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Preface

Up to now, it nearly makes me laugh and cry of rapture when I
recall this result.

Vladimir Beletsky, Six Dozens (Memoirs)

The Lidov-Kozai effect (LKE), as any other basic astrophysical phenomena, has
several “faces”, or manifestations. The most familiar face, granted in Wikipedia,
is the phenomenon of coupled periodic variations (which can be very large) of the
inclination and eccentricity of an orbiting body, which (the variations) may take
place in the presence of an inclined-enough perturber.

A face, less familiar to the general audience, but physically the generic one, is the
so-called phenomenon of !-libration; i.e., libration of the argument of pericenter
of an orbiting body, when an inclined-enough perturber is present. In fact, the !-
libration is at the core of the LKE: it is just a large-amplitude !-libration that entails
the mentioned coupled variations in inclination and eccentricity.

Another concept, frequently present in the modern astrophysical literature, is the
LKE as a valuable tool to explain various merger events. Indeed, if it is “necessary
to merge” any gravitating binary (say a binary consisting of two ordinary stars, or
black holes, or asteroids, or a star and a “hot Jupiter,” or a planet and an artificial
satellite, etc.) into a single object, the LKE is commonly the first one in the queue
of possible explaining mechanisms that come to mind of an astrophysicist. This
is just because it is rapid and no dissipation is needed—only the presence of a
perturber. This third face revealed itself already in the pioneering works of Lidov
(who outlined a condition for a merger of a satellite with the Earth, in particular the
Moon with the Earth), and since then it has been becoming only more and more
attractive for researchers.

To date, the LKE, in all of these faces, has been verified to be important in the
dynamics of a lot of kinds of astrophysical objects. Historically the applications
started with satellites and asteroids; now they comprise comets, trans-Neptunian
objects, exoplanets, multiple stars, and many others. Perhaps, of most interest for
the astronomical and astrophysical community at present is its relevance for many
exoplanetary systems.

Recent years witnessed major advancements in the theory of LKE. In particular,
another face of the LKE emerged: the so-called flip (orbit turnover) phenomenon.

It would be no exaggeration to say that at present the Lidov-Kozai effect becomes
one of the most studied astrophysical effects; this is manifested, in particular, in a
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vi Preface

sharp rise of citations of the pioneer articles of Lidov and Kozai during recent years
(see Fig. 1).

Fig. 1 The per-year number of citations of the pioneer articles of Lidov and Kozai, as a function
of time, up to year 2015 inclusive (The citation data of the NASA ADS database have been used
to construct the diagram)

The topics, covered in this book, include: historical background for appearance
of works by Lidov and Kozai in the beginning of the 1960s (Luna-3, etc.);
modern secular theories and integrable approximations in celestial mechanics; an
overview of classical works on the Lidov-Kozai effect; modern advancements
and generalizations in the Lidov-Kozai theory, in particular in the framework of
noncircular and nonrestricted problems; the Lidov-Kozai mechanism explaining the
observed orbital configurations of irregular satellites, explaining comets-sungrazers,
and explaining the observed dynamical patterns in the asteroid and Kuiper belts; the
role of the Lidov-Kozai mechanism (in particular the Lidov-Kozai migration) in
sculpting exoplanetary systems; applications in stellar dynamics, such as scenarios
for formation of close binary stars; and explanations for highly eccentric stellar
orbits in the Galactic center.

The initial aim of this book was to provide the most full coverage of the effect’s
theory and applications. However, due to a large amount of the published and newly
appearing advancements, it is practically impossible to fulfill this aim in detail.
Therefore, apart from the provided bibliography, for further reading on the subject,
I would recommend the material on the Lidov-Kozai effect in asteroidal dynamics,
presented in Sects. 8.2 and 11.2.2 of the book Modern Celestial Mechanics by
A. Morbidelli (2002), and the material on the LKE in exoplanetary dynamics
presented in Sects. 7 and 8 of the review “The Long-Term Dynamical Evolution
of Planetary Systems” by M. B. Davies et al. (2014).



Preface vii

The presented book is self-contained: only basic knowledge in mathematics and
mechanics is required for understanding the material, if read from the beginning. I
hope that the book can be helpful for a researcher working in astrophysics, celestial
mechanics, stellar dynamics, theoretical mechanics, and space mission design, at
any level (researcher, graduate student, undergraduate student), depending on the
interests of the reader.

I am most grateful to Vladislav Sidorenko, Konstantin Kholshevnikov, Mikhail
Vashkovyak, and Alessandro Morbidelli for valuable remarks and comments. I
am especially thankful to Vladislav Sidorenko for providing rare bibliographic
materials on the subject.

Saint Petersburg, Russia Ivan I. Shevchenko
2016
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Chapter 1
Dynamical Essence and Historical Background

Shortly after the first space launches Mikhail Lidov and Yoshihide Kozai inde-
pendently discovered that under certain conditions both the eccentricity and the
inclination of a natural or artificial celestial body can undergo large coupled periodic
changes (Kozai 1962; Lidov 1961, 1962, 1963a). This result immediately attracted
the attention of researchers in Celestial Mechanics due to a dramatic contrast
with the previous studies of secular effects. The latter were mainly based on the
assumption that the motion is near-circular and near-planar. Being reasonable for
the planets, this assumption was too restrictive for the analytical investigation of the
secular effects in the dynamics of asteroids and artificial satellites.

One of the most paradoxical phenomena arising due to the Lidov-Kozai effect is
the falling of artificial satellites onto the Earth due to the increase of eccentricities
of their orbits under the perturbations from the Moon and Sun (the semimajor axis
being constant).

The first instance of such a falling was demonstrated by the Soviet space probe
Luna-3. This probe was designed for taking photo images of the back side of the
Moon. It was launched initially in an orbit with the perigee outside (of course)
the upper boundary of the Earth’s atmosphere. After the mission was successfully
accomplished, and the probe made several orbits around the Earth, the secular rise
in the eccentricity resulted in a decrease of the perigee (because the semimajor axis
is conserved). So, after eleven orbital revolutions Luna-3 entered the atmosphere of
the Earth.

Currently the Lidov-Kozai effect can be characterized as ubiquitous to be met
throughout modern Celestial Mechanics and Astrophysics. It manifests itself not
only in the dynamics of satellites and asteroids, as considered originally in the works
of Lidov and Kozai, but also in the motion of classes of comets, Kuiper belt objects,
components of multiple stars, extrasolar planets and many other astrophysical
objects.

© Springer International Publishing Switzerland 2017
I. I. Shevchenko, The Lidov-Kozai Effect – Applications in Exoplanet Research
and Dynamical Astronomy, Astrophysics and Space Science Library 441,
DOI 10.1007/978-3-319-43522-0_1

1



2 1 Essence and Background

Let us consider the LKE’s basic dynamical manifestations, i.e., its observable
essence. To be able to do this, one should first recall the notion of the Keplerian
orbital elements.

1.1 The Keplerian Orbital Elements

The Keplerian orbital elements are defined and discussed in detail in numerous
books; in particular, see Danby (1962), Murray and Dermott (1999), and Morbidelli
(2002). Here we provide a brief synopsis.

In the two-body problem, the Keplerian orbital elements are used to characterize
the form and orientation of the secondary’s orbit around the primary, and the
position of the secondary in its orbit, if the primary is chosen as the origin of the
coordinate frame. As well, in the barycentric coordinate frame,1 they are used to
characterize the form and orientation of both orbits around the system’s center of
mass, and the position of the bodies in their orbits.

We consider merely the case of elliptic orbits. As illustrated in Fig. 1.1, the size
and form of an ellipse is completely determined by a set of two parameters: the
semimajor axis a and the eccentricity e; or by any pair of their algebraic derivatives,
say semimajor axis a and semiminor axis b, or pericentric distance q D a.1 � e/
and apocentric distance Q D a.1 C e/, etc.

Fig. 1.1 Keplerian elements
a, e and E of the planar
elliptic orbital motion
(Figure 1.1 from Morbidelli
(2002). With permission from
Academic Books)

1The frame referred to the center of mass of the system.
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The orbital point closest to the primary is called the pericenter; and the farthest
one the apocenter. The pericentric distance q (the distance between the pericenter
and the primary) and the apocentric distance Q (the distance between the apocenter
and the primary) are given by

q D a.1 � e/; Q D a.1 C e/: (1.1)

If the primary is the Sun, then the pericenter and apocenter are called perihelion
and aphelion; if the primary is the Earth, they are called perigee and apogee; if the
primary is a star, they are called periastron and apoastron. Generally, they are also
called periapse and apoapse, and the line connecting them the apsidal line.

To locate the secondary in the orbit, let us first introduce a Cartesian frame (x; y);
see Fig. 1.1. Axis x is directed to the pericenter, and axis y completes the orthogonal
frame; the frame origin is at the ellipse’s focus where the primary resides. A polar
frame (r; f ) is also naturally defined: the angle f , called the true anomaly, determines
the angular position of the secondary in the orbit, and r its distance from the primary.

The Cartesian coordinates of the secondary are given by the formulas

x D a.cosE � e/ ; y D a.1 � e2/1=2 sinE; (1.2)

and the polar coordinates by the formulas

r D a.1 � e cosE/ ; cos f D cosE � e

1 � e cosE
; sin f D .1 � e2/1=2 sinE

1 � e cosE
; (1.3)

where the eccentric anomaly E is the angle between the directions (as seen from
the ellipse’s center) to the pericenter and to the point of vertical projection of the
body’s position onto the circle tangent to the ellipse at the pericenter and apocenter,
as shown in Fig. 1.1.

The eccentric anomaly E is given implicitly by the so-called Kepler equation:

E � e sinE D n.t � t0/; (1.4)

where n is the mean motion (the mean orbital frequency):

n D .G.m0 C m1//
1=2a�3=2I (1.5)

G is the gravitational constant, m0 and m1 are the masses of the primary and the
secondary; t is time, t0 is the epoch (time instant) of the pericenter transit. The
Kepler equation can be solved with respect to E numerically (e.g., by iterations).

The orbital period is given by

T D 2�

n
; (1.6)
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Fig. 1.2 Keplerian elements
i, � and ! of the spatial
orbital motion (Figure 1.2
from Morbidelli 2002. With
permission from Academic
Books)

and the angle called mean anomaly is defined by the formula

M D n.t � t0/: (1.7)

Apart from f , E, and M, three more angles are needed to define the ellipse’s
orientation in 3D space. Let .x; y; z/ be a Cartesian frame with the origin at the
ellipse’s focus where the primary resides, as shown in Fig. 1.2. The inclination i is
defined as the angle between the orbital plane and the plane .x; y/. This plane is
arbitrary, but, in applications, it is usually chosen to coincide with some physically
or dynamically distinguished plane, say, the plane of the Earth’s equator, or, the
ecliptic plane.

An inclined orbit (i ¤ 0) intersects the .x; y/ plane at two points, called the nodes:
the ascending and descending ones, at which the body moves from the negative
to positive values of z, and vice versa, respectively. The angular position of the
ascending node with respect to axis x is designated by �; this angle is called the
longitude of ascending node.2

The argument of pericenter ! is the angular position of the pericenter with
respect to the “primary—ascending node” direction. Thus, it is defined with respect
to a movable direction in space. Instead of !, it is often convenient to use a dogleg

2Note that all longitudes are defined with respect to immovable coordinate axes.
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angle3 $ , called the longitude of pericenter and defined by the formula

$ D � C !; (1.8)

though � and ! belong to different, generally intersecting planes. Note that symbol
$ is not letter ! “with tilde”, as one may wrongly suppose, but it is a rare version
of letter � , called curly � .

If retrograde orbits are also considered, the longitude of pericenter is defined by
the generalized formula

$ D � C sign.cos i/ !: (1.9)

Another important angle it the mean longitude, defined as

� D $ C M: (1.10)

Often it is designated also as l.

1.2 The “omega-libration”

A manifestation of the LKE most familiar to the research community consists
in coupled periodic variations (which can be very large) of the inclination and
eccentricity of an orbiting body, which (the variations) may take place in the
presence of an inclined-enough perturber.

A manifestation of the LKE, less familiar to the general audience, but physically
the generic one, is the so-called phenomenon of !-libration; i.e., libration of the
argument of pericenter of an orbiting body, when an inclined-enough perturber
is present. In fact, the !-libration is at the core of the LKE: it is just a large-
amplitude !-libration that entails the mentioned coupled variations in inclination
and eccentricity. This will be proved later on, when we shall analyze averaged
equations of motion.

As follows from Equation (1.8), ! D $ � �. Therefore, one may interpret the
libration of ! as a 1:1 resonance between the variations of $ and �. Note that
angles $ and � are dynamically much more meaningful and “physical” (though $

is a dogleg angle) than !, because they are measured with respect to an immovable
axis.

In such a way, we are brought to the notion of the LK-resonance. Of course,
not any libration can be attributed to a resonant phenomenon, because the libra-
tion/circulation state of an angle may depend on the choice of a coordinate system

3This strange terminology arises from the fact that $ is a sum of two angles in two planes generally
intersecting with each other, see Fig. 1.2.
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(in particular, its origin). Further on in this book we shall discuss the problem
whether the LK-resonance is indeed a resonance, as understood generally in
nonlinear dynamics, and what is its place in the general typology of resonances.

1.3 The Breakthrough Premises

Until the beginning of the Space era, the studies of secular effects in celestial
mechanics were mostly based on the assumption that the motion is near-circular and
near-planar. The theory of secular motions of the Solar system planets, developed
by Lagrange and Laplace, was based just on these assumptions. This was dictated
merely by the necessities of theoretical astronomy of that time.

On the other hand, prominent astronomical objects in orbits highly-inclined
with respect to the ecliptic plane were well-known already two centuries ago. For
example, Pallas, the second discovered (in 1802) asteroid, has inclination i � 35ı
(for more details on its orbit see Table 7.1). A number of prominent comets are
highly-inclined (see Table 6.1). However, the astronomers were reluctant to build
theories of the long-term motion of such objects, and this is comprehensible, taking
in account their unimportance for any applications at that time. There was a lot of
more interesting problems looking much more actual. At that time, in the field of
studies of minor bodies, only short-term ephemerides were of interest. (An example
from our times: who cares at present where is Luna-1, launched in a heliocentric
orbit in 1959, and called a man-made “tenth” planet? Of course, this remark does
not mean that a study of the long-term motion of Luna-1 may lead to a theoretical
breakthrough.)

The long-term stability of the planetary motion in the Solar system looked to be a
much more actual problem. And the corresponding theory, the theory of the secular
motion of planets, was constructed by Lagrange and Laplace already at the end of
the eighteenth century. According to this theory, appropriate for the low-eccentric
and low-inclined bodies, such as the Solar system planets, the secular frequencies of
the longitudes $ and � of the perturbed bodies (e.g., Mercury, Venus, Earth, Mars,
Saturn, Uranus, and Neptune, perturbed mostly by Jupiter) in a frame associated
with the Laplace invariable plane are approximately equal in modulus but opposite
in sign (see Table 7.1 in Morbidelli 2002); thus, the Lagrange–Laplace theory, valid
in a limited domain of initial conditions, provided no ground to suspect the existence
of such a phenomenon as !-libration. This explains why the discovery by Lidov and
Kozai was so unexpected.

Being reasonable for planets, the requirement for the motion to be close-to-
circular and close-to-planar is too restrictive to allow for a complete analytical
investigation of the secular effects in the dynamics of artificial satellites, as well
as in the dynamics of asteroids and comets.

Only in the middle of the twentieth century a few studies concerning abstract
problems on the existence of integrals in the non-planar problem appeared (see
Moiseev 1945a,b, and references therein).
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Fig. 1.3 Mikhail L’vovich
Lidov (1926–1993) (Photo
from Lidov 2010)

Fig. 1.4 Yoshihide Kozai
(1928–), lecturing at the
conference “Asteroids,
Comets, Meteors 2012”
(Photo from the website of
ACM 2012)

There is no doubt that the Lidov-Kozai theory emerged as a theoretical response
to the necessities of the Space era. Lidov’s classical work was published in 1961,
four years after Sputnik, and it is a sublimation of a large work dedicated to the
theory of spaceflight. Moreover, there is no doubt that the inspiration of Kozai’s
(1962) work, though devoted to asteroids, stems from the same origin. Indeed,
Kozai refers in his paper mostly to works on satellite dynamics, and, in particular, to
Lidov’s report at the IUTAM Symposium (Paris, May 1962), where Lidov’s theory
was presented.4

The theoretical discoveries by Mikhail Lidov and Yoshihide Kozai (see portraits
in Figs. 1.3 and 1.4) immediately attracted the attention of researchers in Celestial
Mechanics, first of all due to the dramatic contrast with the previous studies of
secular effects.

To provide a most vivid and graphical illustration for the new theory, Lidov
(1963b) calculated the orbital evolution of a “polar Moon”. He showed that in some

4Lidov himself did not attend the Symposium; his report was delivered by Albert Molchanov. The
report was published in 1963 (Lidov 1963c).
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Fig. 1.5 The orbital
evolution of a “polar Moon”.
The time dependence of the
semimajor axis a, perigee
distance r� (in thousands of
kilometres), and argument of
perigee ! (in radians) is
shown. The time N is
measured in orbital periods of
the “polar Moon” (Figure 7
from Lidov 1963b)

Fig. 1.6 A cartoon by
I.V.Novozhilov “Lidov drops
the Moon on the Earth” (A
figure from Beletsky 1972)

�50 orbital revolutions such a Moon would fall on the Earth (see Fig. 1.5). Thus,
an explanation was given why the orbit of the real Moon is far from being highly
inclined. Beletsky (1972) recollects that the result was first met by colleagues with a
distrust (as physically unexpected for a non-dissipative system), but then applauded;
see the cartoon “Lidov drops the Moon on the Earth” in Fig. 1.6.



1.4 Luna-3 9

1.4 From Luna-3 to Modern Space Missions

The first instance of a “man-made LKE” was demonstrated by the Soviet space
probe Luna-3. This probe was designed to obtain photo images of the back side of
the Moon. It was launched initially in an orbit with the perigee outside (of course)
the upper boundary of the Earth’s atmosphere, and the apogee enclosing the Moon;
see the orbital scheme in Fig. 1.7.

The probe transferred first photos of the dark side of the Moon, and the achieve-
ment was applauded all over the world. This was a contribution to Astrophysics.
In what concerns Celestial Mechanics, Luna-3 was the first ever space mission
exploiting a gravity assist. The assist was necessary on the following reason.
At a first glance, it may seem that the best scheme for the flight would be an
elongated ellipse, encompassing (at the apocenter) the Moon. However, a probe
in such an orbit would return to the perigee following a route over the southern
hemisphere of the Earth. (Note that the probe’s trajectory was strongly inclined to

Fig. 1.7 A Soviet postal
stamp dedicated to the Luna-3
mission in 1959. The mission
orbital scheme is presented
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the Moon’s orbital plane; the scheme in Fig. 1.7 does not catch this fact.) In such
a route, it would be impossible to transmit messages with the processed images to
radio receivers on the territory of the Soviet Union (in the northern hemisphere).
Therefore, the initial branch of the actual orbit was designed to “dive” under the
Moon, so that the Moon’s gravity would assist to direct the returning probe over
the Earth’s northern hemisphere, as needed (Raushenbakh and Ovchinnikov 1997).
This was the first gravitational manoeuvre in the history of spaceflights.

Yet another significant achievement of the Luna-3 mission, from the viewpoint
of astrodynamics, was a realization of the probe’s active orientation. Without fixing
the orientation, it would be impossible to obtain the photos. This accomplishment
was also the first one in the world’s history.

Most of the Moon images were successfully transmitted to the Earth, when the
probe was on its way back. After the mission was over, the probe continued to move
in a highly-eccentric highly-inclined orbit. The secular rise of the eccentricity (in
“exchange” with the inclination, the semimajor axis being conserved), due to the
LKE, inevitably decreased the pericentric distance. After eleven orbital revolutions,
taking in sum about a half-year, Luna-3 entered the atmosphere of the Earth in April,
1960. This fact was noted by Lidov in the beginning of his pioneer paper (Lidov
1961). Thus the fate of Luna-3 inspired one of the most fruitful studies in celestial
mechanics of the twentieth century.

An interested reader, using formulas presented further in this book, may try to
calculate a theoretical timescale for the secular decrease of the pericentric distance,
from the initial one to that corresponding to the downfall. The initial values of the
pericentric distance and the eccentricity of the orbit of Luna-3 were q � 40;600 km
and e � 0:84, whereas the orbital plane of the probe was almost orthogonal to that
of the Moon. The orbital period was �15 d.

One can conclude that, apart from performing a gravitational manoeuvre,
an accomplishment of active orientation, and—most notably for mass media—
obtaining the Moon’s dark side photos (all this was done for the first time in the
world’s history), the fourth great feat of Luna-3 mission in 1959 was a “man-made”
demonstration of the LKE. However, this is not duely acknowledged up to now.

It is pertinent to recall that Mikhail Lidov was a laureate of the Lenin prize, one
of the highest state rewards in the Soviet Union, granted for major achievements in
science and culture. (The Lenin prize medal, side by side with decorations of the
Second world war veteran, can be seen in the portrait in Fig. 1.3.) The prize was
awarded for the orbital design of the first space missions, Luna-3 among them.

In our times, taking into account the LKE while planning and designing space
missions is no less important than it was in 1959. A spectacular example is
provided by Fig. 1.8, where the long-term evolution of the perigee distances of
Prognoz, Interbol, and Spektr-R satellites is plotted. The Figure provides a clear-
cut illustration how it is vital for the working schedule of a satellite mission to fit
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Fig. 1.8 The long-term evolution of the perigee distance (in units of the Earth radius) for Prognoz,
Interbol, and Spektr-R satellites; the time is in years (Figure 15 from Prokhorenko 2015. With
permission from the Institute of Space Research of the Russian Academy of Sciences)

the time limits (set by the LKE) for the ballistic existence of the satellite, if no orbit
correction is planned. In case of the Spektr-R mission, a timely-accomplished orbital
correction allowed one to prolong the mission considerably; for more details see a
review by Prokhorenko (2015).



Chapter 2
Averaging and Normalization in Celestial
Mechanics

Near-integrable Hamiltonian systems (i.e., the systems composed by an integrable
part and a small perturbation) are a common model currently used to study the
dynamics of celestial bodies. This is the study of such systems that Poincaré
called the “general problem of dynamics” (Poincaré 1899). Usually the so-called
perturbation approach is used to transfer the perturbation to higher orders of the
Hamiltonian expansion, by means of a canonical transformation close to identity.
Then, neglecting the remainder, one can use the truncated Hamiltonian for the
analysis of the effects characterizing the system dynamics over long time intervals.
Since in Celestial Mechanics these effects are called secular, the construction of a
suitable transformation can be interpreted as a development of a secular theory of
the dynamical phenomena under consideration.

In this book, mostly the restricted three-body problem (R3BP) is considered,
in which a massless particle moves under gravitational attraction of two bodies
(the primaries),1 orbiting around their barycenter. There are several cases when the
motion of the massless particle (the tertiary) can be treated as a slightly perturbed
Keplerian motion: (1) the distance between the tertiary and one of the primaries is
always much less than the distance between the primaries; (2) the distance between
the tertiary and the primaries’ barycenter is always much greater than the distance
between the primaries; (3) the mass of the primary is much greater than the mass of
the secondary.

To write down the Hamiltonian of R3BP in the form convenient for application of
the perturbation technique, one needs to introduce the Delaunay variables. Then the
Hamiltonian becomes a sum of an integrable part, corresponding to the Keplerian

1The three bodies are called the primary, the secondary, and the tertiary in accord (usually) with the
hierarchy of their masses. However, other ways of enumeration are also possible, e.g., according
to the hierarchy of the geometric configuration. This is usually clear from the context. The two
“primaries” comprise the primary and the secondary.

© Springer International Publishing Switzerland 2017
I. I. Shevchenko, The Lidov-Kozai Effect – Applications in Exoplanet Research
and Dynamical Astronomy, Astrophysics and Space Science Library 441,
DOI 10.1007/978-3-319-43522-0_2
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motion, and a small perturbation. A consequent formal averaging of the perturbation
over the fast variables allows one to construct a first-order theory describing the
secular effect in the particle dynamics outside resonances with the primaries.

Basic concepts of the perturbation approach in Hamiltonian dynamics are
discussed in many monographs and reviews; see, in particular, Poincaré (1899,
1905), Murray and Dermott (1999), Morbidelli (2002), Arnold et al. (2006), and
Ferraz-Mello (2007). These sources are used for the material presentation in this
section.

2.1 The Hamiltonian Formalism

In the subsequent analytical treatments, we usually use the equations of motion in
the Hamiltonian formulation. Therefore, let us recall how basic problems of celestial
mechanics can be expressed in the Hamiltonian “language”.

A first-order system of 2n ordinary differential equations (ODEs)2

dx
dt

D F.x/ (2.1)

(where x is a vector variable, F.x/ an arbitrary vector function) is said to have a
Hamiltonian form, if there exists a scalar function H.x/, called the Hamiltonian,
such that the system can be represented in the form

dpi
dt

D �@H.x/

@qi
;

dqi
dt

D C@H.x/

@pi
; .i D 1; : : : ; n/ ; (2.2)

or, equivalently, in the vector form,

Pp D �rqH.x/ ; Pq D CrpH.x/ ; (2.3)

where x D .q; p/ D .q1; : : : ; qn; p1; : : : ; pn/; t is an independent variable (time).
The variables q1; : : : ; qn and p1; : : : ; pn are called the canonical coordinates and
momenta of the system, respectively; n is called the number of degrees of freedom
of the system. The canonical variables q and p are called to be conjugate to each
other.

The advantage of the Hamiltonian formalism is that it allows one to perform all
analytic operations with the scalar Hamiltonian function, instead of analyzing the
whole set of equations of motion. Many equations in mechanics (including celestial
mechanics) and physics can be set in Hamiltonian form. In particular, the equations
of motion in a potential U.r/ (where r � .x; y; z/ is the position vector of a particle

2Note that in this book all vector quantities are set in bold font.
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in a Cartesian frame), namely,

d2r
dt2

D �rr U.r/; (2.4)

where the gradient operator rr �
�

@
@x ;

@
@y ;

@
@z

�
, can be written down in form (2.2),

setting

q D r; p D dr
dt

; H D kpk2

2
C U.q/: (2.5)

2.2 The Two-Body Problem in a Hamiltonian Form

Consider first a Hamiltonian formulation of the two-body problem. Recall that,
in this problem, two point masses m0 and m1 move under mutual gravitational
attraction. The Newtonian equations of motion in an orthogonal frame are given by

d2u0

dt2
D Gm1

ku1 � u0k3
.u1 � u0/ ;

d2u1

dt2
D Gm0

ku0 � u1k3
.u0 � u1/ ; (2.6)

where u0 and u1 are the bodies’ positions in an inertial frame, G is the gravitational
constant; kxk � .x2

1 C x2
2 C x2

3/
1=2 is the length (norm) of vector x (see, e.g.,

Szebehely 1967).
If a frame is centered on the center of mass of the system, then the frame is called

barycentric. Such a frame is inertial. If a frame is centered on the primary, it is called
heliocentric, or geocentric, or selenocentric, etc., depending on the primary body.
Such a frame is non-inertial. The relative position of bodies is r D u1 � u0; the
barycenter is located at s D .m0u0 C m1u1/=.m0 C m1/.

Thus, r is the position vector of m1 with respect to m0, and s is the absolute
position vector of the barycenter. From Equations (2.6) one has

d2r
dt2

D �G.m0 C m1/

krk3
r ; (2.7)

d2s
dt2

D 0 : (2.8)

Equation (2.7) describes the relative motion of bodies, and equation (2.8) means
simply that the barycenter moves inertially.
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Equations (2.7) are straightforwardly reducible to a Hamiltonian form with the
Hamiltonian

HKepler D kpk2

2
� G.m0 C m1/

kqk ; (2.9)

where canonical coordinates q are the Cartesian primary-centric coordinates, and
canonical momenta p � dq

dt .
The Hamiltonian equations of motion are

Pq D CrpHKepler; Pp D �rqHKepler; (2.10)

where the gradient operators

rp �
�

@

@px
;

@

@py
;

@

@pz

�
; rq �

�
@

@x
;

@

@y
;

@

@z

�
: (2.11)

The Hamiltonian HKepler is nothing but the total energy of the system, equal to the
sum of its kinetic and potential energies. It does not depend on time explicitly; such
types of Hamiltonian systems are called autonomous. It is easy to show that, for
such systems, H is conserved.

2.3 An N-Body Problem in a Hamiltonian Form

Consider the motion of a massless particle in the gravitation field of the Sun and N
planets; thus, there are N perturbers. This is a restricted many-body problem (strictly
speaking, a restricted N C 2-body problem, because the total number of bodies is
equal to N C 2). If the perturbers are set to move in fixed orbits, the Newtonian
equations of the particle’s motion, written down in a primary-centric (heliocentric)
Cartesian frame, are given by

d2r
dt2

D �Gm0

krk3
r C

NX
iD1

Gmi

�
ri � r

kri � rk3
� ri

krik3

�
(2.12)

(see, e.g., Morbidelli 2002; Murray and Dermott 1999), where r and ri (i D
1; : : : ;N) are the primary-centric positions of the particle and N gravitating
perturbers (with masses mi), respectively. Note that the first term in the parentheses
(under the sum) corresponds to an obvious direct perturbation from planet mi, and
the second term to a less obvious indirect perturbation from the same planet. The
indirect perturbation arises due to the gravitational effect of the planet on the Sun,
implying a shift in the position of the system’s center of mass.
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The right-hand side of Equations (2.12) is representable as �rrU.r/ with

U.r/ D �Gm0

krk � G
NX
iD1

mi

�
1

kr � rik � r � ri
krik3

�
; (2.13)

where r � ri is the scalar product of r and ri. Consequently, in accord with
Equation (2.4), the system’s Hamiltonian is written as

H D kpk2

2
� Gm0

kqk � G
NX
iD1

mi

�
1

kq � rik � q � ri
krik3

�
; (2.14)

where the canonical conjugate variables are coordinates q � r and momenta
p � dq

dt .

According to formula (2.14), H D H0 C H1, where H0 D kpk2

2
� Gm0kqk coincides

with Hamiltonian (2.9) of the two-body problem if one sets m1 to zero, and term H1

can be regarded as a perturbation to the two-body problem. With respect to H0, the
relative strength of the perturbation is of the order of ratio of the perturbers’ mass to
that of the primary.

Here the perturbers are assumed to move in fixed (unperturbed) orbits, i.e., the
ri.t/ are given functions. Thus, H D H.p; q; t/. As it depends explicitly on time,
the system is non-autonomous.

2.4 The Delaunay Variables

It is often desirable in celestial mechanics to work in canonical variables that
are straightforwardly expressible through osculating3 Keplerian orbital elements.
(Definitions of the Keplerian orbital elements are given in Sect. 1.1. The Keplerian
elements in the two-body problem do not form themselves a canonical set, as it is
easy to check.)

What is more, it is often desirable to work with variables that are straight-
forwardly connected to basic dynamical quantities, such as energy and angular
momentum; in order that one could expect the corresponding variables to be
approximately conserved when the motion is “perturbed”.

A set of such useful canonical variables, which is most popular now, was
introduced by Delaunay. In the two-body problem, the Delaunay variables are

3Approximating the orbital motion of a body at a given instant in a best way (in some sense; see,
e.g., Murray and Dermott 1999).
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defined as

L D ŒG.m0 C m1/a�1=2; l D M;

G D L.1 � e2/1=2; g D !;

H D G cos i; h D �;
(2.15)

where L and l, G and g, H and h form three pairs of conjugate “action-angle”
variables. In what concerns actions L, G, and H, the first of them, L, is a function
of sole a (semimajor axis) and thus can be expressed through the total energy;
G is the module of the reduced (per unit of mass) angular momentum; and H is
the reduced angular momentum vector’s vertical component. Indeed, the reduced
angular momentum of the system is r � dr=dt. Its norm G and its projection H on
the vertical axis z are given by

G D ŒG.m0 C m1/a.1 � e2/�1=2; H D G cos i : (2.16)

Thus, the actions are all conserved in the two-body problem. The conjugate angles
l, g, and h are just the mean anomaly M, argument of pericenter !, and longitude of
ascending node �, respectively. In the two-body problem, g and h are also constants
of motion, and l circulates with a constant frequency (the mean motion n).

The angles l, g, and h are poorly defined at the inclinations or eccentricities close
to zero; the modified Delaunay variables, given by

ƒ D L D ŒG.m0 C m1/a�1=2; � D l C g C h D M C $;

P D L � G D LŒ1 � .1 � e2/1=2�; p D �g � h D �$;

Q D G � H D 2G sin2 i
2
; q D �h D ��;

(2.17)

evade this disadvantage (e.g., Morbidelli 2002).
When expressed in the Delaunay variables (2.15), the Hamiltonian of the two-

body problem is given by

HKepler D �G2.m0 C m1/
2

2L2
D �G.m0 C m1/

2a
: (2.18)

As immediately follows from the corresponding Hamiltonian equations of motion,
the variables g, h, L, G, and H are conserved. In what concerns l, it varies according
to the equation

dl

dt
D C@HKepler

@L
D G2.m0 C m1/

2

L3
: (2.19)
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2.5 Near-Integrable Systems

If a Hamiltonian function depends merely on canonical momenta, i.e.,

H.p; q/ D H.p/; (2.20)

then the system is integrable and the trajectories are given by simple formulas,
namely,

p D const; q D !0t C q.tD0/; (2.21)

where !0 D rpH.
If a Hamiltonian system is near-integrable, i.e., close (in the sense of a small

parameter) to the integrable one, given by Equation (2.20), this means (by definition)
that it can be represented in the form

H.p; q/ D H0.p/ C �H1.p; q/ ; (2.22)

where � is the small unitless parameter, � � 1.
Assume also that rpH0 � rpH1 by the order of magnitude. Under such

conditions, one can treat H0 as a so-called integrable approximation, and H1 as a
perturbation (Arnold et al. 2002, 2006; Morbidelli 2002). Therefore, system (2.22)
is called near-integrable. Of course, any system that is reducible by a canonical
transformation to form (2.22) is also near-integrable.

The solution of a system with Hamiltonian H0 approximates the solution of the
perturbed system with accuracy � �˛ , where ˛ 	 1 is some constant whose value
depends on the system properties and initial conditions (see Arnold et al. 2002,
2006). This means that the divergence of the approximate solution from the exact
one is of the order �˛ on the unit interval of time. Conversely, on the time interval
equal to ��˛ , the divergence is of order of unity. Therefore, on a long-enough
timescale the integrable approximation, given by H0, fails. Then, to describe the
motion correctly, one must take into account the perturbation. Perturbation theories
and corresponding perturbative approaches allow one to do this analytically, or to
diminish the amount of the corresponding numerical work substantially.

The Hamiltonians of the restricted and planetary problems both are reducible to
form (2.22), where � is of the order of the perturbers’ mass. In case of the Solar
system, � � 10�3, because the ratio of masses of Jupiter and Sun is �1=1047.
Similar small perturbations are characteristic for many satellite and exoplanetary
systems. That is why the perturbative approach is often so useful and fruitful,
allowing one to provide an analytical description to many complicated dynamical
phenomena.

One of the basic tasks of the perturbative approaches consists in elimination of
dependences of a Hamiltonian on fast variables, by means of a canonical transfor-
mation. As soon as they are eliminated, they become cyclic (by definition), and the
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conjugate transformed momenta become constant, to the order of transformation.
In fact, if all momenta of the system are constant, the solution of the transformed
system is given by formulas (2.21), and the solution of the original system can be
found by substituting the inverse transformation of variables into these formulas.
In celestial mechanics, the role of the fast variables is usually played by the mean
longitudes or anomalies. The procedure of elimination of a fast variable is called
averaging of the system in this variable.

The notion of averaging is related to a (superior) notion of normalization. The
normalization procedure consists in reducing the Hamiltonian to some “simple”
form; e.g., to the Birkhoff normal form, in which all dependences on the canonical
angles are eliminated in all orders of the Hamiltonian expansion in powers of a small
parameter.

To keep the system Hamiltonian, the normalizing transformation must be
canonical. Usually it is required to find: the normal form of the Hamiltonian up
to a specified order; the generating function of the normalizing transformation;
the formulae of direct and inverse transformations of the canonical variables. In
all applications to the three-body problem, the procedure implies cumbersome
analytical calculations. That is why the normalization is often accomplished by
means of computer algebra.

2.6 The von Zeipel Method

Among the methods used for averaging and normalization in celestial mechanics,
the von Zeipel method (von Zeipel 1916)4 and the Hori–Deprit method (Deprit
1969; Hori 1966) are most popular. Though less convenient algorithmically, the
first of them is an older one and it is analytically straightforward, that is why we
describe it first. What is more, it was just the von Zeipel method that was mostly
used by researchers for the averaging purposes in developments of the Lidov-Kozai
theory.

In fact, the “von Zeipel method” was introduced by Poincaré (1899), who
called it the “Lindstedt method”. Von Zeipel used it extensively in studies in
celestial mechanics, that is why the method is usually called now after his name.
The method is described in a number of monographs, in particular, in Giacaglia
(1972), Hagihara (1972), Kholshevnikov (1985), Zhuravlev and Klimov (1988), and
Marchal (1990). Here we give a brief synopsis, based mostly on reviews in Giacaglia
(1972), Zhuravlev and Klimov (1988), and Morbidelli (2002). The designations are
generally such as adopted in Morbidelli (2002).

As a first step, any perturbative treatment of a near-integrable Hamiltonian
system aims to find a close-to-identity canonical transformation

p D p1 C �f1.p1; q1/ ; q D q1 C �g1.p
1; q1/ ; (2.23)

4The method was originally introduced by Poincaré (1899).
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that allows one to transform Hamiltonian (2.22) to

K.p1; q1/ D H0.p1/ C �K1.p1/ C �2K2.p1; q1/ ; (2.24)

where K1 is nothing but the term H1 averaged over the angles q, and K2 is a new
function of the order not greater than H1. The Hamiltonian H0 C �K1 provides an
integrable approximation (of order �2) of the original dynamical system.

To achieve a higher level of approximation of the motion, one can iterate, looking
at each consecutive step for the canonical transformation

pr�1 D pr C �rfr.pr; qr/ ; qr�1 D qr C �rgr.p
r; qr/ ; (2.25)

such that the Hamiltonian obtains the Birkhoff normal form

K.pr/ D H0.pr/ C �K1.pr/ C � � � C �rKr.pr/ C O.�rC1/ : (2.26)

Thus, at any consecutive step r of the procedure (at any consecutive order r in �),
the system’s approximation is integrable, and the solution is given by

pr D const; qr D !rt C qr
.tD0/ ; (2.27)

where

!r D rpr ŒH0.pr/ C �K1.pr/ C � � � C �rKr.pr/� : (2.28)

Constructing the inverse composition of all iterated transformations of the variables,
one obtains the solution in the original variables p and q.

Let us see how these perturbation techniques are realized in the von Zeipel
algorithm. Consider Hamiltonian system (2.3) with Hamiltonian (2.22), i.e., a near-
integrable original system. Our aim is to transform its Hamiltonian to normal
form (2.26). To distinguish the transformed canonical variables and Hamiltonian
from the original ones, we designate them by P, Q, and K:

K.P/ D K0.P/ C �K1.P/ C � � � C �rKr.P/ C O.�rC1/ : (2.29)

To the second order in �, the sought Hamiltonian is

K.P/ D K0.P/ C �K1.P/ C �2K2.P/ : (2.30)

In the von Zeipel algorithm, the normalizing canonical transformation is deter-
mined by a generating function S.q; P; �/:

p D rqS.q; P; �/ ; Q D rPS.q; P; �/ ; (2.31)
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which is sought in the form of a power series in �:

S.q; P; �/ D q � P C �S1.q; P/ C �2S2.q; P/ C : : : : (2.32)

As needed, the generated transformation is close to identity; at � D 0 it is strictly
identical: p D P, q D Q.

Evidently, the generating function must satisfy the equation

H.q; rqS; �/ D K.P/ D const : (2.33)

Expanding H, S, and K in power series in �, one has at each consequent order (0,
1, 2, . . . ) of �:

H0.P/ D K0.P/ ; (2.34)

rpH0 � rqS1 C H1.q; rqS0/ D K1.P/ ; (2.35)

rpH0 � rqS2 C rpH1 � rqS1 C 1

2

X
i; j

@2H0

@pi@pj

@S1

@qi

@S1

@qj
C H2.q; rqS0/ D K2.P/ ;

(2.36)
: : : ;

where 1 	 i 	 n, 1 	 j 	 n (and n is the number of degrees of freedom).
Substituting rqS0 D P and rpH0 D K.P/, we arrive at a sequence of linear
equations in partial derivatives. Starting with order one in �, this sequence is
given by

K.P/ � rqS1 C H1.q; P/ D K1.P/ ; (2.37)

K.P/ � rqS2 C F2.q; P; rqS1/ D K2.P/ ; (2.38)

K.P/ � rqS3 C F3.q; P; rqS1; rqS2/ D K3.P/ ; (2.39)

: : : :

Taking into account that the original Hamiltonian is periodic in angles q, it is
straightforward to choose K1.P/ equal to H1.q; P/ averaged over q: K1.P/ D
NH1.P/. Then, one has an equation for S1:

K.P/ � rqS1.q; P/ D NH1.P/ � H1.q; P/ : (2.40)

This equation can be solved with respect to S1 by expandingH1.q; P/ in the Fourier
series in q (recall that H1.q; P/ is periodic in q), and seeking for S1 also in the
form of a Fourier series. (Such a procedure is described in the next section for an
analogous situation.)
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Substituting the determined S1 and K2.P/ D NF2.P/ in Equation (2.38), one
arrives at an equation for S2.q; P/:

!.P/ � rqS2.q; P/ D NF2.P/ � F2.q; P; rqS1/ : (2.41)

This equation is analogous to (2.40) and is solved in the same manner.
At each higher consecutive order in �, the step algorithm is completely analo-

gous. This is how the von Zeipel algorithm can be summarized.
Note that since the original system is generally non-integrable, the obtained

regular solution is strictly formal, i.e., the series representing the solution are not
obliged to converge. To obtain a solution closest to the true one, the iterations should
be terminated at some optimum order r, depending on the system itself and on the
value of �.

2.7 The Hori–Deprit Method

At present, the most popular perturbative approach is one based on methods
proposed by Hori (1966) and Deprit (1969). They employ the Lie perturbation
techniques. This approach provides a number of advantages; in particular, the
normalizing transformation is canonical by construction.

In the von Zeipel method, the generating function depends on “old” coordinate
and “new” momentum variables. The absence of mixture of similar kind represents
one of the principal advantages of the Hori–Deprit method over the von Zeipel
method. What is more, the crucial advantage of the Hori–Deprit method consists in
its practical recursiveness: it is based on recurrent explicit formulas, which reduce
the normalization in every successive order to a standard mathematical procedure.

Let q and p be conjugate canonical coordinates and momenta, and f .p; q/ and
g.p; q/ are some functions of them; then the Poisson bracket of f and g is defined as

f f ; gg D rq f � rpg � rp f � rqg D
nX

iD1

@f

@qi

@g

@pi
� @f

@pi

@g

@qi
; (2.42)

where n is the number of degrees of freedom.
For an arbitrary function f D f .p; q/, where p and q are the solutions of a

Hamiltonian system with a Hamiltonian S, one has

df

dt
D rq f � Pq C rp f � Pp D f f ;Sg : (2.43)
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Let us expand f in a power series of t in the neighbourhood of t D 0:

f .t/ D f .0/ C
1X
kD1

tk

kŠ
� dkf

dtk

ˇ̌
ˇ̌
tD0

; (2.44)

where f .0/ � f .p.0/; q.0// and dk f
dtk

ˇ̌
ˇ
tD0

� dkf
dtk .p.0/; q.0//. Noting that

df

dt
D f f ;Sg ;

d2f

dt2
D
�

df

dt
;S
�

D ff f ;Sg;Sg ; : : : ; (2.45)

and defining the Lie operators Dk with generator S by the recurrent relation

Dkf D D.Dk�1f / ; where Df D D1f D f f ;Sg ; (2.46)

one can express f .t/ as

f .t/ D f .0/ C
1X
kD1

tk

kŠ
� Dkf

ˇ̌
tD0

; (2.47)

Series (2.47) is called the Lie series of a function f along the flow S. Expan-
sion (2.47) can be interpreted as an operator applied to f . As such, it is henceforth
designated LtS f .

