
Controlling Logistics Robots
with the Action-Based Language YAGI

Alexander Ferrein1(B), Christopher Maier2, Clemens Mühlbacher2,
Tim Niemueller3, Gerald Steinbauer2, and Stavros Vassos4

1 Mobile Autonomous Systems and Cognitive Robotics Institute,
FH Aachen University of Applied Sciences, Aachen, Germany

ferrein@fh-aachen.de
2 Institute for Software Technology, Graz University of Technology, Graz, Austria

{muehlbacher,steinbauer,maier}@ist.tugraz.at
3 Knowledge-Based Systems Group, RWTH Aachen University of Technology,

Aachen, Germany
niemueller@kbsg.rwth-aachen.de

4 Department of Computer, Control, and Management Engineering,
Sapienza University of Rome, Rome, Italy

vassos@dis.uniroma1.it

Abstract. To achieve any meaningful tasks, a robot needs some form
of task-level executive which acquires knowledge, reasons or plans, and
performs and monitors actions. A formal approach for such agent pro-
gramming is the Golog agent programming language. Golog is based
on a first-order logic representation, and a drawback of common imple-
mentations is that in order to program agents, also knowledge of Prolog
functionality is typically needed. In this paper, we present a prototype
implementation of YAGI, a language rooted in Golog that offers a prac-
tical subset of the rich Golog framework in a more familiar syntax.
Bridging imperative-style programming with an action-based specifica-
tion, YAGI is more accessible to developers and provides a better ground
for robot task-level executives. Moreover, we developed bindings for pop-
ular robotics frameworks such as ROS and Fawkes. As a proof of concept
we present a YAGI-based agent for the RoboCup Logistics League which
shows the expressiveness and the possibility to easily embed YAGI into
robot applications.

1 Introduction

For a mobile robot to fulfill its tasks, some high-level decision making strat-
egy is needed. There is a variety of paradigms for encoding and handling the
high-level tasks of a robot. For instance, state machines or decision trees are
often used to decide which action to take depending on sensor inputs, e.g., [13],
and Belief-Desire-Intention architectures are used as the basis for high-level con-
trol languages such as 3APL [8] and PRS [9]. Another possibility to realize
high-level control is classical task planning using standardized description lan-
guages such as the planning domain definition language (PDDL) [5]. Similarly,
c© Springer International Publishing Switzerland 2016
N. Kubota et al. (Eds.): ICIRA 2016, Part I, LNAI 9834, pp. 525–537, 2016.
DOI: 10.1007/978-3-319-43506-0 46

526 A. Ferrein et al.

approaches based on hierarchical tasks networks (HTNs) have been used [22].
Another expressive approach for high-level control that is based on a rich log-
ical framework is Golog [11], along with its many descendants. Golog has a
formal semantics based on the situation calculus [21] and has shown its useful-
ness in prototype applications ranging from educational robotics [12] and robot
soccer [2] to domestic service robots [3].

While the Golog family languages have many advantages, e.g., advanced
expressiveness, a formal underlying semantics, and the capability to com-
bine imperative-style programming along with logical reasoning and planning,
nonetheless the existing implementations have some drawbacks: (1) nearly all
implementations are based on Prolog, which makes the integration of a Golog
interpreter into a typical robot or agent architecture a less straightforward task;
(2) Golog interpreters are often bounded by features of the underlying Prolog
interpreter; (3) when writing agent programs, the distinction between Golog
features and Prolog functionality is often not quite clear for most Golog imple-
mentations. Moreover, we see that Prolog is not the first choice for a roboti-
cist making it less familiar than other programming environments. There are
approaches to address these shortcomings, for example an interpreter based on
Lua [4], and YAGI (Yet Another Golog Interpreter) [1]. YAGI is a language spec-
ification for a subset of Golog that was designed to reach out to a larger user
group appealing to a more familiar imperative-style programming syntax. The
state reported in [1] only concerned a first version of a user-friendly syntax and
a semantic bridge to the situation calculus and Golog. A fully implemented
YAGI interpreter and interfaces to robotics systems though was not available
and the evaluation of YAGI (and Golog) in wider robotics scenarios was not
possible.

