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Abstract. In this paper, a constraint factor (CF) is presented. The CF and an
odd m-order polynomial form a new hysteretic operator (HO) together. And
then, an expanded input space is constructed based on the proposed HO. In the
expanded input and output spaces, the one-to-multiple mapping of hysteresis is
transformed into a one-to-one mapping so that a neural network can be used to
develop a neural hysteresis model. The model parameters are computed by using
the least square method. Finally, the neural hysteresis model is employed to
approximate a real data from a magnetostrictive actuator in an experiment. The
experimental results demonstrate the proposed approach is effective.
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1 Introduction

In the past decades, smart materials, such as piezoelectric materials, magnetostrictive
materials, shape memory alloys, etc., have been widely used in many fields. The piezo-
electric and magnetostrictive actuators have been specially used for micro-displacement
systems [1, 2]. Since smart-materials-based actuators have advantage in the output force,
position resolution, and response speed [3], they have been attached importance in
ultra-precision positioning systems [4]. However, the inherent hysteresis nonlinearity in
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smart-materials-based actuators, which is non-differentiable and multi-valued mapping,
frequently leads to undesired tracking errors, oscillations, and even instability [5]. The
model-based scheme for hysteresis compensation is currently popular in control systems
[6]. A large amount of hysteresis models have been proposed in the past decades, such as
PI model [7], KP model [8], Preisach model [9], Maxwell slip model [10], Jiles-Atherton
model [11], Duhem model [12], Bouc-Wen model [13, 14], and so on. However, the
ultra-precision positioning systems need more accurate hysteresis models so as to meet
the requirement of science and technology.

Three-layer feed-forward neural networks (NNs) have been regarded as one of the
best ways to model nonlinear systems because they can implement all kinds of non-
linear mapping. However, the mapping of hysteresis consists of one-to-multiple and
multiple-to-one mappings, while the NNs are incapable of identifying one-to-multiple
mapping [15], so the one-to-multiple mapping has to be eliminated so that the neural
approaches can be used to model hysteresis. Ma [16] proposed a hysteretic operator
(HO), expanded the input space of NN from 1-dimension to 2-dimension based on the
HO so that an NN-based hysteresis model was established, and named the method as
expanded-space method. Zhao [17], Dong [18], Zhang [19] and Ma [20, 21] proposed
respectively new HOs and constructed neural hysteresis models, thereby improving the
expanded-space method.

In this paper, a new HO, which is made up of a constraint factor (CF) and an odd
m-order polynomial, is proposed to expand the input space of NN. And then, based on
the proposed HO, the one-to-multiple mapping of hysteresis is transformed into
one-to-one mapping so that the neural approach can be used to identify the expanded
mapping. Finally, a NN-based hysteresis model is developed and used to approximate a
set of real data from a magnetostrictive actuator. The experimental results demonstrate
that the proposed model is effective.

2 HO Construction

2.1 HO Definition

In this paper, the HO is consisted of a CF and an odd m-order polynomial with the
constant term. The function, c (x) = 1–e−x, is used as the CF of HO. The role of CF is
to constrain the amplitude of HO curve and ensure the curve passes through the origin
in every minor coordinate system. Therefore, in the ith minor coordinate system, the
HO is defined as follows:

f ðxiÞ ¼ ð1� e�xiÞða0 þ
Xm
j¼1

ajx
2j�1
i Þ ð1Þ

where xi and f are respectively any input and the corresponding output of HO in the ith
minor coordinate system.
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In the main coordinate system, the HO is described as

hðxÞ ¼ hðxeiÞþ f ðx� xeiÞ x[ xei
hðxeiÞ � f ðxei � xÞ x\xei

(
ð2Þ

where [xei, h(xei)] are the coordinates of the origin of the ith minor coordinate system in
the main coordinate system, x is any input and h is the corresponding output of HO.

2.2 Parameter Computation

As known to all, the best method of determining polynomial coefficients is the least
square method. Thus, the least square method is adopted to compute the HO parameters
based on the samples used for training neural network.

In terms of the least square method, the residual δi is written as

di ¼ yi � f ðxiÞ ð3Þ

Consequently, the sum of square residuals is shown as follows:

S ¼
Xn
i¼1

d2i ¼
Xn
i¼1

½yi � f ðxiÞ�2 ¼
Xn
i¼1

½yi � ð1� e�xiÞða0 þ
Xm
j¼1

ajx
2j�1
i Þ�2 ð4Þ

To minimize S, the partial derivatives of S with regard to a0, a1, …, am should be
set to zeros. Therefore, the (m + 1) partial derivative equations are given as follows:

@S
@a0

¼ �2
Pn
i¼1

½ð1� e�xiÞ � yi � ð1� e�xiÞ2ða0 þ
Pm
j¼1

ajx
2j�1Þ
i Þ�¼0

@S
@ak

¼ �2
Pn
i¼1

½ð1� e�xiÞ � x2k�1
i � yi � ð1� e�xiÞ2ða0x2k�1

i þ Pm
j¼1

ajx
2ðjþ k�1Þ
i Þ� ¼ 0; k ¼ 1; 2; � � � ;m

8>>><
>>>:

ð5Þ

Rearranging the Eq. (5) gives

a0 �
Pn
i¼1

ð1� e�xiÞ2 þ Pm
j¼1

aj �
Pn
i¼1

ð1� e�xiÞ2x2j�1Þ
i ¼ Pn

i¼1
ð1� e�xiÞ � yi

a0 �
Pn
i¼1

ð1� e�xiÞ2x2k�1
i þ Pm

j¼1
aj �

Pn
i¼1

ð1� e�xiÞ2x2ðjþ k�1Þ
i ¼ Pn

i¼1
ð1� e�xiÞ � x2k�1

i � yi; k ¼ 1; 2; � � � ;m

8>>><
>>>:

