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Abstract. In this paper, an robust neural adaptive output-feedback
inverse control scheme for a class of hysteretic nonlinear systems is pro-
posed. Firstly, by designing a high-gain observer to estimate the states
of the system and cope with the uncertainties of the system, only the
output of the control system is required to be measurable. Secondly,
the nonlinear function in the systems can totally unknown due to the
utilization of the neural networks approximator. Finally, the arbitrarily
small L∞ norm of the tracking error is achieve by adjusting the initial
conditions of the unknown parameters.
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1 Introduction

Recently, the smart-material based actuators are widely used in the tuning metal
cutting system and other ultrahigh-precision positioning devices [1–3]. However,
the existence of the hysteresis highly prohibit the control precision [4,5].

The construction of the inverse model of the hysteresis is the commonly
method dealing with hysteresis [4–11]. The robust adaptive control method
without constructing the hysteresis inverse [5,12–19,30] is the other method.
Though there are some existing results [1,12,16–25,28] of modeling and con-
trol for the practicable hysteretic nonlinear systems, an output-feedback inverse
control scheme is still missing.

In this paper, an adaptive neural output-feedback inverse control is proposed.
Firstly, by designing a high-gain observer to estimate the states of the system
and cope with the uncertainties of the system, only the output of the control sys-
tem is required to be measurable. Secondly, the nonlinear function in the systems
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can totally unknown due to the utilization of the neural networks approxima-
tor. Finally, the arbitrarily small L∞ norm of the tracking error is achieve by
adjusting the initial conditions of the unknown parameters.

The rest of this paper is organized as follows. In Sect. 2, the problem state-
ment, the assumptions and the control objective. Section 3 presents the design
procedure. The stability analysis are given in Sect. 4 and the simulation results
is shown to illustrate the effectiveness of the proposed method.

2 Problem Statement

We consider a class of nonlinear system preceded by hysteresis as follows:

ẋi = xi+1 + fi(x̄i) + di(t),
ẋn = b0w(u) + fn(x̄n) + dn(t),
y = x1, i = 0, 1, · · · , n − 1, (1)

where x̄i := [x1, x2, · · · , xi]T ∈ R
i is the state vector; fi(x̄i), i = 0, 1, · · · , n are

the unknown smooth nonlinear functions. τi are unknown time delays. di(t) are
external disturbances. b0 is an unknown constant parameter. w ∈ R represents
the unknown hysteresis which can be expressed as

w(u) = P (u(t)) (2)

with u being the input signal of the actuator and Π being the hysteresis operator
which will be discussed in details below.

For the system (1), the following assumptions are required:

A1: The disturbances di(t), i = 1, · · · , n, satisfy

|di(t)| ≤ d̄i, (3)

where d̄i are some unknown positive constants.
A2: The desired trajectory yr is smooth and available with yr(0) at designer’s

disposal; [yr, ẏr, ÿr]T belongs to a known compact set for all t ≥ 0.
A3: The sign of b0 is known, without loss of generality, we assume that b0 > 0

for simplicity.

2.1 The Prandtl-Ishlinskii (PI) Model and Its Inverse

Though a large number of hysteresis models have been reported, in this paper,
the PI model which is suitable for describing the hysteresis phenomena in piezo-
electric actuators is employed and its corresponding inverse is adopted to miti-
gate the effects of the hysteresis phenomenon [26].

w(t) = P [u](t) (4)
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with P [u](t) being defined as [26]

P [u](t) = p0u(t) +
∫ Λ

0

p(r)Fr[u](t)dr (5)

where r represents the threshold, p(r) is a given density function satisfying p(r) >

0 with
∫ ∞
0

p(r)dr < ∞, for convenience, p0 =
∫ D

0
p(r)dr is a constant decided

by density function p(r). Λ denotes the upper limit of the integration. Let fr:
R → R be defined by

fr(u,w) = max(u − r,min(u + r, w)). (6)

Then, the play operator Fr[u](t) satisfies

Fr[u](0) = fr(u(0), 0),
Fr[u](t) = fr(u(t), Fr[u](ti)),

for ti < t ≤ ti+1 and 0 ≤ i ≤ N − 1, (7)

where 0 = t0 < t1 < · · · < tN = tE is a partition of [0, tE ] such that the function
u is monotone (nondecreasing or non-increasing) on each of the sub-intervals
(ti, ti+1].

