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Abstract. This paper investigates the average consensus problem of
multiple discrete-time integrator agents under communication con-
straints and additive noise. In real applications, both quantization error
and additive noise are often unavoidable and may terribly degrade the
consensus performance. To handle quantization, we adopt a distributed
dynamic encoding and decoding policy, under which the resolution of
quantizers can change over time to tightly catch up the states and provide
more accurate information. Moreover, bounded additive noise is consid-
ered. By generalizing the original noise-free protocol in [14], we propose
a modified protocol with a new scaling function and prove that under
our protocol, one can achieve approximate consensus even with 1 bit per
channel use under the perturbation of additive noise. Furthermore we
set up a quantitative relationship between the consensus performance,
measured by the ultimate consensus error bound, and the number of
available bits per channel use.

1 Introduction

In recent years more and more attention has been paid to the distributed coor-
dination of networked multi-agent systems due to its wide application areas,
such as coordination control of Unmanned Aerial Vehicle (UAV) [2], flocking
[3], rendezvous [4] and formation control [5]. (More details can be found in [1]).
When it comes to the consensus problem, each agent has to implement a distrib-
uted protocol based on the limited information about itself and its neighboring
agents.

Traditional consensus problems have been well solved [6,7] when all agents
can continuously exchange state information with infinite information precision.
However, constraints on sensor cost, communication bandwidth, and energy bud-
get dictate that information transmitted between agents has to be quantized,
which yields unavoidable quantization error. For the single-agent systems, the
bit rate conditions to stabilize systems are derived in [8-10]. Some results of
the single-agent systems are adopted to multi-agent systems, [11-13] where the
quantized variables are allowed to be any integer, i.e., their quantization ranges
are the whole integer set and an infinite bandwidth is needed to transmit such
quantized variables, which is difficult to implement in reality.
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To overcome the above unrealistic infinite bandwidth requirement, the Mini-
mum Data Rate(MDR) problem is investigated in the field of quantized consen-
sus of multi-agent system. [14] proposes a distributed protocol based on dynamic
encoding and decoding and prove that under its protocol, average consensus can
be achieved for a connected network with merely one bit information exchange
between adjacent agents. More general systems were considered in [15,16]. But
all these results do not consider process noise. If we simply implement them, the
desired consensus could be broken due to the additive process noise.

In this paper, we generalize the existing results to handle additive process
noise. We first design a new scaling function, which takes the effects of the addi-
tive noise into account. Then we propose a modified consensus protocol based on
the new scaling function and show that a uniform quantizer utilizing this proto-
col will never be saturated and the system will achieve approximate consensus
with bounded consensus error. Furthermore, we provide a quantitative relation-
ship between the number of available bits per channel use and the consensus
performance, measured by the ultimate consensus error.

The rest of this paper is organized as follows. Section 2 presents the models
of the communication network and agents, and the basic consensus protocol.
In Sect. 3, we propose the modified consensus protocol and prove that approxi-
mate average consensus can be achieved under our protocol. Section 4 examines
the achieved theoretical results through extensive simulations. Some concluding
remarks and future research topics are presented in Sect. 5. To improve readabil-
ity, technical proofs are placed in the Appendix.

Notations: I denotes an proper dimensional identity matrix and the sub-
script is omitted for short. 1 = [1, ..., 1] is a proper dimensional vector with all
elements equal to 1 and Jy = 1117, || - || and || - ||o respectively represent the
Euclidean and infinity norms on vectors or their induced norms on matrices.

2 Mathematical Models

2.1 Communication Graph

An undirected graph G = {V, &, A} is used to represent the communication
topology of N agents, where V = {1,2,..., N} is the index set of N agents
with ¢ representing the ith agent, £ C V x V is the edge set of paired agents
and A = [a;;] € RV with nonnegative elements a;; € {0,1} is the weighted
adjacency matrix of G. Note that A is a symmetric matrix. An edge (j,7) € £
if and only if a;; = 1, which means that agent j can send information to agent
i. The neighborhood of the ith agent is denoted by N; = {j € V|(4,7) € £}.
D; = |N;| is called the degree of agent ¢ and D* = max; D; is called the degree
of G. A sequence of edges (i1, 42), (i2,%3), ..., (ix—1, 1% ) is called a path from agent
i1 to agent ix. The graph G is called a connected graph if for any ¢,57 € V,
there exists at least one path from 4 to j. Denote D = diag(D;, ..., Dy) and the
Laplacian matrix of G by £ = D — A. The eigenvalues of £ in an ascending order
are denoted by 0 = A1 < Ao < ... < Ay, where Ay is the spectral radius of £
and Ag is called the algebraic connectivity of G.
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2.2 Dynamic Encoding and Decoding Algorithms

In a digital communication network, the jth agent possesses an encoder and
D; decoders, each of which serves a neighbor of agent j. The encoder quantizes
the state of agent j and encodes it into a bit sequence. The decoders receives
the encoded state information of D; neighbors of agent j and decodes them to
generate estimates of the states of neighboring agents.