Recall that a transformation of variables is called canonical, if it preserves the
Hamiltonian form of equations. It is straightforward to verify (see Morbidelli 2002)
that a transformation .p; q/ ! .P; Q/ of the form

p D P C
Z �

0

PPdt D L�
SP ; q D Q C

Z �

0

PQdt D L�
SQ ; (2.48)

is canonical, if there exists a function S.P; Q; �/ such that PP and PQ satisfy
Hamiltonian equations

PP D �@S=@Q ; PQ D @S=@P : (2.49)

Function S.P; Q; �/ (where � is a parameter) is called the generating Hamiltonian
or the generating function.

Equations (2.48) represent an outcome of a canonical transformation (defined by
the Hamiltonian flow with Hamiltonian S), taken at a “time moment” �. The Lie
perturbation techniques are based on the transform representation (2.48).

Consider the normalizing transformation in the first order of �. Thus, we define
p1 � P, q1 � Q. As in case of any Lie series of a function, one has for the
Hamiltonian:

K D L�
SH : (2.50)
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We seek for a generating function S such that the Hamiltonian (2.22) is
transformed to the Birkhoff normal form in the first order of �, i.e., the dependence
on angles is eliminated in the first order.

According to (2.47), to the second order in �, one has

K D H0 C �H1 C �fH0;Sg C �2fH1;Sg C �2

2
ffH0;Sg;Sg C O.�3/ : (2.51)

It is implied that H0, K, and S are all functions of p1, q1. Picking out the terms of
the first order in �, we equate them to a function of momenta only:

H1 C fH0;Sg D NH1 : (2.52)

The generating function S.p1; q1/ can be found from this equation, the NH1 function
being subject to the mentioned restriction (the dependence merely on p1). This
equation, called the homologic equation, is nothing but a linear equation in partial
derivatives, and it is easily solvable. It is sufficient to find any particular solution of
this equation.

As described in Morbidelli (2002), the solution can be obtained in the following
way. Since H is periodic in angles q1, one may expand H1 in the Fourier series:

H1.p1; q1/ D
X
k2Zn

ck.p1/ exp
�
�k � q1

	
; (2.53)

where � D p�1.
The solution of Equation (2.52) is sought also as the Fourier series

S.p1; q1/ D
X
k2Zn

dk.p1/ exp
�
�k � q1

	 I (2.54)

immediately one has

fH0;Sg D ��
X
k2Zn

dk.p1/k � !0.p1/ exp
�
�k � q1

	
; (2.55)

where !0 D rp1H0; and the coefficients of the generating function (2.54) are
determined as

d0 D 0 ; dk.p1/ D ��
ck.p1/

k � !0.p1/
(2.56)

at all non-zero k. Besides,

NH1.p1/ D c0.p1/ : (2.57)
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In the higher orders in �, the procedure can be accomplished recursively; at each
order, an analogous homologic equation is defined and solved (see Giacaglia 1972;
Zhuravlev and Klimov 1988). The described procedure is called non-resonant, as it
is implied that, in the course of normalization, one does not encounter zero resonant
combinations in the denominators in Equations (2.56). For algorithms tackling the
resonant situations, see the aforementioned monographs.

By means of the described algorithm the components of the generating function
and the normalized Hamiltonian can be successively found, up to the required
order of normalization. As a result we obtain the normalized Hamiltonian and the
generating function of the normalizing transformation.

The canonical variables which the obtained generating function depends upon are
not mixed. This circumstance allows one to calculate the normalizing transformation
of the canonical variables as the Lie transformation with the generator equal to the
newly found generating function S. This transformation is given by the formulas

p D P C
1X
kD1

�k

kŠ
DkP

ˇ̌
�D0

; q D Q C
1X
kD1

�k

kŠ
DkQ

ˇ̌
�D0

: (2.58)

Variables Q and P represent the new canonical coordinates and momenta. The
inverse transformation is the Lie transformation with the generator .�S/:

P D p C
1X
kD1

.��/k

kŠ
Dkp

ˇ̌
�D0

; Q D q C
1X
kD1

.��/k

kŠ
Dkq

ˇ̌
�D0

: (2.59)

When calculating the transformations of the canonical variables in practice, it is
sufficient to leave the terms up to the order M�1 inclusive in the right-hand parts of
the formulas, where M is the final order of normalization. Such length of expansions
is sufficient to transform the Hamiltonian to the normal form of the given order, or,
in the case of inverse transformation, to the initial form.



Chapter 3
Classical Results

This chapter is devoted to classical results, mostly presented in the pioneer works
by Mikhail Lidov and Yoshihide Kozai. To start with, we derive the secular Lidov-
Kozai Hamiltonian (the LK Hamiltonian) for the circular R3BP, where the averaged
perturbation is approximated by the quadrupole term of the Hamiltonian expansion
in the ratio of semimajor axes of the test particle (tertiary) and the gravitating
binary. Since there is only one angular variable remaining in the LK Hamiltonian
(the argument of pericenter), the corresponding motion equations can be solved by
quadrature. The fact that the second angle (the longitude of the ascending node) is
missing is a lucky fortuitous property of the problem.

Kozai proposed a convenient technique to analyze the qualitative properties
of these secular effects: he constructed phase portraits, characterizing the secular
evolution of the eccentricity and the argument of pericenter for various initial
conditions. Taking into account that the corresponding phase trajectories lie on the
level curves of the LK Hamiltonian, the trajectories can be drawn without integration
of the motion equations. The topology of the phase portraits depends essentially
on the norm of the vertical component of the tertiary’s orbital angular momentum.
At its certain value, a bifurcation occurs: whereas for the norm’s greater values
the argument of pericenter always circulates, for its smaller values an equilibrium
point appears, accompanied with the trajectories (around the point), corresponding
to libration of the argument of pericenter. This libration island is nothing but the
famous Lidov-Kozai resonance.

The integration of the averaged motion equations by quadrature requires appli-
cation of elliptic functions. Already in 1962 Kozai demonstrated how this could
be done (Kozai 1962), but only quite a considerable time later on his ideas were
realized by Lidov’s disciple Mikhail Vashkovyak (1999) and Kinoshita and Nakai
(1999, 2007).

© Springer International Publishing Switzerland 2017
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To complete our review of the classical results, we discuss how the LKE can
be suppressed in various dynamical situations. Indeed, if an additional perturbation
dominates over the LK-term in the Hamiltonian of the motion, then the LKE may
disappear (Lidov 1963b; Morbidelli 2002). In particular, such a suppression explains
the stable existence of the regular satellites of Uranus. In their case, the suppression
“agent” is the satellites’ orbital precession forced by the Uranus oblateness and the
moons’ mutual perturbations.

3.1 A Single-Averaged R3BP

As an example of a secular theory, we consider Moiseev’s scheme of averaging of
the R3BP. The reason is that this scheme is useful for our further analysis, as it
has a direct relation to the LK scheme. Indeed, a double-averaging is utilized in
the LK scheme, thus involving the single-averaging as an ingredient of the whole
procedure.

In the single-averaged R3BP, the perturbing function is averaged over one
variable (that with the largest frequency of variation), namely, the mean anomaly of
the satellite. As soon as a perturber is in an outer orbit, the satellite’s mean anomaly
is “faster” than that of the perturber. In the Hill approximation, only the lowest order
term in the ratio of the semimajor axes of the satellite and the perturber is taken
into account in the perturbing function. This averaging scheme was introduced by
Moiseev (1945a,b).1

Moiseev (1945a,b) deduced equations of motion in the single-averaged problem
and found two integrals of the motion. Contrary to the double-averaged case
(considered in this book later on), there is no third integral here; thus, the problem
is not integrable in the spatial case (when the system has three degrees of freedom).

Based on Moiseev’s averaging scheme, Vashkovyak (2005) derived explicit
equations of motion in the single-averaged R3BP, in the Hill approximation. Here
we reproduce these equations in convenient notations, and, following Vashkovyak
(2005), delineate the conditions for their applicability.

Consider the motion of a planetary satellite perturbed by a distant external
body (e.g., the Sun). The perturbing body is assumed to move in a circular orbit
of radius apert. The planetocentric Keplerian orbital elements of the satellite, i.e.,
the semimajor axis, eccentricity, inclination, argument of pericenter, longitude of
ascending node, and mean anomaly, are denoted, as usually, by a, e, i, !, �, and M,
respectively. The angles are referred to the plane of motion of the perturbing body
and to a fixed arbitrary direction in this plane.

1Nikolay Dmitrievich Moiseev (1902–1955), a professor of the Moscow University, was the
founder of the Moscow school of celestial mechanics. The mentioned papers were typeset in 1941,
but, due to calamities of the war, the publication was delayed until 1945.
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The Keplerian mean motion of the satellite is n D .Gm/1=2=a3=2, and that of the
perturbing body is npert D ŒG.m0 C mpert/�

1=2=a3=2
pert. Following Vashkovyak (2005),

we introduce a dimensionless parameter of the problem, � D npert=.nˇ/, where ˇ D
3mperta3=.16m0a3

pert/. G is the gravitational constant, m0 and mpert are the masses of
the primary (planet) and the perturbing body, respectively. If m0=mpert � 1, then
n2

pert � Gmpert=a3
pert, ˇ � 3n2

pert=.16n2/, and � � 16n=.3npert/.
The unitless “time” is defined as

	 D ˇn.t � t0/; (3.1)

where t0 is the initial time.
The mean longitude of the perturbing body is given by

�pert D �pertjtDt0 C npert.t � t0/ D �pertj	D0 C �	: (3.2)

The longitude of ascending node of the satellite’s orbit, �, is present in the averaged
perturbing functionR only in combination with the mean longitude of the perturbing
body, �pert.2 Denoting

‡ D � � �pertj	D0 � �	; (3.3)

let us average the perturbing function R (corresponding to the third term in
expression (2.14); see also Murray and Dermott 1999) over the mean anomaly of
the satellite:

V D 1

2�

Z 2�

0

R dM: (3.4)

Here the perturbing function is normalized by factor Gmˇ=a. Taking the integral in
the quadrupole (Hill) approximation, one has

V D VH C O.a=apert/
3; (3.5)

where

VH D 4

3
C 2.e2 � sin2 i/ C e2 sin2 i.5 cos 2! � 3/ � 10e2 cos i sin 2! sin 2‡ C

C Œ2 sin2 i C 10e2 cos 2! C e2 sin2 i.3 � 5 cos 2!/� cos 2‡ (3.6)

2This follows from the so-called D’Alembert rules, specifying which combinations of angles can
be present in the Fourier expansions of perturbing functions. The formulation of the D’Alembert
rules is given in section 1.9.3 in Morbidelli (2002).
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(Vashkovyak 2005). The equations of motion are easily derivable, as soon as
a perturbing function is given (see Murray and Dermott 1999). In accord with
expression (3.6), the secular equations for the single-averaged Hill problem are
given by

da

d	
D 0; (3.7)

de

d	
D 10e.1�e2/1=2Œsin2 i sin 2!C.2�sin2 i/ sin 2! cos 2‡C2 cos i cos 2! sin 2‡�;

(3.8)

di

d	
D �2 sin i .1 � e2/�1=2f5e2 cos i sin 2!.1 � cos 2‡/ �

� Œ2 C e2.3 C 5 cos 2!/� sin 2‡g; (3.9)

d!

d	
D 2.1 � e2/�1=2 �

� f4 C e2 � 5 sin2 i C 5.sin2 i � e2/ cos 2! C 5.e2 � 2/ cos i sin 2! sin 2‡ C
C Œ5.2 � e2 � sin2 i/ cos 2! � 2 � 3e2 C 5 sin2 i� cos 2‡g; (3.10)

d‡

d	
D �� �2.1�e2/�1=2fŒ2Ce2.3�5 cos 2!/� cos i .1�cos 2‡/�5e2 sin 2! sin 2‡g:

(3.11)

Moiseev (1945b) found out that the secular system in this problem has two
integrals:

a D const; (3.12)

V C �.1 � e2/1=2 cos i D const: (3.13)

In the Hill approximation, V D VH, where VH is given by formula (3.6).
Vashkovyak (2005) formulated conditions for the applicability of the secular

equations to describe the long-term motion of natural satellites of planets in the
Solar system. Let us enumerate them. Recall first of all that the radius of a planet’s
Hill sphere aH, in units of the semimajor axis of a perturbing body, apert, is given by

aH=apert D


3

�
1 C mpert

m0

���1=3

: (3.14)
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Then, the semimajor axis of a satellite’s orbit, a, in units of aH, is equal to

a

aH
D 4

"
4

3�2

�
1 C m0

mpert

�2
#1=3

� 28=33�1=3��2=3 � 4:40��2=3: (3.15)

The planetocentric orbit of a satellite should lie within the Hill sphere. This implies
the inequality a.1 C e/ . aH. Therefore, an allowed lower limit for � is given by
�min � 9:24 at e D 0, and by �min � 26:1 at e D 1.

Vashkovyak (2005) compared these theoretical bounds with the values of �

observed for the real planetary satellites in the Solar system. For the real satellites
(including the irregular most distant satellites of the giant planets), the ratio of mean
motions, npert=n, does not exceed � 0:16; therefore, one has � � 16n=.3npert/ & 33,
and the theoretical condition for �min is thus satisfied.

3.2 The Double-Averaged R3BP

The first secular theory in celestial mechanics was constructed by Lagrange
and Laplace: they built an analytical theory describing the long-term averaged
behaviour of the Solar system planets. However, this theory was limited to the
case of small mass parameters and small planetary eccentricities and inclinations;
besides, resonances were assumed to be absent. Brown (1936) applied techniques
of canonical transformations to describe the long-term averaged behaviour of
stellar triple systems; in particular, he obtained the Hamiltonian in the quadrupole
approximation. Three integrals in the double-averaged circular R3BP were found
by Moiseev (1945a,b).

3.2.1 The Lidov-Kozai Hamiltonian

In this subsection, we derive the secular Lidov-Kozai Hamiltonian (the LK Hamil-
tonian) for the circular R3BP, where the averaged perturbation is approximated by
the quadrupole term of the Hamiltonian expansion in the ratio of semimajor axes
of the test particle (tertiary) and the gravitating binary. Since there is only one
angular variable that remains in the LK Hamiltonian (the argument of pericenter),
the corresponding motion equations can be solved by quadrature.

In the restricted version of the N-body problem, one of the bodies (called the
test particle or simply the particle) is massless in the sense that it gravitates only
passively: the particle’s motion is affected by the gravity of all other bodies, but
the particle’s gravity does not affect the motion of other bodies. The orbits of
the massive bodies are assumed to be known. According to expression (2.14), the
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Hamiltonian is given by

H D HKepler C Hinteraction (3.16)

(Malhotra 2012; Murray and Dermott 1999), where the Keplerian Hamiltonian is

HKepler D �Gm0

2a
(3.17)

(where a is the semimajor axis of the particle’s orbit around primary m0), and the
interaction Hamiltonian is

Hinteraction D �
NX
iD1

Gmi



1

kr � rik � .r � r0/ � .ri � r0/

kri � r0k3

�
; (3.18)

where r is the position vector of the test particle.
In the R3BP, the interaction Hamiltonian reduces to

Hinteraction D �Gm1



1

kr � r1k � .r � r0/ � .r1 � r0/

kr1 � r0k3

�
: (3.19)

Let us derive the Lidov-Kozai Hamiltonian in the R3BP, taking expression (3.19)
as a starting point. For this purpose, we follow an approach by Malhotra (2012).

As there remains only one perturber, further on we designate m1 as mpert. Thus,
the masses of the primary and the perturber are designated by m0 and mpert; the
radius of perturber’s circular orbit by apert; the semimajor axis of particle’s orbit by
a. It is assumed that a � apert.

Setting r0 D 0, we rewrite Equation (3.19) in the form

Hinteraction D �Gmpert

 
1��r � rpert

�� � r � rpert��rpert

��3

!
; (3.20)

where r and rpert are the astrocentric position vectors of the particle and the
perturber, respectively.

After expanding Equation (3.20) in power series of ratios krk=
��rpert

�� up to the
second order, the double-averaging over the angles (both the mean longitude of
the perturber and the mean longitude of the particle) is performed. In the process,
the variables are transformed to the osculating orbital elements. (The perturber’s
orbital plane is chosen to be the reference plane, with respect to which the particle’s
inclination is measured.)

The averaging can be performed either by straightforward integration over the
angles (see, e.g. Broucke 2003), or by application of the normalization methods
described in Sects. 2.6 and 2.7, e.g., the von Zeipel method, as accomplished by
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Kozai (1962). To the given (quadrupole) order of the perturbation theory, the
resulting double-averaged Hamiltonian will be the same, whatever approach is
chosen, and is given by

hHinteractioni ' �Gmperta2

8a3
pert


2 C 3e2 � 3.1 � e2 C 5e2 sin2 !/ sin2 i

�
; (3.21)

where ! is the particle’s argument of pericenter. Of course, all the orbital elements
of the particle’s orbit in this formula are the transformed (averaged) ones (though
the notations are the same as for the original osculating elements).

From expression (3.21), it immediately follows that there exist three independent
integrals of motion. First of all, the Hamiltonian hHinteractioni is time independent;
thus, it is an integral. Besides, hHinteractioni is independent of the mean longitude l
and the longitude of ascending node �; therefore, the conjugate Delaunay momenta
L D ŒG.m0 C mpert/a�1=2 and H D L.1 � e2/1=2 cos i (see definitions (2.15)) are
also integrals. We find that our three-degree-of-freedom averaged system has three
integrals and thus is completely integrable.

Note that the Delaunay momentum G D L.1 � e2/1=2 is not conserved; thus, the
eccentricity varies secularly, and so does the inclination; these variations are coupled
due to the conservation of H.

The three integrals can be rewritten in the classical form:

c0 � a D const; (3.22)

c1 � .1 � e2/ cos2 i D const; (3.23)

c2 � e2

�
2

5
� sin2 i sin2 !

�
D const (3.24)

(Kozai 1962; Lidov 1961). The expression for c2 is derived from the equalities
hHinteractioni D const and H D const.

Expressed in terms of the Delaunay variables (see Sect. 2.4), the Hamiltonian
hHinteractioni takes the form

hHinteractioniD � Gmperta2

8a3
pert



5 C 3

H2

L2
� 6

G2

L2
� 15

�
1 � G2

L2
� H2

G2
C H2

L2

�
sin2 !

�
:

(3.25)

This is the Lidov-Kozai Hamiltonian, expressed explicitly in canonical variables
(Malhotra 2012). (In literature on the subject, it is more customary to find the
Hamiltonian expressed in orbital elements, as presented in Equation (3.21); then,
to derive the corresponding equations of motion one must rewrite the Hamiltonian
in canonical variables first.)
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The corresponding Hamiltonian equations are given by

PG D �@H
@!

D �15Gmperta2

8a3
pert

e2 sin2 i sin 2! ; (3.26)

P! D @H
@G

D 3Gmperta2

4a3
pertG



2
G2

L2
C 5

�
H2

G2
� G2

L2

�
sin2 !

�
; (3.27)

P� D @H
@H

D �3Gmperta2

4a3
pert

H

L2



1 � 5

�
1 � L2

G2

�
sin2 !

�
: (3.28)

The exact LK-resonance takes place, if P! D 0. From Equation (3.27) it follows
that, apart from some limiting situations, the condition is satisfied at ! D ˙�=2

and G D .5H2L2=3/1=4. Thus, the LK-resonance center is situated at ! D ˙�=2,
e D Œ1�.5c1=3/1=2�1=2, i D arccos.3c1=5/1=4. This stationary solution exists if c1 	
3=5. Accordingly, the critical inclination, above which the LK-resonance exists, is
given by icrit � 39:2ı.

3.2.2 Equations and Constants of Motion

We still consider the motion of a massless particle in the framework of the R3BP.
The perturber’s orbit is set to be circular of radius apert; its plane defines the reference
plane. Let us write down the particle’s equations of secular motion in the Keplerian
elements (a, e, i, !, �). Though designated in the same way as the ordinary
osculating Keplerian elements, it is implied that they are mean, representing the time
averages on the timescales of the orbital periods of the particle and the perturber.

In the double-averaged Equations (3.26), (3.27) and (3.28), one may transform
the Delaunay variables to the Keplerian elements, and, thus, obtain the equations
of motion in the elements. Alternatively, averaging Equations (3.7), (3.8), (3.9),
(3.10) and (3.11) with respect to the perturber’s mean anomaly (see Broucke 2003;
Lidov 1961), and returning to non-normalized time t, one gets the same resulting
equations:

da

dt
D 0; (3.29)

de

dt
D 15

8

n2
pert

n
e.1 � e2/1=2 sin2 i sin 2!; (3.30)

di

dt
D �15

16

n2
pert

n
e2.1 � e2/�1=2 sin 2i sin 2!; (3.31)
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d!

dt
D 3

8

n2
pert

n
.1 � e2/�1=2Œ.5 cos2 i� 1 C e2/ C 5.1 � e2 � cos2 i/ cos !�; (3.32)

d�

dt
D 3

8

n2
pert

n
cos i.1 � e2/�1=2Œ5e2 cos 2! � 3e2 � 2�; (3.33)

where npert is the mean motion of the perturbing body.
These equations of motion in the elements are nothing but the Lagrange equations

(see Murray and Dermott 1999) defined by the double-averaged perturbing function.
The equations of motion in the elements (a, e, i, !, �) in the double-averaged R3BP
are considered in a number of papers; see, e.g., Innanen et al. (1997), Carruba et al.
(2002), and Tamayo et al. (2013). Corrections to the first two papers are given in
Carruba et al. (2003).

The single-averaged problem (described by Equations (3.7), (3.8), (3.9), (3.10)
and (3.11)) has a cylindrical symmetry with respect to the z axis: the perturber’s
mean anomaly Mpert is present in the equations only through the difference D D
� � Mpert. This entails the absence of � in the right-hand sides of the equations in
the double-averaged problem; this absence is obvious in Equations (3.29), (3.30),
(3.31), (3.32) and (3.33). The mean anomaly M is also eliminated from the right-
hand sides, due to the averaging. Only three elements (e, i, and !) remain present.

We see that equations (3.30), (3.31), and (3.32) form a self-contained closed
system of equations, the semimajor axis a being constant. Once they are solved, the
longitude of the ascending node � can be immediately found from Equation (3.33).

Though the mean anomaly M is averaged out, an equation for the mean anomaly
at epoch M0 is still warranted. It is given by

dM0

dt
D �1

8
Gmpert

n2
pert

n
Œ.3e2 C7/.3 cos2 i�1/C15.1Ce2/ sin2 i cos2 !�: (3.34)

It can be used to define an approximate mean anomaly,M D M0 Cnt, if needed. The
formula for M is so simple only because a D const and n D const here. Note that
the semimajor axis a is constant both in the single-averaged and double-averaged
problems.

Equations (3.30)–(3.31) give an integral:

c1 D .1 � e2/ cos2 i; (3.35)

which is essentially the z component of the angular momentum squared. Obviously,
0 	 c1 	 1. Besides, the constancy of (3.35) means that (1) the secular variations of
e and i are coupled in anti-phase if 0 	 i 	 �=2 (in particular, if i decreases tending
to zero, i ! 0, then e increases, e ! .1 � c1/

1=2), and (2) the variations of e and
i are coupled in phase if �=2 	 i 	 � (in particular, if i increases tending to � ,
i ! � , then e increases as well, e ! .1 � c1/1=2).
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The averaged perturbing function (or, the averaged interaction potential, see
Equation (3.21)) is constant, because it does not contain time explicitly. Simplifying
Equation (3.21) by using Equation (3.35), one has one more non-trivial integral:

c2 D e2

�
2

5
� sin2 i sin2 !

�
: (3.36)

Quite obviously, �3=5 	 c2 	 �2=5 (because 0 	 .sin i sin !/2 	 1).
The conserved semimajor axis a, integral c1, and integral c2 form a set of three

integrals of the double-averaged problem; thus, this averaged problem, which has
three degrees of freedom, is completely integrable.

Recall that the single-averaged problem is non-integrable (as discussed in
Sect. 3.1), as the original non-averaged one.

3.2.3 Classification of Orbits

A straightforward analysis of analytical expressions for c1 and c2, performed by
Lidov (1961), allowed him to locate the domains of possible motion in the (c1; c2)
plane.

In Fig. 3.1, it is the “triangle” ABEDA. The classification of dynamical regimes,
according to location in this triangle in the (c1; c2) plane, is discussed in a number
of works, in particular, see Lidov (1961) and Broucke (2003).

Inside the triangle, the vertical line c2 D 0 separates two basic types of motion:
(1) at c2 < 0 the orbits have the argument of pericenter librating; (2) at c2 > 0 the

Fig. 3.1 The domains
of possible values
of constants c1 and c2

(Figure 1 from Lidov 1961)
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orbits have the argument of pericenter circulating.3 In case (1), the libration of !

takes place around either �=2 or 3�=2. The librating orbits exist only if 0 	 c1 	
3=5. In case (2), the circulating orbits exist in the whole interval 0 	 c1 	 1.

The triangular region ABEDA in Fig. 3.1 has three corners (A, B, E) and two
other important boundary points more (D and 0, i.e., the zero point). The corner
points A, B, and E have the following dynamical meaning.

Point A (c1 D 1, c2 D 0) corresponds to the circular equatorial orbit (e D 0,
sin i D 0).

Point B (c1 D 0, c2 D 2
5
) corresponds to the rectilinear orbits (e D 1) with an

arbitrary inclination and sin ! D 0.
Point E (c1 D 0, c2 D � 3

5
) corresponds to the polar orbits (cos i D 0) with an

arbitrary eccentricity and ! such that e2.5 sin2 ! � 2/ D 3. At e D 1 one has a
rectilinear orbit with sin ! D ˙1.

The points D and 0 have the following dynamical meaning.
Point D (c1 D 3

5
, c2 D 0) corresponds to the circular (e D 0) orbits with a critical

inclination. The critical inclination is defined by the equation cos2 i D 3
5
; therefore,

icrit � 39:23ı.4 The point D is a bifurcation point (that is why the inclination is
called critical): on decreasing the values of c1, the orbits with librating pericenter
(those with c2 < 0) emerge just at this point, at c1 D 3

5
. In other words, the LK-

resonance becomes possible.
Point 0 (c1 D c2 D 0) corresponds to the orbits of the following three kinds:

1. circular (e D 0) polar (cos i D 0) orbits with arbitrary !;
2. elliptic (e arbitrary) polar (cos i D 0) orbits with sin2 ! D 2

5
;

3. inclined (i arbitrary) rectilinear (e D 1) orbits with sin2 i sin2 ! D 2
5
.

The boundary segments AB, BE, ED, and DA of the triangle ABEDA have the
following dynamical meaning.

Segment AB corresponds to the orbits such that 2c1 C 5c2 D 2. Taking c1 and c2

from Equations (3.35) and (3.36), one has

.5e2 sin2 ! C 2 � 2e2/ sin2 i D 0: (3.37)

The first factor is zero only at point B, where e D 1 and sin ! D 0 simultaneously.
Thus, apart from point B, the whole segment is defined by the second factor
in Equation (3.37), which is zero at the inclinations i D 0 and i D � . The
corresponding orbits are the equatorial planar orbits, with eccentricity e D .1 �
c1/

1=2; these orbits are precessing, namely, ! increases.

3The vertical line c2 D 0 is analogous, in such a way, to the separatrix of the nonlinear
mathematical pendulum: it separates the regimes of librations and circulations of an angle.
4Note that this value is the critical inclination in the considered model. If the problem is non-
hierarchical (say, as in a real asteroid–Jupiter–Sun system), or the body which the particle orbits is
oblate (say, as in a real satellite–planet–Sun system), the critical inclinations would be different.
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Interval BE corresponds to the orbits such that c1 D 0. This condition
corresponds either to the polar (cos i D 0) or to the rectilinear (e D 1) orbits.

Curve ED corresponds to the orbits such that the elements e and i are constant.5

The constant values are related by the equation e2 D 1 � 5
2

cos2 i; whereas ! D
˙�=2. These equilibrium solutions correspond to the centers of the LK-resonance.

Interval DA (c2 D 0, 3=5 < c1 < 1) corresponds to the orbits such that e D 0,
i.e., to the circular orbits.

Interval 0D (c2 D 0, c1 < 3=5) corresponds to the separatrix solutions,6

separating the domains of librating and circulating arguments of pericenter. On the
separatrices, the eccentricity e tends either to zero or away from it. For these orbits,
the relation sin2 i sin2 ! D 2

5
holds.

The orbits inclined above the critical value icrit D arccos.3=5/1=2 may suffer
large eccentricity variations, especially large if an orbit is close to the separatrix of
the LK-resonance. The reason is that the LK-resonance is present in the phase space
if i > icrit. In case of the 90ı-inclination the eccentricity always tends to unity, no
matter what is its initial value; thus, the pericentric distance tends to zero, and such
(polar) orbits are practically short-lived.

What is more, the value arccos.3=5/1=2 � 39ı for the critical inclination icrit is
valid only in the limit a=apert ! 0 (where a and apert are the semimajor axes of the
particle and the perturber, respectively). As soon as, in any real problem, a=apert is
not zero, icrit is less than the classical value. The critical inclination diminishes with
increasing a=apert. This was shown already by Kozai (1962) both numerically and
analytically: e.g., if a=apert D 0:5 then icrit � 32ı, as follows from figure 1 in Kozai
(1962).

If c1 D .1�e2/1=2 cos i is close to unity, the particle’s eccentricity and inclination
suffer only small variations. Large variations become possible only if c1 < 3=5,
because the LK-resonance is then possible.

If the system is in LK-resonance, the secular e and i vary periodically; the
maximum eccentricity is achieved at i D 0, and the maximum inclination at
e D 0. The maximum values of eccentricity and inclination obtainable during
these variations depend on the value of c1. For instance, emax D 0:87, 0.98, and
imax D 60ı, 78ı, if c1 D 0:5, 0.2, respectively (Kozai 2012). For the main-belt
asteroids, the periods of such variations are typically of the order of a few thousand
years; on this reason, the secular variations cannot be detected directly for this kind
of objects; they are studied numerically (by numerical integrations) and analytically.

5Note that when we speak here on the constancy of any element, the long-term (average) behaviour
in the double-averaged problem is implied. In the single-averaged problem (and, of course, in
the original non-averaged problem), the solution oscillates around the mean values given by the
solution of the double-averaged problem.
6The analogous well-known separatrix of the mathematical pendulum is illustrated in Fig. 4.5.
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3.2.4 The Lidov-Kozai Diagrams

Using the LK integrals c1 and c2, one can visualize patterns of the secular dynamics
by constructing suitable diagrams, representing contour plots of the solutions (level
curves of the Hamiltonian). Examples of such diagrams were provided already by
Kozai (1962) and Lidov (1963b).

In particular, Kozai (1962) proposed a convenient technique to analyze the quali-
tative properties of the secular effects: he constructed phase portraits, characterizing
the secular evolution of the eccentricity and the argument of pericenter for various
initial conditions. Taking into account that the corresponding phase trajectories lie
on the level curves of the LK-Hamiltonian, the trajectories can be drawn without
integration of the motion equations. The topology of the phase portraits depends
essentially on the norm of the vertical component of the particle’s orbital angular
momentum.

As we know already from the preceding subsection, at its certain value, a
bifurcation occurs: whereas for the norm’s greater values the argument of pericenter
always circulates, for its smaller values an equilibrium point appears, accompanied
with the trajectories (around the point), corresponding to libration of the argument
of pericenter. This libration island is nothing but the famous Lidov-Kozai resonance.

The level curves in the (!, e) plane are constructed using the relation

c2.!; e; c1/ D e2



2

5
�
�
1 � c1

1 � e2

�
sin2 !

�
D const; (3.38)

easily derivable from expressions (3.35) and (3.36). Solving the equation
c2.!; e; c1/ D const on a set of various values of constant c2 (subject to the
inequality �3=5 	 c2 	 �2=5), one can visualize the global dynamical behaviour
of the system by constructing the corresponding curves in the (!, e) plane, for one
and the same value of c1.

Using such plots, Kozai (1962) represented graphically the secular dynamics of
two asteroids, (1036) Ganymed and (1373) Cincinnati. Ganymed is a NEO (Near-
Earth Object) belonging to the Amor group, and Cincinnati is an outer main-belt
asteroid. Orbital data for them are presented in Table 7.1; note high values of the
inclination and eccentricity. According to the contour plots built by Kozai, (1373)
Cincinnati is inside the LK-resonance, whereas (1036) Ganymed is not.

A vivid example (a strictly model one) of a pronounced LK-resonant pattern in
the (!, x) plane, where x D 1 � e2, is given in Fig. 3.2, for c1 D .1 � e2/ cos2 i D
0:25. Such contour plots are extensively used now in studies of various astrophysical
systems, in particular, in exoplanetary studies. In Fig. 3.3, the contour plot for the
same value of c1 as in Fig. 3.2 is shown as built by Holman et al. (1997) to describe
possible secular dynamics of an exoplanet orbiting one of the components of the
double star 16 Cyg AB. In Fig. 3.3, a curve given by a direct numerical integration
of the non-averaged equations of motion is superimposed on the contour plot. The
initial conditions for this integration were chosen to be near the separatrix of the
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Fig. 3.2 Integral curves at c1 D 0:25 (Figure 3 from Malhotra (2012). With permission from
UNESCO-Encyclopedia of Life Support Systems (EOLSS). ©UNESCO-Encyclopedia of Life
Support Systems (EOLSS))

Fig. 3.3 Integral curves at c1 D 0:25, with the chaotic separatrix superimposed; see text for details
(Figure 3 from Holman et al. (1997). With permission from Nature Publishing Group)
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LK-resonance; therefore, the motion is chaotic and the resulting curve on the graph
is irregular. Details on the possible dynamics of planet 16 Cyg Bb are given in
Sect. 8.3.

Sometimes, instead of using the Cartesian frame (!, e) (or, say, (!, x)), it is more
convenient to present the level curves in the polar coordinates, e (or x) as the radial
one, and ! as the angular one, thus setting e cos ! and e sin ! as the Cartesian axes
(see, e.g., Broucke 2003; Prokhorenko 2002a,b). We will provide examples of such
diagrams further on, when discussing applications.

3.2.5 The Solution in the Jacobi Elliptic Functions

The integration of the averaged equations of motion by quadrature requires appli-
cation of elliptic functions. Already in 1962 Kozai demonstrated that the solution
could be found via Weierstrass elliptic functions. In 1968, a partial solution for all
required elements except �, i.e., for elements e, i, and ! (with the initial condition
!0 D 0; ˙�=2), was explicitly expressed in the Jacobi elliptic functions by Lidov’s
disciple Yu. F. Gordeeva (1968). The task was completed by Vashkovyak (1999) and
Kinoshita and Nakai (1999, 2007), who gave the full explicit elegant solution in the
Jacobi elliptic functions.

In this section, we describe how this general solution is obtained, according to
Kinoshita and Nakai (2007). This general solution is valid for any initial values of
the eccentricity, inclination, and argument of pericenter of the perturbed particle.

In terms of the Delaunay variables (2.15), the averaged Hamiltonian, as we know
from Sect. 3.2.1, is a function of three Delaunay momenta and only one angle, !:

H D H.L;G;H; !/; (3.39)

see Equation (3.25). Momenta L and H are constant, but G is not. Integral (3.23) has
the form

c1 D .H=L/2 D .1 � e2/ cos2 i: (3.40)

In what follows, it is used as a parameter. The non-indexed elements a, e, etc., refer
to the test particle, as usual.

Kinoshita and Nakai (2007) take the averaged Hamiltonian in the form

H D ˇŒ.2 C 3e2/.3 cos2 i � 1/ C 15e2 sin2 i cos 2!�; (3.41)

where

ˇ D mpert

16.m0 C mpert/
n2

perta
2
pert.1 � e2

pert/
�3=2; (3.42)

m0 and mpert are the masses of the primary and the perturber, apert and epert are the
semimajor axis and the eccentricity of the perturber, npert is its mean motion.
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Integral (3.24) has the form

c2 D e2

�
2

5
� sin2 i sin2 !

�
: (3.43)

On the separatrix, c2 D 0 and H D H.e D 0/ D 2ˇ.3c1 � 1/. As explained in
Sect. 3.2.3, the motion is libration or circulation according to the values of c1 and
c2: if c1 > 3=5, then the motion is circulation; if c1 < 3=5 and c2 < 0, then the
motion is libration; if c1 < 3=5 and c2 > 0, then the motion is circulation.

Hamiltonian (3.41) is equivalent to Hamiltonian (3.21), except for the constant
coefficient ˇ, in which a dependence on the possible (small) eccentricity of the
perturber is taken into account. Therefore, this Hamiltonian is valid, in some
approximation, in the elliptic R3BP.7 The remainder that is ignored in Hamiltonian
(3.41) is of the order (in the ratio to the main term) � eeperta=apert, if epert ¤ 0, or
� .a=apert/

2, if epert D 0.
The equations for the variables x � 1 � e2 and ! are defined by Hamilto-

nian (3.41). They are given by

d
p
x

dt
D 15

8
.x � 1/ sin2 i sin 2!; (3.44)

d!

dt
D �3

8
x�1=2


x � 5 cos2 i � 5.x � cos2 i/ cos 2!

�
; (3.45)

where the original system’s time 	 has been normalized, making it unitless: t D 
	 ,


 D mpert

.m0 C mpert/

n2
pert

n
.1 � e2

pert/
�3=2: (3.46)

The solution can be found by expressing ! through c1 and x using the energy con-
stant (3.41), and then substituting the obtained expression for ! in Equation (3.44);
thus, Equation (3.44) is reduced to

dx

dt
D �33=22�1=2 Œ.x � x1/.x � x2/.x � x3/�

1=2 ; (3.47)

where

x1 D ˛

6
� 1

6
.˛2 � 60c1/; (3.48)

x2 D ˛

6
C 1

6
.˛2 � 60c1/; (3.49)

7Note that the weakly elliptic R3BP was considered already in the pioneering work by Lidov
(1961).
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x3 D 1

4



5 C 5c1 � 5c1

x0

� x0 � 5.1 � x0/

�
1 � c1

x0

�
cos 2!0

�
; (3.50)

˛ D 1

2



5 C 5c1 C 5c1

x0

C x0 C 5.1 � x0/

�
1 � c1

x0

�
cos 2!0

�
; (3.51)

where x0 D 1�e2
0; c1 D .1�e2

0/ cos2 i0; the zero subscripts designate that the initial
value of a variable is taken: e0, i0, and !0 are the initial values of the eccentricity,
inclination, and argument of pericenter.

Once a solution for x is found, that for ! is given by

sin2 ! D 2x.x3 � x/

5.1 � x/.x � c1/
(3.52)

or

cos2 ! D 3.x2 � x/.x � x1/

5.1 � x/.x � c1/
: (3.53)

Defining the quantities

xmin D minfx1; x2; x3g; (3.54)

xmed D medfx1; x2; x3g; (3.55)

xmax D maxfx1; x2; x3g (3.56)

(as in Gordeeva 1968), one can write down an explicit formula for x, following from
Equation (3.47) by definition of the Jacobi elliptic function cn:

x D xmed C .xmin � xmed/ cn2�; (3.57)

where

� D 2

�

�
f! t C !0 C �

2

�
K.k/; (3.58)

f! D 33=2�

25=2K.k/
.xmax � xmin/1=2
: (3.59)

Here K.k/ is the complete elliptic integral of the first kind:

K.k/ D
Z �=2

0

d�

.1 � k2 sin2 �/1=2
; (3.60)
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and modulus k is given by

k2 D xmed � xmin

xmax � xmin
: (3.61)

From the solution, the minimum and maximum values of the eccentricity can be
determined, which correspond, respectively, to the maximum and minimum values
of the inclination. These extrema are given by

emin D .1 � xmed/1=2; emax D .1 � xmin/1=2; (3.62)

imin D arccos.c1=xmin/1=2; imax D arccos.c1=xmed/1=2: (3.63)

The elements e, i, and ! vary with the periods

Pe D �

f!
; Pi D �

f!
; P! D 2�

f!
; (3.64)

where f! is given by formula (3.59).
These are nothing but the periods of LK-oscillations.
The equation for the longitude of the ascending node is given by a Hamilton’s

equation, defined by Hamiltonian (3.41) expressed through the Delaunay variables.
The resulting equation is analogous to Equation (3.28), and has the form

d�

dt
D 3

4

c1=2

1

�
1 � 2

x3 � c1

x � c1

�
; (3.65)

Its solution can be directly expressed through complete and incomplete elliptic
integrals of the first and third kinds (Vashkovyak 1999), or it can be found in the
form of a Fourier expansion (Kinoshita and Nakai 1999). In the latter approach, one
has

� D f�t C �0 C
1X

mD1

bm sin 2m!; (3.66)

where

f� D 3

4

c1=2

1

�
1 � 2

x3 � c1

xmax � c1

�
� "ƒ0.�; k/f!; (3.67)

and

ƒ0.�; k/ D 2

�
.EF.�; k0/ C KE.�; k0/ � KF.�; k0// (3.68)
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is the Heuman Lambda function; F.�; k0/ is the incomplete elliptic integral of the
first kind; E and E.�; k0/ are, respectively, the complete and incomplete elliptic

integral of the second kind; k0 D �
1 � k2

	1=2
, and

sin � D
�
xmax � xmin

xmax � c1

�1=2

: (3.69)

The quantity " is given by

" D
(

1; if 0 < i < �
2
;

�1; if �
2

< i < �:
(3.70)

The Fourier coefficients are given by

bm D � 2.�q/m

m.1 � q2m/
sinh

m�F.�; k0/
K

; (3.71)

where the Jacobi nome, according to Abramowitz and Stegun (1970), is given by

q D exp

�
��

K0.k/
K.k/

�
; (3.72)

K0.k/ D
Z �=2

0

d�

Œ1 � .1 � k2/ sin2 ��1=2
: (3.73)

The period of LK-oscillations of the argument of ascending node is given by

P� D 2�

f�
; (3.74)

where f� is given by formula (3.67).
This completes the analytical solution in the version of Kinoshita and Nakai

(2007).
Kinoshita and Nakai (2007) checked its accuracy by a comparison with direct

numerical integrations of the original non-averaged equations of motion in the
elliptic R3BP. The integrations were performed for an asteroid and a planetary
satellite, namely, a main-belt asteroid (3040) Kozai and an irregular Neptunian
satellite Laomedeia NXII. (3040) Kozai orbits the Sun and is perturbed mostly by
Jupiter, whereas Laomedeia orbits Neptune and is perturbed mostly by the Sun.

Orbital data on (3040) Kozai and Laomedeia are given in Tables 7.1 and 5.4,
respectively. (3040) Kozai is a main-belt asteroid with the current orbital elements
a D 1:84 AU, e D 0:20, i D 47ı. Laomedeia, also called Neptune XII or S/2002 N3,
is a prograde irregular satellite of Neptune with a D 24 mln km, e D 0:40, i D 34ı.
Thus, the orbits of both objects are strongly inclined with respect to the reference
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planes, defined by the orbital planes of the perturbers. (In fact, the reference planes,
from which the inclinations are measured, are approximately the ecliptic plane in
both cases.)

As follows from both the analytical and numerical solutions, (3040) Kozai
resides in LK-resonance (! librates), and Laomedeia does not (! circulates), though
it is close to LK-resonance.

The osculating elements were used in both integrations, but the results were
averaged to provide a better comparison with the analytical solution. Nevertheless,
in both cases, the averaging-out of the short-periodic terms induced differences
between the osculating and mean elements, thus causing inevitable differences
between the analytical and numerical solutions. This factor dominated the (small)
inaccuracy of the analytical solution in case of Laomedeia.

In case of (3040) Kozai, another circumstance produced a greater inaccuracy.
Indeed, the ratio of the semimajor axes of the asteroid and the perturber are not at
all small for (3040) Kozai: a=aJupiter ' 0:35, and on this reason the neglected terms
in the perturbing function are not small enough. Therefore, the analytical solution
is not so much accurate, as in case of Laomedeia. For Laomedeia, the ratio of the
semimajor axes of the satellite and the perturber is � 70 times less; therefore, the
neglected terms are indeed small.

Despite these inevitable consequences of approximation, the analytical solution
provides a rather good qualitative description of the dynamical behaviour for both
(3040) Kozai and Laomedeia.

