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Abstract. Magnetostrictive actuators are high-force low-displacement
actuators, which are profitably utilized in many engineering applications
such as, high dynamic servo valves, micro/nano-positioning systems and
optical systems. Nevertheless, magnetostrictive actuators are subject to
hysteresis effects and input saturation, which lead poor system perfor-
mances, e.g. inaccuracy and strong oscillations. To mitigate these effects,
in this paper an adaptive controller with an anti-windup technique is
developed. The anti-windup technique is particularly used for dealing
with the input saturation effect. The simulation results demonstrate the
effectiveness of the proposed controller.

Keywords: Input saturation · Hysteresis · Adaptive control ·
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1 Introduction

Magnetostrictive actuators exhibit dominant hysteresis behaviors between the
input (current) and the output (displacement) [1]. Such nonlinearities limit the
actuating precision and performance, and may cause undesirable inaccuracies
or oscillations in the output, specifically when used in closed-loop control sys-
tems [2]. The common approach to compensate for the hysteretic behaviors is
to construct its feedforward inverse compensator. However, this inverse com-
pensation is open-loop based, which is vulnerable to the model uncertainty and
system disturbance, etc. To overcome this disadvantage, the feedback control
approaches are adopted, such as sliding mode control [3], adaptive backstepping
control [4], neural network control [5], model predictive control [6], etc.

Apart from the hysteresis behaviors, the actuator saturation effect is also
a common phenomenon appearing in the smart material based actuators. In
practice, actuators are always subject to the magnitude limit. Thus, the applied
control signal to the actuator should always be maintained within a certain range
during the operation of the actuator. However, once the actuator reaches to its
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saturation limit without being properly addressed, the performance of the actua-
tor will be degraded. In the literature, approaches for dealing with the input sat-
uration can be classified into two categories: the direct design method, where the
saturation is considered in the construction of the Lyapunov function when syn-
thesizing the designed controllers. The other category is the anti-windup design
method [7,8], where a separate anti-windup block is implemented to deal with
the limitation of the saturation. The advantage of the anti-windup technique is
that it is independent of the controller design of the unconstrained system (with-
out considering the input saturation) and therefore it is more feasible and easier
to implement in practice. In this paper, an anti-windup control strategy com-
bined with an adaptive controller is developed to address the input saturation
and hysteresis nonlinearity in the magnetostrictive actuator. The simulations are
studied to validate the effectiveness of the proposed control strategy.

2 Dynamic Modeling of the Magnetostrictive
Actuated Systems

In [9], a dynamic model based on the principle of operation of the magnetostric-
tive actuator has been proposed, which comprehensively considers the electric,
magnetic and mechanical domain as well as the interactions among them. The
complete set of electric-magnetic-mechanical equations is as follows:

i(t) = ia(t) + iR(t) + iH(t) (1)

ia(t) = ΦL(t)/LA (2)

iR(t) = N
Φ̇(t)
R0

(3)

iH(t) = Π[x] (4)

Φ(t) = ΦL(t) + ΦT (t). (5)

ΦT (t) = TMmx(t) (6)

mẍ(t) + bsẋ(t) + ksx(t) = Fa(t) (7)

Fa(t) = Temia(t) (8)

where i(t) is the supplied current to the actuator; iH(t) denotes the hysteresis
current loss, Π[x] is a hysteresis operator which will be explained in the following
development; iR is the eddy current loss, with R0 being the equivalent resistor
of the eddy current effect, N denotes the number of turns of the solenoid; ia(t) is
the actual applied current considering the hysteresis current loss and eddy cur-
rent loss; Φ(t) is the magnetic flux flowing through the actuator; LA denotes the
equivalent inductor of the winding coils and ΦL(t) is the magnetic flux flowing
through the inductor LA; ΦT (t) = TMmx(t) is transformed from the mechanical
side which is similar to the back-emf in piezoelectric actuator [10,11], TMm is
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magnetomechanical transduction coefficient; m is the equivalent mass of the mov-
ing part, bs is the equivalent damping coefficient and ks is the equivalent stiffness
of the preloaded spring; Fa denotes the applied force; Tem = AEHd33Na denotes
the electromechanical transduction coefficient, where A is the cross section area
of the magnetostrictive rod, EH is the Young’s modulus at constant value of
magnetic field H, d33 is the slope of the strain versus the magnetic field, Na

