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Abstract. The criterion for the development and associated parame-
ter tunning of a class of fractional-order proportional-integral-derivative
controllers, regarding the attitude stabilization as the inner control loop,
is proposed for the quadrotor in this work. To facilitate this develop-
ment, the dynamic model of the quadrotor is firstly formulated, and the
transfer function of the inner loop is presented based on the real-time
flights conducted in previous researches. With the obtained transfer func-
tion model, a class of fractional order controllers, including fractional
order proportional-derivative controllers and proportional-integral con-
trollers are developed accordingly. For each controller, the parameter
tunning methods are addressed in details. To verify the effectiveness of
this development, numeric simulations are conducted at last, and the
results clearly verify the superiority of the fractional order controllers
over conventional proportional-integral-derivative controllers in real-time
flight of the quadrotor.

Keywords: Quadrotor · Fractional order controller · Paramter tun-
ning · Flight control

1 Introduction

The agilities and versatilities of the quadrotor attract lots of researchers in recent
years [1–4]. In this progress, to enhance the performance of the quadrotor, the
flight control, trajectory generation and simultaneous localization and mapping
are extensively studied [5–9]. In particular, the flight control is the basic but indis-
pensable element for the quadrotor to fulfill their specific missions in real world.

Numbers of well developed flight controllers, such as linear quadratic (LQ)
controller [5], sliding-mode controller [10], linear matrix inequalities (LMI) based
controller [11] and disturbance observer based controller [12], were proposed dur-
ing the last decade. Those controllers have effectively improve the performance of
the quadrotor in real-time flights. Unfortunately, the dominant flight controller
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of the quadrotor is still the classical proportional-integral-derivative (PID) con-
troller [13,14]. This is because with its three-term functionality covering treat-
ment to both transient and steady-state responses, the PID control provides the
a simple and efficient solution for real world applications. However, the pure
PID technique shows limited capabilities in disturbance rejection [12], which is
the main reason that researchers insistently pursue alternative control strate-
gies. Considering those facts, numbers of studies have tried to directly improve
the performance of the flight control based on the PID technique. According
to those studies, two methods demonstrate promising capabilities. The first one
introduces the tracking differentiator, extended state observer, and utilizes the
nonlinear proportional-derivative control to improve the performance of the flight
control [15]. The second one directly introduces the fractional calculus into the
proportional-integral-derivative technique [16].

Comparatively speaking, the second one provides a more explicit solution,
which is similar to its traditional counterpart, i.e., the PID controller. In addi-
tion, the fractional calculus, with integrals and derivatives of real order instead of
integer order, can be properly further utilized in modeling, which is a significantly
more comprehensive description for the specific objects, e.g., the quadrotor in
this work. This is because objects, such as the quadrotor controlled by this work,
might be of fractional order. Therefore, the results may improve the effectiveness
of the simulation compared to the traditional methods. In such a case, it will be
also logically more suitable to utilize the fractional order controllers (FOCs) to
control those objects [16].

FOCs have showed promising capabilities in many applications that suffer
from the classical problems of overshoot and resonance, as well as time dif-
fuse applications such as thermal dissipation and chemical mixing [16,17]. The
FOCs could better handle the tracking process with a fractional order calculator,
as it provides a powerful instrument for the description of memory and heredi-
tary effects in various substance [16]. Therefore, better robustness and stabilities
could be achieved with the FOCs.

In view of the state-of-the-art, this work is motivated to develop a class
of FOCs and the associated parameter tunning methods for the quadrotor to
enhance its robustness. To facilitate this development, the dynamics model of
the quadrotor is firstly formulated, and the transfer function of the attitude is
presented based on the previous researches. With the transfer function model,
a class of FOCs, including PDμ, FO (PD), PIλ, and FO (PI) controllers are
developed. For each controller, the parameter tunning methods are addressed
in details. To verify the effectiveness of this development, extensive numeric
simulations are conducted at last.

