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8.1          Introduction 

 Imaging biomarkers are health or disease  markers 
based on quantitative imaging parameters. With 
high-throughput computing, it is now possible to 
extract numerous quantitative features from com-
puted tomography (CT), magnetic resonance 
(MR), and positron emission tomography (PET) 
images. The conversion of digital medical images 
into mineable high-dimensional data is called 
radiomics and is motivated by the concept that 
biomedical images contain information that 
refl ects underlying pathophysiology [ 1 ,  2 ]. The 
image measurements are based on size, volume, 
and shape assessment and on signal intensity and 
heterogeneity (texture) analysis.  

8.2     Size Measurements 

 The simple clinically used metrics to assess lesion 
evolution include two-diameter (World Health 
Organization, WHO) and more recently, one-
diameter (Response Evaluation Criteria in Solid 

Tumors, RECIST) measurements [ 3 – 5 ]. For the 
last 15 years, the international cancer community 
has extensively employed the RECIST criteria at 
CT to assess the response exhibited by patient’s 
tumor on exposure to both marketed and experi-
mental antitumor therapies [ 6 ]. The calculated 
response is categorized as complete response (dis-
appearance of tumor), partial response (change 
between −100 and −30 %), stable disease (change 
between −30 and + 20 %), or progressive disease 
(increase of 20 % or greater). RECIST quantifi ca-
tion of response correlates with patient survival 
and disease- free survival, showing its clinical use-
fulness [ 6 ]. 

 However, RECIST criteria have several short-
comings. First, tumor evolution is linear, rather 
than polytomous. As cutoffs to defi ne partial 
response or progressive disease are artifi cial, 
quantitative measurements are superior to semi-
quantitative category assessment for studying 
tumor progression [ 6 – 9 ]. 

 Second, the reproducibility of manual mea-
surements may be suboptimal and may be 
improved by semiautomatic size measurements 
[ 10 ]. In a study of large lung tumors, it was shown 
that the 95 % limits of inter-observer agreement 
(−39–28 %) of maximum diameter measure-
ments were outside the range of clinical accept-
ability (<20 % according to the RECIST 
guidelines) at CT, whereas the corresponding 
automated measurements (−8.0–11 %) were 
within clinical acceptable range [ 11 ]. 
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 Third, RECIST size measurements do not 
always accurately refl ect tumor response, espe-
cially when molecular therapies or other targeted 
therapeutic interventions such as chemoemboli-
zation are used [ 12 ,  13 ]. This is explained by the 
fact that these treatments mainly cause tumor 
necrosis, with little or no size decrease. 

 Alternative response criteria have been devel-
oped in these cases. These criteria include the 
mRECIST criteria, in which one diameter of the 
viable, contrast-enhancing, tumor regions is mea-
sured; the European Association for the Study of 
Liver Disease (EASL) criteria in which two 
diameters of the enhancing regions are measured; 
and the Choi criteria in which decrease in tumor 
size and decrease in tumor density at CT are 
assessed [ 14 ]. 

 In patients with hepatocellular carcinomas, 
the Choi criteria have been shown to be superior 
to the RECIST, mRECIST, and EASL criteria to 
assess treatment response [ 15 ]. This underscores 
the fact that combining signal intensity measure-
ments with size measurements may increase the 
diagnostic value relative to size measurements 
alone. With the Choi method, however, the signal 
attenuation measurements are obtained as the 
mean value within a region of interest. This 
region of interest analysis provides only part of 
the information as tumor heterogeneity is not 
explicitly described.  

8.3     Lesion Segmentation 

 For more complete quantitative assessment of 
lesions, feature measurements within the whole 
lesion volume are needed. Three-dimensional 
volume segmentation is a critical and challenging 
component of whole lesion analysis. It is critical 
because subsequent parameters are generated 
from the segmented volumes. It is challenging 
because many tumors have indistinct borders. 