To compensate the hysteresis nonlinearities w(u) in (1), the inverse of the PI
model is constructed as follows [9]:

u(t) = P−1 ◦ P [u(t)] = P−1[w](t), (8)

where ◦ denotes the composition operator; P−1[·] is the inverse operator of the
PI model with

P−1[u](t) = p̄0u(t) +
∫ Λ̄

0

p̄(r)Fr[u](t)dr, (9)

where Λ̄ is a constant denoting the upper-limit of the integration in (9) and

p̄0 =
1
p0

,

p̄(r) = (ϕ−1)′′(r),

ϕ(r) = p̄0r +
∫ r

0

p̄(ξ)(r − ξ)dξ. (10)

Since in practice, the hysteresis is unknown which implies the density function
p(r) needs to be estimated based on the measured data. Here, we use p̂(r) and
P̂ [u](t), which can be got from experiments data, denotes the estimation of p(r)
and P [u](t), respectively. Thus, as that in [26], by applying the composition
theorem to the P [·](t) and P̂−1[·](t) as in [9], yields
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P ◦ P̂−1[ud](t) = φ′(0)ud(t)

+
∫ Λ

0

φ′′(r)Fr[ud](t)dr, (11)

with ud being the control signal to be designed. φ(r) = p ◦ p̂−1(r), p(r) and
p̂−1(r) being the initial loading curves of the P [·](t) and P̂−1[·](t).

Considering (11) and the equality Fr[ud](t) + Er[ud](t) = ud(t) given in [26],
it follows that

w(t) = φ′(Λ)ud + db(t), (12)

where φ
′
(Λ) is a positive constant, Er(·) is the stop operator of PI model. Due

to |Er(·)| < Λ (see [9]), the term db(t) = − ∫ Λ

0
φ′′(r)Er[ud](t)dr is bounded and

satisfies
|db(t)| ≤ D (13)

with D being a positive constant. Therefore, from (11) and (12), the analytical
error e(t) expression can be obtained as follows

e(t) = w(t) − ud(t)
= [φ′(Λ) − 1]ud + db(t). (14)

Now, substituting (12) into (1), we have

ẋi = xi+1 + fi(x̄i) + di(t), i = 0, 1, · · · , n − 1
ẋn = bΛud + fn(x̄n) + b0db(t) + dn(t),
y = x1, (15)

where bΛ is a positive constant satisfying

bΛ = b0φ
′(Λ). (16)

2.2 Radial Basis Function Neural Networks

In this paper, the radial basis function neural network (RBFNNs) with a linear
in the weights property will be employed to approximate a continuous function
on the compact sets under the following Lemma 1.

Lemma 1 [27]: RBFNNs are universal approximators in the sense that given
any real continuous function f : Ωξ → R being a compact set with Ωξ ⊂ R

q,
ξ being the NNs input and q denoting the input dimension. For any εm > 0,
by appropriately choosing σ and ζk ∈ R

q, k = 1, . . . , N , then, there exists an
RBFNN such that

f(ξ) = ψT (ξ)ϑ∗ + ε,

∀ξ ∈ Ωξ ⊂ R
n, |ε| ≤ εm, (17)
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where ϑ∗ is an optimal weight vector of ϑ = [ϑ1, . . . , ϑN ] ∈ R
N and defined as

ϑ∗ = arg min
ϑ∈Rn

{
sup
ξ∈Ωξ

|Y (ξ) − f(ξ)|
}

, (18)

ψ(ξ) = [ψ1(ξ), . . . , ψN (ξ)] ∈ R
N is an basis function vector. Generally, the so-

called Gaussian function is used as basis function in the following form:

