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Preface

This book contains the articles presented at the 14th International Conference on the
Simulation of Adaptive Behavior (SAB 2016), held in Aberystwyth at Aberystwyth
University, Wales, in August 2016.

The objective of the biennial SAB conference is to bring together researchers in
computer science, artificial intelligence, artificial life, complex systems, robotics,
neuroscience, ethology, evolutionary biology, and related fields in order to further our
understanding of the behaviours and underlying mechanisms that allow natural and
artificial animals to adapt and survive in uncertain environments.

Adaptive behaviour research is distinguished by its focus on the modelling and
creation of complete animal-like systems, which – however simple at the moment –
may be one of the best routes to understanding intelligence in natural and artificial
systems. The conference is part of a long series that started with the first SAB con-
ference held in Paris in September 1990, which was followed by conferences in
Honolulu (1992), Brighton (1994), Cape Cod (1996), Zürich (1998), Paris (2000),
Edinburgh (2002), Los Angeles (2004), Rome (2006), Osaka (2008), Paris (2010),
Odense (2012), and Castellón (2014).

In 1992, MIT Press introduced the quarterly journal Adaptive Behavior, now pub-
lished by SAGE Publications. The establishment of the International Society of
Adaptive Behavior (ISAB) in 1995 further underlined the emergence of adaptive
behaviour as a fully fledged scientific discipline. The present proceedings provide a
comprehensive and up-to-date resource for the future development of this exciting field.

The articles cover the main areas in animat research, including the animat approach
and methodology, perception and motor control, evolution, learning, and adaptation,
and collective and social behaviour. The authors focus on well-defined models, com-
puter simulations, or robotic models that help to characterise and compare various
organisational principles, architectures, and adaptation processes capable of including
adaptive behaviour in real animals or synthetic agents, the animats.

This conference and its proceedings would not exist without the substantial help of a
wide range of people. Foremost, we would like to thank the members of the Program
Committee, who thoughtfully reviewed all the submissions and provided detailed
suggestions on how to improve the articles. We are also indebted to our sponsors. And,
once again, we warmly thank Jean Solé for the artistic conception of the SAB 2016
poster and the proceedings cover.

We invite readers to enjoy and profit from the papers in this book, and look forward
to the next SAB conference in 2018.

August 2016 Elio Tuci
Alexandros Giagkos

Myra Wilson
John Hallam
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Circumnutation: From Plants to Robots

Michael B. Wooten and Ian D. Walker(B)

Department of Electrical and Computer Engineering, Clemson University,
Clemson, SC 29634, USA

{mbwoote,iwalker}@clemson.edu

Abstract. We discuss and demonstrate how an approach used by plants
can be adapted as a useful algorithm for motion planning in robotics.
Specifically, we review the process of circumnutation, which is used by
numerous plants, and particularly climbing vines, to explore and contact
their environments. We show how circumnutation can be adapted to
generate practical algorithms for motion planning for continuum tendril
robots. The analysis and discussion is supported by experimental results
using a robot tendril. Using circumnutation, performance of the robot
is enhanced by efficiently enabling environmental contact, which helps
guide and stabilize the robot.

Keywords: Robotics · Continuum robots · Vines · Circumnutation

1 Introduction

Biology has frequently served as an inspiration for robotics researchers [1]. In
particular, the creation of androids, and their endowment with human-inspired
algorithms enabling these humanoid robots to exhibit human-like behavior, has
long been a holy grail for robotics. Additionally, robots and algorithms inspired
by the form and function of such widely disparate biological forms as dogs,
snakes, lizards, flies, birds, and fish have been developed and studied [2].

Almost all biological inspiration in robotics has come from animals, and most
of this from vertebrates. This appears a natural consequence of the fact that
conventional robot structures (e.g. manipulators and legs) have been constructed
from rigid links, and so their movements and capabilities are well-matched to
those of vertebrate animals.

Animals are not the only living and moving forms in nature however. Plants,
although sessile (fixed base) demonstrate an amazing variety of structures and
movements. These movements are typically slow relative to the usual expec-
tations for robots, but they nevertheless demonstrate a remarkable range of
adaptive behavior.

Until recently, apart from some high-concept thought experiments [3], few
robotics researchers have considered plants as inspiration for their work [4]. How-
ever, in recent years efforts have produced a new generation of soft and compliant
continuum trunk and tentacle robots [5]. These new robots have much in com-
mon with continuous biological morphologies, inviting comparisons with plant
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 1–11, 2016.
DOI: 10.1007/978-3-319-43488-9 1



2 M.B. Wooten and I.D. Walker

stems and roots in addition to invertebrate animals. Recent work has considered
the development of robots inspired by plant roots [6,7], but there appears to
have been little attention paid thus far to the strategies plants use for motion
generation to explore and exploit their environments.

Circumnutation is the term given in biology to a motion pattern commonly
observed in plants, notably vines, in exploring (growing into) their environments
[8,9]. In circumnutation, the stem simultaneously grows (extends) and bends,
with the tip tracing an elliptical pattern. Charles Darwin first recorded this
behavior and described it as a continuous self-bowing of the whole shoot, succes-
sively directed to all points of the compass [10]. This strategy is seen to increase
the probability of encountering a support [11]. The movement thus represents a
biologically optimal strategy for motion planning of plants to explore their a pri-
ori unknown environments, with the goal of encountering environmental objects
as soon as possible, given the constraint of the long, thin flexible structure of
the plants.

In this paper, we show how, by adapting circumnutation for robot motion
planning, new and useful robot behaviors can be synthesized. In particular, we
show how thin continuum robot tendrils can more efficiently explore their envi-
ronments using circumnutation-based movements. In the process, new insight
into the potential of tendril robots is gained. Continuum tendril robots and
their capabilities are discussed in the following section. Section 3 details novel
robot circumnutation algorithms and their implementation on a robot tendril.
Section 4 presents conclusions.

2 Continuum and Tendril Robots

In the past few years, a new type of robot structure, that of continuum robots,
has emerged [5]. Continuum robots, like plant stems, have continuous backbone
structures that can bend and often extend at any point along the structure.
They are significantly more compliant then their rigid-link counterparts. This
gives them unique advantages over conventional rigid link robots, notably the
ability to gently penetrate tight spaces and adaptively wrap around and grasp
environmental objects [1,12,13]. Exploitation of the first of these capabilities has
seen continuum robots find a niche in a variety of medical procedures [14].

Design of continuum robots has been strongly influenced by similar structures
in biology, notably elephant trunks and octopus arms [1]. However, a long, thin (rel-
atively high length to diameter ratio) variant of continuumrobots, directly inspired
by plant tendrils [15] has been proposed for remote inspection operations [16].

An example of a long, thin continuum robot tendril is shown in Fig. 1. Based
on a spring-loaded concentric tube design [17], the tendril has three serially
connected, independently controllable sections. Each section can be bent in two
dimensions, via three remotely actuated tendons running along the backbone
and terminated at the end of the section. The backbone core is comprised of
three concentric carbon-fiber tubes (largest diameter at the base end). External
compression springs are fitted to allow the tendon actuation to provide relative
extension and contraction between the tubes, and thus the sections [18].
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Fig. 1. Tendril robot featuring three independently controlled sections, each with two
degrees of freedom in bending, and local extension and contraction between sections.

The resulting robot is highly flexible, with physical properties resembling
many plant stems. The maximum length of the tendril is approximately 1.8 m,
with a total length to width ration of 130 to 1 [18].

Due to the thin physical form and correspondingly flexible motion charac-
teristics of tendril robots, development of strategies for operating them presents
significant challenges. While kinematics for continuum robots are well established
[19], motion planning for continuum robots remains an active research area [20].
Tendril robots are significantly thinner than previously deployed continuum-style
robots [21], and lack the structural stiffness to adopt their follow the leader (tip)
motion planning strategies. Their intended role in remote inspection requires
more sophisticated motion planning than for simple robot plant stems [22].
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3 Circumnutation with Robot Tendrils

Examination of plant behaviors provides alternative and useful insight into how
to plan and execute motion plans for long thin robotic structures. The physics
of plants in general [23], and circumnutation in particular [24], have been exten-
sively studied. The details of the kinematics of circumnutation varies between
plants [24], but the pattern of generally elliptical tip motion is consistent, pro-
viding a model of how to efficiently move a thin backbone.

The robot tendril illustrated in Fig. 1 was used to investigate the effectiveness
of circumnutation-based algorithms. The key aspect of adapting circumnutation
to the robot was in scheduling the actuators to rotate bending about the back-
bone, while also enabling backbone extension, to produce the somewhat irregular
helix [24] traced by plant tips.

In order to implement robot circumnutation, we initially choose the desired
section to perform the action. This is done for the tendril in Fig. 1 by changing
a variable for the operating mode in real time via the existing graphical user
interface. Next, the numbers for the motors to be moved are loaded into an array
and a second variable is set to the length of that array. This allows the function
to perform circumnutation in any one or in multiple sections. For example, in
the case of a single section, the array holds the numbers of the three motors
attached to that section, and the second variable is equal to three.

To achieve circumnutation in a single section, the first motor in the array is
signaled to pull its tendon. This is arbitrarily chosen to be the first motor in the
sequence: 0 for the base, 3 for the middle, and 6 for the distal section. After this
initial move, the next motor in the sequence activates and pulls its tendon until
the tension equals or surpasses the tension in the first motor’s tendon. Then the
previous motor unwinds to relieve the tension in its line. This process repeats
through the sequence until one full revolution occurs. The number of these full
revolutions is predefined in the program and arbitrarily selected.

Circumnutation in multiple sections is performed in a similar way to that of
a single section. The key difference is that, for multiple sections, the number of
array entries increases. In the case of all three sections the array is formed as 0,
3, 6, 1, 4, 7, 2, 5, and 8. The total number of motors to move in this case is nine.
The most important change is that instead of winding or unwinding one tendon
at a time, the action is performed in sets of three. In the case of circumnutation
in all three sections at once, motors 0, 3, and 6 pull on their tendons at the
same time, since these tendons are down the same side of the device. Otherwise,
the algorithm repeats as though for a single section but in sets of two or three
depending on the operating mode.

An example movement of the robot using the above approach is illustrated
in Fig. 2.

Figure 2 shows the side by side time evolution (top to bottom) of a hop vine
performing (biological) circumnutation, with the tendril robot of Fig. 1 evolving
correspondingly on the right, according to the actuation strategy described above.
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Fig. 2. Circumnuation. Top to bottom: increasing time. Left: hop vine. Right: tendril
robot.

It can be seen that the robot tip follows an approximately similar trajectory to
that of the plant. The real-time speed of the motion is significantly greater for the
robot (the plant motion was scaled up to match). However, the basic kinematics
of circumnutation were achieved. The full video can be viewed at: https://www.
youtube.com/watch?v=3fbgUxE0V8o&feature=youtu.be.

https://www.youtube.com/watch?v=3fbgUxE0V8o&feature=youtu.be
https://www.youtube.com/watch?v=3fbgUxE0V8o&feature=youtu.be
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The underlying algorithm for the robot circumnutation is given below.

1. Depending on selection variable (user input), store motor designations in an
array and store how many are to move in another variable.
(a) i.e. Distal section is controlled by motors 6, 7, and 8, 3 motors, and so on

2. Wind the first motor(s) in the set
3. Enter nested loop until predefined number of iterations achieved

(a) Until we have moved all tendons included in the current set to move
(usually 3)
i. Wind the next motor(s) in the sequence until the tension of the pre-

viously wound tendon is achieved
A. Wind until the tension is greater than or equal to tension on

tendon prior in the sequence
ii. Unwind the previously wound tendon once
iii. Go to 3-a until condition is met

(b) Increment counter variable
(c) Go to 3 unless increment counter equals the max iterations

The corresponding program (Arduino) code for the robot circumnutation is
reproduced below.

// ============================================================
Circumnutation subroutine
if(id == ButtonID_Circumnutation) {
if (MotorSelection == 9) // ==================
Distal section
{ // Counter-Clockwise
// ======================= Wind 6 -> 7 -> 8 -> 6 and re-peat
motorstomove[0] = 6; motorstomove[1] = 7; motorstomove[2] = 8;
numbertomove = 3;
}else if (MotorSelection == 10) // =================
Middle Section
{ // Counter-Clockwise
// ======================= Wind 3 -> 4 -> 5 -> 3 and re-peat
motorstomove[0] = 3; motorstomove[1] = 4; motorstomove[2] = 5;
numbertomove = 3;
}else if (MotorSelection == 11) // =====================
Base Section
{ // Counter-Clockwise
// ======================= Wind 0 -> 1 -> 2 -> 0 and re-peat
motorstomove[0] = 0; motorstomove[1] = 1; motorstomove[2] = 2;
numbertomove = 3;
}else if (MotorSelection == 12) // ======================
Multi - Section Circumnutation
{ // Counter-Clockwise
// ======================= Wind 0,3,6 -> 1,4,7 -> 2,5,8 -> 0,3,6
and repeat
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motorstomove[0] = 0; motorstomove[1] = 3; motorstomove[2] = 6;
motorstomove[3] = 1; motorstomove[4] = 4; motorstomove[5] = 7;
motorstomove[6] = 2; motorstomove[7] = 5; motorstomove[8] = 8;
numbertomove = 9;
}else if (MotorSelection == 13) // ==========================

Multi Section (2) Circumnutation
{ // Counter-Clockwise
// ======================= Wind 3,6 -> 4,7 -> 5,8 -> 3,6
and repeat

motorstomove[0] = 6; motorstomove[1] = 3;
motorstomove[3] = 7; motorstomove[4] = 4;
motorstomove[6] = 8; motorstomove[7] = 5;
numbertomove = 6;
}
move_motors(motorstomove,numbertomove/3,SERVO_WIND);
delay(DELAY_TIME);
sensor_update();
for (ndx = 0; ndx < CIRCUMNUTATION_DURATION && !Emergen-cyState;
ndx++)

{
for (i = 1; i <= 3; i++)
{
for (j = (numbertomove/3)*(i%3), k = (numberto-move/3)*((i-1)%3);
j < (numbertomove/3)*(i%3)+(numbertomove/3); j++, k++)
wind_to_threshold(motorstomove[j],SensorWeight[motorstomove[k]]);
delay(DELAY_TIME);
sensor_update();
move_motors(&motorstomove[(numbertomove/3)*((i-1)%3)],
(numbertomove/3),SERVO_UNWIND);
delay(DELAY_TIME);
sensor_update();
}
}
}

3.1 Discussion

The benefits (and a key motivation for the approach in this paper) for the robot
mirror those gained by the plants themselves. While the high flexibility of a long
thin stem offers the advantages of being able to enter and thread through tight
spaces, it also presents the corresponding disadvantage of low structural stability.
The robot tendril, like many plant stems, suffers from sag due to gravitational
loading, and buckling due to applied external forces. Many long thin plants,
especially vines, devote most of their energy to growth rather than structural
support [8,9]. To compensate for this, a key part of their growth strategy is to
actively use the environment for support. By connecting to fixed points in the
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environment, plants (and robots) can partly or fully decouple the parts of their
structure between contact points, reducing the effects of disturbance forces, and
using the environment for support against gravity [8].

Different climbing plants use a variety of contact and attachment mechanisms
(twining, pads, roots, specialized tendrils, thorns, prickles, etc.) to attach to the
environment [8], but a common strategy for the free space tip motion is to
use circumnutation to search the environment for environmental contacts. An
excellent example can be seen in the video at: https://www.youtube.com/watch?
v=erNNiVwZXv8. Tendril robots can benefit from a corresponding strategy. In
[18], the authors demonstrated how the active use of environmental support using
passive thorns on the backbone of the tendril of Fig. 2 significantly improved the

Fig. 3. Tendril robot coiling around bamboo post following circumnutation.

https://www.youtube.com/watch?v=erNNiVwZXv8
https://www.youtube.com/watch?v=erNNiVwZXv8
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achievable workspace of the robot. The key advantage of hooking to fixed points
in the environment is that coupling of forces (due to tendon actuation as well
as externally applied) within the backbone is significantly reduced, resulting in
greater control authority over the robot [18].

However, to adopt this strategy, particularly in the a priori partially known
environments anticipated for robot tendril inspection operations, a methodology
for efficiently moving to contact the environment is required. Note that at this
time the field of tendril robots is sufficiently new that no formal algorithms for
their motion planning has been established in the literature. Circumnutation
offers a convenient existence proof from nature for similar robotic structures
engaged in analogous explorations. Adaptation of the approach for robot tendril
motion planning, as in this paper, provides the robot with a systematic approach
to first find, then engage, environmental objects of interest (see Fig. 3).

Figure 3 shows the tendril robot engaging in twining behavior, wrapping
around a static environmental object (a bamboo pole). In this operation cir-
cumnutation can be used as a motion primitive to efficiently move the robot
to contact the pole. Subsequently a second motion primitive (twining) can be
used to exploit the contact. We conducted multiple version of the experiment,
and found the process robust to variations in initial pole placement and tendril
geometry. In our experiments, no local sensing was used. If local contact sensing
was available, the circumnutation and twining movements could be combined
into a larger motion primitive.

In the future, we anticipate circumnutation-based algorithms forming a key
part of a suite of algorithms (possibly forming part of larger motion primitives)
enabling the practical operation of long thin robotic structures.

4 Conclusions

In this paper, we show how circumnutation, a movement strategy commonly
observed in plants, can be adapted to synthesize a successful algorithm for robot
motion planning. Circumnutation involves elliptical motion of the tip of a plant
stem, and is used by plants to increase the likelihood of finding environmental
support. We show that, and detail how, circumnutation can be used as the basis
for algorithms for motion planning in thin continuum robots, which similarly
benefit from environmental contact and support. The discussion is supported
by experimental results with a tendril robot performing circumnutation to more
efficiently achieve environmental contact.

Acknowledgments. This work is supported in part by the U.S. National Sci-
ence Foundation under grant IIS-1527165, and in part by NASA under contract
NNX12AM01G.
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Abstract. Robotic animals are regularly used in behavioral experi-
ments, typically in experimental interactions with individuals of the
species they were modelled on. In order to do so successfully, these robots
need to be designed carefully, taking into consideration the specific per-
ceptual system of the model species. We used marker-based motion cap-
ture to measure head bobbing in a widely popular lizard species, bearded
dragons, and found that head bobbing is highly stereotypic yet differs
subtly when displayed towards males and females. These results were
then used for the construction of a robotic lizard, with the aim to use
it in behavioral and cognitive studies, focusing on social cognition. This
is the first study to use motion capture of head bobbing in lizards to
inform the design of a robotic animal.

Keywords: Motion capture · Robotic lizard · Bearded dragon · Head
bobbing

1 Introduction

Recreating realistic animals is a difficult task. Particularly in studies involving
the interaction between a robot and real animals, care has to be taken as to how
the robot is perceived by the animals. This includes, among other factors the
robot’s size, coloration, odor and motion characteristics. It is important to con-
sider that each species has a different perceptual system, and therefore human
perception alone is not a sufficient indicator of the realism of a robotic animal
(see [1]). For example, color perception often differs substantially between differ-
ent species, and so colors recreated for the human eye may not elicit realistic per-
ceptual responses in the animal species being studied [2]. Careful, well-designed
studies should be undertaken to examine the animals’ perception of the robot to
ensure that it appears as realistic as possible. When developing a robotic animal
to mimic the species it is modelled after, even small aberrations in speed, angle or
combination of movements may make it seem unrealistic. Depending on the task
the robot is being created for, this can be detrimental. Even when the anatomy,
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 12–21, 2016.
DOI: 10.1007/978-3-319-43488-9 2
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including bone structures, joints and muscles, is understood, it remains challeng-
ing to know how specific movements take place. In this paper we explain how
we used motion capture to create a robotic bearded dragon (Pogona vitticeps)
that moves in a realistic manner, which will be used in experiments focusing on
social cognition (i.e., the study of how animals interact, acquire information and
learn from each other). We chose bearded dragons as our model species because
their behavioral repertoire is relatively simple and therefore comparatively easy
to replicate and interpret [3]. The aim is to create a robot that is able to mimic
some of the species’ most characteristic behaviors. This will allow us to investi-
gate these behaviors, and specifically other animals’ response to them, in more
detail, and ultimately to use robotic “demonstrators” in social learning experi-
ments. Animal social cognition is a field that can vastly profit from using robotic
animals, as they allow for greater reliability and control over the many factors
outside the experimenter’s power when using live animals (see [1]). Using robots
for this type of work enables us to study social cognition in animals in much
greater depth, providing full control over the presented stimuli and making it
possible to vary them precisely, while excluding “noise” in the information pro-
vided, influenced for example by motivation and reliability of the demonstrator
animal and interactions between demonstrators and subject animals [1]. Bearded
dragons are responsive to social cues and show sophisticated social learning abil-
ities [4]; these experiments will therefore provide valuable insights into reptile
social behaviors and the perceptual mechanisms that underlie them.

1.1 Motion Capture of Animals

The most common use of marker-based motion capture in animals is with horses.
They are mainly recorded for the film and games industry to recreate realistic
models. Abson and Palmer [5] showed how biomechanical knowledge, includ-
ing painting of the internal anatomy onto the skin of the horse, combined with
well thought out marker and camera placement can lead to efficient recordings
that require minimal post-processing. Other groups have used motion capture
to improve the locomotion of quadruped robots. For example, Moro and col-
leagues [6] used motion capture of a horse walking on a treadmill to improve
types of locomotion typical for horses in a small robot. Few other species have
been used in motion capture studies. To understand the characteristic hopping
motion and body posture of kangaroos, markers were placed on a kangaroo’s
joints [7]. Motion capture has also been used to record lizards, including bearded
dragons [8–10], with the aim of informing war robots. These studies focus on
walking behavior to generate data that is used for building walking robots capa-
ble of navigating difficult terrain, however none of them consider other behaviors
of the lizards.

1.2 Head Bobbing in Lizards

One of bearded dragons’ most characteristic behaviors is head bobbing—rapidly
moving the head up and down, which can be supported by expansion of the skin
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on the neck and changes in coloration. This behavior is thought to be produced as
an aggressive signal, showing dominance over a conspecific or during their mating
ritual, and will often be responded to with arm waving, which is a submissive
signal [3]. Because it is a very common behavior, carries a lot of communicative
value and is relatively easy to replicate in a robot we chose head bobbing as our
main focus for this study.

Behavioral studies investigating head bobbing have been conducted in several
lizard species, some of which have used robotic lizards. Jenssen [11] investigated
the influence of different behavioral modifiers on head bobbing in the Jamaican
lizard (Anolis opalinus), while Lovern and Jenssen [12] showed that different
types of head bobs emerge at different ontogenetic stages in green anoles (Anolis
carolinensis). Martins and colleagues [13] used a robotic sagebrush lizard (Scelo-
porus graciosus) to investi-gate the influence of different types of head bobs on
male and female conspecifics, showing that males attend more to the overall pos-
ture while for females the number of head bobs is important in evaluating other
lizards. Macedonia and colleagues [14,15] showed how different anoles species can
recognize members of their own species via their head bobs and how altering the
dewlap color or head bob motion of a robotic anoles lizard influences species
recognition. Other studies looked at inter species variation in head bobs (Scelo-
porus graciosus and Anolis sagrei), using robotic lizards to elicit head bobbing in
live animals [16,17]. Ord and Stamps [18] investigated which factors of displays
in Anolis lizards (Anolis gundlachi) influence perception in noisy environments
by using robotic lizards that showed these displays in different combinations.
To our knowledge, these robots were built to match a lizard perceived by the
human sensory system, and no specific studies were carried out into how they
were perceived by the animals they were modelling. While this seems sufficient
in most cases, subtle differences in coloration, motion or odor, that might not be
detectable by humans, can potentially influence the responses of other animals
and thus the results of these experiments (see [1]). Head bobbing in lizards has
previously been measured from video recordings [19]. Depending on the quality
of the videos data recorded this way usually lacks detail, as movements that are
too small and too fast to be visible to the human eye are missed. Furthermore,
three dimensional data cannot be recorded if only one camera is used, and the
animals have to be perfectly aligned with the camera, as any rotation of the head
or body will lead to inaccurate results. To our knowledge, no studies have been
conducted on head bobbing in bearded dragons. Therefore, the present experi-
ment was designed to gain insight into the specific motion of head bobbing in
bearded dragons to inform the design of a robotic lizard that will be used in
behavioral and cognitive studies with these animals.

2 Methods

2.1 Motion Capture

Animals. Three male and two female bearded dragons (Pogona vitticeps) were
used for motion capture. All animals were habituated to being handled by
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humans on a daily basis. They were housed at the cold-blooded cognition labora-
tory at the University of Lincoln in groups of two to three animals per vivarium,
with males being held separately to avoid aggression. The room temperature
was kept at 28◦C (±3) with additional heat lamps provided in each vivarium.
All animals received water ad libitum, vegetables and fruit once per day and
live food three times per week. None of the animals had previously been housed
together and they were of different ages, with two males and one female being
at least four years old and one male and one female being two years old.

System. Kinematic data were collected at 150 Hz using the Cortex software
package (v. 5.3, Motion Analysis Corporation (MAC), Santa Rosa, CA) running
on a PC coupled to twelve MAC Raptor motion capture cameras. The cam-
eras were placed around a platform (120 cm x 60 cm) that was partitioned into
two equal halves by a glass plate (Fig. 1a) in such a way that both sides could
be recorded individually. This gave us the opportunity to record two interact-
ing animals individually and simultaneously. Each animal was equipped with

(a)

(b)

Fig. 1. (a) Set up of the experiment, showing the platform, divided by a glass plate,
the digital cameras and two bearded dragons with markers (b) Bearded dragon with
18 retroreflective markers attached to its skin
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18 6.4 mm diameter retroreflective markers: three on its head, two on each leg,
two on the shoulders, two on the hips, one at the center of the back and two on
the tail (Fig. 1b). Marker locations were chosen to correspond with joints and
anatomical points important for modelling the movements we were interested
in, while taking into account the small size of the animals. The markers were
applied using toupée tape, which is commonly used in human studies and proved
to work well with bearded dragon skin, attaching securely while being easy to
remove. The animals were habituated to the markers and did not attempt to
remove them or pay any attention to them. Therefore, we believe they did not
influence their behavior.

Procedure and Trials. An animal was placed on either side of the platform,
with a cloth covering the glass partition. The animals were left to habituate for
a few minutes, during which food was used to elicit movement. Animals were
considered habituated when they moved freely on the platform to explore it.
The cloth was then lifted and the recording started. During recordings animals
were allowed to move freely on the platform. Each recording lasted 5 min, and
21 recordings were taken in total. The animals were recorded in several different
pairings depending on their motivation and behavior in previous trials (Table 1).

Table 1. List of combinations of animals recorded, number of 5 minute trials each
combination was recorded for and number of head bobs recorded for each combination.

Animal 1 Animal 2 Number of trials Number of head bobs

Male 1 Male 2 3 1

Male 1 Female 1 3 12

Male 2 Female 1 3 0

Male 2 Female 2 2 0

Male 1 Female 2 2 6

Male 3 Female 2 4 0

Male 1 Male 3 4 8

Post-Processing. Data was post-processed using Cortex software. Post-
processing consisted of assigning marker IDs and manual clean-up of switched
markers, which was necessary due to the small size of the animals and relative
closeness of the markers.

2.2 Construction of the Robot

To construct the robot, 3D scans of bearded dragons were taken using an iSense
scanner attached to an iPad with a Z-resolution of 0.5 mm. These scans were
then imported into Google Sketchup and modified to allow for articulation of
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Fig. 2. (a) 3D scan of a bearded dragon that was used for the construction of the
robot; (b) first prototype of the robot.

the head and front legs. This modified model was then 3D printed and two servo
motors placed inside it. A Femtoduino Arduino clone board was used to control
the servos to provide the movement of the head and arms (Fig. 2).

Several additional studies were undertaken to ensure the robot was realistic.
3D print-ed models of bearded dragons were used to investigate the importance of
color, shape and eyes (Frohnwieser, Pike, Murray &Wilkinson in prep). Bearded
dragons were presented with a white model lit in different colors for one minute
each, the same model with or without eyes attached to it and several white
objects with or without eyes. We found that bearded dragons responded more
to a model if it was presented in bearded dragon skin color than grey, more
to the model than objects of different shapes, and more to the model and the
objects when they had eyes attached to them.

3 Results

In this study, three male and two female bearded dragons were recorded inter-
acting with each other (see Table 1). Out of these, one male (Male 1) showed the
desired head bobbing behavior. He was therefore paired with all other animals,
to allow for a comparison between head bobbing towards males and females.
In total, 27 instances of head bobbing were recorded, 18 towards females and
9 towards males. Two of them had to be excluded due to missing markers and
artefacts. We focused our analysis on the marker at the tip of the head (Fig. 1b)
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and recorded its movement on the vertical axis. This allowed us to look at the
sequence and speed of head bobbing. The results showed that head bobbing is
highly stereotypic. All head bobs showed the same sequence of five dips and
five raises of the head, with oscillations of decreasing amplitude. Each head bob
sequence lasted for about 4.3 s, with the first dip being the longest (Fig. 3a).
This was remarkably consistent across all head bobs that were recorded.

There was a difference in head bobs towards male and female lizards (Fig. 3b).
When head bobbing at a male, the focus animal’s head stayed significantly higher
than when head bobbing at a female (autoregressive integrated moving average
[ARIMA] models, incorporating both moving average and seasonal components,
were fitted to the averaged male and female data, and differences between them
compared using a Cox test: z = −13.85, p < 0.001). This difference was evident
for all five bobs within a sequence, and was most prominent for the first head
bob, with the head being 11.2 mm higher at the lowest point of the bob and
10 mm higher at the highest.

(a)

(b)

Fig. 3. (a) Mean ± standard deviation (shaded area) vertical head position over all
25 recorded head bobs. (b) Comparison of head bobs towards male and female lizards,
showing mean vertical head position (lines) ± standard deviation (shaded areas).

4 Conclusion and Future Work

Our results show that head bobbing in bearded dragons is highly stereo-
typed with each sequence containing five characteristic head bobs. Furthermore,
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these sequences differ in the height of the head when displayed towards male
or female lizards. Motion capture provides an easy and efficient way to measure
this type of data, ensuring that all behaviors are recorded and that no data is
missed. Furthermore, it reduces the occurrence of artefacts that manual coding
of video data might cause. Marker-less approaches of capturing motion from
synchronized video cameras are being developed, which can be useful for ani-
mals that cannot be recorded in a laboratory setting or that do not tolerate the
attachment of markers [20]. However, this technique relies on textural differences
within the animal and is not as efficient or detailed as marker-based approaches.
As we did not find any aversive effects of the markers to the bearded dragons
and they can easily be moved to a laboratory, we think marker-based motion
capture is an excellent tool to record their behaviors.

The data recorded in this experiment was translated onto the robot using
individual data points, i.e., the number of head bobs per sequence, the maximum
and minimum vertical position of each head bob and the time span the head
remained in each position. Therefore, the motion of our robot is highly realistic
and recreates the head bobs with a very high level of detail. Since we found
differences in head bobbing towards males and females we can use the robotic
bearded dragon to investigate these behaviors in more detail, asking questions
such as “Are the two types of head bobs perceived differently by the animal
watching the robot?”, “Do the two types of head bobs elicit different reactions,
such as aggressive or mating behaviors?” or “Does exaggerating the differences
between the two types of head bobs elicit greater responses than the original
ones?”.

We propose that more detailed studies should be undertaken into the exact
motion of animals before creating robots to represent them. This is especially
important when designing a robot to be used in interaction studies with live
animals, as these might perceive and attend to factors invisible to the human
eye. While for robots interacting with humans it may be sufficient to use human
perception alone as a measure of how realistic they are, this is surely not the
case for robots interacting with animals, as perception differs greatly between
species. It is therefore instrumental to use subjective measures of features such
as color, odor or motion in the creation of these robots. When planning and
constructing our robotic lizard we have undertaken such studies, specifically to
investigate the importance of color, shape and eyes, to make it possible to create
a robotic lizard that is able to interact with real animals.

The data presented in this article shows how motion capture can improve the
construction of robotic animals by measuring detailed movements and translat-
ing them onto a robot, which can be invaluable information for improving the
study of robotics, animal behavior and animal cognition. We showed that with
this method subtle differences that might otherwise be missed, such as the height
difference in displays towards males or females, can be measured easily and in
great detail.
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Abstract. We present a simple brain architecture that allows agents
to recognise patterns and make decisions based on those patterns. It
takes into account not only the type of situation the agent thinks it is
facing, but also how confident the agent is in its assessment, and possible
alternatives. An agent using this brain was applied to two classification
tasks: handwritten numeral recognition and spoken numeral recognition.
In both cases, its accuracy was comparable to more traditional classifiers.
This suggests that the new architecture could be useful as a general-
purpose brain, for agents in a variety of domains.
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1 Introduction

Decision-making is the ability of an animal to choose an action from a set of
possible actions. In goal-directed decision-making, the animal weighs the antici-
pated reward (e.g., food) against the cost (e.g., energy expenditure) [14]. Thus,
a good decision-making process, and the ability to learn from previous decisions,
improve the animal’s chance of survival. The same logic can be used by artificial
(software) agents as well as animals.

Wains are an artificial life species created for data mining. For wains, data
mining is a survival problem. In order to stay alive, they must discover patterns
in the data, build a model of the data, classify new data based on the model,
decide how to respond to data, and adapt to changes in the patternicity of the
data [6].

De Buitléir et al. [6] demonstrated that a population of wains can indeed
discover patterns, make survival decisions based on those patterns, and adapt
to changes in the patternicity. Individual wains learned to make better decisions
during their lifetimes, and evolution optimised the (genetic) operating parame-
ters of their brains over a few generations. Several directions for future research
were identified, including improving the wain’s decision-making process, and
implementing cultural transmission (allowing children to learn by observing the
actions of their parents, and adults to learn by observing their peers).
c© Springer International Publishing Switzerland 2016
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The original brain design used a self-organising map (SOM) as a classifier,
with a neural network to make decisions [6]. A SOM is a technique for represent-
ing high-dimensional data in fewer dimensions (typically two), while preserving
the topology of the input data [9]. As part of the work to improve the wain’s
decision-making process, the SOM algorithm was modified for artificial life; we
call the modified version a self-generating model (SGM). The SGM has been
presented previously [5]. In this paper, we build on that work by redesigning the
brain to use one SGM to classify inputs, and a second to predict the outcome of
possible actions. The process is explained in Sect. 2.2.

It has already been demonstrated that wains can learn through trial and
error [6]; we now wish to show that they can be taught. The focus of this paper
is on the individual wain rather than a population, but the wain will trained using
the same mechanism that allows wains to learn from one another. In addition
to demonstrating the decision-making ability of the wain, we hope to show that
a wain can be a useful general-purpose classifier (one that might be used when
specialised classifiers are not available).

To demonstrate how the new design could be used as a general-purpose brain,
for agents in a variety of domains, we will demonstrate that it can classify two
very different types of data: images and audio. Common classification tasks such
as handwriting recognition and Automatic Speech Recognition (ASR) have ben-
efitted from years of research, resulting in classifiers that are designed and fine-
tuned for specific types of data. Since the wain is intended as a general-purpose
data miner, we do not expect it to outperform a domain-specific classifier.
Instead, we hope to demonstrate that wains can provide comparable accuracy.

The image data consists of handwritten numerals; the wain will attempt to
identify the numeral. To evaluate the performance of the brain at handwriting
recognition, we compare it with a traditional classifier. Other classification tech-
niques can achieve better accuracy at handwriting recognition than the SOM,
for example, support vector machines [8] and traditional neural networks [7].
However, the wain’s new brain design is partly based on modified SOMs (see
Sect. 2.2). For this reason, we chose the SOM as the benchmark.

The audio data consists of spoken numerals; again the wain will attempt to
identify the numeral. One widely used ASR technique is hidden Markov models
(HMM) [13]. The hidden Markov model toolkit (HTK) provides the ability to
construct and manipulate HMMs [15]. HTK is widely used for speech recognition
research, making an HMM-based classifier implemented using HTK a suitable
benchmark.

As will be explained in Sect. 2.2, a wain maintains a set of internal models
for the range of objects that it has encountered. These internal models need not
(and usually do not) map directly to human categories. Based on the resemblance
between a stimulus and its internal models, the wain chooses, from a predefined
set, the response that it predicts will lead to the greatest happiness. Then how can
we get a wain to perform classification? By making the set of available responses
be classifications! By using the wain as a classifier, we are also demonstrating its
ability to make good decisions.
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2 Implementation

This project uses a computational ecosystem called Créatúr1. Créatúr is both a
software framework for automating experiments with artificial life, and a library
of modules that can be used (with or without the framework) to implement
agents. The system architecture is illustrated in Fig. 1. The package creatur
provides the ecosystem. The package creatur-wains provides a general-purpose
implementation of a wain, creatur-image-wains contains tools for working
with images, and creatur-audio-wains contains tools for working with audio
feature files.

Fig. 1. System architecture for working with MNIST images (left) and TIDIGITS
feature files (right). The rectangles represent software packages. A horizontal boundary
between two packages indicates that the upper package calls functions provided by the
lower package. For example, creatur-wains calls functions provided by creatur, and
creatur-image-wains calls functions provided by creatur-wains, but also makes calls
directly to functions provided by creatur.

The wain implementation has been described in detail elsewhere [6]; a sum-
mary is provided below, which focuses on the features used in the experiments
presented in this paper and highlights changes that have been made to the imple-
mentation.

2.1 Condition

Wains have an energy level from 0 to 1. They gain or lose energy as a result of
the reward system, which is unique to the type of experiment. For example, a
wain might be rewarded for accurately identifying a pattern. If a wain’s energy
falls below 0, it dies. Wains also have a boredom level and a passion level, each
from 0 to 1. Depending on the reward system, boredom might be decreased as a
result of novelty-seeking behaviour. The wain’s passion level is set to 0 at birth
or as a result of mating, and increases at a genetically determined rate until the
next mating. (A “genetically determined” value is one that is specified by an
1 Créatúr (pronounced kray-toor) is an Irish word meaning animal, creature, or unfor-

tunate person.
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agent’s genes, can be different for each agent, is inherited by offspring, and is
subject to evolutionary pressures.) Collectively, the wain’s energy level, passion
level, boredom level, and whether or not it is currently rearing a child, are called
its condition.

Wains seek to maximise their happiness, which is given by

happiness = wee + wp(1 − p) + wb(1 − b) + wll, (1)

where e is the wain’s energy level; p its passion level; b its boredom level; l is
1 if the wain is currently rearing a child, 0 otherwise; and we, wp, wb, wl are
genetically-determined weights. The weights are normalised so that the happi-
ness is from 0 to 1.

2.2 The Brain

The brain has three components: a classifier, a muser, and a predictor. This
structure is fixed; however, evolution can fine-tune operating parameters such
as the learning rate. The classifier maintains a model of the space of patterns
encountered, the muser generates possible responses to situations, and the pre-
dictor maintains a model of the space of responses selected.

Both the classifier and predictor use a modified SOM called a self-generating
model (SGM) [5]. In a SOM, the models are arranged on a two-dimensional grid;
in an SGM the models form an unconnected set. Unlike a SOM, the SGM does
not preserve the topology of the input space. Another difference is that the SOM
has a fixed number of models, but the number of models in the SGM is variable.
When the difference (according to a chosen metric) between the input pattern
and the closest matching model exceeds a predefined threshold, and the SGM
is not at capacity, the SGM creates a new model based on the input pattern.
Therefore, while the SOM must be initialised with a set of models (possibly
random data), the SGM can begin empty, adding new models as needed to
reflect the diversity of the input data.

The process by which the brain makes decisions is illustrated in Fig. 2. When
one or more patterns are presented to the agent, the classifier produces a signa-
ture, a vector whose elements indicate how similar each input pattern is to each
classifier model, and reports this to the brain.

For each object and model, the brain estimates the probability that the
object actually belongs to the category represented by the model. This is a
simple calculation,

pi =
1 − di

|1 − di| ,

where pi is a vector where each element pij is the estimated probability that
object i belongs to the category represented by model j, and d is a vector where
each element dij is the difference between object i’s pattern and model j.

The brain generates hypotheses by considering each possible combination of
object and model. The estimated probability for each hypothesis is the product
of the individual object-model probabilities. Next, the muser chooses one or more
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Fig. 2. The decision-making process

of the most likely hypotheses (the number of hypotheses chosen is genetically
determined), and generates a set of responses to evaluate.

The predictor then estimates how each proposed response will affect each
aspect of the agent’s condition (energy, passion, boredom, litter size). It does
this by selecting the response model that best matches the proposed response,
and returning the condition changes predicted by that model, adjusted according
to the probability that the hypothesis is true. If no response model is sufficiently
similar, a new model may be created.

The brain combines the agent’s current condition with the predicted changes,
and calculates the resulting happiness change, according to Eq. 1. The brain
chooses the action that is predicted to have the most favourable (most positive
or least negative) effect on happiness. After the agent has received any rewards
or penalties as a result of that action, the predictor adjusts its models according
to the actual change in happiness.

By considering more than one hypothesis, the agent can employ more subtle
reasoning. It can base its actions not only on what scenario it thinks it is facing,
but also on how confident it is, and what is likely to happen if the agent is wrong.
For example, suppose the agent considers two hypotheses, where the estimated
payoff (happiness increase) is given by Table 1. If the agent is reasonably confi-
dent that the more likely hypothesis is actually true, the best response is action
#1. Otherwise, it may be worth the gamble to go for action #2, in hope of the
large payoff.

The brain can also learn as a result of imprinting, which is a shortcut where
the agent is shown one or more patterns and an action, and concludes that
taking the action in a similar situation would optimise its condition, maximising
its happiness. This can be used to allow children to learn by observing their
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Table 1. Sample payoff matrix

Payoff if more likely
hypothesis is true

Payoff if less likely
hypothesis is true

Action #1 medium small

Action #2 small large

parents, or for adults to learn by observing other adults. Although this feature
was originally intended to allow wains to learn from each other, it can also be
used by the operator to train wains.

3 Experimental Setup

The methods used for the experiments presented in this paper are described
below. These experiments use an individual wain rather than a population, but
the wain is trained using the same mechanism that allows wains to learn from
one another.

3.1 Images

The MNIST database is a collection of images of hand-written numerals that is
a useful benchmark for comparing classification methods [11]. The training set
contains 60,000 images, while the test set contains 10,000 images. All images are
28× 28 pixels, and are grey-scale. The numerals are centred within the image.
The centre of pixel mass of the numeral has been placed in the centre of the
image. A sample image is shown in Fig. 3.

Fig. 3. Sample MNIST image of a handwritten “2” [11].

Images from the MNIST database were used without modification. We pre-
sented the images to the agent as a sequence of integers. Each element of the
sequence was a number from 0 to 255, indicating the intensity of the pixel. The
agent was not given any information about the geometry of the image. For exam-
ple, it did not know that in a 28× 28 image, the 29th pixel is immediately below
the first pixel.

The brain was configured to use the mean of absolute differences (MAD)
as a measure of difference between an input image and the classifier models.
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This is calculated by taking the absolute difference between each pair of cor-
responding pixels, and taking the mean to obtain a number from 0 (identical)
to 1 (maximally dissimilar). All the images in the MNIST database have the
same size, viewing direction (normal to the plane of the image, from above), and
comparable intensity, so the MAD is an appropriate difference metric.

The learning function of the SOM is given by Eq. 2,

f(d, t) = re− d2

2w2 , (2)

where

r ≡ r0

(
rf
r0

)a

, w ≡ w0

(
wf

w0

)a

, and a ≡ t

tf
.

The function input d is the distance between the node being updated and the
winning node; t is the “time”, a counter of the number of patterns learned so far.
The parameter r0 is the initial learning rate, rf is the learning rate at time tf , w0

is the radius of the initial neighbourhood, wf is the radius of the neighbourhood
at time tf , and a indicates the brain’s “age”.

For the winning node, d = 0, and Eq. 2 reduces to Eq. 3, which is the learning
function for the SGM.

f(t) = r = r0

(
rf
r0

)a

. (3)

Note that at all times the learning rate of the SGM matches the learning rate
of the winning node in the SOM. This permits a fairer comparison of the SOM
and the SGM.

Table 2 shows the configuration of the two classifiers. The values r0 and rf
were chosen so that the learning rate would start at maximum and be near

Table 2. Configuration for working with MNIST images

Variable SOM Brain

Final node count 1024 956

Grid type rectangular unconnected nodes

Classifier r0 1 1

Classifier rf 1×10−15 1×10−15

Classifier w0 3 not applicable

Classifier wf 1×10−7 not applicable

Classifier tf 60000 60000

Classifier threshold not applicable 0.12

Predictor r0 not applicable 1×10−9

Predictor rf not applicable 1×10−10

Predictor tf 60000 60000

Predictor threshold not applicable 0.1
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zero by the end of training. The values w0 and wf were determined empirically.
The value of tf is the number of training images. To determine the difference
threshold, we tried a range of values near the mean difference between images
of the same numeral, and chose the one that resulted in the best accuracy.

3.2 Audio Samples

The TI46 speech database is a corpus of 46 isolated spoken words recorded
for both male and female speakers. The corpus is intended for the evaluation of
ASR products [12]. The words in the corpus include the numerals “zero” through
“nine”. In the experiments presented in this paper, only numerals are used. The
training set contains 1,594 samples of spoken numerals; the test set contains
2,541 samples.

We extracted the MFCC feature vectors from the samples in the TI46 corpus
using the HCopy tool provided as part of HTK [15]. Each frame had 13 static
coefficients (cepstral coefficients C1-C12 and energy). The corresponding velocity
and acceleration coefficients were also calculated to give 39 coefficients per frame.
First order pre-emphasis was applied using a coefficient of 0.97. There were 23
filterbank channels and 22 cepstral liftering coefficients. The frame rate used was
10 ms with a 25 ms Hamming window. The feature vectors for each audio sample
were concatenated, in time order, and presented to the brain as a sequence of
double-precision floats.

The HMM-based classifier is implemented using the HTK Speech Recogni-
tion Toolkit [15]. There are ten whole word HMMs, one for each numeral, each
of which has three states, with each state having three Gaussian mixtures. For
working with non-endpointed samples, two additional models are defined to rep-
resent pauses in speech, “sil” and “sp”. The “sil” model has three states and
each state has six mixtures. The “sp” model has a single state.

End-pointing is the process of removing silence from the beginning and end
of an audio sample, in order to simplify the classification task. The short-term
energy for each frame is calculated as the sum of the absolute values of the sample
amplitudes in the frame. End-pointing is performed by determining whether or
not the short-term energy of successive frames is above a defined threshold (to
determine the start of the utterance) or below a defined threshold (to determine
the end of the utterance). For example, to get the start point, look for three
consecutive frames with energy exceeding the threshold; the first frame of the
three is assumed to be the start of the utterance.

The brain was configured to use the square of the Euclidean distance as a
measure of difference between an input sample and the classifier models. The
length of samples differs, so the resulting number of vectors in each sample differs
as well. However, brains require that all input patterns have the same length.
Therefore, the agent was configured to “stretch” or “compress” the samples as
needed so they all have the same number of vectors. Stretching is achieved by
duplicating vectors; the duplications were distributed as evenly throughout the
pattern as possible.
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Table 3. Configuration of brain for working with audio samples

Variable As-is samples End-pointed samples

Classifier r0 0.1 0.1

Classifier rf 0.001 0.001

Classifier tf 1594 1594

Difference threshold 0.00018 0.00018

Predictor r0 0.1 0.1

Predictor rf 0.001 0.001

Predictor tf 1594 1594

Num. vectors 159 154

The algorithm for compressing samples is straightforward. First, calculate
the differences between each consecutive pair of vectors. Second, find the vector
with the smallest change from the previous one, and drop it. These two steps
are repeated until the sample is of the desired length.

Table 3 shows the configuration of the brain. The values r0 and rf were chosen
so that the learning rate would start at maximum and be near zero by the end
of training. The values w0 and wf , and the number of vectors, were determined
empirically. The value of tf is the number of training images. To determine the
difference threshold, we tried a range of values near the mean difference between
samples of the same numeral, and chose the one that resulted in the best HMM
accuracy.

3.3 Training and Testing

The general procedure for working with either images or audio samples is the
same. In both cases, the training data set and the test data set are distinct; we
used the standard training and test sets for both the MNIST and TI46 data.
First, we presented the training patterns in random order to the agent, along
with the correct identification. This was done using imprinting, as described at
the end of Sect. 2.2.

Next, we presented the test patterns to the agent, again in random order. As
each pattern was presented, the agent responded with an identification. For a
fair comparison with the SOM or HMM, we needed to prevent learning during
the testing phase. To achieve this, each time the wain responded, we restored
it to the state it had at the end of the training (imprinting) phase. Although
the wain’s condition never actually changes, it continues to expect an increase
in happiness, and to take that into account when making decisions.

4 Results and Interpretation

Table 4 compares the image classification performance of the brain with that of
the SOM. The accuracy of both methods is comparable. Training and testing the
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Table 4. Comparison of image classification results

Classifier SOM Brain

No. models 1024 941

numeral accuracy

0 0.952 0.9408

1 0.970 0.9736

2 0.837 0.9109

3 0.835 0.8634

4 0.725 0.6609

5 0.739 0.8341

6 0.967 0.9415

7 0.873 0.7772

8 0.753 0.7956

9 0.834 0.7929

All 0.853 0.8508

Time 6273 s 2514 s

Table 5. Comparison of audio classification results

Data type Classifier As-is End-pointed

HMM Brain HMM Brain

word accuracy

“zero” 1.0000 1.0000 1.0000 0.9840

“one” 1.0000 0.9882 1.0000 0.9922

“two” 1.0000 1.0000 1.0000 1.0000

“three” 1.0000 0.9881 1.0000 0.9961

“four” 1.0000 1.0000 1.0000 0.9961

“five” 1.0000 1.0000 1.0000 0.9961

“six” 0.9961 0.9961 1.0000 1.0000

“seven” 1.0000 0.9922 1.0000 0.9961

“eight” 1.0000 1.0000 1.0000 0.9883

“nine” 0.9881 0.9763 1.0000 0.9802

all 0.9984 0.9941 1.0000 0.9929

Time <1 m 14 m <1 m 12 m

brain required less than half the time of the SOM. The reduction in processing
time occurs primarily because the SGM only updates one model during training,
while the SOM updates the models in the neighbourhood of the winning node.

Table 5 compares the audio classification performance of the brain with that
of the HMM. The accuracy of both methods is comparable, however, the brain
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is significantly slower. The brain was slightly more accurate when working with
the as-is data than with the end-pointed data. The compression algorithm has
the side-effect of removing some of the silence from the beginning and end of the
sample, thus an extra end-pointing step is not required.

The code and results for the experiments presented in this paper are open
access [2–4]. A tutorial for Créatúr is available [1].

5 Conclusion

The wain was applied to two classification tasks: handwritten numeral recogni-
tion and spoken numeral recognition. In both cases, its accuracy was compara-
ble to more traditional classifiers. This suggests that wains could be useful as a
general-purpose classifier, applied to a variety of domains.

Why should anyone be interested in a new classifier that is no more accurate
than traditional classifiers, and for audio, is significantly slower? One advantage
is that the new brain design is not just a classifier; it also makes decisions by
choosing the action that leads to the best predicted outcome. In the experiments
described in this paper, the only available actions were to choose a classification;
however, other types of actions could also be performed. Another advantage
to the new design is its generality; it could be used in domains where custom
classifiers have not yet been developed.

As this is a new approach to pattern recognition and decision-making, there
is scope for improvement. Accuracy could be improved by choosing more sophis-
ticated distance metrics. For images, the MAD could be replaced with a metric
that takes into account a pixel’s neighbours. This might allow it to cope better
with writing that is heavily slanted, or is thinner or thicker than typical writing.
For audio samples, a variable frame rate analysis such as that suggested by Le
Cerf and Van Compernolle [10] could be used. The run-time of the software is
dominated by the comparisons between models, so performance could also be
improved by choosing a different distance metric.

Although a single wain was used in these experiments, wains were designed
to be used in a population. The configuration parameters are genetic, so it is
possible to have a population of wains with varying configurations. Awarding
energy for accurate classifications would encourage evolution to find a range of
suitable configurations. Wains have the ability to teach their young, as well as
other adults, so each generation can augment the species’ knowledge. A popula-
tion of wains with slightly different configurations, and different life experiences,
could give independent opinions on a classification.
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Abstract. This paper presents results from a series of experimental sim-
ulations comparing the performances of mobile strategies of agents par-
ticipating in the Spatial Prisoner’s Dilemma game. The contingent move-
ment strategies Walk Away and Follow Flee are evaluated and compared
in terms of (1) their ability to promote the evolution of cooperation,
and (2) their susceptibility to changes in the environmental and evolu-
tionary settings. Results show that the Follow Flee strategy outperforms
the Walk Away strategy across a broad range of environment parameter
values, and exhibits the ability to invade the rival strategy. We propose
that the Follow Flee movement strategy is successful due to its ability to
pro-actively generate and maintain mutually cooperative relationships.

Keywords: Artificial life · Evolutionary game theory · Contingent
mobility

1 Introduction

Mobility is a key factor in solving the puzzle of the evolution of cooperation.
Intuitively, this is due to the fact that the individuals of a population prefer
to interact with, and indeed benefit from interacting with, cooperative players
rather than interacting with those who would try to exploit them. Mobility is a
form of network reciprocity [14] that allows agents to respond to their current
neighbourhood by moving within their environment; this movement can be ran-
dom or reactive. These movements may also be classified as local or global. The
inclusion of movement creates a more realistic framework than those adopted
in some of the traditional, static, spatial models [15]. Models where agents are
allowed to move are typically more intuitive, and create better analogies to
human and animal behaviour. The role of mobility in the evolution of coopera-
tion has grown in importance and recognition in recent decades, from researchers
in the domains of evolutionary game theory, theoretical biology, physics, sociol-
ogy, and political science. It has gone from being perceived as a hindrance to the
emergence of cooperation to one of its primary supporters. While unrestrained
movement can, and does, lead to the ‘free rider’ effect [5], allowing highly mobile
defectors to go unpunished, simple strategy rules or mobility rates significantly
curb this phenomenon allowing self-preserving cooperator clusters to form,
c© Springer International Publishing Switzerland 2016
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and cooperation to proliferate. Mobile strategies play a vital part as mechanisms
for the emergence, promotion, and sustainability of cooperation.

Several mechanisms for the emergence of cooperation exist, but all essen-
tially express a need for cooperators to either avoid interactions with defectors
or increase and sustain those with other cooperators. Research in this domain is
largely divided into two categories based on their categorisations of mobility; all
movement should be random [12,18], or that movement is purposeful or strate-
gically driven, but may indeed contain random elements [1,8]. The Follow Flee
strategy [6] enables agents to increase their percentage of mutually cooperative
interactions by pursuing other cooperators and avoiding defectors. Specifically,
as the name suggests, it allows players to form and sustain clusters by following
nearby cooperators, and by fleeing from invading defectors.

In this paper, we investigate a form of contingent mobility for agents partici-
pating in a Spatial Prisoner’s Dilemma – the Follow Flee strategy – and present
a comparison to the Walk Away strategy proposed by Aktipis and others [1,10].
We adopt an evolutionary model whereby agents obtaining higher payoffs in the
Prisoner’s Dilemma replace those with lower payoffs. Both strategies first com-
pete on their own against a Näıve (or random) strategy and are then evaluated
together. We discuss the relative performance of both strategies, and highlight
the limitations of Walk Away as a movement strategy. This strategy is studied in
a range of environments while varying a number of parameters including popu-
lation density, and some evolutionary settings. We will demonstrate that Follow
Flee outperforms Walk Away at every level of comparison, and does so with
quite a large margin. We hypothesise that this is due to Follow Flee’s ability to
maintain mutually cooperative, spatial relationships despite the pressure from
defectors, and its ability to effectively maximise an agent’s potential payoff.

The paper is laid out as follows: we review related work of mobility in the
Spatial Prisoner’s Dilemma in the next section. Section 3 outlines our method-
ology, including a description of the environment, agent representation, and the
evolutionary mechanism. In Sect. 4, we present and discuss a number of exper-
iments and results regarding the performance of agent strategies. Finally, we
present our conclusions and suggest future avenues for this research.

2 Related Work

Evolutionary game theory has been studied since the 1980s when John May-
nard Smith incorporated ideas from evolutionary theory into game theory [11].
Traditionally, spatial evolutionary game theory involved the study of evolution-
ary games where a participant’s interactions were constrained by a particular
static topology, such as a lattice [15]. The Prisoner’s Dilemma [3], and its exten-
sions in the iterated form, is the game most often studied in this domain. It
has attained such popularity due to its succinct representation of the conflict
between individually rational choices and those made for the common good. In
this context, mobility was seen as a hindrance to the emergence of cooperation,
leading to the creation of ‘free riders’. These individuals always defected and
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could move quickly between, and exploit, cooperative clusters without repercus-
sion. The work of Enquist and Leimar [5] only considers agent mobility at an
individual or micro level without considering the macro effect of how a cluster
of cooperators may become robust from invasion by the ‘free riders’. Subsequent
research into the effects of mobility on the evolution of cooperation is divided
into two broad categories: contingent movement [1,7,8,19], and non-contingent
or random movement [2,12,18].

Aktipis in her seminal paper [1] presents a contingent movement strategy for
playing the spatial iterated prisoner’s dilemma. Here, agents employ the simple
movement rule Walk Away to disconnect from defecting partners by relocat-
ing to a local random cell, and to continue cooperative partnerships by staying
still. Agents form pairs and repeatedly interact together when they meet in the
environment, which is quite discordant with contemporary and subsequent envi-
ronments. The strategy allows cooperators to take advantage of mobility rather
than it being only beneficial to defectors. The main appeal of this strategy is its
simplicity; agents are memoryless but Walk Away is still sufficient for coopera-
tion to spread and dominate. In this paper the strategy is tested and shown to
be effective against itself, Tit-for-Tat [3], and a spatial version of the Win-Stay-
Lose-Shift [13] strategy. The key behind its success is that this form of mobility
allows agents to avoid repeated interactions with defectors and maintain links
with other cooperators without employing complex strategies. My Way or the
Highway (MOTH), the work of Joyce et al. [10], follows and extends Aktipis’
Walk Away idea. The authors present a model that replicates Axelrod’s tourna-
ment with the addition that players may conditionally refuse to participate in
playing the game. One criticism that can be made of these models is that they
do not attempt to maintain those crucial mutually cooperative pairings under
pressure from defector invasion.

Contingent mobility also has the capacity to be proactive where individuals
deliberately seek better neighbourhoods, rather than simply reacting to stimuli
and randomly relocating. The works by Helbing and Yu [8,9] describe a form of
contingent movement called Success Driven Migration (SDM), which forms one
of the most influential and important ideas within the scope of mobility. In this
model, individuals can test potential sites for migration, both local and global, in
order to discover neighbourhoods with the highest expected payoff. The authors
demonstrate that cooperation can become dominant in a migratory population
as it allows individuals to find other cooperators creating clusters, and to avoid
defectors. The main appeals of SDM lie in its ability to establish cooperation,
and its realism; it has a better narrative for real-world migration than diffusion
or random models. SDM has been shown to generate spatial correlations between
cooperators, even under noisy conditions, giving cooperative clusters the ability
to regroup following invasion or dispersal. Buesser et al. [4] offer an extension
to the SDM model that investigates systematically both the interaction and
migration radii. The authors reveal that widespread cooperation is best obtained
when agents interact locally in a relatively small neighbourhood. However, both
these models are limited in that they incur high memory and complexity costs.
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Random mobility can be used to describe the minimal conditions for the
evolution of cooperation, and is the preferred template of many researchers.
Vainstein et al. [18] wrote perhaps one of the most influential papers in this
domain. It explores the minimal conditions for sustainable cooperation using a
spatially structured population on a diluted lattice using unconditional, memo-
ryless strategies with non-contingent movements in the context of the prisoners’s
dilemma. The authors have shown, for the first time, that cooperation is possible
in the presence of mobility when the available space is somewhat reduced and
that “intermediate mobilities enhance cooperation!” [18]. The authors deduce
that at higher densities, and with moderate mobility, clusters of cooperators
invade defectors. This work is further expanded upon to include the Stag Hunt
game [16], and later a complete phase diagram of the temptation to defect, with
transition lines, is constructed [17]. Meloni et al. [12], another prominent study,
introduce an alternate random movement model in which prisoner’s dilemma
players are allowed to move in a two-dimensional plane.

There has been much success in this field to date with evidence even sug-
gesting that migration mechanisms are more influential on the prevalence of
cooperation than on the strategy update model used by individuals [4]. The
area of non-contingent movement has been well studied, and the area of contin-
gent mobility has also received a lot of attention. However, in our opinion, there
is scope for a simple movement strategy that is guided by the rule “Cooperators
attract-Defectors repel” [18], but also employs only minimal complexity. Addi-
tionally, there has been little success in establishing the outbreak of cooperation
in the presence of high mobility levels; a more proactive migration strategy could
be the key to unlocking this final puzzle.

3 Methodology

In the following sections we will describe the environmental settings, agent repre-
sentation, game parameters, and evolutionary dynamics used to build the model
for simulation.

3.1 Environment and Agent Representation

We use the standard parameters of the Prisoner’s Dilemma game (see Table 1)
for agent interaction as endorsed by Sicardi et al. [16]. The strategy with which
agents play will be fixed; either always cooperate or always defect. We choose to
implement pure strategies in order to emphasise the relevance of mobility in this
context. The population of N agents inhabit a toroidal shaped diluted lattice
with L×L cells, each of which can be occupied by up to one agent. We use the
same values for N and L as used in the work of Aktipis [1] (see Table 2). However,
we do deviate from the Aktipis setup in that we enforce the restriction of one
agent per cell, and expand the interaction radius of agents. We did not adopt
these particular rules because they deviate so far from the traditional spatial
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Table 1. The Prisoner’s Dilemma

C D

C 3,3 0,5

D 5,0 1,1

setup and in our opinion, are not properly justified as they confer a large advan-
tage to any two cooperators who are placed in the same cell. The interaction
and movement radii of agents is determined using the Moore neighbourhood of
radius one. This comprises the eight cells surrounding an individual in a cell on
the lattice. The agents can only perceive and play with those within this limited
radius. At each time step, agents participate in a single round of the Prisoner’s
Dilemma with each of their neighbours, if any. Agents are aware of the actions
taken by their partners in a single round, but these memories do not persist.
Following this interaction phase, agents have the opportunity to take one step
into an adjacent free cell according to their movement policy. Movement will not
occur if there is no adjacent free space, or if their strategy dictates that they
remain in their current location. Isolated agents will take one step in a random
direction.

3.2 Movement Strategies

Three movement policies are employed for this study: Follow Flee, Walk Away,
and Näıve.

Follow Flee has two rules that are applicable to any neighbourhood combina-
tion. These are (1) move to a cell adjacent to a neighbouring cooperator, and
(2) move to a cell non-adjacent to a nearby defector. These rules combine when
both agent types are present. This strategy emerged as a result of a study that
used a genetic algorithm to co-evolve mobility and cooperation [6].

Walk Away instructs agents to (1) move to a cell non-adjacent to nearby
defectors, or (2) stay still to continue to interact with neighbouring cooperators.
The first rule takes precedent when both agent types are present. This strategy
was first proposed by Aktipis [1], and later by Joyce et al. [10].

Näıve agents employing this strategy move to an empty adjacent cell without
regard to the actions of its neighbours.

3.3 Evolutionary Dynamics

The reproduction and death mechanisms of this study will be determined by
two variables: r and s. The number of time-steps per generation is determined
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Table 2. Experimental parameters

Symbol Description Value

L Length of lattice 25

N Size of population 100

s Time steps per generation 15

r Reproduction rate 25

by s; the sampling rate; and the number of agents replicated after each gener-
ation is determined by r; the reproduction rate. In a single generation, agents
will accumulate their payoffs received from playing the Prisoner’s Dilemma with
their neighbours. This will be used as a measure of fitness. At the end of each
generation, the agents are ranked according to their fitness score. The bottom
r% will die and the top r% will replicate themselves, passing on both their move-
ment and C/D strategies. In this way, the population size will remain constant.
These offspring will be placed randomly on the grid. The older agents remain
in the same place, thus maintaining any spatial clustering between generations.
Following reproduction, the fitness score of the whole population will be reset
and a new generation will begin.

4 Experimental Results

In this section we will describe the experimental set up and results of the four
experiments developed to compare and contrast the performances of the strate-
gies Follow Flee and Walk Away. In the first instance, we perform a baseline
experiment in which both strategies compete separately against the Näıve strat-
egy. In the second experiment, we expand upon the baseline by varying both
the number of time steps per generation (s), and the reproduction rate (r), over
a wide range of values. Next, we continue the comparison by varying the grid
size to investigate the effect, if any, of density on the outcome of a simulation.
Finally, both the Follow Flee and Walk Away strategies are directly compared,
competing in the same simulation without the influence of the Näıve strategy.
To obtain a sufficient sample each simulation is run 100 times.

4.1 Experiment 1: Follow Flee and Walk Away vs. Näıve

In this experiment we run two sets of similar simulations, one with Walk Away
the other with Follow Flee, comparing their respective performances against the
random strategy Näıve. The population of agents is placed randomly on the L ×
L torus, and the strategies are assigned in equal proportion. A single simulation
will last 1000 time-steps, in which the population of 100 agents will take 15 steps
each generation. The distribution of spatial strategies, level of cooperation, the
time taken for the simulation to converge on cooperation (or defection), and the
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Table 3. Exp. 1 average results vs. näıve

Strategy % Cooperator wins Convergence # Cooperative interactions

Walk Away 28 % 202 timesteps 328,000

Follow Flee 97 % 380 timesteps 382,000

total number of interactions will all be recorded. As is shown in Table 3, Follow
Flee vastly outperforms the Walk Away movement strategy in terms of enabling
cooperation to emerge and dominate the population. Against the Näıve strategy,
the Walk Away strategy only induces cooperation in 28 % of simulations, whereas
in this environment, the Follow Flee strategy leads to cooperative outcomes in
97 % of the simulations. This is surprising because in the original work Aktipis’
strategy achieved dominance in 100 % of simulations against a similar näıve
strategy. The simulations testing Walk Away typically converge on a solution
more quickly than Follow Flee. This huge difference is probably due to the change
in environmental conditions; we do not allow two cooperators to co-exist in the
one cell and remain removed from any potential interaction with defectors. This
modification perhaps ilustrates how important this constraint was in Aktipis’
original paper in inducing cooperation. Our strategy generates on average 15 %
more mutually cooperative interactions than Aktipis’ and this is most significant
in the early generations when defectors are more prevalent.

4.2 Experiment 2: Varying the Evolutionary Dynamics

In this experiment, we vary the parameters r, the reproduction rate (number
of individuals replaced), and s, the number of time-steps per generation, of the
model while testing the success of both Follow Flee and Walk Away as in the
previous set up. Success is measured in terms of the strategy’s ability to induce
cooperation among the population. The length of a simulation is increased to
5000 time-steps to ensure that the population converges on a solution. The values
s = {5, 10, 15, 20, 25} and r = {3, 6, 9, 12, 15, 18, 21} are investigated, with a
separate set of simulations, as per Experiment 1, carried out for each pair of
values. In each simulation agents will either take an increased number of steps
per generation or a larger proportion will participate in the evolutionary process.

In Fig. 1a and b, we see the percentage of simulations that result in coopera-
tor dominance as we vary r and s. Across the majority of the parameter space,
Follow Flee outperforms Walk Away in terms of promoting the evolution of coop-
eration. Walk Away has more success in spreading cooperation at lowest values
of r and s, as across the remainder of the space it performs relatively poorly.
Walk Away at best only achieves wide-spread cooperation in 50 % of simulations
for a very limited range of parameter values. On the other hand, Follow Flee dra-
matically improves upon its poor performance in very low parameter setting for
r and s, and manages to almost completely counteract the influence of defectors.
Additionally, we can identify that increasing the reproduction rate has a bigger
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Fig. 1. (a) Walk Away vs. Näıve: varying the evolutionary dynamics. (b) Follow Flee
vs. Näıve: varying the evolutionary dynamics.

impact on the outcome of a simulation than increasing the number of time steps
per generation; both need to be considered in order to produce the best results
for the evolution of cooperation.

4.3 Experiment 3: Varying the Density

In this experiment we investigate the influence of density on the outcome of a
simulation separately with both the Walk Away and Follow Flee strategies. The
parameters from the baseline experiment will be restored, except for the grid
size which is varied. The values L = {15, 20, 25, 30, 35, 40, 45} are investigated,
while the population size N remains constant. In this way, we first consider
the performance of both strategies in very high densities, and then consider
environments with lower densities. A new set of simulations is run for each value
of N with each strategy competing against the Näıve strategy.

Figure 2 illustrates the relationship between grid size and the percentage of
simulations in which cooperation dominates for both the Walk Away and Follow
Flee strategies. At high densities neither strategy is able to induce cooperation.
At low densities both strategies can induce a practically complete adoption of
cooperation. However, as the grid size grows we can see that Follow Flee cap-
italizes on the dilution of the grid much earlier, and more swiftly than Walk
Away. Follow Flee is capable of promoting the dominance of cooperation in a
greater percentage of simulations in harsher environments. While Walk Away
does achieve similar results in low densities, it has already been shown [17] that
cooperation is enhanced by highly mobile agents in these environments. Den-
sity has such a significant influence on the emergence of cooperation because it
directly impacts the number of interactions cooperative agents have with defec-
tors, and it determines the space with which agents can avoid unfavourable
interactions.
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Fig. 2. Walk Away vs. Näıve: varying the density

4.4 Experiment 4: Walk Away vs. Follow Flee

In this experiment we attempt to directly compare both strategies. The Näıve
strategy is removed as an option for players to keep the strategy proportions and
population size constant, and to remove any additional complexities the presence
of a third strategy may potentially introduce. As both Walk Away and Follow
Flee are both mutually cooperative, we do not expect an evolutionary bias to
favour either strategy once the defectors have died out. The population will be
examined both at the end of the simulation and at the point at which defec-
tors disappear. We record the percentage of simulations where the Walk Away
strategy becomes dominant, where Follow Flee dominates, and the percentage
of simulations where both strategies co-exist.

When Walk Away and Follow Flee compete in the same simulation, as one
might expect, the defectors of both strategies are eliminated. In Table 4 we can
see that in 90 % of simulations, at the point at which defectors die out, neither
strategy is dominant and both coexist within the population. However, in these
scenarios where both strategies co-exist, the Follow Flee strategy outnumbers
the Walk Away strategy four to one. Additionally, Follow Flee is dominant in
the remaining 10 % of simulations, and Walk Away is never fully dominant at the
point defectors are eliminated. We also see that 73 % of simulations end with the
population adopting Follow Flee, only 10 % of simulations result in the adoption
of Walk Away, and the remaining 17 % of simulations ending in a draw. This
is despite the fact that there should be no selective bias between two mutually

Table 4. Exp. 4 Walk Away vs. Follow Flee results

Simulation point Walk Away Follow Flee Co-existence

Defector extinction 0 % 10 % 90 %

End 10 % 73 % 17 %
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cooperative strategies. These results indicate a more substantial improvement of
performance for Follow Flee than random fluctuation would permit.

5 Conclusion

In summary, we have presented Follow Flee, a contingent mobility strategy for
playing the Spatial Prisoner’s Dilemma, described the results of experiments
designed to compare it to the noted Walk Away strategy, and in doing so demon-
strated its superiority in promoting the evolution of cooperation. Both strategies
were first independently tested and compared using a population of agents in a
variety of evolutionary environments, including various density and reproductive
settings, and then competed head-to-head in a single set of simulations. In every
experiment conducted, Walk Away was outperformed by our Follow Flee strat-
egy by significant margins; demonstrating that (1) Follow Flee is more resistant
to the invasion of defectors, (2) it produces a greater percentage of cooperators
victories in a wider range of evolutionary settings, (3) it is more successful in
harsher density environments, and (4) can invade Walk Away agents despite the
fact that both are mutually cooperative strategies.

We were unable to replicate the performance of Walk Away as demonstrated
in Aktipis’ paper [1]. Here, the traditional restriction of one agent per cell is
relaxed, and the interaction radius of agents is reduced to those in the same cell.
In addition, agents only participate in one 2-player game per turn, ignoring and
oft-times excluding other agents from interactions. These incongruous environ-
mental features, in combination with rules of the Walk Away strategy results
in mutually cooperative pairings being unexpectedly difficult to break up or be
exploited by defectors, giving cooperators a built-in advantage. We surmise that
high levels of cooperation reported in this work may instead be credited to the
environment implementation rather than the Walk Away strategy itself.

We attribute the success of Follow Flee to its highly mobile, proactive nature,
and hypothesise that it is possible for it to make such significant gains due to its
ability to generate and maintain cooperative clusters. As illustrated in Experi-
ment 1, Follow Flee is capable of inducing the emergence of cooperation in a far
greater percentage of simulations. The Walk Away cooperator pairs are immo-
bile, which prevents them from actively seeking out new mutually cooperative
interactions. The Follow Flee cooperators, on the other hand, are more likely to
increase their number of mutually cooperative relationships, thus maintaining a
higher average payoff, and so giving them an evolutionary edge. In contrast to
the Follow Flee strategy, cooperators using Walk Away do not knowingly main-
tain these beneficial relationships when being pursued by defectors, and thus
can more easily be broken up. Results indicate that the Follow Flee strategy can
invade Walk Away, even though both strategies always cooperate.

The strengths of Follow Flee lie in its adaptability and simplicity. Previously,
it has been stated that cooperation is enhanced in the presence of mobility
[12,18,19], but only when those mobility rates were low or moderate. However,
using Follow Flee we have managed to generate good levels of cooperation in
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this model’s highly mobile and dynamic environment. We have constructed a
promising contingent mobility strategy that is extremely successful at spread-
ing cooperation throughout a mobile population without the need for complex
computation, costly memories, or central control.

We have explored this contingent strategy in an abstract model. Future work
will involve grounding these models in physically embodied agents using simple
robots. We also wish to attempt to explore more realistic scenarios where simple
contingent mobility strategies are witnessed in organisms that move towards
fellow cooperators and move from defectors.

Acknowledgements. This work is funded by the Hardiman Research Scholarship,
NUI Galway.
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Abstract. Task allocation problem has been an issue in multi-agent
systems. Among many interesting tasks, we focus on an algorithm for
the proportional regulation of population where the swarm is divided
into groups depending on task demands. We take the response thresh-
old model inspired by division of labor in several social insects. In our
approach, the member proportion of each sub-group is regulated propor-
tional to the external task demands and local social interactions among
agents. Here, the interactions control the response thresholds for given
tasks. The proposed algorithm was applied to simulation experiments
of robots, and the experimental results show that the proposed method
has adaptive and robust responses under dynamically changing environ-
ments.

Keywords: Task allocation · Multi-agent systems · Regulation of
population · Response threshold model · Local interaction

1 Introduction

In this paper, we focus on the study of task allocation problem in the multi-
agent system. Generally, in the multi-agent systems, the task allocation system
efficiently manages labors which take lots of time and costs for completing tasks.
An approach to this kind of problem is to set up an appropriate scheduling
with an adaptive process under dynamically changing environments. In swarm
intelligence, a task is assigned to each agent in a self-organized way with only
limited capabilities and a few simple behaviors rules. There have been many
related works and swarm intelligence algorithms inspired by many social insects.

In nature, we are able to observe many examples of adaptive behaviors in
several insect societies. They exhibit a number of remarkable behaviors, such
as formation motion control, division of labor based on age polyethism, and
group foraging [1–3]. From many interesting phenomena observed in nature, it is
remarkable that the performances of the overall colony may have synergy effect,
compared to the independent runs of each member. Without any special leader
controlling the behavior of the entire group, the collective behaviors are adapt-
able, flexible, and robust under environmental disturbances. The systems have
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 46–54, 2016.
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served as inspirations for many optimizations problems and control algorithms
in many multi-agent systems. In robotics, many researchers have investigated
multi-robot systems [4] and the methods inspired by biological systems were
analyzed with their performance by real robot systems [5,6]. Homogeneous indi-
viduals show these collective behaviors by interacting each other through local
communication or chemical materials, such as pheromones.

An interesting work is the division of labor in the insect colony such as ants
and bees, which increases colony survival probability, They show proportion reg-
ulation phenomena that the proportion of each group is related to the external
task demands adaptively without any centralized organization. Although the
individual agents have the same ability, they are divided into certain sub-groups
and the agents perform different tasks at other spots in a distributed way. Ulti-
mately this phenomenon can improve the productivity. Forging foods or defense
from predators are examples of such proportion regulation phenomena in the
colonies. This regulation is also required under external disturbances, such as
loss of some part of the colony or changing environment. Each individual is
aware of changes of the surrounding situation and each agent selects its behav-
ior accordingly if needed.

There were many works [7,8] that explain the division of labor in nature.
Here, we apply the concept of the response threshold model [9–14] for solving
the task allocation problem. This model is based on observations of many insect
societies and explains the regulation of labor division by a simple mathematical
model using the response threshold. Obtaining suitable thresholds is directly
related to the performance of the overall system and there are generally two
kinds of strategies that utilize fixed response thresholds [12–14] and variable
thresholds [9–11].

In our study, we consider multi-agent systems as colonies of social insects
and focus on the characteristics of division of labor. The individual agent needs
a strategy in which the labor is assigned proportional to the demand of tasks,
and selects the proper task adaptively. Such autonomous process maintains the
proportion of population in the overall colony level among groups. The suitable
threshold is obtained via social interaction and some experimental results show
the regulation for each group, which means that the number of members for each
group tends to increase or decrease depending on the task demand. The rest of
the paper is written as follows: The next section shows division of labor based
on social interaction in details. Section 3 presents the proposed algorithm and
Sect. 4 presents the experimental results. We conclude this paper in Sect. 5 with
future work.

2 Social Interaction

Usually, in insect societies, genetic factors play a role in division of labor, such as
age-dependent and different body shapes [15–17]. The distributed task allocation
in ants based on genetic factors can efficiently arrange the ants in proportion to
the amount of work in the changing environment. In honey bee colonies, there
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is a general correlation between the age of the workers and tasks they normally
perform at current time. Task allocation is associated with their physiological
development such that the physiological age of a bee. Younger individuals per-
form internal task such as brood care and nest maintenance inside the hive while
older workers perform foraging food and defense task outside the hive.

