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Abstract. One of the major challenges of Evolutionary Robotics is to
transfer robot controllers evolved in simulation to robots in the real
world. In this article, we investigate abstraction on the sensory inputs
and motor actions as a potential solution to this problem. Abstraction
means that the robot uses preprocessed sensory inputs and closed loop
low-level controllers that execute higher level motor commands. We apply
abstraction to the task of forming an asymmetric triangle with a homo-
geneous swarm of MAVs. The results show that the evolved behavior is
effective both in simulation and reality, suggesting that abstraction can
be a useful tool in making evolved behavior robust to the reality gap.
Furthermore, we study the evolved solution, showing that it exploits the
environment (in this case the identical behavior of the other robots) and
creates behavioral attractors resulting in the creation of the required for-
mation. Hence, the analysis suggests that by using abstraction, sensory-
motor coordination is not necessarily lost but rather shifted to a higher
level of abstraction.

1 Introduction

Evolutionary Robotics (ER) is a field of research which uses Evolutionary Com-
putation techniques to solve robotic tasks without explicit interaction from a
human designer. This approach requires a roboticist to define the problem to
be solved and the evolutionary optimization determines the behavior required
solve it. Early work in this field made quick progress showing that ER could
automatically solve tasks such as: obstacle avoidance [10], phototaxis [11] and
chemotaxis [2]. Work was not restricted to the evolution of the brain but was also
used to evolve the physical body of the robot in a form of co-evolution [4,17]. A
comprehensive overview of this early work in ER can be found in the book from
Nolfi et al. [21].

Despite this early sprint, the pace of development slowed as researchers
attempted more complex tasks. Some of the major challenges encountered
include the reality gap, reducing optimization time, fitness function design and
behavior representation [3]. Although all these issues must be addressed for ER
to be truly successful, in this paper we would like to address the reality gap.
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ER typically utilizes simulated environments to evaluate the performance of
generated candidate solutions. Although these faster-than-real-time simulations
reduce the total optimization time, differences between simulation and reality
often result in reduced performance in reality when compared to that seen in
simulation. This difference is referred to as the reality gap.

The apparent coupling seen between the perceived environment and emergent
behavior that causes this reality gap is partly the result of Sensory-Motor Coor-
dination(SMC). This inherent coupling of perception and action with embod-
ied agents results in the observation that an agent can actively influence the
perceived environment through its actions [20]. Typical implementations of ER
utilize raw sensor inputs to generate low level control commands to the robotic
platform. This approach has been shown to be effective in the development of
behavior which can solve non-trivial tasks with SMC [1,20]. The evolved SMC
will exploit the properties of the low-level sensors and motor actions in the simu-
lated environment. Unfortunately, these properties in general are quite different
from those of the real robotic platform, causing a significant reality gap.

Much progress has been made towards solving the reality gap problem most
notably by Jakobi et al. [15], Koos et al. [16] and Eiben et al. [8]. Jakobi suggests
hiding unnecessary features of the simulation in noise through minimal simu-
lations. Koos includes the transferability of the robotic behavior to the agent’s
fitness evaluated by intermittently testing the simulated behavior on real robots
during evolution. Eiben promotes on-line embodied evolution on a swarm of real
robotic platforms to remove the reality gap altogether. Some recent work has
also suggested that improved insight into the optimized behavior can enable the
roboticist to actively reduce the reality gap after optimization [24].

One method which has not been investigated in much detail is the use of
abstraction to make the robotic control more robust to the reality gap. Gen-
erally, real robotic platforms are controlled using closed loop control systems.
These systems receive a desired set-point as input and drive the output to reduce
the perceived error. Closed loop control has been mathematically proven to make
the eventual control system more robust to external disturbances or changes to
the environment [18]. With the use of a closed loop low-level control system,
evolution would abstract away from the low-level sensor inputs and actuator
outputs. Some resent work has shown promising results in bridging the real-
ity gap using abstracted methods [5,7]. This however may come at a price, as
abstraction “hides” the properties of the raw sensory inputs and motor actions
to the controller, it may have as a disadvantage that the potential for SMC by
the robot is reduced.

