
Chapter 14
CTT and No-DIF and ? = (Almost) Rasch
Model

Matthias von Davier

Abstract Assuring the absence of differential item functioning (DIF) is one of the
central goals when constructing a test using either classical test theory (CTT) or
item response theory (IRT). One of the most prominent methods of DIF detection is
the Mantel Haenzel (1959) procedure that was suggested for this purpose by
Holland and Thayer (1986). This test is not only used for DIF detection, a fact
sometimes forgotten by educational measurement practitioners, and is often also
called the Cochran-Mantel-Haenzel test. The basis of this test is a comparison of
odds-ratios of several 2 by 2 tables, which is utilized in educational testing in the
context of conditional 2 by 2 tables given the different ordered categories of a
variable that represents proficiency or skill levels. In this note, I am expanding
existing work that relates the Cochran-Mantel-Haenzel test used in conjunction with
a simple sum score variable to the Rasch model. As I have pointed out in previous
publications, the simple raw score, being the sum of binary scored responses, has
certain desirable features, but is also limited in the sense of how information is used
(e.g. von Davier 2010, 2016; von Davier and Rost 2016). In the context of CTT, as
well as the use of the Cochran-Mantel-Haenzel procedure in CTT, and its rela-
tionship to the assumptions made in the Rasch model, however, the use of the sum
score in conditional odds ratios is what brings these important approaches in
applied test theory together on a formal mathematical basis.

14.1 Introduction

There have been prior attempts to relate CTT and IRT (Holland and Hoskens 2003;
Bechger et al. 2003) as well as attempts to compare extensions of the Rasch model
and MH-DIF approaches (Linacre and Wright 1989; Paek and Wilson 2011).
However, the current approach, while rooted in the findings of these prior studies
tries to approach the issue from a slightly different angle: In this note I focus on
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what is missing, or at least not stated explicitly in the use of (a) the MH-DIF
procedure and (b) item-total regressions for test assembly in conjunction with CTT,
and how slightly stronger versions of these requirements of ‘good items’ relate to a
model that is virtually identical to IRT or the Rasch model. The basis for this
chapter is an examination of tests consisting of binary (correct/incorrect) response
variables. However, most results generalize in straightforward ways to tests with
polytomous ordinal responses or mixed binary/polytomous tests (e.g. von Davier
and Rost 1995; von Davier 2010).

Comparing item analyses to approaches in Biometrics and other fields (Cochran
1954; Armitage 1955), one finds similarities to the assessment of associations
between a binary variable and an ordered categorical variable (in test theory this
will be very often the sum score). For example, Armitage (1955) states:

One frequently encounters data consisting of a series of proportions, occurring in groups
which fall into some natural order. The question usually asked is then not so much whether
the proportions differ significantly, but whether they show a significant trend, upwards or
downwards, with the ordering of the groups.

Note that this whole paper is obsolete once it is understood that IRT and some
types of nonlinear factor analysis are equivalent (e.g. Takane and DeLeeuw 1987
and more recently Raykov and Marcoulides 2016), and that all of test theory can be
covered using a common, unified framework (McDonald 1999). In this note, we
hope to add to this discussion by means of a one-by-one comparison of the
assumptions made, in particular those of

(a) Absence of DIF versus local independence,
(b) True score + error versus sufficiency of (weighted) total score,
(c) Positive item correlation versus strict monotonicity.

This note also offers a perspective of how these weaker assumptions made in
CTT need to be only slightly strengthened to arrive at a model that is virtually
identical to the Rasch model or the subgroup of IRT models with sufficient statistics
for the person variable (e.g. OPLM & 2PL in the binary case).

Also, several proponents of classical test theory (CTT) on the one hand and the
Rasch model (or IRT) on the other hand may need some additional gentle nudging
toward the insight that using either approach leads to good test instruments that are
compatible with the (seemingly) competing other approach. This insight has its
roots in the fact that both approaches, CTT and (unidimensional) Rasch and IRT
models are special cases of generalized latent variable models (e.g. Moustaki and
Knott 2000; Rabe-Hesketh et al. 2004).

The need to provide a generalized class of models such as the general diagnostic
model (von Davier 2005, 2008) grows out of the understanding that several com-
peting hypothesis about the structure of the variables we are aiming to assess can be
directly compared and tested against each other if they are specified in a coherent

250 M. von Davier



statistical framework. However, there may be cases where several competing
hypothesis are indeed providing very similar descriptions of the data while pro-
foundly differing in the underlying assumptions made (von Davier et al. 2012). In
other case, several models that appear to be different, or even extensions of another
approach may turn out to be mere equivalent versions that can be covered in the
generalized modeling framework by means of a reparameterization (von Davier
2013, 2014).

Generalizations of CTT to linear factor models are the predecessors of these
generalized (linear and nonlinear) latent variable models. Also, several tests around
the world, some of them high-stakes instruments used for highly consequential
decisions are still being designed and assembled using the principles of ’vanilla’
CTT, together with customary tools to ensure psychometric quality. Among these,
procedures for assessing (ensuring the absence of) differential item functioning
(DIF) are one of the central foci when constructing a test using either classical test
theory (CTT) or item response theory (IRT). Not only Lord and Novick (1968) and
others (e.g. Wainer 1988) emphasize the importance of items and their resulting
scores as fundamental to the test score. Moreover, ensuring the absence of DIF is
considered one of the fundamental goals of test construction in order to provide fair
assessments (Dorans 2013). One of the most prominent methods of DIF detection is
the Mantel-Haenzel procedure that was suggested for this purpose by Holland and
Thayer (1986). This test is not only used for DIF detection, a fact sometimes
forgotten by educational measurement practitioners, and often also called the
Cochran-Mantel-Haenzel test as methods related to this test have been discussed by
Cochran (1954) and Mantel and Haenzel (1959). The basis of this test is a com-
parison of odds-ratios of several 2 by 2 tables, which is utilized in educational
testing in the context of conditional 2 by 2 tables given the different ordered
categories of a variable that represents proficiency or skill levels, very often taking
the form of observed score groups.