 Multiple segmentation algorithms have been 
applied in medical imaging studies. Popular 
ones are based on boundary or active contour 
defi nition [ 1 ,  16 ], region-growing or level-set 
methods [ 17 ,  18 ], and k-means clustering 
approaches [ 19 ,  20 ]. 

 Active contours consist of positioning a con-
tour larger than the region to be segmented and 
iteratively repositioning its points until a conver-
gence criterion is met. The convergence criterion 
may be based on the geometry of the contour, 
thereby introducing prior knowledge on the shape 
of the segmented region [ 21 ], on the intensity and 
spatial variations thereof over the underlying 
region [ 22 ], or on a combination of both types of 
information. Region-growing approaches, and 
their advanced counterparts, namely, level-set 
methods, consist of starting an iterative process 
on an initial position for the region of interest. 
This region is then augmented or “grown,” by 
adding neighboring pixels to it. Addition of pixels 
is conditioned positively if the resulting, larger 
region remains homogeneous, and negatively if 
the homogeneity decreases, indicative of a bound-
ary [ 23 ]. Finally, k-means clustering approaches 
rely on Euclidean measures of distances between 
extracted parameters (pixel intensity or other 
pixel-wise derived metrics) to generate pixel clus-
ters corresponding to homogeneous regions [ 24 ]. 

 Accuracy and reproducibility are important 
factors to evaluate segmentation algorithms for 
medical images. However, accuracy is diffi cult to 
determine because the reference method is often 
based on manual segmentation, which is subjec-
tive, error prone, and time consuming. Objective 
volume measurements during surgery are better 
gold standards but are rarely obtained [ 17 ]. In 
other words, “ground truth” segmentation often 
does not exist. 

 Hence, reproducibility is more important than 
accuracy. Several studies have shown that the 
reproducibility of semiautomatic segmentation 
algorithms is superior to that of manual segmen-
tation [ 11 ,  17 ,  18 ,  25 ]. A consensus is emerging 
that optimum reproducible segmentation is 
achievable with computer-aided edge detection 
followed by manual curation [ 2 ].  

8.4     Shape-Based Measurements 

 Quantitative features describing the geometric 
shape of a lesion can be extracted from the three- 
dimensional surface of the rendered volumes. 
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Measures of compactness, spherical dispropor-
tion, sphericity, surface-to-volume ratio, and 
Zernike moments describe the shape of the lesion 
[ 26 – 28 ].  

8.5     Intensity and Texture 
Analyses 

 Intensity and texture analyses can be divided into 
four families based on the distribution of signal 
intensity, on the organization of gray level in the 
spatial domain, on the organization of geometric 
patterns in the spatial domain, and on analysis 
performed in the frequency domain. 

8.5.1     Analysis Based 
on the Distribution of Signal 
Intensity 

 This analysis is based on fi rst-order statistics 
which describe the distribution of values of indi-
vidual voxels without concern for spatial rela-
tionships. These are generally histogram-based 
methods and reduce a region of interest to single 
values. The parameters include the mean, median, 
maximum and minimum values, nth centiles, 
standard deviation, variance, mean absolute devi-
ation, uniformity (uniformity of gray-level distri-
bution), entropy (irregularity of gray-level 
distribution), skewness (asymmetry of the histo-
gram), and kurtosis.  

8.5.2     Analysis Based 
on the Organization of Signal 
Intensity in the Image Domain 

 This analysis provides second-order descriptors 
which describe statistical interrelationships 
between voxels with similar or dissimilar contrast 
values. The spatial distribution of voxel intensities 
is calculated from gray-level co- occurrence 
(GLCM) or gray-level run-length texture matrices 
(GLRLM). 

