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    Chapter 13   
 Personalized Medicine                     

     Victor     E.     Ortega     

          Introduction 

 Personalized medicine or precision medicine aims to use a subject’s characteristics 
to design an individualized treatment plan. Personalized medicine is based on the 
premise that biomarkers (e.g., genetic variants) can be used to predict disease risk 
or response to medications, in order to prevent or treat a disease in a given 
individual. 

 Genetic and “omics” studies of respiratory diseases, both published and ongoing, 
will lead the way to predictive profi les for precision medicine. This chapter will 
focus on asthma and chronic obstructive pulmonary disease (COPD), not only 
because of their public health importance (see Chap.   10    ) but also because of the 
strength of the evidence to support personalized medicine to prevent and treat these 
common airway diseases. 

 The frequency and severity of asthma and COPD differ among racial and ethnic 
groups in the USA (see Chaps.   2     and   10    ). In this chapter, we discuss the basis for 
the variable population structure and genetic diversity of modern human genomes 
from different racial and ethnic groups. We will summarize how such diversity has 
impacted genetic studies, and how studies in diverse populations have led to the 
identifi cation of susceptibility loci for respiratory diseases and response to treat-
ment. Finally, we highlight how future genetics and “omics” research in diverse 
populations should lead to identifi cation of biomarkers for personalized medicine, 
which would help eliminate existing respiratory health disparities.  
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    Genetic Studies in Ethnically Diverse Populations 

 According the US Census Bureau, the non-Hispanic White population will peak in 
2012, and then slowly decrease in size from 2024 to 2060. In contrast, Hispanic and 
Asian populations will grow over the next four decades, making non-whites surpass 
non-Hispanic whites as the majority of the US population by 2060 [ 1 ]. 

 The diverse genomes of modern racial or ethnic groups in the USA (see Chap.   2    ) 
largely resulted from racial admixture during the European colonization of the 
Americas over the past 500 years. Thus, African Americans and Hispanics (e.g., 
Puerto Ricans and Mexican Americans) have varying proportions of European, 
Native American, and African ancestries. On average, African Americans and 
Puerto Ricans have a greater proportion of African ancestry but a lower proportion 
of Native American ancestry than Mexican Americans. However, ancestral propor-
tions can vary between members of an ethnic group [ 2 ,  3 ]. 

 Because of human origins in Africa, subjects of sub-Saharan African descent have 
had a greater number of recombination events over m any generations, resulting in 
greater genetic diversity and fewer co-inherited polymorphisms within genomic 
regions (i.e., shorter regions of linkage disequilibrium [LD], Fig.  13.1 ). In contrast, 
Europeans had loss of genetic diversity during a “bottleneck” as the fi rst modern 
humans migrated to Europe from sub-Saharan Africa ~40,000 years ago, resulting in 
high correlation or co-inheritance of polymorphisms within genomic regions (i.e., 
greater LD, Fig.  13.1 ) [ 4 ]. Because European ancestry leads to lower genetic diversity 
but greater LD than African ancestry, fewer markers need to be genotyped to “tag” 
genetic variants in populations of mostly European descent (i.e., European Americans 
or non-Hispanic whites) than in those of mostly African descent (i.e., African 
Americans). For the same reasons, rare variants (allele frequency <0.05) are more 
frequently found in African Americans than in European Americans [ 4 ,  5 ].

   High-throughput genotyping allows for the analysis of millions of single nucleo-
tide polymorphisms (SNPs), which have been used in genetic association studies of 
airway diseases. Such studies have targeted biologically plausible candidate genes 
or the whole genome (genome-wide association studies or GWAS), most often—but 
not exclusively—in populations of European descent. More recently, next- 
generation DNA sequencing has expanded the catalogue of human genetic diversity, 
facilitating studies of ethnically diverse populations. We will next highlight salient 
fi ndings from genetic studies of asthma and COPD.  