However, this tendency is flexible to be changed by the distribution of age in
colony members. If the proportion of young honey bees in a colony is high, the
age in which a bee starts a foraging task is lower than in a normal colony and
presence of older bees delays or inhibits the development of physiological age of
other younger bees. Worker to worker interactions in bees drive mechanisms of
hormonal regulation resulting in a social inhibition and explain an adaptability
to different age distributions [17,18]. This concept is improved toward developing
partitioning of reproduction among workers based on social interaction [19,20].

3 Proposed Task Allocation Algorithm

Social insect colonies needs to be adaptable to changes in the environment and
the individual worker needs to switch tasks according to the task demands. The
mechanisms to solve such an adaptive task allocation problem in the face of
various internal and external states are thus of great interest. Inspired from the
task allocation in the insect colonies we propose a new task allocation algorithm
using two terms, demand of tasks and the response threshold.

Every individual agent i has a threshold value θi. This variable is restricted
to a range of (θmin, θmax). There is also a number of tasks with their associated
demand. The tasks are ordered in a sequence as shown in Fig. 1 and an appro-
priate level of response thresholds can be defined. If an agent has its response
threshold suitable for a specific task, it is assigned to the task. The concept is the
same with the task assignment in honey bee colonies. The threshold represents
the physiological age and different tasks are performed during its life-time in a
process of behavioural development.

In this model, a distribution of thresholds determines the accuracy of division
of labor and we are interested in how the patterns of all the thresholds are
spread over the thresholds of the whole swarm uniformly over the range of (θmin,
θmax). For this, we design a simple algorithm via social interaction inspired
by jamming avoidance response. The jamming avoidance response or JAR is a

Task 1 Task 2 Task 3

3rd 4th 5th 

Task 4

10th 9th 8th 7th 6th 2nd 1st 

Fig. 1. Diagram of task allocation algorithm based on the response thresholds and
task demands. Four tasks are ordered in a sequence proportional to demands and the
threshold values of ten agents are spaced. Agents belonging to range that is split into
segments relative th the task demands is assigned to the corresponding task.
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behavior performed by some species of weakly electric fish [21]. It occurs when
two electric fish with very similar discharge frequencies meet. Each fish shifts its
discharge frequency to increase the difference between the two fish’s discharge
frequencies. By doing this, both fish prevent jamming of their sense.

The jamming avoidance behavior escapes jamming of close frequencies.
Inspired by the idea, agents have evenly spaced intervals in their thresholds.
Regulation of threshold values in the swarm occurs between a pair of individuals
within a limited sensing range. If agent i meets agent j, the threshold value θi
of agent i and θj of agent j are updated as follows:

If θi is larger than θj and θi - θj < α, then θi = θi + δ and θj = θj - δ.
If θi is smaller than θj and θj - θi < α, then θi = θi - δ and θj = θj + δ.
If θi is the same as θj , then θi=θi + X and θj=θj + X.

where α is a limit difference of thresholds between individuals, δ is a constant
parameter, and X ∈ (−1, 1) is a random value. Each agent updates its threshold
for every interaction with another agent. Many interactions among agent mem-
bers can lead to an almost uniform distribution of thresholds over the range
(θmin, θmax), regardless of initial thresholds.

In a decentralized approach, estimating the task demands is also important.
For this, each agent stores the local information of sensed tasks in a history
window of finite length. The agent performs sensing behavior periodically and
the type of detected tasks within the sensing range are stored in sequence. New
information is replaced with the oldest ones and the proportion of each task in
a history is used as a measure of task demands without any centralized control
methods.

4 Experiments

We simulate a swarm of robots that perform foraging tasks. The experiments
are repeatedly run to see the averaged performance.

4.1 Task Scenario

Foraging task is performed in a circular arena as shown in Fig. 2. There are
two types of 20 objects and 20 robots. Robots can forage both types of objects,
but each robot can be simultaneously assigned to only one kind of task. Before
starting, robots and objects are randomly located in a given arena. A robot
has its own task state, foraging a red or green object, and it tries to find the
closest red or green object to match its own task state. If a robot approaches
a selected object, it is immediately removed from the environment. After an
object is removed, a new object of the same type is placed in an arbitrary place
to maintain a constant number of objects, that is, the same number of tasks to
be processed.
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Fig. 2. Snapshot of simulation enviornment: Some robots and objects are distributed
randomly in a circular arena. The large red-colored squares and green-colored circles
are robots and small red-colored squares and green-colored circles are the objects to be
collected by robots. The camera detecting range of robot is represented in fan-shaped.
(Color figure online)
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(a) Initial thresholds are almost same.
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(b) Initial thresholds are random.

Fig. 3. Results of the spread thresholds with the different initial thresholds distribution
with α = 0.1 and δ = 0.001.

The initial values of thresholds are uniformly randomized over the range of
(θmin, θmax)=(0, 1) to ensure that each robot task is not predetermined for tasks
and the initial tasks of all the robots are assigned to foraging red-colored objects.
A robot may switch its current task according to the individual control policy.
Our goal is to regulate the proportion of red-colored robots and green-colored
robots equally to the ratio of colored objects.

4.2 Simulation Results

Results of Distributed Thresholds. Figure 3 shows distributed thresholds
when the initial thresholds of all agents are almost the same (a) or randomly



Local Interaction of Agents for Division of Labor in Multi-agent Systems 51

given (b). From the results, we can see that the proposed method can distribute
almost uniformly the response thresholds of the whole swarm agents.

Results with Changes in Task Demands. In the first experiment, we inves-
tigate the adaptability of the method responding to changes in task demands.
There are two tasks, foraging a red object (‘task 1’) or a green object (‘task 2’).
At the begining, the proportion of each task is set to 20 % and 80 %, respec-
tively. At the time step 2,000, it is changed to 70 % and 30 %, and at the time
step 4,000, it is changed to 50 % and 50 % in sequence. Figure 4 represents the
results of this experiment. Since all the robots start with the same task, they
all start with task 1 and soon the swarm is split into two groups following the
same proportion of task demands. By changing the task demands, the proper
proportions of agents is re-assigned to the changes in task demands. The swarm
perform tasks depending on the proportion of task demands. If the thresholds
are assigned with a different distribution due to the effect of alpha and δ, the
accuracy of division of labor is a little changed, but the overall performance still
convergenced to the desired state, according to the task demands.

Results with Changes in the Number of Agents. In the second experi-
ment, we see the adaptability of the swarm when the number of agents is changed.
During the first 1,000 simulation time steps, about 50 % agents are assigned to
task 1 because the task demand of that task is set to 50 % and after that time,
all agents assigned to task 1 are removed from the arena. Then the proportion
of agents performing that task is dropped to 0 %, but about 50 % agents of
the remaining agents are again assigned to task 1. Figure 5 (a) represents the
behavior of the swarm in response to the changes and it shows that the swarm
reacts properly, regardless of the number of agents. The threshold values are
re-balanced among remaining agents after 1,000 simulation time step and the
threshold difference between agents are larger than the previous period as shown
in Fig. 5 (b) due to the decreasing number of swarm. This adaptive task allo-
cation ability is possible in the variable threshold model. In the fixed threshold
model, the thresholds are constant and in contrast, the thresholds are continu-
ously updated by the self-organizing process in the variable threshold model. If
we apply the fixed threshold model using randomly allocated thresholds, similar
results with some error could be obtained in the first experiment. However, in
the dynamically changing environment, it can have the limited performance.

Results with a Variety of Tasks. In the last experiment, we consider a
distribution of a population of agents for more tasks, four tasks rather than two
tasks. The proportion of each task is set to 30 %, 30 %, 20 %, and 20 % and the
proportion of robots assigned to each task is shown in Fig. 6. The swarm reacts
properly and the proportion of agents assigned to each task reaches stably the
desired level regardless of the increasing number of tasks.
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(a) Proportion of agents performing task 1
with δ = 0.01.
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(b) Proportion of agents performing task 2
with δ = 0.01.
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(c) Proportion of agents performing task 1
with δ = 0.001.
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(d) Proportion of agents performing task 2
with δ = 0.001.

Fig. 4. Proportion of agents assigned to each task with changes in task demand.
Demand of task 1 and 2 are set to 20 % and 80% at the beginning. At time step
3,000, it is changed to 70 % and 20 %, and at time step 200, it is changed again to 50 %
and 50 % in sequence.
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(a) Proportion of agents performing task.
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(b) Change of threshold values.

Fig. 5. Proportion of agents assigned to task 1 when some agents are removed from
the arena during task.



Local Interaction of Agents for Division of Labor in Multi-agent Systems 53

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time steps

P
ro

po
rt

io
n 

of
 a

ge
nt

s 
as

si
gn

ed
 to

 ta
sk

 1

(a) Threshold values for task 1.
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(b) Threshold values for task 2.
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(c) Threshold values for task 3.
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(d) Threshold values for task 4.

Fig. 6. Proportion of agents assigned to four tasks.

5 Conclusion and Future Work

In this paper, we introduce a novel decentralized, self-organized and self-
regulated division of labor in multi-agent systems. The proposed algorithm is
based on local interaction among agents and from various simulation results, we
see that our proposed algorithm can regulate the proportion of agents for given
task demands. In the future work, we plan to apply the propose algorithm to
a swarm of robots in the real environment and analyze the performance of the
proposed algorithm.
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Abstract. Infants imitate behaviour flexibly. Depending on the circum-
stances, they copy both actions and their effects or only reproduce the
demonstrator’s intended goals. In view of this selective imitation, infants
have been called rational imitators. The ability to selectively and adap-
tively imitate behaviour would be a beneficial capacity for robots. Indeed,
selecting what to imitate is one of the outstanding unsolved problems in
the field of robotic imitation. In this paper, we first present a formalized
model of rational imitation suited for robotic applications. Next, we test
and demonstrate it using two humanoid robots.

1 Introduction

Imitation is a very important form of social learning in humans and has been
suggested to underlie human cumulative culture [15,21]. Given its importance in
human development, the ability to imitate emerges early in human infants. From
their second year on, infants can imitate actions and their intended goals from
demonstrators [8,11]. Critically, infants imitate the demonstrated actions and
their effects in a flexible way. Depending on the circumstances, they copy both
actions and effects or only reproduce intended goals. In view of this selective
imitation, infants have been called rational imitators [10].

In a landmark paper, Meltzoff [17] showed that 14-month-old children switch
on a light by bending over and touching it with their head if they have seen
an experimenter do so. However, later studies showed that if the experimenter’s
hands are occupied children tend to switch on the light using their hands [10].
The percentage of copied head-touch actions also declines when the demonstra-
tor’s hands are physically restrained [24]. These results have been replicated by
[3,19], albeit with a different interpretation.

Initially, authors explained these results by assuming that infants reason tele-
ologically about the goals and actions demonstrated [23]. Children are assumed
to infer that (1) the demonstrator uses his or her head to switch on the lamp
because his or her hands are constrained and (2), as such, the head touch is not
necessary to successfully switch on the lamp. Therefore, when asked to switch
on the lamp, the infant uses his or her hands. In contrast, when the demonstra-
tor’s hands are free, the infants are assumed to reason that the head touch is
instrumental in obtaining the goal.

More recently, competing accounts have been advanced. In particular, it has
been proposed that many experimental results can be explained by differences in
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 55–66, 2016.
DOI: 10.1007/978-3-319-43488-9 6
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the difficulty for the infants to copy the demonstrator’s actions [23]. According
to this account, bending forward to touch a lamp with restrained hands is more
difficult than doing so with free hands available to support the body. As such, an
increased difficulty in exactly copying the demonstrated motion – termed a lack
of ‘motor resonance’ [19] – is assumed to reduce the extent to which infants copy
a demonstrated action. [3] advanced yet another account of rational imitation in
infants. These authors have claimed that attentional processes can fully explain
selective imitation.

While it is undoubtedly (and unsurprisingly) true that both the feasibility
of the demonstrated actions and attentional processes determine the fidelity of
action copying, neither account fully accommodates the experimental findings
[23]. For example, even in the absence of obvious differences in action difficulty,
12-month old infants copy a model with constrained hands less often [24]. In
addition, 12-month old – but not 9-month old – infants ignored the head touch
action of a model with hands fixed to the table [24]. It is difficult to see how
infants would be susceptible to ‘a lack of motor resonance’ at 12 months but
not at 9 months. Likewise, attentional mechanisms cannot explain effects across
conditions that do not seem to recruit different levels of attention [13,18].

While the motor resonance and attention theories fall short in accommodat-
ing for some data, the reasoning hypothesis suffers mainly from being under-
specified – although it can be noted that the idea of ‘motor resonance’ is less
than fully specified either [23]. As a result, the reasoning account can be made
to accommodate most findings post facto. For example, [19] conducted an exper-
iment to distinguish between the reasoning account and the motor resonance
model. They concluded that findings were more in line with the predictions of
the motor resonance model. However, it is unclear whether the predictions these
authors derive for the teleological reasoning account are the only interpretation
possible (See [23] for a similar remark).

In the absence of a complete and computationally explicit model, we propose
a novel model for rational imitation, i.c. the CDM. In particular, we aim for a
model that supports rational imitation in robots. In contrast to the accounts
discussed above – and in accord with our goal to exploit rational imitation to
optimize the imitation behaviour in robots – we depart from a normative analysis
of imitation learning. That is, we postulate the desirable properties of rational
imitation and build a model satisfying these requirements.

2 The Cost Difference Model

2.1 Rationale

In agreement with current views on its adaptive value [1,14], we propose that
imitation is a method for acquiring better action policies [2]. Action policies can
be thought of as a series of subgoals that lead towards attaining the final goal.
For example, an action policy for making spaghetti (final goal) are the steps
(subgoals) as set out in the recipe.
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Assuming that imitation is a learning strategy for adopting better action
policies for satisfying goals, imitation has the possible advantage of being a
cheaper (less risky) route to policy learning than individual, asocial learning.
Nevertheless, indiscriminately copying behaviour is unlikely to results in better
policies [14]. Ideally, agents should only copy behaviour when an observed policy
is better than the current existing action policy. Initially, we can assume better
policies to be those requiring less energy. However, other optimization criteria
could be imagined, including risk and time. In biological agents, better action
policies are those ultimately resulting in increased fitness.

In this light, experimental findings on imitation in infants are somewhat
puzzling. Infants copy demonstrated head touches in spite of clearly being able
to switch on the light using their hands (which seems to be a better policy).
Indeed, in control conditions, children spontaneously switch on the light using
their hands. Moreover, even when infants eventually copy the head touch, most
often they switch on the light using their hands first [9,18,19]. So why do children
copy the ineffective head touch policy given they have an alternative policy that
seems more efficient?

In our view, this discrepancy can be explained by assuming that an agent
observing a demonstrated action policy has only limited knowledge of its ener-
getic cost. The agent might be able to estimate the energy requirement of the
demonstrated policy, for example, using its own action planner. However, this
will yield an approximate estimate at best – especially when the demonstrated
policy includes unfamiliar actions. In addition, the agent can estimate or retrieve
the cost of its existing action policy and compare this to the estimated value
of the demonstrated action policy. Theoretically, the agent should reject the
demonstrated policy whenever its cost is higher than that of the existing policy.
However, the cost of the demonstrated policy is not directly accessible and is only
an estimate. As such, seeing some other agent executing a costly action policy
might indicate that the estimated cost is inaccurate. If so, it would be reasonable
to actually execute the demonstrated policy and obtain a corrected estimate of
its cost. Indeed, the potential long-term gain of chancing on an innovative pol-
icy would generally outweigh the cost of testing out the action at least once. In
summary, under our formalization, the rational imitation observed in infants is
the overt outcome of uncertainty about the cost of the observed action policy.
Thus, when copying an action policy they are exploring its cost by physically
executing it. This will result in a better estimate of its real cost.

2.2 Formalization

In order to model imitation based on the assumptions introduced above, we need
to propose a mechanism that allows agents to infer the demonstrated action pol-
icy from the observed sequence of states ot. This is, the imitator needs to infer
from ot which intermediate goals the demonstrator satisfies en route to the final
goal. To the best of our knowledge, no account of the method used by infants
to select relevant subgoals from observed actions is available. Hence, in what fol-
lows, we present an approach that is suitable for the current robotic experiments.
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It should be understood that this method is a first approach and could be refined
in further work to suit other contexts.

In more formal terms, inferring the demonstrator’s action policy can be
thought of as selecting the minimal number of intermediate states from ot

required to explain the observed behaviour ot. This set of minimal required
states, denoted as s, are assumed to be the subgoals of the demonstrator. Below,
we explain our current approach to selecting this minimal set of states s.

We suggest the robot should select an iteratively expanding set of states
s = {o0 . . . on . . . oT } from the observed states ot. For each set s, the robot uses
its own action planner to compute an action sequence a t leading from o0 to
oT through the intermediate states on. In planning the action sequence a t, the
robot should take into account the physical constraints C experienced by the
demonstrator1 Hence, the action sequence a t is the action plan the robot would
come up with itself (1) if it were in the same situation as the demonstrator and
(2) wanted to attain the selected subgoals s.

For each set of selected states s and resulting action sequence a t, the imitator
estimates the cost of a t. We tentatively suggest the cost is expressed in terms
of energy expenditure. The estimated energetic cost Ê(a t) is compared with the
estimated cost of the demonstrated action sequence Ê(ot) calculating the cost
difference ΔE as,

ΔE = |Ê(ot) − Ê(a t)| with a t = f(s, C) (1)

At first, the set of selected states s only contains the initial and final observed
states, i.e., s = {o0, oT }. However, the set is iteratively expanded by adding
more intermediate states. Therefore, the set of selected states s will eventually
approach the observed action sequence ot. In consequence, ΔE approaches zero
as the set s is expanded. When the value of ΔE is below a certain threshold τE ,
expanding s is terminated and the current set s (with the exception of the initial
state o0) is taken to contain the subgoals in the observed behaviour. The set s
contains the minimum number of subgoals that are required to explain the (cost
of the) observed behaviour ot. Also, notice that the iterative process implies that
when ΔE(s = {o0, oT }) < τE , the imitator will simply plan an action sequence
to attain the final state demonstrated – hence, no imitation of any intermediate
goal will take place. The observed behaviour ot can be inadequately explained
by assuming the demonstrator is only attempting to reach the final goal. No
subgoals need to be assumed.

Obviously, expanding the set s can be done in many ways. Here, we propose
that on each iteration additional states are selected at time instances interme-
diate between the currently selected states. At first, only two states will be
selected,

os = {o0, oT }. (2)
1 Therefore, the notation for the planned action sequence, at, could be considered

as shorthand for at = f(s, C) indicating that the planned action sequence is a
function of (1) the currently selected action states (or subgoals) s and (2) the physical
constraints C experienced by the demonstrator.
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On the next iteration, an additional state in between these two will be added:
os = {o0, oT

2
, oT }. Next, the set will be expanded to os = {o0, oT

4
, oT

2
, o 3T

4
, oT }.

In other words, at the nth iteration the length of os is given by |os| = 1+2n−1.
Figure 1 illustrates the process outlined above. Figure 1b depicts a hypothet-

ical path followed by a demonstrator (depicted as a black robot) from start
to goal. Observing this path, an imitator (purple robot) iteratively selects an
increasing number of states (here: n = 2, 3 and 4, respectively) from the demon-
strated path. Selecting only the start and goal position (Fig. 1c) leads to a large
cost difference ΔE (Fig. 1f). The reason is that the planned action a t does not
include the deviation present in the demonstrator’s path. However, by including
an additional third state (Fig. 1d), the imitator’s planned action sequence a t

better matches the demonstrated path (and energetic cost). Adding more states
does not improve the match (Fig. 1e). Hence, the imitator will copy the three
states (depicted in Fig. 1d). The imitated path is shown in Fig. 1g.

Fig. 1. IIlustration of the process of selecting states s of the demonstrated action
sequence ot. (a) flow chart depicting the process of selecting s (b) The path taken by a
demonstrator (black robot) from start to goal. An imitator (purple robot) is observing
the path. Notice the demonstrated path consists of both an unnecessary curve (first)
and necessary curve (to negotiate the black obstacle). (c) This panel illustrates the
planned path at for s containing only the initial state and final states. Notice that this
results in a discrepancy between the paths at and ot. In particular, the first curve is
not included in at. This will result in a value for ΔE that is larger than τE . Hence,
additional states will be added to os. This is illustrated in panels d-e where s contains
3 and 4 selected states respectively. By selecting a single additional state in panel
d, the match between paths at and ot increases (and ΔE < τE , panel f). At this
point, the iterative expansion of os is terminated and adding further states does not
markedly decrease ΔE (panels e and f). Finally, panel g depicts the path the imitator
would follow. Omitting state o0 from os, it goes to oT via o1, thereby imitating the
unnecessary (and energetically demanding) detour shown by the demonstrator. (Color
figure online)
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Finally, we briefly discuss how the CDM accommodates the experimental
results obtained using popular head touch paradigm [17]. The CDM assumes that
whenever a demonstrator with free hands performs a head touch, ΔE (Eq. 1)
will be large. Indeed, the energetic demand of the head touch will be compared
with that of a simple hand touch. In contrast, when the demonstrator’s hands
are occupied, the infant is assumed to plan an action taking into account these
constraints (modelled using the parameter C in Eq. 1). We assume that this
will result in infants planning a head touch themselves. As such, this will result
in lower a value for ΔE and, therefore, a lower degree of action copying. One
could object that is unlikely that children come up with a head touch as a
way of dealing with the constraints C. However, a small percentage of infants
who have not been shown the head touch still choose to touch the lamp with
their heads [18], especially younger infants [24] (60 % of the 9-month old infants
tested). Hence, it is not beyond plausibility that the context of these experiments
spontaneously elicits head pushing as a solution to deal with the constraint of
occupied hands.

3 Methods

We used two NAO humanoid robots (Aldebaran) in this study, a blue and a
red version. The blue robot was assigned the role of the demonstrator. The red
robot was assigned the role of the imitator. Experiments were carried out in
a 3 by 2.5 m arena. An overhead 3D tracking system (Vicon) consisting of 4
cameras was used to monitor the position and orientation of the robots at a rate
of 30 Hz. The robots were equipped with a clip-on helmet fitted with a number
of reflective beads used by the tracking system to localize the robots. In addition
to the robots, the arena contained three small tables each with a unique pattern
of reflective beads. These served as obstacles and a target position.

The custom-written Python software controlling the robots implemented a
path planning algorithm. This algorithm overlaid the arena with a rectangular
graph with nodes spaced 10 cm apart [20]. Nodes closer than 0.5 m to an obstacle
were removed from the graph. A path between the current position of a robot and
the desired goal location was planned by finding the shortest path of connected
nodes between the node closest to the robot’s current position and the node
closest to the goal position. By removing the nodes closer than 0.5 m to an
obstacle, the path planning algorithm ensured the robots steered well clear of
obstacles. In the current paper, the estimated energetic costs Ê(ot) and Ê(a t)
are approximated by the length of the planned and observed paths, respectively.
For robots moving at a constant speed, this is a fair approximation.

4 Experiment 1: Modelling Experimental Findings

Figure 2 illustrates the three conditions of experiment 1. In the first condition,
the demonstrator is not hampered by obstacles. Hence, it moves towards the
goal position using a direct path (Fig. 2a). In the second condition (Fig. 2b),
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Fig. 2. Illustration of the three conditions in experiment 1. The blue robot is the
demonstrator. The red robot is the imitator. The green arrows depict the path taken
by the demonstrator. Note that in panel c the demonstrator cannot pass between the
two round obstacles. Details in text. (Color figure online)

the demonstrator could approach the goal using a direct path. However, the
demonstrator approaches the goal by a detour. In the third condition, obstacles
between the demonstrator and the goal prevent a direct path. The path planning
algorithm yields a path circumventing the obstacles (Fig. 2c).

The critical conditions, in modelling the experimental results regarding ratio-
nal imitation in infants [10,17], are conditions 2 and 3. In both conditions, the
demonstrator does not take the direct path to the goal. The difference between
these conditions, however, is the presence of an obstacle in condition 3. In this
condition, the obstacle forces the demonstrator to take the longer path. This
is analogous to a demonstrator switching on the lamp with her head when her
hands are occupied in the sense that the constraints of the situation necessitate
the less direct (and energetically inefficient) mode of operation. Critically, the
CDM assumes that the robot (infant) plans an indirect path (head touch) to
cope with the constraints introduced by the obstacle (occupied hands). Hence,
the robot (infant) is predicted not to imitate the indirect path (head touch). In
contrast, in condition 2, given no obstacle (analogous to the free hands condi-
tion in behavioural experiments) the imitator will plan a direct path (a hand
touch). The planned direct path (head touch) is assumed to differ sufficiently (in
terms of energy expenditure) from the demonstrated indirect path (head touch)
to incur imitation.

Figure 3 depicts the results of experiment 1. In condition 1, the demonstrator
takes a direct route to the goal position (Fig. 3a). Calculating ΔE for a planned
path a t based on two selected states, s = {o0, oT }, results in a value lower than
τE (Fig. 3j). Thus, the green path for |s| = 2 in Fig. 3d matches the demonstrated
path ot well. Hence, the imitator only retains the final goal oT as policy. In
consequence, the imitator proceeds to the goal, using a direct path (Fig. 3g).

In condition 2, the demonstrator takes a detour to the goal, in spite of a direct
path being possible (Fig. 3b). Calculating ΔE for a planned path a t based on
s = {o0, oT } results in a value higher than τE (Fig. 3j). As can be seen in Fig. 3e,
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Fig. 3. Results of experiment 1. Panels a-c: paths taken by the demonstrator in con-
ditions 1–3, respectively. Panels d–f depict the process of iteratively expanding s. In
green, the planned path at is shown for s with two states, i.e., s = {o0, oT }. In yellow,
the planned path at is shown for s with three states, i.e., s = {o0, oT/2, oT }. Panels
g-i depict the imitated behaviour for each condition. Notice that the imitator does not
start from the same position as the demonstrator. Panel j: Values of ΔE as a function
of the number of selected states in s for each of the three conditions. The value τE is
indicated by a horizontal line. (Color figure online)
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the green path for |s| = 2 does not match the demonstrated path ot (grey)
well. In contrast, calculating ΔE for |s| = 3 results in a value lower than τE
(Fig. 3j). The yellow path a t, based on s with three states, in Fig. 3e satisfies
the requirement ΔE < τE . Hence, the policy copied will include an additional
subgoal en route to the goal. The imitator proceeds to this intermediate goal
before going to the final goal (Fig. 3h).

In condition 3, the demonstrator reaches the goal via a detour Fig. 3c). How-
ever, the presence of an obstacle makes this necessary. Indeed, the path a t

planned by the imitator from o0 to oT (i.e. |s| = 2) will also contain this detour.
As such, the value of ΔE will be small, even for |s| = 2 (Fig. 3f and j). The green
path a t for |s| = 2 (Fig. 3f) matches the demonstrated path ot sufficiently. As
a result, the imitator proceeds directly to the final goal (Fig. 3i), as it did in
condition 1.

Experiment 1 was aimed at modelling the basic findings of the behavioural
experiments regarding rational imitation in infants [3,10,17,19,24]. As mentioned
above, these authors showed that children copy the head-touch demonstrated by
adults only if the adult’s hands were unrestricted. In our robot experiments, the
imitator only copied the demonstrated detour if the demonstrator was not forced
to take this detour by the obstacles (Condition 2, Fig. 3b, e and h). In contrast,
when the demonstrator took the same path – but was forced to do so on account
of an obstacle – the imitator disregarded the detour (Condition 3, Fig. 3c, f and i).
As such, conditions 2 and 3 reveal our robots modelling the behaviour of infants
in the behavioural experiments discussed above.

5 Experiment 2: Learning Better Policies

In our view, the behavioural experiments concerning rational imitation cited
above can be considered as cases of pathological imitation [22]. That is, the
behavioural experiments are set up to induce imitation in spite of the behaviour
being inefficient, i.e., the head touch is a less efficient way of switching on the light
than a hand touch. The experiments in [12,16] illustrate how easily children can
be tricked into imitating inefficient behaviour. In these experiments, the demon-
strating adult exhibited a range of action irrelevant to attain a given goal. Never-
theless, the infants tended to copy these actions – even when explicitly instructed
not to copy any ‘silly’ behaviour. However, when not experimentally controlled,
adults’ behaviour can generally be assumed to be more efficient or more adap-
tive than that of infants. Under these conditions, as will be shown below, the
mechanism proposed above for selecting policies for imitation is adaptive.

In this section of the paper, we present a robotic experiment showing that
the CDM can also select more efficient policies if these are observed in a demon-
strator. Indeed, by virtue of Eq. 1, the CDM can select policies for explorative
imitation that are less costly than the current policy. The current policy of the
robot amounts to the planned route a t for s with only two states (o0 and oT ). For
|os| = 2, the robot will generate a plan reaching the end goal without taking into
account the demonstrated behaviour. If the observed policy ot is significantly
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less costly than the currently held policy, ΔE will be larger than τE (by virtue
of the absolute value operator in Eq. 1). This will trigger the expansion of the
set of intermediate goals s until ΔE is smaller than τE .

In experiment 2, the imitator starts with a policy that is clearly not optimal.
When going from the start position to the goal, the imitator takes an unnecessary
detour (Fig. 4a). This detour is caused by the imitator’s path planning algorithm
not considering the locations in the hatched area (Fig. 4a). In effect, the hatched
area is not part of the search space considered by the path planning algorithm.
In contrast, panel b of Fig. 4 shows the demonstrator moving in a straight line
from start to goal – as depicted in this panel, the whole arena is part of the
demonstrator’s search space. As such, the demonstrator can find a shorter path to
the goal. Considering the observed behaviour ot, the imitator iteratively expands
a set of selected states s from the demonstrated states ot. Each state os in s
corresponds to a position of the demonstrator in the arena. By adding states os
to s the imitator effectively expands its path planning search space. Iteratively
expanding the set of selected states s will eventually lead to filling in the part
of the search space that was initially not available to the imitator (in panel a).
Indeed, in effect, a corridor between start and goal position is built (Fig. 4c).
When this corridor is established the value ΔE < τE (at |s| = 5, panel d) and
expansion of s is stopped. Eventually, the imitator imitates the shorter path, as
shown in Fig. 4c.

Fig. 4. Results of experiment 2. The paths of both the imitator (red paths) and demon-
strator (blue paths) for three trials are plotted. The grids in the background of panels
a-c represent the graph used in path planning by the imitator (panels a & c) and the
demonstrator (panel b). Panel a: the initial policy of the imitator in reaching the goal
position involves a detour. Part of the graph used by the imitator for path planning
has been taken out (the hatched region). Panel b: the demonstrator approaches the
goal in a straight line (its path planning graph has not been lesioned). Panel c: the
imitator, based on observing the demonstrator’s policy, adopts a more efficient policy.
Panel d: cost difference ΔE as a function of the number of states in os averaged over
the three trials. (Color figure online)

6 Discussion

Since the advent of robotics [4], imitation been suggested as a method for learn-
ing in robots. However, robotic imitation faces a number of challenges [7]. One of
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the most fundamental issues is determining what to imitate [5,6]. Among other
aspects, this involves determining the relevant parts of a demonstrated action
and only copying those. Hence, the selective and rational imitation shown by chil-
dren would be a beneficial capacity for robots [9]. Unfortunately, in spite of the
considerable body of experimental data, the cognitive mechanisms underlying
rational imitation remain elusive. In particular, no satisfactory and computa-
tionally explicit model of rational imitation in infants is available. In this paper,
we have presented a formalization that captures the most relevant aspects of the
behaviour of infants in experiments. The CDM can be considered as a formalized
version of the teleological reasoning hypothesis, which is underspecified [23]. As
such, the CDM is explicit enough to be implemented on robots, as demonstrated
above.
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Abstract. Insects, like dung beetles, can perform versatile motor behav-
iors including walking, climbing an object (i.e., dung ball), as well as
manipulating and transporting it. To achieve such complex behaviors
for artificial legged systems, we present here modular neural control of
a bio-inspired hexapod robot. The controller utilizes discrete-time neu-
rodynamics and consists of seven modules based on three generic neural
networks. One is a neural oscillator network serving as a central pattern
generator (CPG) which generates basic rhythmic patterns. The other
two networks are so-called velocity regulating and phase switching net-
works. They are used for regulating the rhythmic patterns and changing
their phase. As a result, the modular neural control enables the hexa-
pod robot to walk and climb a large cylinder object with a diameter of
18 cm (i.e., ≈ 2.8 times the robot’s body height). Additionally, it can also
generate different hind leg movements for different object manipulation
modes, like soft and hard pushing. Combining these pushing modes, the
robot can quickly transport the object across an obstacle with a height
up to 10 cm (i.e., ≈ 1.5 times the robot’s body height). The controller
was developed and evaluated using a physical simulation environment.

Keywords: Object manipulation · Locomotion · Modular neural net-
work · Central pattern generator · Walking machines · Autonomous
robots

1 Introduction

Over the last few decades, a number of animal-like walking robots have been
developed. Most of them can perform only locomotion, like walking [1], climbing
[2], and swimming [3]. Typically, if object manipulation or transportation tasks
are required, additional manipulators/grippers need to be installed [4–6] instead
of using existing legs. This becomes energy inefficient due to added load and the
requirement of additional energy to power the manipulator or gripper system.
Only a few works have shown walking robots which can locomote and transport
an object using existing legs [7–9]. However, these robots require precise kine-
matic and force control; thereby they can only move or hold an object with the
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 67–78, 2016.
DOI: 10.1007/978-3-319-43488-9 7
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stop-and-go motion. In other words, they cannot perform continuous movements
for transporting an object, especially a large one.

In contrast, dung beetles with little neural computing can use their legs to
continuously walk and at the same time move large objects - dung balls that
can be larger than their body size [10]. In order to do so, the beetle walks
backwards, climbs onto it, and uses its hind legs sometimes together with its
middle legs to push the ball while its front legs are for walking. Inspired by
the strategy of the beetle, we present here a modular neural control approach
which allows a bio-inspired hexapod robot to walk backwards with a tripod gait,
autonomously climb a large cylinder object, and use its hind legs to manipulate
(i.e., push) the object while its front and middle legs are for walking. This results
in continuous locomotion as well as object manipulation and transportation.
With this technique, the robot can even perform different object manipulation
modes including soft push, hard push, and boxing-like motion. A combination of
soft and hard pushing strategies enables the robot to effectively transport a large
cylinder object (larger than its body height) across an obstacle. We believe that
the study in this direction will expand the usability of robots towards domains,
like transportation and agriculture, in which (autonomous) mobile robots with
multi functions are in high demand.

However, the rationale behind this study is not only to demonstrate the hexa-
pod robot with multi functions (i.e., locomotion with object manipulation and
transportation) but also to show that such complex functions can be achieved
by a combination of neural modules. This pure neural network control has a
layered, modular architecture which is inspired by the biological neural systems
of insects [11]. Such a structure is also considered as a major advantage [12],
compared to many other controllers [1], since it is able to deal with transferring
and scaling issues; i.e., applying to different robots [13–15]. Thus, this modular
neural control approach can be a powerful technique to solve sensorimotor coor-
dination problems of many degrees-of-freedom systems (like walking robots) and
to effectively provide complex multi functions to the systems.

2 Modular Neural Control for Object Transportation

To control the locomotion and object manipulation of a bio-inspired hexapod
robot for continuous transporting an object, we employ neural mechanisms as the
key ingredient of our controller. Although different methods [1] can be employed
for the task, this neural control with a layered, modular architecture is selected
in order to provide a basic control structure to the hexapod robot system. This
way, neural learning mechanisms with synaptic plasticity for control parameter
adaptation [16] could be later applied to obtain adaptive behavior.

The modular neural control is manually designed in a hierarchical way
with seven neural modules (CPG, PSN1-4, and VRN1-2, Fig. 1(a)). There are
four inputs I1,2,3,4 (Fig. 1(a)) which are used to activate different motor pat-
terns for forward/backward walking and different object manipulation modes.
The complete structure of this modular neural control and the location of the



Modular Neural Control for Object Transportation 69

Fig. 1. (a) Modular neural control for locomotion and object manipulation. It is manu-
ally designed where its connection weights and inputs I1,2,3,4 are tuned to obtain desired
behavior (e.g., locomotion, object manipulation, etc.). Switching from one behavior to
the other is achieved by manually setting the input values. By activating locomotion
using the front and middle legs and object manipulation using the hind legs of a bio-
inspired hexapod robot, the robot can perform object transportation (i.e., continuously
transporting a cylinder object). Abbreviations are: BJ = a backbone joint, TL(R) =
thoraco-coxal joints of left (right) legs, CL(R) = coxa-trochanteral joints of left (right)
legs, FL(R) = femur-tibia joints of left (right) legs. (b) The simulated bio-inspired hexa-
pod robot using the LPZRobots simulation environment (see http://robot.informatik.
uni-leipzig.de/software). The robot consists of 19 joints: three joints for each leg and
one backbone joint. The robot model is qualitatively consistent with our real hexapod
robot AMOSII [16] in the aspect of size, mass distribution, motor torque/speed, and
sensors. Its joint orientations follow the ones of the dung beetle Geotrupes stercorarius;
i.e., the front legs are oriented slightly to the front while the middle and hind legs are
oriented to the back. (c) The movements of the C- and F-joints. (d) The location of the
motor neurons on the simulated robot and the movements of the T-joints. Minimum
and maximum angles can be seen for all joints of the right legs where the same values
are also set to the left ones.

http://robot.informatik.uni-leipzig.de/software
http://robot.informatik.uni-leipzig.de/software
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corresponding motor neurons on the hexapod robot are shown in Fig. 1. The
structural design of the control is based on our previous developed neural loco-
motion control [15,16].

The seven neural modules of the controller are derived from three generic
neural networks1: A neural oscillator network (abbreviated CPG), a velocity
regulating network (VRN), and a phase switching network (PSN). The neural
oscillator network serves as a central pattern generator (CPG) module. It gen-
erates basic rhythmic signals. Here, the output signal C1 of the CPG mod-
ule (see Fig. 1(a)) is used to drive the joints of the robot for locomotion and
object manipulation. To obtain proper motor patterns for locomotion and object
manipulation, the CPG output signal is post-processed at the PSN and VRN
modules. These modules act as premotor neuron networks. Here, the PSN1 and
PSN2 modules receive the CPG output signal through excitatory and inhibitory
synapses; i.e., they obtain the original CPG signal and its inversion. The out-
puts of these PSN modules are projected to the thoraco-coxal (T-) and coxa-
trochanteral (C-) joints through the other PSN modules (PSN3 and PSN4) and
the VRN modules (VRN1 and VRN2). These PSN modules are basically used
to switch the phase of the T- and C-joint signals of the front and middle legs for
forward/backward walking while the VRN modules are to regulate the ampli-
tude of the hind legs to obtain different object manipulation modes (e.g., soft
and hard pushing and boxing-like motion) as well as to maintain stability dur-
ing object transportation. Note that the femur-tibia (F-) joints of the front and
middle legs are kept fixed to a certain position while the F-joints of the hind
legs are controlled by I3 for object manipulation.

All these CPG, PSN, and VRN networks are described in details in the fol-
lowing sections. Their neurons are modelled as discrete-time non-spiking neurons
with an update frequency of approx. 10 Hz. The activity of each neuron develops
according to ai(t + 1) =

∑n
j=1 wij oj(t) + bi; i = 1, . . . , n where n denotes the

number of units, bi represents a fixed internal bias term of neuron i, wij the
synaptic strength of the connection from neuron j to neuron i. The neuron out-
put oi is given by a hyperbolic tangent (tanh) transfer function. Input neurons
(I1,2,3,4) are here configured as linear buffers (ai = oi). All connection strengths
together with bias terms are indicated by the small numbers (Fig. 1(a)) except
w1−10 which are modulatory synapses (see section below for details). These fixed
bias and synaptic connection values are here empirically set to obtain the desired
locomotion and object manipulation patterns. However, they can be changed
depending on robot configuration, e.g., the position of actuators.

2.1 Neural Oscillator Network (CPG)

The concept of central pattern generators (CPGs) for legged locomotion [11] has
been studied and used in several robotic systems in particular walking robots.

1 These networks have been successfully applied for locomotion control of various
robot systems [14–16]. They are, for the first time here, employed for locomotion
and object manipulation and transportation of a bio-inspired hexapod robot.
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Fig. 2. (a) The periodic output signals from the CPG with the defined parameters
shown in Fig. 1(a). Here we use the output signal C1 for generating locomotion and
object manipulation. (b) The phase space with the quasi-periodic attractor of the
oscillator network [17].

Here, the model of a CPG is realized by using the discrete-time dynamics of a
simple 2-neuron oscillator network with full connectivity (see Fig. 1(a)). Such a
CPG model has been successfully used for locomotion control [15]. We empiri-
cally adjust the synaptic weights of this network to achieve a proper frequency
of leg movements for stable locomotion and object manipulation. Figure 2 shows
the outputs from the CPG network.

2.2 Phase Switching Network (PSN)

To obtain different modes (i.e., forward/backward locomotion and object manip-
ulation), one possibility is to reverse the phase of the periodic signals driving the
T- and C-joints (Fig. 1). That is, these periodic signals can be switched to lead
or lag behind each other depending on the given input I1. To do so, we use four
phase switching network (PSN) modules (PSN1-4). The PSN was developed in
our previous study [15]. It is a hand-designed feedforward network consisting of
four hierarchical layers with 14 neurons P1−14 (Fig. 3). The synaptic weights and
bias terms of the network were determined in a way that they do not change the
periodic form of its input signals and keep the amplitude of the signals as high
as possible (i.e., between −0.5 and +0.5). The detail of the network development
is referred to [15]. For our implementation here (Fig. 1(a)), P1,2 of the PSN1 and
PSN2 modules receive the CPG signal C1 through an excitatory synapse (+1)
and its inversion through an inhibitory synapse (−1) while their P3,4 receive
the input I1 through the modulatory synapses w1,2 for the PSN1 module and
w3,4 for the PSN2 module (Fig. 1(a)). P1,2 of the PSN3 and PSN4 modules in
a lower layer receive the outputs P13,14 of the PSN1 module through an excita-
tory synapse (+1) while their P3,4 receive the input I1 through the modulatory
synapses w5,6 for the PSN3 module and w7,8 for the PSN4 module (Fig. 1(a)).
The final outputs P13,14 of the PSN3 and PSN4 modules are directly connected
to the motor neurons of the T- and C- joints of the front and middle legs. The
modulatory synapses of all PSN modules (Fig. 1(a)) are modelled as w1,4,6,7 =
I1 and w2,3,5,8 = −I1. In this study, the bias terms b1,2 (Fig. 3(a)) of the PNS1
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Fig. 3. (a) The phase switching network of the PSN1 module. The other PSN modules
have the same structure. (b) The inputs of the PSN1 module which come from the
CPG module. (c) The outputs of the PSN1 module where I1,2 are set to (1,1) or (0,1).
The outputs are inverted if I1,2 are set to (1,−1), (−1,−1), or (1,0). Note that the
inputs and outputs of the other PSN modules behave in a similar way.

and PSN4 modules are modelled as input-driven functions and described as
b1 = −(I2

1I2(I2+1))
2 , b2 = −b1, while the ones of the PNS2 and PSN3 modules are

set to b1 = −1 and b2 = 0. Note that the input-driven functions used here will
basically activate or deactivate the neurons P3,4 with respect to the inputs I1,2.

2.3 Velocity Regulating Network (VRN)

To obtain different object manipulation modes (e.g., soft and hard pushing and
boxing-like motion) and to maintain stability during object transportation, we
need to regulate the signals controlling the T- and C-joints (TL2, TR2,CL2, CR2,
see Fig. 1(a)) of the hind legs. According to this, we use two velocity regulat-
ing network (VRN) modules (VRN1,2) where one is for controlling the T-joints
(TL2, TR2) and the other is for the C-joints (CL2,CR2). The VRN taken from
[15] is a simple feed-forward neural network with two input V1,2, four hidden
V3−6, and one output V7 neurons (Fig. 4). It was trained by using the backprop-
agation algorithm to act as a multiplication operator on two input values on the
neurons V1,2 ∈ [−1,+1] (see [15] for details). For our purpose here, the neuron
V1 of the VRN1 module receives the input I3 through an inhibitory synapse
(e.g., −0.57, Fig. 1(a)) while the one of the VRN2 module receives the input I2
through an excitatory synapse (e.g., 0.3, Fig. 1(a)). The bias term of the neu-
ron V1 of the VRN1 module is set to 1 while the one of the VRN2 module is
set to 0.7 (Fig. 4(a)). The neuron V2 of the VRN1 module receives two inputs
(x, y) from the CPG output C1 and the output P13 of the PSN1 module, respec-
tively, through the modulatory synapses w9,10 while the one of the VRN2 module
receives only one input (x) from the output P13 of the PSN2 module through
an excitatory synapse (+1, Fig. 1(a)). Additionally, the neuron V2 of the VRN1
module has the bias term b3 which is modelled as an input-driven function and
described as b3 = 0.02((I21 − I22 )2 + I1I2(I2+I1)

2 )2) while there is no bias term for
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Fig. 4. (a) The velocity regulating network of the VRN1 module. The bias b4 is equal
to -2.48285. The VRN2 module has the same structure. (b–e) Different output signals
of the VRN1 module for forward/backward walking (b), hard pushing (c), soft pushing
(d), boxing-like motion (e). The VRN2 output behaves in a similar way.

the neuron V2 of the VRN2 module (Fig. 4(a)). According to this input-driven
function, b3 will be 0.02 for all cases except soft pushing where it will be zero.
Here, the synaptic weights w9,10 are driven by the inputs I1,2 and described as
w9 = 2((I21 − I22 )2 + I1I2(I2+I1)

2 )2) and w10 = 1 − w9
2 . According to these equa-

tions, w9 will be equal to 2 for all actions except the soft pushing action for
which it will be zero and the weight w10 will be zero for all actions except the
soft pushing action for which it will be one. Finally, the outputs V7 of the VRN1
and VRN2 modules are set to control the C-joints (CL2,CR2) and the T-joints
(TL2, TR2), respectively. Note that all these functions of b3, w9,10 are used to
scale the input signals (x, y) into proper ranges for different behavioral modes.

2.4 Neural Control Parameters for Different Behavior Modes

The integration of the different functional neural modules described above gives
the complete modular neural controller. It can generate different behavioral
modes2 (locomotion, object manipulation, and their combination (i.e., object
transportation)) through the four input parameters I1,2,3,4. Appropriate input
parameter sets for the different modes are presented in Table 1. I1,2 are basically
for generating different motor modes through the PSN and VRN modules while
I3,4, which can vary between −1.0 and 1.0, are for shifting the offsets of the
leg joints upward/downward for object manipulation. Additionally, I3 is used
to scale the CPG and PSN signals through the VRN1 module to obtain proper
movements for soft pushing and boxing-like motion. Note that the input values
shown in Table 1 can be changed with respect to, e.g., robot configuration.

2 See http://manoonpong.com/SAB2016/V1.mp4.

http://manoonpong.com/SAB2016/V1.mp4
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Table 1. Input parameters for different behavior modes.

Actions I1 I2 I3 I4

Locomotion: Forward walking 1 1 0 0

Locomotion: Backward walking 0 1 0 0

Object manipulation: Soft pushing 1 −1 1 1

Object manipulation: Boxing-like motion −1 −1 1 0

Object manipulation: Hard pushing 1 0 0 −0.3

3 Experiments and Results

To evaluate the performance of the developed controller, we used the simu-
lated bio-inspired hexapod robot (see Fig. 1(b)) with a body height of 6.5 cm and
a weight of ≈ 5 kg and a cylinder object (see Fig. 5(b)) with a length of 60 cm,
a diameter of 18 cm (i.e., ≈ 2.8 times the robot’s body height), and a weight
of 2 kg. The friction coefficient of robot feet was set based on a rubber material
used for the feet of the real robot while the friction coefficients of the object
and ground were empirically set to obtain high friction and to avoid slipping
during locomotion and object transportation. With the controller, the robot can
walk forward with a tripod gait and can walk backward by changing the phase
of the T-joints through the PSN2 and PSN3 modules. Note that the C-joint
signals are clipped to ensure that the legs touch the ground during the stance
phase; resulting in a stable walking behavior. Here, the F-joints stay in a certain
position.

Fig. 5. Result of the speed test for object transportation using different object manip-
ulation modes. (a) The bars show the average object transportation time with the
standard deviation. The time was measured from the starting point to the end point
where the distance is 1.46 m. We performed in total ten tests for each mode. (b) The
startpoint and endpoint locations from which the robot has to transport the object.
Note that in this experiment the robot was activated to walk backward without any
additional steering command.
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To let the robot transport the object, we drive the robot to walk backward.
While walking backward and approaching an object, the robot will automatically
climb the object since we set the backbone joint (BJ) in a slightly bending
position. With this BJ setup, the body of the robot bends slightly upwards;
thereby allowing the robot to swing its hind legs slightly more upwards during
a swing phase and place its leg tips above the center line of the object during
a stance phase. This way, the robot can climb the object. Once the robot has
been stayed on the object partly, which is detected by a body inclination sensor,
specific hind leg movements for different object manipulation modes will be
activated while the front and middle legs remain unchanged. For soft pushing,
the hind legs will slowly roll a cylinder object while the robot walks backward.
For the boxing-like motion, as the word describes, the robot uses the hind legs
to hit or punch the object and in this way move it. For hard pushing, the robot
uses the hind legs to dig under the object in order to make it across an obstacle.

Two main experiments were carried out for our evaluation. The first experi-
ment evaluates an object transportation speed of the robot without an obstacle
when different object manipulation modes were used. The soft pushing, hard
pushing, and boxing modes, where the hind legs actively move in specific pat-
terns (see Footnote 2), were tested. Additionally, we also compare them with a
situation where the hind legs were kept fixed in a certain position (not moving)
and stayed on top of the object to avoid it run away (i.e., stationary mode3).
Figure 5 shows the result of this experiment. It can be seen that the robot can
transport or move the object with the fastest speed (i.e., less time) in a straight
backward direction when the soft pushing mode was used while other modes
required more time to reach the target location. The robot failed to do the task
when the hard pushing mode was used because with this mode it pushed the
object away in an arbitrary direction (see Footnote 2).

Fig. 6. Result of the obstacle test for the different object manipulation techniques.
(a) Success rate in a total of ten experiments for each strategy. (b) The startpoint and
endpoint locations from which the robot has to transport the object. In this experiment
the robot was activated to walk backward without any additional steering command.

3 See http://manoonpong.com/SAB2016/V2.mp4.

http://manoonpong.com/SAB2016/V2.mp4
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The second experiment evaluates the performance of the robot with different
manipulation strategies to transport the object across an obstacle at different
heights. The obstacle width was set to 1 mm while the obstacle height was varied
from 2 cm to 11 cm. In total, we tested six strategies including soft pushing, box-
ing, stationary, and their combination with hard pushing. For the combination
modes (i.e., soft pushing (Mode1) → hard pushing (Mode2), boxing (Mode1) →
hard pushing (Mode2), and soft pushing (Mode1) → hard pushing (Mode2)), we
switch from one pushing mode (Mode1) to another pushing mode (Mode2) when
the object has reached or hit the obstacle. This is detected by the joint angle
sensors of the F-joints of the front legs. If the angle sensors decrease below a
threshold, then the switching occurs. Figure 6 presents the success rate of object
transportation; i.e., the percentage of success from ten experiments each. A suc-
cess is considered if the object gets across the obstacle within one minute. It can
be seen that the combination modes outperform individual modes and allow the
robot transport the object across the obstacle at the maximum height of 10 cm.
However, when we take the transportation time into account the combination
of soft pushing (Mode1) → hard pushing (Mode2) is the best since, with this
mode, the robot uses first the soft pushing mode to roll the object leading to

Fig. 7. Example of sensor and motor signals of the hexapod robot for object trans-
portation. The robot first walked backward and then autonomously climbed the object
due to the interaction between the leg movements and the object. Afterwards it per-
formed soft pushing and finally hard pushing to move the object across the obstacle
with a height of 5 cm. The soft pushing behavior was activated by the body inclination
sensor signal (BS). It will be activated if the sensor value is higher than a threshold
after a certain time step. The hard pushing behavior was activated by the joint angle
sensor signals of the F-joints of the front legs. We used the average value of the angle
signals (AS) for this activation. Basically, the hard pushing behavior will be activated
if the value is smaller than a threshold. TL0,1,2 are the thoraco-coxal (T-) joints of
the left front, middle, and hind legs. CL0,1,2 are the coxa-trochanteral (C-) joints of
the left front, middle, and hind legs (see Fig. 1). The F-joints are not shown since they
have constant values. The joint angle signals of the right legs are shown in degree. The
left angle signals are similar to the right ones.
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fast transportation speed compared to the others (see Fig. 5) and then the hard
pushing mode to strongly push the object across the obstacle. Figure 7 shows
the sensors and motor signals of the robot during object transportation using
the combination of the soft pushing and hard pushing modes4.

4 Conclusion

We present the modular neural controller of a bio-inspired hexapod robot. The
controller is derived from three neural networks (CPG, PSN, and VRN). Each
network has its functional origin in biological neural systems (see [14] for details).
The controller can generate various motor patterns for locomotion, object manip-
ulation, and their combination (resulting in object transportation). Different
object manipulation strategies can be obtained from the controller. Among them,
the strategy that combines soft pushing and hard pushing allows the robot to
quickly roll a large cylinder object (i.e., ≈ 2.8 times the robot’s body height)
and to strongly push it across an obstacle with a height up to ≈ 1.5 times the
robot’s body height. Although the resulting object transportation behavior is
inspired by the strategy of a dung beetle, the object used in this study is still
smaller than and different from the one that the beetle can transport (i.e., dung
ball). Furthermore, the beetle can also transport the ball on rough terrain using
its middle and hind legs while walking with its front legs. Thus, in the future
work, we will investigate another object transportation mode using the middle
and hind legs to transport a large ball on rough terrain. We will also apply this
approach to a real hexapod robot and test it in a real environment.

Acknowledgments. We would like to thank Georg Martius for technical advise about
the LpzRobots simulation software.
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Abstract. Acoustic tracking of a moving sound source is relevant in
many domains including robotic phonotaxis and human-robot interac-
tion. Typical approaches rely on processing time-difference-of-arrival cues
obtained via multi-microphone arrays with Kalman or particle filters, or
other computationally expensive algorithms. We present a novel bio-
inspired solution to acoustic tracking that uses only two microphones.
The system is based on a neural mechanism coupled with a model of the
peripheral auditory system of lizards. The peripheral auditory model pro-
vides sound direction information which the neural mechanism uses to
learn the target’s velocity via fast correlation-based unsupervised learn-
ing. Simulation results for tracking a pure tone acoustic target moving
along a semi-circular trajectory validate our approach. Three different
angular velocities in three separate trials were employed for the vali-
dation. A comparison with a Braitenberg vehicle-like steering strategy
shows the improved performance of our learning-based approach.

Keywords: Binaural acoustic tracking · Correlation learning · Lizard
peripheral auditory system

1 Introduction

There are several applications where acoustic target tracking can be useful.
Human-robot interaction in social robots is deemed to be richer if the robot’s
acoustomotor response maintains its auditory focus on the subject of interest
[16,19]. During phonotaxis a robot can localise acoustic sources and navigate
towards them [22].

Acoustically tracking a sound source moving with fixed but unknown speed
along a fixed but unknown trajectory requires that the sound source must first
be successfully localised in space and this localisation must then be repeated
sufficiently quickly to minimise the static tracking error. Localising a sound
can be done using both interaural intensity difference (IID) and interaural time
difference (ITD) cues, requiring a multi-microphone setup with at least two
microphones. Generating IID cues requires a sufficiently large solid obstruction
between the individual microphones to create sound shadows, while ITD cues
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 79–90, 2016.
DOI: 10.1007/978-3-319-43488-9 8
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can be generated without the need of such obstructions. We focus on acoustic
tracking of a moving sound source using only ITD cues. A sound source moving
with a given velocity in a given direction with respect to the microphones gen-
erates dynamic ITD cues. The instantaneous values of these cues vary with the
relative position of the sound source and the speed with which they vary depends
on the relative speed of the sound source. Tracking a moving sound source thus
requires transforming these relative position- and velocity-dependent cues into
a desired behaviour such as robotic orientation or phonotaxis.

Acoustic target tracking has been approached via a number of techniques
[7,8,11–13,17,18,24,25]. All techniques use multi-microphone arrays in various
geometric configurations such as linear, square, circular or distributed arrays to
extract ITD cues for localisation. Computationally intensive algorithms are also
a common feature among these techniques.

We present a acoustic tracking system using two microphones that imple-
ments a neural learning mechanism. The mechanism is adapted from Input Cor-
relation (ICO) learning [21] which is derived from a class of differential Hebbian
learning rules [10]. The ICO learning architecture is characterised by its sta-
bility, fast convergence and adaptability via synaptic plasticity all of which are
desirable qualities in an acoustic tracking system. The proposed learning mecha-
nism is coupled with a model of the lizard peripheral auditory system [26] which
provides sound direction information. The peripheral auditory model has been
extensively studied via various robotic implementations as reviewed in [23]. The
proposed mechanism is a first step towards developing a biologically-plausible
neural predictive mechanism for binaural acoustic tracking, rather than an alter-
native to existing well-engineered approaches to acoustic tracking.

The paper is organised in the following manner. Section 2 describes the lizard
ear model, its directional response and its role in sound localisation. It also briefly
describes ICO learning, which is the basis for the learning mechanism presented
in Sect. 3. The experimental setup is also described in Sect. 3. Section 4 presents
the results of the proposed approach in tracking a moving sound source. Section 5
summarises the research and discusses future directions.

2 Background

2.1 Lizard Peripheral Auditory System Model

Lizards such as the bronze grass skink or Mabuya macularia, and the tokay
gecko or Gekko gecko as depicted in Fig. 1(a), are known for their remarkably
directional peripheral auditory system [3,4]. Thanks to an internal acoustical
coupling of the two eardrums of the animal, formed by efficient transmission of
sound through internal pathways in the head as shown in Fig. 1(b), the lizard
ear achieves a directionality higher than that of any known vertebrate [3].

The lizard peripheral auditory system is small in size (the distance between
the eardrums for most lizard species is 10–20 mm) with respect to the sound
wavelengths (340–85 mm, corresponding to 1–4 kHz) for which it exhibits strong
directionality [4]. For these wavelengths the sound pressure difference between
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Fig. 1. (a) An eardrum visible on the side of the gecko head (redrawn from [4]).
(b) early cross-sectional diagram of the lizard (Sceloporus) auditory system (taken from
[3]). (c) ideal lumped-parameter circuit model (based on [5,6] and taken from [28]).
(d) contour plot modelling binaural subtraction (refer to Eq. (2)) of the ipsilateral and
contralateral responses (redrawn from [28]).

the ears is negligible due to acoustic diffraction around the animals head, thus
generating negligible (1–2 dB) IID cues. The system thus converts μs-scale inter-
aural phase differences (corresponding to ITDs) between incoming sound waves
at the two ears due to the physical separation, into relatively larger (up to 40 dB)
interaural vibrational amplitude differences [3] which encode information about
sound direction relative to the animal. Each eardrum’s vibrations are the result
of the superposition of two components – an external sound pressure acting
on its outer side and the equivalent internal sound pressure acting on its inner
side, generated due to sound interference in the internal pathways. This process
leads to contralateral (away from the sound source) cancellation and ipsilateral
(towards the sound source) amplification of eardrum vibrations. In other words,
the ear closer to the sound source vibrates more strongly than the ear further
away from the sound source. The strengths of the vibrations depend on the
relative phase difference between the incoming sound waves at the two ears.
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An equivalent electrical circuit model as shown in Fig. 1(c) of the periph-
eral auditory system [5,6] allows one to visualise the directionality as shown
in Fig. 1(d) as a difference signal obtained by subtracting the two vibrational
amplitudes. The difference signal can be formulated as

∣∣∣∣ i1i2
∣∣∣∣ =

∣∣∣∣GI · V1 + GC · V2

GC · V1 + GI · V2

∣∣∣∣ , (1)

where frequency-dependent gains GI and GC model the effect of sound pressure
on the motion of the ipsilateral and contralateral eardrum respectively. These
gains are analogue filters in signal processing terminology with coefficients deter-
mined experimentally by measuring the eardrum vibrations of individual lizards
via laser vibrometry [3]. Expressing i1 and i2 in decibels,

iratio = 20 (log |i1| − log |i2|) dB. (2)

The model responds well for frequencies between 1–2.2 kHz, with a peak response
at approximately 1.6 kHz. iratio is positive for |i1| > |i2| and negative for |i2| >
|i1|. The model’s symmetry implies that |iratio| is the same on either side of the
centre point θ = 0◦ and is locally symmetrical within the range [−90◦,+90◦]
(considered henceforth as the relevant range of sound direction). The difference
signal given by Eq. (2) provides sound direction information in that its sign
indicates whether the sound is coming from the left (positive sign) or from the
right (negative sign), while its magnitude corresponds to the relative angular
displacement of the sound source with respect to the median.

2.2 Input Correlation (ICO) Learning

ICO learning [21] is online unsupervised learning in which synaptic weight update
is driven by cross-correlation of two types of input signals – “predictive” signal(s)
which are earlier occurring stimuli and a “reflex” signal which is a later occurring
stimulus arriving after a finite delay and drives a reflex (Fig. 2). The output of
the ICO learning mechanism is a linear combination of the reflex input and the
predictive input(s). The synaptic weight of the reflex input is set to a constant
positive value such as 1, representing an unchanging reflex signal. The learning
goal of ICO learning is to predict the occurrence of the reflex signal by using the
predictive signal, thereby allowing an agent to react earlier. Essentially, the agent
learns to execute an anticipatory action to avoid the reflex. During learning, the
synaptic weight(s) of the predictive signal(s) are updated through differential
Hebbian learning [9,10] using the cross-correlation between the predictive and
reflex inputs. The synaptic weights tend to stabilise when the reflex signal is
nullified [21], which implies that the reflex signal has been successfully avoided.
ICO learning is characterised by its speed and stability and has been successfully
applied to generate adaptive behaviour in real robots [14,15,20].
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3 Materials and Methods

The task of acoustic tracking is defined as follows – a robotic agent must learn
the correct angular turning velocity which allows it to rotate sufficiently quickly
along a fixed axis so as to point in the direction of the instantaneous position
of a sound source moving with an unknown velocity in a given direction along
a pre-defined semi-circular arc-shaped trajectory. To solve this task we employ
an adaptive neural architecture that combines the auditory preprocessing of the
lizard peripheral auditory model and the neural ICO learning mechanism as
described next.

3.1 The Adaptive Neural Architecture

Figure 2 shows the neural mechanism embedded as a closed-loop circuit in the
task environment. The central idea is for the robotic agent to learn the temporal
relationship between the perceived sound direction before turning and after turn-
ing. The temporal relationship is encoded in the synaptic weights of the neural
mechanism, which are used to calculate the correct angular turning velocity.
Since the temporal relationship depends on the angular velocity, a given set of
learned synaptic weights can only represent a given angular velocity. To learn a
new angular velocity, the synaptic weights must therefore be re-learned.

Fig. 2. Neural mechanism for acoustic tracking as a closed-loop system.

The output of the neural mechanism ω is the angular velocity, defined as the
angular deviation per time step, required to turn the robot fast enough to point
at the appropriate loudspeaker in one time step. ω is transformed into corre-
sponding ITD cues via the environmental transfer function H. The peripheral
auditory model (PAM) translates these cues to a difference signal x(t) (given
by Eq. (2)) which encodes information regarding sound direction. A filter bank
decomposes x(t) into frequency components xk(t), where k = 1, . . . , N , to extract
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frequency information. The filter bank comprises 5 bandpass filters, each with
a 3 dB cut-off frequency of 200 Hz and center frequencies at 1.2 kHz, 1.4 kHz,
1.6 kHz, 1.8 kHz and 2.0 kHz. This results in N = 5 filtered signals outputs
of the filter bank. This step is necessary because in the absence of sound fre-
quency information the peripheral auditory model provides ambiguous informa-
tion regarding the sound direction. This is because the output of the peripheral
auditory model is non-linearly dependent on the sound frequency. The magnitude
responses of the filters in the filter bank represent the receptive fields of individ-
ual auditory neurons. These receptive fields, better known as spectro-temporal
receptive fields [1], are the range of sound frequencies that most optimally stim-
ulate the neuron. The filtered signals xk(t) are used as inputs which are then
correlated with the derivative of the unfiltered difference signal x0(t). The input
signals xk(t) can be viewed as the predictive signals used to predict the instanta-
neous sound direction before turning, while the unfiltered difference signal x0(t)
can be viewed as the “reflex” or the retrospective signal generated after turning.

In ICO learning, once the reflex signal is nullified, the synaptic weights are
stabilised; thereby generating a behavioural response that prevents future occur-
rences of the reflex signal. Here, as soon as the sound moves to a new position
along its trajectory, a new and finite retrospective signal x0 is generated. This
signal is then nullified after turning, before the sound moves to a new position
along its trajectory. Our approach can therefore be viewed as one successful iter-
ation of ICO learning being repeated for each new position of the sound source
as it moves along its trajectory. This implies that the synaptic weights can grow
uncontrollably if the learning continues indefinitely. To avoid this condition, we
introduce a stopping criterion for the learning – the learning stops when the
tracking error θe becomes less than 0.5◦. θe is defined as the difference between
the angular deviation of the robot and the angular deviation of the sound source
in one time step. In other words, the learning stops when the robot is able to
point to within 0.5◦ from the position of the sound source within one time step.

3.2 The Experimental Setup

The experimental setup in simulation, as illustrated in Fig. 3, comprises a vir-
tual loudspeaker array which generates relevant tones. The array comprises 37
loudspeakers arranged in a semi-circle in the azimuth plane. The angular dis-
placement between consecutive loudspeakers is 5◦. To simulate motion of a sin-
gle sound source, the loudspeakers are turned on sequentially starting from the
loudspeaker at one of the ends of the array. To maintain sound continuity and
simulate a continuously moving sound source (albeit in discrete steps), the next
loudspeaker plays immediately after the previous loudspeaker has stopped. A
given tone can thus be moved across the array along a semi-circular trajectory
from either the left or the right with a given angular velocity. The angular veloc-
ity is defined as the angular displacement in radians every 10 time steps. When
a given loudspeaker is turned on, it plays a tone for 10 time steps before it is
turned off and the next consecutive loudspeaker is turned on immediately after-
wards. This process is repeated until the last loudspeaker in the array is reached.



An Adaptive Neural Mechanism with a Lizard Ear Model 85

+90◦−90◦
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Fig. 3. The simulation setup.

In the current setup, the direction of movement of sound is chosen to be from
the left to the right of the array. The movement of sound from loudspeaker #1
to loudspeaker #37 is defined as one complete iteration. Since one iteration may
be insufficient to learn the correct angular velocity, the process is repeated from
the first to the last loudspeaker until the synaptic weights converge.

The robot that must track the moving sound source is located at the mid-
point of the diameter of the semi-circle and is only allowed to rotate on a fixed
axis. To track the sound source by rotational movements, the robot must turn
with a sufficiently large angular velocity in order to point towards the instan-
taneous position of sound source before the sound moves to a different position
along its trajectory. The angular velocity of the robot is defined as the angular
rotation per time step. The goal of the learning algorithm is to learn the cor-
rect angular velocity that would allow the robot to turn and point towards the
current loudspeaker in one time step, starting from the time step at which the
given loudspeaker started playing the tone.

The learning takes place as follows. The robot initially points in a random
direction (chosen as 97◦). Loudspeaker #1 emits a 2.2 kHz tone, chosen because
sufficient directional information from the peripheral auditory model is available
at this frequency. The robot uses the extracted sound direction information to
turn towards the current loudspeaker with an angular velocity given by

ω = ρ0x0 +
N∑

k=1

ρkxk, where N = 5. (3)

After the turn is complete, the robot again extracts sound direction information
via the peripheral auditory model and determines x0(t+δt). Finally, the synaptic
weights ρk are updated according to the learning rule
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dρk(t)
dt

= μxk(t)
dx0(t)

dt
, where k = 1, . . . , N. (4)

After this step, loudspeaker #1 is turned off and the next loudspeaker in the
array (loudspeaker #2) emits a tone of the same frequency as earlier and the
learning procedure described above is repeated.

The acoustic tracking performance is individually evaluated for three differ-
ent angular velocities of the sound source – 0.5◦/ time step, 1.0◦/ time step and
1.5◦/ time step. For all trials, the neural parameters are set to the following val-
ues – the learning rate μ = 0.0001 and synaptic weight ρ0 = 0.00001. All plastic
synaptic weights ρk are initially set to zero and updated according to Eq. (4). The
neural mechanism’s performance is also compared with a Braitenberg vehicle-like
[2] sensorimotor mechanism that generates rotational motion. The Braitenberg
mechanism is simulated by turning off the learning and setting the weights
ρk to constant values. Two sets of randomly-chosen weights are used – one
(ρk = [0.0114, 0.0303, 0.0301, 0.0152, 0.0227]) resulting in a relatively small angu-
lar turning velocity and another (ρk = [0.0652, 0.0725, 0.0102, 0.0731, 0.0506])
resulting in a relatively large angular turning velocity.

4 Results and Discussion

Figure 4 shows the tracking error θe which reduces exponentially over time for
the three trials. The insets reveal the evolution of θe for the last iteration of the
movement of the sound source.

Fig. 4. Evolution of tracking error θe over time for the three separate trials in which
the sound source is moving with three separate angular velocities – 0.5◦/ time step (top
panel), 1.0◦/ time step (middle panel) and 1.5◦/ time step (bottom panel). The insets
show θe for a single iteration as an example.
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The spikes in θe represent a mismatch between the position at which the
robot was pointing last and the new position of the sound source. This creates
finite ITD cues from which the robot extracts sound direction information via
the peripheral auditory model. The robot then turns towards the sound source
with the last learned angular turning velocity, reducing the tracking error. This
process repeats over each subsequent time step, exponentially reducing the track-
ing error, until the stopping criterion is met. The number of iterations required
to reach the stopping criterion, where the weights stabilise, decreases for increas-
ing angular velocity of the sound source. This is because the mismatch between
the direction at which the robot was pointing last and the current position of
the sound source is relatively greater for greater angular velocity of the sound
source. This results in relatively larger predictive signals, and consequently a
relatively larger correlation term xk(t)

dx0(t)
dt per time step in Eq. (4). This con-

sequently results in relatively faster weight updates, reducing the overall time
taken to learn the correct angular velocity.
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Fig. 5. Snapshots of the evolution of the predictive signal x5(t) (solid line) and the

derivative of retrospective signal dx0(t)
dt

(dashed line) for a sound source moving with
angular velocity of 1.5◦/ time step. Top panel. The instantaneous position of the sound
and the corresponding loudspeaker designation. Second – fourth panels. Example
snapshots for iteration #14 (second panel), #21 (third panel) and the last iteration
(#28, fourth panel). Bottom panel. The positive-lag cross-correlation of x5(t) and
dx0(t)

dt
for iteration #14 (dotted line), #21 (dashed line) and #28 (solid line).
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An example of the predictive signal x5 and the derivative dx0(t)
dt of the retro-

spective signal x0, for three separate iterations for the sound source moving with
an angular velocity of 1.5◦/ time step, is shown in Fig. 5. The learning results in
faster turns by the robot as indicated by the decreasing slope of x5(t) as shown.

The maximum correlation as shown in the bottom panel in Fig. 5 between
the predictive and retrospective signals increases as the number of iterations
increases. This confirms that as the synaptic weights increase, consequently
increasing the learned angular turning velocity as learning progresses, the corre-
lation between the predictive and retrospective signals also increases, resulting
in an increasing correlation term in Eq. (4).

Figure 6 shows a comparison of the correlation learning mechanism to the
Braitenberg vehicle-like sensorimotor mechanism for rotational turning. Depend-
ing on the synaptic weights chosen, the angular turning velocity of the robot may
be either less or greater than the angular velocity of the sound source. Thus the
robot either takes a relatively long time to reach the target’s position or over-
shoots the target’s position, resulting in a relatively greater tracking error in
both cases. On the other hand, the learning mechanism allows the robot to learn
a relatively accurate angular turning velocity that closely matches that of the
sound source, resulting in a relatively smaller tracking error.

Fig. 6. Braitenberg vehicle-like mechanism for rotational turning versus the correlation
learning mechanism. The panels show the evolution of tracking error θe over time in
the last iteration for the sound source moving with an angular velocity of 1.5◦/ time
step. Top panel. The instantaneous position of the sound and the corresponding
loudspeaker designation. Second and third panels. θe for the Braitenberg approach
where the angular turning velocity is less (second panel) and greater (third panel) than
1.5◦/ time step. Bottom panel. θe with correlation learning where the learned angular
turning velocity closely matches with 1.5◦/ time step.
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5 Conclusions and Future Directions

A neural mechanism for acoustic tracking is presented which allows a simulated
robotic agent to learn the correct angular velocity necessary to turn and align
itself towards the instantaneous position of a virtual sound source moving along
a semi-circular arc-shaped trajectory. The learning rule correlates the perceived
sound direction information, obtained via a peripheral auditory model of lizard
hearing, before and after turning to update the synaptic weights. The learned
synaptic weights thus correspond to the angular velocity of the sound source.
The mechanism successfully learned three different angular velocities. We aim
to validate the approach as a next step in an identical experimental setup by
implementing the neural mechanism on a real mobile robot.

In the presented approach the robot only turns after the sound source has
moved to a new location along its trajectory. There is a finite and unavoidable
delay between the sound source moving to a new location and the robot com-
pleting its turn. The same mechanism may be used to predict this time delay,
so that after learning the robot would turn fast enough to point at the next
position of the sound source at the same instant as the sound source itself. Such
a system could be viewed as an internal forward model [27] for acoustic tracking.

References

1. Aertsen, A., Johannesma, P., Hermes, D.: Spectro-temporal receptive fields of audi-
tory neurons in the grassfrog. Biol. Cybern. 38(4), 235–248 (1980)

2. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Brad-
ford Books, Cambridge (1984)

3. Christensen-Dalsgaard, J., Manley, G.: Directionality of the lizard ear. J. Exp.
Biol. 208(6), 1209–1217 (2005)

4. Christensen-Dalsgaard, J., Tang, Y., Carr, C.: Binaural processing by the gecko
auditory periphery. J. Neurophysiol. 105(5), 1992–2004 (2011)

5. Fletcher, N.: Acoustic Systems in Biology. Oxford University Press, New York
(1992)

6. Fletcher, N., Thwaites, S.: Physical models for the analysis of acoustical systems
in biology. Q. Rev. Biophys. 12(1), 25–65 (1979)

7. Ju, T., Shao, H., Peng, Q.: Tracking the moving sound target based on distributed
microphone pairs. In: 2013 10th International Computer Conference on Wavelet
Active Media Technology and Information Processing (ICCWAMTIP), pp. 330–
334, December 2013

8. Ju, T., Shao, H., Peng, Q., Zhang, M.: Tracking the moving sound target based
on double arrays. In: 2012 International Conference on Computational Problem-
Solving (ICCP), pp. 315–319, October 2012

9. Klopf, A.: A neuronal model of classical conditioning. Psychobiology 16(2), 85–125
(1988)

10. Kosko, B.: Differential Hebbian learning. AIP Conf. Proc. 151(1), 277–282 (1986)
11. Kwak, K.: Sound source tracking of moving speaker using multi-channel micro-

phones in robot environments. In: 2011 IEEE International Conference on Robotics
and Biomimetics (ROBIO), pp. 3017–3020, December 2011



90 D. Shaikh and P. Manoonpong

12. Liang, Z., Ma, X., Dai, X.: Robust tracking of moving sound source using multiple
model Kalman filter. Appl. Acoust. 69(12), 1350–1355 (2008)

13. Liang, Z., Ma, X., Dai, X.: Robust tracking of moving sound source using scaled
unscented particle filter. Appl. Acoust. 69(8), 673–680 (2008)

14. Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., Wörgötter, F.: Adaptive, fast
walking in a biped robot under neuronal control and learning. PLoS Comput. Biol.
3(7), 1–16 (2007)

15. Manoonpong, P., Wörgötter, F.: Adaptive sensor-driven neural control for learning
in walking machines. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009,
Part II. LNCS, vol. 5864, pp. 47–55. Springer, Heidelberg (2009)

16. Nakadai, K., Lourens, T., Okuno, H., Kitano, H.: Active audition for humanoid. In:
Proceedings of 17th National Conference on Artificial Intelligence (AAAI-2000),
pp. 832–839. AAAI (2000)

17. Ning, F., Gao, D., Niu, J., Wei, J.: Combining compressive sensing with particle
filter for tracking moving wideband sound sources. In: 2015 IEEE International
Conference on Signal Processing, Communications and Computing (ICSPCC),
pp. 1–6, September 2015

18. Nishie, S., Akagi, M.: Acoustic sound source tracking for a moving object using
precise Doppler-shift measurement. In: 2013 Proceedings of the 21st European
Signal Processing Conference (EUSIPCO), pp. 1–5, September 2013

19. Okuno, H., Nakadai, K., Hidai, K.I., Mizoguchi, H., Kitano, H.: Human robot
non-verbal interaction empowered by real-time auditory and visual multiple-talker
tracking. Adv. Robot. 17(2), 115–130 (2003)

20. Poor, B., Wörgötter, F.: Fast heterosynaptic learning in a robot food retrieval
task inspired by the limbic system. Biosystems 89(1–3), 294–299 (2007). Papers
Presented at the 6th International Workshop on Neural Coding

21. Porr, B., Wörgötter, F.: Strongly improved stability and faster convergence of
temporal sequence learning by utilising input correlations only. Neural Comput.
18(6), 1380–1412 (2006)

22. Reeve, R., Webb, B.: New neural circuits for robot phonotaxis. Philos. Trans. R.
Soc. Lond. A Math. Phys. Eng. Sci. 361(1811), 2245–2266 (2003)

23. Shaikh, D., Hallam, J., Christensen-Dalsgaard, J.: From “Ear” to there: a review of
biorobotic models of auditory processing in lizards. Biol. Cybern. (2016, in press)

24. Tsuji, D., Suyama, K.: A moving sound source tracking based on two succes-
sive algorithms. In: 2009 IEEE International Symposium on Circuits and Systems,
ISCAS 2009, pp. 2577–2580, May 2009

25. Valin, J.M., Michaud, F., Rouat, J.: Robust localization and tracking of simultane-
ous moving sound sources using beamforming and particle filtering. Robot. Auton.
Syst. 55(3), 216–228 (2007)

26. Wever, E.: The Reptile Ear: Its Structure and Function. Princeton University Press,
Princeton (1978)

27. Wolpert, D., Ghahramani, Z., Jordan, M.: An internal model for sensorimotor
integration. Science 269(5232), 1880–1882 (1995)

28. Zhang, L.: Modelling directional hearing in lizards. Ph.D. thesis, Maersk Mc-
Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark
(2009)



Artificial Neural Network Based Compliant
Control for Robot Arms
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Abstract. The aim of this paper is to present an artificial neural net-
work (ANN) based adaptive nonlinear control approach of a robot arm,
with highlight on its capability as a compliant control scheme. The app-
roach is based on a computed torque law and consists of two main com-
ponents: a feedforward controller (approximated by the ANN) and a
proportional-derivative (PD) feedback loop. Here, the feedforward con-
troller is used to approximate the nonlinear system dynamics and can
also adapt to the long-term dynamics of the arm while the PD feed-
back loop can be tuned to obtain proper compliant behaviour to deal
with instantaneous disturbances (e.g., collisions). The employed con-
troller structure makes it possible to decouple these two components
for individual parameter adjustments. The performance of the control
approach is evaluated and demonstrated in physical simulation which
shows promising results.

