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Chapter 1
Introduction

The whole heliosphere is permeated by the solar wind, a supersonic and super-
Alfvénic plasma flow of solar origin which continuously expands into the helio-
sphere. This medium offers the best opportunity to study directly collisionless
plasma phenomena, mainly at low frequencies where large-amplitude fluctuations
have been observed. During its expansion, the solar wind develops a strong turbulent
character, which evolves towards a state that resembles the well known hydrody-
namic turbulence described by Kolmogorov (1941, 1991). Because of the presence
of a strong magnetic field carried by the wind, low-frequency fluctuations in the
solar wind are usually described within a magnetohydrodynamic (MHD, hereafter)
benchmark (Kraichnan 1965; Biskamp 1993; Tu and Marsch 1995; Biskamp 2003;
Petrosyan et al. 2010). However, due to some peculiar characteristics, the solar
wind turbulence contains some features hardly classified within a general theoretical
framework.

Turbulence in the solar heliosphere plays a relevant role in several aspects of
plasma behavior in space, such as solar wind generation, high-energy particles
acceleration, plasma heating, and cosmic rays propagation. In the 1970s and 80s,
impressive advances have been made in the knowledge of turbulent phenomena in
the solar wind. However, at that time, spacecraft observations were limited by a
small latitudinal excursion around the solar equator and, in practice, only a thin slice
above and below the equatorial plane was accessible, i.e., a sort of 2D heliosphere.

In the 1990s, with the launch of the Ulysses spacecraft, investigations have been
extended to the high-latitude regions of the heliosphere, allowing us to characterize
and study how turbulence evolves in the polar regions. An overview of Ulysses
results about polar turbulence can also be found in Horbury and Tsurutani (2001).
With this new laboratory, relevant advances have been made. One of the main goals
of the present work will be that of reviewing observations and theoretical efforts
made to understand the near-equatorial and polar turbulence in order to provide the
reader with a rather complete view of the low-frequency turbulence phenomenon in
the 3D heliosphere.

© Springer International Publishing Switzerland 2016
R. Bruno, V. Carbone, Turbulence in the Solar Wind, Lecture Notes
in Physics 928, DOI 10.1007/978-3-319-43440-7_1
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2 1 Introduction

New interesting insights in the theory of turbulence derive from the point of view
which considers a turbulent flow as a complex system, a sort of benchmark for the
theory of dynamical systems. The theory of chaos received the fundamental impulse
just through the theory of turbulence developed by Ruelle and Takens (1971) who,
criticizing the old theory of Landau and Lifshitz (1971), were able to put the
numerical investigation by Lorenz (1963) in a mathematical framework. Gollub
and Swinney (1975) set up accurate experiments on rotating fluids confirming the
point of view of Ruelle and Takens (1971) who showed that a strange attractor in
the phase space of the system is the best model for the birth of turbulence. This
gave a strong impulse to the investigation of the phenomenology of turbulence
from the point of view of dynamical systems (Bohr et al. 1998). For example, the
criticism by Landau leading to the investigation of intermittency in fully developed
turbulence was worked out through some phenomenological models for the energy
cascade (cf. Frisch 1995). Recently, turbulence in the solar wind has been used as
a big wind tunnel to investigate scaling laws of turbulent fluctuations, multifractals
models, etc. The review by Tu and Marsch (1995) contains a brief introduction to
this important argument, which was being developed at that time relatively to the
solar wind (Burlaga 1993; Carbone 1993; Biskamp 1993, 2003; Burlaga 1995). The
reader can convince himself that, because of the wide range of scales excited, space
plasma can be seen as a very big laboratory where fully developed turbulence can be
investigated not only per se, rather as far as basic theoretical aspects are concerned.

Turbulence is perhaps the most beautiful unsolved problem of classical physics,
the approaches used so far in understanding, describing, and modeling turbulence
are very interesting even from a historic point of view, as it clearly appears
when reading, for example, the book by Frisch (1995). History of turbulence in
interplanetary space is, perhaps, even more interesting since its knowledge proceeds
together with the human conquest of space. Thus, whenever appropriate, we will
also introduce some historical references to show the way particular problems
related to turbulence have been faced in time, both theoretically and technologically.
Finally, since turbulence is a phenomenon visible everywhere in nature, it will be
interesting to compare some experimental and theoretical aspects among different
turbulent media in order to assess specific features which might be universal, not
limited only to turbulence in space plasmas. In particular, we will compare results
obtained in interplanetary space with results obtained from ordinary fluid flows on
Earth, and from experiments on magnetic turbulence in laboratory plasmas designed
for thermonuclear fusion.

1.1 The Solar Wind

“Since the gross dynamical properties of the outward streaming gas are hydrody-
namic in character, we refer to the streaming as the solar wind.” This sentence,
contained in Parker (1958b) seminal paper, represents the first time the name “solar
wind” appeared in literature, about 60 years ago.
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The idea of the presence of an ionized gas continuously streaming radially from
the sun was firstly hypothesized by Biermann (1951, 1957) based on observations of
the displacements of the comet tails from the radial direction and on the ionization of
cometary molecules. A similar suggestion seemed to come out from the occurrence
of auroral phenomena and the continuous fluctuations observed in the geomagnetic
lines of force. The same author estimated that this ionized flow would have a bulk
speed ranging from 500 to 1500 km/s.

Parker (1958a) showed that the birth of the wind was a direct consequence of
the high coronal temperature and the fact that it was not possible for the solar
corona, given the estimated particle number density and plasma temperature, to be in
hydrostatic equilibrium out to large distances with vanishing pressure. He found that
a steady expansion of the solar corona with bulk speed of the order of the observed
one would require reasonable coronal temperatures.

As the wind expands into the interplanetary space, due to its high electrical
conductivity, it carries the photospheric magnetic field lines with it and creates a
magnetized bubble of hot plasma around the Sun, namely the heliosphere.

For an observer confined in the ecliptic plane, the interplanetary medium appears
highly structured into recurrent high velocity streams coming from coronal holes
regions dominated by open magnetic field lines, and slow plasma originating from
regions dominated by closed magnetic field lines. This phenomenon is much more
evident especially during periods of time around minimum of solar activity cycle,
when the meridional boundaries of polar coronal holes extend to much lower
heliographic latitude reaching the equatorial regions.

This particular configuration combined with the solar rotation is at the basis of
the strong dynamical interactions between slow and fast wind that develops during
the wind expansion. This dynamics ends up to mix together plasma and magnetic
field features which are characteristic separately of fast and slow wind at the source
regions. As a matter of fact, in-situ observations in the inner heliosphere unraveled
the different nature of these two types of wind not only limited to the large scale
average values of their plasma and magnetic field parameters but also referred to the
nature of the associated fluctuations.

It is clear that a description of the wind MHD turbulence will result more
profitable if performed within the frame of reference of the solar wind macro
structure, i.e. separately for fast and slow wind, without averaging the two.

Just to strengthen the validity of this approach, that we will follow throughout
this review, we like to mention the following concept: “Asking for the average solar
wind might appear as silly as asking for the taste af an average drink. What is the
average between wine and beer? Obviously a mere mixing and averaging means
mixing does not lead to a meaningful result. Better taste and judge separately and
then compare, if you wish.” (Schwenn 1983)

However, before getting deeper into the study of turbulence, it is useful to have
an idea of the values of the most common physical parameters characterizing fast
and slow wind.



4 1 Introduction

Table 1.1 Typical values
of several solar wind
parameters as measured by
Helios 2 at 1 AU

Wind parameter Slow wind Fast wind

Number density � 15 cm�3 � 4 cm�3

Bulk velocity � 350 km s�1 � 600 km s�1

Proton temperature � 5� 104 K � 2� 105 K

Electron temperature � 2� 105 K � 1� 105 K

˛-Particles temperature � 2� 105 K � 8� 105 K

Magnetic field � 6 nT � 6 nT

Table 1.2 Typical values
of different speeds obtained at
1 AU

Speed Slow wind Fast wind

Alfvén �30 km s�1 �60 km s�1

Ion sound �60 km s�1 �60 km s�1

Proton thermal �35 km s�1 �70 km s�1

Electron thermal �3000 km s�1 �2000 km s�1

These values have been obtained from the parameters
reported in Table 1.1

Table 1.3 Typical values
of different frequencies at
1 AU

Frequency Slow wind Fast wind

Proton cyclotron �0:1Hz �0:1Hz

Electron cyclotron �2� 102 Hz �2� 102 Hz

Plasma �2� 105 Hz �1� 105 Hz

Proton-proton collision �2� 10�6 Hz �1� 10�7 Hz

These values have been obtained from the parameters
reported in Table 1.1

Table 1.4 Typical values of different lengths at 1 AU plus the distance traveled by a proton before
colliding with another proton

Length Slow wind Fast wind

Debye �4m �15m

Proton gyroradius �130 km �260 km

Electron gyroradius �2 km �1:3 km

Distance between 2 proton collisions �1:2AU �40AU

These values have been obtained from the parameters reported in Table 1.1

Since the wind is an expanding medium, we ought to choose one heliocentric
distance to refer to and, usually, this distance is 1 AU. In the following, we
will provide different tables referring to several solar wind parameters, velocities,
characteristic times, and lengths.

Based on the Tables above, we can conclude that, the solar wind is a super-
Alfvénic, supersonic and collisionless plasma, and MHD turbulence can be investi-
gated for frequencies smaller than � 10�1 Hz (Table 1.3).
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1.2 Dynamics vs. Statistics

The word turbulent is used in the everyday experience to indicate something which
is not regular. In Latin the word turba means something confusing or something
which does not follow an ordered plan. A turbulent boy, in all Italian schools, is
a young fellow who rebels against ordered schemes. Following the same line, the
behavior of a flow which rebels against the deterministic rules of classical dynamics
is called turbulent. Even the opposite, namely a laminar motion, derives from the
Latin word lámina, which means stream or sheet, and gives the idea of a regular
streaming motion. Anyhow, even without the aid of a laboratory experiment and
a Latin dictionary, we experience turbulence every day. It is relatively easy to
observe turbulence and, in some sense, we generally do not pay much attention
to it (apart when, sitting in an airplane, a nice lady asks us to fasten our seat belts
during the flight because we are approaching some turbulence!). Turbulence appears
everywhere when the velocity of the flow is high enough,1 for example, when a
flow encounters an obstacle (cf., e.g., Fig. 1.1 ) in the atmospheric flow, or during
the circulation of blood, etc. Even charged fluids (plasma) can become turbulent.
For example, laboratory plasmas are often in a turbulent state, as well as natural
plasmas like the outer regions of stars. Living near a star, we have a big chance to
directly investigate the turbulent motion inside the flow which originates from the
Sun, namely the solar wind. This will be the main topic of the present review.

Turbulence that we observe in fluid flows appears as a very complicated state of
motion, and at a first sight it looks (apparently!) strongly irregular and chaotic, both
in space and time. The only dynamical rule seems to be the impossibility to predict
any future state of the motion. However, it is interesting to recognize the fact that,
when we take a picture of a turbulent flow at a given time, we see the presence

Fig. 1.1 Turbulence as observed in a river. Here we can see different turbulent wakes due to
different obstacles encountered by the water flow: simple stones and pillars of the old Roman
Cestio bridge across the Tiber river

1This concept will be explained better in the next sections.
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of a lot of different turbulent structures of all sizes which are actively present
during the motion. The presence of these structures was well recognized long
time ago, as testified by the amazing pictures of vortices observed and reproduced
by the Italian genius Leonardo da Vinci, as reported in the textbook by Frisch
(1995). The left-hand-side panel of Fig. 1.2 shows, as an example, some drawings
by Leonardo which can be compared with the right-hand-side panel taken from a
typical experiment on a turbulent jet.

Turbulent features can be recognized even in natural turbulent systems like, for
example, the atmosphere of Jupiter (see Fig. 1.3). A different example of turbulence
in plasmas is reported in Fig. 1.4 where we show the result of a typical high
resolution numerical simulations of 2D MHD turbulence. In this case the turbulent
field shown is the current density. These basic features of mixing between order
and chaos make the investigation of properties of turbulence terribly complicated,
although extraordinarily fascinating.

When we look at a flow at two different times, we can observe that the general
aspect of the flow has not changed appreciably, say vortices are present all the time
but the flow in each single point of the fluid looks different. We recognize that the
gross features of the flow are reproducible but details are not predictable. We have
to use a statistical approach to turbulence, just as it is done to describe stochastic
processes, even if the problem is born within the strange dynamics of a deterministic
system!

Fig. 1.2 Left panel: three examples of vortices taken from the pictures by Leonardo da Vinci (cf.
Frisch 1995). Right panel: turbulence as observed in a turbulent water jet (Van Dyke 1982) reported
in the book by Frisch (1995) (photograph by P. Dimotakis, R. Lye, and D. Papantoniu)
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Fig. 1.3 Turbulence in the atmosphere of Jupiter as observed by Voyager

Turbulence increases the properties of transport in a flow. For example, the urban
pollution, without atmospheric turbulence, would not be spread (or eliminated) in a
relatively short time. Results from numerical simulations of the concentration of a
passive scalar transported by a turbulent flow is shown in Fig. 1.5. On the other hand,
in laboratory plasmas inside devices designed to achieve thermo-nuclear controlled
fusion, anomalous transport driven by turbulent fluctuations is the main cause for
the destruction of magnetic confinement. Actually, we are far from the achievement
of controlled thermo-nuclear fusion. Turbulence, then, acquires the strange feature
of something to be avoided in some cases, or to be invoked in some other cases.

Turbulence became an experimental science since Osborne Reynolds who, at the
end of nineteenth century, observed and investigated experimentally the transition
from laminar to turbulent flow. He noticed that the flow inside a pipe becomes
turbulent every time a single parameter, a combination of the viscosity coefficient
�, a characteristic velocity U, and length L, would increase. This parameter Re D
UL�=� (� is the mass density of the fluid) is now called the Reynolds number. At
lower Re, say Re � 2300, the flow is regular (that is the motion is laminar), but
when Re increases beyond a certain threshold of the order of Re ' 4000, the flow
becomes turbulent. As Re increases, the transition from a laminar to a turbulent state
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Fig. 1.4 High resolution numerical simulations of 2D MHD turbulence at resolution 2048� 2048
(courtesy by H. Politano). Here, the authors show the current density J.x; y/, at a given time, on
the plane .x; y/

occurs over a range of values of Re with different characteristics and depending on
the details of the experiment. In the limit Re ! 1 the turbulence is said to be in
a fully developed turbulent state. The original pictures by Reynolds are shown in
Fig. 1.6.

In Fig. 1.7 we report a typical sample of turbulence as observed in a fluid flow in
the Earth’s atmosphere. Time evolution of both the longitudinal velocity component
and the temperature is shown. Measurements in the solar wind show the same typical
behavior. A typical sample of turbulence as measured by Helios 2 spacecraft is
shown in Fig. 1.8. A further sample of turbulence, namely the radial component
of the magnetic field measured at the external wall of an experiment in a plasma
device realized for thermonuclear fusion, is shown in Fig. 1.9.

As it is well documented in these figures, the main feature of fully developed
turbulence is the chaotic character of the time behavior. Said differently, this
means that the behavior of the flow is unpredictable. While the details of fully
developed turbulent motions are extremely sensitive to triggering disturbances,
average properties are not. If this was not the case, there would be little significance
in the averaging process. Predictability in turbulence can be recast at a statistical
level. In other words, when we look at two different samples of turbulence, even
collected within the same medium, we can see that details look very different. What
is actually common is a generic stochastic behavior. This means that the global
statistical behavior does not change going from one sample to the other.
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Fig. 1.5 Concentration field c.x; y/, at a given time, on the plane .x; y/. The field has been obtained
by a numerical simulation at resolution 2048�2048. The concentration is treated as a passive scalar,
transported by a turbulent field. Low concentrations are reported in blue while high concentrations
are reported in yellow (courtesy by A. Noullez)

Fig. 1.6 The original pictures taken from Reynolds (1883) which show the transition to a turbulent
state of a flow in a pipe as the Reynolds number increases [(a) and (b) panels]. Panel (c) shows
eddies revealed through the light of an electric spark
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Fig. 1.7 Turbulence as measured in the atmospheric boundary layer. Time evolution of the
longitudinal velocity and temperature are shown in the upper and lower panels, respectively.
The turbulent samples have been collected above a grass-covered forest clearing at 5 m above
the ground surface and at a sampling rate of 56 Hz (Katul et al. 1997)

The idea that fully developed turbulent flows are extremely sensitive to small
perturbations but have statistical properties that are insensitive to perturbations is
of central importance throughout this review. Fluctuations of a certain stochastic
variable are defined here as the difference from the average value ı D  �h i,
where brackets mean some averaging process. Actually, the method of taking
averages in a turbulent flow requires some care. We would like to recall that there
are, at least, three different kinds of averaging procedures that may be used to obtain
statistically-averaged properties of turbulence. The space averaging is limited to
flows that are statistically homogeneous or, at least, approximately homogeneous
over scales larger than those of fluctuations. The ensemble averages are the most
versatile, where average is taken over an ensemble of turbulent flows prepared
under nearly identical external conditions. Of course, these flows are not completely
identical because of the large fluctuations present in turbulence. Each member of the
ensemble is called a realization. The third kind of averaging procedure is the time
average, which is useful only if the turbulence is statistically stationary over time
scales much larger than the time scale of fluctuations. In practice, because of the
convenience offered by locating a probe at a fixed point in space and integrating
in time, experimental results are usually obtained as time averages. The ergodic
theorem (Halmos 1956) assures that time averages coincide with ensemble averages
under some standard conditions (see Sect. 3.2).
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Fig. 1.8 A sample of fast solar wind at distance 0.9 AU measured by the Helios 2 spacecraft. From
top to bottom: speed, number density, temperature, and magnetic field, as a function of time
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Fig. 1.9 Turbulence as measured at the external wall of a device designed for thermonuclear
fusion, namely the RFX in Padua (Italy). The radial component of the magnetic field as a function
of time is shown in the figure (courtesy by V. Antoni)

A different property of turbulence is that all dynamically interesting scales are
excited, that is, energy is spread over all scales. This can be seen in Fig. 1.10 where
we show the magnetic field intensity (see top panel) within a typical solar wind
stream.

In the middle and bottom panels we show fluctuations at two different detailed
scales. In particular, each panel contains an equal number of data points. From top
to bottom, graphs have been produced using 1 h, 81 and 6 s averages, respectively.
The different profiles appear statistically similar, in other words, we can say that
interplanetary magnetic field fluctuations show similarity at all scales, i.e. they look
self-similar.

Since fully developed turbulence involves a hierarchy of scales, a large number
of interacting degrees of freedom are involved. Then, there should be an asymptotic
statistical state of turbulence that is independent on the details of the flow. Hopefully,
this asymptotic state depends, perhaps in a critical way, only on simple statistical
properties like energy spectra, as much as in statistical mechanics equilibrium where
the statistical state is determined by the energy spectrum (Huang 1987). Of course,
we cannot expect that the statistical state would determine the details of individual
realizations, because realizations need not to be given the same weight in different
ensembles with the same low-order statistical properties.

It should be emphasized that there are no firm mathematical arguments for the
existence of an asymptotic statistical state. As we have just seen, reproducible sta-
tistical results are obtained from observations, that is, it is suggested experimentally
and from physical plausibility. Apart from physical plausibility, it is embarrassing
that such an important feature of fully developed turbulence, as the existence of a
statistical stability, should remain unsolved. However, such is the complex nature of
turbulence.
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Fig. 1.10 Magnetic intensity
fluctuations as observed by
Helios 2 in the inner
heliosphere at 0.9 AU, for
different blow-ups. Each
panel contains an equal
number of data points. From
top to bottom, graphs have
been produced using 1 h, 81
and 6 s averages, respectively
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Chapter 2
Equations and Phenomenology

In this section, we present the basic equations that are used to describe charged
fluid flows, and the basic phenomenology of low-frequency turbulence. Readers
interested in examining closely this subject can refer to the very wide literature on
the subject of turbulence in fluid flows, as for example the recent books by, e.g., Pope
(2000), McComb (1990), Frisch (1995) or many others, and the less known literature
on MHD flows (Biskamp 1993; Boyd and Sanderson 2003; Biskamp 2003). In order
to describe a plasma as a continuous medium it will be assumed collisional and, as
a consequence, all quantities will be functions of space r and time t. Apart for the
required quasi-neutrality, the basic assumption of MHD is that fields fluctuate on
the same time and length scale as the plasma variables, say !�H ' 1 and kLH ' 1

(k and ! are, respectively, the wave number and the frequency of the fields, while
�H and LH are the hydrodynamic time and length scale, respectively). Since the
plasma is treated as a single fluid, we have to take the slow rates of ions. A simple
analysis shows also that the electrostatic force and the displacement current can
be neglected in the non-relativistic approximation. Then, MHD equations can be
derived as shown in the following sections.

2.1 The Navier–Stokes Equation and the Reynolds Number

Equations which describe the dynamics of real incompressible fluid flows have
been introduced by Claude-Louis Navier in 1823 and improved by George G.
Stokes. They are nothing but the momentum equation based on Newton’s second
law, which relates the acceleration of a fluid particle1 to the resulting volume and

1A fluid particle is defined as an infinitesimal portion of fluid which moves with the local velocity.
As usual in fluid dynamics, infinitesimal means small with respect to large scale, but large enough
with respect to molecular scales.

© Springer International Publishing Switzerland 2016
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body forces acting on it. These equations have been introduced by Leonhard Euler,
however, the main contribution by Navier was to add a friction forcing term due to
the interactions between fluid layers which move with different speed. This term
results to be proportional to the viscosity coefficients � and � and to the variation
of speed. By defining the velocity field u.r; t/ the kinetic pressure p and the density
�, the equations describing a fluid flow are the continuity equation to describe the
conservation of mass

@�

@t
C .u � r/ � D ��r � u; (2.1)

the equation for the conservation of momentum

�

�
@u
@t

C .u � r/ u
�

D �rp C �r2u C
�
� C �

3

�
r .r � u/ ; (2.2)

and an equation for the conservation of energy

�T

�
@s

@t
C .u � r/s

�
D r � .�rT/C �

2

�
@ui

@xk
C @uk

@xi
� 2

3
ıikr � u

�2
C �.r � u/2;

(2.3)

where s is the entropy per mass unit, T is the temperature, and � is the coefficient of
thermoconduction. An equation of state closes the system of fluid equations.

