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Abstract. In this paper, firstly, we analyze and compare four robot kinematic
calibration methods for Baxter robot, including screw-axis measurement,
extended kalman filtering, least squares method, integration of screw-axis
measurement and kalman filtering. The performance of these four methods are
evaluated through an experiment. Secondly, we analyze the monocular-vision
and binocular-vision in object grasping, and propose a vision-based step-by-step
object grasping strategy for the Baxter robot to grasp an object. Experiment
results show that the object can be grasped based on the proposed method.
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1 Introduction

Since the dual arm robot can complete some tasks like human being, it has been
focused by many researchers [1]. Many dual arm robots, such as SDA 10 [2], PR2 [3],
Baxter [4], have been developed for varied applications. Bater robot is an industrial
robot with two arms and two cameras on the arms, which has been applied in many
applications, especial in picking tasks [4]. To complete the picking tasks, it is necessary
to improve the positioning accuracy and grasp the object accurately.

There are many ways to improve the accuracy of positioning and object grasping
for the robot. Calibration of the geometric parameters of the robot and sensor-based
object grasping are the common methods, which received focuses by the researchers.
Normally, the calibration of geometric parameters can be realized through the fol-
lowing four steps: modelling, measurement, parameter identification, and error com-
pensation [5]. Homogeneous transformation matrix based D-H model is the usual
model used for calibration [6]. However, the kinematic singularity occurs when using
such D-H model. To overcome the kinematic singularity, some revised D-H model
were proposed in [7–9]. Some studies realized the calibration of robot based on laser
tracking [10] or CMM [11]. Such methods can obtain high accuracy, but with high
economic cost. For parameter identification, Kalman filtering [12], and Maximum
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likelihood method [13] are the common ways. Due to the advantages of vision sensors,
the vision-based object grasping has been focused by many researchers [14–16]. In
[14], a vision-based method was proposed to estimate the pose of the object. While in
[15], a monocular vision-based 6D object localization method was proposed to realize
the intelligent grasping. In [16], a fast algorithm for object detection using Scale
Invariant Features Transform keypoint detector was proposed for a manipulator to
detect and grasp an object. The methods for robot kinematic calibration and object
grasping described above can used for some robots with high stiffness. However, they
are difficult to be used for the robots with low stiffness, such as Baxter robot.

In this paper, we aim to propose methods to realize the kinematic calibration and
object grasping for Baxter robot. We compare four methods in the kinematic calibration
for Baxter robot, including the integration of screw-axis measurement and kalman
filtering, screw-axis measurement, least square method, and extended kalman filtering.
We also compare the monocular vision and the binocular vision, and propose a step by
step object grasping method for the Baxter robot grasps an object. The proposed
methods are evaluated through experiments with the laser tracker.

The problem is formulated in Sect. 2. The proposed method is described in Sect. 3.
The experiments and discussions are presented in Sect. 4, and the conclusion is pre-
sented in Sect. 5.

2 Problem Formulation

In this paper, we take the Baxter robot as the research object. Baxter robot a dual-arm
robot, which is developed based on the Robot Operating System (ROS) [4]. There are
7-DOF in each arm. Unified Robot Description Format (URDF) file is used to describe
the kinematic model of the Baxter robot. The next frame is obtained by the transfor-
mation of previous frame in the three coordinate axis. The frame of the Baxter’s arm is
shown in Fig. 1. The kinematic model of Baxter robot can be described as follow:

1 7
1 2 ...base base

gripper gripperT T T T ð1Þ

According to the definition of URDF, the frame transformation between two
adjacent frames can be described as follow:

1 ( )
i

i z i xyz i z iz y iy x ixT R T P R R R ð2Þ

Here, Ra is the rotation matrix around a axis, Ta is the translation matrix along
a axis. αix, αiy, αiz and Pi are the orientation and position of the link i, respectively. θi is
the rotation angle of joint i.