3.3 LKE-Preventing Phenomena

Let us discuss how the LKE can be suppressed in various dynamical situations.
Indeed, if an additional perturbation dominates over the LK-term in the Hamiltonian
of the motion, then the LKE may disappear (Lidov 1963b; Morbidelli 2002).

Such suppression explains, e.g., the stable existence of the regular Uranian
satellites, considered already in 1963 by Lidov (1963b). The suppression “agent”
here is the satellites’ orbital precession forced by the Uranus oblateness and the
moons’ mutual perturbations.

The LKE suppression phenomena may have various origins. An example is pre-
sented by the stability of our Solar system notwithstanding the Galactic tide. Indeed,
the planetary orbits in the Solar system are subject to long-term perturbations due to
the Galactic tide; and, being inclined by �60ı with respect to the Galactic plane, the
Solar system might seem to be vulnerable to destabilization by the LKE. In reality,
luckily for us, the LKE is suppressed by the precession of the planetary orbits due
to their mutual perturbations. Only at the distance of about a hundred thousand AU
(the radius of the Oort cloud) from the Sun the LKE becomes operational (Matese
and Whitman 1992; Morbidelli 2002).



3.3 LKE-Preventing Phenomena 47

Another vivid example is provided by the fact that in some compact binaries,
subject to a perturbation from a distant companion star, the LKE-suppressing
mechanism is due to the relativistic precession of the inner binary (Fabrycky and
Tremaine 2007).

Thus, an assessment of the LKE effectiveness in real celestial-mechanical sys-
tems often needs taking into account possible interfering perturbations, – sometimes
rather weak, because the LKE acts on long timescales.

To assess the LKE effectiveness analytically, the most easy way is to compare the
timescale of the LKE in a given problem with the period of the orbital precession
caused by a suppressing mechanism that may be in action. There is a number of sup-
pressing mechanisms. The most ubiquitous are: (1) gravitational perturbations from
other (than the secondary) bodies orbiting the primary; (2) primary’s or tertiary’s
non-sphericity implying non-zero quadrupole moments; (3) general relativity. The
second one subdivides in two important factors: (2a) oblateness of the primary’s
figure, due to rotation; (2b) tidal interaction between the primary and the tertiary,
implying deformations of their figures. Historically, it is just case 2a that was first
recovered as a mechanism suppressing the LKE (Lidov 1963b).

Of course, all the suppressing mechanisms may act in concert. Generally, the
perturbations are small, that is why the total rate of precession of the line of apsides
(the total rate of change of the longitude of pericenter) can be written as a linear
sum:

P$sum D P$.1/ C P$.2a/ C P$.2b/ C P$.3/: (3.75)

An analogous formula can be written for the total rate of change of the longitude of
ascending node. For our purposes (comparison of the precession rates) it is enough
to consider the rates of change of the longitude of pericenter.

3.3.1 Perturbations by Additional Orbiting Bodies

Suppose one has a system demonstrating the LKE; then, if an additional orbiting
body with non-zero mass is introduced in the system, the precession caused by the
perturbation from the introduced body may suppress the otherwise present LKE.
The suppression of this kind is possible in N-body systems with N 
 4.

A famous example of the orbital precession caused by orbiting bodies is given
by the orbital precession of Mercury. The rate of Mercury’s apsidal precession
due to the perturbations from all other planets is equal to 53200 per century; the
general relativity adds 4300 per century, whereas the Solar oblateness and tidal
effects are negligible (see, e.g. Clemence 1947). Thus, in Mercury’s precession,
the contribution of the planetary perturbations is the dominant one.

The basic expressions describing the secular evolution in the circumbinary and
circumcomponent planar cases are given in Chap. 8. The formula for the precession
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rate is individual in each of these two cases. It is given by

P$ D 3�
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1 C 3

2
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b

�
(3.76)

in the circumbinary case (here the barycentric frame is adopted), and by

P$ D 3�
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�
1 � e2

b

	�3=2
(3.77)

in the circumcomponent case (here an astrocentric frame is adopted); m0 and m1 are
the masses of the binary components (we set m0 
 m1), ab is the binary semimajor
axis, eb is the binary eccentricity, a is the semimajor axis of the particle’s orbit. The
masses are measured in Solar units, distances in astronomical units (AU), and time
in years. Thus, the gravitational constant G is equal to 4�2. The formulas are derived
in the hierarchical setting of the restricted three-body problem.

Formula (3.77) can be applied to estimate the rate of Mercury’s precession caused
by other planets; it provides rather good results for each planet contribution (which
are listed, e.g., in Clemence 1947), except for the contribution of Venus, because the
configuration Sun–Mercury–Venus is rather far from hierarchical.

3.3.2 Primary’s Oblateness

Let us consider the orbital precession of a satellite orbiting an oblate massive central
body (a planet). In our analysis we follow an approach adopted by Roy (1988) and
Murray and Dermott (1999). First of all, let us introduce orthogonal and spherical
coordinate frames for a satellite of a planet, as depicted in Fig. 3.4: x, y, z are
the Cartesian coordinates; r, �, ' are the spherical coordinates: satellite’s radial
distance, longitude, and latitude, respectively.

The axisymmetric gravitational potential of a non-spherical body (a primary) is
given by the expression

V D �Gmp

r

"
1 �

1X
iD2

Ji

�
Rp

r

�i

Pi.sin '/

#
; (3.78)

where G is the gravitational constant, mp and Rp are the mass and mean radius of
the planet, Pi are the Legendre polynomials of degree i, Ji are the so-called zonal
harmonics, which characterize the oblateness. The quantities Ji are unitless. Odd
harmonics J2jC1 ( j D 1; 2; : : : ) are generally small for planets (though the Earth
has J3 � 1:5J4). The first two even harmonics J2 and J4, measured for the planets
of our Solar system, are listed in Table 5.1.
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Fig. 3.4 The Cartesian and
spherical coordinate frames
for a planetary satellite: x, y, z
are the Cartesian coordinates,
and r, �, ' are the radial
distance, longitude, and
latitude of the satellite
(Figure 6.6 from Murray and
Dermott (1999). With
permission from Cambridge
University Press)

For a satellite moving in an orbit with semimajor axis a around a spherical central
body ( Ji D 0, i D 2; 3; : : : ), potential (3.78) reduces to the potential of a gravitating
point, and the mean motion is given by the expression n0 D .Gmp=a3/1=2, following
from Kepler’s third law. For a satellite moving around a planet with J2 ¤ 0 (an
oblate planet), the mean motion is given by

n D n0

"
1 C 3

2
J2

�
Rp

a

�2
#1=2

(3.79)

(Murray and Dermott 1999). Thus, generally, n > n0 for a fixed a.
Let us adopt an approximate expression for the perturbing function, truncated at

the lowest order of expansion in Rp=r:

R D �Gmp

r
� J2

�
Rp

r

�2

P2.sin '/; (3.80)

where

P2.sin '/ D 1

2
.3 sin2 ' � 1/: (3.81)
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Considering Fig. 3.4, one has

0
@
x
y
z

1
A D r

0
@

cos � cos.! C f / � sin � sin.! C f / cos i
sin � cos.! C f / C cos � sin.! C f / cos i

sin.! C f / sin i

1
A ; (3.82)

where i is the inclination, f is the true anomaly, and ! is the argument of pericenter.
Therefore, the latitude ' is given by the equation

sin ' D sin i sin. f C !/: (3.83)

Then, one can (1) substitute r D a.1 � e2/=.1 C e cos f / in R, given by
expression (3.80); (2) represent sin f and cos f as the power series in the mean
anomaly M; and, finally, (3) average R over M (0 	 M 	 2�). This gives the
averagedR, up to the second order in e and sin i and in the lowest order of expansion
in Rp=a:

hRi D 3

4
J2R

2
pn

2.e2 � sin2 i/: (3.84)

Taking the Lagrange planetary equations (provided, e.g., in Subbotin 1968, or
Murray and Dermott 1999) for the longitude of pericenter $ and for the longitude
of ascending node �, and using formula (3.84) for the perturbing function and
formula (3.79), one has finally in the lowest order of expansion in Rp=a:

P$ D 3

2
J2n0

�
Rp
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�2

; (3.85)

P� D �3

2
J2n0

�
Rp

a

�2

: (3.86)

We see that P$ D � P� in this approximation.

3.3.3 Tides

The tidal phenomena are important in tight astrophysical binaries, such as tight
binary stars, binary asteroids, star–planet systems, first of all the systems with
“hot Jupiters”. For the tight stellar binaries also a mutual mass transport may play
a significant role, apart from the tidal deformations. For a star–planet system, a
general picture of the tidal precession is given by Ragozzine and Wolf (2009),
for a binary asteroid by Perets and Naoz (2009) and Fang and Margot (2012). An
introduction to the celestial-mechanical theory of tides, including definitions of the
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effective dissipation parameter Q, the Love number, etc., can be found in Murray
and Dermott (1999). The tidal precession is a complex phenomenon, that is why we
consider only basic results here, appropriate for exoplanetary applications discussed
in the book further on.

In a star–planet system, the tidal bulge raised on the planet is always aligned
almost exactly towards the star: the lag angle � 1=Q, where the effective dissipation
parameter Q � 1 (e.g., for the giant planets one has Q & 105). On the other hand,
the height of the bulge strongly varies with the “star–planet” distance, sharply falling
with increasing the distance. This inhibits any description based on a single constant
value of the J2 harmonic. For the tidal bulge raised on the star, the situation is the
same; however, the bulge on the planet is most important for the precession. Taking
into account the dependence of the bulge size on the “star–planet” distance allows
one to estimate the tidal precession rate with a satisfactory accuracy (Ragozzine and
Wolf 2009; Sterne 1939).

According to Sterne (1939) and Eggleton and Kiseleva-Eggleton (2001), the rate
of the apsidal precession due to the tidal bulges, raised on both the primary and the
secondary (“star” and “planet”), is given by

P$tidal D P$tidal; 0 C P$tidal; 1 D

D 15

2
k2;0

�
R0
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�5 m1

m0

f .e/n C 15

2
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�5 m0
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f .e/n; (3.87)

where

f .e/ D .1 � e2/�5
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2
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8
e4 C : : : : (3.88)

The subscripts 0 and 1 refer to the primary and the secondary, respectively; m, R,
and k2, are the masses, mean radii, and Love numbers of the bodies; n, a, and e are,
respectively, the mean motion, size and eccentricity of the binary.

The Love number k2 is a unitless quantity that characterizes an effect of an
applied potential on the gravity field of the planetary interiors. It can be calculated,
given the interior density distribution (e.g. Sterne 1939). If the density rises towards
the center, i.e., the mass is concentrated to the core, then the k2 values are small
(k2 � 1). In this case, the gravity field is mostly unaffected by the masses located
closer to the surface of the object. This is typical for the stars: e.g., the Solar-type
stars have k2 � 0:03 (Claret 1995).

Planets, especially rocky planets, are different in this respect: their gravity fields
are strongly affected by the distortions of mass distributions near their surfaces. The
weaker the object is condensed towards its center, the greater is its k2. A spherical
object with uniform density has k2 D 3=2; this is the maximum value for the Love
number. The gas giants Jupiter and Saturn have k2 ' 0:49 and 0:32, respectively,
indicating the presence of relatively massive cores.
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The size of the tidal bulge is directly proportional to the mass of the body that
raises the tide, and the tide on the planet is dominant in determining the precession
rate. The ratio of the rates induced by the secondary and the primary is given by the
formula

P$tidal; 1

P$tidal;0
D k2; 1

k2;0

�
R1

R0

�5 �m0

m1

�2

: (3.89)

For a typical “star–planet” system this ratio is estimated to be ' 100 (Ragozzine
and Wolf 2009).

3.3.4 General Relativity

Einstein’s explanation of the “anomalous” precession of the pericenter of Mercury’s
orbit was one of the major successes of the theory of general relativity. As in the
case with Mercury, general relativity can contribute much to the apsidal precession
of exoplanets, because many of them (especially, the “hot Jupiters”) move in
tight orbits. The rate of the relativistic precession (in radians per planetary orbital
revolution) is directly proportional to the ratio of the gravitational radius Rg of the
parent star and the pericentric distance q of the planetary orbit. Einstein’s formula
for the apsidal precession rate is

P$GR D 6�Gm0

c2a.1 � e2/
D 6�Rg

a.1 � e2/
D 6�Rg

q.1 C e/
; (3.90)

where G is the gravitational constant, m0 and Rg D Gm0c�2 are the mass and the
gravitational radius of the body around which the particle orbits, c is the speed of
light, e is the eccentricity of the planetary orbit (see, e.g. Clemence 1947).

As follows from Equation (3.90), the smaller is the pericentric distance q D
a.1 � e/, the more rapid is the precession. For “hot Jupiters”, P$GR can reach rather
large values, exceeding the value for Mercury by orders of magnitude.

The rate of Mercury’s apsidal precession due to the perturbations from all other
planets is equal to 53200 per century; the general relativity adds 4300 per century
(see, e.g. Clemence 1947). The planetary contributions to the orbital precession of
Mercury (the exact values, as cited in Clemence (1947), and the values given by
Heppenheimer’s formula (3.77)) are listed in Table 3.1. Note that the only serious
differences of the analytical estimates from the exact numerical ones take place for
Venus and Earth, because the hierarchical approximation, in which formula (3.77)
is valid, breaks down for them.
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Table 3.1 Contributions to the advance of the perihelion of Mercury, in arcseconds per century

Planet Exact value (Clemence 1947) Value given by Eq. (3.77)

Venus 277:86 ˙ 0:68 151:42

Earth 90:04 ˙ 0:08 70:34

Mars 2:54 2:164

Jupiter 158:58 159:27

Saturn 7:30 ˙ 0:01 7:707

Uranus 0:141 0:1455

Neptune 0:042 0:0446

3.3.5 The Orbital Precession in Total

The four giant planets of our Solar system rotate very fast, all of them have periods
of axial rotation of the order of 10 h. On this reason their figures are significantly
oblate, especially in the cases of Jupiter and Saturn; see Table 5.1. The rotational
oblateness of the planets dominates over other effects determining the apsidal
precession of the satellites of these planets.

The “hot Jupiters”, apart from the fact that they move close to their parent stars,
have another serious distinction from the giant planets of our Solar system: their
axial rotation is drastically slower. At close distances to the parent stars, the tidal
slowing-down of the rotation leads to its synchronization with the orbital motion. In
the synchronous state, one and the same side of a planet is exposed to the parent star,
analogously to the synchronous state of the Moon with respect to the Earth. (Note
that the tidal effect sharply rises with decreasing the orbital semimajor axis.) Thus,
the rotational oblateness of the parent planets contributes little to the total apsidal
precession of such planets. Instead, the tides dominate over all other contributions.
Very hot Jupiters (the giant exoplanets with semimajor axes a . 0:025 AU � 6

stellar radii) are expected to have the tides on the planets that induce the orbital
precession with the rate up to �20ı per year, as in the case of WASP-12b (Ragozzine
and Wolf 2009).

For the hot Jupiters, the general relativity is the second most important contri-
bution to the apsidal precession. Generally, it evokes the precession by an order of
magnitude slower than that evoked by the planetary tidal bulge (Ragozzine and Wolf
2009).

If the contributions to the total precession rate are all small, the total rate can
be calculated as a linear sum of the individual contributions, see Equation (3.75).
Comparing the period of the total precessional effect with the period of LK-
oscillations, one can judge whether the LKE is suppressed or not.



54 3 Classical Results

3.4 Critical Radii

Studying the motion of Jovian satellites, already in 1805 Laplace realized that
the choice of a convenient reference plane for defining the orbital inclination
of a satellite depends on the size of its orbit (Laplace 1805): near the planet,
where perturbations caused by the planet’s oblateness dominate, it is pertinent to
measure the inclinations with respect to the planet’s equatorial plane, whereas far
from the planet, where Solar perturbations dominate,—with respect to the planet’s
ecliptic plane. In intermediate situations, the reference plane is defined as the plane
orthogonal to the axis of precession of a satellite’s orbit (e.g., Tremaine et al. 2009).
Indeed, if a satellite has the orbital semimajor axis large enough, the precession of
its orbit is mostly controlled by the Sun; conversely, if the orbit size is small, it is
controlled by the parent planet’s oblateness.

Thus, for the planetary satellites in the low orbits where the perturbations
caused by the host planet’s oblateness dominate, the Laplace plane is approximately
the planet’s equatorial plane; for the planetary satellites in the high orbits where
the Solar perturbations dominate, the Laplace plane is approximately the planet’s
ecliptic plane. The transition between these two limits takes place at a radial distance
from the planet known as the Laplace radius:
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(3.91)

(Goldreich 1966; Tamayo et al. 2013; Tremaine et al. 2009), where mp and mSun

are the masses of the planet and the Sun, Rp, J2, ap, and ep are the planet’s mean
radius, second zonal harmonic coefficient, orbital semimajor axis and eccentricity,
respectively.

In fact, as follows from its definition, the Laplace radius plays the role of the
critical radius above which the LKE becomes operational. The notion of critical
radius is easily generalized to the cases of other possible perturbations. Indeed, the
period of precession induced by any of the known LKE-preventing mechanisms
(considered in the preceding section) increases with the distance from the system
center (because the cause of precession becomes farther from the particle), whereas
the period of LK-oscillations, on the contrary, diminishes (because the perturber
becomes closer). Therefore, in each case, a distance from the center exists where
the periods become equal. This is just the critical radius, above which the LKE
becomes operational.

Formula (3.59) gives the exact frequency of LK-oscillations. An approximate
frequency is given by the constant factor of Equation (3.32). Equating the LK-
frequency sequentially to the frequencies of precession induced by the primary’s
non-sphericity, tides, or general relativity, one gets equations defining the critical
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radius a D acrit in each case:

P!LK.a/ � P!obl.a/; (3.92)

P!LK.a/ � P!tidal.a/; (3.93)

P!LK.a/ � P!GR.a/: (3.94)

Based on Equation (3.92), formula (3.91) can be derived by retaining the leading
terms in formulas (3.85) and (3.86), calculating the difference P! D P$ � P�, and
equating P! to the LK-frequency, given by Equation (3.32). The same result is
achieved by equating P$ to that given by formula (3.77) (note that the unit system
should be adjusted in the latter case).

Equations (3.93) and (3.94) define the critical radii for the cases of tidal
and general-relativistic perturbations, respectively. To obtain explicit relations, the
frequencies given by formulas (3.87) and (3.90) should be substituted in the right-
hand sides of the equations.

Apart from the listed perturbations, the LKE can be quenched by perturbations
from inner (with respect to the test particle) bodies orbiting the primary. Their effect
can be incorporated in formula (3.91) by modifying the value of J2:

J0
2 D J2 C 1

2R2
p

nX
iD1

mi

mp
a2
i ; (3.95)

and by substituting J0
2 instead of J2 in formula (3.91) (Tremaine et al. 2009). Here

it is supposed that n satellites move in circular equatorial orbits around the planet;
their orbits are much smaller in size than that of the test particle. The physical sense
of the formula is that the perturbing satellites are “spread” by averaging along the
orbits, thus enhancing the physical oblateness of the central body.

Finishing this Chapter, let us consider a remarkable example of a system where
the LKE is suppressed twice. This is the satellite system of Pluto. In fact, Pluto and
Charon form a central binary of this system: the mass ratio of Charon and Pluto is
rather large,m1=m0 D 0:12. The inclination of the binary’s plane, with respect to the
plane of the binary’s orbit around the Sun, is equal to 119ı; therefore, the question
immediately arises: why the system is not destabilized by the LKE induced by the
Sun? Or, maybe, we observe it in the process of destabilization?

The answer is that the binary’s orbital precession induced by the Pluto–Charon
tidal interaction dominates over the secular motions induced by the LKE; thus, the
LKE is quenched (Michaely et al. 2015). Then, another question is immediate: what
about other satellites, Styx, Nix, Kerberos and Hydra, which move in wider orbits
coplanar with the central binary? For them, the tidal effect is negligible, because
it sharply diminishes with increasing the distance from the system’s center. The
answer, in its turn, is that the LKE-quenching precession is still induced for them,
but by another mechanism,—that conditioned by the non-point-mass gravitational
potential of the central binary Pluto–Charon.
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In the presence of a central binary, the critical orbital radius above which a satel-
lite cannot survive, due to the LKE, can be calculated by means of formula (3.91),
where J0

2 is substituted instead of J2. In formula (3.95), the original J2 is set to zero,
and it is enough to take only Charon in account, i.e., n D 1. On similar grounds,
Michaely et al. (2015) derived the following formula, which allows one to estimate
the critical semimajor axis acrit in such systems:

acrit D
"

3m1m2
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1 � e2

1

	3=2

8m0.m1 C m2/ .1 � e2/
3=2

�
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	#1=5 �
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1a
2
2

	1=5
; (3.96)

where m0 is the mass of the perturber, and m1 
 m2 are the two masses comprising
the binary orbiting the perturber; a1 and a2 are the semimajor axes of the “large” and
“small” binaries, respectively (the large binary is formed by the perturber and the
barycenter of the small binary); e1 is the eccentricity of the large binary. The small
binary is assumed to be circular, i.e., e2 D 0. The semimajor axis and eccentricity
of an outer massless satellite of the small binary are designated by a and e; and i is
the inclination of the satellite’s orbit with respect to the orbital plane of the small
binary. It is assumed that the inclination of the small binary with respect to the large
binary is high enough, so that the LK-resonance is potentially present.

In the Sun-perturbed Pluto–Charon system, m0, m1, and m2 are, respectively, the
masses of the Sun, Pluto, and Charon; a1 and a2 are, respectively, the semimajor
axis of Pluto’s orbit around the Sun and the semimajor axis of the Pluto–Charon
binary; e1 is the eccentricity of Pluto’s orbit around the Sun; and e2 D 0 (the Pluto–
Charon binary is almost circular). Substituting the values of all these quantities in
formula (3.96), one finds acrit D 0:004 AU. As Michaely et al. (2015) found out,
all satellites of the Pluto–Charon binary lie well within this limit; the most distant
one, Hydra, follows an orbit whose size is by an order of magnitude less than acrit.
On the other hand, the value of acrit is still much smaller than the Hill radius of the
Pluto–Charon system.



Chapter 4
The Theory Advances

. . . the integrability of the non-restricted
problem under consideration is, in a way,
a happy coincidence.

Lidov and Ziglin (1976)

Since the time when the Lidov-Kozai effect was discovered, a substantial and steady
progress in the analytical theory of this secular effect has been observed. This
Chapter is an attempt to describe the progress of the LKE concept.

First of all, let us enumerate integrable cases of the double-averaged restricted
three-body problem, mostly following a classification by Vashkovyak (1984). Recall
that the double-averaged elliptic R3BP has basically two integrals: the semimajor
axis a of the particle and the double-averaged perturbing function V.a; e; i; !; �/.
Seven cases are distinguishable, where an additional integral exists, rendering the
problem integrable:

1. The circular R3BP, known to be integrable since the works by Moiseev
(1945a,b). When the perturber’s eccentricity epert D 0, the third integral in
form (3.23) exists.

2. The rectilinear R3BP (epert D 1) is integrable, because the third integral in
form (3.23) can also be obtained, upon choosing a suitable reference frame
(Vashkovyak 1984).

3. The planar elliptic R3BP. If sin i D 0, then the existence of two basic integrals
a D const and V.a; e; i; !; �/ D const is sufficient to render the problem
integrable (Aksenov 1979a,b; Vashkovyak 1982).

4. The close-to-coorbital particle–perturber configuration of the R3BP (a � apert,
e � 0, sin i � 0), considered in Lidov and Ziglin (1974).

5. The orthogonal apsidal orbits of the spatial elliptic R3BP (i D �=2, sin � D 0).
In this case, i D const and � D const (Vashkovyak 1984).

6. The Hill problem, in which the size of the particle’s orbit is much smaller than
the size of the perturber’s orbit. The third integral in form (3.23) exists, as first
revealed by Lidov (1961).
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7. The inverse Hill problem—the case opposite to case (6), namely, the size of the
particle’s orbit is much greater than the size of the perturber’s orbit. This case
corresponds to the circumbinary motion of the particle. The third integral has
form e D 0 (Ziglin 1975).

Unlike cases (1)–(5), cases (6) and (7) are limit cases, as the integrability takes
place in the limits a=apert ! 0 and a=apert ! 1, respectively.

4.1 LKE in the Non-hierarchical Circular R3BP

Already in 1962, Kozai, using a numerical approach, calculated critical inclinations
in the circular R3BP (Kozai 1962). It turned out that the critical inclination
monotonously decreases with increasing the ratio ˛ D a=apert of the semimajor axes
of the particle and the perturber. For example, at ˛ D 0:5 the critical inclination is
equal to only �32ı, and it formally drops to zero at ˛ � 0:88. Recall that at ˛ D 0

it is equal to �39ı.
The critical inclinations for both inner and outer variants of the problem (i.e., for

a perturbed particle either in inner or outer orbits with respect to a perturber) in the
whole possible range of ˛ (0 < ˛ < 1) were calculated by Krasinsky (1972, 1974),
who used a special representation of the perturbing function. The importance of the
LKE at any ˛, in the dynamics of short-period comets and similar highly-eccentric
objects, in presence of several perturbers, was revealed in a numerical study by
Kozai (1979). The numerical integration was accomplished taking into account four
giant planets as perturbers, the ˛ parameter for the objects studied thus taking values
in broad ranges.

A complete theory of the LKE at any ˛ in the framework of the circular R3BP
was developed by Vashkovyak (1981a). When there is no restriction on the ratio
of the semimajor axes of the body and perturber, serious analytical difficulties for
application of the averaging procedure appear due to possible crossings of orbits.
Detailed studies of these difficulties and the ways to overcome them were performed
by Lidov and Ziglin (1974), Vashkovyak (1981b), and Gronchi and Milani (1998,
1999).

In the works by Quinn et al. (1990) (on the quasi-parabolic comets arriving from
the Oort cloud), Bailey et al. (1992) (on the LKE-maintained production of most
of the sungrazing comets), and Thomas and Morbidelli (1996) (on the long-period
comets) the basic inferences of Kozai (1979) were confirmed and the numerical-
experimental techniques raised to a new level.

A semi-analytical approach was proposed by Thomas and Morbidelli (1996)
to describe the LKE in the motion of long-period comets in the outer Solar
system in presence of several perturbers (the giant planets). In their scheme, the
averaging of the Hamiltonian is performed numerically, using the Gauss–Kronrod
algorithm, suitable to deal with singular functions. This is necessary to allow
for planet-crossings, though the double integral in the averaging procedure is



4.1 LKE in the Non-hierarchical Circular R3BP 59

always well-defined (see notes below). By constructing semi-analytical contour-
level diagrams in the planes “e sin !–e cos !” and “!–X”,1 where X D .1 � e2/1=2,
Thomas and Morbidelli (1996) were able to describe the LKE-associated global
secular dynamics in the outer Solar system, thus demonstrating that the structure of
the phase space in presence of several perturbers is considerably modified, first of
all due to possibilities of crossings between the cometary and planetary orbits. The
location, emergence and death of the !-libration islands, governed by the behaviour
of the curves of node-crossings of the orbits of planets, were described; the Thomas–
Morbidelli diagrams are reviewed in more detail below in Chap. 7.

In the outer Solar system (the case of inner perturbers), as certified by the
theory of Thomas and Morbidelli (1996), the particle’s argument of perihelion !

may librate not only when the initial inclination is high, but also when it is quite
moderate. At small inclinations, ! may librate around stable equilibria located
at ! D 0ı and ! D 180ı. If one increases the initial inclination, at i � 30ı
these equilibria loose stability, and the classical equilibria emerge at ! D 90ı and
! D 270ı.

In the main belt of asteroids, the LKE pumps the eccentricity of highly-inclined
objects to values at which they become planet-crossing, and this leads to their
close encounters with planets. Thus, the LKE causes the main belt depletion at
high inclinations. In the Kuiper belt, on the contrary, quite a number of objects are
observed to be at high inclinations. This is because the LK-mechanism (due to the
presence of inner perturbers) in this region does not pump eccentricities to planet-
crossing values, if the initial eccentricities are small or moderate, at any inclinations
(Thomas and Morbidelli 1996). On this reason, the inclined close-to-circular and
moderately elongated orbits are not destabilized.

A similar LK-mechanism (with inner perturbers) affects the motion of a minor
body in the inner Solar system, if the body moves in a moderately inclined orbit
slightly exterior to the orbit of Venus or the Earth (Michel and Thomas 1996).
Indeed, if the body’s inclination is not high enough, then the perturbations from
Venus or the Earth dominate over the Jovian perturbations, and, thus, the LK-
dynamics is similar to that present in the Kuiper belt. Conversely, at high enough
inclinations, the Jovian perturbations dominate over the perturbations from Venus
and the Earth, and the LK-dynamics is similar to that in the main belt. As
demonstrated by Michel and Thomas (1996), the LKE may serve as a mechanism
for the temporary protection from close encounters with perturbing planets.

A close encounter of an asteroid with a planet corresponds to a mathematical
singularity in the equations of motion, where zeros (r � ri D 0) appear in
denominators. This makes analytical averaging impossible. However, Gronchi and
Milani (1998, 1999) demonstrated that the averaging integrals of the Hamiltonian
remain well-defined. Therefore, the numerical averaging can be used to describe
the secular dynamics, even when crossings of the planetary orbits are possible.

1The choice of the “!–X” plane is especially appropriate for studies of a highly-eccentric motion;
see Sects. 6.2 and 7.3.
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Gronchi and Milani (1999) identified regular islands of LK-libration for Centaurs
(the objects intermediate, in the orbit size, between the main-belt asteroids and the
TNOs) in the LK-diagrams; the islands are defined by the curves of node-crossings
of the planetary orbits. Inside the islands the Centaurs are protected from encounters
with the planets.

More applications of the LKE theory in the dynamics of asteroids, TNOs, and
Centaurs are discussed in Chap. 7.

4.2 LKE in Presence of Mean Motion Resonances

The role of mean motion resonances in the dynamics of asteroids became evident
already in the nineteenth century, since the discovery of the Kirkwood gaps
in the asteroid belt (Kirkwood 1867). The gaps correspond to simple rational
commensurabilities between the orbital periods of Jupiter and asteroids, such as 3/1,
4/1, 7/3, etc. The consequent discovery of Trojans (the asteroids in 1/1 resonance
with Jupiter) and Hildas (the asteroids in 3/2 resonance with Jupiter) showed that
resonances may as well correspond to stable asteroidal groups, in contrast to the
unstable objects in the Kirkwood gaps. However, notwithstanding the instability,
some asteroids were identified to move inside the gaps.

Resonance signifies that a resonant (also named critical) angle, or argument,
is in libration. For a mean motion resonance, the resonant argument is defined
as a linear combination (with integer coefficients) of mean longitudes and other
angular elements of the orbital motion of two (or more) gravitating bodies. These
combinations are not arbitrary, but are subject to restrictions imposed by the
D’Alembert rules. The formulation of the D’Alembert rules is given in section 1.9.3
in Morbidelli (2002); in a general setting, functions with the D’Alembert properties
(characteristics) and their transformations are considered in Kholshevnikov (1997,
2001) and Ferraz-Mello (2007).

The classical averaging procedure that was used to derive the LKE solution fails
in presence of a mean motion resonance, because one more (apart from the argument
of pericenter) slow angle appears, namely, the resonant argument corresponding to
the resonance. This is the main difficulty with applying perturbation methods in
presence of a resonance.

Giacaglia (1968, 1969) adapted the von Zeipel method (described here in
Sect. 2.6) to analyze the secular motion of a particle (asteroid) in mean motion
resonances with an outer perturber (Jupiter), in the framework of the circular R3BP.
The perturber’s mass was assumed to be much smaller than that of the primary.
Giacaglia (1969) showed that two classical integrals of motion (the semimajor axis
a and c1 D .1 � e2/ cos2 i, see Equation (3.23)) remain valid in the resonant case, if
the motion takes place at the resonance center. If the amplitude of libration is small,
these two integrals can be used as approximations.
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In 1985, Kozai developed a simpler semi-analytical approach to deal with the
secular dynamics of asteroids in mean motion resonances (Kozai 1985). For the
sake of analytical simplicity, he assumed that an asteroid is in exact mean motion
resonance, i.e., the amplitude of resonant librations is zero; the object is at the
resonance center. (However, all major perturbing planets were taken into account,
assumed to move in circular coplanar orbits.) Using this approach, Kozai performed
a survey (on the subject of possible LK-oscillations) of the main-belt asteroids,
known to year 1985 to reside in 1/1, 4/3, 3/2, 2/1, and 3/1 mean motion resonances
with Jupiter. Only a few objects were found to be in !-libration. In particular,
no such Jovian Trojan (1/1 resonance) was identified, though Jovian Trojans
are numerous and highly-inclined. Only in the 3/1 resonance three !-librators
were found; these are (292) Ludovica, (329) Svea, and (1379) Lomonosowa (see
Table 7.1). Thus, it was shown that the LKE in presence of mean motion resonances
exists in the motion of real bodies.

Perhaps the most famous case when the LKE interacts with a low-order mean
motion resonance is the case of a “former planet”, the Kuiper belt object Pluto
(Williams and Benson 1971). It is well known that it resides in the 2/3 mean motion
resonance with Neptune. The presence of this resonance results, in particular, in that
the LKE becomes operational at low eccentricities, thus making Pluto an !-librator
and maintaining its survivability, though the pericentric distance of Pluto is smaller
than the radius of Neptune’s orbit (see Sect. 7.4.1 for details).

A number of asteroids residing both in the LK-resonance and in other secular
or mean-motion resonances were identified by Michel and Thomas (1996). For
example, (1981) Midas is locked both in the LK-resonance and in the �16 secular
resonance (the resonant argument for the �16 resonance is defined as � � �6,
where � and �6 are the longitudes of ascending nodes of an asteroid and Saturn,
respectively).

In more detail, the LKE in presence of mean motion and secular resonances will
be considered in Chap. 7, in application to the dynamics of asteroids and TNOs.

4.3 The “eccentric LK-mechanism”

In the circular R3BP, as follows from formula (3.23) for the c1 integral of motion, the
sign of cos i is conserved, whatever parameters and initial conditions of the motion
are. In other words, a prograde orbit (0 	 i < �=2) cannot become retrograde
(�=2 < i 	 �), and vice versa.

In the elliptic R3BP, such transitions are prohibited only in the quadrupole
model (the simplest one), in which the Hamiltonian expansion is truncated at the
second order of the ratio of the semimajor axes of the particle and the perturber,
i.e., in the quadrupole approximation. However, if higher-order terms are taken
into account, the prograde-retrograde (and vice versa) transitions, called orbital
flips (flips from prograde to retrograde motion or vice versa), become possible,
already in the octupole approximation. The flips arise due to the so-called eccentric
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LK-mechanism, discovered by Naoz et al. (2011) and Katz et al. (2011) by
considering an advanced approximation of the Lidov-Kozai Hamiltonian based on
retaining the octupole terms.

Let us underline that the double-averaged elliptic R3BP in the octupole and
higher approximations is non-integrable, because the particle’s longitude of the
ascending node is no more absent in the Hamiltonian and, therefore, the vertical
component of the particle’s angular momentum is not conserved.

The mechanism of Naoz et al. (2011) and Katz et al. (2011) corresponds to the
octupole-order regime with “low-eccentricity, high-inclination” initial conditions
for the orbital flips. It turns out that this mechanism is not the only one that provides
flips. Li et al. (2014b) pointed out the possibility of flips in another octupole-order
regime with “high-eccentricity, low-inclination” initial conditions; in this latter case,
the flip takes place as the orbital plane turns over its major axis.

We will consider these theories and their applications to exoplanetary dynamics
in Chap. 8. Before doing this, it is pertinent to consider the LKE in a more general
framework, namely, in the framework of the double-averaged general (or, non-
restricted) 3BP. In the general problem, all three masses are non-zero.

4.4 The Stellar Three-Body Problem in Octupole
Approximation

With a purpose to describe the secular evolution of triple stellar systems, the Lidov-
Kozai theory was generalized to the case of the general 3BP already in the 1960s and
1970s of the twentieth century (Harrington 1968, 1969; Lidov and Ziglin 1976). As
Harrington (1968) showed, the double-averaged Hill approximation of the stellar
problem (a strongly hierarchical three-body system) is integrable. A qualitative
analysis of the secular evolution in the stellar problem was undertaken by Lidov
and Ziglin (1976). Phase portraits presented in their paper clearly demonstrate the
LKE features.

The secular motion in the general 3BP was studied by Harrington (1968, 1969),
Lidov and Ziglin (1976), Ferrer and Osácar (1994), and other authors. The analytical
studies concentrated on the inner case, in which the dynamics of the inner binary is
investigated. In the quadrupole approximation, Lidov and Ziglin (1976) and Ferrer
and Osácar (1994) considered the motion of the inner binary and performed a
complete classification of the orbits and bifurcations. Note that Ferrer and Osácar
(1994) used the Hori–Deprit method to normalize the Hamiltonian; this method is
described in Sect. 2.7. Other authors mostly preferred the von Zeipel method, which
is more widespread, due to historical reasons, but technically less convenient.

In this section, we consider the hierarchical stellar three-body problem: three
material points of non-zero masses move in orbits such that the distance between
two of them is always much less than the distance separating any of these two points
from the third one.
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4.4.1 Triple Stars in the Galaxy

Triple stellar systems are ubiquitous in the Galaxy. As a rough estimate, a third
of all binaries have one or even more gravitationally bound companions; about
10 % of all binaries with the primary of Solar type belong to triples, while more
than 60 % of all Solar-type stars in the Galaxy are in binaries (Duquennoy and
Mayor 1991; Tokovinin 1997). What is more, obviously there is an observational
bias against identification of secondaries and a much greater observational bias
against identification of distant tertiaries (in hierarchical systems); therefore, the
actual percentages of binaries and triples are even greater.

Especially representative and important are triples in dense stellar clusters (and,
most prominently, in the cores of globular clusters) on evident dynamical reasons:
primordial binaries permanently interact to form triples, short-lived or long-lived
(McMillan et al. 1991).

As follows from observations, the tighter is a binary, the greater is the chance
that it has a third companion; thus, almost all tight binaries are, in fact, members
of systems of multiplicity greater than two. (For rigourous statistical results see
Duquennoy and Mayor 1991; Riddle et al. 2015; Tokovinin 2014; Tokovinin et al.
2006.) This might be a manifestation of the LKE: the efficiency of tides in the
inner binary is very sensitive to secular LK-variations of pericentric distances, due
to perturbations from the outer companion; thus, such LK-variations may lead to
substantial shrinking of the inner binary (see Mazeh and Shaham 1979).

On the other hand, all existing criteria for the stability of gravitating triples certify
that a triple is stable only if the third body’s orbit is wider enough than the inner
binary (more exactly, the third body’s pericenter must be greater enough than the
apocenter of the second body); see, e.g., Mardling and Aarseth (2001). Therefore,
the observed triples are all hierarchical: the inner binary is much smaller than the
outer one.

Note that long-lived non-hierarchical choreographies are, in principle, theoret-
ically possible (Chenciner and Montgomery 2000; Šuvakov et al. 2013), but an
exceptional fine-tuning of the initial conditions is required for such systems to
appear in reality; in any case, they have never been yet observed.

4.4.2 The Hierarchical Stellar Three-Body Problem in
Historical Perspective

A classical secular theory describing the long-term motion of planets in the Solar
system was developed by Lagrange and Laplace in the eighteenth century. This
theory is perfectly presented in the monographs by Brouwer and Clemence (1961)
and Murray and Dermott (1999). As soon as the ratios of semimajor axes of the
Solar system planets cannot be regarded as “small”, the theory does not use the
assumption of small values of ˛ D a1=a2 (the ratio of the semimajor axes of the
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perturbed body and the perturber), and is valid in all orders in ˛. On the other
hand, its validity is limited to the low-eccentric and low-inclined (with respect to
the invariable plane) orbits around a dominating mass (as in the Solar system).

In such a setting, the N-body problem is called the planetary N-body problem;
and, in particular, at N D 3, it is called the planetary 3BP, as distinctive from the
restricted 3BP. Of course, any secular theory for a general 3BP in the limit of small
eccentricities and inclinations must provide the results identical to the results of the
Lagrange–Laplace classical secular theory for the planetary 3BP.

Harrington (1968, 1969), using the von Zeipel method, deduced a quadrupole-
order approximation (i.e., retaining the terms up to the second order inclusive in ˛)
of the averaged Hamiltonian in the Delaunay variables for the hierarchical triples
with arbitrary masses, arbitrary initial eccentricities of the inner and outer binaries
and arbitrary initial orientations of the orbits. The derived expression turned out to
be similar to that found by Kozai (1962) in the same approximation in the restricted
3BP.

Lidov and Ziglin (1976) investigated the double-averaged general 3BP in the
same (quadrupole-order) approximation and provided a classification of orbits over
the full intervals of mass ratios and initial values of eccentricities and inclinations.
Lidov and Ziglin (1976) called the integrability of the problem in the given
approximation a “happy coincidence”, because a particular angle variable (the
argument of pericenter of the distant perturber) is cyclic (does not appear) in
this approximation. However, it is present in the higher approximations, and the
integrability fails.

Soderhjelm (1984) performed averaging of the Hamiltonian up to the octupole
order (i.e., retaining the terms up to the third inclusive in ˛), but merely in the planar
problem (in which the orbital planes of the inner and outer binaries are assumed to
be coplanar). He showed that the octupole terms dominated over the quadrupole
ones. Therefore, the quadrupole approximation is completely inadequate in such a
case.

Marchal (1990), using averaging by the von Zeipel method, obtained the
octupole-order Hamiltonian in the spatial setting of the problem. Krymolowski and
Mazeh (1999), using the same method, deduced the octupole-order Hamiltonian,
including additionally all terms of order ˛7=2, arising in the process of normalization
of the Hamiltonian. Marchal (1990) kept some of these terms.

A straightforward derivation of the equations of motion in the double-averaged
stellar problem was given in the octupole approximations by Ford et al. (2000) and
Naoz et al. (2013a), among others. These equations are applicable in broad ranges
of parameters’ values and initial conditions, in particular, (1) at almost all values
of the mass ratios that allow for a stable hierarchical configuration and (2) at any
relative initial inclination of the third body’s orbit with respect to the inner binary.

Naoz et al. (2013a) revisited the Hamiltonian formulation of the stellar problem
and demonstrated how the elimination of nodes2 in the Hamiltonian formulation

2By the elimination of nodes one implies the elimination of Delaunay variables Hi and hi (i D 1; 2)
in the Hamiltonian, see Jefferys and Moser (1966); Hi and hi are defined by Equations (2.15).
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of the stellar problem should be performed correctly, providing the correct form of
differential equations for the secular evolution of inclinations with respect to the
invariable plane.

Note that the conservation of semimajor axes is an immediate consequence of
performing the double-averaging in the angles l1 and l2 (thus they are eliminated
from the Hamiltonian and become cyclic). To prove that the semimajor axes are
indeed conserved, one has to justify the averaging, but this procedure is merely
heuristic. In fact, it is easy to provide examples (in the framework of the R3BP
with a test particle in an outer orbit), in which the particle’s semimajor axis is not
conserved secularly. If moving in an orbit eccentric enough, the particle can be
ejected from the system due to a chaotic diffusion (caused by the overlap of integer
mean motion resonances of the particle with the central binary) in both eccentricity
and semimajor axis; close encounters with the inner binary are not necessary for the
disintegration of the triple (see Shevchenko 2015).

Generally, recall that there is only one non-trivial integral in the non-averaged
general 3BP: the Jacobi integral, implying that the variations of the energy of the
“binaries” are coupled with variations in the vertical components of their angular
momenta.

4.4.3 Equations of Motion in the Jacobi Frame

Consider the motion of a hierarchical triple in the framework of the general 3BP,
i.e., all three components of the triple, including the smallest one, have non-zero
masses.

In contrast with the astrocentric coordinates, the so-called Jacobi coordinates
allow one to represent the Hamiltonian of any system of N C 1 gravitating points
in a rather simple way, as a sum of N two-body Keplerian Hamiltonians plus
perturbations. Therefore, hereafter we use the Jacobi frame. A detailed presentation
of a few-body Hamiltonian in the Jacobi frame is given, e.g., in Murray and Dermott
(1999) and Malhotra (2012); only a brief outline is given here.