The above equations considerably simplify if we consider the incompressible
fluid, where � D const: so that we obtain the Navier–Stokes (NS) equation

@u
@t

C .u � r/ u D �
�rp

�

�
C �r2u; (2.4)

where the coefficient � D �=� is the kinematic viscosity. The incompressibility of
the flow translates in a condition on the velocity field, namely the field is divergence-
free, i.e., r � u D 0. This condition eliminates all high-frequency sound waves and
is called the incompressible limit. The non-linear term in equations represents the
convective (or substantial) derivative. Of course, we can add on the right hand side
of this equation all external forces, which eventually act on the fluid parcel.

We use the velocity scale U and the length scale L to define dimensionless
independent variables, namely r D r0L (from which r D r 0=L) and t D t0.L=U/,
and dependent variables u D u0U and p D p0U2�. Then, using these variables in
Eq. (2.4), we obtain

@u0

@t0
C �

u0 � r 0	 u0 D �r 0p0 C Re�1r 02u0: (2.5)

The Reynolds number Re D UL=� is evidently the only parameter of the fluid
flow. This defines a Reynolds number similarity for fluid flows, namely fluids with



2.2 The Coupling Between a Charged Fluid and the Magnetic Field 19

the same value of the Reynolds number behaves in the same way. Looking at
Eq. (2.5) it can be realized that the Reynolds number represents a measure of the
relative strength between the non-linear convective term and the viscous term in
Eq. (2.4). The higher Re, the more important the non-linear term is in the dynamics
of the flow. Turbulence is a genuine result of the non-linear dynamics of fluid flows.

2.2 The Coupling Between a Charged Fluid
and the Magnetic Field

Magnetic fields are ubiquitous in the Universe and are dynamically important. At
high frequencies, kinetic effects are dominant, but at frequencies lower than the
ion cyclotron frequency, the evolution of plasma can be modeled using the MHD
approximation. Furthermore, dissipative phenomena can be neglected at large scales
although their effects will be felt because of non-locality of non-linear interactions.
In the presence of a magnetic field, the Lorentz force j � B, where j is the electric
current density, must be added to the fluid equations, namely

�

�
@u
@t

C .u � r/u
�

D �rpC�r2uC
�
� C �

3

�
r .r � u/� 1

4�
B�.r�B/; (2.6)

and the Joule heat must be added to the equation for energy

�T

�
@s

@t
C .u � r/s

�
D 	ik

@ui

@xk
C �r2T C c2

16�2	
.r � B/2; (2.7)

where 	 is the conductivity of the medium, and we introduced the viscous stress
tensor

	ik D �

�
@ui

@xk
C @uk

@xi
� 2

3
ıikr � u

�
C �ıikr � u: (2.8)

An equation for the magnetic field stems from the Maxwell equations in which
the displacement current is neglected under the assumption that the velocity of the
fluid under consideration is much smaller than the speed of light. Then, using

r � B D 
0j

and the Ohm’s law for a conductor in motion with a speed u in a magnetic field

j D 	 .E C u � B/ ;
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we obtain the induction equation which describes the time evolution of the magnetic
field

@B
@t

D r � .u � B/C .1=	
0/r2B; (2.9)

together with the constraint r �B D 0 (no magnetic monopoles in the classical case).
In the incompressible case, where r � u D 0, MHD equations can be reduced to

@u
@t

C .u � r/ u D �rPtot C �r2u C .b � r/ b (2.10)

and

@b
@t

C .u � r/ b D � .b � r/ u C �r2b: (2.11)

Here Ptot is the total kinetic Pk D nkT plus magnetic pressure Pm D B2=8� , divided
by the constant mass density �. Moreover, we introduced the velocity variables b D
B=

p
4�� and the magnetic diffusivity �.

Similar to the usual Reynolds number, a magnetic Reynolds number Rm can be
defined, namely

Rm D cAL0
�

;

where cA D B0=
p
4�� is the Alfvén speed related to the large-scale L0 magnetic

field B0. This number in most circumstances in astrophysics is very large, but the
ratio of the two Reynolds numbers or, in other words, the magnetic Prandtl number
Pm D �=� can differ widely. In absence of dissipative terms, for each volume V
MHD equations conserve the total energy E.t/

E.t/ D
Z

V
.v2 C b2/ d3r ; (2.12)

the cross-helicity Hc.t/, which represents a measure of the degree of correlations
between velocity and magnetic fields

Hc.t/ D
Z

V
v � b d3r ; (2.13)

and the magnetic helicity H.t/, which represents a measure of the degree of linkage
among magnetic flux tubes

H.t/ D
Z

V
a � b d3r ; (2.14)

where b D r � a.
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The change of variable due to Elsässer (1950), say z˙ D u ˙ b0, where we
explicitly use the background uniform magnetic field b0 D b C cA (at variance with
the bulk velocity, the largest scale magnetic field cannot be eliminated through a
Galilean transformation), leads to the more symmetrical form of the MHD equations
in the incompressible case

@z˙

@t
�.cA � r/ z˙ C�z� � r	 z˙ D �rPtot C�˙r2z˙C��r2z� CF˙; (2.15)

where 2�˙ D � ˙ � are the dissipative coefficients, and F˙ are eventual external
forcing terms. The relations r �z˙ D 0 complete the set of equations. On linearizing
Eq. (2.15) and neglecting both the viscous and the external forcing terms, we have

@z˙

@t
� .cA � r/ z˙ ' 0;

which shows that z�.x � cAt/ describes Alfvénic fluctuations propagating in the
direction of B0, and zC.x C cAt/ describes Alfvénic fluctuations propagating
opposite to B0. Note that MHD equations (2.15) have the same structure as the
Navier–Stokes equation, the main difference stems from the fact that non-linear
coupling happens only between fluctuations propagating in opposite directions. As
we will see, this has a deep influence on turbulence described by MHD equations.

It is worthwhile to remark that in the classical hydrodynamics, dissipative
processes are defined through three coefficients, namely two viscosities and one
thermoconduction coefficient. In the hydromagnetic case the number of coefficients
increases considerably. Apart from few additional electrical coefficients, we have
a large-scale (background) magnetic field B0. This makes the MHD equations
intrinsically anisotropic. Furthermore, the stress tensor (2.8) is deeply modified by
the presence of a magnetic field B0, in that kinetic viscous coefficients must depend
on the magnitude and direction of the magnetic field (Braginskii 1965). This has a
strong influence on the determination of the Reynolds number.

2.3 Scaling Features of the Equations

The scaled Euler equations are the same as Eqs. (2.4) and (2.5), but without the
term proportional to R�1. The scaled variables obtained from the Euler equations
are, then, the same. Thus, scaled variables exhibit scaling similarity, and the
Euler equations are said to be invariant with respect to scale transformations. Said
differently, this means that NS equations (2.4) show scaling properties (Frisch
1995), that is, there exists a class of solutions which are invariant under scaling
transformations. Introducing a length scale `, it is straightforward to verify that
the scaling transformations ` ! �`0 and u ! �hu0 (� is a scaling factor and
h is a scaling index) leave invariant the inviscid NS equation for any scaling
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exponent h, providing P ! �2hP0. When the dissipative term is taken into
account, a characteristic length scale exists, say the dissipative scale `D. From a
phenomenological point of view, this is the length scale where dissipative effects
start to be experienced by the flow. Of course, since � is in general very low, we
expect that `D is very small. Actually, there exists a simple relationship for the
scaling of `D with the Reynolds number, namely `D � LRe�3=4. The larger the
Reynolds number, the smaller the dissipative length scale.

As it is easily verified, ideal MHD equations display similar scaling features.
Say the following scaling transformations u ! �hu0 and B ! �ˇB0 (ˇ here is a
new scaling index different from h), leave the inviscid MHD equations unchanged,
providing P ! �2ˇP0, T ! �2hT 0, and � ! �2.ˇ�h/�0. This means that velocity
and magnetic variables have different scalings, say h 6D ˇ, only when the scaling for
the density is taken into account. In the incompressible case, we cannot distinguish
between scaling laws for velocity and magnetic variables.

2.4 The Non-linear Energy Cascade

The basic properties of turbulence, as derived both from the Navier–Stokes equation
and from phenomenological considerations, is the legacy of A. N. Kolmogorov
(Frisch 1995).2 Phenomenology is based on the old picture by Richardson who
realized that turbulence is made by a collection of eddies at all scales. Energy,
injected at a length scale L, is transferred by non-linear interactions to small scales
where it is dissipated at a characteristic scale `D, the length scale where dissipation
takes place. The main idea is that at very large Reynolds numbers, the injection scale
L and the dissipative scale `D are completely separated. In a stationary situation, the
energy injection rate must be balanced by the energy dissipation rate and must also
be the same as the energy transfer rate " measured at any scale ` within the inertial
range `D � ` � L. From a phenomenological point of view, the energy injection
rate at the scale L is given by �L � U2=�L, where �L is a characteristic time for
the injection energy process, which results to be �L � L=U. At the same scale L
the energy dissipation rate is due to �D � U2=�D, where �D is the characteristic
dissipation time which, from Eq. (2.4), can be estimated to be of the order of
�D � L2=�. As a result, the ratio between the energy injection rate and dissipation
rate is

�L

�D
� �D

�L
� Re ; (2.16)

that is, the energy injection rate at the largest scale L is Re-times the energy
dissipation rate. In other words, in the case of large Reynolds numbers, the fluid

2The translation of the original paper by Kolmogorov (1941) can be found in the book edited by
Kolmogorov (1991).
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system is unable to dissipate the whole energy injected at the scale L. The excess
energy must be dissipated at small scales where the dissipation process is much
more efficient. This is the physical reason for the energy cascade.

Fully developed turbulence involves a hierarchical process, in which many scales
of motion are involved. To look at this phenomenon it is often useful to investigate
the behavior of the Fourier coefficients of the fields. Assuming periodic boundary
conditions the ˛th component of velocity field can be Fourier decomposed as

u˛.r; t/ D
X

k

u˛.k; t/ exp.ik � r/;

where k D 2�n=L and n is a vector of integers. When used in the Navier–
Stokes equation, it is a simple matter to show that the non-linear term becomes
the convolution sum

@u˛.k; t/
@t

D M˛ˇ .k/
X

q

u .k � q; t/uˇ.q; t/; (2.17)

where M˛ˇ .k/ D �ikˇ.ı˛ � k˛kˇ=k2/ (for the moment we disregard the linear
dissipative term).

MHD equations can be written in the same way, say by introducing the Fourier
decomposition for Elsässer variables

z˙̨.r; t/ D
X

k

z˙̨.k; t/ exp.ik � r/;

and using this expression in the MHD equations we obtain an equation which
describes the time evolution of each Fourier mode. However, the divergence-less
condition means that not all Fourier modes are independent, rather k � z˙.k; t/ D 0

means that we can project the Fourier coefficients on two directions which are
mutually orthogonal and orthogonal to the direction of k, that is,

z˙.k; t/ D
2X

aD1
zȧ .k; t/e

.a/.k/; (2.18)

with the constraint that k � e.a/.k/ D 0. In presence of a background magnetic field
we can use the well defined direction B0, so that

e.1/.k/ D ik � B0

jk � B0j I e.2/.k/ D ik
jkj � e.1/.k/:

Note that in the linear approximation where the Elsässer variables represent the
usual MHD modes, z1̇ .k; t/ represent the amplitude of the Alfvén mode while
z2̇ .k; t/ represent the amplitude of the incompressible limit of the magnetosonic
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mode. From MHD equations (2.15) we obtain the following set of equations:

�
@

@t
� i .k � cA/

�
zȧ .k; t/ D

�
L

2�

�3 ıX
pCqDk

2X
b;cD1

Aabc.�k;p;q/zḃ .p; t/z
�
c .q; t/:

(2.19)

The coupling coefficients, which satisfy the symmetry condition Aabc.k;p;q/ D
�Abac.p;k;q/, are defined as

Aabc.�k;p;q/ D 

.ik/? � e.c/.q/

� 

e.a/�.k/ � e.b/.p/

�
;

and the sum in Eq. (2.19) is defined as

ıX
pCqDk

	
�
2�

L

�3X
p

X
q

ık;pCq;

where ık;pCq is the Kronecher’s symbol. Quadratic non-linearities of the original
equations correspond to a convolution term involving wave vectors k, p and q
related by the triangular relation p D k � q. Fourier coefficients locally couple
to generate an energy transfer from any pair of modes p and q to a mode k D pCq.

The pseudo-energies E˙.t/ are defined as

E˙.t/ D 1

2

1

L3

Z
L3

jz˙.r; t/j2d3r D 1

2

X
k

2X
aD1

jzȧ .k; t/j2

and, after some algebra, it can be shown that the non-linear term of Eq. (2.19)
conserves separately E˙.t/. This means that both the total energy E.t/ D EC C E�
and the cross-helicity Ec.t/ D EC � E�, say the correlation between velocity and
magnetic field, are conserved in absence of dissipation and external forcing terms.

In the idealized homogeneous and isotropic situation we can define the pseudo-
energy tensor, which using the incompressibility condition can be written as

Uȧb.k; t/ 	
�

L

2�

�3 ˝
zȧ .k; t/zḃ .k; t/

˛ D
�
ıab � kakb

k2

�
q˙.k/;

brackets being ensemble averages, where q˙.k/ is an arbitrary odd function of the
wave vector k and represents the pseudo-energies spectral density. When integrated
over all wave vectors under the assumption of isotropy

Tr

�Z
d3k Uȧb.k; t/

�
D 2

Z 1

0

E˙.k; t/dk;
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where we introduce the spectral pseudo-energy E˙.k; t/ D 4�k2q˙.k; t/. This last
quantity can be measured, and it is shown that it satisfies the equations

@E˙.k; t/
@t

D T˙.k; t/ � 2�k2E˙.k; t/C F˙.k; t/: (2.20)

We use � D � in order not to worry about coupling between C and � modes in
the dissipative range. Since the non-linear term conserves total pseudo-energies we
have

Z 1

0

dk T˙.k; t/ D 0;

so that, when integrated over all wave vectors, we obtain the energy balance equation
for the total pseudo-energies

dE˙.t/
dt

D
Z 1

0

dk F˙.k; t/ � 2�

Z 1

0

dk k2E˙.k; t/: (2.21)

This last equation simply means that the time variations of pseudo-energies are due
to the difference between the injected power and the dissipated power, so that in a
stationary state

Z 1

0

dk F˙.k; t/ D 2�

Z 1

0

dk k2E˙.k; t/ D �˙:

Looking at Eq. (2.20), we see that the role played by the non-linear term is that
of a redistribution of energy among the various wave vectors. This is the physical
meaning of the non-linear energy cascade of turbulence.

2.5 The Inhomogeneous Case

Equations (2.20) refer to the standard homogeneous and incompressible MHD.
Of course, the solar wind is inhomogeneous and compressible and the energy
transfer equations can be as complicated as we want by modeling all possible
physical effects like, for example, the wind expansion or the inhomogeneous large-
scale magnetic field. Of course, simulations of all turbulent scales requires a
computational effort which is beyond the actual possibilities. A way to overcome
this limitation is to introduce some turbulence modeling of the various physical
effects. For example, a set of equations for the cross-correlation functions of both
Elsässer fluctuations have been developed independently by Marsch and Tu (1989),
Zhou and Matthaeus (1990), Oughton and Matthaeus (1992), and Tu and Marsch
(1990), following Marsch and Mangeney (1987) (see review by Tu and Marsch
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1996), and are based on some rather strong assumptions: (1) a two-scale separation,
and (2) small-scale fluctuations are represented as a kind of stochastic process (Tu
and Marsch 1996). These equations look quite complicated, and just a comparison
based on order-of-magnitude estimates can be made between them and solar wind
observations (Tu and Marsch 1996).

A different approach, introduced by Grappin et al. (1993), is based on the
so-called “expanding-box model” (Grappin and Velli 1996; Liewer et al. 2001;
Hellinger et al. 2005). The model uses transformation of variables to the moving
solar wind frame that expands together with the size of the parcel of plasma as it
propagates outward from the Sun. Despite the model requires several simplifying
assumptions, like for example lateral expansion only for the wave-packets and
constant solar wind speed, as well as a second-order approximation for coordinate
transformation (Liewer et al. 2001) to remain tractable, it provides qualitatively
good description of the solar wind expansions, thus connecting the disparate scales
of the plasma in the various parts of the heliosphere.

2.6 Dynamical System Approach to Turbulence

In the limit of fully developed turbulence, when dissipation goes to zero, an infinite
range of scales are excited, that is, energy lies over all available wave vectors.
Dissipation takes place at a typical dissipation length scale which depends on the
Reynolds number Re through `D � LRe�3=4 (for a Kolmogorov spectrum E.k/ �
k�5=3). In 3D numerical simulations the minimum number of grid points necessary
to obtain information on the fields at these scales is given by N � .L=`D/

3 � Re9=4.
This rough estimate shows that a considerable amount of memory is required when
we want to perform numerical simulations with high Re. At present, typical values
of Reynolds numbers reached in 2D and 3D numerical simulations are of the order
of 104 and 103, respectively. At these values the inertial range spans approximately
one decade or a little more.

Given the situation described above, the question of the best description of
dynamics which results from original equations, using only a small amount of
degree of freedom, becomes a very important issue. This can be achieved by
introducing turbulence models which are investigated using tools of dynamical
system theory (Bohr et al. 1998). Dynamical systems, then, are solutions of minimal
sets of ordinary differential equations that can mimic the gross features of energy
cascade in turbulence. These studies are motivated by the famous Lorenz’s model
(Lorenz 1963) which, containing only three degrees of freedom, simulates the
complex chaotic behavior of turbulent atmospheric flows, becoming a paradigm for
the study of chaotic systems.

The Lorenz’s model has been used as a paradigm as far as the transition to
turbulence is concerned. Actually, since the solar wind is in a state of fully developed
turbulence, the topic of the transition to turbulence is not so close to the main goal
of this review. However, since their importance in the theory of dynamical systems,
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we spend few sentences abut this central topic. Up to the Lorenz’s chaotic model,
studies on the birth of turbulence dealt with linear and, very rarely, with weak
non-linear evolution of external disturbances. The first physical model of laminar-
turbulent transition is due to Landau and it is reported in the fourth volume of the
course on Theoretical Physics (Landau and Lifshitz 1971). According to this model,
as the Reynolds number is increased, the transition is due to a infinite series of Hopf
bifurcations at fixed values of the Reynolds number. Each subsequent bifurcation
adds a new incommensurate frequency to the flow whose dynamics become rapidly
quasi-periodic. Due to the infinite number of degree of freedom involved, the quasi-
periodic dynamics resembles that of a turbulent flow.

The Landau transition scenario is, however, untenable because incommensurate
frequencies cannot exist without coupling between them. Ruelle and Takens (1971)
proposed a new mathematical model, according to which after few, usually three,
Hopf bifurcations the flow becomes suddenly chaotic. In the phase space this state
is characterized by a very intricate attracting subset, a strange attractor. The flow
corresponding to this state is highly irregular and strongly dependent on initial
conditions. This characteristic feature is now known as the butterfly effect and
represents the true definition of deterministic chaos. These authors indicated as an
example for the occurrence of a strange attractor the old strange time behavior of
the Lorenz’s model. The model is a paradigm for the occurrence of turbulence in a
deterministic system, it reads

dx

dt
D Pr.y � x/ ;

dy

dt
D Rx � y � xz ;

dz

dt
D xy � bz ; (2.22)

where x.t/, y.t/, and z.t/ represent the first three modes of a Fourier expansion
of fluid convective equations in the Boussinesq approximation, Pr is the Prandtl
number, b is a geometrical parameter, and R is the ratio between the Rayleigh
number and the critical Rayleigh number for convective motion. The time evolution
of the variables x.t/, y.t/, and z.t/ is reported in Fig. 2.1. A reproduction of the
Lorenz butterfly attractor, namely the projection of the variables on the plane .x; z/
is shown in Fig. 2.2. A few years later, Gollub and Swinney (1975) performed very
sophisticated experiments,3 concluding that the transition to turbulence in a flow
between co-rotating cylinders is described by the Ruelle and Takens (1971) model
rather than by the Landau scenario.

After this discovery, the strange attractor model gained a lot of popularity, thus
stimulating a large number of further studies on the time evolution of non-linear
dynamical systems. An enormous number of papers on chaos rapidly appeared
in literature, quite in all fields of physics, and transition to chaos became a new
topic. Of course, further studies on chaos rapidly lost touch with turbulence studies

3These authors were the first ones to use physical technologies and methodologies to investigate
turbulent flows from an experimental point of view. Before them, experimental studies on
turbulence were motivated mainly by engineering aspects.
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Fig. 2.1 Time evolution of the variables x.t/, y.t/, and z.t/ in the Lorenz’s model [see Eq. (2.22)].
This figure has been obtained by using the parameters Pr D 10, b D 8=3, and R D 28

Fig. 2.2 The Lorenz butterfly attractor, namely the time behavior of the variables z.t/ vs. x.t/ as
obtained from the Lorenz’s model [see Eq. (2.22)]. This figure has been obtained by using the
parameters Pr D 10, b D 8=3, and R D 28
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and turbulence, as reported by Feynman et al. (1977), still remains . . . the last
great unsolved problem of the classical physics. Furthermore, we like to cite recent
theoretical efforts made by Chian et al. (1998, 2003) related to the onset of Alfvénic
turbulence. These authors, numerically solved the derivative non-linear Schrödinger
equation (Mjølhus 1976; Ghosh and Papadopoulos 1987) which governs the spatio-
temporal dynamics of non-linear Alfvén waves, and found that Alfvénic intermittent
turbulence is characterized by strange attractors. Note that, the physics involved
in the derivative non-linear Schrödinger equation, and in particular the spatio-
temporal dynamics of non-linear Alfvén waves, cannot be described by the usual
incompressible MHD equations. Rather dispersive effects are required. At variance
with the usual MHD, this can be satisfied by requiring that the effect of ion inertia
be taken into account. This results in a generalized Ohm’s law by including a .j

¯
�B

¯
/-

term, which represents the compressible Hall correction to MHD, say the so-called
compressible Hall-MHD model.