Keywords: Nonlinear control · Artificial neural network · Compliance ·
Robot arm

1 Introduction

Although robot arms have been developed in the past decades, there are still
several concerns about their development. In many cases linear control strategies
are sufficient by suppressing the nonlinear characteristics of the robot arm sys-
tem, or using gain scheduled techniques [21]. However, in some cases nonlinear
behaviour due to dry friction and backlash can be observed. Therefore, further
investigation has to be made in order to achieve a high performance control sys-
tem that can compensate the nonlinearity [4,6]. Control techniques to deal with
nonlinear systems usually require precise knowledge of the system (e.g. dynamic
inversion). Thus, they are difficult to implement in many cases.

From this point of view, model-free control techniques can be used to provide
a solution for the system where the equations governing the system are unknown
[17]. Artificial neural networks (ANNs) are universal approximators [2], i.e., they
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 91–100, 2016.
DOI: 10.1007/978-3-319-43488-9 9
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are able to approximate any unknown function after a sufficient learning phase.
This makes them a good solution for model-free control of nonlinear systems
[3,9,12,13,17].

In addition to the nonlinear control aspect, safety is a key concern for robot
arms, since they might have to interact with humans. In order to avoid injuries
and achieve safe human-robot interaction different approaches have been devel-
oped, such as variable stiffness actuators [14,18], which requires special hard-
ware development, or safe planning [16], which requires complete perception
of the environment. Other approaches include collision detection and reaction
[1,10] that can deal with more dynamic collisions but can complicate the control
system design process.

Compared to all these approaches, we present here an alternative control
technique that combines the adaptive nature of ANN based control and the vir-
tual compliance control provided by an additional proportional-derivative (PD)
control law. This control technique, inspired by [8,15], can decouple between
short-term (collisions) and long-term (changes in the environment and the
system) disturbance compensation.

This provides a simple and intuitive controller design without any hardware
modification for a robot arm. Additionally, in this study, we aim to also investi-
gate whether the tracking error of the arm can be kept low via the ANN based
control and proper compliant tuning such that the arm can react to collisions
with flexibility.

The article is organized as follows. First we describe the robot arm model used
in this study. Second, we present the artificial neural network based compliant
control approach together with its subcomponents for generating movement and
compliant behaviour of the arm. Third, we illustrate the performance of the
controller as an adaptive compliant control solution, followed by conclusion.

2 Robot Arm Model

The dynamics of an n-link rigid robotic manipulator can be expressed in the
Lagrange form as:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) + τ d = τ (t), (1)

where q(t) ∈ R
n the joint variable vector, M(q) the inertia matrix, C(q, q̇) the

Coriolis and centripetal matrix, G(q) the gravity vector, and F(q̇) the friction.
Bounded unknown disturbances (including modelling errors) are denoted by τ d,
and the applied torque is τ (t) [7]. The structure of the 2DOF robot arm used
in this study is shown in Fig. 1a and its physically 3D model simulated in the
realistic robot simulator LpzRobots [11] is shown in Fig. 1b.

The computed torque control law can cancel all nonlinearity of the system
by adding a linear error correction term to the feedforward part, which can be
described as:

τ (t) = M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇)︸ ︷︷ ︸
feedforward

−M(q)(Kvė + Kpe)︸ ︷︷ ︸
feedback

, (2)
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Fig. 1. (a) 2-link planar robot arm. (b) The simulated robot arm using the LPZRobots
simulation environment [11].

where e = qd−q (subtracting desired joint position vector from the actual one),
and Kv, Kp are constant gain matrices.

With this strategy, the computed torque consists of two components, which
are feedforward and feedback. This separability makes it possible to generate
compliant behaviour, and still keep the tracking error low. The feedforward part,
acting as trajectory control, takes care of the desired movement generation of
the system (i.e., carrying an object along a path) while the feedback part with
its gains (Kv, Kp) allows for compliance and flexibility of the robot joints when
instantaneous disturbances (such as collisions) occur.

3 Artificial Neural Network Based Compliant Control

Based on (2), the control of the 2-link robot arm (Fig. 1) consists of two parts,
where an ANN can approximate the feedforward component (Fig. 2).

Function Representation: A multilayer ANN is proven to be able to approx-
imate any function with finitely many discontinuities to arbitrary precision [5].
This makes it an excellent tool for nonlinear control systems [8], i.e. a properly
trained network can represent any function, so:

f(x) = WTF (VTx) + ε(x), (3)

where f(x) is an unknown function, and ε(x) is the reconstruction error. It is
proven in [2] that there exists ideal weights W and V with finite number of
neurons such that the reconstruction error is 0 (ε = 0). In practice it is sufficient
if ‖ε‖ < εn, i.e., the function approximation is good enough for the application.
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Fig. 2. The ANN’s and the control system’s structure. (a) A 3 layer ANN with x as
input (e.g. [qd, q]) and y as output (f , the torques required), which is described by
(3), (b) The whole system with the control and tuning signals.

The choice of activation function can change the approximation capabilities
of the network significantly [5]. Even though it is possible in theory to reconstruct
an arbitrary function, a prior knowledge of the system can reduce the adaptation
time and increase the overall performance.

Since the system in question is mechanical, it can be mostly approximated
with smooth functions but there are also nonlinear friction effects (static friction)
which can be approximated by piecewise continuous functions. Taking this into
account an augmented network structure was considered as it is suggested in
[15], which consist of a hidden layer with 2 different neurons, with F1 and F2

activation functions (smooth and nonsmooth, respectively).
The network’s output is then:

f(x) = ŴT
1 F1(V̂T

1 x) + ŴT
2 F2(V̂T

2 x) + ε(x), (4)

where the weights W1, V1 connect the neurons with smooth, and the weights
W2, V2 connect the neurons with the nonsmooth activation function to the
input and output layers.

Here, a sigmoid transfer function is used as our smooth activation function
while a nonsmooth activation function for friction compensation can be modelled
as [15]:

F2(x) =

{
0 if x ≤ 0
1 − exp(−x) if x > 0

(5)

The computed torque law as shown in (2) combined with (4) becomes:

τ (t) = ŴT
1 F1(V̂T

1 x) + ŴT
2 F2(V̂T

2 x)︸ ︷︷ ︸
feedforward

+ Kvr︸︷︷︸
feedback

+Kz(‖Ẑ‖ + ZM )r︸ ︷︷ ︸
robustifying term

, (6)
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where the signals:

e = qd − q tracking error,
r = ė + Λe filtered tracking error,

x =
[
eT ėTqT

d q̇T
d q̈T

d

]T
ANN input vector,

and Ẑ is a block diagonal matrix containing V̂ and Ŵ.
The robustifying term is added to guarantee stability with higher weights,

proposed by [8], and the design parameters Λ, Kv, Kz are symmetric, positive
definite gain matrices, and ZM is a bound on the unknown target weight norms.

Weight Tuning: We use a standard error backpropagation learning algorithm
with an additional so-called forgetting term to train the network. The forgetting
term is used to introduce saturation of the weights, which guarantees bounded
weights, i.e. stable behaviour [9]. The weights are adjusted during the learning
process, which is described by the differential equations:

˙̂W1 = F
[(

F̂1 − F̂ ′
1V̂1x

)
rT − κ‖r‖Ŵ1

]
, (7a)

˙̂W2 = G
[
F̂2rT − κ‖r‖Ŵ2

]
, (7b)

˙̂V1 = H
[
x

(
F̂ ′T

1 Ŵ1r
)T

− κ‖r‖V̂1

]
, (7c)

˙̂V2 = 0. (7d)

F, G, and H are the learning rates, and F̂ ≡ F (V̂Tx) and in case of sigmoid
activation function, the derivative is F̂ ′ ≡ F̂ (1 − F̂ ). Choosing higher rates
makes the leaning process faster, but increasing them too much can produce
oscillatory and unstable behaviour. V̂2 is here kept constant.

Note that this learning rule is described in continuous time, but in a discrete
time controller the forward Euler method is sufficient with small enough dt, so
the weights are updated at each time step as:

Ŵ1,k+1 = Ŵ1,k + dt
˙̂W1,k , (8a)

Ŵ2,k+1 = Ŵ2,k + dt
˙̂W2,k , (8b)

V̂1,k+1 = V̂1,k + dt
˙̂V1,k . (8c)

Compliant Control: As mentioned above, the feedforward part is responsible
for providing the necessary input to the system based on the modelled dynamics,
and on top of that the feedback part (PD loop) eliminates the unmodelled or
instantaneous disturbances, which are not present in the system long enough for
the adaptation, so the behaviour can be described by:

f(q, q̇) + τ d = f̂ + τPD, (9)
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where f describes the dynamics of the system, as it is described by (1), f̂ is the
approximation of this by the ANN, and τPD is the PD compensation. If it is
assumed that f ≈ f̂ , then the disturbance is eliminated by the feedback control.
The PD law is described as:

τPD = Kpe + Kdė. (10)

This law results in a virtual spring-damper system, with e = 0 equilibrium point.
Choosing higher or lower Kp and Kd can make the system’s response stiffer or
softer.

This can be analogously applied with the control law described by (6) for
robot arm control. It is important to note that the robustifying term, which has
the same effect as the PD part, needs to be taken into account when choosing
Kv and Λ. It will make the arm stiffer with the increasing weight norms, so
the compliant performance requirements can be violated in the initial learning
phase and in extreme approximation errors (i.e., when the network is not trained
properly).

4 Simulation Results

The control algorithm was tested in simulations. The performance was compared
to a conventional PID controller.

Here, the parameters of our developed controller, described by (6) and (7)
were set to: Kv = 1, Λ = 5, Kz = 20, Zm = 1, κ = 0.0001, F = 100,

G = 100, H = 100. The network’s input was the vector x =
[
eT ėTqT

d q̇T
d q̈T

d

]T
and the output was the approximated torques τ required to follow the desired
trajectories. Therefore, the number of input, output, and hidden neurons was
set to 10, 2, and 16, respectively.

Figure 3 shows the performance of the PID and the ANN controller for a
sinusoidal reference signal. The PD gains for the developed algorithm is kept
low so the response mainly represents the ANN’s performance. The learning
curve is shown in Fig. 4. It can be seen that the network successfully learned
after t = 0.5 s where the weights converge.

Figure 5 shows the response to disturbances, an instantaneous push force
at t = 2.5 s, and a change of the weight of the carried mass at t = 5.0 s. The
learning curve shown in Fig. 6, which shows that the weights are not changed
significantly at t = 2.5 s, so the disturbance is compensated by the PD loop,
however at t = 5.0 s the ANN learns the new dynamics of the system eliminating
the tracking error, that the PID controller cannot do with low feedback gains.

Changing the learning rates (F, G, H) can increase the speed of learning,
but it also means that the network reacts to collisions which is undesirable (and
can also lead to oscillatory response), so the rates were empirically set to the
values described above to achieve the desired performance.

The arm in motion can be seen at youtu.be/ZHHx3eUzBc4.

http://www.youtu.be.com/ZHHx3eUzBc4
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(a) (b)

Fig. 3. The system’s performance for sinusoidal reference signal, showing the joint
positions and velocities, and the tracking errors. (a) PID with Kp = 100, Kd = 30,
Ki = 20. (b) ANN with Kv = 1, L = 5, Kz = 20, Zm = 1, κ = 0.0001, F = 100, G = 100,
H = 100.

Fig. 4. ANN learning curve and actuator torques with Kv = 1, L = 5, Kz = 20, Zm = 1,
κ = 0.0001, F = 100, G = 100, H = 100, without disturbances.
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(a) (b)

Fig. 5. The system’s performance for sinusoidal reference signal with disturbances at
t = 2.5 s and t = 5 s (dotted lines), showing the joint positions and velocities, and the
tracking errors. (a) PID with Kp = 300, Kd = 90, Ki = 60. (b) ANN with Kv = 1,
L = 5, Kz = 20, Zm = 1, κ = 0.0001, F = 100, G = 100, H = 100.

Fig. 6. ANN learning curve and actuator torques with Kv = 1, L = 5, Kz = 20, Zm = 1,
κ = 0.0001, F = 100, G = 100, H = 100, with disturbances at t = 2.5 s and t = 5 s
(dotted lines).
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5 Conclusions

In this work we developed an ANN based adaptive compliant control algorithm
and investigated its performance. The main benefit of using this algorithm is
the simple and intuitive way of decoupling the adaptive ANN based control and
compliant behaviour making the controller design more intuitive. The algorithm
was successfully applied to a simulated 2DOF robot arm for robust, adaptive,
compliant behaviour generation of the arm.

A similar approach is described by [19,20], using a modular neural net-
work together with a virtual agonist-antagonist muscle mechanism to generate
energy-efficient walking pattern on different surfaces. That solution requires force
sensors at the end-effectors (i.e., the tip of the legs) to achieve the compliant
behaviour; while, in our solution and implementation, extra force sensors are not
required. We only use joint position feedback embedded in the motors. Further-
more, our control approach is torque control which is different from the position
control approach of [19,20]. In principle, torque control allows for better com-
pliant adaptation and regulation (e.g., when the robot is in contact with objects
or receives disturbances) compared to position control; thereby, our developed
approach here is suitable for robot arm control and object manipulation.

In the future work, we will implement the controller on a real robot arm and
test its performance to evaluate in pick and place tasks involving disturbances.
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UESMANN: A Feed-Forward Network Capable
of Learning Multiple Functions
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Abstract. A number of types of neural network have been shown to be
useful for a wide range of tasks, and can be “trained” in a large number
of ways. This paper considers how it might be possible to train and run
neural networks to respond in different ways under different prevailing
circumstances, achieving smooth transitions between multiple learned
behaviours in a single network. This type of behaviour has been shown to
be useful in a range of applications, such as maintenance of homeostasis.
We introduce a novel technique for training multilayer perceptrons which
improves on the transitional behaviour of many existing methods, and
permits explicit training of multiple behaviours in a single network using
gradient descent.

Keywords: Neuromodulation · Neural network · Backpropagation ·
Endocrine

This work introduces UESMANN, a neural network which can smoothly
switch between different behaviours using a very simple neuromodulatory para-
digm. The network is currently trained using UESMANN-BP, a simple modifica-
tion to the standard backpropagation algorithm [9,13]. It is likely that heuristic
search techniques will also prove successful, but these have yet to be explored.
UESMANN’s major advantages over näıve linear interpolation between outputs
are a wider and more consistent “transition region” between behaviours, and the
ability for intermediate points along the transition to also be trained.

We will not deal with applications in this paper, concentrating instead on sim-
ple functions to explore the system. However, smooth switching between learned
functions is useful in situations where an embodied system’s behaviour needs to
be synchronised with changes in its environment, or where the behaviour needs
to change over time. In such systems, a small change in the controlling parameter
should result in a small change in the behaviour, along a continuum between the
two trained behaviours: i.e. behaviour blending, not behaviour selection. One
example is the maintenance of homeostasis, such as husbanding battery charge
in a solar-powered robot. Another is striking a balance between exploration and
exploitation of resources [10].

c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 101–112, 2016.
DOI: 10.1007/978-3-319-43488-9 10
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1 Background

Most artificial neural networks model electrical communications between neu-
rons, but this is not the only communication neurons have. Neuronal behaviour
is also modified by chemicals which diffuse through the intercellular space: this
is termed neuromodulation [5]. Our technique uses a simple model – perhaps the
simplest possible – of neuromodulation in the weights of a multilayer perceptron.

Two other techniques which model neuromodulation are GasNets and Arti-
ficial Endocrine Systems (AES). In GasNets, the modulation is of the activation
function in a recurrent network [4]. Topology, weights, modulator emission and
sensitivity are trained using genetic algorithms. They are useful in solving prob-
lems with temporal elements [3,11], and prove more evolvable than the CTRNN
[1,7], perhaps the most common recurrent network used in robotics. This may
be due to the loosely-coupled co-evolution of two communications channels [12].

AESs are inspired by the endocrine system, modelling glands releasing hor-
mones in response to environmental or internal changes. In an AES, the modelled
substances modulate multilayer perceptron weights [8]. The network is typically
trained with backpropagation to perform a task, and the modulation implemented
“by hand”, uniformly across the entire network [8] or on a single layer [10]. Engi-
neering the hormone in this way, rather than allowing the hormone to be evolved
(as in a GasNet), provides deterministic behaviour and allows the designer to focus
the time-dependent aspect of the behaviour on a particular part of the problem.
AESs have applications in stress response [8] and homeostasis [10].

Both GasNets and AESs provide a modulator release, saturation and decay
model. UESMANN currently does not, concentrating only on the modulation
itself. However, the AES hormone model could be used.

2 Motivation

The core of the GasNet and AES models is the modulation of a neural net-
work by a global parameter decoupled from the network proper, allowing the
network to respond to its environment. This response typically takes the form
of a smooth transition between modes of operation. However, it is difficult to
design systems which can move smoothly between qualitatively different learned
behaviours. GasNets, NSGasNets and CTRNNs rely on evolutionary search to
find an overarching behaviour which provides the required sub-behaviours (and
which may contain undesired emergent behaviours). Current AES implementa-
tions simply generate less or more behaviour dependent on the hormone level:
although the system is capable of considerably more, it is difficult to design.

For many applications it is useful to construct a system which is explic-
itly trained for two behaviours, with the modulator providing a smooth switch
between them. It would also be useful if the network could be trained to behave
a certain way at intermediate modulator levels – that is, if some control over the
transitional behaviour were available.

The present work demonstrates a neuromodulatory technique which can be so
trained (currently using a supervised learning technique), and which can sensibly
interpolate between trained behaviours for intermediate values of the modulator.
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The technique effectively creates a single feed-forward network whose weights
are modulated. As such, each of the functions it performs cannot be temporal
in nature, although the entire system may be if the modulator has a temporal
element. This is essentially true of GasNets and AES: the networks themselves
and their function at any given time are atemporal, but the modulation adds
the temporality.

3 The UESMANN-BP Algorithm

The UESMANN algorithm is based on the AES given in [10], but all weights
have equal sensitivity to the modulator. This “simplest possible” form of neuro-
modulation consists of a network in which each node has the function

al
i = σ

⎛
⎝bl

i +
∑

j

(h + 1)wl
ija

l−1
j

⎞
⎠ (1)

where al
i is the activation of node i in layer l, bl

i is the bias of node i in layer l,
and wl

ij is the weight of the connection between node j in layer l − 1 and node i
in layer l. The activation function σ is a sigmoid (we use the logistic function).

Each weight is modulated by a “hormone” parameter h such that h < 0
inhibits the connection, and h > 0 excites it. In the current work 0 ≤ h ≤ 1, so
the hormone is always excitatory.

Given that we train the network for different functions h = 0 and h = 1, the
initial h = 0 function will have the weights take their nominal values, while the
h = 1 function will have the weights effectively doubled. Thus, our algorithm
should find a set of weights and biases (b,w) which performs one function, while
(b, 2w) performs the second. The training algorithm we shall use is dubbed
UESMANN-BP, and is a supervised learning algorithm based on alternating
backpropagation for each modulator level. We train the weights and biases (b,w)
for the first function, and alternate this with training the weights and biases
(b, 2w) for the second function. Thus, in each training iteration the weights will
move towards a solution for the first function, then towards a solution for the
second. This is shown in Algorithm 1.

Algorithm 1. Training UESMANN for two functions using backpropagation.
Each example is (in, out1, out2) where in is the input vector, out1 and out2 are
the output vectors for the two functions, and aL is the network output.

repeat
for all examples (in, out1, out2) do

present input in and run the network
update (b,w) using UESMANN-BP with aL = out1, h = 0
present input in and run the network
update (b,w) using UESMANN-BP with aL = out2, h = 1

end for
until converged for both functions or training limit reached
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Because backpropagation is done by calculating the cost gradient with respect
to the weight, which is effectively (h+1)w, we must adjust the algorithm accord-
ingly. This gives the following equations:

∂C

∂wl
ij

= (h + 1)al−1
j δl

i error surface gradient wrt. weight (2)

∂C

∂bl
i

= δl
i error surface gradient wrt. bias (3)

δL
j = (aL

j − yj) · aL
j · (1 − aL

j ) error in output layer (4)

δl
j = al

j(1 − al
j)

∑
i

(h + 1)wl+1
ij δl+1

i . error in hidden layer (5)

where C is the quadratic cost function of the output layer and yj is the required
value of output j. These are the standard backpropagation functions modified
so that the cost gradients are now with respect to w(h + 1). As in standard
backpropagation, we repeatedly run the network forwards, calculate the error,
and add (given an learning rate η) η ∂C

∂wl
ij

to each weight and η ∂C
∂bli

to each bias.

4 Methodology

What UESMANN attempts to do is novel: generate a multilayer perceptron with
two (or more) functions, such that the functions are smoothly switched between
as the modulator varies. Therefore it does not directly compare with any of the
existing neuromodulatory systems, or with CTRNNs. However, we can compare
it with other ways of “morphing” between two feed-forward multilayer percep-
trons. The two other methods we shall evaluate are linear interpolation between
the outputs of two networks (which we term “output blending”), and linear inter-
polation of the weights and biases of two networks (“network blending”). These
are selected because they are the most obvious and straightforward techniques
for generating the required behaviour.

We will not be concerned with how the modulator is released, nor how it
decays, simply how it affects the network. We wish to find out how well our
system behaves in transition: how wide the transition region is, how useful it is,
and how consistent the behaviour is across multiple training runs on the same
data. Therefore we shall run the three techniques multiple times, and qualita-
tively examine the results. We have chosen classification problems as examples of
typical problems for which perceptrons are used, in which a “transition region”
might seem meaningless. However, the assigned classifications should shift grad-
ually between the two behaviours over a large hormone range. In all cases, para-
meters such as learning rate and initial weights were determined after informal
experimentation.

Our first experiments show the behaviour of UESMANN-BP attempting to
learn pairings of the logical boolean connectives, chosen as the simplest pos-
sible binary functions. We shall then investigate the transition region widths
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for a particular pairing (XOR and AND). We will then attempt to transfer
UESMANN-BP to a real problem: smooth switching between two classifications
of handwritten digits. The transition widths will be compared against output
and network blending for different hidden node counts.

Finally, an attempt will be made to train a single network at three levels
of modulator. Two different intermediate functions (for modulator 0.5) will be
compared to see how the choice of intermediate function affects the convergence
behaviour. For this test, a new problem will be used: detecting horizontal or
vertical lines which may or may not appear in a noisy image. This is chosen
both to demonstrate a new domain, and because it is easier to evaluate and
classify intermediate functions.

5 Experimental Results

5.1 Logical Connectives

Our first experiment is designed to show whether UESMANN-BP is able to learn
pairings of a wide range of functions. 400 runs of the algorithm were performed
in networks with 2 and 3 hidden nodes. Weights and biases were initialised to
uniform random numbers in the range [−0.5,0.5]. The system was given up to
100000 iterations to converge to an output layer error of < 0.05 for both func-
tions, with a learning rate η = 1. The results, showing how many of the runs
converged for both functions, are shown in Fig. 1.

(a) 2 hidden nodes (b) 3 hidden nodes

Fig. 1. Proportion of 400 runs which converged to a network able to perform both
functions in all possible pairings of logical connectives. Two different hidden node
counts were used. Cross-hatched squares mark pairings where no solution was found.

The results for the simplest 2-2-1 network are good, but certain pairs of func-
tions will not converge to a network which produces both functions. Intuitively,
these functions seem to be those for which it is hard to conceive of a useful inter-
mediate stage (a large Hamming distance between the truth tables is a factor),
although the exact relationship needs to be determined. It is interesting that a
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network with 2 hidden nodes – the minimum number for linearly inseparable
functions such as XOR – is able to learn two functions in a single network.

These difficulties remain but are surmountable when the hidden layer is
increased to 3 nodes, although for some pairings the number of convergent runs
is low. No analysis of the transition regions – either their size or functions – was
performed.

Using the same η and initialisation range parameters, the transition behav-
iour of 2-2-1 UESMANN-BP networks was compared with output blended and
network blended (see Sect. 4) networks for the pairing XOR→AND (i.e. with
a zero modulator perform XOR, then transition to AND when the modulator
is 1). 12 randomly initialised converging runs were performed of each, and the
function performed by the network when the output is thresholded at 0.5 was
plotted at each modulation value. The results are shown in Fig. 2.

Fig. 2. Examples of different transition behaviours in output blended, network blended,
and UESMANN-BP networks. The shading represents the actual function being per-
formed by the generated network at the given modulator value, when the output is
thresholded at 0.5.

Output blending produces almost no transition, with the network behaviour
switching at 0.5. Network blending produces wider transitions, which appear
random. This is probably because two unrelated networks are being blended,
leading to a “competing conventions” problem. UESMANN-BP produces a wide,
predictable transition consisting of the false function: a compromise between
XOR and AND.

6 The MNIST Database

Having established that UESMANN-BP can generate networks which perform
two different functions with a wide and predictable transition in simple cases, we
now move on to a more difficult problem: the MNIST handwriting recognition
database. This database has become a de-facto test problem for image classifiers,
and consists of 70000 handwritten digits, divided into a training set of 60000
and a test set of 10000 examples. Each example consists of a 28 × 28 8-bit
monochrome image of a digit, size normalised and centered, with its associated
label (the numerical value of the digit) [6].
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Our experiment aims to learn two different labellings of MNIST examples
at different network node counts. We wish to establish firstly that UESMANN-
BP can learn such a complex pair of functions, secondly examine the transition
behaviour of such a network, and thirdly explore the effect of node count in
comparison with a control (i.e. a plain backpropagation network learning only
one labelling).

In our networks there are 784 inputs, one for each pixel normalised to the
range [0,1], and 10 outputs. In each example, the output corresponding to the
correct label is set to 1, while the others are set to 0. During testing, the index
of the highest output is considered to be the result.

The basic training algorithm is the same as for the previous experiments:
each example is presented first for the function with h = 0, then for the function
with h = 1, with different outputs for each function being learned. The examples
are iterated over in the order they appear in the training set. In these tests, the
initial weights and biases were set by Bishop’s rule of thumb [2]: each value is
in the range

(
−1√

d
, 1√

d

)
, where d is the number of inputs to the node. It is likely

that more tests should be done to determine an optimal value.
Convergence was measured by holding a validation set of 10000 examples out

from the training set, and using a small slice from that set every 300 iterations.
The resulting network, after 300000 iterations, is the one which performed best in
all validations throughout training. Once trained, the test set is used to evaluate
this best network.

The two mappings to be learned are the nominal mapping, where each image
is assigned the label it has in the database; and a mapping in which adjacent
labels are swapped – i.e. a image showing “0” will set output 1 high, while a “1”
will set output 0 high and so on. The Hamming distance between the functions
is maximal: for no input do the two functions give the same result.

(a) Control performance for single function
(backprop)

(b) Performance for learning two functions
in one network (UESMANN-BP)

Fig. 3. The means of the success rate at both functions by validation for all runs at
each node count for both control and UESMANN-BP.
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Table 1. Most common output given the first 1000 MNIST examples passed to the best
300-node network generated using UESMANN-BP, at each value of h. The transition
region is marked with vertical lines. For clarity, repeated values are shown with dots.

h 0.00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 1.00

Label 0 0 · · · · · · · 0 1 · · · · · · · · · · 1

Label 1 1 · · · · · · · · 1 0 · · · · · · · · · 0

Label 2 2 · · · · · · · · · 2 3 · · · · · · · · 3

Label 3 3 · · · · · · 3 2 · · · · · · · · · · · 2

Label 4 4 · · · · · · 4 5 · · · · · · · · · · · 5

Label 5 5 · · · · · 5 4 · · · · · · · · · · · · 4

Label 6 6 · · · · · · · 6 7 · · · · · · · · · · 7

Label 7 7 · · · · · 7 6 · · · · · · · · · · · · 6

Label 8 8 · · · · · · 8 9 · · · · · · · · · · · 9

Label 9 9 · · · · 9 8 · · · · · · · · · · · · · 8

Behaviour Function 1 Transition Function 2

The results are shown in Fig. 3. In the control, peak performance is achieved
at 400 nodes with a 2.6 % error rate, but all node counts over 30 give at worst
a 5 % error rate. This roughly agrees with the performance reported by LeCun
et al. in [6].

For UESMANN-BP, which learns two functions in one network, the best
performance is achieved at 300 nodes, with a 7.6 % error rate — i.e. the best
network for the best run at 300 nodes correctly performed both functions for
all but 7.6 % of the examples. After this, the ability of the network to find a
solution rapidly falls, suggesting poor local minima.

The transition behaviour of the best network was reconstructed in Table 1.
We can see that the transition starts at around 0.25 and ends at 0.5, with values
generally changing separately, giving a smooth transition.

To compare the transition regions, 10 training runs were performed with all
three methods. These were then run at 100 different modulator values on the
test set. The sizes of the transition regions obtained are shown in Fig. 4.

Output blending clearly produces an abrupt transition, while network blend-
ing produces transitions whose width depends on the hidden node count. How-
ever, as has already been discussed, the transitional networks produced in the
latter are likely to be of little use, because of competing conventions. For
UESMANN-BP runs where both functions converge, the transition width is con-
sistent, at about a third of the modulator range.

Thus, UESMANN-BP is capable of producing a consistent and potentially
useful smooth switching behaviour between two classifications in a real-world
problem. Although output blending will converge to better solutions, it produces
much more abrupt transition regions and cannot be trained at intermediate
values (which is possible with UESMANN, as we shall see).
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Fig. 4. The transition zones for networks learning two different MNIST mappings using
output blending, network blending and UESMANN-BP. 100 examples were run for each
network at 100 different morph points, and the networks were generated by 10 different
attempts at learning at each node count. Brightness shows how many of the attempts
are performing one of the two learned functions, rather than some intermediate.

7 Training at Intermediate Modulation Values

While the behaviour demonstrated thus far is useful, it gives no control over the
transitional region. It may be possible to train a different function for a third,
intermediate modulator value to provide this control. It seems likely that it will
be considerably more difficult to find a solution when the intermediate function
is not a “natural” intermediate between the two end functions.

The MNIST handwriting recognition set is not ideally suited for experiments
here, because it is hard to identify a clear intermediate between two functions at
all 10 outputs. A simpler case is needed, with a single output. Therefore a new
experiment was devised: recognising horizontal or vertical lines in an image.

This experiment uses data in the same format as the MNIST data. Each
image contains either a horizontal line, a vertical line or no line, labelled 0, 1 and
2 respectively. Each image was overlaid with Gaussian noise (μ = 0.4, σ = 0.15)
and blurred with a 3×3 Gaussian kernel. The data set sizes were the same as for
the MNIST database, with equal proportions of each image type provided. The
networks trained had a single output, indicating whether a line of the appropriate
orientation was detected or not. A representative sample of the images is shown in
Fig. 5. In all experiments, the initialisation values were determined using Bishop’s
rule, and η = 0.05: a lower η was required for convergence when intermediate
values were used.

Fig. 5. Examples of images used for line detection experiments.
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Fig. 6. Performance of line detection, with h = 0 detecting horizontal and h = 1
detecting vertical lines. Experiments show no intermediate function being trained, h =
0.5 detecting any line and h = 0.5 detecting no line.

Three experiments were performed: in the first, no intermediate training
point was given. In the others, two different intermediate functions were trained
at modulator h = 0.5: the first detects any line (i.e. output is 1 when either a
vertical or horizontal line is present), the second detects no lines (i.e. output is
1 for blank images). 5 runs were performed for a limited subset of the hidden
node counts used in previous experiments, and each network analysed against
the test set. The results are in Fig. 6.

Without an intermediate function peak performance is at 200 nodes with
a 4.28 % error, but even modest node counts can perform well: one 50 node
network achieves 4.6 % error, and even a 3 node network achieves 7.18 % error.
It is possible that more runs would produce significantly better results.

For additionally detecting either line when h = 0.5, best performance is
4.89 % error at 90 nodes – i.e. for all but 4.89 % of the examples, the network gives
the correct output for all three learned functions. This clearly shows that it is
possible to train at least this intermediate function to a high level of performance.

For detecting no line as the intermediate function, best performance is much
worse at 20.88 % error at 200 nodes, and convergence is slower by about an
order of magnitude. This is to be expected, because we are moving from three
functions which detect lines to two functions which detect lines and a third which
detects no lines — there is now an implicit negation in the intermediate function.
It seems harder to learn intermediate functions which are not some “natural”
intermediate of the two end points.

To determine the “default” intermediate behaviour, the best 200-node net-
work from the first experiment was run with each example from the test set,
at three different modulator values (0, 0.5, 1). The number of images detected
with each of the three labels is shown in Table 2. Without a trained intermedi-
ate function, the network appeared to detect some (about a two thirds) of either
vertical and horizontal lines when h = 0.5. Looking at the images, it is hard to
establish why certain lines are detected while others are not. However, the fact
that the default intermediate behaviour is detection of both kinds of lines shows
that this is a natural intermediate.
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Table 2. Number of lines of each type detected by a network set to detect horizontal
lines when h = 0, vertical lines with h = 1 with no intermediate function trained, at
different modulator values.

Modulator H-lines detected V-lines detected Blanks detected

0 3258 83 67

0.5 2122 2283 4

1 29 3221 77

8 Conclusions and Further Work

The UESMANN network is a simple modulated network which achieves smooth
switching between qualitatively different functions in a consistent way, with a
wide transition region. When compared with näıve linear interpolation between
outputs of different networks, the transition region is much wider. Wide transi-
tion regions are desirable because they provide a smooth transition between the
different functions, permitting adaptive behaviour where the modulator value
(often from the environment) is between the two extremes.

Näıve blending of network weights and biases produces wider regions, but
they are unpredictable and likely to contain “nonsensical” functions because
of the competing conventions of the two parent networks. UESMANN transi-
tion behaviour tends to have functional “compromises” between the end-point
functions, although this behaviour needs to be explored and analysed further.
Providing the modulator as an additional input, rather than a global modulator,
should also be tested: we predict that while this may converge well, it will result
in narrower transition regions than UESMANN due to the shape of the sigmoid
activation function.

A UESMANN network can be successfully trained using backpropagation
as a supervised learning technique if suitable examples of both functions are
available. The backpropagation parameters need to be investigated, such as ini-
tialisation range: preliminary work suggests that larger initial values often have
more success. To provide consistent convergence it is likely that more hidden
nodes should be used than are required for the “parent” functions. However,
some runs do succeed without significantly more nodes.

While a typical UESMANN application may feature only two functions, the
network can be trained to perform other functions at intermediate values of the
modulator parameter. How successful this training is depends on the nature of
these intermediate functions compared with the two end-point functions.

UESMANN and UESMANN-BP may prove useful in any application which
requires smooth switching between qualitatively different learned behaviours.
These include the maintenance of homeostasis in autonomous systems, power
management and so on.

As well as deeper analysis of the parameters of the algorithm itself, fur-
ther work includes building a UESMANN network into a robot for field
tests of homeostatic behaviour, and using genetic algorithms for reinforcement
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learning of UESMANN networks (UESMANN-GA), with a suitable modulator
release/saturation/decay scheme. These experiments will use continuous inputs
and outputs, which should show the benefit of smooth, wide transition regions
by avoiding the oscillation around the switching transition often exhibited by
such systems.
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Adaptation of Virtual Creatures to Different
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Abstract. Many animals are able to modify their morphology during
their lifetime in response to changes in the environment. Such modi-
fications are often adaptive—they can improve individual’s chances of
survival and reproduction. In this paper we explore the effects of such
morphological plasticity on body-brain coevolution of virtual creatures.
We propose a method where morphological plasticity is achieved through
learning during individual’s lifetime allowing each individual to quickly
adapt its morphology to the current environment. We show that the
resulting plasticity allows evolution of creatures better adapted to differ-
ent simulated environments. We also show that evolution combined with
the new learning rule reduces the total computational cost required to
evolve an individual with a given target fitness compared to evolution
without learning.

Keywords: Bio-inspired algorithms · Virtual creatures · Body-brain
coevolution · Adaptation · Learning

1 Introduction

Phenotypic plasticity, defined as the capacity of a single genotype to exhibit a
range of phenotypes in response to changes in the environment [15], is a well
studied phenomenon in biology. Some of the most striking examples of such
plasticity occur in animals that are capable of modifying their morphology dur-
ing their lifetime. Water flea (see Fig. 1a) has been shown to grow protective
spines when exposed to chemicals released into water by its predators. Wasps
and ants adjust size and shape of their bodies depending on which caste they
are born into [10] (see Fig. 1b). Morphological changes in these cases do not arise
through mutation, but purely in response to some property of the environment
experienced by the individual. Such morphological plasticity can allow individ-
uals to adapt to different environments quickly, without having to wait for slow
mutations to discover the necessary changes [1,10,15].

Previous works in evolutionary robotics have traditionally focused on opti-
mizing morphology of robots during evolution [4,6,7,12] while investigations of
phenotypic plasticity have been limited to the control system of robots with fixed
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(a) (b)

Fig. 1. Morphological changes exhibited by (a) Daphnia Lumholtzi when exposed to
chemicals produced by a predatory fish (long spines in the individual on the left reduce
predation compared to individual on the right that has not been exposed to the chem-
icals) [1] and (b) minor vs. major worker ant of Acanthomyrmex species [10] (drawn
by Turid Hölldobler).

(a) Presence of the sea floor induces increased body mass
allowing creature to gain more traction against the ground
(right) compared to morphology used for swimming in
open water (left).

(b) Decreased viscosity of the sur-
rounding fluid (left) induces re-
duction in the body mass of a
swimming creature.

Fig. 2. Examples of morphological plasticity in creatures adapted for swimming in
different environments. Video available at https://youtu.be/d9Rc3gKRwTk

morphology [9]. One recent exception is the work by Bongard [2] which demon-
strates that modifying morphology during the lifetime of the creature according
to a predetermined plan can lead to evolution of creatures with higher fitness.
However, morphological changes in this work are not made in response to the
environment and the purpose was not to study learning of morphology during
individual’s lifetime but to improve control system of the robot.

In this paper we propose a method of evolving virtual creatures that can
adapt their morphology to the current environment during their lifetime. In
contrast to nature, where the rules governing morphological plasticity are opti-
mized by evolution and encoded in the genotype [15], virtual creatures in our
experiments improve their morphology during their lifetime using a hill-climbing
learning rule (interaction of evolution and learning has previously been studied
outside of evolutionary robotics, e.g. by Hinton and Nowlan [3] or by Mayley [8]).
Bodies of creatures are composed of blocks connected by joints (see Fig. 2).
Morphological changes during the learning phase are limited to adjustments
to the size of each block while the overall structure of the creature remains
unmodified. While such changes may not be sufficient to adapt the creature to a

https://youtu.be/d9Rc3gKRwTk
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Fig. 3. Manually designed examples of genotype-to-phenotype mapping. Dashed line
represents a terminal connection. Recursive limit is shown inside each node.

completely new task (which might require learning new behaviors or making
more radical changes to the morphology), we show that even such relatively
minor adjustments allow the creature to adapt to significantly different environ-
ments and perform the given task more efficiently than creatures not capable
of such adaptation. At the same time, limiting morphological plasticity makes
future construction of such robots more feasible—constructing a robot that can
adjust sizes of its parts is likely to be more practical than building a robot that
can restructure its morphology more dramatically (a simple physical robot con-
sisting of a resizable box has been demonstrated by Roper et al. [11] in Voxbot
system).

The rest of this paper is organized as follows. Section 2 provides background
information: overview of the virtual creatures and the evolutionary algorithm.
Section 3 then describes the learning algorithm used to optimize morphology of a
creature. Section 4 describes experiments demonstrating the learning capability
in different environments and Sect. 5 provides further analysis of the computa-
tional cost and explanation of the performance increase.

2 Background

2.1 Virtual Creatures

Design of virtual creatures used in this paper is based on Sims [12]. Each creature
is composed of a set of blocks connected by joints. An indirect encoding scheme is
used to construct the phenotype of the creature from its genotype. The genotype
is a directed graph where each vertex represents a body part of the creature (a
block) and each edge represents a joint connecting two blocks. Transcription of a
genotype into a phenotype is performed by starting from a designated root vertex
and recursively traversing the graph in depth-first order, copying all encountered
vertices and edges to an acyclic phenotype graph. Each vertex has a defined
recursive limit which limits the number of times a given vertex can be visited.
Edges with terminal flag enabled are expressed only when recursive limit is
reached. Each edge also defines three reflection flags (one for each axis) each of
which results in a mirrored copy of the sub-tree starting at the target vertex



116 P. Krcah

to be added to the phenotype. Indirect encoding provides a compact way of
encoding features such as symmetry and repeated segments (see Fig. 3).

Control system is distributed along the body of the creature: each body
part contains a local feed-forward neural network, a single local effector used
for controlling the joint connecting the body part to its parent and a local joint
angle sensor. Local neural networks in any two body parts that are connected by
a joint can communicate using inter-block neural connections. In each simulation
step, values of all sensors are first updated, all neural networks are then evaluated
(one block a time) and the resulting effector value in each block is applied as
torque to the joint connecting the block to its parent.

2.2 Fitness Evaluation

Fitness of a creature is evaluated by placing the creature in a water environment
with rigid body dynamics provided by OpenDynamicsEngine [13]. Additional
forces are applied to each block to simulate water friction (with strength con-
trolled by the viscosity parameter), gravity and buoyancy. Performance of each
creature is defined as the displacement of the center of mass of the creature
divided by the duration of the test (creatures are evolved for fast swimming). To
evaluate performance of a creature in two different environments, each creature
is tested in both environments independently and the smaller of the two values
is used as the final fitness. Creature therefore needs to perform well in both
environments to receive a high fitness value.

2.3 Evolutionary Algorithm

HierarchicalNEAT [5] algorithm has been chosen due to its previously demon-
strated performance in virtual creature evolution, although main results of this
paper do not rely on the choice of the specific evolutionary algorithm.

HierarchicalNEAT is based on the concept of historical markings (introduced
first in NEAT algorithm by Stanley [14]), inheritable unique identifiers assigned
to each body part, joint, neuron and neural connection when they are first cre-
ated. Since historical markings are inheritable, they provide mapping between
structural elements of any two creatures based on their shared evolutionary
history (previously, expensive topology matching algorithms had to be used
instead). Furthermore, the mapping is hierarchical: corresponding body parts
of two creatures are aligned first, and then correspondences between individual
neurons within matching body parts are found. Historical markings are used to
define (1) an efficient recombination operator (where only compatible parts of
parent creatures take part in recombination) and (2) similarity measure for any
two creatures (proportional to the number of corresponding structural elements).

HierarchicalNEAT uses speciation to maintain diversity in the population
and to protect new mutations from direct competition with existing well-adapted
creatures. The algorithm starts with an initial population of small randomly gen-
erated creatures. Creatures in each new generation are assigned to species based
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Algorithm 1. Lifetime Learning of Morphology.
Require: N (the number of learning steps), tlearn (duration of each learning step),

ttest (duration of the final fitness evaluation), Lgeno (array of block sizes encoded
in the genotype of a virtual creature)

1: Initialize Lbest = Lgeno, fbest = 0
2: for all i ∈ {1, ..., N} do � Hill-climbing learning phase
3: Lcurrent ← RandomlyAdjust(Lbest)
4: fcurrent ← TestMorphology(Lcurrent, tlearn)
5: if fcurrent > fbest then
6: fbest ← fcurrent
7: Lbest ← Lcurrent

8: end if
9: end for

10: return TestMorphology(Lbest, ttest) � Final fitness evaluation

Fig. 4. Creature life starts with a learning phase that tests different morphologies.

on their similarity to representatives of the same species from the previous gener-
ation, or by creating a new species if no sufficiently similar species exists already.
New generation is created by first allocating a number of slots to each species
proportional to the average fitness value of all creatures in the same species in
the previous generation (a fitness sharing scheme designed to protect innova-
tion). Each slot is then populated with a creature created by recombination and
mutation of creatures selected from the same species in the previous generation.

3 Method

To evolve virtual creatures capable of adapting to different environments we run
the evolutionary algorithm as described above with a modified fitness evalua-
tion: evaluation in each environment starts with a learning phase (lines 2–9 in
Algorithm 1) consisting of a fixed number of short experiments designed to test
if a selected morphology adjustment has the potential to improve fitness of the
individual. After the learning phase, full fitness test is performed to verify if the
creature can sustain discovered improvements for a longer time period (line 10).
Result of the full test is used as the fitness score for a given environment (see
Fig. 4).

Morphology changes during the learning phase are limited to the size of blocks
while the structure of the creature remains unchanged. In the first learning step,
sizes of all blocks are set to the values encoded in the individual’s genotype
(line 1). In each subsequent step, the best block sizes found so far are modified
by a small random amount (i.e. the size of each block is adjusted along each
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Fig. 5. Fitness of the best creatures evolved for swimming using different fitness eval-
uation durations (left) compared to the fitness of the same creatures after a long (64 s)
fitness evaluation (right). Short evaluations result in creatures that achieve high speed
initially but fail to maintain it for a longer period.

dimension, line 3). Sizes of blocks generated using reflection are adjusted by the
same amount in each step to preserve symmetry. Performance of each creature is
measured as average speed achieved during a given learning step (line 4). Relative
positions of all blocks are reset to their initial positions after each learning step
to ensure that early learning steps do not interfere with later learning steps.

Since dimensions of all body parts are optimized by learning, learning occurs
in 3n-dimensional space (where n is the number of blocks forming creature’s
body, excluding any mirrored or repeated blocks). For example, creature in Fig. 6
contains 3 blocks resulting in 9-dimensional learning space. Figure 6a–c show a
cross-section of this space for different environments. The learning landscape is
smooth with a single global optimum suggesting that the swimming task is well-
suited for an incremental hill-climbing search through the morphology space.

3.1 Parameter Selection

The learning rule described in the previous section has three parameters: (1) the
duration of the final fitness evaluation, (2) the duration of each learning step
and (3) the number of learning steps. This section discusses how the value for
each of these parameters was selected.

The first parameter significantly impacts the behavior of evolved creatures.
With short fitness evaluations, evolution favours creatures which simply perform
a strong initial push but fail to continue moving afterwards. Longer evaluations
are needed to prevent such behaviors, however long durations also incur extra
computational cost. A set of preliminary experiments was performed to find
the minimum duration of the fitness evaluation that results in creatures that
maintain their speed for a long time period. Each evaluation duration was tested
using 50 runs each ending after 200 generations. Average speeds of the best
creatures evolved for each duration are shown in Fig. 5 (left). The fastest creature
evolved in each run has been re-evaluated using a long (64 s) fitness evaluation
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to see if the average speed was maintained. Results (shown in Fig. 5, right)
show that very short durations of fitness evaluation result in creatures that fail
to maintain their speed in the longer simulation1. Based on these preliminary
experiments, 48 s duration of the fitness evaluation was chosen for all experiments
in this paper—the smallest value that reliably results in creatures that perform
at least as well as creatures evolved using the longest duration.

The second parameter (duration of the learning step) was set to 2 s—a time
in which most evolved creatures complete their first swimming stroke. On its
own, learning based on such short tests is not guaranteed to produce creatures
good at swimming for long periods of time (in fact, short learning steps can fail
to correctly predict the outcome of the full test), but as results of our experi-
ments show, even such short tests provides enough information to guide evolu-
tion towards more promising areas of the fitness landscape if each creature is
also evaluated in a long-duration test after learning.

The third parameter controls the number of learning steps performed for
each individual. Larger values allow hill-climbing to explore neighborhood more
extensively, while also increasing the learning cost. To keep the computational
cost low, 8 learning steps have been used in all experiments in this paper2.

4 Experiments

Three different environments were used to test the ability of virtual creatures to
adapt their morphology to the environment through learning:

Open Water. Creature is placed in water without any obstacles. No gravity
or buoyancy forces are added so the creature is suspended in water unless it
actively performs movement. Forces simulating viscosity of water are enabled.

Sea Floor. A single plane is added to the environment simulating the sea floor.
At the start of the simulation, creature is positioned such that its lowest point
is in contact with the plane. Reduced gravity of 2 m/s2 is enabled to simulate
density of blocks higher than the surrounding water. The environment is
otherwise identical to the open water environment.

Low Viscosity Fluid. Viscosity forces applied to the creature are reduced by
50 % to simulate low viscosity fluid surrounding the creature (such as water
at moderately higher temperatures). The environment is otherwise identical
to the open water environment.

Two different experimental setups are tested, each using a different pair of
environments. In the first setup creatures are evolved in open water and on the
sea floor. In the second setup open water and low viscosity fluid are used.
1 All boxplots use whisker bars for minimum and maximum value, box boundaries for

1st and 3rd quartile, horizontal line for the median and black dot for the mean.
2 Preliminary experiments have shown that while longer learning phase further

decreases the number of generations required to reach a given fitness value, it
decreases the performance when the extra computational cost is also taken into
account.
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(a) Open Water
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(b) Low Viscosity
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(c) Sea Floor

Fig. 6. Two-dimensional cross-sections of nine-dimensional learning space for a sim-
ple evolved swimming creature (each dimension of each block contributes one dimen-
sion). Each plot shows swimming speeds achieved in a given environment for varying
widths (horizontal across the page) and depths (into the page) of the central block of
the creature. Creature displayed next to each plot shows the best size of the central
block (also marked using black dot in the plot).

While creatures can generally use the same movements to propel themselves
forward in all three environments with some degree of success, the differences
between environments can be exploited to achieve higher fitness. For example,
since the sea floor is immovable, creatures can push against it more effectively
than against the water to achieve movement. Since the floor is perfectly smooth
such push must rely on the surface friction forces to be effective, which in turn
depend on the weight of the creature. Heavier creatures thus might be able
to push against the floor more effectively and achieve higher speeds. Figure 6
illustrates the differences between the three environments in more detail. The
shape and ruggedness of the learning space are different in each environment, as
is the position of the optimum.

The following configurations have been tested for each pair of environments:

Evolution with learning. Learning was performed during evolution as part
of each fitness evaluation as described in Sect. 3. This configuration allows
creatures to learn morphology specific to each environment.

Evolution without learning. No learning was performed as part of fitness
evaluation. In this configuration, creatures were forced to use the same mor-
phology in both environments.

Evolution in one environment only (baseline). Creatures were evolved
using only one of the environments and without learning. The best creature
from each generation was evaluated in both environments, using the same
method as in configurations above (smaller of the environment-specific fit-
ness values was used as the final fitness value). This configuration serves as
a baseline to see how do the creatures evolved in one of the environments
perform in the other environment without any previous exposure to it.
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4.1 Parameter Settings

Population size was set to 300 in all experiments. All evolutionary runs were
stopped after 200 generations. Each configuration was tested 50 times. All other
settings of HierarchicalNEAT algorithm were set to the same values as in [5].
Significance levels were calculated using Student’s t-test (normality of the data
has been verified visually using Q-Q plots). Maximum size of each block along
each dimension was set to 1. Volume of any block was not permitted to decrease
below 0.008 during learning or mutation. Random changes to each side of each
block were selected uniformly from range [−0.05, 0.05] in each learning step.

5 Results and Discussion

In both experiments, evolution combined with learning achieved higher average
fitness values in the last generation compared to evolution without learning (an
improvement of 15 % in both cases, p < 0.01, see Fig. 7). Moreover, evolution
with learning outperforms evolution without learning (by 9 % and 7 %, p < 0.05)
even when accounting for the extra computational cost that learning incurs3.
These results show that allowing creatures to specialize for each environment
allows them to reach higher fitness values compared to creatures that are con-
strained to use the same morphology in both environments.

Large diversity of creatures has been evolved in all experiments. The most
common type was a snake-like creature swimming in a sinusoidal pattern. Snake-
like creatures were more common in evolution with learning (14 % of all runs)
than in evolution without learning (6 % of all runs), suggesting that this type of
creature benefits from being able to adapt to different environments. In general,
evolved creatures made significant use of features provided by the encoding, such
as symmetry and repetition (see examples in Fig. 2).

Morphological adaptations learned through creature’s lifetime strongly reflect
the environment. Learning in low viscosity environment on average lead to reduc-
tion of the total volume (and therefore mass) of creature’s body by 30.1 % com-
pared to environment with higher viscosity (0.51 vs 0.73, p < 0.02). Conversely,
in the open-water/sea-floor experiment the volume of phenotypes expressed in
the sea floor environment was on average 44 % larger than for phenotypes swim-
ming in open water (1.13 vs. 0.78, p < 0.05). As discussed in Sect. 3, the differ-
ence likely comes from the fact that larger blocks provide more weight, and thus
more friction against the sea floor allowing the creatures to make better use of
the floor for locomotion.

Results of baseline experiments confirm that evolution of creatures exposed
to only one of the environments results in creatures that perform significantly
worse in the other environment compared to creatures exposed to both environ-
ments. For instance, creatures evolved for swimming near the sea floor without
3 Since learning increases the cost of each fitness evaluation by one third (from 48 s

to 64s, see Fig. 4), the extra computational cost was accounted for by comparing
results from generation 150 of evolution with learning with results from generation
200 of evolution without learning.



122 P. Krcah

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120  140  160  180  200

F
itn

es
s

Generation

Evolution with learning
Evolution without learning

Baseline (open water)
Baseline (sea floor)

 0

 5

 10

 15

 20

 25

 30

 35

 40

Baseline
(sea
floor)

Baseline
(open
water)

Evolution
without
learning

Evolution
with

learning

F
itn

es
s

(a) Evolution of creatures capable of swimming in both open water and on the sea floor
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(b) Evolution of creatures capable of swimming in fluids with different viscosities

Fig. 7. Results of experiments with creatures adapting to a pair of environments. The
main result is that allowing creatures to adapt their morphology to each environment
improves performance compared to evolution without learning.

being exposed to open-water environment often rely on sea floor friction to such
an extent that they are not able to move forward at all without the sea floor (see
“Baseline (sea floor)” in Fig. 7a). On the other hand creatures evolved for swim-
ming in higher-viscosity fluid (see “Baseline (open water)” in Fig. 7b) without
being exposed to lower-viscosity fluid performed quite well in low-viscosity fluid
without any further adaptation (although still significantly worse than creatures
exposed to both environments). Results also show that performance of creatures
evolved only in open water is better retained in lower viscosity environment
(“Baseline (open water)” in Fig. 7b, final fitness of 6.7) than in the sea floor
environment (“Baseline (open water)” in Fig. 7a, best fitness 23.9), suggesting
that lower viscosity environment is more similar to the open water environment
than the sea floor environment.
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Fig. 8. Comparison on the left shows that phenotype adapted for open water (top)
performs better in open water than phenotype adapted for swimming near the sea
floor (bottom). Performance is reversed in the sea floor environment (right).
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Fig. 9. Performance of creatures when tested in a different environment than the one
used for learning. The main result is that improvements discovered through learning
in one environment are detrimental in the other environment.

To see the effect of learning more clearly, the best creature discovered in each
run of evolution with learning was subjected to learning in one of the environ-
ments and then placed in the other environment with no further learning. Results
(shown in Fig. 9) show that morphological adaptations discovered through learn-
ing are specific to one environment and cause degradation of performance in the
other environment. Morphological plasticity thus allows creatures to increase
their fitness in each environment independently (see Fig. 8 for an example of an
evolved creature adapted to two different environments through learning).

Results presented so far do not make it clear whether learning improves evo-
lution by altering the paths evolution takes through the fitness landscape, or
whether learning is orthogonal to evolution, i.e. final result of evolution with
learning would be the same if learning was performed only at the end of evolu-
tion. To answer this question, the best creature from each run without learning
was subjected to a learning phase consisting of 100 steps each 48 s long (in each
environment separately) and its fitness was measured afterwards. The average
improvement from this extended learning was only 0.8 % in the sea floor experi-
ment and 0.9 % in the low viscosity experiment and large proportion of creatures
failed to improve at all (42 % and 47 % respectively). This suggests that when
learning is performed during evolution as opposed to after evolution, it helps
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evolution guide the search to more promising areas in the fitness landscape and
it cannot be replaced by performing learning only after evolution.

6 Conclusion

We have shown that morphological plasticity achieved through lifetime learning
can be used to evolve virtual creatures capable of adapting to different environ-
ments. Even when changes to morphology are relatively minor (i.e. body parts of
the creature are resized, but overall structure of the creature remains unchanged)
and when the number of such changes tested during learning is small, resulting
morphological plasticity allows creatures to adapt to modified environments and
perform a given task significantly better than without such adaptation. More-
over, the performance improvements from learning outweigh the computational
cost of learning, showing that combining learning with evolution can be a valu-
able tool in the evolution of virtual creatures.
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Abstract. Visual navigation in robotics is one of the challenging issues,
and many navigation approaches are based on localization of a mobile
robot in the environment. The snapshot model is a biologically inspired
model of insect behaviour to return home and it shows a simple algo-
rithm to compare the snapshot images at the current position and the
destination, instead of complex localization process. Here, we propose a
new homing navigation method based on a moment measure to charac-
terize the snapshot image efficiently. The method uses range values or
pixel values of surrounding landmarks. Then it defines a moment mea-
sure to evaluate the environmental features, or landmark distributions,
and the measure forms a convex shape of landscape with respect to
robot positions in the environment. Based on the landscape, the mobile
robot can return home successfully. Range sensors or image sensors can
sufficiently provide the landscape information. Our experimental results
demonstrate that the method is effective even in real environments.

Keywords: Visual navigation · Moment model · Convergence point ·
Landmark vector · Range data · Triangulation method · Localization ·
Fast alignment without compass

1 Introduction

Many animals in nature show interesting navigation behaviors, following their
various senses including vision, olfactory, auditory, odometry, and magnetic
information [2,9,14–16,24,25,27]. Especially, honeybees [10,23], dessert ants [2],
jellyfish [7], gerbils [4], rodents [3], and fiddler crabs [28] have high homing
navigation capability. Many researchers have observed their astonishing per-
formances of the creatures with small brains and built a biologically inspired
navigation model.

The snapshot model [1] is one of popular navigation models and numerous
variations of this approach, ‘bio-inspired homing navigation’, have been con-
stantly studied. In this part, the term ‘home’ is the destination of an agent and
homing navigation is a technique for returning home. According to the snap-
shot method, if the agent can move along the homing direction, the difference
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 126–137, 2016.
DOI: 10.1007/978-3-319-43488-9 12
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between images at the current position and at the nest can be reduced. Thus,
it can reversely calculate the homing direction by finding the way to make the
difference reduced using only a pair of images at the current spot and at the
home site. In this process, we need a metric to evaluate the similarity between
two images. There have been many methods depending on features appearing in
the snapshot images or how to extract those features.

The Average Landmark Vector (ALV) method [13] models landmark features
in the image. An image itself does not include the distance information to land-
marks. We only estimate the angular position of each object called ‘landmark.
The method draws a unit vector (landmark vector) for each landmark and calcu-
lates the sum of landmark vectors to reflect the environmental features, which is
then divided by the number of landmarks. It is called the ALV. We can estimate
the ALV at the nest and at the current position, and then the difference vector
of the two ALVs can guide an agent to return home successfully. The algorithm
is quite simple and its convergence to the home position is verified. It is also
tested in robotic experiments [21]. However, it needs a process to identify each
object or landmark in the snapshot image and it does not handle the distance
or size of landmarks.

Another landmark vector model, called ‘Average Correctional Vector, the
ACV method [22,26] has been suggested. It calculates the amount of differences
between angular locations of landmarks in the snapshot images. However, a
feature extraction step to identify landmarks and further the angular position of
the landmarks is still a necessary step for this method. Both the ALV and the
ACV methods require angular position information of landmarks in the image.

As an alternative to the above landmark vector models, the warping methods
[5,6,8,12,19,20] have been suggested. It has an image matching process using all
pixels in the images instead of extracting landmark features from the snapshot
images. The snapshot images at the current position and at the home position
are compared. There have been many variations with the method, considering
pixel values in one-dimenstional line or two-dimenstional space of images. The
methods show successful results without any object feature extraction.

The Descent in Image Distance (DID) method [17,18,29] uses image changes
in the vicinity. It finds the homing direction by comparing the whole image pix-
els of two snapshots at the home site and at the current position. The snapshot
images at neighbor positions can determine the homing direction. If the image
discrepancy is smaller, it indicates that the position is closer to the home posi-
tion. This method needs additional movements of robots and has a considerable
amount of computing time.

Previously, a SLAM model with an elevation moment of inertia has been
tested [11]. The measure can be the representative value at each position, and it
covers the surrounding range values and height information with a single scalar
value. However, the approach only focused on the scalar characteristics of the
moment function.

In this paper, we introduce a new homing navigation method in an
local area based on moment metric information. Here, we define a new style of
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moment measure. The moment measure is designed for a general form of fea-
tures with range values of surrounding landmarks. The moment measure uses
the distance of surrounding landmarks for landmark features and characteristics
of landmarks in the environment. Here, instead of the feature extraction, we use
each pixel value as visual information and range value for a landmark near the
horizontal line. As the height value is difficult to collect and 3D range sensors
are costly, we use both visual and range information. It can find the convergence
point (minimal potenial point) of the moment measure and this point can be a
reference in homing navigation, which is unchanged in local area. With a mobile
robot with both range sensor and omni-directional camera, we test the homing
navigation for a designated home place.

2 Methods and Materials

2.1 Sensors and Test Environment

Experiments were tested with MALTAB software and the arena consists of 6 m
by 6 m space with various objects including drawers, trash cans, large vases, win-
dows, and partition boards (Fig. 2(a)). We use i-Robot ROOMBA with two wheel
motors for experiments, and a lap-top computer is mounted on the Roomba
robot. We use two types of sensors to read the environmental information as
shown in Fig. 1(c), an omnidirectional camera to sense color images and a laser
sensor to read the distance of landmarks. The omnidirectional camera has Log-
itech Webcam E3500 vision sensor and a metal ball used as a reflection mirror.
The robot also has HOKUYO Laser sensor URG-04 LX model as a range sensor.
This laser sensor has about 240◦ measuring area with 0.36◦ resolution, and two
shots were taken at a given robot position to cover the omnidirectional view.
The above sensors provide both omni-directional color information and depth
information. In Fig. 2(c), we can see a reconstructed sketch of the environment
with the laser sensor. The red marker x’s are the landmark positions for the
surrounding environment.

Fig. 1. Mobile robot (a) i-Robot ROOMBA mobile (b) omnidirectional camera (640×
480 pixels) (c) HOKUYO laser sensor measurement part (240◦ measuring area with
0.36◦ resolution) (d) mobile robot nounted with sensors
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Fig. 2. Experimental environment (a) top-view of entire space, (b) reconstructed ref-
erence map by range data from laser sensor

For navigation experiments, a mobile robot takes the snapshot image at
a given home position in the office environment. The robot keeps the snap-
shot image or landmark information at the home position as a reference image.
Then a new image at an arbitrary position is taken and the homing direction is
estimated.

2.2 Data Processing

The omni-directional images in Fig. 2(b) have 640 × 480 RGB pixels. Then we
can change them into a panoramic form of image with 0.5◦ resolution as shown
in Fig. 3(a). To get higher time efficiency for the processing time, our algorithms
will take a series of pixel values along the horizontal line. Most of our experiments
show that a single line of pixel values near the horizon are sufficient to provide
the environmental characteristics. The readings of laser sensor were sampled
appropriately to fit the panoramic image. Thus, the two types of sensor readings
together include the distance and color information of surrounding landmarks
roughly.

Fig. 3. Data from sensors (a) reduced panorama image 720×120 pixels (with 0.5 angle
resolution) and (b) reduced laser data
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We assume a reference compass in our experiments. In some experiments,
no reference compass is available. In that case, we apply Zeil’s visual compass
method to estimate the current head direction in the environment. It uses the
entire image matching between the home image and the image at the current
position.

2.3 Navigation Algorithm: Moment Measure

We define a moment measure as a measure to evaluate a distribution of sur-
rounding landmarks. This moment depends on robot positions, but it is equal at
the same position in the environment. The moment measure is a characteristic
function of localization in the navigation. We analyse a landmark distribution
with the moment measure which considers the positions and features of land-
marks. The color intensity of RGB or height of each object can be the features of
landmarks. We design the first moment model as a potential function in Eq. (1).
We suppose that there are N landmarks. rn is the range value of the n-th land-
mark and Cn is the designated feature of the n-th landmark. In the equation, an

is the x-axis position and bn is the y-axis position for the n-th landmark. Each
landmark is regarded as a point measured with a laser sensor.

The potential function of the first moment measure is given by

M =
N∑

n=1

rn
2Cn =

N∑
n=1

((x − an)2 + (y − bn)2)Cn (1)

Then, we can find the gradient (2) as the first derivative of potential function.
This gradient vector means the change of the potential in position (x, y) for a
unit movement.

The gradient of potential function :

∇M = (
dM

dx
,
dM

dy
) =

N∑
n=1

(2(x − an)Cn, 2(y − bn)Cn) (2)

The convergence point can be estimated with Eqs. (3) and (4). The conver-
gence point indicates the point with the minimal potential value of the moment
measure.

∇M(X,Y ) =
N∑

n=1

(2(X − an)Cn, 2(Y − bn)Cn) = 0 (3)

X =

N∑
n=1

anCn

N∑
n=1

Cn

, Y =

N∑
n=1

bnCn

N∑
n=1

Cn

(4)

The first moment model of potential function has convergence to (X,Y ),
using the landmark features. Estimation of (X,Y ) does not rely on the robot
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Fig. 4. Convergence point P in the potential landscape of landmarks. The poten-
tial function consists of landmark features, for example, landmark colors or landmark
heights. Finally the convergence points are equal at the home position and the current
position

position (x, y). If there is no change in the environment and there is no occlu-
sion, then we can estimate the same convergence point, regardless of any robot
position or any orientation. Figure 4 shows an example of convergence point in
the convex landscape of the landmark potential function.

We apply the moment measure to the environmental situations. The detailed
process is described as below.

Landmark Vectors with Features with Range Information. First of all,
we extract landmark vectors from the features with range information, that is, a
distance vector in the omnidirection. Then each landmark has its own position
in the reference map at the home position with its feature value. This is similar
to the reference map in 2(b).

Finding Convergence Point of Moment Model Using Features. Then
we can calculate the convergence point of the moment measure at each position.
Then we obtain both direction and distance to the convergence point from the
current position. Then we can plot this convergence point in the reference map.
The convergence point is different from the home position, and it is determined
by the landmark distribution.

At home position:

X =

N∑
n=1

anCn

N∑
n=1

Cn

, Y =

N∑
n=1

bnCn

N∑
n=1

Cn
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direction θHome = tan−1(Y/X)
distance dhom e =

√
X2 + Y 2

At the current position, we can find the convergence point by taking the
minimal potential value in the convex landscape. The observation landmark
features change depending on the robot position, but the convergence point is
equal at any position, if we plot it in the reference map.

At the current position:

X ′ =

N∑
n=1

a′
nC ′

n

N∑
n=1

C ′
n

, Y ′ =

N∑
n=1

b′
nC ′

n

N∑
n=1

C ′
n

direction θcurr = tan−1(Y ′/X ′)
distance dcurr =

√
X ′2 + Y ′2

Localization. We can calculate the convergence point, and from that, we can
determine the distance and direction to the point. Reversely, we can estimate the
current position from the convergence point. In the experiments, the reference
map for the home position is given, and the convergence point can be marked
in the reference map. Additionally, the current position of a mobile robot in the
map can be inferred. It implies that we can successfully localize the mobile robot
in the reference map.

Home = (Xhom e, Yhom e)

Current = Home +
−−−−→
Chom e − −−−→

Ccurr

3 Result

In this part, we show our results using new methods.

Homing Navigation. By the prior information, we can find the current loca-
tion and the home position in the reference map using convergence point as a
reference and thus the homing vector can be calculated. Here, the minimal point
in the convex landscape of landmark potential is a reference point and it plays an
important role on localization. Figure 5 shows the convex landscape and homing
navigation process.

Homing vector:

−→
H = (

−−−→
Ccurr − −−−−→

Chom e) = ((X ′, Y ′) − (X,Y ))

= (
∑

a′
nC ′

n∑
C ′

n

−
∑

anCn∑
Cn

,

∑
b′
nC ′

n∑
C ′

n

−
∑

bnCn∑
Cn

)
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Fig. 5. Simulation (a) a distribution of metric potential as surface and contour lines
on the floor, (b) calculated homing direction at each point. In (b), the large red dots
are landmarks and thin red circle at (30, 40) is the home position. The black circle
is the current location and the black dot is estimated as the current position. Green
circle with x-shape in second figure is minimum moment location using equal distance
assumption (Color figure online)

Then we can find the homing direction and a sequence of the operation can
lead to the nest. We have tested the method. In Fig. 5(a), we can check the
unique convergence using some landmarks in simulation. There is only one con-
vergence point in the field, which has the lowest position of moment distribution.
We can use a variety of features each of which can lead to a convergence point.
A collection of convergence points include more information about the environ-
ment. In Fig. 5(b), there are color circles and x-shapes (pink, green, blue, red).
They are the convergence points for different features.

3.1 Simulation

We built a virtual simulation environment using MATLAB. There are a set of
landmarks with heights for landmark features. Then we can find the convergence
point using our model. In Fig. 5, (a) shows a potential curve with the moment
model, and (b) shows the output of localization and homing navigation using (a).
In the simulation, the agent perfectly finds the homing direction without errors.

3.2 Using Only Vision Sensor

We tested real robots with our proposed method. First, we performed experi-
ments with a vision sensor and the compass information was given. In this step,
it is impossible to get the range data and only the visual input is given. Then we
use equal distance assumption and put all the pixels in horizontal line at equal
distances. The color values affect the landscape of moment potential function.
Here, we simply used the gray intensity, which is the mean of RGB values. In
Fig. 6, it can find the homing direction at each current position. The homing
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Fig. 6. Robot experiment results using only vision sensor with compass information.
Range values are same by the equal distance assumption like ALV method. The black
rectangle at (500, 500) in (a), (460, 460) in (b) and (560, 500) in (c) are home positions
and the arrows show the homing direction at each point. The black lines at outer side
of the vector map show the outline of object in the field.

Fig. 7. Robot experiment results using both range data from laser sensor and gray
intensities with aligned images. Black x-shapes are the observed information about
surrounding objects at each home position. Following red boxes (a: (500, 500), b: (460,
540), c: (580, 460) and d: (380, 420)) are home and the arrows show the homing
direction at each point. The blue lines on the vector map show the outline of object in
the field. (Color figure online)

direction output is not perfect, since the landscape follows an equal distance
assumption. However, it shows reasonable results for homing directions. As a
result, the robot can return home at the end of travel, following the flow of
moment function.
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3.3 Using Both Vision Sensor and Laser Sensor

We also tested experiment using both vision sensor and range sensor. Compass
information is also given. We use the laser sensor to get range data and the vision
sensor to fetch colour information. Then the moment function can be complete
with distance information. In Fig. 7, we can see the homing performance. The
robot almost perfectly finds the homing direction at each current position.

4 Conclusion

In this paper, we suggest a new homing navigation method using a moment
measure. The moment measure evaluates a distribution of landmarks in the
environment, and it forms a landmark potential function. We have a theoretical
foundation on the convergence of the minimal potential with the moment mea-
sure. Using the minimal convergence point as a reference point, we can estimate
the current position in a reference map of landmarks drawn at home position,
and ultimately determine the homing direction.

Our moment metric allows various characteristics such as RGB color, gray
intensity and height, which are not largely dependent on the measurement posi-
tions. In addition to, if the uniqueness of the feature is preserved, many vari-
ations of the landmark feature extraction are also possible. For instance, each
RGB value of landmarks can be a feature and the ratio of RGB, for example,
blue intensity over the green intensity, can be another variation to be used with
the moment metric. Actually, we have tested many types of features in real
experiments and if invariant features are available, then our algorithm is highly
effective for homing navigation. Furthermore, the information about the range
sensor readings and the image pixel values can be combined effectively in our
moment metric method. Home navigation is possible even when the equal dis-
tance assumption is applied without the range sensor. However, we do not deny
that with our moment metric, the distance information with a laser sensor is
critical for localization of a mobile robot.

Our proposed method can reduce the computing time for homing navigation
with the snapshot model. We treated the pixel values as landmark information.
In this way, more abstact form of the feature can be available for each snapshot.

We need further study to find more suitable features or more robust features
for homing navigation. Possibly we can test if more variety of features are help-
ful for navigation. Next, we will compare our method with other conventional
methods to check the robustness of our algorithm. We used Zeil’s visual com-
pass method in the experiments without reference compass. We need to find
more efficient approach which is helpful to estimate the current head direction.
Our method is limited in a static environment, and it needs further work to find
valid landmarks in a dynamic environment and process occluded landmarks.
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Abstract. Homing navigation is an important aspect in navigation
behaviours of animals. There has been many types of navigation but we
focus on the vision-based landmark navigation to return home. Visual
navigation is involved with image matching process over snapshot images.
Landmark vector methods simplify the environmental information into a
set of landmark vectors, and then compare the landmark vectors obtained
from each snapshot. In this paper, we encode landmark vectors using the
gray-colored values as the length of vectors. Then we apply the landmark
arrangement method to those landmark vectors. Using the gray-colored
information, we can estimate the homing direction at a given position.
We show that the suggested method is effective in homing navigation.

Keywords: Vision-based homing navigation · Landmark vector ·
Localization · Landmark arrangement matching

1 Introduction

Navigation is the process or activity of accurately ascertaining one’s position
and planning and following a route, according to the Oxford dictionary. That
is, it is the work that makes one go to the goal following a proper direction.
If the accurate homing direction is estimated at an arbitrary position, then it
can complete the homing navigation. There have been many sensor solutions
to handle the navigation. Some animals including ants, bees, and rats show
a prominent feature of homing navigation. They explore the environment for
foraging food, even at a considerable distance from the nest, they come back
successfully to their nest. The navigation performance directly influences their
survival.

There have been many studies about the insect’s homing navigation using
their various sensory information like vision, auditory sense, magnetic sense,
olfactory information and odometry [2,9]. The insects use landmark information
from visual information [3]. The role of landmarks is critical in the navigation [1].

Path integration is a well-known navigation subject used by desert ants [2],
honeybees [7], fiddler crabs [14] and rodents [4]. The agent accumulates the
c© Springer International Publishing Switzerland 2016
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amount of changes in location from the starting point, and at the final position,
the agent can estimate the relative location to the starting point. It is useful for
homing navigation. Another interesting work is about he route following [6]. The
agent moves around, but remembers the route. The agent can follow the same
path using the memory. The snapshot model [11] is a simple navigation method
with two snapshots at the current site and the home position, which is inspired by
insect navigation. The agent compares the two snapshots to estimate the homing
direction. In this paper, we use this snapshot model for homing navigation of a
mobile robot.

There have been many visual navigation methods using the snapshot model.
The Average Landmark Vector method [8], image matching algorithm [5], the
ACV method [10], Distance Estimated Landmark Vector method [12] are exam-
ples based on the snapshot model. They need to identify landmarks with accurate
location information. Such an process is a time-consuming job and more efficient
approach is desirable.

In this paper, we propose a new bio-inspired visual navigation algorithm using
gray-color information. We take pixels in the gray-scale image as landmarks or
background information. The continuous gray intensities for each direction can
be treated as landmark vectors. From that, we can apply the landmark arrange-
ment matching method [13] for localization. We will investigate the performance
of our method in robotic experiments.

2 Methods and Materials

Our experimental environment is about 260 cm by 260 cm arena. There are
objects including desks, chairs, trash cans, and flowerpots. Initially we take
snapshots at intervals of 20 cm. We transform the omnidirectional image into
a panoramic view and a sequence of RGB color values are used as a series of
landmarks, since we only use vision sensor for the surrounding environment.
Figure 1 shows experimental environment and a mobile robot Roomba with the
omnidirectional camera. The camera is equipped with Logitech Webcam E3500
and a reflector.

(a) (b) (c)

Fig. 1. (a) Environment for Robotic Experiments (b) Mobile robot Roomba loaded
with an omnidirectional camera (c) omnidirectional image from the cam
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(a)

(b)

Fig. 2. Image Processing (a) gray-colored panoramic image (b) gray-colored image
after filtering
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Fig. 3. Image filtering (a) spectrum of color values, (b) spectrum with brightness com-
pensation and filter operations, (c) gray-colored intensity map (intensity distance map)
with real landmarks

Here, a new navigation algorithm is introduced, which is called Gray Land-
mark vector (GLV) method. The snapshot image at a given position has the
surrounding environmental information, which includes the landmarks and back-
ground component. In many cases, landmarks and the background are not eas-
ily distinguishable. The panoramic image has an angular position information
along the horizontal axis and the distance-like information in the vertical axis.
Figure 2(a) shows a strip of panoramic image. Then the gray intensities are
compared with a threshold and we obtain a picture in Fig. 2(b). Then we have
a line of gray pixel values from each snapshot. Figure 3(a) is an example of gray
spectrum from the original color image and Fig. 3(b) is the result after a fixed
threshold is applied to the image. Thus, the background component has zero
intensity.

For landmark navigation, we need to extract landmarks from the snapshot
image. We assume that the above gray-colored image after thresholding process
has a rough distribution of landmarks. That is, the landmark distance informa-
tion is replaced byh the gray-color intensity. The panoramic image includes the
angular position and the gray distance of landmarks. As shown in Fig. 3(c), the
gray distance is different from the actual distance of landmarks, but it has a
rough sketch of landmark distribution.

In our method, we apply the landmark arrangement matching method [13].
The method encodes the environmental information with a set of landmark vec-
tors. Each landmark vector includes the angular position and the distance of
a landmark. It the distance information is a unit value, then the method is
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equivalent to the Averaged Landmark Vector method. A set of landmark vec-
tors at the current position and at the home position are compared and then
we can estimate the current position in a reference map by projecting the land-
mark vectors at the current position in the map reversely. As a result, we can
determine the homing direction.