 GLCM determines how often a pixel of inten-
sity i fi nds itself within a certain relationship to 

another pixel of intensity j (Fig.  8.1 ). Second- 
order statistics based on a co-occurrence matrix 
(GLCM) include autocorrelation, contrast, corre-
lation, cluster prominence, cluster shade, cluster 
tendency, dissimilarity, energy, entropy, homoge-
neity, maximum probability, sum of squares, sum 
average, sum variance, sum entropy, etc. [ 29 ]. The 
energy (pixel repetition) expresses the regularity 
of the texture. High energy is observed when the 
high values in the GLCM are concentrated in 
some precise locations. It is the case for images 
with constant or periodic gray- level distributions. 
A random or noisy image gives a GCLM with 
more distributed values and a low energy. The 
contrast is more elevated for GCLM with larger 
values outside the diagonal, thus for images with 
local variation of intensities.

   The dissimilarity expresses the same charac-
teristic than the contrast, but the weights of inputs 
of the GCLM increase linearly from the diagonal 
rather than quadratically for the contrast. These 
two descriptors are thus often correlated. 

 The entropy (randomness of the matrix) relies 
to the spreading of the GCLM diagonal. The 
entropy is the inverse of energy. These parame-
ters are often correlated. 

 The homogeneity (uniformity of co- 
occurrence matrix) inversely evolves with the 
contrast. Homogeneity is high when the differ-
ences between co-occurrences are small. It is 
more sensitive on the diagonal elements of the 
GCLM than the contrast which depends on ele-
ments outside the diagonal. 

 The correlation may be described as a mea-
surement of the linear dependency of gray levels 
of the image. The cluster shade and cluster prom-
inence give information about the degree of sym-
metry of the GCLM. High values represent low 
symmetric pattern. 

 The main diffi culty when using GCLM is to 
fi x the parameters because this step needs to be 
performed case by case. The distance d must 
refl ect the local correlation between the pixels. It 
is admitted that the correlation is more pertinent 
for short distances and, typically, d is fi xed equal 
to 1. In practice, GCLM is computed over four 
orientations (i.e., 0°, 45°, 90°, and 135°) accord-
ing to Haralick recommendations [ 29 ]. The 
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 features are computed for each orientation and 
can be concatenated in a single array of descrip-
tors or averaged to obtain an array of descriptors 
invariant regarding to the rotation. The choice of 
the window (i.e., the number of gray levels in the 
parametric image) is also important and imposes 
a compromise between the pertinence of the 
descriptors and the fi delity of the texture. 

 Another method to derive second-order statis-
tics is the gray-level run-length matrix (GLRLM). 
A gray-level run is defi ned as the length in num-
ber of pixels of consecutive pixels that have the 
same gray-level value. From the GLRLM, 

 features can be extracted describing short- and 
long- run emphasis, gray-level nonuniformity, 
run-length nonuniformity, run percentage, low 
gray-level run emphasis, and high gray-level run 
emphasis [ 1 ,  28 ]. The short-run emphasis charac-
terizes the smoothness of the texture, whereas the 
long-run emphasis characterizes the coarseness. 
The run percentage is the ratio between the num-
ber of runs over the number of pixels in the 
image. It characterizes the homogeneity of the 
texture. The gray-level nonuniformity measures 
the uniformity of run distribution. It is minimal 
when the runs are uniformly distributed between 

METAVIR F0   METAVIR F2    METAVIR F4

Zoom

GLCM

  Fig. 8.1    Texture analysis of gadoxetic acid-enhanced 
MR images in patient with chronic liver disease. This fi g-
ure shows differences in the GLCM according to the 

severity of liver fi brosis. Second-order descriptors derived 
from this matrix can offer quantitative information rele-
vant for the assessment of liver fi brosis       
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the gray levels. The run-length nonuniformity 
measures the uniformity of run length and 
increases with the number of runs of same length. 

