
Chapter 6
A Natural Wind Tunnel

The solar wind has been used as a wind tunnel by Burlaga who, at the beginning of
the 1990s, started to investigate anomalous fluctuations (Burlaga 1991a,c,b, 1995)
as observed by measurements in the outer heliosphere by the Voyager spacecraft.
In 1991, Marsch (1992), in a review on solar wind turbulence given at the Solar
Wind Seven conference, underlined the importance of investigating scaling laws in
the solar wind and we like to report his sentence: “The recent work by Burlaga
(1991a,c) opens in my mind a very promising avenue to analyze and understand
solar wind turbulence from a new theoretical vantage point. . . . This approach may
also be useful for MHD turbulence. Possible connections between intermittent
turbulence and deterministic chaos have recently been investigated . . .We are still
waiting for applications of these modern concepts of chaos theory to solar wind
MHD fluctuations.” (cf. Marsch 1992, p. 503). A few years later Carbone (1993)
and, independently, Biskamp (1993) faced the question of anomalous scaling from
a theoretical point of view. More than 10 years later the investigation of statistical
mechanics of MHD turbulence from one side, and of low-frequency solar wind
turbulence on the other side, has produced a lot of papers, and is nowmature enough
to be tentatively presented in a more organic way.

6.1 Scaling Exponents of Structure Functions

The phenomenology of turbulence developed by Kolmogorov (1941) deals with
some statistical hypotheses for fluctuations. The famous footnote remark by Landau
(Landau and Lifshitz 1971) pointed out a defect in the Kolmogorov theory, namely
the fact that the theory does not take proper account of spatial fluctuations of local
dissipation rate (Frisch 1995). This led different authors to investigate the features
related to scaling laws of fluctuations and, in particular, to investigate the departure
from the Kolmogorov’s linear scaling of the structure functions (cf. Sect. 2.8). An
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up-to-date comprehensive review of these theoretical efforts can be found in the
book by Frisch (1995).

Here we are interested in understanding what we can learn from solar wind
turbulence about the basic features of scaling laws for fluctuations. We use velocity
and magnetic fields time series, and we investigate the scaling behavior of the high-
order moments of stochastic variables defined as variations of fields separated by
a time1 interval � . First of all, it is worthwhile to remark that scaling laws and,
in particular, the exact relation (2.41) which defines the inertial range in fluid
flows, is valid for longitudinal (streamwise) fluctuations. In common fluid flows
the Kolmogorov linear scaling law is compared with the moments of longitudinal
velocity differences. In the same way for the solar wind turbulence we investigate
the scaling behavior of �u� D u.tC �/ � u.t/, where u.t/ represents the component
of the velocity field along the radial direction. As far as the magnetic differences are
concerned �b� D B.t C �/ � B.t/, we are free for different choices and, in some
sense, this is more interesting from an experimental point of view. We can use the
reference system where B.t/ represents the magnetic field projected along the radial
direction, or the system where B.t/ represents the magnetic field along the local
background magnetic field, or B.t/ represents the field along the minimum variance
direction. As a different case we can simply investigate the scaling behavior of the
fluctuations of the magnetic field intensity.

Let us consider the pth moment of both absolute values2 of velocity fluctuations
Rp.�/ D hj�u� jpi and magnetic fluctuations Sp.�/ D hj�b� jpi, also called pth order
structure function in literature (brackets being time average). Here we use magnetic
fluctuations across structures at intervals � calculated by using the magnetic field
intensity. Typical structure functions of magnetic field fluctuations, for two different
values of p, for both a slowwind and a fast wind at 0.9AU, are shown in Fig. 6.1. The
magnetic field we used is that measured by Helios 2 spacecraft. Structure functions
calculated for the velocity fields have roughly the same shape. Looking at these
figures the typical scaling features of turbulence can be observed. Starting from
low values at small scales, the structure functions increase towards a region where
Sp ! const: at the largest scales. This means that at these scales the field fluctuations
are uncorrelated. A kind of “inertial range”, that is a region of intermediate scales �

1Since the solar wind moves at supersonic speed Vsw, the usual Taylor’s hypothesis is verified, and
we can get information on spatial scaling laws ` by using time differences � D `=Vsw.
2Note that, according to the occurrence of the Yaglom’s law, that is a third-order moment is
different from zero, the fluctuations at a given scale in the inertial range must present some non-
Gaussian features. From this point of view the calculation of structure functions with the absolute
value is unappropriate because in this way we risk to cancel out non-Gaussian features. Namely
we symmetrize the probability density functions of fluctuations. However, in general, the number
of points at disposal is much lower than required for a robust estimate of odd structure functions,
even in usual fluid flows. Then, as usually, we will obtain structure functions by taking the absolute
value, even if some care must be taken in certain conclusions which can be found in literature.
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Fig. 6.1 Structure functions for the magnetic field intensity Sn.r/ for two different orders, n D 3

and n D 5, for both slow wind and fast wind, as a function of the time scale r. Data come from
Helios 2 spacecraft at 0.9AU

where a power law can be recognized for both

Rp.�/ D hj�u� jpi � ��p

Sp.�/ D hj�b� jpi � ��p (6.1)

is more or less visible only for the slow wind. In this range correlations exists, and
we can obtain the scaling exponents �p and �p through a simple linear fit.

