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Abstract. Human action recognition is a key process for robots when targeting
natural and effective interactions with humans. Such systems need solving the
challenging task of designing robust algorithms handling intra and
inter-personal variability: for a given action, people do never reproduce the same
movements, preventing from having stable and reliable models for recognition.
In our work, we use the latent force model (LFM [2]) to introduce mechanistic
criteria in explaining the time series describing human actions in terms actual
forces. According to LFM’s, the human body can be seen as a dynamic system
driven by latent forces. In addition, the hidden structure of these forces can be
captured through Gaussian processes (GP) modeling. Accordingly, regression
processes are able to give suitable models for both classification and prediction.
We applied this formalism to daily life actions recognition and tested it suc-
cessfully on a collection of real activities. The obtained results show the
effectiveness of the approach. We discuss also our future developments in
addressing intention recognition, which can be seen as the early detection facet
of human activities recognition.
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1 Introduction

Human actions recognition is getting more attention the last years. This task is of
interest in many fields such as robotics, computer vision, human-computer interaction,
and natural language processing, etc. targeting applications in homecare, personal and
manufacturing robotics, behavior analysis and many other domains. In our case, we are
interested in human-robots interactions (HRI), where robots need to understand the
actual contexts to better serve humans. Human actions are an important part of these
contexts and actions recognition capability is a key feature for friendly and accepted
personal robotics.

A lot of works have been done in HAR using videos [9]. The developed techniques
use image sequences (2D information evolving in time) and analyze the spatiotemporal
changes of human bodies appearance to infer human actions or activities. Recently,
RGB-D cameras were introduced. This allows using more reliable data as they encode
time series describing human postures and skeletons with avoiding classical issues such
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as occlusions, view point changes, lightning, etc. In its generality, the human actions
recognition problem can be seen as a general pattern recognition problem: basically,
one needs to match the observation, a multivariate time series to a previously seen
pattern and assign a label to it, i.e. an action.

Most of existing skeleton based techniques model explicitly the temporal dynamics
of skeleton joints. The dynamics are expressed as local models such as ARMA in [10] or
sequential state transition models (graphical models) such as HMM or DBN [11, 12].

In our work, we consider the human body as a dynamic system and we describe the
dynamics through latent force models (LFM [2]) for which, the human body is seen as
a dynamic system driven by latent forces. The LFM has been used mainly for pre-
diction purposes. Here, we adapt it to handle recognition tasks. The LFM two main
advantages: (1) as other dynamic systems based techniques, it allows understanding the
skeleton times series as HA, (2) it introduces a mechanistic flavor, which can be
advantageously used to enhance both the robustness and the interpretability of the
sequences. Indeed, observed body movements are generated by latent forces (muscles)
and any mechanistic model could be mapped to these forces even indirectly (the
general case of LFM).

In the following, we explicit the LFM model and the way we derive it from the raw
skeleton data. In Sect. 4, we show how the obtained LFM model is used for classifi-
cation purposes. Mainly we will demonstrate how to combine the forces and the
sensitivity parameters (the weights of the forces) in order the feed a simple linear SVM
to perform the classification task. Finally, we present our experimental protocol
including the used datasets (the MAD dataset from CMU and the daily action dataset
we collected) as well as the evaluation methods. We finish by presenting the obtained
results and discuss our future works.

2 Related Work

Action recognition research is very active since a decade. Pushed mainly by social
networks industry, many impressive researches were achieved based on the analysis of
2D videos (see [9] for a good review). More recently and with the RGB-D cameras, the
HAR issue changed slightly. Indeed, in RGB-D videos, accurate depth and skeleton [1]
information are available. This simplifies the HRA by removing occlusions and
viewpoint related ambiguities (perspective distortion, lack of Euclidian metrics) while
providing absolute measurements. In addition, one can use two different cues: depth
maps, which can be processed as normal RGB maps and skeletons joints positions,
which may reduce the effects of single inputs.

In RGB-D/skeleton data, the geometry is exact. Taking this advantage, some
authors proposed encoding HA according to some Euclidian groups formalisms: In [4],
the Euclidian rotation-translation group SE(3) is mapped on the Lie group to have
compact joints trajectories. The mapped trajectories are then warped with a DTW and a
linear SVM are sufficient to perform HRA. More classical is the work in [8]. Authors
used classical tools for time series to classify human actions with LDA classifiers.

Grammatical models have been used in [3]: “Bags of words” were constructed from
local descriptors to generatively derive actionlets, which are considered as the atomic
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components of actions. Probabilistic graphical models were in fact the most used in
HAR. They allow capturing the dynamics of the body with handling the difficult issues
of inter and intra-personal discrepancies. In [4], deep belief networks and HMM are
combined together to perform simultaneous segmentation and recognition. Piyathilaka
et al. [6] developed Gaussian mixture-based HMM for activity recognition [6]. Jaeyong
Sung used a hierarchical maximum entropy Markov model detect human actions [7]. In
[5], authors present a method of learning latent structures in human actions. Their
graphical model relies not only on the body dynamics but also on objects with which
humans interact.