The above gray distance vectors from the snapshot image are extracted and
then applied to the landmark arrangement matching method. We suppose that a
mobile robot has no compass sensor and needs to estimate the head direction by
itself. All possible angles of head direction are checked to find the best match of
two sets of landmark vectors with the landmark arrangement matching process.

3 Experiments

We take robotic experiments in a given arena and show the performance of the
landmark vector method based on gray-colored information. We investigated the
performance of estimating the homing directions when two snapshots are given
at the home site and at an arbitrary position. Also, we checked if the mobile
robot can return home ultimately when it follow a sequence of homing directions.
In Fig. 4, the x shapes represent the location of extracted landmarks from a
snapshot image at the home site. The square at (500, 500) indicates the home
position. The arrow shows the homing direction for each location. Estimation of
homing directions is reasonably good as shown in Fig. 4(a)–(c). They show some
angular errors, but the homing pattern of the field is still observed. Through a
consecutive operation of homing vector, Fig. 4(e) and (f) show successful route
to the home position. The lines show the route of the homing robot.

In Fig. 5, we numerically show the angular errors and homing rate of robotic
experiments with some variation in the experimental condition (I–V). We tested
variable thresholds to extract landmarks from the gray-colored image. Smaller
thresholds indicates more landmarks, more pixel values extracted. The angular
errors and homing rates depend on the number of landmarks as shown in Fig. 6,
and especially for successful homing rate (100 %), an appropriate range of land-
marks should be used. That is, a proper threshold should be selected to have a
considerable effect of removing the background.

Here, we introduced a new visual navigation method purely based on a gray-
colored image. The Gray Landmark Vector method handles a set of landmark
vectors instead of the whole image colors, and thus it reduces the overall comput-
ing time. The gray intensities greatly depend on the lumious light source. The
light source direction or intensity influences the gray landmark vectors. We need
an image pre-processing like histogram equalization to handle the brightness of
a snapshot image. Multiple light sources or the change of the light condition will
degrade the navigation performance.

In our experiments, we choose only a part of pixel values in the panoramic
image. The information may not be sufficient to estimate the current location of
a robot with the image arrangement matching method. We need a further work
to find what parts of the snapshot image is effective for localization. Also, we
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Fig. 4. Vector map (a, b, c) and routes of homing navigation (d, e, f) using gray
distance landmark vector method with a fixed threshold. (a) and (d) using the original
information without compass, (b) and (e) using the threshold and bright compensation
without compass, (c) and (f) using the threshold and a fixed distance information
without compass.
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Fig. 5. Angular errors (left) and homing rates (right) of the algorithm for each five
fitting method. ‘I’ uses both brightness compensation and threshold with compass, ‘II’
is without compass, ‘III’ uses the threshold and make a unit vector without compass,
‘IV’ uses the threshold and gray distance vectors without compass and ‘V’ use no
threshold filter and no compass.
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Fig. 6. Angular errors (left) and homing rates (right) of the algorithm (each threshold
value changes the number of extracted pixels in an image)

need a more delicate choice of threshold for landmarks in a gray-colored image.
A bad choice of the threshold may lose the landmark information or add an
unnecessary background image.

4 Conclusion

We propose a new navigation method based on gray-colored images. The land-
mark vectors are built with gray-colored intensities in the omnidirectional view.
To remove the background image, a theshold-filter operation is applied to
snapshot images. Interestingly, without distance information of landmarks, the
intensity-differentiation can define a landmark property and it plays a role of
localizing the agent. The landmark arrangement matching process [12] auto-
matically pinpoints the location of the agent and thus determines the homing
direction appropriately. The method follows the idea of snapshot model [11].
Only two snapshots at the home site and the current location are sufficient to
determine the homing direction, if the environment is isotropic.

There have been manu visual navigation methods. We need further work to
compare our method with other conventional methods. Better filter operations
over the gray-colored image are required for a robust navigation system. The
filter threshold greatly affected the navigation performance in our experiments.
More sophisticated search for the color intensity landmark vectors will strongly
support the proposed method.
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Abstract. This paper presents research comparing the effects of differ-
ent environments on the outcome of an extended Prisoner’s Dilemma,
in which agents have the option to abstain from playing the game. We
consider three different pure strategies: cooperation, defection and absti-
nence. We adopt an evolutionary game theoretic approach and consider
two different environments: the first which imposes no spatial constraints
and the second in which agents are placed on a lattice grid. We analyse
the performance of the three strategies as we vary the loner’s payoff in
both structured and unstructured environments. Furthermore we also
present the results of simulations which identify scenarios in which coop-
erative clusters of agents emerge and persist in both environments.

Keywords: Artificial life · Game theory · Evolutionary computation

1 Introduction

Within the areas of artificial life and agent-based simulations, evolutionary games
such as the classical Prisoner’s Dilemma [2,15], and its extensions in the iterated
form, have garnered much attention and have provided many useful insights with
respect to adaptive behaviours. The Prisoner’s Dilemma game has attained this
attention due to its succinct representation of the conflict between individually
rational choices and choices that are for the better good. However, in many
social scenarios that we may wish to model, agents are often afforded a third
option — that of abstaining from the interaction. Incorporating this concept
of abstinence extends the Prisoner’s Dilemma to a three-strategy game where
agents can not only cooperate or defect but can also choose to abstain from
a game interaction. There have been a number of recent studies exploring this
type of game [5,7–9,16].

In addition to analysing the evolution of different strategies and different out-
comes, previous work has also explored the effect of imposing spatial constraints
on agent interactions. Traditionally, these studies assume no such constraints
and agents are free to interact with all other agents in well-mixed populations
[2]. However, many models consider restricting interactions to neighbourhoods
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-43488-9 14
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of agents on some pre-defined topology. These more expressive models include
lattices [6,13], cycles and complete graphs [9], scale-free graphs [16] and graphs
exhibiting certain properties, such as clustering coefficients [11].

In this paper we adopt an evolutionary approach to evolve populations of
agents participating in the extended Prisoner’s Dilemma [12]. We consider two
different environmental settings: one with no enforced structure where agents
may interact with all other agents; and another in which agents are placed on a
lattice grid with spatial constraints enforced, where agents can play with their
immediate eight neighbours (Moore neighbourhood). In both environmental set-
tings, an agent’s fitness is calculated as the sum of the payoffs obtained through
the extended Prisoner’s Dilemma game interactions. We investigate the evolu-
tion of different strategies (cooperate, defect and abstain) in both spatial and
non-spatial environments. We are particularly interested in the effect of differ-
ent starting conditions (number of different strategies and placement of different
strategies) and the different values for the loner’s payoff (L) on the emergence of
cooperation. We identify situations where the simulations converge to an equi-
librium, where no further changes occur. These equilibria can be fully stable (no
change) or quasi-stable (with a small cycle length).

The paper outline is as follows: In Sect. 2 an overview of work in the extended
game and of spatial evolutionary game theory is presented. Section 3 gives an
overview of the methodology employed. In Sect. 4, we discuss the non-spatial
environment. We firstly present an analysis of pairwise interactions between
the three pure strategies. Secondly, evolutionary experiments using all three
strategies are presented. Thirdly, we explore the robustness of a population of
cooperative and abstaining strategies when a defecting strategy is added to the
population. In Sect. 5, we discuss the environment where agents are placed on a
lattice grid, in which their interactions are constrained by their local neighbour-
hood. Again an analysis of pairwise interactions is first undertaken followed by
an exploration of the outcomes when all three strategies are randomly placed on
the grid. Based on these findings, we explore different starting groupings of the
three strategies, i.e. placed in a non-random manner on the grid. This will allow
identification of starting configurations that lead to stable cooperation.

2 Related Work

Abstinence has been studied in the context of the Prisoner’s Dilemma (PD) since
Batali and Kitcher, in their seminal work [3], first introduced the optional variant
of the game. They proposed the opt-out or “loner’s” strategy, in which agents
could choose to abstain from playing the game, as a third option, in order to
avoid cooperating with known defectors. Using a combination of mathematical
analysis and simulations, they found that populations who played the optional
games could find routes from states of low cooperation to high states of coop-
eration. Subsequently, as this extension has grown in popularity and renown,
optional participation has been successfully incorporated into models alongside
other cooperation enhancing mechanisms such as punishment [7] and reputation
[5,14], and has been applied to probabilistic models [16].
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The study of optional participation can be broadly separated into approaches:
one that directly incorporates abstinence into the traditional PD game (the
loner’s strategy), and another known as conditional cooperation. Models that
incorporate the loner’s strategy treat the option to abstain as an alternative
strategy for agents to employ [3,9], separate to the option to cooperate or defect.
These models tend to be more grounded in mathematical models with less of
an emphasis on experimental simulations, which often-times have been shown to
produce unexpected results [6]. On the other hand, conditional cooperation mod-
els [1,8,10], also known as conditional disassociation, incorporate abstinence into
cooperation strategies. These models lend themselves more easily to Axelrod-
style tournaments [2]. They tend to focus on exit options or partner-leaving
mechanisms, and often lack a spatial aspect, which has since been shown to
increase the number of abstainer strategies thus increasing the chances of coop-
eration evolving [9].

The work that most closely resembles our own is that of Hauert and Szabó [6].
They consider a spatially extended PD and public goods game (PGG), where
a population of N agents are arranged and interact on a variety of different
geometries, including a regular lattice. Three pure strategies (cooperate, defect
and abstain) are investigated using an evolutionary approach. Results showed
that the spatial organisation of strategies affected the evolution of coopera-
tion, and in addition, they found that the existence of abstainers was advanta-
geous to cooperators, because they were protected against exploitation. However,
there exists some major differences between their model and the one proposed
here. Hauert and Szabó focus on a simplified PGG as their primary model for
group interactions, and separately use the PD only for pairwise interactions.
In our model, agents interact by playing a single round of the PD with each
of their neighbours. Additionally, Hauert and Szabó focused on one set of ini-
tial conditions for their simulations, using a fixed ratio of strategies. Our work
explores a wider range of initialization settings from which we gleam more sig-
nificant insights, and identify favourable configurations for the emergence of
cooperation.

3 Methodology

In order to explore these strategies and, in particular, the effect of introducing
abstinence, we propose a set of experiments in which each agent randomly plays
a number of one-shot, two-person extended Prisoner’s Dilemma game. An evolu-
tionary approach is adopted with a fixed-size population where each agent in the
population is initially assigned a fixed strategy. Fitness is calculated and assigned
based on the payoffs obtained by the agents from playing the game. Simulations
are run until the population converges on a single strategy, or configuration of
strategies.

In the traditional Prisoner’s Dilemma game there are four payoffs correspond-
ing to the pairwise interaction between two agents. The payoffs are: reward for
mutual cooperation (R), punishment for mutual defection (P ), sucker’s pay-
off (S) and temptation to defect (T ). The dilemma arises due to the following
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Table 1. Prisoner’s Dilemma game matrix.

C D A
C R,R S,T L
D T,S P,P L
A L L L

(a) Extended game matrix.

Payoff Value
T 5
R 3
P 1
S 0
L ]0, 3[

(b) Payoff values.

ordering of payoff values: S < P < R < T . When extending the game to include
abstinence, a fifth payoff is introduced, the loner’s payoff (L) is awarded to both
participants if one or both abstain from the interaction.

The value of L should be set such that: (1) it is not greater than R, otherwise
the advantage of not playing will be sufficiently large to ensure that players will
always abstain and (2) it is greater than S, otherwise there are no benefits to
abstaining. This enables us to investigate the values of L in the range [S,R],
which in turn contrasts with the definition used by Hauert and Szabó [6] who
define abstainers as strategies who perform better than groups of defectors but
worse than groups of mutually cooperating strategies. In their model, abstainers
receive a payoff less than R and greater than P . We choose to explore a more
exhaustive range of values. The payoffs for the extended Prisoner’s Dilemma
game are illustrated in Tab. 1 and are based on the standard values used by
Axelrod [2].

As we aim to study the behaviour of agents in different scenarios, our first
model allows all agents to potentially interact (Sect. 4). Our second model places
topological constraints on the agent population which restricts the potential
interactions that can take place (Sect. 5). This allows for the comparison between
spatial and non-spatial environments and allows us to identify similarities and
differences in conditions that promote cooperation. For both environments, two
common sets of experiments are considered:

1. Pairwise comparisons: The abstainer strategies compete with one of the other
strategies; firstly, an equal number of cooperators (C) and abstainers (A); and
secondly, an equal number of defectors (D) and abstainers (A).

2. All three strategies present: We adopt an unbiased environment in which ini-
tially each agent is designated as a cooperators (C), defector (D) or abstainers
(A) with equal probability.

Moreover, to further explore the effect of adding the option of abstinence, a
third experiment is undertaken in the non-spatial environment, where we seed the
population with a majority of one type of strategy (abstainers) and explore if the
population is robust to invasion from (1) a cooperator and (2) a cooperator and a
defector (Sect. 4.3). In order to explore the effect of different initial spatial config-
urations, we also undertake a third set of experiments in the spatial environment,
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which provide an insight in to the necessary spatial conditions that may lead to
robust cooperation (Sect. 5.3).

4 Non-spatial Environment

In this section, we present results of the experiments in the non-spatial envi-
ronment and settings as described previously in Sect. 3. We use a tournament
selection with size 2.

4.1 Pairwise Comparisons

The simulations involving cooperators, C and abstainers A, verified the expected
outcomes where the cooperators quickly spread throughout the population
resulting in complete cooperation. This can be shown to be correct by calcu-
lating the difference in the payoffs each strategy receives:

PC − PA = (|C − 1|R + |A|L) − (|C|L + |A− 1|L)
= |C − 1|(R− L)

As R > L, PC − PA > 0 and thus the cooperators always dominate. Our
simulations confirm this result.

When comparing D and A strategies and their payoffs, we see:

PD − PA = |D − 1|P + |A|L− |A + D − 1|L
= |D − 1|P − |D − 1|L
= |D − 1|(P − L)

If L = P , then either defectors or abstainers may dominate at any stage. If
L > P , then abstainers dominate. If L < P then defectors dominate. Figure 1a
illustrates this behaviour in simulations for different values of L with an initial
equal population of defectors and abstainers. For each simulation, 100 separate
runs are undertaken and the average of the numbers of each strategy present per
run are averaged per generation and plotted. It can be seen that when L < P ,
the defectors have a selective advantage and dominate. At L = P , neither the
defectors nor the abstainers have a clear advantage. When L > P , the abstainers
have the selective advantage and they now dominate in the majority of cases.
The above calculations assume all players play all other players; our simulations
approximate this result.

4.2 All Three Strategies

In this experiment, an unbiased environment, with an initial population consisting
of the samenumber of cooperators (C), defectors (D) and abstainers (A), is created.
Figure 1b illustrates the behaviour at generation 50 across 100 individual runs. For
L < P defectors have already dominated the population. ForL = P , defectors still
dominate but on aminority of runs abstainers dominate. ForL > P this dominance
of the abstainers becomes more pronounced as the payoff for abstainers increases.
In fact, in some runs given the selective advantage of abstainers over defectors,
some cooperators outperform the defectors resulting in a fully cooperative run.
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Fig. 1. Experiments with a non-spatial population.

4.3 Robustness

The previous experiments show the outcome for a range of starting conditions.
In this section, we explore the robustness of states to the introduction of a
defector. Initially, a population is created comprising one cooperator strategy
and the remainder of the strategies are all abstainers. In this situation, in the first
generation all strategies receive the same payoffs, L. Via tournament selection,
subsequent generations may comprise more than one cooperative strategy. If
this is the case, and these cooperative strategies are chosen to play against each
other, they receive a higher payoff than abstainers, and cooperation will flourish.
On the other hand, if the cooperative strategy is not selected for subsequent
generations, then the population will consist only of abstainer strategies. This is
illustrated in Fig. 1c, which shows the average of 100 runs. In any of these runs,
the evolutionary outcome is either a population comprising fully of cooperators
or a population comprising fully of abstainers. The value of L does not affect
this outcome as L < R is always true.
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In the second robustness experiment, the initial population consists of 98
abstainers, 1 cooperator and 1 defector. Figure 1d shows the outcomes after
50 generations. When L < P , as seen previously, the defectors will have an
advantage over abstainers. However, due to tournament selection, there is a
possibility that a defector will not be chosen for subsequent generations. When
L > P , the abstainers have the advantage over the defectors given the possibility
of mutual defection among defectors. The defectors may continue to survive
in the population given the presence of cooperators whom they can exploit.
We witness that the cooperators can still do well given the benefits of mutual
cooperation. However, the number of runs in which cooperation flourishes is
reduced due to the presence of defectors. When L = P , defectors and abstainers
achieve the same payoff in their pairwise interactions. However, defectors may
do better in that they will exploit any cooperators. As the cooperators die out,
there is no selective advantage for defectors but a level of robustness to invasion
is observed.

In summary, these results show, when introducing one cooperator, abstainers
and cooperators can co-exist; but when adding one cooperator and one defector
more complex outcomes are possible.

5 Spatial Environments

In this section, we are interested in exploring the larger range of outcomes that
result from the introduction of the spatial constraints. For the following experi-
ments, we replace the tournament selection used in the non-spatial experiments
with a mechanism whereby an agent adopts the strategy of the best performing
neighbour strategy. This is in line with standard approaches in spatial simula-
tions [6,13].

5.1 Pairwise Comparison Between Agents

When placing cooperator and defector agents randomly on the lattice grid, the
defecting agents will spread amongst the cooperators echoing previous findings.
When cooperator and abstainer agents are randomly placed on the grid, we find
that if there are at least two cooperators beside each other, cooperation will
spread, irrespective of the value of L as cooperative agents playing with each
other will obtain a higher payoff than any adjacent abstainer agents. Thus, neigh-
bours will copy the cooperating strategy. Finally, when defector and abstainer
agents are randomly placed on the grid, we see from Fig. 2 that different out-
comes occur depending on the value of L. This is similar to the results observed
in the non-spatial pairwise comparison.

5.2 All Three Strategies

In this experiment, equal numbers of the three strategies are placed randomly
on the grid. The outcome for L < P is as expected with defectors quickly
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Fig. 2. Percentage of defectors and abstainers at L = 0.9, 1.0 and 1.1.

dominating the population. However, in 65 % of simulations small clusters of
cooperators survive thanks to the presence of the abstainers. The abstainers
give the cooperators a foothold, allowing them to ward off invasion from the
defectors.

For L = P , defectors once again dominate, despite the tie, as they are able to
exploit cooperators in the population. Once again, some small groups of coop-
erators survive with the same probability.

A number of simulations are run varying L from 1.1 to 2.0 where results show
similar emergent evolutionary stable patterns across all values of L in this range.
There are two distinct outcomes; abstainers dominate; and abstainers dominate
with some sustained cooperation. Some level of cooperation is achieved on aver-
age in 51.5 % of simulations for values of L in the range [1.1, 2.0]. In these runs,
a cooperative cluster (of minimum size 9), surrounded by defectors, forms in
the early generations and remains a stable feature in subsequent generations.
The presence of defectors, surrounding the cooperative cluster, prevents the
abstainers from being invaded by the cooperators. Similarly the defector strate-
gies remain robust to the spread of abstainers given their ability to exploit the
cooperators. In essence, a symbiotic relationship is formed between cooperators
and defectors. Figure 3b shows a screenshot of a cooperator and defector clus-
ter in a simulation where abstainers have dominated. This configuration, once
reached, is stable in these settings.

As the value of L increases we also witness newer phenomena. For L = 1.5
and L = 2.0, we see cycles between two states where some of the surrounding
defectors fluctuate from defector to abstainer and back again. We also see an
increase in the size and amount of clusters when they are formed. For L =
[1.7, 1.9], we see “gliders” [4] where a group of defectors flanked by a row of
cooperators seemingly move across the grid, as shown in Fig. 3a. In reality, the
cooperators invade the abstainers, the defectors invade the cooperators, and the
abstainers in turn invade the defectors.
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5.3 Exploration of the Effect of Different Initial Spatial
Configurations

The aim of this experiment is to investigate different initial spatial settings of
cooperators, defectors and abstainers to further explain the results witnessed in
the previous experiment (Sect. 5.2). One interesting outcome from the previous
simulations involved a stable situation where one strategy (inner) could survive
in a cluster of the same strategies due to being surrounded fully by another
strategy (middle) which, in turn, is itself surrounded fully by the third (outer)
strategy (see Fig. 3b). In this case, it appeared that the inner strategy needs the
protection of the middle strategy to avoid invasion by the outer strategy and
that the middle strategy in turn needs the inner strategy to avoid invasion by
the outer strategy. It was noted that for cooperators surrounded by defectors, a
minimum inner cluster size of 9 was needed in order for this outcome to emerge.

Given three strategies, we consider all six permutations with respect to the
placement of strategies in the three different positions of inner, middle and outer
with an inner cluster of size 9, a middle cluster comprising 3 layers around
the inner cluster, and the remaining outer portion of the grid containing only
the third strategy. We label these six spatial configurations according to the
first letter of the strategy (C, D, A) and their initial position (inner, middle,
outer). Figure 3c is an illustration of the initial conditions for the “C-A-D” spatial
configuration. We note that given any initial configuration the outcome will not
vary. This means that there is no reason, other than for verification, to run a
configuration multiple times. Two values of L are explored: L < P and L > P
for each configuration. For L = P , simulations reveal no selective pressure for
interactions between defectors and abstainers. These results involve a level of
stochasticity which do not give any meaningful insights, and thus are not further
discussed in this paper.

(a) Glider (C and D) (b) Cluster (C and D) (c) Initial configuration of C, A
and D

Fig. 3. Experiments with a spatially organised population in a 100 × 100 lattice grid
full populated with agents. The white dots represent cooperators (C), the black dots
indicate defectors (D), and the grey dots are the abstainers (A).
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In every permutation of A, C, and D when L < P the defectors dominate.
Both defectors and cooperators invade the abstainers and then the defectors
begin to invade the cooperators. We again observe that many clusters of cooper-
ators, of different sizes but of minimum size 9, remain robust to this invasion, as
a result to the presence of the abstainers. The initial placement of the strategies
dictates how many cooperative clusters are likely to remain robust to invasion
by defection. Table 2 provides an overview of the results from each scenario
when L > P . The existence of the abstainer strategies, in addition to the initial
placement of the strategies, ensures that defection will not dominate in all of
the scenarios. In fact, in one scenario (CAD), it results in a fully cooperative
population.

We have seen in comparison in the non-spatial experiments that all strate-
gies may influence each other’s payoffs and we observe a smaller set of outcomes.
When all the strategies are placed together, either defectors or abstainers dom-
inate. In the spatial scenarios, there are outcomes with robust clusters of coop-
erators. In the robustness experiments, in the non-spatial scenarios, a largely
cooperative population is easily invaded by defectors; this is not the case in the
spatial scenario where we have shown that cooperators can be robust to invasion
for specific initial settings. In the non-spatial scenarios, with the existence of
abstainers, the population is largely robust and results in a mixed equilibrium.

Table 2. Results of seeded initial settings.

Shape Outcome Description

DCA Defection spreads Abstainers are invaded. Clusters of cooperators
survive amongst dominant defectors

DAC Defection spreads Similar outcome as above

CDA Structurally stable A symbiotic cluster of cooperators and
defectors persist among the abstainers

CAD Cooperation spreads Abstainers buffer cooperators against
defectors, allowing them to dominate

ACD Abstainers invaded Cooperators invade the inner abstainers to
create a cluster resistant to defector invasion

ADC Abstinence spreads Clusters of cooperators, surrounded by
defectors survive within the abstainer
majority (see Fig. 3b)

6 Conclusions and Future Work

In this paper, two different environments in which populations of agents played an
extended version of the Prisoner’s Dilemma were considered: non-spatial where all
N agents were potential partners for each other, and a population organised on a
lattice grid where agents can only play with their 8 immediate neighbours. For
both scenarios, three sets of experiments were performed: a pairwise comparison
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of two strategies; experiments involving all three strategies and an exploration of
the conditions leading to cooperative outcomes.

In the non-spatial environment, for the pairwise comparison, with agents
initially having equal number of cooperators and abstainers, cooperation spreads
throughout the population. The outcome when agents initially have an equal
number of defectors and abstainers is dependent on the loner’s payoff (L). When
all three strategies are initially equally present in the population the value of the
loner’s payoff is again crucial. When the value of L is less than or equal to the
punishment for mutual defection, the dominant strategy is defection; in other
cases abstinence spreads as a strategy and this in turn can lead to cooperation
spreading. In the robustness experiments, we consider populations comprising
of agents with abstainer strategies and explore the effects of perturbing the
population by the addition of firstly, a cooperative agent and secondly agents
with strategies of cooperation and defection. Results show that only in the second
scenario does the value of L influence the outcome.

In the spatial experiments, similar outcomes arise for the pairwise compar-
isons. When considering equal numbers of agents with all three strategies some
similarities between the spatial and non-spatial results are noticed, but the spa-
tial organisation allows for the clustering of cooperative agents. For all values
of the loner’s payoff, defection dominates in addition to the presence of some
clusters of cooperators where these clusters are protected by abstainers. As the
loner’s payoff increases above 1.5, the size of these clusters of cooperative agents
increases. In the experiments considering different initial spatial configurations
interesting behaviour was noted for the six different possible starting initiali-
sations. In all cases, irrespective of the position of the cooperative strategies
initially, and the value of L, cooperative clusters persisted.

In previous work in the spatial Prisoner’s Dilemma, it has been shown that
cooperation can be robust to invasion if a sufficiently large cluster of cooperators
form. However, given a random initialisation, this rarely happens and defectors
can dominate in most scenarios. With the introduction of abstainers, we see new
phenomena and a larger range of scenarios where cooperators can be robust to
invasion by defectors and can dominate.

Future work will involve extending our abstract model to more realistic
scenarios. There are many documented scenarios of symbiosis between entities
(individuals, species, plants, companies, etc.). In our simulations, we model sym-
biosis between three distinct entities. We are interested in identifying scenarios
where insights obtained in out spatial configurations may apply; for example, the
planting of specific plants (abstainers) to prevent the invasion one plant species
(defector) into another native species (cooperator).

Future work will also involve performing a more detailed investigation into
emergent evolutionary stable patterns witnessed at different values of L and the
exploration of other topologies with the goal of identifying structures that allow
robust cooperation.
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Abstract. Robotic systems, whether physical or virtual, must balance
multiple objectives to operate effectively. Beyond performance metrics
such as speed and turning radius, efficiency of movement, stability, and
other objectives contribute to the overall functionality of a system. Opti-
mizing multiple objectives requires algorithms that explore and bal-
ance improvements in each. In this paper, we evaluate and compare
two multiobjective algorithms, NSGA-II and the recently proposed Lex-
icase selection, investigating distance traveled, efficiency, and vertical
torso movement for evolving gaits in quadrupedal animats. We explore
several variations of Lexicase selection, including different parameter
configurations and weighting strategies. A control treatment evolving
solely on distance traveled is also presented as a baseline. All three algo-
rithms (NSGA-II, Lexicase, and Control) produce effective locomotion
in the quadrupedal animat, but differences arise in performance and effi-
ciency of movement. The NSGA-II algorithm significantly outperforms
Lexicase selection in all three objectives, while Lexicase selection signif-
icantly outperforms the control in two of the three objectives.

Keywords: Evolutionary robotics ·Multiobjective algorithms · Genetic
algorithms · Computational evolution · Lexicase selection · NSGA-II

1 Introduction

Many animals demonstrate a remarkable combination of speed, agility, and effi-
ciency in locomotion. To produce such behaviors in artificial systems requires
controllers capable of balancing objectives associated with performance, effi-
ciency of movement, and stability. Multiobjective evolutionary algorithms, such
as NSGA-II [7], address such problems by optimizing objectives concurrently.
NSGA-II progresses along a Pareto optimal front, considering all objectives
equally during the optimization process. In contrast, Lexicase selection, recently
proposed by Spector [22], adopts a non-Pareto based approach to address multi-
ple objectives. During a selection event, Lexicase evaluates a group of individuals
based on one or multiple objectives, with the order of objectives randomized.
After comparing performance in the first selected objective, additional objectives
are considered only if two or more individuals are tied.
c© Springer International Publishing Switzerland 2016
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Lexicase selection has recently been shown to be effective in genetic program-
ming problems. In this paper, we compare Lexicase selection to NSGA-II in the
context of evolutionary robotics. Specifically, we evaluate the performance of
the two algorithms in evolving gaits for quadrupedal animats. We also conduct
a control experiment based on a single-objective genetic algorithm that selects
only for distance traveled. Results indicate that the NSGA-II algorithm finds
superior solutions in all three objectives when compared to Lexicase selection.
However, we note that Lexicase solutions are significantly better than those of
the control in two of the three objectives.

The contributions of this work are as follows: First, we compare the per-
formance of NSGA-II, Lexicase, and the control in evolving quadrupedal gaits.
Second, we examine alternative Lexicase parameter configurations and discuss
differences that arise. Finally, we present our findings on a weighted objec-
tive approach with Lexicase selection. Although Lexicase does not outperform
NSGA-II in this study, the experimental results show that it may still be an
effective multiobjective algorithm. Evolved individuals from Lexicase exhibit
gaits that are both effective and efficient. Moreover, Lexicase has been shown
to perform well with large numbers of objectives. Further investigation, taking
into account additional factors in movement through uncertain environments is
warranted.

2 Background and Related Work

Evolutionary robotics (ER) [4,5,9,20] draws upon concepts observed in nat-
ural evolution and applies them to the design of robots. ER approaches have
proven effective in areas such as gait evolution [6,8], agent-environment interac-
tion [3,4], and rocket guidance systems [10]. In addition to control, optimizing
morphology can exploit relationships between brain and body [17,18], as occurs
in the evolution of biological organisms. In many problems, single objective evo-
lutionary algorithms (e.g., distance traveled) produce effective systems. However,
addressing a single objective does not satisfy the expectations placed on a typ-
ical robotic system. Additional metrics are needed to assess conditions related
to battery life, robustness to uncertain conditions, navigation, and resilience,
among others. Multiobjective algorithms are one approach to addressing these
more complex problems.

Evolutionary multiobjective optimization (EMO) algorithms take multiple
metrics into account when assessing the performance of individuals. NSGA-II,
developed by Deb et al. [7], is a Pareto-based EMO that has proven effective
in ER and other applications [12,16,23]. The first principle of the algorithm
is non-domination. An individual dominates another individual if it is better
in at least one objective and no worse in the other objectives. Non-dominated
individuals form a Pareto-optimal front across the objective space. Second, the
distribution along the Pareto front is balanced by a crowding distance metric.
By analyzing the location of non-dominated individuals on the Pareto front, the
selected solutions cover the objective space equally. These two principles result
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in a Pareto optimal front, wherein non-dominated individuals are distributed
around the objective space, providing different solutions that balance multiple
objectives. Over evolutionary time, NSGA-II evolves individuals toward the opti-
mal values in each objective along the Pareto front. Schrum and Miikkulainen
[19] have shown that NSGA-II produces effective controllers for agents with dis-
tinct behaviors for each task in a game environment. Mouret [15] used NSGA-II
to solve a maze navigation task, demonstrating that a multiobjective approach
was more effective than novelty search [13] alone. Auerbach and Bongard [2]
employed NSGA-II to evolve both control and morphology, producing highly
cohesive robotic systems.

NSGA-II and other Pareto-based algorithms consider all objectives equally
at each generation. A recently proposed approach is to evaluate individuals on
a subset of the total objective space. Lexicase selection was originally proposed
by Spector [22] to address modal problems in GP. It was inspired by the lex-
icographic parsimony pressure technique proposed by Luke and Panait [14] to
control growth in GP trees by considering objectives lexically. The key idea is
that, in each selection event, the objectives are randomly ordered and consid-
ered one at a time. After the individuals are compared based on the first selected
objective, additional objectives are used to evaluate the individuals only in the
case of a tie in the previous objective. Depending upon the random ordering, an
individual may undergo selective pressure on one objective for multiple gener-
ations, and is then evaluated on a second objective at a later time. In contrast
to Pareto optimization algorithms, each selection event considers only a sub-
set of the objective space, potentially discovering solutions different from those
obtained with evolutionary search directed along a Pareto front. Lexicase selec-
tion has proven effective in solving challenging GP problems, where many objec-
tives must be met simultaneously [11], but to our knowledge has not previously
been explored in the context of evolutionary robotics. In this paper, we evaluate
Lexicase selection and assess its performance against a known multi-objective
evolutionary algorithm, NSGA-II.

3 Methods

Simulation Environment: Evolved behaviors are evaluated with the Open
Dynamics Engine (ODE) [21], a 3D rigid body physics-based simulation environ-
ment. ODE handles collisions between rigid bodies, forces (friction and gravity),
and joints between rigid components. Figure 1 shows an (evolved) instance of
the quadrupedal animat used in this study. The four legs are connected to the
main body by a hip joint and divided into upper, middle, and lower segments.
Each joint is a hinge allowing for movement along the long-axis of the main
body. Movement of a joint is determined by specifying the angular velocity per
simulation timestep. An individual is simulated for 10 s at a timestep of 0.005 s.
The environment is configured as a flat, high-friction surface resulting in minimal
slippage between the animat and substrate.
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Fig. 1. The quadrupedal animat used in this study features twelve hinge joints. Each
leg has three segments. Limb lengths, joint range of motion, and the initial offset of
each leg are evolvable morphological parameters.

Genome: As shown in Table 1, each genome comprises 42 separate parameters
defining aspects of both control and morphology. The controller is a central
pattern generator with joint behavior defined as follows. Joints are driven by
a shared periodic oscillating signal with evolved oscillation frequency. A gene
specifies maximum joint velocity, limiting the upper angular velocity of all joints
in an animat. Two levels of phase offsets create a custom oscillation signal for
each joint in the animat. Each leg has its own phase offset which applies to the
three joints (hip, knee, ankle) comprising the leg. The front and rear legs are
then paired with phase offsets for hip, knee, and ankle. This encoding allows
for left/right symmetry to evolve, but does not require it as the legs in each
pair (front and rear) can move out of phase. Six genes specify the maximum force
each joint can exert during movement. Morphologies of the animats evolve in
terms of the initial rotations of the leg segments, the lengths of the leg segments
and the upper/lower limits of the joints.

Table 1. Genes comprising a quadrupedal animat.

Description # Genes

Oscillation frequency 1

Max joint velocity 1

Phase offset (per leg) 4

Phase offset (per joint with left/right symmetry) 6

Max joint force (left/right symmetry) 6

Initial joint rotation (left/right symmetry) 6

Leg segment length (left/right symmetry) 6

Upper joint range limit (left/right symmetry) 6

Lower joint range limit (left/right symmetry) 6

Total 42
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Fitness Metrics: We assess individuals with three fitness objectives. The first is
the Euclidean distance traveled by an individual over the course of the simula-
tion. Distance is not constrained to only forward movement in order to minimize
the influence of direction on evolved gaits. The second objective is efficiency,
defined as the distance traveled per unit of power exerted by an individual.
Finally as the third objective, we evaluate the vertical movement of the center
of mass over time and record the total displacement. Many biological organisms
tend to exhibit low vertical movement of the center of mass during locomotion,
and it has also been shown to be effective at producing efficient legged gaits
in robotic systems [1]. Our goal is to maximize objectives one and two, while
minimizing objective three.

Forces are recorded over the course of an evaluation to calculate efficiency. In
situations where the maximum joint power is low, the joint is unable to actively
move its connected bodies. An underpowered joint moves passively, regardless of
the control signal being applied. Joint movement is thus a combination of desired
angle, force output from the controller, and interaction of the morphology with
the environment. This configuration allows for different degrees of efficiency to
arise among evolved individuals as higher joint power increases force output.

Treatments: As described above, we conducted three separate treatments: Con-
trol, NSGA-II, and Lexicase. In all three treatments, populations comprise 120
individuals and evolve for 6000 generations. Each treatment consists of 20 repli-
cate runs initialized with a unique random number seed. Two-point crossover
is employed with a probability of 0.5. Genes are mutated with a probability of
0.04 and perturbed within a range of ±10 % of the gene’s range. For the Control
treatment, tournament selection is used with a tournament size of 4 individuals
and elitism with one elite individual.

NSGA-II Selection: NSGA-II evolves individuals along a Pareto-optimal front.
For a given generation, the next population is selected from both the previ-
ous generation’s population and the current set of child individuals produced
from selection, crossover and mutation. Individuals are selected based on their
non-domination ordering, with each non-dominated front added to the new pop-
ulation until the population size would be exceeded. The last front is then added
to the population by sorting in descending order based on crowding distance.
Individuals with the largest distance are selected until the population size is
reached, ensuring that the most diverse solutions for the last front are included
in the new population. For an in-depth discussion of NSGA-II, please refer to [7].

Lexicase Selection: Algorithm 1 is pseudocode for Lexicase selection as used in
this study. Lexicase selection replaces the tournament selection mechanism in the
Control treatment. Crossover and mutation are handled after selection and are
identical to how they are treated in the Control. Rather than consider all metrics
equally in a selection event, for each selection event, Lexicase considers subsets
of the objectives in a random order. Thus, a set of individuals may be evaluated
on one objective, or multiple, depending upon the selection process described
below. A sample of n individuals from the population (n = 4 in this study)
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is obtained and the order in which objectives will be considered is randomized
(lines 1–2). Individuals in the sample are then compared on the first objective
(lines 3–19) and ranked from best to worst in terms of performance for that
objective (line 4). All sampled individuals are then compared to the best indi-
vidual from the sample in the objective and checked to see if they are within a
specified threshold (10 %) of performance (lines 5–11). If there is a tie, we select
the subset of individuals within the threshold, removing low performing individ-
uals in the selected objective and proceed to the next objective (lines 12–13).
Otherwise we select the best individual and exit the for loop (lines 14–17). If
multiple individuals fall within the threshold across all objectives, we randomly
select an individual from the tied set (line 21).

Algorithm 1. Lexicase selection pseudocode. Adapted from [22]
1: sample ← SamplePopulation(population, 4)
2: obj order ← Shuffle(fitness objectives)
3: for obj in obj order do
4: r sam ← RankSample(sample, obj)
5: tie index ← 0
6: for i in 1 to length(r sam) do
7: if r sam[i][obj] ≥ 0.9 ∗ r sam[0][obj] then
8: tie ← True
9: tie index ← i

10: end if
11: end for
12: if tie is True then
13: sample ← r sam[0 : tie index]
14: else
15: tie ← False
16: sample ← r sam[0]
17: break
18: end if
19: end for
20: if tie is True then
21: return RandomChoice(sample)
22: else
23: return sample[0]
24: end if

Our implementation is similar to that described in [22] except for the intro-
duction of the threshold. The threshold allows us to customize performance com-
parison between individuals. For example, in gait evaluation, the performance
of an individual that travels 30 units and that of one traveling 29 units can be
considered almost identical. A separate treatment, not discussed in the results,
was run with a threshold of 5 %. Evolutionary results were nearly identical to
the Lexicase treatment presented here. We therefore opt to present the Lexicase
results with only the 10 % threshold in Sect. 4.
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4 Experiments and Results

For our purposes, we treat evolution as a tool for finding the most effective
solutions as opposed to studying the evolutionary trajectories of populations.
Therefore, the results presented here are for the farthest traveling individual per
replicate, with performance analyzed in all three objectives. Figure 2 provides
boxplots of the farthest traveling individual in each replicate when evaluated on
each of the three objectives. Table 2 gives the pairwise comparisons (Wilcoxon
Rank-Sum Test) between the distributions of the farthest traveling individual
per treatment in the three objectives. NSGA-II significantly outperforms both
Lexicase and Control in the distance traveled objective while Lexicase and the
Control are not significantly different. Lexicase significantly outperforms the
Control in both efficiency and vertical movement. This result suggests that Lex-
icase does in fact produce individuals with better performance across all three
objectives. NSGA-II significantly outperforms the Control in efficiency and ver-
tical movement. There is no significant difference between NSGA-II and Lexicase
in efficiency, but the two are significantly different in vertical movement.
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Fig. 2. Performance in the three metrics of the farthest traveling individual per repli-
cate across the three treatments. Refer to Table 2 for significance comparisons between
treatments. (Color figure online)

Figure 3(a) plots the distance traveled versus efficiency for the best individual
per replicate. Although NSGA-II generally outperforms Lexicase, a few individ-
ual Lexicase replicates are competitive with the best NSGA-II replicates, and
one replicate from the Lexicase treatment lies on a Pareto front of distance versus
efficiency. However, five Lexicase replicates exhibit lower efficiency than many
replicates from the Control treatment. Not considering these five replicates, Lex-
icase would actually be competitive with NSGA-II in terms of efficiency.

Figure 3(b) plots the distance traveled versus vertical movement of the best
individual per replicate. NSGA-II again produces the majority of the best indi-
viduals although Lexicase does produce one of the best solutions, located near a
Pareto front along the bottom-right of the figure. The Control treatment is not
effective, as there is no selective pressure in the vertical movement metric.
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Table 2. Pairwise Wilcoxon Rank-Sum Test between the farthest traveling individual
per replicate.

Objective Treatment Treatment P-Value

Distance Control Lexicase 0.080

Distance Control NSGA-II <0.001

Distance Lexicase NSGA-II 0.010

Efficiency Control Lexicase 0.007

Efficiency Control NSGA-II <0.001

Efficiency Lexicase NSGA-II 0.603

Vert. Move. Control Lexicase <0.001

Vert. Move. Control NSGA-II <0.001

Vert. Move. Lexicase NSGA-II 0.015

Fig. 3. (a) Distance traveled versus efficiency and (b) distance traveled versus vertical
movement for the farthest traveling individual per replicate across the treatments.

Alternative Parameters: NSGA-II is a well studied algorithm, whereas, Lexi-
case selection was only recently proposed. In the initial experiment, parameters
were chosen based on a review of the current literature, but other parameter
values may be better suited to this specific problem. The Lexicase treatment
described above evaluated 4 individuals and randomized the order of the objec-
tives per selection event. We conducted two other treatments exploring different
configurations. In the first, we increased the number of evaluated individuals
to 8 per selection event. The increased sample size did not produce any signif-
icant difference between the farthest traveling individual per replicate in terms
of distance traveled or efficiency compared to the original Lexicase treatment.
However, there was a significant increase in vertical movement (p < 0.001) which
is an objective to be minimized. It is unclear why vertical movement is higher,
but we speculate that the increased sample size could lead to more ties when
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comparing individuals. If ties were to increase when considering vertical move-
ment as the first objective, multiple objectives would then be used to evaluate
individuals, producing less selective pressure acting on the vertical movement
objective alone. NSGA-II would be less likely to face this risk, as the Pareto-front
optimization, and specifically the crowding distance measure, consider individu-
als across the objective space that have both large and small vertical movements.
Future work is planned to investigate this difference.

The second variation we investigated involved shuffling the objective ordering
per generation instead of per selection event. That is to say, in each generation all
child individuals are selected using the same ordering of objectives. Surprisingly,
results for this experiment were not significantly different than the Lexicase
treatment in any of the three objectives.

Weighted Lexicase: Another proposed variation of Lexicase selection suggested
by Spector et al. [11] is to assign weights to the objectives, thereby affecting
the frequency of orderings during selection. This weighting strategy is intended
to bias the search. We conducted an additional three treatments to explore this
strategy. The 75-15-10 strategy (WLex-75 15 10) assigns a weight of 0.75 to
distance traveled, 0.15 to energy efficiency, and 0.10 to vertical movement. We
also tested WLex-50 25 25 and WLex-15 75 10.

Table 3 presents the pairwise comparison among treatments of the farthest
traveling individual from each replicate. It appears that the weighting strategies
do not have a large impact on performance when compared to the regular Lexi-
case treatment, except in vertical movement. Lexicase significantly outperformed
the weighted Lexicase variants (WLex-75 15 10 and WLex-15 75 10) in reduc-
ing vertical movement during locomotion. This result is likely due to the low
weight (10 %) assigned to the vertical movement objective in the two weighted
treatments.

Table 3. Pairwise Wilcoxon Rank-Sum Test between the farthest traveling individual
per replicate.

Objective Treatment Treatment P-Value

Distance Lexicase WLex-50 25 25 0.857

Distance Lexicase WLex-75 15 10 0.945

Distance Lexicase WLex-15 75 10 0.742

Efficiency Lexicase WLex-50 25 25 0.428

Efficiency Lexicase WLex-75 15 10 0.478

Efficiency Lexicase WLex-15 75 10 0.322

Vert. Move. Lexicase WLex-50 25 25 0.513

Vert. Move. Lexicase WLex-75 15 10 0.018

Vert. Move. Lexicase WLex-15 75 10 0.028
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Fig. 4. (a) Distance traveled versus efficiency and (b) distance traveled versus vertical
movement for the farthest traveling individual per replicate across the treatments.

Figure 4(a) plots the farthest distance traveled versus efficiency for all Lexi-
case treatments. Even when attempting to bias the ordering of the objectives, the
distance traveled and efficiency remain quite similar among treatments. Perhaps
surprisingly, the farthest traveling individuals do not arise in the WLex-75 15 10
treatment but instead in the WLex-50 25 25 treatment. In 2 of the 20 replicates,
increasing weights for efficiency and vertical movement (25 % each) allow individ-
uals to evolve higher distances traveled. We speculate that overweighting a single
objective and therefore biasing the search process limits the space of solutions
tested. However, further research is necessary to investigate this hypothesis.

Figure 4(b) plots the farthest traveling individual per replicate’s distance
traveled versus vertical movement. Here, vertical movement is significantly higher
in the WLex-75 15 10 and WLex-15 75 10 versus the Lexicase treatment. A low
weight, in this case 10 %, potentially degrades performance in vertical move-
ment. Further investigation is required to determine if there is an appropriate
distribution of weights to assign to each objective. There is also a possibility that
the results here are only encountered in specific experimental configurations and
under/overweighting is not generally an issue.

5 Discussion

This paper is intended to evaluate the recently proposed Lexicase selection in an
evolutionary robotics task and to compare it to a well known EMO algorithm,
NSGA-II. Lexicase has mainly been employed in many objective modal prob-
lems in GP. Here, the objectives are not necessarily modal, that is, the objectives
are likely related to each other as they define specific characteristics of a quad-
rupedal gait. Efficiency, calculated as the distance traveled per unit of power, is
intrinsically linked to the distance traveled metric. Furthermore, vertical oscilla-
tion (metric 3) is likely influenced by efficiency as efficient biological organisms
tend to exhibit low degrees of vertical oscillation [1].
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The low number of objectives may also favor NSGA-II, as Pareto-based algo-
rithms are effective in these smaller spaces. As the number of objectives increases,
Pareto algorithms begin to break down due to the reduction of dominating solu-
tions [24]. A large objective set allows most solutions to be dominant in at least
one objective. In these situations, Lexicase selection might optimize solutions
across these many objectives better than Pareto-based approaches by evaluating
subsets of the objectives per selection event. The challenge, however, is to iden-
tify those objectives and the specific goals for a problem. Here, we considered
only efficiency in terms of energy consumption versus distance traveled and the
vertical movement of the torso. Additional objectives might include minimizing
touches with the surface, pitch changes in the torso, constraints on the morphol-
ogy relating to mass distribution among components, and response to sudden
changes in substrate or obstacles.

6 Conclusions

In this paper we have explored Lexicase selection in a quadrupedal gait evolution
task. While capable of generating effective solutions, Lexicase selection does not
significantly outperform a standard genetic algorithm in terms of distance trav-
eled. However, it does produce more efficient solutions with less vertical move-
ment. On the other hand, NSGA-II significantly outperforms Lexicase selection
in both distance traveled and energy efficiency. NSGA-II thus appears to be
the better algorithm for quadrupedal gait evolution involving three objectives.
Still, the Lexicase selection mechanism shows that it can produce effective gaits.
Additional objectives might lead to better relative performance.

We have investigated a few variations of the Lexicase selection algorithm, but
many other configurations are yet to be explored. An alternative ER experiment
could consider situations where the objectives are independent, for example, with
each objective assigned to a unique behavior. This approach might more closely
align an ER experiment with the original studies of Lexicase selection in GP.
Another possible extension would be to change the objective ordering in a more
principled manner. In our investigations, we randomly shuffled the objectives
either per selection event or per generation. Alternative ordering strategies might
improve the performance of the algorithm, but we leave those issues to future
investigations.
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Abstract. Most manipulation tasks can be decomposed into sequences
of sensorimotor primitives. These primitives often end with character-
istic sensory events, e.g., making or breaking contact, which indicate
when the sensorimotor goal has been reached. In this manner, the robot
can monitor the tactile signals to determine when to switch between
primitives. In this paper, we present a framework for automatically seg-
menting contact-based manipulation tasks into sequences of sensorimotor
primitives using multimodal haptic signals. These signals include both
the robot’s end-effector position as well as the low- and high-frequency
components of its tactile sensors. The resulting segmentation is used to
learn to detect when the robot has reached a sensorimotor goal and it
should therefore switch to the next primitive. The proposed framework
was evaluated on guided peg-in-hole tasks. The experiments show that
the framework can extract the subtasks of the manipulations and the
sensorimotor goals can be accurately detected.

Keywords: Multimodal tactile sensing · Sensorimotor primitives ·
Primitive segmentation · Learning from demonstration

1 Introduction

Manipulation tasks typically involve executing a series of discrete sensorimotor
primitives. For example, humans pick and place objects by grasping, lifting,
transporting, placing, and releasing the objects. These primitives are usually
bound by mechanical events that represent sensorimotor subgoals of the task
[6], e.g., making or breaking contact between either the hand and an object or
a grasped object and another object.

These changes in the contact state result in discrete and distinct sensory
events that are characterized by specific neural signatures in human tactile affer-
ents [7]. For example, when fingers make contact with an object during grasping,
signals from the slow- and fast-adapting type one afferents (SA-I, FA-I) provide
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information about the outcome of the grasp. Similarly, the FA-II afferents detect
the contact vibrations during tool use when contact between the grasped object
and another object is made or broken, or when slip occurs. An example of a
sensory event for a robot is shown in Fig. 1. The tactile signals indicate that
the fingers made contact, and thus reached the goal, earlier than expected. If
this sensory event was completely absent, then it would indicate that the goal
was not achieved. These sensory events thus provide information about if and
when a primitive’s goal has been reached. Given this information, the robot can
determine when to terminate the current primitive and start the next one.

Fig. 1. An illustration of a sensorimotor event
resulting from finger-object contact during grasp-
ing.

In this paper, we present
a framework for segmenting
manipulation tasks into sen-
sorimotor primitives and sub-
sequently learning to switch
between these primitives based
on tactile events. The seg-
mentation is performed using
Bayesian on-line changepoint
detection [1] with multimodal
haptic signals. Each change-
point indicates a sensorimotor
subgoal of the task. The hap-
tic time series signals include
the Cartesian position of the
robot’s hand and the low- and high-frequency signals of the tactile sensors [23].

The sensory signals before and after each changepoint are used to learn a
classifier for detecting the sensory event when the primitive is executed. In this
manner, the robot can monitor whether the subgoal has been reached and switch
to the next sensorimotor primitive accordingly. Rather than manually designing
features for representing the haptic signals, the robot uses Spatio-Temporal Hier-
archical Matching Pursuit (ST-HMP) [12] to learn suitable features. The detec-
tion of the sensory events is then achieved using linear support vector machines.

The proposed framework was evaluated using guided peg-in-hole tasks. The
experiments evaluated the segmentation using different sets of sensor modalities,
and the accuracy of the classifiers for switching between sensorimotor primitives.
In a validation experiment, the robot used the learned primitives and switching
behaviours to autonomously perform guided peg-in-hole tasks.

2 Related Work

Learning from demonstration (LfD) methods have emerged as an effective app-
roach to transfer human manipulation skills to robots. Many of these methods
learn libraries of movement primitives that adapt to the context of the task
[4,13,18]. These primitives are often trained on presegmented data, and they
are usually run for a fixed duration or until they reach a predefined threshold
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from the goal state. Kappler et al. [8] also proposed a framework for switch-
ing between primitives based on multimodal signals. However, their approach
is based on modeling the stereotypical sensor values at every time step of the
primitives rather than detecting the characteristic sensory event of the primi-
tive’s sensorimotor goal.

Previous work has also proposed methods for automatically segmenting
manipulation tasks into sequences of skills [15,17]. These approaches focus on
using proprioceptive signals to segment the tasks. By including tactile data, our
segmentation approach results in primitives that terminate in sensory events
that can be monitored to determine if contact goals have been reached. Methods
have also been proposed for segmenting tasks into phases based on changes in
the dynamics [9,10]. Primitives can then be learned for transitioning between the
segmented phases. Our approach learns primitives directly and does not require
learning explicit models of the task.

A primitive that terminates early depending on sensory conditions is also
known as a guarded motion. Guarded motions have been widely adopted for
industrial robotic manipulators and prosthetic hands to avoid applying excessive
force to the external objects [5,14]. The sensory conditions for switching between
the primitives are usually hand-designed by human experts.

Tactile servoing has also been successfully integrated into direct robot con-
trol to continuously follow distinctive surface features of objects, such as edges
[11,20]. Our work focuses on switching between primitives based on discrete sen-
sory events and is thus a complimentary approach to including tactile feedback.

Approximate online Bayesian changepoint detection has been used in com-
bination with articulation models to segment demonstrated manipulation tasks
by detecting changes in the motions of objects [16]. In this work, authors relied
only on the relative pose of two objects/parts to segment manipulation tasks,
and not the force-torque or tactile signals. Given the importance of high fre-
quency tactile signals in manipulation tasks [19,21], our approach incorporates
these signals into the online Bayesian changepoint detection.

3 Approach

The goal of our work is to autonomously segment manipulations into sensori-
motor primitives and to subsequently learn classifiers for determining when to
switch between the primitives. We introduce the multimodal signals and the sen-
sorimotor primitives used in this work in Sects. 3.1 and 3.2 respectively. We then
explain the segmenting of the demonstrations into primitives in Sect. 3.3, and
learning to detect sensory events for switching between primitives in Sect. 3.4.

3.1 Multimodal Haptic Signals

In our experiments, we use a robot consisting of a 7-DOF Barrett WAM arm
and Barrett hand, whose three fingers are equipped with biomimetic tactile
sensors (BioTacs). This system provides rich multimodal haptic signals, including
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proprioceptive signals, and both static and dynamic tactile signals. On our robot,
the proprioceptive signals include the Cartesian position of the robot’s end-
effector ypos ∈ R

3 derived from the forward kinematics of the robot manipulator,
as well as the force-torque signals yFT ∈ R

6 measured on the robot’s wrist force-
torque sensor.

Static tactile signals are mainly sensitive to constant contacts, such as static
forces applied to an object being grasped. BioTacs [20] consist of a rigid core
housing an array of 19 electrodes surrounded by an elastic skin. The skin is
inflated with an incompressible and conductive liquid. When the skin is in con-
tact with an object, the liquid is displaced, and the conductance of the electrodes
changes. The electrode conductance changes yE ∈ R

19 are used to measure the
static contact forces at 100 Hz.

Dynamic tactile signals are sensitive to transient mechanical events, e.g.,
making and breaking contact between hand-held tools and other objects. Micro-
vibrations in the skin can propagate through the fluid in the BioTac and
are detected as high-frequency signals by the hydro-acoustic pressure sensor
embedded in the sensor’s core. These high-frequency 2200 Hz vibration signals,
yPAC ∈ R

22 at 100 Hz, are used to detect transient mechanical events.

3.2 Sensorimotor Primitives

A sensorimotor primitive is a parametrized synergy of motion and sensing that
can be used to build task strategies. For example, the motion for inserting a peg
into a hole and the sensory feedback from the peg hitting the hole bottom form
a sensorimotor primitive. This sensorimotor primitive can be sequenced together
with other sensorimotor primitives to perform insertion tasks.

Fig. 2. Illustration of our framework of seg-
mentation of sensorimotor primitives from
demonstrated trajectories.

The sensorimotor primitives used
in this paper consist of a force-
position controller and a sensory goal
detector. The closed-loop controller
defines the behaviour for reaching a
desired state while the goal detector
continuously monitors if the sensory
goal has been reached. The primitives
are segmented such that they each
terminate with a sensory event, as
shown in Fig. 2. These sensory events
have a short duration, which is cho-
sen to be 160ms long. This duration
is chosen by comparing the goal detector’s success rates under different dura-
tions of sensory events. The signals observed during the sensory event are used
to train the goal detector, as detailed in Sect. 3.4. The position and force signals
100ms after the sensory event are used to compute the final desired state for
the controller. The feedback gains for the controllers are predefined. The desired
force is incrementally increased by 1N, if the primitive failed to reach the desired
sensory event. The desired position is defined relative to the starting position
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of the skill. Thus, if a skill terminates early, the following primitives’ desired
positions are offset accordingly.

3.3 Sensorimotor Primitives Segmentation

Proprioceptive signals are often used to segment action primitives [15,17]. How-
ever, these signals do not capture task-specific tactile events during motions
involving contact with the environment. As a result, it is often difficult to verify
if the contact goal of a primitive was achieved in these cases.

In contrast to the relatively smooth proprioceptive signals, the dynamic tac-
tile signals are sensitive to contact events. Some of these events will be relevant
to the task and result in switching between primitives, but others may be irrele-
vant. For example, in a peg-in-hole task, the vibrations from the peg entering the
hole and making contact with the bottom of the hole both relate to task-relevant
contact events. However, the vibrations resulting from scratching the peg over a
rough surface are not considered to be relevant to this task and are effectively
noise.

We use unsupervised Bayesian online changepoint detection (BOCPD) [1] to
segment trajectories into unknown numbers of primitives with discrete sensory
events. We apply this method jointly on both the proprioceptive and the tactile
signals. BOCPD sequentially calculates the posterior distribution over the cur-
rent run length rt ∈ Z at time t, i.e., rt is the number of time steps since the last
changepoint. The posterior distribution p(rt|y1:t), given the previously observed
data y1:t, is computed by normalizing the joint likelihood P (rt|y1:t) = P (rt,y1:t)

P (y1:t)
.

The joint likelihood over the run length and the observed data is computed
online using a recursive message passing scheme [1]

P (rt, y1:t) =
∑
rt−1

P (rt|rt−1)P (yt|rt−1, y
(r)
t ; θm)P (rt−1, y1:t−1) , (1)

where P (rt|rt−1) is the conditional changepoint prior over rt given rt−1, which is
nonzero in only two scenarios: H(rt−1 + 1|θh) when a changepoint occurs rt = 0
or 1 − H(rt−1 + 1|θh) when the run length continues to grow rt = rt−1 + 1.
The function H(τ) is the hazard function H(τ) = P(g=τ)

∑∞
t=τ P(g=τ) , where P(g) is

a geometric distribution with timescale θh. The hazard function is constant at
H(τ) = 1/θh. The predictive distribution P (yt|rt−1, y1:t; θm) only depends on
the recent data y

(r)
t and the model parameters θm. The parameters θ = {θh, θm}

form the set of hyperparameters for the model.
Similar to Turner et al. [22], we use a joint BOCPD algorithm with multi-

variate time series sensory signals by modelling the signals as a joint Student’s
t-distribution P (yt|rt−1,Y1:t; θm), where yt could be any unimodal or multi-
modal sensory signals mentioned in Sect. 3.1. The joint model, with multimodal
sensory signals, can extract more information from the data as simultaneous
changes in multiple time series is a stronger indication of a changepoint.
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3.4 Learning to Detect Sensory Events

After segmenting a demonstrated skill into a sequence of sensorimotor primitives,
the robot should learn to autonomously determine when to switch from one
primitive to the next. We treat this detection process as a classification problem.
We train a classifier using the segmented sensorimotor primitives.

In order to detect different sensory events, we use Spatio-Temporal Hierarchi-
cal Matching Pursuit (ST-HMP) [12] to learn rich feature representations from
the time series data of both static and dynamic tactile signals. The ST-HMP
method was built upon the Hierarchical Matching Pursuit (HMP) [3] algorithm,
which is a multilayer sparse coding network that creates feature hierarchies from
raw data. It extends HMP by also extracting features across time series data.
The ST-HMP method has achieved high accuracy in grasp stability assessment
and object recognition using only low-frequency tactile sensory data on several
synthetic and real tactile datasets [12]. In this paper, we incorporate signals from
other sensor modalities, including high-frequency tactile data.

Fig. 3. Schematic of the electrode and pres-
sure sensor arrangement on the BioTac
(left). Tactile data array used for the ST-
HMP features (right).

Including both spatial and tem-
poral patterns of tactile informa-
tion is important for achieving high
classification accuracy. The ST-HMP
extracts rich spatial structures from
raw multimodal data without pre-
defining discriminative data char-
acteristics. Given a set of high-
dimensional observations, it uses K-
SVD [2] to learn a dictionary and
the associated sparse code matrix
in an unsupervised fashion over a
large collection of spatial patches
sampled from multimodal data. With
the learned dictionary, the ST-HMP
computes sparse code features for
each high-dimensional observation in
a small neighborhood using orthog-
onal matching pursuit. Then those
sparse code features are max pooled
over the spatial and temporal dimen-
sions at several scales with an
increasing size of a receptive field
(cell) to generate robust feature vectors for both spatial and temporal variations.
The final feature describing the whole sensor data sequence is the concatenation
of aggregated sparse codes in each spatio-temporal cell. Algorithm details can
be found in the paper of Madry et al. [12].

In order to represent the robot’s haptic data using HMP features, we need
to first arrange the tactile signals into 2D tactile data arrays. The layout of
the BioTac sensor’s electrodes is shown in Fig. 3. The Xs on the finger indicate
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the reference electrodes, and the 19 BioTac electrodes E1...E19 are measured
relative to these 4 reference electrodes. V 1 and V 2 are two virtual electrodes
computed by taking an average response of the neighboring electrodes V 1 =
E[E17, E18, E12, E2, E13, E3] and V 2 = E[E17, E18, E15, E5, E13, E3]. The
high-frequency vibration signals (PAC) from one pressure sensor on each finger
are separated into 22 virtual channels over time P1...P22, and the vibration
signals from the three fingers (F1, F2, F3) are concatenated side by side. Thus,
HMP is essentially extracting temporal features from these 22 virtual vibration
channels within one finger as well as learning features to reflect the dependencies
of sensors on multiple fingers.

In order to structure the data, the 19 electrodes and two virtual electrodes
(V 1 and V 2) on each finger are laid out as a 7 × 3 2D data array. The vibration
signals (PAC) on the three fingers are laid out as 22 × 3 2D tactile data array,
as shown in Fig. 3. In this manner, three BioTacs create total four 2D tactile
data arrays: three 7 × 3 tactile arrays for electrodes and one 22 × 3 tactile data
array for vibration signals. We then apply the HMP to each tactile data array
separately and then concatenate feature vectors. HMP learns a dictionary of size
M = 100 with the sparsity level set to K = 4. The spatial pooling is performed
with a 3 level pyramid: the data array is divided into 1 × 1, 2 × 2 and 3 × 3
cell grids, which results in S = (1 + 22 + 32) = 14 spatial cells. The temporal
pyramid consists of 4 max-pooling levels: the sequence is divided into 1, 2, 4,
and 8 parts, which results in T = (1+2+4+8) = 15 temporal cells. To prevent
losing the signs of HMP features due to max-pooling on absolute values, we
save the feature vector with both positive and negative signs. Therefore, the size
of the feature descriptors is doubled. The total number of ST-HMP features is
4 × S × T × M × 2 = 4 × 14 × 15 × 100 × 2 = 168000.

Given the ST-HMP tactile features, a Support Vector Machine (SVM) is
then used to classify these features. For rich features provided by sparse coding,
a linear kernel obtains satisfactory results and there is no need to apply more
complex distance measures.

4 Evaluation and Discussion

In this section we describe the experiments and results obtained for evaluating
the proposed sensorimotor primitive segmentation and goal detection framework.

4.1 Sensorimotor Primitives Segmentation for Peg-in-hole Tasks

Experimental Setup. We evaluated our method on our robot platform. For
the guided peg-in-hole tasks, we use a 3D printed peg-in-hole set consisting of
holes with 1 mm clearance and various geometric features, including a curved
groove leading into a hole, a straight groove leading into a hole, and a squared
groove with a hole at one of its corners. These geometric features of the board
are shown in the inset of Fig. 4. These features are designed to create constraints
that guide the robot while performing the peg-in-hole tasks. Interacting with
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these geometric features results in tactile events. The robot should therefore
learn sequences of sensorimotor primitives that reach the individual geometric
features, and switch between the primitives accordingly to perform the task. An
adapter was 3D printed to hold the 5.7 mm diameter peg, such that it can be
firmly grasped by two BioTacs using a pinch grasp, as shown in Fig. 4.

Fig. 4. Experiment setup of the peg-in-hole
manipulation task.

In the experiment, the robot
was taught by a demonstrator
to perform the guided peg-in-hole
tasks using kinesthetic teaching.
For example, to use the curved
groove, the demonstrator moved
the robot’s hand down until the
peg made contact with the surface
of the board, slid the peg into the
curved groove, traced the groove
with the peg until reaching the
opening of the hole, and finally
inserted the peg into the hole. We
collected 50 demonstrations with
each geometric feature on the peg
board.

We recorded the 3D Cartesian
position of the robot’s end-effector
from the robot’s motor encoders
using its forward kinematics. We
also tracked the 3D Cartesian posi-
tion of the board with a Vicon
motion capture system. Thus, we
can calculate the relative position
of the end-effector and the board (pos). In order to compare the segmentation
performance with different sensor modalities, we also recorded the signals from
the signals from the force/torque sensor at the wrist (FT), the BioTacs’ elec-
trodes (E), and the BioTacs’ high-frequency pressure sensor (vib).

The joint predictive distributions over the sensor values were modelled using
Student’s t-distributions with hyper-parameters θm: μpos = 0.02, σpos = 102.5;
μFT = 0, σFT = 1; μE = 0, σE = 1; and μvib = 1000, σvib = 10−2, respectively.
The hazard function’s hyper-parameter was set to θh = 250.

Results. The results of using joint BOCPD with the proprioceptive and tactile
data for the curved-groove task is shown in Fig. 5. The ground truth primitive
switches were manually labeled, as indicated in Fig. 5 by double vertical dashed
lines. In this example case, five significant sensorimotor events were labeled,
including the peg impacting the surface of the board, entering the groove, reach-
ing the corner of the groove, reaching the top of the hole, and making contact
with the bottom of the hole, as shown in Fig. 4. The changepoints detected by
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the BOCPD algorithm are indicated by black crosses. If these changepoints are
between the double vertical dashed lines, we consider the BOCPD algorithm as
having successfully segmented the primitive. If there is no changepoint between
these double vertical dotted lines (red), then BOCPD missed the event, e.g.,
the corner of the curved groove. If changepoints fall between two consecutive
sensorimotor events, we consider these changepoints as false positives, such as
the changepoint at 0.93 s and 2.76 s shown by circles (blue). The first of these
false positive is caused by the bumpy surface of the peg board. The second false
positive is caused by the peg jamming against the inner surface of the hole.

Fig. 5. An example of joint BOCPD to segment sensorimotor primitives in a peg-in-
hole task with curved groove. (Color figure online)

The joint BOCPD on the multimodal signals performed better than the inde-
pendent BOCPD on the unimodal signals. Figures 6, 7, 8 show the segmentation
success rates and false positive rates for each sensorimotor event in the three
guided peg-in-hole tasks, i.e., curved groove, straight groove, and square groove
respectively. The proprioceptive and multimodal tactile signals, including the
electrodes and pressure sensors, usually achieved the highest success rates and
the lowest false positive rates. This result is due to the changepoints of the joint
BOCPD using the effects of both the low- and high-frequency sensory infor-
mation. Thus, the joint model can extract more information from the data as
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simultaneous changes in multiple time series is a stronger indication of a senso-
rimotor changepoint.

4.2 Sensorimotor Primitives Goal Detection

Experimental Setup. We evaluated the sensorimotor primitive goal detec-
tion method using the changepoints detected by the joint proprioceptive and
tactile BOCPD. The goal is to have the robot autonomously detect whether it
has reached the goal of the current sensorimotor primitive. For every change-
point detected by the segmentation method, except the first one, we extracted
16 sensory data samples (160 ms) directly before and after the changepoint.
These samples represent the tactile signals from the goal’s sensory event. We
also extracted 16 samples randomly selected between the last changepoint and
the current changepoint. These samples correspond to the signal before the goal
has been reached. In this manner, we collected 560 positive (goal detected) and
560 negative (goal not detected) samples from 35 trials for the evaluation.

In this experiment, we compared the goal detection accuracies using either
HMP or ST-HMP features. The difference between ST-HMP and HMP is that
ST-HMP combines the tactile information from multiple time steps t to create
the features. In contrast, HMP creates features for each time step separately and
then concatenates them. To evaluate the HMP and ST-HMP features for goal
detection, we performed a 5-fold cross-validation on the data set by using 896
samples for training the classifier and the rest for testing.

Results. By using all tactile sensor modalities, as shown in Fig. 3, the average
classification accuracies among the different sensorimotor primitives range from
77.5% to 100%. The classification accuracies and the standard deviations for
the different sensorimotor primitives are shown in Fig. 9.

Overall, the ST-HMP achieves higher accuracies and lower standard devia-
tions than the HMP. This is due to ST-HMP pooling over the time steps, which
results in temporal invariances. The results thus show the importance of com-
bining information from multiple time scales when detecting sensory events.

4.3 Robot Performing Peg-in-hole Task

In this experiment, the robot uses the segmented primitives and goal detectors
from the previous experiments to autonomously perform the guided peg-in-hole
task with the curved groove. The segmentation was performed using the pro-
prioceptive and tactile signals, while the sensory event detection only uses the
tactile data. The position and force signals 100ms after each segmentation are
used to compute the final desired position and contact force for each controller.
The desired positions generated by a minimum jerk trajectory generator are
tracked by a velocity-based operational space controller together with an inverse
dynamic law and PD feedback error compensation in joint space [18]. Track-
ing of desired contact forces on the arm is achieved with a PI controller on the
force/torque sensor located at the wrist [18].
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Fig. 6. Curved groove’s segmentation
success rate and false positive rate.
(Color figure online)

Surface Groove
0

50

100

S
u

cc
es

s 
R

at
e 

(%
)

Straight Groove

Surface Groove
0

50

100

F
al

se
 P

o
si

ti
ve

 (
%

) Position
Force/Torque
Tactile (electrodes)
Tactile (pressure)
Position & Tactile (electrodes & pressure)

Hole
Top

Hole
Bottom

Hole
Top

Hole
Bottom

Fig. 7. Straight groove’s segmentation
success rate and false positive rate
(Color figure online)

0

50

100

S
u

cc
es

s 
R

at
e 

(%
)

Squared Groove

0

50

100

F
al

se
 P

o
si

ti
ve

 (
%

) Position
Force/Torque
Tactile (electrodes)
Tactile (pressure)
Position & Tactile (electrodes & pressure)

Groove
Surface

Groove
Edge

Hole
Top

Hole
Bottom

Groove
Edge

Hole
Top

Groove
Surface

Hole
Bottom

Fig. 8. Squared groove’s segmentation
success rate and false positive rate.
(Color figure online)

Surface Groove
50

100

Curved Groove HMP ST-HMP

Surface Groove Hole Top Hole Bottom
50

100

Straight Groove

Surface Groove Edge Hole Top Hole Bottom
50

100

D
et

ec
ti

o
n

 R
at

e 
(%

)

Squared Groove

Hole
Top

Hole
Bottom

Groove Corner

Fig. 9. Peg-in-hole sensorimotor prim-
itive detection results. (Color figure
online)

An example sequence of sensorimotor primitives successfully executing the
peg-in-hole task with a curved groove is shown in Fig. 10. Without the sensory
event detection, we observed two common failure modes: (i) the robot misses
the groove (failed transition from 2nd to 3rd picture), and (ii) the robot jams
the peg around the groove corner (failed transition from 4th to 5th picture).
The sensory event detection alleviates these issues by detecting when the goal
state was not reached, i.e., the sensory event was not detected, and repeating
the current primitive to reach the goal. The required correction is usually rather
small, and the primitive terminates once the goal has been reached.



Learning to Switch Between Sensorimotor Primitives 181

Fig. 10. Sensorimotor primitive sequence for the curved groove peg-in-hole task.

5 Conclusions

We presented a framework for segmenting contact-based manipulation tasks
using both proprioceptive and tactile signals. We used the unsupervised online
Bayesian changepoint detection algorithm to automatically segment manipu-
lations into sensorimotor primitives. Classifiers using ST-HMP features, were
trained to detect sensory events for switching between primitives. The proposed
method was successfully evaluated on guided peg-in-hole tasks. The robot could
accurately segment the tasks and detect the sensory events using the proposed
approach.

In the future, we will extend the proposed framework to learn to detect failure
events through autonomous exploration.
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Abstract. At present there is just one definition [2] that attempts to
explicitly naturalise the concept of (general, embodied) agency, and it
is unapologetically autopoietic-enactivist. This fact constitutes a public
challenge to other traditions in cognitive science.

A ‘bare’ problem of defining agency remains, even after paring away
hard phenomenological and normative problems by limiting the scope
of the problem to describing ‘as-if’ agency (i.e. the external appearance
of agency). Building on [2], I identify an extended list of criteria that a
theory of agency (whether ‘true’ or ‘as-if’) should meet.

I argue that autopoiesis is the wrong foundation even for ‘bare’
agency, let alone phenomenological and volitional agency; instead, I rec-
ommend starting with an ‘as-if’ definition that relates agency to some
theory of embodied rationality, effectively providing a generalised version
of Dennett’s intentional stance [9], and taking a step towards a rigorous
formal definition.

Keywords: Agency · Autopoiesis · Cognition · Embodied ·
Enactivism · Dennett · Definition · Intentional stance

1 Introduction

The concept of agency plays a major role in how neurotypical humans understand
the world. We draw a basic distinction between two different types of occurrence:

– An act, which is done by an agent ; and
– A mere happening, which occurs as a result of purely mechanical causes.

Di Paolo [11] characterises this as a difference between doings and undergoings.
For instance, imagine a lever with a rickety bookshelf above it. We will con-

sider two different scenarios: a person pulling a lever by contracting their muscles;
and the shelf collapsing onto the lever, pressing it downwards. In one case, the
pulling of the lever is an action done by the person; in the other, the pulling of
the lever is not an action done by anyone, but happens for purely mechanical
reasons.

The intuitive distinction between the two scenarios seems obvious, but it
is surprisingly difficult to characterise in scientific terms what the difference
between acts and mere happenings is. From a scientific point of view, all causes
are mechanical: the person’s pulling of the lever is also a mere happening that
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 183–194, 2016.
DOI: 10.1007/978-3-319-43488-9 17
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occurs as the laws of physics unfold. How can we reconcile the intuitive qualita-
tive disparity between acts and mere happenings, with the scientific qualitative
parity between persons and metal weights?

Agency is, or at least should be, a central topic in cognitive science and
Artificial Life. The objects of study of embodied cognitive science are agents -
those systems that are capable of performing actions - rather than inanimate
objects such as metal weights. The distinction between systems that can ‘do’
and systems that cannot seems to underpin our intuitive notions of animacy and
inanimacy; for example, NASA’s working definition of life is ‘[a] self-sustaining
chemical system capable of Darwinian evolution’ [3]. Stipulating that the system
must not just be sustained, but be self-sustaining, implies that the sustenance
must be an act and not a mere happening.

While certain authors take agency to entail conscious volition (for instance,
Juarrero [16] defines agency as ‘the difference between a wink and a blink’), we
will make no such assumptions. In the sense that it achieves some goal or value
for the agent, a blink - unlike, say, a Parkinson’s tremor [2, p. 5] - is still an
action, albeit an involuntary one.

This article will be concerned with the question of what makes an occurrence
an action, regardless of whether it is consciously undertaken or an automatic
reflex. If such a notion makes sense, let us call it a theory of ‘bare agency’ to
distinguish it from a theory of what makes particular actions voluntary rather
than automatic.

2 Background

Barandiaran, Di Paolo and Rohde (hence, BDR) provide an admirable discussion
of agency in [2]. They point out that previous definitions of agency within cognitive
science (e.g. [13]; see [2, p. 2] for other examples) have merely replaced the problem
of defining agency with the problem of defining other cognitive concepts such as
perception, action, or goals. Given this level of vagueness, it should be no surprise
that we do not have a well-accepted operational definition of what distinguishes
acts from mere happenings, let alone a formal mathematical theory of it.

This article will use [2] as a starting point: by virtue of being specific enough
to allow detailed analysis, their treatment advances the agency debate signif-
icantly. BDR identify three main phenomena that a theory of agency must
account for: individuality, interactional assymetry, and normativity. They also
provide a definition of agency that purports to account for these phenomena.
I summarise BDR’s contributions1 below:

2.1 Individuality

BDR observe that a naturalised theory of agency must describe how a holistic
agent-environment system should be separated into an agent and an environment.
1 Apart from their discussion of the nature of space and time from the agent’s per-

spective, which is interesting, but not the focus of the current article.
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They then argue that this must include an account of how “an agent defines
itself as an individual”. I explain in Sect. 4 why I do not find this argument,
which appears to be motivated by phenomenological considerations, convincing.

2.2 Interactional Asymmetry

BDR point out that to understand something as an agent is to see it, rather than
its environment, as the source of its actions. A theory of agency must explain
what constitutes this asymmetry, given that (at a physical level) the actions are
symmetric agent-environment interactions. In other words, it must justify why
responsibility for the act is allocated to the agent rather than the environment.

They dismiss thermodynamic or statistical avenues, and propose the notion
of modulation to account for asymmetry. I argue in Sect. 5.1 that modulation is
not a well-defined concept. In Sect. 5.2 I explore our intuitive notion that agents
alone are the cause of the events that constitute their actions, and see what
meaning can be made of this within modern statistical models of causality.

2.3 Normativity

BDR’s last point is that actions are purposive in nature: when an agent acts,
there is something it is trying to do, and that attempt can be successful or
unsuccessful. This consideration necessarily introduces a normative scheme of
value, and a theory of agency must account for how actions are goal- or value-
directed.

The BDR solution is autopoietic: the “source” of value is (roughly speaking)
precarious self-maintenance. I discuss in Sect. 6 the need to take into account val-
ues that are not derived from survival, particularly in the context of deliberately
self-destructive actions.

2.4 Definition

BDR propose a definition of agency that purports to meet their three criteria:
effectively, an agent S is a network of interdependent processes that modulates its
coupling with its environment E in a manner that contributes to the maintenance
of some of the processes in S.