In this paper we investigate whether abstraction can lead to an easy transfer
of an evolved robot controller from simulation to the real world. Moreover, we
look into the open question of how abstraction affects the ability of the robot
to exploit its environment to solve a seemingly complex task. What happens to
SMC when the agent doesn’t have access to the raw sensor inputs and the ability
to directly control the raw motor outputs?



282 K.Y.W. Scheper and G.C.H.E. de Croon

Fig. 1. Swarm of homogeneous ARDrone 2 quadrotors autonomously used to form an
asymmetric triangle using evolved behavior.

To investigate this we implement an experiment based on the work of Izzo
et al. [14] to generate an asymmetric formation of a swarm of robots using a
homogeneous control system. The task will be discussed in more detail in Sect. 2.
The implementation and results of the evolutionary optimization of the robotic
behavior is presented in Sect. 3. A brief description of the flight hardware shown
in Fig. 1 is given in Sect. 4 followed by a discussion of the behavior on a swarm
of real flying robots in Sect. 5. Section 6 dives a bit deeper into the optimized
behavior and the effect of abstraction on the SMC. Finally, we summarize and
make some conclusions in Sect. 7.

2 Task

In this paper we would like to demonstrate the power of using high level control
cues with an underlying closed loop control system to reduce the reality gap.
The use of closed loop control systems helps to reject disturbances due to noise
or small a mismatches between the dynamics in simulation and that in reality.

To this end we have selected the asymmetric formation flight as demonstrated
in simulation by Izzo et al. [14]. That paper described a homogeneous swarm of
three SPHERES spacecraft flying in a triangular formation where each side was a
different length. Methods have been developed to autonomously form symmetric
formations using homogeneous swarms but asymmetric shapes have proven to
be more difficult [13]. The design of asymmetric formations using a distributed
control system without explicit roles in the formation is a non-trival task for
most human designers making it an ideal task for automatic optimization.

The work of Izzo et al. was confined to a simulated environment, in this
paper we would like to move to reality to demonstrate the effect of abstraction
on crossing the reality gap. Due to the lack of availability of the SPHERES
vehicles on the International Space Station, the formation control is implemented
on a swarm of Micro Air Vehicles (MAVs). Notably, we constrain the problem
to two dimensions to facilitate a more straightforward analysis of the resultant
behavior.

The goal of the swarm will be to achieve an asymmetric triangular formation
with sides of lengths: 0.7, 0.9 and 1.3m. The MAVs can observe the relative
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Fig. 2. Single hidden layer Neural Network topology used in this paper. Inputs are the
summed Cartesian components of the relative positions to the other vehicles in the
formation (r) along with the summed absolute distances (d).

position of all other members in the formation. The control system should use
this information and provide the MAV with a velocity set-point. As in [14], we
utilize a single hidden layer Artificial Neural Network (ANN) with three inputs
and two outputs as shown in Fig. 2. A tanh activation function was used in the
neurons. Additionally, a bias neuron is added to the input and hidden layer. The
output of the network can be linearly scaled to the limits of the vehicle, which
in the case of this paper was set as ±0.5m/s. The inputs, outputs and ranges of
all parameters were chosen to be as similar to the original values used by Izzo
et al. [14] to facilitate a fair comparison of our results with the original work.