    Genetic Studies of Asthma 

 Early family-based genome-wide linkage studies failed to identify susceptibility 
genes for asthma or related phenotypes, yet demonstrated that asthma is caused by 
multiple genes [ 6 – 17 ]. More than 100 genes have been examined for association with 
asthma, based on biologic plausibility (“functional candidate genes”) or location in 
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genomic regions linked to asthma or related phenotypes in family-based studies 
(“positional candidate genes”) [ 18 ,  19 ]. Such studies were largely based on genotyp-
ing common SNPs (i.e., allelic frequency ≥0.05) in the genes of interest, which were 
then tested for association with asthma. Using this candidate-gene approach, the 
most highly replicated genes for asthma in subjects of European descent were in 
biologic pathways related to lung development ( ADAM33 ), Th2 infl ammation ( IL4, 
IL13, IL4R ), innate immunity ( HLA-DRB1, HLA-DQB1, CD14 ), and cellular infl am-
mation ( TNF, FCER1B, DPP10 ) [ 18 – 28 ]. Consistent with fi ndings for many candi-
date genes,  ADAM33  was associated with asthma or related phenotypes in African 
Americans and New Mexico Hispanics [ 29 ], but not in Puerto Ricans or Mexicans 
[ 30 ]. The inconsistent fi ndings for most candidate-gene association studies of asthma 
could often be due to false positive results from chance or population stratifi cation 
(confounding by population substructure). Alternatively, nonreplication across eth-
nic groups may have been due to limited statistical power because of small sample 
size or ethnic-specifi c genetic effects (due to differing allelic frequencies (Table  13.1  
[ 31 – 34 ]) or gene-by-environment interactions) [ 29 ,  35 ].

Ancestry BAncestry A
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  Fig. 13.1    Consequences of ancestral admixture on genetic diversity. The recent admixture of an 
ancient ancestry (such as African ancestry or ancestry A, highlighted in  green ) with a more recent 
ancestry (such as European ancestry or ancestry B, highlighted in  blue ) affects genetic diversity in 
chromosomal (Chr.) regions throughout the genome. The more ancient ancestry (A) has had a 
greater number of recombination events over more generations, resulting in greater genetic diver-
sity with fewer co-inherited genetic variants in genomic regions, highlighted with the  red triangle s 
signifying shorter regions of linkage disequilibrium (LD). In comparison, ancestry B resulted from 
a recent loss of genetic diversity or “bottleneck,” leading to gene variants that are highly co- 
inherited or correlated over longer genomic regions through LD (highlighted with  larger red tri-
angles ). The more ancient ancestry A has also had more time for rare variants to occur ( red  “R”) 
and has a higher frequency of rare variants compared to ancestry B       
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   The fi rst GWAS of asthma susceptibility (conducted in Europeans) identifi ed a 
novel locus on chromosome 17q21 (containing  ORMDL3  and  GSDMB ), which has 
been well replicated across multiple racial or ethnic groups [ 36 – 44 ].  ORMDL3  
encodes a transmembrane protein anchored to the endoplasmic reticulum, but its 
role (or that of  GSDMB ) in asthma is unclear. Subsequent GWAS have identifi ed 
additional asthma-susceptibility loci, notably including genes ( IL33 ,  IL1RL1 , and 
 TSLP ) conferring susceptibility to asthma in ethnically diverse North American 
populations (non-Hispanic whites, African Americans, Afro-Caribbeans, Puerto 
Ricans, and Mexicans) [ 28 ,  37 ,  42 ,  45 ]. Many of these genes are involved in path-
ways related to epithelial integrity and adaptive immune responses, suggesting that 
they promote T H 2-mediated airway infl ammation through altered production of 
cytokines (i.e.,  TSLP  and  IL33 ) and/or damage of the airway epithelium. 

 The fi rst GWAS conducted primarily in subjects of African descent identifi ed the 
genes for the α-1B-adrenergic receptor ( ADRA1B ) and prion-related protein ( PRNP ) 
as novel asthma-susceptibility loci, while also replicating fi ndings for  DPP10  from 
an earlier study of Europeans [ 11 ,  18 ,  46 – 48 ]. A multiethnic GWAS in North 
America (see above) also identifi ed a gene ( PYHIN1)  that appears to only confer 
susceptibility to asthma in subjects of African descent [ 42 ]. 

 Severe asthma (characterized by baseline airfl ow obstruction, uncontrolled 
symptoms, or frequent exacerbations despite adequate treatment) occurs more fre-
quently among African Americans and Puerto Ricans [ 49 ]. Emerging evidence sug-
gests that genes that infl uence asthma severity differ from those that determine 
asthma susceptibility [ 50 ,  51 ]. Identifying such loci should thus help to discover 
mechanisms underlying interethnic differences in asthma severity [ 52 – 55 ]. 