Encoders implement a (2L)—level uniform quantizer ¢(-) : R — I', which
is a map from R to the set of quantized levels I' = {+i,i = 1,2,...,L} and
mathematically expressed as

i—1/2, i—1<y<i, i=1,..L
qy) =4 L—-1/2,y> L (1)
_Q(_y)v y<0

As [14], we adopt a difference encoder with scaling. More specifically, the
encoder @; of the ith agent is composed of an estimator and a quantizer, which
are given below.

Estimator:

Ci(k) =gk —1)m;(k) + &ui(k—1), k=1,2,...

Quantizer:

m;(k) =q {zZ(k)g(kgj(lk) ) , k=12, .. (3)

where k is the time step, z; is the state of the ith agent, &;(k) is the internal state
of @;, and m;(k) is the information sent to the neighbors of the ith agent. g(k)
is the scaling function to be designed. The decoder of the ith agent’s neighbours
can decode the information received from agent ¢ and get an estimate of x;(k),
&ji(k), according to

£Jl(0) =0, (4)
fji(k) :g(k_l)mi(k)+£ji(k_1)’ k=1,2,..

2.3 System Model

In this paper, the agents are governed by the following integrator dynamics

LL’Z‘<I€+1) :xl(k)—l—ul(k:)—i-wl(k) i=1,...N k=0,1,... (5)

where z;(k) € R represents the state of the ith agent, u;(k) € R is the input
of the ith agent, w;(k) € R is the additive process noise. In this paper, we
assume that the exact states of the neighbours are not available because of
quantization. According to (2) and (4), we see that both the ith agent’s encoder
and its neighbours’ decoders can get estimates of state x;, and their estimates
are exactly the same when there is no delay in the communication channel.
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Therefore we denote such estimate of x; as &;(= &; = ;). Thus we adopt the
following quantized protocol,

ui(k) = h Z aij [&;(k) — &:(K)], i=1,2,.,N (6)
510 K02 e O ) = ) and o) =
n(k) = X (k) = X (k) (7)

and the deviation vector
5(k) = X (k) — Iy X (k) (8)

By the above notation, we can combine the closed-loop system equation and
the coding algorithm together into a matrix form,

X(k+1) = (I —hL)X (k) + hLy(k) + w(k)
Rk +1) = glk)g [XEDED] 4 Z(r) (9)

where ¢(+) is the component-wise quantizer, i.e., ¢([y1, ..., yn]) = [¢(y1), .-, ¢(yn)]
and L is the Laplacian matrix of the network.
The following assumptions will be adopted in the subsequent analysis:

(A1) [|6(0)[[cc < [[2(0)]|oc < Bs
(A2) |lw(k)||oe < M, k=1,2,...

where B, and M are some nonnegative constants.

Due to the inclusion of additive process noise, we cannot guarantee the tradi-
tional average consensus, i.e., limg_. . (k) = 0. Instead, we pursue the following
approximate consensus,

lim sup ||d(k)| < oc. (10)
K—oo E>K

3 Quantized Consensus Protocol

3.1 Scaling Function Design

The design of the scaling function g(k) is the key point of our quantized consensus
protocol, which involves the topology of the communication network and the
additive process noise. That design needs the following preliminary result.

Lemma 1. [14] If the topology of network is connected and h < 2/An, then
pn < 1, where
pn = max |1 —hAl. (11)

Furthermore, if h < 2/(Aa + An), then p, =1 — h)s.
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Remark 1. The maximum eigenvalue of (I — hL) is 1 and the others are inside
the unit circle. In the following we will show that the convergence rate of the
discrete-time system mainly depends on pj,. To make sure that the quantizer will
never saturate and always provide meaningful quantization result, it is necessary
to require that the scaling function converge slower than py,.