 Other matrices have been proposed to charac-
terize the texture in the spatial domain such as the 
gray-level size zone matrix (GLSZM). GLSZM 
does not require computation in several direc-
tions, in contrast to GLRLM and GLCM. However, 
the degree of gray-level quantization has an 
important impact on the texture classifi cation per-
formance. Similarly to GLRLM, descriptors can 
be derived from the analysis of this matrix such as 
the small-zone size emphasis, large-zone size 
emphasis, low gray-level zone emphasis, high 
gray-level zone emphasis, small-zone low- gray 
emphasis, small-zone high-gray emphasis, large-
zone low-gray emphasis, large-zone high- gray 
emphasis, gray-level nonuniformity, zone size 
nonuniformity, and zone size percentage [ 30 ].  

8.5.3     Analysis Based 
on the Organization 
of Geometric Pattern 
in the Image Domain 

 Filter grids can be applied on the images to 
extract repetitive or non-repetitive patterns. These 
methods include fractal analysis, wherein pat-
terns are imposed on the images and the number 
of grid elements containing voxels of a specifi ed 
value is computed; Minkowski functionals, 
which assess patterns of voxels whose intensity is 
above a threshold [ 31 ]; and Laplacian transforms 
of Gaussian band-pass fi lters that extract areas 
with increasingly coarse texture patterns from the 
images [ 32 ].  

8.5.4     Texture Analysis 
in the Frequency Domain 

 These methods use fi ltering tools such as the 
Fourier transform, the wavelet decomposition, 
and the Gabor fi lter to extract the information. 
The 2D Fourier transform allows to represent the 
frequency spectrum on images in which each 
coeffi cient corresponds to a frequency in a given 

orientation. Therefore, the center of the spectra 
includes the low frequencies and the extremities 
the high frequencies. An image with a smooth 
texture will display a spectrum with high values 
concentrated close to the center, whereas an 
image with a rough texture will display a spectra 
with high value concentrated at the extremities. 
Quantitative information related to the texture 
can be extracted by decomposing the spectra into 
sub-bands according to their polar coordinates 
and calculating the average, energy, variance, and 
maximum [ 33 ]. The Fourier transform can also 
be applied in local neighbors in the image. It is 
possible to determine a radial spectrum on win-
dows with increasing size by averaging the coef-
fi cient of the Fourier spectrum over all 
orientations. A principal component analysis is 
performed to identify the range of frequencies 
and the size window explaining the variability 
[ 34 ]. The Fourier spectrum only contains fre-
quency information. 

 In contrast, Gabor fi lters and the wavelet 
transforms provide both frequency and spatial 
information. Gabor fi lters have the ability to 
model the direction and frequency sensitivity by 
decomposing the image spectrum in a narrow 
range of frequencies and orientations. In the spa-
tial domain, the Gabor fi lter is a Gaussian func-
tion modulated by a complex sinusoid and a 
Gaussian surface centered on a central frequency 
F with an orientation θ in the frequency domain. 
A conventional practice with Gabor fi lters con-
sists in using fi lter banks, each centered on a dif-
ferent central frequency and orientation, by 
covering the whole frequency domain. Each pixel 
gives a response for each fi lter. To have a differ-
ent proportion covered by each fi lter and to limit 
the overlap, thus the redundancy of information, 
Manjunath and Ma have proposed to decompose 
the spectrum in several scales and orientations 
[ 35 ]. Mean and standard deviation of the fi lter 
responses are calculated to extract the texture 
signature. 

 Nevertheless, due to the non-orthogonality of 
Gabor fi lters, texture attributes derived from 
these fi lters can be correlated. It is diffi cult to 
determine if a similarity observed between the 
analysis scales is linked to the property of the 
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image or to redundancy in the information. Thus 
for each scale of application, parameters defi ning 
the fi lter must be modifi ed. 

 This issue is addressed by the use of wave-
lets, offering a uniform analysis framework by 
decomposing the image into orthogonal and 
independent sub-bands. Briefl y, the wavelet 
decomposes the image with a series of functions 
obtained by translation and scaling from an ini-
tial function, called mother wavelet. Wavelet 
decomposition of an image is the convolution 
product between the image and the wavelet 
functions [ 31 ].   