 Lung function is an indicator of asthma severity. SNPs in the gene encoding the 
hedgehog-interacting protein ( HHIP ) are associated with reduced lung function in 
African American and non-Hispanic whites with asthma in the Severe Asthma 
Research Program (SARP) [ 56 ]. Moreover, variants in  HHIP  and genes previously 
associated with lung function in the general population ( FAM13A  and  PTCH1 ) had 
additive effects on lung function and asthma severity in non-Hispanic whites and 
African Americans with asthma (Fig.  13.2a, b ) [ 3 ,  56 ,  57 ].

   SNPs from whole-genome genotyping can be used to estimate whole-genome or 
global genetic ancestry [ 58 ]. As reviewed in Chap.   2    , global African genetic ances-
try has been associated with an increased risk of asthma, lower FEV 1 , and lower 
FVC in African Americans and Puerto Ricans [ 3 ,  57 ,  59 – 61 ]. Conversely, global 
Native American ancestry has been associated with reduced risk of asthma but 
higher FEV 1  and FVC in Latinos [ 60 ]. Of interest, global African ancestry has also 
been shown to be associated with severe asthma exacerbations in African American 
males, further suggesting a role for genetic or environmental risk factors correlated 
with African ancestry on asthma severity [ 62 ]. 

 Admixture mapping (AM) is a whole-genome scanning approach that can be 
used to identify susceptibility loci for complex diseases in racially admixed pop-
ulations. AM tests for association between local ancestry at each SNP locus and 
 phenotype, under the assumption of signifi cant differences in both disease preva-
lence and allelic variation between ancestral groups for a population of interest 
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(see Chap.   2    ) [ 63 ,  64 ]. An AM study identifi ed an AM peak for asthma in African 
Americans on chromosome 6q14, which contained an SNP surrounded by a 
European ancestral background. This fi nding was replicated in Puerto Ricans, 
and an interaction between a susceptibility locus and local genetic ancestry was 
shown in both African Americans and Puerto Ricans [ 65 ]. In another study, six 
AM peaks containing known asthma risk loci and a novel locus in the  LYN  gene 
were identifi ed in Puerto Ricans and Mexicans [ 66 ,  67 ]. More recently, AM was 
combined with allelic association testing to identify a potential asthma-suscepti-
bility locus ( PSORS1C1 ) in Latinos [ 44 ]. Like genome-wide linkage studies, AM 
has limited resolution, thus requiring subsequent fi ne-mapping studies, replica-
tion in external cohorts, and functional studies to confi dently identify 
disease-susceptibility variants. 

 Failure to replicate findings from studies of non-Hispanic whites in minority 
populations (or vice versa) may be explained by differing allelic frequencies 
among ancestral populations (Table  13.1 ), insufficient genomic coverage in 
populations of African descent, small sample size, or true ethnic-specific 
effects. Current evidence suggests that most asthma-susceptibility loci identi-
fied to date are “cosmopolitan” (affecting all racial/ethnic groups), but that a 
few such loci may be “ethnic-specific” (affecting one or a few ethnic groups). 
Pending additional work, however, no ethnic- specific asthma-susceptibility 
variant has been confidently identified to date.  
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  Fig. 13.2    ( a ,  b ): Additive genetic effects of major lung function loci from the general population. 
An additive effect of risk variants from GWAS of lung function measures in the general population 
on lung function was shown in 1441 asthma subjects from three asthma cohorts. An increase in the 
number of risk alleles for SNPs in  HHIP ,  PTCH1 , and  FAM13A  resulted in a signifi cant stepwise 
decrease in FEV1, FVC, and FEV1/FVC in both non-Hispanic Whites and African Americans. 
Data for FEV1 is shown for ( a ) African Americans and ( b ) non-Hispanic Whites. Adapted from Li 
X et al.  J Allergy Clin Immunol  2011;127(6):1457–65 [ 56 ]       
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    Genetic Studies of COPD 

 COPD is a multifactorial disease, caused by the interaction between genetic vari-
ants and environmental risk factors such as tobacco smoke [ 68 – 72 ]. Candidate-gene 
association studies, largely conducted in non-Hispanic whites, have identifi ed a 
small number of potential COPD-susceptibility loci in infl ammatory ( TGFB1 ), 
protease- anti-protease ( ADAM33 ,  MMP12 ), and oxidant-antioxidant ( GSTM1 , 
 GSTP1 ) gene pathways, some of which (e.g.,  MMP12 ) have been confi rmed in 
subsequent genome-wide scans [ 72 – 78 ]. 