Here we propose a scaling function

9(0) = g0
{g(k+ 1) =~g(k) + M 12

where the convergence factor v € [pp, 1) with h € (0,2/Ay). Note that M is the
norm bound of the additive noise. On the one hand, g(k) still decreases as [14],
especially under large gg. On the other hand, there exists an additive “overmea-
sure” each step so that the additive noise will not result into the saturation of the
quantizers. To make sure the scaling function g(k) is monotonically decreasing
with respect to k, we choose gg > %, which will simplify our analysis without
loss of generality.

3.2 Quantized Consensus Protocol

Before presenting the quantized consensus protocol, we first analyze the dynamic
models of the quantization error and the deviation error. Note that LJy =
JnL =0, therefore hL(k) = hL[X (k) — INnX (k)] = hLX (k).

By the system model (9), we define an innovation vector as

e(k) = X(k+1) — X(k) = (I + hL)n(k) — hLS(k) + w(k). (13)

We can derive

S(k+1) = (I — hL)S(k) + hLn(k) + (I — Jn)w(k) )
n(k+1) = e(k) = g(k)a (le(k)
Let (k) = 203, 1i(k) = 243 and (k) = £ By (12), (14), we get
{S(k +1) = G(k)(I — hL)S(k) + G(k)hLA(k) + G(k) (I — T )is(k) 15)
i(k +1) = G(k) [é(k) — Q(é(k))]
where G(k) = g(k)/g(k + 1) and
o e(k) (B — hed(i) 4 &
(k) = gy = U+ hLYii(k) = hLS (k) + k). (16)

Note that é(k) is exactly the information to be quantized. Now we are ready to
present our first consensus result in Theorem 1, whose proof is moved into the
Appendix to improve readability.
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Theorem 1. Suppose Assumptions (Al) — (A2) hold. For any given h €
(0,2/An) and v € [pp, 1), let

L > L(h,7) (17)
L= h\ \/N(Bw +90) \/NhANM \/Nh)\N[(l—’y)go—M]
N 9o 2(1—7) 2Me
120D +29(1 - ) (8)

2y

The protocol given in (2)-(4) and (6) is implemented with 2L-level uniform
quantizers (1), the scaling function (12) whose initial value satisfies

M
go>maX{M,Bx+M} (19)

Then the closed-loop system (9) achieves approzimate consensus with the follow-
ing bounded consensus error

VNM[hAy + 2(1 7))
2(1—7)?

Remark 2. By (18), we see that the L to achieve the desired approximate con-
sensus is determined by h and . When h is small enough and +y is close to 1,
L can be as low as 1, i.e., 1 bit per channel use is enough to guarantee that
the ultimate consensus error is bounded. Of course, L = 1 may yield very large
consensus error bound in (20). The balance between the required L and the
achievable consensus error is critical and will be discussed further in Sect. 3.3.

Tim [J3(0)]] < (20)

Remark 3. According to (20), the topology of the communication network,
particularly Ay, is an important factor of the consensus error. If we choose
h <2/(A2 4+ An) and v = pp, then 1 — vy = hAy and

vNM AV g
%y | Ay

lim [}3(k)]| < (21)
k—oo

A2 is defined as the algebraic connectivity of graph in [6] and Ay /Ay is referred

to as the eigenratio of an undirected graph [17], which has an upper bound
A min; D;
22 < U] (22)
AN T max; D;

where min; D; and max; D; represent the minimum and maximum degrees of

agents in the communication network, respectively.

When all degrees of agents in the network are relatively large and the differ-
ence between the maximum and minimum degrees is relatively small, the system
can achieve relatively small consensus error, i.e., more balanced and connected
networks yield more accurate consensus.
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3.3 Consensus Protocol Control Gain Design

In this subsection, we propose a design method of the control gain when there
exists limitations on the communication resource and the quantized consensus
performance.

In Theorem 1 we present a quantized consensus protocol to assure the system
to achieve approximate consensus utilizing finite bit communication. One can see
from the result (18) that the larger the control gain h we choose, the more quanti-
zation levels the protocol need. However in practical scenario the communication
resource is always limited, therefore the control gain has an upper bound. We
show this result in the following lemma and for computation convenience, we
choose the convergence factor of the scaling function v = py,.

Lemma 2. Suppose Assumptions (Al) — (A2) hold and set v = pp. For any
given Ly € NT, under the quantized consensus protocol in Theorem 1 with the
2Ly —level uniform quantizers, there always exist a control gain h € (0,h(L1))
that guarantees the closed-loop system (9) to achieve approximate consensus.