The Jacobi frame is introduced recursively: the coordinates of the ith body are
defined with respect to the center of mass of the system of bodies 0, 1, 2, : : : ; i � 1.
Thus, the coordinates of a secondary (mass m1) are defined with respect to the
primary (to the center of mass of a system consisting of a sole mass m0); the
coordinates of a third body are defined with respect to the center of mass of the
primary and secondary; and so on.

Consider N massive bodies orbiting a primary (mass m0). By ri (i D 0; 1; : : :N)
we denote the inertial coordinates of the primary and the bodies; the partial mass
Mi � Pi

jD0 mj; the full mass of the system is MN D MiDN . The Jacobi coordinates
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are defined by the recursive relations

Qr0 D 1

MN

NX
jD0

mjrj; (4.1)

QriC1 D riC1 � Ri; Ri D 1

Mi

iX
jD0

mjrj: (4.2)

Thus, the motion of body i C 1 is referred to a frame centered on a center of mass
of the “preceding” i-body subsystem.

In a Hamiltonian formulation, the canonical momenta conjugate to Qri are

Qpi D Qmi
dQri
dt

; (4.3)

where

Qmi D miMi�1

Mi
I (4.4)

and the Hamiltonian is given by

H D Qp2
0

2MN
C

NX
iD1

Qp2
i

2 Qmi
�

NX
iD1

Gm0mi

kri0k �
X
0<i<j

Gmimj��rij
�� ; (4.5)

where ri0 D ri � r0, rij D ri � rj.
The momentum Qp0 of the system’s barycenter is constant; therefore, the first term

in Equation (4.5) can be omitted. Then, Equation (4.5) can represented as a sum of
N Keplerian Hamiltonians, H.i/

Kepler, and a perturbation, Hinteraction:

H D
NX
iD1

H.i/
Kepler C Hinteraction; (4.6)

where

H.i/
Kepler D Qp2

i

2 Qmi
� Gm0mi

kQrik ; (4.7)

Hinteraction D �
X
0<i<j

Gmimj��rij
�� C

NX
iD1

�Gm0mi

kQrik � Gm0mi

kri0k
�

: (4.8)
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4.4.4 The Octupole Hamiltonian of the Stellar Problem

In this subsection, we derive the equations of secular motion in the averaged
hierarchical general 3BP in the octupole approximation using classical perturbation
techniques. This derivation was performed first by Marchal (1990), followed by
the works by Krymolowski and Mazeh (1999), Ford et al. (2000), and Naoz et al.
(2013a), featuring various aspects of the problem. Our description is based on these
sources, mostly on the works by Ford et al. (2000) and Naoz et al. (2013a).

First of all note that in real triple stellar systems, the long-term orbital behaviour
is influenced by tides, effects of general relativity (if the central binary is tight),
and stellar evolution (stellar mass loss and/or transfer). Hereafter we assume that
these factors are absent; in other words, their timescales are much greater than the
timescale of the pure secular dynamics.

A hierarchical triple is naturally decomposed into the inner binary (formed by
two central masses m0 and m1) and an “outer binary” (formed by the outer mass
m2 and the center of mass of the inner binary, as if the two central masses were
concentrated to a single point), as described in Sect. 4.4.3.

Note that, apart from this subscript system adopted in this book for the mass
designations, hereafter we use subscripts “1” and “2” to distinguish between the
orbital elements of the inner and outer binaries, respectively.

It should be emphasized that the numbering of the bodies reflect merely the
hierarchy of the geometrical configuration of the triple. The masses are arbitrary.
Thus, the derived equations of motion are valid for any mass ratios, as long as the
system maintains a hierarchical configuration.

Such a decomposition is naturally described in the Jacobi frame, described in
Sect. 4.4.3. Here it is illustrated in Fig. 4.1, where vector r1 is the position vector
of m1 with respect to m0, and r2 is the position vector of m2 with respect to the
barycenter of the inner binary. In the Jacobi frame, the Hamiltonian of the triple
system is given by a sum of two “Keplerian terms” and an “interaction term”, see
Equation (4.6).

The hierarchical constitution of a triple implies that any close approaches and
encounters are absent; therefore, a perturbation theory, with the small parameter ˛

equal to the ratio of semimajor axes of the outer body and the central binary, can be
built. Hamiltonian (4.6) can be rendered the form (Harrington 1968, 1969):

H D Gm0m1

2a1

CG.m0 C m1/m2

2a2

C G
a2

1X
jD2

˛jMj

�
r1

a1

�j �a2

r2

�jC1

Pj.cos ˆ/; (4.9)

where G is the gravitational constant,

Mj D m0m1m2

Œmj�1
0 � .�m1/

j�1�

.m0 C m1/j
; (4.10)

ˆ is the angle between vectors r1 and r2 (see Fig. 4.1), Pj.cos ˆ/ are the Legendre
polynomials in cos ˆ. If m0 � m1 (the case of the central binary of comparable
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Fig. 4.1 The hierarchical
triple system in the Jacobi
frame (Figure 1 from Ford
et al. (2000). Copyright AAS.
Reproduced with permission)

masses), the terms with odd j in Hamiltonian (4.9) are relatively unimportant; in
case of exact equality m0 D m1 they even vanish, as follows from formula (4.10).

In formula (4.9), the interaction term is presented in the form of a multipole
expansion. Henceforth, we retain only the quadrupole terms (those with j D 2) and
the octupole terms (those with j D 3); i.e., the Taylor series in ˛ is truncated at the
third order, the fourth and higher orders are ignored. Accordingly, the Hamiltonian
containing the terms of the multipole expansion up to j D 2 inclusive is called
quadrupole, and that containing the terms up to j D 3 inclusive is called octupole.

Let a1 and a2 be the osculating semimajor axes of the inner and outer binaries.
The parameter ˛ D a1=a2 < 1 will serve as a small parameter of the perturbation
theory. This will be justified later on by the fact that a1 and a2 are conserved
secularly; thus, ˛ is a constant of the secular motion.

Let e1, e2 and i1, i2 be the osculating eccentricities and inclinations of the inner
and outer binaries. The Delaunay variables are defined by formulas (2.15). Thus,
the set of angles is: l1 and l2 are the mean anomalies, g1 and g2 are the arguments of
pericenters, h1 and h2 are the longitudes of ascending nodes; numbered “1” and “2”
for the inner binary and the outer binary cases, respectively. The canonical momenta,
conjugate to these angles, are given by

L1 D m0m1

m0 C m1

ŒG.m0 C m1/a1�
1=2; (4.11)

L2 D m2.m0 C m1/

m0 C m1 C m2

ŒG.m0 C m1 C m2/a2�
1=2; (4.12)
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G1 D L1.1 � e2
1/

1=2; (4.13)

G2 D L2.1 � e2
2/

1=2; (4.14)

H1 D G1 cos i1; (4.15)

H2 D G2 cos i2: (4.16)

Canonical momenta G1 and G2 are nothing but the modules of the angular momenta
of the inner and outer binaries, respectively, in the Jacobi frame. The invariable
plane of the triple system is defined as the plane orthogonal to the vector of the total
angular momentum of the triple, see Fig. 4.2. Let the z-axis be the direction of the
total angular momentum. Therefore, H1 and H2 are the z-components of the angular
momenta of the inner and outer binaries, as illustrated in Fig. 4.2.

In the Delaunay variables, the Hamiltonian equations of motion are given by

dLk
dt

D @H
@lk

;
dlk
dt

D � @H
@Lk

; (4.17)

dGk

dt
D @H

@gk
;

dgk
dt

D � @H
@Gk

; (4.18)

dHk

dt
D @H

@hk
;

dhk
dt

D � @H
@Hk

; (4.19)

where k D 1, 2.

Fig. 4.2 Canonical variables
G1, G2, H1, H2, and the total
angular momentum vector H
(Figure 2 from Ford et al.
(2000). Copyright AAS.
Reproduced with permission)
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At this step, the theorem of elimination of nodes (Jefferys and Moser 1966)
can be applied to reduce the system’s number of degrees of freedom from six to
four. However, this should be done with a certain care, as the canonical equations
resulting from the averaged Hamiltonian are not valid for the whole set of canonical
variables: they do not describe the evolution of the longitudes of ascending nodes
and their conjugate momenta (Naoz et al. (2013a); for more details, see Sect. 4.4.5).

The formal trick of the elimination of nodes is accomplished in the following
way. As follows from the system symmetry with respect to rotations about the total
angular momentum vector (as soon as the invariable plane is set as the reference
plane, see Fig. 4.2), by means of the substitution

H1 D 1

2H
.H2 C G2

1 � G2
2/; H2 D 1

2H
.H2 � G2

1 C G2
2/; (4.20)

the variables H1 and H2 are eliminated from the Hamiltonian.
The octupole truncation of Hamiltonian (4.9) can be represented as

Hoct D ˇ0

2L2
1

C ˇ1

2L2
2

C 8ˇ2

L4
1

L6
2

�
r1

a1

�2 �a2

r2

�3

.3 cos2 ˆ � 1/ C

C 2ˇ3

L6
1

L8
2

�
r1

a1

�3 �a2

r2

�4

.5 cos3 ˆ � 3 cos ˆ/; (4.21)

where

ˇ0 D G2 .m0m1/
3

m0 C m1

; (4.22)

ˇ1 D G2 .m0 C m1/
3m3

2

m0 C m1 C m2

; (4.23)

ˇ2 D G2

16

.m0 C m1/
7

.m0 C m1 C m2/3

m7
2

.m0m1/3
; (4.24)

ˇ3 D G2

4

.m0 C m1/
9

.m0 C m1 C m2/4

m9
2.m0 � m1/

.m0m1/5
: (4.25)

Now, using representation (4.21), the Hamiltonian can be normalized in each
order of ˛, by eliminating the short-period terms corresponding to the orbital
timescale. For this purpose, the Hori–Deprit method can be used, based on the
Lie series techniques, as described in Sect. 2.7. However, in the studies in this
field, an older method, namely, the von Zeipel method, was usually used, due to
historical reasons. This method is less convenient (the algorithm is technically more
complicated) than the Hori–Deprit method; in particular, the generating function is
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defined in mixed variables, i.e., it is a function of both “old” and “new” variables.
However, in the given problem the normalization is accomplished only in two orders
of ˛ (namely, ˛2 and ˛3), therefore, the advantages of the Hori–Deprit method are
not decisive.

Harrington (1968, 1969) used the von Zeipel method to obtain the normalized
quadrupole Hamiltonian; in this lowest order the normalizing procedure is equiv-
alent to a straightforward double averaging over the short-period angles. Marchal
(1990), Krymolowski and Mazeh (1999), and Ford et al. (2000) used the von Zeipel
method to obtain the normalized octupole Hamiltonian. Here we omit cumbersome
intermediate algebraic manipulations inherent to the normalization procedure and
present just the final Hamiltonian. Thus, the normalized octupole Hamiltonian is
given by

Hoct D C2Œ.2 C 3e2
1/.3�2 � 1/ C 15e2

1.1 � �2/ cos 2g1� C
C C3e1e

2ŒA cos ' C 10�.1 � �2/.1 � e2
1/ sin g1 sin g2�; (4.26)

where

cos ' D � cos g1 cos g2 � � sin g1 sin g2; (4.27)

C2 D G2

16

.m0 C m1/7

.m0 C m1 C m2/3

m7
2

.m0m1/3

L4
1

L3
2G

3
2

; (4.28)

C3 D 15

16

G2

4

.m0 C m1/
9

.m0 C m1 C m2/4

m9
2.m0 � m1/

.m0m1/5

L6
1

L3
2G

5
2

; (4.29)

A D 4 C 3e2
1 � 5

2
.1 � �2/.2 C 5e2

1 � 7e2
1 cos 2g1/; (4.30)

� D cos.i1 � i2/ D 1

2G1G2

.H2 � G2
1 � G2

2/; (4.31)

H D jHj; H D G1 C G2 (4.32)

(see Fig. 4.2). The value of H is set by initial conditions. Note that the quadrupole
Hamiltonian is given by Equation (4.26) with the octupole term (that with factor C3)
omitted.

The angle ' is nothing but the angle between the position vectors of the
pericenters of the inner and outer binaries. The angle i � i1 � i2 is the mutual
inclination of the binaries; see Figs. 4.1 and 4.2.

For the sake of technical clarity, the designations of variables in Hamilto-
nian (4.26) are kept to be the same as original ones, i.e., the original and
averaged (“mean”) variables are designated by the same symbols. However note
that dynamically they are different: the original variables suffer short-period time
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oscillations, eliminated in the behaviour of the “mean” variables. The averaged
semimajor axes a1 and a2 are obviously constant, because the mean anomalies l1
and l2, conjugate to L1 and L2 have been averaged out, and, therefore, the averaged
L1 and L2 are constant.

The canonical equations of motion for the “mean” ei and gi (i D 1; 2) are given by

de1

dt
D @e1

@G1

@Hoct

@g1

;
dg1

dt
D �@Hoct

@G1

; (4.33)

de2

dt
D @e2

@G2

@Hoct

@g2

;
dg2

dt
D �@Hoct

@G2

: (4.34)

In a final explicit form, obtainable after substituting Hoct in them, these equations
look rather cumbersome; they can be found in Ford et al. (2000) and Naoz et al.
(2013a). The equations can be numerically integrated. At each step of a numerical
integration, as soon as ei and gi are determined, Equation (4.31) allows one to find
the inclination i.

According to Naoz et al. (2013a), the secular equations for i1 and i2 (the
inclinations with respect to the invariable plane) can be written in the form

d cos i1
dt

D 1

G1

dH1

dt
� 1

G1

dG1

dt
cos i1; (4.35)

d cos i2
dt

D 1

G2

dH2

dt
� 1

G2

dG2

dt
cos i2; (4.36)

where the angular momenta time derivatives are determined from the normalized
Hamiltonian.

4.4.5 Technical Dangers of Formal Elimination of Nodes

The procedure of elimination of nodes in the equations of motion of the general
three-body problem was invented by Carl Jacobi. It is performed in a frame where
the total angular momentum vector of the system defines the z-axis (Jefferys and
Moser 1966). The plane orthogonal to this vector is called the invariable plane. In
such a frame, the relation h1 D h2 C � holds, where h1 and h2 are the longitudes of
ascending nodes. On the other hand, the longitudes of the ascending nodes enter the
original Hamiltonian only in the form of combination h1�h2 (due to the D’Alembert
rules, see references in Sect. 4.2). It might be tempting to make the substitution
h1 � h2 D � in the Hamiltonian, thus making the both longitudes cyclic; however,
such an operation would be inadequate.
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The reason is that the substitution h1 �h2 D � is equivalent to the transformation
h1 ! Qh1 C � , h2 ! Qh1, where Qh1 is a new variable. First of all, this transformation
is degenerate (R2 7! R

1). Besides, any full transformation of variables containing
this one cannot be canonical. Let us write down a necessary and sufficient condition
for a transformation to be canonical (Markeev 1990):

MTJM D cJ; (4.37)

where M is the Jacobi matrix of the transformation, MT is the transposed M, J is the
symplectic unity matrix, and c is the valence of the transformation. The matrices M
and J are given by

M D
 

@Q
@q

@Q
@p

@P
@q

@P
@p

!
; J D

�
0 En

�En 0

�
; (4.38)

where q, p and Q, P are the conjugate pairs of old and new variables, respectively;
En is the unity matrix n � n, and n is the number of degrees of freedom.

We see that for any transformation containing q1 D Q1 C � and q2 D Q1 the
matrix M is obviously degenerate; besides, equality (4.37) cannot be fulfilled for
such a matrix, i.e., the transformation is non-canonical. However, after the equations
of motion are deduced from the original Hamiltonian, the substitution h1 � h2 D �

is correct to accomplish, of course.
In the Hamiltonian itself, the substitution h1 � h2 D � can be performed only as

a symbolic formal trick, in understanding that the validity of the Hamiltonian in the
variables h1;H1, h2;H2 is corrupted, but it is preserved in other pairs of variables.

Naoz et al. (2013a) pointed out that if the substitution h1 � h2 D � is made in
the Hamiltonian, thus making it independent of the longitudes of ascending nodes,
one may be led to a false inference that the z-components of the orbital angular
momenta are conserved.3 In reality, H1 and H2 are conserved merely in the test-
particle quadrupole approximation of the problem. In any problem setting that is
more general, one should either use the original correct Hamiltonian to derive the
full set of equations of motion, or use complementary relations for the components
of angular momenta, in addition to the equations for other “non-corrupted” variables
derived from the node-eliminated Hamiltonian.

The octupole-order equations for e1, e2, g1, g2 are given in Ford et al. (2000); the
octupole order equations for e1, e2, g1, g2, h1, h2, H1, H2 are given in the Appendix B
of the article by Naoz et al. (2013a). For the first four variables, the equations are
the same in the both sources. Note that in Naoz et al. (2013a) there is a misprint
repeated in several places: the expressions sin i2 and cos i2, whenever they appear,
should be corrected to sin2 i and cos2 i, respectively.

3See critics of Kozai’s (1962) argumentation and works of other authors in this respect in Naoz
et al. (2013a).
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One may average the quadrupole Hamiltonian (4.9) over l1 and l2 without
eliminating nodes. In this way, Naoz et al. (2013a) derived the secular Hamiltonian
in the form

H D C2

8

˚
.1 C 3 cos 2i2/


.2 C 3e2

1/.1 C 3 cos 2i1/ C 30e2
1 cos 2g1 sin2 i1

�C

C 3 cos 2hŒ10e2
1 cos 2g1.3 C cos 2i1/ C 4.2 C 3e2

1/ sin2 i1� sin2 i2 C
C 12.2 C 3e2

1 � 5e2
1 cos 2g1/ cos h sin 2i1 sin 2i2 C

C 120e2
1 sin i1 sin 2i2 sin 2g1 sin h �

�120e2
1 cos i1 sin 2i2 sin 2g1 sin 2h

�
; (4.39)

where h D h1 � h2, and C2 is still given by formula (4.28):

C2 D G2

16

.m0 C m1/
7m7

2

.m0 C m1 C m2/3m3
0m

3
1

L4
1

L3
2G

3
2

: (4.40)

Hamiltonian (4.39) provides correct secular equations for the full set of canonical
variables, including h1, h2, H1, H2.

4.4.6 Octupole Approximation Versus Quadrupole
Approximation: New Behaviours

For the close-to-coplanar triples and for the triples with low-eccentric inner binaries,
the Lidov-Kozai dynamics in the quadrupole approximation is trivial: the arguments
of pericenters circulate, the eccentricities and inclinations are quasi-constant.
Therefore, higher-order terms dominate in the qualitative real dynamics. Conversely,
if the Lidov-Kozai cycle is prominent (e.g., if the inner binary and the outer binary
are inclined enough with respect to each other), then the octupole terms can be
regarded as a perturbation of the dominating quadrupole-order dynamics.

The quadrupole Hamiltonian is just Hamiltonian (4.26) with the octupole term
(that with factor C3) omitted:

Hquad D C2Œ.2 C 3e2
1/.3�2 � 1/ C 15e2

1.1 � �2/ cos 2g1�: (4.41)

We see that the argument of pericenter g2 is absent here; therefore, G2 and e2 are
secular constants, and the form of the perturber’s orbit does not change. This is valid
only in the quadrupole approximation.

As angle g2 is cyclic, the system with Hamiltonian (4.41) is integrable (in the
given approximation). The eccentricity and the argument of pericenter of the inner
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binary are governed by the equations

de1

dt
D C2

G1

.1 � e2
1/

30e1.1 � �2/ sin 2g1

�
; (4.42)

dg1

dt
D 6C2

�
1

G1

h
4�2 C .5 cos 2g1 � 1/.1 � e2

1 � �2/
i

C �

G2

h
2 C e2

1.3 � 5 cos 2g1/
i�

:

(4.43)

Ford et al. (2000) demonstrated that, in any simulation aimed to describe real
systems, the quadrupole approximation must be used with a great caution, because
the octupole-order term may influence the secular dynamics in a qualitative way.

This is illustrated in Fig. 4.3, for a system with the following parameters: m2 D
m1 D 0:001m0, ˛ D a2=a1 D 0:01; and the initial conditions are: e1 D 0:05, e2 D
0:9, and the relative inclination i D 70ı. On setting m0 D 1MSun and a1 D 1 AU,
the time unit is equal to one year.

In the plot, the time behaviour of the eccentricity of the inner binary is shown
as derived from a direct numerical integration of the original 3BP (the dashed
line) and from a numerical integration of the equations of motion in the octupole
approximation (the solid line). The quadrupole theory predicts a constant amplitude
of the secular eccentricity oscillations (equal to that of the first oscillation in the
time plot). Obviously, this is in sharp contradiction with what we see in the plot:
in the real and octupole settings of the problem, the eccentricity suffers long-term
amplitude variations, during which it achieves values close to unity. The timescale
of these variations is much greater than the LK-oscillation period. A way to estimate
this timescale will be considered in the next section.

Fig. 4.3 The eccentricity of
the inner orbit as a function of
time (a typical example), as
given by numerical
integrations of the
octupole-order equations (the
solid curve) and of the
original non-approximated
system (the dashed curve).
See text for the system
parameters and initial
conditions (Figure 5 from
Ford et al. (2000). Copyright
AAS. Reproduced with
permission)
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We see that the difference between the quadrupole and octupole theories is indeed
qualitative: such eccentricity bursts may lead to coming into play of the tidal and
general-relativistic effects (at low pericentric distances), or even to a catastrophic
merger of the central masses.

An important and striking dynamical phenomenon, that arises if one considers
systems more sophisticated that the circular R3BP, is the phenomenon of orbital
flips. In Sect. 4.3, we have already become acquainted with the eccentric LK-
mechanism in the elliptic R3BP: Naoz et al. (2011) and Katz et al. (2011) used
the integrable LK-Hamiltonian as a starting point for a perturbative approach, and
discovered this mechanism, due to which the so-called “flips” (turnovers) of the
orbits become possible.

In other words, the eccentric LK-mechanism describes transitions from the
prograde orbital motion to the retrograde one and vice versa. On a new theoretical
level, in the framework of the general (non-restricted) 3BP, Naoz et al. (2013a)
demonstrated that the full Hamiltonian equations in the non-restricted problem
allow for a possibility of periodic transitions between the prograde and retrograde
motion regimes of the inner binary. If the octupole terms are retained and the outer
orbit is eccentric, then the inner binary can perform flips between the prograde and
retrograde regimes; during such flips, the inner binary stretch to extremely high
eccentricities, its semimajor axis being constant.

4.5 Timescales of the LKE

4.5.1 Timescales of the Classical LK-Oscillations

As shown by Malhotra (2012) in the circular R3BP framework, the LKE periodi-
cally causes a sharp (exponential) rise of the eccentricity of a test particle; of course,
this rise is local in time4 and its appearance depends on initial conditions. The
characteristic timescale for such a rise, in the case of initial small eccentricities
and large inclinations, can be represented as a function of the orbital semimajor axis
a of the test particle:

� 530a�3=2 years for a satellite in orbit around the Earth and subject to the Solar
perturbation (here a is in units of the Earth radius, REarth � 6400 km),
� 70a�3=2 years for a satellite in orbit around the Earth and subject to the Lunar
perturbation (here a is also in units of the Earth radius),
� 1:3a�3=2 years for a satellite in orbit around the Moon and subject to the Earth
perturbation (here a is in units of the Moon radius, RMoon � 1700 km).

4Indeed, for a bounded motion, the eccentricity is limited by the value of 1 from above, and any
increase decelerates on approaching a maximum.
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Of course, these timescale estimates are very approximate and have a limited
physical meaning. However, if one compares, e.g., the real lifetime of the space
probe Luna-3 (�6 months)5 with that following from the formula given above for a
satellite in orbit around the Earth and subject to the Lunar perturbation (�3 months),
one finds a rather good agreement by the order of magnitude, though the initial
eccentricity of the probe was not at all small.

The considered timescale of the exponential jump of the eccentricity is solely
illustrative. To provide a rigourous description of the temporal behaviour, one should
estimate the period of LK-oscillations. If one wishes to find analytical estimates in
the quadrupole approximation, then the double-averaged equations of motion can
be used straightforwardly, in the way as Lidov (1961, 1962, 1963a), Kozai (1962),
and Gordeeva (1968) did in the framework of the R3BP. Gordeeva (1968) derived
explicit exact and simple asymptotic formulas for the period, in dependence on
the problem parameters and initial conditions.6 She derived an explicit formula for
the LK-period, expressing it through a complete elliptic integral of the first kind,
and revealed an asymptotic logarithmic dependence on the initial data near the
separatrix of LK-resonance. What is more, she derived a formula for the timescale
of a satellite’s ballistic existence (i.e., a satellite’s existence until it enters the
atmosphere); this timescale is expressed through an incomplete elliptic integral of
the first kind.

The timescale study, in application to the space mission design, was continued
in the works by Prokhorenko (2002a), who studied the solutions obtained by
Lidov (1961) for the satellite version of the double-averaged circular R3BP and
made a comparative analysis of the secular periods at various values of parameters
and initial data; what is more, a comparative analysis of the timescales of the
ballistic existence of satellites in highly-eccentric orbits subject to perturbations
of outer bodies was performed (Prokhorenko 2002b). These estimates were used
in the design of long-lived satellites in highly-elliptical orbits, such as Spektr-R
astrophysical space mission (Prokhorenko 2002a,b).

Apart from differences in the values of coefficients, the quadrupole secular theory
in the non-restricted problem is similar to that in the restricted one; thus, the formula
for the period is functionally the same. At the center of LK-resonance, the period of
LK-oscillations in the eccentricity and inclination is given by Mazeh and Shaham
(1979) and Holman et al. (1997):

PLK � P1

.m0 C m1/

m2

�
a2

a1

�3

.1 � e2
2/

3=2; (4.44)

5The LKE in its dynamics was discussed in Chap. 1.
6Note that there is a misprint in Gordeeva’s (1968) formula (20): ˇ D 1 � 5

3
c2 should be corrected

to ˇ D 1 � 5
2
c2.
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where P1, m0, m1, and a1 are, respectively, the orbital period, masses and semimajor
axis of the inner binary; P2, m2, and e2 are, respectively, the orbital period, mass,
and eccentricity of the outer perturber.

The period of !-libration increases with its amplitude, tending to infinity
on approaching the separatrix of the LK-resonance (Gordeeva 1968). However,
deviation of PLK from its value at the resonance center becomes significant only
in a close vicinity to the separatrix; thus, usually, the actual period has the same
order of magnitude as that given by formula (4.44), being only somewhat greater.

At the quadrupole order of approximation, the secular system is integrable, and,
as it is well-known already starting from the works of Lidov (1961, 1962, 1963a)
and Gordeeva (1968), the period of secular motion can be expressed through elliptic
integrals.

Let us recall the derivation of the secular variation timescale for the eccentricity
and inclination in the test particle limit of the three-body problem, following
Gordeeva (1968), Kinoshita and Nakai (2007), and Antognini (2015); see also
Sect. 3.2.5. Obviously, the secular period can be expressed as

TLK D
I

dt

dx
dx; (4.45)

where x � .1 � e2/1=2, and e is the particle’s eccentricity.
Expressing cos 2g1 and sin 2g1 in terms of the value of the averaged quadrupole

Hamiltonian Hquad, given by Equation (4.41), one has

sin 2g1 D
(

1 �



3x4 C x2.Hquad � 9c1 � 5/ C 15c1

15.1 � x2/.x2 � c1/

�2
) 1=2

; (4.46)

where, as usual in this book, c1 D .1 � e2/ cos2 i; see Equation (3.23). Then,
formula (4.45) gives

TLK D L1

30C2

I
x2

.1 � x2/.x2 � c1/
�

�
(

1 �



3x4 C x2.Hquad � 9c1 � 5/ C 15c1

15.1 � x2/.x2 � c1/

�2
)�1=2

dx; (4.47)

where C2 is given by Equation (4.40). The integral can be expressed in terms of
incomplete elliptic integrals of the first kind.

Expressing Hquad through c2 (given by Equation (3.24)), one finds

TLK D L1

15C2

Z xmax

xmin

.1 � x2/�1

(�
1 � c1

x2

�2 �
�

1

5
� c1

x2
C 2c2

1 � x2

�2
)�1=2

dx:

(4.48)
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The extrema xmin and xmax can be determined by substituting the corresponding
values of g1 in the quadrupole Hamiltonian, written in the form

Hquad D 1

x2


.5 � 3x2/.x2 � 3c1/ � 15.1 � x2/.x2 � c1/ cos 2g1

�
: (4.49)

In the case of libration, both extrema occur at g1 D ˙�=2; and in the case of
rotation the minimum occurs at g1 D 0 and g1 D ˙� , and the maximum occurs at
g1 D ˙�=2. Defining

� � 3 C 5c1 C 5c2; (4.50)

one has

xmin D
�

1

6


� � .�2 � 60c1/

1=2
�� 1=2

; (4.51)

xmax D
�

1

6


� C .�2 � 60c1/

1=2
�� 1=2

; if c2 < 0; (4.52)

xmax D
�

1 � 5

2
c2

�1=2

; if c2 > 0 (4.53)

(Antognini 2015; Gordeeva 1968).
Using expression (4.48) with the integration limits (4.51), (4.52) and (4.53) one

can calculate numerically TLK for any values of the problem parameters and initial
data.

An example of such a calculation is given in Fig. 4.4, where a contour plot of
the normalized period f .c1; c2/ D 15TLKC2L�1

1 of LK-oscillations is presented. The
contour levels correspond to constant values of f .c1; c2/, indicated in the plot. The
period uniformly increases when the (c1, c2) values approach the separatrix line
c2 D 0 at 0 	 c1 	 3=5, tending to infinity on the separatrix. However, the rise
is sharp only in a close vicinity to the separatrix, otherwise the period does not
vary much, being by the order of magnitude constant over the most area of the
possible values of (c1, c2). Besides, one can see that the period is determined mostly
by the value of c2, in comparison with c1. Similar contour plots are presented in
Prokhorenko (2002a, 2015; see Figures 6c and 3 in these two papers, respectively).

4.5.2 Timescales of the Eccentric LK-Mechanism

It is well-known that, in the quadrupole approximation, there is no secular variation
of the amplitude of the LK-oscillations in eccentricity and inclination. However,
in the octupole approximation, the amplitude is typically subject to enormous
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Fig. 4.4 The domains of possible values of constants CKL � 5
2
c2 and ‚ � c1 designated as

adopted in Antognini (2015). The dotted lines are the contour levels of the normalized period of
LK-oscillations as given by the integral in formula (4.48). Compare to the diagram in Fig. 3.1
(Figure 1 from Antognini (2015). With permission from Oxford University Press)

long-term variations, as established by Ford et al. (2000), Katz et al. (2011), and
Lithwick and Naoz (2011). These variations take place on the timescales much
longer than the LK-period. They are illustrated above in Fig. 4.3.

These long-term variations are nothing but a manifestation of the eccentric LK-
mechanism, called so because the eccentricity oscillations become enormous when
the orbital plane of the inner binary is close to the orthogonality with the orbital
plane of the perturber. The variations of the mutual inclination, coupled to the
eccentricity, may even cause the inner binary to suffer an orbital flip from prograde
to retrograde motion, or vice versa.

During a flip the pericentric distance can decrease so much that a number
of astrophysical phenomena (tides, collisions, mass transfer, effects of general
relativity) may come into play. Therefore, the timescale TELK of the eccentric LK-
mechanism is an important quantity that needs to be estimated.

It is much longer than the timescale of the classical LK-oscillations. Katz
et al. (2011), Naoz et al. (2013b), and Li et al. (2015) heuristically estimated the
timescale as

TELK � TLK��1
oct ; (4.54)
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where

�oct � e2

.1 � e2
2/

a1

a2

: (4.55)

The quantity �oct represents the ratio of the amplitudes of the octupole and
quadrupole terms in the Hamiltonian, thus characterizing the importance of the
octupole term.

If the mass parameter � D m1=.m0 C m1/ of the central binary is not small,
a mass factor should be introduced in definition (4.55). This will be done later on
in Chap. 8, in formula (8.14). This factor can be important in some situations; in
particular, the octupole term vanishes in the limit of an equal-mass inner binary.

Antognini (2015) studied the problem both analytically and numerically and
showed that

TELK � TLK�
�1=2
oct ; (4.56)

contrary to formula (4.54).
Let us consider in brief how relationship (4.56) is derived. In astronomical and

astrophysical systems, the LKE may come into play if the mutual inclination of the
“binaries” of the triple is large, as we know. On the other hand, to obtain a large
amplitude of the LK-oscillation, one should choose a low initial eccentricity of the
inner binary. Therefore, it is actual to be able to estimate the LK-period in the case
of the “high inclination, low eccentricity” initial conditions.

The octupole term in the Hamiltonian is dynamically important if the outer orbit
is eccentric, as follows from Equation (4.55). That is just why the octupole-term
effect is known as the “eccentric LK-mechanism” (ELK).

At the octupole order of approximation, the Hamiltonian contains all slow
angles; therefore, the octupole Hamiltonian is not integrable, contrary to the
quadrupole one. The quantities c1 or c2, given by Equations (3.23) and (3.24), are
no more constants of the motion. However, one may assume that, in the octupole
approximation, c1 or c2 vary only slowly, with a timescale much longer than the
ordinary LK-period.

To study the ELK-oscillations, Katz et al. (2011) introduced an approach based
on the Laplace vector formalism. The Laplace vector (or, the eccentricity vector)
is defined as e D e.sin ie cos �e; sin ie sin �e; cos ie/, where ie and �e are the
inclination and longitude of ascending node of the test particle’s orbit. The vector
e is directed towards the pericenter of the inner orbit. It is assumed that in the
octupole approximation the parameter �e varies only slowly (as c1 or c2 do), with
the timescale much longer than the ordinary LK-period. Thus, �e, c1, and c2 are
assumed to be nearly constant over each separate LK-oscillation, but they may vary
substantially on much longer timescales. If this condition of approximate constancy
is not fulfilled, the ELK-oscillations may acquire non-periodic (in fact, chaotic)
character, as shown by Li et al. (2014a).
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Katz et al. (2011) averaged the equations of motion over an individual LK-cycle,
and thus derived the equations describing the long-term ELK-behaviour in e and c1:

d�e

d	
D c1

6E.m/ � 3K.m/

4K.m/
; (4.57)

dc1

d	
D � 15�

128 � 101=2

�octc
1=2
1 sin �e

K.m/
.8 � 55c2/.6 C 10c2/

1=2; (4.58)

where 	 D t=TLK; iD90ı , i.e., 	 is time normalized by the period of LK-oscillation
with a flip; K.m/ and E.m/ are the complete elliptic integrals of the first and second
kind, respectively, with the parameter (the squared modulus)

m.c2/ � 3
�
1 � 5

2
c2

	

3 C 5c2

: (4.59)

Katz et al. (2011) derived an additional approximate integral of motion, given by

ˆ � F.c2/ � �oct cos �e; (4.60)

where

F.c2/ � 32 � 31=2

�

Z 1

x.c2/

K.�/ � 2E.�/

.41� � 21/.2� C 3/1=2
d�: (4.61)

Also the quantity

�q � c1

2
C 5

2
c2 (4.62)

turned out to be a constant of motion. Thus, in the octupole theory, there are
three constant parameters, defining the long-term behaviour: �q, ˆ, and �oct. Recall
that in the quadrupole theory, there were only two such parameters, c1 and c2.
Consequently, the secular dynamics in the octupole case is more complicated and
rich.

Based on this theory, Antognini (2015) derived an analytical formula for the
period of the ELK-oscillations (the period of c1, c2, and �e):

TELK � 256 � 101=2

15��
1=2
oct

TLK; iD90ı : (4.63)

The timescale for a flip to occur is given by

Tflip � TELK

2
; (4.64)

because the inner binary suffer two flips during the ELK-cycle.
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Formula (4.64) is valid for the octupole-order regime with the “low-eccentricity,
high-inclination” initial conditions. As found by Li et al. (2014b), flips are also
possible in another octupole-order regime, that with “high-eccentricity, low-
inclination” initial conditions. Estimates of the flip timescale in that regime can
be found in Li et al. (2014b).

4.6 LKE: Resonance or Not

Several brief definitions of the LKE, pointing out its essence, can be found in the
literature. Usually the LKE is characterized as a kind of resonance. According to
Malhotra (1998), “the ‘Kozai resonance’ or the ‘Kozai mechanism’ after Y. Kozai
(1962), is defined by the 1:1 commensurability of the secular precession rates of the
perihelion and the orbit normal such that the argument of perihelion is stationary (or
librates).”

In another formulation, due to Morbidelli (2002), “the Kozai resonance can be
regarded as a 1:1 resonance between the precession frequencies of the longitude
of perihelion $ and of the longitude of node � of the small body. Therefore, the
argument of perihelion g � $ � � is the critical angle of the resonance.”

Kinoshita and Nakai (2007) write: “. . . if the z-component of the angular
momentum of an asteroid disturbed by outer giant planets is small, the argument
of the perihelion librates around 90ı or 270ı and both the eccentricity and the
inclination largely change. This phenomenon is called the Kozai mechanism or the
Kozai resonance.”

According to Malhotra (2012), “The Kozai–Lidov effect . . . is a type of secular
resonance in which the apsidal and nodal precession rates are equal and of opposite
sign, and the orbital eccentricity is excited from small to large values on secular
timescales.” Moreover, it is “one of the most surprising and non-intuitive resonances
in the . . . restricted three-body problem”.

On the other hand, treating the LKE as resonance was criticized by Arnold et al.
(2002, p. 219): “The word ‘resonance’ is used here [in Arnold’s et al. book] due to
historical reasons; for sure, there is no any resonance, but regions of libration in the
phase portrait . . . ”.

Let us consider whether indeed the LKE is of resonant nature, as understood
generally in nonlinear dynamics.

4.6.1 Nonlinear Resonance in the Pendulum Model

Resonance represents the central concept of nonlinear dynamics. Chirikov (1982)
defines it in such a way: “Resonance is understood as such situation when some
frequencies of a non-perturbed system are close to each other or to frequencies of
an external perturbation”. How one can be convinced in the existence of resonance



84 4 The Theory Advances

in the motion of any particular celestial bodies? In fact, any observed ratio of
frequencies can be approximated by some rational number with any degree of
precision; but does resonance actually exist? To solve this problem, a resonant
phase (named also resonant or critical angle, or resonant or critical argument)
is defined. This is a linear combination (an algebraic sum) of angular variables
of the system with integer coefficients, the choice of which defines the resonant
relation between the frequencies. If the amplitude of variation of the resonant phase
is limited, i.e., this angle librates, similarly to librations of a pendulum, then the
system is in resonance; if it increases or decreases unlimitedly, i.e., rotates, then
resonance is absent. The trajectory at the boundary between libration and rotation
is the separatrix. Thus, the dynamics of a rigid pendulum provides a model of
resonance. In a certain sense, this model of resonance is most universal, though
other models of resonance exist (Chirikov 1979, 1982).

In celestial mechanics one deals, as a rule, with nonlinear resonances: the
frequency of the phase oscillations on resonance depends on the amplitude (energy)
of the oscillations, as in the pendulum example.7 In case of linear resonance the
frequency does not depend on the amplitude.

A slightest external push of the rigid pendulum, placed near its upper position
of equilibrium (� D ˙� D ˙180ı, where � is the pendulum angle measured
from the lower position of equilibrium), is capable to change the motion character
considerably (e.g., to change oscillation to rotation). This phenomenon is nothing
but the so-called essential dependence on initial conditions. What would occur,
if the pendulum or any other system with a separatrix were subject to a periodic
perturbation? The motion near the separatrix in the generic case, i.e., for the
majority of the initial conditions and parameter values, becomes most unusual. Now
this is well-known, but for the first time a confusing and intricate behaviour of
the trajectories close to the perturbed separatrix (in the three-body problem) was
pointed out in 1899 by Henri Poincaré (1899). However, it was not supposed at that
time that the character of this intricate motion is in any sense “random”.

In 1959 Chirikov described dynamical chaos in a Hamiltonian system as a
phenomenon arising due to interaction of resonances. For a criterion of chaos
emergence, he proposed a criterion of resonance overlap (Chirikov 1959, 1979).
Let us give an explaining example. The phase space in case of the non-perturbed
rigid pendulum has two dimensions, defined by two variables: the pendulum angle
� and the momentum p D ml P�, where m is the mass of the pendulum, l is its length,
P� is the rate of variation of �. In the well-known phase portrait “�–p” of the non-
perturbed pendulum (Fig. 4.5), a single domain (“cell”) of librations, bound by the
non-perturbed separatrix, is present. Thus, the pendulum model of resonance in the
non-perturbed case describes a single resonance.

7The properties of nonlinear resonance are described in detail in Chirikov’s general review
(Chirikov 1982), where the fundamental concepts of nonlinear dynamics are explained in most
accessible and, at the same time, rigourous way.
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Fig. 4.5 A phase portrait of the non-perturbed pendulum

If one “switches on” a periodic perturbation, e.g., a vibration of the suspension
point, then the phase space of this dynamical system is not two-dimensional
anymore, and, to represent the global dynamics, one should construct a phase
space section. It is built as follows: one plots the values of the system variables on
the graph not continuously but “stroboscopically”, i.e., discretely at constant time
intervals equal to the period of perturbation. On the section constructed in this way
one discovers not one but three domains of librations—three resonances (Fig. 4.6).
If the perturbation frequency is relatively large, the separation of resonances in the
momentum is large and they almost do not interact. On reducing the frequency of
perturbation, the resonances approach each other and chaotic layers widen in the
vicinity of the separatrices, where, as it is well visible in Fig. 4.6, the motion is
irregular; on reducing further the frequency of perturbation, the layers merge into a
single chaotic layer,—a result of the interaction of resonances at their strong mutual
approach in the phase space.

In Chirikov’s saying, “. . . the physicist first of all tries to find out which
resonances play role in this or that system and how do they interact with each
other” (Chirikov 1982). It is just the presence of resonances, often regarded to be the
embodiments of order, leads to the unpredictable, chaotic character of the motion.
In other words, the presence of resonances in the phase space causes the presence
of the chaotic component in this space. However, as we have just seen, for chaos
to exist, the presence of not one but two or more resonances in the phase space is
required, because their interaction is necessary.
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Fig. 4.6 A triplet of interacting resonances at a moderate relative frequency of perturbation
(Figure 1 from Shevchenko (2007). With permission from Cambridge University Press)

A perturbed pendulum model of nonlinear resonance is generally described by
the Hamiltonian in the form

H D Gp2

2
� F cos � C a cos.� � 	/ C b cos.� C 	/ (4.65)

(Chirikov 1979; Lichtenberg and Lieberman 1992; Shevchenko 2000). The first two
terms in formula (4.65) represent the Hamiltonian of the unperturbed pendulum; �

is the pendulum angle (the resonance phase angle), p is the momentum. The periodic
perturbations are represented by the last two terms; 	 is the perturbation phase angle:
	 D �tC 	0, where � is the perturbation frequency,8 and 	0 is its initial phase. The
quantities F , G, a, b are constants. The frequency of small-amplitude oscillations
on resonance is !0 D .FG/1=2. The properties of the chaotic layer around the
separatrices are mostly defined by the adiabaticity parameter � D �=!0, which
can be also formulated as a measure of the overlapping of resonances.

An example of the phase space section of the Hamiltonian (4.65) at 	 D
0 mod 2� is shown in Fig. 4.6 (� D 5, !0 D 1, a D b, a=F D 0:5; � D 5).
This is a chaotic resonance triplet.

8Note that the same symbol � is used throughout this book to traditionally designate the longitude
of ascending node.
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4.6.2 The Place of LK-Resonance in the General Typology
of Resonances

If expressed in terms of the Delaunay variables explicitly, the Lidov-Kozai Hamil-
tonian in the circular R3BP has form (3.25). Taking into account that the Delaunay
momenta L and H, as well as c1 D H2=L2, are constants of motion, it can be
rendered the form

HLK D A



3

2

G2

L2
C 15

2
c1

L2

G2
C 15

2

�
1 C c1 � G2

L2
� c1

L2

G2

�
cos 2!