ψk(ξ) = exp
(
− ||ξ−ζk||

2σ2

)
,

with σ > 0, k = 1, . . . , N, (19)

where ζk ∈ R
n is a constant vector called the center of the basis function, and σ

is a real number called the width of the basis function and ε being approximation
error, satisfying

ε = f(ξ) − ϑ∗Tψ(ξ). (20)

Then, by using Lemma 1 and (17), the RBFNNs are used as the approximators
to approximate the unknown continuous functions in (17) as follows:

fi(x̄i) = ψT
i (ξi)ϑ∗

i + εi,

for i = 1, · · · , N (21)

with εi being any positive constants denoting the neural networks approximated
errors and

ξi := (ˆ̂x1, · · · , ˆ̂xi, ), i = 1, · · · , n, (22)

where ˆ̂x1, · · · , ˆ̂xi are the estimations of the state variables x1, · · · , xi, and will
be introduced in the following section.

Now, substituting (21) into (15), we have

ẋi = xi+1 + ψT
i (ξi)ϑ∗

i + δi0

+εi + di(t),
ẋn = bΛud + ψT

n (ξn)ϑ∗
n + δn0 + εn

b0db(t) + dn(t),
y = x1, i = 0, 1, · · · , n − 1 (23)

from which system (1) eventually can be expressed as the following state-space
form

ẋ = Ax + ΨT (ξ)ϑ∗ + bud + Db

+δ0 + ε + d,
y = eT

1 x, (24)
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where

A =

⎡
⎢⎢⎢⎢⎣

0 1 0

0
. . .

... 1
0 · · · 0 0

⎤
⎥⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

0
...
0
bΛ

⎤
⎥⎥⎥⎦ ,

d =

⎡
⎢⎢⎢⎣

d1(t)
...

dn−1(t)
dn(t)

⎤
⎥⎥⎥⎦ , ε =

⎡
⎢⎢⎢⎣

ε1

...
εn−1

εn

⎤
⎥⎥⎥⎦ ,

δ0 =

⎡
⎢⎢⎢⎣

δ10

...
δn−10

δn0

⎤
⎥⎥⎥⎦ , Db =

⎡
⎢⎢⎢⎣

0
...
0

db(t)

⎤
⎥⎥⎥⎦ ,

ϑ∗ =

⎡
⎢⎢⎢⎣

ϑ∗
1
...

ϑ∗
n−1

ϑ∗
n

⎤
⎥⎥⎥⎦ ⊂ R

Σn
i=1Nn ,

ΨT (ξ) =

⎡
⎢⎣

ψ1

. . .
ψn

⎤
⎥⎦ (25)

with ψ1 = [ψ1,1(ξ1), · · · , ψ1,N1(ξ1)], ψn = [ψn,1(ξn), · · · , ψn,Nn
(ξn)], and Ni,

i = 1, · · · , n being defined in (19).

The control objective is to develop an adaptive neural output-feedback
dynamic surface inverse control scheme for a class of nonlinear hysterestic sys-
tem such that the output y well tracks the reference signal yr with the L∞ norm
of the tracking error and all the signals of the closed loop system are uniformly
bounded.

3 Observer Based Adaptive DSIC Design

3.1 High-Gain K-Filter Observer

Now, (24) can be transformed as the following

ẋ = A0x + qy + ΨT (ξ)ϑ∗ + bud + B,
y = eT

1 x, (26)

by letting
B = Db + δ0 + ε + d, (27)
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and

A0 = A − qeT
1

=

⎡
⎢⎢⎢⎢⎣

−q1 1

−q2
. . .