Proof. The proof is omitted due to the space limitation.

From equality (21) we know that to achieve accurate approximate consen-
sus, the control gain h should be sufficiently large. So when we set a consensus
performance requirement J; that klim [|6(K)|| < &1, the choice of h has an lower

— 00

bound A(d1). But when there exists some limitations on the use of communica-
tion resource, from the result in Lemma 2 we know that h(d;) should be smaller
than h(Ly). Therefore we have the following lemma.

Lemma 3. Suppose Assumptions (A1) — (A2) hold and set v = pp. For any
given 01 € [d,00), under the quantized consensus protocol in Theorem 1 with
2L, —level uniform quantizers, there always exist a control gain h € (h(51), h) ,

where h = min {h(Ll), %} that guarantees the closed-loop system (9) to achieve
approzimate consensus with consensus error no more that §1, where § and h(d7)
satisfy the following equations

(a) When h € (0, ﬁ),v =pp=1—hlg,

VNM(Ax +2X2) VNM(Ay +2X2)

h(01) = 5= i
o 20103 b 21\
(b) WhenhE (AzfAN’%)’ ’y:ph:h)\N_l’ h((Sl) is the root Ofequatzon
201 nh2z + (VNMN — 85, An)h + (85, —4VNM) =0, §= \/2@4(4}; h;N)
- N

Consider an complete network of eight agents, i.e. each agent has the access
to all the other agents’ information in the network, as an example. From Fig. 1
one can see that as the restricted quantization level L; increases from 1 to 50,
the lower bound of the consensus performance §(L;) decreases. The shaded area
presents the feasible choice of control gain.
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Fig. 1. Curves of the restricted quantization level L; and the lower bound §(L1)

4 Simulations

The validity of the quantized consensus protocol is demonstrated in this section.
Consider a multi-agent system consisting of 8 agents with integrator dynamics
(9). The interconnection topology is described by a regular undirected graph of
degree 4 where the eigenvalues of the Laplacian matrix Ay = 4, Ay = 8.

Set the initial states equal to X (0) = [5,10, 15,20, 25,30, 35,40]7 and the
noise bound M = 0.5. Choose the control gain A = 0.0045 and consequently
according to (17)—(19) we have v = p, = 0.982, ¢(0) = 40.5, L(h,~y) = 0.799
and the bit rate L = 1. Figure 2 illustrates the trajectories of states, the deviation
vector’s FEuclidean norm and the norm bound we estimate. One can see that
all the agents converge to approximate consensus after several steps and the
consensus error remain bounded thereafter which verifies our protocol. In this
way we sacrifice the system performance to save the communication resource,
which is very important in practical scenario.

40

‘ — (k) —— (k)

x4(k)

35 — ) $o(K) e 3y (K) e Xy (K) ‘

%, (k) ‘ =—©— Euclidean norm of the deviation vector
s Norm bound

50 100 150 200 250 300 50 100 150 200 250 300
k k

Fig. 2. Trajectories of states and Euclidean norm of deviation vector under Network
topology one with one bit communication
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5 Conclusion

In this paper we show that under the protocol we designed, a group of dynamic
agents can achieve approximate consensus even when there exists additive noise.
It is shown that the consensus error depends on the scaling function, the con-
sensus gain and the communication topology. Furthermore we propose a way
to design the consensus protocol when there exists constrictions on the com-
munication resource and system performance. However achievement of accurate
consensus is still a tough mission. Quantizers designed with various structures
can only weaken the impact of the additive noise on current state but can not
eliminate their cumulative effect in the future.

For future research, robustness with respect to packet-loss, link failures and
time-delay may be considered and the results may be extended to high-ordered
system.

6 Appendix: Proofs

6.1 Proof of Theorem 1

The proof is consist of two parts. In part 1, we assume that each communication
channel between agents possesses adequate communication resources, and there-
fore we focus on the interruption that the quantization operation and additive
noise bring into the system. In part 2, we work on how many data bit is enough
on earth for the system to achieve approximate consensus when applied to the
quantized consensus protocol.