There are many parameters in the frame transformation, it is difficult to identify
these parameters. According to the specification of Baxter robot [4], to obtain the
accurate kinematic model, we need calibrate 38 parameters including 14 orientation
parameters and 24 position parameters. We compare four methods in the identification
of parameters for Baxter robot.
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To grasp an object accurately, the object should be positioned accurately. The
eye-in-hand system is usually used in a robotic system to grasp an object due to its
flexibility. Because a camera is attached on each arm for the Baxter robot, we can
consider the system as an eye-in-hand system. We analyze the monocular vision and
the binocular vision in the object grasping.

3 Proposed Method

3.1 Robot Kinematic Calibration

We compare the screw-axis measurement, extended kalman filtering, integration of
screw-axis measurement and kalman filtering, and least square method. Following, we
will describe these four methods simply.

Screw-axis measurement (SAM) is a way to calibrate the kinematic of robots [17].
When using screw-axis measurement, only one joint is moving, while other joints are
motionless. The trajectory of a point on the moving joint is measured to obtain the
position and orientation of the joint, which is used to calculate the kinematic param-
eters. The details of screw-axis measurement can be found in [17, 18].

Calman filtering (KF) is a way of linear quadratic estimation, which has been used
to estimate the kinematic parameters of robots [19]. The extended calman filtering
(EKF) is also used to estimate the kinematic parameters of robot [13, 20], which is
considered as an optimization algorithm. The least square method (LSM) is a standard
approach in regression analysis to the approximate solution of overdetermined systems,
which has been used in the estimation of kinematic parameters for the robots [21]. To
evaluate the previous system identification methods in the kinematic calibration of
Baxter, we apply the EKF, LSM, and SAM in the kinematic calibration, including the
position and orientation. We integrate the SAM and KF by using the SAM to estimate
the orientation parameters and using the KF to estimate the position parameters. The
details of KF can be referred to reference [19], and the details of EKF can be referred to
reference [13].

Fig. 1. The frames of Baxter’s arm
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3.2 Vision-Based Object Grasping

The coordinate frames for the monocular-vision and the binocular-vision are shown in
Fig. 2(a) and (b), respectively. A, B, C are the robot base frame, end-effector frame,
and camera frame, respectively. Normally, the grasped object is put on a flat. For the
monocular-vision system, the robot should move to the upper of the flat, and make the
optic axis of the camera be vertical to the flat. The positioning accuracy of monocular-
vision depends on the verticality between the optic axis of the camera and the flat, and
the calibration of the camera. When the working environment change, the calibration of
the camera should be done once again. While using the binocular-vision, the flexibility
and adaptability to the environment are improved, the matching points for these two
cameras should be matched accurately.

Whether using monocular-vision or binocular-vision, the positioning error exists in
the real application. In this paper, we propose a step-by-step object grasping strategy.
First, we move the robot to the approximate position based on binocular-vision, and
then calculate the position error DX ¼ ðex; ey; ez; 0; 0; 0ÞT between the position of
object and the current position of the end-effector. Because the position error is nor-
mally small, we can calculate the change of joints when compensating the position
error based on the following equation:

Dh ¼ J�1DX ð3Þ

Here, J is the Jaccobian matrix.
The implementation of step-by-step strategy in the object grasping is shown in

Fig. 3. The object is grasped through two steps.

(a) Monocular-vision                                                  (b) Binocular-vision 

Fig. 2. Coordinate frames for eye-in-hand robot system
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4 Experiment, Result and Discussion

4.1 Experiment for Kinematic Calibration

We evaluate the four robot kinematic calibration methods through an experiment with a
laser tracker, as shown in Fig. 4. The measurement accuracy of the laser tracker is
(10 + 5L) um, L is the measurement distance. In this paper, we set L to 2 m. Therefore,
the measurement accuracy of the laser tracker is 20 um. 150 points in the workspace of
the robot are set to the measure points.