In this context turbulence can evolve via two distinct routes: Pomeau–Manneville
intermittency (Pomeau and Manneville 1980) and crisis-induced intermittency (Ott
and Sommerer 1994). Both types of chaotic transitions follow episodic switching
between different temporal behaviors. In one case (Pomeau–Manneville) the behav-
ior of the magnetic fluctuations evolve from nearly periodic to chaotic while, in the
other case the behavior intermittently assumes weakly chaotic or strongly chaotic
features.

2.7 Shell Models for Turbulence Cascade

Since numerical simulations, in some cases, cannot be used, simple dynamical
systems can be introduced to investigate, for example, statistical properties of
turbulent flows which can be compared with observations. These models, which try
to mimic the gross features of the time evolution of spectral Navier–Stokes or MHD
equations, are often called “shell models” or “discrete cascade models”. Starting
from the old papers by Siggia (1977) different shell models have been introduced
in literature for 3D fluid turbulence (Biferale 2003). MHD shell models have been
introduced to describe the MHD turbulent cascade (Plunian et al. 2012), starting
from the paper by Gloaguen et al. (1985).

The most used shell model is usually quoted in literature as the GOY model,
and has been introduced some time ago by Gledzer (1973) and by Ohkitani and
Yamada (1989). Apart from the first MHD shell model (Gloaguen et al. 1985),
further models, like those by Frick and Sokoloff (1998) and Giuliani and Carbone
(1998) have been introduced and investigated in detail. In particular, the latter ones
represent the counterpart of the hydrodynamic GOY model, that is they coincide
with the usual GOY model when the magnetic variables are set to zero.
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In the following, we will refer to the MHD shell model as the FSGC model. The
shell model can be built up through four different steps:

(a) Introduce discrete wave vectors:
As a first step we divide the wave vector space in a discrete number of shells
whose radii grow according to a power kn D k0�n, where � > 1 is the inter-shell
ratio, k0 is the fundamental wave vector related to the largest available length
scale L, and n D 1; 2; : : : ;N.

(b) Assign to each shell discrete scalar variables:
Each shell is assigned two or more complex scalar variables un.t/ and bn.t/,
or Elsässer variables Zṅ .t/ D un ˙ bn.t/. These variables describe the chaotic
dynamics of modes in the shell of wave vectors between kn and knC1. It is worth
noting that the discrete variable, mimicking the average behavior of Fourier
modes within each shell, represents characteristic fluctuations across eddies at
the scale `n � k�1

n . That is, the fields have the same scalings as field differences,
for example Zṅ � jZ˙.x C `n/ � Z˙.x/j � `h

n in fully developed turbulence.
In this way, the possibility to describe spatial behavior within the model is
ruled out. We can only get, from a dynamical shell model, time series for shell
variables at a given kn, and we loose the fact that turbulence is a typical temporal
and spatial complex phenomenon.

(c) Introduce a dynamical model which describes non-linear evolution:
Looking at Eq. (2.19) a model must have quadratic non-linearities among
opposite variables Zṅ .t/ and Z�

n .t/, and must couple different shells with free
coupling coefficients.

(d) Fix as much as possible the coupling coefficients:
This last step is not standard. A numerical investigation of the model might
require the scanning of the properties of the system when all coefficients are
varied. Coupling coefficients can be fixed by imposing the conservation laws of
the original equations, namely the total pseudo-energies

E˙.t/ D 1

2

X
n

ˇ̌
Zṅ

ˇ̌2
;

that means the conservation of both the total energy and the cross-helicity:

E.t/ D 1

2

X
n

junj2 C jbnj2 I Hc.t/ D
X

n

2<e
�
unb�

n

	
;

where <e indicates the real part of the product unb�
n . As we said before,

shell models cannot describe spatial geometry of non-linear interactions in
turbulence, so that we loose the possibility of distinguishing between two-
dimensional and three-dimensional turbulent behavior. The distinction is, how-
ever, of primary importance, for example as far as the dynamo effect is
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concerned in MHD. However, there is a third invariant which we can impose,
namely

H.t/ D
X

n

.�1/n jbnj2
k˛n

; (2.23)

which can be dimensionally identified as the magnetic helicity when ˛ D 1, so
that the shell model so obtained is able to mimic a kind of 3D MHD turbulence
(Giuliani and Carbone 1998).

After some algebra, taking into account both the dissipative and forcing terms,
FSGC model can be written as

dZṅ

dt
D ikn˚

˙�
n C � ˙ 


2
k2nZC

n C � � 


2
k2nZ�

n C Fṅ ; (2.24)

where

˚ṅ D
�
2 � a � c

2

�
ZṅC2Z�

nC1 C
�

a C c

2

�
ZṅC1Z�

nC2 C

C
�c � a

2�

�
Zṅ�1Z�

nC1 �
�

a C c

2�

�
Z�

n�1ZṅC1 C

�
�c � a

2�2

�
Z�

n�2Zṅ�1 �
�
2 � a � c

2�2

�
Z�

n�1Zṅ�2; (2.25)

where4 � D 2, a D 1=2, and c D 1=3. In the following, we will consider only the
case where the dissipative coefficients are the same, i.e., � D 
.

2.8 The Phenomenology of Fully Developed Turbulence:
Fluid-Like Case

Here we present the phenomenology of fully developed turbulence, as far as the
scaling properties are concerned. In this way we are able to recover a universal form
for the spectral pseudo-energy in the stationary case. In real space a common tool
to investigate statistical properties of turbulence is represented by field increments
�z˙̀.r/ D 


z˙.r C `/� z˙.r/
� � e, being e the longitudinal direction. These

4We can use a different definition for the third invariant H.t/, for example a quantity positive
defined, without the term .�1/n and with ˛ D 2. This can be identified as the surrogate of the
square of the vector potential, thus investigating a kind of 2D MHD. In this case, we obtain a shell
model with � D 2, a D 5=4, and c D �1=3. However, this model does not reproduce the inverse
cascade of the square of magnetic potential observed in the true 2D MHD equations.
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stochastic quantities represent fluctuations5 across eddies at the scale `. The scaling
invariance of MHD equations (cf. Sect. 2.3), from a phenomenological point of view,
implies that we expect solutions where �z˙̀ � `h. All the statistical properties of
the field depend only on the scale `, on the mean pseudo-energy dissipation rates "˙,
and on the viscosity �. Also, "˙ is supposed to be the common value of the injection,
transfer and dissipation rates. Moreover, the dependence on the viscosity only arises
at small scales, near the bottom of the inertial range. Under these assumptions the

typical pseudo-energy dissipation rate per unit mass scales as "˙ � �
�z˙̀	2 =t˙̀.

The time t˙̀ associated with the scale ` is the typical time needed for the energy to
be transferred on a smaller scale, say the eddy turnover time t˙̀ � `=�z�

` , so that

"˙ � �
�z˙̀	2 �z�=`:

When we conjecture that both�z˙ fluctuations have the same scaling laws, namely
�z˙ � `h, we recover the Kolmogorov scaling for the field increments

�z˙̀ � ."˙/1=3`1=3: (2.26)

Usually, we refer to this scaling as the K41 model (Kolmogorov 1941, 1991; Frisch
1995). Note that, since from dimensional considerations the scaling of the energy
transfer rate should be "˙ � `1�3h, h D 1=3 is the choice to guarantee the absence
of scaling for "˙.

In the real space turbulence properties can be described using either the prob-
ability distribution functions (PDFs hereafter) of increments, or the longitudinal
structure functions, which represents nothing but the higher order moments of the
field. Disregarding the magnetic field, in a purely fully developed fluid turbulence,
this is defined as S.p/

` D h�up
`i. These quantities, in the inertial range, behave as a

power law S. p/
` � `�p , so that it is interesting to compute the set of scaling exponent

�p. Using, from a phenomenological point of view, the scaling for field increments

[see Eq. (2.26)], it is straightforward to compute the scaling laws S. p/
` � `p=3. Then

�p D p=3 results to be a linear function of the order p.
When we assume the scaling law �z˙̀ � `h, we can compute the high-order

moments of the structure functions for increments of the Elsässer variables, namely˝
.�z˙̀/p

˛ � `�p , thus obtaining a linear scaling �p D p=3, similar to usual fluid
flows. For Gaussianly distributed fields, a particular role is played by the second-
order moment, because all moments can be computed from S.2/` . It is straightforward
to translate the dimensional analysis results to Fourier spectra. The spectral property

5We have already defined fluctuations of a field as the difference between the field itself and
its average value. This quantity has been defined as ı . Here, the differences � ` of the field
separated by a distance ` represents characteristic fluctuations at the scale `, say characteristic
fluctuations of the field across specific structures (eddies) that are present at that scale. The reader
can realize the difference between both definitions.
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of the field can be recovered from S.2/` , say in the homogeneous and isotropic case

S.2/` D 4

Z 1

0

E.k/

�
1 � sin k`

k`

�
dk;

where k � 1=` is the wave vector, so that in the inertial range where Eq. (2.42) is
verified

E.k/ � "2=3k�5=3: (2.27)

The Kolmogorov spectrum [see Eq. (2.27)] is largely observed in all experimental
investigations of turbulence, and is considered as the main result of the K41
phenomenology of turbulence (Frisch 1995). However, spectral analysis does not
provide a complete description of the statistical properties of the field, unless this has
Gaussian properties. The same considerations can be made for the spectral pseudo-

energies E˙.k/, which are related to the second order structure functions
D

�z˙̀�2E.

2.9 The Phenomenology of Fully Developed Turbulence:
Magnetically-Dominated Case

The phenomenology of the magnetically-dominated case has been investigated by
Iroshnikov (1963) and Kraichnan (1965), then developed by Dobrowolny et al.
(1980) to tentatively explain the occurrence of the observed Alfvénic turbulence,
and finally by Carbone (1993) and Biskamp (1993) to get scaling laws for structure
functions. It is based on the Alfvén effect, that is, the decorrelation of interacting
eddies, which can be explained phenomenologically as follows. Since non-linear
interactions happen only between opposite propagating fluctuations, they are slowed
down (with respect to the fluid-like case) by the sweeping of the fluctuations across
each other. This means that "˙ � �

�z˙̀	2 =T˙̀ but the characteristic time T˙̀
required to efficiently transfer energy from an eddy to another eddy at smaller
scales cannot be the eddy-turnover time, rather it is increased by a factor t˙̀=tA
(tA � `=cA < t˙̀ is the Alfvén time), so that T˙̀ � .t˙̀/2=tA. Then, immediately

"˙ � Œ�z˙̀�2Œ�z�
` �
2

`cA
:

This means that both ˙ modes are transferred at the same rate to small scales,
namely �C � �� � �, and this is the conclusion drawn by Dobrowolny et al.
(1980). In reality, this is not fully correct, namely the Alfvén effect yields to the fact
that energy transfer rates have the same scaling laws for ˙ modes but, we cannot say
anything about the amplitudes of "C and "� (Carbone 1993). Using the usual scaling
law for fluctuations, it can be shown that the scaling behavior holds " ! �1�4h"0.
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Then, when the energy transfer rate is constant, we found a scaling law different
from that of Kolmogorov and, in particular,

�z˙̀ � ."cA/
1=4`1=4: (2.28)

Using this phenomenology the high-order moments of fluctuations are given by
S.p/
` � `p=4. Even in this case, �p D p=4 results to be a linear function of the order

p. The pseudo-energy spectrum can be easily found to be

E˙.k/ � ."cA/
1=2k�3=2: (2.29)

This is the Iroshnikov–Kraichnan spectrum. However, in a situation in which there
is a balance between the linear Alfvén time scale or wave period, and the non-
linear time scale needed to transfer energy to smaller scales, the energy cascade is
indicated as critically balanced (Goldreich and Sridhar 1995). In these conditions,
it can be shown that the power spectrum P.k/ would scale as f �5=3 when the angle
�B between the mean field direction and the flow direction is 90ı while, the same
scaling would follow f �2 in case �B D 0ı and the spectrum would also have a
smaller energy content than in the other case.

2.10 Some Exact Relationships

So far, we have been discussing about the inertial range of turbulence. What this
means from a heuristic point of view is somewhat clear, but when we try to identify
the inertial range from the spectral properties of turbulence, in general the best we
can do is to identify the inertial range with the intermediate range of scales where
a Kolmogorov’s spectrum is observed. The often used identity inertial range '
intermediate range, is somewhat arbitrary. In this regard, a very important result
on turbulence, due to Kolmogorov (1941, 1991), is the so-called “4/5-law” which,
being obtained from the Navier–Stokes equation, is “. . . one of the most important
results in fully developed turbulence because it is both exact and nontrivial” (cf.
Frisch 1995). As a matter of fact, Kolmogorov analytically derived the following
exact relation for the third order structure function of velocity fluctuations:

˝
.�vk.r; `//3

˛ D �4
5
�` ; (2.30)

where r is the sampling direction, ` is the corresponding scale, and � is the mean
energy dissipation per unit mass, assumed to be finite and nonvanishing.

This important relation can be obtained in a more general framework from MHD
equations. A Yaglom’s relation for MHD can be obtained using the analogy of MHD
equations with a transport equation, so that we can obtain a relation similar to the
Yaglom’s equation for the transport of a passive quantity (Monin and Yaglom 1975).
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Using the above analogy, the Yaglom’s relation has been extended some time ago
to MHD turbulence by Chandrasekhar (1967), and recently it has been revised by
Politano et al. (1998) and Politano and Pouquet (1998) in the framework of solar
wind turbulence. In the following section we report an alternative and more general
derivation of the Yaglom’s law using structure functions (Sorriso-Valvo et al. 2007;
Carbone et al. 2009a).

2.11 Yaglom’s Law for MHD Turbulence

To obtain a general law we start from the incompressible MHD equations. If we
write twice the MHD equations for two different and independent points xi and
x0

i D xi C`i, by substraction we obtain an equation for the vector differences�zi̇ D
.zi̇ /

0 � zi̇ . Using the hypothesis of independence of points x0
i and xi with respect to

derivatives, namely @i.zj̇ /
0 D @0

izj̇ D 0 (where @0
i represents derivative with respect

to x0
i), we get

@t�zi̇ C�z�̨@0̨ �zi̇ C z�̨.@0̨ C @˛/�zi̇ D �.@0
i C @i/�P C

C.@20̨ C @2˛/


�˙�zC

i C ���z�
i

�
(2.31)

(�P D P0
tot � Ptot). We look for an equation for the second-order correlation tensor

h�zi̇ �zj̇ i related to pseudo-energies. Actually the more general thing should be

to look for a mixed tensor, namely h�zi̇ �z�
j i, taking into account not only both

pseudo-energies but also the time evolution of the mixed correlations hzC
i z�

j i and

hz�
i zC

j i. However, using the DIA closure by Kraichnan, it is possible to show that
these elements are in general poorly correlated (Veltri 1980). Since we are interested
in the energy cascade, we limit ourselves to the most interesting equation that
describes correlations about Alfvénic fluctuations of the same sign. To obtain the
equations for pseudo-energies we multiply Eq. (2.31) by �zj̇ , then by averaging
we get

@th�zi̇ �zj̇ i C @

@`˛
h�Z�̨.�zi̇ �zj̇ /i D ��ij �˘ij C 2�

@2

@`2˛
h�zi̇ �zj̇ i

�4
3

@

@`˛
.�i̇j `˛/; (2.32)

where we used the hypothesis of local homogeneity and incompressibility. In
Eq. (2.32) we defined the average dissipation tensor

�i̇j D �h.@˛Zi̇ /.@˛Zj̇ /i: (2.33)
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The first and second term on the r.h.s. of the Eq. (2.32) represent respectively a
tensor related to large-scales inhomogeneities

�ij D hz�̨.@0̨ C @˛/.�zi̇ �zj̇ /i (2.34)

and the tensor related to the pressure term

˘ij D h�zj̇ .@
0
i C @i/�P C�zi̇ .@

0
j C @j/�Pi: (2.35)

Furthermore, In order not to worry about couplings between Elsässer variables in
the dissipative terms, we make the usual simplifying assumption that kinematic
viscosity is equal to magnetic diffusivity, that is �˙ D �� D �. Equation (2.32) is an
exact equation for anisotropic MHD equations that links the second-order complete
tensor to the third-order mixed tensor via the average dissipation rate tensor. Using
the hypothesis of global homogeneity the term �ij D 0, while assuming local
isotropy˘ij D 0. The equation for the trace of the tensor can be written as

@thj�zi̇ j2i C @

@`˛
h�Z�̨j�zi̇ j2i D 2�

@2

@`˛
hj�zi̇ j2i � 4

3

@

@`˛
.�i̇i `˛/; (2.36)

where the various quantities depends on the vector `˛ . Moreover, by considering
only the trace we ruled out the possibility to investigate anisotropies related to
different orientations of vectors within the second-order moment. It is worthwhile to
remark here that only the diagonal elements of the dissipation rate tensor, namely �i̇i
are positive defined while, in general, the off-diagonal elements �i̇j are not positive.
For a stationary state the Eq. (2.36) can be written as the divergenceless condition
of a quantity involving the third-order correlations and the dissipation rates

@

@`˛

�
h�z�̨j�zi̇ j2i � 2�

@

@`˛
hj�zi̇ j2i � 4

3
.�i̇i `˛/

�
D 0; (2.37)

from which we can obtain the Yaglom’s relation by projecting Eq. (2.37) along the
longitudinal `˛ D `er direction. This operation involves the assumption that the
flow is locally isotropic, that is fields depends locally only on the separation `, so
that

�
2

`
C @

@`

��
h�z�

` j�zi̇ j2i � 2�
@

@`
hj�zi̇ j2i C 4

3
�i̇i `

�
D 0: (2.38)

The only solution that is compatible with the absence of singularity in the limit
` ! 0 is

h�z�
` j�zi̇ j2i D 2�

@

@`
hj�zi̇ j2i � 4

3
�i̇i `; (2.39)
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which reduces to the Yaglom’s law for MHD turbulence as obtained by Politano and
Pouquet (1998) in the inertial range when � ! 0

Y˙̀ 	 h�z�
` j�zi̇ j2i D �4

3
�i̇i `: (2.40)

Finally, in the fluid-like case where zC
i D z�

i D vi we obtain the usual Yaglom’s
law for fluid flows

h�v`j�vij2i D �4
3
.�`/ ; (2.41)

which in the isotropic case, where h�v3`i D 3h�v`�v2y i D 3h�v`�v2z i (Monin and
Yaglom 1975), immediately reduces to the Kolmogorov’s law

h�v3`i D �4
5
�` (2.42)

(the separation ` has been taken along the streamwise x-direction).
The relations we obtained can be used, or better, in a certain sense they might

be used, as a formal definition of inertial range. Since they are exact relationships
derived from Navier–Stokes and MHD equations under usual hypotheses, they
represent a kind of “zeroth-order” conditions on experimental and theoretical
analysis of the inertial range properties of turbulence. It is worthwhile to remark
the two main properties of the Yaglom’s laws. The first one is the fact that, as it
clearly appears from the Kolmogorov’s relation (Kolmogorov 1941), the third-order
moment of the velocity fluctuations is different from zero. This means that some
non-Gaussian features must be at work, or, which is the same, some hidden phase
correlations. Turbulence is something more complicated than random fluctuations
with a certain slope for the spectral density. The second feature is the minus sign
which appears in the various relations. This is essential when the sign of the energy
cascade must be inferred from the Yaglom relations, the negative asymmetry being
a signature of a direct cascade towards smaller scales. Note that, Eq. (2.40) has been
obtained in the limit of zero viscosity assuming that the pseudo-energy dissipation
rates �i̇i remain finite in this limit. In usual fluid flows the analogous hypothesis,
namely � remains finite in the limit � ! 0, is an experimental evidence, confirmed
by experiments in different conditions (Frisch 1995). In MHD turbulent flows this
remains a conjecture, confirmed only by high resolution numerical simulations
(Mininni and Pouquet 2009).

From Eq. (2.37), by defining�Zi̇ D �vi ˙�bi we immediately obtain the two
equations

@

@`˛

�
h�v˛�Ei � 2h�b˛�Ci � 2�

@

@`˛
h�Ei � 4

3
.�E`˛/

�
D 0 (2.43)

@

@`˛

�
�h�b˛�Ei C 2h�v˛�Ci � 4�

@

@`˛
h�Ci � 4

3
.�C`˛/

�
D 0; (2.44)
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where we defined the energy fluctuations�E D j�vij2 C j�bij2 and the correlation
fluctuations �C D �vi�bi. In the same way the quantities �E D �

�C
ii C ��

ii

	
=2

and �C D �
�C

ii � ��
ii

	
=2 represent the energy and correlation dissipation rate,

respectively. By projecting once more on the longitudinal direction, and assuming
vanishing viscosity, we obtain the Yaglom’s law written in terms of velocity and
magnetic fluctuations

h�v`�Ei � 2h�b`�Ci D �4
3
�E` (2.45)

�h�b`�Ei C 2h�v`�Ci D �4
3
�C`: (2.46)

2.11.1 Density-Mediated Elsässer Variables and Yaglom’s Law

Relation (2.40), which is of general validity within MHD turbulence, requires local
characteristics of the turbulent fluid flow which can be not always satisfied in the
solar wind flow, namely, large-scale homogeneity, isotropy, and incompressibility.
Density fluctuations in solar wind have a low amplitude, so that nearly incompress-
ible MHD framework is usually considered (Montgomery et al. 1987; Matthaeus
and Brown 1988; Zank and Matthaeus 1993; Matthaeus et al. 1991; Bavassano and
Bruno 1995). However, compressible fluctuations are observed, typically convected
structures characterized by anticorrelation between kinetic pressure and magnetic
pressure (Tu and Marsch 1994). Properties and interaction of the basic MHD modes
in the compressive case have also been considered (Goldreich and Sridhar 1995;
Cho and Lazarian 2002).