�
; (4.66)

where

A D �Gmperta2

8a3
pert

;

and unimportant constant terms are omitted.
The maximum value of G, as follows from its definition, takes place at e D 0, and

is equal to L. Let us make a canonical transformation, introducing a new momentum
p: G ! .1 �p/L, ! ! !, HLK ! �LHLK (recall that L is constant). Thus, the new
Hamiltonian

HLK D �A

L

�
3

2
.1 � p/2 C 15

2

c1

.1 � p/2
C 15

2



1 C c1 � .1 � p/2 � c1

.1 � p/2

�
cos 2!

�
:

(4.67)

Expanding HLK in powers of p up to the second order inclusive, one has

HLK D �A

L

�
3.5c1 � 1/p C 3.1 C 15c1/

2
p2 C



15.1 � c1/p � 15.1 C 3c1/

2
p2

�
cos 2!

�
:

(4.68)

Assuming that the !-libration island is small (as appropriate if c1 is in a neigh-
bourhood of 3/5), one can use Hamiltonian (4.68) to approximate the real secular
libration.

Indeed, constructing contour plots for Hamiltonian (4.68), one may certify
that they are undistinguishable (in representing the libration island) from the
corresponding plots for original Hamiltonian (4.67), if c1 > 0:5; for an example
of such a comparison see Fig. 4.7.

Thus, we have reduced the LK-Hamiltonian to form (4.68), valid as an approxi-
mation if the !-libration island is small.

In the previous subsection we have considered the pendulum model of resonance.
Hamiltonian (4.68) does not fit this model, as it contains a dependence on the
momentum in the coefficient of the harmonic term. In this sense, it is reminiscent
of the parametric resonance model, which was extensively studied, e.g., in the
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Fig. 4.7 Contour plots for Hamiltonian (4.68) (left panel) and Hamiltonian (4.67) (right panel),
c1 D 0:5, A D �L (Computed by the author)

theory of accelerators already in the 1950s and 1960s of the twentieth century
(see Kolomensky and Lebedev (1966), and references therein). The properties
of the parametric resonance are considered in detail in Chirikov (1979). In the
parametric resonance model, the dependence on the momentum in the coefficient
of the harmonic term is linear.

The parametric resonance model coincides with a particular case of the second
fundamental model of resonance proposed by Henrard and Lemaître (1983) and
Lemaître (1984). (The first one is nothing but the pendulum model.) In a minimal
parametrization (by a single parameter ˛), the second fundamental model has the
form

H D 1

2
p2 C ˛p C .2p/m=2 cosm!: (4.69)

The parametric model corresponds to the second order resonance (m D 2), in the
usual terminology; see Lemaître (1984).

However, in Hamiltonian (4.68), also a quadratic term is present. Shinkin (1995)
proposed a third fundamental model of resonance, described by the parameterized
formula

H D 1

2
p2 C ˛

4Y
iD1

. p C ˇi/
ji=2 cosm!; (4.70)

where the integer numbers j1 Cj2 Cj3 Cj4 	 m; ˛ and ˇi (i D 1; 2; 3; 4) are arbitrary
parameters (see Breiter 2003; Shinkin 1995). By an appropriate parametrization
and a constant shift in p, Hamiltonian (4.68) can be reduced to form (4.70) with
j1 D j2 D 1, j3 D j4 D 0.
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Another important relevant question is whether the separatrix of LK-resonance is
a “real” separatrix, i.e., the motion period on it is infinite, as in the pendulum model
considered in the previous subsection. As we know, the argument of pericenter
! may librate or circulate; and these kinds of motions reflect physically different
situations. What is more, not only “direct” circulations are possible, but, if one
considers also inclinations from �=2 to � , the “reverse” ones, as in the pendulum
model.

Gordeeva (1968) derived an asymptotic formula (Equation (7) in her paper)
for the period of LK-librations in the vicinity of the separatrix in the R3BP; the
asymptotic (on approaching the separatrix) period is given by

T � 2 ln
4

.1 � k2/1=2
; (4.71)

where the modulus k of the complete elliptic integral of the first kind K is defined
in Chap. 3. Equation (4.71) describes the asymptotic behaviour of Equation (3.59)
at k ! 1.

On approaching the separatrix c2 D 0 (see Fig. 3.1), the modulus k tends
to unity; therefore, according to formula (4.71), the period tends to infinity;
and the separatrix, in this sense, is analogous to the separatrix of the nonlinear
pendulum. According to formula (4.71), the asymptotic divergence of the period,
on approaching the separatrix, is of logarithmic type; i.e., it is the same as in the
pendulum model.



Chapter 5
Understanding Irregular Satellites

Beginning with this Chapter, we start to consider various phenomena due to the
LKE in astronomical and astrophysical systems. Historically, the first theoretical
works on this mechanism by Lidov (1961) were devoted to planetary satellites, both
natural and artificial; that is why we start with an overview of the most pronounced
LK-phenomena in the satellite dynamics, namely, with the LKE in the dynamics of
irregular satellites of giant planets.

For a planetary satellite, the qualitative LK-mechanism can be described as
following: the secular variations in the eccentricity and inclination are coupled,1 as
integral (3.23) certifies, if the R3BP conditions are fulfilled at least approximately.
The dynamical cause of the effect lies in the presence of a distant perturber; in the
given case, it is the Sun, or some other massive satellite (e.g., the Moon in the Earth–
Moon system). Therefore, if a satellite’s orbit is inclined initially high enough with
respect to the orbital plane of the host planet, the satellite’s eccentricity may strongly
(depending on initial conditions) oscillate on the secular timescale, and, when the
eccentricity is maximum, the pericentric and apocentric distances are, respectively,
minimum and maximum. Therefore, at the pericenter, the satellite may be destroyed
by planetary tides or may collide with a large regular moon or with the planet itself.
On the other hand, at the apocenter, the satellite may leave the planet’s Hill sphere
and escape.

The Hill sphere of a planet engulfs a zone of the planet’s gravitational dominance:
inside it, the planet’s gravity dominates over the Solar perturbations, and the latter
cannot enforce the satellites’ escape. For example, in the Earth case, the Hill radius
(radius of the Hill sphere) is about four (�3.9) times greater than the orbital
semimajor axis of the Moon, that is why the Moon is safe with us.

The Hill radius can be estimated by means of an analysis of the locations of the
libration points in the three-body problem (see, e.g., Murray and Dermott 1999). In

1They are in antiphase, if the inclination i < �=2, and in phase, if i > �=2.
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a planet–Sun system, if the planet’s orbit is circular, the Hill radius is given by

Rcirc
H D

�
mp

3mSun

�1=3

ap; (5.1)

where mp and mSun are the masses of the planet and the Sun, respectively, and ap is
the semimajor axis of the planet’s orbit.

If the orbit of the secondary (planet) is eccentric, then the radius of the
stability zone is approximately equal to Rcirc

H calculated at the secondary’s pericenter
(Hamilton and Burns 1992):

RH �
�

mp

3mSun

�1=3

ap.1 � ep/; (5.2)

where ep is the eccentricity of the secondary. This formula expresses the so-called
Hill sphere at pericenter scaling.

As established in astronomical observations of satellites of the giant planets
(Jupiter, Saturn, Uranus, and Neptune), the satellites with orbits inside �0.05 of the
Hill radius of the parent planet tend to be in close-to-circular prograde equatorial
orbits.2 These are called “regular” satellites. Conversely, the satellites with orbits
outside �0.05 of the Hill radius tend to have large eccentricities and inclinations,
and many are retrograde. These are called “irregular” satellites.

A more rigourous definition can be adopted: Nesvorný et al. (2003) define an
irregular as a satellite that has the orbital semimajor axis large enough for the
precession of the satellite’s orbit to be controlled by the Sun, not by the parent
planet’s oblateness; i.e., the Solar perturbations dominate over the perturbations
caused by the planet’s non-sphericity.3 Thus, a satellite is irregular if its orbital
semimajor axis is greater than the Laplace radius (defined above in Sect. 3.4, see
formula (3.91)), i.e., it satisfies the inequality

a & rL �
�
J2R

2
pa

3
p
mp

mSun

�1=5

(5.3)

(Burns 1986; Nesvorný et al. 2003), where J2, Rp, ap, and mp are the planet’s
parameters: its second zonal harmonic coefficient, mean radius, orbital semimajor
axis, mass, respectively; mSun is the Solar mass.

The Hill and Laplace radii for the Solar system planets are given in Table 5.1.
An inspection of this Table testifies that the approximate and rigourous definitions
of irregulars are similar indeed: for all giant planets, the value of rL=rH belongs to

2The term “prograde” designates the planetocentric motion co-directional with the host planet’s
heliocentric orbital motion; “retrograde” designates the motion opposite to the prograde one.
3Note that the given definitions of an irregular satellite apply only to the satellite systems of Jovian
planets; otherwise the Moon should be also called irregular.
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Table 5.1 Masses, figures, and critical radii for the Solar system planets

Planet
Mass mp

.1027g/
Mean radius

Rp.km/
Obliquity

.ı/
J2 � 106 J4 � 106 rH=Rp rL=Rp

Mercury 0:3301 2440 � 0:1 60 : : : 90:4 2:66

Venus 4:8673 6052 177:3 4 2 167 2:24

Earth 5:9722 6371 23:45 1083 �2 235 8:41

Mars 0:64169 3390 25:19 1960 �19 320 11:4

Jupiter 1898:1 69;911 3:12 14;696 �587 743 35:4

Saturn 568:32 58;232 26:73 16;291 �915 1080 48:4

Uranus 86:810 25;362 97:86 3343 �29 2680 64:0

Neptune 102:41 24;622 29:56 341 �35 4600 93:2

Notes: Obliquity is the angle between the planet’s equatorial and orbital planes; J2 and J4 are the
second and fourth zonal harmonic coefficients; rH and rL are the Hill and Laplace radii. The Table
is compiled based on data given in the JPL Database (http://jpl.nasa.gov/), Murray and Dermott
(1999), and Tremaine et al. (2009). The values of rH and rL for Mercury, Venus, Earth, and Mars
are given as calculated by the author. The stated value of rL for the Earth is formal because the
Lunar perturbations are not taken into account

the interval between 0:02 and 0:05. It is interesting that, in case the rocky planets
also had irregulars, the approximate definition of irregulars for them would be still
valid: as follows from the Table, for Mercury, Earth, and Mars, rL=rH is still in the
range 0:02–0:05, for Venus it is 0:013. Thus, all planets in the Solar system have
similar (by the order of magnitude) values of rL=rH. The basic reason is that rL and
rH depend on the planetary parameters rather weakly.

The irregular satellites are mostly small in size, their diameters D � 1–10 km.
However, each giant planet has one irregular moon with D > 100 km, these moons
are: JVI Himalia, SIX Phoebe, UXVII Sycorax, and NII Nereid. Nereid is the largest
one (D � 340 km).

The irregulars comprise the majority (in number, but not in mass) of the total
satellite population in the Solar system: �110 out of the total count of �170 (as
known in the year of publication of this book).

As we shall see in this Chapter, the orbital distributions of irregulars around
parent planets are controlled by the LKE. As established by Carruba et al. (2002) and
Nesvorný et al. (2003), the most general property of these distributions is that, due
to the LKE, most orbits with i � 90ı are short-lived, and thus no irregular satellites
have inclinations in the range between �50ı and �140ı, except two Neptunian
moons N9 Halimede and N11 Sao. On the other hand, the secular orbital dynamics
of two Saturnian moons S22 Ijiraq and S24 Kiviuq and Jovian moon J34 Euporie is
most probably controlled by the LKE.

We consider the irregular satellite systems of Jupiter and Saturn in two separate
sections, whereas the satellite systems of Uranus and Neptune are analyzed in a
single one, because the two latter systems are mutually similar, though different
from the Jovian and Saturnian systems. The major difference is that the non-
survivability of orbits due to the LKE occur in the systems of Uranus and Neptune
in a narrower inclination range than in the systems of Jupiter and Saturn.

http://jpl.nasa.gov/
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5.1 Irregular Satellites: Origin and Orbits

5.1.1 Where They Came From

While the orbits of regular satellites lie deep inside the Hill spheres of their parent
planets, the orbits of irregular satellites occupy substantial fractions of inner space
of these spheres. What is more, whereas the orbital architecture of regulars is
qualitatively similar to that of the Solar system planets (i.e., the orbits are mostly
coplanar and close-to-circular), the orbital distributions of the irregulars are strongly
disordered.

That is why the origin of irregular satellites is thought to be very different in
comparison with that of regulars. The regulars are supposed to be formed in just the
same way as planets, i.e., by means of accretion of solids in protodisks (Stevenson
et al. 1986). The origin of irregulars seems to be totally different. Indeed, in contrast
to regulars, most of them follow retrograde orbits, and this sole fact certifies that they
cannot originate from a single nebula. Besides, their eccentricities and inclinations
are too large in general to be an outcome of the standard accretion process in a
flattened disk.

Therefore, the irregulars are thought to be minor bodies (e.g., asteroids) captured
somehow from heliocentric orbits. They had not formed in vicinities of parent
planets, but arrived from other realms of the Solar system. Thus, rigorously
speaking, the “parent planet” (around which an irregular orbits) is really not a parent
one. The capture in the three-body problem (the Sun–planet–asteroid problem, in
particular) is a complicated, though a thoroughly studied process; see, e.g., Belbruno
(2004). Due to the Hamiltonian nature of the three-body problem, such a capture is
reversible, and the captured body is doomed to become free again, sooner or later.
To make the capture irreversible, non-Hamiltonian perturbations (e.g., gas drag or
light pressure) ought to be active.

Several mechanisms of transformation of a body-intruder into an irregular have
been proposed: collisional scenario (Colombo and Franklin 1971; Gladman et al.
2001), pull-down capture (Heppenheimer and Porco 1977; Saha and Tremaine
1993), and gas-drag capture (Pollack et al. 1979, 1991). The collisional scenario
postulates a disruption of a parent regular satellite by a body passing in a heliocentric
orbit; this explains naturally that irregulars cluster in swarms of bodies with similar
orbital elements. In the pull-down capture scenario, a body coorbital with a planet
is captured by the planet due to mass growth of the latter, as the planet accretes
matter at an early stage of its cosmogonical evolution and its Hill sphere swells. In
the gas-drag capture scenario, an outer body enters the planet’s gas envelope (also
at an early evolutionary stage) and slowly spirals down; when the gas depletes, the
orbit “freezes”.
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5.1.2 Orbital Distributions

As established already in the beginning of 2000s, there exists a broad gap in the
inclination distribution (with respect to the ecliptic plane) of the known irregular
satellites: almost no object has the inclination in the range between �50ı and
�140ı; see Fig. 5.1. A plausible explanation of this fact is that orbits with i � 90ı
are subject to destruction due to the LKE (Carruba et al. 2002; Nesvorný et al. 2003).

The LKE can produce this gap in two ways (Carruba et al. 2002): (1) the
pericenter distance q D a.1�e/ may decrease until the orbit starts to cross the orbits
of massive inner regular moons (e.g., the orbit of Callisto in the case of the Jovian
system), or even until it falls on the parent planet, i.e., until the equality q D Rp starts
to hold, where Rp is the planet’s radius; (2) the apocenter distance Q D a.1 C e/

Fig. 5.1 The irregular moons (known up to 2002) of Jupiter, Saturn, Uranus, and Neptune,
presented in “polar coordinates”: the angular position (with respect to the horizontal axis) of a
satellite in the diagram is equal to the satellite’s inclination i to the ecliptic plane, and the radial
position is equal to the satellite’s orbital semimajor axis a in units of the parent planet’s Hill radius
RH. The center-pointing straight line intervals represent the pericenter–apocenter variations in the
orbital radii. The symbol size characterizes physical sizes of the moons, namely, diameters in the
logarithmic scale. The moons on the right side of the diagram are prograde, and those on the left
side are retrograde. A broad gap in the inclinations, centered on i D 90ı , is evident. The dashed
curves indicate the borders of the regions where any satellite in a close-to-polar orbit is removed by
the LKE (Figure 1 from Gladman et al. (2001). With permission from Nature Publishing Group)
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may increase up to Q � RH (the Hill radius), where Solar perturbations destabilize
the orbit.

At present, this cosmogonical process is over: Nesvorný et al. (2003) performed
long-term numerical integrations of the orbits of all known (at that time) irregulars,
taking into account all relevant perturbations, and showed that the known irregular
moons are dynamically long-lived.

5.2 Jovian System

Jupiter has 59 irregulars, among them only 7 prograde (see Table 5.2). They form
several swarms consisting of moons with similar orbital elements. For example, the
Himalia group comprises five moons with semimajor axes a � 0:2RH (where RH

is Jupiter’s Hill radius, RH D 51 mln km D 0:34 AU), eccentricities e � 0:2, and
inclinations i � 30ı (see Table 5.2). This similarity certifies their common (most
probably collisional) origin. The Ananke, Carme, and Pasiphae groups contain
moons of smaller physical sizes, but comprise more than a dozen members each.

Note that the inclination values cited in this chapter for irregulars of all planets
are all measured with respect to the local Laplace plane, defined in Sect. 3.4.
Irregulars usually have orbits much greater in size than the Laplace radius (also
defined in Sect. 3.4; for its specific planetary values see Table 5.1). At such large
distances, the Laplace plane coincides approximately with the ecliptic plane.

Carruba et al. (2002) performed massive numerical experiments, integrating
orbits of a variety of hypothetical Jovian satellites on a long timescale (109 years).
It turned out that the LKE due to the Solar perturbations plays the most prominent
role in the secular orbital evolution, either driving the pericenters of the satellites
with 70ı . i . 110ı into the domain of massive regulars (where the satellites
are eliminated on the timescale of 107–109 years, due to collisions or gravitational
scattering), or driving the apocenters of the satellites out of the planet’s Hill sphere.
When one takes into account all relevant perturbations, the gap broadens up to
55ı . i . 130ı (from � 70ı . i . 110ı).

Thus, the LKE has produced a major “footprint” in the global orbital architecture
of the Jovian irregulars. What is more, the LKE seems to be still operational in the
orbital dynamics of some of them. Namely, the secular dynamics of the Jovian moon
J34 Euporie seems to be controlled by the LKE, the pericenter argument ! librating
around 90ı with the full amplitude of 60ı, nearly constant over 108 years (Nesvorný
et al. 2003).

Besides, according to Carruba et al. (2002), there exists a “stable phase space”
with orbits surviving on the timescale of 10 Myr for any moon trapped in the LK-
resonance (i.e., a moon with the pericenter locked in libration around ˙90ı). It
contains �10 % of all stable orbits, suggesting that at high inclinations there may
exist moons that have not yet been discovered.

Based on analytical (in the framework of the double-averaged Hill problem),
numerical (direct numerical integrations), and numerical-analytical approaches,
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Table 5.2 Irregular moons of Jupiter

Satellite a (km) e i (ı) D (km)

JXVIII Themisto 7;393;216 0:2115 45:762 8

JXIII Leda 11;187;781 0:1673 27:562 16

JVI Himalia 11;451;971 0:1513 30:486 170

JX Lysithea 11;740;560 0:1322 27:006 36

JVII Elara 11;778;034 0:1948 29:691 86

JLIII Dia 12;570;424 0:2058 27:584 4

JXLVI Carpo 17;144;873 0:2735 56:001 3

S/2003 J12 17;739;539 0:4449 142:680 1

JXXXIV Euporie 19;088;434 0:0960 144:694 2

S/2003 J3 19;621;780 0:2507 146:363 2

S/2003 J18 19;812;577 0:1569 147:401 2

S/2011 J1 20;155;290 0:2963 162:8 1

JLII S/2010 J2 20;307;150 0:307 150:4 1

JXLII Thelxinoe 20;453;753 0:2684 151:292 2

JXXXIII Euanthe 20;464;854 0:2000 143:409 3

JXLV Helike 20;540;266 0:1374 154:586 4

JXXXV Orthosie 20;567;971 0:2433 142:366 2

JXXIV Iocaste 20;722;566 0:2874 147:248 5

S/2003 J16 20;743;779 0:3184 150:769 2

JXXVII Praxidike 20;823;948 0:1840 144:205 7

JXXII Harpalyke 21;063;814 0:2440 147:223 4

JXL Mneme 21;129;786 0:3169 149:732 2

JXXX Hermippe 21;182;086 0:2290 151:242 4

JXXIX Thyone 21;405;570 0:2525 147:276 4

JXII Ananke 21;454;952 0:3445 151:564 28

JL Herse 22;134;306 0:2379 162:490 2

JXXXI Aitne 22;285;161 0:3927 165:562 3

JXXXVII Kale 22;409;207 0:2011 165:378 2

JXX Taygete 22;438;648 0:3678 164:890 5

S/2003 J19 22;709;061 0:1961 164:727 2

JXXI Chaldene 22;713;444 0:2916 167:070 4

S/2003 J15 22;720;999 0:0932 141:812 2

S/2003 J10 22;730;813 0:3438 163:813 2

S/2003 J23 22;739;654 0:3930 148:849 2

JXXV Erinome 22;986;266 0:2552 163:737 3

JXLI Aoede 23;044;175 0:6011 160:482 4

JXLIV Kallichore 23;111;823 0:2041 164:605 2

JXXIII Kalyke 23;180;773 0:2139 165:505 5

JXI Carme 23;197;992 0:2342 165:047 46

JXVII Callirrhoe 23;214;986 0:2582 139:849 9

JXXXII Eurydome 23;230;858 0:3769 149:324 3

(continued)
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Table 5.2 (continued)

Satellite a (km) e i (ı) D (km)

S/2011 J2 23;329;710 0:3867 151:8 1

JXXXVIII Pasithee 23;307;318 0:3288 165:759 2

JLI S/2010 J1 23;314;335 0:320 163:2 2

JXLIX Kore 23;345;093 0:1951 137:371 2

JXLVIII Cyllene 23;396;269 0:4115 140:148 2

JXLVII Eukelade 23;483;694 0:2828 163:996 4

S/2003 J4 23;570;790 0:3003 147:175 2

JVIII Pasiphae 23;609;042 0:3743 141:803 60

JXXXIX Hegemone 23;702;511 0:4077 152:506 3

JXLIII Arche 23;717;051 0:1492 164:587 3

JXXVI Isonoe 23;800;647 0:1775 165:127 4

S/2003 J9 23;857;808 0:2761 164:980 1

S/2003 J5 23;973;926 0:3070 165:549 4

JIX Sinope 24;057;865 0:2750 153:778 38

JXXXVI Sponde 24;252;627 0:4431 154:372 2

JXXVIII Autonoe 24;264;445 0:3690 151:058 4

JXIX Megaclite 24;687;239 0:3077 150:398 5

S/2003 J2 30;290;846 0:1882 153:521 2

Notes: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

Vashkovyak and Teslenko (2008a) performed a systematic study of the orbital
evolution of all irregulars of Jupiter, known up to 2008, and inferred that the Jovian
moon J46 Carpo satisfied the Lidov-Kozai resonance conditions c1 < 3=5 and
c2 < 0 (Vashkovyak 1999, 2005), where the classical integrals

c1 D .1 � e2/ cos2 i; (5.4)

c2 D e2

�
2

5
� sin2 i sin2 !

�
(5.5)

(see Equations (3.23) and (3.24) or (5.4) and (5.5)). In the diagrams “i–!” and “i–e”
(Fig. 5.2), J46 Carpo is clearly identifiable as an !-librator. Satellites J34 Euporie,
J49 Kore, and S/2003 J3 are very close to !-libration. By means of monitoring the
long-term behaviour of the pericenter argument, Vashkovyak and Teslenko (2008a)
identified J18 Themisto as another !-librator.

Using new precise data on initial values of elements, Emelyanov and Vashkovyak
(2012) performed direct numerical integrations of non-averaged equations of motion
on timescales of several thousand years and showed that J34 Euporie and J46 Carpo
were indeed in !-libration, whereas J18 Themisto and J49 Kore circulated.

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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Fig. 5.2 The irregulars of Jupiter in the planes of initial conditions (i0, e0) and (i0, !0). The
symbols designate moons, and the curves trace constant values of c1 (in the upper panel) and
c2 (in the lower panel). Omega-librators are identified (Figure 55 from Vashkovyak and Teslenko
(2008a). With permission from Pleiades Publishing Inc)

Thus, at least four Jovian moons reside in LK-resonance or are close to it at
present. In Table 5.2, those Jovian satellites that are observed to be in !-libration,
or close to this state, are distinguished in bold font.

5.3 Saturnian System

Saturn has 38 irregulars, among which only 9 are prograde (see Table 5.3). In total,
Saturn’s irregulars have semimajor axes in the range 0:16–0:36RH, where Saturn’s
Hill radius RH D 69 mln km D 0:46 AU. The Saturnian irregulars form three
swarms of moons with similar orbital elements, namely, the Inuit, Norse, and Gallic
groups. Some of them were shown to be remnants (most likely) of larger objects,
captured by the planet and then collisionally disrupted (Gladman et al. 2001).

In the framework of the double-averaged Hill problem, Vashkovyak (2001)
identified !-libration in the long-term behaviour of S20 Paaliaq, S22 Ijiraq, S24
Kiviuq, and S29 Siarnaq. However, the phase trajectories of S20 Paaliaq and S29
Siarnaq in the “!–e” plane were too close to the LK-separatrix (i.e., c2 � 0

for them), and in a more precise model of evolution they turned out to circulate
(Vashkovyak 2003).

Nesvorný et al. (2003) performed direct numerical integrations of orbits of the
Saturnian moons, monitoring the behaviour of various resonance angles allowed
by the D’Alembert rules (defined, e.g., in Morbidelli 2002; see also Ferraz-Mello
2007; Kholshevnikov 1997, 2001). The Lidov-Kozai resonance angle (the pericenter
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Table 5.3 Irregular moons of Saturn

Satellite a (km) e i (ı) D (km)

SXXIV Kiviuq 11;294;800 0:3288 49:087 16

SXXII Ijiraq 11;355;316 0:3161 50:212 12

SIX Phoebe 12;869;700 0:156242 173:047 213

SXX Paaliaq 15;103;400 0:3631 46:151 22

SXXVII Skathi 15;672;500 0:246 149:084 8

SXXVI Albiorix 16;266;700 0:477 38:042 32

S/2007 S2 16;560;000 0:2418 176:68 6

SXXXVII Bebhionn 17;153;520 0:333 40:484 6

SXXVIII Erriapus 17;236;900 0:4724 38:109 10

SXLVII Skoll 17;473;800 0:418 155:624 6

SXXIX Siarnaq 17;776;600 0:24961 45:798 40

SLII Tarqeq 17;910;600 0:1081 49:904 7

S/2004 S13 18;056;300 0:261 167:379 6

SLI Greip 18;065;700 0:3735 172:666 6

SXLIV Hyrrokkin 18;168;300 0:3604 153:272 8

SL Jarnsaxa 18;556;900 0:1918 162:861 6

SXXI Tarvos 18;562;800 0:5305 34:679 15

SXXV Mundilfari 18;725;800 0:198 169:378 7

S/2006 S1 18;930;200 0:1303 154:232 6

S/2004 S17 19;099;200 0:226 166:881 4

SXXXVIII Bergelmir 19;104;000 0:152 157:384 6

SXXXI Narvi 19;395;200 0:320 137:292 7

SXXIII Suttungr 19;579;000 0:131 174:321 7

SXLIII Hati 19;709;300 0:291 163:131 6

S/2004 S12 19;905;900 0:396 164:042 5

SXL Farbauti 19;984;800 0:209 158:361 5

SXXX Thrymr 20;278;100 0:453 174:524 7

SXXXVI Aegir 20;482;900 0:237 167:425 6

S/2007 S3 20;518;500 0:130 177:22 5

SXXXIX Bestla 20;570;000 0:5145 147:395 7

S/2004 S7 20;576;700 0:5299 165:596 6

S/2006 S3 21;076;300 0:4710 150:817 6

SXLI Fenrir 21;930;644 0:131 162:832 4

SXLVIII Surtur 22;288;916 0:3680 166:918 6

SXLV Kari 22;321;200 0:3405 148:384 7

SXIX Ymir 22;429;673 0:3349 172:143 18

SXLVI Loge 22;984;322 0:1390 166:539 6

SXLII Fornjot 24;504;879 0:186 167:886 6

Note: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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Fig. 5.3 The irregulars of Saturn, Uranus, and Neptune in the planes of initial conditions (i0, e0)
and (i0, !0). The symbols designate moons, and the curves trace constant values of c1 (in the upper
panel) and c2 (in the lower panel). Omega-librators are identified (Figure 53 from Vashkovyak and
Teslenko (2008b). With permission from Pleiades Publishing Inc)

argument) was monitored in particular. It was found that the LKE controls the
secular orbital dynamics of two Saturnian moons, namely, S22 Ijiraq and S24
Kiviuq: the pericenter argument ! librates in both cases around 90ı with the
full amplitude of 60ı, nearly constant over 108 years, certifying that this resonant
behaviour is very likely primordial.

Vashkovyak and Teslenko (2008b) integrated numerically the orbits of all
irregulars of Saturn, known up to 2008, and confirmed that the moons S22 Ijiraq and
S24 Kiviuq satisfied the Lidov-Kozai resonance conditions c1 < 3=5 and c2 < 0

(Equations (3.23) and (3.24) or (5.4) and (5.5)). In the diagrams “i–!” and “i–e”
(Fig. 5.3), the !-librators are identified. One can see that S20 Paaliaq is close to
!-libration. In Table 5.3, those Saturnian satellites that are observed to be in !-
libration, or close to this state, are distinguished in bold font.

5.4 Uranian and Neptunian Systems

The Uranian and Neptunian systems are mutually similar, but they are not like those
described above. The major difference in comparison with the Jovian and Saturnian
systems is that the instabilities due to the LKE occur in a narrower inclination range.

Uranus has nine irregulars, all retrograde except one (U23 Margaret, see
Table 5.4). Their semimajor axes are in the range 0:06–0:29RH, where Uranus’s
Hill radius RH D 73 mln km D 0:49 AU. In contrast to the Jovian and Saturnian
systems, a large and uniform spread of the moons in the semimajor axis does not
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Table 5.4 Irregular moons of Uranus

Satellite a (km) e i (ı) D (km)

UXXII Francisco 4;276;000 0:1459 147:459 22

UXVI Caliban 7;230;000 0:1587 139:885 72

UXX Stephano 8;002;000 0:2292 141:873 32

UXXI Trinculo 8;571;000 0:2200 166:252 18

UXVII Sycorax 12;179;000 0:5224 152:456 150

UXXIII Margaret 14;345;000 0:6608 51:455 20

UXVIII Prospero 16;418;000 0:4448 146:017 50

UXIX Setebos 17;459;000 0:5914 145:883 48

UXXIV Ferdinand 20;900;000 0:3682 167:346 20

Note: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

Table 5.5 Irregular moons of Neptune

Satellite a (km) e i (ı) D (km)

NII Nereid 5;513;818 0:7507 7:090 340

NIX Halimede 16;611;000 0:2646 112:898 62

NXI Sao 22;228;000 0:1365 49:907 44

NXII Laomedeia 23;567;000 0:3969 34:049 42

NX Psamathe 48;096;000 0:3809 137:679 40

NXIII Neso 49;285;000 0:5714 131:265 60

Note: The Table is compiled based on data given in the JPL Small-Body Database (http://ssd.jpl.
nasa.gov/). Real and probable !-librators are distinguished in bold font

allow one to identify any clustering that would suggest a common origin for a group
of objects; i.e., the Uranian moons, most probably, have formed independently from
each other.

Neptune has 6 irregulars, among which 3 are prograde and 3 retrograde (see
Table 5.5), with semimajor axes 0:05–0:42RH, where Neptune’s Hill radius RH D
116 mln km D 0:78 AU. Neptune’s most famous (due to its record eccentricity e �
0:75) irregular moon N2 Nereid is prograde. Goldreich et al. (1989) suggested that
Nereid’s high eccentricity is due to perturbations of formerly captured Triton. While
migrating, Triton might have also disrupted orbits of other satellites of Neptune, if
they have ever existed.

The orbital distributions of the Uranian and Neptunian moons (except two
Neptunian moons N9 Halimede and N11 Sao) are consistent with the broad gap
in the compiled inclination distribution4 of the known irregulars in the Jovian and
Saturnian systems: no object has inclination in the range between �50ı and �140ı.
Again, a plausible explanation is that most orbits with i � 90ı are unstable due to
the LKE (Carruba et al. 2002; Nesvorný et al. 2003).

4With respect to the ecliptic plane.

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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Vashkovyak and Teslenko (2008b) integrated numerically the orbits of all
irregulars of Uranus and Neptune, known up to 2008, and inferred that U23 Margaret
and N11 Sao satisfied the Lidov-Kozai resonance conditions c1 < 3=5 and c2 < 0.
In the diagrams “i–!” and “i–e” (Fig. 5.3), the !-librators are identified. N13
Neso is apparently close to !-libration. In Tables 5.4 and 5.5, those Uranian and
Neptunian satellites that are observed to be in !-libration, or close to this state, are
distinguished in bold font.

Finally, note that if an additional perturbation dominates over the LK-term in the
Hamiltonian of the motion, then the LKE may be quenched, as discussed above in
Sect. 3.3. Such a suppression explains, e.g., the stable existence of regular satellites
of Uranus (Lidov 1963b). The regular Uranian moons move in orbits close to the
planet’s equatorial plane, which is inclined by 98ı with respect to the orbital plane.
The LKE driven by Solar perturbations would enforce the satellites to fall onto the
planet, but this does not occur because the frequencies of orbital precession (caused
by the planet’s oblateness and mutual perturbations between the moons) are large
enough to suppress the LKE.



Chapter 6
Sungrazing Comets

. . . fatal phare
Des vols migrateurs des plaintifs Icares!

Jules Laforgue, Clair de Lune

The importance of the LKE in the cometary dynamics was first studied by Kozai
(1979, 1980). In the following years, the theme was thoroughly developed, in
particular, in works of Quinn et al. (1990), Bailey et al. (1992), and Thomas
and Morbidelli (1996). Perhaps, the most spectacular LKE consequence that was
revealed is that the LKE may make comets collide with the Sun; just in the same
manner as it forced Luna-3 (see Chap. 1) to collide with the Earth.

The phenomenon of comets colliding with the Sun is directly observed: in fact,
many such collisions have been monitored by the SOHO spacecraft. These collisions
take place because many highly-eccentric comets, in the course of their secular
orbital evolution, become sungrazing, i.e., their pericentric distances become close
to the radius of the Sun. Most of the observed sungrazers are extremely-eccentric
long-period comets. For instance, the spectacular comet 1965 VIII Ikeya–Seki
(Great Comet of 1965, which, due to its close approach to Sun, reached the visual
magnitude of minus ten and was visible in daytime) is, in fact, a sungrazer.

In the course of an LK-cycle, the eccentricity of a comet, moving under the
perturbation of Jupiter and other giant planets, can be boosted, while the semimajor
axis stays constant. Thus, the perihelion distance radically decreases, and the comet
becomes sungrazing. Bailey et al. (1992), using the Kozai diagram techniques
(discussed further on), established that the LKE can effectively produce a lot of
sungrazing comets.

Tantalizingly, the reservoir for the long-period comets, the Oort cloud, was
formed (billions years ago) most probably also by an LK-mechanism (Duncan
et al. 1987): planetesimals were scattered by giant planets to distances of thousands
astronomical units from the Sun, where they suffered perturbations by the so-
called Galactic tide, operating due to the Galactic-plane matter concentration. The
corresponding LKE acted to decrease their eccentricities, thus forming the cloud.

© Springer International Publishing Switzerland 2017
I. I. Shevchenko, The Lidov-Kozai Effect – Applications in Exoplanet Research
and Dynamical Astronomy, Astrophysics and Space Science Library 441,
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Yet another point is that the LK-mechanism due to the Galactic tide also acts
to “borrow” comets from the Oort cloud, thus delivering matter to the inner Solar
system, where the comets may become sungrazers and be disrupted by the Sun in
its vicinities; and their matter is dispersed in the interplanetary space. Thus, the
LK-mechanism worked and works independently thrice (forming the Oort cloud,
borrowing comets from the Oort cloud, producing sungrazers from the borrowed
comets), in sum realizing the delivery of the primordial matter to the inner Solar
system.

In this chapter we show how simple analytic considerations of the LK-dynamics
provide understanding for the origin of the cometary sungrazers and their pre-impact
secular evolution.

6.1 Cometary Dynamics Subject to LKE

Before we consider the cometary motion subject to the LKE, it is instructive to
recall some relevant properties of the motion in the non-averaged restricted three-
body problem, namely, the properties concerning the Jacobi integral and Tisserand
relation.

6.1.1 The Jacobi Integral and Tisserand Relation

In the restricted three-body problem (R3BP), a massless particle moves in the
gravitational field of two bodies (“primaries”) with masses m0 
 m1. In the circular
R3BP, the orbits of the primaries around their center of masses are circular.

Due to the zero mass of the particle, neither energy nor angular momentum is
conserved in the restricted problem1; but in the circular R3BP there exists a constant
of motion, the Jacobi integral, or Jacobi constant, which is a combination of these
two entities.

Hereafter, we adopt the mass unit such that G.m0 C m1/ D 1 (where G is the
gravitational constant), and define the mass parameter � D m1=.m0 C m1/. The
unit of length is such that the (constant) distance between the primaries is unity.
Therefore, the mean motion of each primary nprim � n0 D n1 D 1.

Let us denote the inertial (siderial) orthogonal barycentric frame (�, �, �): at
the initial epoch (t D 0), the � axis is directed from body m0 to body m1, the �

axis is in the orbital plane of the primaries and perpendicular to the � axis, the �

axis is normal to the orbital plane of the primaries and co-directed with the angular
momentum vector. The primaries’ coordinates are .�0; �0; �0/ and .�1; �1; �1/, those
of the particle .�; �; �/ are not indexed.

1For a discussion of this non-conservation see Szebehely (1967).
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The equations of motion of a test particle in the gravitational field of two bodies
(e.g., the Sun and Jupiter) are given by

R� D .1 � �/
�0 � �

r3
0p

C �
�1 � �

r3
1p

; (6.1)

R� D .1 � �/
�0 � �

r3
0p

C �
�1 � �

r3
1p

; (6.2)

R� D .1 � �/
�0 � �

r3
0p

C �
�1 � �

r3
1p

; (6.3)

where

r2
0p D .�0 � �/2 C .�0 � �/2 C .�0 � �/2; (6.4)

r2
1p D .�1 � �/2 C .�1 � �/2 C .�1 � �/2 (6.5)

are the squares of the distances “Sun–particle” and “Jupiter–particle”, respectively.
Now consider the non-inertial rotating barycentric frame (x, y, z) in which the

primaries stand still, i.e., the frame’s angular velocity is nprim. This is the so-
called synodic frame. The x axis is directed from m0 to m1; thus, the primaries’
coordinates are .x0; y0; z0/ D .��; 0; 0/ and .x1; y1; z1/ D Œ.1 � �/; 0; 0�. The
particle’s coordinates are .x; y; z/.

Rewriting the equations of motion in the synodic system (see, e.g. Murray and
Dermott 1999), one obtains

Rx � 2nprim Py � n2
primx D �

"
.1 � �/

x C �

r3
0p

C �
x � 1 C �

r3
1p

#
; (6.6)

Ry C 2nprim Px � n2
primy D �

"
1 � �

r3
0p

C �

r3
1p

#
y; (6.7)

Rz D �
"

1 � �

r3
0p

C �

r3
1p

#
z; (6.8)

where

r2
0p D .x C �/2 C y2 C z2; (6.9)

r2
1p D Œx � 1 C ��2 C y2 C z2: (6.10)



108 6 Sungrazing Comets

Introducing the potential

U.x; y; z/ D n2
prim

2

�
x2 C y2

	C 1 � �

r0p
C �

r1p
; (6.11)

one can arrange the equations of motion in the form

Rx � 2nprim Py D @U

@x
; (6.12)

Ry C 2nprim Px D @U

@y
; (6.13)

Rz D @U

@z
: (6.14)

Multiplying Equations (6.12), (6.13), and (6.14) by Px, Py, and Pz, respectively, and
combining, one has

PxRx C PyRy C PzRz D @U

@x
Px C @U

@y
Py C @U

@z
Pz D dU

dt
(6.15)

and, after integration,

Px2 C Py2 C Pz2 D 2U � CJ; (6.16)

where CJ is the integration constant, called the Jacobi integral, or Jacobi constant.
Transforming the synodic coordinates x; y; z to the siderial ones �; �; � (see, e.g.

Murray and Dermott 1999; Szebehely 1967), one obtains an expression for CJ in the
inertial frame:

CJ D 2



1 � �

r0p
C �

r1p

�
C 2nprim.� P� � � P�/ � P�2 � P�2 � P�2; (6.17)

representing a combination of the energy and the vertical component of the angular
momentum, any of which is not conserved separately.

Since the work by Tisserand (1896), the Jacobi constant formalism has important
applications in cometary dynamics.

Let a comet suffer a distant encounter with Jupiter. Before the encounter, its
semimajor axis, eccentricity, and inclination are designated by a, e, and i, and
after the encounter by Qa, Qe, and Qi. In the siderial frame, the Jacobi constant CJ is
given by Equation (6.17), where r0p and r1p are the distances “comet–Sun” and
“comet–Jupiter”, respectively. In our unit system, the distance “Sun–Jupiter” is
unity, nprim D 1, and G �mSun C mJupiter

	 D 1. Jupiter’s eccentricity is set to zero.
The barycentric position and velocity vectors of the comet are � � .�; �; �/ and
P� � . P�; P�; P�/.
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Since mJupiter � mSun, one can use, in approximation, the energy integral of the
two-body problem “Sun–comet”

P�2 C P�2 C P�2 � 2

�
� 1

a
; (6.18)

where the “comet–barycenter” distance � (D k�k) is approximately equal to the
heliocentric “comet–Sun” distance r0p. The angular momentum (per unit mass) h of
the comet is equal to the vector product � � P�, and its vertical component is given
by

� P� � � P� D h cos i; (6.19)

where h D k�� P�k D 
.1 � e2/a

�1=2
and i is the inclination with respect to Jupiter’s

orbital plane. Then Equation (6.17) for the Jacobi constant gives:

1

a
C 2


.1 � e2/a

�1=2
cos i D 2�

�
1

�
� 1

r1p

�
C CJ: (6.20)

Ignoring the terms with � and also assuming that the “comet–Jupiter” distance r1p

does not acquire too small values (i.e., the encounter is not too close), one has

1

2a
C 

.1 � e2/a
�1=2

cos i � const: (6.21)

Therefore,

1

2a
C 

.1 � e2/a
�1=2

cos i � 1

2Qa C 
.1 � Qe2/Qa�1=2

cos Qi (6.22)

before and after the encounter.
Equation (6.22) is called the Tisserand relation. It was proposed by Tisserand

(1896) to provide an easy instrument for the observational identification of comets:
due to an encounter, the orbital elements of a comet may change considerably, but
the Tisserand relation allows one to certify that the old and new elements correspond
to one and the same object.

The Tisserand parameter

CT � 1

2a
C 

.1 � e2/a
�1=2

cos i (6.23)

is approximately conserved also if the perturber’s eccentricity is moderately non-
zero. This fact is illustrated in the graph of CT as a function of time, in Fig. 6.1,
constructed by Murray and Dermott (1999) by numerical integration of the equa-
tions of motion for the case of Jupiter’s zero eccentricity (the lower curve in the
Figure) and for the case of Jupiter’s current eccentricity eJupiter D 0:048 (the upper
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Fig. 6.1 The time
dependence of the Tisserand
“constant” CT in two cases of
the perturber’s eccentricity
(eJupiter D 0 and 0:048)
(Figure 3.4 from Murray and
Dermott 1999. With
permission from Cambridge
University Press)

curve in the Figure). Except for a short time interval at the close approach, the net
variation of CT due to the encounter is less than 1 % and 2 % in the first and second
cases, respectively.

In the planar (i D 0) circular restricted three-body problem, relation (6.21) takes
the form

1

2a
C 

.1 � e2/a
�1=2 � const: (6.24)

Recall that a is measured in units of the perturber’s semimajor axis. If a � 1 and
e � 1, one has

1

2a
C Œ.1 C e/q�1=2 � 21=2q1=2 � const: (6.25)

Therefore, q is approximately conserved for a highly eccentric particle orbiting
a small inner binary, if the orbits of the particle and the binary are coplanar
(Shevchenko 2015). In other words, the angular momentum is approximately
conserved (the relative variations are small), whereas the energy may substantially
vary (the relative variations may be large). This circumstance forms the basis for
construction of the so-called Kepler map, which is an analogue of the separatrix
map: while the latter describes the motion in the vicinity of the separatrix of a
perturbed non-linear pendulum (and, generally, a perturbed non-linear resonance;
see Chirikov 1979; Shevchenko 2000), the former describes the perturbed motion
in the vicinity of the parabolic orbit, which is the separatrix between the bound and
unbound states of the particle’s motion (Shevchenko 2011b).