Linear dynamic systems (LDS) have been also used. In [11], the HA time series are
modeled as an ARMA process and then projected on Grassman manifold, which allows
clustering actions.

More recently, hierarchical recurrent neural networks were used to avoid engi-
neering low level coding (i.e. features design) [12]. In their work, authors grouped
body parts into subgroups, facilitating the learning process as well as taking advantage
of the actual cross-correlation of the subparts when performing actions.

Different from previous works, we take inspiration from the findings of Laurence
et al. [2] concerning probabilistic dynamic systems. We extend the latent force model
(LFM) to use it for action recognition purposes.

The LFM describes human movements as a dynamic system for which the model
can be derived through Gaussian processes regression. This model makes the
assumption that latent forces generate body movements, i.e., the forces excite the body
to generate the observed data. In the initial formulation, the LFM was used to predict
the future body postures/movements. In our work, we use the same formalism with the
inclusion of the full set of parameters (the forces and their relative weights) to perform
a discriminative recognition using a simple linear SVM. We demonstrate that this
formalism is efficient in HAR but not only. Indeed, our approach captures HA per se
but also can give mechanistic hints about the movements, which can be of interest in
explaining some aspects related to motor activity analysis, as it will be discussed in the
conclusion.

3 Action Pattern Representation

This part focuses on the presentation of action and features used for recognizing. In the
original work of Alvarez et al., the purpose of using LFM was forecasting. That is to
say, given a time series at time t, the LFM is used to predict to future states of system.
We modified the formalism in order to use it as a classification framework.

3.1 Action Definition

An action is a physical activity, where ones body perform a set of movements to
achieve a predetermined goal such moving an object, changing posture, etc. Formally
and considering skeleton based description, an action could be described as a time
series of an N-vector, starting at time tstart and finishing at time tend:
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YðtÞ ¼ y1ðtÞ y2ðtÞ . . . yNðtÞ½ �
t 2 tstart, tend½ �

Where the yi are the R joints in the skeleton issued from the RGB-D sensor (Fig. 1).

3.2 Latent Force Model

In Alvarez et al. introduced latent force models. Basically, the proposed method per-
forms dimension reduction in time series.

Y ¼ F:WT þE

Under the assumption of normally distributed noise, the reduced representation or
the latent structure F can be seen as a Gaussian process (GP):

p FrðtÞjt; hð Þ�
YR
r¼1

N frðtÞj0;Krðt; t0 Þ
� �

Where the posterior F can be derived from the covariance matrix K.
This formulation is then extended to describe the time series as series issued by a

dynamic system equivalent to a second order system: a mass spring-damper system
excited by latent forces.

FS ¼ €YMþ _Y þ YDþ
X

Fig. 1. Body postures time series
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Where F is the forces matrix, M and C are the mass diagonal mass and damping
matrices, D is the original system matrix. These hybrid models consider the human
body in movement as a dynamic system driven by some latent forces, non-exactly
related to the actual forces (i.e. muscles activity) but allowing involving interesting
mechanistic principles to model body parts movements. This model has some simi-
larities with the dynamic movements primitives, which is used in robotics to encode
robots trajectories for learning actions by imitation.

Rewriting the differential Eq. (1), we have:

d2yiðtÞ
dt2

þCi
dyiðtÞ
dt

þDiyiðtÞ ¼
XR
r¼1

Sd;rfrðtÞ ð1Þ

Where every observed time series yi(t) is related to the R driving frðtÞ latent forces
and the N*R constants Sn,r sensitivities. The Knowledge of the latent forces, the sen-
sitivities and the constants C and D, it possible to derive the dynamics of the system
and to predict its outputs yi(t). This has been done in [4].

Assuming the latent forces as R independent GPs, it is shown that recovering new
values y�i ðtÞ is possible through a Gaussian process regression. Indeed, the output
covariance can be expressed as linear functions of the latent forces and the covariance
of a general stochastic process. From an original sequence yi ¼ yk; tkð Þk ¼ 1; . . .; nf g,
it is possible to predict new values y* in the sequence. It is shown that [y,y*]T satisfies
the following distribution:

y
y�

� �
� N 0;

Kyy Kyy�
Ky�y Ky�y�

� �� �

Where:

y� � Nðl�; r�Þ;
l� ¼KT

y �KT
y yy

r� ¼ �KT
y�K

T
yyKy� þKy�y�

With:

Kyiyjðt; t
0 Þ ¼

PR
1
Sri:Srj

ffiffiffiffiffiffiffiffi
pL2r

p
8xi:xj

Kr
yiyjðt; t

0 Þ,xp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:Dp � C2

p

q
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4 Action Recognition

In our case, the aim is to use the model for classification purposes. In other words, we
use the vector h ¼ Ci Di Sir fr Lr½ �i¼1;N;r¼1;R to encode actions and use it in a
discriminative procedure to perform action recognition.