denotes the number of turns of the solenoid per unit length.
By summarizing above equations, the general dynamic model of the magneto-

strictive-actuated system can be written as:

mẍ(t) + bsẋ(t) + (ks +
TemTMm

La
)x(t) =

Tem

La
Φ(t) (9)

NLa
Φ̇(t)
R0

+ Φ(t) − TMmx(t) = La(i(t) − Π[x](t)) (10)

3 Adaptive Control Design for the Magnetostrictive
System with Input Saturation

As mentioned in the introduction, the hysteresis nonlinearity and the input sat-
uration degrade the tracking performance of the actuator and cause oscilla-
tions and even instabilities in the actuated systems. The existing controllers are
designed either by keeping the control input not to reach the saturation limit or
directly ignoring the saturation nonlinearity. In this section, an adaptive control
strategy combined with an anti-windup technique is investigated for the purpose
of improving the tracking performance of the system.

3.1 The Dynamic Model with Input Saturation

For the control purpose, the dynamic system in (9) and (10) is rewritten in the
canonical form as

...
x (t) + ρ2ẍ(t) + ρ1ẋ(t) + ρ0x(t) = bΓ [i](t) (11)

where ρ2 = NLabs+R0m
NLam , ρ1 = NLaks+NTemTMm+R0bs

NLam , ρ0 = ksR0
NLam , b = R0Tem

NLam .
Because the displacement x(t) can be represented as a function of supplied cur-
rent i(t), the term i(t) − Π[x](t) in (10) can be defined as a new hysteresis
nonlinearity Γ [i](t)

Γ [i](t) = u(t) = i(t) − Π[x](t) (12)

Due to presence of the input saturation block, the input current i(t) to the
actuator becomes isat(t) = satα,β(i(t)), where satα,β(i(t)) is defined as

satα,β(i(t)) =

⎧
⎪⎨

⎪⎩

α, if i(t) < α

i(t), if α ≤ i(t) ≤ β

β, if i(t) > β
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Hence, the state space expression of the magnetostrictive-actuated dynamic
system (11) can be expressed as

ẋ1 = x2

ẋ2 = x3

ẋ3 = −ρ2x3 − ρ1x2 − ρ0x1 + bu(t) (13)

with
u(t) = Γ [satα,β(i)](t) (14)

3.2 Parameters Identification of the Magnetostrictive-Actuated
Dynamic System in Absence of Input Saturation

From the model expression in (13) and (14), the dynamic model shows a cas-
cading structure in which a nonlinear component, i.e. a hysteresis formulation
Γ [·], is followed by a linear system. To identify this cascading structure, normal-
ization should be conducted first. Without loss of generality, in this section, the
dynamic part in (13) is normalized as follows

ẋ1 = x2

ẋ2 = x3

ẋ3 = −ρ2x3 − ρ1x2 − ρ0x1 + ρ0u(t) (15)

with
u(t) = Γb[i](t) =

b

ρ0
Γ [i](t) (16)

Thus, the identification procedure is taken two steps as follows.
Step 1: Identification of the hysteresis component Γb[i](t).
From experimental tests, hysteresis effects exhibited in the magnetostrictive
actuator show asymmetric characteristics. To describe the asymmetric hysteresis
behavior, an ASPI model [12] is employed in this paper. The numerical ASPI
model is expressed as

Γb[i](t) = P [i](t) + H[i](t)
= P [i](t) + Ψ [i](t) + g(i)(t)