A first attempt to include density fluctuations in the framework of fluid turbulence
was due to Lighthill (1955). He pointed out that, in a compressible energy cascade,
the mean energy transfer rate per unit volume �V � �v3=` should be constant in
a statistical sense (v being the characteristic velocity fluctuations at the scale `),
thus obtaining the scaling relation v � .`=�/1=3. Fluctuations of a density-weighted
velocity field u 	 �1=3v should thus follow the usual Kolmogorov scaling u3 �
`. The same phenomenological arguments can be introduced in MHD turbulence
(Carbone et al. 2009b) by considering the pseudoenergy dissipation rates per unit
volume �V̇ D ��i̇i and introducing density-weighted Elsässer fields, defined as
w˙ 	 �1=3z˙. A relation equivalent to the Yaglom-type relation (2.40)

W˙̀ 	 h�i�1h�w�
` j�wi̇ j2i D C�i̇i ` (2.47)

(C is some constant assumed to be of the order of unit) should then hold
for the density-weighted increments �w˙. Relation W˙̀ reduces to Y˙̀ in the
case of constant density, allowing for comparison between the Yaglom’s law for
incompressible MHD flows and their compressible counterpart. Despite its simple
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phenomenological derivation, the introduction of the density fluctuations in the
Yaglom-type scaling (2.47) should describe the turbulent cascade for compressible
fluid (or magnetofluid) turbulence. Even if the modified Yaglom’s law (2.47) is not
an exact relation as (2.40), being obtained from phenomenological considerations,
the law for the velocity field in a compressible fluid flow has been observed in
numerical simulations, the value of the constant C results negative and of the order
of unity (Padoan et al. 2007; Kowal and Lazarian 2007).

2.11.2 Yaglom’s Law in the Shell Model for MHD Turbulence

As far as the shell model is concerned, the existence of a cascade towards small
scales is expressed by an exact relation, which is equivalent to Eq. (2.41). Using
Eq. (2.24), the scale-by-scale pseudo-energy budget is given by

d

dt

X
n

jZṅ j2 D knIm


Tṅ

� �
X

n

2�k2njZṅ j2 C
X

n

2<e


Zṅ F˙�

n

�
:

The second and third terms on the right hand side represent, respectively, the rate
of pseudo-energy dissipation and the rate of pseudo-energy injection. The first term
represents the flux of pseudo-energy along the wave vectors, responsible for the
redistribution of pseudo-energies on the wave vectors, and is given by

Tṅ D .a C c/Zṅ ZṅC1Z�
nC2 C

�
2 � a � c

�

�
Zṅ�1ZṅC1Z�

n C

C.2 � a � c/Zṅ ZṅC2Z�
nC1 C

�c � a

�

�
Z/Zṅ ZṅC1Z�

n�1: (2.48)

Using the same assumptions as before, namely: (1) the forcing terms act only on
the largest scales, (2) the system can reach a statistically stationary state, and (3) in
the limit of fully developed turbulence, � ! 0, the mean pseudo-energy dissipation
rates tend to finite positive limits �˙, it can be found that

hTṅ i D ��˙k�1
n : (2.49)

This is an exact relation which is valid in the inertial range of turbulence. Even in
this case it can be used as an operative definition of the inertial range in the shell
model, that is, the inertial range of the energy cascade in the shell model is defined
as the range of scales kn, where the law from Eq. (2.49) is verified.
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Chapter 3
Early Observations of MHD Turbulence

Here we briefly present the history, since the first Mariner missions during the
1960s, of the main steps towards the completion of an observational picture of
turbulence in interplanetary space. This retrospective look at all the advances made
in this field shows that space flights allowed us to discover a very large laboratory in
space. As a matter of fact, in a wind tunnel we deal with characteristic dimensions
of the order of L � 10m and probes of the size of about d ' 1 cm. In space,
L ' 108 m, while “probes” (say spacecrafts) are about d ' 5m. Thus, space
provides a much larger laboratory but most of the available data derive from
single point measurements. The ESA-Cluster project at the beginning of the past
decade and, recently, the NASA-MMS project are the only space missions that
allow multiple measurements, i.e. 3D measurements. In this context, after a short
definition of the main reference systems in which data is provided, it is useful
to recall the basic statistical concepts and numerical tools used to describe MHD
turbulence in space.

3.1 Interplanetary Data Reference Systems

Magnetic field and plasma data are provided, usually, in two main reference
systems: RTN and SE. The RTN system (see top part of Fig. 3.1) has the R axis along
the radial direction, positive from the Sun to the s/c, the T component perpendicular
to the plane formed by the rotation axis of the Sun ˝ and the radial direction, i.e.,
T D ˝ � R, and the N component resulting from the vector product N D R � T.

The Solar Ecliptic reference system SE, is shown (see bottom part of Fig. 3.1) in
the configuration used for Helios magnetic field data, i.e., s/c centered, with the X-
axis positive towards the Sun, and the Y-axis lying in the ecliptic plane and oriented
opposite to the orbital motion. The third component Z is defined as Z D X � Y.

© Springer International Publishing Switzerland 2016
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Fig. 3.1 The top reference system is the RTN while the one at the bottom is the Solar Ecliptic
reference system. This last one is shown in the configuration used for Helios magnetic field data,
with the X-axis positive towards the Sun

However, solar wind velocity is given in the Sun-centered SE system, which is
obtained from the previous one after a rotation of 180ı around the Z-axis.

Particular studies, especially those focussing on spectral anisotropy, are more
meaningful if the data to be analyzed is rotated with respect to the reference system
in which it is originally provided.

Let us suppose to have magnetic field data sampled in the RTN reference system.
If the large-scale mean magnetic field is oriented in the Œx; y; z� direction, we will
look for a new reference system within the RTN reference system with the x-axis
oriented along the mean field and the other two axes lying on a plane perpendicular
to this direction.

Thus, we firstly determine the direction of the unit vector parallel to the mean
field, normalizing its components

ex1 D Bx=jBj;
ex2 D By=jBj;
ex3 D Bz=jBj;
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Fig. 3.2 Mean field reference system

so that Oe0
x.ex1; ex2; ex3/ is the orientation of the first axis, parallel to the ambient field.

As second direction it is convenient to choose the radial direction in RTN, which is
roughly the direction of the solar wind flow, OeR.1; 0; 0/. At this point, we compute a
new direction perpendicular to the plane OeR � Oex

Oe0
z.ez1; ez2; ez3/ D Oe0

x � OeR:

Consequently, the third direction will be

Oe0
y.ey1; ey2; ey3/ D Oe0

z � Oe0
x:

Now, we can rotate our data into the new reference system (Fig. 3.2). Data
indicated as B.x; y; z/ in the old reference system, will become B

0

.x
0

; y
0

; z
0

/ in the
new reference system. The transformation is obtained applying the rotation matrix A

A D
0
@ ex1 ex2 ex3

ey1 ey2 ey3

ez1 ez2 ez3

1
A

to the vector B, i.e., B
0 D AB.

3.2 Basic Concepts and Numerical Tools to Analyze MHD
Turbulence

No matter where we are in the solar wind, short scale data always look rather
random.

This aspect introduces the problem of determining the time stationarity of the
dataset. The concept of stationarity is related to ensembled averaged properties of
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a random process. The random process is the collection of the N samples x.t/, it is
called ensemble and indicated as fx.t/g.

Properties of a random process fx.t/g can be described by averaging over the
collection of all the N possible sample functions x.t/ generated by the process. So,
chosen a begin time t1, we can define the mean value 
x and the autocorrelation
function Rx, i.e., the first and the joint moment:


x.t1/ D lim
N�!1

NX
kD1

xk.t1/; (3.1)

Rx.t1; t1 C �/ D lim
N�!1

NX
kD1

xk.t1/xk.t1 C �/: (3.2)

In case 
x.t1/ and Rx.t1; t1C�/ do not vary as time t1 varies, the sample function
x.t/ is said to be weakly stationary, i.e.,


x.t1/ D 
x; (3.3)

Rx.t1; t1 C �/ D Rx.�/: (3.4)

Strong stationarity would require all the moments and joint moments to be
time independent. However, if x.t/ is normally distributed, the concept of weak
stationarity naturally extends to strong stationarity.

Generally, it is possible to describe the properties of fx.t/g simply computing
time-averages over just one x.t/. If the random process is stationary and 
x.k/ and
Rx.�; k/ do not vary when computed over different sample functions, the process
is said ergodic. This is a great advantage for data analysts, especially for those
who deals with data from s/c, since it means that properties of stationary random
phenomena can be properly measured from a single time history. In other words, we
can write:


x.k/ D 
x; (3.5)

Rx.�; k/ D Rx.�/: (3.6)

Thus, the concept of stationarity, which is related to ensembled averaged
properties, can now be transferred to single time history records whenever properties
computed over a short time interval do not vary from one interval to the next more
than the variation expected for normal dispersion.

Fortunately, Matthaeus and Goldstein (1982b) established that interplanetary
magnetic field often behaves as a stationary and ergodic function of time, if
coherent and organized structures are not included in the dataset. Actually, they
proved the weak stationarity of the data, i.e., the stationarity of the average and
two-point correlation function. In particular, they found that the average and the
autocorrelation function computed within a subinterval would converge to the values
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estimated from the whole interval after a few correlation times tc. More recent
analysis (Perri and Balogh 2010) extended the above studies to different parameter
ranges by using Ulysses data, showing that the stationarity assumption in the inertial
range of turbulence on timescales of 10 min to 1 day is reasonably satisfied in fast
and uniform solar wind flows, but that in mixed, interacting fast, and slow solar
wind streams the assumption is frequently only marginally valid. If our time series
approximates a Markov process (a process whose relation to the past does not extend
beyond the immediately preceding observation), its autocorrelation function can be
shown (Doob 1953) to approximate a simple exponential:

R.t/ D R.0/e� t
tc (3.7)

from which we obtain the definition given by Batchelor (1970):

tc D
Z 1

0

R.t/

R.0/
dt: (3.8)

Just to have an idea of the correlation time of magnetic field fluctuations, we show
in Fig. 3.3 magnetic field correlation time computed at 1 AU using Voyager 2’s data.

In this case, using the above definition, tc ' 3:2 � 103 s.

Fig. 3.3 Magnetic field auto-correlation function at 1 AU. Image reproduced by permission from
Matthaeus and Goldstein (1982a), copyright by AGU
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3.2.1 Correlation Length and Reynolds Number in the Solar
Wind

Properties of solar wind fluctuations have been widely studied in the past, relying
on the “frozen-in approximation” Taylor (1938). The hypothesis at the basis of
Taylor’s approximation is that, since large integral scales in turbulence contain most
of the energy, the advection due to the smallest turbulent scales fluctuations can be
disregarded and, consequently, the advection of a turbulent field past an observer
in a fixed location is considered solely due to the larger scales. In experimental
physics, this hypothesis allows time series measured at a single point in space
to be interpreted as spatial variations in the mean flow being swept past the
observer. However, the canonical way to establish the presence of spatial structures
relies in the computation of two-point single time measurements. Only recently,
the simultaneous presence of several spacecraft sampling solar wind parameters
allowed to correlate simultaneous in-situ observations in two different observing
locations in space. Matthaeus et al. (2005) and Weygand et al. (2007) firstly
evaluated the two-point correlation function using simultaneous measurements of
interplanetary magnetic field from the Wind, ACE, and Cluster spacecraft. Their
technique allowed to compute for the first time fundamental turbulence parameters
previously determined from single spacecraft measurements. In particular, these
authors evaluated the correlation scale �C and the Taylor microscale �T which allow
to determine empirically the effective magnetic Reynolds number.

As a matter of fact, there are three standard turbulence length scales which
can be identified in a typical turbulence power spectrum as shown in Fig. 3.4:
the correlation length �C, the Taylor scale �T and the Kolmogorov scale �K . The
Correlation or integral length scale represents the largest separation distance over
which eddies are still correlated, i.e., the largest turbulent eddy size. The Taylor
scale is the scale size at which viscous dissipation begins to affect the eddies, it is
several times larger than Kolmogorov scale and marks the transition from the inertial
range to the dissipation range. The Kolmogorov scale is the one that characterizes
the smallest dissipation-scale eddies.

The Taylor scale �T and the correlation length �C, as indicated in Fig. 3.5, can
be obtained from the two-point correlation function being the former the radius of
curvature of the Correlation function at the origin and the latter the scale at which
turbulent fluctuation are no longer correlated. Thus, �T can be obtained from Taylor
expansion of the two point correlation function for r ! 0 (Tennekes and Lumely
1972):

R.r/ 
 1 � r2

2�2T
C : : : (3.9)

where r is the spacecraft separation and R.r/ D hb.x/ � b.x C r/i is the auto-
correlation function computed along the x direction for the fluctuating field b.x/. On
the other hand, the correlation length �C can be obtained integrating the normalized



3.2 Basic Concepts and Numerical Tools to Analyze MHD Turbulence 49

Fig. 3.4 Typical fast stream magnetic field power density spectrum as observed by WIND s/c at
1 AU. Vertical dashed lines indicate the correlative, Taylor and Kolmogorov scales. Data available
at daweb.gsfc.nasa.gov, P.I. of WIND magnetic field experiment R. P. Lepping (Lepping et al.
1995)

correlation function along a chosen direction of integration �:

�C D
Z 1

0

R.�/

R.0/
d�: (3.10)

At this point, following Batchelor (1970) it is possible to obtain the effective
magnetic Reynolds number:

Reff
m D

�
�C

�T

�2
: (3.11)

Figure 3.6 shows estimates of the correlation function from ACE-Wind for sepa-
ration distances 20–350RE and two sets of Cluster data for separations 0:02–0:04RE

and 0:4–1:2RE, respectively.
Following the definitions of �C and �T given above, Matthaeus et al. (2005) were

able to fit the first data set of Cluster, i.e., the one with shorter separations, with a
parabolic fit while they used an exponential fit for ACE-Wind and the second Cluster
data set. These fits provided estimates for �C and �T from which these authors
obtained the first empirical determination of Reff

m which resulted to be of the order
of 2:3 � 105, as illustrated in Fig. 3.7.
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Fig. 3.5 Typical two-point correlation function. The Taylor scale �T and the correlation length �C

are the radius of curvature of the Correlation function at the origin (see inset graph) and the scale
at which turbulent fluctuation are no longer correlated, respectively

3.2.2 Statistical Description of MHD Turbulence

When an MHD fluid is turbulent, it is impossible to know the detailed behavior of
velocity field v.x; t/ and magnetic field b.x; t/, and the only description available
is the statistical one. Very useful is the knowledge of the invariants of the ideal
equations of motion for which the dissipative terms 
r2b and �r2v are equal to
zero because the magnetic resistivity 
 and the viscosity � are both equal to zero.
Following Frisch et al. (1975) there are three quadratic invariants of the ideal system
which can be used to describe MHD turbulence: total energy E, cross-helicity Hc,
and magnetic helicity Hm. The above quantities are defined as follows:

E D 1

2
hv2 C b2i; (3.12)

Hc D hv � bi; (3.13)

Hm D hA � Bi; (3.14)
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Fig. 3.6 Estimates of the correlation function from ACE-Wind for separation distances 20–350RE

and two sets of Cluster data for separations 0:02–0:04RE and 0:4–1:2RE , respectively. Image
adapted from Matthaeus et al. (2005)

Fig. 3.7 Left panel: parabolic fit at small scales in order to estimate �T . Right panel: exponential
fit at intermediate and large scales in order to estimate �C. The square of the ratio of these two
length scales gives an estimate of the effective magnetic Reynolds number. Image adapted from
Matthaeus et al. (2005)
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where v and b are the fluctuations of velocity and magnetic field, this last one
expressed in Alfvén units .b �! bp

4��
/, and A is the vector potential so that

B D r � A. The integrals of these quantities over the entire plasma containing
regions are the invariants of the ideal MHD equations:

E D 1

2

Z
.v2 C b2/d3x; (3.15)

Hc D 1

2

Z
.v � b/d3x; (3.16)

Hm D
Z
.A � B/d3x; (3.17)

In particular, in order to describe the degree of correlation between v and b, it is
convenient to use the normalized cross-helicity 	c:

	c D 2Hc

E
; (3.18)

since this quantity simply varies between C1 and �1.

3.2.3 Spectra of the Invariants in Homogeneous Turbulence

Statistical information about the state of a turbulent fluid is contained in the n-
point correlation function of the fluctuating fields. In homogeneous turbulence these
correlations are invariant under arbitrary translation or rotation of the experimental
apparatus. We can define the magnetic field auto-correlation matrix

Rb
ij.r/ D hbi.x/bj.x C r/i; (3.19)

the velocity auto-correlation matrix

Rvij.r/ D hvi.x/vj.x C r/i; (3.20)

and the cross-correlation matrix

Rvb
ij .r/ D 1

2
hvi.x/bj.x C r/C bi.x/vj.x C r/i: (3.21)
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At this point, we can construct the spectral matrix in terms of Fourier transform
of Rij

Sb
ij.k/ D 1

2�

Z
Rb

ij.r/e
�ik�rd3r; (3.22)

Svij.k/ D 1

2�

Z
Rvij.r/e

�ik�rd3r; (3.23)

Svb
ij .k/ D 1

2�

Z
Rvb

ij .r/e
�ik�rd3r: (3.24)

However, in space experiments, especially in the solar wind, data from only
a single spacecraft are available. This provides values of Rb

ij, Rvij, and Rvb
ij , for

separations along a single direction r. In this situation, only reduced (i.e., one-
dimensional) spectra can be measured. If r1 is the direction of co-linear separations,
we may only determine Rij.r1; 0; 0/ and, as a consequence, the Fourier transform on
Rij yields the reduced spectral matrix

Sr
ij.k1/ D 1

2�

Z
Rij.r1; 0; 0/e

�ik1�r1 dr1 D
Z

Sij.k1; k2; k3/ dk2 dk3: (3.25)

Then, we define Hr
m, Hr

c, and Er D Er
b C Er

v as the reduced spectra of the
invariants, depending only on the wave number k1. Complete information about Sij

might be lost when computing its reduced version since we integrate over the two
transverse k. However, for isotropic symmetry no information is lost performing
the transverse wave number integrals (Batchelor 1970). That is, the same spectral
information is obtained along any given direction.

Coming back to the ideal invariants, now we have to deal with the problem of how
to extract information about Hm from Rij.r/. We know that the Fourier transform
of a real, homogeneous matrix Rij.r/ is an Hermitian form Sij, i.e., S D QS� �!
sij D s�

ji , and that any square matrix A can be decomposed into a symmetric and an
antisymmetric part, As and Aa:

A D As C Aa; (3.26)

where

As D 1

2
.A C QA/; (3.27)

Aa D 1

2
.A � QA/: (3.28)

Since the Hermitian form implies that

S D QS� �! sij D s�
ji ; (3.29)
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it follows that

Ss D 1

2
.S C QS/ D 1

2
.Sij C Sji/ D real; (3.30)

and

Sa D 1

2
.S � QS/ D 1

2
.Sij � Sji/ D imaginary: (3.31)

It has been shown Batchelor (1970); Matthaeus and Goldstein (1982a); Mont-
gomery (1983) that, while the trace of the symmetric part of the spectral matrix
accounts for the magnetic energy, the imaginary part of the spectral matrix accounts
for the magnetic helicity. In particular, Matthaeus and Goldstein (1982a) showed
that

Hr
m.k1/ D 2Im Sr

23.k1/=k1; (3.32)

where Hm has been integrated over the two transverse components

Z
Im S23.k/ dk2 dk3 D k1

2

Z
Hm.k/ dk2 dk3: (3.33)

In practice, if co-linear measurements are made along the X direction, the
reduced magnetic helicity spectrum is given by:

Hr
m.k1/ D 2Im Sr

23.k1/=k1 D 2Im .YZ�/=k1; (3.34)

where Y and Z are the Fourier transforms of By and Bz components, respectively.
Hm can be interpreted as a measure of the correlation between the two transverse

components, being one of them shifted by 90ı in phase at frequency f . This
parameter gives also an estimate of how magnetic field lines are knotted with
each other. Hm can assume positive and negative values depending on the sense
of rotation of the correlation between the two transverse components.

However, another parameter, which is a combination of Hm and Eb, is usually
used in place of Hm alone. This parameter is the normalized magnetic helicity

	m.k/ D kHm.k/=Eb.k/; (3.35)

where Eb is the magnetic spectral power density and 	m varies between C1 and �1.
Since the cross-correlation function is not necessarily an even function, the cross-

spectral density function is generally a complex number:

Wxy. f / D Cxy. f /C jQxy. f /;
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where the real part Cxy.f / is the coincident spectral density function, and the
imaginary part Qxy.f / is the quadrature spectral density function Bendat and Piersol
(1971). While Cxy.f / can be thought of as the average value of the product x.t/y.t/
within a narrow frequency band .f ; f C ıf /, Qxy.f / is similarly defined but one of
the components is shifted in time sufficiently to produce a phase shift of 90ı at
frequency f .

In polar notation

Wxy. f / D jWxy. f /je�j�xy. f /:

In particular,

jWxy. f /j D
q

C2
xy. f /C Q2

xy. f /;

and the phase between C and Q is given by

�xy. f / D arctan
Qxy. f /

Cxy. f /
:

Moreover,

jWxy. f /j2 � Wx. f /Wy. f /;

so that the following relation holds

2xy. f / D jWxy. f /j2
Wx. f /Wy. f /

� 1:

This function 2xy.f /, called coherence, estimates the correlation between x.t/ and
y.t/ for a given frequency f . Just to give an example, for an Alfvén wave at frequency
f whose k vector is outwardly oriented as the interplanetary magnetic field, we
expect to find �vb.f / D 180ı and 2vb.f / D 1, where the indexes v and b refer
to the magnetic field and velocity field fluctuations.