In this note, I am expanding existing work that relates the Cochran-Mantel-
Haenzel test used in conjunction with a simple sum score variable to the Rasch
model. As I have pointed out in previous work, the simple raw score, being the
unweighted sum of scored item responses, has certain desirable features, but is also
limited in the sense of how information is used (e.g. von Davier 2010, 2016; von
Davier and Rost 2016). In the context of CTT, as well as the use of the
Cochran-Mantel-Haenzel procedure in CTT, and its relationship to the assumptions
made in the Rasch model, however, the use of the sum score in conditional odds
ratios is what brings these important approaches in applied test theory together on a
formal mathematical basis. This chapter reviews the assumptions made in the Rasch
model and how tests that fulfill these assumptions turn out to be ‘good’ tests in light
of CTT measures of quality, and vice versa, when taking the definition of absence
of DIF broadly. While related work pointed out other types of similarities, a direct
argument of equivalency under these separately developed sets of preconditions for
test quality has not been attempted to my knowledge.
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14.2 Notation

Let X1; . . .;XK denote K[ 2 binary random variables, and let X denote the pop-
ulation of respondents on which these random variables can be observed. We will
assume for simplicity that the population is finite, and that we can sum over
variables observed on samples from X. The random variables are representing the
scored item responses on a test, and the respondents are represented as members
u 2 X of a population of potential test takers.

For each respondent, we may define the probability of responding correctly to
each of these items Xi. More specifically, let

pui ¼ P Xi ¼ 1juð Þ

denote that respondent u produces a correct response on item i: Note that this is not
the marginal probability of a correct response, but the probability of a correct
response for a given u 2 X.

Then, for considering a realization of the random variables, let

xui ¼ XiðuÞ 2 0; 1f g

denote the binary item response to item i by a respondent u from the population X.
The code Xi ¼ 1 represents correct responses, while Xi ¼ 0 represents incorrect
responses.

The observed score, the total number of correct responses for a respondent u,
aggregated across the K response variables will be denoted as

sXðuÞ ¼
XK
i¼1

xui:

In addition to the item responses, there may be additional random variables that
are defined for the population X. As an example, background information about
each of the potential respondents u 2 X can be represented as random variables zj
with j ¼ 1; . . .; J: For a variable that represents gender, for example, zj, for some
j may be defined as

zui ¼ ZiðuÞ 2 male; femalef g

which may also be coded as 0; 1f g as it is possible for any binary variable. Note
that the additional variables could also represent other types of data, such as
answers to items on other tests or questionnaires.

One additional random variable should be considered, one that represents the
target of inference. Tests are typically given to make inferences about a skill, or an
attribute, often quantitative in nature, which underlies test performance. A 10-item
mathematics test is supposed to test more than the performance of students on the

252 M. von Davier



10 items, but rather represent something that speaks more generally about the skill
or ability of these students to solve these and similar mathematics problems.

Formally, each respondent u is assumed to possess a level of ‘skill’, mathe-
matically a continuous random variable � , with

su ¼ � ðuÞ

representing the skill level of respondent u. In different approaches to test theory, there
will be different instances of this ‘skill level’ variable s. In classical test theory (CTT),
the true score, T, can be viewed as a version (a function of) s specific to a test form, and
in item response theory and Rasch models, the ‘skill level’, s, will appear in the form
of the person parameter, h, which can also be assumed to be a function of s:

14.3 Classical Test Theory in a Nutshell

CTT assumes that the observed score SXðuÞ can be written as the sum of two
components. The foundational equation of the CTT is

SXðuÞ ¼ TXðuÞþ eXðuÞ

and much has been written about how to interpret these components. The most
common setting is that TXðuÞ is the expected score on test X for respondent u,
assuming either that the test can be repeated indefinitely, or that, based on addi-
tional model assumptions, an expected score can be calculated (see the corre-
sponding section below).

Note that this definition of

TXðuÞ ¼ E SX juð Þ

as conditional expectation leads to a number of implications. First, TXðuÞ is often
referred to as the ‘true score’, even though it is more accurately described as the
conditional expectation of the sum score given respondent u 2 X.

This conditional expectation is vanishing for all respondents, so for any subset of
respondents U�X we also have E eX jUð Þ ¼ 0. In particular for subsets of the type

UT ¼ u 2 XjTX uð Þ ¼ Tf g

As a corollary we obtain that

E eX jTð Þ ¼ E exjUTð Þ ¼
Z

u2XjTX uð Þ¼Tf g

E eX juð Þp uð Þdu ¼ 0

for any true score T.
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Hence, the error variable, eX , and TX are, by definition of TX , uncorrelated in X.
Therefore, the total variance of the scores V SXð Þ can be written as

V SXð Þ ¼ V TXð ÞþE V eXð Þ½ �:

Note that this equation decomposes the total variance into the variance of TX in
X and the expected variance of the error term eX . This result follows directly from
the definition of TX and eX . Measures of reliability and the extent to which a score
has validity are, at least in the traditional understanding of these concepts in CTT
(Thurstone 1931), based on the correlation of the true score to true scores on other
tests that are measures of the same underlying concept, or by means of correlations
of the true score and other types of measures that are potentially difficult or
expensive to collect, but can be considered the underlying target of inference.