8.6     Data Reduction 

 The number of descriptive image features can 
approach the complexity of data obtained with 
gene expression profi ling. With such large com-
plexity, there is a danger of overfi tting analyses, 
and hence, dimensionality must be reduced by 
prioritizing the features. Dimensionality reduc-
tion can be divided into feature extraction and 
feature selection. Feature extraction transforms 
the data in the high-dimensional space to a space 
of fewer dimensions, as in principal component 
analysis. 

 Feature selection techniques can be broadly 
grouped into approaches that are classifi er 
dependent (wrapper and embedded methods) 
and classifi er independent (fi lter methods). 
Wrapper methods search the space of feature 
subsets, using the training/validation accuracy of 
a particular classifi er as the measure of utility for 
a candidate subset. This may deliver signifi cant 
advantages in generalization, though has the dis-
advantage of a considerable computational 
expense, and may produce subsets that are overly 
specifi c to the classifi er used. As a result, any 
change in the learning model is likely to render 
the feature set suboptimal. Embedded methods 
exploit the structure of specifi c classes of learn-
ing models to guide the feature selection pro-
cess. These methods are less computationally 
expensive, and less prone to overfi tting than 
wrappers, but still use quite strict model struc-
ture assumptions. 

 In contrast, fi lter methods evaluate statistics of 
the data independently of any particular classi-
fi er, thereby extracting features that are generic, 
having incorporated few assumptions. Each of 
these three approaches has its advantages and 
disadvantages, the primary distinguishing factors 
being speed of computation, and the chance of 
overfi tting. In general, in terms of speed, fi lters 
are faster than embedded methods which are in 
turn faster than wrappers. In terms of overfi tting, 
wrappers have higher learning capacity so are 
more likely to overfi t than embedded methods, 
which in turn are more likely to overfi t than fi lter 
methods. 

 A primary advantage of fi lters is that they are 
relatively cheap in terms of computational 
expense and are generally more amenable to a 
theoretical analysis of their design. The defi ning 
component of a fi lter method is the relevance 
index quantifying the utility of including a par-
ticular feature in the set. The fi lter-based feature 
selection methods can be divided into two cate-
gories: univariate methods and multivariate 
methods. In case of univariate methods, the scor-
ing criterion only considers the relevancy of fea-
tures ignoring the feature redundancy, whereas 
multivariate methods investigate the multivariate 
interaction within features, and the scoring crite-
rion is a weighted sum of feature relevancy and 
redundancy [ 36 – 38 ]. 

 One of the simplest methods relies on the 
computation of cross correlation matrices, 
whereby the correlation between each pair of fea-
tures is computed (Fig.  8.2 ). The resulting matrix 
is subsequently thresholded to identify subsets of 
features that are highly correlated.

   A single feature from each subset can then be 
selected based on maximum relevancy.  

8.7     Data Classifi cation 

 For data mining, unsupervised and supervised 
analysis options are available. The distinction in 
these approaches is that unsupervised analysis 
does not use any outcome variable, but rather 
provides summary information and graphical 
representations of the data. Supervised analysis, 
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in contrast, creates models that attempt to 
 separate or predict the data with respect to an out-
come or phenotype. 

 Clustering is the grouping of like data and is 
one of the most common unsupervised analysis 
approaches. There are many different types of 
clustering. Hierarchical clustering, or the assign-
ment of examples into clusters at different levels 
of similarity into a hierarchy of clusters, is a com-
mon type. Similarity is based on correlation (or 
Euclidean distance) between individual examples 
or clusters. 

 Alternatively, k-means clustering is based on 
minimizing the clustering error criterion which 
for each point computes its squared distance from 
the corresponding cluster center and then takes 
the sum of these distances for all points in the 
data set. 

 The data from this type of analyses can be 
graphically represented using the cluster color 
map. Cluster relationships are indicated by tree-
like structures adjacent to the color map or by 
k-means cluster groups [ 24 ,  39 ] (Fig.  8.3 ).