In this paper, we present a fully-functional interpreter for the YAGI language
that has been further extended with concepts necessary to control a robot system
like sensing and exogenous events. Moreover, we show how robotics frameworks
like ROS [20] and Fawkes [16] can be hooked up easily through a plug-in system.
As a proof of concept we programmed YAGI agents for the RoboCup Logistics
League [15,19] in simulation [23], where a team of robots has to fulfill logistics
tasks in a virtual factory environment. YAGI overcomes the tight and confusing
coupling between syntax and semantics of previous Prolog implementations of
Golog and even allows to use different back-end algorithms for interpreting the
language. We are convinced that tools like YAGI are a good step to motivate
roboticist to use deliberative concepts like action-based programming to control
their robots.

2 The YAGI Framework

2.1 Situation Calculus and Golog Prerequisites

YAGI (Yet Another Golog Interpreter) is an action-based robot and agent pro-
gramming language, has its roots in the Golog language family [11] and its
formal foundations in the situation calculus [21]. The situation calculus is a

Controlling Logistics Robots with the Action-Based Language YAGI 527

first-order logic language with equality (and some limited second-order features)
which allows for reasoning about actions and their effects [21]. The major con-
cepts are situations, fluents, and primitive actions. Situations reflect the evolu-
tion of the world and are represented as sequence of executed actions rooted in
an initial situation S0. Properties of the world are represented by fluents, which
are situation-dependent predicates. Actions have preconditions, which are logi-
cal formulas describing if an action is executable in a situation. Successor state
axioms define whether a fluent holds after the execution of an action. The pre-
condition and successor state axioms together with some domain-independent
foundational axioms form the so-called basic action theory (BAT) describing a
domain.

Golog [11] is an action-based agent programming language based on the sit-
uation calculus. Besides primitive actions it also provides complex actions that
can be defined through programming constructs for control (e.g. while loops) and
constructs for non-deterministic choice (e.g. non-deterministic choice between
two actions). This allows to combine iterative and declarative programming eas-
ily. The program execution is based on the semantics of the situation calculus
and querying the basic action theory whenever the Golog program requires the
evaluation of fluents.

2.2 Design Aims

Our work to provide a Golog-like interpreter with YAGI aims at overcoming
some of the shortcomings of existing Prolog-based implementations, in order to
make the action-based programming concepts used in Golog accessible to a
larger community. A major problem of the existing implementations and also a
reason for limited outreach is that it is hard for non-expert users to distinguish
Golog from Prolog concepts. As a basic action theory and Golog are essen-
tially defined in first-order logic, there is in fact no syntax specification for the
language used in the implemented systems which typically use a mix of Prolog
functionality with Golog-defined constructs. The YAGI syntax on the other
hand, aims at a specification that is independent of the underlying implemen-
tation, and using concepts that are similar to familiar programming languages
in order to make it easy to use. The YAGI syntax and semantics should follow
the action-based framework of Golog, also providing constructs for realizing
other important tasks for robotics, such as sensing or exogenous events. Finally,
a YAGI interpreter should allow for an easy integration into other programming
languages or robotics frameworks using clear and lean interfaces.

2.3 System Architecture

In order to achieve the above design aims, the YAGI framework uses the 3-
tier architecture. The architecture comprises (1) a front-end, (2) a back-end
and (3) a system interface. (Please refer to [14] for a detailed description.) This
architecture allows a clear separation between the YAGI language and its syntax
(see Sect. 2.4) and the implementation of the interpreter. The front-end provides

528 A. Ferrein et al.

the user-interface allowing queries and invocation of actions and programs and
checks the syntactical correctness of queries, statements or programs. Currently
the front-end is realized by an interactive console that allows to query fluents and
to execute single statements or entire programs. The interface to the back-end is
realized using an abstract syntax tree (AST) and a string-based callback. There-
fore, in contrast to Prolog-based implementations the user has not to be aware
of the concrete implementation of the system and different implementations of
the back-end are easily possible. The back-end interprets YAGI statements and
maintains a representation of the YAGI domain theory, the program to execute,
and the state of the world. Moreover, it is able to execute imperative parts of pro-
grams as well as to plan over declarative sections. The back-end also incorporates
information coming from the system interface such as result to sensing actions or
exogenous events. The communication to the system interface is realized through
an open string-based signal mechanism. The system interface provides the cou-
pling of the back-end and the remaining robot system. It is responsible for the
execution of actions triggered by the back-end and the collection and interpre-
tation of feedback from the robot system. Using this system interface allows to
hook-up different robot frameworks easily.