 Airfl ow obstruction and lung function decline are key intermediate phenotypes 
of COPD. GWASs in non-Hispanic whites have identifi ed susceptibility genes for 
lung function ( GSTO2  and  IL6R ) [ 79 ] and airfl ow obstruction (seven loci, includ-
ing  HHIP ) [ 80 – 82 ]. Subsequent studies confi rmed a role of  HHIP  in COPD sus-
ceptibility and showed an association with airfl ow obstruction in asthma [ 56 , 
 83 – 86 ]. Evidence from murine models suggests that  HHIP  variants alter lung 
development and baseline respiratory reserve, ultimately increasing the risk of 
lung function decline and COPD [ 87 – 89 ]. Subsequent meta-analyses of GWASs 
have identifi ed additional susceptibility loci for lung function in genes which regu-
late infl ammation ( HTR4, THS4D ), lung development ( ADAM19 ,  GPR126 ), the 
antioxidant pathway ( GSTCD ), and tissue remodeling ( ADAM19 ,  HTR4, THSD4, 
AGER ,  TNS1 ). Of interest, alleles in these genes have differing frequencies across 
racial or ethnic groups (Table  13.2  [ 90 ]) [ 81 ,  82 ,  91 ,  92 ]. Cumulative risk scores 
combining risk SNPs from lung function genes (including  HHIP ,  TNS1 ,  GSTCD , 
 HTR4 ,  AGER , and  THSD4 ) have been shown to be associated with a stepwise dec-
rement in FEV1 and FEV1/FVC, both in non-Hispanic whites and African 
Americans with asthma, and in non-Hispanic whites from a general population 
cohort (Fig.  13.2a, b ) [ 56 ,  85 ].

   Although global African ancestry has been shown to be inversely associated with 
FEV 1  and FVC in African Americans and Latinos (see Chap.   2    ), there has been no 
GWAS of lung function in these populations. An admixture-based genetic study of 
Mestizo individuals and Native Mexicans demonstrated a strong correlation between 
Native American ancestry and geographic location within Mexico, resulting in 
ancestral clusters and ancestry-specifi c principal components. An analysis of 
ancestry- specifi c principal components in Mexicans and Mexican Americans then 
demonstrated that increased regional variation in Native American ancestry was 
positively associated with lung function [ 93 ]. Native American ancestry was also 
shown to be positively associated with lung function in a Costa Rican cohort of 
adolescents and adults with and without COPD [ 94 ], as well as in a study of Hispanic 
adults from New Mexico [ 95 ]. In the latter study, Native American ancestry was 
also inversely associated with lung function decline and COPD [ 95 ]. 

 To date, GWASs of COPD have been conducted mostly in subjects of European 
descent. The fi rst such GWAS identifi ed susceptibility SNPs for COPD chromosome 
15q25, a genomic region encompassing genes encoding the α-nicotinic acetylcholine 
receptors ( CHRNA3/5 ) and a gene in the antioxidant pathway ( IREB2 ) [ 86 ,  96 – 98 ]. 

V.E. Ortega
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A second GWAS identifi ed susceptibility SNPs for COPD in  FAM13A,  a gene 
 previously associated with lung function [ 81 ,  99 ]. A subsequent (and larger) GWAS 
identifi ed a COPD-susceptibility locus containing  CYP2A6 , a key enzyme for nico-
tine metabolism in the nicotine dependence pathway [ 100 ]. The fi rst GWAS to 
include both non-Hispanic whites and African Americans confi rmed risk loci for 
COPD in  CHRNA3 ,  FAM13A , and  HHIP,  while also identifying a novel locus in 
 RIN3  (distantly adjacent to  SERPINA1,  which encodes α-1 antitrypsin, the strongest 
known genetic risk factor for COPD) [ 101 ]. A subsequent genome-wide admixture 
mapping in African Americans identifi ed a novel locus for airfl ow obstruction 
( FAM19A2 ) [ 102 ]. The fi rst GWAS of COPD in Hispanics (a meta-analysis of three 
cohorts in Costa Rica, the US Multi-ethnic Study of Atherosclerosis, and 
New Mexico) identifi ed potential novel COPD-susceptibility loci (adjacent to 
 KLHL7 / NUPL2 , and  DLG2 ) and confi rmed  FAM13A  as a locus for COPD in 
Hispanics [ 103 ]. 