In terms of definitional precision, BDR have set the bar for future theories.
While I believe their definition lacks mathematical rigour, and disagree in any
case that autopoiesis is the correct foundation for a theory of agency, readers
are urged to inspect the definition on [2, p. 8] as an example of what we should
be aiming to surpass.

3 Agency and Phenomenology

The relation of subjective experience to agency deserves discussion: should a
theory of agency account not just for what makes a system an agent, or an
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event an act, but also for there being something that it is like to be the agent?
BDR clearly believe so; they clearly appeal to what [8] describes as a Jonasian
(ontological) conception of phenomenology as opposed to a Kantian (epistemic)
one (i.e. they want there to be a naturalisable, objective fact of the matter
about the presence or absence of a first-person perspective). However, I believe
this ‘appeal to phenomenology’ [5] is problematic.

Accounting for the subjective experience of bats [19] is extraordinarily ambi-
tious, let alone the subjective experience of simpler biological agents such as
single-celled organisms, and it hardly seems fair that a theory of agency should be
required to solve the “hard problem” [6] of consciousness. See [4] for a discussion
of the challenges in scientifically studying consciousness even in non-mammalian
animals with brains.

It seems plausible that a theory could account (in some sense) for a basic
distinction between acts and mere happenings, without needing to invoke the
notion of phenomenal experience. Such a theory would still explain something
of real relevance to cognitive science.

Even if we are prepared to attempt the hard problem, any claim that phe-
nomenology is a prerequisite for action needs to be justified explicitly: we still
draw a distinction between actions and mere happenings, including cases where
the agent in question is consciously unaware of the action they are taking, or per-
haps even entirely unconscious (for instance, breathing while asleep, versus being
sustained by a ventilator); we also allow that ‘locked-in’ patients may possess
phenomenal consciousness during a period of time in which they are unable to
act, i.e. do not function as agents. These cases suggest that the relation between
agency and phenomenology is not a simple one.

4 Individuality

BDR rightly point out that, at a bare minimum, to talk about the interaction
between an agent and its environment requires distinguishing two distinct sub-
systems: an agent, and an environment [2, p. 2]:

The problem of individuality becomes the problem of justifying which
one we choose among the large set of possible and arbitrary distinctions
between system and environment

Undoubtedly, any theory of agency that omits a treatment of this question
is an unsatisfactory one. BDR go on to argue [2, p. 3]:

A concept of agency that cannot account for the way in which an agent
defines itself as an individual requires another agent (the observer) to
perform the system-environment distinction. If then we have to justify the
identity of this observer agent by means of another one and so on, we enter
an infinite explanatory regress.

This conclusion appears to be premature. The scientific theorist does need to
justify how they carve the world into agent and environment; but there appears
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no a priori reason to suppose that this cannot, in principle, be done on the
grounds of some purely physical distinction that does not invoke a subjective
perspective.

If, for some reason, it turns out that a subjective perspective must be invoked,
we come readily equipped with one ourselves. Scientists pretend to a ‘God’s-eye
view’ [23] that transcends individual subjectivity; but when discussing conscious-
ness this pretense may need to drop (as Nagel points out in [19], we can only
imagine what it would be like for ourselves to be a bat, not what it is like for
the bat to be a bat).

Hence, I agree with BDR that an agent must be distinguished from its envi-
ronment in some appropriate way, but disagree that this distinction must be
founded on a notion of the agent’s phenomenology.

5 Interactional Asymmetry

Characterising an event as an action seems to imply that the agent, not the
environment, is responsible for it. BDR describe this as ‘interactional asymme-
try’, and, after rejecting thermodynamic and statistical approaches, attempt to
account for it by reference to a notion of modulation.

I will argue that the notion of modulation, first proposed in [11], is ill-defined,
and propose an alternative analysis based on modern statistical approaches to
causality.

5.1 Modulation

BDR’s solution to characterising asymmetry is the notion of modulation, possibly
following [11]. They state [2, p. 4]:

The coupling between a system and its environment is, strictly speaking, a
symmetrical physical happening [...]. However, an agent is able to modulate
some of the parametrical conditions and to constrain this coupling in a way
that the environment (typically) does not.

For this approach to work, BDR need to:

1. define explicitly what distinguishes a modulatory parameter from other vari-
ables in the system; and

2. show why this definition captures properties essential to agency.

They neither do so, nor cite any work that does so. In [2, p. 4] they refer to
nonholonomy as a possible distinguishing feature of modulatory parameters,
but do not provide any justification for why this arcane mathematical property
is relevant to agency, or how it might pick out modulatory parameters. For
holonomic systems, path integrals depend only on initial and final states, and
not on the particular path taken; the canonical example of a nonholonomic
system is the Foucault pendulum.
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5.2 Causation and Statistics

It turns out that there is a well-defined mathematical sense in which a subset
of variables describing the agent system (let’s call them ‘actuators’) mediate all
causal influences of the agent on its environment. Similarly, a subset of environ-
mental variables can be identified with ‘sensory input’.

Modern statistical graphical approaches to causality, which seek to charac-
terise the way systems behave in response to external interventions (see [12] for
a summary), have been applied to complexity science since at least [1].

A Bayesian network describes (statistical) conditional independence rela-
tionships between variables, allowing a notion of local dependencies (which
form ‘Markov blankets’ around particular nodes). Causal Bayesian networks [22]
extend this idea by describing how probability distributions change in response
to external interventions that fix particular variables’ values directly, capturing
the counterfactual character of causality.

If the time dimension is discretised, the time-varying states of the agent and
its environment can then be understood as a series of random variables that
are related by a causal Bayesian graph, with states at time tn being caused by
states at time tn−1. It then becomes meaningful to talk about those aspects of
the agent’s state that have a direct causal influence on the environment’s next
state, and vice versa; these variables are naturally interpretable as actuators and
sensory inputs (see, e.g. [17]).

Limitations. Of course, this characterisation is too inclusive: it defines all
causal interactions between the agent and its environment as sensorimotor, while
clearly only some of them are (for instance, the environment is changed by the
heat radiated from the agent’s brain, but we would balk at labelling this a motor
effect). Nevertheless, it will serve as a useful starting point.

Note also that there is debate about what probabilities are supposed to rep-
resent in the real world [15,20]; I will not attempt to answer that question here.

I suggest that the asymmetry of the agent’s/environment’s relationship to
symmetric agent-environment interactions is, in fact, not causal at all: rather, it
arises simply because the interactions serve some purpose for the agent, and they
do not appear to do so for the environment. Hence, causation is relevant only for
defining the interface between agent and environment. The more fundamental
question of purposes is discussed in the next section.

6 Normativity

Agency involves goals, which in turn involve the ascription of “good” or “bad”
valences to outcomes. The term “normativity” denotes the association of (some
sort of) value with behaviours. BDR’s approach, like other autopoietic accounts,
stipulates a priori that normativity is founded in survival.

Contra BDR, I believe there are at least three distinct contexts which rea-
sonably call for the attribution of “good” and “bad” valences to the outcomes
of a biological organism’s actions.
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1. An evolutionary context. Is the outcome is evolutionarily adaptive, i.e. does
it further the reproduction of the agent’s genes? (I’ll call this evolutionary-
normativity.)

2. A survival context. Does the outcome further the survival of the individual
agent? (I’ll call this survival-normativity.)

3. A personal context. Does the outcome further the agent’s own2 goals? (I’ll
call this personal-normativity)

For living organisms, these three contexts usually assign very similar valences
to outcomes, and for good reason. Evolution favours the production of organisms
which act to promote their own survival, and hence the reproduction of their
genes.

However, there are exceptions to this rule which demonstrate that the three
normative contexts are non-identical. Social insects will sometimes engage in
self-destructive behaviour, such as the ‘suicide bomber’ phenomenon known as
autothysis [18,24]. This behaviour is typically evolutionarily adaptive (because
their clones will be more likely to reproduce).

In extreme cases, the actions of humans run counter to both evolutionary fit-
ness and personal survival; for instance, murder-suicides in which a person kills
their own children before killing themselves. Therefore, personal-normativity is
not identical to survival-normativity or evolutionary-normativity. Since autoth-
ysis establishes that survival-normativity is not equivalent to evolutionary-
normativity, we have identified three nonequivalent normative schemes.

It seems that while agency must be founded in normativity, there are multiple
normative schemes that it can be related to. The most important of these three
is the least well-defined one: personal-normativity. In the next section, I will
explain why neither evolutionary-normativity nor personal-normativity can be
reduced to survival-normativity in the case of the individual agent.

6.1 Actions by Agents

A theory of agency needs to account for more than just why particular events
constitute actions rather than mere happenings; it needs to account for why
those events constitute actions performed by particular agents. Otherwise, it
posits a world in which some events are actions rather than mere happenings,
but those actions are performed by nobody in particular.

There have been some attempts by autopoietic cognitive scientists to account
for behaviours such as injecting heroin, which do not seem to be survival-
normative, as stemming from the self-maintenance of some higher-level process.
The claim is that survival-threatening behaviour maintains some sort of organ-
isation or identity at a different level than the biological organism as a whole:
for instance, a habit or a cultural institution, or some stable pattern in the
organism’s internal dynamics. However, this solution is deeply problematic.
2 At present, there is no scientific consensus on what this represents in physical terms.

For the purposes of discussion, we will have to rely on the meaning of the words in
ordinary English.



190 S. McGregor

Consider a bacterium which through a point mutation has a tendency to
exhibit chemotaxis towards a toxic substance. The relations of toxin and nutrient
to the bacterium’s metabolism are different, but the relation to the bacterium’s
short-term locomotive behaviour may be the same for toxin and nutrient3.

Proponents of the autopoietic account need to do one of two things:

1. Account for why the mutant’s chemotaxis constitutes active behaviour on the
part of the very entity whose existence is threatened by that behaviour (the
entire bacterium); or

2. deny that the mutant’s chemotaxis constitutes active behaviour on the part
of the bacterium itself (either by denying that it constitutes active behaviour
of any sort, or by asserting that it constitutes active behaviour on the part of
some other level of identity).

It is hard to see how the first can be done while still maintaining that the
intentional nature of acts performed by an agent is grounded purely in the
survival-normativity of that very same agent (this being what sets the autopoi-
etic approach apart from other schools of cognitive science).

The second option is more internally consistent, but it seems to fly in the
face of what we mean by active behaviour. In particular, it renders the notion
of performing intentionally self-destructive actions literally contradictory: either
the events are not actions at all, or they are the actions of some entity that is
not destroyed by them.

The next section presents my proposal for an alternative solution, based on
a novel approach that cuts the Gordian knot and simplifies the question.

7 An Alternative: As-If Theories

If the enactivist approach is unsatisfactory, what alternatives are there? I believe
there is a more promising avenue, that begins with a much simpler question: what
does it mean for a system to behave as-if it were an agent (from an observer’s
perspective)?

While this fits well with ascriptive theories of cognition such as Dennett’s
‘intentional stance’ [9] (which, roughly speaking, deny that there is any difference
between behaving like a cognitive agent and being a cognitive agent), it does
not represent any such philosophical commitment. It can be seen merely as an
attempt to deal with a theoretical question closely related to the topic of agency
per se.

Presumably a scientifically-understood agent should appear to behave like
an agent, at least from the perspective of the scientist; in other words, every
genuine agent (if such a distinction makes sense) is also an as-if agent. Hence, a
satisfactory scientific theory of as-if agency may not be able to describe sufficient
conditions for real agency, but it seems guaranteed to describe some necessary
conditions.
3 Of course, in the long term, the toxin fatally disrupts the bacterium’s locomotive

behaviour.
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Usually, we do not bother constructing as-if theories, because they come ‘for
free’ from a direct theory of the phenomenon in question: for instance, once
we know how ballistic trajectories work, we know what it means for a powered
object in zero gravity to behave as if it is following a ballistic trajectory. However,
there are some reasons to believe that an as-if theory of agency would at least
function as a useful preliminary to a full theory of agency:

1. The hard problem of phenomenology does not affect as-if theories.
2. An as-if theory does not need to tackle the problem of justifying

(a) what the agent-environment boundary is taken to be,
(b) on which side of the boundary the agent is taken to lie, or
(c) what the agent’s purposes are taken to be
because its remit is to explain whether some system behaves as though it
were an agent, after all the parameters that make this question meaningful
have been specified.

3. An as-if theory can treat a candidate agent as a black box, although it can
also ask questions about the system’s internal state if necessary.

8 What Theories of Agency Should Look Like?

The BDR treatment of agency is welcome for several reasons: it recognises the
need to provide an explicit definition of agency within cognitive science; it iden-
tifies several relevant features which distinguish actions from mere happenings;
and it is a clear statement of the enactivist conception of agency.

I have argued that the BDR definition is inadequate, for reasons directly
related to the assumptions of the phenomenological-autopoietic strand of enac-
tivism; in any case, I propose that a proper theory of agency, enactivist or
otherwise, should meet at least the following criteria:

1. It does not have to address phenomenological concerns, but it may legitimately
do so (in which case it is a theory both of agency and phenomenology).

2. It does not have to distinguish between voluntary and automatic actions, but
may legitimately do so (in which case it is a theory both of agency and of
volition).

3. It should provide an account of how some physical phenomena constitute
active behaviour (or for an as-if theory, as-if active behaviour) that is
(a) performed by (c.f. asymmetry)
(b) particular agents (c.f. identity),
(c) in pursuit of particular goals or values (c.f. normativity),
in a way that identifies the particular behaviour, agent and reasons for action
(see Sect. 6.1).

4. The theory should be semantically appropriate:
(a) It should correctly classify as many as possible of the phenomena we ordi-

narily view as active behaviour, or provide a new insight that persuades us
the ordinary view is wrong. (For instance, it should preferably not render
the notion of an intentionally self-destructive act logically contradictory.)
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(b) if it is a direct theory, it should not misclassify phenomena we ordinarily
view as inanimate and purely mechanical, without good reason;

(c) if it is an as-if theory, and it classifies a ‘purely mechanical’ phenomenon
as as-if active behaviour, it should describe a convincing perspective from
which the phenomenon appears to be such.

5. It should (at least eventually) be formalisable as a mathematical theory, and
one that is commensurate with the mathematical language of the physical
sciences.

9 A General As-If Theory

The minimal requirements for a theory of agency would seem to be a distinction
between the agent and its environment, a specification of what variables are taken
to be under the control of the agent, and some notion of purpose or normativity.
I propose that these can be captured along the following lines:

1. Formally define the agent, the environment, their sensorimotor interface, and
a normative standard:
(a) (Arbitrarily) distinguish a subsystem X within a Universe Ω, and define

X’s environment Y as everything in Ω that is not in X.
(b) Define the system’s actuators A and sensors S as the variables mediating

the causal interaction between X and Y over time (as in Sect. 5.2).
(c) Define some theory of embodied rationality RC that characterises how the

actuators of an ideally rational agent should vary, in the context of a par-
ticular sensorimotor history, given certain notional ‘cognitive’ parameters
C such as desires.

2. Define a sub-trajectory AT of A over a time interval T as being as-if active
behaviour by X, with respect to RC , if and only if AT largely matches the
constraints specified by RC .

Definition 1b is a first approximation that blurs the distinction between ‘true’
sensorimotor variables and mere interactional variables, as discussed in Sect. 5.2;
this issue does not seem insuperable in principle and can be addressed in future
work.

In its central invocation of rationality, this definition is similar to Dennett’s
formulation of the intentional stance [10]:

The intentional stance is the strategy of interpreting the behavior of an
entity (person, animal, artifact, whatever) by treating it as if it were a
rational agent who governed its ‘choice’ of ‘action’ by a ‘consideration’ of
its ‘beliefs’ and ‘desires.’

However, the definition given here is even more general: it does not assume the
notion of belief (although if needed beliefs can appear in C), or presuppose a
unique Platonic standard of rationality.

Let us consider how this definition relates to the criteria in Sect. 8. The
definition is a theory of ‘bare’ agency that does not address phenomenological
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(criterion 1) or volitional (criterion 2) concerns. It fulfills criterion 3: since this
is an as-if theory, it can be applied to arbitrarily-distinguished agents (criterion
3b) with arbitrarily-posited goals (criterion 3c). The asymmetry required by
condition 3a arises because we identify active behaviour with actuator channels
A that are internal to the agent; in the case where the environment is also an
as-if agent with respect to some theory of rationality RD, the environment’s
actions will then correspond to sub-trajectories of S, not A.

Semantic appropriacy (criterion 4) is what makes an abstract formulation
into a theory of agency rather than a theory of some other phenomenon. However,
it is the hardest one to evaluate, since it requires subjective judgements about
agency and explanatory adequacy to be applied to all possible systems in all
possible environments. Therefore, it must remain a topic of active discussion.

Regarding criterion 5, the choice of RC will evidently be crucial. The mathe-
matical framework of Bayesian inference is an excellent candidate: it formalises
ideal empirical reasoning under uncertainty [7,15]; can be extended in various
various ways to describe ideal embodied behaviour [14,21]; and is completely
interoperable with the causal Bayesian network formalism in Sect. 5.2. The use
of a quantitative, rather than qualitative, theory of rationality will allow the
‘largely’ in definition 2 to be given a precise meaning, by assigning numerical
magnitudes to deviations from ideal rationality.

10 Conclusion

Cognitive science, particularly of the embodied sort, needs a naturalistic defi-
nition of agency. I have summarised the most comprehensive attempt to date:
Barandiaran, Di Paolo and Rohde’s [2], which is strongly enactivist in charac-
ter, and have argued that autopoietic-enactivism is the wrong foundation for
agency. Instead, I have proposed the notion of an ‘as-if’ theory, as a less prob-
lematic starting point for naturalising agency.

The criteria defined in [2] have been reframed, and extended with some finer
distinctions (theories of phenomenology and volition), and notions of seman-
tic appropriacy and formalisability. These extended criteria are proposed as a
minimal standard for future theories of agency.

Finally, I have sketched out a general ‘as-if’ theory of agency, founded in
an abstract notion of rationality, and suggested that Bayesian inference forms a
good candidate for a formal theory of embodied rationality.

Acknowledgments. Nathaniel Virgo, Pedro Mart́ınez Mediano, and Paulo De Jesus
provided invaluable feedback on early versions of this article.
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Abstract. In this paper we investigate the dexterity of human manip-
ulation capabilities by using a soft robotic hand. We built a robotic
hand based on our inspiration from the real human’s, which is capa-
ble of handling chopsticks for grasping variations of objects. The robotic
hand is made of soft structures, by using anthropomorphic configurations
of bones, joints, ligaments, and tendons, that are connected to a mini-
mum set of motor components, i.e. only four servomotors. By developing
a minimalistic physics model of chopstick handling and its simulation
experiments, we have identified one of the necessary conditions of actu-
ation which enables the robot to grasp variations of small objects, those
with different shape, size and weight.

Keywords: Biomimetics · Robot hand · Soft Robotics

1 Introduction

Nowadays, there are many robotic hands available on the market that compete
with each other’s design and ceaselessly claim to be one step closer to anthropo-
morphism. Roboticists have long been looking at the extremity of the upper limb
in order to produce a more realistic representation of it- one that is flexible, skil-
ful and sensitive enough to perform fine motor skills. Despite being successful to
a great extent, widely used robotic joint mechanisms with fixed axis of motion,
still cannot capture the passive compliance of the human hand which depends on
the elasticity of the tissues that build up the joints [1]. Consequently, although
there are many scientists showing very advanced innovations in the field [2–18]
further research is needed since the medical sector is still not ready to provide
amputees with reliable, human-like hands. An important factor that has affected
the progress in building capable robotic hands is the lack of easily obtainable,
low cost experimental robotic hands that can be used as test beds [19]. That
is the reason why many scientists prefer to use simulations as a single source
of information when investigating real world objects although it has long been
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known that the combination of real models and simulations proves to be the best
and most complete approach. Barbara Webb’s “Can robots make good models
of biological behaviour?” [20] suggests valuable examples to support this point of
view. In our work we chose to apply the “build a real model” approach because
systems for the real world must be developed in the real world, because the
complexity of interactions available for exploitation in the real world cannot be
matched by any practical simulation environment [21].

The robotic hand we built is a simplified model of a 5-finger-human hand
that uses four motors controlled through microprocessors. There is an increasing
interest in the use of unconventional materials and morphologies in soft robotic
systems because the underlying mechanical properties (such as body shapes,
elasticity, viscosity, softness, density and stickiness) are crucial research topics
for our in-depth understanding of embodied intelligence [22]. While there are
many challenges in these research topics, the technological innovations usually
originate from the fact that we employ soft materials for constructing the robotic
platforms. The use of soft materials requires a certain control architecture regu-
lating a large number of degrees of freedom (often infinite), which is a significant
challenge from a control systems engineering viewpoint. Nevertheless, we aim to
make use of the mechanical dynamics through a unique bio-inspired actuation
method based on the tendon-driven drives, in order to manipulate a pair of chop-
sticks to handle variations of objects. This case study will not only demonstrate
the usefulness of soft materials in robotics but also contribute to our better
understanding of dexterous manipulation in humans (Fig. 1).

So far we have developed a few five-finger robotic hands, and the latest
prototype demonstrated successful grasps with variations of objects by using a
pair of chopsticks held in three fingers (i.e. thumb, index, and middle fingers).
For investigating the stability performance of this platform, we tested objects
with different shapes, sizes, and weights (including different material properties).

Fig. 1. A picture of the built soft robotic hand.
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In this paper we discuss how we took inspiration from the human hand to
build a soft robotic one and investigate its dexterity through manipulation of
chopsticks in a tendon-driven motor-controlled soft robotic hand. We propose
a minimalistic model of the human hand that although being operated only by
four motors (in comparison to real human hand that has more than 30 muscles)
is capable of performing object grasping by using chopsticks and firmly holding
objects of different shape and size.

The use of chopsticks is not a new idea as studied and reported in the pre-
vious literature [16,23–28]. However none of the previous works has explored
the anthropomophic configuration of robotic hand in the level we report in this
paper.

Section 2 will explain in more detail the process of building the soft robotic
hand and Sect. 4 will present the whole experimental set-up. Section 3 will con-
centrate on the mathematical model we suggest and Sect. 5 will show theoretical
and practical results which we discuss in Sect. 6.

2 Hand Model

It is a common belief that the dexterity of human hands is the reason for our
success as a biological species and is also a matchless characteristic making us
defer from apes. Although “each of the features forming the human morphologi-
cal pattern appears variably in at least one or more non-human primate species”
[29], even primates such as the chimpanzees are not capable of delicately coordi-
nating the knapping movement the way Homo Sapiens is. Consequently, human
hand still remains a reason for admiration and inspiration for research for many
scientists.

To explore this fascinating research topic, we developed an anthropomorphic
soft robotic hand (see Fig. 2) has taken inspiration from the design proposed in
[1]; however, as stated, the number of tendons and their location in the currently
discussed robotic hand are different from the tendons proposed in the article and
the tendons from the real human anatomy. The reason why we chose this design
of the tendons is connected to a trial in which we look for an optimization and
simplicity in comparison to the real human hand.

2.1 Materials

In order to build our soft robotic hand we used a variety of materials to rep-
resent its soft and rigid nature. The combination of different materials did not
hinder the performance of the hand and allowed for it to show skilful and flexible
performance with and without the chopsticks and also bend properly when the
tendons were pulled by the motors. Thus, the chosen set of materials proved to
be an appropriate one.

For the palm we used silicon (EcoFlex R© 20) and hot melt adhesive (HMA,
Pattex, Henkel, UK). When heated up, the HMA turns into a viscous liquid
and fills the gap between two complex surfaces to make a strong bond when
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Fig. 2. Drawing of the built soft robotic hand. The picture shows an anterior view
(palmar view) of the built hand. With grey colour we have drawn the joint capsules,
with black the collateral ligaments, with dark blue the tendons and with yellow-the
pulleys. MCP stands for metacarpophalangeal joints, DIP - distal interphalangeal joint,
PIP - proximal interphalangeal joints. Additionally, we show where the points of contact
between the top chopstick and the two fingers (index finger and thumb) are: F2, F1 and
F3. F2 is the force acting on the thumb and is controlled via a tendon by motor 4; F1

is acting on the tip of the distal phalanx of the index finger and is controlled by motor
3; F3 is acting on the proximal phalanx and is controlled by motor 1. (Color figure
online)

cooled down [1]. It usually starts to cool down and form a strong bond with the
surface to which it is applied within 20 s and becomes stiff and with an ambient
temperature after a minute. To build the fingers we used anatomically correct
plastic bones by 3B Scientific GmbH, Germany. They helped us retain the accu-
racy and qualities of the real human hand. For the joint capsule we used black
nitrile rubber (NBR sheet, White Cross Rubber Products, UK) which covers the
whole joint and keeps it tightly attached. The material can also elongate under
applied torque to generate the bending motion of the joints [1]. For collateral
ligaments we used black butyl rubber (Butyl IIR sheet, White Cross Rubber
Products, UK) that winds around at the intersection between two phalanges
and contributes to additional stability of the joint.

The tendons which carry the output force to the bones are made of 0.55 mm
diameter Dyneema R© PE braided fishing lines with 3.1 GPa tensile strength.
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Fig. 3. Manufacturing of the hand: showing the process and the final result.

The pulleys which the tendons go through are made of Polytetrafluoroethylene
(PFTE tubes, Farnell, UK) with Teflon coating which generates a low friction
inner surface [1]. In order to assemble and glue the required materials to each
other, we used the hot melt adhesive mentioned before.

2.2 Fabrication of the Hand

Due to the complexity of the anatomically correct pieces and continuum surfaces
we assemble our fingers by hand. Exact process of the fabrication and pictures
can be seen in [1]. In brief, we dissembled the plastic hand to the state where we
had each bone separately. Using the black nitrile rubber, cut into rectangular
shaped pieces, we covered the joints (MCP, PIP and DIP) and secured the newly
gainted structure with the black butyl rubber as collateral ligaments.

After we were ready with the assembling of the capsule ligaments and the
collateral ligaments, the fingers looked like the ones shown on Fig. 3(A) and (B).
The next step involved the adding of the tendons and pulleys. In our robotic
hand, the index finger and the middle finger have four tendons each, located
on the anterior side, the right and left side and the posterior side of the finger.
For the thumb, we decided that the minimum required number of tendons we
will need is two and so located one on the anterior and one on the posterior
side. The ring finger and little finger have only one tendon each, located on the
anterior side as these fingers do not contribute to the movement of the hand
and the manipulation of the chopsticks. There are four sets of pulleys that the
tendons go through (see Fig. 3(D)). The pulleys are secured with tape (to mimic
the function of the human ligaments for keeping the tendons to the bones) for
additional stability.

Once the fingers were ready, they were placed back to their anatomically
correct locations with regard to the carpal bones (Fig. 3(C)). After all fingers
were connected to the carpal bones and glued to them with HMA, we decided
to build a palm-like soft structure using again the hot melt adhesive fluid and a



200 M. Chepisheva et al.

certain amount of silicon as to cover the hand as much as possible from all sides.
The silicon was prepared in advance, 24 h before the fabrication of the hand. In
the end, the result was a fully assembled hand as shown on Fig. 3(D). After the
assembly we glued a pair of chopsticks to four contact points of the hand.

3 Chopstick Model

In this paper, we demonstrate the capacity of our fingers by holding two glued
chopsticks and use them to grab small sized objects. Figure 4 shows the model
we are using to express the forces acting on the chopsticks by our fingers. Here,
forces F1, F2 and F3 are applied by the fingers on the top chopstick and Fact

is the total force generated at the tip of the chopsticks we call it activation
force. We assume that a physical rigid object in between the sticks transfers the
Fact force so that the bottom chopstick reflects the same force, but in opposite
direction.

In our paper, we only actuate the top chopstick with the index finger and the
thumb. Forces F1 and F3 are generated by the distal and proximal phalanges of
the index finger, respectively and F2 is generated by the distal phalanx of the
thumb. Given these forces and the distances on the top chopstick depicted by
a1, a2 and a3, the force and moment equalities for our model are given as below:

Fact + F1 + F3 − F2 = 0 (1)

F1a1 + F3(a1 + a2 + a3) − F2(a1 + a2) = 0 (2)

Fig. 4. A free body diagram of the forces acting on the top and bottom chopsticks. In
our paper we only concentrate on the forces on the top chopstick.

4 Experimental Setup

The experimental setup consisted of three parts: actuation mechanism, measur-
ing scales and the robotic hand itself.
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Fig. 5. Experimental set-up. (A) forces that we measure (B) experimental set-up (C)
motors, power supply and measuring scales. (Color figure online)

The actuation mechanism of our robot hand consists of four tendon driven
modules which can be controlled independently from each other. Each module
has a microcontroller, a motor driver, a 100:1 gear ratio Pololu R© 6 V DC motor
with 0.22 Nm stalling torque output, and a motor encoder for position feedback
inside a 30 × 40 × 50 mm box [1]. There is a pulley with a circumference of 22 mm
attached to the motor shaft, which is connected to the free end of a tendon. These
modules are connected to each other over a master communication unit with a
I2C bus. Each module runs a PD controller loop whose target position can be
set by computer and transferred to the master communication unit with a USB
connection [1]. The modules are connected to an Arduino R© Duemilanove board
and a power circuit. Through a USB connection the Arduino board connects to
a computer with Matlab that operates the movements of the chopsticks with the
help of a set of commands. A power supply is connected to the computer to give
electricity to the system.

The second part of the experimental set is represented by three measuring
scales by the company Ajax Scientific (Plastic Tubular Spring Scale, 2000 g/20 N
Weight Capacity, Red) and one spring scale by Pesola (Medio-Line Spring Scale,
Newton, 25 N). The robotic hand was placed on a stand at the same height level
as the modules and the red spring scales as to allow accurate measurements
and free motion of the chopsticks in the air. The complete platform is shown
on Fig. 5.

5 Experiments and Results

5.1 Simulation Results

Figure 6 shows the numerical solutions to the force equilibrium depending on the
Eqs. (1) and (2). In Fig. 6(a), we have set Fact with its minimum and maximum
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Fig. 6. Numeric solutions of the force equilibrium given in Eqs. 1 and 2. (a) Relation
between F1 and F2 and F3 when Fact is kept constant. (b) Relation between Fact and
F2 and F3 when F1 is kept constant. In both figures lines with circles represent the
values when the fixed force is at its minimum, and lines with asterisks represent values
when the fixed force is at its maximum value.

values (0 and 0.5 N respectively) and observed the relation between F1 versus F2

and F3. As expected, both F2 and F3 have an inverse relation with F1 while Fact

is fixed at either 0 or 0.5N. We also notice that F2 has a higher magnitude and
a larger range of values compared to F1 and F3 because it is the counteracting
force to the sum of F1, F3 and Fact. In Fig. 6(b) we observed the relation between
forces F2 and F3 versus Fact when F1 is fixed at either 0 or 0.5 N. As Fact is
the resulting force on the tip of the chopstick, we naturally observe a direct
relationship between Fact, F2 and F3. Similar to Fig. 6(a), we notice that F2 has
a higher magnitude and a larger range of values as it is the counteracting force
to the sum of the rest of the forces.

We start our experiments with force equilibrium by numerically solving the
equations presented in the chopstick model in Sect. 3. As we have only two
equations for four unknowns, i.e. F1, F2, F3 and Fact, we provided a fixed range
of 0 to 0.5 N for Fact and F1 to observe the relation of the two other forces with
respect to these ranges. We have chosen equal distances between force points
shown in Fig. 4, i.e. a1, a2 and a3, and set them to be 45 mm, in order for the
sake of simplicity and to explore the basic characteristics of the model.

5.2 Experimental Results

As we saw from the chopstick model on Fig. 4, there are three points of contact
between the fingers (index finger and thumb) and the top chopstick and conse-
quently three points of possible force application – F1, F2, F3. In addition, there
is the activation force Fact between the two chopsticks that reflects the stability
of the grasp. In this section of the paper we are presenting the experimental
results of the measurements of these four forces. As shown on Fig. 5(A), we built
a specific construction in order to be able to measure all forces in their plane of
action: F1, F2, F3 and Fact.
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F1 is the force acting on the inner tip of the distal phalanx of the index finger.
The tendon that is located on the inner middle side of the index finger (as shown
on Fig. 2-tendons used are highlighted in black) connects the area where F1 acts
to motor 3. F2 is the force coming from the inner part of the tip (distal phalanx) of
the thumb and is connected via a tendon with motor 4. Lastly,F3 is the finger force
acting on the proximal phalanx of the index finger and is connected to motor 1.
Since the index finger has two finger forces - F1 and F3 each connected to a motor:
motor 3 and motor 1, respectively, it becomes obvious that f.ex. motor 3 does not
only influence the performance of F1, but also of F3. The same holds true for motor
1: the force that we apply in motor 1 not only triggers a motion in the area where
F3 is located, but also influences the F1 area. This is why, when measuring the
finger forces F1 and F3, we took into account both motors: for F1 – motor 3 and
motor 1 and for F3 – motor 1 and motor 3. For finger force F2 we measured the
influence of only one motor motor 4.

Controlling the amount of force we were applying to the modules (where
motor 1, 3 and 4 are located), we measured the force of the motors and force of
the fingers for every different amount of output force we were applying. The range
of force values we applied was different for F1, F3 and F2. They were not picked
randomly but according to previous measurements showing in which range we
will experience the most noticeable changes. For example, when measuring finger
force F2, we used 10 different values of the force we applied via Matlab (in the
range between 4.75 N and 8.97 N), wrote down the values that the measuring
scale connected to motor 4 and the measuring scale connected to the thumb
showed and performed the same measurements three times. So, in the end only
for F2 we had three sets of 30 measurements, i.e. 90 data points. We took the
average values for F2 and for the force of motor 4 and plotted the values as
shown on Figs. 7 and 8.

In order to check the stability of the grasp, we tested the hand with objects
of different shape, size and weight (see Fig. 9). The objects used for this grasping
test were: wooden bar (0.7 g), paper frog (0.8 g), plastic butterfly (2.0 g), paper
box (9.0 g), embroidered textile ball (19 g), raven-plastic toy (10 g), Pink plastic
toy (20 g), plastic ball (20 g), spool with thread (0.7 g), paracetamol tablet (0.6 g).
The maximum weight that we tested was 20 g. In addition, we see that the hand
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Fig. 7. Experimental results showing the relationship between the activation force Fact

and the motors: motor 3, motor 1 and motor 4.
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Fig. 8. Experimental results showing the relationship between the activation force Fact

and the finger forces: F1, F2 and F3

Fig. 9. Holding of 10 different object to show stability of the grasp: (A) wooden bar (B)
paper frog (C) plastic butterfly (D) paper box (E) embroidered textile ball (F) raven
plastic toy (G) pink plastic toy (H) plastic ball (I) spool with thread (J) paracetamol
tablet. (Color figure online)

is holding not only big objects such as the paper box or embroidered textile ball,
but also delicate ones such as a tablet or a plastic butterfly.

6 Conclusion

In this paper, we presented an approach to design, fabricate, and control anthro-
pomorphic robotic hand that is capable of using chopsticks to manipulate various
objects. Unlike conventional rigid grippers, our platform consists of a number of
soft components, which is, on the one hand, advantageous for manipulation dex-
terity, but on the other hand, challenging to perform motor control. This paper
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presented the first experimental result based on the minimalistic actuation com-
ponents to identify its basic handling capabilities of chopsticks. Through the
investigation with the simple chopstick physics model, we found how to provide
constraints to chopstick motions, and generate necessary forces at the tips of
them for manipulation tasks. After all we demonstrated that, with the pertinent
constraints, it is sufficient for this robot to control only one motor to adjust
forces necessary to grasp variations of objects. In the future, we plan to extend
this project with more challenging tasks such as holding of chopsticks without
gluing them on hands, and controlling the chopstick forces more dynamically to
negotiate with deforming objects, and so on. With these investigations, we envi-
sion to understand the nature of grasping in biological and artificial soft hands,
as well as to develop more dexterous manipulators for robotic applications.

Acknowledgement. This research was supported by the RoboSoft: Coordination
Action for Soft Robotics, funded by the European Commission under the Future
and Emerging Technologies (FP7-ICT-2013-C project No 619319), and the Cambridge
Commonwealth, European and International Trust.

References

1. Culha, U., Iida, F.: Enhancement of finger motion range with compliant anthro-
pomorphic joint design. Bioinspiration Biomimetics 11(2), 026001 (2016)

2. Salisbury, J.K., Craig, J.J.: Articulated hands force control and kinematic issues.
Int. J. Robot. Res. 1(1), 4–17 (1982)

3. Townsend, W.: The barretthand grasper-programmably flexible part handling and
assembly. Industr. Robot Int. J. 27(3), 181–188 (2000)

4. Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand
with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans. Mechatron. 7(3),
296–303 (2002)

5. Lovchik, C.S., Diftler, M.A.: The Robonaut hand: a dexterous robot hand for
space. In: IEEE International Conference on Robotics and Automation, pp. 907–
912 (1999)

6. Jacobsen, S.C., Iversen, E.K., Knutti, D.F., Johnson, R.T., Biggers, K.B.: Design
of the Utah/MIT dextrous hand. In: IEEE International Conference on Robotics
and Automation, pp. 1520–1532 (1986)

7. Liu, H., Wu, K., Meusel, P., Seitz, N., Hirzinger, G., Jin, M.H., Chen, Z.P.: Mul-
tisensory five-finger dexterous hand: the DLR/HIT hand II. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 3692–3697 (2008)

8. Deshpande, A.D., Xu, Z., Vande Weghe, M.J., Brown, B.H., Ko, J., Chang, L.Y.,
Matsuoka, Y.: Mechanisms of the anatomically correct testbed hand. IEEE/ASME
Trans. Mechatron. 18, 238–250 (2013)

9. Hirose, S., Umetani, Y.: The development of soft gripper for the versatile robot
hand. Mech. Mach. Theor. 13(1), 351–359 (1978)

10. Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive
synergies for the design and control of the Pisa/IIT softHand. Int. J. Robot. Res.
33(5), 768–782 (2014)

11. Gaiser, I., Schulz, S., Kargov, A., Klosek, H., Bierbaum, A., Pylatiuk, C., Dillmann,
R.: A new anthropomorphic robotic hand. In: IEEE-RAS International Conference
on Humanoid Robots, pp. 418–422 (2008)



206 M. Chepisheva et al.

12. Dollar, A.M., Howe, R.D.: The highly adaptive SDM hand: design and performance
evaluation. Int. J. Robot. Res. 29(5), 585–597 (2010)

13. Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R.,
Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J.
Robot. Res. 33(5), 736–752 (2014)

14. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A
bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot.
2(3), 107–116 (2015)

15. Chen, W., Xiong, C., Yue, S.: Mechanical implementation of kinematic synergy
for continual grasping generation of anthropomorphic hand. IEEE/ASME Trans.
Mechatron. 20(3), 1–15 (2014)

16. Fukaya, N., Asfour, T., Dillmann, R., Toyama, S.: Development of a five-finger dex-
terous hand without feedback control: the TUAT/Karlsruhe humanoid hand. In:
IEEE International Conference on Intelligent Robots and Systems, pp. 4533–4540
(2013)

17. Xu, Z., Kumar, V., Todorov, E.: A low-cost and modular, 20-DOF anthropomor-
phic robotic hand: design, actuation and modeling. In: IEEE-RAS International
Conference on Humanoid Robots, pp. 368–375 (2013)

18. Jiang, L., Low, K., Costa, J., Black, R.J., Park, Y.L.: Fiber optically sensorized
multi-fingered robotic hand. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1763–1768 (2015)

19. Miller, A., Allen, P., Santos, V., Valero-Cuevas, F.: From robotic hands to human
hands: a visualization and simulation engine for grasping research. Industr. Robot
Int. J. 32(1), 55–63 (2005)

20. Webb, B.: Can robots make good models of biological behaviour? Behav. Brain
Sci. 24(6), 1033–1050 (2001)

21. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks:
stigmergy and collective robotics. Artif. Life IV 181, 189 (1994)

22. Iida, F., Laschi, C.: Soft robotics: challenges and perspectives. Procedia Comput.
Sci. 7, 99–102 (2011)

23. Ramadan, A.A., Takubo, T., Mae, Y., Oohara, K., Arai, T.: Developmental
process of a chopstick-like hybrid-structure two-fingered micromanipulator hand for
3-D manipulation of microscopic objects. IEEE Trans. Industr. Electron. 56(4),
1121–1135 (2009)

24. Joseph, R.A., Goh, A.C., Cuevas, S.P., Donovan, M.A., Kauffman, M.G., Salas,
N.A., Dunkin, B.J.: “Chopstick” surgery: a novel technique improves surgeon
performance and eliminates arm collision in robotic single-incision laparoscopic
surgery. Surg. Endosc. 24(6), 1331–1335 (2010)

25. Hsu, S.H., Wu, S.P.: An investigation for determining the optimum length of chop-
sticks. Appl. Ergon. 22(6), 395–400 (1991)

26. Yamazaki, A., Masuda, R.: Autonomous foods handling by chopsticks for meal
assistant robot. In: German Conference on Robotics, pp. 1–6 (2012)

27. Chang, B.C., Huang, B.S., Chou, C.L., Wang, S.J.: A new type of chopsticks for
patients with impaired hand function. Arch. Phys. Med. Rehabil. 87(7), 1013–1015
(2006)

28. Park, J., Moon, W.: The systematic design and fabrication of a three-chopstick
microgripper. Int. J. Adv. Manuf. Technol. 26(3), 251–261 (2005)

29. Shrewsbury, M.M., Marzke, M.W., Linscheid, R.L., Reece, S.P.: Comparative mor-
phology of the pollical distal phalanx. Am. J. Phys. Anthropol. 121(1), 30–47
(2003)



Linguistic Primitives: A New Model
for Language Development in Robotics

Alessio Mauro Franchi(B), Lorenzo Sernicola, and Giuseppina Gini

DEIB Department, Politecnico di Milano, Milano, Italy
{alessiomauro.franchi,giuseppina.gini}@polimi.it

Abstract. Often in robotics natural language processing is used sim-
ply to improve the human-machine interaction. However, language is not
only a powerful communication tool: it is deeply linked to the inner orga-
nization of the mind, and it guides its development. The aim of this paper
is to take a first step towards a model of language which can be inte-
grated with the diverse abilities of the robot, thus leading to its cognitive
development, and eventually speeding up its learning capacity. To this
end we propose and implement the Language Primitives Model (LPM)
to imitate babbling, a phase in the learning process that characterizes
a few months old babies. LPM is based on the same principles dictated
by the Motor Primitives model. The obtained results positively compare
with experimental data and observations about children, so confirming
this interest of the new model.

Keywords: Emergence of vocalization · Babbling · Motor primitives

1 Introduction

Recently Natural Language Processing (NLP) has developed many voice recog-
nition technologies, such as Apple Siri [17], mostly used for simple tasks like
sending a message. Limitations emerge also in other applications; video games
and robots are often able to recognize a few words, mainly related to a spe-
cific task. Instead language plays an important role in intelligent behaviours, as
initially indicated by Alan Turing in his “Imitation Game” [19]. His final consid-
erations was that language manipulation is a necessary condition for a machine
to be intelligent.

In biology the ability of communicating through sounds is present in several
animal species. However language has evolved differently in humans, mainly due
to the fact that it is more than an external instrument for communicating; it
is intrinsic to the mind itself [3]. Spokeng language is thus the epiphenomenon
of the deep link existing between brain and language. It is known that cerebral
areas dedicated to language are highly connected with motor ones; when one
elaborates a sentence or produces a word both areas are activated [14]. This is a
clue of the presence of common mental mechanisms both for motor or linguistic
skills.
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 207–218, 2016.
DOI: 10.1007/978-3-319-43488-9 19
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To recreate in artificial agents such an ability, natural language and percep-
tions should be linked together; the comprehension of natural language by robots
should be based on sensory-motor experiences and not on a sort of hard coded
semantics [2]. In a longer time perspective, a language based on the experience
would help robots to autonomously extract knowledge about the environment,
integrating also this information with those from its own actions and related
sensorial feedbacks [12].

Our research mainly focuses on this relationship between motor learning and
mental abilities development in humans as a way to improve the robot learning
system.

We draw inspiration both from humans and from decades of studies in NLP,
that despite impressive results [17] has still many problems to solve. We start
from the hypothesis that the linguistic apparatus in robotics should be part
of several other biologically inspired mechanisms, cooperating together towards
the cognitive development of the artificial agent. We take inspirations from new-
borns, focusing in particular on the evolutive steps of language. Starting from
data collected during the Speechome Project at M.I.T. [13], we have designed
and implemented a model called the Linguistic Primitive Model (LPM). It aims
at imitating babies in a specific moment of language exploration, the babbling
phase, that takes place from the sixth to the tenth month and is the way they
imitate sounds and words on purpose.

This new model re-uses several concepts typically associated in robots with
movements, creating a parallel between motor and linguistic mechanisms that
is known to exist in humans brain. Learning starts from a simple hard coded
dataset of linguistic primitives; the agent tries to imitate an heard word con-
tinuolsy composing the primitives, and producing new sounds until it succeeds.
Newly learned words are added to the set of primitives ready to be used or com-
posed again to form more complex sounds. Other primitives become useless and
are discarded.

In the rest of the paper we shortly review the related works and introduce our
model of Linguistic Primitives. We make experiments using some data from the
mentioned Speechome data. Results of our experiments are not easily comparable
with state of the art, but they demonstrate that our hypotheses about language
development are correct and that LPM is a basis for further researches. They
highlight also that the use of a typical model for movements is a new promising
point of view for the development of linguistic skills in robotics.

2 Related Works

As we have briefly seen language is strictly connected with mind; its learning
helps the cognitive development, and viceversa [3]. From studies about babies
it is clear that cognitive development in humans is a process parallel to lan-
guage learning. Words are used by infants as powerful instrument for building
an internal representation of the external world; they act as labels for objects in
the environment [11]. New grammatical constructs interact with sensory-motor
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Fig. 1. A schema of the motor primitive composition mechanism

apparatus at a neuronal level [21]: when somebody listens to verbs like “walk” or
“see” its brain activates also neurons of the cortical motor areas. Motor and sen-
sors areas are thus linked togheter: language learning depends strictly on physical
and sensorial experiences, and viceversa. This concept is known as embodiment:
intelligence needs a body and an environment to develop [16].

A biologically inspired approach for language development should help robots
in autonomously extracting simple semantic information from the context; it is
the case of [10] where a moving robot is able to correctly interpret naviga-
tion commands expressed in natural language. Another challenge is the symbol
grounding problem, that concerns the relation between words or symbols with
their meaning [18]. An interesting study showed that sensory-motor integration
can improve symbol grounding processes, just like humans do [9].

The main idea is thus that robots, just like living beings, must play an active
role in their cognitive development and learning, interacting through their body
with the environment. Also language emergence should follow this paradigm and
should be grounded on sensorial experiences. Several evidences show that motor
and linguistic learning share the same mechanisms. Nowadays a validated theory
for movement learning is the motor primitive mechanism [7]; motor primitives
are the “smallest” entity of voluntary movement, that activate a single muscle.
Composition and coordination of several motor primitives, one for each muscle
involved, result in a final complex movement Fig. 1. This theory seems to clearly
explain how infants go from instinctive to voluntary movements, and may also
hold for language development: babbling is for babies the mechanism to start
from simple innate sounds and get to complex and intentional words by their
composition [20].

3 Our Approach: Language Primitives

Understanding and producing language is a multisensory process; it is grounded
on the visual, musculoskeletal and proprioceptive systems; we use our ears to
listen to spoken words but several studies demonstrated that we also exploit
sight for facial expression analysis or body movements recognition [1]. In the
same way the production of language involves the muscular and proprioceptive
systems; these should be seen as two significant hints of the relation between
linguistic and motor skills.
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In their first months of life, babies are not able to pronounce and to dis-
tinguish words, but can determine their phonetic differences. This mechanism
leads to the so called “phonetic attunement”, that is a greater sensitivity to
the contrasts and to the specific tones of a particular language, that eventually
leads babies to distinguish the first words. In the same time they start also to
distinguish the repeated language patterns, mainly by a statistical approach. It
is not necessary for a child to segment a sentence, but he is able to create early
phonetic categories simply listening to sounds. This statistical approach is part
of the distributional learning mechanism and it represents the origin of language
learning: the information concerning the distribution of the frequencies of tones
is merged with the visual information, contributing to the creation of a speech
context.

This first stage paths the way for the following ones in language learn-
ing: the recognition of vowels (6–8 month), of consonants (8–12 month) and
finally of phonemes duration. These phases in children follow very rapidly one
another, more quickly than the only auditory inputs would allow; this gap may
be explained by cross-modal association [4]. Language development is a very
complex phenomenon, but also a universal process and it is the same across
different environmental condition and experiences [6].

We propose a model focused mainly on the basic mechanism through which
words are formed in the first months of life; the term “babbling” refers to the
sounds uttered by newborns when they still aren’t able to pronounce complete
words. Researchers agree that this phenomenon plays a key role in the correct
cognitive development of the baby. Actually, the first movements of the limbs
and of the mouth of newborns are the product of involuntary reflexes. During
the first two months of life, the baby utters sounds that are called protophones,
which already have some features of vowels; these develop until, around the sixth
month, babbling starts.

With time the protophones become no longer involuntary sounds and are
intentionally produced. This voluntary act is part of a more global cognitive
development of the baby, which maps the movements of the vocal tract and the
resultant sounds, allowing babies to replicate a sound. This mapping leads them
to voluntarily utter a word [8]. Other researches have highlighted how these
basic mechanisms for language learning are in common with those for movement
learning and both modules communicate to strengthen each other [13].

The Speechome Project is our main inspiration. Among the huge amount of
collected data, several audio files recorded a baby repeating the same word in
different instants and house places, starting from the very first trials of imitation
to its voluntary pronunciation. As an example we report a brief transcription of
the word “water”:

“gaga” - “gata” - “wata” - “wate” - “water”

From the analysis of these registrations has emerged that each single consonant-
vocal couple may be considered as the most similar particle to a linguistic prim-
itive we can extract. In nature a baby tries to imitate the sound he is listening
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to composing all the “linguistic primitives” he has, in a similar way to motor
learning mechanism. In the above example the baby starts repeating the innate
“ga” particle; as his vocal tract and facial muscles modify in time he learns more
complex sounds such as “ta” or “wa”, replacing simpler particles and resulting
in a more accurate reproduction of the target word. The baby finally learns the
“r” and succeeds in pronouncing “water”.

Our linguistic primitives model aims at reproducing this process of imitation
of a spoken word starting from a hard coded dataset of linguistic primitives;
this set has a direct equivalent in humans as the internal mapping between a
sound and a specific movement of the mouth and of the diaphragm. We consider
linguistic primitives as innate, as they are a direct consequence of non-voluntary
changes, and are independent from the language family and context.

To generate the primitives dataset we have analyzed various registrations
reproducing sounds made by babies during their babbling stages. We have first
discarded videos not tagged with the age of the baby and then classified those
selected into the five different stages of language learning [8]:

1. Cooing (1st–4th month), repetition of single sound, e.g.: ooooooo, aaaaaaah;
2. Consonant-Vowel (CV) or Vowel-Consonant (VC) sounds combinations (4th–

6th month), e.g.: maaaa, uuuum, baaaa ;
3. Reduplicated babbling (6th–10th month), e.g.: babababa, gagagaga,

dadadada;
4. Non-reduplicated babbling (6th–10th month), e.g.: bama, gagamee
5. Quasiwords (10th–12th month), e.g.: watee.

Stages 4 and 5 see the first attempts to compose these primitives intentionally.
Since during these stages the dataset of primitives is quite limited, babies are
not able to compose real words but only simple terms such as “mama” or “dad”,
made of two or three primitives concatenated. The continuous enrichment of this
internal dataset eventually leads to the production of complex sounds.

Fig. 2. The involuntary subsystem. Fig. 3. The voluntary subsystem.
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4 The Implemented System

An artificial architecture able to simulate the language development skills as seen
above should comprehend both the innate mental abilities and all the mecha-
nisms of voluntary learning that rely on multi-modal sensorial inputs. Such an
architecture is a long term goal; in our model we will consider only those aspects
related to canonical babbling and to the auditory stimulus processing.

Two subsystems compose our model: the involuntary (ISS) Fig. 2 and volun-
tary (VSS) Fig. 3. The first reproduces all the aspects related to the physiologic
growth of the body, starting from the earlier months of life until first volun-
tary mechanisms of imitation starts. It receives as input several examples of
babbling and extracts the linguistic primitives; all the possible combinations of
two primitives are then generated, a mechanism that corresponds to the innate
development of the proto-word. A Sound-State table is generated, which recre-
ates the natural mapping between “words” and “states” each baby learns during
time.

The second subsystem deals with babbling, a phase of learning that emerges
in parallel to the acquirement of new words and to the first voluntary imitations
of heard sounds. The VSS receives as input a sound representing the word to
be learned and the architecture starts to “babble”, i.e. it produces sounds by
composing linguistic primitives. The first type of composition we implemented
consists in the concatenation of two or more linguistic primitives; more advanced
mechanism may be added in the future. These sounds are compared with the tar-
get input and the learning process is stopped when the similarity is greater than a
fixed threshold; this event triggers the activation of the Sound-State Table, mim-
icking the neural activation it is known to appear when a baby accomplishes his
imitation task [15].

Fig. 4. The six features extracted in the short-term processing from the sound “ga”
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4.1 Involuntary Subsystem

The main task accomplished by the ISS is the generation of the “hard-coded”
dataset of linguistic primitives. The ISS receives as input several segmented
audio signals, each containing exactly one “babble”, i.e. a vocal-consonant cou-
ple. Every signal is processed with the following filters: stereo-to-mono con-
verter, sampling frequency normalizator, pitch shifter and an RMS equalizator.
This process equalizes signals coming from different sources. A second module is
responsible for the concatenation of these primitives by a cross-fading technique.
This process can be considered part of the involuntary subsystem as in babies
the generation of first linguistic primitives appears as a direct consequence of
their physical development more than of an a-posteriori learning.

The last step is the selection of the “States” for the table. A state is a compact
representation of the environment; it is actually composed by the sound the
robot has listened to. For state selection we perform two kinds of elaboration
on the signals, mid-term windowing and short-term processing: both make use
of a framing mechanism for trimming primitives into very short segments which
are then analyzed independently from each other. Several features are extracted;
their mean and variance form the vector of features we use in classification for
the state selection and for similarity computation Fig. 4.

4.2 Voluntary Subsystem

The second module deals with the babbling and learning phase; it receives in
input a target word, the Sound-State Table and the dataset of primitives. The
features vector of the input word is computed and projected onto the collection
of states and the most similar one is selected.

The States-Sounds Table is used as a sort of neural network to register each
tentative of imitation; rows are dedicated to states, columns correspond to pro-
duced sounds. For each tentative the system will do, the similarity values between
the target and the produced sound is computed and stored in the corresponding
entry of the table; this process is repeated until the imitation performance is
satisfying. As the number of trials grows, the mean number of tentatives needed
by the agent significantly decreases, indicating that the system is learning new
words.

5 Experimental Results

For validating the proposed model we defined different experiments; stated the
innovative approach here presented a direct comparison with other works is
very difficult. Our goal is not to improve others’ models, but to propose a new
point of view for language learning that is bio-inspired, grounded on the agent’s
experience, and that shares its mechanisms with those of the motor system.

Experiments are intended to evaluate the ability of the system both to correctly
imitate an input sound and to learn them as the number of tentatives grows. Two
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metrics are evaluated. The first is similarity, that describes how much the produced
word is similar to the listened one and is computed as the distance between the
features vectors of both sounds, normalized in the range [0..1]:

similarity = tanh
(

1
vectorsDistance

)
(1)

where vectorsDistance is the squared norm of the difference between the two
vectors; similarity is thus the probability that two sounds represent the same
word.

The second is the number of cycles the system needs to produce a “good”
output, where good means above a predefined similarity threshold we empirically
evaluated. For all the following experiment we split our dataset of sounds into
training and testing subset, composed of 600 and 300 signals respectively.

5.1 Preliminary Step

In a preliminary step we had to optimize the open parameters of the system;
the most fundamental is the similarity threshold, that is the minimum value of
similarity we require to consider an imitation as valid.

The setup for this preliminary experiment is:

– training dataset: 600 words;
– testing dataset: 300 words;
– number of tests: 20;

Fig. 5. The graph shows the combined result and the optimal values for the similarity
threshold is highlighted
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– threshold value step: 0.05 (from 0.05 to 0.95);
– input words per test: 200 words (selected randomly from the 300 words).

For each threshold value in the range, the mean number of cycles necessary to
correctly imitate the input word is logged; as Fig. 5 shows this value is low (<15)
for threshold lower than 0.85, a value corresponding to a very accurate imitation of
the input word. Moreover the mean value of the actual similarity is always greater
that the defined treshold. The combination of these two considerations defines a
range of optimal similarity threshold in [0.65, 0.8], a good trade-off that guarantees
a similarity above 0.8 and a mean number of cycles lower than 10.

5.2 First Experiment

We firstly evaluated the importance of the number of words in input to the
system; by this parameter we can copy the natural tendency of caregivers to use
a simplified lexicon, with non-conjugate verbs and a restricted vocabulary.

We thus reduced the number of words in the testing dataset down to only
20, keeping other parameters unaltered:

– training dataset: 600 words;
– testing dataset: 20 words;
– number of tests: 19;
– threshold value step: 0.05 (from 0.05 to 0.95);
– input words per test: 200 words (selected randomly from the 20 words).

By comparing experimental data with previous results it emerges that our
system is able to correctly imitate and learn words in a lower number of cycles,
especially in cases of high similarity threshold values Fig. 6. Moreover the quality
of learning is good even if the number of input word decreases Fig. 7.

This behavior is biologically validated by results from the Speechome Project:
in nature the learning of a new word happens as caregivers repeat it more fre-
quently and homogeneusly.

5.3 Second Experiment

The second experiment is mostly focused on the ability of the system to learn
new words. We have analyzed the trend of the learning rate as input words follow
each other and we expect it to decrease in time.

The parameters for this second experiment are:

– training dataset: 600 words;
– testing dataset: 300 words;
– number of test: 1;
– threshold values: 0.8;
– input words per test: 200 words (selected randomly from the 300 words).
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Fig. 6. The number of cycles needed to reproduce a word decrease if a reduced input
set of word is used

Fig. 7. The trend of the similarity values is not affected by the number of input words

From this experiment we have extracted the number of cycles necessary to
imitate each single word sent as input to the system, computing then the moving
average to remove noise in data. The decreasing mean number of cycles and the
frequency of input words requiring a single tentative to be correctly imitated
show an ongoing learning of novel words or proto-words Fig. 8. This result is
supported by scientific evidence showing that babies speed up language learning
by memorizing the correct imitation tentatives they make and reusing words
already learned.
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Fig. 8. The moving average of the mean number of tentatives the system need to
imitate the target word

6 Conclusion

The use of natural language in robotics has always been an independent field
of research that was born with the aim to obtain intelligent and immediate
interaction between men and machines. However, the importance of language
does not exclusively lie in the field of communication: it actually represents the
very image of the mind, it is deeply linked to its inner structure, and it guides
its development through innumerable phases.

The aim of this work is to take a first step towards a model of language
that can be integrated with the other cognitive abilities of the robot, with the
purpose of contributing and collaborating towards a faster and more reliable
development of its mind and of its learning ability.

We focused our attention on the initial stages of language development, which
takes place in babies during their first years of life during which they switch
from an involuntary production of sounds to the voluntary use of vowels and
syllables: the babbling phase. We consequently elaborated the Model of Language
Primitives (LPM), which is based on the same principles lying under the motor
primitives, transposed into the language learning process.

In order to test the LPM we performed some experiments with the aim to eval-
uate its imitation ability and to test whether the system is effectively able to learn.
The obtained results not only validate this model, but also show a behavior very
similar to the one observed in babies. This supports the idea of the strict parallelism
between language and motor primitives, the core of the proposed model.

This preliminary results are encouraging but several open problems still exist.
The next step we want to explore is the integration of this model into our inten-
tional architecture IDRA [5], to exploit its potentiality in processing different
types of sensorial input, in learning associations, and in the autonomous gen-
eration of new objectives starting from innate instincts. The integration of the
LPM in IDRA should strengthen their learning abilities.
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Abstract. Synchronisation and coordination are omnipresent and
essential in humans interactions. Because of their unavoidable and unin-
tentional aspect, those phenomena could be the consequences of a low
level mechanism: a driving force originating from external stimuli called
the entrainment effect. In the light of its importance in interaction and
wishing to define new HRI, we suggest to model this entrainment to
highlight its efficiency for gesture learning during imitative games and for
reducing the computational complexity. We will put forward the capacity
of adaptation offered by the entrainment effect. Hence, we present in this
paper a neural model for gesture learning by imitation using entrainment
effect applied to a NAO robot interacting with a human partner.

Keywords: Entrainment · Synchrony · Gesture learning · Human robot
interaction · Neural network

1 Introduction

Humans tend to be set in motion by strong or rhythmical stimuli [12]. This
driving force, which allows us to be reactive and adaptive, is called the entrain-
ment effect. This phenomenon, also called magnet effect, is strongly linked to our
ability to be synchronized and coordinated with external stimuli. Under some
conditions, one can consider that synchrony is caused by the entrainment effect.
For example, a synchronous interaction between two partners can be seen as
the result of a mutual and bi-directional entrainment. In fact, entrainment can
be observed with different modalities in various human-human interactions and
plays an obvious role in social coordination (walking together, playing music,
dancing, imitating etc.) [18]. This influence on our motor control have been
largely analysed by psychological studies about interpersonal coordination. Var-
let et al. [21] revealed that the continuity of the stimuli rhythms has a funda-
mental role in influencing the visual and auditory motor coordination, Lagarde
and Kelso [15] found similar results by studying the multi-modal coordination
dynamics between the senses (sound and touch) and human movements.
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Another interesting characteristic of entrainment and synchrony is their unin-
tentional aspect. Indeed, we can distinguish intended and unintended synchrony.
In the first case, synchronisation is aimed whether in the second, it is sponta-
neous and occurs without the subject noticing. Numerous researches found out
that two subjects interacting with each other tend to unintentionally synchronise
[10]. This mutual unintended convergence toward a similar interacting rhythm
can occur when the subject’s own frequencies are close (supposedly a difference
of more or less 10 %), otherwise, it may be difficult for the interacting partners
to be “unintentionally” synchronized. Nevertheless, even in this case one can
notice the presence of mutual unintentional entrainment (each partner driving
the other toward his own motion dynamic) [8]. In fact, as demonstrated in [10],
this phenomenon is such that unintentional entrainment cannot be willingly
avoid. It is precisely this unavoidable aspect which makes the entrainment effect
very interesting to model for Human-Robot Interactions (HRI). We believe that
rhythmic adaptation does not only sustain the interaction but also is caused by
the interaction through mutual entrainment.

More precisely, in this paper we address the question of integrating the so
called entrainment (or magnet effect) in a neural model for HRI. Indeed, despite
its importance in social interactions, this phenomenon is seldom taken into
account when modelling those interactions. Yet, as we will show in this study,
modelling the entrainment effect can make human/robot interacting tasks easier
thanks to the adaptability its offers. This aspect will be highlighted through an
experimental study presenting an example of a neural network model based a
on low level entrainment and designed for learning gestures during an imitative
games between a human and a NAO robot. We will demonstrate that integrating
the entrainment effect simplifies drastically the computational complexity.

2 Related Works and Positioning

Broaching the subject of interpersonal coordination (entrainment, synchronisa-
tion) during interactions involves addressing the issue of gaining sensory motor
abilities to be able to adapt our motion dynamics and behaviour according to
external stimuli.

A classical way to approach this question is to consider a sensory motor
system capable of predicting and adapting its behaviour after analysing the
observed stimuli. Several efficient bio-inspired computational models have been
proposed in this line. As examples, Demiris et al. performed experiments in
which a robotic head equipped with a pair of cameras observed and imitated
the head movements of a human demonstrator [4], Blanchard and Canamero
proposed the basis of a simple algorithm generating explorative and imitative
behaviours [2], Jenkins et al. described an imitation model based on a set of
perceptuo-motor primitives. A simple version of the model was validated on a
20 DOF simulated humanoid using real vision data to imitate movements from
athletics and dance [11].

Despite their promising results, those approaches imply a relative high level
of processing (observing, analysing, predicting and adapting at each time) which
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does not explain the unintentional aspect of entrainment and synchronization in
human-human interactions. In fact, recent works of Dumas et al. using hyper-
scanning has revealed the emergence of millisecond inter-brain synchroniza-
tion across multiple frequencies bands during social interactions (spontaneous
exchanges between two participants of intransitive bi-manual movements [5]).
Moreover, Varlet et al. investigated social motor coordination of patients suffer-
ing from schizophrenia. The results demonstrated that patients intentional motor
coordination was altered while their unintentional low level motor coordination
was retained implying that unintentional and intentional coordination are not
part of the same process [22]. We can conclude that these inter subject synchro-
nizations are not planned as high level processing but result in low level analog-
ical synchronization of neural populations from the sensory flow (vision, audi-
tion...). Otherwise millisecond synchronization would not be obtained. Another
way to model and explain interpersonal coordination is to considered the two
interacting agents as dynamical systems influencing each other. Their behaviours
can be considered as Hugens metronomes [17] cross influencing each other in a
“mechanical way” via several signals (audition, vision etc.). In this case, subjects
(or their limbs) can be modelled by oscillatory systems entraining each other.
This mutual driving force can lead to synchronisation. Hence synchronisation
would only be a particular case where the entrainment effect is strong enough
(depending on the range between the partner frequencies) to reach a stable con-
vergent state where the frequencies of the partners are equal and in phase. This
type of approaches is clearly a better way to explain human tendencies to be
unintentionally and unavoidably entrained by others without noticing or without
“predicting” it.

2.1 Modelling Sensori-Motor Coordination in Dynamical Systems

As previously mentioned, the interacting partners behaviours are modelled by
rhythmic or oscillatory systems in a dynamical system approach. In other words,
the motor controllers of the partner’s body parts are often described as a set
of oscillators. This way to define motor controllers is inspired by the fact that
body parts can be seen as oscillatory systems (pendulums for example) due to
their physiognomy and capacity of movement [7]. Furthermore, several neuro-
biological studies highlighted the presence of a strong oscillatory component in
human and animal motor control. In fact, researches on the locomotion of several
species has allowed to put forward the existence of a neural network located in
the spine and enabling a minimal rhythmic autonomous motor control [6]. This
set of oscillators is called Central Pattern Generator (CPG) and is supposed to
be involved in several task such as breathing, eating or walking. Other recent
studies suggest that motor cortex responses during non oscillatory movements
(reaching) contain a brief but strong oscillatory component [3]. For those reasons,
oscillators are often used to define the motor behaviour of interacting agents in
a dynamical system approach.

To model the mutual exchange of informations (entrainment) between the
interacting systems (agents) those oscillators are often coupled in a non linear
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way as in the well known Haken Kelso Bunz model (HKB) [13] where a Van Der
Pol oscillator is coupled with a Rayleigh oscillator. This mathematical model
permits to report the effect of using the energy of an oscillator to entrain the
other. From a neural point of view, oscillators are often modelled as two linked
neurons which inhibit and stimulate each other to maintain an oscillatory behav-
iour. The way they are linked and the behaviour of the neurons are depending
on the type of oscillators: Wilson- Cowan [23], Terman-Wang [20], Revel [19]etc.
Indeed echo state networks are used to get a complex response to a precise entry.
Thus, rhythmical complex and adaptive movements can be obtained from such
networks [16].

2.2 Positioning on Entrainment Model and its Advantage

Being interested in modelling entrainment effects for HRI, we will adopt an app-
roach using dynamical systems as this is an efficient way to describe the possible
unconscious or unpredictable aspects of this low level phenomenon (see above for
the justifications). The models based on dynamical systems theories presented
above are effective but possess some limitations because of their computational
complexity or the obligation to have access to the parameters of both oscilla-
tors (agents motor controllers) which is not always possible if we consider the
practical case of a robot interacting with a human.

In our previous works, we proposed a solution to overcome those limitations
by endowing a NAO robot with a neural model which uses the energy of the opti-
cal flow (visual stimuli) induced by the human partner movements to “directly”
entrain the robot’s motor controller [9]. This model, which permits to modify
the dynamic of a given movement, was tested and validated with one oscillator
as a motor controller and a very simple gesture (one arm moving up and down)
and will be more precisely described below Sect. 5.2. Here we propose the same
approach using this entrainment model to study its possible use for learning (by
imitating) more complex gestures and trajectories. We will prove that the use of
entrainment in the neural model proposed in this paper can not only enhance the
adaptability of a humanoid robot interacting with a human but also simplifies
the computational complexity.

3 System Workflow and Experimental Setup

Fig. 1. Experimental set-
up: Example of an imita-
tion game between NAO
and a human partner

We used a minimal set-up for our experiments as
shown in Fig. 1. The components include a NAO
robot, an external camera to avoid the limitations
of NAOs camera and a human partner. The frame
rate is 30 images per second. During the experiments,
the human partner faces the robot as shown in Fig. 1
and moves rhythmically his arm. Our objective is to
build a model based on entrainment effect in order
to give the robot the ability to imitate synchronously
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Fig. 2. Structure of the imitation model

the human gesture. Only the NAO’s shoulder articulation is used and controlled
by the model (2 degrees of freedom: up and down/left and right). As we wish the
robot to be able to reproduce a rhythmical movement shown by an interacting
partner, the NAO’s motor controller will be generated by a reservoir of oscilla-
tors (see Fig. 2). The idea is to define the desired motor signal as a weighted sum
of oscillators at different frequencies (such as in Fourier series). Hence reproduc-
ing a movement or a trajectory means finding the right combination within a
set of oscillators. The general workflow of our model, illustrated Fig. 2, can be
summarized as follow:

– The images of the camera capturing the human movements are used to com-
pute the optical flow

– The so resulted optical flow is then used to:
• Extract the X and Y coordinates of the human movement trajectory

(A block in Fig. 2).
• Build the X entrainment signal (B block in Fig. 2) and the Y entrainment

signal (C block in Fig. 2) which will influence (entrain) and modify the
frequencies and phases of the oscillators in the reservoir which commands
the motor controller of the robot.

– By modifying the weight of each oscillator of the reservoir, the Least Mean
Square (LMS) algorithm will learn the combination of oscillators describing
the X and Y desired trajectory extracted from the human motion by the A
block.

– Finally, the outputs of the two LMS neurons are used directly as the final
motor controller signals leading the robot to imitate the human ’s gestures.

Each part of the model will now be detailed in sections below.
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4 Extracting the Trajectories to Imitate

As mentioned above, the robot aims at imitating the gestures of the human part-
ner. The trajectory to learn corresponds consequently to the one described by the
human’s moving arm, and more precisely by the human’s hand (see the exper-
imental set-up Sect. 3). Rather than performing a complex image processing to
recognize and localize the moving hand, we based upon the fact that this hand
is the body part which moves the most comparing to the rest of the arm. Conse-
quently, the trajectory to learn and imitate will be defined, at each time, by the
x and y coordinates of the point in the image having the higher optical flow. To
do so, we first measure the optical flow using the hierarchical algorithm described
by Amiaz et al. [1]. At each time t, the optical flow is computed for all the image
pixels and projected to a set of 240 neurons, 120 for the horizontal component and
120 for the vertical one. In order to filter the noise, a simple competition mecha-
nism is used. Each neuron is stimulated by its closest neighbours and inhibited by
the distant neurons. This process is equivalent to a convolution by a Difference of
two Gaussians filter highlighting consequently the local maxima of the optical flow
by taking into account its local distribution. A Winner Takes All (WTA) is then
used to extract the x and y coordinates of the point (with a higher filtered optical
flow) describing the human hand trajectory to imitate (see A block in Fig. 2). Two
examples of extracted trajectories are illustrated in Fig. 6 in the case of a human
moving his hand (circular and infinite shape movement).

5 Modelling the entrainment effect

5.1 The Reservoir of Oscillators

Fig. 3. 3 Oscillator outputs for different values of β

Our reservoir of oscillators
is composed by two sets
of 8 oscillators which will
respectively describe the x
and y motor controllers of
the NAO’s arm. Each oscil-
lator is made using a simple
neural model introduced by
Revel et al. [19]. This oscil-
lator model shown in the A
Block of the Fig. 4 is made
of two neurons N1 and N2,
fed by constant signals α1
and α2 (to start the oscilla-
tor and change its average).
These two neurons inhibit
each other proportionality

to the parameter β. The frequency and amplitude of the oscillator depend on the
β parameter. It has a stable limit cycle, however, it can saturate when coupled
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with another signal with a too large dynamic. We choose this oscillator because
of its easy implementation and the facility it gives to obtain an oscillatory behav-
iour. The resulting signals are defined by the equations below:

N1(n + 1) = N1(n) − βN2(n) + α1 (1)

N2(n + 1) = N1(n) + βN2(n) + α2 (2)

By modifying the β parameter, we defined our two sets of 8 oscillators whose
own frequencies are between 0.5Hz and 2.6Hz. We heuristically choose these fre-
quencies to cover a large range of possible rhythms reachable by the human and
mechanically plausible for the NAO. Figure 3 illustrates the oscillatory signals
obtained for three different values of β.

5.2 The Entrainment Model

Fig. 4. Hasnain et al. entrainment
model

As previously detailed, the usual meth-
ods to model entrainment impose to have
access to both oscillating systems. To
avoid this limitations, we proposed in our
previous works a simple neural model
where the interacting agent (a robot and
a human) are coupled via low level visual
information. For clarity sake, this model
will be summarized in this section but
we invite the reader to refer to [9] for
a detailed description. We took inspira-
tion from interpersonal coordination stud-

ies demonstrating that unintended motor entrainment can not be avoided (see
Sect. 3). This observation implies a strong and direct link between the exter-
nal stimuli and the motor controller. Starting from these conclusions, the model
presented in [9] and illustrated in Fig. 4 propose to use the energy induced by
the optical flow of the human partner movement to entrain the robot motor con-
troller. The oscillatory signal controlling the robot’s arm (Eq. 1) can be rewritten
as fellow (Eq. 3):

N1(n + 1) = N1(n) − βN2(n) − α1 + cp ∗ f(n) (3)

with f(n) the entrainment signal and cp the coupling factor. f(n) is deducted
at each time by a spatial integration of the optical flow. As the optical flow
can be either positive or negative according to the movement direction, f(n)
oscillates in the case of rhythmic movements. This resulted signal is modulated
by a coupling factor cp (see Fig. 4) and added to the oscillator to modify its
dynamic and hence the robot behavior. The coupling factor cp is included into 0
to 1, it allows to modulate the energy brought in the oscillator: the higher it is,
the more important the entrainment is. This implies that the range of frequencies
in which the oscillators are able to synchronise can change according to cp and
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be larger for a higher coupling factor. Using this model we demonstrated that a
synchronous interaction can emerge considering the fact that humans will also
be entrained by the modifications of the robot ’s behaviours. Those results were
validated by experimental studies in psychology with naive subjects [8].

6 Learning by Imitating

Sd : desired 
output

S: output

Inputs

w1

w2

wn

Fig. 5. Structure of the LMS Network

To learn the desired movement sequence
and to decompose it in an oscillatory
base, we use a Least Mean Square algo-
rithm network (see Fig. 2). This algorithm
is a supervised learning where we aim
at reducing the square error between a
required sequence and the different avail-
able input signals whose weight can be
modified (cf Fig. 5). At each iteration,
the algorithm compares the error with
the precedent and changes the weights in
function. Those modifications are made
according to the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(n) =

p∑

i=1

(wi ∗ bi)

Wi(n + 1) = Wi(n) − εΔe(n)

e(n) = (Sd − S)2

(4)

with:

– ε the learning step. A higher ε permits to modify the weights quickly but
makes it more sensitive to noise. ε is set to a fixed value of 0.1 here.

– Sd an S respectively the desired signal to learn and the output of the LMS.

With this model we try to learn a rhythmical motion sequence. As we wish
to reproduce any rhythmical signal and because of the nature of the algorithm,
the learning is possible only if we can find a set of oscillators with adequate
frequencies and phases to describe the desired signal. In this context, this implies
to have a very high number of oscillators. To resolve this problematic we will
use the entrainment model presented earlier to change the set of oscillators
behaviours (amplitude, frequency and phase) to better fit the desired trajectories
without adding computational complexity.

Let’s consider now the complete model as presented Fig. 2. We add the
entrainment effect (presented in the previous section) to our reservoir of oscilla-
tors (part B and C of the Fig. 2).
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Fig. 6. Human and Robot hand trajectories during learning a round and an infinite
gesture during imitation games

Fig. 7. Frequency of the oscillators
before and after 10s and 30s learning
of a 0.6 Hz sinus.

The oscillators will now be entrained
by the optical flow induced by the human
movements in both x and y directions
(respectively B and C paths in Fig. 2).
We distinguish the horizontal and ver-
tical component of the movement for
entrainment because different studies sug-
gest that visual entrainment can be seg-
mented into several directions. For exam-
ple, Kilner et al. showed that we tend
to be entrained vertically by a vertical
stimuli when making an horizontal move-
ment [14].

Fig. 8. Influence of the coupling factor
on the convergence speed.

The model is tested in real condi-
tions to make the NAO robot imitate the
human performing two different gestures:
a circle and an infinite shape trajectory.
It is worth noticing that the set of ini-
tial oscillators and the parameters used
are exactly the same for the two condi-
tions. Figure 6 illustrates the efficiency of
this simple model. The robot is able to
imitate the two different gestures after
less then 30 seconds of learning thanks to
the entrainment effect which facilitate the
adaptation in amplitude, frequency and
phase of the initial oscillators. Videos of
these experiments can be seen here1.

1 www.etis.ensea.fr/neurocyber/Videos/authors/ansermin/sab2016.

www.etis.ensea.fr/neurocyber/Videos/authors/ansermin/sab2016
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To clarify this mechanism, we consider the learning of a simple simulated
sinus of 0.6Hz. The added entrainment effect permits a quick convergence of
some of the oscillators to the frequencies sought by the signal to learn (0.6Hz).
This fast adaptation of the reservoir of oscillators to the desired signal proves
the fact that using entrainment can avoid the complex problem of defining a
too large number of oscillators at different frequencies and phases. The Fig. 7
allows us to observe the frequency after 10 s and 30 s of learning and put forward
the fact that the oscillators do not synchronise at once and that the learning is
consequently progressive.

