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Abstract. This paper presents an on-line estimation method which can find a
mathematical expression of stiffness property of the objects grasped in vision-
based robotic systems. A robot manipulator in conjunction with visual servo
control is applied to autonomously grasp the object. To increase the accuracy of
the object compression values associated with the used low-cost hardware, an
extended Kalman filter is adopted to fuse the sensing data obtained from webcam
and gripper encoder. The grasping forces are measured by a piezoresistive pres‐
sure sensor installed on the jaw of the manipulator. The force and position data
are used to represent the stiffness property of the grasped objects. An on-line least
square algorithm is applied to fit a stiffness equation with time-varying parame‐
ters. The experimental results verify the feasibility of the proposed method.

Keywords: Robotic grasping · Extended Kalman filter · Stiffness estimation ·
Sensor fusion

1 Introduction

Vision-based robotic grasping has played a central role in various industrial automated
operations such as pick-and-place, packaging, and part assembly [1, 2]. During these
operations, automatic inspection which aims to detect the defects of the grasped objects
is also an imperative task to meet the increasingly high standards in the production line
of factory automation. One efficient way to perform non-contract inspection is using the
image sensing data from cameras to exclude both accidental failure and quality defects.
However, inspection solely by using images can only detect surface defects [3]. In
general cases, it is difficult to notice the defects such as stiffness change or texture
damage just by its exterior, especially for some soft and delicate grasped objects (e.g.,
fresh food transportation). If the stiffness (i.e., impedance) of these objects is known in
advance, appropriate grasping forces can be simply generated through the use of impe‐
dance control [4]. However, because the grasped objects may be damaged or changing
its stiffness at any process from time to time, it is important to have the information of
stiffness characterization in real-time [5] so as to maintain a high yield rate and perform
accurate fault detection and diagnosis.
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This study aims to develop an on-line method to measure object’s stiffness using
readily-available and low-cost components in vision-based robotic grasping systems.
Instead of using extra displacement sensors and involving complicated manufacturing
processes and system integration, the work directly applies a robotic gripper equipped
with a piezoresistive force sensor to obtain the relationship between grasping forces and
compression amount of the grasped objects. The goal is to monitor the stiffness change
during the vision-guided autonomous grasping process and use this information to
conduct more efficient automation tasks. For simplicity the object compression values
are acquired from encoder feedback of the servo motor installed in the gripper. However,
due to the limited encoder resolution, the position measurement is susceptible to quan‐
tization errors and subtle compression may be hardly detectable. Another issue is that
unexpected deformation with the gripper may be occurred in grasping high stiffness
objects by using such low-cost flexible gripper. Since image feedback is readily available
in vision-based robotic grasping systems, this sensing information is also adopted to
fuse the gripper encoder feedback data for estimation of object compression. Because
image processing is widely vulnerable to environments with noises, an extended Kalman
filter is applied to compensate the imperfect measurement from these two sensing data
and obtain more robust stiffness estimation. In this presented system, a robot manipulator
is first commanded to approach a static grasping target by using visual servo control
technique. After contacting with the targeted object, the system then starts to estimate
the object’s stiffness during the grasping process. A least-square method is simultane‐
ously applied to fit a time-varying stiffness equation for on-line evaluation. The exper‐
imental results demonstrate the feasibility of the proposed stiffness estimation method.