3.3 Turbulence in the Ecliptic

When dealing with laboratory turbulence it is important to know all the aspects of
the experimental device where turbulent processes take place in order to estimate
related possible effects driven or influenced by the environment. In the solar wind,
the situation is, in some aspects, similar although the plasma does not experience
any confinement due to the “experimental device”, which would be represented
by free interplanetary space. However, it is a matter of fact that the turbulent
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state of the wind fluctuations and the subsequent radial evolution during the wind
expansion greatly differ from fast to slow wind, and it is now well accepted that the
macrostructure convected by the wind itself plays some role (see reviews by Tu and
Marsch 1995b; Goldstein et al. 1995).

Fast solar wind originates from the polar regions of the Sun, within the open
magnetic field line regions identified by coronal holes. Beautiful observations by
SOHO spacecraft (see Fig. 3.8) have localized the birthplace of the solar wind
within the intergranular lane, generally where three or more granules get together.
Clear outflow velocities of up to 10 km s�1 have been recorded by SOHO/SUMER
instrument (Hassler et al. 1999).

Slow wind, on the contrary, originates from the equatorial zone of the Sun. The
slow wind plasma leaks from coronal features called “helmets”, which can be easily
seen protruding into the Sun’s atmosphere during a solar eclipse (see Fig. 3.9).
Moreover, plasma emissions due to violent and abrupt phenomena also contribute to
the solar wind in these regions of the Sun. An alternative view is that both high- and
low- speed winds come from coronal holes (defined as open field regions) and that
the wind speed at 1 AU is determined by the rate of flux-tube expansion near the
Sun as firstly suggested by Levine et al. (1977) (see also: Wang and Sheeley Jr 1990;
Bravo and Stewart 1997; Arge and Pizzo 2000; Poduval and Zhao 2004; Whang
et al. 2005) and/or by the location and strength of the coronal heating Leer and
Holzer (1980); Hammer (1982); Hollweg (1986); Withbroe (1988); Wang (1993,
1994); Sandbaek et al. (1994); Hansteen and Leer (1995); Cranmer et al. (2007).

However, this situation greatly changes during different phases of the solar
activity cycle. Polar coronal holes, which during the maximum of activity are

Fig. 3.8 Composite picture built on SOHO/EIT and SOHO/SUMER observations of the solar-
wind source regions and magnetic structure of the chromospheric network. Outflow velocities, at
the network cell boundaries and lane junctions below the polar coronal hole, reach up to 10 km s�1

are represented by the blue colored areas (original figures from Hassler et al. 1999)



3.3 Turbulence in the Ecliptic 57

Fig. 3.9 Helmet streamer during a solar eclipse. Slow wind leaks into the interplanetary space
along the flanks of this coronal structure. Original image can be found at http://solarscience.msfc.
nasa.gov/SolarWind.shtml

limited to small and not well defined regions around the poles, considerably widen
up during solar minimum, reaching the equatorial regions (Forsyth et al. 1997;
Forsyth and Breen 2002; Balogh et al. 1999). This new configuration produces an
alternation of fast and slow wind streams in the ecliptic plane, the plane where
most of the spacecraft operate and record data. During the expansion, a dynamical
interaction between fast and slow wind develops, generating the so called “stream
interface”, a thin region ahead of the fast stream characterized by strong compressive
phenomena.

Figure 3.10 shows a typical situation in the ecliptic where fast streams and slow
wind were observed by Helios 2 s/c during its primary mission to the Sun. At that
time, the spacecraft moved from 1 AU (around day 17) to its closest approach to
the Sun at 0.29 AU (around day 108). During this radial excursion, Helios 2 had
a chance to observe the same co-rotating stream, that is plasma coming from the
same solar source, at different heliocentric distances. This fortuitous circumstance,
gave us the unique opportunity to study the radial evolution of turbulence under the
reasonable hypothesis of time-stationarity of the source regions. Obviously, similar
hypotheses decay during higher activity phase of the solar cycle since, as shown in
Fig. 3.11, the nice and regular alternation of fast co-rotating streams and slow wind
is replaced by a much more irregular and spiky profile also characterized by a lower
average speed.

Figure 3.12 focuses on a region centered on day 75, recognizable in Fig. 3.10,
when the s/c was at approximately 0.7 AU from the Sun. Slow wind on the left-hand
side of the plot, fast wind on the right hand side, and the stream interface in between,
can be clearly seen. This is a sort of canonical situation often encountered in the
ecliptic, within the inner heliosphere, during solar activity minimum. Typical solar

http://solarscience.msfc.nasa.gov/SolarWind.shtml
http://solarscience.msfc.nasa.gov/SolarWind.shtml
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Fig. 3.10 High velocity streams and slow wind as seen in the ecliptic during solar minimum as
function of time Œ yyddd�. Streams identified by labels are the same co-rotating stream observed by
Helios 2, during its primary mission to the Sun in 1976, at different heliocentric distances. These
streams, named “The Bavassano streams” after Tu and Marsch (1995b), have been of fundamental
importance in understanding the radial evolution of MHD turbulence in the solar wind
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Fig. 3.11 High velocity streams and slow wind as seen in the ecliptic during solar maximum. Data
refer to Helios 2 observations in 1979
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Fig. 3.12 High velocity streams and slow wind as seen in the ecliptic during solar minimum

wind parameters, like proton number density �p, proton temperature Tp, magnetic
field intensity jBj, azimuthal angle˚ , and elevation angle� are shown in the panels
below the wind speed profile. A quick look at the data reveals that fast wind is
less dense but hotter than slow wind. Moreover, both proton number density and
magnetic field intensity are more steady and, in addition, the bottom two panels
show that magnetic field vector fluctuates in direction much more than in slow
wind. This last aspect unravels the presence of strong Alfvénic fluctuations which
act mainly on magnetic field and velocity vector direction, and are typically found
within fast wind (Belcher and Davis Jr 1971; Belcher and Solodyna 1975). The
region just ahead of the fast wind, namely the stream interface, where dynamical
interaction between fast and slow wind develops, is characterized by compressive
effects which enhance proton density, temperature and field intensity. Within slow
wind, a further compressive region precedes the stream interface but it is not due to
dynamical effects but identifies the heliospheric current sheet, the surface dividing
the two opposite polarities of the interplanetary magnetic field. As a matter of fact,
the change of polarity can be noted within the first half of day 73 when the azimuthal
angle ˚ rotates by about 180ı. Detailed studies Bavassano et al. (1997) based on
interplanetary scintillations (IPS) and in-situ measurements have been able to find a
clear correspondence between the profile of path-integrated density obtained from
IPS measurements and in-situ measurements by Helios 2 when the s/c was around
0.3 AU from the Sun.
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Fig. 3.13 Left panel: a simple sketch showing the configuration of a helmet streamer and
the density profile across this structure. Right panel: Helios 2 observations of magnetic field
and plasma parameters across the heliospheric current sheet. From top to bottom: wind speed,
magnetic field azimuthal angle, proton number density, density fluctuations and normalized
density fluctuations, proton temperature, magnetic field magnitude, total pressure, and plasma beta,
respectively. Image reproduced by permission from Bavassano et al. (1997), copyright by AGU

Figure 3.13 shows measurements of several plasma and magnetic field param-
eters. The third panel from the top is the proton number density and it shows
an enhancement within the slow wind just preceding the fast stream, as can be
seen at the top panel. In this case the increase in density is not due to the
dynamical interaction between slow and fast wind but it represents the profile of
the heliospheric current sheet as sketched on the left panel of Fig. 3.13. As a matter
of fact, at these short distances from the Sun, dynamical interactions are still rather
weak and this kind of compressive effects can be neglected with respect to the larger
density values proper of the current sheet.

3.3.1 Spectral Properties

First evidences of the presence of turbulent fluctuations were showed by Coleman
(1968), who, using Mariner 2 magnetic and plasma observations, investigated the
statistics of interplanetary fluctuations during the period August 27 – October 31,
1962, when the spacecraft orbited from 1.0 to 0.87 AU. At variance with Coleman
(1968), Barnes and Hollweg (1974) analyzed the properties of the observed low-
frequency fluctuations in terms of simple waves, disregarding the presence of an
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energy spectrum. Here we review the gross features of turbulence as observed in
space by Mariner and Helios spacecraft. By analyzing spectral densities, Coleman
(1968) concluded that the solar wind flow is often turbulent, energy being dis-
tributed over an extraordinarily wide frequency range, from one cycle per solar
rotation to 0.1 Hz. The frequency spectrum, in a range of intermediate frequencies
Œ2 � 10�5–2:3 � 10�3�, was found to behave roughly as f �1:2, the difference
with the expected Kraichnan f �1:5 spectral slope was tentatively attributed to the
presence of high-frequency transverse fluctuations resulting from plasma garden-
hose instability (Scarf et al. 1967). Waves generated by this instability contribute to
the spectrum only in the range of frequencies near the proton cyclotron frequency
and would weaken the frequency dependence relatively to the Kraichnan scaling.
The magnetic spectrum obtained by Coleman (1968) is shown in Fig. 3.14.

Fig. 3.14 The magnetic energy spectrum as obtained by Coleman (1968)
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Fig. 3.15 A composite figure of the magnetic spectrum obtained by Russell (1972)

Spectral properties of the interplanetary medium have been summarized by
Russell (1972), who published a composite spectrum of the radial component
of magnetic fluctuations as observed by Mariner 2, Mariner 4, and OGO 5 (see
Fig. 3.15). The frequency spectrum so obtained was divided into three main ranges:
(1) up to about 10�4 Hz the spectral slope is about 1=f ; (2) at intermediate
frequencies 10�4 � f � 10�1 Hz a spectrum which roughly behaves as f �3=2 has
been found; (3) the high-frequency part of the spectrum, up to 1 Hz, behaves as 1=f 2.
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The intermediate range1 of frequencies shows the same spectral properties as that
introduced by Kraichnan (1965) in the framework of MHD turbulence. It is worth
reporting that scatter plots of the values of the spectral index of the intermediate
region do not allow us to distinguish between a Kolmogorov spectrum f �5=3 and a
Kraichnan spectrum f �3=2 (Veltri 1980).

Only lately, Podesta et al. (2007) addressed again the problem of the spectral
exponents of kinetic and magnetic energy spectra in the solar wind. Their results,
instead of clarifying once forever the ambiguity between f �5=3 and f �3=2 scaling,
placed new questions about this unsolved problem.

As a matter of fact, Podesta et al. (2007) chose different time intervals between
1995 and 2003 lasting 2 or 3 solar rotations during which WIND spacecraft recorded
solar wind velocity and magnetic field conditions. Figure 3.16 shows the results
obtained for the time interval that lasted about 3 solar rotations between November
2000 and February 2001, and is representative also of the other analyzed time
intervals. Quite unexpectedly, these authors found that the power law exponents
of velocity and magnetic field fluctuations often have values near 3=2 and 5=3,
respectively. In addition, the kinetic energy spectrum is characterized by a power
law exponent slightly greater than or equal to 3=2 due to the effects of density
fluctuations.

It is worth mentioning that this difference was first observed by Salem (2000)
years before, but, at that time, the accuracy of the data was questioned (Salem
et al. 2009). Thus, to corroborate previous results, Salem et al. (2009) investigated
anomalous scaling and intermittency effects of both magnetic field and solar wind
velocity fluctuations in the inertial range using WIND data. These authors used a
wavelet technique for a systematic elimination of intermittency effects on spectra
and structure functions in order to recover the actual scaling properties in the inertial
range. They found that magnetic field and velocity fluctuations exhibit a well-
defined, although different, monofractal behavior, following a Kolmogorov �5=3
scaling and a Iroshnikov–Kraichnan �3=2 scaling, respectively. These results are
clearly opposite to the expected scaling for kinetic and magnetic fluctuations which
should follow Kolmogorov and Kraichnan scaling, respectively (see Sect. 2.8).
However, as remarked by Roberts (2007), Voyager observations of the velocity
spectrum have demonstrated a likely asymptotic state in which the spectrum
steepens towards a spectral index of �5=3, finally matching the magnetic spectrum
and the theoretical expectation of Kolmogorov turbulence. Moreover, the same
authors examined Ulysses spectra to determine if the Voyager result, based on a very
few sufficiently complete intervals, were correct. Preliminary results confirmed the
�5=3 slope for velocity fluctuations at � 5 AU from the Sun in the ecliptic.

1To be precise, it is worth remarking again that there are no convincing arguments to identify
as inertial range the intermediate range of frequencies where the observed spectral properties
are typical of fully developed turbulence. From a theoretical point of view here the association
“intermediate range” ' “inertial range” is somewhat arbitrary. Really an operative definition of
inertial range of turbulence is the range of scales ` where relation (2.42) (for fluid flows) or (2.41)
(for MHD flows) is verified.
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Fig. 3.16 Magnetic energy
spectra, velocity spectra and
kinetic energy spectra
obtained by Podesta et al.
(2007). Image reproduced by
permission, copyright by
AAS
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Fig. 3.17 Velocity spectral index vs. heliocentric distance (Roberts 2007)

Figure 3.17, taken from Roberts (2007), shows the evolution of the spectral index
during the radial excursion of Ulysses. These authors examined many intervals
in order to develop a more general picture of the spectral evolution in various
conditions, and how magnetic and velocity spectra differ in these cases. The general
trend shown in Fig. 3.17 is towards �5=3 as the distance increases. Lower values are
due to the highly Alfvénic fast polar wind while higher values, around 2, are mainly
due to the jumps at the stream fronts as previously shown by Roberts (2007). Thus,
the discrepancy between magnetic and velocity spectral slope is only temporary
and belongs to the evolutionary phase of the spectra towards a well developed
Kolmogorov like turbulence spectrum.

Horbury et al. (2008) performed a study on the anisotropy of the energy spectrum
of magnetohydrodynamic (MHD) turbulence with respect to the magnetic field
orientation to test the validity of the critical balance theory (Goldreich and Sridhar
1995) in space plasma environment. This theory predicts that the power spectrum
P.k/ would scale as f �5=3 when the angle �B between the mean field direction and
the flow direction is 90ı. On the other hand, in case �B D 0ı the scaling would
follow f �2. Moreover, the latter spectrum would also have a smaller energy content.

Horbury et al. (2008) used 30 days of Ulysses magnetic field observations (1995,
days 100–130) with a resolution of 1 s. At that time, Ulysses was immersed in the
steady high speed solar wind coming from the Sun’s Northern polar coronal hole at
1.4 AU from the Sun. These authors studied the anisotropies of the turbulence by
measuring how the spacecraft frame spectrum of magnetic fluctuations varies with
�B. They adopted a method based on wavelet analysis which was sensitive to the
frequent changes of the local magnetic field direction.

The lower panel of Fig. 3.18 clearly shows that for angles larger than about
45ı the spectral index smoothly fluctuates around �5=3 while, for smaller angles,
it tends to a value of �2, as predicted by the critical balance type of cascade.
However, although the same authors recognize that a spectral index of �2 has not
been routinely observed in the fast solar wind and that the range of �B over which
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Fig. 3.18 Top panel: Trace of power in the magnetic field as a function of the angle between the
local magnetic field and the sampling direction at a spacecraft frequency of 61 mHz. The larger
scatter for �B > 90 is the result of fewer data points at these angles. Bottom panel: spectral index
of the trace, fitted over spacecraft frequencies from 15.98 mHz. Image reproduced by permission
from Horbury et al. (2008), copyright by APS

the spectral index deviates from �5=3 is wider than expected, they consider these
findings to be a robust evidence of the validity of critical balance theory in space
plasma environment.

3.3.2 Magnetic Helicity Spectrum

Another important aspect of magnetic fluctuations is the magnetic helicity Hm. This
quantity, as defined in Sect. 3.2.2, measures the “knottedness” of magnetic field lines
(Moffatt 1978).

Moreover, Hm is a pseudo scalar and changes sign for coordinate inversion.
The plus or minus sign, for circularly polarized magnetic fluctuations in a slab
geometry, indicates right or left-hand polarization. Statistical information about the
magnetic helicity is derived from the Fourier transform of the magnetic field auto-
correlation matrix Rij.r/ D hBi.x/ � Bj.x Cr/i as shown by Matthaeus and Goldstein
(1982a). While the trace of the symmetric part of the spectral matrix accounts for the
magnetic energy, the imaginary part of the spectral matrix accounts for the magnetic
helicity (Batchelor 1970; Montgomery 1982; Matthaeus and Goldstein 1982a).
However, what is really available from in-situ measurements in space experiments
are data from a single spacecraft, and we can obtain values of R only for collinear
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sequences of r along the x direction which corresponds to the radial direction from
the Sun. In these conditions the Fourier transform of R allows us to obtain only a
reduced spectral tensor along the radial direction so that Hm.k/ will depend only on
the wave-number k in this direction. Although the reduced spectral tensor does not
carry the complete spectral information of the fluctuations, for slab and isotropic
symmetries it contains all the information of the full tensor. The expression used by
Matthaeus and Goldstein (1982a) to compute the reduced Hm is given in Sect. 3.2.3.
In the following, we will drop the suffix r for sake of simplicity.

The general features of the reduced magnetic helicity spectrum in the solar wind
were described for the first time by Matthaeus and Goldstein (1982a) in the outer
heliosphere, and by Bruno and Dobrowolny (1986) in the inner heliosphere. A useful
dimensionless way to represent both the degree of and the sense of polarization is
the normalized magnetic helicity 	m (see Sect. 3.2.3). This quantity can randomly
vary between C1 and �1, as shown in Fig. 3.19 from the work by Matthaeus and
Goldstein (1982a) and relative to Voyager’s data taken at 1 AU. However, net values
of ˙1 are reached only for pure circularly polarized waves.

Based on these results, Goldstein et al. (1991) were able to reproduce the
distribution of the percentage of occurrence of values of 	m.f / adopting a model
where the magnitude of the magnetic field was allowed to vary in a random way
and the tip of the vector moved near a sphere. By this way they showed that
the interplanetary magnetic field helicity measurements were inconsistent with the
previous idea that fluctuations were randomly circularly polarized at all scales and
were also magnitude preserving.

Fig. 3.19 	m vs. frequency and wave number relative to an interplanetary data sample recorded by
Voyager 1 at approximately 1 AU. Image reproduced by permission from Matthaeus and Goldstein
(1982a), copyright by AGU
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However, evidence for circular polarized MHD waves in the high frequency
range was provided by Polygiannakis et al. (1994), who studied interplanetary
magnetic field fluctuations from various datasets at various distances ranging from
1 to 20 AU. They also concluded that the difference between left- and right-hand
polarizations is significant and continuously varying.

As already noticed by Smith et al. (1983, 1984), knowing the sign of 	m and
the sign of the normalized cross-helicity 	c it is possible to infer the sense of
polarization of the fluctuations. As a matter of fact, a positive cross-helicity indicates
an Alfvén mode propagating outward, while a negative cross-helicity indicates a
mode propagating inward. On the other hand, we know that a positive magnetic-
helicity indicates a right-hand polarized mode, while a negative magnetic-helicity
indicates a left-hand polarized mode. Thus, since the sense of polarization depends
on the propagating direction with respect to the observer, 	m.f /	c.f / < 0 will
indicate right circular polarization while 	m.f /	c.f / > 0 will indicate left circular
polarization. Thus, each time magnetic helicity and cross-helicity are available
from measurements in a super-Alfvénic flow, it is possible to infer the rest frame
polarization of the fluctuations from a single point measurements, assuming the
validity of the slab geometry.

The high variability of 	m, observable in Voyager’s data (see Fig. 3.19), was
equally observed in Helios 2 data in the inner heliosphere (Bruno and Dobrowolny
1986). The authors of this last work computed the difference .MH > 0/�jMH < 0j
of magnetic helicity for different frequency bands and noticed that most of the
resulting magnetic helicity was contained in the lowest frequency band. This result
supported the theoretical prediction of an inverse cascade of magnetic helicity from
the smallest to the largest scales during turbulence development (Pouquet et al.
1976).

Numerical simulations of the incompressible MHD equations by Mininni et al.
(2003a), discussed in Sect. 3.3.8, clearly confirm the tendency of magnetic helicity
to follow an inverse cascade. The generation of magnetic field in turbulent plasmas
and the successive inverse cascade has strong implications in the emergence of
large scale magnetic fields in stars, interplanetary medium and planets (Brandenburg
2001).

This phenomenon was firstly demonstrated in numerical simulations based on
the eddy damped quasi normal Markovian (EDQNM) closure model of three-
dimensional MHD turbulence by Pouquet et al. (1976). Successively, other inves-
tigators confirmed such a tendency for the magnetic helicity to develop an inverse
cascade (Meneguzzi et al. 1981; Cattaneo and Hughes 1996; Brandenburg 2001).

Mininni et al. (2003a) performed the first direct numerical simulations of
turbulent Hall dynamo. They showed that the Hall current can have strong effects on
turbulent dynamo action, enhancing or even suppressing the generation of the large-
scale magnetic energy. These authors injected a weak magnetic field at small scales
in a system kept in a stationary regime of hydrodynamic turbulence and followed the
exponential growth of magnetic energy due to the dynamo action. This evolution can
be seen in Fig. 3.20 in the same format described for Fig. 3.31, shown in Sect. 3.3.8.
Now, the forcing is applied at wave number kforce D 10 in order to give enough
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Fig. 3.20 A numerical simulation of the incompressible MHD equations in three dimensions,
assuming periodic boundary conditions (see details in Mininni et al. 2003a). The left panel shows
the power spectra for kinetic energy (green), magnetic energy (red), and total energy (blue) vs.
time. The right panel shows the spatially integrated kinetic, magnetic, and total energies vs. time.
The vertical (orange) line indicates the current time. These results correspond to a 1283 simulation
with an external force applied at wave number kforce D 10 (Figure kindly provided by D. Gómez)

room for the inverse cascade to develop. The fluid is initially in a strongly turbulent
regime as a result of the action of the external force at wave number kforce D 10.
An initial magnetic fluctuation is introduced at t D 0 at kseed D 35. The magnetic
energy starts growing exponentially fast and, when the saturation is reached, the
magnetic energy is larger than the kinetic energy. Notably, it is much larger at the
largest scales of the system (i.e., k D 1). At these large scales, the system is very
close to a magnetostatic equilibrium characterized by a force-free configuration.