The coupling factor can modify the range of frequencies we can define with
our reservoir of oscillators. Higher values of cp permit a bigger influence of the
entrainment signal (optical flow of the moving partner) on the oscillators which
can lead to drive them to farthest frequencies and phases (comparing to their
initial status).

6.1 Influence of the Coupling Factor

Consequently, the results and the convergence speed of the LMS algorithm are
dependent on the cp value. The Fig. 8 shows the reconstruction error computed by
the LMS for different values of cp while learning a sinus of 1 Hz. We can observe that
indeed, a higher cp means a quicker learning but also more oscillators synchronised
on the same harmonic of the signal as shown in Fig. 9. Nevertheless, a high value
of cp can lead to an exaggerated entrainment which implies several synchronized
oscillators (toward the fundamental frequency) leading to a synchronized behav-
iour but a less defined reconstruction of the desired trajectories (less harmonics).

Fig. 9. Observation of the frequencies of the oscillators during the learning of an 1Hz
sinus for different coupling factors.
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Sequence to reproduce Sequence to reproduce

Output of LMS for cp=0.05
Output of LMS for cp=0.2

Time (s)
Time (s)

Fig. 10. Learning of a complex simulated signal (sum of 3 sinus) for different coupling
factors

This phenomenon is illustrated in Fig. 10 where the simulated trajectory to learn
is better explained (after learning) with a lower coupling factor.

7 Conclusion

The entrainment effect has been proven to be very present in human behaviour
during our interaction with the environment or in social interplays where it
plays an important role in interpersonal coordination. Yet, it has been rather
neglected by many research which tried to model interactions in HRI. In this
paper we presented a model based upon low level entrainment using visual stimuli
(optical flow). We proved with both simulated and real experimental tests, that
despite its relative simplicity, our model is able to give the robot abilities to
imitate synchronously different gestures in real time while using exactly the
same parameters.

Yet, this model presents some limits. Indeed, the system is unable to per-
form the learned movement alone, without entrainment effect. When there is no
entrainment, the oscillators will return to their original frequency. Thus, if more
than one oscillator have been synchronised with a harmonic of the signal and
learned by the LMS, the learned signal would be deformed without the entrain-
ment. Moreover, the phase between the different part of the movement (vertical
and horizontal) cannot be maintained without entrainment. The questions of how
memorizing the gestures and what information to memorize (the entrainment sig-
nal? the oscillator weights? etc.) are our near future perspectives. It is worth notic-
ing that the principal limitations of the model is in its definition itself. In fact our
objective here is to prove the efficiency of using low level entrainment of the motor
controller (by the external visual stimuli) to adapt the behaviour and synchronize
it with the interacting partner. We argue that learning to imitate or reproduce
more complex, refined and non rhythmic gesture sequences needs a higher level of
treatment including a more “predictive” aspects.

Nevertheless, regarding the fact that the entrainment was proved to be unin-
tentional in human behaviour, our position on the matter is that learning and
imitating gestures imply merging a very low level sensory motor processing
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(entrainment) for a fast adaptation of the motions dynamics and to eases a
higher level which deals with more complex sequences, refined trajectories, social
contexts etc. Such an association is clearly in our perspectives.
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Abstract. Timely interaction is a key topic for multi-robot systems
operating in the real world. The present work puts forward a new
approach for multi-robot synchronization that is based on representing
temporal constraints as fuzzy numbers. By using fuzzy arithmetic it is
possible to process temporal constraints, analyze their relations, detect
temporal gaps, and additionally develop corrective measures that min-
imize these gaps. The present study addresses temporal planning by
directing the robotic agents to (i) adapt their speed to accomplish task
execution and, (ii) carry out simplified, yet acceptable, versions of the
assigned tasks at faster speeds. The latter adaptations fit particularly
well with the fuzzy theoretic approach that enables the direct calcu-
lation of their effects on the temporal plan. Accordingly, more effi-
cient synchronization is accomplished in multi-robot coordinated task
execution.

Keywords: Sense of time · Time-based adaptation · Fuzzy time

1 Introduction

Behavior plans for agents acting in the real world combine both spatial and
temporal information. Despite the fact that the majority of contemporary works
on robot planning has mainly focused on the spatial aspects of planning, in recent
years there is an increasing interest on the temporal properties of motion plans.
Typically, Simple Temporal Networks (STNs) are used to represent temporal
constraints in planning systems. To allow fast checking of temporal consistency,
such networks are mapped to equivalent Distance Graphs (DGs) [5] to check
the existence of no negative cycles and thus prove the consistency of the plan.
Multi-robot synchrony using STNs is achieved by introducing constraints that
maximize coincidence in the parallel activities of independent robots [9–11,13].
Since there is no attempt to speed up execution, the pace of the slower robot
defines in practice synchronization of the multi-robot team.

The present work follows an alternative approach to accomplish synchrony
that enforces the slower agent to achieve goals faster and thus realize synchrony
that is more adapted to the faster agent. To this end, we introduce a new app-
roach that deals with adaptive temporal plans in multi-robot systems by repre-
senting temporal constraints with fuzzy numbers. Interestingly, fuzzy times are
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 232–243, 2016.
DOI: 10.1007/978-3-319-43488-9 21
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used for many years in job scheduling problems [2,6]. It is therefore surprising
that it is the first time they are employed in dynamic task assignment problems
that consider multi-robot synchrony.

The fuzzy time assumption fits perfectly to STNs keeping the representation
of the original problem simple and easily manageable. In the current work we
introduce fuzzy STNs (fSTNs) together with the procedures for performing
fuzzy calculations to examine the temporal properties of the plan. We demon-
strate that the proposed formulation has the expressive power to address all
temporal issues considered by previous works. Due to the simplicity of fuzzy
number calculus, the current approach does not introduce any workload com-
pared to contemporary approaches, resulting in an easily implemented and par-
ticularly fast solution for time-constrained robot planning problems.

At the same time, the fSTN approach offers certain advantages for the
solution of planning problems, which include: (i) a more complete definition of
constraints with both lower and upper bounds, (ii) the suggestion of concrete
time moments for triggering actions, (iii) the formulation of time-equations that
enable detecting latency in robot actions, and (iv) the ability to develop correc-
tive measures to minimize time gaps across multiple robots. The paper focuses
mainly on the last two issues, which, to the best of our knowledge, have not
been considered thus far in the literature. The introduction of a new Expected
Latency measure enables temporal adaptations early in the plan execution, there-
fore maximizing the chances to achieve the desired synchrony among agents.

2 Robot-Robot Coordination Scenario

The proposed fuzzy-time approach aims at enforcing coordination in multi-robot
setups. Without loss of generality, and for the sake of simplicity, we confine the
current presentation to the case of two cooperating robots. We note however,
that the proposed methodology is readily applicable to the case of multiple
cooperating robots. In this section we summarize the cooperative exploration
scenario that will be used as a motivating example for the rest of the paper.

The scenario assumes that two NAOs cooperatively explore an office environ-
ment to find and take pictures of two rooms identified by a blue and a red box on
their walls. NAO 1 navigates to Room 1 where it is informed of the color of the
room it has to search (blue or red). NAO 2 moves to Room 2 to be also informed
of the color of the room it has to search (different than NAO 1). Then they
start exploration to identify the assigned rooms. After finding the rooms, the
two humanoids need to take pictures that allow synthesizing a 360◦ view of each
room (in the current experiment only left-eye robot images are used). Ideally,
robots should rotate in-place and take a snapshot (picture) of the room every
10◦. This assumes the collection of 36 pictures that can be stitched together
to produce the panoramic view of the rooms. However, it is possible to reduce
the quality of the 360◦ view by taking a smaller number of pictures. The lowest
allowed panoramic-quality dictates that 15 pictures are taken at approximately
every 24◦. When the two robots take the pictures necessary to construct the
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Fig. 1. A schematic representation of the exemplar scenario considered throughout the
paper. (Color figure online)

360◦ view, they rendezvous at the premises of the Robotics Lab. A graphical
interpretation of the scenario is shown in Fig. 1. For the sake of presentation we
assume that the two robots run different versions of gating controllers and thus
they proceed at different paces.

The action execution plan corresponding to this scenario involves uncontrol-
lable events, because the two robots are not informed of the location of the blue
and red rooms and thus, they need to explore the office environment to local-
ize the rooms. Additionally, the scenario involves two alternative options that
enable the faster accomplishment of tasks. The first option regards motion speed
up that can be decided by the central planner when one of the robots is delayed.
The second option regards a simplified, suboptimal, but faster execution of tasks
with a reduced cost for the completion of the global cooperative goal. Switch-
ing from a detailed to a simplified execution of tasks is a particularly common
approach for humans in everyday cooperative tasks.

3 Literature Review

A Simple Temporal Network consists of a set of variables E1, ..., En representing
executable events linked with edges Ei → Ej indicating that Ei is a prerequisite
for the occurrence of Ej . Each edge Ei → Ej is labeled by an interval [aij , bij ]
which represents that passing from Ei to Ej takes minimum aij and maximum
bij moments. If we represent with tEi

, the time of occurence of Ei and with tEj
,

the time of occurrence of Ej , then they are constrained as follows:

aij ≤ tEj
− tEi

≤ bij (1)

To model the fact that an agent can only control the timing of the plan’s
events fully executed by itself but not the timing of events driven by external
parameters, we employ Simple Temporal Networks with Uncertainty (STNU)
that distinguishes between controllable and uncontrollable events. To represent
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Fig. 2. The robot-robot coordination plan illustrated as (a) an STNU form, (b) DGU
form, and (c) a fuzzy STNU form.

plan uncertainty, STNU links are divided into two classes, contingent links and
requirement links. Contingent links can be thought of as representing uncon-
trollable processes whose uncertain duration is determined exogenously by the
environment of the agent. Requirement links represent processes controlled by
the agent who is capable to complete processes satisfying the time bounds on
the links. The STNU graph of the plan coordinating agents’ activities in the
robot-robot coordination task is shown in Fig. 2(a). NAO 1 moves to Room-1
(link A-B) then it searches for the Blue Room (link B-C), it collects room pic-
tures (link C-D) and navigates to the Robotics Lab (link D-H). NAO 2 follows a
similar task sequence that is represented by the STNU path A-E-F-G-H. Note
that we use rectangles to represent contingent events (explore the environment
to localize the blue and red rooms) and a different type of edges to represent
contingent links (see edges BC and EF).

To manage temporal constraints, STNUs are typically mapped to the equiv-
alent Distance Graphs with Uncertainty (DGUs) [11]. A DGU has the same
vertices as the corresponding STNU but the lower and upper bounds of STNU
are now separated and represented with two distinct edges. The edge in the for-
ward direction is labeled with the value of the upper time bound and the edge on
the reverse direction is labeled with the negative of the lower time bound. The
DGU that corresponds to the example under investigation is shown in Fig. 2(b).

Checking the DGU for negative cycles provides information on the consis-
tency of the plan [5]. The non-existence of negative cycles in the DGU indicates
that the STNU is consistent and thus dispatchable, meaning that (i) there are
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no temporal conflicts and (ii) there is enough time for all events to occur. Follow-
ing this formulation, previous works have considered back propagation rules to
dynamically preserve dispatchability of plans [9,11], address temporal problems
with choice [12], or reason between interacting agents [3].

4 Fuzzy Times

In contrast to the ordinary approaches that assume the mapping of STN to
DG, therefore separating the lower and upper limits of temporal constraints,
the current work proposes using a fuzzy theoretic approach to address time
processing and plan adaptations. The key idea is to keep coupled the lower and
upper bounds of temporal constraints, exploiting at the same time fuzzy number
calculus to analyze the plan and explore the effect of alternative adaptations.

Fuzzy sets were introduced by Lotfi A. Zadeh [14] as an extension of the
classical notion of sets to include elements that have degrees of membership.

In the present work we use trapezoidal1 fuzzy numbers to represent the time
boundaries an action may take to complete and we use fuzzy arithmetic to
develop multi-criteria measures that enable comparing alternative planning sce-
narios. A fuzzy number in trapezoidal form is represented by the quadruplet
(p,m, n, q).

Fig. 3. Schematic representation of a fuzzy number representing the duration “approx-
imately 4 to 6 min”.

Lets assume that a given action takes approximally a to b moments to com-
plete. To represent this duration with a fuzzy number, we assign the lower bound
of the time interval to m (i.e. m = a) and the upper bound of the time interval
to n (i.e. n = b). Subsequently, we define p = 0.9m and q = 1.1n. A graphical
representation of the fuzzy time “approximately 4 to 6 min” represented by the
trapezoid (3.6,4,6,6.6) is shown in Fig. 3.

The most common approach to process fuzzy numbers is following the L-
R calculus [7]. The addition of two fuzzy numbers F1 = (p1,m1, n1, q1) and
F2 = (p2,m2, , n2, q2) is a new trapezoid fuzzy number of the form F1 + F2 =
(p1+p2,m1+m2, n1+n2, q1+ q2). The difference between two trapezoid fuzzy
numbers is again a fuzzy number defined as F1 − F2 = (p1 − q2,m1 − n2,
n1 − m2, q1 − p2).
1 The trapezoid representation of fuzzy numbers is not mandatory but simplifies

calculations and therefore it is adopted in the present work.
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Following the formulation introduced above, a classic STN is transformed
into its fuzzy form fSTN by representing any edge labeled with [a, b] in the
original network, with a similar edge labeled with the fuzzy trapezoidal number
(0.9a, a, b, 1.1b). The fuzzy version of the exemplar STNU in Fig. 2(a), is shown
in Fig. 2(c).

5 Time-Informed Planning Features

The discussion above shows that the fuzzy theoretic approach has the expressive
power to address the temporal planning problems considered in the literature so
far [9–11]. Interestingly the proposed approach provides new additional features
that may significantly facilitate multi-agent planning and synchronization. These
are summarized below:

• By using the fuzzy equations approach to explore the association of event
triplets, it is straightforward to obtain information on both the lower and
“upper” bounds of temporal constraints. For example, consider the case of tight-
ening the edge D−H in Fig. 2(a), from [4, 12] to [8, 12] (similar to the example in
[11]). This change affects the execution of G because by considering the triangu-
lar association of the three events, writing down the equation DG+GH = DH,
which indicates:

DG + (2.7, 3, 7, 7.7) = (3.6, 4, 12, 13.2) ⇒ DG = (−4.1,−3, 9, 10.5)

The above introduces a constraint on the temporal relation of events D and
G, which assumes that G should preferably start 3 time moments after D (this
is similar to [11]) with a hard constraint of 4.1 moments after D. The same
calculations reveal that G should preferably start not latter than 9 moments
after D (the worst acceptable time is 10.5 moment). This is an important piece
of information not discussed in the previous works [10,11], but is readily available
in the proposed formulation.

• Capitalizing on the well known defuzzifiction process, the result of fuzzy
equations can be easily defuzzified into crisp values that suggest specific times
for triggering the occurrence of events. In the example mentioned above, besides
constraining the occurrence of D at “some time, 3 moments after D”, the defuzzi-
fication of the fuzzy DG value may suggest when exactly G must start. Following
the classic graded mean integration representation [8], a fuzzy number (p,m, n, q)
can be represented by the crisp value v = (p + 2m + 2n + q)/6. In the example,
we defuzzify DG = (−4.1,−3, 9, 10.5) to get the crisp value v = 3.06, which
suggests that event G to start 3.06 moments after D.

• By using fuzzy equations the planner can be readily informed about the cur-
rent state in plan execution, detect emergency situations and undertake appro-
priate corrective actions. We introduce a new measure named Expected Latency
as an estimate of the temporal gap between two agents that need to synchronize
their activities. The Expected Latency (EL) is based on the difference between
the times that remain for each agent until their coincidence. Consider the case
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that NAO 1 proceeds very fast and after 9 time moments it has already accom-
plished the events B, C, D and has already started moving towards H. NAO 2
moves rather slow and it completes events E and F after 11 moments. At that
time, we want to estimate whether NAO 2 is late in comparison to NAO 1. The
time remaining for NAO 2 to reach event H is (7.2, 8, 14, 15.4) + (2.7, 3, 7, 7, 7).
The time remaining for NAO 1 to reach event H is (3.6, 4, 12, 13.2) − 2, where
2 = 11 − 9, represents the fact that NAO 1 has already started progressing
towards H, two moments earlier than the time of the current calculations. Assum-
ing a latency X for NAO 2, the synchronization of the two agents on event H
assumes that:

(7.2, 8, 14, 15.4) + (2.7, 3, 7, 7, 7) =
X + (3.6, 4, 12, 13.2) − 2] ⇒

X = (−1.3, 1, 19, 21.5)

The defuzzification of X provides an estimate of NAO 2’s latency, that is EL =
10.03 time moments. The planner may exploit this information to undertake
corrective actions that will reduce the foreseen problem as explained below.

6 Enforcing Synchrony

When the central planner detects the latency of a participating agent using the
EL measure described above, it is possible to initiate corrective actions that
minimize synchronization gaps. These may regard either (i) ordering an agent
to slow down, or (ii) ordering an agent to speed up, or (iii) ordering an agent to
simplify the execution of an event so that it is completed faster. In the current
work we consider the last two options to achieve multi-agent synchronization
(the implementation of the first option is straightforward and thus it is not
considered in the present work).

A work sharing similar ideas is presented in [1], which considers temporal
constrained relaxation and violation without however following the fuzzy time
assumption and without being applied in a robotic domain.

We separate tasks in two classes depending on how agents may complete
their execution faster than expected. The first class includes Adaptive Speed
(AS) events which assumes activities that must be fully completed, but this can
be done at varying speeds. For example, robot’s navigation towards a specific
location, is successful only when the robot reaches this location. This is an AS
task because the robot may move at various speeds towards the target. When we
consider an AS task as a part of a global multi-robot synchronization scenario,
we assume that the lower temporal bound regards maximum speed and perfect,
convenient conditions for task execution, and the upper temporal bound regards
minimum speed and inconvenient conditions for task execution. Therefore, when
a task with an associated fuzzy time (p,m, n, q) is executed at the maximum
allowed speed, e.g. 20 % faster than normal, the upper temporal bound can be
reduced by a factor of 100/120. This results into a new fuzzy number to describe
the time of event execution that is (p,m, n ∗ 100/120, q ∗ 100/120).
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The second class named Imperfection Enabled (IE) tasks, assumes actions
that can be accomplished in a suboptimal manner, without this having any cru-
cial effect on the global goal targeted by multi-robot coordination (i.e. instead
of sacrificing the big goal, we may partially sacrifice a non-crucial partial goal).
For example, when an agent does not have enough time to prepare an omelet,
he may whisk the eggs for only 20 s rather than 60 s assumed by the majority
of recipes, still producing an acceptable meal. For IE tasks, the lowest temporal
bound regards the simplest possible execution of the task while the upper tem-
poral bound regards the most sophisticated, optimal execution of the task. Any
IE task is implemented to the highest possible quality, i.e. consuming the time
specified by the upper temporal bound. To accomplish the task faster, the upper
temporal bound must be reduced at a lower value. For example, consider there
is an estimated positive latency EL, and the execution of an IE task assigned
the fuzzy time (p,m, n, q) must be simplified. The suboptimal completion of the
task assumes a new fuzzy time (p,m, n′, q′), where:

n′ = m, if n − EL < m

= t − EL, if t − EL >= m (2)

q′ = m, if q − EL < m

= q − EL, if q − EL >= m (3)

During the plan setup, each edge representing the process of accomplishing an
event is classified as either an Adaptive Speed (AS) task or an Imperfection
Enabled (IE) task. In the current example (see Fig. 2), edges A-B, D-H, A-
E, G-H represent AS events, and edges C-D and F-G represent IE events. As
already noted, edges B-C and E-F represent contingent processes whose time of
execution is not controlled by the planner and thus remain unaffected during
plan adaptations.

In the case of a positive EL greater than a threshold θ > 0, we consider
adapting the temporal properties of the forthcoming task of the given agent. If
it is not a contingency task, (i.e. it is either AS or IE) we apply the appropriate
latency reduction procedure, and we re-estimate EL. In the case of a contin-
gency task, the execution proceeds as normal, and the latency of the agent is
re-estimated after the end of the task, considering the possibility of a new cor-
rective action.

Following our running example, we consider the example case of EL = 10
for NAO 2 as described in section V. The robot has just completed event F and
is now ready to proceed towards G, which regards the IE task of 360◦ photoing.
Following the IE time adaptation procedure described above and given that
EL = 10, the time of the edge is modified to (7.2, 8, 8, 8) which assumes the task
shall be executed in its simplest possible form. After this change the expected
latency is estimated again resulting to the new fuzzy value (−1.3, 1, 13, 14.1)
which is defuzzified to EL = 6.8.



240 M. Maniadakis and P. Trahanias

Just for demonstration purposes, we consider the case that edge F-G repre-
sents an AS task rather than an IE task as discussed above. We assume that
the robot can speed up execution by 20 % which results into changing the fuzzy
time of F-G from (7.2, 8, 14, 15.4) to (7.2, 8, 11.2, 12.32). This would reduce the
expected latency for NAO 2 to (−1.3, 1, 16.2, 18.42), which is deffuzified accord-
ing to the graded mean integration representation to EL = 8.58.

7 Results

The advanced planning features introduced by the fuzzy perspective of temporal
constraints is demonstrated by a realistic version of the exemplar scenario used
throughout the paper. We use two Aldebaran NAO humanoids, one of them
running a home-made gating controller that enables NAO 1 move with an average
speed of 13 cm/s, and the built-in open-loop Aldebaran gating that furnishes
NAO 2 with the ability to move with an average speed of 10.5 cm/s. The times
used by the robots to complete each action in the cooperative exploration task
are shown in the fSTNU that represent the overall plan and is illustrated in
Fig. 4. The computational implementation of the fSTNU is based on the graph
analysis package IGRAPH [4] that provides all basic features for implementing
and processing graph-represented robot plans.

The implementation of the plan by the two NAOs is monitored by a cen-
tral planner that is responsible for taking corrective actions that minimize the
expected latency for the robot with positive EL, and therefore enforce syn-
chrony between the two agents. Corrective actions are undertaken only when
EL is greater than the threshold θ = 15. Moreover, corrective actions are under-
taken only at the commence of events (sub-tasks) and they cannot change during
execution.

The evolution of robots’ activities and plan adaptations is described below
and is depicted in Fig. 5. Prior to any movement, the planner estimates EL values
for both robots. This results to EL1 = −53.93 for NAO 1 and EL2 = 53.93 for
NAO 2, indicating that NAO 2 will probably be late if the plan proceeds with
the normal, currently scheduled execution of events. To minimize this latency,
the planner undertakes a corrective action that regards navigating to Room2 at
a higher speed. NAO 2 will move 10 % faster than normal which implies changing
the labeling of Start− > Room2 edge to (57.6, 64, 80, 88). The expected latency
for NAO 2 is re-estimated to EL2 = 49.8.

The two robots start with the assigned tasks. After 63 s, NAO 1 reaches
Room1. We estimate the expected latency for NAO 1 which is EL1 = −48.16.
NAO 1 is not late, and thus it proceeds with a normal speed to explore the
environment and identify the Blue Room.

At time 70, NAO 2 arrives at Room2. The new value for EL2 is now esti-
mated at 45.9 s. Ideally, this would imply a corrective action on the procedure
represented by edge EF, which however can not implemented because it is a
contingent link representing a procedure that temporally, is not under the full
control of the robot. NAO 2 proceeds to identifying the Red Room without any
corrective action.
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Fig. 4. The fSTNU describing the real robot scenario explored in the present study.

At time 121, NAO 1 identifies the Blue Room and is ready to take the pictures
that enable synthesizing the 360◦ view of the room. Its latency is estimated to
EL1 = −42.23 and since it is not late, it proceeds taking a large sequence of 36
pictures every 10◦, in the Blue Room.

After 175 s NAO 1 completes photoing, and is ready to depart towards the
Robotics Lab. Its latency is estimated to EL1 = −26.76 and it thus moves at a
normal speed. Note that the collection of 36 photos took 54 s to complete, there-
fore the synchronization gap between the two robots has been slightly reduced.

At time 199, NAO 2 reaches the Red Room. The latency for NAO 2 is now
estimated to EL2 = 31.13. To speed up execution the planner decides to develop
the 360◦ view of the Red Room with the smallest possible number of photos.
NAO 2 initiates the simplified mode of photoing, 15 pictures every 24◦, which
changes labeling of edge RedRoom− > 360V iew to (24.3,27,27,27).

After 226 s, NAO 2 completes photoing the Red Room. Its latency in compar-
ison to NAO 1 is estimated to EL2 = 11.5. This is below the threshold θ = 15,

Fig. 5. The evolution of expected latency for each robot, during the implementation
of the plan.
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and thus for the last event assigned to NAO 2, no corrective action is initiated.
NAO 2 navigates to the Robotics Lab at a normal speed.

After 379 s NAO 1 arrives at the Robotics Lab, ready to be assigned a new
task. NAO 2 arrives at sec 386, having a small difference of 7 s from the previous
robot.

Overall, the proposed method has successfully enforced synchronization
between the two robots making appropriate corrective actions that incremen-
tally minimize the latency gap between their actions.

8 Conclusions and Future Work

The present work introduces a new approach for multi-robot synchrony in time-
informed planning that is based on representing temporal constraints with fuzzy
numbers. This is an alternative to the contemporary approaches that consider
constraint handling by means of STNU and DGU networks. We show that the
proposed approach is able to handle constraints in the same way as previous
works. Moreover, the use of fuzzy calculus facilitates the detection of problem-
atic situations which in turn enables taking early corrective measures to enforce
synchrony of participating agents. To this end, we explore how action simplifi-
cation and motion speed up may strengthen coordination in multi-agent setups.
To the best of our knowledge this is the first time that this is issue is explored
in the literature. While existing works introduce constraints that mainly delay
the faster agent in order to match with the slower agent, we follow an opposite
approach which aims at speeding up the slower agent to catch up with the faster
agent, without harming the execution of the global plan.

In the future we plan to enrich the newly introduced fuzzy time planning
method with additional features that will enhance further its ability to adapt and
correct plans. Our priorities include analog speed adaptations (current imple-
mentation assumes binary choice between normal and fast speed), the ability to
slow-down, consider subtasks temporally evolving non-linearly, and dynamically
estimate threshold θ depending on the task at hand.

While the present work considers the synchronization of two robots, the
proposed methodology is readily applicable to the case of multi-robot setups. The
systematic assessment of the method in coordinating robot-teams that include
three or more agents is among our immediate plans. Finally, we are particularly
keen in testing the implemented methodology in human-robot cooperation setups
where the robot will act as a slave synchronized to human actions.

Acknowledgment. This work has been partially supported by the EU FET grant
(GA: 641100) TIMESTORM - Mind and Time: Investigation of the Temporal Traits
of Human-Machine Convergence.
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Abstract. The human arm is capable of performing fast targeted move-
ments with high precision, say in pointing with a mouse cursor, but is
inherently ‘soft’ due to the muscles, tendons and other tissues of which it
is composed. Robot arms are also becoming softer, to enable robustness
when operating in real-world environments, and to make them safer to
use around people. But softness comes at a price, typically an increase
in the complexity of the control required for a given task speed/accuracy
requirement. Here we explore how fast and precise joint movements can
be simply and effectively performed in a soft robot arm, by taking inspi-
ration from the human arm. First, viscoelastic actuator-tendon systems
in an agonist-antagonist setup provide joints with inherent damping, and
stiffness that can be varied in real-time through co-contraction. Second,
a light-weight and learnable inverse model for each joint enables a fast
ballistic phase that drives the arm close to a desired equilibrium point
and co-contraction tuple, while the final adjustment is done by a feedback
controller. The approach is embodied in the GummiArm, a robot which
can almost entirely be printed on hobby-grade 3D printers. This enables
rapid and iterative co-exploration of ‘brain’ and ‘body’, and provides a
great platform for developing adaptive and bio-inspired behaviours.

Keywords: Bio-inspiration · Learnable models · Agonist-antagonist
joints · Variable stiffness · 3D printing · Targeted movements

1 Introduction

This paper concerns a bio-inspired robot arm, the GummiArm. See Fig. 1. The
robot is based on a set of principles drawn from the human and animal sensori-
motor system. These principles include:

1. Agonist-antagonist actuators with control of joint equilibrium point and co-
contraction. The equilibrium point hypothesis has been used to predict multi-
joint human trajectories [1], and has been shown to lead to fast point-to-point
movements in biomechanical simulations [2].

c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 244–255, 2016.
DOI: 10.1007/978-3-319-43488-9 22
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Fig. 1. The GummiArm v2.1.0. All light green parts are printable on hobby-grade 3D
printers, while the joints are actuated by Dynamixel (Robotis Inc, Irvine, CA, USA) digi-
tal servos. The 5 agonist-antagonist joints provide inherent damping, impact robustness,
and stiffness adjustment in real-time, through the composite viscoelastic tendons seen in
orange and white. 3 further joints are directly driven by servos, the upper arm roll, fore-
arm roll, and hand close. (a): The arm mounted on an aluminium frame, with a Kinect
sensor (Microsoft, Redmond, WA, USA) on a pan mechanism. (b) and (c): Annotated
front and side views, respectively. Thick filled-in arrows indicate the joint ẑ axes.

2. Viscoelastic actuator-tendon system. Humans exploit co-contraction of the
viscoelastic muscle-tendon system both during movements and after move-
ment completion for achieving accuracy [3]. Here we show that we can adjust
stiffness through co-contraction of rubber tendons with non-linear stiffness,
and use movement-dependent excitation of co-contraction to further control
unwanted end-point oscillations. The viscoelasticity provides damping.

3. Learnable inverse joint models for feedforward control of rapid point-to-point
movements in joint-angle space. There is extensive work on inverse models
for movement control in the brain [4]. We here use learnable inverse models
for the joints to generate a ballistic phase of movement towards a given joint
angle and co-contraction level. A second phase uses a feedback controller to
compensate for any model deviations.

4. A concurrent approach to the design of ‘brain’ and ‘body’, enabled by a print-
able platform with open-source hardware and software. The robot structure
is printable on hobby-grade 3D printers, and the overall platform cost is rea-
sonably low (less than $5000) for a 7+1 Degree Of Freedom (DOF) arm with
variable stiffness. The passive compliance makes it robust to impacts, and a
broken part can be 3D printed (and potentially improved upon) quickly.

2 Related Work

Soft materials can afford new capabilities in safety, speed and agility of robotic
agents [5]. Soft materials also have the potential to reduce the algorithmic com-
plexity if the ‘body’ and ‘brain’ are developed together [6]. On one end of the
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‘soft’ spectrum we find artificial octopus arms [7], providing extreme dexterity
and compliance. On the other end are robots with stiff links, but elastic elements
connecting the links and actuators. That is, series elastic actuators [8]. As an
example, a low-cost compliant actuator was developed by Quigley, Asbeck and
Ng [9], with a series elastic setup for the main actuators. The Polyurethane elas-
tic elements provided compliance and some damping, but could not be varied in
real-time. Another example is the Baxter light industrial robot (Rethink Robot-
ics, Boston, USA). The inability to increase physical stiffness (and damping) can
make such robots hard to control on fast point-to-point movements.

However, Variable Stiffness Actuators (VSA) are gradually becoming com-
monplace [10]. Benefits over traditional stiff robot actuators include safety, for
humans, robots and the environment, but also performance [11]. The VSA-
Cubebot [12] is a great example of a low-cost and flexible VSA. The standard
modular design can simplify the design of a VSA arm, but it also means the
actuators will typically have to be placed at the joints. The DLR hand arm
system is a full size VSA arm with extensive use of tendons [13]. It is aimed
at human levels of scale and performance, and therefore also has a high com-
plexity. A key issue with introducing elastic elements into the actuation loop
is that end-point oscillations can be hard to dampen. Advanced torque control
strategies is one way to approach this problem [14], but typically requires an
accurate robot model. Variable damping can also be achieved through physical
means in the actuator. For example an electrically damped actuator [15]. The
CompAct anthropomorphic actuator is also able to vary the physical damping,
through piezo-electric clutches and an advanced sliding-mode control [16].

If exact models of the body cannot easily be pre-defined by the designer,
such models can perhaps be learnt as part of the ‘development’ of the robot [17].
Among the platforms exploring this general direction is Roboy [18], a tendon-
driven humanoid robot with passive compliance and force sensing directly in
the muscle units. The iCub [19], one of the most popular platforms for devel-
opmental robotics, is also tendon-driven. However, it lacks passive compliance,
and is aimed at a much higher cost and complexity level. A model-free approach
for damping VSAs with a step change at just the right point in the oscillations
shows promise [20], and should be possible to combine with the work presented
here in the future.

3 The GummiArm

3.1 An Easily Evolvable Arm

The GummiArm is a 7+1 DOF robot arm, and is an open-source project avail-
able at: http://mstoelen.github.io/GummiArm/. See Fig. 1. The structure of the
GummiArm consists of plastic parts connected to Dynamixel digital servos of
Robotis Inc (Irvine, CA, USA). This design feature was inspired by the Robotis
Bioloid robots and the Poppy Project [21], but with the addition of variable
stiffness. The proportions of the arm (except the current hand) are equivalent to
a 50th percentile female human [22]. The servos are joined by PLA-based plastic

http://mstoelen.github.io/GummiArm/
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parts that can be printed on hobby-grade 3D printers. PLA is safe and cheap,
and the parts can be made surprisingly light and strong due to the matrix-like
internal structure. The total mass of the 7+1 DOF arm below the shoulder
is 1.1 kg (excluding the hand), and the total mass of the arm is around 3 kg.
Less than 1 kg of PLA plastic is needed to print the current version of the arm
(v2.1.0).

The combination of fully open source software and hardware (with the excep-
tion of the servos) makes it possible to do a concurrent design of the soft arm
itself with the control and adaptation algorithms. For example by quickly mod-
ifying the 3D printed parts of a joint to handle bigger tendons, while making
corresponding changes to accommodate the higher stiffness in the arm control.
Such changes can be made on the order of minutes and hours, leading to fast iter-
ative improvements that explore the full design space of hardware and software.
A bit like evolution on a small scale, with the designer in the loop.

3.2 Agonist-Antagonist Joints

Agonist-antagonist joints have been explored extensively for bio-inspired robotic
arms. For example with two opposing pneumatic actuators, such as the McK-
ibben type [23]. Such actuators require an external compressor however, and can
be hard to control. The GummiArm has 5 agonist-antagonist joints with elec-
tric actuation, see Fig. 1. Each agonist-antagonist joint has two Dynamixel servo
actuators operating the uni-directional tendons via pulleys, and one encoder on
the joint axis. The tendons are based on a Filaflex 2.85 mm filament from Recreus
(La Torreta, Spain), and their elasticity provide the arm passive compliance.

A quadratic force-length relationship is desirable in tendons used for agonist-
antagonist joints. This allows independent control of stiffness and equilibrium
without sensory feedback, as shown in [24]. To approach such behaviour we emu-
lated typical rubber compensators for mooring lines on boats. That is, a much

(a) 2 composite tendons on the bi-
ceps servo pulley.

(b) Load (y-axis) vs elongation (x-
axis) of tendons.

Fig. 2. The composite tendon design, based on a soft 2.85 mm Filaflex filament
(Recreus, La Torreta, Spain) and a stiff 1.5 mm nylon thread twinned around it.
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Fig. 3. The control architecture for the agonist-antagonist joints. The joint controller is
provided with a desired joint angle θd and co-contraction level cd (from 0 to 100 %). For
large desired changes in joint angle (here |Δθ| > 15◦) a switching mechanism activates
the ballistic phase. The co-contraction c is also excited proportionally to the desired
change in joint angle Δθ, to provide stabilization towards the end of the movement.
The ballistic phase aims for a high percentage of the desired joint angle change (here
85 %), and aims to get there with the excited co-contraction level. A desired equilibrium
point pb is generated with an inverse joint model and fed forward. An equilibrium model
relates the equilibrium point and co-contraction to the required actuation commands,
which are here the angles of the actuator pulleys (αflexor and αextensor). When a
threshold percentage of Δθ is passed (here 50%) the feedback controller takes over,
correcting for discrepancies between the model and the real situation of the joint.

less flexible nylon line was twinned around the Filaflex filament, as seen in Fig. 2a.
As can be seen in Fig. 2b this composite tendon design has an increase in stiffness
with elongation, as the nylon line gradually straightens out. The tensile testing
was performed on a Instron (Wycombe, United Kingdom) 5582 frame with a
static 100kN load cell (Instron UK195) on a 190 mm specimen. For the tensile
testing a pitch of 0.1 per mm was used.

3.3 Combined Ballistic/Feedback Control

A dual-phase control architecture is used for controlling the GummiArm on fast
point-to-point joint movements. See Fig. 3. Referring to the ‘Equilibrium model’
box, the two servo actuator angles αflexor and αextensor for a joint are assumed
to scale linearly with equilibrium point p and co-contraction c. See Eq. 1.

αflexor = p
γ

4
− c

π

2
,

αextensor = p
γ

4
+ c

π

2
.

(1)

Note that the equilibrium point here is a virtual joint feature, and any devia-
tions from this assumption is attempted corrected through the joint calibration.
For simplicity we here assume step-changes to equilibrium point in joint-space,
rather than the task-space trajectories with explicit velocity profiles used by
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among other Flash [1]. The equilibrium point p ranges from -1 to 1, and is
assumed to influence half the actuator range γ. This range was 270◦ for the
wrist joint (AX-18 servos), 360◦ for the elbow (MX-64T servos) and shoulder
pitch (MX-106T servos), and 720◦ for the remaining joints (MX-106T servos).
The co-contraction c ranges from 0 to 1 (0 % to 100 %), corresponding to ±90◦

of range on the actuator servos.
The co-contraction was set according to the desired cd, but was also excited

by large commanded changes in joint angle from the actual, when a distinct
point-to-point command was received. Refer to the ‘Co-contraction excitation’
box in Fig. 3. As can be seen in Eq. 2 the ballistic component cb was scaled
proportionally with the absolute value of Δθ.

cb = k|Δθ|,
ce = cb − cd.

(2)

The co-contraction c was set according to: c = cd + ce. Here ce was reduced
every iteration by the factor μ, with 0 < μ < 1, according to: ce = ceμ. Thus
the co-contraction is gradually reduced to the desired value cd, relaxing the joint
after the movement. The constants k and μ were adjusted for this to occur, with
k = 0.035 and μ = 0.0015 for a 60 Hz update rate of the control system.

As described in Fig. 3, the ballistic phase was initiated if |Δθ| > 15◦. Ballistic
movements, with little or no online sensory feedback, have been widely studied
in humans. They typically exhibit a characteristic ‘triphasic’ burst of activity in
agonist and antagonist muscles, for example in fast thumb flexion [25]. In our
current work the inverse model, described in Sect. 3.4, was used to obtain the
equilibrium point for the ballistic movement, given the co-contraction c. The
feedback phase (see corresponding box in Fig. 3) was set to take over when more
than 50 % of the joint angle movement had been completed. See ‘Phase switch’
box in Fig. 3. A PID feedback controller was used, tuned to provide reasonable
performance over the full range of co-contraction levels available. To help reduce
overshoot, the ballistic phase was aimed at 85 % of the actual Δθ required.

3.4 Inverse Joint Model for Ballistic Phase

The term ‘inverse model’ is used to denote transformations from desired object
movements to motor commands [4]. The ballistic phase described above requires
a mapping from a desired joint angle and co-contraction to the corresponding
equilibrium point pb. That is, what muscle lengths (here the servo actuator
angles αflexor and αextensor) are required to reach a certain joint pose with a
given amount of stiffness. This mapping would in general depend on the forces
acting on the joint, and thus also the pose of the full arm, any payload held
in the hand, any interaction with the environment, and the dynamics of the
movement. We here assume a much simpler model, which provides a mapping
under quasi-static conditions around the resting pose of the arm seen in Fig. 1.
We show that such a simple model is sufficient in many cases, when combined
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(a) Elbow joint. (b) Shoulder pitch joint.

Fig. 4. The mappings for the inverse models of the elbow and shoulder pitch joints.
Colour represents the output of the model, the equilibrium point p. (Color figure online)

with a feedback phase, the intrinsic damping of the viscoelastic tendons used,
and the movement-dependent excitation of co-contraction.

The inverse model for the elbow and shoulder pitch joints are visualized in
Fig. 4. The inverse models were aquired using a calibration procedure for each
joint. The joint was moved through the full joint range, stopping at 7 quasi-static
poses (joint angles), each at 7 different levels of co-contraction (from 0 to 100 %).
A linear interpolation could then be used to obtain values for pb spanning the
convex hull of the 49 calibration points. That is, the model assumes linearity
between the 49 points obtained, although a finer sampling scheme could be used
if required. The Python scipy.interpolate.griddata function was used. The full
calibration procedure takes less than 5 min for each joint. An estimate for the
appropriate pb value could be obtained in less than 1 ms for each joint, on an
Intel i7 5960X running at 3 MHz. An interesting feature of these inverse models
is that they can be adjusted in real-time, during quasi-static poses. Such learning
could help adjust the arm performance to the task context, for example if always
holding an object of a certain mass on a given task.

4 Experimental Results

4.1 Exploring Co-Contraction

The ability to co-contract opposing actuators is the key feature of agonist-
antagonist joints. A quasi-static loading setup was created for the elbow joint.
The upper arm was locked in place, while the lower arm was replaced with a rigid
beam with multiple attachment points for weights, from 70 mm to 200 mm from
the joint axis, and at 10 mm intervals. The actuator was commanded to a pas-
sive horizontal pose. Three different weights (0.1 kg, 0.5 kg, and 1.5 kg) were then
attached at different distances from the joint axis to generate a set of torques
up to almost 3 Nm. The passive deflection of the joint was then recorded with the
AX-12A encoder. This process was repeated three times for the 3 weights and
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Fig. 5. Passive joint deflection (y-axis) of the elbow joint from applying an external
torque (x-axis) under quasi-static conditions, for different values of commanded co-
contraction. Deflection corresponding to elbow extension.

the 14 distances. The same procedure was repeated for 5 different stiffness levels,
from 0 % to 100 %. See Fig. 5 for the results. The maximum torque feasible for
the elbow joint with the MX-64T servo was close to 3 Nm, reducing somewhat
with the highest stiffness setting. It can be seen that the amount of deflection
for a given external torque can be changed considerably by the co-contraction.
The deflections possible are also quite high for a VSA [26], exceeding 45◦ at high
external torques with the 0 % stiffness setting. Such ‘softness’ is an interesting
feature when having robots explore autonomously the physical world in devel-
opmental experiment paradigms. A 100 % change in stiffness can for most joints
be done in less than 0.5 s.

4.2 Fast Joint-Space Movements

The step response of the shoulder pitch joint was explored, with feedback control
only, and with the bio-inspired two-phase ballistic/feedback control. The joint
was mounted as part of the full arm, and all other joints were kept passively at
the resting pose (see Fig. 1). The shoulder pitch joint was moved through 3/5 of
full joint range, from close to body to shoulder abduction, and back again. As
can be seen in Fig. 6, both controllers showed good tracking of the desired joint
angle with 100 % co-contraction, and little overshoot and oscillations. The bal-
listic/feedback controller did show a superior response time, but the difference
was small and requires further investigation. However the ballistic/feedback con-
troller was able to provide very good tracking also for down to 0 % co-contraction
at start, while the feedback controller showed increasing levels of oscillations. For
both cases a PID-type feedback controller was used, but a simpler PD controller
would likely suffice, as there is little steady-state error.

The full arm was also assessed on point-to-point movements, to compare the
controllers when there are un-modelled interactions between the moving joints.
All joints were commanded to move as fast as possible to the joint angles corre-
sponding to a finish pose. Note that no inter-joint coordination was performed,
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(a) Feedback control only. (b) Ballistic/feedback control.

Fig. 6. Step responses of the shoulder pitch joint with elbow at resting pose in Fig. 1(b),
for different levels of co-contraction. Zero degrees corresponds to resting pose for shoul-
der pitch joint. Average of 3 attempts for each trajectory shown.

each joint moved as quickly as possible. Such a movement can cause large inter-
acting forces between joints, making it harder for the joint-level controllers. As
can be seen in Fig. 7, the feedback controller suffered from these interactions dur-
ing the movement, and had a considerable amount of oscillations towards the
end of the movement. The ballistic/feedback controller performed better, also
with 0 % co-contraction at start (not shown). The achievable speed of movement
was also higher for the ballistic/feedback controller. This can be evaluated visu-
ally by the fewer ‘shadows’ seen in the intermediate stages of movement in the
long-exposure image in Fig. 7b. Further tests are required to generalise about
these results, and to better understand the factors influencing performance.

(a) Feedback control only. (b) Ballistic/feedback control.

Fig. 7. Fast point-to-point movement in joint space with the whole arm, with 100 %
co-contraction. Note that the movements are generated in joint-space, not as a straight-
line Cartesian trajectory. The goal is to achieve the movement as fast as possible,
settling within a minimum tolerance of the desired finish pose. Images created with a
long-exposure of 6 s, and strobe lighting at 8.5 Hz. Red LED mounted on hand. (Color
figure online)
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4.3 Teleoperation with Physical Interaction

The GummiArm is utilising the Robot Operating System (ROS) for all its func-
tionality. A differential inverse kinematics solver based on the OROCOS [27]
KDL library is also implemented, allowing teleoperation of the arm. While tele-
operating the co-contraction can be adjusted freely by the operator, making the
arm joints loose or stiff. The arm can also be commanded in a passive mode,
where the equilibrium position of each joint is moved without controlling for the
exact joint angle. This is very useful when interacting with physical objects, as
the arm complies naturally to the forces experienced. Figure 8 shows screenshots
of a continuous sequence where the robot shows its ability to absorb impacts,
to be teleoperated accurately with high stiffness, to write on a keyboard, and to
open a drawer while moving in the passive mode. The full video can be accessed
here: https://youtu.be/ syFAQBrgio.

(a) Absorbing physical
impacts.

(b) Performing a preci-
sion move.

(c) Typing on a com-
puter keyboard.

(d) Opening an office
drawer.

Fig. 8. Example teleoperation task with physical interaction.

5 Conclusions

Co-exploring ‘body’ and ‘brain’ seems fruitful when investigating adaptive
behaviours. We believe the GummiArm platform is highly suitable for this pur-
pose, and can be of use to researchers at the intersection of biology, cognitive
science and human motor control with robotics. The arm has a high robustness
and a low lifetime cost, given the low-cost printable PLA structure, the pas-
sive compliance of the tendons, and since a non-specialist user can quickly fix
and improve any pieces that do break. A key element is the agonist-antagonist
joints driven by accurate digital servos, and with viscoelastic composite tendons.
The inherent damping and the ability to adjust stiffness in real-time helps sim-
plify joint control. The dual phase ballistic/feedback controller was inspired by
the way humans can quickly move the hand close to a target with a ballistic
movement, then refine the pose with sensory feedback. It has a low algorith-
mic complexity, in essence relying on distributed and learnable inverse mod-
els in the joints, and simple switches, but enables the GummiArm to perform
fast and accurate joint movements. Together with the ability to interact safely
with the physical environment, this makes for interesting possibilities in robot
self-exploration. We hope to exploit this, and to integrate more adaptive and

https://youtu.be/_syFAQBrgio
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context-sensitive behaviours in the arm, in the near future. We would also like
to explore scalable equilibrium point trajectories in task space [1].

Acknowledgments. This work was funded by a Marie Curie Intra-European
Fellowship within the 7th European Community Framework Programme (DeCoRo
FP7-PEOPLE-2013-IEF).
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Abstract. Serotonin is a neurotransmitter that is implicated in many
basic human functions and behaviours and is closely associated with hap-
piness, depression and reward processing. In particular it appears to be
involved in suppressing responses to distracting stimuli while waiting for
a delayed reward. Here we present a system level model of the limbic sys-
tem which is able to generate a serotonin (5-hydroxytryptamine [5HT])
signal so that a simulated animal waits for a delayed reward. We pro-
pose that the 5HT signal is computed by a network involving the medial
Orbital Frontal Cortex (mOFC), medial Pre Frontal Cortex (mPFC),
Dorsal Raphe Nucleus (DRN)and the Nucleus Accumbens Core (NAcc).
The serotonin signal encodes pre-reward liking, motivation throughout
the trial and delayed reward waiting. We have successfully replicated
the behaviour and dynamics of laboratory studies. With the help of this
model we can predict that low levels of serotonin indirectly cause less
encountered rewards because the animal gives up too early.

Keywords: Serotonin · Dopamine · Reward · Inhibition · Waiting

1 Introduction

The neurotransmitter serotonin is considered to be involved in the regulation
of a number of behaviours principally involving aggression, aversive learning,
impulsivity, attention, decision making, and reward [2]. It is implicated in many
psychiatric disorders including depression, panic attacks, anxiety and obsessive
compulsions [3]. In spite of serotonin’s implication in a wide array of fundamen-
tal behaviours, the explicit circuitry that regulates serotonin producing neurons
continues to be insufficiently understood [4]. And despite a considerable amount
of research, the challenge of creating a unified theory of serotonin function
persists [5].

We present a biologically inspired, systems level model which combines
dopamine and serotonin networks to actualize learning and reversal learning
in a simulated reward seeking task. Higher levels of serotonin allow the agent
to remain at the reward site long enough to receive the reward without being
distracted by competing attractions. Lower levels of serotonin mean that the
agent does not wait long enough for the reward if it is delayed, and thus receives
less rewards [1].
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 256–266, 2016.
DOI: 10.1007/978-3-319-43488-9 23
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2 Task and Simulated Agent

The model is tested on a food and water seeking task based on the experiment
conducted by Miyazaki [1]. A straightforward scenario is used in which an agent
has a choice of two potential reward sites, see Fig. 1. The reward is only present at
one site, see Fig. 1 “cake”. The animal is simulated to move based on Braitenberg
behaviour, calculated from distance from left and right eye to the Conditioned
Stimulus (CS). At the beginning of the task the agent wanders around the des-
ignated area and approaches the different sites by chance. Once the agent has
learned where the reward is located it will consistently go to that reward site.
If the reward is toggled to the other site, reversal learning will lead the agent
to eventually return to the haphazard wandering stage, until it happens on the
reward again by chance. The reward is not presented at the site immediately in
all cases, the agent may have to wait until it is delivered.

Fig. 1. Simulation environment

Mouse Simulation Environment: At the beginning of the task, approach
behaviour is governed by a proximal signal which is determined by the angle
of sight and distance between the rat and a red or blue flag. As the rat learns
which flag harbours the reward, the flags become conditioned stimuli and app-
roach behaviour is governed by a distal signal when the rat has the flag in its
line of vision. When the rat is in position to receive the reward it must wait until
the reward is delivered. A learning weight related to reward delivery increases as
the reward is delivered consistently and diminishes as the reward is omitted. If
the reward weight falls back to zero, the agent returns to its wandering activity
and approach behaviour is again governed by a proximal signal.

3 The Role of Serotonin

The DRN signal in our model is composed of three main aspects. First, sero-
tonin neurons signal pre-reward motivation to access the reward associated with
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a CS. Nakamura argues that the DRN signals reward value associated with cur-
rent behaviour and that the reaction to CS signals motivation to access the
received reward [21]. Bromberg-Martin et al.’s 2010 study found that DRN neu-
rons systematically encoded behaviour tasks in terms of their capacity to pro-
vide future rewards [22]. A view supported by Homberg who argues that there
is some evidence that 5HT could signal the possibility of future reward [18] (see
Fig. 2A). Secondly, serotonin also signals reward receipt. Nakamura’s posits that
the reaction to the received reward demonstrates appreciation with some neurons
exhibiting a preference for large rewards while other neurons exhibit a prefer-
ence for smaller rewards [21,25] (see Fig. 2C). Lastly specific DRN neurons fire
when the agent is in position, waiting to receive the reward (see Fig. 2B). These
neurons fire until the completion of the task, when the reward is finally pre-
sented to the subject. If the level of neuronal firing diminishes before the agent
has received the reward, the agent will leave the site to start a new search [1].
Therefore, the agent’s ability to wait is dependent on its serotonin level. Lower
firing rates mean that the agent will move away before the reward is presented.

Fig. 2. DRN serotonin signals

4 Model Description

Limbic System Model: The model consists of a serotonin pathway which encodes
pre-reward liking, motivation throughout the trial and delayed reward waiting.
Dopamine (DA) pathways have also been created according to the standard
model of DA action. These consist of reward, reward prediction and reward
omission pathways which are capable of generating a dopamine liking signal to
promote reward seeking action and also a dopamine reward prediction error.

Abbreviations: l-OFC - lateral Orbital Frontal Cortex, m-OFC - medial
Orbital Frontal Cortex, m-PFC - medial Pre-Frontal Cortex, DRN - Dorsal
Raphe Nucleus, l-shell - lateral shell of the Nucleus Accumbens, m-shell - medial
shell of the Nucleus Accumbens, core - core of the Nucleus Accumbens, dl-VP -
dorso-lateral Ventral Pallidum, m-VP - medial Ventral Pallidum, EP - Entopen-
duncular Nucleus, LHb - Lateral Habenula, RMTg - Rostral Medial Tegmental
Nucleus, LH - Lateral Hypothalamus, VTA - Ventral Tegmental Area.
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Fig. 3. Limbic system model

4.1 Reward Circuit

The dopamine circuits presented below are based on the standard prediction
error paradigm by Schultz, Montague and Dayan [28]. The reward pathway is
activated when the agent receives a primary reward (see Fig. 4A). This is mod-
elled as beginning from the Lateral Hypothalamus (LH) which sends a strong
inhibitory projection to the Lateral Habenula and an excitatory projection to
the Ventral Tegmental Area (VTA) [6,7] (see Fig. 3).

4.2 Reward Prediction Circuit

The reward prediction circuit is activated when a conditioned stimulus (CS)
associated with reward is observed (see Fig. 4B). The circuit creates a dopamine
burst in response to the CS and suppresses the dopamine burst that would be

Fig. 4. Reward omission circuits
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created by the LH upon reward receipt. The circuit starts at the mOFC, which
generates persistent activity in response to each CS (see Fig. 1). An excitatory
efferent from the m-OFC to the m-shell is modelled to undergo long term poten-
tiation (LTP) if a dopamine burst coincides with the falling edge of activity on
this connection [8]. If a dopamine dip coincides with the falling edge then long
term depression (LTD) is modelled to take place. LTP allows the CS signal to
pass through the inhibitory m-shell to the m-VP connection [9] and from there
to the disinhibitory m-VP to VTA projection [7] (see Fig. 3). After sufficient
LTP this will cause a DA burst when the CS is observed. Sustained CS activity
also creates a sustained increase in GABAergic projections [10] which suppress
DA bursts in the VTA due to reward receipt, as the reward is now predicted.

4.3 Reward Omission Circuit

This circuit is activated when a forecasted reward is omitted (see Fig. 4C) and
also when a CS which is associated with reward omission is observed (see
Fig. 4D). The signal starts from the lOFC, top left of the diagram, and com-
prises a range of signals depending on learning weight wlOFC, ranging from a
short burst at learning weight zero to persistent activity at learning weight one.
The appearance of a CS creates lOFC activity which projects to the l-shell [11]
and is modelled to experience LTP due to a combination of the falling edge of
the lOFC signal and a DA burst. This excludes activation of the circuit by a
novel stimulus or a stimulus that has not previously led to a reward. When a CS
that is associated with reward is presented, the signal is passed to the EP via the
vl-VP by inhibition/disinhibition [9,12]. If no reward is delivered as expected,
the VTA DA activity falls. The EP projects to the LHb [13,14] at the falling
edge of the signal. The EP innervates the LHb which sends a glutamergic sig-
nal to the RMTg [15] which then inhibits the VTA [16], causing a dip in DA
projections (see Fig. 3). The signal is also propagated when a CS that predicts
omission is observed.

4.4 Serotonin Circuit

Serotonin is widely implicated in reward seeking behaviour. Nakamura et al.’s
2008 study of the primate dorsal raphe nucleus found that DRN responded
tonically to both stimulus and reward and reliably encoded the value of the
received reward, whether it was expected or not [21]. Based on Nakamura we
proffer that the 5HT signal is computed by a network involving the medial
Orbital Frontal Cortex (mOFC), medial Pre Frontal Cortex (mPFC), Dorsal
Raphe Nucleus (DRN) and the Nucleus Accumbens Core (Core) (see Fig. 3). The
lateral Orbital Frontal Cortex (lOFC) links specific stimuli to certain reward and
failure results whereas the mOFC and mPFC are involved in appraising reward
value, decision making, inhibition and choice across subsequent decisions [8].
Observance of the conditioned stimulus causes the signal to start at the lOFC
and then transfer through the mOFC to the mPFC [17]. The mPFC in turn
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innervates the DRN [18,19]. Finally the signal terminates at the NAcc Core,
controlling actions [20].

5 Results

We first present the DA signal results and then the 5HT results.

Fig. 5. Dopamine results

5.1 Dopamine Results

Unexpected Reward: At the start of the trial the agent wanders around the
task area in a haphazard manner. In this wandering phase the stimulus comes
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in and out of view. Viewing the stimulus causes the lOFC spike rate to increase,
examples of which are points (a) and (b) in Fig. 5A. As the stimulus is not yet
associated with reward the agent does not move towards it when it is viewed.
Eventually the agent’s wandering leads it by chance to the stimulus where it
finds there is a reward. At point (c) in Fig. 5A LH spikes at reward presentation
causing VTA DA to also increase it’s spike rate as presented in Fig. 4A.

Expected Reward: At the start of the task the agent begins its wandering
phase, to examine the site. At point (a) in Fig. 5B there is visual onset of the
Conditioned Stimulus. As the CS is at this point associated with reward VTA
DA increases its spike rate and the agent moves towards the CS to obtain the
reward. At point (b) the agent receives the reward causing LH to increase its
spiking rate. VTA GABA inhibits the release of VTA DA at reward presentation,
hence the rate of spiking has diminished at this point as presented in Fig. 4B.

Unexpected Omission: The agent has now learned to associate the Condi-
tioned Stimulus with reward. After the initial wandering stage, at point (a) in
Fig. 5C, it sees the CS and moves towards it. At point (b) it arrives at the CS
and when that reward is unexpectedly omitted, it causes a dip in the base firing
rate of the VTA DA as displayed in Fig. 4C.

Expected Omission: The agent has now learned to associate the Conditioned
Stimulus with an omission of reward. At the start of the task there is the initial
wandering stage, then at point (a) in Fig. 5D, the agent sees the CS. This causes
a dip in the VTA DA spiking rate, as presented in Fig. 4D.

Fig. 6. DRN results
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5.2 DRN Results

DRN No Reward: The task starts with the agent wandering around the task
area. At point(a) in Fig. 6A the agent sees the conditioned stimulus and moves
towards it. The DRN neurons increase spiking related to pre-reward motiva-
tion to achieve a reward (see Fig. 2A). At point (b) the agent is at the reward
site. DRN spiking is maintained to inhibit leaving the site before the reward is
delivered (see Fig. 2B). Eventually spiking reduces and as no reward has been
provided, the agent leaves the site to begin a new reward search, point (c).

DRN Reward Received: The task starts with the agent wandering around
the task area. At point (a) in Fig. 6B the agent sees the conditioned stimulus and
moves towards it. DRN neurons increase spiking related to pre-reward liking (see
Fig. 2A). At point (b) the agent is at the reward site. DRN spiking is maintained
to inhibit leaving the site before the reward is delivered (see Fig. 2B). When the
reward is delivered at point (c), the neurons which maintained delayed reward
waiting cease firing and an alternative set of serotonin neurons fire, signalling
post-reward liking (see Fig. 2C) [1].

6 Discussion

The work we present here builds on the limbic model inspired by the seminal
work of Papez, Yakovlev and MacLean. Current dominant models of serotonin
function focus on reward seeking behaviour, inhibition, perseveration and the
processing of aversive cues. Nakamura argues that the DRN signals reward value
associated with current behaviour and that the reaction to CS signals motiva-
tion to access the reward and the reaction to the received reward demonstrates
appreciation [21,25]. Dayan’s model proposes that a reduction in 5HT leads to
behavioural disinhibition which is interconnected to an increased sensitivity to
aversive cues and large negative prediction errors [2]. Cools asserts that sero-
tonin has the opposite function to dopamine in that it deals with aversive cues
and inhibiting behaviour [27]. Seymour argues that the depletion of serotonin
produces perseverative responding, inducing the agent to persistently respond
to a previously rewarding stimulus that offer diminishing returns, no returns or
even negative outcomes [29].

The novel model of serotonin function we propose builds on the models above.
We have shown that serotonin plays a critical role in reward seeking activity;
enhanced spiking rates signal motivation to achieve a reward, motivation to wait
for a reward and also appreciation of the achieved reward. Lower levels of sero-
tonin in the agent would mean less motivation, less patience and lower reward
appreciation, therefore less rewards, which would have a significant impact on the
agent’s well-being and mood. Bromberg-Martin et al.’s 2010 study asserts that
serotonin controls motivation and reward seeking. High levels of serotonin led the
case studies to wait for larger delayed rewards. Lower levels made the monkeys
impulsively choose the smaller more readily available reward [22]. Higher 5HT
helps the agent to stay focussed and become less distracted, allowing them to
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exploit a resource rather than set off to explore before it has been fully exploited
[18]. Robinson et al. state that different subtypes of serotonin receptor control
varying forms of impulsive behaviour. They claim there are at least 15 subtypes.
Their study found that a reduction of forebrain 5HT led to impulsive responding
in rats and argue that their findings add to a growing body of evidence for multi-
ple neurotransmitter systems that regulate impulsive behaviour which includes
serotonin, dopamine, noradrenergic and histaminergic systems [26]. In a 2011
paper Cools et al. discuss the fact that the depletion of 5HT is characterised by
both impulsive behaviour and depression. They consider this fact incongruous
as depression is associated with reduced behavioural vitality. They posit that
5HT’s link to depression may be indirect and caused by associative learning or
the disinhibition of unpleasant thoughts [27]. It would appear that serotonin does
have an indirect effect on depression as anti-depressants that target depression
only start to affect mood after a considerable length of time. One could also
argue that increased impulsivity could lead to a negative mood if the impulsive
behaviour was having negative outcomes.

7 Model Equations

The following equations show how the signals are generated in different sections
of the limbic system model.

G(t) is a Gaussian filter which smooth out transitions in the raw signals.

LH(t) = G(t) ∗ rewardSet(t) (1)

V TADA(t) =

{ LH(t)
V TAGABA(t) + EP (t) + G(t) ∗ rewardLTP ∗ wmshell(t), mOFCdiff (t) > 0

LH(t)
V TAGABA(t) + EP (t), mOFCdiff (t) < 0

(2)
rewardLTP denotes when the long term potentiation in the reward prediction

circuit has reached a level significant enough to allow the signal to pass through
the circuit.

wmshell is the learning weight associated with reward prediction.
mOFCdiff > 0 denotes a rising edge of the mOFC signal.
mOFCdiff < 0 denotes a falling edge of the mOFC signal.

EP (t) =

{
G(t) ∗ −0.2 ∗ omissionLTP (t) ∗ LHinhibition(t), lOFCdiff (t) < 0&lOFC(t) < 0.1

0, lOFCdiff (t) > 0 ‖ lOFC(t) > 0.1

(3)
omissionLTP denotes when the long term potentiation in the reward omission

circuit has reached a level significant enough to allow the signal to pass through
the circuit.

lOFCdiff >0 denotes a rising edge of the lOFC signal.
lOFCdiff <0 denotes a falling edge of the lOFC signal.

lOFC(t) = lOFCpa(t) ∗ wlOFC(t) ∗ G(t)(lOFCburst(t) ∗ (1 − wlOFC(t)) (4)
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The lOFC signal is a combination of a permanent lOFC signal and a lOFC burst
signal, controlled by an omission learning weight.

mOFC(t) = delay(lOFCpa(t)) (5)

The mOFC signal originates in the lOFC and is therefore a delayed version of
that signal.

mPFC(t) =

{
G(t) ∗ 0.5 + LH, mOFCdiff (t) > 0
LH(t), mOFCdiff (t) < 0

(6)

DRN(t) = G(t) ∗ (mOFC(t) + mPFC(t)) (7)

References

1. Miyazaki, K., Miyazaki, K.W., Doya, K.: Activation of dorsal raphe serotonin neu-
rons underlies waiting for delayed rewards. J. Neurosci. 31(2), 469–479 (2011)

2. Dayan, P., Huys, Q.J.M.: Serotonin, inhibition, and negative mood. PLoS Comput.
Biol. 4(2), e4 (2008)

3. Dorocic, I.P., Furth, D., Xuan, Y., Johansson, Y., Pozzi, L., Silberberg, G., Carlen,
M., Meletis, K.: A whole-brain atlas of inputs to serotonergic neurons of the dorsal
and median raphe nuclei. Neuron 83, 663–678 (2014)

4. Sparta, D.R., Stuber, G.D.: Cartography of serotonergic circuits. Neuron 83(3),
513–515 (2014)

5. Ranade, S.P., Mainen, Z.F.: Transient firing of dorsal raphe neurons encodes diverse
and specific sensory, motor, and reward events. J. Neurophysiol. 102(5), 3026–3037
(2009)

6. Nakamura, K., Ono, T.: Lateral hypothalamus neuron involvement in integration
of natural and artificial rewards and cue signals. J. Neurophysiol. 55(1), 163–181
(1986)

7. Sesack, S.R., Grace, A.A.: Cortico-basal ganglia reward network: microcircuitry.
Neuropsychopharmacology 35(1), 27–47 (2010). Official publication of the Ameri-
can College of Neuropsychopharmacology

8. Noonan, M.P., Kolling, N., Walton, M.E., Rushworth, M.F.S.: Re-evaluating the
role of the orbitofrontal cortex in reward and reinforcement. Eur. J. Neurosci.
35(7), 997–1010 (2012)

9. Humphries, M.D., Prescott, T.J.: The ventral basal ganglia, a selection mecha-
nism at the crossroads of space, strategy, and reward. Progress Neurobiol. 90(4),
385–417 (2010)

10. Van Bockstaele, E.J., Pickel, V.M.: GABA-containing neurons in the ventral
tegmental area project to the nucleus accumbens in rat brain. Brain Res. 682(1–2),
215–221 (1995)

11. Brog, J.S., Salyapongse, A., Deutch, A.Y., Zahm, D.S.: The patterns of afferent
innervation of the core and shell in the ‘accumbens’ part of the rat ventral striatum.
J. Comp. Neurol. 338, 255–278 (1993)

12. Basar, K., Sesia, T., Groenewegen, H., Steinbusch, H.W.M., Visser-Vandewalle, V.,
Temel, Y.: Nucleus accumbens and impulsivity. Progress Neurobiol. 92(4), 533–557
(2010)



266 M. Sutherland and B. Porr

13. Rajakumar, N., Elisevich, K., Flumerfelt, B.A.: Compartmental origin of the
striato-entopeduncular projection in the rat. J. Comp. Neurol. 331(2), 286–296
(1993)

14. Hong, S., Hikosaka, O.: The globus pallidus sends reward-related signals to the
lateral habenula. Neuron 60(4), 720–729 (2008)

15. Barrot, M., Sesack, S.R., Georges, F., Pistis, M., Hong, S., Jhou, T.C.: Braking
dopamine systems: a new GABA master structure for mesolimbic and nigrostriatal
functions. J. Neurosci. 32(41), 14094–14101 (2012). The Official Journal of the
Society for Neuroscience

16. Bourdy, R., Barrot, M.: A new control center for dopaminergic systems: Pulling
the VTA by the tail. Trends Neurosci. 35(11), 681–688 (2012)

17. Hoover, W.B., Vertes, R.P.: Projections of the medial orbital and ventral orbital
cortex in the rat. J. Comp. Neurol. 519(18), 3766–3801 (2011)

18. Homberg, J.R.: Serotonin and decision making processes. Neurosci. Biobehav. Rev.
36(1), 218–236 (2012)

19. Juckel, G., Mendlin, A., Jacobs, B.L.: Electrical stimulation of rat medial prefrontal
cortex enhances forebrain serotonin output: implications for electroconvulsive ther-
apy and transcranial magnetic stimulation in depression. Neuropsychopharmacol-
ogy 21(3), 391–398 (1999)

20. Vertes, R.P., Linley, S.B.: Efferent, afferent connections of the dorsal, median raphe
nuclei in the rat. In: Monti, J.M., Pandi-Perumal, S.R., Jacobs, B.L., Nutt, D.J.
(eds.) Serotonin, Sleep: Molecular, Functional and Clinical Aspects. Birkhäuser,
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Abstract. The genes of living organisms serve as large stores of informa-
tion for replicating their behavior and morphology over generations. The
evolutionary view of genetics that has inspired artificial systems with a
Mendelian approach does not take into account the interaction between
species and with the environment to generate a particular phenotype. In
this paper, a genotype model is suggested to shape the relationship with
the phenotype and the environment in an artificial system. A method
to obtain a genotype from a population of a particular robotic system is
also proposed. Finally, we show that this model presents a similar behav-
ior to that of living organisms in what regards the concept of norm of
reaction.

Keywords: Bio-inspired · Genotype · Phenotype · Norm of reaction

1 Introduction

Nature has created a mechanism for transmission of information that allows
organisms to improve throughout the process of evolution. This information is
encoded in their genetic material. The way in which this information is decoded
in living organisms can be considered from distinct abstraction levels. The low
level regards the biochemistry and molecular reactions involved. Hence, a gene is
a section of a threadlike double-helical molecule called deoxyribonucleic acid [6].
The genes dictate the inherited properties of a species and allelic variations cause
hereditary variation within the species. The main elements of form in organisms
are proteins. The main task of the living system is to convert the information
contained in the DNA of genes into proteins [7].

A higher abstraction level considers how to connect the genetic information
(genotype) stored in the DNA molecules with a specific characteristic of a liv-
ing organism (phenotype). In the theoretical scheme proposed by evolutionary
genetics, development is the function that maps the genotype onto the pheno-
type (G → P ). It is known that the relationship genotype-phenotype is not
one-to-one at the lowest levels. At higher levels of interaction, such as mor-
phological traits, the genotype-phenotype relationship is even more complex [1].
Genes can not generate the structure of an organism by themselves. For a gene
to have any influence on a phenotype it must act in concert with many other
c© Springer International Publishing Switzerland 2016
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genes and with the external and internal environment. Hence, the G → P map
is really G

E−→ P (GEP) map. For an understanding of this concept it is fun-
damental to consider the role of phenotype plasticity and the idea of reaction
norm, which are introduced as the basic link relating the three variables (GEP).
Phenotype plasticity is the property of a given genotype to produce different phe-
notypes in response to distinct environmental conditions. The fundamental con-
ceptual research tool in phenotypic plasticity is the idea of norm of reaction [10].
A norm of reaction is a function that relates the environments to which a partic-
ular genotype is exposed and the phenotypes that can be produced. In practice,
such a tabulation can only be made for a partial genotype, a partial phenotype,
and some particular aspects of the environment [6].

Frequently, this abstraction level has been used to model evolutionary behav-
iors in artificial systems. The G → P map is usually the basis of bio-inspired
genetic algorithms (GAs). However, such algorithms have been more concerned
with imitating the evolution process results in order to solve searching and opti-
mization problems. Genetic algorithms emphasize the use of a “genotype” that
is decoded and evaluated. These genotypes are often simple data structures [14].
Genetic algorithms are a simple form of evolutionary algorithms (EAs). These
are composed of four components: a genotype, G → P mapping, a set of vari-
ation operators, and a user-defined function to be optimized, called a fitness
function. The EAs are often classified as “black-box optimization algorithms”
[3]. Overall, this kind of algorithms propose that, although evolution manifests
itself as a succession of changes in a species’ features, it is the changes in the
genetic material that form the essence of evolution [13]. The main idea of these
methods is based on the “genetic blueprint” or a “genetic programme”. In other
words, genes determine phenotypes. This sort of answer bypasses the process of
development, which is treated as an incidental blackbox with no direct causal
relevance to the evolutionary process [11]. From this point of view, changes in
the species are produced by isolated changes in the individuals. In addition, the
influence of the environment is limited to be used merely as a testbed to evaluate
the phenotype fitness. Evolutionary Robotics (ER) proposes to employ EAs to
design robots or, more often, control systems for robots.

Over millions of years of evolution, living organisms have adapted to different
environments and have competed for survival, allowing them to improve their
phenotypic attributes. From a conceptual standpoint, the information to gener-
ate living organisms has been transmitted in successive generations, improving
and diversifying in each iteration and generating the particular attributes in each
species. Nowadays, any species has the same common phenotype as a result of
evolution because this information is transferred to the new members by inheri-
tance. The species’ individuals have differences which are usually morphological,
but the main mechanism that accounts for these allelic differences is not muta-
tion in genes, as in classical EAs.

The aim of this paper is to propose an artificial genotype data structure which
generates a given phenotype conditioned by an environment. In particular, this
work is focused on the way the species share functionalities using their genes.
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Fig. 1. Schema of the proposed genotype model and the relationship with the envi-
ronment and phenotype

To evaluate the performance of this proposed artificial genotype, a “species”
of robotic system is used. The artificial genotype for each species’ individual
is obtained and it is used to check the GEP model proposed. To do this, the
reaction norm of the species’ individuals is estimated. The proposed artificial
genotype shows the same behavior that a biological genotype does in relation to
phenotype plasticity.

2 Model

2.1 Genotype Model

The biochemical information stored in the DNA strings is converted in some
way in living organisms with their anatomy, physiology and behaviors. In the
proposed model, different types of information are defined according to the way
this information is encoded in living organisms. The genotype model proposed
transfers this information to a space parameters

– Allelic Information. It is the information stored in DNA which encode
amino acids and proteins directly, so some phenotypes can be determined
directly by this information. This information is encoded by allelic parameters:
Γ = {Γ1, Γ2, ..., Γa} | Γ ∈ R

a, where a is the number of encoded allels.
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– Species’ Regulatory Information. It is related to information stored in
DNA which does not encode amino acids directly, but is shared by all indi-
viduals of the species. This kind of data is encoded by the species’ regulatory
parameters(SRP). There are two kind of SRP parameters: the first class is the
regulatory parameters of transcription function: W = {W1,W2, ...,Wm, } |
Wi ∈ R

t where t is the number of combinations of the encoded pro-
teins from allelic genes, to encode a functional protein. The second class is
the combination parameters from allelic and species’ regulatory information:
ω = {ω1, ω2, ..., ωm} | ωi ∈ R

a,t, b = {b1, b2, ..., bn} | bi ∈ R
t.

– Species’ Functional Information. It is the information encoded in DNA
which is transformed into specific species’ phenotypes. The function of this
information is regulatory and regards the control of the functional combina-
tion of synthesized proteins from allelic information which is encoded by the
species’ functional parameters (SFP): Ω ∈ R

l,m, where l is the number of
the environment modifiers and m is the number of proteins which adjust the
obtained phenotype.

– Functional Protein Configuration. It is a sequence of proteins that are
obtained from the translation function and regulatory species information.
These proteins represent a certain phenotype which can be modified by the
environment. This kind of information is transferred into parametric space:
initial functional protein parameters (FPP 0), these parameters represents the
initial proteins synthesized from species’ genes, but they are going to be modi-
fied by the interaction with the environment. Θ0 = {Θ0

1, Θ
0
2, ..., Θ

0
m} | Θ0

i ∈ R
n

where n is the number of parameters that define a phenotype. The successive
modified sets of functional parameters depend on the consecutive environ-
ments where the individual has been adapted. This kind of parameters are
named adapted functional protein parameters: Θ = {Θ1, Θ2, ..., Θm} | Θ0

i ∈ R
n

where n is the number of parameters that define a phenotype.

2.2 GEP Mapping Model

So far, we have encoded the information stored in DNA in a parametric space.
The parameter space defined above can be considered as a data structure. Sev-
eral operations can be established for modeling GEP mapping (Fig. 1). Hence,
a species’ individual has got a genotype defined by the previous structure. One
part is specific for this individual (allelic information). In the biological case, this
information is represented by allelic genes which can be converted into proteins.
The transcription of one gene may be turned on or off by other genes called reg-
ulatory genes [6]. In the proposed system, this transcription process is modelled
by the transcription function (Eq. 1).

Θ0 = Φ(ω, b, Γ )TW (1)

In a mathematical way, the transcription function is a regression model that
relates the allelic information with initial functional parameters. The SRP fit
this model and represent the information shared with every member of this
species that accounts for the phenotypic behavior.
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Furthermore, proteins encoded by one gene may modify the proteins encoded
by a second gene in order to activate or deactivate protein function. The equiv-
alent of the latter proteins are the SFP in the proposed model. These proteins
can also be modified by the environment through signal transduction. Moreover,
proteins encoded by one gene may bind to proteins from other genes to form an
active complex that performs some function. This is modeled by a transduction
function.

Ŷ = Ψ(Ω,X)TΘ (2)

This function finally generates a phenotype. From a mathematical point of view,
the transduction function is a recursive regression model, where there are some
input cues (X) that are combined with common fixed parameters (Ω) into a
nonlinear function Ψ for all the species individuals and the regression parameters
are Θ.

So far, the environment adaptation has not been considered. In 1930,
Ronald A. Fisher emphasized [4] that adaptation is characterized by the move-
ment of a population towards a phenotype that best fits the present environment.
However, this evolution is produced by changes in the individuals in this popu-
lation. In the proposed model, this is considered in the adaptation function.

Θe = Θe−1 + M(Y, Ŷ ) (3)

where e is the number of interacting successive environments. This equation has
to accomplish these limit restraints: when e = 0 → Θe = Θ0 and the difference
between Θe − Θe−1 has to tend to zero. The value Y is the optimal phenotype
and Ŷ is the current individual phenotype.

Equation 3 expresses a sequence of changes in functional proteins modifying
the phenotype showed by the individual. The motor for these changes is the gap
between the optimal phenotype and the current phenotype expressed in a func-
tional way in the adaptation function. This had been defined as a first degree
dynamic system where its initial condition is defined by the initial functional
protein parameters. When the individual is adapted the gap between Y and Ŷ
has to be minimum (Θ∗

e). Once in this point, there might be another adapta-
tion stage for the individual, so Θ∗

e generates epigenetic changes in SRP. This
changes are propagated to the descendants improving Θ0 estimation. From an
information point of view, the environment adaptation is a learning procedure
whose goal is to learn the environment model to better predict the response to
environmental cues.