ð6Þ
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The expansion form of the Eq. (6) is given as follows:

a0
Pn
i¼1

ð1� e�xiÞ2 þ a1
Pn
i¼1

ð1� e�xiÞ2xi þ � � � þ am
Pn
i¼1

ð1� e�xiÞ2x2m�1
i ¼ Pn

i¼1
ð1� e�xiÞyi

a0
Pn
i¼1

ð1� e�xiÞ2xi þ a1
Pn
i¼1

ð1� e�xiÞ2x2i þ � � � þ am
Pn
i¼1

ð1� e�xiÞ2x2mi ¼ Pn
i¼1

ð1� e�xiÞxiyi
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
a0

Pn
i¼1

ð1� e�xiÞ2x2m�1
i þ a1

Pn
i¼1

ð1� e�xiÞ2x2mi þ � � � þ am
Pn
i¼1

ð1� e�xiÞ2x2ð2m�1Þ
i ¼Pn

i¼1
ð1� e�xiÞx2m�1

i yi

8>>>>>>>><
>>>>>>>>:

ð7Þ

The Eq. (7) is written as the following matrix Eq.

Pn
i¼1

ð1� e�xiÞ2 � � � Pn
i¼1

ð1� e�xiÞ2x2m�1
i

..

. ..
. ..

.

Pn
i¼1

ð1� e�xiÞ2x2m�1
i � � � Pn

i¼1
ð1� e�xiÞ2x2ð2m�1Þ

i

2
666664

3
777775

a0

..

.

am

2
664

3
775

¼

Pn
i¼1

ð1� e�xiÞyi

..

.

Pn
i¼1

ð1� e�xiÞx2m�1
i yi

2
666664

3
777775 ð8Þ

i.e.,

XA ¼ Y ð9Þ

The HO parameters are obtained by solving Eq. (9),

A ¼ X�1Y ð10Þ

3 Experimental Verification

In the following, two verification experiments are implemented. In the experiments, the
presented neural hysteresis model is compared with the PI model by approximating a
set of real data from a smart-material-based actuator so as to validate the effectiveness
of the proposed approach.

The experimental setup is comprised of a magnetostrictive actuator (MFR OTY77),
a current source, a dSPACE control board with 16-bit analog-to-digital and digital-to-
analog converters, and a PC. A set of data containing 1916 input-output pairs is
obtained.

The data is equally divided into two groups. One group is used for training neural
networks, and another group is used for model verification.
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3.1 The Proposed Model

In this section, the neural hysteresis model is employed to approximate the real data.
The activation function of the hidden layer is the sigmoid function and that of the
output layer is the linear function. The comparison of the different orders shows that the
9-order polynomial is most suitable to the HO in this experiment. The HO parameters
are listed in the Table 1.

To determine the optimal number of hidden nodes, the number from 1 to 100 is
tried in this experiment. The best 3 performances are listed in the Table 2. It can be
seen from the Table 2, that the neural hysteresis model has the best performance when
the number of hidden nodes becomes 5. Therefore, a three-layer feed-forward neural
network with two input nodes, 5 hidden nodes and one output node was employed to
approximate the real data in this experiment. After 229 iterations, the training proce-
dure finishes. The mean square error (MSE) of model prediction is 0.0611. The Figs. 1
and 2 illustrate the model prediction and absolute error respectively.

3.2 PI Model

In addition, to compare with the proposed model, the PI model was also applied to
approximate the measured data. The model thresholds were calculated via the fol-
lowing formula:

ri ¼ i� 1
N

maxðxðkÞÞ �minðxðkÞÞ½ � ð11Þ

Table 1. HO Parameters

Parameter Value

a0 –13.1053
a1 3.5024e02
a2 –4.7518e03
a3 3.8646e04
a4 –1.9549e05
a5 6.3845e05
a6 –1.3467e06
a7 1.7721e06
a8 –1.3230e06
a9 4.2793e05

Table 2. The top 3 performances of NN with different number of hidden neurons

No. of hidden nodes MSE

5 0.0611
6 0.0677
2 0.0690
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where N is the number of backlash operators and i = 1, 2, …, N.
The Matlab nonlinear optimization tool was used to determine the weights of

backlash operators. However, the calculation time of the PI model increases along with
the increase of N, so only the PI models containing 1–5000 backlash operators were
tried. The top three performances are listed in the Table 3. Therefore, N = 4994 is
selected in this experiment, which leads to 20-hour calculation time. The MSE of
model prediction is 0.4327. Figures 3 and 4 display the model prediction and absolute
errors respectively.
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Fig. 1. Comparison of the proposed model prediction and the real data
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Fig. 2. The absolute error of the proposed model
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3.3 Comparison

In the above experiments, the MSE of the proposed neural hysteresis model is 85.88 %
smaller than that of the PI model, which demonstrates that the proposed neural model
can better approximate the real data measured from the magnetostrictive actuator than
the PI model.

Table 3. Performances of different no. of backlash operators

No. of backlash operators Performance

4994 0.4327
4997 0.4330
5000 0.4348
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Fig. 3. Comparison of the PI model prediction and the real data
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Fig. 4. The absolute error of the PI model
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4 Conclusions

In this paper, a new HO is proposed. The HO consists of two components: a CF and an
odd m-order polynomial. And then, based on the constructed HO, the one-to-multiple
mapping of hysteresis is transformed into a continuous one-to-one mapping by
expanding the input space of NN. In this way, the expanded mapping only contains
one-to-one and multiple-to-one mappings, which can be identified using the neural
approaches. Finally, an experiment is implemented to verify the proposed hysteresis
model. The verification performance approves the proposed approach.
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