... 1
−qn 0 · · · 0

⎤
⎥⎥⎥⎥⎦

with q =

⎡
⎢⎢⎢⎣

q1

q2

...
qn

⎤
⎥⎥⎥⎦ , (28)

where A0 is a Hurwitz matrix by properly choosing the vector q.
Inspired by the previous work [13,14], the following high-gain K-Filter is

construct to estimate the states x in systems (26).

v̇0 = kA0v0 + Φ−1enud, (29)
ξ̇0 = kA0ξ0 + kqy, (30)
Ξ̇ = kA0Ξ + Φ−1ΨT , (31)

where k ≥ 1 is a positive design parameter, en denotes the n-th coordinate vector
in R

n, and
Φ = diag{1, k, · · · , kn−1}. (32)

From (29)–(32), the estimated states vector is as the following:

x̂ = Φξ0 + ΦbΛv0 + ΦΞϑ∗. (33)

To proceed, we define the estimation error

ε = x − x̂. (34)

It is easy to verify that

A = kΦAΦ−1,

kΦqeT
1 Φ−1 = kΦqeT

1 (35)

with eT
1 = [1, 0, · · · , 0]T . Then, we have

ε̇ = Aε − kΦqε1 + B, (36)

where ε1 is the first entry of ε and B is defined in (27).

Lemma 2: Let the high-gain K-filters be defined by (29)–(31) and the quadratic
function

Vε := εT Pε, (37)
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where P = (Ψ−1)T P̄Ψ−1 with P̄ = P̄T is positive define matrix (P̄ > 0) satis-
fying

AT
0 P̄ + P̄A0 = −2I, (38)

where A0 is defined by (28). Let

ζε : =
k

λmax(P̄ )
,

δε : = k

(∥∥P̄
∥∥ ‖B‖max

kn

)2

, (39)

where ‖B‖max is the maximum value of ‖B‖ . Then, for any k ≥ 1, we have

V̇ε ≤ −ζεVε + δε. (40)

Proof: See [13] for more details.
It should be noted that because bΛ and ϑ∗ in (33) are unknown, x̂(t) is

unavailable. Therefore, the actual state estimation is

ˆ̂x = Φξ0 + Φb̂Λv0 + ΦΞϑ̂, (41)

where b̂Λ and ϑ̂ are the estimations of bΛ and ϑ∗, and will be given in details in
the next section.

3.2 Dynamic Surface Inverse Controller Design

By using the states observer in (29)–(31), a robust adaptive dynamic surface
inverse control scheme will be given with the following structure of the controller
(Fig. 1).

Fig. 1. The structure of the proposed control scheme
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Based on the above controller structure, the procedures of the controller design
are as follows:

Step 1: Define the first surface error as

S1 = y − yr, (42)

whose time derivative by considering (24) is

Ṡ1 = ẏ − ẏr

= x2 + ψT
1 (ξ1)ϑ∗

1 + δ10

+ε1 + d1 − ẏr. (43)

From (34), we have

x2 = x̂2 + ε2

= kξ0,2 + bΛkv0,2 + kΞ(2)ϑ
∗ + ε2, (44)

where Ξ(2) denotes the second row of Ξ. Then, it follows that

Ṡ1 = kξ0,2 + bΛkv0,2 + kΞ(2)ϑ
∗

+ϑ∗T
1 ψ1(ξ1) − ẏr + ε2 + δ10

+ε1 + d1 (45)

with ξ1 being defined in (22). Note that ϑ∗T
1 ψ1(ξ1) = ϑ∗T ΨT

(1) with ΨT
(1) denoting

the first row of ΨT , then, (45) can be rewritten as

Ṡ1 = kξ0,2 + bΛk(v0,2 − v̄0,2) + bΛkv̄0,2

+ϑ∗T (kΞ(2) + Ψ(1))T − ẏr + ε2

+δ10 + ε1 + d1, (46)

where v̄0,2 is the first virtual control signal to be designed. Let v̄0,2 be of the
following form

v̄0,2 = ζ̂ v̄
′
0,2 (47)

with ζ̂ being the estimation of ζ = 1/bΛ and

v̄
′
0,2 = [−l1S1 − kξ0,2 − ϑ̂T (kΞ(2)

+Ψ(1))T + ẏr]/k, (48)

where ϑ̂, is the estimate of ϑ∗. The updated laws of ζ̂ and ϑ̂ are as follows

˙̂
ζ = −γζ(kv̄

′
0,2S1 + σζ ζ̂) (49)

˙̂
ϑ = γϑ[(kΞ(2) + Ψ(1))T S1 − σϑϑ̂] (50)
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Let v̄0,2 pass through the a first-order filter to obtain a new state variable z2

τ2ż2 + z2 = v̄0,2, z2(0) = v̄0,2(0), (51)

where τ2 is the time constant of the first-order filter.