In addition to the foundational assumption of CTT, measures of quality assur-
ance include the selection and assembly of the items as components of the total
score. Among these, the most prominent assumptions, or better selection criteria for
items, are the absence of differential item functioning (no-DIF) and the presence of
(moderate to high) correlations between the item score, Xi, and the total score, SX .

More specifically, for the absence of DIF, it is assumed that for a number of
grouping variables that separates the population into two groups, f and r, the
conditional response probabilities by group membership and by total score are the
same, that is

P Xi ¼ 1jSX ; fð Þ ¼ P Xi ¼ 1jSX ; rð Þ ¼ P Xi ¼ 1jSXð Þ:

Expressed as odds ratio for the binary grouping G:X! ff ; rg, this equality
becomes

OSX Xi;Gð Þ ¼ P Xi ¼ 1jSX ; fð Þ
P Xi ¼ 0jSX ; fð Þ �

P Xi ¼ 0jSX ; rð Þ
P Xi ¼ 1jSX ; rð Þ ¼ 1:

Basically, traditional uses of DIF restrict the study to grouping variables that are
of policy relevance such as gender and ethnic minority status. However, there is
nothing in the definition that would prevent us from applying the MH-DIF concept
broadly, to any binary grouping variables, including those of other items. This use
of another item response for splitting the sample is common practice in testing
assumptions of the Rasch model (e.g. van den Wollenberg 1982; Verhelst 2001;
von Davier 2016).
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The Mantel Haenzel (MH) statistic uses a quantity that can be understood as the
average odds ratio to test for DIF, more specifically if

MHði;GÞ ¼
PK�1

s¼1
N Xi¼1^f jsð ÞN Xi¼0^rjsð Þ

NðsÞPK�1
s¼1

N Xi¼0^f jsð ÞN Xi¼1^rjsð Þ
NðsÞ

� 1

we may assume that there is no DIF for item i with respect to grouping variable,
G. The expression NðsÞ represents the frequency of score s. The notation A ^ B
represents the conjunction of events A and B, that is, “A and B” was observed. As
an example N Xi ¼ 1 ^ f jsð Þ ¼ N Xi ¼ 1 ^ G ¼ f jsð Þ denotes the frequency of item
i being solved in the focus group given score s. Note that the sum does not include
terms for the total scores 0 or K since PðXi ¼ 1jSX ¼ 0Þ ¼ 0 and PðXi ¼ 0jSX ¼
KÞ ¼ 0 if the item score, Xi, is part of the sum score SX :

In essence, the MH test statistic is used to check whether the conditional
probabilities of success are the same across a variety of subpopulations.
Traditionally, DIF analyses includes gender and ethnicity based groupings, but
other types of groupings can obviously be used as well.

The positive item-total correlation criterion is based on the rationale that the
covariance of the item score, Xi, and the total score, SX , of which Xi is an additive
component, should be in the same direction for all items. The underlying
assumption is that the probability of a correct response should increase with
increasing true score, which is the expectation of the observed score as defined
above.

This covariance can be written as

covðXi; SXÞ ¼
X1
x¼0

XK
s¼0

P Xi ¼ x; SX ¼ sð Þx � s� EðXiÞEðSXÞ

¼ EðSX jXi ¼ 1Þ � EðSXÞ½ �PðXiÞ

which is nonnegative whenever

EðSX jXi ¼ 1Þ�EðSXÞ:

Alternatively, the cross product part of the covariance can also be written as

XK
s¼0

P Xi ¼ 1jSX ¼ sð Þ � s½ �P SX ¼ sð Þ ¼ E SX � P Xi ¼ 1jSXð Þ½ �
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and

covðXi; SXÞ ¼ E SX � P Xi ¼ 1jSXð Þ½ � � EðXiÞEðSXÞ

One straightforward way to ensure positivity is postulating that the conditional
probabilities of solving the item given a specific score increase with increasing total
score. That is, one may assume

P Xi ¼ 1jSX ¼ sð Þ�P Xi ¼ 1jSX ¼ tð Þ

for any two scores with s[ t. This basically ensures that there are more test takers
expected to solve the item in groups with higher total scores.

14.4 Rasch Model

With the notations above, the Rasch model assumes the following association
between person skill level su and expected performance on a response variable. For
all u 2 X it is assumed that

P Xi ¼ 1juð Þ ¼ su
diþ su

; ð14:1Þ

and, customarily, this definition is used with the transformations expðhuÞ ¼ su and
expðbiÞ ¼ di. Hence, the above definition is equivalent to

P Xi ¼ 1juð Þ ¼ exp huð Þ
exp bið Þþ exp huð Þ ¼

exp hu � bið Þ
1þ exp hu � bið Þ ð14:2Þ

which is the form commonly recognized as the dichotomous Rasch model (e.g.
Rasch 1966; von Davier 2016). The hu is commonly referred to as the person
parameter and the bi is referred to as the item parameter.