2 Experimental Setup

Figure 1 shows the photograph of the system setup used in this research, which is
composed of three webcams, a robot manipulator, a force sensor, and an Arduino
embedded board. Two downward-looking cameras are applied to build stereopsis to
determine the grasping target’s position and implement visual tracking control. Another
camera (all made by Logitech C170) is installed in front of the manipulator to obtain
the displacement information of the gripper. The robotic manipulator used in the experi‐
ments has 4 degree-of-freedom (DOF) and the servo motor installed in each joint is made
from Robotis with model number AX-18A. Particularly, the servo model number used
for the gripper is MX-28T and has an encoder with 4096 ppr. A FlexiForce sensor is
equipped with the end of the gripper to measure the grasping forces. A low pass RC
filter is applied to eliminate undesired high frequency electrical noises and the measured
force values are sent to PC through the communication interface in Arduino. Figure 2
illustrates the schematic diagram of the proposed stiffness estimation system. The
images of the target are first captured by using stereo cameras. After appropriate image
processing the targeted object’s center-position is given to drive the robot manipulator
to approach the target by sending correct motor joint commands through visual servo
control. During the entire grasping process, the encoder values associated with the
gripper servo motor and the continuous images captured by the forward-looking camera
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are simultaneously integrated to estimate object compression values. The extended
Kalman filter algorithm is implemented to reduce the influences of the error sources and
noises from these two sensing data. Given measured grasping force feedback, a curve
that illustrates the relationship between force and compression is continuously updated
and fitted by using a least square method.

Fig. 1. Photograph of the experimental setup: a. front view; b. side view

Fig. 2. Schematic diagram of the proposed stiffness estimation system

3 Visual Servoing

This study simply implemented a position-based visual servoing (PBVS) control system
[6] for grasping and stiffness estimation experiments. The images captured from camera
are first used to calculate the error between manipulator end-effector and grasping target.
The motor position commands derived from classical resolved motion rate control are
calculated to reduce this tracking error. Figure 3 depicts the applied PBVS control block
diagram, where g represents the estimation of the goal position, h represents the calcu‐
lation of manipulator end-effector with forward kinematic model K, and J is the robot
Jacobian matrix.  and  denote the joint angle and angular velocity of the robot manip‐
ulator, respectively. The control law for this visual servo system is given as
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(1)

Fig. 3. Block diagram of position-based visual servoing

Note that  is a proportional gain for tuning.

4 Object Compression Estimation by Sensor Fusion

In this study, two system parameters are to be measured/estimated in order to obtain the
stiffness curve of the grasping objects. One is grasping force and the other is compression
of the grasped objects. The objective is to find a relationship between this two physical
properties and a fitting curve. The grasping force is measured by a piezoresistive force
sensor at the end of gripper. To compensate the imperfect measurement from the avail‐
able used low-cost hardware without adding extra displacement sensor, the amount of
object compression is estimated by applying an extended Kalman filter [7] to fuse image
feedback and gripper encoder feedback together.

As mentioned in the introduction, the measurement error sources by using a low-
cost and low-rigidity gripper to estimate grasping object’s compression include quan‐
tization errors and slight gripper deformation when grasping with high stiffness objects.
These errors and uncertainties along with image noises are modeled as part of stochastic
noises to satisfy the Kalman filter problem assumptions. In this section the measurement
models associated image feedback and encoder feedback are presented to facilitate the
Kalman filter problem setup.

For the purpose of visual recognition and tracking control, a red marker attached to
the gripper end is treated as an image feature point. After following the image processing
procedures mentioned in Sect. 3, the image coordinate of the gripper can be obtained
and should be transformed to a world coordinate representation by using a camera model.
The gripper movement is used to represent the object compression. The schematic
diagram of the applied camera model is illustrated in Fig. 4 and the transformation
formula can be represented as

(2)

where p denotes the gripper compression expressed in image plane with an unit in pixel.
d is the distance between camera and gripper. f is the focal length of camera. x is the
actual gripper compression presented in world coordinate. p0 is the translation between
pixel coordinate system and image coordinate system. For simplicity, in this study the
compression value is expressed in camera coordinate system since this value is the same
as the one expressed in world coordinate system.
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Fig. 4. Illustration of camera model associated with gripper compression

In addition to visual feedback, the encoder feedback available from the robotic
gripper system is simultaneously applied to estimate object compression. As shown in
a schematic diagram of gripper kinematic model (Fig. 5), the geometric relationship
between gripper movement x and motor’s rotation angle  can be derived as

(3)

where  is the half of the horizontal distance between the axis center of two motors. a
is the vertical distance from the axis of rotation to the front-end of motor.  is an offset
angle of .