 Consistent with results in asthma, ancestry infl uences lung function and COPD in 
racially admixed populations. Moreover, most COPD-susceptibility loci appear to 
be “cosmopolitan,” but a few may be truly ethnic-specifi c. Thus, inclusion of large 
cohorts of minorities in COPD studies may yield novel insights into the role of 
ancestry and genetics in ethnic differences in the prevalence and severity of COPD.  

    Pharmacogenetic Studies of Respiratory Diseases 

 Pharmacologic responses have been shown to have both interindividual variability 
and signifi cant heritability [ 104 ,  105 ]. Pharmacogenetic studies, which analyze 
gene-by-drug interactions on clinical outcomes, have been highly successful in 
identifying targeted therapies in cystic fi brosis. Most pharmacogenetic studies in 
pulmonary medicine have been conducted in subjects with asthma [ 106 ,  107 ] and 
have included mostly non-Hispanic whites. However, pharmacogenetic studies of 
response to inhaled β 2 -adrenergic receptor agonists (inhaled β 2 -agonists) have 
included racial and ethnic minorities with asthma. 

 Inhaled β 2 -agonists include short-acting β 2 -agonists (SABA, used most often as 
rescue therapy) and long-acting β 2 -agonists (LABA, often used in combination with 
an inhaled corticosteroid (ICS) for chronic treatment). Findings from surveillance 
studies and meta-analyses suggest that LABA increase the risk of life-threatening 
asthma exacerbations and asthma-related deaths when administered as a monother-
apy without ICS therapy [ 108 – 110 ]. The largest and most cited of these surveillance 
studies included 26,355 subjects (4685 African American), who were randomized to 
salmeterol or placebo with “usual therapy.” An interval analysis of that trial 
(SMART) demonstrated increased risk of asthma or respiratory-related life- 
threatening exacerbations and death among African Americans randomized to sal-
meterol [ 109 ]. Although limited by lack of a requirement for ICS in all study 
subjects, such fi ndings formed the basis for a LABA safety controversy, leading to 
two advisory panel meetings by the US Food and Drug Administration (FDA),
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 public health advisories, and a boxed warning for all inhalers containing LABA 
[ 111 ]. This controversy, further fueled by fi ndings contradicting those from SMART 
[ 112 – 115 ], is now being evaluated in an international FDA-mandated LABA safety 
study of over 40,000 asthmatics [ 111 ,  116 ]. 

 Results from recent clinical trials suggest that African Americans with asthma 
have a reduced response to LABA-containing combination therapies compared to 
non-Hispanic Whites and Hispanics [ 117 ,  118 ]. In a study of adults with asthma, 
African Americans were less likely to respond to LABA than non-Hispanic Whites 
[ 117 ]. Similarly, Puerto Ricans with asthma have been shown to have a lower 
response to SABA than Mexicans, a fi nding that could be explained by ethnic- 
specifi c differences in genetic variants or response to psychosocial stress [ 119 ,  120 ]. 

 Pharmacogenetic studies of response to inhaled β 2 -agonists have focused on the 
gene encoding the β 2 -adrenergic receptor ( ADRB2 ), the pharmacologic target for 
β 2 -agonists .  Although the most extensively studied  ADRB2  variant is a coding SNP 
which substitutes a glycine for an arginine in amino acid position 16 (Gly 16 Arg), up 
to 49 SNPs have been identifi ed through DNA sequencing in multiethnic popula-
tions, including rare variants [ 121 ,  122 ]. In vitro studies have shown that beta ago-
nist stimulation results in enhanced downregulation of the β 2 -adrenergic receptor 
with the Gly 16  allele compared to Arg 16  [ 123 ,  124 ]. In vitro studies of the rare 
 ADRB2  variant, Thr 164 Ile, show that this variant causes a marked decrease in recep-
tor ligand binding and coupling to G s  protein in response to different SABAs and 
LABAs, and impaired salmeterol binding to its receptor “exosite” [ 125 ,  126 ]. 