Note that the conservation of q for a highly-eccentric circumbinary particle in
the hierarchical planar problem is different from what is known to take place in
the secular planetary problem (where eccentricities are small) and in the LKE
(where inclinations are high): there, on the contrary, the semimajor axis is secularly
conserved, while the total angular momentum may vary.
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Apart from the limiting cases, the elements a, e, and i may all vary substantially,
being subject only to the Jacobi integral conservation. The Jacobi integral formalism
is valid on the both orbital and secular timescales, because it does not imply any
averaging. It follows from expression (6.23) for the Tisserand parameter, that, if the
particle’s semimajor axis a is conserved on the secular timescale, then the vertical
component of the angular momentum is also conserved, and one has the LK integral
c1 (see formula (3.23) or (5.4)). Thus, the averaging acts to decouple the variations
in the energy and in the vertical component of the angular momentum, “splitting”
the Jacobi integral into two new ones: the semimajor axis a and the LK integral c1.

6.1.2 Comets in Highly Inclined Orbits

It follows from the LK integral c1, given by formula (3.23), that over a half LK-cycle
the eccentricity of a comet, moving in an inclined orbit under the perturbation of
Jupiter (and other giant planets), can be substantially pumped, while the semimajor
axis stays constant. Thus, the perihelion distance of the comet may radically
decrease, and the comet may become sungrazing.

That the LKE may invoke such a kind of collisions was, in fact, revealed as early
as in 1961 by Lidov in his pioneer paper (Lidov 1961), in the beginning of which
he described the orbital behaviour of the space probe Luna-3, launched to an orbit
highly-inclined with respect to the ecliptic plane. Luna-3 became an “Earth-grazer”
in eleven orbital revolutions. Thus, the “planet-grazing” phenomenon is known to
be a spectacular consequence of the LKE since 1961.

On the other hand, Kozai as early as in 1962 (Kozai 1962) demonstrated how
changes of the eccentricity and inclination of a minor body in the gravitational field
of the Sun and Jupiter are secularly correlated due to conservation of an integral of
motion (which is called now the Lidov-Kozai integral, see formula (3.23) or (5.4)).
He found out that the variations of the eccentricity might be huge, and, due to the
secular conservation of the semimajor axis, might lead to huge changes of the body’s
pericentric and apocentric distances (the eccentricity e being maximum when the
inclination i is minimum, and vice versa).

The !-libration, which takes place at the test particle’s high enough inclinations,
is often interpreted as a kind of secular resonance, called the Lidov-Kozai resonance
(see, e.g. Morbidelli 2002; Murray and Dermott 1999). However, it does not concern
any eugenfrequency of the Solar system, as other well-known secular resonances
do, as discussed in the next section. The LK-resonance means that the averaged P!
is zero, i.e., P$ D P�, where $ and � are, respectively, the longitude of pericenter
and the longitude of ascending node of the test body. This condition can be fulfilled
merely for the orbits inclined enough. In fact, an asteroid or a comet with small
eccentricity and inclination has P$ � � P� (see, e.g. Murray and Dermott 1999,
p. 316).
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Table 6.1 Data on prominent comets

Comet 	 q (AU) e i .ı/

1P/Halley 1986 Feb 05.9 0:5860 0:9671 162:26

8P/Tuttle 2008 Jan 27.0 1:0271 0:8198 54:98

67P/Churyumov–Gerasimenko 2015 Aug 13.1 1:2432 0:6410 7:04

96P/Machholz 1 2012 Jul 14.8 0:1237 0:9592 58:31

109P/Swift–Tuttle 1992 Dec 12.0 0:9595 0:9632 113:45

C/1843 D1 Great March comet 1843 Feb 27.9 0:005527 0:999914 144:35

C/1965 S1-A Ikeya–Seki 1965 Oct 21.2 0:007786 0:999915 141:86

C/1965 S1-B Ikeya–Seki 1965 Oct 21.2 0:007778 0:999925 141:86

C/1969 Y1 Bennett 1970 Mar 20.0 0:5376 0:9962 90:04

C/1973 D1 Kohoutek 1973 Jun 07.2 1:3820 0:9987 121:60

C/1973 E1 Kohoutek 1973 Dec 28.4 0:1424 1:0000 14:30

C/1975 V1-A West 1976 Feb 25.2 0:1966 0:99997 43:07

C/1995 O1 Hale–Bopp 1997 Apr 01.1 0:9141 0:99508 89:43

C/1996 B2 Hyakutake 1996 May 01.4 0:2302 0:99990 124:92

C/2006 P1 McNaught 2007 Jan 12 0:17075 1:00002 77:83

C/2011 W3 Lovejoy 2011 Dec 16 0:00555 0:99993 134:36

C/2012 S1 ISON 2013 Nov 28.8 0:01245 1:0002 62:40

Notes: 	 is the time of perihelion transit, q is the perihelion distance (AU), e eccentricity, i
inclination. The Table is compiled based on data given in the JPL Small-Body Database (http://
ssd.jpl.nasa.gov/). The Kreutz sungrazers are distinguished in bold font

Some representative examples of well-known comets are listed in Table 6.1.
In this Table, the time of last perihelion transit 	 , perihelion distance q (AU),
eccentricity e, and inclination i are given for each listed object. Already from this
short list it is clear that the LKE manifestations can be ubiquitous for comets. Some
of the comets have perihelia values quite close to the Solar radius RSun � 0:005 AU.
This means that they are either sungrazers, or close to the sungrazing state. Among
the comets presented in the Table, the Great March comet, comet Ikeya–Seki, and
comet Lovejoy are believed to be Kreutz sungrazers, belonging to a group of comets
of common origin—a result of a breakup of a larger body, as it was originally
supposed and argued by Kreutz (1888). In Table 6.1, the Kreutz sungrazers are
distinguished in bold font.

The sungrazing behaviour is observed not only for comets, but as well for aster-
oids in the inner Solar system, mostly for NEAs. For them, a number of resonant
mechanisms (in particular, interaction of secular and mean motion resonances) for
transportation to the Sun, apart from the LKE, were proposed (Farinella et al. 1994).
However, the LKE is one of the most efficient, as it was demonstrated by Farinella
et al. (1994) for asteroid (5731) Zeus (see Table 7.1), which exhibits enormous
secular changes in the orbital inclination, due to the LKE.

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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6.2 Origin of Sungrazers

The LK-mechanism might be responsible for both (1) the formation of the reservoir
for the long-period comets and (2) the delivery of the comets from the Oort cloud
to the inner Solar system. Finally, by means of the LKE again, (3) the delivered
comets can become sungrazers; and the Sun disperses their primordial matter inside
the Solar system.

Bailey et al. (1992) established that the LKE is able to produce a lot of sungrazing
comets, emerging from long-period comets.2 They were the first to reveal that a
high-amplitude libration around the points at ! D 90ı and 270ı, prominent in
the Kozai diagrams (on the diagrams, see Sect. 3.2.4), can be responsible for the
emergence of sungrazing phenomena in the secular evolution of long-period comets
with extremely high eccentricities.

Such high eccentricities can be achieved when a half of a libration cycle around
any of these two points is completed, see Fig. 6.2. This figure, constructed by
Thomas and Morbidelli (1996), demonstrates the orbital behaviour of one the
most illustrious comets ever observed, C/1965 S1 Ikeya–Seki, superimposed on
the theoretical Kozai diagram for this comet. To construct this Figure, Thomas
and Morbidelli used a refined numerical-experimental model, containing all four
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Fig. 6.2 The Kozai diagram (g D !, X D .1 � e2/1=2) constructed for the Ikeya–Seki comet (the
current orbital elements a D 91:6 AU, e D 0:9999, i D 141:86ı , g D 69:05ı). The superimposed
bold curve shows the evolution of the Ikeya–Seki comet position on the diagram during a time
interval of 480,000 years. The curve is obtained by a direct numerical integration in the full setting
of the dynamical problem. The present position of the comet is marked by an arrow (Figure 8 from
Thomas and Morbidelli (1996). With permission from Springer International Publishing AG)

2A long-period comet is the comet with the orbital period greater than 200 years.
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giant planets as the perturbers. One can see that the evolutionary track obtained
by the direct numerical integration in the full dynamical problem follows the
theoretical level curves of the Hamiltonian of the averaged problem rather roughly,
because the short-period oscillations were not averaged in the integration and also
because the planetary eccentricities and inclinations were not taken into account
in the Hamiltonian. However, the qualitative agreement is obvious. Figure 6.2
clearly demonstrates how sungrazers can emerge, in both theoretical and numerical-
experimental aspects.

Note that, to construct this graph, Thomas and Morbidelli (1996) employed a
technical trick, well-known since the works of Lidov (1963b) and Gordeeva (1968):
they used not the usual coordinates g and e, but g and X D .1 � e2/1=2. This trick
allows one to zoom the domain of high eccentricities, thus making regular islands
at extreme eccentricities detectable.

Thomas and Morbidelli (1996) considered the secular dynamics of 49 long-
period comets, in a realistic model with perturbations from all four giant planets
taken into account. For each of the comets, they computed the value of the vertical
component H of the angular momentum, constructed the contour plot of the Kozai
Hamiltonian3 in the “argument of perihelion—eccentricity” plane for the given
value of H, and identified the location of the comet in the diagram. It turned out,
quite unexpectedly, that more than a half of the studied comets were located inside
the islands of !-libration, and all other close to these islands. Among the !-librators
some famous sungrazers (in particular, Great Comet of 1965) were recognized.
The inference of Bailey et al. (1992) on the LKE as an effective mechanism for
producing sungrazing comets was thus confirmed.

6.3 The Oort Cloud and Cometary Transport

Oort (1950) put forward a hypothesis that long-period comets are “injected”, due to
some occasional perturbations, into the Solar system from a huge unobserved outer
spherical reservoir of primordial objects. Now this reservoir is called the Oort cloud.
The Oort cometary cloud could have been formed as an outcome of close encounters
of planetesimals with major planets during early epochs of the Solar system history
(Fernández 1997). Now the Oort cloud extends radially from �103 to �105 AU. The
outer border is approximately delimited by the Hill sphere of the Sun in the Galactic
gravitational field.4

Oort (1950) supposed that the cometary injection was due to occasional external
perturbations. The Galactic field stars (or giant molecular clouds), passing close to
the Oort cloud, perturb it. Therefore, the perihelion distances of some objects of the

3The numerical technique for construction of the Kozai diagrams is described in detail further on,
in Sect. 7.1.
4The Hill sphere of the Sun is defined in Sect. 9.4.
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Oort cloud may sharply diminish, and the orbits of such objects may start to cross
the inner Solar system, reaching heliocentric distances r < 5 AU; some objects may
become even observable at perihelia.

In 1980s, a new mechanism for the transport of objects from the Oort cloud was
proposed (Duncan et al. 1987; Heisler and Tremaine 1986; Matese and Whitman
1989; Higuchi et al. 2007), based essentially on the LKE due to the Galactic
perturbation. Matese and Whitman (1992) and other authors demonstrated that the
Galactic latitudes of perihelia of the observed comets were distributed according
to the effect of the Galactic disk tide.5 The new mechanism turned out to be
theoretically efficient for producing the observable comets, probably even more
efficient than the effect of stellar passages. Now the Galactic tide and the stellar
passages are both considered to be active in providing the transport of comets from
the parent reservoir (Fouchard et al. 2011; Matese and Lissauer 2002).

Exploring the Galactic tide effect on the motion of comets, Brasser (2001)
averaged the perturbing potential over the mean anomaly and the longitude of the
ascending node, thus reducing the system’s number of degrees of freedom to one.
Though the perturbing potential was different from that in the three-body problem
case considered by Lidov and Kozai, the resulting secular behaviour turned out to
have much in common with the classical LKE. The argument of perihelion was
shown to librate if i 
 26:57ı. Using a direct numerical integration of the non-
averaged system, Brasser (2001) identified a chaotic behaviour near the separatrix
between the libration and circulations of the argument of perihelion. This chaos
is due to the presence of periodic perturbations, absent in the analytical treatment,
where they were averaged out. At ! D 26:56ı (a critical value), the chaotic orbits
were found to exist at 40ı 	 i 	 140ı, independent from the eccentricity.

5The disk tide is the tidal force arising due to the change of the Galactic gravitational potential
with distance from the Galactic midplane.



Chapter 7
Asteroids and Kuiper Belt Objects
in Inclined Orbits

Ô Loi du rythme sans appel,
Le moindre astre te certifie,
Par son humble chorégraphie!

Jules Laforgue, Le Concile féerique

In the asteroid belt, the asteroids move in the orbits inner to those of the main
perturbers (Jupiter and other giant planets), whereas in the Kuiper belt the situation
is opposite. Therefore, the settings for the analytical treatment are different in these
two cases; and, indeed, the LK-dynamics are different. The common feature is that
the LKE plays an important role in sculpting both the asteroid belt and the Kuiper
belt.

In the asteroid belt, the LKE pumps the eccentricity of highly-inclined asteroids
to values at which they become planet-crossing, and this leads to close encounters
of the asteroids with the planets. Thus, the LKE causes the asteroid belt depletion at
high inclinations. In the Kuiper belt, on the contrary, quite a number of objects are
observed to be at high inclinations. This is because the LK-mechanism in this region
does not pump eccentricities to planet-crossing values, if the initial eccentricities are
small or moderate, at any inclinations (Thomas and Morbidelli 1996). Therefore,
the inclined close-to-circular and moderately elongated orbits are not destabilized
by encounters with planets.

In the both belts, the interaction of the LK-resonance with mean motion and
secular resonances is an important dynamical factor, defining the structure of the
belts and the dynamics of individual objects (Morbidelli 2002). Inside the Jovian 2/1
mean motion resonance in the main belt, at large eccentricities, the LK-resonance
interacts with the secular �5 and �6 resonances at any inclination, and this gives
rise to dynamical chaos, due to which the asteroidal eccentricity can diffuse to
unity. Thus, the LK-resonance contributes to the depletion of the 2/1 mean motion
resonance zone in the asteroid belt. Similar effects are observed in other major mean
motion resonances, such as 3/1. In the Kuiper belt, the LK-resonance affects the
secular dynamics inside the 2/3 mean motion resonance with Neptune. Enough to
say, Pluto is simultaneously in the 2/3 resonance and in the LK-resonance (Malhotra

© Springer International Publishing Switzerland 2017
I. I. Shevchenko, The Lidov-Kozai Effect – Applications in Exoplanet Research
and Dynamical Astronomy, Astrophysics and Space Science Library 441,
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and Williams 1997; Williams and Benson 1971). However, most of Plutinos1 do not
have their arguments of perihelia librating.

In this chapter, various multi-resonant phenomena in the motion of asteroids
and trans-Neptunian objects (TNOs) are considered. In particular, a peculiar
multi-resonant “dance” of the asteroid 2335 James is discussed, illustrating the
interaction of the LK-resonance and ordinary secular resonances. As follows from
results of long-term numerical integrations by Froeschlé et al. (1991), 2335 James
intermittently resides in the LK-resonance and in the �5 and �16 secular resonances,
sometimes escaping some of them, sometimes returning. The alternation of the !-
libration and !-circulation regimes in the behaviour of 2335 James was earlier
revealed by Vashkovyak (1986), who performed a study of orbital evolution of
several asteroids, using an analytical-numerical approach.

Data on relevant asteroids, Centaurs, and TNOs (with a number of bodies subject
to the LKE, among them) are given in Tables 7.1, 7.2, and 7.3.

7.1 The Kozai Hamiltonian and Diagrams

The averaged truncated Hamiltonian of the motion of a massless test body (asteroid)
in the gravitational field of a planetary system, when expressed through the
modified Delaunay variables (defined by Equations (2.17)), can be rendered the
form (Morbidelli 2002):

Hsec D �H1.P;Q; p; q; ej; $j; ij; �j/; (7.1)

where ej, $j, ij, and �j are, respectively, the eccentricity, longitude of perihelion,
inclination, and longitude of ascending node of planet j; ƒ and �, P and p, Q and
q are the pairs of the modified Delaunay variables of the test body; � is the mass of
the largest planet in units of the mass of the host star.

In formula (7.1), the terms depending on ƒ and ƒj are omitted, because they are
constant, and the term �H1 includes all the terms of the first and higher orders in �.
The planetary elements ej, $j, ij, and �j change with time, albeit slowly; this slow
evolution can be described by the Lagrange–Laplace solution (see, e.g. Morbidelli
2002; Murray and Dermott 1999).

One can transform Hamiltonian (7.1) to an autonomous form:

Hsec D
X
k

.gk�k C sk†k/ C �H1.P;Q; p; q; ej; $j; ij; �j/; (7.2)

1Plutinos are the trans-Neptunian objects that reside in the 2/3 mean motion resonance with
Neptune, as Pluto does.
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Table 7.1 Data on relevant asteroids

Asteroid a (AU) e i .ı/ Object type

(2) Pallas 2.7716 0.2313 34:84 Main-belt asteroid

(292) Ludovica 2.5296 0.0342 14:90 Main-belt asteroid, res. 3/1

(329) Svea 2.4763 0.0254 15:88 Main-belt asteroid, res. 3/1

(617) Patroclus 5.2176 0.1393 22:05 Jupiter Trojan

(1036) Ganymed 2.6633 0.5340 26:69 Amor (NEO)

(1362) Griqua 3.2145 0.3715 24:23 Outer main-belt asteroid

(1373) Cincinnati 3.4216 0.3144 38:93 Outer main-belt asteroid

(1379) Lomonosowa 2.5244 0.0920 15:61 Main-belt asteroid, res. 3/1

(1566) Icarus 1.0779 0.8270 22:83 Apollo (NEO)

(1866) Sisyphus 1.8937 0.5385 41:19 Apollo (NEO)

(1915) Quetzalcoatl 2.5449 0.5705 20:40 Amor (NEO)

(1981) Midas 1.7761 0.6500 39:83 Apollo (NEO), res. �16

(2102) Tantalus 1.2901 0.2991 64:01 Apollo (NEO)

(2335) James 2.1233 0.3602 36:32 Mars-crossing asteroid, res. �5, �16

(3040) Kozai 1.8407 0.2003 46:64 Mars-crossing asteroid

(3200) Phaethon 1.2712 0.8898 22:24 Apollo (NEO)

(3752) Camillo 1.4134 0.3017 55:56 Apollo (NEO)

(3789) Zhongguo 3.2859 0.1848 2:75 Outer main-belt asteroid

(4034) Vishnu 1.0597 0.4439 11:17 Apollo (NEO)

(4236) Lidov 3.4427 0.0315 7:29 Outer main-belt asteroid

(4660) Nereus 1.4887 0.3600 1:43 Apollo (NEO)

(5496) 1973NA 2.4353 0.6359 67:99 Apollo (NEO)

(5731) Zeus 2.2630 0.6537 11:43 Apollo (NEO), sungrazer

Notes: a is the semimajor axis, e eccentricity, i inclination. The Table is compiled based on data
given in the JPL Small-Body Database (http://ssd.jpl.nasa.gov/). The orbital elements correspond
to epoch 2016 Jan 13.0, except that for (2), (617), (1362), (1566), (1915), (3200), (3789), (4034),
and (4236) the epoch is 2014 Dec 09.0, for (4034) the epoch is 2011 Jan 26.0. The inclination is
referred to heliocentric ecliptic J2000. The !-librators are distinguished in bold font

where the new angles $j D gjtC ˇj, �j D sjtC ıj, and �j and †j are the respective
conjugate actions. Here gj and sj are the planetary frequencies, ˇj and ıj are the
planetary angular phases (see, e.g., Laskar 1990). Then, a truncated expansion of
Hamiltonian (7.2) in a power series of ej and sin.ij=2/ is given by

Hsec D
X
k

.gk�k C sk†k/ C
X
n�0

Kn.P;Q; p; q; $j; �j/ (7.3)

(Morbidelli 2002; Williams 1969), where Kn is the quantity of order n in ej and
sin.ij=2/; n D 0; 1; : : : . Hamiltonian (7.3) provides an approximation suitable for a
body in a highly inclined and/or eccentric orbit.

The leading term K0 does not contain planetary eccentricities or inclinations.
Due to the D’Alembert rules, it does not depend on the planetary angles $j and �j.

http://ssd.jpl.nasa.gov/
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Table 7.2 Data on relevant trans-Neptunian objects

TNO a (AU) e i .ı/

1995 GJ 42:9031 0:0908 22:93

1996 RQ20 43:8978 0:1003 31:71

1996 TL66 84:0015 0:5826 23:99

1997 CW29 39:3753 0:0788 18:98

2008 KV42 41:4076 0:4899 103:48

2012 VP113 263:12 0:6940 24:02

(15883) 1997 CR29 47:3544 0:2144 19:11

(90377) Sedna 524:43 0:8549 11:93

(118228) 1996 TQ66 39:4924 0:1228 14:68

(134340) Pluto 39:4451 0:2502 17:09

(136108) Haumea 43:2175 0:1913 28:19

(136199) Eris 67:7807 0:4407 44:04

Notes: a is the semimajor axis, e eccentricity, i inclination. The Table is compiled based on data
given in the JPL Small-Body Database (http://ssd.jpl.nasa.gov/). The orbital elements of the given
TNOs correspond to epoch 2014 Dec 09.0, except 1995 GJ (epoch 1995 Apr 04.0), 1997 CW29
(epoch 1997 Feb 21.0), and Pluto (epoch 2006 Sep 22.0). The inclination is referred to heliocentric
ecliptic J2000. The !-librators are distinguished in bold font

Table 7.3 Data on relevant Centaurs

Centaur a (AU) e i (ı)

(944) Hidalgo 5:7365 0:6616 42:52

(5145) Pholus 20:3384 0:5736 24:73

(7066) Nessus 24:4744 0:5195 15:66

(8405) Asbolus 18:0147 0:6190 17:63

(10199) Chariklo 15:7647 0:1720 23:41

Notes: a is the semimajor axis, e eccentricity, i inclination. The Table is compiled based on data
given in the JPL Small-Body Database (http://ssd.jpl.nasa.gov/). The orbital elements correspond
to epoch 2014 Dec 09.0. The inclination is referred to heliocentric ecliptic J2000. The !-librator
(Hidalgo) is distinguished in bold font

It depends only on one angle: the argument of perihelion g D q � p (recall that
p D �g � h D �$ and q D �h D ��). Therefore, K0 is integrable.

Expressed through the Delaunay variables G, H, g, and h, given by formu-
las (2.15), the Hamiltonian

Hint D
X
k

.gk�k C sk†k/ C K0.G;H; g/ (7.4)

http://ssd.jpl.nasa.gov/
http://ssd.jpl.nasa.gov/
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can serve as an integrable approximation of the secular Hamiltonian (7.2). Follow-
ing Thomas and Morbidelli (1996), K0 is called the Kozai Hamiltonian, honouring
Kozai, who was the first to study the asteroidal dynamics in this approximation
(Kozai 1962, 1979, 1980).

Since angle h is absent in K0, its conjugate action H D Œa.1 � e2/�1=2 cos i is
a constant of motion. The semimajor axis a is also constant; therefore, the mean
elements e and i are related by the Lidov-Kozai integral (3.23).

To study the asteroidal secular dynamics, it is helpful to construct level curves of
K0.G;H; g/, parameterized by the value of H. These level curves represent plots of
functions G.g/ or e.g/. Families of these level curves are called the Kozai diagrams,
again in honour of Kozai, who invented this global graphical representation of the
asteroidal secular dynamics (Kozai 1962, 1979).

The Kozai diagrams can be constructed either analytically (in relatively simple
models, such as R3BP) or numerically (in realistic problem settings, say, when
perturbations from all planets are taken into account).

A numerical procedure for construction of the Kozai diagrams of asteroidal
dynamics is described in Morbidelli (2002). In brief, it is as follows. An average
of the original system Hamiltonian over the mean anomalies l and lj of the test body
and the planets is given by

Hsec D � G
4�2

NX
jD1

mj

Z 2�

0

Z 2�

0

 
1��r � rj

�� � r � rj��rj
��3

!
dl dlj (7.5)

(Morbidelli 2002; Thomas and Morbidelli 1996), where r and rj are the heliocentric
radial vectors of the test body and jth planet, respectively; all the vectors’ compo-
nents are implied to be expressed through the orbital elements. Note that, as shown
in Subbotin (1968),

Z 2�

0

Z 2�

0

r � rj��rj
��3

dl dlj � 0: (7.6)

If one sets inclinations ij and eccentricities ej for all j (i.e., all planets) equal
to zero, expression (7.5) to the accuracy of the first order in � coincides with
the Kozai Hamiltonian K0. It is independent of angle h, and depends merely
on e, i, g, and the secular constants a and aj. Besides, on a surface defined by
H D Œa.1 � e2/�1=2 cos i= const (H is a conserved reduced Delaunay momentum,

see Sect. 3.2.1) one has i D arccos
n
H

a.1 � e2/

��1=2
o
. Therefore, the numerically

computed values of K0 are determined merely by e and g. Therefore, one can
construct contour plots in the (g, e) plane.
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Setting ij D 0 and ej D 0, the integral over lj in formula (7.5) can be expressed
analytically through elliptic integrals of the first kind; namely, one has

Z 2�

0

 
1��r � rj

�� � r � rj��rj
��3

!
dlj D 4

.r2 C a2
j /

1=2

�
1 � m

2

�1=2

K.m/; (7.7)

where

m D 4aj.x2 C y2/1=2

r2 C a2
j C 2aj.x2 C y2/1=2

; (7.8)

r D krk, x and y are the coordinates of r projected onto the orbital plane of the
planets (Bailey et al. 1992; Morbidelli 2002; Williams 1969). On the other hand, the
integral over l in expression (7.5) can be taken only numerically.

Thus, the Kozai diagrams (contour plots of K0) can be constructed in such a way:
one computes values of Hsec, given by expression (7.5) on a fine grid of the (g, e)
values at H D const, and then plots the level curves. This numerical procedure was
extensively employed by Thomas and Morbidelli (1996) and Thomas (1998).

As soon as a minor body may move around the Sun either in the orbits
inner to the main perturbers (as in the main belt of asteroids), or in the orbits
outer to the main perturbers (as in the Kuiper belt), two types of the restricted
problem, approximating these dynamical situations, can be considered: the inner
problem and the outer problem, in which the massless test particle is a member
of the inner or outer binary, respectively. Accordingly, there are two types of the
LKE: the inner LKE and the outer LKE. It is mostly the inner LKE that was
theoretically studied since the works of Lidov (1961) and Kozai (1962). The outer
LKE, corresponding to the outer problem, is not less important than the inner one;
its analytical treatment was performed first by Ziglin (1975). The secular outer
R3BP in the quadrupole approximation was analyzed by Farago and Laskar (2010).
They provided a complete classification of possible motions and derived analytical
expressions for the secular periods.

In the Solar system dynamics, the inner LKE case can be called the asteroidal
case, because the main-belt asteroids move inside the orbits of the main perturbers;
and the outer LKE case can be called the TNO case (the case of trans-Neptunian
objects), because the TNOs move outside the orbits of the main perturbers. These
two cases are the subjects of the following two sections.

7.2 Inclined Asteroids: Inside Perturber’s Orbit

Let us consider typical patterns of the secular evolution of asteroids in the main
belt subject to planetary perturbations. The secular dynamics of asteroids presents a
rich variety of behaviours, resulting in formation of various asteroidal populations.
Several examples of relevant asteroids of the main belt (including those subject to
the LKE) are given in Table 7.1.
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The LKE importance in the dynamics of short-period comets and similar highly-
eccentric objects, such as Centaurs, was first pointed out by Kozai (1979). The
secular evolution of numbered asteroids, short-period comets and Halley-type
comets (all such objects known up to 1979) was explored by him by means of
numerical integrations taking into account four giant planets as perturbers. The
averaging was also performed numerically.

For (944) Hidalgo, (1373) Cincinnati, (1866) Sisyphus, and (1981) Midas, the
arguments of perihelion were found to be in libration. It was shown for the first time
that the LKE can serve as a mechanism protecting a minor body from encounters
with planets: due to !-libration, (1373) Cincinnati avoids close encounters with
Jupiter, and (1866) Sisyphus and Midas (1981) avoid close encounters with Mars.

None of the studied short-period comets were found to be in !-libration, though
the libration islands exist in the phase space of motion. In what concerns the Halley-
type comets, 15 objects were identified to be in !-libration, the Halley comet itself
among them. However, their eccentricities do not change much, contrary to the case
of the asteroids in !-libration. Though the secular motion of the Halley comet is
close to the separatrix of the LK-resonance, its eccentricity varies only weakly. The
range of variation of e is 0.89–0.97; this is rather moderate, compared, e.g., to the
case of (944) Hidalgo, for which the eccentricity varies between 0.52 and 0.82.

In 1980, Kozai found four more asteroids to be in !-libration: (2102) Tantalus,
(2335) James, (3040) Kozai, and (5496) 1973NA (Kozai 1980). The secular theory
at that time had not yet been generalized to deal with resonant objects (the objects
that reside in mean motion resonances), that is why the identified LK-asteroids were
all non-resonant. In 1985, Kozai developed a semi-analytical approach to deal with
the secular dynamics of asteroids in mean motion resonances (Kozai 1985). For the
sake of analytical simplicity, he assumed that an asteroid is in exact mean motion
resonance: the amplitude of resonant libration is zero, in other words, the object
is in the resonance center. In this way, a survey of resonant main-belt asteroids
was accomplished on the subject of possible LK-oscillations. The asteroids known
to reside in the 1/1, 4/3, 3/2, 2/1, and 3/1 mean motion resonances with Jupiter
were analyzed. However, a few objects were found to be subject to !-libration. In
particular, no Jovian Trojan (1/1 resonance), though they are numerous and highly-
inclined, was found to librate. !-librators were identified only in the 3/1 resonance;
these were (292) Ludovica, (329) Svea, and (1379) Lomonosowa.

Though the survey was generally restricted to main-belt asteroids, Kozai (1985)
considered also Pluto, which is in resonance 2/3 with Neptune, and discovered that
it was subject to the LKE with the argument of perihelion librating around 90ı.

In the works by Quinn et al. (1990) (on the quasi-parabolic comets arriving
from the Oort cloud), Bailey et al. (1992) (on the LKE-maintained production of
most of the sungrazing comets), and Thomas and Morbidelli (1996) (on the long-
period comets) the basic inferences of Kozai (1979, 1980) were confirmed and the
numerical-experimental technique was developed to a new level.

Of especial (even practical) interest the LKE is for the case of near-Earth aster-
oids (NEA) and, more generally, near-Earth objects (NEO). Michel and Thomas
(1996) analyzed secular dynamics of near-Earth asteroids; for this purpose, they
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integrated orbits of all asteroids with semimajor axes less than 2 AU. Four objects
subject to the LKE were identified: (1981) Midas, (3752) Camillo, (4034) Vishnu,
and (4660) Nereus (see Table 7.1 for orbital data). The arguments of pericenters
of two of them, (4034) Vishnu and (4660) Nereus, librate not around 90ı or 270ı,
as one would expect, but around 180ı. This is due to a modification of the secular
phase space in presence of inner planets intersecting the orbits of the asteroids. Thus,
Michel and Thomas (1996) showed that the LKE is possible even at low inclinations
(i < 14ı, see Table 7.1) and ! librating around 0ı or 180ı, when perturbers with
orbits intersecting that of a test body are present. In the both libration cases (around
90ı and 270ı or around 0ı and 180ı), the LKE serves as a mechanism of the
temporary protection from close encounters of an asteroid subject to LKE with a
perturbing planet.

As found out by Michel and Thomas (1996), the LKE can make a NEA
metastable. If an asteroid’s semimajor axis is close to that of a planet, encounters are
potentially possible. However, if the inclination is low and the eccentricity is high,
and ! librates around 0ı or 180ı, the node crossings take place near the asteroid’s
perihelia and aphelia, i.e., far from all possible positions of the perturbing planet
moving in a close-to-circular orbit.

Yet another LKE-based protecting mechanism can work both for NEAs and
main-belt asteroids. If an asteroid may approach a planetary orbit, but the inclination
is high and ! librates around 90ı or 270ı, the dynamical consequences of an
encounter is minimum, because it occurs at a high relative velocity; thus, the
asteroid’s orbit can be modified only slightly. The both protecting mechanisms are
discussed in detail in Michel and Thomas (1996).

As already discussed above, if one sets all ij and ej equal to zero, the secular
Hamiltonian Hsec, given by Equation (7.5), coincides with the Kozai Hamiltonian
K0 (to the accuracy of the first order in �). As soon as K0 is independent of angle h,
the action H D Œa.1�e2/�1=2 cos i= const. In Fig. 7.1, constructed by Thomas (1998),
the LK-evolution of eccentricity e and argument of pericenter g is graphically
presented for six representative constant values of H. The asteroid’s semimajor axis
is set to a D 3 AU, i.e., the asteroid moves in an orbit located between the 5/2
and 2/1 mean motion resonances with Jupiter. Thus, the diagrams feature a typical
asteroid of the main belt. The perturbations from all four giant planets are taken into
account.

Any chosen value of H D const sets a maximum value of the inclination that is
achieved at e D 0:

imax D arccos
�
Ha�1=2

	
: (7.9)

At each panel of Fig. 7.1, this maximum value is indicated. In all panels, the diagram
boundary circle corresponds to the maximum possible (at the given value of H)
eccentricity

emax D
�

1 � H2

a

�1=2

: (7.10)
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Fig. 7.1 Secular behaviour of a typical main-belt asteroid (the semimajor axis a D 3 AU) in the
polar coordinates (with angular variable g � ! and radial variable e). At each panel, the maximum
inclination imax, achieved at e D 0, is indicated, and the dashed curves correspond to the node-
crossings of planetary orbits (Figure 8.1 from Morbidelli 2002. With permission from Academic
Books)
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An analysis of the Kozai diagrams was accomplished by Thomas and Morbidelli
(1996), Thomas (1998), and Morbidelli (2002). The main inferences are as follows.
At small imax (see Fig. 7.1a, where imax D 10ı), the level curves are close-to-
circular: as the argument of perihelion circulates from 0ı to 360ı, the eccentricity
and inclination remain approximately constant. At a greater value of imax (Fig. 7.1b,
imax D 30ı), the eccentricity and inclination start to oscillate (the (e, g) oval level
curves elongate), though the amplitude is yet low. At g D 90ı and 270ı, the
eccentricity and inclination are, respectively, maximum and minimum, the level
curves spread along the vertical axis. The LK-dynamics radically changes at imax

greater than a threshold value (see Fig. 7.1c, where imax D 33ı); the threshold value
resides somewhere between 30ı and 33ı. At this threshold, the point at the frame
origin e D 0 transforms into an unstable equilibrium; a separatrix, emanating from
this unstable equilibrium, divides the phase space in three domains: two domains
of !-libration at g D 90ı and 270ı, and the domain where g circulates. Such a
dynamical pattern with a separatrix formally corresponds to a nonlinear resonance,
that is why the !-libration is frequently called the Lidov-Kozai resonance, as
discussed in detail above in Sect. 4.6.

Panels (d), (e), and (f) of Fig. 7.1 illustrate the LK-dynamics at greater values
of imax, namely, at imax D 45ı, 60ı, and 80ı, respectively. The libration domains
apparently enlarge. The point at e D 0 is still always an unstable equilibrium; any
initially close-to-circular (starting at e � 1) orbit of the test body reaches maximum
eccentricities (including extreme ones e � 1) at g D 90ı and 270ı.

In panels (b), (c), (d), (e), and (f) of Fig. 7.1, the so-called curves of node-
crossings of planetary orbits are shown dashed. What do these curves indicate? Let
us define the heliocentric nodal distance rṅodal, as the “Sun–test body” distance at
the moment of time when the test body crosses the reference plane:

rṅodal D a.1 � e2/

1 ˙ e cos g
(7.11)

(Morbidelli 2002; Thomas and Morbidelli 1996). Here, superscripts “C” and
“�” designate the ascending and descending nodes, respectively. As follows from
formula (7.11), if the test body achieves a high orbital eccentricity, the quantity rṅodal
becomes small. Thus, the asteroid may start to cross the orbits of inner planets:
in panels (a) and (b), it is the orbit of Mars that is crossed; and in panel (f) the
curves of node-crossings for Jupiter and all four inner planets, including Mercury,
are present. (The curves are produced simply by equating the right-hand side of
Equation (7.11) to the semimajor axis of a planetary orbit.) A node-crossing of a
planetary orbit by an asteroid may result, sooner or later, in a close asteroid–planet
encounter, drastically transforming the asteroid’s orbit. Thus, the LKE explains the
depletion of the main belt at high inclinations.

As shown by Kozai (1962), the threshold imax value, at which the LK-resonance
emerges, depends on a=apert, where a and apert are the semimajor axes of the test par-
ticle and perturber, respectively. However, as shown in Thomas (1998), at any value
0 . a=apert . 1 the LK-dynamics is qualitatively similar to that shown in Fig. 7.1.
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As noted by Morbidelli (2002), the relative perturbation strength (� in Equa-
tion (7.1)) in the R3BP affects merely the timescale of LK-oscillations, but not their
amplitude, due to the two-body problem degeneracy. In other words, the perturber’s
mass and its distance from the test body do not influence the amplitude of the LK-
oscillations, but affect merely the time needed to reach the maxima.

The LKE, however, can be suppressed, if any additional perturbation causes a
rapid enough precession of the argument of perihelion, as we have already discussed
thoroughly in Sect. 3.3. Indeed, in such a case, the secular Hamiltonian, to the lowest
order, is given by

Hsec D ˛G C K0.G;H; g/; (7.12)

where the coefficient ˛ is the frequency of the forced (due to the additional
perturbation) precession of the angle g, and K0 is the basic Kozai Hamiltonian.
If the term ˛G dominates over K0, then the LK-resonance disappears whatever the
inclination might be.

7.3 Inclined TNOs: Outside Perturber’s Orbit

In this section, we consider the LK-dynamics in the Kuiper belt. We shall see that
it differs substantially from that in the main belt of asteroids. Several examples of
relevant trans-Neptunian objects (TNO), including those subject to the LKE, are
given in Table 7.2.

Diagrams, representing the global secular dynamics in the outer Solar system,
were constructed by Thomas and Morbidelli (1996). The method of construction is
the same as described in Sect. 7.1 and used in the case of the inner Solar system in
Sect. 7.2.

The Kozai diagrams for the outer Solar system are reproduced in Fig. 7.2. They
illustrate the LK-dynamics of a test particle with semimajor axis a D 45 AU, typical
for a TNO. Such a test body moves in an orbit mostly exterior with respect to the
main perturbers (the four giant planets).

An analysis of the diagrams was accomplished by Thomas and Morbidelli (1996)
and Morbidelli (2002). The main inferences are as follows. At each panel of Fig. 7.2,
the maximum inclination imax, achieved at e D 0, is indicated, so that one can
follow how the level curves deform and transform with increasing imax. In panel
(a) (imax D 10ı), the level curves of K0 are close-to-circular and the eccentricity
is almost constant with time, as in the case of a main-belt asteroid at comparable
values of imax. Beginning with panel (b) (imax D 30ı), the dashed curves represent
the curves of node-crossings of planetary orbits. In panel (b), they correspond
to the node-crossings with the orbit of Neptune. The objects in the orbits with
low enough eccentricities are protected from encounters with Neptune, whereas
those in the orbits with high enough eccentricities are forced, due to !-circulation,
to cross, sooner or later, the orbit of this planet. On increasing imax, two points
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Fig. 7.2 The same as Fig. 7.1, but for a test particle with semimajor axis a D 45 AU, typical for
the Kuiper belt. At each panel, the maximum inclination imax, achieved at e D 0, is indicated. The
dashed curves correspond to the node-crossings of the orbits of Neptune (panels (b)–(f)), Uranus
(panels (c)–(f)), and Saturn (panels (e)–(f)) (Figure 8.2 from Morbidelli 2002. With permission
from Academic Books)
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of stable equilibria at g D 0ı and g D 180ı appear (Fig. 7.2c, imax D 41ı).
They are the centers of regular islands of orbits with the argument of perihelion
librating; amongst the highly-eccentric orbits, merely these ones are protected from
encounters with Neptune. Besides, new dashed curves appear, tracing the node-
crossings with Uranus; consequently, at extreme eccentricities, encounters with
Uranus become possible. With increasing imax further on, the libration islands swell
(Fig. 7.2d, imax D 50ı); therefore, the orbits with high amplitudes of libration are
enforced to cross the orbit of Uranus. In Fig. 7.2e (imax D 55ı), the curves of node-
crossings of the orbit of Uranus divide each libration island in two halves; thus, four
smaller encounter-protected libration islands are born. At extreme eccentricities,
additional dashed curves correspond to encounters with Saturn. In the last panel
(Fig. 7.2f, imax D 60ı) two new small islands appear at g D 90ı and 270ı, bounded
by the curves of node-crossings with the orbits of Neptune and Uranus; and two
islands remain (at g D 0ı and 180ı) in the exterior of the curve of node-crossings
with the orbit of Uranus.

From Fig. 7.2 it is clear that, at all imax, the LKE in the Kuiper belt does not
pump initially small eccentricities up to high values; therefore, the objects with
initially small enough eccentricities are permanently preserved from encounters
with planets. Conversely, in the main belt of asteroids, such a pumping is prominent,
as discussed in the previous section. This is a major dynamical difference between
the two belts. It explains why there exist objects in the Kuiper belt that have much
higher inclinations in comparison with the main-belt population.

To represent graphically the LK-dynamics at extreme eccentricities, Thomas and
Morbidelli (1996) constructed the level curves of the Kozai Hamiltonian using the
coordinates g and X D .1�e2/1=2, instead of g and e; see Fig. 7.3. Thus, the domain
of high eccentricities is effectively zoomed, due to the specific non-linearity of X in
e (see discussion in Sect. 6.2). This allows one to identify regular islands, protected
from encounters with planets, at extreme eccentricities. Therefore, the constructed
graphs can be used to characterize the secular evolution of extremely-eccentric
objects.

Thomas and Morbidelli (1996) accomplished an analysis of these Kozai dia-
grams; their main inferences are as follows. In panel (a) of Fig. 7.3 (imax D 60ı),
the same diagram is depicted as in panel (f) of Fig. 7.2, but in different coordinates,
namely, g and X D .1 � e2/1=2, instead of g and e. In panel (b) (imax D 68ı),
the curves of node-crossings of the orbits of Jupiter and Saturn split both regular
islands at g D 0ı and 180ı, each into three encounter-protected sub-islands. In
panel (c) (imax D 76ı), the upper islands at g D 0ı and 180ı disappear. In
comparison with panel (b), merely the island located under the curves of node-
crossings with the orbit of Jupiter is still present, but its size diminishes, because the
curves of node-crossings with the orbits of Neptune and Uranus become closer to
each other. Another island appears, also under the curves of node-crossings of the
orbit of Jupiter, but at g D 90ı and 270ı. It swells with increasing imax; in panel (d)
(imax D 86ı), it dominates the phase space, whereas the island at g D 0ı and 180ı
is almost absent.
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Fig. 7.3 The LKE at extreme eccentricities and inclinations in the Kuiper belt. At the vertical
axis, the coordinate X D .1 � e2/1=2 is used instead of e, in order to “zoom” the domain of
high eccentricities (Figure 5 from Thomas and Morbidelli 1996. With permission from Springer
International Publishing AG)

The LK-dynamics, as shown in Figs. 7.2 and 7.3, is typical for the outer Solar
system: at larger semimajor axes, the dynamical picture simply repeats itself, but at
a greater eccentricity and the same inclination, i.e., at a greater value of imax. The
reason is that the location, emergence and death of the libration islands are governed
by the behaviour of the curves of node-crossings of the orbits of planets.