Then, for the set of response variables, X1; . . .;XK , it is assumed that conditional
independence holds. This translates to the assumption that the joint probability of
observing responses x1; . . .; xK is given by

PðX1 ¼ x1; . . .;XK ¼ xK juÞ ¼
YK
i¼1

exp xi hu � bi½ �ð Þ
1þ exp hu � bið Þ ð14:3Þ

the product of the item specific responses. the above equation it is easily verified by
noting that

P Xi ¼ 0juð Þ ¼ 1� P Xi ¼ 1juð Þ ¼ 1
1þ exp hu � bið Þ :
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The expression for the joint probability in Eq. (14.3) can be rearranged so that

P x1; . . .; xK jhð Þ ¼ Aðx1; . . .; xKÞ � B SXðuÞ; h½ � � CðhÞ ð14:4Þ

with

Aðx1; . . .; xKÞ ¼
YK
i¼1

exp �xuibið Þ½ �

and

B ðSXðuÞ; hÞ½ � ¼ exp SXðuÞh½ �

and

CðhÞ ¼
YK
i¼1

1
1þ exp h� bið Þ

� �

for any skill level h 2 R. This result can be utilized to calculate the probability of a
response pattern given the raw score, Sx. This is done by calculating

P SX jhð Þ ¼ B SXðuÞ; h½ � � CðhÞ
X

fðx1;...;xkÞj
P

xi¼Sxg
Aðx1; . . .; xKÞ

2
64

3
75

the sum of the probabilities of all response patterns according to Eq. (14.4). For any
given response pattern ðx	1; . . .; x	kÞ with sum score

P
x	i ¼ SX the conditional

probability of observing this particular response vector among those with the same
score becomes

PðX1 ¼ x	1; . . .;Xk ¼ x	k jSXÞ ¼
QK

i¼1 exp �x	i bi
� �� �

P
fðx1;...;xkÞj

P
xi¼Sxg

QK
i¼1 exp �xibið Þ½ � : ð14:5Þ

The above expression is obtained by integrating out the latent skill variable h,
exploiting that the identity holds for every level of h. The expressions

cK b ¼ b1; . . .; bKð Þ; SX½ � ¼
X

fðx1;...;xkÞj
P

xi¼Sxg

YK
i¼1

exp �xibið Þ½ �

are commonly referred to as the symmetric functions (e.g. Gustafson 1980; von
Davier and Rost 1995; von Davier 2016) for SX ¼ 0; . . .;K and SX is called the
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‘order’ of the function. The result of importance here is that this expression can be
utilized to find

P Xj ¼ 1jSX
� � ¼ X

fðx1;...;xkÞj
P

xi¼Sx;xj¼1g
PðX1 ¼ x1; . . .;Xj ¼ 1; . . .;XK ¼ xK jSXÞ

ð14:6Þ

for any item j and any raw score SX: Equations (14.5) and (14.6) show that SX is the
minimally sufficient statistic (Fisher 1922) for parameter h in the Rasch model. It
can be further shown that

P Xj ¼ 1jSX
� � ¼ �

@cK b;SX½ �
@bj

� 	
cK b; SX½ � ;

that is, that the derivative of the symmetric function with respect to item difficulty bi
can be used in an expression to calculate the conditional score probabilities. The
sum in the above Eq. (14.6) runs over all response vectors with the same raw score
SX and with the additional condition that for the item of interest, xj ¼ 1. Most
importantly, in the Rasch model the probability of a correct response on item j for
raw score group SX can be calculated without any assumptions about the skill level
h, or its distribution in the population, or about the true score TX ¼ E SXð Þ.

14.5 From Rasch Model to CTT

If it can be shown that if the Rasch model holds for a test X ¼ X1; . . .;XKð Þ, then
the classical test theory summary score SX has ‘good’ properties, in the sense of that
the sum score of this test will provide a satisfactory summary of the data at hand.
Hambleton and Jones (1993) pointed out that item response theory (IRT) [and the
Rasch model] are strong models, in the sense of that model assumptions made allow
derivation of stronger results. As an example, sample independence of parameters
and specific objectivity (Rasch 1966) can be derived from these model assumptions,
while these cannot be obtained from CTT without making additional assumptions
(von Davier 2010, 2016).

14.6 Sufficiency and Total Score

The Rasch model as defined above has some outstanding mathematical features.
One of the most salient features is that it turns out that if the Rasch model holds, the
total score, SXðuÞ, is a sufficient statistic for the person parameter, hu. In mathe-
matical statistics, a statistic S ¼ f X1; . . .;XKð Þ is sufficient for a parameter h if
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P X1; . . .;XK jhð Þ ¼ P X1; . . .;XK jSð ÞP Sjhð Þ

or, equivalently, if

P X1; . . .;XK jhð Þ
P Sjhð Þ ¼ P X1; . . .;XK jSð Þ:

The property of sufficiency can be described as the ability to separate (or
eliminate) parameters by conditioning on the sufficient statistics when calculating
the unconditional probability of the observed data.

For the Rasch model, the sufficiency of the total score, SX , allows us to predict
the distribution of the response variables, Xi, for all i based on the item parameters,
b1; . . .; bK . This result means that, if the Rasch model holds, the sum score SXðuÞ ¼P

i Xi is all that is needed to summarize the data.
The statistic SX is the score typically utilized in CTT as the basis for inferences.