Step 2: Define the second surface error

S2 = v0,2 − z2, (52)

whose time derivative by considering v̇0,2 in (29) is

Ṡ2 = −kq2v0,1 + kv0,3 − ż2

= −kq2v0,1 + k(v0,3 − v̄0,3)
+kv̄0,3 − ż2. (53)

Then the virtual control v̄n−ρ,i+1 is chosen as

v̄0,3 = (−l2S2 + kq2v0,1 + ż2 − b̂ΛkS1)/k, (54)

where l2 is a positive design parameters and b̂Λ is the estimation of bΛ defined
in (16). The updated law of b̂Λ is designed as

˙̂
bΛ = γb(kS1S2 − σbb̂Λ) (55)

Let v̄0,3 pass through the a first-order filter to obtain a new state variable z3:

τ3ż3 + z3 = v̄0,3, z3(0) = v̄0,3(0). (56)

where τ3 is the time constant of the first-order filter.

Step i (3 ≤ i ≤ n − 1): Define the i-th surface error

Si = v0,i − zi, (57)

whose time derivative by considering v̇0,i in (29) is

Ṡi = −kqiv0,1 + kv0,i+1 − żi

= −kqiv0,1 + k(v0,i+1 − v̄0,i+1)
+kv̄0,i+1 − żi. (58)

Then the virtual control v̄0,i+1 is chosen as

v̄0,i+1 = (kqiv0,1 + żi − liSi)/k, (59)

where li, i = 3, · · · , n−1, are positive design parameters. Let v̄0,i+1 pass through
the a first-order filter to obtain a new state variable zi+1:

τi+1żi+1 + zi+1 = v̄0,i+1,

zi+1(0) = v̄0,i+1(0). (60)
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where τi+1 is the time constant of the first-order filter.

Step n: Define the n-th surface error

Sn = v0,n − zn, (61)

whose derivative by considering v̇0,n in (29) is

Ṡn = −kqnv0,1 + k1−nud − żn. (62)

The actual control ud appears in this step and is chosen as

ud = kn−1(kqnv0,1 + żn − lnSn), (63)

where ln is a positive design parameter.

4 Stability and L∞ Tracking Performance Analysis

In this section, the stability and performance analysis for the proposed adaptive
output feedback DSIC scheme will be discussed. Now, we are ready to present
the main theorem of this paper to analyize the stability and achieve the L∞
performance of the tracking error.

Theorem 1: Consider the closed loop system including the time-delay sys-
tem (1) with hysteresis nonlinearity described by (4), the updated laws of the
unknown parameters (36), (37), (55), and the control law (63) with respect to
Assumptions A1–A3. Then, for any given positive number p, if V (0) in (68)
satisfies V (0) ≤ p,

(a) all the signals of the closed loop system are uniformly bounded and can
be made arbitrarily small by properly choosing the design parameters
k, l1, · · · , ln, the time constant τ2, · · · , τn, and the update law parameters
γϑ, σϑ, γζ , σζ , γb, σb.

(b) the L∞ performance the of the tracking error S1 can be obtained and arbi-
trary small and satisfy

‖S1‖∞ ≤
√

C2

C1
+

2
k2

λmax(P̄ ) ‖ε(0)‖2 (64)

where C1 is a design parameter and C2 is a positive constant that will be
given in the proof of Theorem1.