Since as we have seen, Yaglom’s law is observed only in some few samples,
the inertial range in the whole solar wind is not well defined. A look at Fig. 6.1
clearly shows that we are in a situation similar to a low-Reynolds number fluid
flow. In order to compare scaling exponents of the solar wind turbulent fluctuations
with other experiments, it is perhaps better to try to recover exponents using the
Extended Self-Similarity (ESS), introduced some time ago by Benzi et al. (1993),
and used here as a tool to determine relative scaling exponents. In the fluid-like case,
the third-order structure function can be regarded as a generalized scaling using the
inverse of Eq. (2.42) or of Eq. (2.41) (Politano et al. 1998). Then, we can plot the
pth order structure function vs. the third-order one to recover at least relative scaling
exponents �p=�3 and �p=�3 (6.1). Quite surprisingly (see Fig. 6.2), we find that the
range where a power law can be recovered extends well beyond the inertial range,
covering almost all the experimental range. In the fluid case the scaling exponents
which can be obtained through ESS at low or moderate Reynolds numbers, coincide
with the scaling exponents obtained for high Reynolds, where the inertial range is
very well defined (Benzi et al. 1993). This is due to the fact that, since by definition
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Fig. 6.2 Structure functions Sn.r/ for two different orders, n D 3 and n D 5, for both slow wind
and high wind, as a function of the fourth-order structure function S4.r/. Data come from Helios 2
spacecraft at 0.9AU

�3 D 1 in the inertial range (Frisch 1995), whatever its extension might be. In our
case scaling exponents obtained through ESS can be used as a surrogate, since we
cannot be sure that an inertial range exists.

It is worthwhile to remark (as shown in Fig. 6.2) that we can introduce a general
scaling relation between the qth order velocity structure function and the pth order
structure function, with a relative scaling exponent ˛p.q/. It has been found that this
relation becomes an exact relation

Sq.r/ D �
Sp.r/

�˛p.q/
;

when the velocity structure functions are normalized to the average velocity within
each period used to calculate the structure function (Carbone et al. 1996a). This is
very interesting because it implies that the above relationship is satisfied by the
following probability distribution function, if we assume that odd moments are
much smaller than the even ones (Carbone et al. 1996a):

PDF.�u�/ D
Z 1

�1
dk eik�u�

1X

qD0

.ik/2q

2�.2q/Š

�
Sp.�/

�˛p.2q/
: (6.2)

That is, for each scale � the knowledge of the relative scaling exponents ˛p.q/

completely determines the probability distribution of velocity differences as a
function of a single parameter Sp.�/.
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Table 6.1 Scaling exponents
for velocity �p and magnetic
�p variables calculated
through ESS

p �p �p u.t/ (fluid) T.t/ (fluid)

1 0:37 ˙ 0:06 0:56 ˙ 0:06 0:37 0:61

2 0:70 ˙ 0:05 0:83 ˙ 0:05 0:70 0:85

3 1.00 1.00 1:00 1:00

4 1:28 ˙ 0:02 1:14 ˙ 0:02 1:28 1:12

5 1:54 ˙ 0:03 1:25 ˙ 0:03 1:54 1:21

6 1:79 ˙ 0:05 1:35 ˙ 0:05 1:78 1:38

Errors represent the standard deviations of the linear fitting.
The data used comes from a turbulent sample of slow wind
at 0.9AU from Helios 2 spacecraft. As a comparison we
show the normalized scaling exponents of structure functions
calculated in a wind tunnel on Earth (Ruíz-Chavarría et al.
1995) for velocity and temperature. The temperature is a
passive scalar in this experiment

Relative scaling exponents, calculated by using data coming from Helios 2 at
0.9AU, are reported in Table 6.1. As it can be seen, two main features can be
noted:

1. There is a significant departure from the Kolmogorov linear scaling, that is, real
scaling exponents are anomalous and seem to be non-linear functions of p, say
�p=�3 > p=3 for p < 3, while �p=�3 < p=3 for p > 3. The same behavior can be
observed for �p=�3. In Table 6.1 we report also the scaling exponents obtained in
usual fluid flows for velocity and temperature, the latter being a passive scalar.
Scaling exponents for velocity field are similar to scaling exponents obtained
in turbulent flows on Earth, showing a kind of universality in the anomaly.
This effect is commonly attributed to the phenomenon of intermittency in fully
developed turbulence (Frisch 1995). Turbulence in the solar wind is intermittent,
just like its fluid counterpart on Earth.

2. The degree of intermittency is measured through the distance between the curve
�p=�3 and the linear scaling p=3. It can be seen that the magnetic field is more
intermittent than the velocity field. The same difference is observed between
the velocity field and a passive scalar (in our case the temperature) in ordinary
fluid flows (Ruíz-Chavarría et al. 1995). That is the magnetic field, as long as
intermittency properties are concerned, has the same scaling laws of a passive
field. Of course this does not mean that the magnetic field plays the same role
as a passive field. Statistical properties are in general different from dynamical
properties.

In Table 6.1 we show scaling exponents up to the sixth order. Actually, a question
concerns the validation of high-order moments estimates, say the maximum value
of the order p which can be determined with a finite number of points of our dataset.
As the value of p increases, we need an increasing number of points for an optimal
determination of the structure function (Tennekes andWyngaard 1972). Anomalous
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scaling laws are generated by rare and intense events due to singularities in the
gradients: the higher their intensity the more rare these events are. Of course, when
the data set has a finite extent, the probability to get singularities stronger than a
certain value approaches zero. In that case, scaling exponents �p of order higher
than a certain value become linear functions of p. Actually, the structure function
Sp.�/ depends on the probability distribution function PDF.�u� / through

Sp.�/ D
Z

�up� PDF.ıu� / d�u�

and, the function Sp is determined only when the integral converges. As p increases,
the function Fp.ıu� / D �up� PDF.�u� / becomes more and more disturbed, with
some spikes, so that the integral becomes more and more undefined, as can be seen
for example in Fig. 1 of the paper by Dudok de Wit (2004). A simple calculation
(Dudok de Wit 2004) for the maximum value of the order pm which can reliably
be estimated with a given number N of points in the dataset, gives the empirical
criterion pm ' logN. Structure functions of order p > pm cannot be determined
accurately.