2.4 The YAGI Language

The aim of the definition of YAGI’s syntax was to provide a clear definition of the
language that allows to specify domain theories and control programs in same
language while staying with the well-elaborated concepts of the situation calculus
and Golog, but providing a more common style. The language definition is given
in BNF and is therefore independent of any implementation. The full language
definition can be found in [14].

The language provides statements to build up a domain theory with fluents,
actions, and procedures. Fluents are used to represent the state of the world.
While in the situation calculus fluents are first-order predicates that depend on
a situation, in YAGI a fluent is represented as a set of tuples. The structure of
the tuple defines the signature of a fluent. The interpretation of a fluent is that a
fluent holds for a parameter tuple if the related tuple is in the set. Currently, the
possible domain for parameters is a finite set of strings. For instance, the fluent
is at(p, l) represents a puck p being at a location l. Listing 1.1 depicts the fluent
declaration with finite domains for pucks and locations. The definition is similar
to well-known associative arrays. The set-based representation of fluents allows
for an intuitive syntax for manipulation, queries and iteration over fluents. The
assignment is at += <"Pk2","M3">, which describes the effect on a fluent, looks
similar to statements in common programming languages and express that the
fluent additionally holds for the pair "Pk2" and "M3". Similar statements exist for
deleting pairs, assigning fluents, and more advanced assignments such as iterative
or conditional assignments. Query formulas may include logical connectives and
quantifiers similar to first-order formulas. For example, a statement such as
exists <$x,"M2"> in is at – where $x denotes a variable named x – asks
if any puck $x is at machine "M2".

Controlling Logistics Robots with the Action-Based Language YAGI 529

1 fluent is_at[{"Pk1",...,"Pk18"}]
2 [{"D1",...,"D6","M1",...,"M24","R1","R2"}];

Listing 1.1. Definition of a binary fluent representing the location of a puck.

1 action goto($place) external ($status)
2 effect:
3 skill_status = {<$status>};
4 signal:
5 "skill-exec-wait ppgoto{place= ’"+ $place +"’}";
6 end action

Listing 1.2. Action that calls the Behavior Engine to move to a specified place.

YAGI further provides the concept of primitive actions that mostly follows
the situation calculus definition by Reiter [21]. Listings 1.2 and 1.3 show two
examples of action definition. The action read light consists of four parts. The
head defines the action’s name plus a list of internal and external variables (l. 1).
The internal variables are the regular parameters to the action. If external vari-
ables are defined, the action becomes a setting action. Such actions are a way
to integrate sensing. We follow here the pragmatic way of directly set a fluent
based on sensing result rather than reasoning about incomplete knowledge and
alternative models [2]. Besides exogenous events, setting actions are extensions
made to YAGI during this work in order to be able to reflect the behavior of
a robot system. External variables are bound by the system interface after the
action execution. The precondition (ll. 2–3) is a YAGI formula and denotes if an
action is actually executable. In contrast to Reiter where successor state axioms
are used to describe the effect of actions to fluents, in YAGI the effect on fluents
(ll. 4–5) is directly expressed using fluent assignments. Please note that effects
can comprise a sequence of simple as well as complex statements such as iter-
ative and conditional assignments. Finally, the signal block (ll. 6–7) represents
the communication to the system interface. Once the action is triggered for exe-
cution, the related string is sent to the system interface. Variables will be bound
before transmission.

Statements to define procedures are also provided by YAGI. Procedures work
the same way as in Golog. Listing 1.5 depicts a procedure definition compris-
ing a head with the procedure’s name and parameters and a body. The body
of a procedure comprises primitive and complex actions. Complex actions are

1 action read_light () external ($red , $yellow , $green)
2 precondition:
3 blackboard_connected == {<"true" >};
4 effect:
5 light_state = {<$red , $yellow , $green >};
6 signal:
7 "bb-get RobotinoLightInterface::/ machine-signal";
8 end action

Listing 1.3. Action that reads the light signal in front of the robot and stores the
outcome into the fluent light state.

530 A. Ferrein et al.

1 proc production ()
2 while not (exists <$M > in machines) do
3 sleep_ms("1000");
4 end while
5 while phase == {<"PRODUCTION" >} do
6 get_raw_material("Ins1");
7 pick <$M ,"T5"> from machine_types such
8 perform_production_at($M ,"T5");
9 end pick

10 deliver("deliver1");
11 end while
12 end proc

Listing 1.4. Procedure that implements the production main control loop.