The reminder of this paper is organized as follows. First, the Quadrotor
dynamics is introduced, and a transfer function is properly adopted to describe
the attitude control loop in Sect. 2. Then the stabilized attitude is treated as the
pseudo control input of the position control loop, and the design criterion for the
FOCs is presented in Sect. 3. In Sect. 4, numeric simulations are provided to verify
the effectiveness of the developed FOCs. At last, Sect. 5 concludes this work.
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2 Quadrotor Dynamics

To facilitate the following development, the dynamic model of the quadrotor is
firstly presented in this section. With this model, the pseudo control variables for
the translational flight control are determined, and a first order time-delay trans-
fer function is adopted according to real-time experiments in previous researches.

2.1 Rigid Body Dynamics

The free body diagram and coordinate frames of the quadrotor are shown in
Fig. 1. Based on this illustration, four control inputs can be defined as U1 =
F1+F2+F3+F4, U2 = (F2−F4)L, U3 = (F3−F1)L, U4 = M1−M2+M3−M4.
where L is the length from the rotor to the center of the mass of the quadrotor,
and Fi and Mi are the thrust and torque generated by rotor i (i ∈ {1, 2, 3, 4}).

Fig. 1. Free body diagram

In the near hovering state (φ ≈ 0, θ ≈ 0), the dynamical model of the
quadrotor with respect to the inertial coordinates can be then expressed as [7]

ẍ = U1
m (θ cos ψ + φ sin ψ), ÿ = U1

m (θ sinψ − φ cos ψ),
z̈ = 1

mU1 − g, φ̈ = U2
Ixx

, θ̈ = U3
Iyy

, ψ̈ = U4
Izz

.
(1)

where φ, θ, and ψ are roll, pitch and yaw, respectively; x, y, and z are the
position of the quadrotor in the inertial coordinates; m, Ixx, Iyy, and Izz are the
mass and moments of inertia of the quadrotor, respectively; and g is the gravity
constant.

In this way, z, φ, θ, and ψ are linearly related to Ui (i ∈ {1, 2, 3, 4}). The
roll and pitch angle can be then taken as the pseudo control inputs to stabilize x
and y. The desired attitude angles can be then explicitly calculated with given
translational accelerations as follows

η̈∗ Δ=
[
θ∗

φ∗

]
= (

U1

m
G)−1

[
ẍ∗

ÿ∗

]
=

m

U1
G

[
ẍ∗

ÿ∗

]
(2)

where θ∗, φ∗, ẍ∗, and ÿ∗ denote the desired values for θ, φ, ẍ, and ÿ respectively.
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2.2 Dynamics of the Pseudo Control Variables

The pseudo control variables η = [θ, φ]T utilized in Eq. (2), are commonly
stabilized by a inner-loop controller, such as the proportional-derivative (PD)
controller [12]. In such a case, real-time experimental identification approaches
can be adopted to determine the transfer function from η∗ to η, which could be
presented in the form of Pa(s) ≈ 1

Ts+1e−τs [18].
In the near-hovering state, U1

m G can be treated as a constant, therefore inte-
grating (2) and substituting it into Pa(s), the transfer function taking the atti-
tude command as input and the speed as the output is P (s) = K

s(Ts+1)e
−Ls.

The parameters in this transfer function could be identified from series of
random flights, which has been addressed in details in [18]. In this work, the
following parametric model is adopted

P (s) =
1.4

s(0.05s + 1)
e−0.15s (3)

3 Fractional Order Controller Design

Four types of FOCs, namely PDμ, FO(PD), PIλ, and FO(PI) controllers are
investigated in this section. Based on the model presented in Eq. (3), the criterion
for the development of those FOCs is addressed in details.