Proof: First of all, define

yi = zi − v̄n−ρ,i, i = 2, · · · , ρ. (65)

Then, we have ∣∣∣∣ẏ2 +
y2

τ2

∣∣∣∣ ≤ B2(S1, . . . , Sn, y2, · · · , yn,

b̃Λ, ζ̃, ϑ̃, yr, ẏr, ÿr, ε), (66)
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where B2 is a continuous function. Similarly, it can be verified that for
i = 2, · · · , n − 1,

∣∣∣∣ẏi+1 +
yi+1

τi+1

∣∣∣∣ ≤ Bi+1(S1, . . . , Sρ, y2, · · · , yn,

b̃Λ, ζ̃, ϑ̃, yr, ẏr, ÿr, ε), (67)

where Bi+1 are some continuous functions. For the analysis of stability, define
the Lyapunov function as:

V =
1
2

n∑
i=1

S2
i +

1
2

n−1∑
i=1

y2
i+1 +

1
2γϑ

ϑ̃T ϑ̃

+
bΛ

2γζ
ζ̃2 +

1
2γb

b̃2
Λ + Vε (68)

where b̃Λ = b̂Λ − bΛ, ϑ̃ and ζ̃ have been introduced as in [13], Vε is a quadratic
function concerning the high-gain K-Filter observer error ε which has been given
in Lemma 2.
Define the following compact sets

Ω1 =
{
(yr, ẏr, ÿr) : y2

r + ẏ2
r + ÿ2

r ≤ G0

}
,

Ω2 =

{∑n
i=1 S2

i +
∑n−1

i=1 y2
i+1 + 1

γϑ
ϑ̃2

1
γb

b̃Λ + bΛ
γζ

ζ̃2 + 2εT Pε ≤ 2p
, (69)

where G0 and p are positive constant. Note that Ω1 ×Ω2 is also compact. There-
fore, as that in [29], the continuous functions Bi+1, in (66) and (67) have max-
imum values on Ω1 × Ω2, say, Mi+1, i = 1, · · · , n − 1. Then, from (??)–(67), it
follows that

yi+1ẏi+1 ≤ −y2
i+1

τi+1
+

y2
i+1M

2
i+1

2ς
+

ς

2
,

i = 1, . . . , ρ − 1, (70)

where ς is any positive constant.
From (68), the time derivative of the Lyapunov function V is

V̇ =
n∑

i=1

SiṠi +
n−1∑
i=1

yi+1ẏi+1 +
1
γϑ

ϑ̃T ˙̂
ϑ

+
bΛ

γζ
ζ̃

˙̂
ζ +

1
γb

b̃Λ
˙̂
bΛ + V̇ε (71)
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Then, by choosing the design parameters as

k ≥ λmax(P̄ )C1 +
λmax(P̄ )
2λmin(P̄ )

,

l1 ≥ (
bΛk

2
+

k2

2
+ C1),

l2 ≥ k + C1,ln ≥ k

2
+ C1,

li ≥ 3k

2
+ C1, i = 3, · · · , n − 1,

1
τ2

≥ bΛk

2
+

M2
2

2ς
+ C1,

1
τi+1

≥ k

2
+

M2
i+1

2ς
+ C1,

i = 2, · · · , n − 1,
σϑγϑ ≥ 2C1, σbγb ≥ 2C1,

σζγζ ≥ 2C1, (72)

where C1 is a positive constant. Then, it follows that

V̇ ≤ −2C1V + C2 (73)

with

C2 =
(n − 1)ς

2
+

σϑ

2
ϑ∗T ϑ∗

+
bΛσζ

2
ζ2 +

σb

2
b2
Λ

+
1
2
(δ2

10 + ε2
1 + d2

1) + δε, (74)

and C1 satisfying

C1 ≥ C

2p
. (75)

Then, V̇ ≤ 0 when V = p, which implies that V (t) ≤ p is an invariant set or in
other words, if V (0) ≤ p, then V (t) ≤ p, for all t ≥ 0. Therefore, Thus, all the
signals of the closed loop system are uniformly bounded.