Fig. 3. Implementation of step-by-step strategy in object grasping

Baxter robot 

Laser tracker 

Fig. 4. Experiment setting in the evaluation of kinematic calibration methods
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The positioning error is the distance between the position measured by the laser
tracker and the position of goal point. The positioning error before calibration and after
calibration is shown in Table 1. Before calibration, i.e., the values of kinematic
parameters are given based on the nominal model, the mean of positioning error is
14.21 mm. This is because the stiffness of the joint for the Baxter robot is low, which
affect the positioning accuracy of the robot. By using the EKF, SAM, and LSM to
calibrate the kinematic parameters, the positioning error is 16.11 mm, 18.46 mm, and
13.43 mm, respectively. The positioning error cannot be reduced after the calibration
by using the EKF, SAM, and LSM. When using the EKF, it is difficult to adjust the
covariance matrix of measurement, which may affect the convergence of the EKF. By
using the SAM, the accuracy of the screw-axis equation is important to reduce the
positioning error. However, it is difficult to obtain the accurate equation due to the low
stiffness of the Baxter robot. The LSM is sensitive to the measure error, which will
affect the effectiveness of the calibration. By using the SAM + KF, the positioning
error is 6.26 mm, which is smaller than that based on the nominal model. This is
because the SAM can calibrate the orientation parameter and the KF can calibrate the
position parameter well.

4.2 Experiment for Object Grasping

In this experiment, we first analyze the measure error by using the monocular-vision
and the binocular-vision, and then test the step-by-step strategy for object grasping.
The experiment settings for monocular-vision and binocular-vision are shown

Table 1. The position error before and after calibration (unit mm)

Positioning error No calibration EKF SAM LSM SAM + KF

Mean error 14.21 16.11 18.46 13.43 6.26
Standard deviation 5.39 10.78 6.21 4.96 3.22

(a) Monocular-vision                                              (b) Binocular-vision 

Camera 

Object  

Object  

Camera 

Fig. 5. Experiment setting
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Positioning hole

Fig. 6. Positioning plate

(b) Measure error derived by binocular-vision 

Distance segments 

(a) Measure error derived by monocular-vision 

Distance segments 

Fig. 7. Measure error derived by monocular-vision and binocular-vision
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in Fig. 5(a) and (b). We capture the image for a positioning plate, which has four
holes on the plate. There are four distance segments on one plate. The length of each
distance segment between the adjacent holes is 100 mm, as shown in Fig. 6. The
measure error is the difference between the real length of the distance segment and
the length measured by the camera. We put the plate in different positions on the
table with different orientation, and test total measure 144 pieces of distance
segments.

The measure errors derived by monocular-vision and binocular-vision are shown in
Fig. 7(a) and (b). The mean of the measure error derived by the monocular-vision is
1.20 mm, while the mean of the measure error derived by the binocular-vision is
2.07 mm. The mean of the measure error derived by the monocular-vision is smaller
than that derived by the binocular-vision. This is because the binocular-vision is
affected by the accuracy of the matching point, the calibration of the camera, and so on.

To grasp the object successfully, we implement the step-by-step strategy in the
experiment. After the robot is moved to the first positioning point, the difference
between the positioning point and the goal point is calculated and compensated, the

Fig. 8. Process of object grasping

Goal position 

Initial position 1 
Initial position 2 

Initial position 3 

Fig. 9. End-effector positioning based on error compensation
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process of object grasping is shown in Fig. 8. The object can be grasped by the
end-effector based on the step-by-step object grasping strategy. To check the perfor-
mance of the position error compensation, we set different position error and make the
robot move to the goal position based on compensation, as shown in Fig. 9.

5 Conclusion

In this paper, we analyze and compare four robot kinematic calibration methods for
Baxter robot. Due to the characteristic of the Baxter robot, the integration of screw-axis
method and kalman filtering perform best in the kinematic calibration. We analyze the
monocular-vision and binocular-vision in the object grasping, and propose a
step-by-step object grasping strategy. The experiment results show that the proposed
method can realize the object grasping for the Baxter robot.

In the future work, the calibration of non-geometrical parameters and the image
processing algorithm will be taken into account.
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