3.1 PDμ Controller Development

The PDμ controller is commonly designed in the following form [17]

C(s) = Kp(1 + Kds
μ) (4)

The PDμ FOC described by Eq. (4) can be rewritten as

C(jω) = Kp[(1 + Kdω
μ cos

μπ

2
) + jKdω

μ sin
μπ

2
] (5)

considering the fact (jω)μ = ωμ(cos μπ
2 + i sin μπ

2 ) [19].
The phase and gain of Eq. (5) are

arg[C(jω)] = tan−1 sin (1−μ)π
2 + Kdω

μ

cos (1−μ)π
2

− (1 − μ)π
2

(6)

|C(jω)| = Kp

√
(1 + Kdωu cos

μπ

2
)2 + (Kdωμ sin

μπ

2
)2 (7)

Similarly, the phase and gain of the original system, i.e., Eq. (3), are

arg[P (jω)] = − tan−1(ωT ) − π

2
− ωL, |P (jω)| =

K

ω
√

1 + (ωT )2
(8)
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The phase and gain of the open-loop G(s) = C(s)P (s) are

arg[G(jω)] = tan−1 sin (1−μ)π
2 + Kdω

μ

cos (1−μ)π
2

+
μπ

2
− tan−1(ωT ) − π − ωL (9)

|G(jω)| =
KpK

ω

√
(1 + Kdωu cos μπ

2 )2 + (Kdωμ sin μπ
2 )2

1 + (ωT )2
(10)

Similar to [20,21], three specifications are interested by this work in the
design of the FOC PDμ controller. These specifications are proposed as follows:

(i) Proper phase margin φm should be achieved at ω = ωc, i.e.,
arg[G(jω)]ω=ωc

= −π + φm.
(ii) To guarantee the robustness to the variation in the gain of the plant, the

following specification is imposed d(arg[G(jω])
dω |ω=ωc

= 0
(iii) The gain at crossover frequency should be |G(jωc)|dB = 0

According to specification (i), the relationship between Kd and μ can be
estimated as [17]

Kd =
1

ωμ
c

tan[φm+tan−1(ωcT )− μπ

2
+ωcL] cos

(1 − μ)π
2

− 1
ωμ

c
sin

(1 − μ)π
2

(11)

To meet the specification (ii) about the robustness to gain variation, one can
obtain

Aω2μ
c K2

d + BKd + A = 0 (12)

which is equivalent to

Kd =
−B ±

√
B2 − 4A2ω2μ

c

2Aω2μ
c

(13)

where B = 2Aωμ
c sin (1−μ)π

2 −μωμ−1
c cos (1−μ)π

2 . In such a case, one can solve Kd

and μ simultaneously utilizing Eqs. (11) and (13).
In view of specification (iii), the equation about Kp can be obtained as

|G(jωc)| =
KpK

√
(1 + Kdω

μ
c cos μπ

2 )2 + (Kdω
μ
c sin μπ

2 )2

ωc

√
1 + (ωcT )2

= 1. (14)

In this way, the control gain Kp could be explicitly solved as

Kp =
ωc

√
1 + (ωcT )2

K
√

(1 + Kdω
μ
c cos μπ

2 )2 + (Kdω
μ
c sin μπ

2 )2
(15)
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3.2 FO (PD) Controller

The FO (PD) controller is designed in the form of [17]

C2(s) = Kp2(1 + Kd2s)μ (16)

which can be rewritten as

C2(jω) = Kp2(1 + Kd2(jω))μ (17)

In this way, the phase and gain of Eq. (17) are

arg[C2(jω)] = μ tan−1(ωKd2), |C2(jω)| = Kp2(1 + (Kd2ω)2)
μ
2 (18)

The open-loop transfer function G2(s) is obtained as G2(s) = C2(s)P (s). In
this way, the phase and gain of G2(s) are

arg[G2(jω)] = μ tan−1(ωKd2) − tan−1(ωT ) − π

2
− ωL (19)

|G2(jω)| =
Kp2K(1 + (Kd2ω)2)

μ
2

ω
√

1 + (ωT )2
(20)

The parameter tunning for the FO (PD) controller, as well as the following
controllers, is the same with the PDμ controller. The meet the specification (i),
the relationship between Kd and μ can be expressed as

Kd2 =
1
ωc

tan(
1
μ

(φm − π

2
+ tan−1(Tωc) + ωcL)) (21)

To meet the specification (ii), the relationship between Kd2 and μ can be
expressed as