The fact that this is the sufficient statistics in the Rasch model—a probability model
for predicting item responses at the individual level—gives substantial credence to
this common choice in CTT. Note that the choice of the unweighted sum score
SX ¼

P
xi is, while arguably the simplest form of aggregation, nevertheless a

completely arbitrary one (Gigerenzer and Brighton 2009; von Davier 2010). In
addition, other IRT models exist that use different assumptions leading to other
types of sufficient statistics, not the simple total number correct. As such, there is a
clear connection between many, if not the vast majority, of applications of CTT and
the Rasch model in that the simple sum score, that is, the total number of correct
responses, plays a central role in both approaches.

14.7 Local Independence, True Score, and Error Variance

The assumption of local independence as given in Eq. (14.3) provides a basis for
looking at what the expected score for a person u might be. Note that the expected
score on a test is what forms the basis of the additive decomposition of observed
score, SXðuÞ, into true score, TXðuÞ, and error component, eXðuÞ.

The reasoning is as follows: If the Rasch model holds, we can assume local
independence, so that the expected true score can be calculated based on the model
equation, summing up the conditional response probabilities across items. That is,
we can write

E SXðuÞ½ � ¼ TXðuÞ ¼
XK
i¼1

P Xi ¼ 1jhuð Þ ¼
XK
i¼1

pui
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for all u. In addition, the error variance of eXðuÞ ¼ SXðuÞ � TXðuÞ can be written as

V eXðuÞ½ � ¼
XK
i¼1

puið1� puiÞ

since independence given u holds.
This means that the Rasch model (and more general IRT) will provide direct

estimates of the true score and the error variance, if the person parameter, hu, is
known. This can be used, and is being used, for example in the prediction of
expected scores on test forms that have not been taken by a respondent, by means of
what is known as ‘true score equating’.

14.8 No-DIF

The Rasch model is based on assumptions that apply to all respondents in the
population, that is, for all u 2 X it provides an expression that relates the probability
of success to an item difficulty and a person skill level through

pðXi ¼ xjuÞ ¼ exp x hu � bi½ �ð Þ
1þ exp hu � bið Þ :

Note that there is no person dependent variable other than hu included in the
definition of this probability. More specifically, this implies that if the Rasch model
holds for all u 2 X, as given in the expression above, we can conclude that the same
probability hold for all levels of h:

However, there is an even more direct way to show that if the Rasch model holds
with items parameters, bi, for all i ¼ 1; . . .k, we can expect that the MH-test for DIF
will turn out such that there is no indication of DIF. More specifically, recall the
result that shows how to calculate the conditional probability of a response for a
score group. We have obtained

P Xj ¼ 1jSX
� � ¼ X

fðx1;...;xkÞj
P

xi¼Sx;xj¼1g
PðX1 ¼ x1; . . .;Xj ¼ 1; . . .;XK ¼ xK jSXÞ

ð14:7Þ

for any item j and any raw score SX if the Rasch model holds. For each grouping
variable G : X! r; ff g that separates the population in into members of a focal
versus a reference group, we obtain estimates of the relative frequencies

P̂ Xj ¼ 1jSX ; f
� � ¼ N Xi ¼ 1 ^ SX ^ fð Þ

N SX ^ fð Þ

260 M. von Davier



the relative frequency of a success on item j of persons with score SX in the focus
group and

P̂ Xj ¼ 1jSX ; r
� � ¼ N Xi ¼ 1 ^ SX ^ rð Þ

N SX ^ rð Þ

the relative frequency of a success on item j of persons with score SX in the
reference group. It directly follows from the weak law of large numbers that these
relative frequencies converge to P Xj ¼ 1jSX

� �
if the Rasch model with given

parameters holds in X. This trivially implies that the odds also converge to the same
expected odds

P̂ Xj ¼ 1jSX ; f
� �

P̂ Xj ¼ 0jSX ; f
� �! P Xj ¼ 1jSX

� �
P Xj ¼ 0jSX
� � P̂ Xj ¼ 1jSX ; r

� �
P̂ Xj ¼ 0jSX ; r
� � :

Finally, this result implies that with growing sample size, all odds ratios in all
score groups will converge to the values calculated based on the true parameters
and the symmetric functions as given in Eq. (14.7) if the Rasch model holds with
item parameters b1; . . .; bK in the population X.

Note that there are straightforward extensions that allow for added features to the
Rasch model to account for DIF. As an example, for given groups ff ; rg one could
assume that the Rasch model holds, but with different sets of parameters such that

P Xi ¼ 1jh; gð Þ ¼ exp h� big
� �

1þ exp h� big
� �

in group g 2 ff ; rg . This modification allows for group specific item difficulties so
that bir and bif are not necessarily the same (e.g. von Davier and Rost, 1995, 2006,
2016).

However, if the Rasch model holds with the same set of item parameters in all of
the whole population, X, it follows that there is no DIF for any grouping variable.

14.9 Positive Item Regressions

In CTT, items are typically selected for multiple criteria. Aside from No-DIF and
appropriate difficulty level, the main selection criterion is that of assuring positive
correlation of the item score variable Xi with the total score SX . Note that Armitage
(1955) and others already aim for a stronger criterion of strict monotonic increasing
proportions with increasing score variable (or some other ‘natural’ ordering of
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respondents). In the case that the Rasch model can be assumed to hold for a test in
some population X it is straightforward to show that all item-total correlations are
positive.