The inputs to the ANN are the sum of the Cartesian components of the rela-
tive positions of the other members of the formation (r) and the sum of absolute
distances (d) as given by (1) and (2). Note that r is mathematically equivalent
to triple the distance from the ownship to the centroid of the formation (c).

r =
k∑

i=2

(pi − p1) (1)

d =
k∑

i=2

|pi − p1| (2)

Where p is the position vector of a vehicle and k is the total number of
vehicles in the swarm. These inputs are computed for each vehicle where p1 is
the ownship location. Figure 3 illustrates a possible solution to the formation
problem. Combining the positions of the other vehicles in this way is essential to
ensure the input is invariant to permutations of the vehicles. Adding a separate
input for each vehicle would implicitly encode a unique formation identifier for



284 K.Y.W. Scheper and G.C.H.E. de Croon

Fig. 3. Illustration of a possible formation. Vehicles are represented by a filled dot with
the ownship in this example highlighted.
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Fig. 4. Progression of the performance of the best individual during evolution validated
using 250 initialization points.

each vehicle. Additionally, only the relative positions are required for the input
rather than the absolute position, this would facilitate a wide range of real world
sensors to be used to provide this information. It should be noted that as this
input is from the point of view of each vehicle, a given set of inputs describes a
unique formation and is not rotationally invariant.

3 Evolutionary Optimization

There are many forms of evolutionary optimization in literature but they all
have a few things in common: a population of candidate solutions; a measure
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of fitness; a way of evaluating the individuals on this fitness function; and a
method to change individuals to create the next population [9]. In this paper,
we use a population of 100 candidate solutions expressed as ANNs. The fitness of
an individual is determined with the use of a multi-objective sorting algorithm
based on Nondominated Sorting Genetic Algorithm II (NSGA-II) [6]. Multiple
objective optimization was used to promote effective exploration of the fitness
landscape. Again, to facilitate a fair comparison, the objective functions used in
this paper are based on those used in [14] and are given in (3).

f1 =
3∑

n=1
|Ln − ln|

f2 =
3∑

n=1
|vn|2

f3 =

{
0, |c| < 2
1, else

(3)

Where L is the vector of the required distances, l is the vector of the distances
between the vehicles at the end of the simulation sorted in ascending order.
Sorting the distances makes the computation of the fitness it invariant to the
vehicle order. v is the velocity vector of the MAV at the end of the simulation
and c is the location of the centroid of the triangle. The first fitness function
tries to have the MAVs end up in the correct formation. The second promotes
individuals that have a low final velocity. The final function is an augmentation
to the original set from [14] and promotes behavior that results in the centroid of
the formation remaining inside of a 2m radius of the origin of the axis system.
This requirement was added due to the practical limitation that the vehicles
must operate in a constrained 8 × 8m flight arena.

A simulation was used to assign a fitness to the candidate solutions. A simple
Euler integration based kinematic simulation was implemented to ensure that
computational requirements of each simulation would remain low, speeding up
the optimization. This simulator captures the approximate kinematics of the
real MAVs with a simple low pass filtered velocity response with a time constant
determined by performing real world flight tests. Each simulation was initialized
with the three MAVs at a stand still at random locations in a 2× 2m area with
at least 1m separating each vehicle and the centroid of the initial orientation
located at the origin of the axis system. The vehicles were then allowed to traverse
the room in the x − y plane for a maximum of 50 s. The simulation can be
prematurely terminated if the MAVs come within 30 cm of each other as this
would constitute a collision on the real vehicles. At the end of the simulation
run, the final position and speed of the MAVs is used to assign a value to each
fitness function as given in (3).

Once the population is evaluated, they are sorted using the NSGA-II algo-
rithm. The best individuals are stored in an archive of 100 members. This archive
is also used as the mating pool which is used to generate the population of the
next generation. Members are selected from the mating pool using a tournament
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Fig. 5. Ground tracks of a collision free flight and a flight that would have ended in a
collision of three ARDrones performing the asymmetric formation task. The length of
each side is shown in text, + marks the start location and the circle with the dot in
the center marks the end location with the diameter of the vehicle to scale.

selection technique with a size of 8 randomly selected members from the mating
pool and the best individual averaged over all fitness dimensions returned as a
champion. Mutation was the only evolutionary operator used in this paper as
some works have shown that mutation only evolution to be effective [25]. Each
weight in the ANN was considered for mutation with a probability of 5 %. Muta-
tion consisted of a random perturbation of the previous value by selecting a new
value based on statistical acceptance based on the previous value constrained on
the range [−1,1].