 Early association studies of  ADRB2  in non-Hispanic whites consistently demon-
strated that Arg 16  homozygotes show greater response to SABA than Gly 16  homozy-
gotes, a fi nding confi rmed in some ethnic groups (i.e., Puerto Ricans) but not in 
others (i.e., Mexican Americans) [ 127 ,  128 ]. An SNP in a pathway-related gene 
( GSNOR , encoding S-nitroso-glutathione reductase) has been shown to alter the 
genetic effect of Gly 16 Arg on response to SABA in Puerto Ricans but not in Mexican 
Americans, and thus this gene-gene interaction requires further replication [ 129 ]. 

 Two pharmacogenetic studies using data from previous clinical trials (which ran-
domized non-Hispanic whites with asthma to long-term treatment with SABA) 
demonstrated that  ADRB2  Arg 16  homozygotes were more likely to have a decline in 
lung function during SABA treatment than  ADRB2  Gly 16  homozygotes [ 130 ,  131 ]. 
The genetic effects of the Gly 16 Arg locus were confi rmed in a genotype-stratifi ed, 
cross-over pharmacogenetic study, the Beta Agonist Response by Genotype 
(BARGE) trial. In that trial, 37 Arg 16  homozygotes and 41 Gly 16  homozygotes were 
randomized to regular albuterol or placebo for 16 weeks, with ipratropium provided 
as a rescue inhaler to minimize β 2 -agonist use. Whereas Gly 16  homozygotes had 
improved lung function and symptom control during regular albuterol therapy, 
Arg 16  homozygotes had no change in lung function and a loss of symptom control 
during regular albuterol therapy [ 132 ]. 

 In the BARGE trial, the proportion of Arg 16  homozygotes was higher in African 
Americans (22 %) than in non-Hispanic whites (17 %) (see  ADRB2  in Fig.  13.3 ) 
[ 132 ]. This is likely because Gly 16  is the ancestral allele of Gly 16 Arg, and chromo-
somes from ancient African ancestors have had more generations to distribute the 
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more recent Arg 16  variant than chromosomes from a European ancestor [ 133 ]. The 
frequency of the Arg 16  allele is thus higher in African Americans and Puerto Ricans 
than in non-Hispanic Whites [ 122 ], potentially explaining ethnic differences in 
response to β 2 -agonists. However, fi ndings from genotype-stratifi ed clinical trials 
have largely failed to show an effect of the Arg 16  allele on response to LABA, with 
or without concurrent therapy with ICS [ 134 – 138 ]. Gly 16 Arg (which has a frequency 
between 40 % and 60 % in different ethnic groups [ ADRB2,  Fig.  13.3 ]) should not 
be used to stratify patients for LABA treatment. Rare genetic variants with strong 
effects could explain the severe adverse effects found in <1 % of the LABA-treated 
subjects in SMART, but this is highly speculative [ 109 ].

   Sequencing of  ADRB2  in different ethnic groups has identifi ed Thr 164 Ile, a rare 
 ADRB2  variant primarily found in non-Hispanic Whites, and a rare 25 base-pair 
insertion variant at nucleotide position −376 relative to the start codon in the  ADRB2  
promoter (−376 In-Del) in African Americans and Puerto Ricans [ 121 ,  122 ,  139 ]. In 
a recent study, these rare variants were both associated with asthma-related hospital-
izations, asthma-related urgent outpatient visits, and regular use of systemic cortico-
steroids among non-Hispanic whites and African Americans with asthma treated with 
LABA (Fig.  13.4a, b ) [ 122 ]. In another study, an analysis combining results from AM 
and a GWAS showed an association between rare variants in two solute carrier genes 
( SLC24A4  and  SLC22A15 ) and response to SABA in Puerto Ricans and Mexican 
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  Fig. 13.3    Allele frequencies of different pharmacogenetic loci by race or ethnic group. These 
pharmacogenetic loci have been identifi ed through candidate-gene studies and GWAS in asthma 
clinical trials [ 141 ,  143 – 153 ]. Loci with SNPs identifi ed through GWAS are highlighted in  red . 
Allele frequencies are provided for each ethnic group and ancestral population based on the 
International HapMap Project Genome Browser release 28, phases 1–3 [ 32 ].  ASW  African 
Americans from the southwest United States,  CEU  Utah residents with ancestry from northern and 
western Europe,  CHB  Han Chinese from Beijing, China,  JPT  Japanese from Tokyo, Japan,  MEX  
Mexican Americans from Los Angeles, CA,  YRI  Individuals from Yoruba in Ibadan, Nigeria [ 33 ]       
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American with asthma [ 140 ]. In that study, rare variants in two genes previously 
associated with response to SABA in non-Hispanic whites,  ADCY9  and  CRHR2 , 
were shown to be associated with response to SABA in Latinos [ 140 – 142 ].

