
Rapid Developing the Simulation and Control
Systems for a Multifunctional Autonomous

Agricultural Robot with ROS

Zhenyu Wang(&), Liang Gong, Qianli Chen, Yanming Li,
Chengliang Liu, and Yixiang Huang

Institute of Mechatronics and Logistic Equipment,
School of Mechanical Engineering, Shanghai Jiao Tong University,

Shanghai 200240, People’s Republic of China
{silent_180,gongliang_mi,chenqianli,ymli,

chlliu,huang.yixiang}@sjtu.edu.cn

Abstract. Building customized control system for specific robot is generally
acknowledged as the fundamental section of developing auto robots. To sim-
plify the programming process and increase the reuse of codes, this research
develops a general method of developing customized robot simulation and
control system software with robot operating system (ROS). First, a 3D visu-
alization model is created in URDF (unified robot description format), and is
viewed in Rviz to achieve motion planning with MoveIt! software package.
Second, the machine vision provided by camera driver package in ROS enables
the use of tools for image process, 3D point cloud analysis to reconstruct the
environment to achieve accurate target location. Third, the communication
protocols provided by ROS like serial, Modbus support the communication
system development. To examine the method, we designed a tomato harvesting
dual-arm robot, and conducted farming experiment with it. This work demon-
strates the advantages of ROS when applied in robot control system develop-
ment, and offers a plain method of building such system with ROS.

Keywords: Robot Operating System (ROS) � Dual-arm multifunctional robot �
Rapid system development � Autonomous agricultural robot � Rviz

1 Introduction

With the rapid development of modern agriculture of high efficiency, the vital position
and the function of automation control technology has been widely acknowledged.
Faced with the pressure of agricultural products output and market competition, agri-
culture tend to develop with higher efficiency and accuracy, combined with automated
mechanical equipment [1]. In agricultural aspect, production lines equipped with
machines have been widely applied in planting crops of large scale, for instance wheat,
cotton, etc. At the same time, it’s clear that there are many process of planting crops
requiring to be operated with higher accuracy and flexibility, due to its complex
environment and changeable conditions, like growing tomatoes. Within automated
mechanical equipment, agricultural robots stand out for its high controllability and

© Springer International Publishing Switzerland 2016
N. Kubota et al. (Eds.): ICIRA 2016, Part I, LNAI 9834, pp. 26–39, 2016.
DOI: 10.1007/978-3-319-43506-0_3

flexible kinematic characteristics, which meet the requirements above perfectly. Taking
these into consideration, improving accuracy and controllability of agricultural robots
with excellent control systems is gaining more and more significance in modern
automation researches [2].

Robot Operating System (ROS) is a collection of software frameworks for robot
software development, providing operating system-like functionality on a heteroge-
neous computer cluster. ROS provides standard operating system services such as
hardware abstraction, low-level device control, implementation of commonly used
functionality, message-passing between processes, and package management. Running
sets of ROS-based processes are represented in a graph architecture where processing
takes place in nodes that may receive, post and multiplex sensor, control, state, plan-
ning, actuator and other messages [3].

Designed to increase the reuse of codes, ROS is completely open-sourced and
compatible with multi programming languages. Over 2000 existing program packages
are available in ROS freely.

The main characteristics of ROS include: Open sourced, multilingual support,
library integration, plentiful tools kit, and point to point communication. The com-
putation graph level is shown in Fig. 1.

The computation graph reflects the connection way when the processes cooperate
to process the statistics (point to point). Concepts concerned include node, service,
topic, and messages, etc.

Nodes: A node is an executable that uses ROS to communicate with other nodes.
Messages: ROS data type used when subscribing or publishing to a topic.
Topics: Nodes can publish messages to a topic as well as subscribe to a topic to

receive messages.
Master: Name service for ROS (i.e. helps nodes find each other)
Service: The method of communication between nodes, which allows nodes to send

the request and answer.
Such point-to-point communication method is playing an important role in multi

processes and multi hosts. When the multi hosts connect with different kinds of net-
works, there might be the risk of data transporting jam in central data server. While for
point to point communication, there is no central data server, so it can avoid such
problem to ensure the stability of multi processes and hosts.