3 Case Study

3.1 The Robot Species Description

Of course, the genotype for a robotic system is not defined as a biological system,
but from an information point of view the model GEP can be considered valid
for a robot. In this case, the environment is the part of the universe with which



272 A.J. Duran and A.P. del Pobil

the robot interacts, i.e. it receives information through its sensors and modifies it
using its actuators. The phenotype comprises not only its morphology but also its
behavior. The genotype as defined above is composed of the allelic information,
which are the parameters or design variables of the robot, and the information
concerning the species. This last point is a critical question because it is not
usual to work with the concept of species in robotics. Two robots belong to the
same “species” if they have the same number of design variables and show a
similar behavior in a similar environment.

Let us consider a species composed of robot heads. We have selected this
species because it presents sensor and actuators to interact with the environment.
These sensors and actuators may be different between individuals from the same
species. However, this species can show a behavior that is shared by all its
individuals, namely saccadic movements. This species is characterized for having
two cameras and 3 DOF. One of them for each camera and the other shared.
The morphological traits can be described from a robotics point of view as a
Denavit-Hartenberg model (Table 1). In addition, the sensor traits, are modelled
by the pinhole scheme. So each camera has several characteristics: focal length,
pixel size (supposed squared), height and width image resolution. Therefore,
the design parameters, which are individual traits into the same species, are
defined by a = 16 values. This information corresponds to allelic information in
the proposed genotype model (Γ ∈ R

16). The genotype-phenotype mapping of
this allelic information is directly the morphology and sensor properties of each
individual in the species and it is not dependent on the environment (Fig. 2).

If other complex phenotypes are defined for every individual of this species,
for example, the ability to execute saccadic movements, the environment must be
considered. A saccade is a fast eye movement that shifts the gaze to a target point
and can be used to scan the visual space [2]. We will focus on the transformation
that links the visual position of a stimulus into a target position of the eyes, as
well as on feedback error learning (FEL) as described in [8]. In this method,
there are two inverse controllers. A fixed controller (B) that slowly drives the
system toward the target and provides a learning signal to a second adaptive

Table 1. Denavit-Hartenberg model of the left
side of the head. ρp, ρt are the revolute joints of
the pan and common tilt motors. The right side
is the same model and it shares the ρt joint

Joint ρ (rad) r (m) a (m) α (rad) Offset Type

q1 ρt 0 0 π/2 π/2 R

q2 0 0 0 −π/2 0 P

q3 π/2 0.055 0 π/2 0 P

q4 π/2 0.055 0 π/2 0 P

q5 ρp 0 0 π/2 π R

q6 0 0.01 0 π/2 0 P
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Fig. 2. Example of the head model
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controller (Cf ). In this case, the phenotype is quantified by the gaze point after a
saccade. If the projection of the gaze point were in the center of the two images,
the phenotype would be optimal. Therefore, the gap for the adaptation function
is the difference between these gaze points.

3.2 The Environment

The environment is a spatial region around the robot head. A virtual object
is randomly placed in the vision field of the two robot cameras. This object is
static related to the robot frame. To assure that these points cam be watched by
the two cameras at the same time, the environment region has been generated
from the minimal and maximum tilt, version and vergence angles of the heads.
For this reason the resulting region is not regular and the geometrical centroid
point is used to represent this spatial region.

3.3 Applying the GEP Model to the Robotic System

To match the GEP model with the robot species proposed, it is necessary to
identify the transcription, activation and adaptation function. In the proposed
case, to adapt the saccadic behavior to the environment, the robot must learn
how it has to change the cameras position to gaze the object. The environment
transduction cues are the projection of the visual stimulus in the robot camera
images. They, combined with the proprioception of the robot, must generate the
saccadic behavior. The transduction function is really the system controller. If
the robotic system had perfectly adapted to the environment, the projection of
the visual point in the images of the cameras would be in the center, exactly. So
the distance between the real projection to the image center could be considered
as a gap between the optimal phenotype and the showed phenotype. In the GEP
proposed model, the system controller represented by a transduction function
is modified by an adaptation function depending on the phenotype gap, so the
proposed system controller represented by a transduction function is really an
adaptive controller.

In the proposed FEL model [2] for one robot, there are two controllers, a fixed
one (B) and adaptive (Cf ), both contributions are the system controller. As B
is independent of the environment, it is possible to apply the G → P model and
B can be estimated from allelic information (Γ ), directly. The Cf controller is
implemented by a single-layer neural network, with 7 inputs and 3 outputs. The
environment cues are defined by these seven inputs (l = 7). Gaussian activations
using random space features [12] were used for the hidden layer. If these random
space features are the same for every species’ individual, they are the species’
functional parameters (Ω), because they regulate the phenotype function. The
weights in this network combine the activation functions, as the transduction
function is modified by functional proteins parameters in the proposed model,
hence these weights are Θ. The dimensions of Θ are the number of units in the
hidden layer (n) and the number of outputs (m). The adaptation function is
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equivalent to adapt the weights in the neural network. In [2] the incremental
sparse spectrum Gaussian process regression (I-SSGPR) is used.

Finally, the transcription function is another regression model that relates
the allelic information with the initial functional parameters (Θ0). Hence, the
regression parameters can be obtained if Γ and Θ0 are known. The problem is
to fix the Θ0 value for each individual in the species.

3.4 Getting the Robot Genotype

Thus, if a population of robots from the same species is forced to adapt to the
same environment and to develop the same behavior, the shared information that
defines the behavior of all the species individuals can be extracted. To do this:

1. A robot population is generated, changing their allelic information. The SRP
and FPP 0 are initialized randomly but they are the same for all the members
of the species.

2. Each individual is immersed into the same environment and it is forced to
adapt to get Θ∗

e from (Eq. 3):

dM(Y, Ŷ )
de

≈ 0 → Θe = Θ∗
e (4)

3. With the Θ∗
e value for each individual and their allelic information, the tran-

scription function is converted into a regression problem where its parameters
are the SRP. A fixed environment is used to obtain these parameters. The
species individuals will adapt quickly in similar environments and slowlier in
different ones

4 Experimental Results

To validate the model fitting to a population of robots, the shared information by
every individual of this population must be known. In the living organism, this
information is encoded in DNA, but in robots, we have to set up an environment,
a behavior and an allelic encoded morphology for each individual in order to get
that shared information.

Once we have the species genotype model, we must check if this model shows
the same performance that the living organisms. That is, when an individual’s
genotype is completely defined and it is placed in different environments, the
phenotype has to be changed according to the norm of reaction.

4.1 Generating a Population of Robots

A robot model was used to simulate different robot head setups (44271 individu-
als were generated) with allelic information as described in the previous section.
A reasonable interval is fixed to avoid infeasible configurations. The values of
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Table 2. Design parameters to generate the allelic information

Prismatic joints (cm)

Left size Right side

Γ p
i,1 = q2 ∈ [−0.054, 0.054] Γ p

i,2 = q2 = Γ p
i,1 + [0, 0.01]

Γ p
i,3 = q3 ∈ [0, 0.07] Γ p

i,4 = q3 = Γ p
i,3 + [0.035, 0.07]

Γ p
i,5 = q4 ∈ [−0.02, 0.054] Γ p

i,6 = q4 = Γ p
i,5 + [0, 0.02]

Γ p
i,7 = q6 ∈ [0, 0.01] Γ p

i,8 = q6 = Γ p
i,7 + [0, 0.01]

Cameras parameters: f (px); s(m/px); w(px); h(px)

Left camera Right camera

Γ p
i,9 = fl ∈ [340, 1920] Γ p

i,10 = fr = Γ p
i,9 + [0, 200]

Γ p
i,11 = sl ∈ [3. 10−6, 7. 10−6] Γ p

i,12 = sr ∈ [3. 10−6, 7. 10−6]

Γ p
i,13 = hl ∈ [340, 1920] Γ p

i,14 = hr = Γ p
i,13 + [0, 200]

Γ p
i,15 = wl ∈ [340, 1920] Γ p

i,16 = wr = Γ p
i,15 + [0, 200]

if Γ p
i,13 > Γ p

i,15, swap(Γ p
i,13, Γ

p
i,15) if Γ p

i,14 > Γ p
i,16, swap(Γ p

i,14, Γ
p
i,16)

the left side of the head are chosen randomly and the right side is defined in a
random interval as shown in Table 2.

The generated population is split into three groups: (i) Adaptation group
(26500 individuals). This group is used to get an estimation of the transcription
function because there is no knowledge about the species regulatory parameters.
(ii) Control group (4500 individuals). This group is used to validate the species
regulatory parameters obtained from the adaptation group. (iii) Control popu-
lation (13271 individuals). This group is used to validate the obtained genotype.

4.2 Getting the Genotype Model from the Generated Population of
Robots

Each of the individuals in the adaptation group, that were generated previously,
is immersed in the same environment and it starts the adaptation process inter-
acting with this environment. The FPP 0 are zero for all individuals because
there is no previous information. The SFP are randomly initialized, however
they are shared by all the species individuals. Hence, all of them show the same
initial degree of adaptation to this environment. The result of this adaptation
process is a set of pairs of allelic information (Γ ) and Θ∗

c (Eq. 4).
From a robotics point of view, the used neural network controller has the same

value for the initial weights (zero) for all training cases. In addition, a unique
set of random sparse features are generated for all neural network controllers.
Each robot setup is trained with the same environment using the same neural
network parameters tuned previously [5]: variance of the model (σ2

n = 0.1), sig-
nal variance (σ2

f = 1.0) and number of projections (m = 300) so the number
of neural centers is 600. With these parameters the mathematical dimensions
of the proposed genotype are defined as: Γ ∈ R

16 and Ω ∈ R
3,300. The FPP 0
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are Θ ∈ R
3,600. The results of this process are the neural network weights for

each robotic head setup that allow the robot head to generate saccadic move-
ments. In Fig. 3a, there is an example of how the phenotype changes with each
adaptation. The relationship between the allelic and the species’ regulatory infor-
mation connect the particular traits of an individual with specific traits of the
species. After the environment adaptation described previously, a set of allelic
information, and species’ functional parameters are defined along with a valid
set of initial functional protein parameters for each individual. As it is shown
in (Eq. 1), the transcription function is a regression model. Hence, it is possible
to use any regression method to estimate the parameters (ω, b, Γ ). The chal-
lenge is to solve the dimensional problem. In particular, the mapping from Γ
(16 dimensions) to Θ (1800 dimensions). Fortunately, due to the fact that the
weights of a trained network are independent among them, the regression prob-
lem can be decomposed into multiple smaller regression problems. Each Θi is
influenced by Γ independently of the rest of Γ . The problem is transformed into
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solving 1800=(3 × 600 dimensions of Θ) small regression problems. In this way,
the SRP are the set of parameters of each regression. The regression tool used
is a MLP neural network with 16 inputs, 10 units in the hidden layer and one
output. The hyperbolic tangent function was used for the hidden layer and the
output layer was linear. The algorithm to train each network was the scaled
conjugate gradient descent (SCG) [9]. The performance follows from comparing
the weights obtained after training the adaptive controller and those estimated
by the neural network stack. The training result for the adaptation group has
a mean square error equal to (2.19 ± 0.43)10−4. In this way the SRP are 1800
matrices and vectors: ω ∈ R

16,10, b ∈ R
10 and W ∈ R

10.
The result of this procedure is a set of 44500 individuals with their own

allelic information that generates different traits in the same species. Hence,
there are 44500 different genotypes, but every individual has the same SRP and
SFP characterized by Ω and (ω, b, Γ ).

4.3 The Genotypes’ Norm of Reaction

For each individual in the species, one artificial genotype is defined. When the
individual is placed in a distribution of environments, a distribution of pheno-
types results. This relationship is regulated by the norm of reaction. Therefore,
each individual in the control population is characterized by its norm of reaction.
The defined environment is a spatial region in front of the robotic system, so
one way to create a distribution of environments is to displace this region in one
axis direction. Then, the robot system is placed in each environment. The FPP 0

are generated with the allelic information and SRP from its artificial genotype
using the transcription function. The robot interacts with the environment using
the transduction function and the SFP parameters from its artificial genotype
and it adapts to the environment using the adaptation function. The phenotype
is measured in this case study as the mean distance to the centers of images.
Finally, a set of pairs of phenotype (distance in pixels) and environment varia-
tions (exploration space distance in meters) is obtained. For the sake of clarity,
we randomly selected three individuals from the control group and we represent
the obtained pairs of values PE (Fig. 3b). It can be observed that there is a lin-
ear correlation. The mean squared correlation coefficient for the control group
is R2 = (0.930 ± 0.034) for linear regression of their norms of reaction.

5 Discussion

Figure 3b shows three examples of the proposed genotype model. These samples
represent three robotic systems from the same species which show a specific phe-
notype after an adaptation process using the explained model. These results are
similar for every robot in the control group, as the value of R2 shows. Beyond
the shape of the curves, this experiment shows: (i) The proposed genotype model
is able to show different behaviors (different curves) for each individual robotic
system. (ii) The relationship between environments and phenotype can be han-
dled (linearly in this case) by the proposed model. (iii) For a species individual
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with its genotype, we obtained different phenotypes in response to distinct envi-
ronmental conditions, in a certain way, phenotype plasticity is achieved by the
proposed model. This differs from classical models used in genetic and evolu-
tionary algorithms, which only consider allelic information for determining an
individual’s phenotype. This is a key point due to the fact that the plasticity of
a robot system is achieved without changing the individual genotype.

6 Conclusions

We proposed an artificial genotype model based on the GEP relationship that
exists in living organisms. To do this, we extracted the common information from
all the individuals in a species and then we used it to define their genotypes
by mixing it with the specific individual differences (allelic information). The
obtained result is equivalent to norm of reaction behavior in living organisms.
Therefore, the proposed model of genotype is able to behave as a biological
genotype in relation to phenotype and environment. In the case study, the norm
of reaction is able to generate phenotypic plasticity as in living organisms. We
tested this artificial genotype in a robot system estimating the species parameters
and generating norm of reaction curves similar to those obtained by biologists
for living organisms.
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Abstract. One of the major challenges of Evolutionary Robotics is to
transfer robot controllers evolved in simulation to robots in the real
world. In this article, we investigate abstraction on the sensory inputs
and motor actions as a potential solution to this problem. Abstraction
means that the robot uses preprocessed sensory inputs and closed loop
low-level controllers that execute higher level motor commands. We apply
abstraction to the task of forming an asymmetric triangle with a homo-
geneous swarm of MAVs. The results show that the evolved behavior is
effective both in simulation and reality, suggesting that abstraction can
be a useful tool in making evolved behavior robust to the reality gap.
Furthermore, we study the evolved solution, showing that it exploits the
environment (in this case the identical behavior of the other robots) and
creates behavioral attractors resulting in the creation of the required for-
mation. Hence, the analysis suggests that by using abstraction, sensory-
motor coordination is not necessarily lost but rather shifted to a higher
level of abstraction.

1 Introduction

Evolutionary Robotics (ER) is a field of research which uses Evolutionary Com-
putation techniques to solve robotic tasks without explicit interaction from a
human designer. This approach requires a roboticist to define the problem to
be solved and the evolutionary optimization determines the behavior required
solve it. Early work in this field made quick progress showing that ER could
automatically solve tasks such as: obstacle avoidance [10], phototaxis [11] and
chemotaxis [2]. Work was not restricted to the evolution of the brain but was also
used to evolve the physical body of the robot in a form of co-evolution [4,17]. A
comprehensive overview of this early work in ER can be found in the book from
Nolfi et al. [21].

Despite this early sprint, the pace of development slowed as researchers
attempted more complex tasks. Some of the major challenges encountered
include the reality gap, reducing optimization time, fitness function design and
behavior representation [3]. Although all these issues must be addressed for ER
to be truly successful, in this paper we would like to address the reality gap.

c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 280–292, 2016.
DOI: 10.1007/978-3-319-43488-9 25
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ER typically utilizes simulated environments to evaluate the performance of
generated candidate solutions. Although these faster-than-real-time simulations
reduce the total optimization time, differences between simulation and reality
often result in reduced performance in reality when compared to that seen in
simulation. This difference is referred to as the reality gap.

The apparent coupling seen between the perceived environment and emergent
behavior that causes this reality gap is partly the result of Sensory-Motor Coor-
dination(SMC). This inherent coupling of perception and action with embod-
ied agents results in the observation that an agent can actively influence the
perceived environment through its actions [20]. Typical implementations of ER
utilize raw sensor inputs to generate low level control commands to the robotic
platform. This approach has been shown to be effective in the development of
behavior which can solve non-trivial tasks with SMC [1,20]. The evolved SMC
will exploit the properties of the low-level sensors and motor actions in the simu-
lated environment. Unfortunately, these properties in general are quite different
from those of the real robotic platform, causing a significant reality gap.

Much progress has been made towards solving the reality gap problem most
notably by Jakobi et al. [15], Koos et al. [16] and Eiben et al. [8]. Jakobi suggests
hiding unnecessary features of the simulation in noise through minimal simu-
lations. Koos includes the transferability of the robotic behavior to the agent’s
fitness evaluated by intermittently testing the simulated behavior on real robots
during evolution. Eiben promotes on-line embodied evolution on a swarm of real
robotic platforms to remove the reality gap altogether. Some recent work has
also suggested that improved insight into the optimized behavior can enable the
roboticist to actively reduce the reality gap after optimization [24].

One method which has not been investigated in much detail is the use of
abstraction to make the robotic control more robust to the reality gap. Gen-
erally, real robotic platforms are controlled using closed loop control systems.
These systems receive a desired set-point as input and drive the output to reduce
the perceived error. Closed loop control has been mathematically proven to make
the eventual control system more robust to external disturbances or changes to
the environment [18]. With the use of a closed loop low-level control system,
evolution would abstract away from the low-level sensor inputs and actuator
outputs. Some resent work has shown promising results in bridging the real-
ity gap using abstracted methods [5,7]. This however may come at a price, as
abstraction “hides” the properties of the raw sensory inputs and motor actions
to the controller, it may have as a disadvantage that the potential for SMC by
the robot is reduced.

In this paper we investigate whether abstraction can lead to an easy transfer
of an evolved robot controller from simulation to the real world. Moreover, we
look into the open question of how abstraction affects the ability of the robot
to exploit its environment to solve a seemingly complex task. What happens to
SMC when the agent doesn’t have access to the raw sensor inputs and the ability
to directly control the raw motor outputs?
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Fig. 1. Swarm of homogeneous ARDrone 2 quadrotors autonomously used to form an
asymmetric triangle using evolved behavior.

To investigate this we implement an experiment based on the work of Izzo
et al. [14] to generate an asymmetric formation of a swarm of robots using a
homogeneous control system. The task will be discussed in more detail in Sect. 2.
The implementation and results of the evolutionary optimization of the robotic
behavior is presented in Sect. 3. A brief description of the flight hardware shown
in Fig. 1 is given in Sect. 4 followed by a discussion of the behavior on a swarm
of real flying robots in Sect. 5. Section 6 dives a bit deeper into the optimized
behavior and the effect of abstraction on the SMC. Finally, we summarize and
make some conclusions in Sect. 7.

2 Task

In this paper we would like to demonstrate the power of using high level control
cues with an underlying closed loop control system to reduce the reality gap.
The use of closed loop control systems helps to reject disturbances due to noise
or small a mismatches between the dynamics in simulation and that in reality.

To this end we have selected the asymmetric formation flight as demonstrated
in simulation by Izzo et al. [14]. That paper described a homogeneous swarm of
three SPHERES spacecraft flying in a triangular formation where each side was a
different length. Methods have been developed to autonomously form symmetric
formations using homogeneous swarms but asymmetric shapes have proven to
be more difficult [13]. The design of asymmetric formations using a distributed
control system without explicit roles in the formation is a non-trival task for
most human designers making it an ideal task for automatic optimization.

The work of Izzo et al. was confined to a simulated environment, in this
paper we would like to move to reality to demonstrate the effect of abstraction
on crossing the reality gap. Due to the lack of availability of the SPHERES
vehicles on the International Space Station, the formation control is implemented
on a swarm of Micro Air Vehicles (MAVs). Notably, we constrain the problem
to two dimensions to facilitate a more straightforward analysis of the resultant
behavior.

The goal of the swarm will be to achieve an asymmetric triangular formation
with sides of lengths: 0.7, 0.9 and 1.3m. The MAVs can observe the relative
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Fig. 2. Single hidden layer Neural Network topology used in this paper. Inputs are the
summed Cartesian components of the relative positions to the other vehicles in the
formation (r) along with the summed absolute distances (d).

position of all other members in the formation. The control system should use
this information and provide the MAV with a velocity set-point. As in [14], we
utilize a single hidden layer Artificial Neural Network (ANN) with three inputs
and two outputs as shown in Fig. 2. A tanh activation function was used in the
neurons. Additionally, a bias neuron is added to the input and hidden layer. The
output of the network can be linearly scaled to the limits of the vehicle, which
in the case of this paper was set as ±0.5m/s. The inputs, outputs and ranges of
all parameters were chosen to be as similar to the original values used by Izzo
et al. [14] to facilitate a fair comparison of our results with the original work.

The inputs to the ANN are the sum of the Cartesian components of the rela-
tive positions of the other members of the formation (r) and the sum of absolute
distances (d) as given by (1) and (2). Note that r is mathematically equivalent
to triple the distance from the ownship to the centroid of the formation (c).

r =
k∑

i=2

(pi − p1) (1)

d =
k∑

i=2

|pi − p1| (2)

Where p is the position vector of a vehicle and k is the total number of
vehicles in the swarm. These inputs are computed for each vehicle where p1 is
the ownship location. Figure 3 illustrates a possible solution to the formation
problem. Combining the positions of the other vehicles in this way is essential to
ensure the input is invariant to permutations of the vehicles. Adding a separate
input for each vehicle would implicitly encode a unique formation identifier for
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Fig. 3. Illustration of a possible formation. Vehicles are represented by a filled dot with
the ownship in this example highlighted.
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Fig. 4. Progression of the performance of the best individual during evolution validated
using 250 initialization points.

each vehicle. Additionally, only the relative positions are required for the input
rather than the absolute position, this would facilitate a wide range of real world
sensors to be used to provide this information. It should be noted that as this
input is from the point of view of each vehicle, a given set of inputs describes a
unique formation and is not rotationally invariant.

3 Evolutionary Optimization

There are many forms of evolutionary optimization in literature but they all
have a few things in common: a population of candidate solutions; a measure
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of fitness; a way of evaluating the individuals on this fitness function; and a
method to change individuals to create the next population [9]. In this paper,
we use a population of 100 candidate solutions expressed as ANNs. The fitness of
an individual is determined with the use of a multi-objective sorting algorithm
based on Nondominated Sorting Genetic Algorithm II (NSGA-II) [6]. Multiple
objective optimization was used to promote effective exploration of the fitness
landscape. Again, to facilitate a fair comparison, the objective functions used in
this paper are based on those used in [14] and are given in (3).

f1 =
3∑

n=1
|Ln − ln|

f2 =
3∑

n=1
|vn|2

f3 =

{
0, |c| < 2
1, else

(3)

Where L is the vector of the required distances, l is the vector of the distances
between the vehicles at the end of the simulation sorted in ascending order.
Sorting the distances makes the computation of the fitness it invariant to the
vehicle order. v is the velocity vector of the MAV at the end of the simulation
and c is the location of the centroid of the triangle. The first fitness function
tries to have the MAVs end up in the correct formation. The second promotes
individuals that have a low final velocity. The final function is an augmentation
to the original set from [14] and promotes behavior that results in the centroid of
the formation remaining inside of a 2m radius of the origin of the axis system.
This requirement was added due to the practical limitation that the vehicles
must operate in a constrained 8 × 8m flight arena.

A simulation was used to assign a fitness to the candidate solutions. A simple
Euler integration based kinematic simulation was implemented to ensure that
computational requirements of each simulation would remain low, speeding up
the optimization. This simulator captures the approximate kinematics of the
real MAVs with a simple low pass filtered velocity response with a time constant
determined by performing real world flight tests. Each simulation was initialized
with the three MAVs at a stand still at random locations in a 2× 2m area with
at least 1m separating each vehicle and the centroid of the initial orientation
located at the origin of the axis system. The vehicles were then allowed to traverse
the room in the x − y plane for a maximum of 50 s. The simulation can be
prematurely terminated if the MAVs come within 30 cm of each other as this
would constitute a collision on the real vehicles. At the end of the simulation
run, the final position and speed of the MAVs is used to assign a value to each
fitness function as given in (3).

Once the population is evaluated, they are sorted using the NSGA-II algo-
rithm. The best individuals are stored in an archive of 100 members. This archive
is also used as the mating pool which is used to generate the population of the
next generation. Members are selected from the mating pool using a tournament
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Fig. 5. Ground tracks of a collision free flight and a flight that would have ended in a
collision of three ARDrones performing the asymmetric formation task. The length of
each side is shown in text, + marks the start location and the circle with the dot in
the center marks the end location with the diameter of the vehicle to scale.

selection technique with a size of 8 randomly selected members from the mating
pool and the best individual averaged over all fitness dimensions returned as a
champion. Mutation was the only evolutionary operator used in this paper as
some works have shown that mutation only evolution to be effective [25]. Each
weight in the ANN was considered for mutation with a probability of 5 %. Muta-
tion consisted of a random perturbation of the previous value by selecting a new
value based on statistical acceptance based on the previous value constrained on
the range [−1,1].

Figure 4 shows the performance of the best individual from each generation
of the evolutionary optimization for this problem. Each individual was evaluated
using 250 different combinations of initial conditions with a maximum simulation
time of 50 s. This figure shows that evolution gradually reduces the error in the
final vehicle distances and the final velocity. This figure also shows that the
behavior does not guarantee a collision free flight for all initial conditions. After
1000 generations the average error of each side of the formation is about 5 cm.

The member with the lowest average score over the three fitness functions
from the last generation of the evolutionary optimization was selected for further
analysis and implementation on the real swarm of three MAVs. Here we will first
analyze the behavior exhibited by the ANN controller to gain some insight into
the solution to the problem.

The behavior was evaluated by a validation run of 250 different initial condi-
tions. During the validation run, the simulation was not cut short if a collision
occurred. A formation is considered accurate when the summed error of the
lengths is below 0.15m or 5 cm average error. The results show that 98 % of runs
resulted in a successful triangle formation within 50 s of which 14 % would have
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incurred a crash. Of these successful runs, the mean error was 0.0222m with
a standard deviation of 0.0262. In 2 % of the runs the triangle was not formed
within 50 s. Figure 5 shows one of the successful runs of the formation behavior
and one case where a collision would have occurred.

4 Flight Hardware

The flight tests performed in this paper were conducted using the 420g Par-
rot ARDrone 2 quadrotor MAV. This vehicle is equipped with a 1 GHz 32 bit
ARM Cortex A8 processor running an embedded Linux operating system [22].
The default flight software provided by Parrot was overwritten by custom flight
software implemented using Paparazzi, an open-source flight control software
[12,23].

5 Flight Tests Results

Moving from the simulated environment to the real world, the behavior shown
above was implemented on a swarm of three ARDrones. Flights were performed
in an 8×8m flight arena and the flight path of the vehicles was captured using an
Optitrack motion camera system [19]. The position of all vehicles were broadcast
at 5Hz so all vehicles know the relative position of the other swarm members. For
the first set of tests, as in simulation, the three vehicles were initialized at random
in a 3× 3m area in the flight arena with the centroid of the initial formation at
the origin of the arena. Figure 6 shows the result of one test performed.
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Fig. 6. Ground track of the real world flight test and the simulated flight for the same
initial positions. The length of each side is shown in text, + marks the start location
and the circle with a dot in the center marks the end location with the diameter of the
vehicle to scale.
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It was observed that the quadrotors were so close to each other that the
downwash from one quadrotor would interact with the other vehicles causing
significant external disturbances. Figure 7 shows the commanded velocity of the
ANN and the true vehicle velocity along with the result of the simulation. In con-
trast with the simulation, the real-world quadrotors have clear errors in tracking
the desired velocities, in part due to the aerodynamic interactions. These track-
ing errors represent a significant reality gap.

Despite this apparent mismatch between simulation and reality, the observed
behavior is very similar to that seen in simulation with the correct formation
achieved with an accuracy of ±0.034.

6 Analysis of the Sensory-Motor Coordination

To analyze the effect of abstraction on the extent to which evolved robots exploit
their environment and make use of SMC, we must first diver deeper into the opti-
mized behavior. In Izzo et al., an analysis of the evolved behavior was performed.
As a part of the analysis, two robot satellites were fixed at one of the desired
distances. The third satellite was left free to move but did not settle into a posi-
tion which completed the formation. This led them to an interesting hypothesis:
perhaps the asymmetric formation could only be reached if all three satellites
were free to move. Here we will investigate if we can observe a similar phenom-
enon for our specific evolved solution, and evaluate whether SMC plays a role in
successful formation flight.

In the flight tests performed in this paper, it was observed that all successful
formations resulted in a triangular formation with the same rotational orienta-
tion to the Cartesian axis system. The orientation can be seen in Figs. 5 and 6.
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Fig. 7. Tracking performance of the velocity controller on the simulated and real
ARDrone 2 given the same velocity command highlighting the reality gap.
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As there is a unique set of inputs to describe every possible rotational orienta-
tion of the triangle formation, this alludes us to the possibility that the ANN is
trying to solve the formation for a fixed set of sensory inputs (rx, ry, d) rather
than a set of linear combinations that would define a rotationally independent
formation. This demonstrates how influential the fitness function is to the final
solution. The function used in this paper requires the formation of a triangle
with three fixed length sides but makes no definition of the required orientation.
Given that freedom, the optimization finds the simplest solution to the problem,
which in this case is a unique formation.

This solution also suggests a level of inherent environmental exploitation,
namely that the other vehicles will comply and also move in such a way to solve
the problem. We can test this by fixing two of the vehicles in an orientation
different to that converged upon when they are all free. If we initialize the third
vehicle at various locations around the other two and allow the vehicle to move
for 500 s we should be able to identify the basin of attraction this configuration.
Figure 8 shows a basin of attraction for the situation when the longest side of
the formation is fixed along the x-axis. This figure shows the magnitude of the
commanded velocity of the free vehicle at all locations in around the other two
fixed vehicles. It also shows that the velocity vector field has three attractor
points, none of which are correct locations to complete the formation. Notably,
although the highlighted spots are stable points when the two other vehicles are
fixed, the commanded velocities of the other two vehicles is non-zero showing
that this formation itself is not stable.
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Fig. 8. Basin of attraction showing the velocity magnitude for one vehicle given the
other two vehicles (dark dots) are fixed in space. The hollow circles highlight the
possible solutions to the formation problem and the light dots show the stable attractor
points.
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If we repeat this for the case when the two fixed vehicles form the angle
which is converged upon when all vehicles are free we are left with the basin
of attraction seen in Fig. 9. This analysis shows that in this new configuration
there is only one stable attractor in the velocity map which would indeed solve
the formation problem. In this location the fixed vehicles have near zero velocity
set-points.

We also performed real flight tests with two vehicles fixed along the correct
orientation and distance of one side of the formation. Figure 9 shows that the
ground tracks of the real flights overlap almost exactly with this velocity field.
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Fig. 9. Basin of attraction showing the velocity magnitude for one vehicle given the
other two vehicles (dark dots) are fixed in space. The hollow circle highlights the
solution to the formation problem. Overlain are ground tracks of all real world flights
with the light dot showing the location the real robots converged toward. This shows
that the real world performance mirrors what is expected from simulation quite well
despite a clear reality gap.

Nolfi et al. suggest that the emergence of behavioral attractors is indicative
of SMC [20]. Given this, the behavior we have shown here would seem to exhibit
some form of SMC albeit on a more abstract level. Although the evolution has
no access to the low level control or sensory inputs, the resultant behavior was
still able to exploit the implicit knowledge that the other members of the swarm
would unintentionally cooperate to solve the task.

This result also sheds some light onto the result of Izzo et al. It may not
have been necessary for all the vehicles to be moving to achieve the formation
but rather the relative orientation of the members must facilitate the behavioral
attractor.
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7 Conclusions

In this paper we investigated the application of abstraction on the inputs and
outputs of a neural network controller within the Evolutionary Robotics para-
digm. The evolutionary optimization was tasked with forming an asymmetric
triangle with MAVs. The optimized behavior was effective both in simulation
and reality suggesting that abstraction can be a useful tool in making evolved
behavior robust to the reality gap. We also showed that sensory-motor coordina-
tion which is a typical emergent phenomenon of reactive agents is not necessarily
lost when abstracting away from the raw inputs and output but is rather shifted
to a higher level of abstraction. Future work will implement the task presented
here with the control on a lower level of abstraction to more explicitly investigate
the influence of abstraction through direct comparison.
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Abstract. It has been demonstrated that social learning can enable
agents to discover and maintain behaviours that are inaccessible to incre-
mental genetic evolution alone. However, previous models investigating
the ability of social learning to provide access to these inaccessible behav-
iours are often limited. Here we investigate teacher-learner social learn-
ing strategies. It is often the case that teachers in teacher-learner social
learning models are restricted to one type of agent, be it a parent or
some fit individual; here we broaden this exploration to include a vari-
ety of teachers to investigate whether these social learning strategies
are also able to demonstrate access to, and maintenance of, behaviours
inaccessible to incremental genetic evolution. In this work new agents
learn from either a parent, the fittest individual, the oldest individual,
a random individual or another young agent. Agents are tasked with
solving a river crossing task, with new agents learning from a teacher in
mock evaluations. The behaviour necessary to successfully complete the
most difficult version of the task has been shown to be inaccessible to
incremental genetic evolution alone, but achievable using a combination
of social learning and noise in the Genotype-Phenotype map. Here we
show that this result is robust in all of the teacher-learner social learning
strategies explored here.

Keywords: Social learning · Incremental genetic evolution · Learning
by imitation · Teacher-learner model · ‘who’ strategies

1 Introduction

Previous research has shown that with the use of social learning, individuals
are able to discover more complex behaviours that are not accessible via incre-
mental genetic evolution alone [3]. In this work, and many other simulation
models that explore social learning and culture, social learning itself is often
limited. These limitations are often centred around who individuals learn from.
Here we expand on previous work to explore whether behaviours inaccessible to
incremental genetic evolution alone are still discovered, and maintained, when
individuals are permitted to learn from a variety of different individuals. We go
on to discuss why these differing teacher-learner social learning strategies solve
the task used here in differing ways.
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 293–304, 2016.
DOI: 10.1007/978-3-319-43488-9 26
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1.1 Incremental Genetic Evolution

Incremental genetic evolution necessarily uses converged populations, which is
often referred to as the Species Adaptation Genetic Algorithm (SAGA) approach
[6]. SAGA impacts on the way populations evolve: recombination will have a far
smaller effect on the motion of the population than in a standard genetic algo-
rithm, as each species is already genetically similar, leaving mutation as the
primary driving force behind evolution. Mutation can be substantially effective
in spaces percolated by neutral networks: pathways of level fitness through the
fitness landscape; in this case genotypes can vary while still producing similar
phenotypes and behaviours. When phenotypes of higher fitness are found the
population converges onto them thus enabling species to discover and converge
upon easily accessible solutions and behaviours. However, if there is no neutral
or incremental path between the corresponding basic behaviour and fitter behav-
iours, the population will struggle to move away from sub-optimality. Figure 1
depicts a mock example. One approach to solving the problem of suboptimal
convergence is to increase the rate at which mutation is applied, potentially
allowing the population to explore more of the fitness landscape. However, there
are problems with this approach: as mutation rates increase, evolutionary search
begins to resemble random search making it increasingly difficult for the popu-
lation to maintain solutions. The point at which mutation becomes so large that
favourable structures discovered by evolution are lost more frequently than they
are found is known as the error threshold [10].

Fig. 1. A species starting from point X on the above mock fitness landscape would
achieve peak A via the hill climbing strategy adopted by incremental genetic evolution
(driven primarily by mutation and selection). The inclusion of noise in the genotype
to phenotype map and social learning (e.g. imitation) can enable the species to bypass
areas of lower fitness.

1.2 Discovering and Maintaining Inaccessible Solutions

To solve the issue of sub-optimal population convergence without crossing the
error threshold, noise can be added to the fitness landscape via the genotype
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to fitness map. However, depending on where such noise is in the phenotype to
fitness section of that map, its ability to aid in the transition between peaks
is limited. By instead incorporating noise into the genotype to phenotype map,
behaviours inaccessible to incremental genetic evolution may be exhibited reli-
ably by individuals while leaving the genotype untouched. One method for intro-
ducing noise in this way is to introduce transcription errors when writing from
the genotype to the phenotype in systems with equivalent genotype and pheno-
type encodings, such as direct artificial neural network weight encodings [3]. By
introducing potentially new behaviours to the phenotype we deny the initial pos-
sibility of these behaviours being inherited by new individuals through standard
Darwinian evolutionary mechanisms. Therefore in order to maintain successful
behaviours in the population, some form of extra-genetic learning needs to take
place. The extra-genetic learning employed in this model is a combination of
the aforementioned genotype to phenotype noise and social learning through
interaction between teachers and learners to facilitate the transmission of learnt
behaviours [1,4]. As in Borg et al. [3], learners or pupils follow teachers in a mock
evaluation on a set of environments or maps. As both teacher and pupil receive
the same environmental input the teacher’s output may be used as a target pat-
tern for error back-propagation, reducing the pupil’s output error compared to
that of the teacher. By learning in this way pupils are able to partially imitate
the behaviours exhibited by teachers, thus maintaining aspects of new behav-
iours in the population that would have been lost by a stand alone evolutionary
process.

The use of teacher-learner social learning has been shown to be sufficient
for discovering and maintaining behaviours inaccessible to incremental genetic
evolution alone in a grounded simulation [3]. However, these simulations only
allowed one form of social learning, in which offspring would learn from their
fittest parent. Though a valid approach that has been used in previous work [4],
there are other theoretical and empirical models that can be adapted to this
work to evaluate whether or not other social learning strategies are still capable
of achieving these complex behaviours.

Social learning is seen widely in nature [11] and in a range of species as diverse
as humans and nine-spined stickleback fish [7]. The mechanisms and processes
that underpin social learning are themselves broad, ranging from teaching, imita-
tion and emulation to stimulus enhancement and exposure [5], with any of these
mechanisms potentially leading to formation of traditions and cultures [15,16].
However, within each social learning category there is some dependence on who
information is obtained from, be it a teacher or which agent is unintentionally
(or intentionally) exposing an individual to something new. As social learning
is necessarily conformist, a poor learning model may result in the discovery and
propagation of sub-optimal behaviours. In this work we assess whether who you
are learning from, otherwise known as ‘who’ social learning strategies [8], can
hinder social learning’s ability to discover and maintain behaviours inaccessible
to incremental genetic evolution alone, thus undermining social learning’s adap-
tive advantage over incremental genetic evolution in complex environments.
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Laland [8] assess both ‘who’ and ‘when’ social learning strategies, alongside
the complexity of social learning in animals, providing evidence to show its adap-
tive advantages. Laland [8] has a particular focus on conformity: a population’s
ability to share popular behaviours amongst each other while minimising explo-
ration for new behaviours; the use of conformist social learning can be beneficial
or detrimental depending on the environment or task [2,8,9]. It has also been sug-
gested that conformist social learning that is not supplemented with non-social
exploration can lead to population collapse in temporally varying environments
[2], though recent work suggest that conformist learning may be of benefit in
spatially varying environments [9]. The ‘who’ social learning strategies (con-
cerned with who an agent should learn from rather than when learning should
take place) inspired by Laland [8] are modelled here as three core social learning
strategies: ‘Best Parent’, ‘Oldest’ and ‘Fittest’. The ‘Fittest’ strategy selects the
fittest individual from the population to be the teacher. The theoretical basis
behind this strategy falls partially into the ‘Learning from majority’ category
discussed by Laland [8], but also has a wider basis in nature with many ani-
mals being shown to learn from more successful individuals. Learning from older
individuals derives from the rationale that older individuals must have exhibited
successful behaviours to survive, however this does not have to mean the older
individual in question is in fact the fittest individual, due to this the ‘Oldest’
strategy is likely to provide a broader range of behaviours than the ‘Fittest’
strategy. The ‘Best Parent’ strategy (as seen in Borg et al. [3]) sets the teacher
to be the parent who has won the right to reproduce in a tournament. This is
the least conformist strategy of the three as it allows unfit individuals, relative
to the rest of the population, to be parents as tournaments only involve a small
number of individuals. Additional to these three core strategies we also intro-
duce social learning strategies for learning from random and young individuals.
Though not widely evident in nature, the theoretical benefits of learning from a
random individual (sometimes described as unbiased social learning) have been
have been discussed in numerous works [9,12]. The theorised benefits of unbiased
social learning arise in temporally varying environments, where learning from a
broader set of individuals enables increased access to new behaviours that may
be relevant in the specific environmental state being experienced. A ‘Youngest’
strategy, despite no theoretical basis, is being evaluated as a contrast to the
‘Oldest’ strategy.

1.3 Neuroevolution of Deliberative Behaviours for an Advanced
River Crossing Task

This work uses populations of hybrid neural networks embodied in agents (often
referred to as animats). The hybrid networks are comprised of two different
neural networks: the first controlling the high level deliberative behaviours of
the animat, and the second controlling the animat’s reactive capabilities. Hybrid
neural network architectures of this sort have demonstrated the ability to seek
long term goals whilst also reacting to unforeseen events ultimately enabling
the evolution of complex problem solving abilities [3,13,14]. To demonstrate
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these problem solving abilities Robinson et al. [13] developed a complex prob-
lem called the ‘river crossing’ or RC task. The RC task required animats to find
a reward-giving Resource in a 2D grid-world environment containing a number
of obstacles, including Traps, Water (connected to form an impassable river),
and Stones. In order to cross the river animats were required to pick up Stone
objects, which could be carried at no cost to the animat, and place them in the
same cells as Water thus negating the cell’s lethality. Once a continuous bridge of
Stones over the river had been built, animats could access the Resource. Despite
the RC task being reasonably complex, it has been demonstrated that it could
be solved by initially converged populations of animats using only incremen-
tal genetic evolution [13]. To test whether social learning could discover and
maintain behaviours inaccessible to incremental genetic evolution alone, a more
complex version of the RC task, known as the RC+ task, was developed by Borg
et al. [3]. A snapshot of the RC+ task can be seen in Fig. 2.
An important aspect of the RC task was that individuals were evaluated on
increasingly difficult environments. The RC+ task maintains this principle whilst
making the RC task more difficult in regard to both river width and exposure
to Stone objects. The number of environments an animat was evaluated on
increased from three to five, with environments becoming increasingly difficult
to solve due to river width increasing from zero to four cells. To add additional
difficulty, the number of Stone objects gradually decreases from twenty in the
first environment to zero in the final environment, rendering the bridge building
behaviour useless for solving the final environment. In order to make the final
environment solvable, two extra objects, Object A and Object B, were introduced
into the environment. Object A and Object B were rare objects, with only one
instance of each found in each environment. Object A and Object B are moveable
at no cost to the animat and may be placed upon any cell or object. If an animat
places both Object A and Object B on a cell containing Water, a reward equal to
that of the Resource is received and the animat is considered to have successfully
solved the map. The RC+ task has been shown to be impossible to solve with
incremental genetic evolution alone [3].

Fig. 2. RC+ environment with accompanying activity (shunting) landscapes.
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2 The Model

The hybrid neural network used by Borg et al. [3] and others [13,14], and there-
fore used here, may be broken down into two network models: a shunting net-
work and a decision network, with the decision network passing information on
to the shunting network which in turn controls animat movement. The shunting
network is not directly exposed to any evolution or learning. The deliberative
network is exposed to both evolution and learning, enabling the evolution and
inheritance of behaviour.

2.1 The Shunting Network

The shunting network is a locally-connected, topologically-organised network
of neurons that was originally used for collision free motion planning and has
already been applied to the river crossing task [13,14] and RC+ task [3]. This
network is advantageous as it exhibits computational efficiency by not explicitly
searching over all possible paths. The shunting model is used here by mapping
the topologically-organised neurons as cells in the RC+ environment’s 20 by
20 grid. Using the shunting equation (see Eq. 1) values are to propagate across
the neurons/cells using the outputs from the decision network, producing an
activity landscape with peaks and valleys representing desirable and undesirable
features in the environment. The result is a landscape which allows the animat to
follow a route with the higher (iota) values while avoiding undesirable valleys.
An example of an activity landscape with a snapshot of the environment it
represents can been seen in Fig. 2.

dxi

dt
= −Axi +

∑
jεNi

wij [xj ]
+ + Ii (1)

In Eq. 1 each neuron/node in the shunting network corresponds to one cell
in the RC+ environment; xi is the activation of neuron i; A is the passive decay
rate; Ni in the receptive field of i; wij is the connection strength from neuron j
to i, specified to be set by a monotonically decreasing function of the Euclidean
distance between cells i and j; the function [x]+ is max(0, x); and Ii is the
external input to neuron i (known as the Iota output).

2.2 The Decision Network, Evolution and Learning

The decision network can inform agents of desirable and undesirable objects
in the environment based on the agent’s current environmental position. The
decision network is a feed-forward neural network, with a single four neuron
hidden layer, that inputs information from the animats current location in the
RC+ task world to gain an iota value for each possible environmental state,
with the exclusion of grass whose value is always set to 0 (to ensure neutral
space for activity to propagate through when producing an activity landscape
using the shunting model). A hyperbolic tangent activation function is applied
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at each output node with a boundary of -0.3 to 0.3; values below -0.3 round
to -1, above 0.3 rounds to 1 and in between rounds to 0. The output layer
contains sixty-seven neurons representing the Iota values of all sixty-four possible
environmental states, including inaccessible and redundant combinations, with
an additional output neuron for each pick-up/put-down operation on each non-
static objects (Stones, Object A, Object B). A standard hyperbolic tangent
activation function is applied at each hidden node.

Here error back-propagation is used to simulate learning. The use of error
back-propagation to simulate learning has been previously used by Curran et al.
[4] to enable pupil outputs to be corrected to more closely resemble the teacher
outputs. In Curran et al. [4] multiple learning cycles are conducted, until the error
between learner and teacher outputs is minimised to an acceptable level. Here,
as in Borg et al. [3], a similar approach is taken, with learning cycles represented
by each move in a mock evaluation of the environment by the teacher. However,
unlike Curran et al. [4], learning only continues until either the demonstrator
completes all five maps or fails, no direct attempt is made to ensure learner
outputs were minimised to some arbitrary level. A novel approach is taken in
this experiment, that builds on previous work by having different simulations
with different teacher-learner social learning strategies.

3 Experimentation

The model used here is fundamentally the same as introduced by Borg et al.
[3]. Each iteration/generation has a tournament event in which two individuals
from the population of 100 are ran through the RC+ task, with each individ-
ual’s fitness being determined by the number of maps successfully completed.
Each map gets increasingly more complex therefore if an individual is not able
to complete a map they are prevented from continuing on to further maps. Each
map has seven Trap objects and 20 − (5 × riverwidth) Stone objects, both of
which are randomly placed, though never on the same space, one reward-giving
Resource on the opposite side of the map to the agent starting position, and one
instance each of Object A and Object B. The river width varies from an initial
width of zero, increasing by one cell per map. Each individual is evaluated on
their ability to reach the resource or place Object A and Object B on to a cell
containing Water. Agents fail when they come into contact with an uncovered
Water or Trap element. Failing to complete a map within 100 steps is also eval-
uated as a failed attempt. The two tournament individuals are compared, with
the fitter agent reproducing with a randomly selected agent from the popula-
tion, with the child replacing the weaker of the tournament agents. Each loci in
an agent’s genotype directly writes to a locus in the agent’s phenotype, which
itself directly encodes a weight in the decision network, with all genotypes and
phenotypes being of length L = 308. To ensure network structures from parents
are maintained during reproduction, a single point recombination mechanism is
applied. Mutation follows recombination; each loci has a probability Pmut = 1/L
of having a random value from N(0, 0.4) added to it, with the resulting values
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being bounded within the range [-1,1]. Once the child genotype has been con-
structed it is written to the child agent’s phenotype; this process is referred to
as transcription. During transcription two randomly selected connection weights
are overwritten with a new random value selected from a discrete uniform distrib-
ution U(−1, 1). Directly following reproduction the learning strategy is enforced
via back-propagation. A mock evaluation of the RC+ task takes place between
the teacher and child (now thought of as the learner), with the learner’s inputs
being set to those of the teacher. Learning takes place until the teacher either
fails or completes all five maps. At each step through the evaluation the learner
attempts, via error-back propagation with a learning rate of δ = 1, to imitate
the teacher’s output for the current inputs.

The model in this work utilities five learning strategies, each with a different
way of determining teacher selection. The winner of the reproduction tourna-
ment being set as the teacher in the ‘Best Parent’ strategy, the fittest individual
in the population for the ‘Fittest’ strategy, the individual who has registered the
most tournament wins for the ‘Oldest’ strategy, the last animat to be created
before the current reproduction event in the ‘Youngest’ strategy, and a random
individual for the ‘Random’ strategy. In any case where more than one individ-
ual met the criteria to be assigned the role of teacher, an individual from the
valid sub-set was chosen at random, this situation only every arose when using
the ‘Fittest’ or ‘Oldest’ strategies. One hundred populations for each learning
strategy were evaluated so the results can be aggregated for an overview of each
strategy’s performance. Simulations were run for 2,000,000 tournaments, with
each simulation recording the fitness of the fittest individual and the mean fit-
ness of the population at every 500th tournament. The highest fitness is five,
which indicates an agent completed map five. To indicate the behaviour has
not only been achieved but also maintained the fitness of five has to have been
recorded a further ten times, without a suboptimal result. Each learning strategy
is comprised of 100 populations of agents.

4 Results

Table 1 (top) shows the proportion of populations that were successful in solving
each map. The most notable result was that all strategies were able to complete
map five, the map which required exhibiting and maintaining a behaviour that
in previous work was not obtainable by incremental genetic evolution alone [3],
thus demonstrating that discovering and maintaining behaviours inaccessible to
genetic evolution alone is possible using various teacher-learner social learning
strategies, even those strategies that are either non-conformist (the ‘Random’
strategy) or contrary to strategies observed in nature (the ‘Youngest’ strategy).
It should be noted that to complete one map, all preceding maps must have also
been completed, therefore the ability to solve map five indicates that a popula-
tion also managed to successfully complete maps 1–4. In Table 1 (top) we do see
many instances of learning strategies failing to complete simpler maps; we also
see this in Table 1 (bottom), which shows how many populations were successful
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Table 1. (Top) % of populations completing each map for each social learning strategy.
(Bottom) % of populations achieving each map as their maximum achievement for each
social learning strategy. (BP = Best Parent)

Map BP Fittest Oldest Random Youngest

1 99 % 99 % 99 % 99 % 99 %

2 71 % 68 % 54 % 74 % 63 %

3 47 % 47 % 37 % 54 % 47 %

4 39 % 46 % 34 % 49 % 38 %

5 8 % 15 % 5 % 10 % 7 %

Map BP Fittest Oldest Random Youngest

None 1 % 1 % 1 % 1 % 1 %

1 28 % 31 % 45 % 25 % 36 %

2 24 % 21 % 17 % 20 % 16 %

3 8 % 1 % 3 % 5 % 9 %

4 31 % 31 % 29 % 39 % 31 %

5 8 % 15 % 5 % 10 % 7 %

at completing each map as their maximum achievement, that is to say completed
map one or two, ... without going on to complete any later maps. Maps 2–4 were
all solvable using either a ‘bridge building’ strategy or the more advanced Object
A + Object B strategy, the suggestion here is that some learning strategies some-
times failed to find the sub-optimal, but more incrementally accessible, ‘bridge
building’ strategy. We would also expect to see populations that were able to
complete map two also completing map four as the behaviour required is the
same, the only difference being a wider river, however Table 1 (bottom) suggests
that all strategies had populations that exhibited flawed behaviours which were
not as generally applicable as they should have been. In comparable tests by
Borg et al. [3], non-learning populations were shown to achieve above 90 % suc-
cess on maps three and four, with 100 % success for maps one and two, the failure
of the social learning strategies explored here to achieve this rate of success for
maps three and four (as indicated by Table 1 (top)) indicates that whilst social
learning can enable access to, and maintenance of, behaviours inaccessible to
incremental genetic evolution, they are less effective at solving simpler, incre-
mentally accessible, tasks. One explanation for this result is that social learning
is necessarily conformist, even when unbiased or random, thus running the risk of
sub-optimal behaviours being maintained and dispersed within the population.

The results also offer no definitive best strategy for the solving the RC+
task, as all are able to achieve the final map. However both Table 1 (bottom) and
Fig. 3 do allow us to begin seeing the differences between strategies. Performance
may be viewed from three differing perspectives: (1) the number of populations
achieving map five, (2) the distribution of maps achieved by populations, (3)
the speed at which populations were capable of completing maps. Both measure
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(1) and (2) may be considered using the data from Table 1 (bottom): from this
data we can see that ‘Fittest’ strategy achieves the highest proportion of pop-
ulations completing map five, however if we conduct a Chi squared test to find
whether the proportion of populations achieving map five is dependent on the
social learning strategy applied or not we come our with a p-value of 0.1316,
thus indicating that the proportion of populations achieving map five is in fact
independent of the strategy applied, therefore we cannot say with any certainty
that the ability of the ‘Fittest’ strategy to achieve map five is significantly better
than any other strategy (we do find that a Chi squared test that only considers
the ‘Fittest’ and ‘Oldest’ strategies does provide a p-value below a significance
level of 0.05, but no other pairings do). If we take Table 1 (bottom) to be a con-
tingency table on which a Chi Squared test may be conducted we may be able to
derive whether the distribution of maps achieved by populations (measure (2)) is
dependent or independent of the social learning strategy used. When such a test
is conducted a p-value of 0.04739 is produced, suggesting that the distribution
of maps achieved by populations is dependent on the strategy used. This result
requires further investigation of the data for each population, for each strategy,
in order provide a robust overview of the dynamics each strategy employs to solve
the task. Measure (3) may be considered using the graphs seen in Fig. 3. From
Fig. 3 it seems that populations employing the ‘Best Parent’ strategy are able
to achieve map five quicker than other strategies, with the ‘Youngest’ strategy
seeming to struggle to achieve map five in any haste. However if we only consider
the average number of generations to complete each map both ‘Best Parent’ and
‘Youngest’ seem to give an average performance, with ‘Random’ and ‘Oldest’
giving the best general performance. It is interesting to note that those popula-
tions employing the ‘Oldest’ strategy who are able to complete map five, do so
quicker on average than ‘Oldest’ strategy populations that complete map two,
three or four this result suggests that when individuals in ‘Oldest’ strategy pop-
ulations do discover the behaviour required to solve map five, it spreads rapidly
through the population. As the ‘Oldest’ strategy acts somewhat like a ‘Dom-
inance’ strategy, with only the dominant tournament winning agent acting as
the teacher, it is maybe unsurprising that behaviours can spread rapidly, how-
ever the random nature of tournament selection can somewhat undermine this
strategy’s ability to guarantee fit behaviours or a consistent teacher. The best
performing populations for the ’Best Parent’, ‘Oldest’ and ‘Fittest’ strategies (as
seen on the left of Fig. 3) also seems to indicate that once a favourable behav-
iour is discovered using these strategies it is able to spread reasonably quickly.
This is unsurprising as each of these strategies can be highly conformist, with
successful individuals potentially having a monopoly on being the teacher for
new agents. With the ‘Youngest’ strategy, the high turnover of teachers provides
little opportunity for beneficial behaviours to take hold, though these teaching
agents are the progeny of tournament winning parents, so can be expected to
be reasonably fit. The most surprising result is the general performance of the
‘Random’ strategy, given that unlike the other strategies there is no guaran-
tee of the teacher being either consistent nor particularly fit. One reason for the
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‘Random’ strategy performing at least as well as the other strategies is the nature
of the RC+ task itself. If a population only discovers the ‘bridge-building’ behav-
iour needed for maps 2–4, whilst forming a dislike for Object A and/or Object
B, any conformist strategy will struggle to discover the behaviour required for
map five, as the population will tend to conform to the sub-optimal behav-
iour. However, the very nature of the ‘Random’ strategy allows for a variety
of individuals to fulfil the role of teacher, regardless of fitness, thus enabling
newer ideas to potentially establish themselves and sub-optimal behaviours to
be lost. However, maintaining these newly found optimal behaviours may be
difficult in such a strategy. This does suggest that a hybrid approach may be
beneficially, whereby numerous conformist and non-conformists strategies may
exists within a population thus enabling both innovation and rapid behavioural
convergence to occur.

Fig. 3. (Left) Graph showing the first time any population achieved each map. (Right)
Graph showing the average generation populations achieved each map.

5 Conclusions and Further Work

The aim here was to demonstrate that multiple, varied, social learning strategies
would be capable of discovering and maintaining behaviours that are inaccessi-
ble to hill-climbing strategies such as incremental genetic evolution. The results
presented here echo previous work [3], while extending the research to show that
various social learning strategies are capable of both discovering and maintain-
ing inaccessible behaviours. Due to each strategy applied being highly abstracted
from behaviours seen in nature, along with the task being highly artificial, this
work is unable to draw strong parallels to observed social behaviours in nature.
Achieving a comparable status will require a more complex use of social learning, a
sensible progression would be the inclusion of synchronous, distinct learning styles
into a single population. A model that allows for multiple social learning strate-
gies to be employed along side genetic evolution has compelling implications for
agents, i.e. choosing optimal learning styles for the appropriate task. Going for-
ward, additional tests will explore the dynamics between multiple learning strate-
gies and incremental genetic evolution when included in the same population.
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Abstract. We wish to simulate basic rules of chemistry using a swarm
of miniature robots, which mimic atoms and forming molecules. Atomic
scale interactions are difficult to observe and computer simulations or
ball-and-stick models capture either behavioral or embodied aspects, but
not both. Miniature robots that are able to determine their orientation
and position with respect to each other and provide audible, visual, and
tactile feedback to a user could make such simulations both interactive
and tangible. We describe a working prototype of our swarm-robotic
chemistry simulation which demonstrates concepts including electroneg-
ativity, reaction spontaneity, the octet rule, and hybridization. Here, the
key challenge is that once we go beyond the most simple set of atoms,
the outcome of reactions cannot be calculated from first principles. We
solve this problem by letting robots exchange local measurements, the
nearby atoms, their geometry, and molecules that have formed and then
using a compact look-up table implementation, which suggests avenues
of further studies for both physical chemistry and swarm robotics. We
also present preliminary data recorded from a high-school demonstra-
tion evaluating using a tangible simulation of chemistry reactions as a
teaching tool.

Keywords: Chemistry · Swarm · Simulation

1 Introduction

We are interested in simulating the basic rules of chemistry in a swarm of minia-
ture robots for two reasons: First, we wish to encourage chemists to think about
atomic interactions in terms of distributed systems and self-organization. Sec-
ond, we hope to produce a teaching tool for chemistry students. While the latter
use case might justify a simulation that is not perfectly faithful to the function-
ing of the physical system as long as it produces the correct phenomenological
results, our long term goal is for those two applications of chemistry simulation
to merge, thereby advancing our understanding of both chemistry and education
(Fig. 1).
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Chemistry simulations fall broadly into two categories: teaching tools and
research tools. From an educational perspective, interactive simulations of chem-
ical processes are interesting as they may improve visual-spatial cognition
[16,22,23,25]. In order to improve the pedagogical value of 3D simulations of
molecular interactions, educators have begun embracing augmented reality [10]
that combines tangible devices (some of which include olfactory and auditory
sensations) [19], with simulations to improve learning [9]. Most teaching tools,
such as those collected in MERLOT’s database [1], are divided into lessons, each
of which demonstrates one chemistry concept. A tool might create molecules that
perform an acid-base reaction, but be incapable of a reduction-oxidation reac-
tion. We have not seen any interactive teaching tools designed to imitate the
behavior of real atoms and molecules in all situations, and we believe such a
simulation could be extremely useful and interesting for students.

Fig. 1. This figure shows an example
of Acetic Acid (C2H4O2) in the for-
mation our algorithm would dictate.

A similar gap exists in the area of chem-
istry simulations for research. Most chem-
istry research simulations do not simulate
individual particles (either atoms or mole-
cules), trading the extreme level of detail
for computational expediency. These sim-
ulations are also usually optimized toward
representing a single environment, such
as a specific set of reactions in the tro-
posphere [24] or the interaction of amino
acids and mild steel [7], to name just two
examples from a very large body of work in
computational chemistry [14].

The closest example of research similar to our own uses physical concepts to
simulate particles [20] as an interactive homogeneous swarm, which demonstrates
the emergence of macroscopic patterns from microscopic particles. However, this
simulation is composed of only one type of particle, and does not simulate differ-
ent elements [20]. It is also implemented on a traditional centralized computing
platform, not on a physical swarm of individual robots.

2 Background

The study of how and when atoms bond dates back to the 1800s, and between
then and now, increasingly complex models have emerged to explain molecu-
lar and atomic behavior. The simplest atomic models, such as the Bohr model
invented in 1913 by Niels Bohr, are sufficient to explain only the behavior of a
small subset of atoms, with irregularities and exceptions. As our understanding
of what atoms are and how they function has improved, better behaved mod-
els have emerged that can explain the behavior of a wider range of chemical
species. But even today, chemistry has not advanced to the point where chem-
ical reactions can be accurately simulated from physical principles. Our models
are only as good as our understanding of the atom itself. Chemical physicists,
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in their attempts to create truly accurate models of the atom, are now delving
into the realms of quantum physics and chemistry, which are developing fields
that are not yet fully understood. In our attempt to implement the most accu-
rate possible model for chemical reactions on a miniature robot, we found that
all non-quantum models based on physical properties eventually break down.
For example, the octet rule, which is often presented as the sole explanation for
why atoms bond in the first weeks of a chemistry class, states that the valence
shell of an atom can have up to eight valence electrons, and is not stable until
it has eight. Students often ask why elements in the alkaline and alkaline-earth
groups are “satisfied” with two valence electrons, and cannot have more. To solve
this problem, the Lewis and Bohr models of the atom are introduced, but they
cannot explain bonding between metals, which is why introductory chemistry
classes often leave the subject of metallic bonding for the second class. The most
complex non- quantum-based model taught to students to explain why atoms
form bonds in the shapes they do is called hybridization, which we have chosen
as a starting point for a distributed simulation presented here. But even this
method is described in a textbook as existing only to predict molecular shapes
we have no other explanation for [3]. Chemists doubt that it is an accurate model
of what is truly happening.

For some purposes, look-up tables of experimental data are sufficient. Intro-
ductory chemistry classes across the world teach the use of tables of enthalpy,
entropy, and Gibbs Free Energy values to determine reaction spontaneity. If the
set of atoms in question is reduced to only a few specific, well-behaved species,
the look-up tables have few enough exceptions that students can get a good idea
of how the reactions work without confusion. We therefore believe that our initial
attempt on a distributed, swarm robotic implementation described in this paper
can convey information at the level of an introductory chemistry course very well,
and might lead to similar insights as swarm robotics has afforded for the study
of social insects [6,12], another natural system relying on self-organization [2].

3 Mapping Basic Chemistry Concepts to Distributed
Embodied Swarms

The Octet Rule: The Bohr atomic model describes electrons as nearly weightless
particles arranged in a series of shells around the nucleus, and is considered the
simplest possible abstraction of an atom. Within each shell, electrons are divided
into orbitals, regions wherein electrons can probably be found. Each orbital con-
tains at most two electrons. As distance from the nucleus increases, successive
electron shells do not contain the same number of orbitals, and orbitals them-
selves have several different shapes. In this model, the outermost or “valence”
shell determines how the atom will bond. It contains at most eight electrons.
This is called the “octet rule,” and though it doesn’t always apply for larger
atoms, it does apply for the nonmetals in the subset of elements we model.

Students are taught that atoms bond when each has an orbital with a single,
unpaired electron in it. Those orbitals then overlap, allowing the atoms to share
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the electrons within them. This means that both orbitals effectively contain two
electrons, which puts them both in a more stable state. If an atom has more than
one orbital with an unpaired electron, it can bond with multiple other atoms.
If two atoms have more than one orbital with an unpaired electron, they might
form a double or triple bond. This model is the basis for our implementation of
inter-atomic bonding, requiring individual robots to advertise their own number
of unpaired electrons and listen to their neighbors. We assume that all individual
atoms have a neutral formal charge. Ions are not currently implemented.

Electronegativity: Students are also taught that atoms can form two types of
bonds: covalent (where electrons are shared) and ionic (where electrons are
taken by one atom from the other). Covalent bonds are divided into categories
based on strength: the more polar the bond, the stronger it generally is. Polarity
measures the difference in partial charge between bonded atoms. Students usu-
ally memorize the many types and strengths of covalent bonds, but there is a
simpler model to determine bond type: electronegativity. Electronegativity is a
property of an atom that determines its tendency to attract shared electrons. By
this model, ionic bonds are simply covalent bonds that are so polar, one atom
has full control of the electrons. This is reflected by our implementation, where
the more electronegative atom has control of the electrons.

Fig. 2. Left: An increasing difference in electronegativity yields a bond where elec-
trons are held more closely by one atom than the other, until the electrons transfer
atoms entirely and the bond becomes ionic in character. Right: Water shown with four
orbitals on the central oxygen. Light blue represents an orbital that does not contain
bonded electrons (although it does contain a lone pair of unbonded electrons). Dark
blue represents the two orbitals that form bonds with hydrogen. Since hydrogen only
has one orbital, its shape is different from the orbitals of oxygen. (Color figure online)

We use Mulliken-Jaffe electronegativity values on a Pauling scale [13] for our
treatment of this concept. These values are given by the equation:

χ = 3.48 ((IEv + EAv)/2 − 0.602)

EAv is the electron affinity of the atom and IEv is the first ionization energy.
The electron affinity is the change in energy of an atom when an electron is added
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to it in its neutral state, and the first ionization energy is the energy required
to take an electron away from the atom in its neutral state. Using χ values on
a Pauling scale gives values that are between approximately 0 and 4. A larger
χ means a stronger tendency to attract shared electrons. While attempting to
form bonds, an atom will bond ionically if the difference in χ values between it
and its potential partner is greater than 1.70 [3], and covalently otherwise. In a
robotic implementation, it is sufficient to simply exchange the χ value between
robots and choose bonding behavior accordingly.

Reaction Spontaneity and Thermodynamics: The concept of reaction spontaneity
is used to tell students whether, without outside influence, a reaction will occur.
Initially, students learn about enthalpy (ΔH). Enthalpy is a quantity related to
the heat that a reaction requires or releases. However, the exceptions to this rule
lead to misconceptions. In the interest of avoiding these, we chose to implement
the more complicated concept of Gibbs Free Energy (ΔG). ΔG values represent
the difference in free energy between a reaction’s products and reactants.

Reactions between atoms and molecules occur only when the products of the
reaction have a lower energy level than the reactants. Thus, we calculate the
difference between the sum of the ΔG values for the products and the sum of
the ΔG values for the reactants, which gives us an overall ΔG for the reaction:

ΔGrxn =
∑

ΔGproducts −
∑

ΔGreactants

If ΔGrxn is negative, then we say that the reaction occurs spontaneously. Reac-
tions with ΔGrxn ≥ 0 do still occur, but only when energy is added to the
system. In practice, enough energy can be added by kinetic interactions between
molecules for such reactions to occur ‘spontaneously’. However, due to the scale
of our chemistry simulation, such effects are difficult to model, and thus our simu-
lation only allows reactions with ΔGrxn < 0 to occur. Both individual molecules
and reactions have ΔG values. In the case of individual molecules, the implied
equation is the formation of that molecule from its most basic components. In a
robotic implementation, the ΔG of a molecule can be determined in two ways:
either by looking up a table of experimentally determined values or by using this
equation [21] (Fig. 3):

ΔG = ΔH − TΔS

ΔH is the enthalpy of formation of that molecule, ΔS is the entropy of formation,
and T is the temperature (assumed to be 298K). Most of our thermodynamic
values were obtained from the DIPPR Chemical Database [18], which provides
ΔG data for more than 2000 compounds. This database was selected due to
its size and accessibility. We filled in gaps in this database, which were mostly
radicals, with data from the NIST Chemistry WebBook [5].

In a robotics context, Gibbs Free Energy calculations require each robot to
store the knowledge of the molecule it belongs to. When considering a reaction,
the robot calculates the ΔGrxn. It uses its own molecule and the other robot’s
molecule as reactants, and using its own molecule with the other atom added
and the other robot’s molecule without that atom as products. Only single atom
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Fig. 3. Difference in Gibbs Free Energy for spontaneous and nonspontaneous reactions.

addition reactions are considered, meaning that the two robots considering react-
ing are the only ones that might switch molecules. In order to make the look-up
of these ΔGrxn values fast enough to run on our platform’s microprocessor, we
store a list of all possible molecules the robots could form as a prefix tree. More
details on this implementation can be found in Sect. 4.

One value of using this system for determining if bonds form is that the
robots can also demonstrate the basic principles of reaction direction: specifically,
if a reaction occurs in the forward direction, it will never occur in the reverse
direction unless energy is added to the system.

Hybridization and Molecular Geometry: Hybridization theory determines the
shape that molecules should form. Since electrons repel each other, the place-
ment of the full or partially full orbitals around the atom can explain the shape
that bonds make. For example, water has its v-shaped structure because of the
placement of the four orbitals on the central oxygen in a tetrahedral shape (Fig. 2,
right). These orbitals have an angle to each other of approximately 109.5◦ [3].
Two out of the four have paired electrons and therefore do not form bonds,
and the remaining two singly occupied orbitals bond with hydrogen, resulting
in water’s bent geometry.

As well as accurately predicting molecular geometry, hybridization gives a
more accurate prediction of bond number than any other theory, since it was
invented to explain bond structures that other theories couldn’t account for.
For a second example, according to Lewis bond theory, beryllium (Be) cannot
bond because it has two electrons in its s orbital and thus has no orbitals with
one unpaired electron that can overlap to form a bond. But Be can in fact
form two bonds; hybridization theory explains this by stating that an electron
gets “promoted” from the s orbital to an empty p orbital. The s orbital and p
orbital, both now singly occupied, no longer have the character of an s and p
orbital. They will each form a hybridized orbital denoted as sp1 or simply sp.
The hybridized orbitals now can form bonds in the same manner as ordinary
orbitals. The repulsion of the hybridized orbitals gives the explanation for the
molecule’s shape, since the angle of the overlapping orbitals is also the angle
between the bonded atoms.

In conjunction with the robotic platform’s range, bearing, and heading mea-
surement of the atoms to which it is bonded, hybridization is used in the code so
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that, for example, the two hydrogen atoms in H2O are both constantly assessing
and adjusting their position relative to the oxygen atom. This simulates tradi-
tional two-dimensional representations shown in textbooks such as Burdge and
Overby’s [4].

4 Implementation

The Droplets are an open-source swarm robotic platform, with source code and
manufacturing information available online1. Each Droplet is roughly cylindrical
with a radius of 2.2 cm and a height of 2.4 cm. The Droplets use an Atmel
xMega128A3U micro-controller, and receive power via their legs through a floor
with alternating strips of +5V and GND. Each Droplet has six infrared emitters,
receivers, and sensors, which are used for communication, collision detection, and
for the range and bearing system [8]. The top of each board has a light and color
sensor, as well as an RGB LED. Each Droplet has three extended headers for
legs located symmetrically around itself. The legs are spaced 120◦ apart and
1.5 cm from the center. Mounted symmetrically opposite from two of the legs
are coin-type vibration motors of the type commonly used in cell phones and
pagers. These motors are used as a low-cost locomotion method [15]. The third
leg has a speaker mounted opposite it. Each Droplet has a unique ID number.

Our implementation of these chemistry concepts centers around a ‘state mes-
sage’,’ which each Droplet broadcasts periodically. This message includes:

– The IDs of each Droplet the sender is bonded to.
– A list of the atoms in the sender’s molecule.
– The sender’s atomic number.
– The state of the sender’s valence shells.

A Droplet also receives updated measurements for the sender’s range, bearing,
and heading with this message [8]. If the Droplet receiving this message is bonded
to the sender already, then the Droplet checks where it should move to main-
tain the appropriate molecular geometry as determined by hybridization. It also
updates its list of atoms in its molecule based on the sender’s other bonds.

The Droplet’s color indicates what atom it is. Bonds are represented visually
by the bonded Droplets all blinking red together. The simultaneous blinking
occurs because all of the Droplets’ clocks are synchronized with a firefly syn-
chronization algorithm [17]. To avoid multiple Droplets trying to communicate
simultaneously, their state messages are sent out with a fixed period, but with
phase determined by their ID number. Since every Droplet knows the ID number
of every other Droplet in its molecule, we use the lowest ID number amongst the
Droplets in a given molecule to determine the phase of the blink.

If the receiving Droplet (call it ‘C’) is not bonded to the sender (call it ‘O’),
then it considers whether or not it should be. A change in bond status represents
a reaction, so the first consideration C makes is whether the reaction would be
spontaneous; whether ΔGrxn < 0. To do so, it must search the list of more than

1 https://github.com/correlllab/cu-Droplet.

https://github.com/correlllab/cu-Droplet


312 A. Randall et al.

350 molecules to find each product and reactant. For a modern desktop, such
a search could be performed linearly, but on the Droplet’s small and low-cost
hardware we wanted the performance benefits of storing the list as a prefix tree.
The downside of such a data structure, however, is its large memory footprint,
as we have a node for every prefix of a molecule and each node has to store
a number of pointers in addition to the values. Using the method described
in [11], we packed the prefix tree (which contains 659 nodes with pointer size
of two bytes, value size of two bytes, and key size of one byte) as a single byte
array with memory footprint of 2719 bytes

Assuming C has determined a spontaneous reaction should occur, it then
checks its valence shell and that of O, to ensure that bonding wouldn’t violate
the octet rule and, if it doesn’t, to determine which orbitals to bond to as
determined by hybridization. If these and the other pre-bond checks are passed,
C updates its state: valence shell, molecule, and bonded atoms.

The next time C sends out its own state message, O will see that C is trying
to bond to it, and perform all of the above checks again. This is important
because there may be some reason (specifically, due to interactions between O
and a third Droplet) that O can’t bond with C. If O confirms with its checks
that a bond should occur, then it updates its own state, and the bond is formed.
Otherwise, when C gets a new state message from O and sees that O isn’t
bonded to it, C gives up on the bond and fixes its own state accordingly.

5 Experiments and Results

Our molecule-forming algorithm reaches one or more of several stable states
for every combination of atoms in the environment. We tested the algorithm
by timing how long it took for one of these states to be reached for a certain
number of individual atoms. In order to reduce the chance of error due to missing
information, only hydrogen, oxygen, and carbon were used to test timing. These
elements are the basic components of simple organic molecules, which means
that there is a great deal of information available about the various molecules
they form. Since the robots’ IDs define the order in which they send messages,
we switched the atomic identity of each robot to determine if a bias toward a
particular state might be induced by having a predictable message ordering. We
didn’t find any obvious bias.

Fig. 4. The average number of bonds formed
as a function of the number of Droplets.

The total number of bonds
present in all molecules usually
increases with, but is not a direct
function of, the number of atoms
present. For example, if four hydro-
gen atoms and an oxygen atom are
placed on the board, the total num-
ber of bonds in the stable state will
be three, because these atoms will
form a water molecule (H2O) and
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dihydrogen (H2). The maximum number of bonds we observed being formed
from our choice of individual atoms was six, when nine atoms were present.
Figure 4 shows this relationship.

The notable exception to this rule is when eight atoms are present. If we look
at the average number of bonds present in stable configurations as a function of
the number of atoms, we see a marked decrease for eight robots (Fig. 4). This
likely explains why the time to reach a stable state seems to scale predictably
with the number of atoms present, with one exception in the case of eight atoms:
the important factor in time-to-stability is actually the total number of bonds
in the stable configuration, as shown in Fig. 5.

While we could theoretically form any of the 659 encoded molecules, various
factors make this difficult in practice. Specifically, as the size of the molecule
increases, the likelihood that its components will form multiple, independently-
stable smaller molecules increases as well. This is a consequence of the greedy
nature of our molecule-forming algorithm (Fig. 6).

We also presented the Droplet Chemistry Simulation to a group of ten stu-
dents in grades 10–12. All students are in the St. Vrain School District in Long-
mont, Colorado. We split the students into three groups and gave each group
a board with several chemistry Droplets, as well as several other Droplets with
nothing but synchronization code (these extra Droplets help maintain the syn-
chronization, which loses stability for small numbers of robots). The session
began with a brief introduction to how the Droplets worked: both hardware
and software. We explained that the Droplets communicate using IR sensors
and emitters, that they can determine range and bearing based on their com-
munication, and that they walk using vibration motors. We also presented a
modified chart of the periodic table that only included our subset of atoms. This
chart showed which color corresponded to which atom, as well as the Lewis dot
structure of each atom. The information given allowed students to predict which
bonds would form by looking at the chart, and then test their prediction by
observing the Droplets. The students observed the rate at which bonds formed,
the rate at which they broke, and which atoms bonded when, by observing the

Fig. 5. Time to reach a stable state
versus the number of bonds present in
the stable state. Error bars represent
standard error of the mean.

Fig. 6. Time to reach a stable state from
unbonded component atoms. Error bars
represent standard error of the mean,
and sample size is 5.



314 A. Randall et al.

pattern of synchronized blinks as well as the Droplets’ motion. After a period
of interacting with the hardware, we asked them a series of qualitative ques-
tions, that are omitted here for brevity, to probe the Droplet’s qualities as a
teaching tool.

The overall reaction we observed was very positive. Many students expressed
the opinion that the Droplets would help or would have helped them to better
understand chemistry at the time of their first class in the subject. All agreed
that the Droplets would have increased their interest in introductory chemistry.
Five students had taken a chemistry class before. When we asked them to rate
their previous chemistry class, two students rated their class as a four and three
students gave it a three. However, students did not express enthusiasm about
the idea of chemistry when we asked them about their experiences with their
first class. The Droplets, on the other hand, produced a significant amount of
interest. Students were engaged and asked questions, volunteering ideas about
other simulations the Droplets could perform. The students seemed in particular
to appreciate the tangibility of the Droplets, as compared to what they had
experienced in class.

6 Conclusion

Modeling the attractions that cause bonds between atoms intuitively seems like
a trivial problem: perhaps one that is computationally expensive, but trivial
nonetheless. However, it is important to remember that our ability to model
physical forces is only as good as our knowledge of the forces themselves. Chem-
istry does not have an entirely accurate understanding of the atom yet, which
makes modeling its behavior based on physical forces extremely difficult. The
Droplets present a solution to this problem by using electronegativity to pre-
dict bond type, hybridization theory to predict molecular shape, and Gibbs Free
Energy to predict reaction spontaneity. From a computational perspective, this
is much more complicated than using the same concepts on a single computer.
Instead of one “puppet-master” program controlling a set of virtual constructs
in a perfect environment, the Droplets each have their own constant calculations
running to determine their position in space relative to the robots around them.