= p0i(t) +
n∑

j=1

pjFrj
[i](t) +

M∑

j=1

qjΨcj [i](t) + g(i)(t) (17)

where pj denotes the weight of the play operator; Frj
[i](t) is the play operator,

which is defined as

Fr[i](0) = fr(i(0), 0) (18)
Fr[i](t) = fr(i(t), Fr[i](tj)) (19)
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for tj < t ≤ tj+1, 0 ≤ j ≤ N − 1, with

fr(i, w) = max(i − r,min(i + r, w)) (20)

rj in (17) denotes the threshold of the play operator, and n is the number of the
play operators, qj denotes the weight of the elementary shift operator, Ψcj [i](t)
is the elementary shift operator, defined as

Ψc[i](0) = ψc(i(0), 0) (21)
Ψc[i](t) = ψc(i(t), ψc[i](tj)) (22)

for tj < t ≤ tj+1, 0 ≤ j ≤ N − 1, with

ψc(i, w) = max(ci,min(i, w)) (23)

cj in (17) denotes the slope of the shift operator, and M is the number of the
elementary shift operators.

g(i)(t) is selected as

g(i)(t) = −a3i
3(t) − a2i

2(t) − a1i(t) − a0 (24)

The thresholds rj are selected as rj = 0.3j (j = 1, 2, ...n). The weights pj ,
qj , and a0, ..., a3 in (17) and (24) can be found using the nonlinear least-square
optimization toolbox in MATLAB. The identified results [9] are shown in Table 1.

Table 1. Coefficients of the ASPI model

Numbers rj pj cj qj aj

0 0 0.9002 0

1 0.3 0.8445 1.1 1.3809 0

2 0.6 0.4276 1.2 0 0.3106

3 0.9 1.4821 1.3 0 0.0417

4 1.2 0.6097 1.4 0

5 1.5 1.3596 1.5 0

6 1.8 1.2051 1.6 0

7 2.1 1.0574 1.7 0

8 2.4 0.2835 1.8 1.0056

9 2.7 0.1636

Step 2: Identification of the dynamic part to find ρ0, ρ1 and ρ2.
The s domain expression between U(s) and X(s) in (15) is expressed as

G(s) =
X(s)
U(s)

=
ρ0

s3 + ρ2s2 + ρ1s + ρ0
(25)
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To facilitate the identification, G(s) is further decomposed as

G(s) =
τ

s + τ
· ω2

n

s2 + 2ξωns + ω2
n

(26)

The objective is to identify the parameters of τ , ξ, ωn in (26). To this end, a
frequency response (1 to 500 Hz) of the magnetostrictive-actuated dynamic sys-
tem is obtained in Fig. 1 (after normalization) with a 16 Kg mechanical load.
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Fig. 1. Magnitude characteristics of the system

From the magnitude response in Fig. 1, we can find that ωn = 230×2πrad/s.
The other two parameters can also be determined as ξ = 0.13 and τ = 800× 2π.
Substituting these parameters in (26) yields

G(s) =
1.05 × 1010

s3 + 5402s2 + 3.98 × 106s + 1.05 × 1010
(27)

Hence, ρ0, ρ1, and ρ2 can be easily determined. The interested readers are
referred to [9] for detailed identification procedure.

3.3 Controller Design with the Input Saturation

The control objective is to eliminate the hysteresis effect in the magnetostrictive
actuator subject to the input saturation in order to improve the tracking per-
formance of the positioning system. Towards this target, a backstepping control
strategy combined with an anti-windup technique is developed. Figure 2 illus-
trates the control scheme.

Due to the existence of the hysteresis formulation in (16), the controller can
not be directly designed. To achieve the controller design, the expression of the
ASPI model considering the input saturation is reformulated as

u(t) = pssatα,β(i) − d(t) (28)

where ps = p0 +
∑n

j=1 pj , d(t) ≤ Ds, and Ds is a constant. The detailed proof
of the boundedness of d(t) may refer to [9]. Define bp = ρ0ps and dp(t) = ρ0d(t).
The controller design is summarized in Table 2.
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Fig. 2. The control diagram

Table 2. Adaptive backstepping control with anti-windup technique

Change of Coordinates:

z1 = x1 − xd (T.1)

z2 = x2 − ẋd − α1 (T.2)

z3 = x3 − ẍd − α2 + χ (T.3)

α1 = −c1z1 (T.4)

α2 = −c2z2 + α̇1 − z1 (T.5)

where c1, c2 are positive designed constants.