3.3.3 Evidence for Non-linear Interactions

As we said previously, Helios 2 s/c gave us the unique opportunity to study the radial
evolution of turbulent fluctuations in the solar wind within the inner heliosphere.
Most of the theoretical studies which aim to understand the physical mechanism at
the base of this evolution originate from these observations (Bavassano et al. 1982a;
Denskat and Neubauer 1983).

In Fig. 3.21 we consider again similar observations taken by Helios 2 during
its primary mission to the Sun together with observations taken by Ulysses in the
ecliptic at 1.4 and 4.8 AU in order to extend the total radial excursion.
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Fig. 3.21 Left panel: power density spectra of magnetic field fluctuations observed by Helios 2
between 0.3 and 1 AU within the trailing edge of the same corotating stream shown in Fig. 3.10,
during the first mission to the Sun in 1976 and by Ulysses between 1.4 and 4.8 AU during the
ecliptic phase. Ulysses observations at 4.8 AU refer to the end of 1991 while observations taken at
1.4 AU refer to the end of August of 2007. While the spectral index of slow wind does not show
any radial dependence, the spectral break, clearly present in fast wind and marked by a blue dot,
moves to lower and lower frequency as the heliocentric distance increases. Image adapted from
Bruno et al. (2009)

Helios 2 power density spectra were obtained from the trace of the spectral matrix
of magnetic field fluctuations, and belong to the same co-rotating stream observed
on day 49, at a heliocentric distance of 0.9 AU, on day 75 at 0.7 AU and, finally, on
day 104 at 0.3 AU. Ulysses spectra, constructed in the same way as those of Helios 2,
were taken at 1.4 and 4.8 AU during the ecliptic phase of the orbit. Observations at
4.8 AU refer to the end of 1991 (fast wind period started on day 320, slow wind
period started on day 338) while observations taken at 1.4 AU refer to fast wind
observed at the end of August of 2007, starting on day 241:12.

While the spectral index of slow wind does not show any radial dependence,
being characterized by a single Kolmogorov type spectral index, fast wind is
characterized by two distinct spectral slopes: about �1 within low frequencies and
about a Kolmogorov like spectrum at higher frequencies. These two regimes are
clearly separated by a knee in the spectrum often referred to as “frequency break”.
As the wind expands, the frequency break moves to lower and lower frequencies
so that larger and larger scales become part of the Kolmogorov-like turbulence
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spectrum, i.e., of what we will indicate as “inertial range” (see discussion at the
end of the previous section). Thus, the power spectrum of solar wind fluctuations
is not solely function of frequency f , i.e., P.f /, but it also depends on heliocentric
distance r, i.e., P.f / ! P.f ; r/.

Figure 3.22 shows the frequency location of the spectral breaks observed in the
left-hand-side panel of Fig. 3.21 as a function of heliocentric distance. The radial
distribution of these 5 points suggests that the frequency break moves at lower
and lower frequencies during the wind expansion following a power-law of the
order of R�1:5. Previous results, obtained for long data sets spanning hundreds
of days and inevitably mixing fast and slow wind, were obtained by Matthaeus
and Goldstein (1986) who found the breakpoint around 10 h at 1 AU, and Klein
et al. (1992) who found that the breakpoint was near 16 h at 4 AU. Obviously,
the frequency location of the breakpoint provided by these early determinations
is strongly affected by the fact that mixing fast and slow wind would shift the
frequency break to lower frequencies with respect to solely fast wind. In any case,
this frequency break is strictly related to the correlation length (Klein 1987) and the
shift to lower frequency, during the wind expansion, is consistent with the growth
of the correlation length observed in the inner (Bruno and Dobrowolny 1986) and
outer heliosphere (Matthaeus and Goldstein 1982b). Analogous behavior for the low
frequency shift of the spectral break, similar to the one observed in the ecliptic, has
been reported by Horbury et al. (1996) studying the rate of turbulent evolution over
the Sun’s poles. These authors used Ulysses magnetic field observations between
1.5 and 4.5 AU selecting mostly undisturbed, high speed polar flows. They found a
radial gradient of the order of R�1:1, clearly slower than the one reported in Fig. 3.22
or that can be inferred from results by Bavassano et al. (1982a) confirming that the

Fig. 3.22 Radial dependence of the frequency break observed in the ecliptic within fast wind as
shown in the previous Fig. 3.21. The radial dependence seems to be governed by a power-law of
the order of R�1:5
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turbulence evolution in the polar wind is slower than the one in the ecliptic, as
qualitatively predicted by Bruno (1992), because of the lack of large scale stream
shears. However, these results will be discussed more extensively in Sect. 4.3.1.

However, the phenomenology described above only apparently resembles hydro-
dynamic turbulence where the large eddies, below the frequency break, govern the
whole process of energy cascade along the spectrum (Tu and Marsch 1995a). As
a matter of fact, when the relaxation time increases, the largest eddies provide
the energy to be transferred along the spectrum and dissipated, with a decay rate
approximately equal to the transfer rate and, finally, to the dissipation rate at the
smallest wavelengths where viscosity dominates. Thus, we expect that the energy
containing scales would loose energy during this process but would not become
part of the turbulent cascade, say of the inertial range. Scales on both sides of
the frequency break would remain separated. Accurate analysis performed in the
solar wind (Bavassano et al. 1982a; Marsch and Tu 1990b; Roberts 1992) have
shown that the low frequency range of the solar wind magnetic field spectrum
radially evolves following the WKB model, or geometrical optics, which predicts
a radial evolution of the power associated with the fluctuations � r�3. Moreover,
a steepening of the spectrum towards a Kolmogorov like spectral index can be
observed. On the contrary, the same in-situ observations established that the radial
decay for the higher frequencies was faster than � r�3 and the overall spectral slope
remained unchanged. This means that the energy contained in the largest eddies does
not decay as it would happen in hydrodynamic turbulence and, as a consequence,
the largest eddies cannot be considered equivalent to the energy containing eddies
identified in hydrodynamic turbulence. So, this low frequency range is not separated
from the inertial range but becomes part of it as the turbulence ages. These
observations cast some doubts on the applicability of hydrodynamic turbulence
paradigm to interplanetary MHD turbulence. A theoretical help came from adopting
a local energy transfer function (Tu et al. 1984; Tu 1987a,b, 1988), which would
take into account the non-linear effects between eddies of slightly differing wave
numbers, together with a WKB description which would mainly work for the
large scale fluctuations. This model was able to reproduce the displacement of the
frequency break with distance by combining the linear WKB law and a model of
nonlinear coupling besides most of the features observed in the magnetic power
spectra P.f ; r/ observed by Bavassano et al. (1982a). In particular, the concept of
the “frequency break”, just mentioned, was pointed out for the first time by Tu
et al. (1984) who, developing the analytic solution for the radially evolving power
spectrum P.f ; r/ of fluctuations, obtained a critical frequency “fc” such that for
frequencies f � fc;P.f ; r/ / f �1 and for f � fc;P.f ; r/ / f �1:5.

3.3.4 Power Anisotropy and Minimum Variance Technique

Interplanetary magnetic field (IMF) and velocity fluctuations are rather anisotropic
as for the first time observed by Belcher and Davis Jr (1971), Belcher and Solodyna
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(1975), Chang and Nishida (1973), Burlaga and Turner (1976), Solodyna and
Belcher (1976), Parker (1980), Bavassano et al. (1982b), Tu et al. (1989), and
Marsch and Tu (1990a). This feature can be better observed if fluctuations are
rotated into the minimum variance reference system.

This is a reference system with one of its axes aligned with a direction along
which the field has the smallest fluctuations (Sonnerup and Cahill 1967). This
method provides information on the spatial distribution of the fluctuations of a given
vector.

Given a generic field B.x; y; z/, the variance of its components is

hB2xi � hBxi2I hB2yi � hByi2I hB2zi � hBzi2:

Similarly, the variance of B along the direction S would be given by

VS D hB2Si � hBSi2:

Let us assume, for sake of simplicity, that all the three components of B fluctuate
around zero, then

hBxi D hByi D hBzi D 0 H) hBSi D xhBxi C yhByi C zhBzi D 0:

Then, the variance VS can be written as

VS D hB2Si D x2hB2xi C y2hB2yi C z2hB2z i C 2xyhBxByi C 2xzhBxBzi C 2yzhByBzi;

which can be written (omitting the sign of average hi) as

VS D x.xB2x CyBxBy CzBxBz/Cy.yB2y CxBxBy CzByBz/Cz.zB2z CxBxBz CyByBz/:

This expression can be interpreted as a scalar product between a vector S.x; y; z/ and
another vector whose components are the terms in parentheses. Moreover, these last
ones can be expressed as a product between a matrix M built with the terms B2x , B2y ,
B2z , BxBy, BxBz, ByBz; and a vector S.x; y; z/. Thus,

VS D .S;MS/;

where

S 	
0
@ x

y
z

1
A
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and

M 	
0
@ Bx

2 BxBy BxBz

BxBy By
2 ByBz

BxBz ByBz Bz
2

1
A :

At this point, M is a symmetric matrix and is the matrix of the quadratic form
VS which, in turn, is defined positive since it represents a variance. It is possible to
determine a new reference system Œx; y; z� such that the quadratic form VS does not
contain mix terms, i.e.,

VS D x02B0
x
2 C y02B0

y
2 C z02B0

z
2
:

Thus, the problem reduces to compute the eigenvalues �i and eigenvectors QVi of
the matrix M. The eigenvectors represent the axes of the new reference system, the
eigenvalues indicate the variance along these axes as shown in Fig. 3.23.

At this point, since we know the components of unit vectors of the new reference
system referred to the old reference system, we can easily rotate any vector, defined
in the old reference system, into the new one.

The statistical properties of eigenvalues approximately satisfy the following
statements:

• One of the eigenvalues of the variance matrix is always much smaller than
the others, say �1 � .�2; �3/, and the corresponding eigenvector QV1 is the
minimum-variance direction. This indicates that, at least locally, the magnetic
fluctuations are confined in a plane perpendicular to the minimum-variance
direction.

i=eigenvalues
Vi=eigenvectors of 

variance matrix

Minimum Variance Reference System

Fig. 3.23 Original reference system Œx; y; z� and minimum variance reference system whose axes
are V1, V2, and V3 and represent the eigenvectors of M. Moreover, �1, �2, and �3 are the eigenvalues
of M
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• In the plane perpendicular to QV1, fluctuations appear to be anisotropically
distributed, say �3 > �2. Typical values for eigenvalues are �3 W �2 W �1 D
10 W 3:5 W 1:2 (Chang and Nishida 1973; Bavassano et al. 1982b).

• The direction QV1 is nearly parallel to the average magnetic field B0, that is, the
distribution of the angles between QV1 and B0 is narrow with width of about 10ı
and centered around zero.

As shown in Fig. 3.24, in this new reference system it is readily seen that the
maximum and intermediate components have much more power compared with
the minimum variance component. Generally, this kind of anisotropy characterizes
Alfvénic intervals and, as such, it is more commonly found within high velocity
streams (Marsch and Tu 1990a).

A systematic analysis for both magnetic and velocity fluctuations was performed
by Klein et al. (1991, 1993) between 0.3 and 10 AU. These studies showed that
magnetic field and velocity minimum variance directions are close to each other
within fast wind and mainly clustered around the local magnetic field direction. The
effects of expansion are such as to separate field and velocity minimum variance
directions. While magnetic field fluctuations keep their minimum variance direction
loosely aligned with the mean field direction, velocity fluctuations tend to have
their minimum variance direction oriented along the radial direction. The depleted

Fig. 3.24 Power density spectra of the three components of IMF after rotation into the minimum
variance reference system. The black curve corresponds to the minimum variance component, the
blue curve to the maximum variance, and the red one to the intermediate component. This case
refers to fast wind observed at 0.3 AU and the minimum variance direction forms an angle of � 8ı

with respect to the ambient magnetic field direction. Thus, most of the power is associated with the
two components quasi-transverse to the ambient field
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alignment to the background magnetic field would suggest a smaller anisotropy of
the fluctuations. As a matter of fact, Klein et al. (1991) found that the degree of
anisotropy, which can be defined as the ratio between the power perpendicular to
and that along the minimum variance direction, decreases with heliocentric distance
in the outer heliosphere.

At odds with these conclusions were the results by Bavassano et al. (1982b) who
showed that the ratio �1=�3, calculated in the inner heliosphere within a co-rotating
high velocity stream, clearly decreased with distance, indicating that the degree
of magnetic anisotropy increased with distance. Moreover, this radial evolution
was more remarkable for fluctuations of the order of a few hours than for those
around a few minutes. Results by Klein et al. (1991) in the outer heliosphere and by
Bavassano et al. (1982b) in the inner heliosphere remained rather controversial until
recent studies (see Sect. 7.4), performed by Bruno et al. (1999), found a reason for
this discrepancy.

A different approach to anisotropic fluctuations in solar wind turbulence have
been made by Bigazzi et al. (2006) and Sorriso-Valvo et al. (2006, 2010). In these
studies the full tensor of the mixed second-order structure functions has been used
to quantitatively measure the degree of anisotropy and its effect on small-scale
turbulence through a fit of the various elements of the tensor on a typical function
(Sorriso-Valvo et al. 2006). Moreover three different regions of the near-Earth space
have been studied, namely the solar wind, the Earth’s foreshock and magnetosheath
showing that, while in the undisturbed solar wind the observed strong anisotropy is
mainly due to the large-scale magnetic field, near the magnetosphere other sources
of anisotropy influence the magnetic field fluctuations (Sorriso-Valvo et al. 2010).

3.3.5 Simulations of Anisotropic MHD

In the presence of a DC background magnetic field B0 which, differently from
the bulk velocity field, cannot be eliminated by a Galilean transformation, MHD
incompressible turbulence becomes anisotropic (Shebalin et al. 1983; Montgomery
1982; Zank and Matthaeus 1992; Carbone and Veltri 1990; Oughton 1993). The
main effect produced by the presence of the background field is to generate an
anisotropic distribution of wave vectors as a consequence of the dependence of the
characteristic time for the non-linear coupling on the angle between the wave vector
and the background field. This effect can be easily understood if one considers the
MHD equation. Due to the presence of a term .B0 � r/z˙, which describes the
convection of perturbations in the average magnetic field, the non-linear interactions
between Alfvénic fluctuations are weakened, since convection decorrelates the
interacting eddies on a time of the order .k � B0/

�1. Clearly fluctuations with wave
vectors almost perpendicular to B0 are interested by such an effect much less than
fluctuations with k k B0. As a consequence, the former are transferred along the
spectrum much faster than the latter (Shebalin et al. 1983; Grappin 1986; Carbone
and Veltri 1990).



3.3 Turbulence in the Ecliptic 77

To quantify anisotropy in the distribution of wave vectors k for a given dynamical
variable Q.k; t/ (namely the energy, cross-helicity, etc.), it is useful to introduce the
parameter

˝Q D tan�1
vuut hk2?iQ

2hk2kiQ
(3.36)

(Shebalin et al. 1983; Carbone and Veltri 1990), where the average of a given
quantity g.k/ is defined as

hg.k/iQ D
R

d3k g.k/Q.k; t/R
d3k Q.k; t/

:

For a spectrum with wave vectors perpendicular to B0 we have a spectral anisotropy
˝ D 90ı, while for an isotropic spectrum ˝ D 45ı. Numerical simulations in 2D
configuration by Shebalin et al. (1983) confirmed the occurrence of anisotropy, and
found that anisotropy increases with the Reynolds number. Unfortunately, in these
old simulations, the Reynolds numbers used are too small to achieve a well defined
spectral anisotropy. Carbone and Veltri (1990) started from the spectral equations
obtained through the Direct Interaction Approximation closure by Veltri et al.
(1982), and derived a shell model analogous for the anisotropic MHD turbulence.
Of course the anisotropy is over-simplified in the model, in particular the Alfvén
time is assumed isotropic. However, the model was useful to investigate spectral
anisotropy at very high Reynolds numbers. The phenomenological anisotropic
spectrum obtained from the model, for both pseudo-energies obtained through
polarizations a D 1; 2 defined through Eq. (2.18), can be written as

Eȧ .k; t/ � Cȧ

h
`2kk2k C `2?k2?

i�
˙

: (3.37)

The spectral anisotropy is different within the injection, inertial, and dissipative
ranges of turbulence (Carbone and Veltri 1990). Wave vectors perpendicular to B0

are present in the spectrum, but when the process of energy transfer generates
a strong anisotropy (at small times), a competing process takes place which
redistributes the energy over all wave vectors. The dynamical balance between
these tendencies fixes the value of the spectral anisotropy ˝ ' 55ı in the inertial
range. On the contrary, since the redistribution of energy cannot take place, in the
dissipation domain the spectrum remains strongly anisotropic, with˝ ' 80ı. When
the Reynolds number increases, the contribution of the inertial range extends, and
the increases of the total anisotropy tends to saturate at about˝ ' 60ı at Reynolds
number of 105. This value corresponds to a rather low value for the ratio between
parallel and perpendicular correlation lengths `k=`? ' 2, too small with respect
to the observed value `k=`? � 10. This suggests that the non-linear dynamical
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evolution of an initially isotropic spectrum of turbulence is perhaps not sufficient
to explain the observed anisotropy. These results have been confirmed numerically
(Oughton et al. 1994).

3.3.6 Spectral Anisotropy in the Solar Wind

The correlation time, as defined in Sect. 3.2, estimates how much an element of our
time series x.t/ at time t1 depends on the value assumed by x.t/ at time t0, being
t1 D t0 C ıt. This concept can be transferred from the time domain to the space
domain if we adopt the Taylor hypothesis and, consequently, we can talk about
spatial scales.

Correlation lengths in the solar wind generally increase with heliocentric distance
(Matthaeus and Goldstein 1982a; Bruno and Dobrowolny 1986), suggesting that
large scale correlations are built up during the wind expansion. This kind of
evolution is common to both fast and slow wind as shown in Fig. 3.25, where we
can observe the behavior of the Bz correlation function for fast and slow wind at 0.3
and 0.9 AU.

Moreover, the fast wind correlation functions decrease much faster than those
related to slow wind. This behavior reflects also the fact that the stochastic character

Fig. 3.25 Correlation function just for the Z component of interplanetary magnetic field as
observed by Helios 2 during its primary mission to the Sun. The blue color refers to data recorded
at 0.9 AU while the red color refers to 0.3 AU. Solid lines refer to fast wind, dashed lines refer to
slow wind
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of Alfvénic fluctuations in the fast wind is very efficient in decorrelating the
fluctuations of each of the magnetic field components.

More detailed studies performed by Matthaeus et al. (1990) provided for the first
time the two-dimensional correlation function of solar wind fluctuations at 1 AU.
The original dataset comprised approximately 16 months of almost continuous
magnetic field 5-min averages. These results, based on ISEE 3 magnetic field data,
are shown in Fig. 3.26, also called the “The Maltese Cross”.

This figure has been obtained under the hypothesis of cylindrical symmetry. Real
determination of the correlation function could be obtained only in the positive
quadrant, and the whole plot was then made by mirroring these results on the
remaining three quadrants. The iso-contour lines show contours mainly elongated
along the ambient field direction or perpendicular to it. Alfvénic fluctuations with
k k B0 contribute to contours elongated parallel to r?. Fluctuations in the two-
dimensional turbulence limit (Montgomery 1982) contribute to contours elongated
parallel to rk. This two-dimensional turbulence is characterized for having both
the wave vector k and the perturbing field ıb perpendicular to the ambient field
B0. Given the fact that the analysis did not select fast and slow wind, separately,
it is likely that most of the slab correlations came from the fast wind while
the 2D correlations came from the slow wind. As a matter of fact, Dasso et al.
(2005), using 5 years of spacecraft observations at roughly 1 AU, showed that fast

Fig. 3.26 Contour plot of the 2D correlation function of interplanetary magnetic field fluctuations
as a function of parallel and perpendicular distance with respect to the mean magnetic field. The
separation in r

k

and r
?

is in units of 1010 cm. Image reproduced by permission from Matthaeus
et al. (1990), copyright by AGU
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streams are dominated by fluctuations with wavevectors quasi-parallel to the local
magnetic field, while slow streams are dominated by quasi-perpendicular fluctuation
wavevectors. Anisotropic turbulence has been observed in laboratory plasmas and
reverse pinch devices (Zweben et al. 1979).

Bieber et al. (1996) formulated an observational test to distinguish the slab
(Alfvénic) from the 2D component within interplanetary turbulence. These authors
assumed a mixture of transverse fluctuations, some of which have wave vectors
perpendicular k ? B0 and polarization of fluctuations ıB.k?/ perpendicular to both
vectors (2D geometry with kk ' 0), and some parallel to the mean magnetic field
k k B0, the polarization of fluctuations ıB.kk/ being perpendicular to the direction
of B0 (slab geometry with k? ' 0). The magnetic field is then rotated into the same
mean field coordinate system used by Belcher and Davis Jr (1971) and Belcher and
Solodyna (1975), where the y-coordinate is perpendicular to both B0 and the radial
direction, while the x-coordinate is perpendicular to B0 but with a component also
in the radial direction.

The mean field reference system (see Fig. 3.2) reduces the problem of cross-
talking between the components due to the fact that the interplanetary magnetic
field is not oriented like the axes of the reference system in which we perform the
measurement and, as a consequence, any component will experience a contribution
from the other ones.

Using this new reference system, and defining the power spectrum matrix as

Pij.k/ D 1

.2�/3

Z
d3rhBi.x/Bj.x C r/ie�ik�r;

it can be found that, assuming axisymmetry, a two-component model can be written
in the frequency domain

fPyy. f / D rCs

�
2�f
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where the anisotropic energy spectrum is the sum of both components:

fT. f / D 2rCs
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Uw cos 

�1�q

C 2.1� r/Cs

�
2�f
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�1�q

: (3.40)

Here f is the frequency, Cs is a constant defining the overall spectrum amplitude in
wave vector space, Uw is the bulk solar wind speed and  is the angle between B0

and the wind direction. Finally, r is the fraction of slab components and .1 � r/ is
the fraction of 2D components.