Part 1. Since matrix £ is symmetric, we can diagonalize it with the unitary
matrix T = [(1/V/N)1, ¢, ..., 6n] defined by ¢7 L = \;¢pT i = 2, ..., N. Therefore

we have I —hL = {ﬁ ¢] [(1) ﬂ [ig = $AT + Jy, where ¢ = [ba, ... ],

A =diag(1—hMa,...,1—hAy) and 0 is the zero matrix of proper dimension. Then
the recursion of the deviation vector (15) can be transformed into

S(k+1) = Gk)(¢AdT + Jn)(k) + G(k)hLA(k) + G(n)(I — Jn)d(k)
= G(k)pAdT (k) + G(n)hLi(k) + G(k)(I — Jn)i(k) (23)

where Jyd(k) = Jn(I — Jn)X(k)/g(k) = 0. Let G& = T[\_, G(i) = -4 and
it follows that

l6(k + 1) < [IG5oA" 16" 5 (0 ||+HhZG (@A"Y Lij(k — j)|

k
+ 11D G (040" (I = In)io(k = )] (24)

=0

where (¢pA¢T)" =
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We estimate the three terms on the right hand of (24) separately.
Note that py < 7, [l6]l = |67 ]| = 1 and ||e]loc < |[2]| < VN|[2]|ac for any N
dimensional vector x. For the first term,

e VNSOl - VNB: i

ORI (25)

|csear+1678(0)]| < G (on)
2
Since we assumed that each quantizer possesses adequate quantization levels, at

each recursion step the quantizers will not be saturated, i.e. the quantization
error are no more than 1/2. Then together with (15) one can see that

, 1
17 (k)]]oo < §G(k -1), k=1,2,.. (26)
Note that ||£|| = An. For the second term, together with (26), we have

k

< VR |50 Gy 2

k
hy Grio(¢Ad”) Lii(k — j)

= , = 29(k = J)
\/NhAN k k—j—2
<———|(k+1) v M
L )gov*” ]ZO;’YW
= NRAN (g MY gyt YNRANM LT oy
2g(l€—|—1) 1—7 v 29(k+1) (1—~)2

Similarly for the last term, with the Assumption (A2) and note that || —Jy|| = 1,
we can get

) ' VNM 1— Akt
ZG (AT (T — Ty )bk — ) < gk+1) 1—~

2

As proved above we know that the scaled deviation vector 5(k:) can be
bounded. Moreover, when step k tends to infinity, together with (25), (27) and
(28) we have

Jim [[3(k + 1)} = lim g(k + DSk +1)]]

NhA M
< khm \/>B ktl 9 (go - 1—’y> (k+ 1)’Yk_1

X )
2 (-2 I~

- VNRANM  V/NM

201-72 17 @)
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Therefore the closed-loop system can achieve approximate consensus with
bounded consensus error.

Part 2. Under a quantized consensus protocol, it is necessary and important
that the quantizers will never saturate. Otherwise, what one agent broadcasts
could be the saturated value of the state instead of its real value and that satu-
rated information may mislead its neighbours. We prove here that the uniform
quantizers (1) with 2L levels will never be saturated when L > L(h,~) with the
help of mathematical induction.

Note that é(k), k= 1,2, ... is the information to be quantized. At the initial
time, we know that X (0) = 0. According to Assumption (A1) and (19) we have

B, + M

1(0)]]oc = II(I + hL)i}(0) = hL(0) +w(0)]]oo < o

< < L(h,y) < L (29)
Hence, when k = 0 the quantizers are unsaturated.

For any given nonnegative integer n, suppose that when k£ = 0,1,...,n the
quantizer are not saturated, i.e. the quantization error are less than 1/2. Then

at the n + 1 step,

1(n+ Dlloo < I + AL loclli(n + Dllos + RIILI6(n + DI + [[&(n + 1)]|oc

1 4 21D , w(n+ Dllse
< 2 AR T 7T
< 5 G(n) + hAn|[lo(n + 1)]| + g 1)
g(n)(1 + 2hD*) ¢ M(1—7)
< BWURE AT | panli§n + 1| + o)
gy + o]+ AN DI T
14 2hD* ¢
< IS+ DI+ (1= ) (30)

The norm bound of §(n + 1) can be estimated similarly as in the proof of
Theroem 1. From (25)—(28), we have

VNB A"t /NRANM 1 —~"tt  /NM 1 —Ant!

Pt DI = T 2yt ) G2 gt D 17

Function f(z) = zv*, x € R, v € (0,1) has an upper bound f(z) < m
ﬁg(v)’ where e is the base of the natural logarithm. And since
v € (0,1) we know that log(y) > 1/, then the term (n + 1)+t < 2.