Control Laws:

i(t) = 1
bp

(−(c3 − c30v1)z3 − z2 + ρ2x3 + ρ1x2 + ρ0x1

−D̂sgn(z3) +
...
x d + α̇2 + c10χ) (T.6)

v1 = sat0,1(ξ1) (T.7)

ξ̇1 = sat−ρ−,ρ+(cL(sat0,κ(cL|Δi|) − ξ1)) (T.8)

χ̇ = −c10χ + Δi (T.9)

Δi = i − satα,β(i)

where bp = ρ0ps. c10, cL and θ10 are positive parameters.

Parameter Update Law:
˙̂

D = ηD(|z3| − η1D̂) (T.10)

where D̂ is the estimation of D, with D = ρ0Ds.

ηD, η1 are positive designed constants.

The stability of the closed-loop system is established in the following theorem.

Theorem 1. For the system (15) preceded by the ASPI model (17), the adap-
tive controller presented by (T.6)–(T.9) guarantees that the tracking error
remains bounded.
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Proof. From (15), and (T.1)–(T.5), we have

z1ż1 = z1z2 − c1z
2
1 (29)

z2ż2 = z2z3 − c2z
2
2 − z1z2 − χz2 (30)

z3ż3 = z3(−ρ2x3 − ρ1x2 − ρ0x1 + bpsatα,β(i(t))
−db(t) − α̇2 − ...

x d + χ̇) (31)

where dp(t) = ρ0d(t).
Let D̃ = D − D̂. The Lyapunov function is constructed as follows

V (t) =
1
2
z21 +

1
2
z22 +

1
2
z23 +

1
2ηD

D̃2 +
1
2
χ2 (32)

The time derivative of V (t) along with (29)–(31) is given by

V̇ (t) = −c1z
2
1 − c2z

2
2 + z2z3 − χz2 − ρ2x3z3 − ρ1x2z3

−ρ0x1z3 + bpi(t)z3 − bpΔiz3 − db(t)z3 − α̇2z3

−...
x dz3 + χ̇z3 +

1
ηD

D̃ ˙̃D + χχ̇ (33)

Substituting the control law i(t) (T.6) into (33), one has

V̇ (t) = −c1z
2
1 − c2z

2
2 − (c3 − c30v1)z23 − χz2 − bpΔiz3

−D̂sgn(z3)z3 + c10χz3 − db(t)z3 + χ̇z3 +
1

ηD
D̃ ˙̃D + χχ̇ (34)

Considering the definition of v1 in (T.7), it is obvious that v1 ≤ 1. Besides,
according to −db(t)z3 ≤ D|z3| and (T.10), one has

− db(t)z3 − D̂sgn(z3)z3 +
1

ηD
D̃ ˙̃D ≤ D̃|z3| +

1
ηD

D̃ ˙̃D = η1D̃D̂ (35)

Hence, the inequality of V̇ (t) considering (35) and (T.9) can be written as

V̇ (t) ≤ −c1z
2
1 − c2z

2
2 − (c3 − c30)z23 − bpΔiz3

−c10χ
2 + θ10Δiχ + θ10Δiz3 − χz2 + η1D̃D̂ (36)

According to the Young’s inequality, we have

(θ10 − bp)Δiz3 ≤ (θ10 − bp)z23 + σ0 (37)
θ10χΔi ≤ θ10χ

2 + σ1 (38)

−χz2 ≤ χ2 +
1
4
z22 (39)

η1D̃D̂ ≤ −η1
2

D̃2 +
η1
2

D2 (40)

where σ0 = 1
4 (θ10 − bp)Δi2, σ1 = 1

4θ10Δi2.
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Considering the preceding inequalities in (37)–(40), one has