Recall that the expected item score is given by

E Xijhð Þ ¼ P Xi ¼ 1jhð Þ ¼ exp h� bið Þ
1þ exp h� bið Þ

which is strict monotonic increasing in h: Also, the expected value of the observed
score is the true score, which can be calculated as

E SX jhð Þ ¼ TXðhÞ ¼
XK
i¼1

P Xi ¼ 1jhð Þ ¼
XK
i¼1

E Xijhð Þ ð14:8Þ

and is also strict monotonic increasing in h. Finally, the covariance of the item score
variable and the total score SX can be expressed as

cov Xi; SXð Þ ¼
Z
h

E Xijhð Þ � E Xið Þ½ � E SX jhð Þ � E SXð Þ½ �f hð Þdh

which is positive due to the strict monotonicity of E Xijhð Þ and E SX jhð Þ and that
there exists a h	 for which E SX jh	ð Þ ¼ E SXð Þ and by means of equation (14.8) and
commutativity of finite sums and integration it follows that E Xijh	ð Þ ¼ E Xið Þ.
Hence, when the Rasch model holds, item-total correlations are positive.

14.10 CTT + Generalized No-DIF + Strict Monotone Item
Regression = (Almost) IRT

The previous section has shown that a test designed to follow the Rasch model
produces an outcome that has very satisfactory properties when looking at the test
from the perspective of CTT. A test constructed by using the Rasch model as a
guideline will produce a test in which the simple total score carries all information
needed to estimate person skill level, the true score and the error variance can be
calculated based on simple item level expected scores, and the test will not have
DIF and all item-total correlations are positive.

In this section, the reverse direction is explored. When assembling a test using
the basic assumptions of CTT and the customary measures of quality assurance, do
we produce an instrument that can be fitted with an IRT model, in particular, the
Rasch model?
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14.11 CTT Total Score and the Rasch Model

The simple total number of correct responses, also often referred to as the total
score

SXðuÞ ¼
XK
i¼1

xui

with binary responses xui 2 f0; 1g is compatible with the assumptions made in the
Rasch model. It was shown in section that the total score SX is a sufficient statistic,
minimally suffcient statistic, in the Rasch model for the person parameter h. A more
general choice would be

WX;wðuÞ ¼
XK
i¼1

aixui

with (typically positive) real-valued weights ai for i ¼ 1; . . .;K. There is no reason
to prefer one over the other just by means of the defnition, indeed, the simple total
score is a special case of the weighted score, i.e., SXðuÞ ¼ WX;1ðuÞ (von Davier
2010). However, there are legitimate practical reasons to use the unweighted score,
in particular if there is little or no information about how to calculate or determine
the weights (e.g. Gigerenzer and Brighton 2008; Davis-Stober 2011).

However, there may be good reasons for choosing weights, either based on
maximizing the predictive power of a score with respect to some external criterion,
or with respect to some unobserved latent variable, or simply in terms of improving
the prediction of item scores given the estimate of a person’s skill level. It turns out
that a number of cases can be identified for which different weighting schemes
exhibit a direct correspondence to the sufficient statistic for person ability in an IRT
model. Table XYZ gives three prominent examples, the Rasch model (Rasch 1960),
the OPLM (Glas and Verhelst 1995) and the 2PL model (Birnbaum 1968).

Score Model PðXi ¼ 1jHÞ
Simple total score (all weights equal to 1) PK

i¼1 Xui Rasch exp �ðH�biÞ
1þ exp � ðH�biÞ

Pre-specified integer weights (li 2 f0; 1; 2; . . .g) PK
i¼1 liXui OPLM exp �ðli �½H�bi �Þ

1þ exp � ðli �½H�bi �Þ
Single factor model with positive weights
(ai 2 Rþ )

PK
i¼1 aiXui 2PL exp �ðai �½H�bi �Þ

1þ exp � ðai �½H�bi �Þ

The above table provides another indication of how Rasch model and CTT are
conceptually and mathematically connected. In both approaches, the simple total
score is the central summary of observed response behavior. In the Rasch model
this is a consequence of the assumptions made, while in CTT, the simple
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(=unweighted) total score is often the central statistic chosen to represent a fallible
measure of the true score on a test.

14.12 Absence of DIF—No-DIF 2.0

The no-DIF case when tested will be indicated by a value of the MH-statistic close
to 1, see the Sect. 14.3 above. This value represents the odds ratio for the item
probabilities in focus and reference group, averaged over total scores. Typically,
this average odds-ratio is tested only for a handful of grouping variables such as
gender and/or race/ethnicity. However, as pointed out above, the MH-DIF statistic
can be calculated for any binary grouping variable.

At this point we need to deviate from the customary checks and propose addi-
tional conditions to make the CTT assumptions indeed commensurate with IRT
assumptions. Hence, it is being acknowledged that CTT with the usual set of
procedures is not based on strong enough assumptions to make the approach
equivalent to IRT. However, it should be noted that the assumptions made in
addition do not violate customary assumptions or directives for item selection. The
absence of MH-DIF is tested by calculating the average over odds ratios, for
example, while all that is needed is a slightly stronger assumption that requires the
odds ratios in each of the score groups to be 1, that is, instead of the average odds
ratio being 1, it is assumed that

P Xi ¼ 1jSX ; fð Þ
P Xi ¼ 0jSX ; fð Þ �

P Xi ¼ 0jSX ; rð Þ
P Xi ¼ 1jSX ; rð Þ ¼ 1

for all SX ¼ 1; . . .;K � 1. One may argue that this only provides what was intended
when Mantel and Haenzel defined the MH-statistic, namely that across various
groupings, the odds ratio is always 1, i.e., that the conditional probabilities in focal
and reference group are the same given the conditioning on the total score. This
extension, together with the absence of this type of DIF for any other binary
grouping variables yields an assumption equivalent to local independence that is
common in IRT models. Note that Linacre and Wright (1989) do indeed conjecture
that if the same average odds ratio is to be expected in all types of groupings
(intervals of total scores or similar) then each of the odds ratios should be in
expectation the same. Here we take a slightly different approach and state this as an
explicit assumption leading to a stricter criterion for item selection.