Fig. 1. The computation graph level of ROS

Rapid Developing the Simulation and Control Systems 27

This paper is organized as follows. Section 2 highlights the key ROS modules for
developing an intelligent robot simulation and control systems. Section 3 describes the
ROS deployment on a newly developed multifunctional agricultural robot. And con-
clusion is given in Sect. 4.

2 Customizing Robotics Modules in ROS

In general, there are four essential aspects for developing specific simulation and
control systems for an intelligent robot, i.e. the operating system architectural model,
the motion planning module, the machine vision module and built-in communication
module.

2.1 Building Description Model Based on URDF

Robot visualization models enable the users to be informed of the current situation of
the robot, decreasing the workload and the error rate. In ROS, the visualization is
achieved with Rviz, and the general format of the robot description model is in URDF
(unified robot description format). Based on XML, URDF is a language designed to
describe the robot simulation model universally in ROS system, including the shape,
size and colour, kinematic and dynamic characteristics of the model [4].

The basic way of building the visualization model in URDF is writing and com-
piling the URDF file. In URDF grammar, robot structure should be divided into links
and joints. The connection relationship between parts is described by <parent> and
<child>. To precisely describe the parts with parameters, ROS provides XACRO to
allow users to use calculation macro in URDF. The common commands used to define
the connection relationships are listed in Table 1.

When the structure of robots is relatively complex, the complexity of writing
URDF file increases greatly. To ensure the accuracy of description, the often-used
method is using 3D modelling software like Solidworks, Unigraphics NX, and trans-
form the model into URDF by applying the plug-in like “solidworks to urdf”. The
suggested format of the 3D model is *.gae, while using stl format file is also acceptable
in ROS as it contains the main grid statistics.

Table 1. Common commands used in URDF

Commands Grammar

Name the robot robot name = “***”
Define the part link name = “link***”/
Define the connection node joint name = “joint***”

type = “***”
Define the connection relationship parent link = “link****”/

child link = “link****”/

28 Z. Wang et al.

After writing the URDF file, the check_urdf tool can be used to check the grammar.
If there exist no mistakes, this URDF file can be viewed in Rviz to visualize the robot
model now.

When the URDF file needs to be applied in robots, users need to publish the robot
conditions to tf, robot_state_publisher serves as the basis. The relevant parameters
include the urdf xml robot description, and the joints information source with
sensor_msgs/JointState format. The process of compiling URDF will generate the *.
launch file, as the executive program in ROS.

In short, to realize the visualization, users need to write the urdf description file, and
a node to publish and transform the information supported by robot_state_publisher.

2.2 Motion Planning Visualization Based on Rviz and Moveit

Rviz is the built-in visualization tool in ROS, providing the 3D simulation environ-
ment. With properly-set URDF file, using Rviz to visualize the robot model will be of
no difficulty. When it comes to the kinematic analysis, the precise kinematic definitions
needing can be acquired from the URDF file, and the relevant operation is supported by
Moveit. The visualization environment provided by Rviz is shown in Fig. 2.

Moveit is a universally-used integrated tool kit in ROS, as the core of motion
control system, in charge of the calculation process of the positive and athwart kine-
matics of the robot’s kinematic model. While the motion planning algorithm is based
on the third-party library, OMPL (open motion plan library) [5].

To apply Moveit! in robot control system, the most convenient way is using the
application assistant, which allows users to finish relevant configuration in steps.
The main steps include importing the URDF file, setting the collision matrix, and
adding the links and joints to the concerned motion planning group [6].

Fig. 2. The visualization environment provided by Rviz

Rapid Developing the Simulation and Control Systems 29

2.3 Implement Machine Vision with ROS

Machine vision is the technology and methods used to provide imaging-based auto-
matic inspection and analysis for such applications as automatic inspection, process
control, and robot guidance in industry. ROS integrates the driver kit OpenNI of
Kinect, and can use OpenCV library to operate various image processes.

The common package used in ROS for image operating include camera_calibra-
tion, which serves as a calibration tool for the camera. The main algorithm it uses is the
calibration method of chess board put forward by Zhengyou Zhang, which is also the
general calibration method applied in OpenCV. The package image_view allows users
to check the camera photos and give corresponding advice for the robot [7].

Here is the frequently-used usage:

Use an 8 × 6 chessboard with 108 mm squares to calibrate the camera.

Apply the image_view package to look over the stereo photo acquired from the
camera for further correction.