Only few large structures are enough to generate the anomalous scaling laws.
In fact, as shown by Salem et al. (2009), by suppressing through wavelets analysis
just a few percentage of large structures on all scales, the scaling exponents become
linear functions of p, respectively p=4 and p=3 for the kinetic and magnetic fields.

As far as a comparison between different plasmas is concerned, the scaling expo-
nents of magnetic structure functions, obtained from laboratory plasma experiments
of a Reversed-Field Pinch at different distances from the external wall (Carbone
et al. 2000) are shown in Table 6.2. In laboratory plasmas it is difficult to measure
all the components of the vector field at the same time, thus, here we show only
the scaling exponents obtained using magnetic field differences Br.t C �/ � Br.t/
calculated from the radial component in a toroidal device where the z-axis is directed
along the axis of the torus. As it can be seen, intermittency in magnetic turbulence is
not so strong as it appears to be in the solar wind, actually the degree of intermittency

Table 6.2 Normalized
scaling exponents �p=�3 for
radial magnetic fluctuations
in a laboratory plasma, as
measured at different
distances a=R (R ' 0:45 cm
being the minor radius of the
torus in the experiment) from
the external wall

p a=R D 0:96 a=R D 0:93 a=R D 0:90 a=R D 0:86

1 0:39 ˙ 0:01 0:38 ˙ 0:01 0:37 ˙ 0:01 0:36 ˙ 0:01

2 0:74 ˙ 0:01 0:73 ˙ 0:02 0:71 ˙ 0:01 0:70 ˙ 0:01

3 1.00 1.00 1.00 1.00

4 1:20 ˙ 0:02 1:24 ˙ 0:02 1:27 ˙ 0:01 1:28 ˙ 0:01

5 1:32 ˙ 0:03 1:41 ˙ 0:03 1:51 ˙ 0:03 1:55 ˙ 0:03

6 1:38 ˙ 0:04 1:50 ˙ 0:04 1:71 ˙ 0:03 1:78 ˙ 0:04

Errors represent the standard deviations of the linear fitting.
Scaling exponents have been obtained using the ESS
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Table 6.3 Normalized
scaling exponents �p=�3 for
Alfvénic, velocity, and
magnetic fluctuations
obtained from data of high
resolution 2D MHD
numerical simulations

p ZC Z� v B

1 0:36 ˙ 0:06 0:56 ˙ 0:06 0:37 ˙ 0:01 0:46 ˙ 0:02

2 0:70 ˙ 0:05 0:83 ˙ 0:05 0:70 ˙ 0:01 0:78 ˙ 0:01

3 1.00 1.00 1.00 1.00

4 1:28 ˙ 0:02 1:14 ˙ 0:02 1:28 ˙ 0:02 1:18 ˙ 0:02

5 1:53 ˙ 0:03 1:25 ˙ 0:03 1:54 ˙ 0:03 1:31 ˙ 0:03

6 1:79 ˙ 0:05 1:35 ˙ 0:05 1:78 ˙ 0:05 1:40 ˙ 0:03

Scaling exponents have been calculated from spatial fluctua-
tions; different times, in the statistically stationary state, have
been used to improve statistics. The scaling exponents have
been calculated by ESS using Eq. (2.41) as characteristic scale
rather than the third-order structure function (cf. Politano et al.
1998, for details

increases when going toward the external wall. This last feature appears to be similar
to what is currently observed in channel flows, where intermittency also increases
when going towards the external wall (Pope 2000).

Scaling exponents of structure functions for Alfvén variables, velocity, and
magnetic variables have been calculated also for high resolution 2D incompressible
MHD numerical simulations (Politano et al. 1998). In this case, we are freed from
the constraint of the Taylor hypothesis when calculating the fluctuations at a given
scale. From 2D simulations we recover the fields u.r; t/ and b.r; t/ at some fixed
times. We calculate the longitudinal fluctuations directly in space at a fixed time,
namely �u` D Œu.r C `; t/ � u.r; t/� � `=` (the same are made for different
fields, namely the magnetic field or the Elsässer fields). Finally, averaging both in
space and time, we calculate the scaling exponents through the structure functions.
These scaling exponents are reported in Table 6.3. Note that, even in numerical
simulations, intermittency for magnetic variables is stronger than for the velocity
field.