1 proc exploration ()
2 while not (exists <$M > in expl_machines) do
3 sleep_ms("1000");
4 end while
5 while phase == {<"EXPLORATION" >} do
6 if (exists <$M > in expl_machines) then
7 pick <$M > from expl_machines such
8 explore($M);
9 end pick

10 end if
11 end while
12 end proc
13
14 proc explore($M)
15 goto($M);
16 read_light ();
17 exploration_report($M);
18 mark_explored($M);
19 end proc

Listing 1.5. Procedure that implements the exploration main control loop.

for and while loops, conditionals and non-deterministic statements for pick-
ing arguments or statements. For example, the procedure in Listing 1.5 uses
a pick statement to non-deterministically choose a tuple where a fluent holds.
Please note that pattern matching with variables can be used. For instance

would select a puck $p which is at recycling machine .
Also, a non-deterministic selection between actions is possible. For instance,
the statement choose A1() or A2() chooses non-deterministically between the
actions A1 and A2. These non-deterministic statements play a major role if plan-
ning is used in YAGI. By default, YAGI performs on-line execution where the
next best action is derived and executed immediately. No backtracking is done
and the program is aborted if the selected action cannot be executed because the
precondition does not hold. YAGI provides a search statement where parts of a
program are executed off-line analogous to the original Golog semantics. If this
statement is used, first a complete valid action sequence through the program is
sought and once one is found, the sequence is executed. Therefore, YAGI allows
to combine iterative programming and planning.

Controlling Logistics Robots with the Action-Based Language YAGI 531

2.5 The Database Back-End

The two major tasks of the back-end are the representation of the YAGI domain
theory including definitions of all fluents, actions, and procedures as well as the
program execution.

For the first task, internal data structures are maintained and updated if the
AST of the YAGI program contains domain-related statements like action or
procedure definitions. The second task is tackled in the current implementation
using a database representation for fluents [7]. Fluents are represented as tables
in a relational database. Rows in a table represent the tuples the fluent holds
for while the columns represent the fluent’s parameter. If a fluent is defined,
the according table is added to the database. Using a relational database allows
for quick updates of fluents as well as efficient queries. The realization of the
back-end using a database is the main reason for finite domains concerning
fluents. It also imposes a closed-world assumption. The current implementation
uses SQLite. YAGI formulas are evaluated using these tables and the usual SQL
semantics.

For the execution of a YAGI program, its AST is traversed accord-
ing to the YAGI semantics. The on-line execution of YAGI programs (basi-
cally the main procedure) follows the on-line transition semantics defined for
IndiGolog [6]. This semantics uses the predicates Trans and Final . The pred-
icate Trans(y, d, y′, d′) denotes if a YAGI program y with the database d legally
can lead to a remaining program y′ and an updated database d′. The predi-
cate Final(y, d) denotes if a YAGI program y with a database d can terminate
legally. In the on-line execution, once a legal transition is present this transition
is executed. If the transition is final the program is terminated. During on-line
semantics non-deterministic statements like pick and choose are random.

For the search statement with an off-line execution semantics, a complete
trace through the AST is determined before any actions get executed. The cur-
rent implementation uses a simple but complete breadth-first search algorithm.
Once a legal transition within the AST is found, the remaining program is con-
sidered a valid state in the search space. For each state a database is kept which is
updated according to the transitions leading to that respective state. The search
is continued until a state with legal termination is found. Then, the actions along
the path from the root node of the AST are executed in sequence.

The back-end is also responsible for the interaction with the system interface.
If the back-end selected an action for execution, the according string is sent to the
system interface including the proper binding of variables. Once the action was
executed, the back-end updates the database according to the action definition’s
effects. In the case of a setting action, the external binding of variables by the
system interface is considered. Please note that setting actions are not allowed
within a search statement as the actions are not executed during the search
and therefore no results from the system interface are available. Moreover, the
back-end handles exogenous event in an asynchronous way. Exogenous events
reported by the system interface are stored in a queue. After a transition step is
finished all stored events are processed in a first-come-first-serve fashion. For each

532 A. Ferrein et al.

exogenous event, the variables are bound and the database is updated according
to the statements in the event definition. An event definition is similar to a
setting action definition, but has no precondition section.