V̇ (t) ≤ −c1z
2
1 − (c2 − 1

4
)z22 − (c3 − c30 − θ10 + bp)z23

−η1
2

D̃2 − (c10 − θ10 − 1)χ2 + σ2 (41)

where σ2 = σ0 + σ1 + η1
2 D2. Then we have

V̇ ≤ −2λV + σ2 (42)

where λ = min{c1, c2 − 1
4 , c3 − c30 − θ10 + bp,

η1ηD

2 , c10 − θ10 − 1}. Integrating it
over [0, t], one has

V (t) ≤ σ2

2λ
+ (V (0) − σ2

2λ
)e−2λt (43)

It should be noted that for any γ > 0, the set Br = {z, χ, D̃ : V (z, χ, D̃) ≤ γ}
is a compact set, and assuming ||Δi|| has a maximum on the set Br. Therefore,
the inequality in (43) shows that z1,z2, z3, D̃ and χ are bounded as t → ∞. The
proof has been finished.

4 Simulation Results

To validate the effectiveness of the developed control approach, the simulation
is conducted via MATLAB/SIMULINK. The control objective is to force the
system output to follow a desired signal xd = 10 sin(2πt). The parameters in the
controller and adaptive laws are selected as c1 = 1500, c2 = 2000, c3 = 90000,
c10 = 1000, c30 = 60000, −ρ− = −10, ρ+ = 10, cL = 1000, κ = 10, θ10 = 1000,
ηD = 100, η1 = 1000. The initial values are selected as x1(0) = 1, x2(0) = 0,
x3(0) = 0, ξ1(0) = 0, χ(0) = 0, D̂(0) = 0. The saturation threshold value in (28)
are set as α = −1.7A and β = 1.7A.

To illustrate the effectiveness of the anti-windup block, the comparisons are
made among the following three conditions

– unconstrained systems
– constrained systems without anti-windup block
– constrained systems with anti-windup block

Figure 3(a)–(d) represent the comparison results. In Fig. 3(a), in order to follow
the desired signal, for the unconstraint case, the controller generates a large
current spike (around −9.4A) at the beginning, see the green dashed line in
Fig. 3(a), which may burn out the magnetostrictive actuator in the real appli-
cation. If a saturation block is directly applied (the case of constrained systems
without anti-windup block), severe oscillations between the upper bound (1.7A)
and lower bound (−1.7A) occur in the controller output, also leading large track-
ing errors, see the blue dotted line in Fig. 3(a) and (b). In the case of constrained
systems with anti-windup block, although at the beginning the control strategy
shows a large tracking error, the tracking error then maintains within 4% and
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Fig. 3. Simulation results with unconstrained systems, constrained systems without
an anti-windup block and constrained systems with an anti-windup block (Color figure
online)

no oscillations generated in the control signals, see the red solid line in Fig. 3(a)
and (b). Figure 3(c) and (d) illustrate the comparisons of the velocity and accel-
eration at the end point of the magnetostrictive-actuated dynamic system. For
the constrained system without the anti-windup block, the output of the actua-
tor shows continuous oscillations, which might damage the actuator and reduce
its lifespan. From above comparison results, it clearly demonstrates the effec-
tiveness of the developed controller with the anti-windup block. For the future
research, the output feedback control strategy combining the anti-windup block
will be studied since in practical applications the velocity and acceleration of the
actuator are not accessible.

5 Conclusion

Input saturation and hysteresis nonlinearity are two main problems that limit the
performance of the magnetostrictive actuators. Towards these two problems, in
this paper, an adaptive control approach combined with an anti-windup block is
developed. From the simulation validation, the designed controller can effectively
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suppress the oscillation caused by the input saturation meanwhile reducing the
tracking error and hysteresis error to an acceptable range. In addition, the anti-
windup block is independent of the adaptive controller, which is more feasible
in practical implementation.
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