To achieve better target location effect, binocular vision has been the mainstream in
machine vision aspect. With binocular cameras shooting at known positions, the rel-
ative position information of the target object can be acquired by analyzing the images
of the binocular cameras. The basic binocular vision principle is shown in Fig. 3.

Suppose that we use two cameras to estimate the position of the target P. The two
cameras have parallel optical axis, and the distance between the two cameras is T. The
red thick lines stand for the image planes. Both focus of the cameras is f. According to
the similar triangle principle, Z can be induced by:

Fig. 3. Binocular vision principle

30 Z. Wang et al.

T � xl � xrð Þ
Z � f

¼ T
Z
) Z ¼ fT

xl � xr

ROS provides the relevant camera drivers packages, so users can select the cor-
responding branch to adapt need.

2.4 Devices Communication Principle

The communication within computers using ROS is generally based on TCP/IP pro-
tocol, which provides convenience in system building as the communication through
internet nodes has been fully developed. With the master process running on the control
computer, each node is able to interact with the other node in form of messages [8].

The mechanical arm motion statistics acquired from motion planning is transported
with JointTrajectory message, which is a kind of track statistics in PVT (position,
velocity, time) format. It stands for the position, the instantaneous velocity at the
position, and the time taken to reach this position of each mechanical arm concerned.
Through Modbus TCP Protocol, the PVT motion statistics is transported to multi-axis
controller. Each axis finishes the planned motion according to the statistics after
interpolation operation.

In telecommunications, RS-232 is a standard for serial communication transmission
of data. It formally defines the signals connecting between a DTE (data terminal
equipment) such as a computer terminal, and a DCE (data circuit-terminating equip-
ment or data communication equipment), such as a modem. The RS-232 standard is
commonly used in computer serial ports. In ROS, the package ROS-serial is a protocol
for wrapping standard ROS serialized messages and multiplexing multiple topics and
services over a character device such as a serial port or network socket. Classified by
the different clients, ROS-serial provides various library aimed at Arduino, windows,
Linux, etc. Usually, serial package is used to realize the communication between
RS-232 serial and the device running Windows or Linux [9].

Fig. 4. The Modbus TCP communication base on EtherCAT bus

Rapid Developing the Simulation and Control Systems 31

The Modbus package provides a wrapper from the Modbus TCP communication to
standardized ROS messages. Programs of users use API library to run a Modbus server,
in which there are the holding register and coil register. The upper machine acts as a
client of Modbus, realizing communication and information interaction through reading
the value of the register in Modbus server. The corresponding value leads the user’s
programs to realize motion control. TheModbus TCP communication is shown in Fig. 4.

3 Deployment Instance: Tomato Harvesting Dual-Arm Robot
BUGABOO

It is a challenging task to develop an autonomous agricultural robot to fulfil multiple
purposes due to the fact that the unstructured environment leads to difficulties for
machine vision to identify targets and for intelligent manipulation to avoid obstacles.
A humanoid agricultural robot, BUGABOO, is designed at Shanghai Jiao Tong
University to perform various tasks such as plant disease monitoring, pesticide spraying
and fruit harvesting. In this section the tomato harvesting task of the agricultural robot
is selected as a symbolic case to show that the ROS facilitates a rapid development of
simulation and control systems for BUGABOO.

3.1 The Mechanical System for BUGABOO

To finish the autonomous tomato harvesting task with accuracy and efficiency, this
designed structure is as follows,

BUGABOO has two 3 DOF upper limbs mimicing the human arms, and a rotating
platform serving as the waist. The serial arms with same structure are installed on the
waist platform symmetrically. The 3 degrees of freedom include: the DOF of the lifting
joint vertically, the DOF of the rotating joint of bigger arm, the DOF of the rotating
joint of smaller arm. The waist-shape platform can rotate around the axis perpendicular
with the ground to change the overall direction of robot. The single arm structure is like
that of SCARA robot, in which the lift joint changes the position of the end in vertical
direction, and the two rotating joints cooperate to change the end position in horizontal
direction. Flange surface is installed at the end of the smaller arm; thus different end
actuators can be installed to finish different tasks. The base is fixed on the automated
trail car, which could move along the trail in field. When the robot recognizes and
locates the ripe fruit, the dual-arm cooperate to harvest the fruit. The structure of the
robot main body is shown in Fig. 5.

