
gous. This is how the von Zeipel algorithm can be summarized.

Note that since the original system is generally non-integrable, the obtained
regular solution is strictly formal, i.e., the series representing the solution are not
obliged to converge. To obtain a solution closest to the true one, the iterations should
be terminated at some optimum order r, depending on the system itself and on the
value of .

2.7 The Hori-Deprit Method

At present, the most popular perturbative approach is one based on methods
proposed by Hori (1966) and Deprit (1969). They employ the Lie perturbation
techniques. This approach provides a number of advantages; in particular, the
normalizing transformation is canonical by construction.

In the von Zeipel method, the generating function depends on “old” coordinate
and “new” momentum variables. The absence of mixture of similar kind represents
one of the principal advantages of the Hori—Deprit method over the von Zeipel
method. What is more, the crucial advantage of the Hori—Deprit method consists in
its practical recursiveness: it is based on recurrent explicit formulas, which reduce
the normalization in every successive order to a standard mathematical procedure.

Let q and p be conjugate canonical coordinates and momenta, and f(p, q) and
g(p, q) are some functions of them; then the Poisson bracket of f and g is defined as

"0 a af 0
(6= Vaf - Vog = Vo Vg = 3 g6~ K e42)
i=1 1 1 1 1

where n is the number of degrees of freedom.
For an arbitrary function f = f(p,q), where p and q are the solutions of a
Hamiltonian system with a Hamiltonian S, one has

d
S o Vef Vol b= 118} (243)
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Let us expand f in a power series of ¢ in the neighbourhood of ¢ = 0:

o 1 dif
FO =10+ k; A, (2.44)
where f(0) = f(p(0), q(0)) and % = ‘;—‘;{(p(O), q(0)). Noting that
da d’f _|df _
Tt GE=lTsl—wss 245
and defining the Lie operators D* with generator S by the recurrent relation
D'f = D(D*"'f), where Df = D'f = {f,S}, (2.46)
one can express f(7) as
(1 = o+ii-1)k| (2.47)
FO =1 O+ 35 Dl - .

Series (2.47) is called the Lie series of a function f along the flow S. Expan-
sion (2.47) can be interpreted as an operator applied to f. As such, it is henceforth
designated L5 f.

Recall that a transformation of variables is called canonical, if it preserves the
Hamiltonian form of equations. It is straightforward to verify (see Morbidelli 2002)
that a transformation (p, q) — (P, Q) of the form

€ €
p=P+/Pdt=LgP, q=Q+/th=LgQ, (2.48)
0 0

is canonical, if there exists a function S(P,Q,¢€) such that P and Q satisfy
Hamiltonian equations

P=-385/0Q., Q=203S/0P. (2.49)

Function S(P, Q, €) (where € is a parameter) is called the generating Hamiltonian
or the generating function.

Equations (2.48) represent an outcome of a canonical transformation (defined by
the Hamiltonian flow with Hamiltonian S), taken at a “time moment” €. The Lie
perturbation techniques are based on the transform representation (2.48).

Consider the normalizing transformation in the first order of €. Thus, we define
p' = P, q' = Q. As in case of any Lie series of a function, one has for the
Hamiltonian:

K=IL5H. (2.50)
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We seek for a generating function S such that the Hamiltonian (2.22) is
transformed to the Birkhoff normal form in the first order of ¢, i.e., the dependence
on angles is eliminated in the first order.

According to (2.47), to the second order in €, one has

2
K = Ho + eH1 + €{Ho, S} + 2{H,, S) + %{{”HO,S},S} +0(E). (5D

It is implied that Hy, I, and S are all functions of pl. q'. Picking out the terms of
the first order in €, we equate them to a function of momenta only:

Hy + {Ho, S} =H, . (2.52)

The generating function S(p', q') can be found from this equation, the 7, function
being subject to the mentioned restriction (the dependence merely on p'). This
equation, called the homologic equation, is nothing but a linear equation in partial
derivatives, and it is easily solvable. It is sufficient to find any particular solution of
this equation.

As described in Morbidelli (2002), the solution can be obtained in the following
way. Since  is periodic in angles q', one may expand A, in the Fourier series:

Hi(p'.q") =) cu(p')exp(ik-q'). (2.53)
keZ"
where 1 = v —1.
The solution of Equation (2.52) is sought also as the Fourier series
Sp'.q") =) du(p")exp(ik-q'); (2.54)
keZn
immediately one has
{Ho. 8} = =1 ) d(@Hk-wo(p) exp (k-q') , (2.55)
kezZ"
where wg = V,1Ho; and the coefficients of the generating function (2.54) are
determined as
cx(ph)

dy=0, de(p')=— (2.56)

k- wo(p')

at all non-zero k. Besides,

Hi(p") = co(p") . (2.57)
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In the higher orders in €, the procedure can be accomplished recursively; at each
order, an analogous homologic equation is defined and solved (see Giacaglia 1972;
Zhuravlev and Klimov 1988). The described procedure is called non-resonant, as it
is implied that, in the course of normalization, one does not encounter zero resonant
combinations in the denominators in Equations (2.56). For algorithms tackling the
resonant situations, see the aforementioned monographs.

By means of the described algorithm the components of the generating function
and the normalized Hamiltonian can be successively found, up to the required
order of normalization. As a result we obtain the normalized Hamiltonian and the
generating function of the normalizing transformation.

The canonical variables which the obtained generating function depends upon are
not mixed. This circumstance allows one to calculate the normalizing transformation
of the canonical variables as the Lie transformation with the generator equal to the
newly found generating function S. This transformation is given by the formulas

. €k ok
p:P+ZFDkP|e=O : q:Q+ZgD"QL=O : (2.58)
k=1 k=1""

Variables Q and P represent the new canonical coordinates and momenta. The
inverse transformation is the Lie transformation with the generator (—S):

- (—e) & - (—e)f k

P:p+z kl Dp‘e=0 ’ Q:q+z kl Dq|e=0 : (259)
k=1 k=1

When calculating the transformations of the canonical variables in practice, it is

sufficient to leave the terms up to the order M — 1 inclusive in the right-hand parts of

the formulas, where M is the final order of normalization. Such length of expansions

is sufficient to transform the Hamiltonian to the normal form of the given order, or,

in the case of inverse transformation, to the initial form.
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