   Supervised analysis consists of building a 
mathematical model of an outcome or response 
variable. The breadth of techniques available is 

remarkable and includes neural networks, 
 decision trees, classifi cation, and regression trees 
as well as Bayesian networks [ 40 ,  41 ]. Model 
selection is dependent on the nature of the out-
come and the nature of the training data. 

  Fig. 8.2    Illustration of the feature selection process. The 
cross correlation matrix on the  left  is reordered with linkage 
algorithms on the  right  and thresholded to a given value of 

correlation coeffi cient. For data analysis, one feature of 
each group on the right can be selected based on maximum 
relevancy, e.g., maximum patient interpatient variability       

  Fig. 8.3    Graphical representation of a radiomics data set. 
Each patient represents a row of the matrix (np, number of 
patients), and each column represents one of the features 
(nf, number of features). First-order imaging parameters 
based on MR elastography data acquired at several mechan-
ical frequencies in patients with liver cirrhosis and portal 
hypertension. The hierarchical cluster relationships are 
indicated by treelike structures on the right of the matrix 
representation. Alternatively, clustering by a k-means algo-
rithm can be used to group patients into like groups, indi-
cated by groups one to three in the black boxes       
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 Performance in the training data set is always 
upward biased because the features were selected 
from the training data set. Therefore, a validation 
data set is essential to establish the likely perfor-
mance in the clinic. Preferably, validation data 
should come from an external independent insti-
tution or trial [ 41 ]. Alternatively, one may evalu-
ate machine learning algorithms on a particular 
data set, by partitioning the data set in different 
ways. Popular partition strategies include k-fold 
cross validation, leave-one-out, and random sam-
pling [ 42 ]. 

 The best models are those that are tailored 
to a specifi c medical context and, hence, start 
out with a well-defi ned end point. Robust mod-
els accommodate patient features beyond 
imaging. Covariates include genomic profi les, 
histology, serum biomarkers, and patient char-
acteristics [ 2 ]. 

 As a general rule, several models should be 
evaluated to ascertain which model is optimal for 
the available data [ 38 ,  43 ]. Recently, Ypsilantis 
et al. [ 44 ] have compared the performance of two 
competing radiomics strategies: an approach 
based on state-of-the-art statistical classifi ers 
(logistic regression, gradient boosting, random 
forests, and support vector machines) using over 
100 quantitative imaging descriptors, including 
texture features as well as standardized uptake 
values and a convolutional neural network, 
trained directly from PET scans by taking sets of 
adjacent intra-tumor slices. The study was per-
formed for predicting response to neoadjuvant 
chemotherapy in patients with esophageal can-
cer, from a single 18F-FDG-PET scan taken prior 
to treatment. The limitation of the statistical clas-
sifi ers originates from the fact that the perfor-
mance is highly dependent on the design of the 
texture features, thus requiring prior knowledge 
for a specifi c task and expertise in hand- 
engineering the necessary features. By contrast, 
convolutional neural networks operate directly 
on raw images and attempt to automatically 
extract highly expressive imaging features rele-
vant to a specifi c task at hand. In the Ypsilantis 
et al. study, convolutional neural networks 
achieved 81 % sensitivity and 82 % specifi city in 
predicting nonresponders and outperformed the 

other competing predictive models. These results 
suggest the potential superiority of the fully auto-
mated method. However, further testing using 
larger data sets is required to validate the predic-
tive power of convolutional neural networks for 
clinical decision-making. 

 Indeed, it should be noted that machine 
learning techniques in radiology are still in 
infancy. Many machine learning studies were 
done using relatively small data sets. The pro-
posed methods may not generalize well from 
small data sets to large data sets. To solve the 
problem, re-training the algorithm will be nec-
essary, but it requires intervention of knowl-
edgeable experts which hinders the deployment 
of machine learning- based systems in hospitals 
or medical centers. One possible solution would 
be utilizing incremental learning and adjusting 
the computerized systems in an automatic way. 
In addition, increased large-scale data may 
bring computational issues to radiology applica-
tions. Machine learning techniques employed in 
these applications may not scale well as training 
data increases [ 42 ].  