A particular “extreme” population of the Solar system bodies is formed by
the so-called extreme trans-Neptunian objects (ETNO). Formally, they are defined
as the objects with perihelion distances greater than 30 AU and semimajor axes
greater than 150 AU. The observed ETNOs are nothing but inner objects of the
Oort cloud (on the Oort cloud, see Sect. 6.3). It is very likely that they are “LK-
shepherded” by a distant, yet unobserved, massive planet (Trujillo and Sheppard
2014): all such bodies, discovered up to now, concentrate heavily near the zero value
of the argument of perihelion, ! � 0ı; see Fig. 7.4. In particular, the argument of
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Fig. 7.4 The distribution of
TNOs in the “semimajor
axis–argument of perihelion”
plane. ETNOs concentrate
near ! � 0ı (Figure 3 from
Trujillo and Sheppard 2014.
With permission from Nature
Publishing Group)

perihelion of ETNO 2012 VP113, which has the largest pericentric distance amongst
all known Solar system bodies (see Table 7.2), is close to zero.

In numerical experiments accomplished in the framework of the circular R3BP,
Trujillo and Sheppard (2014) demonstrated that a super-Earth (a planet by an order
of magnitude more massive than our planet) in an orbit with the semimajor axis
�250 AU is able to produce the observed zero-! concentration of ETNOs, enforcing
the !-libration of these objects. Thus, the LKE theory acts here for the first time
as an “agent” allowing one to predict the existence of a planet yet undiscovered;
this is reminiscent of the glorious times of Celestial Mechanics, when Neptune was
predicted in 1846; though the theoretical approach is different.

de la Fuente Marcos and de la Fuente Marcos (2014) explored possible obser-
vational selection effects that may affect the !-distribution and concluded that the
observed concentration of objects near ! D 0 is real. What is more, they argued
that there might exist even two trans-Plutonian massive planets, “shepherding” the
ETNOs via the LK-mechanism.

Centaurs are the objects intermediate in their orbital characteristics between
the main belt and Kuiper belt bodies2; therefore, they may have secular dynamics
of intermediate type. Gronchi and Milani (1999) identified regular islands of
!-libration for such objects; the islands, as always, are defined by the curves
of node-crossings of the planetary orbits and serve to protect the bodies from
encounters with the outer planets of the Solar system.

2The Centaurs have intermediate values of orbital semimajor axes, between 5 and 30 AU; see
examples in Table 7.3.
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The secular dynamics, qualitatively similar to that in the Kuiper belt, can be also
observed in the inner Solar system, if a body moves in a moderately inclined orbit
slightly exterior to the orbit of Venus or the Earth (Michel and Thomas 1996). If
the body’s inclination is not high enough, then the perturbations from Venus or the
Earth dominate over the Jovian perturbations, and, therefore, the LK-dynamics is
similar to that in the Kuiper belt (the case of an inner perturber); conversely, at high
enough inclinations, the Jovian perturbations dominate over the perturbations from
Venus and the Earth, and the LK-dynamics is similar to that in the main belt (the
case of an outer perturber).

7.4 Inclined Asteroids and TNOs in Mean Motion
Resonances

In the both belts of minor bodies in the Solar system (the main belt and the
Kuiper belt), the interaction of the LK-resonance with mean motion and secular
resonances is an important dynamical factor, defining the secular dynamics of
individual objects, as well as the global dynamical structure of the belts.

Considering the LKE in various applications, it is usually assumed that the
system is not subject to mean motion resonances. When resonant contributions to
the perturbing functions are considered (for the first time this was accomplished by
Kozai 1985), it may concern the case of the LK-resonance within a mean motion
resonance. The LK-resonance within mean motion resonances in the main belt of
asteroids and in the Kuiper belt was analyzed in a number of works, including
the monograph by Morbidelli (2002), articles by Gallardo (2006), Wan and Huang
(2007), and Gallardo et al. (2012).

7.4.1 Mean Motion Resonances

Inside the 2/1 mean motion resonance of an asteroid with Jupiter, the LK-resonance
may interact (at large asteroidal eccentricities) with the secular �5 and �6 resonances,
and this may give rise to dynamical chaos, due to which the asteroidal eccentricity
can diffuse to unity. In this way, the LK-resonance contributes to the depletion
of the 2/1 mean motion resonance zone in the main belt (Moons et al. 1998).
Similar secular resonant interactions are observed inside other major mean motion
resonances, such as the 3/1 resonance (Farinella et al. 1993; Moons and Morbidelli
1995).

In the Kuiper belt, the LK-resonance affects the secular dynamics inside the
2/3 mean motion resonance with Neptune (Morbidelli 2002). Enough to say, Pluto
is simultaneously in the 2/3 resonance and in the LK-resonance (Malhotra and
Williams 1997; Williams and Benson 1971, see also Section 4.2).
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In the framework of the circular R3BP, Krasinsky (1972) showed that the critical
inclination in the case of the inner perturber (with the orbital semimajor axis much
smaller than that of the perturbed particle) is �63ı, i.e., much greater than that in
the case of the outer perturber, where it is �39ı. Pluto has a moderate inclination,
i � 17ı (see Table 7.2), but it is nevertheless subject to !-libration, due to
perturbation from the inner perturber (Neptune). The reason is that inside a mean
motion resonance the conditions for emergence of the LK-resonance are different;
besides, the problem is far from being strongly hierarchical (see, e.g., Gallardo et al.
2012).

LK-plutinos is a natural designation for those objects that reside both in the LK-
resonance and in the 2/3 mean motion resonance with Neptune. The LK-plutinos
have their orbital pericenters out of the ecliptic plane, due to !-libration around
90ı or 270ı. This introduces a selection effect, preventing from discovering LK-
plutinos in observational ecliptic surveys. Cosmogonical scenarios of the primordial
migration of the giant planets predict the LK-plutino fraction in the total plutino
population to be in the range 10–30 %; however, the fraction deduced from
observational surveys is substantially lower (8–25 %), perhaps due to observational
biases (see Lawler and Gladman 2013, and references therein).

The 2/3 resonance with Neptune, in concert with the LK-resonance, serves as
a protection mechanism for plutinos: the LK-plutinos avoid close encounters with
Neptune. However, most of the total plutino population does not have the arguments
of perihelia librating; Nesvorný et al. (2000) attribute this to a destabilization of their
orbits due to perturbations from Pluto.

As shown by Wan and Huang (2007) in massive numerical experiments on the
dynamics of TNOs, the LK-resonance with centers at ! D 90ı or 270ı can persist
in the dynamics of plutinos both inside and outside the 2/3 mean motion resonance
with Neptune.

7.4.2 Secular Resonances

The LK-resonance is often regarded as a kind of a secular resonance. Therefore,
let us briefly discuss the major secular resonances in the Solar system, and consider
their properties, as well as interactions with the LK-resonance.

An ordinary secular resonance takes place if a resonant combination of fre-
quencies is formed by the frequency of the proper3 longitude of pericenter P$proper

or the proper longitude of ascending node P�proper of a test body and one of the
eugenfrequencies of a system of perturbers. The classical secular planetary theory

3By a free or proper orbital element one denotes the element’s value after removal of any
contributions due to perturbations from other bodies. Thus, the proper eccentricity or inclination
reflects the “inherent” properties of the orbit. For rigourous definitions and procedures of
calculation see section 7.10 in Murray and Dermott (1999).
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for the Solar system is based on the Lagrange planetary equations of the lowest
order in the eccentricities and inclinations. Its solution splits in two sub-solutions:
one in the elements .e; $/ and one in the elements .i; �/, independent from each
other (see, e.g. Murray and Dermott 1999). This allows one to identify analytically
the locations of the main secular resonances in the space of the proper elements.
When higher-order terms in the eccentricity and inclination and/or the second order
terms in the mass parameter are taken into account, the .e; $/ and .i; �/ solutions
are no more decoupled, and the theory is much more complicated; for reviews on
the subject see Froeschlé and Morbidelli (1994) and Knežević and Milani (1994).
The secular-resonant relations, due to this nonlinear coupling, describe specific two-
dimensional surfaces in the three-dimensional space of proper elements (a, e, i).

For a minor body in the Solar system, a secular resonance takes place, in
particular, if any of the proper frequencies of the orbital precession of the body
equals any of the proper frequencies of our planetary system. For the asteroids in
the main belt, there exist three such prominent resonances, a pair at �2 AU and one
at �2:6 AU. Williams (1969) and Williams and Faulkner (1981) computed locations
of the principal secular resonances in the main belt; these were the linear secular
resonances, now called the �5, �6, and �16 resonances; for them, P$proper � g5 D 0,
P$proper �g6 D 0, and P�proper �s6 D 0, respectively, where gk and sk are the planetary

frequencies, k D 1; 2; : : : ; 8. The subscript in the designations indicates the ordinal
number of the relevant planetary frequency: �1 D g1, : : :, �10 D g10, �11 D s1, : : :,
�18 D s8. In Fig. 7.5, the sets of points corresponding to the linear secular resonances
generate curves in the “proper semimajor axis–proper inclination” plane; the curves
are presented for eproper D 0:1 (Milani and Knežević 1990). They are superimposed
on the distribution of the main-belt asteroids. Note that the apparent depletion of the
main-belt population at �2:5 and �3:3 AU is due to the mean motion resonances
3/1 and 2/1 with Jupiter.

From Fig. 7.5, it is clear that the inner edge of the main belt is formed mostly
by the secular resonance �6, whereas the outer edge is formed by the 2/1 mean
motion resonance. The “vertical” structure (i.e., the distribution of the asteroids in
the inclination) of the main belt at moderate inclinations (namely, at i < 30ı) is
formed by secular resonances �6, �16, and �5.

The apparent deficit of asteroids in the �5 resonance is mostly due to the LKE.
Generally, the LKE is responsible for the overall depletion of the main belt at
high inclinations, due to the eccentricity pumping up to values, corresponding
to crossings of planetary orbits. The �5 resonance itself plays a subordinate role
in forming this depletion, because the amplitude of the eccentricity variations,
caused by this resonance, is small (�0:05), as the amplitude of its harmonic in
the Hamiltonian is small, in the semimajor axis range of the main belt (Morbidelli
2002; Morbidelli and Henrard 1991a,b).

The �16 resonance in the main belt exists not only inside the LK-resonance, but
outside it as well. Nakai and Kinoshita (1985) showed that the �16 amplitude outside
the LK-resonance can be greater than 15ı, significantly exceeding the �16 amplitude
inside the LK-resonance. Besides, outside the LK-resonance, the libration center of
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Fig. 7.5 Linear secular resonances �5, �6, and �16 in the “proper semimajor axis–proper inclina-
tion” space. The curves are computed for eproper D 0:1. The distribution of asteroids is represented
by dots (Figure 7.19 from Murray and Dermott 1999. With permission from Cambridge University
Press)

the �16 resonance is situated at �16 D 180ı, i.e., it is shifted by 180ı in comparison
with its position when the asteroid is inside the LK-resonance. An illustration of a
secular asteroidal motion residing simultaneously in the LK-resonance and in the
�16 resonance will be given further on in Sect. 7.5 and Fig. 7.6.

The so-called nonlinear4 secular resonances correspond to the terms of higher
order in the eccentricities and inclinations in the expansion of the perturbing
function in power series. Of course, their set is restricted by the condition that
the D’Alembert rules must be obeyed. In particular, the following nonlinear
secular resonances are operational in the main belt (Knežević and Milani 1994):
P$proper C P�proper � g5 � s6, P$proper C P�proper � g6 � s6, P$proper C P�proper � g5 � s7,
P$proper � 2g6 C g5, P$proper � 2g6 C g7, P$proper � 3g6 C 2g5, P�proper � s6 � g5 C g6,

2 P$proper C P�proper � 2g6 � s6, and 3 P$proper C P�proper � 3g6 � s6.

4The term “nonlinear resonance” here has a meaning different from that adopted generally in the
Hamiltonian dynamics. In the latter case, the “nonlinear resonance” is such a resonance that has the
frequency of libration on resonance dependent on the libration amplitude; conversely, in the case of
“linear resonance”, this frequency is constant with the amplitude (see Chirikov 1979; Lichtenberg
and Lieberman 1992).
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Fig. 7.6 The �16 secular
resonance inside the
LK-resonance. The diagram
is computed for the values of
semiproper action variables
corresponding to asteroid
2335 James. The radial
coordinate is the semiproper
inclination isp defined as the
minimum value of the
inclination during the
LK-libration cycle, and the
angular coordinate is the
resonant angle of the �16

resonance. The current
position of the asteroid is
shown by a dot (Figure 5
from Morbidelli 1993. With
permission from Elsevier Inc)

7.5 A Resonant “Dance” of 2335 James

A prominent example of an asteroid, exhibiting an outstanding multi-resonant
secular dynamics, including transitions between secular resonances, is given by
asteroid 2335 James.5

Froeschlé et al. (1991) found out that asteroid 2335 James (orbiting at a �
2:12 AU) is a chaotic object with a peculiar long-term behaviour: a direct numer-
ical integration of its orbit showed that it entered and leaved the LK-resonance
sporadically. When outside the LK-resonance, 2335 James moves simultaneously
inside two secular resonances �5 and �16 (resonant angles �5 and �16 both librate).
When inside the LK-resonance, the asteroid is outside the �5 resonance, but is still
inside �16. The resonant angle �16 librates around 0ı or 180ı, when the asteroid is
respectively inside or outside the LK-resonance. The separatrix of the LK-resonance
is crossed by the asteroid sporadically due to strong oscillations caused by the �16

resonance in its inclination.
As noted already, the alternation of the !-libration and !-circulation regimes in

the behaviour of 2335 James was earlier revealed by Vashkovyak (1986), using an
analytical-numerical approach. Due to the chaotic character of the orbital evolution,
the regimes alternate (the LK-separatrix is crossed) at unpredictable time moments,
that is why in the works of Vashkovyak (1986) and Froeschlé et al. (1991) these
moments are different.

5The asteroid is named after James Williams, who contributed much to the modern understanding
of the secular dynamics of asteroids.
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In Fig. 7.6, the secular dynamics of 2335 James in resonance �16 inside the
LK-resonance is illustrated. In this diagram, constructed by Morbidelli (1993),
the dynamics is presented in polar coordinates: the radial one is the semiproper
inclination isp defined as the minimum value of the inclination during the LK-
libration cycle, and the angular one is the resonant angle of the �16 resonance.
The current location of the asteroid in these coordinates is marked by a dot. The
level curves of the Hamiltonian of the secular resonance are presented only for the
domain of libration of the argument of perihelion; on crossing the Kozai separatrix
they are discontinued. Asteroid 2335 James librates around �16 D 0, and its
semiproper inclination varies in the interval between �37ı and �42ı. The libration
curve apparently crosses the Kozai separatrix (at the point with the coordinates
�16 D 0 and isp � 37ı). This means that the asteroid may leave the LK-resonance
(Morbidelli 1993, 2002); on leaving the resonance, the asteroid would have the
argument of perihelion circulating.



Chapter 8
The Role in Sculpting Exoplanetary Systems

With the count of known exoplanetary systems rising (now exceeding two
thousands, among which many are observed to be multiplanet,1 and many belong to
binary stars), the LK-mechanism has been invoked to explain several characteristic
features of their dynamics. As early as in 1997, it was employed to explain a
highly-eccentric orbit of an exoplanet (Holman et al. 1997).

The LKE might act in many observed multiplanet systems and in planetary
systems of binary stars (with planets in inclined orbits), or acted in previous epochs,
imprinting modern orbital configurations. The discovery of a qualitative multitude
of orbital behaviours in exoplanetary systems has boosted celestial-mechanical
studies of their secular dynamics (see, e.g. Ferraz-Mello et al. 2005; Greenberg and
Van Laerhoven 2012; Lee and Peale 2003, and references therein), based on earlier
theoretical works on secular dynamics of triple stars (e.g., Ford et al. 2000; Marchal
1990). As an important constituent of the new exoplanetary studies, the LKE theory
has been extended and refined (e.g., Libert and Henrard 2007; Naoz et al. 2011).

Due to the LKE, the eccentricities and inclinations of planets may suffer large
oscillations. Highly-eccentric circumstellar orbits are observed in planetary systems
of some stellar binaries, in particular, in the 16 Cyg and 
 Cep systems; this can
be explained in the LKE framework (Haghighipour et al. 2010; Holman et al. 1997;
Innanen et al. 1997; Mazeh et al. 1997; Takeda and Rasio 2005).

As a rule, exoplanetary systems are not at all similar to our own Solar system.
Many exoplanets have large orbital eccentricities; what is more, giant exoplanets
are usually observed to have orbits very close to their parent stars; these objects are
called hot Jupiters (or hot Neptunes in case of smaller masses). Orbital periods of a
few days and even less are observed. The origin of hot Jupiters since their discovery
was most enigmatic, though they are abundant.

1A planetary system is called multiplanet if it contains more than one planet.
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A theoretical problem with hot Jupiters is that a giant planet can form only at
large enough distance from its parent star, that is why a delivery process of the
planet to its current close-to-star location is needed. This process is called migration.
Indeed, a significant presence of gas and dust in the disk where the planets form
leads to a slow radial shifting (migration) of the planetary orbit. The migration can
be directed either inwards (to the parent star), or outwards. The phenomenon of hot
Jupiters might be also a result of the so-called Lidov-Kozai migration, discussed
further on in this chapter.

Another problem concerns a mechanism of the migration stalling close to the
parent star. Though, their might be no stalling at all, and the hot Jupiters are sooner
or later absorbed by the star. Tidal effects are, of course, vital in such close-to-star
vicinities (Batygin et al. 2009; Correia et al. 2013; Lovis et al. 2011; Van Laerhoven
and Greenberg 2012).

Free-floating planets (FFP), sometimes also called rogue planets or orphan
planets, are the planets that do not belong to any planetary system of a star, i.e.,
they travel freely in the interstellar space. Originally, such objects were discovered
in a stellar cluster in the Orion nebula (Zapatero et al. 2000). They may appear
due to escaping from planetary systems, in particular, from planetary systems of
binary stars. Such an escaping is a dynamical process familiar from many studies in
celestial mechanics. For example, it is known that Mercury can chaotically escape
from our Solar system, though on a very long timescale, about billion years (Laskar
1994). A significant fraction of the planets formed in systems of binary stars can
be ejected (Zinnecker 2001). A possible mechanism of the FFP production might
include the LKE, because it is able to push planets to extreme apocentric distances,
thus providing a condition for a planetary escape.

Based on the quoted inferences, in this chapter we consider the LKE in multi-
planet systems and in planetary systems of binary stars. We discuss the phenomenon
of the Lidov-Kozai migration, explaining the production of hot Jupiters and even
(hypothetically) the origin of planets observed to be in retrograde orbits.

8.1 Secular Dynamics of Exoplanetary Systems

In view of the current rapid observational progress in exoplanetary studies, the
term planet itself requires a rigourous definition, distinguishing the planets from
other populations of celestial bodies. In application to the Solar system, the 26th
General Assembly of the International Astronomical Union (Prague, 2006) adopted
the following definition: the planet is a celestial body that (1) orbits around the
Sun; (2) has mass large enough for the self-gravity to dominate over the rigid-body
forces, so that the body acquires a hydrostatic-equilibrium (nearly spherical) figure;
(3) has purged a neighborhood of its orbit, so that no planetesimal material is left in
this neighborhood. This definition is a result of a thorough scientific debate (see
Soter 2006; Stern and Levison 2002, and references therein); in particular, it is
based on criteria of the stability of the close-to-coorbital motion. Apparently, its
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field of applicability is restricted to the Solar system realm. A generalization for the
exoplanetary systems requires limiting the planetary mass from above. Such a limit
is given by the minimum mass of a brown dwarf star, which equals �17 Jupiter
masses.

The discoveries of new exoplanets grow in number like an avalanche, due to the
invention of new effective observational instruments and techniques (mostly space-
based). To the beginning of 2016, more than 3400 exoplanets have been discovered
(and much more await confirmation),2 belonging to �2600 exoplanetary systems;
about 23 % of these systems are observed to be multiplanet, i.e., they are observed
to contain more than one planet. The distances to known exoplanets span the range
from 4 light years (a planet in the ˛ Centauri system, see Dumusque et al. 2012) to
�30;000 light years (SWEEPS-04 and SWEEPS-11, see Sahu et al. 2006), i.e., four
orders of magnitude!

Before we proceed to the LKE phenomena in exoplanetary systems, let us
consider the secular theory in the planar restricted three-body problem (in a
hierarchical setting, relevant for further exoplanetary applications). The LKE is
absent in the planar problem; however, an analysis of the planar case is helpful
before considering the general spatial case.

In the framework of the coplanar elliptic restricted three-body problem, Heppen-
heimer (1978) derived a secular perturbation theory, providing analytical formulas
for the forced eccentricity e and the longitude of periastron $ of a test particle
initially in a circular orbit around one of the components of a stellar binary.
Thus, this secular theory corresponded to the circumstellar (circumprimary or
circumsecondary) variant of the hierarchical elliptic R3BP. It was aimed for an
analytical description of circumstellar planetesimal disks in binary stellar systems.
In Whitmire et al. (1998) and Thébault et al. (2006), it was used to analytically
describe how the circumstellar disk of a young star was stirred by a companion
star. Conversely, the circumbinary variant (in which the test particle orbits around
both components of the binary) was considered by Moriwaki and Nakagawa (2004).
They presented equations of the secular circumbinary motion; see the Appendix
in Moriwaki and Nakagawa (2004). In Demidova and Shevchenko (2015), the
approaches of Heppenheimer (1978) and Moriwaki and Nakagawa (2004) were
combined to derive the explicit analytical formulas for the secular evolution of
the particle’s eccentricity and longitude of pericenter in both circumbinary and
circumstellar variants of the problem.

Consider first the planar R3BP “binary–particle” in the hierarchical circumbinary
setting, i.e., assume that the distance of the particle from the binary barycenter is
much greater than the size of the binary. In fact, it is superfluous to consider a non-
hierarchical circumbinary case because a large central chaotic circumbinary zone
exists at all eccentricities of the particle if � & 0:05 (Shevchenko 2015), where
� D m1=.m0 C m1/ is the mass parameter of the binary (m0 
 m1). This relative

2This rapid growth has been mostly due to the success of the Kepler space observatory mission.



142 8 The Role in Sculpting Exoplanetary Systems

mass threshold has an important physical meaning (Shevchenko 2015): above the
threshold, the particle can diffuse, even starting from small eccentricities, following
the sequence of the overlapping integer p:1 mean motion resonances between the
binary and the particle, up to ejection from the system; close encounters with
other bodies are not required for the escape. Note that, on the other hand, in the
circumstellar case stable orbits always exist inside the Hill spheres of the binary
components.

Let us adopt the barycentric frame; m0 
 m1 are the masses of the binary
components, ab is the binary semimajor axis, eb is the binary eccentricity, a is
the semimajor axis of the particle’s orbit. The masses are measured in Solar units,
distances in astronomical units (AU), and time in years. Thus, the gravitational
constant G is equal to 4�2.

The averaged perturbing function for the circumbinary case is given in Moriwaki
and Nakagawa (2004). It is presented in the form of a truncated power-law
expansion in the ratio of the binary and particle semimajor axes and in the
eccentricities. In Demidova and Shevchenko (2015), the corresponding equations
of secular motion (see Equations (A7) in Moriwaki and Nakagawa 2004) were
integrated analytically, and thus the formulas for the secular time evolution of
the eccentricity e and the longitude of periastron $ of the circumbinary particle
were straightforwardly derived. They turned out to be very similar to those in the
circumstellar case, presented in Heppenheimer (1978). They are given by

e D emax

ˇ̌
ˇ sin

ut

2

ˇ̌
ˇ ; (8.1)

tan $ D � sin ut

1 � cos ut
; (8.2)

where t is time,

u D 3�

2

m0m1

.m0 C m1/3=2

a2
b

a7=2

�
1 C 3

2
e2

b

�
; (8.3)

and emax D 2ef, where ef is the so-called forced eccentricity

ef D 5

4

.m0 � m1/

.m0 C m1/

ab

a
eb

�
1 C 3

4
e2

b

	
�
1 C 3

2
e2

b

	 : (8.4)

Using a new variable, namely, y D ut=2, Equation (8.2) can be rewritten in the form

if y 
 �� and y 	 ��

2
; then $ D y C 5

�

2
I

if y 
 ��

2
and y 	 0; then $ D y C �

2
I
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if y 
 0 and y 	 �

2
; then $ D y C 3

�

2
I

if y 
 �

2
and y 	 �; then $ D y � �

2
: (8.5)

Thus, u can be regarded as a “precession rate” (though in a modified fashion) of an
individual orbit.

Numerical simulations of the dynamical stirring of planetesimal disks on sec-
ular timescales were performed in Moriwaki and Nakagawa (2004), Meschiari
(2012a,b), and Paardekooper et al. (2012) in various problem settings. In particular,
graphs of the eccentricity and longitude of periastron of a circumbinary particle as a
function of its semimajor axis were constructed numerically. Such graphs can also
be constructed analytically using the described above secular theory (see Demidova
and Shevchenko 2015).

In the hierarchical circumstellar case, the expressions for the secular eccentricity
and longitude of periastron as functions of time are virtually the same as in the
hierarchical circumbinary case and are given by Equations (8.1), (8.2), and (8.5), but
the formulas for the u and ef parameters, entering these expressions, are different.
They are given in Heppenheimer (1978), Whitmire et al. (1998), and Thébault et al.
(2006). In our notation, they are given by

u D 3�

2

m1

m1=2
0

a3=2

a3
b

�
1 � e2

b

	�3=2
; (8.6)

ef D 5

4

a

ab

eb�
1 � e2

b

	 : (8.7)

Here m0 is the primary mass (around which the particle orbits) and m1 the perturbing
mass; m0 > m1. Note that in the treatment by Heppenheimer (1978), the secular
perturbing function is not expanded in the eccentricities, but merely in the ratio of
the particle and binary semimajor axes (up to the third order inclusive).

Thus, the secular dynamics in the planar circumstellar case is described analyti-
cally by Equations (8.1), (8.2), (8.5), (8.6), and (8.7).

8.2 LKE in Multiplanet Systems

About a third of all newly discovered exoplanets belongs to multiplanet systems,
i.e., the systems containing more than one planet (Rein 2012). In application to the
multiplanet systems, the LKE theory was extended and refined in Libert and Henrard
(2007), Naoz et al. (2011), and other works reviewed below. The LKE might act in
many observed multiplanet systems and in planetary systems of binary stars (with
planets in highly inclined orbits), or has acted in previous epochs, imprinting the
modern orbital architecture of these systems.
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In Chap. 7 we have already seen, in the example of the motion of asteroids in
the main belt and TNOs in the Kuiper belt, how the LKE operates in the presence
of several perturbers. Of course, when the perturber is not single, the analytical
approach is much more complicated, and the main tool to study the LKE in such
circumstances consists in numerical experiment.

Already in the 1990s, Innanen et al. (1997) showed that, in the presence of a
distant inclined stellar companion, the LKE-induced variations of the eccentricity
and inclination of an exoplanet may lead to planet-planet scattering. An outer planet
orbiting one of the binary components may attain, via the LKE, the eccentricity
high enough for encounters with inner planets. Consequently, the outer planetary
system of the component can be disrupted. In a cluster of young stars, the newly-
born planets can thus be “torn away” from their parent stars (Malmberg et al. 2007);
thus, these bodies enter the population of free-floating planets. The same mechanism
may work in multiplanet systems of single stars.

The LKE manifestations were studied also in the cases of quadruple stars (Beust
and Dutrey 2006) and triple stars with a planet (Marzari and Barbieri 2007), where
the LKE role can be even more pronounced.

The LKE might be active in configuring binary planets in exoplanetary systems.
Indeed, there exists an analogy with objects in our Solar system: Perets and Naoz
(2009) and Fang and Margot (2012) showed that the LKE is important for the
dynamics of binary minor planets in the Solar system. In this case, the “inner binary”
is the binary minor planet, and the outer perturber is the Sun. In the Solar system, the
mutual orbits of binary minor planets (asteroids and TNOs) secularly evolve due to
encounters with other bodies, mutual tides and the Sun-induced LKE; this evolution
has resulted in an almost isotropic distribution of the inclinations of the mutual orbits
of the binaries with respect to the planes of their orbits around the Sun; in particular,
the inclinations are typically high (Naoz et al. 2010). For tight binaries, the LKE
in concert with the tidal friction may produce circularized short-period binaries and
even lead to coalescence of binary companions (Perets and Naoz 2009). In what
concerns the possible role of the LKE, these inferences on the binary asteroids,
after rescaling, might be applicable to assess the statistics of orbital properties of
binary planets in exosystems.

As we have already thoroughly discussed in Chaps. 3 and 4, in the spatial case
of the three-body problem, if the system is in LK-resonance, the secular variations
in the eccentricity e and inclination i are coupled: they are in antiphase, if i < �=2,
and in phase, if i > �=2. The maximum eccentricity is achieved at i D 0, and the
maximum inclination at e D 0. If the initial inclination i0 is greater than the critical
inclination, then the maximum eccentricity achieved by the inner binary during the
LK-cycle is insensitive to e0 (if e0 . 0:1) and is given by

emax �
�

1 � 5

3
cos2 i0

�1=2

; (8.8)

where i0 is the initial inclination of the inner binary with respect to the outer
perturber’s orbital plane (Holman et al. 1997; Innanen et al. 1997). This result is
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valid in the quadrupole order approximation of the Hamiltonian. If the amplitude
of !-libration is not too high (the system is not close to the separatrix of the LK-
resonance), the libration period, according to formula (4.44), is given by

PLK � P1

.m0 C m1/

mpert

�
apert

a1

�3

.1 � e2
pert/

3=2; (8.9)

where P1, m0, m1, and a1 are, respectively, the orbital period, masses and semimajor
axis of the inner binary (which is subject to the LKE induced by an outer perturber
orbiting the binary). The quantities Ppert, mpert, and epert are, respectively, the orbital
period, mass, and eccentricity of the outer perturber.

In a slightly different version this approximate formula was given by Kiseleva
et al. (1998):

PLK � 2

3�

P2
pert

P1

.m0 C m1 C mpert/

mpert
.1 � e2

pert/
3=2: (8.10)

As follows from formulas (8.9) or (8.10), during a main-sequence star lifetime,
the number of LK-librations of the inner binary may exceed hundreds or even
thousands, if generic conditions allowing the LKE are fulfilled (Ford et al. 2000;
Kiseleva et al. 1998).

8.3 LKE in Planetary Systems of Binary Stars

More than a half of the main-sequence stars in our Galaxy belongs to multiple
(including binary) stellar systems (Duquennoy and Mayor 1991; Mathieu et al.
2000). At present, planets are known to exist in �100 multiple (mostly binary, of
course) stellar systems; recall that more than 2000 exosystems are known in total.
The majority of planets, discovered to be present in binary systems, are the so-called
S-type planets (orbiting one component of a binary, i.e., satellite-type), and others
are P-type planets (moving in an orbit around both components of a binary, i.e.,
planet-type). The S-type planets are also called inner or circumstellar planets, and
the P-type planets are also called outer or circumbinary planets.

Until the launch of the Kepler space observatory mission, a few circumbinary
planetary systems had been known to exist (belonging to binary stars HW Vir, NN
Ser, UZ For, DP Leo, FS Aur, SZ Her, among others). However, none of them
belonged to a main-sequence star. Due to the Kepler mission, several circumbinary
planetary systems of main-sequence stars were discovered. The first among them
were Kepler-16, 34, 35, 38, and 47 (Doyle et al. 2011; Orosz et al. 2012; Welsh
et al. 2012). Among them, the Kepler-47 system is multiplanet: it includes two
circumbinary planets. The planets in the Kepler circumbinary systems are all co-
planar with the parent binaries, but this does not say anything on the real inclination
statistics, because the planets were discovered using the transit method, implying
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the coplanarity of the orbits of the eclipsing stellar binary and the transiting planet.
In the discovered circumbinary systems, the LKE does not play role because the
inclinations are small.

Theoretical studies of the stability of hypothetical planetary systems in binary
stellar systems were initiated already in the 1960s of the twentieth century (Huang
1960), long before the observational discovery of planets belonging to binary stars.
Subsequently, the theory was thoroughly developed in the 1980s, in application to
some binary stars in the Solar neighbourhood (Benest 1988a,b, 1989). At present,
the formation scenarios and the observed dynamics of planets (often at the “brink
of stability”) of binary stars present a number of theoretical challenges, especially
concerning the circumbinary planets (Meschiari 2012a,b, 2014; Paardekooper et al.
2012). To analyze the dynamical stability and the possibility of formation of such
systems, especial criteria of stability are developed (Moriwaki and Nakagawa 2004;
Shevchenko 2015).

In young binary stars that contain planetesimal disks around one of the com-
panions, the LKE may excite the orbital eccentricities of the planetesimals. Thus,
the planet formation can be hindered, if the orbit of the perturbing companion
is inclined enough with respect to the disk (Fragner et al. 2011; Marzari and
Barbieri 2007). The LKE can be suppressed, though in a way different from that
discussed in Chap. 3: here, the gas drag in the disk and/or the disk self-gravity
can significantly hinder the angular momentum transfer, suppressing the LKE; this
makes the planetary formation possible (Batygin et al. 2011; Xie et al. 2011).

As follows from formula (8.9) or (8.10), the Lidov-Kozai libration period
sharply rises with increasing the relative size of the outer perturber orbit (i.e., with
decreasing ˛); therefore, the S-planetary LKE in wide stellar binaries is much less
impressive than the LKE in compact binaries. However, even in wide binaries, the
LKE oscillation timescale, though enormous (up to Gigayears), can be nevertheless
sufficient for the LKE to make a planetary orbit highly eccentric.

As early as in 1997, the LKE was invoked to explain a highly-eccentric orbit
of an exoplanet (namely, a planet of 16 Cyg B), subject to perturbations from
a distant companion of the planet’s parent star (Holman et al. 1997). The planet
orbiting 16 Cyg B has the eccentricity �0:67. Highly-eccentric circumstellar orbits
of planets are observed in several stellar binaries, in particular, in 16 Cyg and

 Cep; this might be understood in the LKE framework (Haghighipour et al. 2010;
Holman et al. 1997; Innanen et al. 1997; Mazeh et al. 1997; Takeda and Rasio
2005). That the LKE is active here is confirmed by the fact that the planets with
such extreme eccentricities are mostly contained in planetary systems with an outer
stellar companion (Wright et al. 2011).

The 16 Cyg AB system is a binary consisting of two solar-type stars, separated
from each other by �103 AU. Radial-velocity measurements showed that the binary
component 16 Cyg B has a Jovian-mass planet, designated 16 Cyg Bb; its orbit
around 16 Cyg B has semimajor axis a � 1:7 AU, period P � 2:2 years, eccentricity
e � 0:67 (Cochran et al. 1997). Such a large eccentricity looks rather unexpected
for a giant planet, because the planets form in protoplanetary disks in which the
planetesimal motions are circularized. Holman et al. (1997) and Mazeh et al. (1997)
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put forward a hypothesis that the large eccentricity could be boosted by an inclined
outer stellar perturber, due to the LKE. In this system, the perturber is 16 Cyg A.
However, as pointed out by Holman et al. (1997), general relativity may play a
role in this system to suppress the LKE (see Sect. 3.3), because the relativistic
advance of the planet’s pericenter may have the period as low as 70 million years;
for the suppression to happen the inequality a2q2 . 3 � 105 (where the stellar
binary’s semimajor axis a2 and pericentric distance q2 are measured in AU) must
hold. This inequality follows from comparison of analytical expressions for the LK
and relativistic timescales. Holman et al. (1997) showed that, given a small initial
eccentricity and an initial inclination in the range 45ı–135ı, the planet may suffer
eccentricity changes up to 0:8 (see Fig. 3.3), being in the high-eccentricity (e > 0:6)
state up to 35 % of its lifetime. The amplitudes of changes in the eccentricity and
inclination are independent of the binary’s a2 and q2; these two quantities only affect
the timescale of the LK-oscillations.

In Fig. 8.1, a comparison is given of various characteristic secular timescales of
this system: PA; Low�i and PA; High�i are the periods (in quadrupole approximation) of
LK-oscillations due to influence of 16 Cyg A in a low-inclined (i < 40ı) and highly-
inclined (sin i � 1) orbits, PGR is the period of the relativistic apsidal precession;
PBc is the period of LK-oscillations due to influence of a hypothetical second planet,
16 Cyg Bc, of a Jovian mass in a circular orbit coplanar with 16 Cyg Bb; 	ms is
the age of the star 16 Cyg B. All time quantities are given in years. The periods
PA; High�i and PA; Low�i correspond to a range of orbital solutions due to Hauser and
Marcy (1999). The quantities PA; Low�i, PA; High�i, and PGR are plotted as a function
of the inner binary’s semimajor axis, and PBc as a function of the semimajor axis of
the hypothetical 16 Cyg Bc.

Fig. 8.1 The precession
timescales for the longitude
of pericenter of a planet
orbiting 16 Cyg B. See text
for details (Figure 16 from
Ford et al. 2000. Copyright
AAS. Reproduced with
permission)
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One can see that, unexpectedly enough, only in a rather small range of the
perturber’s orbit size the LKE may dominate over the general relativity effect. Ford
et al. (2000) find that only one quarter of orbital solutions due to Hauser and Marcy
(1999) allow for the LK-period shorter than the relativistic one. However, they note
that, as soon as the mass ratio of the planet and the perturber is small, and the
planet’s eccentricity is large, the ratio C3=C2 � 1 (see formulas (4.28) and (4.29)),
and, thus, the octupole term is essential in the long-term dynamics of the planet and
it should be taken into account. Besides, as follows from the plot, the hypothetical
16 Cyg Bc may well induce the required LKE, if its orbit is small enough.

Holman et al. (1997) hypothesized that the motion of 16 Cyg Bb might be
chaotic (see Fig. 3.3), because the amplitude of !-libration is large; however, as
Melnikov (2016) showed by means of massive computations of Lyapunov exponents
on representative sets of initial values of orbital elements, this is unlikely because
a too close proximity to the separatrix of the LK-resonance is required for the
dynamical chaos to emerge.

8.4 The Lidov-Kozai Migration and the Origin of “hot
Jupiters”

In our Solar system, the giant planets (Jupiter, Saturn, Uranus, and Neptune) have
orbital radii from 5 to 30 AU. In contrast to this fact, the observed exoplanetary
systems frequently contain giant planets with orbital radii hundreds times smaller.
Such planets, orbiting within �0:1 AU of the parent star, are called hot Jupiters, on
apparent reasons. The orbital periods of hot Jupiters can be as small as a few days.
Of course, there exists a selection bias: massive planets in tight orbits are most easy
to discover, if one uses usual methods, such as the transit method (analysis of a
lightcurve of a star, subject to eclipses by a planet) or the RV-method (analysis of
spectroscopic measurements of the radial velocity variations of a star).3 In fact, due
to this bias, the first exoplanet found to orbit a main-sequence star turned out to be
a hot jupiter. It is planet 51 Peg b, discovered by Mayor and Queloz (1995).

A problem with hot Jupiters is that they cannot form in situ, because the planet-
forming accretion of matter cannot take place in such close vicinities to the parent
star (Bodenheimer et al. 2000). Therefore, they are transported to their observed
location, either due to a slow radial inward migration in a thick protoplanetary disk,
or due to some other dynamical mechanism provided by perturbing bodies, such as
a stellar companion of the parent star and/or other massive planets. In the latter case,
the LKE may be a decisive component of any dynamical route for the hot Jupiters’
formation.

3For a description of methods for the discovery of exoplanets, see, e.g., Ferraz-Mello et al. 2005.
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The dissipative effects and the LKE may operate in concert. The LKE in the
presence of dissipation due to tides causes the so-called Lidov-Kozai migration
(Lithwick and Naoz 2011; Naoz et al. 2011). The Lidov-Kozai migration can be
regarded as a modification of the LKE in the presence of the star-planet tidal
phenomena; together they act to decrease the semimajor axis of a planet extremely
(Wu and Murray 2003). The role of the tidal dissipation in the secular orbital
evolution has been intensely explored (e.g., Batygin et al. 2009; Correia et al. 2013;
Lovis et al. 2011).

In total, there are at least five possible scenarios for the formation of hot Jupiters,
involving dynamical interactions with distant perturbers (Davies et al. 2014). They
include: (1) the secular orbital evolution of a planet perturbed by an inclined stellar
companion of the parent star; (2) the same as (1) except the main perturber is an
inclined planet; (3) the gravitational scattering of planets during an early stage of
the evolution of a tightly-packed planetary system; (4) the secular orbital evolution
of a planar planetary system (without the LKE); (5) a significant variability of the
inclination of the protoplanetary disk due to perturbations from neighboring stars
in a cluster, or due to the gravitational influence of a stellar companion (in a binary
system).

In any of these scenarios, the planet is born at a typical orbital distance �10 AU
from the parent star. These scenarios differ in the routes that bring the orbital
pericenter of the planet to the vicinities of the star, where the tidal forces come
into play. In particular, such a route can be provided by the LKE due to a stellar
companion or an additional giant planet. Originally, the LKE was invoked by Wu
and Murray (2003) to explain how hot Jupiters may emerge in a binary stellar
system with a single planet orbiting one of the stellar companions. The tidal friction
makes the orbit tighter and tighter and circularizes it (Fabrycky and Tremaine 2007;
Nagasawa et al. 2008; Wu and Murray 2003; Wu et al. 2007).

For the typical Jupiter-like planets orbiting Solar-type stars, Wu and Murray
(2003) estimate the circularization radius of the planetary orbit (the semimajor axis
at which the orbit becomes circular) as acirc � 3RSun, where RSun is the Solar
radius. When a planet is close to the parent star, the tides are raised on both of
them. The tides on the star are responsible mostly for decreasing the planetary
orbital semimajor axis, whereas the tides on the planet are responsible mostly for
decreasing the planetary eccentricity. The tidal processes are very effective in the
orbital evolution of hot Jupiters (for details see, e.g., Ivanov and Papaloizou 2004,
2011). They are as well effective in the orbital evolution of components of triple
stars, if the pericenter of a perturbed star approaches the primary closely enough
(Mazeh and Shaham 1979).

From the observational viewpoint, the LKE is a likely (though not the only
possible) mechanism to operate in typical exoplanetary systems containing hot
Jupiters, because a significant fraction of hot Jupiters are observed to move in the
orbits that are radically misaligned with respect to the equatorial planes of the parent
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stars, or even in the orbits retrograde with respect to the rotation of the parent star.
This evidence is provided by observations of the Rossiter–McLaughlin effect4 (see,
e.g., Winn et al. 2010, 2009).

In Chap. 3, we have seen that the LKE in the motion of a body can be suppressed
if additional dynamical perturbations, causing the body’s orbit to precess, dominate.
The LKE in the motion of planets, analogously, can be suppressed in at least three
ways, due to (1) the rotational oblateness of a planet, causing its orbital precession;
(2) tides raised on the planet,—they also cause the orbital precession; (3) the
general-relativistic precession of the planetary orbits whose pericenters are close
to compact primaries, especially if the orbits are highly eccentric.

In Sect. 3.3 on the LKE-preventing phenomena, we have already thoroughly
discussed orbital precession phenomena arising due to a number of physical causes.
The formulas for the precession rates can be rendered the following convenient form
(Wu and Murray 2003):
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Note that all ratios in the formulas are unitless. The formulas correspond, respec-
tively, to the effects of rotational oblateness, tides on the planet, and general
relativity. Here, np, ap, ep, mp, Rp, k.p/

2 , and �p are, respectively, the planet’s mean
motion, semimajor axis, eccentricity, mass, radius, Love tidal number, and rotation
frequency; mstar is the mass of the parent star; G and c are the gravitational constant
and the speed of light. Formulas (8.11), (8.12), and (8.13) allow one to judge
on the relative importance of a planetary system’s parameters for enforcing the
orbital precession of any origin. If one of the frequencies (8.11), (8.12), and (8.13),
calculated independently from each other, exceeds P!LK / P�1

LK (see formula (8.9)),
then the LKE is most likely suppressed. For typical values of parameters in (8.11),
(8.12), and (8.13), this may occur if the pericenter distance qp D ap.1�ep/ . 1 AU.

The Rossiter–McLaughlin observations reveal the existence of strongly mis-
aligned, close-to-polar, and even retrograde planetary configurations with hot

4The essence of the Rossiter–McLaughlin effect is as follows. A planet transiting a rotating star
affects the measured radial velocity of the star differently at different phases of the transit, because
the eclipsed disk on the star’s disk corresponds to different local radial velocities of the star’s
surface. The Rossiter–McLaughlin effect allows one to estimate the angle between the star’s
equatorial plane (the plane orthogonal to the rotation axis of the star) and the planet’s orbital plane.
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Jupiters. The classical LKE (the LKE in the circular R3BP) is unable to produce
retrograde configurations. However, they might be produced by the LK-oscillations
of the particle in the elliptic three-body problem (Katz et al. 2011; Lithwick and
Naoz 2011). This theoretical possibility is discussed in the next section.