Future work will include expanding the ability of the Droplets to be used
as a teaching tool. Based on the positive reaction of the ten students who saw
the chemistry simulation prototype, we think that it is worth performing a more
formal educational study to judge the Droplets’ efficacy in promoting interest
in and understanding of chemistry. Our most immediate plans for future work
are to conduct a larger scale controlled study of this in classrooms. The data
from such a study would help guide which aspects of the simulation should be
improved. One such aspect would be to use electronegativity for intermolecular
interactions: causing the Droplets to move as if experiencing a force from sur-
rounding molecules. This would allow the Droplets to demonstrate formation of
lattice structures.

We also plan to expand the list of elements the Droplets can simulate. In par-
ticular, we would include metals, which have much more complicated interactions
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due to a more advanced orbital configuration. This would require restructuring
the valence shell model and removing the assumption that the octet rule applies.
We would also like to implement more complicated reactions using the atoms
that we already simulate.

Although accurately modeling atomic and molecular interactions is an
extremely difficult task, we are confident that the Droplets succeed in demon-
strating atomic behavior with reasonable accuracy. Implementing a chemical
simulation on a swarm platform also offers other advantages, such as interactiv-
ity and scalability.
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Abstract. Humans can perform natural and robust walking behavior.
They can even quickly adapt to different situations, like changing their
walking speed to synchronize with the speed of a treadmill. Reproduc-
ing such complex abilities with artificial bipedal systems is still a diffi-
cult problem. To tackle this problem, we present here an adaptive com-
binatorial neural control circuit consisting of reflex-based and central
pattern generator (CPG)-based mechanisms. The reflex-based control
mechanism basically generates energy-efficient bipedal locomotion while
the CPG-based mechanism with synaptic plasticity ensures robustness
against loss of global sensory feedback (e.g., foot contact sensors) as well
as allows for adaptation within a few steps to deal with environmental
changes. We have successfully applied our control approach to the bio-
mechanical bipedal robot DACBOT. As a result, the robot can robustly
walk with energy efficiency and quickly adapt to different speeds of a
treadmill.

Keywords: Locomotion control · Motor control · Artificial neural
networks · Sensory-motor coordination · Humanoid robotics · Adaptive
behavior · Central pattern generator · Bio-inspired robots

1 Introduction

Human locomotion is a complex process that results from the interaction of
neural control and biomechanics [1,2]. While biomechanics allows for natural
movements, neural control, on the other hand, plays a role in generating differ-
ent locomotion patterns with energy efficiency as well as assuring that a proper
pattern can be quickly employed to, for instance, adapt to terrain change. This
process is fast and adaptive which leads to the generation of natural robust
locomotion and adaptation. During the last few decades, roboticists have tried
to imitate such complex abilities with artificial bipedal systems. Although dif-
ferent bipedal robot systems have been developed, most of them is based on
engineering control techniques like trajectory-based methods with precise joint-
angle control [3–6]. This results in non human-like locomotion (i.e., walking with
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 317–328, 2016.
DOI: 10.1007/978-3-319-43488-9 28
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bending knee) and high energy consumption. Others use biologically-inspired
control mechanisms where global sensory feedback, like foot contact signals, is
continuously used for generating coordinated walking behavior [7–10]. Thus, the
absence of the feedback can lead to unstable locomotion or failure. If learn-
ing mechanisms for adaptation are applied, then conventional machine learning
techniques are normally employed [11–15]. Such learning techniques are usually
complex and require an off-line learning process.

To tackle this problem, we present here a minimal adaptive combinator-
ial neural control approach coupled with biomechanics of our bipedal robot
DACBOT. This control approach combines two main control modules: Reflex-
based and CPG-based control modules. While the reflex-based control module [9]
generates natural and energy-efficient locomotion, the CPG-based control mod-
ule with synaptic plasticity allows for fast online adaptation to walk on different
treadmill speeds as well as ensures robust locomotion against loss of (global)
sensory feedback (e.g., foot contact sensors).

The paper is organized as follows. First, we describe the adaptive combina-
torial neural control approach. Second, we present a setup of the biomechanical
bipedal robot DACBOT. Third, we illustrate the performance of the control
approach focusing on robust and adaptive walking on a treadmill at different
speeds. Finally, we provide conclusion and discuss future work.

2 Adaptive Combinatorial Neural Control

The adaptive combinatorial neural control (Fig. 1) with a modular architecture
consists of two main neural modules: CPG-based and reflex-based neural control
modules (see subsections below for the details of each module). The idea behind
this control approach is to first use the reflex-based control module to find and
generate a proper walking frequency of a bipedal robot with respect to its prop-
erty and the environment. Simultaneously, the CPG-based control module with
synaptic plasticity learns the generated walking frequency and can later control
the robot for robust walking behavior even without sensory feedback.

According to this concept, at the beginning the reflex-based control gener-
ates locomotion based on joint angle and foot contact sensory feedback for the
biomechanical bipedal robot DACBOT. While the robot is walking, the CPG-
based control uses only hip angle feedback to adapt its internal frequency to
match the walking frequency generated by the reflex-based control. When the
reflex-based control is disconnected (manually or due to sensory failure), the
CPG-based control can still drive the robot. As long as the hip angle feedback is
applied to the CPG-based control, the control can adapt its internal frequency
to walking behavior with respect to the environment. If the feedback is removed
from the CPG-based control, the robot will still be able to stably walk with the
adapted walking frequency.
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Fig. 1. The adaptive combinatorial neural control uses reflex-based neural control
and CPG-based neural control with synaptic plasticity to generate energy-efficient,
robust, and adaptive locomotion of a biped robot, like DACBOT. The reflex-based
control generates the motor outputs (Mreflex[LH,RH,LK,RK]) by using all sensory
information: Left/right hip angle feedback (θLH,RH), left/right knee angle feedback
(θLK,RK), and left/right foot contact feedback (LF, RF ). When the reflex-based con-
trol drives the robot system, the CPG-based control uses only hip angle feedback
(e.g., the left hip (θLH)) to adapt its internal frequency to generate the motor out-
puts (MCPG[LH,RH,LK,RK]). A CPG processing unit is used to shape the CPG motor
outputs by using threshold functions to obtain proper patterns for locomotion control.
The shaped patterns follow the ones generated by the reflex-based control. An enable
unit selects (manually or due to sensors failure) either the reflex motor outputs or the
CPG motor outputs and transmits the selected motor outputs (M[LH,RH,LK,RK]) to
finally control the robot. Note that raw sensory signals are firstly preprocessed at a
signal processing unit and then transmitted to the reflex-based and CPG-based control
units. We use a low pass filter to remove sensory noise at the processing unit.

2.1 Reflex-Based Neural Control

The reflex-based neural control, developed in our previous study [9] for biped
locomotion, is a sensor-driven neural network with a hierarchical design. It is
simulated as mono-synaptic connections containing motor neurons for hip and
knee joints (Mreflex[LH,RH,LK,RK], see Fig. 2(a)). The motor neurons are linear
and can send their signals unaltered to the motors of a biped robot. Furthermore,
there are several local non-spiking sensory neurons (rate coded neurons), which
by their conjoint reflex-like actions trigger the walking pattern. These local sensor
neurons are for joint control, intrajoint control and leg control. Joint control
arises from sensors at each joint (ES,FS), which measure the joint angle and
influence only their corresponding motor neurons. Intra-joint control is achieved
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Fig. 2. (a) The reflex-based neural control coupled with biomechanics for generating
energy-efficient locomotion of the bipedal robot DACBOT. AL(AR) refers to stretch
receptor for anterior extreme angle of left (right) hip. GL(GR) refers to ground con-
tact sensor neuron of left (right) foot. EI(FI) refers to extensor (flexor) reflex inter-
neuron. EM(FM) refers to extensor (flexor) motor neuron and ES(FS) is extensor
(flexor) sensor neuron. (b) Energy-efficient walking of DACBOT. The motor outputs
(Mreflex[LH,RH,LK,RK]) are directly sent to the robot through amplifiers. Gray areas
indicate when all four motor outputs (corresponding to motor voltage) remain zero
during part of every step cycle; i.e., DACBOT walks passively.

from sensors, which measure the anterior extreme angle (AL,AR) at the hip
and trigger an extensor reflex at the corresponding knee. Leg control comes from
ground foot contact sensors (GL,GR), which influence the motor neurons of all
joints. In general, the reflexive locomotion generation works as follows: When
one foot touches the ground, the hip extensor and knee flexor of the other leg
(swing leg) are triggered, as well as the hip flexor and knee extensor of the stance
leg. When the hip stretch receptor of the swing leg is activated, the extensor of
the knee joint in this leg is triggered. Finally the foot of the swing leg touches
the ground and the swing leg and the stance leg swap their roles thereafter. The
generated motor patterns of the controller can be seen at Fig. 2(b).

Further details of the controller are not subject of this study, but can be
found in [9]. Although the reflex-based neural control coupled with biomechanics
of DACBOT can generate energy-efficient locomotion (see Fig. 2(b)), it fails if
sensory feedback is not provided. Thus, here we apply the CPG-based neural
control (Fig. 3) to overcome this problem. For energy-efficient locomotion in our
study here, we implies that the robot does not require energy all the time during
walking; i.e., it has partly passive locomotion (here, approx. 32 % of one gait
cycle, see gray areas in Fig. 2(b)) where all actuators are not actively actuated
(receiving zero voltage).
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Fig. 3. (a) The CPG-based neural control with synaptic plasticity. The neurons (H0,1,2)
are connected through synaptic plasticity (ω00,01,10,11,20,02) to generate a periodic pat-
tern with its internal frequency. The internal frequency can be entrained by an external
feedback through the synaptic weight (ω2F ). By using the Hebbian-type learning rules
(Eqs. 2, 3, and 4) and the frequency adaptation rule (Eq. 5) for synaptic plasticity, the
CPG-based neural control can be entrained to quickly adapt its output frequency to
the external frequency of sensory feedback and can memorize the adapted frequency
although the feedback has been removed. (b) CPG and hip motor signals before, dur-
ing, and after adaptation. The CPG-based control can quickly change its frequency
within about 3–4 walking cycles. (c) Time series of the internal frequency changes dur-
ing walking for different initial frequencies (ω0). It finally converts to a proper walking
frequency of DACBOT which is originally generated by the reflex-based control.

2.2 CPG-based Neural Control

The CPG-based neural control (Fig. 3(a)), developed in our previous study [16],
consists of three rate codded neurons with a hyperbolic tangent (tanh) transfer
function. The two neurons (H0,1) are fully connected with the four synapses
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(ω00, ω01, ω10, ω11). This forms an oscillator if the synaptic weights are chosen
according to an SO(2)-matrix [17]:

W =
(

w00 w01

w10 w11

)
= α ·

(
cos(ϕ) sin(ϕ)
−sin(ϕ) cos(ϕ)

)
. (1)

With −π < ϕ < π and α > 1, the oscillator generates sine-shaped peri-
odic outputs (o0,1) of the neurons (H0,1) where ϕ defines a frequency of the
signals. The third neuron (H2) receives sensory feedback (FCPG) through the
plastic synapse (ω2F ) and connects to the oscillator through the other plastic
synapses (ω02, ω20). For convenience, we use here the left hip angle signal (θLH)
of DACBOT as the feedback. These plastic synapses are governed by Hebbian-
type learning rules based on correlation and relaxation terms driving the weights
towards given relaxation values (ω2Frelax

, ω02relax
, ω20relax

). The parameters A,
B > 0 determine the influence of the individual terms [16]:

ω2F (t + 1) = ω2F (t) + A · FCPG(t) · o2(t) − B · (ω2F (t) − ω2Frelax
), (2)

ω02(t + 1) = ω02(t) − A · o0(t) · o2(t) − B · (ω02(t) − ω02relax
), (3)

ω20(t + 1) = ω20(t) − A · o2(t) · o0(t) − B · (ω20(t) − ω20relax
). (4)

The parameter (ϕ, Eq. 1) is adapted based on the following frequency adap-
tation rule:

ϕ(t + 1) = ϕ(t) + μ · ω02(t) · o2(t) · ω01(t) · o1(t), (5)

where μ is a learning rate, o1 and o2 are the outputs of the neurons (H1,2), and
ω01 and ω02 are synaptic weights (Fig. 3(a)). With an appropriate choice of the
control parameters [16], the CPG-based control governed by above equations is
able to adapt to sensory feedback (FCPG) within a wide frequency range. As
soon as the controller has adapted to the external frequency of the sensory feed-
back (FCPG), the average correlation of o2 (sensory feedback) and o1 (controller
output) is equal to zero. After adaptation, the sensory feedback can be removed
from the controller while it maintains to oscillate at the adapted frequency.

Here, the output (o1) of the CPG neuron (H1) is used for controlling the hip
and knee joints of DACBOT since after the adaptation process the output will
be in phase with the reflex motor command. This will lead to smooth switch-
ing between the reflex-based and CPG-based control; thereby the dynamical
stability of the system is still maintained. The final CPG output (o1) is post-
processed at a CPG processing unit to obtain the hip and knee motor patterns
(MCPG[LH,RH,LK,RK], e.g., red line in Fig. 3(b)) that have exactly the same
motor patterns (Mreflex[LH,RH,LK,RK], see Fig. 2(b)) of the reflex-based control.
The CPG-based control can quick adapt to the proper walking frequency of
DACBOT and is not sensitive to an initial internal frequency (Fig. 3(c)).

3 Setup of the Biomechanical Bipedal Robot DACBOT

DACBOT (Dynamic, Adaptive, Compliant walking robot) is a biomechanical
bipedal robot which has been developed based on RunBot [9]. It is a 600 g robot,
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Fig. 4. (a) The planar bipedal robot DACBOT. For our experiments here, we constrain
the robot such that it can only rotate along the y-axis. (b) Motors and sensors of
DACBOT. (c) Schematic of the DACBOT setup.

26 cm tall from foot to hip. Since the robot is designed for two-dimensional
motion, a rod is used to constrain its movement and prevent lateral displace-
ment; therefore, the robot can only rotate along the y-axis (Fig. 4(a)). DACBOT
consists of two legs, where each leg is actuated by hip and knee joints. With a
special design based on a human leg, each leg of DACBOT consists of a com-
pliant ankle connected to a flat foot. It is mainly employed to realize dynamic
and robust self-stabilization in a passive compliant manner. In addition, each
foot has one switch sensor for ground detection as a binary feedback. The left
and right hips are actuated by HS-624MG servomotors while the left and right
knees are actuated by HS-85BB+ micro servomotors. The built-in controller of
each servomotor was removed in order to directly control its DC motor and be
able to read the angle feedback via its internal potentiometer sensor.

The motor commands (MLH,LK,RH,RK , Fig. 4(b)), generated by the adap-
tive combinatorial controller, are sent to the DACBOT motors through an
Arduino UNO board and the Groove I2C Motor drivers. The sensory signals
(θLH,LK,RH,RK ,LF ,LH, Fig. 4(b)) are also digitized using this board for the
purpose of feeding them into the controller. The schematic of the DACBOT
setup can be seen at Fig. 4(c). A treadmill used to carry out our robot walking
experiments has been modified so that its speed can be controlled through a
computer.

4 Experiments and Results

Several experiments were carried out to show the performance of the adaptive
combinatorial neural control. For the first experiment, we let DACBOT walk
with the reflex-based control while the CPG-based control was disabled (Fig. 5).
During walking, we then disabled a foot sensor at around 300 time steps. Since
the CPG-based control was not activated, DACBOT failed to walk without foot
contact feedback. In general, the reflex-based control can generate proper walking
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Fig. 5. DACBOT locomotion driven by only the reflex-based control of the adaptive
combinatorial neural control. At the first period, all sensors were provided to the sys-
tem. Therefore, the controller generated stable locomotion. Once a foot sensor has been
disabled at around 300 time steps, the controller cannot generate proper motor signals.
The top panel shows the left foot sensor signal. The middle panel shows a motor signal
of the reflex-based control. The bottom panel shows the final motor signal controlling
the left hip of DACBOT from the adaptive combinatorial control. In this case, since
only the reflex-based control is used to drive the system, the combinatorial control has
the same output as the reflex-based control. We encourage readers to watch the video
clip of this experiment at http://manoonpong.com/SAB2016/M1.mp4.

behavior when all sensory feedback (θLH,RH,LK,RK , LF , RF ) are provided, while
it fails if any sensory feedback (e.g., foot sensor signal) is missing.

For the second experiment, we let DACBOT walk with a combination of
the reflex-based and CPG-based control (Fig. 6) where the reflex-based control
drove DACBOT first and then the CPG-based control took over as soon as
its frequency adapted to the walking frequency generated by the reflex-based
control. Afterwards, we disabled a foot sensor at around 1000 time steps. Since
DACBOT was driven by the CPG-based control after the frequency adaptation,
it can still stably walk without foot contact feedback.

http://manoonpong.com/SAB2016/M1.mp4
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Fig. 6. Robust locomotion of DACBOT driven by the adaptive combinatorial control.
Initially, the system was driven by the reflex-based control and simultaneously the CPG-
based control adapted its internal frequency using the frequency adaptation mechanism
with hip angle feedback to synchronize with the generated walking frequency. At around
1000 time steps, a foot sensor was disabled but DACBOT still performed robust loco-
motion driven by the CPG-based control. We encourage readers to watch the video clip
of this experiment at http://manoonpong.com/SAB2016/M2.mp4.

The last experiment shows adaptive locomotion of DACBOT on different
speeds of the treadmill. DACBOT was driven by the combinatorial control.
The same procedure as the second experiment was performed with an extension
of changing the speed of the treadmill after DACBOT was controlled by the
CPG-based control where foot contact feedback was also disabled. We increased
the speed of the treadmill from 0.09 m/s to 0.15 m/s and finally to 0.23 m/s.
Figure 7 shows frequency adaptation and a hip motor signal with respect to
the different situations. It can be seen that the controller can quickly react and
adapt its output frequency to generate proper locomotion behavior. Recall that
we used only a hip angle signal for the frequency adaptation process.

http://manoonpong.com/SAB2016/M2.mp4
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Fig. 7. Adaptation to three different speeds of the treadmill. Here DACBOT was con-
trolled by the combinatorial control where the reflex-based control drove the system
first and then the CPG-based control took over. Walking frequency was adapted accord-
ing to the speed of the treadmill. The online frequency adaptation is obtained from the
adaptation process of the CPG-based control with hip angle feedback. The top panel
shows the internal frequency of the CPG-based control adapting to the different speeds
of the treadmill. The middle panel shows a motor signal of the CPG-based control. The
bottom panel shows the final motor signal controlling the left hip of DACBOT from the
adaptive combinatorial control. This adaptation leads to different walking behaviors;
i.e., DACBOT performed about six walking cycles within 300 time steps at 0.09 m/s,
about seven walking cycles within 300 time steps at 0.15 m/s, and about eight walking
cycles within 300 time steps at 0.23 m/s. Note that due to the robot dynamics, the
CPG frequency can slightly increase and decrease although the treadmill is constant.
We encourage readers to watch the video clip of this experiment at http://manoonpong.
com/SAB2016/M3.mp4.

5 Conclusion and Future Work

This paper presents the development of adaptive combinatorial neural control for
a biped robot, like DACBOT. It combines reflex-based and CPG-based control

http://manoonpong.com/SAB2016/M3.mp4
http://manoonpong.com/SAB2016/M3.mp4
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mechanisms. Based on our control strategy, the reflex-based control firstly drives
the robot system by exploiting sensory feedback and biomechanics of the robot
to obtain proper walking frequency and leg coordination which results in energy-
efficient locomotion. In parallel, the CPG-based control adapts its internal fre-
quency to the actual walking frequency. Once the internal frequency of the CPG-
based control has matched to the actual walking frequency or the CPG output
has become in phase with the reflex output, the CPG-based control can be
switched to control the system. Due to synaptic plasticity and a frequency adap-
tation mechanism embedded in the CPG-based control, DACBOT can quickly
adapt its walking frequency to a change of the speed of a treadmill. For the
adaptation, only a hip angle signal is required as sensory feedback to the CPG-
based control while other sensory signals (e.g., knee and foot sensor signals)
can be removed (as shown in the last experiment). This way, DACBOT per-
forms adaptive locomotion with minimal feedback requirement. Furthermore,
DACBOT can still perform robust locomotion at a certain walking speed even
the hip angle signal has been removed from the CPG-based control. Such adap-
tive and robust locomotion cannot be achieved by purely reflex-based control [9]
while proper initial walking frequency and leg coordination cannot be achieved
by purely CPG-based control.

Some works combined CPG-based control with adaptive mechanisms (like,
reinforcement learning [13] and evolutionary algorithms [14,15]) for robust loco-
motion. However, such adaptive mechanisms need long learning time. In contrast,
our control strategy with synaptic plasticity and the frequency adaptation mech-
anism can generate robust locomotion and online adaptation within a few steps
to deal with environmental changes. Thus, this study shows that this novel and
simple combinatorial control approach -presented here for the first time- may be
a way forward to solve coordination problems and to achieve fast online adapta-
tion with minimal feedback in other complex motor tasks for active prosthetic
and orthotic devices. In the next step, we will implement a 2DOF upper body
component on DACBOT and develop adaptive body control to allow DACBOT
to walk with minimal movement constraints and to deal with large disturbance.
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Abstract. In humans, repeated exposure to the effects of events can
lead to anticipation of these effects. This behaviour has been observed
in infants from as young as 3 months old. During infant experiments, the
infants have been observed to predict either by pre-saccadic movements
or reach actions according to the expected future outcome of the event.
Event anticipation or prediction is necessary for such behaviours. In this
paper we demonstrate prediction of object motion events using the adap-
tive learning tool Dev-PSchema. Results shows that the system is able to
predict the linear motion outcome of the visual event using generalised
schemas.

Keywords: Developmental robotics · Psychologically inspired · Action
prediction

1 Introduction

Humans can be seen as complex cognitive systems with the capability to make
anticipatory behaviours prior to the event outcome. Even human infants, as
young as 3 months old, have been observed to show anticipatory behaviours [3].
This anticipatory behaviours plays an important roll in the infants’ learning
process [12]. Such behaviours help to build and demonstrate an understanding
of repeatable events and the agents causing the events or the objects involved
in such events.

Psychologists have been investigating anticipatory behaviours and event
predictions for many years. The prediction of spatio-temporal information of
an event or agent and tracking the moving objects are the main interests in
such investigations. There are many evidences of the anticipatory behaviours
in humans observed using visual attention and motor control. Schlesinger and
Casey in [14] found that 6 months old infants look longer at impossible events
than possible events. Longer looking time is obtained when infants observe a
new event or an event does not meet expectations. Similarly, Alder and Haith
found that 3 months old babies can predict visual events [1].

This evidence suggests that infants possess visual anticipation capability
even at early infancy. Infants have been found to use such visual anticipation
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 329–339, 2016.
DOI: 10.1007/978-3-319-43488-9 29
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in their behaviours. Claxton [5] found that around 10 months old, infants pos-
sess some representation of future state of events and use that representation
for anticipatory behaviour. Similarly, Hofsten et al. found that 6 months old can
predict the position of a moving object and use that information to reach for
and intercept the object [9]. This demonstrates that infants possess visual event
anticipation as well as anticipatory behaviours. These anticipatory behaviours
consist of two main sequential steps; (i) Observing – predicting – expecting the
future outcome of an event occurring within a static or dynamic scenario, and
(ii) Planning and executing the behaviour based on the anticipated outcome.

For example if a subject wants to catch an object, he/she will need to antic-
ipate the outcome of an objects motion in spatio-temporal space. For static
objects, the subject will expect that the object will remain at the same position
while in a dynamic situation the change in an objects position is predicted over
time. This prediction is the result of an inference made by comparing the cur-
rent situation with that of previous experiences [11]. An action is then planned
taking into consideration the anticipated outcome of the motion [5] and finally
it is executed. Similarly Canfield and Haith [3] found that 3.5 months old infants
are not only able to anticipate symmetric visual events but they can anticipate
asymmetric event as well.

In robotics applications, a robot may need to act in a dynamic environment
where objects may change in spatio-temporal space. These changes may be con-
nected with the robot’s actions, triggered by another agent in the environment,
or be part of the environment itself. An intelligent robotic system should not only
be able to infer about anticipated states of the world and actions but also learn
relationships between the states and, where the robot is the cause, the associated
actions as well. Such relationships will help to predict the future state of a given
variable for a particular action. Then, once able to predict, these behaviours can
also be applied as goal directed behaviours to achieve the desired effect [12].

Considering event prediction as an initial step of anticipatory behaviours, in
this paper we demonstrate the capability of the schema system, Dev-PSchema,
for learning movements of objects following an action. The schema system then
makes initial predictions about the changes by applying mathematical functions
to the variables of properties used in states and action. In Sect. 2 we will discuss
the psychological and robotic studies relevant to the topic. In Sect. 3 we will
discuss the methodology used in this study and present results obtained from
experiments. Finally in Sect. 4 we will discuss the implications of the results and
future work.

2 Background

The world is full of objects and agents, which are dynamic and change their
spatio-temporal position. These changes can be related with the other objects
or agents in the environment. Where these changes are predictable, an intelli-
gent system must be able to learn these relations and be able to anticipate the
outcome of dynamic objects based on those relations.
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Considering anticipation as an important part of learning, developments in
artificial intelligence are shifting towards systems which infer according to the
predicated outcome of an action on a given environmental state rather than
solely based on the environmental state itself [12]. Researchers in robotics, in
this regard, are working to develop learning systems which can be used for
anticipation in robots.

Geib et al. [7] proposed a learning model based on action and high level
perceptual information; Object-Action-Complexes (OACs). Learning was rep-
resented in ‘Instantiated State Transition Fragments’ (ISTF) containing action
and perceptual information before and after the action. The model also provides
mechanism for extending the learning by generalised ISTF, referred to as OACs.
OACs also helps to plan the action for a given perceptual state.

An extension to the OACs model was proposed by Worgotter et al. [18]. This
incorporated the ability to calculate and adjust predictability of outcomes. They
believed that the OACs system could be extended to find the change between
the state before and after actions, which can be used to predict the outcome
of actions on novel situations. The proposed extension involved a supervisory
mechanism which was used to guide the unpredictability.

Similarly, Hermans et al. [8] demonstrated object affordance prediction using
OACs. Affordance prediction was tested on six different object classes and
demonstrated significant accuracy. However, supervised learning methods, such
as Support Vector Machines (SVMs) and k-Nearest Neighbours (k-NNs) were
used to learn affordances, which requires a large number of training examples
to learn. The model has shown a good level of accuracy for the objects which
belonged to the object class used for the training purpose, however a large error
rate was obtained for novel objects. In general the OACs model requires a super-
visory learning mechanism to learn predictions along with the intermediate sys-
tem to link high level system and low level sensory and motor control.

In developmental robotics, researchers aim to develop on-line and open ended
learning system inspired from the psychology [4]. Aguilar [2] proposed another
goal based behavioural unsupervised learning system. The system is based on
Piaget’s theory of sensorimotor learning [13]. The learning outcomes of this are
the schemas, containing context, action and expectations. This system posesses
the capability for on-line learning. However, the type generalisation used in the
system is deductive. A very abstract schema is created with very first experience
and accommodated to create concrete schema.

In this paper we demonstrate the anticipation capability of a schema system,
Dev-PSchema, an extended version of PSchema [17]. This system is a tool for
on-line learning and posses inductive generalising capability, creating abstract
schema after certain experiences. In the following section, we discuss the exten-
sions made for Dev-PSchema.

3 Methodology

Weare using the adaptive behaviour learning tool,Dev-PSchema, an enhanced ver-
sion of the originalPSchema system developed by Sheldon [17]. Following Piaget’s
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sensorimotor learning paradigm, this tool enables artificial agents to learn dynam-
ically and behave according to their learning experiences. The learning outcome is
represented in a schema format, consisting of sensory states before and after action,
referred to as pre-conditions and post-conditions respectively, along with the asso-
ciated action.

The system creates a new schema when a new sensory state is obtained in
response to any motor action. In this work we are using the same schema building
algorithm as introduced in [16]. The system has an excitation calculator which is
responsible for selecting appropriate action schemas, from available schemas, for
a given sensory state. The mechanism for the excitation calculation of a schema
in for a given state is outlined in Algorithm1.

Algorithm 1. Excitation algorithm
1: procedure get excitation(State new, Schema S)
2: if S has preconditions then
3: if preconditions in S are similar to new then
4: predictions = preconditions of S
5: else
6: Return 0
7: end if
8: else
9: predictions = postconditions of S

10: end if
11: calculate similarity between predictions and new
12: Return similarity
13: end procedure

This system is also capable of generalising learning outcomes, i.e. schemas,
using inductive inference. We have extended the generalisation mechanism in
Dev-PSchema. Where the properties of pre and post-conditions are numeric, the
generalising mechanism determines the mathematical relation between the vari-
ables used in preconditions, post-conditions and actions. Previously in PSchema
[17], the generalisation was limited to recognising change in these values, but not
identifying relationships in terms of how the values may have changed. The new
schema generalising mechanism for Dev-PSchema is illustrated in Algorithm2.

In a generalised schemas, variables of properties to define sensory states and
actions are replaced with “$” plus a unique random character. The mechanism
attempts to identify if the change in the values can be described by a repeat-
able mathematical function. If this is the case, then the function representing
the change will also be included as part of the generalised variable. Currently,
the system is limited to the additive relation (+/−) between two variables. A
generalising example is illustrated in Fig. 1.

Figure 1 shows that two schemas, schema 1 and 2, of the same action type
are used to make a generalised schema where variables which appeared with
different values or which are of less importance in the action of the schema are
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Algorithm 2. Generalisation algorithm
1: procedure Generalise(Schema new, old schemas)
2: if “new” don’t have preconditions then
3: return
4: end if
5: for each schema S in old schemas do
6: if S not generalised AND size and type of preconditions, postconditions

and action of S are same as new then
7: Add “S” in List similars
8: end if
9: if action in S and new are similar AND postconditions in S are less than

postconditions in new then
10: Add postcondition properties in old props
11: end if
12: end for
13: trial schema = copy of new
14: add empty set “Var”
15: for each property P in precondition of S in similars do
16: if P not in second elements of set var then
17: if P has two different values OR is in old props then
18: add set (random character, P ) in vars
19: end if
20: end if
21: end for
22: for each property P in preconditions of trial schema do
23: if P is in second elements of set Vars then
24: replace P with first element of set “Vars”
25: end if
26: end for
27: for each property P in postconditions & actions of trial schema do
28: Find fucntion F between P & second element of set “Vars”
29: if function exists then
30: replace P with first element(ofV ars) + F
31: else
32: replace P with first element(ofV ars)
33: end if
34: end for
35: end procedure

replaced with a generalised variable, “$” plus a unique random character, along
with a function if identified.

3.1 Experiment

We used a simple simulator for our experiment. The simulator contains 25 (5×5)
visual spaces and the capability to saccade, and fixate, to any of these position.
Each visual space consist of 32×32 pixels, with objects fully contained in a single
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Fig. 1. Generalised schema obtained from Schema 1 and Schema 2

position at any point in time. When fixating on a given position the rest of the
visual space can be considered as peripheral regions. The simulator provides high
level perceptual information about the visual scene to the schema system, which
uses this information to create learning outcomes, schemas, and simulate play
behaviour. Figure 2 shows the simulator environment (left) and current sensory
state of it (right). The “X” mark shows the current fixated position, while the
red and green shapes are the objects shown in peripheral visual space.

At the start of the experiment, the system is bootstrapped to fixate on each
of the visual spaces before any objects are introduced. This process helps the
system to build the basic schemas corresponding to the primitive actions that
it can perform and corresponds to the random motor babbling in very early
infants, building up the sensorimotor control. It is worth mentioning that in this

Fig. 2. Simulator and sensory information
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experiment, the system does not observe the environment continuously but only
before and after the execution of any action.

When an object is introduced in the simulator, the excitation system activates
the action schema relevant to the current sensory state. For example an object at
position (1, 1) will trigger the system to fixate at that position, due to recalling
the schema where it previously fixated that position. It will also excite the reach
action schema to that position, where it remembers seeing its own hand, although
only one schema is executed at a time and the reach action is not used in this
experiment.

In order to investigate prediction of visual events, an object is moved one
position to the right when the system executes an action schema to fixate on the
object. Two objects will be introduced at different positions in visual space and
through play, new schemas will be obtained. Both concrete (with specific values
describing an experience) and generalised schemas, will be used to evaluated the
performance of the system in term of finding the functions between the variables.

Finally to test the anticipation, another object is introduced into the envi-
ronment and the system predicts the movement of the object in response to the
action.

Fig. 3. Schema created while fixating on the first object

3.2 Results

Introducing the first object, referred to as object 1, at a particular position
in visual space reminds the system about previously fixating at that position
during the bootstrap process. This results in the corresponding saccade action
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schema being selected for execution by the excitation calculator. After the action
is executed the system creates a new schema describing the differences in pre
and post conditions from the basic action schema generated during bootstrap-
ping. Figure 3 show the process of obtaining a new saccade schema following the
fixation on the first object.

Following the creation of the new schema, the first object was removed from
the simulated environment. A second object, object 2, which possessed the same
movement property, but was of a different shape and colour, was introduced at a
different position. Following the same process, as shown in Fig. 3, a new schema
is created for fixating on the object with the concrete details associated with
this experience. The similarity of the new schema compared with the previous
schema, created for object 1, triggered the generalisation process, resulting in
the creation of a new generalised schema. Figure 4 shows the generalised schema
along with the schemas used to create it.

Fig. 4. Schema for object 1 (top), object 2 (middle) and generalised schema (bottom)

Variables in both schemas for object 1 and 2 are of the same type but have
different values. As the values for position are numeric, the quantity of change
in them can also be considered. The generalisation mechanism recognises the
matching change in the values and is able to apply this as a function on the
positional values in the new generalised schema.

To test this, a third new object was presented in the environment. The
new object excites the new generalised schema, which is instantiated from
the observed state. Variables with $ signs are replaced with specific values from
the current state, resulting in the action to fixate on the object, whilst also pre-
dicting the outcome of the action. Figure 5 shows the state of the simulator (left)
and instantiated generalised schema from that state.

Thepost-conditionof the instantiatedgeneralised schemashows that the object
is expected to move across one position after fixating on it at its current position.
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Fig. 5. State for 3rd object (left) and instantiated generalised schema (right)

Thus, the systemshows thecapabilityofpredicting the future statebymaking infer-
ences for the current state using previous experiences.

4 Conclusions and Future Work

In this work, we demonstrated the ability of the PSchema system, Dev-PSchema,
to anticipate the outcome of the action and events related to it. For extending
the learning to novel situations, generalised schemas are created. After creating
a generalised schema, the system extends this knowledge to novel situations, the
third object in this case. Based on previous experiences, the system predicts the
outcome of an action on an object, irrespective of object’s visual features. This
result is consistent with the results obtained in [1]. Adler found that infants
anticipate the object movement irrespective of an object’s visual features.

This system, Dev-PSchema, is also able to find the linear mathematical rela-
tion between the property variables for the generalised schema. This capability
may be considered as the causal perceptual anticipation as the system finds the
causal relation between the action and its outcome. Schlesinger believes that
development of causal activity helps the infants to form causal perceptual antic-
ipations [15]. Similarly, it is believed that human actions do not depend upon
the current observations but depend upon the anticipated future state of the
observation and actions to be acted upon them [6,12]. Thus, human action can
be seen as goal directed, even in early infancy [1], which may be considered as
causality.

Learning models discussed in Sect. 2 have shown significant achievements for
learning and anticipation capability in robotics. However, these learning models
use either supervisory learning or learning by demonstrating. The extension
proposed in [18] in the OAC model [7] have shown the capability of anticipation.
The proposed extension also involves the relation between the pre and post action
states in OACs. However, the OACs learning model involves supervisory learning
[10] and the proposed extension uses supervisory mechanism to incorporate the
unexpected states.

The anticipation mechanism in the Dev E-R model proposed in [2] is very sim-
ilar to the model used in this work. However, Dev E-R model does not deal with
the mathematical relation between properties present in schemas. The schema
system used in this work is able to find the mathematical relation between prop-
erties in the schemas. We believe this capability will help to develop the system
for finding causal relations in the schemas.
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The system discussed in this paper is an extension of unsupervised, on-line
and continual learning mechanism. It does not require large numbers of training
sets of a fixed target. However, it does need a low level sensory and control system
to abstract the raw sensory information and represent it at a high symbolic level.
Similarly, actions in schemas are in high level definition and a low level control
system is responsible for the robotic kinematics to execute actions.

With the extension in the system, it is now capable of finding relation between
the numerical values of the sensory state variables. The current system is only
able to find the additive function (+/−) between the variable of the properties
present in the action and states, pre-conditions and post-condition. In the future,
we will consider further extensions to the system allowing it to deal with more
complex mathematical functions in schemas. Through building up these predic-
tive schemas, it is possible to learn behaviours such as object tracking where the
motion of the eyes is matched to that of the object, along with predictive reaches
to where the object will land. Finally, through understanding these changes, the
system can exploit these changes to achieve goals involving moving objects to
target positions.

This experiment is an example of using Dev-PSchema for generalisation and
finding functional relation between numerical values of the sensory state variables
only. The system can be used as a general learning mechanism and play behaviour
generator. In the future, we are interested in extending this event anticipatory
mechanism to incorporate anticipatory behaviours. We are also interested in
implementing this model on an embodied humanoid robot, such as the iCub.
Moreover, we are also aiming to extend the generalisation mechanism to deal
with the failure of generalisation.
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Abstract. Animals have inspired numerous studies on robot locomo-
tion, but the problem of how autonomous robots can learn to take
advantage of multimodal locomotion remains largely unexplored. In this
paper, we study how a robot with two different means of locomotion can
effective learn when to use each one based only on the limited informa-
tion it can obtain through its onboard sensors. We conduct a series of
simulation-based experiments using a task where a wheeled robot capable
of jumping has to navigate to a target destination as quickly as possible
in environments containing obstacles. We apply evolutionary techniques
to synthesize neural controllers for the robot, and we analyze the evolved
behaviors. The results show that the robot succeeds in learning when to
drive and when to jump. The results also show that, compared with uni-
modal locomotion, multimodal locomotion allows for simpler and higher
performing behaviors to evolve.

Keywords: Evolutionary Robotics · Multimodal locomotion ·
Navigation task

1 Introduction

Animals’ ability to move efficiently in complex environments is crucial for key
activities related to their survival, such as finding food and escaping predators.
As a means to efficiently move through complex and unstructured environments,
various animals exploit different modes of locomotion [11]. Birds, for example,
use the aerial mode when traveling long distances, whereas the terrestrial mode
is chosen for activities that require covering small distances, such as when feed-
ing [14]. Crocodiles use terrestrial locomotion, a quadrupedal gait, when nesting
and sunbathing, whilst for hunting, they rely on aquatic locomotion, primarily
using undulation of the tail for propulsion [14].

Besides animals, multimodal locomotion has an important role in the field of
robotics, particularly in tasks where robots may encounter distinct types of envi-
ronments. Indeed, in some tasks, such as navigation, and search and rescue, it
may be necessary to explore various types of terrains, which requires an adaption
of movement modes, rather than just relying on one locomotion strategy [10].
c© Springer International Publishing Switzerland 2016
E. Tuci et al. (Eds.): SAB 2016, LNAI 9825, pp. 340–351, 2016.
DOI: 10.1007/978-3-319-43488-9 30
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Although some multimodal robots have been developed with distinct combina-
tions of locomotion modes [1,3,20], the majority of them lacks the capacity for
autonomous decision-making and are unable to decide when to use each means
of locomotion.

Evolutionary Robotics (ER) is a field in which controllers for autonomous
robots are synthesized by means of evolutionary computation techniques with-
out the need for manual and detailed specification of behavior. In ER, there
have been numerous studies on the evolution of controllers for robots with dis-
tinct means of locomotion, ranging from terrestrial and aerial robots, to aquatic
robots [4,16,21]. Evolved controllers, however, have so far only made use of one
means of locomotion. In this study, we evolve control systems for robots that
have the capacity to exploit two modes of locomotion during task execution,
namely driving and jumping.

For our study, we use a robot model based on the Jumping Sumo, a low-cost
robotic platform made by Parrot. The robot has to perform a navigation task in
different environments with obstacles. In order to successfully perform the task,
the robot must reach a predefined destination as quickly as possible. The Jump-
ing Sumo has a jumping mechanism that has to charge for 1 s before a jump can
be executed. The need to charge prior to jumping and the fact the robot rolls
stochastically after landing, make jumping slower than driving. There is thus a
tradeoff, because the robot has to go around obstacles when driving, whereas
the jumping locomotion, although slower, enables the robot to jump over obsta-
cles. Taking into account the tradeoff between the two means of locomotion, we
evolve control in a balanced set of environments that is fair for both locomotion
modes. We compare results obtained in three distinct setups in which a robot
has access to different modes of locomotion, in (i) the robot can only drive, not
jump, in (ii) the robot can only jump, not drive, and in (iii) the robot is capable
of both driving and jumping. We then analyze the performance and behavior
of the controllers evolved in each setup. The contribution of our study is four-
fold: (i) we evolve controllers that can take advantage of jumping locomotion;
(ii) we demonstrate how controllers can be synthesized for multimodal locomo-
tion, in particular, jumping and driving; (iii) we show that simpler strategies can
be evolved for robots with multimodal locomotion capabilities compared with
strategies evolved for robots with unimodal locomotion, and (iv) we find that
the navigation strategies evolved for multimodal robots outperform strategies
evolved for unimodal robots – even when only one mode of locomotion is used.

2 Related Work

In this section, we present prominent multimodal robots and discuss work related
to autonomous navigation in the field of ER.

2.1 Multimodal Robots

Robots equipped with more than one means of locomotion have the potential to
select which mode to use depending on the types of environment encountered,
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which is particularly important in tasks where terrains may not be entirely char-
acterized prior to deployment [10]. With the growing interest in using robots for
search and rescue tasks, environmental monitoring, and so forth, it is increasingly
important to have robots with the capacity to exploit a variety of locomotion
strategies.

Of the limited number of multimodal robots that have been developed so far,
most combine aquatic and terrestrial locomotion. Examples include Aqua [8] and
Salamandra Robotica I and II [3]. There is also a number of robots that combine
aerial and terrestrial locomotion, such as MALV [1] and BOLT [17].

Some multimodal robots rely on the combination of jumping and wheeled
locomotion, in which wheeled locomotion is the primary means of locomotion
and jumping is used as a secondary means. Tsukagoshi et al. [19] developed a
wheeled robotic platform with a jumping mechanism for rescue operations. The
jumping mechanism uses a pneumatic cylinder and a specially designed valve
that allows energy efficient and high jumps. The Jumping Sumo is another exam-
ple of a wheeled robot capable of jumping that Parrot has recently developed1,
along with other multimodal robots. Other examples include the miniature Scout
robot [18], a cylindrical robot with two wheels, and the mini-whegs [13].

Besides the mentioned examples, a recent survey on robotic systems equipped
with multimodal locomotion can be found in [15]. Despite the interesting work
done so far, most of multimodal robots are unable to autonomously decide when
and how to exploit the different locomotion modes during task execution; in fact,
the majority of current multimodal robots lack the capacity for autonomous
decision-making altogether. In this paper, we study how to automatically syn-
thesize controllers for a robot equipped with multimodal locomotion so that it
effectively chooses which mode of locomotion during task execution based only
on limited information from onboard sensors.

2.2 Evolved Navigation Behaviors

Terrestrial Robots. Several ER studies on wheeled robots have been carried
out since the pioneering real-robot studies by Floreano and Mondada [6] and
Jakobi et al. [12]. In [6], the authors evolved behavioral control that enabled a
Khepera robot to locate a battery charger and periodically return to it. In [12],
the authors managed to successfully evolve artificial neural network-based con-
trol for obstacle-avoidance and light-seeking tasks for a Khepera robot. Many
others examples of evolved behaviors for terrestrial robots can be found in [16].

Besides wheeled robots, legged robots have also been controlled by evolved
behavior. Gallagher et al. [7], for instance, carried out experiments using a
neural network to control the locomotion of a real six-legged robot. Gruau and
Quatramaran [9] attempted to evolve an artificial neural network with cellular
encoding to control the locomotion of OCT-1, an eight-legged robot.

1 Parrot MiniDrone Jumping Sumo, URL: http://www.parrot.com/usa/products/
jumping-sumo/.

http://www.parrot.com/usa/products/jumping-sumo/
http://www.parrot.com/usa/products/jumping-sumo/
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Aerial and Aquatic Robots. One example of ER in aerial robots includes
evolving spiking neural controllers for a flying robot which had to perform a
vision-based navigation task [21]. In terms of the aquatic environment, control
was recently evolved for a swarm robotics system composed of 10 surface robots,
in a study that demonstrated evolved swarm control outside of controlled labo-
ratory conditions [4].

As it is the case for all the studies discussed above, evolution of control
has almost exclusively been applied to robots with one type of locomotion. In
this study, we evolve control for robots capable of multimodal locomotion, in
particular, jumping and driving. It should be noted that, to the best of our
knowledge, no controllers have been evolved for robots capable of jumping prior
to this study.

3 Robot Model and the Task

In this section, we describe the navigation task and the robot model used in
our experiments. We conducted our experiments in JBotEvolver, a Java-based
open-source, multirobot simulation platform and neuroevolution framework [5].

3.1 Navigation Task

In our task, the robot must navigate to a predefined target destination in an
environment with different obstacle configurations. The configuration of obsta-
cles is random, but generated according to a predefined ratio that determines
the optimal time to complete the task by driving relative to the optimal time
to complete the task by jumping. For instance, if an environment has a ratio of
2, a configuration of obstacles will be generated in such a way that the time to
reach the destination will be twice as long when driving than when jumping if
the respective optimal paths are followed.

We use five different types of environment with the following ratios: 1/4, 1/2,
1, 2, and 4, during the evolutionary process. In the first two types of environ-
ment, the robot can potentially reach the destination faster by driving than by
jumping (ratios 1/4 and 1/2), while the opposite is true in the two final types
of environment (ratios 2 and 4). In the environment with a ratio of 1, the two
means of locomotion potentially allow the robot to reach the target destina-
tion equally fast. Solutions are thus evaluated in a balanced set of environments
with respect to the two means of locomotion. All environments are bounded and
square-shaped, with a side length of 10m. An example of a random configuration
of the five environments can be seen in Fig. 1.

3.2 The Robot Model

The robot model is based on an existing physical multimodal robot, the Jumping
Sumo, a differential wheeled robot capable of jumping (see Fig. 2). The robot
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Fig. 1. Examples of configurations of the five types of environment with the respective
optimal paths for driving and jumping highlighted.

Fig. 2. Left: Jumping sumo. Right: Jump trajectory.

is equipped with two wheels, can move at up to 7 km/h, is able to prioritizing
either height or length, and has a size of 18.5× 15 x 11 cm.

We conducted a series of empirical tests to assess the jumping characteristics
of the robot in order to model the Jumping Sumo in simulation. The jump mode
with height prioritization was chosen for our experiments since it allows the
robots to overcome tall obstacles. A total of 45 jumps were executed, and both
the time and distance covered were recorded. In the empirical tests, we observed
a jump length of 85 ± 4 cm, and a roll distance of 16 ± 7 cm after the jump. In
simulation, the dynamics were modeled using two Gaussian distributions. The
jumping mechanism has to charge for 1 s before a jump is executed, which was
also modeled in simulation.

In our experiments, the robot was equipped with two actuators: two wheels
and a jump actuator. A Gaussian noise component with a mean of 0 and a
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standard deviation of 5% was added to the two wheels to simulate real-world
phenomena, such as imperfect motors and wheel slippage. The set of sensors
includes eight destination sensors, which have a maximum range of 10 m, and
eight obstacle sensors, which have a range of 4 m. The destination sensors are
distributed around the chassis of the robot and the obstacle sensors are distrib-
uted on the front of the robot. All sensors have an opening angle of 60 ◦. The
robot was further equipped with a proprioceptive sensor that indicates if the
robot is currently jumping or not.

For our experiments, we use three setups in which the robot has access to
distinct locomotion capabilities: (i) Drive, where the robot is only capable of
driving, (ii) Jump, where the robot can only jump and rotate on its axis, and
(iii) Drive-and-Jump, where the robot is capable of multimodal locomotion, and
thus can both jump and drive. In the Jump setup, the robot is considered to
have reached the destination when it is within 30 cm of the target, instead of
the 10 cm used for the other two setups, given that jumping is less precise than
driving.

4 Control Synthesis

We evolve continuous-time recurrent neural networks [2] to control the robot.
Each neural network has three layers of neurons: a reactive input layer, a fully
connected hidden layer, and an output layer. The input layer is fully connected
to the hidden layer, which, in turn, is fully connected to itself and to the output
layer. The input layer has one neuron per input sensor and the output layer has
one neuron per actuator output.

We use a simple generational evolutionary algorithm to synthesize control
for the robot. Each generation is composed of 100 genomes that correspond
to artificial neural networks with the topology outlined above. Genomes are
evaluated over 25 samples with different initial random seeds (5 samples in each
type of environment) and the average fitness is used for selection. Each sample
can last up to 750 simulation time steps (19 s), or terminates once the robot
reaches the destination. The five highest-scoring genomes are selected to become
part of the next generation and to populate it. Each of the top genomes becomes
the parent of 19 offspring. The genotype of an offspring is the result of applying
a Gaussian noise to each gene with a probability of 10%.

The fitness function is defined as follows:

F (i) = Ri + Pi (1)

where Ri is a reward component and Pi a penalty component. Value of Ri

depends on whether the robot succeeded or failed to navigate to the target
destination:

Ri =

{
1 + (T − t)/T if robot reached the destination
1 − d/D otherwise

(2)
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If the robot did not reach the target destination, the fitness function has a
value in [0, 1] depending on how close the robot got to the destination during the
experiment. By means of this bootstrapping component, a faster convergence to
the destination is expected. The term D represents the initial distance between
the robot and the target destination, and d is the closest distance the robot came
to the destination. If the robot is successful, its fitness will be in the interval
[1, 2], depending on how long the robot took to reach the target destination.
The term T is the maximum time available for the task (750 simulation steps)
and t corresponds to the time needed to reach the destination.

Pi is the penalty component which is used to promote obstacle avoidance:

Pi =

{
nc×−0.01 if robot reached the destination
nc×−0.001 otherwise

(3)

The term nc denotes the number of collisions with obstacles. Pi also depends
on whether or not the robot managed to reach the destination. A lower penalty
is given when the robot was unable to reach the target destination in order to
bootstrap the evolutionary process.

5 Results

A total of 30 evolutionary runs were conducted for each setup (Drive, Jump, and
Drive-and-Jump), each lasting 500 generations. For the highest-scoring controller
evolved in each run, we conducted a post-evaluation with 100 samples for each of
the five environment types used during evolution. In this section, we present the
results obtained in each setup, and we analyze the performance and behaviors
of the evolved solutions.

5.1 General Performance

Figure 3(left) shows the distribution of fitness scores achieved by the highest-
scoring controllers for the different experimental setups. The highest-scoring
controller was found in the Drive-and-Jump setup (1.84 ± 0.06), followed by
the similar performance of the Drive setup and the Jump setup (1.71 ± 0.15 and
1.71 ± 0.14, respectively). Figure 3(right) shows the distribution of the time to
reach the target destination by those highest-scoring controllers. As mentioned
in Sect. 3.1, the experiments were conducted in five types of environments that
equally favor the driving locomotion and the jumping locomotion. The results
show that the highest-scoring controllers evolved in the Drive setup and the
Jump setup obtained a similar performance. The highest-scoring controller of
the Drive setup reached the destination within a mean time of 5.69 ± 2.80 s,
and the best controller of the Jump setup reached the destination with a mean
time of 5.54 ± 2.96 s. The highest-scoring controller evolved in the Drive-and-
Jump setup successfully reached the destination faster than controllers evolved
in the other setups (3.10 ± 1.20 s). The results demonstrate that robots with
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Fig. 3. Left: distribution of fitness scores achieved by the highest-scoring controllers
of the three setups (higher is better). Right: distribution of the time to reach the
destination by the highest-scoring controllers of the three setups (lower is better).

Fig. 4. Left: fitness trajectories of the highest-scoring controllers in each generation.
Right: average fitness trajectories of the highest-scoring controllers in each of the 30
runs.

multimodal locomotion capabilities can effective learn when to use each mode
of locomotion based on the limited information they can obtain through their
onboard sensors.

The simplicity of evolving successful behaviors with multimodal locomotion
can be seen in Fig. 4(left): the evolutionary process found successful solutions
around the 80th generation, after which fitness only slightly increased. The rela-
tively low average performance displayed by the controllers evolved in the Drive
setup (Fig. 4(right)), can be explained by the fact that the majority of them
did not succeed in reaching the destination in the final two environments (ratio
2 and 4). It is thus more challenging to evolve effective Drive behaviors than
multimodal behaviors.

5.2 Behavioral Analysis

In this section, we analyze the performance and behaviors of the highest-
scoring controllers for the first (ratio 1/4), middle (ratio 1) and last environ-
ment (ratio 4). Examples of evolved behaviors can be seen in Fig. 5. The highest
scoring controller of the Drive setup, Jump setup and Drive-and-Jump setup
are hereinafter referred to as Drive Controller, Jump Controller and Drive-and-
Jump Controller, respectively.
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Fig. 5. Example of behaviors in the environments with (a) ratio 1/4, (b) ratio 1, and
(c) ratio 4.

Ratio 1/4. The Drive Controller reached the destination with a mean time of
2.99± 1.33 s, while the Jump Controller achieved a mean time of 7.49± 1.82 s and
the Drive-and-Jump Controller outperformed both with a mean time of 1.90 ±
0.28 s. The Drive Controller was not as fast as the Drive-and-Jump Controller,
due to the fact that the controller has the general behavior of turning on the
spot to find a way around potential obstacles, as can be seen in Fig. 5(a), which
is necessary in order to solve the navigation task in more complex environments.
Whereas the Drive-and-Jump Controller has a more general behavior, since it is
not limited to just one locomotion strategy. Successful behaviors leveraged the
ability to overcome obstacles in the other environments by jumping over them,
thereby using a simpler strategy in which the robots moves directly toward the
destination in the environments.

Ratio 1. This environment has a ratio of 1, thus, the robot can potentially reach
the destination in the same amount of time whether it drives or jumps. The Drive
Controller reached the destination within a mean time of 4.49 ± 1.77 s, similar
to the Jump Controller that achieved a mean time of 4.11 ± 2.11 s. As to the
Drive-and-Jump Controller, once again outperformed the other two, achieving a
mean task-completion time of 2.59 ± 0.28 s.

We observed the Drive-and-Jump Controller successfully combining both
modes of locomotion by driving toward an obstacle, jumping over it and then
driving again to the destination, therefore achieving a even better performance
when compared with using just one of the locomotion strategies.
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Ratio 4. The Drive Controller reached the destination within a mean time of
8.91 ± 3.47 s, while the Jump Controller achieved a mean time of 2.13 ± 0.72 s.
In the Drive-and-Jump setup, the mean time to navigate to the destination was
2.83 ± 1.62 s. The reason why the Jump Controller had a better performance
than the Drive-and-Jump Controller is only due to the fact that the robot is
considered to reach the destination at a greater distance with the Jump setup
than with the Drive-and-Jump setup, as explained in Sect. 3.2. The robot, there-
fore, needs to drive a short distance after jumping, whereas in the Jump setup,
the robot reaches the destination immediately upon landing.

5.3 Generalization

In order to assess how general the evolved strategies are, we conducted an addi-
tional set of post-evaluation experiments using the highest-scoring controllers of
each setup in 12 additional environments, which were not used during evolution.
The distribution of ratios for the new environments were chosen to uniformly
fill the gaps between the ratios of the five original environment types. Each con-
troller was evaluated 100 times in each of the 17 environments. The distribution
of how long it took to complete the task in each of the 17 environments, using
the Drive Controller as baseline, can be seen in Fig. 6.

The results show that, as one might expect, the Drive Controller outper-
formed the Jump Controller when the ratio was less than 1. With ratios higher
than 1, the Jump Controller achieve a higher performance than the Drive Con-
troller. The Drive-and-Jump Controller outperformed both Drive Controller and
Jump Controller in the majority of the environments.

Fig. 6. Distribution of task completion times of the highest-scoring controllers evolved
in a range of different environments. Highest-performing controller from the Drive setup
is used as baseline



350 R. Ramos et al.

6 Conclusions

In this study, we evolved control for robots with multimodal locomotion. To
conduct our experiments, the robot had to perform a navigation task in which
it had to reach a target destination as quickly as possible. The navigation task
was conducted in different environments, and we compared three modes of loco-
motion: (i) driving locomotion, (ii) jumping locomotion, and (iii) multimodal
jumping and driving locomotion.

In our simulation-based experiments, the robot equipped with multimodal
locomotion, was able to adapt its locomotion strategy to a broad range of dif-
ferent environments. Depending on the environment, the robot navigated to the
target destination either by combining jumping and driving locomotion or by
exploiting the one that best suited the environment. Multimodal locomotion
enabled the robot to reach the destination faster than when limited to just one
locomotion strategy. The evolved behavior shows that even in environments in
which only one type of locomotion is necessary, the robot can be faster by relying
on a general behavior.

The concept of evolving robotic control systems that have the capacity to
exploit driving and jumping locomotion opens several possibilities for others
combinations of two (or more) modes of locomotion, such as jumping and flying.
In our ongoing work, we are studying large-scale systems of autonomous robots
with multimodal locomotion capabilities.
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Abstract. In this paper, an agent-based model of bystanders effect on
volunteering in a crime situation is presented. The model is pivoted
on the results of a game-theoretic experimentation of the volunteering
dilemma [18], emphasizing the role of guilt in increasing the volunteer-
ing tendency. An analytical model of bystanders effect on volunteering [8]
is extended so that it incorporates multiple interventions and changes
in agents’ beliefs to be used in subsequent interactions. However, the
main contribution is the model extension including the guilt propagation,
subsequently responsible for increases in volunteering tendency. We also
introduce a new model of offender behavior, that operates in conjunction
with the model of volunteering. The model is simulated asking interesting
“what-if” questions with particular focus on decreasing offending tenden-
cies. The results of the simulation reveal that, the model we have proposed,
validates the theoretical foundations of bystanders effect on volunteering
and importance of guilt in increasing the volunteering tendency.

Keywords: Volunteering filemma · Bystanders effect · Game theory ·
Agent-based model · Simulation

1 Introduction

Agent-based Modelling (ABM) is a computational method based on autonomous
decision-making entities; called agents; interacting with each other locally [9].
Exploiting the bottom-up approach (the essence of the modeling approach),
ABM is used to perform (pseudo-) experiments, highlighting the interplay of
agents’ influence on others. This often helps us understand the root cause of
the emergence of a global phenomena and the co-evolution of various behav-
ioral streams in sub-populations of an overall population, thus validating and/or
refining the theoretical foundations of it.

Exploiting the advantages stated above, ABM is a helpful tool to analyze
the emergence of norms and customs in a society [6]. More recently, ABM has
been used to analyze different aspects influencing the dynamics of crimes in a
social setting [8]. In criminology, ABM has been used to explore spatio-temporal
c© Springer International Publishing Switzerland 2016
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dynamics of crime, with focus on spatial as well as behavioral aspects. For exam-
ple, the model presented in [3] explores the dynamics of displacement of crime
places based on diffusion of reputation about those places. At the behavioral
level, the relationship between the behavior of offenders, targets and guardians
is modelled and simulated. Similarly, in [17], the behaviors of offenders, targets
and crime places are modelled based on routine activities theories and the results
of the simulation are validated against real data.

Using ABM, the criminologist research has investigated various violent
crimes, such as, street robbery [10,11], gang rivalries [12] and civil violence [14–
16]. At the same time, research has also been done on society’s reaction to a
crime situation, which corresponds to the norms prevalent in the society [8].
One of these situations is the bystander effect [8], which refrains a person to vol-
unteer her effort against a crime which she observes. Gerristen in his article [8],
referenced the work by [13], explaining the possible reasons for such a behavior,
namely, audience inhibition, social influence, and diffusion of responsibility.

The mere presence of audience inhibits a person to intervene or volunteer
due to possibility of her to misinterpret the situation resulting into an embar-
rassment. In addition to that, people are socially influenced by others; when
she sees others not intervening, she also does the same. The third factor is also
associated with a social dilemma (the Volunteer’s dilemma (VD)) indicated by
Diekmann [5] as “It is appreciable that somebody volunteers, but it is best if that
somebody is not me”, thus, shifting the responsibility from her own shoulders to
the others. Looking at these factors in combination, it is often argued that the
audience inhibition and the social influence are consequences of the diffusion of
responsibility. Hence, in literature, the bystander effect / volunteer’s dilemma is
seen as a consequence of the diffusion of responsibility, in which an increase in
the size of the group of bystanders lowers the rate of volunteering [18].

However, in practical situations, the volunteering dilemma does not always
guarantee a negative result (a person not volunteering). People cooperate and
volunteer so often. It is evidenced [18] that the cooperative behavior in humans
is driven by many aspects of social interaction, including the aspects tightly
integrated with the cognitive behavior of guilt, such as “reciprocal altruism”
and “conflict resolution”. Guilt is a negative value resulting due to inconsistency
between the adopted and the desired behavior. Hence, to get rid of sense of guilt
and act responsibly, it may lead to an altruistic volunteering from an individual,
in conflict situations requiring a cooperative decision making. In fact, responsibil-
ity is a function of guilt [2] (both terms thus qualify to be used interchangeably).
In other words, volunteering in the volunteer’s dilemma can be ensured, if an
individual tries to be responsible to get rid of state of guilt.

Results of a careful experimentation of the VD have revealed that ‘no-
intervention’ due to bystanders effect often leads to guilt which, as a consequence,
persuades the participants to volunteer [18]. However, the study does not provide
an analytical model of volunteering. A model of volunteering (whether a person
volunteers or not), having an underpinning on three human behavior theories
(stated above), is presented by Gerritsen in [8]. Although, this model presents a
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sophisticated, yet simplistic example of application of social theories within an
agent’s behavior, it is restricted along two dimensions. First, the model supports
only one volunteer. Second, the model does not provide any specification of how
an offender will behave as a result of a possible intervention, i.e., a model of
offender behavior is missing.

Therefore, the contributions of this paper are as under:

1. We extend the “model of volunteering” [8] so that it may handle more than
one volunteers against a single event (a crime).

2. We affirm that the central notion of “responsibility” used in the model [8]
can be used to introduce the findings related to guilt as a persuasive factor
for volunteering [18]. This has been incorporated into our model.

3. We introduce a new model of the offender behavior whose motivation is the
reciprocity of the original VD.

4. Multi-volunteering and guilt-enabled model is integrated with the model of
the offender behavior to analyze the co-evolution of volunteering vs. crimes,
asking various interesting “what-if” questions.

2 Related Work

A game-theoretic definition of guilt has been presented in [1]. Authors in [1]
have defined the guilt as “the size of the gap between the first agent’s beliefs
about the second agent’s expectations of her, and her own behavior.” Hence,
guilt is a second order measure, i.e. an agent’s belief about the belief another
agent is having about itself. In game-theoretic terms, the behavior of an agent
i results in lower payoff of another agent j against j’s expectations. This results
in i’s guilt dependent on the difference between the i’s current behavior and j’s
expectations of i. Quantifying the feeling of guilt in this way helps in cooperating
(volunteering in this case), if agent i is guilt averse, i.e. it acts to live up to j’s
expectations.

A variation of game theory capable to handle emotions was first introduced
in [7]. The concept was used to allow beliefs to be included into agents’ utility
function [1]. Authors in [1] modified a trust game originally presented in [4].
In the game, both agent A and agent B choose the best response given their
perception about each other. The game is played pivoted on the belief of A
about B rolling the dice and on the belief of B about A choosing to be in the
game rather then being out. An experimental investigation verified that a player
will feel guilty if she perform lower than what was expected of her. Also, if she
is guilt averse, she would raise her contribution to match the expectations.

Since VD is a collective game, authors in [18] have pointed out a possible
extension of the above mentioned two players’ settings, i.e. to use average of the
beliefs of the bystander group. However, to avoid the complexity of this mecha-
nism, they have proposed to use a special player known as designated volunteer
(DV) who will volunteer automatically. This to us is a grave simplification which
restricts the game towards a specific situation in which a public good is achieved
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only if more than one person in a group of bystanders volunteer. This also presets
volunteering as the choice of priority thus hindering an inert evaluation (a fair-
ness between volunteering and not volunteering right from the start). Another
simplification is about avoidance of diffusion of guilt. This was achieved through
a relatively smaller group size (of 5). We in our model not only refrain from
introducing a DV (instead we use a behavior-based model of volunteering), but
also, the group sizes used are quite flexible. Since guilt is a function of respon-
sibility. Responsibility is the basic ingredient of our model already, would avoid
the diffusion of guilt situation.

Although, the logic presented in [18] would be able to avoid the diffusion
of responsibility and diffusion of guilt, thus supporting a reasonable number of
individual to volunteer. However, at best, this is just one special case of many
possibilities that can happen. To analyze all these possibilities, we have opted
to use ABM in different settings. Instead of using a designated volunteer, we
like the model used in [8], which analytically model a person to volunteer or not
based on his own capabilities (beliefs, desires and intentions) and his perceptions
(about norms and intensity of violation). However, we introduce a feedback loop
in the model transforming it from a one-shot model to a repetitive one. As
stated above, we have also extended the model so that it support more than
one volunteers. We also introduce a new model of the offender behavior, that
operates in conjunction with the model of volunteering. Hence, in our framework,
we use a model of “bystanders effect on volunteering” (whether a person will
volunteer or not). The model is run in a repeated game manner with a feedback
loop, thus able to generate interesting dynamics. Hence, the consequence of
volunteering or not volunteering is then integrated with agents’ cognition in
terms of responsibility to act.

3 Models

3.1 Longuemar’s Experimentation of VD

First, we state an experiment signifying the importance of guilt in VD. In [18], it
is assumed that, initially, the game played would increase probability of failure in
cooperation (a group not volunteering to an extent to ensure public good). Such
a failure would incur guilt in agents, thus infusing a sense of responsibility [2],
which is assumed to motivate them to cooperate for public good in subsequent
runs of the game. The structure of the game is presented in Table 1. A player
can either choose to volunteer (cooperate) or defect (free-riding). The players are

Table 1. Game structure of volunteering dilemma.

Enough players volunteer Not enough players volunteer

V (Volunteer) 8 points 0 points

D (Defect) 10 points 2 points
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informed about required number of volunteers. There is a cost of volunteering
equal to 2 points. A player defecting would gain 10 points if, in the group, enough
players choose to volunteer. A player volunteering would gain 8 points if, in the
group, enough players choose to volunteer, excluding the cost of volunteering.
Similarly, if not enough players volunteer, then a player volunteering would gain
0 points, whereas, a player defecting would still gets 2 points.

The game is further enhanced by explaining to the participants that there
is one person who will volunteer unconditionally (a designated volunteer (DV)).
An experimental analysis was conducted to explore the effect of guilt aversion
in the volunteer’s dilemma. The following results were found:

1. If the player is guilt averse, then her second order beliefs about the DV’s
expectations have a positive correlation with her choosing to volunteer.

2. The volunteering rate is proportional to v, where v is the number of volunteers
required for public good.

3. There is no significant difference in volunteering rate between situation with
DVs and situation without DVs.

4. The players avoid “no-guilt” behavior and “guilt-inducing” situation in the
presence of DVs.

3.2 Gerritsen Model of Bystanders Effect on Volunteering

Gerritsen proposed an agent-based model of bystanders’ effect on volunteer-
ing [8]. The model described the decision-making behavior of one individual
using the BDI-model [19]. The agents are of three types; (i) the bystanders,
(ii) the intervener (who will make a decision of intervening or not, and (iii) the
offender (who performs an action against a norm). In addition to beliefs (‘B’ of
BDI), desires (‘D’ of BDI), and intentions (‘I’ of BDI), an intervener will also
“observe” and perceive the surrounding. Observations may change the beliefs
of the agents. The model is based on rules executed in an order. The following
sequence depicts the application of rules:

1. If the intervener observes that there is no intervention from others, it turns
its belief that the “intervention-will-be-evaluated-negatively” from boolean
value false to true. This corresponds to social influence theory.

2. If the intervener believes that “intervention-will-be-evaluated-negatively”,
then her belief of “audience-inhibition” will be set to number of bystanders
who can observe him. If the number of bystanders who can observe him
are zero, then there will be no “audience-inhibition”. Contrary to belief of
audience inhibition (and related theory of audience inhibition) derived from
social influence theory, the belief of “intervention-cost” (equal to number of
bystanders) is a consequence theory of diffusion of responsibility.
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3. The value of beliefs of “audience-inhibition” and “intervention-cost” will
determine the belief that the intervener has “personal-responsibility” to inter-
vene. The value of “personal-responsibility” will be set to true, if both above
beliefs justify the thresholds, corresponding to intervener perception of seri-
ousness of the event. The more the values of these thresholds, the more serious
the crime is.

4. Next the intervener resets its belief about seriousness of the crime. If he
observes no intervention from others in the presence of n bystanders, then
the belief of “has-seriousness” is set to previously believed value of serious-
ness divided by n times α, where α determines the influence of the group.
This means that more the value of n, more the decrement in belief about
seriousness of an event will be.

5. If the updated value of “has-seriousness” is greater than believed value of
“normality”, then the intervener believes that there is a “emergency”.

6. The belief of “emergency” leads to the desire to intervene.
7. If the intervener has a desire and believes in “personal-responsibility”, the

desire will be converted into the intention to intervene. However, the actual
intervention will only happen if the intervener believes that she is “capable”,
and “resourceful”.

Fig. 1. Simulation environment and screen-shots of a selected case. (Color figure online)
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3.3 The Proposed Extended Model of Bystanders Effect
on Volunteering

The extended model is motivated from findings of Longuemar’s Experiment of
VD. Specifically, first, the finding that “If the player is guilt averse, then her sec-
ond order beliefs about the DV’s expectations have a positive correlation with
her choosing to volunteer”, corresponds to decrement in the audience inhi-
bition, equal to the difference between the number of bystanders (who
are observing) and the number of bystanders who have already inter-
vened. More explicitly, this extension is realized in extended rule 1 and rule 2
as stated below. Second, the finding that “The volunteering rate is proportional
to v, where v is the number of volunteers required for public good.”, corresponds
to introduction of sense of guilt equal to difference between the num-
ber of bystanders that were required to intervene and the number
of bystanders who have actually intervened. The more the sense of guilt
the more the belief about the seriousness of the event is, which increases the
possibility of volunteering in the subsequent interaction with the offender. More
explicitly, this extension is realized in extended rule 3 and rule 4 as stated below.

The rule 1 restricts the inclusion of more than one volunteers, that may
be necessary to achieve a public good (multiple interventions), and will be first
extension of the model we have proposed. In our model the number of volunteers
needed to achieve a public good is represented as v. If number of bystanders
who are observing an intervener are n, and m is the number of bystanders who
have already intervened, then the belief that the “intervention-will-be-evaluated-
negatively” may have two opposite values; true if m = 0 and false if m > 0.

The rule 2 has to deal with two possible values of the belief of “intervention-
will-be-evaluated-negatively”; being true or false. In the former case (as before),
the belief of “audience-inhibition (represented as N1)” will be equal to n. In the
later case, the belief of “audience-inhibition” will be equal to n − m. Similarly,
the belief of “intervention-cost (represented as N2)” is changed to n−m in the
later case, while retaining it (equal to n) in the former case.

The rule 3 also changes accordingly. However, we introduce the notion
of “guilt” here. Since, the values of beliefs of “audience-inhibition” and
“intervention-cost” will determine the belief that the intervener has “personal-
responsibility” to intervene or not, which depends on corresponding thresh-
olds (corresponding to intervener perception of seriousness of the event), we
incorporate the sense of guilt to raise these thresholds. The guilt infuses
into intervener cognition if he had not intervened recently, and is represented
as: guilt(intervener) = v − m. Hence, as before, the value of “personal-
responsibility” will be set to true, if both above beliefs (N1 and N2) justify
the updated assignments of thresholds (with attachment to guilt in this case).

The rule 4 also changes. The basic rule as as follows. The intervener resets its
belief about seriousness of the crime. If he observes no intervention from others
in the presence of n bystanders, then the belief of “has-seriousness” is set to
previously believed value of seriousness divided by n times α, where α determines
the influence of the group. The extended rule is as follows. Since, m bystanders
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may have intervened already, the belief of “has-seriousness” is set to previously
believed value of seriousness divided by n − m times α. This change has the
following consequence. If value of m is 0, the new value of belief about seriousness
of the crime depends on n (the more it is the less serious the crime is), whereas,
if the value of m is greater than 0, then, the more the value of m, the more the
seriousness of the crime is.

Rules 5 to rule 7 remain the same.

3.4 The Proposed Offender Model

This model represents a reciprocating case of VD presented in Table 1.
The offender will have an index, say, OffenderIndex, initialized with 1.

From this value, the index can only decrease based on intensity of inter-
vention against the offense. After each iteration (run of the simulation), the
OffenderIndex will be updated as: 1 − (m/v). Hence with, continuous inter-
ventions, the index will reach to 0, which would be equal to offender not offending
anymore.

Fig. 2. Quantitative analysis of simulation setting presented in Fig. 1

4 Simulation

The simulation was performed in ABM simulation environment NetLogo [20].
A square space equal to the dimension of 32 × 32 cells was used. A cell is a
spatial representation of a place where an agent can reside. Simulation runs in
iterations. In each iteration, all agents “perform” what is modeled in a sequential
manner, where, an agent can use the updated state (even in the same iteration,
if sequentially preceded, or the previous iteration, if sequentially proceeded) of
the environment and the other agents.

Initially, the agents are of two types; an offender who will commit a crime,
and all other agents in the population. For example, in Fig. 1 - (a), agent 6 is
the offender, whereas, all agents colored white are normal agents. As we can see
that all the agents at the start are very close to each other. This gives ample
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Fig. 3. Simulation results of case 1.

opportunity to the agents for a possible intervention. Although, arguing that
such a setting does not depict a realistic situation (of randomly placed agents)
seems acceptable, however, this is not the case. We have started with a sample
of agents represented by a population. And a population is a set of agents who
are within a given radius relative to the offender, at the start. Only the behavior
of this sample is relevant for behavioral analysis, even when the neighborhood
of the offender would not be same in subsequent iterations. Since, we do not
include new agents during the simulation, placing all agents in close proximity
at the start of the simulation makes sense.

Three variables, radius, normality, and α, are not changed between differ-
ent cases that are simulated, setting these to 4, 0.2 and 0.5, correspondingly.
For the scenario presented in Fig. 1 - (a), the population is equal to 12 agents.
The thresholds are set to 4, and the number of agents required to intervene (v)
are 1. Agents perform random walk between iterations. During iteration 1 (see
Fig. 1 - (b)), agent 0 (the agent in green) had a contention to intervene. The
bystanders of agent 0 are represented in blue color (6 in number). A large pop-
ulation of bystanders dropped the perceived value of seriousness of crime from
original value of 0.4 (corresponding to the thresholds) to 0.15. However, the
value of threshold is increased to 5 due to feeling of guilt as a consequence of
non-intervention. Since the intervention-cost and audience-inhibition is greater
than thresholds, agent 0 will not feel responsibility to intervene.

A similar behavior during iteration 2 (see Fig. 1 - (c)) was observed (the
intervener being agent 4 with similar number of bystanders, while agents in gray
represent the interveners in previous iterations). However, during iteration 2 (see
Fig. 1 - (d)), the current intervener (agent 5), in fact, performed intervention,
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Fig. 4. Simulation results of case 2.

as a consequence of less bystanders. This also increases the value of perceived
seriousness of the crime from agent 5 perspective. Since the number of interven-
tions required to intervene are sufficient, the simulation stops. The performance
of this simulation is quantitatively represented in graphs of Fig. 2.

We simulated three representative case of the model. These cases explain the
change in agents’ behavior due to variation in agent population, thresholds and
required number of volunteers. These cases are given in Table 2.

Table 2. Interesting simulation cases.

Number of agents Thresholds Required number of volunteers

Case 1: 6 3 1

Case 2: 6 4 2

Case 3: 12 4 2

Overall, the simulation results reveal the following trends.
The threshold plays an important role in volunteering. If it is too low at

the start (< 0.3), even the sense of guilt is not capable to raise it to a level
where intervention is materialized. This is evident in case 1 of the simulation,
described by thresholds equal to 3, population equal to 6 and value of v equal
to 1. A represented result of this simulation is shown in Fig. 3.

With population equal to 6, the minimum initial threshold required to ensure
volunteering is 3. With increase in thresholds to 4, there is a decrease in number
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Fig. 5. Simulation results of case 3.

of iterations required to lower the offender-index from 1 to 0 (even when the
value of v is raised from 1 to 2). This is case 2 that we represent in Fig. 4.

With increase in population, the time required to realize a successful inter-
vention increases. This is evident in case 3 (see Fig. 5), with thresholds equal to
4, population equal to 12 and the value of v equal to 2.

From many simulations we performed, it was revealed that an increase in
thresholds increases the chances of volunteering. Also, an in increase in the
neighborhood (with increase in radius) increases the likelihood of intervention.
Finally, the more the value of normality, there was less likelihood of intervention.

5 Conclusion

In this paper, an agent-based model of bystanders effect on volunteering in a
crime situation is presented. The model is pivoted on the results of a game-
theoretic experimentation of the volunteering dilemma [18], emphasizing the
role of guilt in increasing the volunteering tendency. An analytical model of
bystanders effect on volunteering [8] is extended so that it incorporates multiple
intervention and change in agents beliefs to be used in subsequent interactions.
However, the main contribution is the model extension including the guilt prop-
agation subsequently responsible for increase in volunteering tendency. We also
introduce a new model of offender behavior, that operates in conjunction with
the model of volunteering. Through repeated simulation, it was revealed that an
increase in thresholds (a value relating the seriousness of a crime with bystander
inhibition) increases the chances of volunteering. Also, an in increase in the
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neighborhood - the bystanders themselves - increases the likelihood of interven-
tion. The sense of guilt enables this unlikely relation, where, the theories not
taking guilt as part of people-making loop, just advocate the opposite. Finally,
the more the value of normality (a value representing the extent of seriousness
of a crime), there was less likelihood of intervention.
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