More specifically, the response to another item on the test, or an additional item
that is not part of the test could also be used to group respondents. Let us assume for
items i 6¼ j 2 f1; . . .;Kg
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P Xi ¼ 1jSX ;Xj ¼ 1
� �

P Xi ¼ 0jSX ;Xj ¼ 1
� � ¼ P Xi ¼ 1jSX ;Xj ¼ 0

� �
P Xi ¼ 0jSX ;Xj ¼ 0
� �

so that respondents who solve item j, i.e., Xj ¼ 1, are being treated as the focus
group and Xj ¼ 0 is equivalent to the reference group. Using the definition of
conditional probabilities we have

P Xi ¼ 1jSX ;Xj ¼ 1
� � ¼ P Xi ¼ 1 ^ SX ^ Xj ¼ 1

� �
P SX ^ Xj ¼ 1
� � ¼ P Xi ¼ 1 ^ Xj ¼ 1jSX

� �
P Xj ¼ 1jSX ;
� �

so that

P Xi ¼ 1 ^ Xj ¼ 1jSX
� �

P Xi ¼ 0 ^ Xj ¼ 1jSX
� �P Xi ¼ 0 ^ Xj ¼ 0jSX

� �
P Xi ¼ 1 ^ Xj ¼ 0jSX
� � ¼ 1

which equivalent to Xi;Xj being independent given SX . This means that the stronger
MH condition applied to one item response variable Xi and another item variable Xj

viewed as the grouping variable yields local independence, conditional on the total
score. Hence we can write

P X1 ¼ x1; . . .;XK ¼ xK jSxð Þ ¼
YK
i¼1

P Xi ¼ xijSXð Þ

as the pairwise local independence extends to the full response pattern probability
by the same argument.

14.13 Item-Total Regression 2.0

The previous sections showed how a slightly stronger MH criterion applied to focal
and reference groups defined by responses to another item yields local indepen-
dence given total score. A similar approach will be taken in this section with the
goal to extend and strengthen the positive item-total regression criterion. More
specifically, recall that the positivity of the covariance of item score and total score
can be studied by looking at the cross product of conditional response probability
and total score, namely

covðXi; SXÞ ¼ E P XijSXð Þ � SXð Þ � E Xið ÞE SXð Þ
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with

E P XijSXð Þ � SXð Þ ¼ EðSX jXi ¼ 1Þ � E Xið Þ:

These equivalencies illustrate that higher conditional item response probabilities
associated with higher total scores yield a more positive item-total covariance. The
criterion of positive item-total covariance can hence be strengthened by assuming
conditional item response probabilities to increase strictly with total scores. That is,
the strong(er) version of a positive item-total regression requires

P Xi ¼ 1jsð Þ[P Xi ¼ 1jtð Þ

for all total scores s[ t 2 f0; . . .;Kg: This condition implies that

P Xi ¼ 1jSx ¼ 0ð Þ\P Xi ¼ 1jSx ¼ 1ð Þ\P Xi ¼ 1jSx ¼ 2ð Þ
\ � � �\P Xi ¼ 1jSx ¼ Kð Þ:

Note that the ‘spirit’ of the positive item-total correlation was not abandoned but
strengthened: All items that meet the slightly stronger assumption will also meet the
weaker assumption that the item-total correlation is positive.

14.14 An Approximate IRT Model Based on Strengthened
CTT Assumptions

The above sections introduced the total score SX as the basic unit of analyses in
CTT and showed that the same quantity is the minimal sufficient statistic for the
person ability parameter in the Rasch model. In addition, two slightly strengthened
CTT requirements were introduced. One that extends the MH approach of no-DIF
requirement to additionally requiring all total score based odds ratios to be equal to
1. Finally, the positive item-total regression requirement was strengthened to the
criterion that conditional item success probabilities are required to be strictly
increasing with the total score.

These assumptions, and often even the weaker original assumptions with regard
to item selection in CTT constructed tests commonly lead to a set of items that,
when using the sum score or some other proxy to the true score or underlying
ability, align in very systematic ways along the construct we want to measure. An
early example can be found in Thurstone (1925) who plotted the relative frequency
of success on a number of tasks used in developmental research against the age of
respondents in calendar years. Figure 14.1 presents this association. Other exam-
ples can be found in Lord (1980) illustrating item-sumscore regressions.
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Given the obvious resemblance of the strictly monotonic item regressions in
Fig. 14.1 and the item characteristic curves defined by the Rasch model or more
general IRT models, the following approach is proposed: With the assumption that
the strengthened versions of the customary CTT item selection requirements are
met for i ¼ 1; . . .K items Xi, define

di;s ¼ log
P Xi ¼ 1jsð Þ
P Xi ¼ 0jsð Þ

� �

for all s 2 f1; . . .;K � 1g and note that

P Xi ¼ xjsð Þ ¼ exp x � di;s
� �

1þ exp di;s
� � :