The existence of strongly misaligned and retrograde orbits testify that the origin
of hot Jupiters cannot be explained in the scenario of planar migration in a gas-
dust disk. On the other hand, a scenario with the eccentricity excitation due to the
LKE, complemented with a tidal shrinking and circularization of planetary orbits,
produces tight misaligned configurations quite naturally (see, e.g., Nagasawa et al.
2008). What is more, transit observations from the Kepler space observatory provide
a definite evidence that hot Jupiters are solitary, i.e., they do not form any close-to-
star groups (Steffen et al. 2012). This is natural in scenarios involving the LKE and
tides, but not in scenarios based on the planar migration in disks.

According to modern independent estimates (Naoz et al. 2012; Wu et al. 2007),
the LK-migration scenario might be responsible for the origin of 10–30 % of the
whole hot-jupiter population. The remaining fraction is due to scattering events
followed by the tidal circularization. At least two mechanisms involving the LKE
are able to explain the formation of hot Jupiters: (1) a combined scenario of
the mutual scattering, LKE, and tidal circularization in multiplanet systems (e.g.
Nagasawa et al. 2008), and (2) the LK-evolution (induced by a stellar or giant-planet
companion) in a single-planet system (e.g. Fabrycky and Tremaine 2007).

8.5 Producing Retrograde Orbits?

Observations of the Rossiter–McLaughlin effect provide data on the obliquities of
planetary orbits with respect to the equatorial planes of parent stars. They indicate
that only about a half of all hot Jupiters (that were explored on this subject) has their
orbital planes approximately aligned with the equatorial planes of the parent stars,
whereas �30 % move in strongly misaligned prograde orbits and �20 % move in
retrograde orbits (Albrecht et al. 2012).

Lithwick and Naoz (2011) and Katz et al. (2011) (in the framework of the
restricted three-body problem, where the planet is massless), and Naoz et al.
(2011) (in the framework of the general three-body problem, where the planet’s
mass is non-zero) showed that the planetary orbits subject to perturbations from
a highly-inclined eccentric outer orbiter may exhibit transitions from prograde to
retrograde modes of orbital motion and vice versa (the so-called flips). This was
demonstrated by means of a theoretical analysis of the octupole-order expansion
of the three-body Hamiltonian of the problem; the analysis was complemented by
numerical-experimental examples of the flips.
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The role of the octupole terms can be estimated by the value of the parameter

�oct D .m0 � m1/

.m0 C m1/
� a1

apert
� epert

.1 � e2
pert/

; (8.14)

where m0 > m1 are the masses of the central binary (a star and a planet), a1 is
the semimajor axis of the planetary orbit, apert and epert are the semimajor axis and
eccentricity of the perturber’s orbit (Shappee and Thompson 2013). In the restricted
problem, this formula reduces to formula (4.55). At a flip epoch, when the planet’s
inclination reaches the value of 90ı, the planet’s eccentricity strongly oscillates and
can reach extreme values very close to unity.

Figure 8.2 illustrates the flip phenomenon in the general three-body problem (the
planet’s mass is non-zero). In panel (a), the planet’s inclination is plotted versus

Fig. 8.2 Flips in the general three-body problem. Panel (a): the inclination versus time. Panel (b):
the quantity .1�e/ (in logarithmic scale, e is the eccentricity) versus time. The upper curve in panel
(a) and the lower curve in panel (b) (both in red) represent the refined theory using the perturbing
function truncated to octupole order; the lower curve in panel (a) and the upper curve in panel (b)
(both in green) represent the theory using the perturbing function truncated to quadrupole order.
Panels (c) and (d): normalized vertical angular momenta of the inner and outer orbits, respectively,
versus time (Figure 1 from Naoz et al. 2011. With permission from Nature Publishing Group)
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time; in panel (b), the quantity .1 � e/, where e is the eccentricity, is plotted (in
logarithmic scale) versus time. The masses of the inner binary are m0 D 1MSun

and m1 D 1MJ. Initially, a1 D 6 AU and e1 D 0:001. The outer body has mass
mpert D 40MJ (a brown dwarf), and its orbit around the central binary has initial
semimajor axis apert D 100 AU and initial eccentricity epert D 0:6. The inclination
flips, occurring periodically every �107 years, are apparent. They are accompanied
by increases of the maximum eccentricity of the planet to extreme values.

From Fig. 8.2, one can see that the flips are present merely when the refined
(octupole-order) theory is used. In panels (c) and (d), the normalized vertical angular
momenta of the inner and outer orbits are plotted, demonstrating their anti-phase
variations.

The flip phenomenon is possible both in the eccentric restricted three-body
problem and in the general three-body problem with an initially eccentric orbit of
the perturber. However, it disappears in the limit m1 ! m0 (the case of a symmetric
inner binary), as apparent from formula (8.14). The dynamical reason is that the
terms of odd order in the multipole expansion of the Hamiltonian average to zero in
this case (see formula (4.10)). Shappee and Thompson (2013) used octupole-order
numerical experiments to show that the flips become ubiquitous at m1 . 0:5m0.

In the framework of the hierarchical R3BP (the planet is massless), Katz et al.
(2011) averaged the secular equations of motion5 over the Lidov-Kozai cycle and
found a new constant of the motion; this allowed them to derive an analytical
condition for the flips to occur. The timescales of the eccentric LK-mechanism have
been considered above in Sect. 4.5.2.

As we have already noted, the role of the octupole terms can be estimated by
the value of the parameter, given by formula (8.14). In the restricted limit of the
three-body problem (m0 � m1), the formula reduces to formula (4.55), i.e.,

�oct D a1

apert
� epert

.1 � e2
pert/

: (8.15)

According to Katz et al. (2011), if the initial inclination of the particle i0 & 60ı and
its initial eccentricity e0 � 1, then the flip takes place if �oct exceeds a critical value,
given by

�crit D 16 � 31=2

�

Z 1

3�3y
3C2y

K.x/ � 2E.x/

.41x � 21/.2x C 3/1=2
dx; (8.16)

where y D 1
2

cos2 i0; K.m/ and E.m/ are the complete elliptic integrals of the first
and second kind, respectively.

5Note that this is a third averaging of the original equations of motion, because the secular
equations are derived by double averaging of the original equations (over the orbital periods of
the particle and the perturber).
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Fig. 8.3 The analytical
threshold for a flip (the thick
curve), given by
formula (8.16); " � �crit. The
circles denote the results of
direct numerical integrations:
the filled circles (in red)
represent the cases with a flip,
and the non-filled circles (in
blue) represent the cases
without a flip. The thin curves
are described in text
(Reprinted figure 4 with
permission from Katz et al.
2011. Copyright (2011) by
the American Physical
Society)

The threshold for the flips is represented graphically in Fig. 8.3, where it is
analyzed as a function of the initial inclination. Katz et al. (2011) checked the
performance of the criterion by accomplishing numerical integrations of the secular
equations of motion on a representative set of initial conditions. In Fig. 8.3, the
integration results are shown as circles. The integrations were performed setting
e0 D 0:001 � 1. The thick curve is given by formula (8.16). The thin curves
correspond to theoretical thresholds for moderate and large values of the initial
eccentricity e0 (from 0:2 to 0:5); a formula suitable for such values of e0 is much
more complicated than expression (8.16).

Katz et al. (2011) estimate that criterion (8.16) is in accord with the results of
the numerical experiment to better than 10 % at i0 > 80ı and better than 20 % at
i0 > 70ı. At i0 < 50ı, the deviation is greater than twice and sharply increases
with i0 increasing. This is conceivable, since the analytical criterion was derived
assuming a high enough initial inclination.

Criterion (8.16) is valid at high enough starting inclinations of the particle, as
already mentioned. The reason is that, to derive the criterion, Katz et al. (2011)
used the approximation of a small value of the vertical angular momentum (at the
time moment of the flip, it is strictly zero). Li et al. (2014a) derived a criterion
valid in another domain of initial conditions, namely, at the low inclinations and
high eccentricities of the test particle. In this situation, the eccentricity grows
monotonically until the epoch when the flip may occur (depending on initial
conditions). This follows from an analysis of the octupole secular equations of
motion in the almost coplanar setting of the hierarchical three-body problem, in
the test particle approximation (see Li et al. 2014a). No next-level averaging of the
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secular equations is needed to derive the criterion. It has the form

�oct > �crit D 8.1 � e2
1/

5

7 � e1.4 C 3e2

1/ cos $1

� ; (8.17)

where �oct is still given by formula (8.15), e1 and $1 are the initial values of the
eccentricity and the longitude of pericenter of the planetary orbit, respectively ($ D
!C�, where ! and � are the argument of pericenter and the longitude of ascending
node of the planetary orbit, respectively).

The performance of criterion (8.17) is illustrated in Fig. 8.4, constructed by
Li et al. (2014a). The performance of the criterion is checked by comparing
the analytical curve with results of a numerical experiment: Li et al. (2014a)
accomplished numerical integrations of the octupole secular equations of motion,

Fig. 8.4 The analytical threshold for a flip (the thick curve, " � �crit, given by formula (8.17))
and results of a numerical experiment: the crosses (in blue) represent the cases with a flip, and the
pluses (in green) represent the cases without a flip (Figure 5 from Li et al. 2014a. Copyright AAS.
Reproduced with permission)
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setting m0 D 1MSun, mpert D 0:1MSun, a2 D 1 AU, apert D 45:7 AU, and setting the
initial conditions !1 D 0, �1 D 180ı, and, especially, i1 D 5ı, i.e., the initial
system is almost coplanar. The trajectories were integrated on the time span of
104TLK, where TLK is the duration of the Lidov-Kozai cycle. As it is clear from
the diagram, the performance of the analytical criterion at the given values of the
parameters and initial conditions is excellent.

The importance of this so-called “low inclination—high eccentricity” (the initial
values are meant here) case of the eccentric LKE is that it may account for the
production of hot Jupiters moving in low-inclined retrograde orbits, as Li et al.
(2014a) argue. The existence of such objects is implied by results of massive
observations of the obliquities of hot Jupiters with respect to the spin vectors of
host stars (see Albrecht et al. 2012).

8.6 LKE and Dynamical Chaos

In this section, we explore interrelations between the concepts of resonances,
dynamical chaos, and the LKE, in application to the dynamics of exoplanetary
systems.

8.6.1 Dynamical Chaos Due to Resonance Overlap

The motion in a vicinity of the perturbed separatrices of nonlinear resonances is
chaotic. For weakly perturbed systems the chaotic layer concept is convenient to
apply for description of the chaotic component. The chaotic layer is a zone in a
vicinity of the separatrices in the phase space where the dynamical system moves
chaotically. The chaotic layer theory has applications in various areas of physics,
mechanics and, in particular, in celestial mechanics (Chirikov 1979; Shevchenko
2000, 2007).

For dynamical chaos to emerge, three basic conditions must be satisfied (Devaney
1986; Meiss 1992): (1) Sensitive dependence on initial conditions, implying that
nearby trajectories in the phase space diverge in time exponentially. (2) The
boundedness of the motion, implying that the exponential divergence is not just
a smooth infinite expansion. (3) The set of trajectories with such behaviour must
have non-zero measure.

The rate of divergence of close trajectories (in the phase space and in the
logarithmic scale of distances) is characterized by the maximum Lyapunov exponent.
A distinction of the maximum Lyapunov exponent from zero testifies that the motion
is chaotic (Chirikov 1979; Lichtenberg and Lieberman 1992). The inverse of this
quantity, TL � L�1, is the Lyapunov time. It represents the characteristic time of
predictable dynamics. The importance of this timescale for celestial mechanics is
provided by the fact that any exact theory of the motion of any celestial-mechanical
system cannot be constructed on any times much greater than its Lyapunov time.
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The art of calculation of the Lyapunov exponents on computers has more than a
thirty-year history and during this time it has become an extensive part of applied
mathematics; see reviews in (Froeschlé 1984; Lichtenberg and Lieberman 1992).
Modern numerical methods provide calculation of the Lyapunov exponents which
is effective and precise. On the other hand, methods of analytical estimating the
Lyapunov exponents appeared only recently (Holman and Murray 1996; Murray
and Holman 1997; Shevchenko 2002, 2011a, 2014). A method of estimating
the maximum Lyapunov exponent (Shevchenko 2002, 2011a, 2014), based on
the theory of separatrix maps, allows one to obtain analytical estimates of the
Lyapunov exponents (in accord with the numerical-experimental ones) in a number
of problems on dynamics of the Solar system bodies; see a review by Shevchenko
(2007). Generally, estimating the Lyapunov exponents is one of the most important
tools in the study of chaotic motion (Lichtenberg and Lieberman 1992), in particular
in celestial mechanics.

Resonances and chaos are ubiquitous phenomena in the motion of bodies (in
particular, planets) of the Solar system. The approximate orbital commensurabilities
Jupiter–Saturn (the ratio of mean motions �5/2), Saturn-Uranus (�3/1), Uranus–
Neptune (�2/1), and the Neptune–Pluto resonance (3/2) are well known. At the
end of the eighties Sussman and Wisdom and, independently, Laskar in complicated
numerical experiments obtained the first estimates of the Lyapunov time of the Solar
system (Laskar 1989; Sussman and Wisdom 1988). It turned out that it is not at all
infinite, i.e., the motion of the Solar system is not regular. Moreover, the Lyapunov
time is rather small: it is three orders of magnitude less than the age of the Solar
system. According to Sussman and Wisdom’s calculations, the Lyapunov time of the
outer Solar system (that from Jupiter to Pluto) is equal to �10 million years. And
for the system of all planets, either with Pluto or without it, TL � 5 million years.

At a first glance it might seem that the basic contribution to chaos must be
brought by the planets with relatively small masses, i.e., the planets of terrestrial
group, as well as Pluto ranked as a planet until recently. However, if the calculations
were limited only to four giant planets, then, as it was found out in 1992 by Sussman
and Wisdom and confirmed in 1999 by Murray and Holman, chaos remains and,
moreover, the Lyapunov time practically does not change: TL � 5–7 million years
(Murray and Holman 1999; Sussman and Wisdom 1992).

Murray and Holman (1999) found that chaos could be due to a multiplet of
subresonances associated with a particular three-body resonance Jupiter–Saturn–
Uranus. This conclusion, however, has a preliminary character, because no full
agreement of the analytical model with the numerical experiments has been
achieved up to now. If it is true, the degree of chaoticity of the Solar system has,
in some sense, an arbitrary character: if the semimajor axis of the orbit of Uranus
differed from the present value by only several diameters of Uranus, the chaoticity
would sharply decrease, if not at all practically disappear. Recent numerical-
experimental studies by Hayes and co-workers (Hayes 2007, 2008; Hayes et al.
2010) show that the spatial interplay of chaos and order may be present even on
much finer scales. In the future researches, if the guiding three-body resonance is
accurately identified, then analytical estimation of the Lyapunov time TL will be
possible to accomplish using the separatrix map theory (Shevchenko 2014).
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8.6.2 Chaos in the Planetary Motion Subject to LKE

The double-averaged Hamiltonian of the eccentric restricted three-body problem
can be written explicitly in terms of canonical variables. Namely, the expansion of
the Hamiltonian in a power series of a1=apert up to the second (quadrupole) and third
(octupole) orders is given by

H D Hquad C �octHoct; (8.18)

where

Hquad D 1

2
.1 � J2/ � J2

z

J2
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(Li et al. 2014b; see also Lithwick and Naoz 2011 and Li et al. 2014a). Here (J,
!) and (Jz, �) are pairs of the canonically conjugate variables, J D .1 � e2

1/
1=2 is

the unitless (scaled) angular momentum of the inner orbit, Jz D .1 � e2
1/

1=2 cos i1 is
the vertical component of the angular momentum (e1 and i1 are the eccentricity
and inclination of the inner orbit), ! and � are, respectively, the argument of
pericenter and the longitude of ascending node of the inner orbit; �oct is defined
by formula (8.15). The time in the equations of motion is made unitless by scaling
(dividing) it by the constant

tLK D 8

3
� m0

mpert

�
apert

a1

�3

� .1 � e2
pert/

3=2; (8.21)

where m0 and mpert are the masses of the star and perturber, respectively. Hamilto-
nian (8.20) is scaled accordingly.
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Fig. 8.5 The (!, J) phase space sections for �oct D 0:001 (upper panels) and �oct D 0:1 (lower
panels) (Figure 3 from Li et al. 2014b. Copyright AAS. Reproduced with permission)

Fig. 8.6 The (�, Jz) phase space sections for the same values of �oct as in Fig. 8.5 (Figure 4 from
Li et al. 2014b. Copyright AAS. Reproduced with permission)

Sections of the phase space of Hamiltonian (8.18) at various values of H and
�oct were massively computed by Li et al. (2014b). These phase space sections are
reproduced here in Figs. 8.5 and 8.6. The chaotic layers around the separatrices of
resonances are clearly recognizable in both graphs, in the panels corresponding to
�0:5 	 H 	 �0:1. An analytical description of the chaos properties, such as the
Lyapunov and diffusion timescales, width of such chaotic layers, is a problem for
future studies.



Chapter 9
Applications in Stellar Dynamics

And with a tilt most dangerous,
Most frightful, anyway,
To other worlds and systems
Is turned the Milky Way.

Boris Pasternak, Night (1956)1

Studies in secular dynamics of multiple stars, and, first of all, triples, is one of
the fundamental themes of modern stellar dynamics. An analytical description of
secular dynamics is possible for hierarchical triple stars, for which the orbit of the
“outer binary” (formed by the outer body and the barycenter of the two inner bodies)
is much greater than the size of the inner binary (Ford et al. 2000; Harrington 1968,
1969; Marchal 1990).

The planes of stellar orbits in multiple stars are mostly not aligned, and that is
why the LKE is important. The LKE may control the secular evolution of the inner
binary and, combined with the tidal friction, may produce a close binary of only a
few stellar radii in size or even contact (Fabrycky and Tremaine 2007; Harrington
1969; Kiseleva et al. 1998). This mechanism may generate most of tight binaries.
Moreover, of especial astrophysical interest is that it may lead to a merger of the
binary components. Not only multiple Solar-type stars were studied on this subject;
it was found out that the LKE might explain “white dwarf–white dwarf”, “neutron
star–neutron star”, and “black hole–black hole” mergers (Perets and Fabrycky 2009;
Prodan et al. 2013; Seto 2013; Thompson 2011).

The formation and evolution mechanisms of binaries are very important to
understand because the majority of stars are double or multiple; in fact, according
to Duquennoy and Mayor (1991), almost 70 % of stars in the Solar neighborhood
belong to binary systems.

On the reason that the LKE in triples can produce stellar mergers, it was invoked
to model the statistics of type Ia supernovae, which appear through mergers of white
dwarfs when the Chandrasekhar limit is exceeded (Prodan et al. 2013; Thompson
2011). What is more, as shown by Perets and Fabrycky (2009), LKE-generated

1Translated from Russian by I. I. Shevchenko.
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mergers of Solar-type stars can produce blue stragglers, i.e., blue massive stars,
anomalously young in comparison with other stars in their environments in star
clusters; they cannot be produced by the ordinary stellar evolution.

Many stars in the Galactic center vicinities are observed to move in highly
eccentric orbits around the center. This was explained by Löckmann et al. (2008)
as due to the LKE induced by massive central stellar disks. However, this is still
controversial. Chang (2009) showed that the effectiveness of the LK-mechanism
due to the stellar disks might be suppressed by the spherical stellar bulge. The LKE
may nevertheless be induced by a flattened stellar bulge or other non-sphericities of
the potential.

Among other applications in the Galactic astronomy, the LKE was invoked to
describe the production, evolution, and mergers of black holes in globular clusters
(Miller and Hamilton 2002b; Wen 2003), formation of dark matter complexes
around supermassive black holes (Naoz and Silk 2014). In the gravitational-wave
astronomy, it was studied as a possible mechanism for mergers generating specific
gravitational wave signals (Antonini et al. 2014; Miller and Hamilton 2002a; Seto
2013).

Finally, perhaps the most grandiose manifestations of the LKE are related to the
so-called Galactic tide, i.e., the tidal force due to the Galactic gravitational field.
The LKE induced by the Galactic tide is considered in the last section of this book.

9.1 LKE in Triples: Formation of Tight Binaries

Beginning with the works of Harrington (1968, 1969), the LKE was studied
to understand the secular evolution of triple stars. Perhaps the most intriguing
implication of the LKE concerns the formation of tight binaries due to secular
perturbations from outer components of the triples. Tokovinin et al. (2006) and
Fabrycky and Tremaine (2007) explained the ubiquity of tight (those having orbital
periods .3d) binaries of solar-type stars belonging to triples as due to the triple-
affecting LKE, in concert with the tidal friction, at an evolutionary stage when the
pericentric distances in the binaries become small. Indeed, as revealed by Tokovinin
et al. (2006), almost all observed tight binaries possess outer stellar companions.

In the framework of the hierarchical general three-body problem (in which the
components of a triple may have comparable masses), Naoz et al. (2011) showed
that the inner binary, subject to perturbations from a highly-inclined eccentric distant
outer orbiter, may suffer transitions from prograde to retrograde modes and vice
versa. Thus, the orbit of the less massive component of the inner binary “flips”:
its inclination exhibits transitions through the value i D 90ı in both directions,
lingering intermittently in each mode.
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The possibility of the flips in the general three-body problem can be demon-
strated by analyzing the double-averaged expansion of the three-body Hamiltonian
in the octupole order. As already discussed in Chaps. 4 and 8, the dynamical role of
the octupole term can be assessed by using formulas (4.55) and (8.14), namely, by
estimating the quantity

�oct D .m0 � m1/

.m0 C m1/
� a2

apert
� epert

.1 � e2
pert/

: (9.1)

Here m0 > m1 are the masses of the perturbed binary, a2 is the semimajor axis of
its less massive component, apert and epert are the semimajor axis and eccentricity of
the perturber’s orbit.

Thus, �oct is directly proportional to the mass difference .m0 � m1/ of the
perturbed binary; i.e., if the masses are equal, than the flipping phenomenon is
absent. As emphasized by Shappee and Thompson (2013), this has important
consequences for the evolution of triples whose inner binaries consist of solar-
type stars. Indeed, such binaries usually have mass ratios �1 (Mazeh et al. 1992;
Raghavan et al. 2010); there even exists a preference for twin stars (Pinsonneault
and Stanek 2006). For the twins, �oct � 1 and the flips are impossible. However,
if one of the primaries, in the course of the stellar evolution, explodes and becomes
a white dwarf or a neutron star, the mass ratio changes and the LK-mechanism
comes into play, and, if the perturber is eccentric, the flips may emerge. Besides,
a general route opens, due to the LKE, to the tidal circularization and shrinking of
the primaries’ orbits (see, e.g. Eggleton and Kiseleva-Eggleton 2001; Kiseleva et al.
1998). Combined with the tidal friction, the LKE operating in a multiple star can
produce a tight binary, which can be even contact (Fabrycky and Tremaine 2007;
Harrington 1968; Kiseleva et al. 1998).

Shappee and Thompson (2013) considered evolving triples with mass loss and
made a number of estimates concerning percentages of systems with typical final
states. The hierarchical triple solar-type stars are mostly (in the generic ranges of
initial conditions) not prone to the LKE, but the situation changes, when one of the
members of the central binary becomes a compact object. If the outer perturber is
sufficiently eccentric, the LKE may even lead to orbital flips of the perturbed body.
Shappee and Thompson (2013) call this scenario the mass-loss-induced eccentric
LK-mechanism (the mass-loss-induced ELKM). However, most (about one third)
of the evolving triples seem to suffer tidal-collisional interactions already at an
earlier stage of evolution, mostly due to the ordinary LKE, when one of the primaries
becomes a red giant with a diameter of several astronomical units. Only about 2 %
of the evolving triples suffer tidal-collisional interactions at the “compact-object”
stage, due to the mass-loss-induced ELKM. Summing up, most or even all tight
binaries could have been formed out from wider ones.
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9.2 LKE in Triples: A Progenitor for Supernovae, “blue
stragglers”, etc.

Of especial astrophysical interest is that the LKE in a stellar triple can lead to a
merger of the inner binary components. The LKE might explain “white dwarf–
white dwarf”, “neutron star–neutron star”, and “black hole–black hole” mergers
(Perets and Fabrycky 2009; Prodan et al. 2013; Seto 2013; Thompson 2011).
The LKE-induced merger phenomenon was invoked to model the rates of type Ia
supernovae, appearing due to mergers of white dwarfs (which result in exceeding
the Chandrasekhar limit; see Prodan et al. 2013; Thompson 2011). The LKE might
be also relevant to the secular dynamics of binary millisecond pulsars (Gopakumar
et al. 2009).

On the other hand, Iben and Tutukov (1984) and Webbink (1984) suggested that
the type Ia supernovae can be also generated by mergers of white dwarfs in binaries,
as a binary shrinks due to the gravitational wave radiation (GWR). However, the
pure GWR effect can produce a merger on a timescale less than the age of the
Universe (�1010 years) only in the binaries that are tight enough, and this makes
the predicted GWR-conditioned merger frequency much less than the observed
frequency of the type Ia supernovae events. The situation changes if one considers
binaries inside triples. A companion in an inclined orbit around a binary may trigger
LK-oscillations of the inner orbit’s eccentricity, pumping huge eccentricities and
generating small pericentric distances in the inner binary; leading, consequently, to
stellar mergers. The GWR and tidal timescales decrease dramatically with diminish-
ing the pericentric distances. Therefore, the merger timescale also decreases, and,
correspondingly, the merger frequency rises. Quantitative estimates of the resulting
rates allow one to assess the described scenario as plausible for explaining the type
Ia supernovae events (Blaes et al. 2002; Miller and Hamilton 2002a).

Therefore, in hierarchical triples, the merger frequency, maintained by the LKE–
GWR (the LKE in concert with the energy loss due to the GWR), is substantially
enhanced in comparison with the merger rate in isolated binaries. Thompson (2011)
showed this process to be effective in the evolution of “white dwarf–white dwarf”,
“white dwarf–neutron star” and “neutron star–neutron star” pairs. Such mergers
might be responsible not only for the Ia supernovae events, but also for observed

 -ray bursts.

Prodan et al. (2013) explored the tidal effects in concert with the LKE in
compact triples with characteristics typical for the Galactic field and globular
clusters (namely, the triple size �1 AU and the size of the inner binary �0:05 AU).
At high enough mutual inclinations, the LKE triggers the GWR timescale and the
tidal timescale to decrease substantially. At appropriate initial inclination values,
the inner binary may even merge straightforwardly (i.e., GWR and tides are not
necessary), due to shrinking pericentric distances (Kushnir et al. 2013).
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Fig. 9.1 The time dependence (as given by the secular theory) of the semimajor axis a1 and
pericentric distance q1 of a compact twin (equal-mass) binary, perturbed by a distant companion;
time N2 is in units of the orbital period of the perturber. The binary merges at N2 � 1200.
(Reprinted figure 1 with permission from Seto 2013. Copyright (2013) by the American Physical
Society)

In Fig. 9.1, the time evolution of the semimajor axis a1 and pericentric distance
q1 of a neutron-star binary (perturbed by a distant stellar companion) is illustrated,
as given by the secular theory (Seto 2013), for a representative initial orbital
configuration and masses of the triple. The initial mutual inclination is 91ı.
Time N2 is measured in units of the perturber’s orbital period. Initially, the LK-
oscillations with the decaying amplitude of the eccentricity are observed, while the
minimum q1 is constant. (The amplitude decays due to “detuning” of the LKE by
the general-relativistic precession of the neutron-star binary. The detuning takes
place on the timescale of the precession period; for details see Thompson 2011.
When the precession period becomes much less than the LKE timescale, the LKE
is suppressed altogether; see Sect. 3.3.) Thus, the maximum apocentric distance
decays, and, eventually (at N2 � 800 in this example), the neutron-star binary’s orbit
is circularized at a small value of its size a1 � q1. Further on, a1 shrinks due to the
energy loss by GRW, until the merger happens (at N2 � 1200 in this example). Note
that the GRW itself without the LKE (i.e., in the absence of the inclined perturber)
would cause the merger on a considerably greater (in this example, 107 � 108 times
greater) timescale. What is more, as demonstrated by Seto (2013), the secular theory
predicts too high minima for the pericentric distances of a compact binary in a
hierarchical triple, as the short-period oscillations are averaged out. Therefore, in
reality, the merger timescale is much less, as the effectiveness of the energy loss by
GRW depends drastically on q1. In the given typical example of evolution obtained
in the secular theory, the merger time N2 � 1000, whereas in the corresponding
numerical simulation it is by an order of magnitude less.

Another vivid example of a potential effectiveness of the LKE in triple stars is
given by the phenomenon of blue stragglers—the blue massive stars, anomalously
young in comparison with other stars in their environments in stellar clusters. They
are observed to exist in globular clusters. They cannot be a product of the ordinary
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stellar evolution of single stars. In a cluster’s colour-magnitude diagram, they appear
bluer and more luminous than the stars at the main-sequence turn-off (Sandage
1953). Blue stragglers are supposed to be an evolutionary product of either (1)
normal main-sequence stars subject to the Roche-lobe overflow of fresh hydrogen
from evolved close companions (McCrea 1964), or (2) mergers of companions in
binaries (see, e.g., Leigh et al. 2013). In the both cases, the tight binary generating
the blue straggler might have appeared due to the LKE. Perets and Fabrycky (2009)
explain the formation of blue stragglers in globular clusters as due to the LKE in
concert with the tidal friction, acting in triples in the clusters.

9.3 Highly Eccentric Stars in the Galactic Center

The center of our Milky Way Galaxy is identified with the radio source Sgr A�. It is
believed that the radio emission is due to a standard mechanism of the galactic nuclei
activity, associated with the disk accretion onto a supermassive black hole (SMBH).
This accretion is accompanied by the powerful radio emission from plasma jets
orthogonal to the accretion disk (e.g. Begelman et al. 1980).

The stellar population surrounding the central SMBH has an intricate kinematical
structure (e.g. Chang 2009). So-called S-stars and S0-stars move within central
0.04 pc in highly eccentric orbits distributed isotropically in inclination. On the
contrary, a larger (up to 0.4 pc) stellar subsystem of young massive stars is not
isotropic (Lu et al. 2006; Paumard et al. 2006): it is organized in a single disk,
or a pair of disks, mutually almost orthogonal. For a review on possible origins of
these central stellar populations see Alexander (2005).

Šubr et al. (2004) and Šubr and Karas (2005) demonstrated a possible relevance
of the LKE (driven by a circumnuclear massive disk) for pumping the eccentricities
the stars in the SMBH neighbourhood; they also outlined conditions needed for
the SMBH-driven relativistic precession to suppress the LKE. Furthermore, the
high eccentricities (e � 1) of the S-stars might be pumped by the LKE induced
by a pair of large stellar disks, as suggested by Löckmann et al. (2008). In this
scenario, the S-stars are generated by tidal disruption of binaries (explored in Gould
and Quillen 2003), when, in the course of the LK-evolution, they come close
enough to the SMBH. The inflow of binaries is supplied by the outer disks. The
LKE, in its turn, generates a highly-eccentric and isotropic population. The evolved
orbital semimajor axes of the former components of the binaries are by an order of
magnitude smaller than their initial values (Gould and Quillen 2003); this explains
the relatively small size of the S-stellar subsystem.

The typical timescales of the LK-oscillations in the vicinity of the Galactic center
are illustrated in Fig. 9.2, where a numerical-experimental example of a pure (i.e.,
with other effects absent) LK-oscillation induced by a stellar disk of mass 2000MSun
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Fig. 9.2 A pure
LK-oscillation induced by a
stellar disk of mass 2000MSun

in the Galactic center. The
initial inclination of a star’s
orbit with respect to the disk
plane is 60ı, the star’s
semimajor axis is 0:1 pc
(Figure 1 from Chang 2009.
With permission from Oxford
University Press)

is given for a star orbiting the central SMBH.2 However, note that the effectiveness
of the disk-driven LK-mechanism in the Galactic center is still controversial. Chang
(2009) showed that the LKE due to the stellar disks might be suppressed by the
spherical stellar bulge. On the other hand, the presence of a non-suppressed LKE of
another origin (induced by a flattened stellar bulge or other non-sphericities of the
potential) is not ruled out.

According to Chang (2009), an LK-mechanism of a similar kind may be active
in our neighbour galaxy M31, which has a much more massive (relative to the mass
of the central SMBH) central stellar disk (�10 % of the SMBH mass).

Generally speaking, the LKE may act in the nuclei of many galaxies other than
ours, producing various dynamical and astrophysical phenomena. Analogously to
the situation in our Galaxy, the most massive galaxies are believed to contain single,
binary, or even multiple SMBHs in their centers. The central SMBH multiplicity
might be an outcome of a merger of parent galaxies (e.g. Begelman et al. 1980).
As argued by Blaes et al. (2002), the LKE induced by the galactic disk or a third
SMBH may produce pericentric distances in the inner binary small enough for the
energy loss through the GWR become substantial to lead to a merger of the binary
components; such mergers may have outstanding observational consequences.

2The massive black hole in the center of our Galaxy is estimated to have mass equal to (3–4)�106

Solar masses; it is one of the least massive nuclear black holes known at present in galaxies
(Alexander 2005).
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9.4 The Galactic Tide

Perhaps the most grandiose manifestations of the LKE are related to the Galactic
tide, the tidal force due to the Galactic gravitational field. The term “Galactic tide” is
also used to refer generally to any perturbative influence of the Galactic gravitational
field on the motion of objects inside stellar and planetary systems of the Galaxy.

The notion of the Hill radius (defined previously in Chap. 5, see formula (5.1))
is straightforwardly generalizable to the case of a body orbiting in the Galactic
gravitational field. The Hill radius of a star or any other object (say, a globular
cluster) subject to the Galactic tide can be rendered the form

RH � 1:7 � 105AU

�
m

mSun

�1=3 �
�G

0:15mSunpc�3

��1=3

; (9.2)

where m is the mass of the object, mSun is the Solar mass, and �G is the local Galactic
density (e.g. Veras et al. 2009). Planets or minor bodies (planetesimals, comets, etc.)
whose orbital apocenters exceed RH are expected to escape from the host star, due
to the Galactic perturbation.

The formula for the period of LK-oscillations (see Sect. 3.4) is also straightfor-
wardly generalizable. Namely, the timescale of LK-oscillations due to the Galactic
tide is given by

TLK � 5:0

�
0:1mSunpc�3

�G

��
104AU

a

�3=2

Gyr; (9.3)

where a is the orbital semimajor axis of a massless particle orbiting a star (Brasser
et al. 2010).

Inside the Hill radius of a star, a star-orbiting body may be subject, depending on
initial conditions, to the LKE due to the Galactic tide; thus, the body may reach high
apocentric distances and escape. However, the LK-period (given by formula (9.3))
is small enough (less than the age of the Solar system) on a rather large spatial
scale, defined by the semimajor axis a in formula (9.3): the value of a should be
greater than �104–105 AU, for the Galactic-tidal LKE to be effective. By the order
of magnitude, this scale is close to the Solar RH, given by formula (9.2).

More precisely, the LKE starts be effective for orbital sizes exceeding �5000 AU;
at such radial distance from the Sun the Oort cloud starts to be more or less isotropic
with respect to the Sun (because the Galactic tide starts to be able to perturb the
cloud); at smaller radii, the planetesimal distribution remains concentrated to the
ecliptic plane (Duncan et al. 1987).

As discussed already in Sect. 6.2, the Oort cloud itself is formed most probably
thanks to an LK-mechanism (Duncan et al. 1987): the minor bodies scattered by the
planets to large enough distances from the Sun suffer perturbations by the Galactic
tide, and the Galactic-tidal LKE acts to decrease their eccentricities, thus forming
the cloud. What is more, the Galactic-tidal LKE also acts to “borrow” comets from
the Oort cloud and deliver them to the inner Solar system.
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Finally, what is the effect of the Galactic tide on the planets of our Solar system?
May the LKE be present in their motion, due to the mutual inclination of the
Galactic and Solar system planes? The planetary orbits in our Solar system are
subject to long-term perturbations due to the Galactic tide. Being inclined by �60ı
with respect to the Galactic plane, the Solar system might seem to be subject to
destabilization by the LKE. However, if an additional perturbation dominates the
LK-term in the Hamiltonian of the motion, then the LKE disappears, as discussed
in detail in Sect. 3.3. And indeed, the LKE in the motion of planets is completely
suppressed by their orbital precession arising due to their mutual perturbations
(Matese and Whitman 1992; Morbidelli 2002); besides, the LKE timescale for the
Solar system size is �103 times greater than the age of the Solar system, as follows
from formula (9.3).

If the orbits of the planets were large enough, the Galactic tide would be
important in perturbing their dynamics; but for the known planets of the Solar
system the effect is absent. However, the Galactic tide can well produce the LKE in
exoplanetary systems (Veras and Evans 2013). The reason is that planets and brown
dwarfs orbiting stars may have orbits far larger (by two orders of magnitude) than
the size of our Solar system: the orbital semimajor axes of known objects reach
values up to 2500 AU (Kalas et al. 2005; Gladman et al. 2010; Kuzuhara et al. 2011;
Luhman et al. 2012).

In wide binaries in the Galactic field, the Galactic tide induces variations of the
orbit of the stellar perturber, and this may explain why the exoplanets observed in
them possess on the average greater eccentricities than the planets of single stars
(Kaib et al. 2013).
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Basic Notations

In this Appendix, the basic notations for the mathematical operators and astronom-
ical and physical quantities used throughout the book are given. Note that only
the most frequently used quantities are mentioned; besides, overlapping symbol
definitions and deviations from the basically adopted notations are possible, when
appropriate.

Mathematical Quantities and Operators

kxk is the length (norm) of vector x
x � y is the scalar product of vectors x and y
rr is the gradient operator in the direction of vector r
f f ; gg is the Poisson bracket of functions f and g
K.m/ or K.k/ (where m D k2) is the complete elliptic integral of the first kind with
modulus k
E.m/ or E.k/ is the complete elliptic integral of the second kind
F.˛;m/ is the incomplete elliptic integral of the first kind
E.˛;m/ is the incomplete elliptic integral of the second kind
ƒ0 is Heuman’s Lambda function
Pi is the Legendre polynomial of degree i
x0 is the initial value of a variable x

Coordinates and Frames

x, y, z are the Cartesian (orthogonal) coordinates
r, �, ˛ are the spherical coordinates (radial distance, longitude, and latitude)
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In the three-body problem:
r1 is the position vector of body 1 relative to body 0
r2 is the position vector of body 2 relative to the center of mass of the inner binary
ˆ is the angle between vectors r1 and r2

In the many-body problem:
r and ri (i D 1; : : : ;N) are the primary-centric positions of a particle and N
gravitating perturbers (with masses mi)
ri0 is the position vector of body i relative to body 0
rij the position vector of body i relative to body j

Orbital Elements and Corresponding Quantities

a, e, i, !, $ , �, M, l are, respectively the semimajor axis, eccentricity, inclination,
argument of pericenter, longitude of pericenter, longitude of ascending node, mean
anomaly, mean longitude of a massless test particle or a massive test body
q D a.1 � e/ is the pericentric distance
Q D a.1 C e/ is the apocentric distance
apert, epert, ipert, !pert, $pert, �pert, Mpert, lpert are, respectively the semimajor axis,
eccentricity, inclination, argument of pericenter, longitude of pericenter, longitude
of ascending node, mean anomaly, mean longitude of a perturber’s orbit
ap, ep are, respectively the semimajor axis and eccentricity of a planetary orbit
ab, eb are, respectively the semimajor axis and eccentricity of a binary
a1, a2 are the semimajor axes of the inner and outer binaries, respectively
e1, e2 are the eccentricities of the inner and outer binaries, respectively
˛ D a1=a2 is the ratio of semimajor axes of the inner and outer binaries
ef is the forced eccentricity
iE is the inclination to the ecliptic plane
ei, $i, ii, and �i are, respectively, the eccentricity, longitude of pericenter, inclina-
tion, and longitude of ascending node of planet i
n is the mean motion of a test body
npert is the mean motion of a perturber
P1 is the orbital period of the inner binary
P2 is the orbital period of the outer binary
	 is the time of the pericenter transit

Dynamical Definitions

n is the number of degrees of freedom
R is the perturbing function
H is a Hamiltonian
K is a normalized Hamiltonian
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q is the vector of canonical coordinates
p is the vector of conjugate canonical momenta
l, g, h are the Delaunay canonical angles, corresponding to the mean anomaly M,
argument of pericenter !, and longitude of ascending node �, respectively
L, G, H are the Delaunay canonical momenta, conjugate to the Delaunay canonical
angles
ƒ and �, P and p, Q and q are the pairs of the modified Delaunay variables of the
test body
! � $ � � is the argument of pericenter, the critical angle of the LK-resonance
˛ is the frequency of the forced (due to a perturbation) precession of !

TLK is the period of LK-oscillations
�oct is a constant parameter characterizing the role of octupole terms
ˇk and ık are the planetary angular phases, k D 1; 2; : : : ; 8

gk and sk are the planetary frequencies, k D 1; 2; : : : ; 8

�5 is a secular resonance
�6 is a secular resonance
�16 is a secular resonance

Masses and Mass Parameters

m0 is the mass of the “central” body (the primary, usually the most massive in a
system)
m is the mass of a test body (e.g., an asteroid, a planet)
mpert is the mass of a perturber
� D m1=.m0 C m1/ is the mass parameter of a binary
mstar is the mass of the parent star in a system
MSun is the mass of the Sun
mpl is the mass of a planet
� is the mass of the largest planet in a system in units of the mass of the host star

Other Physical Quantities

G is the gravitational constant
c is the speed of light
Rp is the mean radius of a planet
RSun is the radius of the Sun
REarth is the radius of the Earth
RMoon is the radius of the Moon
RH is the Hill radius
J2 is the second zonal harmonic coefficient of a planet
k2 is the Love number



174 A Basic Notations

G is the module of the angular momentum
H is the angular momentum vector’s vertical component
� is the angle of the pendulum deviation from the vertical
m is the mass of a pendulum
l is the length of a pendulum
' is the angle of a pendulum, or a resonance phase angle
p is the momentum of a pendulum
� is the perturbation frequency
	 is the phase angle of perturbation
L is the maximum Lyapunov exponent
TL � L�1 is the Lyapunov time
!0 is the frequency of the pendulum small-amplitude oscillations
J is the unitless (scaled) angular momentum of the inner orbit
Jz is the vertical component of the angular momentum
G1 and G2 are the angular momenta of the inner and outer binaries, respectively
CJ is the Jacobi integral, also called the Jacobi constant
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Astronomical Constants and Parameters

The astronomical constants and parameters given in Table B.1 are merely those
that are necessary to make numerical estimates throughout the book. The values
of astronomical constants are those adopted by the 16th General Assembly of the
International Astronomical Union in 1976.

Table B.1 Astronomical constants and parameters

Constant Value

Speed of light c 2:997925 � 1010 cm/s

Gravitational constant G 6:672 � 10�8 g�1cm3s�2

Solar mass MSun 1:989 � 1033 g

Solar radius RSun 6:960 � 1010 cm

Mass of the Earth MEarth 5:977 � 1027 g

Equatorial radius of the Earth REarth 6:378140 � 108 cm

Mean radius of the Earth hREarthi 6:371032 � 108 cm

Mean distance “Earth–Moon” aEM 3:84401 � 1010 cm

Mass of Jupiter MJ 1:898 � 1030 g

Semimajor axis of Jupiter’s orbit 5:20337 AU

Semimajor axis of Neptune’s orbit 30:058 AU

Semimajor axis of Pluto’s orbit 39:46 AU

Astronomical unit (AU) 1:49600 � 1013 cm

Parsec 3:0857 � 1018 cm = 206265 AU

Ecliptic-to-equator obliquity (epoch 2000) 23ı2602100

Ratio of masses of the Earth and Moon 81:30

Ratio of masses of the Sun and Earth 332958

Oblateness of the Earth ellipsoid .a � b/=a 1=298:257
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