6.2 Probability Distribution Functions and Self-Similarity
of Fluctuations

The presence of scaling laws for fluctuations is a signature of the presence of self-
similarity in the phenomenon. A given observable u.`/, which depends on a scaling
variable `, is invariant with respect to the scaling relation ` ! �`, when there exists
a parameter 	.�/ such that u.`/ D 	.�/u.�`/. The solution of this last relation is a
power law u.`/ D C`h, where the scaling exponent is h D � log� 	.
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Since, as we have just seen, turbulence is characterized by scaling laws, this
must be a signature of self-similarity for fluctuations. Let us see what this means.
Let us consider fluctuations at two different scales, namely �z˙̀ and �z�̇`. Their
ratio �z�̇`=�z˙̀ � �h depends only on the value of h, and this should imply that
fluctuations are self-similar. This means that PDFs are related through

P.�z�̇`/ D PDF.�h�z˙̀/:

Let us consider the normalized variables

y˙̀ D �z˙̀

h.�z˙̀/2i1=2
:

When h is unique or in a pure self-similar situation, PDFs are related through
P.y˙̀/ D PDF.y�̇`/, say by changing scale PDFs coincide.

The PDFs relative to the normalized magnetic fluctuations ıb� D �b�=h�b2
�i1=2,

at three different scales � , are shown in Fig. 6.3. It appears evident that the global
self-similarity in real turbulence is broken. PDFs do not coincide at different scales,

Fig. 6.3 Left panel: normalized PDFs for the magnetic fluctuations observed in the solar wind
turbulence by using Helios data. Right panel: distribution function of waiting times �t between
structures at the smallest scale. The parameter ˇ is the scaling exponent of the scaling relation
PDF.�t/ � �t�ˇ for the distribution function of waiting times
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rather their shape seems to depend on the scale � . In particular, at large scales
PDFs seem to be almost Gaussian, but they become more and more stretched as
� decreases. At the smallest scale PDFs are stretched exponentials. This scaling
dependence of PDFs is a different way to say that scaling exponents of fluctuations
are anomalous, or can be taken as a different definition of intermittency. Note that
the wings of PDFs are higher than those of a Gaussian function. This implies
that intense fluctuations have a probability of occurrence higher than that they
should have if they were Gaussianly distributed. Said differently, intense stochastic
fluctuations are less rare than we should expect from the point of view of a Gaussian
approach to the statistics. These fluctuations play a key role in the statistics of
turbulence. The same statistical behavior can be found in different experiments
related to the study of the atmosphere (see Fig. 6.4) and the laboratory plasma (see
Fig. 6.5).

Fig. 6.4 Left panel: normalized PDFs of velocity fluctuations in atmospheric turbulence. Right
panel: distribution function of waiting times �t between structures at the smallest scale. The
parameter ˇ is the scaling exponent of the scaling relation PDF.�t/ � �t�ˇ for the distribution
function of waiting times. The turbulent samples have been collected above a grass-covered forest
clearing at 5m above the ground surface and at a sampling rate of 56 Hz (Katul et al. 1997)
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Fig. 6.5 Left panel: normalized PDFs of the radial magnetic field collected in RFX magnetic
turbulence (Carbone et al. 2000). Right panel: distribution function of waiting times �t between
structures at the smallest scale. The parameter ˇ is the scaling exponent of the scaling relation
PDF.�t/ � �t�ˇ for the distribution function of waiting times

6.3 What is Intermittent in the Solar Wind Turbulence?
The Multifractal Approach

Time dependence of �u� and �b� for three different scales � is shown in Figs. 6.6
and 6.7, respectively. These plots show that, as � becomes small, intense fluctuations
become more and more important, and they dominate the statistics. Fluctuations
at large scales appear to be smooth while, as the scale becomes smaller, intense
fluctuations becomes visible. These dominating fluctuations represent relatively
rare events. Actually, at the smallest scales, the time behavior of both �u� and
�b� is dominated by regions where fluctuations are low, in between regions where
fluctuations are intense and turbulent activity is very high. Of course, this behavior
cannot be described by a global self-similar behavior. Allowing the scaling laws to
vary with the region of turbulence we are investigating would be more convincing.

The behavior we have just described is at the heart of the multifractal approach to
turbulence (Frisch 1995). In that description of turbulence, even if the small scales
of fluid flow cannot be globally self-similar, self-similarity can be reintroduced as
a local property. In the multifractal description it is conjectured that turbulent flows
can be made by an infinite set of points Sh.r/, each set being characterized by a
scaling law �Z˙̀ � `h.r/, that is, the scaling exponent can depend on the position r.
The usual dimension of that set is then not constant, but depends on the local value
of h, and is quoted as D.h/ in literature.
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Fig. 6.6 Differences for the longitudinal velocity ıu� D u.t C �/ � u.t/ at three different scales
� , as shown in the figure

Fig. 6.7 Differences for the magnetic intensity �b� D B.t C �/ �B.t/ at three different scales � ,
as shown in the figure
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Then, the probability of occurrence of a given fluctuation can be calculated
through the weight the fluctuation assumes within the whole flow, i.e.,

P.�Z˙̀/ � .�Z˙̀/h � volume occupied by fluctuations;

and the pth order structure function is immediately written through the integral over
all (continuous) values of h weighted by a smooth function 	.h/ � 0.1/, i.e.,

Sp.`/ D
Z

	.h/.�Z˙̀/ph.�Z˙̀/3�D.h/dh:

A moment of reflection allows us to realize that in the limit ` ! 0 the integral is
dominated by the minimum value (over h) of the exponent and, as shown by Frisch
(1995), the integral can be formally solved using the usual saddle-pointmethod. The
scaling exponents of the structure function can then be written as

�p D min
h

Œph C 3 � D.h/�:

In this way, the departure of �p from the linear Kolmogorov scaling and thus
intermittency, can be characterized by the continuous changing of D.h/ as h varies.
That is, as p varies we are probing regions of fluid where even more rare and intense
events exist. These regions are characterized by small values of h, that is, by stronger
singularities of the gradient of the field.