Note that g(k) > g(o0) = %, we can get

when z =

18(n+1)| <

\/fo L YNBAN =) o VNBAY | VNRANM |

2M~e go 2ve 2(1 —~)
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Therefore
VN(B, +g0)  VNRANM  V/Nhin[(1 —~)go — M]
90 2(1—7) 2M~e

1+ 2hD*
-~ 1—
+ > +(1-7)

= L(h,y) <L (33)

[[é(n + D[oc < hAN

So at time k = n+1 the quantizers are still unsaturated. Therefore, by induction,
we conclude that if a set of (2L)-level uniform quantizers with L > L(h,~) are
applied to the system, they will never be saturated.

According to the result in part 6.1, under the quantized consensus protocol
the agent system can achieve approximate consensus with bounded consensus
error.

Acknowledgement. This work was partially supported by the National Natural Sci-
ence Foundation of China under Grant 61273112.

References

1. Cao, Y., Yu, W., Ren, W., et al.: An overview of recent progress in the study
of distributed multi-agent coordination. IEEE Trans. Ind. Inform. 9(1), 427-438
(2013)

2. Alarcon Herrera, J.L., Chen, X.: Consensus algorithms in a multi-agent framework
to Solve PTZ camera reconfiguration in UAVs. In: Su, C.-Y., Rakheja, S., Liu,
H. (eds.) ICIRA 2012, Part I. LNCS, vol. 7506, pp. 331-340. Springer, Heidelberg
(2012)

3. Saber, R.O.: Flocking for multi-agent dynamic systems: algorithms and theory.
IEEE Trans. Autom. Control 51(3), 401-420 (2006)

4. Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem - the
asynchronous case. SIAM J. Control Optim. 46(6), 2120-2147 (2007)

5. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle for-
mations. IEEE Trans. Autom. Control 49(9), 1465-1476 (2004)

6. Saber, R.O., Murray, R.M.: Consensus problems in networks of agents with switch-
ing topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520-1533
(2004)

7. Saber, R.O., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proc. IEEE 95(1), 215-233 (2007)

8. Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems.
IEEE Trans. Autom. Control 4(7), 1279-1289 (2000)

9. Elia, N., Mitter, S.K.: Stabilization of linear systems with limited information.
IEEE Trans. Autom. Control 46(9), 1384-1400 (2001)

10. Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Trans.
Autom. Control 49(7), 1056-1068 (2004)

11. Kashyap, A., Basar, T., Srikant, R.: Quantized consensus. Automatica 43(7),
1192-1203 (2007)



12.

13.

14.

15.

16.

17.

Quantized Consensus of Multi-agent Systems with Additive Noise 497

Cai, K., Ishii, H.: Gossip consensus and averaging algorithms with quantizaiton.
In: Proceedings of American Control Conference, pp. 6306-6311 (2010)

Lavaei, J., Murray, R.M.: Quantized consensus by means of gossip algorithm. IEEE
Trans. Autom. Control 57(1), 19-32 (2012)

Li, T., Fu, M., Xie, L., Zhang, J.: Distributed consensus with limited communica-
tion data rate. IEEE Trans. Autom. Control 56(2), 279-292 (2011)

Li, T., Xie, L.: Distributed coordination of multi-agent systems with quantized-
observer based encoding-decoding. IEEE Trans. Autom. Control 57(12), 3023-3037
(2012)

Qiu, Z., Hong, Y., Xie, L.: Quantized leaderless and leader-following consensus of
high-order multi-agent systems with limited data rate. In: IEEE Conference on
Decision and Control, pp. 6759-6764 (2013)

You, K., Xie, L.: Network topology and communication data rate for consensus-
ability of discrete-time multi-agent systems. IEEE Trans. Autom. Control 56(10),
22622275 (2011)



	Quantized Consensus of Multi-agent Systems with Additive Noise
	1 Introduction
	2 Mathematical Models
	2.1 Communication Graph
	2.2 Dynamic Encoding and Decoding Algorithms
	2.3 System Model

	3 Quantized Consensus Protocol
	3.1 Scaling Function Design
	3.2 Quantized Consensus Protocol
	3.3 Consensus Protocol Control Gain Design

	4 Simulations
	5 Conclusion
	6 Appendix: Proofs
	6.1 Proof of Theorem 1

	References