8.8     Radiomics 

 Radiomics mines and deciphers numerous medi-
cal imaging features. The hypothesis being that 
these imaging features are augmented with criti-
cal and interchangeable information regarding 
tumor phenotype [ 28 ]. Texture is especially 
important to assess in tumors. Indeed, the tumor 
signal intensity is very heterogeneous and refl ects 
its structural and functional features, including 
the number of tumor cells, quantity of infl amma-
tion and fi brosis, perfusion, diffusion, and 
mechanical properties, as well as metabolic 
 activity. Functional parameters which are hall-
marks of cancer include sustaining proliferative 
signaling, resisting cell death, inducing angio-
genesis, activating invasion and metastasis, and 
deregulating cellular energetics [ 45 ]. These hall-
marks can be assessed with quantitative MR 
imaging, including perfusion and diffusion MR 
imaging, MR elastography and susceptibility, 
and FDG-PET [ 46 ,  47 ]. 
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 During the recent years, it became increas-
ingly evident that genetic heterogeneity is a basic 
feature of cancer and is linked to cancer evolution 
[ 48 ]. This heterogeneity which evolves during 
time concerns not only the tumor cells but also 
their microenvironment [ 49 ]. Moreover, it has 
been shown that the global gene expression pat-
terns of human cancers may systematically cor-
relate with their dynamic imaging features [ 50 ]. 
Tumors are thus characterized by regions habitats 
with specifi c combinations of blood fl ow, cell 
density, necrosis, and edema. Clinical imaging is 
uniquely suited to measure temporal and spatial 
heterogeneity within tumors [ 51 ], and this infor-
mation may have predictive and prognostic value. 

 Spatial heterogeneity is found between differ-
ent tumors within individual patients (inter-tumor 
heterogeneity) and within each lesion in an indi-
vidual (intra-tumor heterogeneity). Intra-tumor 
heterogeneity is near ubiquitous in malignant 
tumors, but the extent varies between patients. 
Intra-tumor heterogeneity tends to increase as 
tumors grow. Moreover, established spatial het-
erogeneity frequently indicates poor clinical 
prognosis. Finally, intra-tumor heterogeneity 
may increase or decrease following effi cacious 
anticancer therapy, depending on underlying 
tumor biology [ 52 ]. 

 Several studies have shown that tumor hetero-
geneity at imaging may predict patient survival 
or response for treatment [ 53 – 59 ]. 

 For instance, in 41 patients with newly diag-
nosed esophageal cancer treated with combined 
radiochemotherapy, Tixier et al. showed that tex-
tural features of tumor metabolic distribution 
extracted from baseline 18F-FDG-PET images 
allowed for better prediction of therapy response 
than fi rst-order statistical outputs (mean, peak, 
and maximum SUV) [ 60 ]. 

 In 26 colorectal cancer liver metastases, 
O’Connor et al. showed that three perfusion 
parameters, namely, the median extravascular 
extracellular volume, the heterogeneity parame-
ters corresponding to tumor-enhancing fraction, 
and the microvascular uniformity (assessed with 
the fractal measure box dimension), explained 
86 % of the variance tumor shrinkage after 
FOLFOX therapy [ 61 ]. This underscores that 

measuring microvascular heterogeneity may 
yield important prognostic and/or predictive 
biomarkers. 

 Zhou et al. showed in 32 patients with glio-
blastoma multiforme that spatial variations in T1 
post-gadolinium and either T2-weighted or fl uid- 
attenuated inversion recovery at baseline MR 
imaging correlated signifi cantly with patient sur-
vival [ 62 ].  