   Large candidate-gene and GWAS of the pharmacogenetics of asthma have been 
mostly conducted in non-Hispanic whites. Such studies identifi ed loci for therapeu-
tic responsiveness to SABA, ICS, and leukotriene modifi ers, each of which shows 
varying allele frequencies among different racial and ethnic groups (Fig.  13.3 ) 
[ 141 ,  143 – 153 ]. More recently, large-scale whole-genome sequencing studies have 
found rare ethnic-specifi c variants in populations of African descent [ 5 ], suggesting 
that rare variants (such as those in  ADRB2  and solute carrier genes) could be 
 biomarkers for personalized treatment approaches in racial or ethnic minorities 
(e.g., avoiding inhaled LABA in nonresponders or in subjects likely to experience 
severe adverse effects).  

    Future Directions 

 Whereas most susceptibility alleles for respiratory diseases (or response to treatment for 
such diseases) are “cosmopolitan,” a small but non-negligible proportion of such suscepti-
bility alleles are likely to be ethnic-specifi c (particularly rare variants). Moreover, differ-
ences in environmental and behavioral exposures across racial or ethnic groups are likely to 
affect gene expression through gene-by- environment interactions or epigenetic mechanisms 
that remain largely unexplored as potential contributors to respiratory health disparities. 
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  Fig. 13.4    ( a ,  b ): Rare  ADRB2  variants and asthma-related hospitalization with long-acting beta 
agonist treatment. Two rare ADRB2 variants, Thr 164 Ile and a 25 base-pair promoter insertion- 
deletion (−376 In-Del), are shown with odds ratio (OR) for hospitalization in those treated with a 
long-acting beta agonist (LABA). Reproduced from Ortega VE et al.  Lancet Respir Med  
2014;2(3):204–13 [ 122 ]       
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 A potential short-term implication of the studies summarized above (including 
studies of African ancestry and lung function summarized in Chap.   2    ) is that global 
ancestry (determined by genetic markers) could replace self-reported race or ethnic-
ity when developing predicted (or reference) values for lung function. For instance, 
traditional race-based calculations of reference values for lung function can mis-
classify disease severity in up to 5 % of African Americans with asthma, as African 
Americans have different proportions of African ancestry [ 3 ]. 

 In the medium to long term, predicted values of lung function could be personal-
ized on the basis of whole-genome profi ling, as all rare and common susceptibility 
genes for lung function (and other determinants, see below) become known as a 
result of large-scale studies of multiethnic populations. Similarly, such studies 
should lead to the identifi cation of both common and rare (e.g., ethnic-specifi c) 
variants associated with response to, or severe adverse effects from specifi c thera-
pies for pulmonary, critical care, and sleep disorders. In fact, ongoing whole-exome 
and whole-genome sequencing projects such as the NHLBI GO Exome Sequencing 
Program, the 1000 Human Genomes Project, and the Consortium on Asthma in 
African Ancestry Populations (CAAPA) have identifi ed, and will continue to iden-
tify, common and rare genetic variation for future genetic studies in racial and eth-
nic minorities [ 5 ,  154 ]. 

 The path to personalized medicine for all members of society requires enroll-
ment of suffi ciently large numbers of subjects from racial or ethnic minorities in 
studies of gene-by-environment interactions and “omics” (genetics, epigenetics, 
transcriptomics, proteomics, and metabolomics) of respiratory diseases, as such 
integrated approaches are more likely to yield novel insights into disease pathogen-
esis or pharmacogenetics than traditional genetic studies. Such inclusive and diverse 
studies should lead to personalized medicine for all people, a key step toward 
eliminating respiratory health disparities and achieving respiratory health equality 
in the USA.     
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