Fig. 5. Schematic diagram of the applied gripper for compression estimation

It is obvious in Eq. (3) that a nonlinear term  accompanies with the encoder
measurement equation. This is the primary reason why an extended Kalman filter is
applied to fuse both vision and encoder feedback information for compression estima‐
tion. Combining the above two measurement models with a static equation of motion
using the fact that the gripper movement is slow, the system model and measurement
model used in this study can be summarized as

(4)
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(5)

where , ,  and  share the same notations with the ones mentioned in the previous
subsections.  represents the displacement produced by the motor command. Note that
the constants  and p0 can be simply offset to satisfy the linearity. To finish the problem
setup the linearized measurement matrix H is derived as

(6)

5 Experimental Results and Discussion

In order to evaluate the feasibility and performance of the proposed stiffness estimation
method, a 4-DOF robot manipulator was adopted to conduct grasping experiments and
the estimated stiffness parameters were updated on-line through a visual interface
programmed by OpenGL libraries. This section presents object compression estimation
with fused sensor data, and curve fitted results for on-line stiffness demonstration.

5.1 Grasping Object Compressing Estimation

The purpose of this experiment was to verify that the accuracy of object compression
can be further improved by applying an extended Kalman filter technique integrating
with the vision feedback and gripper encoder feedback obtained in the grasping process.
Simulation and experiments were both conducted by sending motor commands to move
the gripper to a desired position and comparing the differences between estimated and
actual gripper position. In the simulation, the servo motors were commanded to rotate
sequentially from 0° to 45° sampled with one degree, simulating the compression
process when grasping the object. Gaussian noises were added to simulate the uncer‐
tainties and imperfect measurement due to the applied hardware in this study. Figure 6
shows the estimation errors of using three different sensing data: image feedback only,
gripper encoder feedback only, and sensor fusion data. X-axis represents the motor
command and Y-axis represents the estimated errors. Assume that the image noises have
larger influences than the noises existed in the gripper system. The results by using fused
sensor data (blue solid line in the plot) justify the improved accuracy of this proposed
method.
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Fig. 6. Effectiveness of using different sensing data: simulation results (Color figure online)

In the experiment, the gripper was commanded to move from 10 cm to 0 cm and the
data was recorded every 0.5 cm movement. Figure 7 shows the results by comparing
the three sensing data with the values measured by a 1 mm resolution laser rangefinder.
In Fig. 7, X-axis stands for the gripper movement, which is also treated as the amount
of gripper compression. Obviously, the estimated errors in the proposed experimental
system were dominated by image noises with an offset value. The regular triangular-
like estimation errors by using encoder feedback only were primarily due to the quan‐
tization effects with limited encoder resolution. The estimation error distribution in
experiments suggests that the normal distribution assumption may be not applicable to
the cases using either encoder feedback or image feedback. However, the valid error

Fig. 7. Effectiveness of using different sensing data: experimental results
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offset compensation and further error magnitude reduction still verifies the effectiveness
of the method by fusing these two feedback information.

5.2 Measuring Object Stiffness

In this experiment, a sponge-made block was adopted for grasping tests and stiffness
estimation. In order to establish a comparison basis, the stiffness of the block was first
measured off-line using an electronic scale with 0.1 g accuracy. The block was placed
on the scale and a drill installed on a small desktop machine was fed gradually to the
block and provide different compression amounts. The displacement resolution of the
scale on the drilling machine is 1 mm. The force and compression data were recorded
and plotted as the red solid line shown in Fig. 8. The blue dashed line represents the
estimated stiffness relationship by using the proposed method, where the compression
forces were measured by a piezoresistive sensor equipped on the end of gripper. As can
be seen, both curves show a close match with small amounts of compression and a
deviation starts after the amount of compression is larger than 0.2 cm. Nevertheless, the
overall trend of the proposed method is still similar to the one of off-line measurement
results.