Figure 4 shows the performance of the best individual from each generation
of the evolutionary optimization for this problem. Each individual was evaluated
using 250 different combinations of initial conditions with a maximum simulation
time of 50 s. This figure shows that evolution gradually reduces the error in the
final vehicle distances and the final velocity. This figure also shows that the
behavior does not guarantee a collision free flight for all initial conditions. After
1000 generations the average error of each side of the formation is about 5 cm.

The member with the lowest average score over the three fitness functions
from the last generation of the evolutionary optimization was selected for further
analysis and implementation on the real swarm of three MAVs. Here we will first
analyze the behavior exhibited by the ANN controller to gain some insight into
the solution to the problem.

The behavior was evaluated by a validation run of 250 different initial condi-
tions. During the validation run, the simulation was not cut short if a collision
occurred. A formation is considered accurate when the summed error of the
lengths is below 0.15m or 5 cm average error. The results show that 98 % of runs
resulted in a successful triangle formation within 50 s of which 14 % would have
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incurred a crash. Of these successful runs, the mean error was 0.0222m with
a standard deviation of 0.0262. In 2 % of the runs the triangle was not formed
within 50 s. Figure 5 shows one of the successful runs of the formation behavior
and one case where a collision would have occurred.

4 Flight Hardware

The flight tests performed in this paper were conducted using the 420g Par-
rot ARDrone 2 quadrotor MAV. This vehicle is equipped with a 1 GHz 32 bit
ARM Cortex A8 processor running an embedded Linux operating system [22].
The default flight software provided by Parrot was overwritten by custom flight
software implemented using Paparazzi, an open-source flight control software
[12,23].

5 Flight Tests Results

Moving from the simulated environment to the real world, the behavior shown
above was implemented on a swarm of three ARDrones. Flights were performed
in an 8×8m flight arena and the flight path of the vehicles was captured using an
Optitrack motion camera system [19]. The position of all vehicles were broadcast
at 5Hz so all vehicles know the relative position of the other swarm members. For
the first set of tests, as in simulation, the three vehicles were initialized at random
in a 3× 3m area in the flight arena with the centroid of the initial formation at
the origin of the arena. Figure 6 shows the result of one test performed.
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Fig. 6. Ground track of the real world flight test and the simulated flight for the same
initial positions. The length of each side is shown in text, + marks the start location
and the circle with a dot in the center marks the end location with the diameter of the
vehicle to scale.
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It was observed that the quadrotors were so close to each other that the
downwash from one quadrotor would interact with the other vehicles causing
significant external disturbances. Figure 7 shows the commanded velocity of the
ANN and the true vehicle velocity along with the result of the simulation. In con-
trast with the simulation, the real-world quadrotors have clear errors in tracking
the desired velocities, in part due to the aerodynamic interactions. These track-
ing errors represent a significant reality gap.

Despite this apparent mismatch between simulation and reality, the observed
behavior is very similar to that seen in simulation with the correct formation
achieved with an accuracy of ±0.034.

6 Analysis of the Sensory-Motor Coordination

To analyze the effect of abstraction on the extent to which evolved robots exploit
their environment and make use of SMC, we must first diver deeper into the opti-
mized behavior. In Izzo et al., an analysis of the evolved behavior was performed.
As a part of the analysis, two robot satellites were fixed at one of the desired
distances. The third satellite was left free to move but did not settle into a posi-
tion which completed the formation. This led them to an interesting hypothesis:
perhaps the asymmetric formation could only be reached if all three satellites
were free to move. Here we will investigate if we can observe a similar phenom-
enon for our specific evolved solution, and evaluate whether SMC plays a role in
successful formation flight.