Owing to the famous Landau footnote on the fact that fluctuations of the energy
transfer rate must be taken into account in determining the statistics of turbulence,
people tried to interpret the non-linear energy cascade typical of turbulence theory,
within a geometrical framework. The old Richardson’s picture of the turbulent
behavior as the result of a hierarchy of eddies at different scales has been modified
and, as realized by Kraichnan (1974), once we leave the idea of a constant energy
cascade rate we open a “Pandora’s box” of possibilities for modeling the energy
cascade. By looking at scaling laws for �z˙̀ and introducing the scaling exponents
for the energy transfer rate h
p`i � r�p , it can be found that �p D p=m C �p=m

(being m D 3 when the Kolmogorov-like phenomenology is taken into account,
or m D 4 when the Iroshnikov-Kraichnan phenomenology holds). In this way the
intermittency correction are determined by a cascade model for the energy transfer
rate. When �p is a non-linear function of p, the energy transfer rate can be described
within the multifractal geometry (see, e.g., Meneveau 1991, and references therein)
characterized by the generalized dimensions Dp D 1 � �p=.p � 1/ (Hentschel and
Procaccia 1983). The scaling exponents of the structure functions are then related
to Dp by

�p D
� p
m

� 1
�
Dp=m C 1:
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The correction to the linear scaling p=m is positive for p < m, negative for p > m,
and zero for p D m. A fractal behavior where Dp D const: < 1 gives a linear
correction with a slope different from 1=m.

6.4 Fragmentation Models for the Energy Transfer Rate

Cascade models view turbulence as a collection of fragments at a given scale `,
which results from the fragmentation of structures at the scale `0 > `, down to
the dissipative scale (Novikov 1969). Sophisticated statistics are applied to obtain
scaling exponents �p for the pth order structure function.

The starting point of fragmentation models is the old ˇ-model, a “pedagogical”
fractal model introduced by Frisch et al. (1978) to account for the modification
of the cascade in a simple way. In this model, the cascade is realized through the
conjecture that active eddies and non-active eddies are present at each scale, the
space-filling factor for the fragments being fixed for each scale. Since it is a fractal
model, the ˇ-model gives a linear modification to �p. This can account for a fit on
the data, as far as small values of p are concerned. However, the whole curve �p is
clearly nonlinear, and a multifractal approach is needed.

The random-ˇ model (Benzi et al. 1984), a multifractal modification of the ˇ-
model, can be derived by invoking that the space-filling factor for the fragments at
a given scale in the energy cascade is not fixed, but is given by a random variable ˇ.
The probability of occurrence of a given ˇ is assumed to be a bimodal distribution
where the eddies fragmentation process generates either space-filling eddies with
probability � or planar sheets with probability .1 � �/ (for conservation 0 � � � 1).
It can be found that

�p D p

m
� log2

�
1 � � C �2p=m�1

�
; (6.3)

where the free parameter � can be fixed through a fit on the data.
The p-model (Meneveau 1991; Carbone 1993) consists in an eddies fragmenta-

tion process described by a two-scale Cantor set with equal partition intervals. An
eddy at the scale `, with an energy derived from the transfer rate 
r, breaks down
into two eddies at the scale `=2, with energies 	
r and .1 � 	/
r. The parameter
0:5 � 	 � 1 is not defined by the model, but is fixed from the experimental data.
The model gives

�p D 1 � log2

�
	p=m C .1 � 	/p=m

�
: (6.4)

In the model by She and Leveque (see, e.g., She and Leveque 1994; Politano
and Pouquet 1998) one assumes an infinite hierarchy for the moments of the energy
transfer rates, leading to 


.pC1/
r � Œ


.p/
r �ˇŒ


.1/
r �1�ˇ , and a divergent scaling law for
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the infinite-order moment 

.1/
r � r�x, which describes the most singular structures

within the flow. The model reads

�p D p

m
.1 � x/ C C

�
1 �

�
1 � x

C

�p=m
�

: (6.5)

The parameter C D x=.1 � ˇ/ is identified as the codimension of the most singular
structures. In the standard MHD case (Politano and Pouquet 1995) x D ˇ D 1=2,
so that C D 1, that is, the most singular dissipative structures are planar sheets. On
the contrary, in fluid flows C D 2 and the most dissipative structures are filaments.
The large p behavior of the p-model is given by �p � .p=m/ log2.1=	/ C 1, so that
Eqs. (6.4) and (6.5) give the same results providing 	 ' 2�x. As shown by Carbone
et al. (1996b) all models are able to capture intermittency of fluctuations in the
solar wind. The agreement between the curves �p and normalized scaling exponents
is excellent, and this means that we realistically cannot discriminate between the
models we reported above. The main problem is that all models are based on a
conjecture which gives a curve �p as a function of a single free parameter, and that
curve is able to fit the smooth observed behavior of �p. Statistics cannot prove, just
disprove.We can distinguish between the fractal model and multifractal models, but
we cannot realistically distinguish among the various multifractal models.