2.6 System Interface

The system interface is realized as a C++ plug-in system allowing for an easy
connection to different robot systems. Only two functions have to be reimple-
mented. The first function is called once an action (primitive or setting) is trig-
gered. The function only needs to call the appropriate action within the robot
system and to report the result. The second function handles the exogenous
events reported by the robot system and adds them to the event queue of the
back-end. Currently, implementations for ROS [20] and Fawkes [16] exists and
are available as open source projects, see http://yagi.ist.tugraz.at. The Fawkes
system interface used in this work is detailed in Sect. 4.

3 The RoboCup Logistics League in Simulation

RoboCup [10] is an international initiative to foster research in the field of robotics
and artificial intelligence. It serves as a common testbed for comparing research
results in the robotics field. RoboCup is particularly well-known for its various
soccer leagues. In the past few years application-oriented leagues received increas-
ing attention. In 2012, the new industry-oriented Logistics League Sponsored
by Festo (LLSF) – renamed to RoboCup Logistics League (RCLL) in 2015 –
was founded to tackle the problem of production logistics. Groups of three robots
have to plan, execute, and optimize the material flow in a smart factory scenario
and deliver products according to dynamic orders. Therefore, the challenge con-
sists of creating and adjusting a production plan and coordinate the group of
robots [15].

In 2014, the LLSF competition took place on a field of 11.2 m × 5.6 m sur-
rounded by walls (Fig. 1). Two teams are playing at the same time competing for
points, (travel) space and time. Each team has an exclusive input storage (blue
areas) and delivery zone (green area). Machines are represented by RFID readers
with signal lights on top indicating the machine state. The lights indicate the
current status of a machine, such as “ready”, “producing” and “out-of-order”.
There are three delivery gates, one recycling machine, and twelve production
machines per team. Material is represented by orange pucks with an RFID tag.
In the beginning, all pucks (representing the products) are in raw material state
and located in the input storage (blue zones).

The game is controlled by the referee box (refbox), a software component
which keeps track of puck states, instructs the light signals, and posts orders to
the teams. After the game is started, no manual interference is allowed, robots
receive information only from the refbox.

The game is split into two major phases. During the exploration phase the
machines will show a light pattern to indicate a specific type. At game start,

http://yagi.ist.tugraz.at

Controlling Logistics Robots with the Action-Based Language YAGI 533

Fig. 1. Top: LLSF finals at RoboCup 2014. Bottom: The simulation of the LLSF in
Gazebo. (Color figure online)

the refbox randomly determines the machine types, light pattern, and team
assignment and announces it to the robots. Then, the robots have to explore the
machines and report them back to the referee box. After four minutes, the refbox
switches to the production phase during which teams win points for delivering
ordered products, producing complex products, and recycling. The initial raw
materials must be refined through several stages to final products using the
production machines. Finished products must then be taken to the active gate
in the delivery zone. Machines can be unavailable (“broken”) for a limited time.

We use a simulation of the LLSF based on Gazebo [23] shown in Fig. 1
for development and testing. The simulation provides a 3D environment with
optional physics engines and a variety of already supported sensors and actua-
tors. The integrated system and many of the components are available as open
source (http://carologistics.org). A noteworthy property of the LLSF is that the
referee box provides accountable agency to the environment. The simulation uses
the same game controller as in real games. Additionally, the simulation allows
to provide different levels of abstraction. Here, we use mixed higher-level (sig-
nal lights directly from simulation instead of image processing) and lower-level
abstractions (laser data for self-localization and navigation).

4 Implementing a Logistics Agent with YAGI

As we build on the Carologistics system, we use the Fawkes [16] robot software
framework for integration. It provides the necessary functional components and
integration with the simulation. We have developed a Fawkes-specific YAGI sys-
tem interface which provides generic access to the Fawkes middleware as well

http://carologistics.org

534 A. Ferrein et al.

as communication with the refbox. The basic skills, e.g. to grab a product from
the input storage, are provided through the Lua-based Behavior Engine [17].
The skills perform limited execution monitoring and recover from local failures
if possible. Failures that require a change of strategy or deliberation are reported
to the YAGI program to deal with it. YAGI interprets the high-level control pro-
gram and executes actions by calling skills in Fawkes. Information like the light
signal states are read via setting actions, i.e. data is read explicitly at certain
points in the program (upper left arrows). The communication with the referee
box is provided through signal and exogenous events (upper right arrows). Note
that there is no direct interaction between YAGI system interface and the simu-
lation. Perception and actuation is performed through Fawkes only. This allows
for a simple deployment on a real robot running the Fawkes framework as the
interfaces remain the same. Integrating YAGI with additional frameworks only
requires an appropriate system interface.