ω2
cAK2

d2 − μKd2 + A = 0 =⇒ Kd2 =
μ ± √

μ2 − 4(Aωc)2

2(Aωc)2
(22)

To meet the specification (iii), Kp2 can be obtained as

Kp2 =
ωc

√
(Tωc)2 + 1

K(1 + (kd2ωc)2)
μ
2

(23)

3.3 PIλ Controller

The PIλ controller is designed in the form as follows [21]

C3(s) = Kp3(1 +
Ki

sλ
) (24)

The phase and gain of Eq. (24) is

arg[C3(jω)] = − tan−1[
Kiω

−λ sin(λπ
2 )

1 + Kiω−λ cos(λπ
2 )

] (25)
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|C3(jω)| = Kp

√
(1 + Kiω−λ cos(

λπ

2
))2 + (Kiω−λ sin(

λπ

2
))2 (26)

The phase and gain of the open-loop transfer function are

arg[G3(jω)] = − tan−1[
Kiω

−λ sin(λπ
2 )

1 + Kiω−λ cos(λπ
2 )

] − tan−1(ωT ) − π

2
− ωL (27)

|G3(jω)| =
KKp3

√
(1 + Kiω−λ cos(λπ

2 ))2 + (Kiω−λ sin(λπ
2 ))2

ω
√

ω2T 2 + 1
(28)

To satisfy the specification (i), one can obtain

Kiω
−λ
c sin(λπ

2 )

1 + Kiω
−λ
c cos(λπ

2 )
= tan(tan−1(Tωc) + Lωc + φm − π

2
) (29)

Then the relationship between Ki and λ can be established as

Ki =
C

ω−λ
c sin(λπ

2 ) − Cω−λ
c cos(λπ

2 )
(30)

where C = tan(tan−1(Tωc) + Lωc + φm − π
2 ).

To satisfy the specification (ii), one can obtain

Kiλωλ−1
c sin(λπ

2 )
ω2λ

c + 2Kiωλ
c cos(λπ

2 ) + K2
i

= A =⇒ Ki =
−F ±

√
F 2 − 4A2ω−2λ

c

2A
(31)

where F = 2Aω−λ
c cos(λπ/2) − λω−λ−1

c sin(λπ/2).
To satisfy the specification (iii), one can obtain

Kp3 =
ωc

√
ω2

cT 2 + 1

K
√

(1 + Kiω
−λ
c cos(λπ

2 ))2 + (Kiω
−λ
c sin(λπ

2 ))2
(32)

3.4 FO (PI) Controller

The FO (PI) controller is designed in the form as follows [21]

C4(s) = (Kp4 +
Ki

s
)λ (33)

The phase and gain of this controller is

arg[C4(jω)] = −λ tan−1(
Ki

Kp4ω
), |C4(jω)| = (K2

p4 +
K2

i

w2
)

λ
2 (34)

The phase and gain of the open-loop G4(s) is

arg[G4(jω)] = −λ tan−1(
Ki

Kp4ω
) − tan−1(ωT ) − π

2
− Lω (35)
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|G4(jω)| =
K(K2

p4 + K2
i

ω2
c
)

λ
2

ω
√

1 + (ωT )2
(36)

To satisfy the specification (i), one can obtain

Ki

Kp4
= D = ωc tan(−(φm − π

2
+ tan−1(ωcT ) + Lωc)/λ) (37)

To satisfy the specification (ii), one can obtain

λKiKp4

(Kp4ωc)2 + K2
i

= A (38)

To satisfy the specification (iii), one can obtain

K2
p4 +

K2
i

ω2
c

= E = (
ωc

K

√
1 + (ωcT )2)

2
λ (39)

From Eqs. (37), (38) and (39), one can obtain

λ = A
ω2

c + D2

D
, Kp4 =

√
ω2

cEω2
c + D2, Ki = Kp4D (40)

4 Simulations

To verify the effectiveness of the developed FOCs for the quadrotor, extensive
numeric simulations are conducted in this section.