6.5 A Model for the Departure from Self-Similarity

Besides the idea of self-similarity underlying the process of energy cascade in
turbulence, a different point of view can be introduced. The idea is to characterize
the behavior of the PDFs through the scaling laws of the parameters, which describe
how the shape of the PDFs changes when going towards small scales. The model,
originally introduced by Castaing et al. (2001), is based on a multiplicative process
describing the cascade. In its simplest form the model can be introduced by saying
that PDFs of increments ıZ˙̀, at a given scale, are made as a sum of Gaussian
distributions with different widths � D h.ıZ˙̀/2i1=2. The distribution of widths is
given by G�.�/, namely

P.ıZ˙̀/ D 1

2�

Z 1

0

G�.�/ exp

 

� .ıZ˙̀/2

2�2

!
d�

�
: (6.6)

In a purely self-similar situation, where the energy cascade generates only a trivial
variation of � with scales, the width of the distributionG�.�/ is zero and, invariably,
we recover a Gaussian distribution for P.ıZ˙̀/. On the contrary, when the cascade
is not strictly self-similar, the width of G�.�/ is different from zero and the scaling
behavior of the width �2 of G�.�/ can be used to characterize intermittency.
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6.6 Intermittency Properties Recovered via a Shell Model

Shell models have remarkable properties which closely resemble those typical of
MHD phenomena (Gloaguen et al. 1985; Biskamp 1994; Giuliani and Carbone
1998; Plunian et al. 2012). However, the presence of a constant forcing term always
induces a dynamical alignment, unless the model is forced appropriately, which
invariably brings the system towards a state in which velocity and magnetic fields
are strongly correlated, that is, where Zṅ 6D 0 and Z�

n D 0. When we want to
compare statistical properties of turbulence described by MHD shell models with
solar wind observations, this term should be avoided. It is possible to replace the
constant forcing term by an exponentially time-correlated Gaussian random forcing
which is able to destabilize the Alfvénic fixed point of the model (Giuliani and
Carbone 1998), thus assuring the energy cascade. The forcing is obtained by solving
the following Langevin equation:

dFn

dt
D �Fn

�
C 	.t/; (6.7)

where 	.t/ is a Gaussian stochastic process ı-correlated in time h	.t/	.t0/i D
2Dı.t0 � t/. This kind of forcing will be used to investigate statistical properties.

A statistically stationary state is reached by the system (Gloaguen et al. 1985;
Biskamp 1994; Giuliani and Carbone 1998; Plunian et al. 2012), with a well defined
inertial range, say a region where Eq. (2.49) is verified. Spectra for both the velocity
jun.t/j2 and magnetic jbn.t/j2 variables, as a function of kn, obtained in the stationary
state using the GOY MHD shell model, are shown in Figs. 6.8 and 6.9. Fluctuations
are averaged over time. The Kolmogorov spectrum is also reported as a solid line.
It is worthwhile to remark that, by adding a random term like iknB0.t/Zṅ to a little
modified version of the MHD shell models (B0 is a random function with some

Fig. 6.8 We show the kinetic energy spectrum jun.t/j2 as a function of log2 kn for the MHD shell

model. The full line refer to the Kolmogorov spectrum k�2=3
n
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Fig. 6.9 We show the magnetic energy spectrum jbn.t/j2 as a function of log2 kn for the MHD

shell model. The full line refer to the Kolmogorov spectrum k�2=3
n

statistical characteristics), a Kraichnan spectrum, say E.kn/ � k�3=2
n , where E.kn/ is

the total energy, can be recovered (Biskamp 1994; Hattori and Ishizawa 2001). The
term added to the model could represent the effect of the occurrence of a large-scale
magnetic field.

Intermittency in the shell model is due to the time behavior of shell variables. It
has been shown (Okkels 1997) that the evolution of GOY model consists of short
bursts traveling through the shells and long period of oscillations before the next
burst arises. In Figs. 6.10 and 6.11 we report the time evolution of the real part of
both velocity variables un.t/ and magnetic variables bn.t/ at three different shells.
It can be seen that, while at smaller kn variables seems to be Gaussian, at larger kn
variables present very sharp fluctuations in between very low fluctuations.

The time behavior of variables at different shells changes the statistics of
fluctuations. In Fig. 6.12 we report the probability distribution functions P.ıun/ and
P.ıBn/, for different shells n, of normalized variables

ıun D <e.un/phjunj2i
and ıBn D <e.bn/phjbnj2i

;

where <e indicates that we take the real part of un and bn. Typically we see that
PDFs look differently at different shells: At small kn fluctuations are quite Gaussian
distributed, while at large kn they tend to become increasingly non-Gaussian, by
developing fat tails. Rare fluctuations have a probability of occurrence larger than
a Gaussian distribution. This is the typical behavior of intermittency as observed in
usual fluid flows and described in previous sections.

The same phenomenon gives rise to the departure of scaling laws of structure
functions from a Kolmogorov scaling. Within the framework of the shell model the
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Fig. 6.10 Time behavior of the real part of velocity variable un.t/ at three different shells n, as
indicated in the different panels

Fig. 6.11 Time behavior of the real part of magnetic variable bn.t/ at three different shells n, as
indicated in the different panels
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Fig. 6.12 In the first three panels we report PDFs of both velocity (left column) and magnetic
(right column) shell variables, at three different shells `n. The bottom panels refer to probability
distribution functions of waiting times between intermittent structures at the shell n D 12 for the
corresponding velocity and magnetic variables

analogous of structure functions are defined as

hjunjpi � k
��p
n I hjbnjpi � k

��p
n I hjZṅ jpi � k

��˙
p

n :