3.3 Turbulence in the Ecliptic 81

The ratio test adopted by these authors was based on the ratio between the
reduced perpendicular spectrum (fluctuations ? to the mean field and solar wind
flow direction) and the reduced quasi-parallel spectrum (fluctuations ? to the mean
field and in the plane defined by the mean field and the flow direction). This ratio,
expected to be 1 for slab turbulence, resulted to be � 1.4 for fluctuations within the
inertial range, consistent with 74 % of 2D turbulence and 26 % of slab. A further
test, the anisotropy test, evaluated how the spectrum should vary with the angle
between the mean magnetic field and the flow direction of the wind. The measured
slab spectrum should decrease with the field angle while the 2D spectrum should
increase, depending on how these spectra project on the flow direction. The results
from this test were consistent with 95 % of 2D turbulence and 5 % of slab. In other
words, the slab turbulence due to Alfvénic fluctuations would be a minor component
of interplanetary MHD turbulence. A third test derived from Mach number scaling
associated with the nearly incompressible theory Zank and Matthaeus (1992),
assigned the same fraction � 80 % to the 2D component. However, the data base
for this analysis was derived from Helios magnetic measurements, and all data were
recorded near times of solar energetic particle events. Moreover, the quasi totality
of the data belonged to slow solar wind Wanner and Wibberenz (1993) and, as such,
this analysis cannot be representative of the whole phenomenon of turbulence in
solar wind. As a matter of fact, using Ulysses observations, Smith (2003) found that
in the polar wind the percentage of slab and 2D components is about the same, say
the high latitude slab component results unusually higher as compared with ecliptic
observations.

Successive theoretical works by Ghosh et al. (1998b,a) in which they used
compressible models in large variety of cases were able to obtain, in some cases,
parallel and perpendicular correlations similar to those obtained in the solar wind.
However, they concluded that the “Maltese” cross does not come naturally from
the turbulent evolution of the fluctuations but it strongly depends on the initial
conditions adopted when the simulation starts. It seems that the existence of these
correlations in the initial data represents an unavoidable constraint. Moreover,
they also stressed the importance of time-averaging since the interaction between
slab waves and transverse pressure-balanced magnetic structures causes the slab
turbulence to evolve towards a state in which a two-component correlation function
emerges during the process of time averaging.

The presence of two populations, i.e., a slab-like and a quasi-2D like, was also
inferred by Dasso et al. (2003). These authors computed the reduced spectra of the
normalized cross-helicity and the Alfvén ratio from ACE dataset. These parameters,
calculated for different intervals of the angle � between the flow direction and the
orientation of the mean field B0, showed a remarkable dependence on � .

The geometry used in these analyses assumes that the energy spectrum in the rest
frame of the plasma is axisymmetric and invariant for rotations about the direction
of B0. Even if these assumption are good when we want to translate results coming
from 2D numerical simulations to 3D geometry, these assumptions are quite in
contrast with the observational fact that the eigenvalues of the variance matrix are
different, namely �3 6D �2.
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Going back from the correlation tensor to the power spectrum is a complicated
technical problem. However, Carbone et al. (1995) derived a description of the
observed anisotropy in terms of a model for the three-dimensional energy spectra
of magnetic fluctuations. The divergence-less of the magnetic field allows to
decompose the Fourier amplitudes of magnetic fluctuations in two independent
polarizations: The first one IŒ1�.k/ corresponds, in the weak turbulence theory,
to the Alfvénic mode, while the second polarization IŒ2�.k/ corresponds to the
magnetosonic mode. By using only the hypothesis that the medium is statistically
homogeneous and some algebra, authors found that the energy spectra of both
polarizations can be related to the two-points correlation tensor and to the variance
matrix. Through numerical simulations of the shell model (see later in the review) it
has been shown that the anisotropic energy spectrum can be described in the inertial
range by a phenomenological expression

IŒs�.k/ D Cs

h�
`Œs�x kx

	2 C �
`Œs�y ky

	2 C �
`Œs�z kz

	2i�1�
s=2

; (3.41)

where ki are the Cartesian components of the wave vector k, and Cs, `
Œs�
i , and 
s

(s D 1; 2 indicates both polarizations; i D x; y; z) are free parameters. In particular,
Cs gives information on the energy content of both polarizations, `Œs�i represent the
spectral extensions along the direction of a given system of coordinates, and 
s are
two spectral indices.

A fit to the eigenvalues of the variance matrix allowed Carbone et al. (1995)
to fix the free parameters of the spectrum for both polarizations. They used data
from Bavassano et al. (1982b) who reported the values of �i at five wave vectors
calculated at three heliocentric distances, selecting periods of high correlation
(Alfvénic periods) using magnetic field measured by the Helios 2 spacecraft. They
found that the spectral indices of both polarizations, in the range 1:1 � 
1 � 1:3 and
1:46 � 
2 � 1:8 increase systematically with increasing distance from the Sun, the
polarization Œ2� spectra are always steeper than the corresponding polarization Œ1�
spectra, while polarization Œ1� is always more energetic than polarization Œ2�. As far
as the characteristic lengths are concerned, it can be found that `Œ1�x > `

Œ1�
y � `zŒ1�,

indicating that wave vectors k k B0 largely dominate. Concerning polarization Œ2�, it
can be found that `xŒ2� � `

Œ2�
y ' `

Œ2�
z , indicating that the spectrum IŒ2�.k/ is strongly

flat on the plane defined by the directions of B0 and the radial direction. Within this
plane, the energy distribution does not present any relevant anisotropy.

Let us compare these results with those by Matthaeus et al. (1990), the compari-
son being significant as far as the plane yz is taken into account. The decomposition
of Carbone et al. (1995) in two independent polarizations is similar to that of
Matthaeus et al. (1990), a contour plot of the trace of the correlation tensor Fourier
transform T.k/ D IŒ1�.k/ C IŒ2�.k/ on the plane .kyI kz/ shows two populations
of fluctuations, with wave vectors nearly parallel and nearly perpendicular to B0,
respectively. The first population is formed by all the polarization [1] fluctuations
and by the fluctuations with k k B0 belonging to polarization [2]. The latter
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fluctuations are physically indistinguishable from the former, in that when k is
nearly parallel to B0, both polarization vectors are quasi-perpendicular to B0. On the
contrary, the second population is almost entirely formed by fluctuations belonging
to polarization [2]. While it is clear that fluctuations with k nearly parallel to B0 are
mainly polarized in the plane perpendicular to B0 (a consequence of r � B D 0),
fluctuations with k nearly perpendicular to B0 are polarized nearly parallel to B0.

Although both models yield to the occurrence of two populations, Matthaeus
et al. (1990) give an interpretation of their results which is in contrast with that
of Carbone et al. (1995). Namely Matthaeus et al. (1990) suggest that a nearly 2D
incompressible turbulence characterized by wave vectors and magnetic fluctuations,
both perpendicular to B0, is present in the solar wind. However, this interpretation
does not arise from data analysis, rather from the 2D numerical simulations by
Shebalin et al. (1983) and from analytical studies (Montgomery 1982). Let us
note, however, that in the former approach, which is strictly 2D, when k ? B0

magnetic fluctuations are necessarily parallel to B0. In the latter one, along with
incompressibility, it is assumed that the energy in the fluctuations is much less than
in the DC magnetic field; both hypotheses do not apply to the solar wind case.
On the contrary, results by Carbone et al. (1995) can be directly related to the
observational data. In any case, it is worth reporting that a model like that discussed
here, that is a superposition of fluctuations with both slab and 2D components, has
been used to describe turbulence also in the Jovian magnetosphere (Saur et al. 2002,
2003). In addition, several theoretical and observational works indicate that there
is a competition between the radial axis and the mean field axis in shaping the
polarization and spectral anisotropies in the solar wind.

In this respect, Grappin and Velli (1996) used numerical simulations of MHD
equations which included expansion effects (Expanding Box Model) to study the
formation of anisotropy in the wind and the interaction of Alfvén waves within
a transverse magnetic structures. These authors found that a large-scale isotropic
Alfvénic eddy stretched by expansion naturally mixes with smaller scale transverse
Alfvén waves with a different anisotropy.

Saur and Bieber (1999), on the other hand, employed three different tests on
about three decades of solar wind observations at 1 AU in order to better understand
the anisotropic nature of solar wind fluctuations. Their data analysis strongly
supported the composite model of a turbulence made of slab and 2-D fluctuations.

Narita et al. (2011), using the four Cluster spacecraft, determined the three-
dimensional wave-vector spectra of fluctuating magnetic fields in the solar wind
within the inertial range. These authors found that the spectra are anisotropic
throughout the analyzed frequency range and the power is extended primarily in the
directions perpendicular to the mean magnetic field, as might be expected of 2-D
turbulence, however, the analyzed fluctuations cannot be considered axisymmetric.

Finally, Turner et al. (2011) suggested that the non-axisymmetry anisotropy of
the frequency spectrum observed using in-situ observations may simply arise from a
sampling effect related to the fact that the s/c samples three dimensional fluctuations
as a one-dimensional series and that the energy density is not equally distributed
among the different scales (i.e., spectral index > 1).
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3.3.7 Alfvénic Correlations as Incompressive Turbulence

In a famous paper, Belcher and Davis Jr (1971) showed that a strong correlation
exists between velocity and magnetic field fluctuations, in the form

ıv ' ˙ ıBp
4��

; (3.42)

where the sign of the correlation is given by the signŒ�k � B0�, being k the wave
vector and B0 the background magnetic field vector. These authors showed that in
about 25 day of data from Mariner 5, out of the 160 day of the whole mission,
fluctuations were described by Eq. (3.42), and the sign of the correlation was such
to indicate always an outward sense of propagation with respect to the Sun. Authors
also noted that these periods mainly occur within the trailing edges of high-speed
streams. Moreover, in the regions where Eq. (3.42) is verified to a high degree, the
magnetic field magnitude is almost constant .B2 � const:/.

Today we know that Alfvénic correlations are ubiquitous in the solar wind
and that these correlations are much stronger and are found at lower and lower
frequencies, as we look at shorter and shorter heliocentric distances. In the right
panel of Fig. 3.27 we show results from Belcher and Solodyna (1975) obtained on

Fig. 3.27 Alfvénic correlation in fast solar wind. Left panel: small scale Alfvénic fluctuations for
the first time found by Belcher and Davis Jr (1971). Right panel: large scale Alfvénic fluctuations
found by Bruno et al. (1985); Panel A shows 1-h averages of magnetic field (heavy lines) and
velocity (light lines) components, Panel B shows filtered data highlighting the presence of Alfvénic
correlations lasting several hours. Image reproduced by permission, copyright by AGU



3.3 Turbulence in the Ecliptic 85

the basis of 5 min averages of velocity and magnetic field recorded by Mariner 5
in 1967, during its mission to Venus. On the left panel of Fig. 3.27 we show results
from a similar analysis performed by Bruno et al. (1985) obtained on the basis of 1 h
averages of velocity and magnetic field recorded by Helios 2 in 1976, when the s/c
was at 0.29 AU from the Sun. These last authors found that, in their case, Alfvénic
correlations extended to time periods as low as 15 h in the s/c frame at 0.29 AU, and
to periods a factor of two smaller near the Earth’s orbit. Now, if we think that this
long period of the fluctuations at 0.29 AU was larger than the transit time from the
Sun to the s/c, this results might be the first evidence for a possible solar origin for
these fluctuations, probably caused by the shuffling of the foot-points of the solar
surface magnetic field.

Alfvén modes are not the only low frequency plasma fluctuations allowed by
the MHD equations but they certainly are the most frequent fluctuations observed
in the solar wind. The reason why other possible propagating modes like the slow
sonic mode and the fast magnetosonic mode cannot easily be found, besides the
fact that the eigenvectors associated with these modes are not directly identifiable
because they necessitate prior identification of wavevectors, contrary to the simple
Alfvén eigenvectors, depends also on the fact that these compressive modes are
strongly damped in the solar wind shortly after they are generated (see Sect. 5). On
the contrary, Alfvénic fluctuations, which are difficult to be damped because of their
incompressive nature, survive much longer and dominate solar wind turbulence.
Nevertheless, there are regions where Alfvénic correlations are much stronger like
the trailing edge of fast streams, and regions where these correlations are weak
like intervals of slow wind (Belcher and Davis Jr 1971; Belcher and Solodyna
1975). However, the degree of Alfvénic correlations unavoidably fades away with
increasing heliocentric distance, although it must be reported that there are cases
when the absence of strong velocity shears and compressive phenomena favor a
high Alfvénic correlation up to very large distances from the Sun (Roberts et al.
1987a; see Sect. 4.2.3).

Just to give a qualitative quick example about Alfvénic correlations in fast and
slow wind, we show in Fig. 3.28 the speed profile for about 100 day of 1976 as
observed by Helios 2, and the traces of velocity and magnetic field Z components
(see Sect. 3.3.6 for the orientation of the reference system) VZ and BZ (this last one
expressed in Alfvén units, see Sect. 3.2.2) for two different time intervals, which
have been enlarged in the two inserted small panels. The high velocity interval
shows a remarkable anti-correlation which, since the mean magnetic field B0 is
oriented away from the Sun, suggests a clear presence of outward oriented Alfvénic
fluctuations given that the sign of the correlation is the signŒ�k�B0�. At odds with the
previous interval, the slow wind shows that the two traces are rather uncorrelated.
For sake of brevity, we omit to show the very similar behavior for the other two
components, within both fast and slow wind.

The discovery of Alfvénic correlations in the solar wind stimulated fundamen-
tal remarks by Kraichnan (1974) who, following previous theoretical works by
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Fig. 3.28 Alfvénic correlation in fast and slow wind. Notice the different degree of correlation
between these two types of wind

Kraichnan (1965) and Iroshnikov (1963), showed that the presence of a strong
correlation between velocity and magnetic fluctuations renders non-linear transfer
to small scales less efficient than for the Navier–Stokes equations, leading to a
turbulent behavior which is different from that described by Kolmogorov (1941).
In particular, when Eq. (3.42) is exactly satisfied, non-linear interactions in MHD
turbulent flows cannot exist. This fact introduces a problem in understanding the
evolution of MHD turbulence as observed in the interplanetary space. Both a
strong correlation between velocity and magnetic fluctuations and a well defined
turbulence spectrum (Figs. 3.21 and 3.28) are observed, and the existence of the
correlations is in contrast with the existence of a spectrum which in turbulence is
due to a non-linear energy cascade. Dobrowolny et al. (1980) started to solve the
puzzle on the existence of Alfvénic turbulence, say the presence of predominately
outward propagation and the fact that MHD turbulence with the presence of
both Alfvénic modes present will evolve towards a state where one of the mode
disappears. However, a lengthy debate based on whether the highly Alfvénic nature
of fluctuations is what remains of the turbulence produced at the base of the corona
or the solar wind itself is an evolving turbulent magnetofluid, has been stimulating
the scientific community for quite a long time.



3.3 Turbulence in the Ecliptic 87

3.3.8 Radial Evolution of Alfvénic Turbulence

The degree of correlation not only depends on the type of wind we look at, i.e., fast
or slow, but also on the radial distance from the Sun and on the time scale of the
fluctuations.

Figure 3.29 shows the radial evolution of 	c (see Sect. 3.2.2) as observed by
Helios and Voyager s/c (Roberts et al. 1987b). It is clear enough that 	c not only
tends to values around 0 as the heliocentric distance increases, but larger and larger
time scales are less and less Alfvénic. Values of 	c � 0 suggest a comparable
amount of “outward” and “inward” correlations.

The radial evolution affects also the Alfvén ratio rA (see Sect. 4.1.1) as it was
found by Bruno et al. (1985). However, early analyses (Belcher and Davis Jr
1971; Solodyna and Belcher 1976; Matthaeus and Goldstein 1982a) had already
shown that this parameter is usually less than unit. Spectral studies by Marsch and
Tu (1990a), reported in Fig. 3.30, showed that within slow wind it is the lowest
frequency range the one that experiences the strongest decrease with distance, while
the highest frequency range remains almost unaffected. Moreover, the same study
showed that, within fast wind, the whole frequency range experiences a general
depletion. The evolution is such that close to 1 AU the value of rA in fast wind
approaches that in slow wind.

Moreover, comparing these results with those by Matthaeus and Goldstein
(1982a) obtained from Voyager at 2.8 AU, it seems that the evolution recorded
within fast wind tends to a sort of limit value around 0.4–0.5.

Also Roberts et al. (1990), analyzing fluctuations between 9 h and 3 day found
a similar radial trend. These authors showed that rA dramatically decreases from
values around unit at the Earth’s orbit towards 0.4–0.5 at approximately 8 AU. For
larger heliocentric distances, rA seems to stabilize around this last value.

The reason why rA tends to a value less than unit is still an open question although
MHD computer simulations (Matthaeus 1986) showed that magnetic reconnection
and high plasma viscosity can produce values of rA < 1 within the inertial
range. Moreover, the magnetic energy excess can be explained as a competing
action between the equipartition trend due to linear propagation (or Alfvén effect,
Kraichnan 1965), and a local dynamo effect due to non-linear terms (Grappin
et al. 1991), see closure calculations by Grappin et al. (1983); DNS by Müller and
Grappin (2005).

However, this argument forecasts an Alfvén ratio rA ¤ 1 but, it does not say
whether it would be larger or smaller than “1”, i.e., we could also have a final excess
of kinetic energy.

Similar unbalance between magnetic and kinetic energy has recently been found
in numerical simulations by Mininni et al. (2003a), already cited in Sect. 3.3.2.
These authors studied the effect of a weak magnetic field at small scales in a system
kept in a stationary regime of hydrodynamic turbulence. In these conditions, the
dynamo action causes the initial magnetic energy to grow exponentially towards a
state of quasi equipartition between kinetic and magnetic energy. This simulation
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Fig. 3.29 Histograms of normalized cross-helicity 	c showing its evolution between 0.3 (circles),
2 (triangles), and 20 (squares) AU for different time scales: 3 h (top panel), 9 h (middle panel),
and 81 h (bottom panel). Image reproduced by permission from Roberts et al. (1987b), copyright
by AGU
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Fig. 3.30 Values of the Alfvén ratio rA as a function of frequency and heliocentric distance, within
slow (left column) and fast (right column) wind. Image reproduced by permission from Marsch and
Tu (1990a), copyright by AGU

was aiming to provide more insights on a microscopic theory of the alpha-effect,
which is responsible to convert part of the toroidal magnetic field on the Sun
back to poloidal to sustain the cycle. However, when the simulation saturates, the
unbalance between kinetic and magnetic energy reminds the conditions in which
the Alfvén ratio is found in interplanetary space. At very early time the fluid is
in a strongly turbulent regime as a result of the action of the external force at
wave number kforce D 3. An initial magnetic fluctuation is introduced at t D 0

at kseed D 35. The magnetic energy starts growing exponentially fast and, when the
simulation reaches the saturation stage, the magnetic power spectrum exceeds the
kinetic power spectrum at large wave numbers (i.e., k > kforce), as also observed in
Alfvénic fluctuations of the solar wind (Bruno et al. 1985; Tu and Marsch 1990) as
an asymptotic state (Roberts et al. 1987a,b; Bavassano et al. 2000) of turbulence.

However, when the two-fluid effect, such as the Hall current and the electron
pressure (Mininni et al. 2003b), is included in the simulation, the dynamo can
work more efficiently and the final stage of the simulation is towards equipartition
between kinetic and magnetic energy (Fig. 3.31).
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Fig. 3.31 A 1283 numerical simulation, as in Fig. 3.20, but with an external force applied at wave
number kforce D 3 (Figure kindly provided by D. Gómez)

On the other hand, Marsch and Tu (1993) analyzed several intervals of interplan-
etary observations to look for a linear relationship between the mean electromotive
force " D hıVıBi, generated by the turbulent motions, and the mean magnetic field
B0, as predicted by simple dynamo theory (Krause and Rädler 1980). Although
sizable electromotive force was found in interplanetary fluctuations, these authors
could not establish any simple linear relationship between B0 and ".

Lately, Bavassano and Bruno (2000) performed a three-fluid analysis of solar
wind Alfvénic fluctuations in the inner heliosphere, in order to evaluate the effect
of disregarding the multi-fluid nature of the wind on the factor relating velocity
and magnetic field fluctuations. It is well known that converting magnetic field
fluctuations into Alfvén units we divide by the factor Fp D .4�MpNp/

1=2. However,
fluctuations in velocity tend to be smaller than fluctuations in Alfvén units. In
Fig. 3.32 we show scatter plots between the z-component of the Alfvén velocity
and the proton velocity fluctuations. The z-direction has been chosen as the same of
Vp � B, where Vp is the proton bulk flow velocity and B is the mean field direction.
The reason for such a choice is due to the fact that this direction is the least affected
by compressive phenomena deriving from the wind dynamics. These results show
that although the correlation coefficient in both cases is around �0:95, the slope of
the best fit straight line passes from 1 at 0.29 AU to a slope considerably different
from 1 at 0.88 AU.

Belcher and Davis Jr (1971) suggested that this phenomenon had to be ascribed
to the presence of ˛ particles and to an anisotropy in the thermal pressure. Moreover,
taking into account the multi-fluid nature of the solar wind, the dividing factor
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Fig. 3.32 Scatter plot between the z-component of the Alfvén velocity and the proton velocity
fluctuations at about 2 mHz. Data refer to Helios 2 observations at 0.29 AU (left panel) and 0.88 AU
(right panel). Image adapted from Bavassano and Bruno (2000)

should become F D FpFiFa, where Fi would take into account the presence of other
species besides protons, and Fa would take into account the presence of pressure
anisotropy Pk ¤ P?, where k and ? refer to the background field direction. In
particular, following Bavassano and Bruno (2000), the complete expressions for Fi

and Fa are

Fi D
"
1C

X
s

.MsNs/=.MpNp/

#1=2

and

Fa D
"
1 � 4�

B20

X
s

.Pks � P?s C MsNsU2
s /

#�1=2
;

where the letter “s” stands for the s-th species, being Us D Vs � V its velocity in
the center of mass frame of reference. Vs is the velocity of the species “s” in the s/c
frame and V D .