3.2 The General Control System Structure Design

As shown in Fig. 6, there are multiple nodes under ROS framework running on the
monitoring computer and airborne computer at the same time. All the nodes together
constitute the upper machine software part of harvest system. According to the func-
tion, the structure mainly include the 3D simulation environment based on ROS built-in

32 Z. Wang et al.

visualization tool RViz, mechanical arm motion planning function library set based on
MoveIt!, machine vision processing based on OpenCV open-source library, task level
state machine programming based on SMACH library, interactive control interface
based on the wxPython (encapsulated in Python sizers cross-platform GUI library), etc.
Besides, there are also some function modules concerned with the bottom hardware,
such as camera driver, and lower machine communication serial port and Modbus TCP
procedures, etc. These function modules continuously produce messages when run-
ning, and at the same time also have demand for other information or services. ROS
framework provides a good message-swapping and service invocation mechanism.

Fig. 6. Whole software system structure

Fig. 5. Structure of the robot main body

Rapid Developing the Simulation and Control Systems 33

3.3 Software Running Environment

Running ROS is available in Linux, Mac OS X, Android and Microsoft Windows, but
users generally choose Ubuntu Linux, because this is the official recommendation to
support the best operating system, and the use of Ubuntu is completely free of charge. The
existing ROS versions are quite various. Considering the running stability, we choose the
first version with 5 years support, indigo running on Ubuntu14.04 as the ROS version.

3.4 Modelling URDF with *.stl File

To ensure the accuracy of the model, we choose to build the 3D model with profes-
sional modelling software, Solidworks to get the required *.stl file, and import it into
the URDF file as meshes.

With the URDF file finished, we use the tool in Rviz check_urdf to check if there is
any grammar mistake. The corresponding output is shown as below:

34 Z. Wang et al.

To view the model more intuitively, we can use the tool urdf_to_graphiz to show
the tree structure of the robot model, as Fig. 7 shows.

3.5 Visualization and Motion Planning

With Rviz and MoveIt!, we can easily get the visualization model. Given the start point
and end point, OMPL library support to finish the motion planning, “lr1” being the
name of the robot. The simulation interface is shown in Fig. 8.

Fig. 7. The visualization model of the robot

Fig. 8. MoveIt! interface in RViz and the arm trajectory simulation

Rapid Developing the Simulation and Control Systems 35

3.6 Machine Vision

In fruits harvest mission, the relative position and posture of fruit relative to the robot
are needed to control the end actuators to reach the ideal position operating harvest.
Binocular stereo vision is similar to human visual system, and enjoys good accuracy
and efficiency. Here we choose the binocular camera Bumblebee2.

There exists the matched software package for Bumblebee2 in ROS, thus the
configuration of the camera is much easier. Project uses Bumblebee2 camera on
Ubuntu Linux, uses libdc1394 library to control camera and capture the images, and
then use the Triclops library to correct image and complete the image matching and
depth calculation. Program runs as a ROS node, and publish the image, depth point
cloud information as ROS topic, for the subscription of other ROS node. The basic
logic is shown in Fig. 9.

3.7 Field Experimentation

To examine the working effect of the harvest dual-arm robot, we conducted a series of
experiments in farming base. We took the robot to operate the independent harvesting
process, realized the full autonomous fruit and vegetable harvesting operations by
agricultural robot. The working situation is shown in Figs. 10 and 11.

Fig. 9. The general procedure of stereo vision

Fig. 10. The Operating scenario of BUGABOO

36 Z. Wang et al.

Field experimentations demonstrate that the tomato harvesting dual-arm robot
BUGABOO works with excellent stability as the data communication is based on
TCP/IP protocol. Decent location accuracy is ensured by the binocular stereo vision.
This experiment proved the advantages of ROS when applied in autonomous robot
control system, which provides good reference for further improvement of the control
system (Table 2).

3.8 Compare with MFC-Based Control System

At the beginning of program, we tried to build the control system on Windows plat-
form, using Visual Studio development tool to write the C++ program and user
interface.

As shown in Fig. 12, the interface can be divided into four part, including the photo
view part, the 3-D simulation part, and two parameter-control parts. In the developing
process, we found that there were many disadvantages compared with ROS:

• The program frame with single project is hard to develop when several program-
mers cooperate. As a single executive file is formed with all the sub-programs,
debugging process takes a lot of time. While in ROS frame, the function module
can be divided completely in different projects (nodes), which increases the
developing efficiency.