ForMHD turbulence it is also useful to reportmixed correlators of the flux variables,
i.e.,

hŒTṅ �p=3i � k
�ˇ˙

p
n :
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Table 6.4 Scaling exponents for velocity and magnetic variables, Elsässer variables, and fluxes.
Errors on ˇ˙

p are about one order of magnitude smaller than the errors shown

p �p �p �C
p ��

p ˇC
p ˇ�

p

1 0:36 ˙ 0:01 0:35 ˙ 0:01 0:35 ˙ 0:01 0:36 ˙ 0:01 0:326 0:318

2 0:71 ˙ 0:02 0:69 ˙ 0:03 0:70 ˙ 0:02 0:70 ˙ 0:03 0:671 0:666

3 1:03 ˙ 0:03 1:01 ˙ 0:04 1:02 ˙ 0:04 1:02 ˙ 0:04 1:000 1:000

4 1:31 ˙ 0:05 1:31 ˙ 0:06 1:30 ˙ 0:05 1:32 ˙ 0:06 1:317 1:323

5 1:57 ˙ 0:07 1:58 ˙ 0:08 1:54 ˙ 0:07 1:60 ˙ 0:08 1:621 1:635

6 1:80 ˙ 0:08 1:8 ˙ 0:10 1:79 ˙ 0:09 1:87 ˙ 0:10 1:91 1:94

Scaling exponents have been determined from a least square fit in the inertial range
3 � n � 12. The values of these exponents are reported in Table 6.4. It is interesting
to notice that, while scaling exponents for velocity are the same as those found in
the solar wind, scaling exponents for the magnetic field found in the solar wind
reveal a more intermittent character. Moreover, we notice that velocity, magnetic
and Elsässer variables are more intermittent than the mixed correlators and we think
that this could be due to the cancelation effects among the different terms defining
the mixed correlators.

Time intermittency in the shell model generates rare and intense events. These
events are the result of the chaotic dynamics in the phase-space typical of the
shell model (Okkels 1997). That dynamics is characterized by a certain amount of
memory, as can be seen through the statistics of waiting times between these events.
The distributions P.ıt/ of waiting times is reported in the bottom panels of Fig. 6.12,
at a given shell n D 12. The same statistical law is observed for the bursts of total
dissipation (Boffetta et al. 1999).

6.7 Observations of Yaglom’s Law in Solar Wind Turbulence

To avoid the risk of misunderstanding, let us start by recalling that Yaglom’s
law (2.40) has been derived from a set of equations (MHD) and under assumptions
which are far from representing an exact mathematical model for the solar wind
plasma. Yaglom’s law is valid in MHD under the hypotheses of incompressibility,
stationarity, homogeneity, and isotropy. Also, the form used for the dissipative terms
of MHD equations is only valid for collisional plasmas, characterized by quasi-
Maxwellian distribution functions, and in case of equal kinematic viscosity and
magnetic diffusivity coefficients (Biskamp 2003). In solar wind plasmas the above
hypotheses are only rough approximations, and MHD dissipative coefficients are
not even defined (Tu andMarsch 1995). At frequencies higher than the ion cyclotron
frequency, kinetic processes are indeed present, and a number of possible dissipation
mechanisms can be discussed. When looking for the Yaglom’s law in the SW, the
strong conjecture that the law remains valid for any form of the dissipative term is
needed.
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Despite the above considerations, Yaglom’s law results surprisingly verified in
some solar wind samples. Results of the occurrence of Yaglom’s law in the ecliptic
plane, has been reported by MacBride et al. (2008, 2010) and Smith et al. (2009)
and, independently, in the polar wind by Sorriso-Valvo et al. (2007). It is worthwhile
to note that, the occurrence of Yaglom’s law in polar wind, where fluctuations are
Alfvénic, represents a double surprising feature because, according to the usual
phenomenology of MHD turbulence, a nonlinear energy cascade should be absent
for Alfénic turbulence.

In a first attempt to evaluate phenomenologically the value of the energy
dissipation rate, MacBride et al. (2008) analyzed the data from ACE to evaluate
the occurrence of both the Kolmogorov’s 4/5-law and their MHD analog (2.40).
Although some words of caution related to spikes in wind speed, magnetic
field strength caused by shocks and other imposed heliospheric structures that
constitute inhomogeneities in the data, authors found that both relations are more
or less verified in solar wind turbulence. They found a distribution for the energy
dissipation rate, defined in the above paper as 
 D .
C

ii C 
�
ii /=2, with an average of

about 
 ' 1:22 � 104 J=kg s.
In order to avoid variations of the solar activity and ecliptic disturbances (like

slow wind sources, coronal mass ejections, ecliptic current sheet, and so on), and
mainly mixing between fast and slow wind, Sorriso-Valvo et al. (2007) used high
speed polar wind data measured by the Ulysses spacecraft. In particular, authors
analyze the first 7months of 1996, when the heliocentric distance slowly increased
from 3 to 4AU, while the heliolatitude decreased from about 55ı to 30ı. The third-
order mixed structure functions have been obtained using 10-days moving averages,
during which the fields can be considered as stationary. A linear scaling law, like
the one shown in Fig. 6.13, has been observed in a significant fraction of samples
in the examined period, with a linear range spanning more than two decades. The
linear law generally extends from few minutes up to 1 day or more, and is present
in about 20 periods of a few days in the 7 months considered. This probably reflects
different regimes of driving of the turbulence by the Sun itself, and it is certainly
an indication of the nonstationarity of the energy injection process. According to
the formal definition of inertial range in the usual fluid flows, authors attribute to
the range where Yaglom’s law appear the role of inertial range in the solar wind
turbulence (Sorriso-Valvo et al. 2007). This range extends on scales larger than the
usual range of scales where a Kolmogorov relation has been observed, say up to
about few hours (cf. Fig. 3.4).