Fig. 8. Stiffness measurement using the proposed method and offline validation: grasping a soft
block (Color figure online)

5.3 On-Line Stiffness Curve Fitting

To quantize the stiffness estimation results obtained in the previous subsection, a cubic
polynomial was adopted as the stiffness equation in which its parameters were identified
by using a standard least square method. The fitted parameter values were updated on-
line in conjunction with the continuously-added measurement data. Figure 9 shows the
curve fitting result with the whole compression process and the final fitted equation is
represented as
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(7)

Fig. 9. Stiffness curve fitting results using least-square method: grasping a soft block

The coefficient of determination (R-squared) is 0.9857, which is very close to 1.
Therefore, the fitting result is good enough for stiffness quantization and evaluation.

6 Conclusions

This paper presents an intelligent on-line stiffness method which identifies the time-
varying stiffness property of objects grasped by vision-based robotic manipulators. One
great feature in this proposed system is the exemption from using an extra displacement
sensor for compression measurement by integrating with the image feedback and gripper
encoder feedback information during grasping process. The experimental results justify
the improved compression estimation with fused sensor data and the curve-fitted results
demonstrate the feasibility of the proposed method. This technique may be applicable
to many applications that require automated manipulation, monitoring, and stiffness
inspection. Another application of this system is to further integrate the estimated stiff‐
ness with virtual reality technique to develop various haptic interfaces in games, surgical
training, and military use. This study assumes that the measured noises and uncertainties
are Gaussian noises and applies this assumption to facilitate the Kalman filtering
problem formulation. To be more realistic as the true cases and obtain better estimation
this strong assumption may be relaxed by applying other advanced algorithms that fit
non-Gaussian noise distribution assumption such as particle filters [8].

References

1. Cheng, H., Zhang, Z., Li, W.: Dynamic error modeling and compensation in high speed delta
robot pick-and-place process. In: IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent System, pp. 36–41. IEEE Press, Shenyang (2015)

Stiffness Estimation in Vision-Based Robotic Grasping Systems 287



2. Feng, C., Xiao, Y., Willette, A., McGee, W., Kamat, V.R.: Vision guided autonomous robotic
assembly and as-built scanning on unstructured construction sites. Autom. Constr. 59, 128–
138 (2015)

3. Zhou, A., Guo, J., Shao, W.: Automated detection of surface defects on sphere parts using laser
and CCD measurements. In: Conference of IEEE Industrial Electronics Society, pp. 2666–
2671. IEEE Press, Melburne (2011)

4. Li, M., Yin, H., Tahara, K., Billard, A.: Learning object-level impedance control for robust
grasping and dexterous manipulation. In: IEEE International Conference on Robotics and
Automation, pp. 6784–6791. IEEE Press, Hong Kong (2014)

5. Pedreno-Molina, J.L., Guerrero-Gonzalez, A., Calabozo-Moran, J., Lopez-Coronado, J.,
Gorce, P.: A neural tactile architecture applied to real-time stiffness estimation for a large scale
of robotic grasping systems. J. Intell. Robot. Syst. 49, 311–323 (2007)

6. Hashimoto, K.: A review on vision-based control of robot manipulators. Adv. Robot. 17, 969–
991 (2003)

7. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. J. Basic Eng.
83, 95–108 (1961)

8. Arulampalam, M.S., Maskell, S., Gordan, N., Clapp, T.: A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

288 C.-Y. Lin et al.


	Stiffness Estimation in Vision-Based Robotic Grasping Systems
	Abstract
	1 Introduction
	2 Experimental Setup
	3 Visual Servoing
	4 Object Compression Estimation by Sensor Fusion
	5 Experimental Results and Discussion
	5.1 Grasping Object Compressing Estimation
	5.2 Measuring Object Stiffness
	5.3 On-Line Stiffness Curve Fitting

	6 Conclusions
	References