We have implemented a local, incremental, and in principal distributed agent
program [19]. It is local in that its scope is a single robot, and not the group as a
whole. Because it does not plan ahead the whole game but commits to a course
of actions at certain points in time, we call the agent incremental. In principal,
the agent could coordinate with other robots for a more efficient production
without a centralized instance, making it a distributed system. However, at this
time we limit our effort to the single robot case.

The exploration program (Listing 1.5) reads the machine mapping from the
referee box (ll. 2–4), and then explores the machines by picking one machines
after another calling the explore procedure for each (ll. 6–10). This procedure
drives to the machine, reads the light signal, and reports it (ll. 14–19). Listing 1.2
shows the action declaration that calls the Behavior Engine to move to a specified
machine in a blocking fashion which returns only after the skill has been finished
(ll. 4–5). It then binds the status value to the skill status fluent (ll. 1–3) to
indicate success or failure of the skill execution. Listing 1.3 shows a setting action
which gathers data from the blackboard. If a blackboard connection has been
established (ll. 3–4), it calls to the system interface (ll. 6–7), data is returned
in the external variables (l. 1), and stored in a fluent (ll. 4–5). The program
consistently scores about half of the possible 48 points in simulation. To improve
this, the pick could be modified to choose the closest unexplored machine. To
achieve more points, an efficient use of multiple robots is necessary.

The production program (Listing 1.4) repeatedly completes the produc-
tion chain for P3 products, which require a single refinement step at a specific
machine. Once machine information has been received (ll. 2–4), it retrieves a
raw material from the input store (l. 6) and picks an appropriate machine to
perform the production (ll. 7–9). After this production step, the raw material
will have been converted to a P3 product and can be delivered (l. 10). The score
in the production phase has a greater variance because of the greater influence
of travel distances and posted orders. The top score achieved was 55 points (out
of possible 60 with P3 products alone).

Controlling Logistics Robots with the Action-Based Language YAGI 535

5 Discussion

The integration of the YAGI framework with the existing Fawkes-based system
and the coding of an agent control program was achieved in about a week. The
Fawkes system interface exploits middleware introspection to provide a generic
integration. Other systems lacking this capability, like ROS, may not be able to
offer a generic integration, but require a platform and domain specific one. The
restriction to finite domains for fluents prevent the use of arbitrary numerics
or user pointers as opaque data structures for closer C++ system integration.
This, however, is not a principal issue, but can be improved in later revisions.
Compared to a more elaborated CLIPS-based agent system [18], on-line YAGI
emphasizes imperative constructs, while an event or rule-based system allows
for easier revising a robot’s goal. Integrating IndiGolog’s interrupts or using
YAGI’s search capabilities could remedy this disadvantage. The particular ben-
efit of YAGI is that it combines the strengths of two worlds: for one, it is based
on the well-studied and well-understood foundations of Golog. This provides
a sound semantics to the language and its interpretation. For another, it over-
comes concerns prevalent in the robotics community by providing a more familiar
and easy to use syntax for robot task-level executives. Our experiments imple-
menting an agent program for the RoboCup Logistics League have shown that
already the current prototype is a viable platform for such medium complex
domains. Some of the current limits will be addressed in YAGI’s vivid develop-
ment process shortly. Finally, due to the fact that YAGI is based on Golog’s
formal logical semantics over programs and their executions, it is possible to
perform much more advanced reasoning tasks, gaining all the benefits that come
with the research that is being done in the situation calculus community. For
example, it is not difficult to imagine future versions of a YAGI interpreter to
be able to evaluate whether properties hold over future executions of programs
or verify programs over different domains and scenarios, following current state-
of-the-art research in verifying properties for Golog programs.

Acknowledgments. T. Niemueller was supported by the German National Science
Foundation (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelligent Sys-
tems (http://www.hybrid-reasoning.org). C. Mühlbacher was supported by the Aus-
trian Research Promotion Agency (FFG) with the grant Guaranteeing Service Robot
Dependability During the Entire Life Cycle (GUARD). We thank the anonymous
reviewers for their helpful comments.