Several other periods are found where the linear scaling range is reduced and,
in particular, the sign of Y˙̀ is observed to be either positive or negative. In some
other periods the linear scaling law is observed either for YC

` or Y�̀ rather than for
both quantities. It is worth noting that in a large fraction of cases the sign switches
from negative to positive (or viceversa) at scales of about 1 day, roughly indicating
the scale where the small scale Alfvénic correlations between velocity and magnetic
fields are lost. This should indicate that the nature of fluctuations changes across the
break. The values of the pseudo-energies dissipation rates 
˙ has been found to be
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Fig. 6.13 An example of the linear scaling for the third-order mixed structure functions Y˙,
obtained in the polar wind using Ulysses measurements. A linear scaling law represents a range of
scales where Yaglom’s law is satisfied. Image reproduced by permission from Sorriso-Valvo et al.
(2007), copyright by APS

of the order of magnitude about few hundreds of J/kg s, higher than that found in
usual fluid flows which result of the order of 1 � 50 J=kg s.

The occurrence of Yaglom’s law in solar wind turbulence has been evidenced
by a systematic study by MacBride et al. (2010), which, using ACE data, found a
reasonable linear scaling for the mixed third-order structure functions, from about
64 s. to several hours at 1 AU in the ecliptic plane. Assuming that the third-order
mixed structure function is perpendicular to the mean field, or assuming that this
function varies only with the component of the scale `˛ that is perpendicular to the
mean field, and is cylindrically symmetric, the Yaglom’s law would reduce to a 2D
state. On the other hand, if the third-order function is parallel to the mean field or
varies only with the component of the scale that is parallel to the mean field, the
Yaglom’s law would reduce to a 1D-like case. In both cases the result will depend
on the angle between the average magnetic field and the flow direction. In both
cases the energy cascade rate varies in the range 103 � 104 J=kg s (see MacBride
et al. 2010, for further details).

Quite interestingly, Smith et al. (2009) found that the pseudo-energy cascade
rates derived from Yaglom’s scaling law reveal a strong dependence on the amount
of cross-helicity. In particular, they showed that when the correlation between
velocity and magnetic fluctuations are higher than about 0.75, the third-order
moment of the outward-propagating component, as well as of the total energy and
cross-helicity are negative. As already made by Sorriso-Valvo et al. (2007), they
attribute this phenomenon to a kind of inverse cascade, namely a back-transfer
of energy from small to large scales within the inertial range of the dominant
component. We should point out that experimental values of energy transfer rate
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in the incompressive case, estimated with different techniques from different data
sets (Vasquez et al. 2007;MacBride et al. 2010), are only partially in agreement with
that obtained by Sorriso-Valvo et al. (2007). However, the different nature of wind
(ecliptic vs. polar, fast vs. slow, at different radial distances from the Sun) makes
such a comparison only indicative.

As far as the scaling law (2.47) is concerned, Carbone et al. (2009) found that a
linear scaling for W˙̀ as defined in (2.47), appears almost in all Ulysses dataset. In
particular, the linear scaling for W˙̀ is verified even when there is no scaling at all
for Y˙̀ (2.40). In particular, it has been observed (Carbone et al. 2009) that a linear
scaling forWC

` appears in about half the whole signal, whileW�̀ displays scaling on
about a quarter of the sample. The linear scaling law generally extends on about two
decades, from a few minutes up to 1 day or more, as shown in Fig. 6.14. At variance
to the incompressible case, the two fluxes W˙̀ coexist in a large number of cases.
The pseudo-energies dissipation rates so obtained are considerably larger than the
relative values obtained in the incompressible case. In fact it has been found that on
average 
C ' 3 � 103 J=kg s. This result shows that the nonlinear energy cascade in
solar wind turbulence is considerably enhanced by density fluctuations, despite their
small amplitude within the Alfvénic polar turbulence. Note that the new variables
�wi̇ are built by coupling the Elsässer fields with the density, before computing the
scale-dependent increments. Moreover, the third-order moments are very sensitive
to intense field fluctuations, that could arise when density fluctuations are correlated
with velocity and magnetic field. Similar results, but with a considerably smaller
effect, were found in numerical simulations of compressive MHD (Mac Low and
Klessen 2004).
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Fig. 6.14 The linear scaling relation is reported for both the usual third-order structure function
YC

` and the same quantity build up with the density-mediated variables WC

` . A linear relation full
line is clearly observed. Data refer to the Ulysses spacecraft. Image reproduced by permission from
Carbone et al. (2009), copyright by APS
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Finally, it is worth reporting that the presence of Yaglom’s law in solar wind
turbulence is an interesting theoretical topic, because this is the first real exper-
imental evidence that the solar wind turbulence, at least at large-scales, can be
described within the magnetohydrodynamicmodel. In fact, Yaglom’s law is an exact
law derived from MHD equations and, let us say once more, their occurrence in a
medium like the solar wind is a welcomed surprise. By the way, the presence of the
law in the polar wind solves the paradox of the presence of Alfvénic turbulence as
first pointed out by Dobrowolny et al. (1980). Of course, the presence of Yaglom’s
law generates some controversial questions about data selection, reliability and a
brief discussion on the extension of the inertial range. The interested reader can find
some questions and relative answers in Physical Review Letters (Forman et al. 2010;
Sorriso-Valvo et al. 2010).
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