8.9     Limitations of Radiomics 

 Several issues arise when interpreting imaging 
data of heterogeneity. First, some voxels suffer 
from partial volume averaging, typically at inter-
face with non-tumor tissue. Second, there is inev-
itable compromise between having suffi cient 
numbers of voxels to perform the analysis versus 
suffi ciently large voxels to overcome noise and 
keep imaging times practical. Most methods of 
analysis require hundreds to thousands of voxels 
for robust application. Third, CT, MR imaging, 
or PET voxels are usually non-isotropic (slice 
thickness exceeds in-plane resolution). 
Dimensions are typically 200–2,000 μm for 
rodent models and 500–5,000 μm for clinical 
tumors. Compared with genomic and histopa-
thology biomarkers, this represents many orders 
of magnitude difference in scale, making it diffi -
cult to validate image heterogeneity biomarkers 
against pathology [ 52 ]. 

 Variations in image parameters affect the 
information being extracted by image feature 
algorithms, which in turn affects classifi er perfor-
mance (Fig.  8.4 ) [ 63 ]. At PET imaging, Yan et al. 
[ 64 ] analyzed the effect of several acquisition 
parameters on the heterogeneity values. They 
found that the voxel size affected the  heterogeneity 
value the most, followed by the full width at half 
maximum of the Gaussian post-processing fi lter 
applied to the reconstructed images. Neither the 
number of iterations nor the actual reconstruction 
scheme affected the heterogeneity values much.

   Because of the information dependence on 
variations in image parameters, imaging stan-
dardization and reproducibility are important 
issues to determine the effectiveness of image 
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features being developed and prediction models 
built to work on those feature values. 

 Another problem in radiomics and genomics 
is related to multiple testing issues. In many data 
sets in these areas, it is not unusual to test the 
signifi cance of thousands of variables using 50 
samples. Any single test may have a low expected 
false-positive rate; however, the cumulative 
effect of many repeated tests guarantees that 
many statistically signifi cant fi ndings are due to 
random chance (type I errors in statistics should 
be < 5 %). Chalkidou et al. reported a systematic 
review of the type I error infl ation in texture 
analysis derived from PET or CT images [ 65 ]. 
After applying appropriate statistical correc-
tions, an average type I error probability of 76 % 

was  estimated with the majority of published 
results not reaching statistical signifi cance. This 
underscores that the multiple testing problem 
may be critical. It has been addressed in statistics 
in many ways. However, the best way to over-
come overfi tting and optimism in predictive per-
formance is to evaluate the performance of the 
model in an external validation cohort, as 
explained above [ 66 ]. 

   Conclusion 

 Current knowledge suggests that radiomics 
can enhance individualized treatment selec-
tion and monitoring. Furthermore, unlike 
genomics-based approaches, radiomics is 
noninvasive and comparatively cost-effective. 
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  Fig. 8.4    The behavior of a texture parameter acquired on 
diffusion coeffi cient maps was assessed in a HepG2 tumor 
treated with an adipokine that competitively inhibits the 
fatty acid-binding protein Fabp4. The effects of in-plane 
resolution and number of averages, were explored. The 
treated tumor had signifi cantly higher texture on the high-

resolution data set regardless of signal-to- noise ratio. On 
the low-resolution data sets, adipokine treatment did not 
appear to have an effect. These data show that spatial reso-
lution and signal to noise ratios (manipulated here through 
varying number of averages (NA)) may affect texture 
analysis       
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Radiomics is thus an innovative and encourag-
ing breakthrough toward the realization of 
precision medicine. Fast- computing and state-
of-the-art software have facilitated the collec-
tion and analysis of large amounts of data, 
while the development of data mining tech-
niques enables researchers to test a large num-
ber of hypotheses simultaneously. The high 
number of image analysis algorithms and 
image-derived features is promising to unravel 
complex biology by overcoming the limita-
tions inherent in invasive tissue sampling 
techniques. However, the high data dimen-
sionality complicates the quantitative analy-
sis, and robust biological and statistical 
validation is needed before advanced 
radiomics solutions can be used in the clinics.      
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