Fig. 11. The operating details driven by ROS

Table 2. General index of BUGABOO

Parameters Values

Weight 40 kg
Total power 2.2 KW
Work breadth 350 mm × 350 mm × 580 mm
Total degree of freedom 12
Average harvesting efficiency 45 s/each
Method of target location Binocular stereo vision

Rapid Developing the Simulation and Control Systems 37

• As the algorithm of the robot researching is changing constantly, the codes from
Internet require to be edited greatly to adapt to the existing program frame, which is
not worthy for selecting algorithms at the beginning step. While ROS has
open-sourced internet community, in which there are many excellent codes and
algorithm, and many algorithm libraries provide support to ROS.

• Multi-process communication is relatively messy in Windows platform. ROS
provides the practical communication standard by each node, which could avoid the
conflict due to dependencies and synchronous conditions.

4 Conclusion

In summary, this paper describes a general method of building robot control system
software applying ROS, mainly including modelling with URDF, visualization with
Rviz, motion planning with MoveIt!, and vision with OpenCV library, communication
with serial and Modbus.

To illustrate the method more concretely, the paper takes the tomato harvesting
dual-arm robot running ROS as example. Experiments prove that the robot control
system built with ROS enjoys convenience of use and good stability.

In the research process, various kinds of problems arise. Further work is needed to
improve the performance of the control system developed by ROS. Such as developing
a performance evaluation system based on the data from field experiments to measure
the reposition precision of the robot. And try to apply the control system developed by
ROS in complex mechanical systems to make use of the advantages in complex
communication of ROS module program.

With robot technology developing, the application of ROS in robot control system
is expected to be wider and more efficient.

Fig. 12. Early control interface in Windows

38 Z. Wang et al.

Acknowledgements. This research is founded by MOST of China under Grant No. 2014
BAD08B01 and No. 2015BAF13B02, and partially supported by the National High Technology
Research and Development Program of China under Grant No. 2013AA102307.

References

1. Bac, C.W., Henten, E.J., Hemming, J., et al.: Harvesting robots for high-value crops. In: State
of the Art Review and Challenges Ahead, pp. 888–911 (2014)

2. Wang, Y.H., Lee, K., Cui, S.X., Risch, E.: Research on agricultural robot and applications. In:
Southern Plains Agricultural Research Center, College Station (2014)

3. Quigley, M., Conley, K., Gerkey, B., et al.: ROS: an open-source robot operating system. In:
ICRA Workshop on Open Source Software (2009)

4. Cao, Z.W., Ping, X.L., Chen, S.L., Jiang, Y.: Research on method of developing robot model
based on ROS (2015)

5. Yousuf, A., Lehman, W., Mustafa: Introducing kinematics with robot operating system
(ROS). In: ASEE Annual Conference and Exposition (2015)

6. Chitta, S., Sucan, I., Cousins, S.: Moveit![ROS topics]. IEEE Robot. Autom. Mag. 19(1),
18–19 (2012)

7. Bradski, G., Kaehler, A.: Learning OpenCV: Computer vision with the OpenCV library.
O’Reilly Media Inc., Sebastopol (2008)

8. Hoske, M.T.: ROS Industrial aims to open, unify advanced robotic programming. Control
Eng. 60(2), 20 (2013)

9. https://en.wikipedia.org/wiki/RS-232

Rapid Developing the Simulation and Control Systems 39

https://en.wikipedia.org/wiki/RS-232

	Rapid Developing the Simulation and Control Systems for a Multifunctional Autonomous Agricultural Robot with ROS
	Abstract
	1 Introduction
	2 Customizing Robotics Modules in ROS
	2.1 Building Description Model Based on URDF
	2.2 Motion Planning Visualization Based on Rviz and Moveit
	2.3 Implement Machine Vision with ROS
	2.4 Devices Communication Principle

	3 Deployment Instance: Tomato Harvesting Dual-Arm Robot BUGABOO
	3.1 The Mechanical System for BUGABOO
	3.2 The General Control System Structure Design
	3.3 Software Running Environment
	3.4 Modelling URDF with *.stl File
	3.5 Visualization and Motion Planning
	3.6 Machine Vision
	3.7 Field Experimentation
	3.8 Compare with MFC-Based Control System

	4 Conclusion
	Acknowledgements
	References