Note that Hessen (2005) defined constant log odds ratio (CLOR) models, and
also studies the obvious relation of these to the MH procedure. In the in the context

of the quantities defined above, CLOR models would be based on xij sð Þ ¼ di;s
dj;s

and

an assumption is made that these log odds ratios are constant for all ability levels
(here: total scores), which specifies that

xij ¼ di;s
dj;s

Fig. 14.1 Thurstone’s (1925) illustration of item regressions, the relative frequencies of success
are depicted as a function of age in calendar years
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is a constant for all score groups. It turns out that this is a rather strong assumption,
and CLOR models can be shown to be special cases of Rasch models with a
(potentially) constrained ability range (Maris 2008). In our context, we will not use
the above assumption but build up the argument from the assumed positive item
total correlation, or its somewhat strengthened version, the monotonicity of con-
ditional P+ in score groups. While the strengthened assumption is not logically
implied by its weaker form (if it was, it would be redundant), it appears that it is
often implicitly assumed when studying proportions in levels of a ‘natural ordering’
of respondents (Armitage 1955).

To continue the line of argumentation, there is the obvious requirement that all
probabilities are non-vanishing, so that the d are well defined. If the strengthened
CTT assumption of strict monotonicity of proportions in score groups holds for the
data at hand, we have

di;1\di;2\di;3\ � � �\di;K�1

for all items i ¼ 1; . . .;K. Next we define item-wise and score-wise effects as well
as the grand mean of the d. Let

l ¼ 1
K K � 1ð Þ

XK
i¼1

XK�1
s¼1

di;s

and let

bi ¼ l� 1
K � 1

XK�1
s¼1

di;s

and finally

ss ¼ 1
K

XK
i¼1

di;s:

by definition we have
P

i bi ¼ 0: Then we can define

d̂i;s ¼ ss � bi:

These d̂ parameters can be used as approximation to the d parameters. We can
define a probability model by means of

P̂ Xi ¼ 1jsð Þ ¼ exp ss � bið Þ
1þ exp ss � bið Þ :
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The similarity of this model to the Rasch model is evident, and relationships to
log-linear Rasch models (e.g. Kelderman 1984, 2006) are obvious. However, there
is need to assess how well this approximation works, since strict monotonicity in S

and main effects in i are not necessarily assurance enough that the d̂ ¼ s� b are
close to the d. Alternatively, one could look at this as an optimization problem and
miminize the difference

XK
i¼1

XK�1
s¼1

di;s � aiss � bi½ �� �2
:

In this case, the derived IRT like model turns out to be

P̂ Xi ¼ 1jsð Þ ¼ exp aiss � bið Þ
1þ exp aiss � bið Þ

and similarities to the 2PL IRT model can be observed.
With the implied conditional independence in score groups these yield a model

for the full item response vectors. The strict monotonicity of the di;s in s provides
support for the use of a simple linear approximation rather than one that utilizes
higher order moments of s or ss. However, more complex models such as

di;s ¼
XM
m¼0

ci;ms
mþ e

can be considered. Given the strict monotonicity and restricted range of item total
regressions, however, a linear approximation can be expected to perform well. Note
that these models make use of the consequences of assumptions that are slightly
stronger than those commonly made in CTT and arrive at models that look a lot like
IRT.

14.15 Conclusions

This paper presents an (or yet another) attempt to relate the practices and customary
procedures of classical test theory to the assumptions made in the Rasch model and
IRT. While Wright and Linacre (1989) and Holland and Hoskens (2003), Bechger
et al. (2003), as well as most recently Paek and Wilson (2011) all tackle slightly
different angles of this issue, it appears that all parties attempting these types of
endeavors agree on some basic similarities. CTT assumes the observed (typically
unweighted) sum-score of (often binary) test items as the foundation of all analyses.
Note however, that this choice of the aggregate is not ‘natural’ or ‘best’ by any
means, but that different choices are possible and common in factor analysis as well
as in IRT (McDonald 1999; Moustaki and Knott 2000; von Davier 2010). The basis
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of the sum score SX as the person measure is extended by showing that the like-
lihood of solving an item, given this score, is unchanged in different groups under
the stricter MH-no-DIF criterion. This yields local independence, a fundamental
assumption made in many IRT models. Finally a slightly more rigorous require-
ment of strict monotone item-total regression yields strictly monotone log-odds,
which are finally used to approximate the conditional response probabilities used in
MH-DIF and item regressions by IRT type models.

The other direction, deriving ‘good’ CTT properties based on the Rasch model is
much more straightforward. The Rasch model (and other unidimensional IRT
models) make sufficiently rigorous assumptions that allow to derive satisfactory
adherence to summary statistics used in CTT (unweighted total, or integer
weighted, or real valued weighed sum score) as well as the requirement of no-DIF,
and finally positive item-total correlations, if the items selected for a test follow
these models. DIF can be incorporated in IRT models in a variety of ways, from
multiple group IRT models (Bock and Zimowski 1997) with partial invariance
(Glas and Verhelst 1995; Yamamoto 1998; Oliveri and von Davier 2014) to models
that explicitly examine what split of the sample exhibits direct evidence of item by
group interactions (e.g. von Davier and Rost 1995, 2006, 2016).
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