Furthermore, let yr(0) = y(0). Then, S1(0) = 0. Now, we set the initial
condition of the K-Filter as

v0(0) = 0,
ξ0,1(0) = y(0),

Ξ(0) = 0, (76)

and ϑ̂(0) = 0, ζ̂(0) = 0, b̂Λ(0) = 0 in the updated laws. Then, it follows that

V (t) ≤ C2

2C1
+

1
k2

λmax(P̄ ) ‖ε(0)‖2 . (77)
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Therefore, the L∞ norm of the tracking error satisfies

‖S1‖∞ = sup
t≥0

|S1| = ‖x1 − yr‖∞

≤
√

C2

C1
+

2
k2

λmax(P̄ ) ‖ε(0)‖2. (78)

(78) implies the L∞ norm of the tracking error ‖S1‖∞ can be arbitrarily small by
choosing sufficient large design parameters in (72). This completes the proof. �

5 Simulation Results

We consider the following general second-order system:

ẋ1 = x2 + 0.8x2
1 + 0.2x1x1(t − 0.4) + 0.1 cos(t),

ẋ2 = w + 2x1x2 + 0.5x1(t − 0.5)x2(t − 1),
y = x1, (79)

where w is the ASPI hysteresis described by (4) with density functions being
selected as p(r) = 0.4e−0.015r2

, r ∈ [0, 10]; the initial value of state-variables are
chosen as x1(0) = x2(0) = 0. The high-gain K-filters are as follows

v̇0 = kA0v0 + Φ−1enud, v(0) = 0,
ξ̇0 = kA0ξ0 + kqy, ξ0(0) = 0,
Ξ̇ = kA0Ξ + Φ−1ΨT , Ξ(0) = 0, (80)

where

k = 2, q =
[

q1

q2

]
=

[
3
2

]
,

A0 =
[−q1 1

−q2 0

]
,Φ−1 =

[
1 0
0 1/k

]
. (81)

where ψ(ξ) = [ψ1(ξ), ψ2(ξ), . . . , ψN (ξ)]T ∈ RN is RBFNNs function vector.
For NNs ψ1(ξ1), we choose 5 nodes with the centers of the basis functions ζj ,
j = 1, · · · , 5, being evenly spaced in [−1,+1], and the width ηj = 1, j = 1, · · · , 5;
and ξ1 = ˆ̂x1. For NNs ψ2(ξ2), we choose 11 nodes with the centers of the basis
functions ζj , j = 1, · · · , 11, being evenly spaced in [−2,+2], and the width
ηj = 1, j = 1, · · · , 11; and ξ1 = (ˆ̂x1, ˆ̂x2). Then, ΨT (ξ) = diag{ψ1, ψ2}.

In this simulation, the design parameter are chosen as l1 = 30, l2 = 40,
k = 1.5, γζ = 3, σζ = 0.004, γϑ = 10, σϑ = 0.05, γb = 9, σb = 0.0002. The initial
value of the system states are selected as x1(0) = x2(0) = 0. The initial value
of the updated parameters are chosen as ζ̂(0) = ϑ̂(0) = b̂Λ(0) = 0. The control
objective of this simulation is to make the output of the control system follows
the desired trajectory yr = sin t.
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According to the above design procedures and the selections of the parame-
ters, the simulation results are shown in Figs. 2, 3 4 and 5. From Fig. 2, the output
of the control system y = x1 well tracks the desired trajectory yr = sin t when the
ASPI hysteresis inverse compensator described in (8)–(10) is applied. Figure 3
shows the trajectories of the tracking errors under two circumstances: with (solid

Fig. 2. Tracking performance

Fig. 3. Tracking errors

Fig. 4. Control signal
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Fig. 5. Hysteresis output after compensation

line) and without (dashed line) considering the ASPI hysteresis inverse compen-
sator. Figure 4 illustrates the trajectory of control signal ud. Figure 5 illustrates
the hysteresis output w after ASPI inverse compensation.
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