Fig. 2. The plot of Kd vs. µ.

To demonstrate the merits of the FOCs over their conventional counterparts,
this work first investigates whether the PID controller could satisfy the speci-
fications (i) to (iii). In view of Eqs. (9) and specification (ii), for a classic PD
controller, one can obtain
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d(arg[G(jω])
dω

|ω=ωc
=

Kd

1 + (Kdωc)2
− T

1 + (Tωc)2
− L = 0 (41)

The solution is Kd = 1±
√

1−4ω2
cA2

2ω2
cA , where A = T

1+(ωcT )2 + L. In such a case, the
phase of G(jω) is obtained as

arg[G(jωc)] = tan−1(Kdωc) − tan−1(ωcT ) − π
2 − ωcL (42)

This means arg[G(jωc)] is a constant with determined Kd. As a result, specifica-
tions (i) and (ii) cannot be satisfied simultaneously for traditional PD controller.

In contrast, the parameters of the FOCs can be analytically solved with
the aforementioned specifications. In this work, the PDμ controller is adopted
to demonstrate this feature, which is obviously the same with the other three
kinds of FOCs. As formulated in Sect. 3, the PDμ controller can be properly
designed utilizing Eqs. (11), (13) and (15). By assigning φm = 70◦, ωc = 5,
the parameters Kd and μ can be determined based on the graphic illustration.
As shown in Fig. 2, the Kd and μ are explicitly determined as the intersection
point, then Kp is evaluated by using Eq. (15). In this way, the control gains are
determined as Kd = 0.0672, μ = 1.364, and Kp = 4.3.

Fig. 3. The frequency response of open-loop plant with the PDμ controller.

The bode plot of the corresponding controller is illustrated in Fig. 3. It can be
seen that both the phase margin φm and the gain crossover frequency criterion
ωc (specification ii) are properly satisfied.

With the aforementioned parameters, the performance of the PDμ controller
is compared to the classic PD controller. The parameters of the conventional PID
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controller are selected by utilizing the ITAE criterion and the system Simulation
techniques [22]. As the PDμ is actually a finite dimensional linear filter due to
the fractional order differentiator [20]. A band-limit implementation is important
in practice, and a finite dimensional approximation method, namely Oustaloup
Recursive Algorithm, is utilized in this work [20]. The comparative simulation
results are illustrated in Fig. 4, where n is the order of the transfer function used
in the approximation [20].

Fig. 4. The comparative simulation results of the PDμ controller and the IO − PD
controller.

It can be seen that when the approximation order is relatively small, the
performance of the FOC varies much. When n becomes larger, say n = 11,
PDμ controller demonstrates better stabilities as well as accuracy, thus shows
its superiority over the traditional PD controller.

As an additional demonstration, the parameter tunning and step response of
the PIλ controller is illustrated in Fig. 5. With the proposed approach, the desired
parameter can be effectively obtained as Kp = 2.4, Ki = 0.32, and μ = 0.202.

Fig. 5. The comparative simulation results of the PIλ controller and the IO − PD
controller.
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With the tunned parameters, the response of the quadrotor compared to the PI
controller is illustrated in Fig. 5(b). It can be seen that the PIλ controller demon-
strate faster convergence compared to the conventional PI controller.

5 Conclusion

This work has developed a class of FOCs and the associated parameter tunning
methods for quadrotors, regarding the attitude as the pseudo control input. To
facilitate this development, the transfer function of the attitude is first presented
based on previous researches. With the obtained transfer function model, a class
of FOCs, including PDμ, FO(PD), PIλ, and FO (PI) controllers are developed
accordingly. For each controller, the parameter tunning methods are addressed
in details. To verify the effectiveness of this development, comparative numeric
simulations are carried out. The results show that with proper implementation,
the FOCs demonstrate better robustness and stabilities over their conventional
counterpart.

In future, the fractional calculus would be adopted to more accurately
describe the quadrotor model, and the proposed controller is considered to imple-
ment into real-time flights to improve the performance of quadrotor in their
specific missions.
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