4.1 Hyper-parameters Learning

In order to derive the model’s hyper-parameters, one needs to maximize the following
logarithm marginal likelihood function:

log p Y jF; hð Þð Þ ¼ � 1
2
YTK�1

Y Y � 1
2
log Ky

		 		� n
2
log 2p ð2Þ

Ky ¼ Kfr þ r2nI is the covariance matrix for noisy inputs Y. Kfr is the latent forces
covariance without noise, while ð�0:5:YT :K�1

y YÞ expresses the predictions errors, (–
0.5.log|KY|) is a penalty depending only on the covariance function and the inputs.

� n
2 log 2:pð Þ is a normalization constant.

To optimize (2), we use a gradient descent over the vector

h ¼ Ci Di Sir fr½ �i¼1;N;r¼1;R ð3Þ

4.2 Implementation

The pseudo-code of our implementation is the following:
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For more readability, we omitted detailing the c functions (can be found in [2]).
In our case, we considered 13 joints (N = 13) for the skeleton and we used two

latent forces (R = 2). Accordingly, the hyper-parameters vector components are the
following:

F ¼ f1;2ðtÞ
C ¼ C1:13

D ¼ D1:13

S ¼ S1;2:1;3

8>><
>>:

4.3 Features Vector and Action Classification

For action recognition, we started considering only the latent forces. That is to say the
time series f1;2 tð Þ
 �

. Unfortunately, this information was not sufficient to discriminate
among actions. Mainly, we found that similar movements but performed by different
body parts, generates similar forces, e.g., raising a hand and raising a leg. On the
contrary, the constants of the system, namely, the sensitivities, the damping and the
friction parameters were clearly different. This corresponds to the initial intuition that
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the sensitivities modulate/guide the energy towards some body parts, while the
damping/friction represents the sharpness of the observed movement. Accordingly, we
constructed our features vector as the concatenation of the forces time series together
with the system constants.

X ¼ f1;2 tð Þ S1;:1;3 S1;:1;3 D1;13 C1;13½ �

This vector has been used to feed a Support Vector Machine (SVM) to perform the
classification.

5 Results

Given human activity sequences, action recognition problem consists in solving two
sub-problems: (1) segmenting the sequence into actions, (2) recognizing the segmented
action. In a previous work [13, 15], the segmentation was addressed and is not con-
sidered here and we only focus on segmented sequences.

We evaluate our proposed Latent force-based features on two different datasets.
One is the MAD dataset from CMU [14]. The second dataset includes daily actions we
collected with a Kinect sensor.

To check the preliminary feasibility, we considered 8 different actions from both
datasets. 20 people perform every single action in the MAD dataset twice. We extract
latent force features using 13 original joints time series. The homemade dataset is very
similar to the MAD. We focused on daily actions, such as drinking, wearing glass and
stirring etc. Every action has been performed 20 times from 4 different people. Here as
well, every sample has 13 features sequences also joint angles.

Table. 1. MAD dataset results: av precision 89.93 %
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Every sample is performed randomly and with different length. The body joints are
captured at sample rate 30 Hz but down-sampled to 10 Hz.

After extracting the features in both datasets, we applied the Leave-one-out
cross-validation is performed. Table 1, and Table 2 show results, respectively on MAD
and on the homemade daily actions. The average precisions are resp. 89.93 % and
84.375 %, which comparable to state of the art results.

6 Conclusion and Future Work

In this paper, we presented latent force features based approach in solving human
action recognition. The proposed features reach interesting results compared to existing
works. Moreover, it allows more basic interpretation in relation with energetic and
biomechanics aspects of human motion. In the near future, our aim is to include these
two categories in the analysis to go deeper in human movement interpretation. Indeed,
some preliminary tests showed the effectiveness of this coding to interpret some motor
impairment such as trembling of limbs. The other point we want to address concerns
segmentation. Our previous work will be combined to this one to provide a complete
system.

Though the features are good to describe some actions, some actions are not
described well by proposed features. A way to improve is to increase the number of
latent forces. Unfortunately, this has a computational cost (inverting a large co-variance
matrix) and a more adapted optimization technique should be investigated: we used a
classical gradient descent while we have a quadratic form and local techniques should
be faster avoiding the matrix inversion issue.

Table 2. The homemade dataset. Av precision 84.37 %
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