In the flight tests performed in this paper, it was observed that all successful
formations resulted in a triangular formation with the same rotational orienta-
tion to the Cartesian axis system. The orientation can be seen in Figs. 5 and 6.
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Fig. 7. Tracking performance of the velocity controller on the simulated and real
ARDrone 2 given the same velocity command highlighting the reality gap.
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As there is a unique set of inputs to describe every possible rotational orienta-
tion of the triangle formation, this alludes us to the possibility that the ANN is
trying to solve the formation for a fixed set of sensory inputs (rx, ry, d) rather
than a set of linear combinations that would define a rotationally independent
formation. This demonstrates how influential the fitness function is to the final
solution. The function used in this paper requires the formation of a triangle
with three fixed length sides but makes no definition of the required orientation.
Given that freedom, the optimization finds the simplest solution to the problem,
which in this case is a unique formation.

This solution also suggests a level of inherent environmental exploitation,
namely that the other vehicles will comply and also move in such a way to solve
the problem. We can test this by fixing two of the vehicles in an orientation
different to that converged upon when they are all free. If we initialize the third
vehicle at various locations around the other two and allow the vehicle to move
for 500 s we should be able to identify the basin of attraction this configuration.
Figure 8 shows a basin of attraction for the situation when the longest side of
the formation is fixed along the x-axis. This figure shows the magnitude of the
commanded velocity of the free vehicle at all locations in around the other two
fixed vehicles. It also shows that the velocity vector field has three attractor
points, none of which are correct locations to complete the formation. Notably,
although the highlighted spots are stable points when the two other vehicles are
fixed, the commanded velocities of the other two vehicles is non-zero showing
that this formation itself is not stable.
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Fig. 8. Basin of attraction showing the velocity magnitude for one vehicle given the
other two vehicles (dark dots) are fixed in space. The hollow circles highlight the
possible solutions to the formation problem and the light dots show the stable attractor
points.
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If we repeat this for the case when the two fixed vehicles form the angle
which is converged upon when all vehicles are free we are left with the basin
of attraction seen in Fig. 9. This analysis shows that in this new configuration
there is only one stable attractor in the velocity map which would indeed solve
the formation problem. In this location the fixed vehicles have near zero velocity
set-points.

We also performed real flight tests with two vehicles fixed along the correct
orientation and distance of one side of the formation. Figure 9 shows that the
ground tracks of the real flights overlap almost exactly with this velocity field.
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Fig. 9. Basin of attraction showing the velocity magnitude for one vehicle given the
other two vehicles (dark dots) are fixed in space. The hollow circle highlights the
solution to the formation problem. Overlain are ground tracks of all real world flights
with the light dot showing the location the real robots converged toward. This shows
that the real world performance mirrors what is expected from simulation quite well
despite a clear reality gap.

Nolfi et al. suggest that the emergence of behavioral attractors is indicative
of SMC [20]. Given this, the behavior we have shown here would seem to exhibit
some form of SMC albeit on a more abstract level. Although the evolution has
no access to the low level control or sensory inputs, the resultant behavior was
still able to exploit the implicit knowledge that the other members of the swarm
would unintentionally cooperate to solve the task.

This result also sheds some light onto the result of Izzo et al. It may not
have been necessary for all the vehicles to be moving to achieve the formation
but rather the relative orientation of the members must facilitate the behavioral
attractor.
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7 Conclusions

In this paper we investigated the application of abstraction on the inputs and
outputs of a neural network controller within the Evolutionary Robotics para-
digm. The evolutionary optimization was tasked with forming an asymmetric
triangle with MAVs. The optimized behavior was effective both in simulation
and reality suggesting that abstraction can be a useful tool in making evolved
behavior robust to the reality gap. We also showed that sensory-motor coordina-
tion which is a typical emergent phenomenon of reactive agents is not necessarily
lost when abstracting away from the raw inputs and output but is rather shifted
to a higher level of abstraction. Future work will implement the task presented
here with the control on a lower level of abstraction to more explicitly investigate
the influence of abstraction through direct comparison.
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