References

1. Ferrein, A., Steinbauer, G., Vassos, S.: Action-based imperative programming with
YAGI. In: Cognitive Robtics Workshop. AAAI Press (2012)

2. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains.
J. Robot. Auton. Syst. 56(11), 980–991 (2008)

http://www.hybrid-reasoning.org

536 A. Ferrein et al.

3. Ferrein, A., Niemueller, T., Schiffer, S., Lakemeyer, G.: Lessons learnt from devel-
oping the embodied AI platform CAESAR for domestic service robotics. In: Pro-
ceedings of AAAI Spring Symposium. AAAI Technical Report, vol. SS-13-04. AAAI
(2013)

4. Ferrein, A., Steinbauer, G.: On the way to high-level programming for resource-
limited embedded systems with Golog. In: Ando, N., Balakirsky, S., Hemker, T.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 229–240.
Springer, Heidelberg (2010)

5. Fox, M., Long, D.: PDDL2. 1: an extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

6. Giacomo, G.D., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: a high-level
programming language for embedded reasoning agents. In: Multi-Agent Program-
ming: Languages, Tools and Applications. Springer, US (2009)

7. Giacomo, G.D., Palatta, F.: Exploiting a relational DBMS for reasoning about
actions. In: Cognitive Robotics Workshop (2000)

8. Hindriks, K., de Boer, F., van der Hoek, W., Meyer, J.J.: Agent programming in
3APL. Auton. Agent. Multi-Agent Syst. 4(2), 357–401 (1999)

9. Ingrand, F., Chatila, R., Alami, R., Robert, F.: PRS: a high level supervision and
control language for autonomous mobile robots. In: IEEE International Conference
on Robotics and Automation (ICRA), vol. 1 (1996)

10. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: the
robot world cup initiative. In: Proceedings of 1st International Conference on
Autonomous Agents (1997)

11. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: a logic
programming language for dynamic domains. J. Logic Program. 31(1–3), 59–83
(1997)

12. Levesque, H., Pagnucco, M.: LeGolog: inexpensive experiments in cognitive robot-
ics. In: Cognitive Robotics Workshop (2000)

13. Loetzsch, M., Risler, M., Jungel, M.: XABSL - a pragmatic approach to behavior
engineering. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (2006)

14. Maier, C.: YAGI - An Easy and Light-Weighted Action-Programming Language
for Education and Research in Artificial Intelligence and Robotics. Master’s thesis,
Faculty of Computer Science, Graz University of Technology (2015)

15. Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.:
RoboCup logistics league sponsored by festo: a competitive factory automation
testbed. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013.
LNCS, vol. 8371, pp. 336–347. Springer, Heidelberg (2014)

16. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design principles of the
component-based robot software framework fawkes. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 300–311. Springer, Heidelberg (2010)

17. Niemüller, T., Ferrein, A., Lakemeyer, G.: A lua-based behavior engine for con-
trolling the humanoid robot nao. In: Baltes, J., Lagoudakis, M.G., Naruse, T.,
Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 240–251. Springer, Hei-
delberg (2010)

18. Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental task-level reasoning in a
competitive factory automation scenario. In: Proceedings of AAAI Spring Sympo-
sium 2013 - Designing Intelligent Robots: Reintegrating AI (2013)

Controlling Logistics Robots with the Action-Based Language YAGI 537

19. Niemueller, T., Lakemeyer, G., Ferrein, A.: The RoboCup logistics league as a
benchmark for planning in robotics. In: Workshop on Planning and Robotics (Plan-
Rob) at ICAPS-15 Scheduling (ICAPS) (2015)

20. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

21. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

22. Sacerdoti, E.: Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2),
115–135 (1974)

23. Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the RoboCup logistics
league with real-world environment agency and multi-level abstraction. In: Bianchi,
R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS,
vol. 8992, pp. 220–232. Springer, Heidelberg (2015)

	Controlling Logistics Robots with the Action-Based Language YAGI
	1 Introduction
	2 The YAGI Framework
	2.1 Situation Calculus and Golog Prerequisites
	2.2 Design Aims
	2.3 System Architecture
	2.4 The YAGI Language
	2.5 The Database Back-End
	2.6 System Interface

	3 The RoboCup Logistics League in Simulation
	4 Implementing a Logistics Agent with YAGI
	5 Discussion
	References