P
s MsNsVs/=.

P
s MsNs/ is the velocity of the center of mass.

Bavassano and Bruno (2000) analyzed several time intervals within the same co-
rotating high velocity stream observed at 0.3 and 0.9 AU and performed the analysis
using the new factor “F” to express magnetic field fluctuations in Alfvén units,
taking into account the presence of ˛ particles and electrons, besides the protons.
However, the correction resulted to be insufficient to bring back to “1” the slope of
the ıVPz � ıVAz relationship shown in the right panel of Fig. 3.32. In conclusion, the
radial variation of the Alfvén ratio rA towards values less than 1 is not completely
due to a missed inclusion of multi-fluid effects in the conversion from magnetic field
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to Alfvén units. Thus, we are left with the possibility that the observed depletion of
rA is due to a natural evolution of turbulence towards a state in which magnetic
energy becomes dominant (Grappin et al. 1991; Roberts et al. 1992; Roberts 1992),
as observed in numerical simulations by Mininni et al. (2003a) or, it is due to the
increased presence of magnetic structures like MFDT (Tu and Marsch 1993).
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Chapter 4
Turbulence Studied via Elsässer Variables

The Alfvénic character of solar wind fluctuations, especially within co-rotating high
velocity streams, suggests to use the Elsässer variables (Sect. 4.1) to separate the
“outward” from the “inward” contribution to turbulence. These variables, used in
theoretical studies by Dobrowolny et al. (1980a,b), Veltri et al. (1982), Marsch and
Mangeney (1987), and Zhou and Matthaeus (1989), were for the first time used in
interplanetary data analysis by Grappin et al. (1990) and Tu et al. (1989).

4.1 Introducing the Elsässer Variables

The Alfvénic character of turbulence suggests to use the Elsässer variables to better
describe the inward and outward contributions to turbulence. Following Elsässer
(1950), Dobrowolny et al. (1980b), Goldstein et al. (1986), Grappin et al. (1989),
Marsch and Tu (1989), Tu and Marsch (1990b), and Tu et al. (1989), Elsässer
variables are defined as

z˙ D v ˙ bp
4��

; (4.1)

where v and b are the proton velocity and the magnetic field measured in the s/c
reference frame, which can be looked at as an inertial reference frame. The sign
in front of b, in Eq. (4.1), is decided by signŒ�k � B0�. In other words, for an
outward directed mean field B0, a negative correlation would indicate an outward
directed wave vector k and vice-versa. However, it is more convenient to define the
Elsässers variables in such a way that zC always refers to waves going outward and
z� to waves going inward. In order to do so, the background magnetic field B0 is
artificially rotated by 180ı every time it points away from the Sun, in other words,
magnetic sectors are rectified (Roberts et al. 1987a,b).
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4.1.1 Definitions and Conservation Laws

If we express b in Alfvén units, that is we normalize it by
p
4�� we can use the

following handy formulas relative to definitions of fields and second order moments.
Fields:

z˙ D v ˙ b; (4.2)

v D 1

2
.zC C z�/; (4.3)

b D 1

2
.zC � z�/: (4.4)

Second order moments:

zC and z� energies �! e˙ D 1

2
h.z˙/2i ; (4.5)

kinetic energy �! ev D 1

2
hv2i ; (4.6)

magnetic energy �! eb D 1

2
hb2i ; (4.7)

total energy �! e D ev C eb ; (4.8)

residual energy �! er D ev � eb ; (4.9)

cross-helicity �! ec D 1

2
hv � bi : (4.10)

Normalized quantities:

normalized cross-helicity �! 	c D eC � e�

eC C e� D 2ec

ev C eb
; (4.11)

normalized residual-energy �! 	r D ev � eb

ev C eb
D 2er

eC C e� ; (4.12)

Alfvén ratio �! rA D ev

eb
D 1C 	r

1� 	r
; (4.13)

Elsässer ratio �! rE D e�

eC D 1 � 	c

1C 	c
: (4.14)

We expect an Alfvèn wave to satisfy the following relations (Table 4.1):
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Table 4.1 Expected values for Alfvèn ratio rA, normalized cross-helicity 	c, and normalized
residual energy 	r for a pure Alfvèn wave outward or inward oriented

Parameter Definition Expected value

rA eV=eB 1

	c .eC � e�/=.eC C e�/ ˙1
	r .eV � eB/=.eV C eB/ 0

4.1.2 Spectral Analysis Using Elsässer Variables

A spectral analysis of interplanetary data can be performed using zC and z� fields.
Following Tu and Marsch (1995) the energy spectrum associated with these two
variables can be defined in the following way:

ej̇ . fk/ D 2ıT

n
ızj̇;k.ızj̇;k/

�; (4.15)

where ızj̇;k are the Fourier coefficients of the j-component among x; y, and z, n is
the number of data points, ıT is the sampling time, and fk D k=nıT, with k D
0; 1; 2; : : : ; n=2 is the kth frequency. The total energy associated with the two Alfvèn
modes will be the sum of the energy of the three components, i.e.,

e˙. fk/ D
X

jDx;y;z

ej̇ . fk/: (4.16)

Obviously, using Eqs. (4.15) and (4.16), we can redefine in the frequency domain
all the parameters introduced in the previous section.

4.2 Ecliptic Scenario

In the following, we will describe and discuss several differences between “out-
ward” and “inward” modes, but the most important one is about their origin. As a
matter of fact, the existence of the Alfvénic critical point implies that only “outward”
propagating waves of solar origin will be able to escape from the Sun. “Inward”
waves, being faster than the wind bulk speed, will precipitate back to the Sun if
they are generated before this point. The most important implication due to this
scenario is that “inward” modes observed beyond the Alfvénic point cannot have
a solar origin but they must have been created locally by some physical process.
Obviously, for the other Alfvénic component, both solar and local origins are still
possible.

Early studies by Belcher and Davis Jr (1971), performed on magnetic field
and velocity fluctuations recorded by Mariner 5 during its trip to Venus in 1967,
already suggested that the majority of the Alfvénic fluctuations are characterized
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by an “outward” sense of propagation, and that the best regions where to observe
these fluctuations are the trailing edge of high velocity streams. Moreover, Helios
spacecraft, repeatedly orbiting around the Sun between 0.3 and 1 AU, gave the first
and unique opportunity to study the radial evolution of turbulence (Bavassano et al.
1982a; Denskat and Neubauer 1983). Successively, when Elsässer variables were
introduced in the analysis (Grappin et al. 1989), it was finally possible not only to
evaluate the “inward” and “outward” Alfvénic contribution to turbulence but also
to study the behavior of these modes as a function of the wind speed and radial
distance from the Sun.

Figure 4.1 This figure from Tu et al. (1990) clearly shows the behavior of e˙
(see Sect. 4.1) across a high speed stream observed at 0.3 AU. Within fast wind eC

Fig. 4.1 Power density spectra e˙ computed from ız˙ fluctuations for different time intervals
indicated by the arrows. Image reproduced by permission from Tu et al. (1990), copyright by
AGU
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is much higher than e� and its spectral slope shows a break. Lower frequencies have
a flatter slope while the slope of higher frequencies is closer to a Kolmogorov-like.
e� has a similar break but the slope of lower frequencies follows the Kolmogorov
slope, while higher frequencies form a sort of plateau.

This configuration vanishes when we pass to the slow wind where both spectra
have almost equivalent power density and follow the Kolmogorov slope. This
behavior, for the first time reported by Grappin et al. (1990), is commonly found
within co-rotating high velocity streams, although much more clearly expressed at
shorter heliocentric distances, as shown below.

Spectral power associated with outward (right panel) and inward (left panel)
Alfvénic fluctuations, based on Helios 2 observations in the inner heliosphere, are
concisely reported in Fig. 4.2. The e� spectrum, if we exclude the high frequency
range of the spectrum relative to fast wind at 0.4 AU, shows an average power law
profile with a slope of �1:64, consistent with Kolmogorov’s scaling. The lack of
radial evolution of e� spectrum brought Tu and Marsch (1990b) to name it “the
background spectrum” of solar wind turbulence.

Fig. 4.2 Power density spectra e� and eC computed from ız� and ızC fluctuations. Spectra have
been computed within fast (H) and slow (L) streams around 0.4 and 0.9 AU as indicated by different
line styles. The thick line represents the average power spectrum obtained from all the about 50 e�

spectra, regardless of distances and wind speed. The shaded area is the 1	 width related to the
average. Image reproduced by permission from Tu and Marsch (1990a), copyright by AGU



104 4 Turbulence Studied via Elsässer Variables

Fig. 4.3 Ratio of e� over eC within fast wind at 0.3 and 0.9 AU in the left and right panels,
respectively. Image reproduced by permission from Marsch and Tu (1990), copyright by AGU

Quite different is the behavior of eC spectrum. Close to the Sun and within
fast wind, this spectrum appears to be flatter at low frequency and steeper at high
frequency. The overall evolution is towards the “background spectrum” by the time
the wind reaches 0.8 AU.

In particular, Fig. 4.2 tells us that the radial evolution of the normalized cross-
helicity has to be ascribed mainly to the radial evolution of eC rather than to both
Alfvénic fluctuations (Tu and Marsch 1990b). In addition, Fig. 4.3, relative to the
Elsässer ratio rE, shows that the hourly frequency range, up to �2 � 10�3 Hz, is the
most affected by this radial evolution.

As a matter of fact, this radial evolution can be inferred from Fig. 4.4 where
values of e� and eC together with solar wind speed, magnetic field intensity, and
magnetic field and particle density compression are shown between 0.3 and 1 AU
during the primary mission of Helios 2. It clearly appears that enhancements of e�
and depletion of eC are connected to compressive events, particularly within slow
wind. Within fast wind the average level of e� is rather constant during the radial
excursion while the level of eC dramatically decreases with a consequent increase
of the Elsässer ratio (see Sect. 4.1.1).

Further ecliptic observations (see Fig. 4.5) do not indicate any clear radial trend
for the Elsässer ratio between 1 and 5 AU, and its value seems to fluctuate between
0.2 and 0.4.
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Fig. 4.4 Upper panel: solar wind speed and solar wind speed multiplied by 	c. In the lower panels
the authors reported: 	c, rE, e�, eC, magnetic compression, and number density compression,
respectively. Image reproduced by permission from Bruno and Bavassano (1991), copyright by
AGU

Fig. 4.5 Ratio of e� over eC within fast wind between 1 and 5 AU as observed by Ulysses in the
ecliptic. Image reproduced by permission from Bavassano et al. (2001), copyright by AGU



106 4 Turbulence Studied via Elsässer Variables

However, low values of the normalized cross-helicity can also be associated
with a particular type of incompressive events, which Tu and Marsch (1991) called
Magnetic Field Directional Turnings or MFDT. These events, found within slow
wind, were characterized by very low values of 	c close to zero and low values of
the Alfvén ratio, around 0.2. Moreover, the spectral slope of eC, e� and the power
associated with the magnetic field fluctuations was close to the Kolmogorov slope.
These intervals were only scarcely compressive, and short period fluctuations, from
a few minutes to about 40 min, were nearly pressure balanced. Thus, differently
from what had previously been observed by Bruno et al. (1989), who found low
values of cross-helicity often accompanied by compressive events, these MFDTs
were mainly incompressive. In these structures most of the fluctuating energy
resides in the magnetic field rather than velocity as shown in Fig. 4.6 taken from
Tu and Marsch (1991). It follows that the amplitudes of the fluctuating Alfvénic
fields ız˙ result to be comparable and, consequently, the derived parameter 	c ! 0.
Moreover, the presence of these structures would also be able to explain the fact that
rA < 1. Tu and Marsch (1991) suggested that these fluctuations might derive from
a special kind of magnetic structures, which obey the MHD equations, for which
.B � r/B D 0, field magnitude, proton density, and temperature are all constant.
The same authors suggested the possibility of an interplanetary turbulence mainly
made of outwardly propagating Alfvén waves and convected structures represented
by MFDTs. In other words, this model assumed that the spectrum of e� would be
caused by MFDTs. The different radial evolution of the power associated with these
two kind of components would determine the radial evolution observed in both 	c

and rA. Although the results were not quantitatively satisfactory, they did show a
qualitative agreement with the observations.

These convected structures are an important ingredient of the turbulent evolution
of the fluctuations and can be identified as the 2D incompressible turbulence
suggested by Matthaeus et al. (1990) and Tu and Marsch (1991).

As a matter of fact, a statistical analysis by Bruno et al. (2007) showed
that magnetically dominated structures represent an important component of the
interplanetary fluctuations within the MHD range of scales. As a matter of fact,
these magnetic structures and Alfvénic fluctuations dominate at scales typical of
MHD turbulence. For instance, this analysis suggested that more than 20 % of
all analyzed intervals of 1 h scale are magnetically dominated and only weakly
Alfvénic. Observations in the ecliptic performed by Helios and WIND s/c and
out of the ecliptic, performed by Ulysses, showed that these advected, mostly
incompressive structures are ubiquitous in the heliosphere and can be found in both
fast and slow wind.

It proves interesting enough to look at the radial evolution of interplanetary
fluctuations in terms of normalized cross-helicity 	c and normalized residual energy
	r (see Sect. 4.1).
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Fig. 4.6 Left column: eC and e� spectra (top) and 	c (bottom) during a slow wind interval at
0.9 AU. Right column: kinetic ev and magnetic eB energy spectra (top) computed from the trace
of the relative spectral tensor, and spectrum of the Alfvén ratio rA (bottom) Image reproduced by
permission from Tu and Marsch (1995)

These results, shown in the left panels of Fig. 4.7, highlight the presence of a
radial evolution of the fluctuations towards a double-peaked distribution during the
expansion of the solar wind. The relative analysis has been performed on a co-
rotating fast stream observed by Helios 2 at three different heliocentric distances
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Fig. 4.7 Left, from top to bottom: frequency histograms of 	r vs. 	c (here 	C and 	R) for fast wind
observed by Helios 2 at 0.29, 0.65 and 0.88 AU, respectively. The color code, for each panel, is
normalized to the maximum of the distribution. The yellow circle represents the limiting value
given by 	2c C 	2r D 1 while, the yellow dashed line represents the relation 	r D 	c � 1, see text
for details. Right, from top to bottom: frequency histograms of 	r vs. 	c (here 	C and 	R) for slow
wind observed by Helios 2 at 0.32, 0.69 and 0.90 AU, respectively. The color code, for each panel,
is normalized to the maximum of the distribution. Image reproduced by permission from Bruno
et al. (2007), copyright EGU

over consecutive solar rotations (see Fig. 3.10 and related text). Closer to the Sun,
at 0.3 AU, the distribution is well centered around 	r D 0 and 	c D 1, suggesting
that Alfvénic fluctuations, outwardly propagating, dominate the scenario. By the
time the wind reaches 0.7 AU, the appearance of a tail towards negative values
of 	r and lower values of 	c indicates a partial loss of the Alfvénic character in
favor of fluctuations characterized by a stronger magnetic energy content. This
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clear tendency ends up with the appearance of a secondary peak by the time the
wind reaches 0.88 AU. This new family of fluctuations forms around 	r D �1 and
	c D 0. The values of 	r and 	c which characterize this new population are typical of
MFDT structures described by Tu and Marsch (1991). Together with the appearance
of these fluctuations, the main peak characterized by Alfvén like fluctuations looses
much of its original character shown at 0.3 AU. The yellow straight line that can
be seen in the left panels of Fig. 4.7 would be the linear relation between 	r and
	c in case fluctuations were made solely by Alfvén waves outwardly propagating
and advected MFDTs (Tu and Marsch 1991) and it would replace the canonical,
quadratic relation 	2r C 	2c � 1 represented by the yellow circle drawn in each
panel. However, the yellow dashed line shown in the left panels of Fig. 4.7 does not
seem to fit satisfactorily the observed distributions.

Quite different is the situation within slow wind, as shown in the right panels
of Fig. 4.7. As a matter of fact, these histograms do not show any striking radial
evolution like in the case of fast wind. High values of 	c are statistically much less
relevant than in fast wind and a well defined population characterized by 	r D �1
and 	c D 0, already present at 0.3 AU, becomes one of the dominant peaks of
the histogram as the wind expands. This last feature is really at odds with what
happens in fast wind and highlights the different nature of the fluctuations which,
in this case, are magnetically dominated. The same authors obtained very similar
results for fast and slow wind also from the same type of analysis performed on
WIND and Ulysses data which, in addition, confirmed the incompressive character
of the Alfvénic fluctuations and highlighted a low compressive character also for
the populations characterized by 	r � �1 and 	c � 0.

About the origin of these structures, these authors suggest that they might be
not only created locally during the non linear evolution of the fluctuations but
they might also have a solar origin. The reason why they are not seen close to
the Sun, within fast wind, might be due to the fact that these fluctuations, mainly
non-compressive, change the direction of the magnetic field similarly to Alfvénic
fluctuations but produce a much smaller effect since the associated ıb is smaller than
the one corresponding to Alfvénic fluctuations. As the wind expands, the Alfvénic
component undergoes non-linear interactions which produce a transfer of energy
to smaller and smaller scales while, these structures, being advected, have a much
longer lifetime. As the expansion goes on, the relative weight of these fluctuations
grows and they start to be detected.

4.2.1 On the Nature of Alfvénic Fluctuations

The Alfvénic nature of outward modes has been widely recognized through several
frequency decades up to periods of the order of several hours in the s/c rest frame
(Bruno et al. 1985). Conversely, the nature of those fluctuations identified by ız�,
called “inward Alfvén modes”, is still not completely clear. There are many clues
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Fig. 4.8 Power density spectra for eC and e� during a high velocity stream observed at 0.3 AU.
Best fit lines for different frequency intervals and related spectral indices are also shown. Vertical
lines fix the limits of five different frequency intervals analyzed by Bruno et al. (1996). Image
reproduced by permission, copyright by AIP

which would suggest that these fluctuations, especially in the hourly frequencies
range, have a non-Alfvénic nature. Several studies on this topic in the low frequency
range have suggested that structures convected by the wind could well mimic
non-existent inward propagating modes (see the review by Tu and Marsch 1995).
However, other studies (Tu et al. 1989) have also found, in the high frequency range
and within fast streams, a certain anisotropy in the components which resembles the
same anisotropy found for outward modes. So, these observations would suggest a
close link between inward modes at high frequency and outward modes, possibly
the same nature.

Figure 4.8 shows power density spectra for eC and e� during a high velocity
stream observed at 0.3 AU [similar spectra can be also found in the paper by
Grappin et al. (1990) and Tu et al. (1989)]. The observed spectral indices, reported
on the plot, are typically found within high velocity streams encountered at short
heliocentric distances. Bruno et al. (1996) analyzed the power relative to eC
and e� modes, within five frequency bands, ranging from roughly 12 h to 3 min,
delimited by the vertical solid lines equally spaced in log-scale. The integrated
power associated with eC and e� within the selected frequency bands is shown in
Fig. 4.9. Passing from slow to fast wind eC grows much more within the highest
frequency bands. Moreover, there is a good correlation between the profiles of
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Fig. 4.9 Left panel: wind speed profile is shown in the top panel. Power density associated with
eC (thick line) and e� (thin line), within the five frequency bands chosen, is shown in the lower
panels. Right panel: wind speed profile is shown in the top panel. Values of the angle �˙ between
the minimum variance direction of ızC (thick line) and ız� (thin line) and the direction of the
ambient magnetic field are shown in the lower panels, relatively to each frequency band. Image
reproduced by permission from Bruno et al. (1996), copyright by AIP

e� and eC within the first two highest frequency bands, as already noticed by
Grappin et al. (1990) who looked at the correlation between daily averages of e�
and eC in several frequency bands, even widely separated in frequency. The above
results stimulated these authors to conclude that it was reminiscent of the non-local
coupling in k-space between opposite modes found by Grappin et al. (1982) in
homogeneous MHD. Expansion effects were also taken into account by Velli et al.
(1990) who modeled inward modes as that fraction of outward modes back-scattered
by the inhomogeneities of the medium due to expansion effects (Velli et al. 1989).
However, following this model we would often expect the two populations to be
somehow related to each other but, in situ observations do not favor this kind of
forecast (Bavassano and Bruno 1992).

An alternative generation mechanism was proposed by Tu et al. (1989) based on
the parametric decay of eC in high frequency range (Galeev and Oraevskii 1963).
This mechanism is such that large amplitude Alfvén waves, unstable to perturbations
of random field intensity and density fluctuations, would decay into two secondary
Alfvén modes propagating in opposite directions and a sound-like wave propagating
in the same direction of the pump wave. Most of the energy of the mother wave
would go into the sound-like fluctuation and the backward propagating Alfvén
mode. On the other hand, the production of e� modes by parametric instability is not
particularly fast if the plasma ˇ � 1, like in the case of solar wind (Goldstein 1978;
Derby 1978), since this condition slows down the growth rate of the instability.
It is also true that numerical simulations by Malara et al. (2000, 2001b, 2002),
and Primavera et al. (2003) have shown that parametric decay can still be thought
as a possible mechanism of local production of turbulence within the polar wind
(see Sect. 4.3). However, the strong correlation between eC and e� profiles found
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only within the highest frequency bands would support this mechanism and would
suggest that e� modes within these frequency bands would have an Alfvénic nature.
Another feature shown in Fig. 4.9 that favors these conclusions is the fact that both
ızC and ız� keep the direction of their minimum variance axis aligned with the
background magnetic field only within the fast wind, and exclusively within the
highest frequency bands. This would not contradict the view suggested by Barnes
(1981). Following this model, the majority of Alfvénic fluctuations propagating in
one direction have the tip of the magnetic field vector randomly wandering on the
surface of half a sphere of constant radius, and centered along the ambient field
Bı. In this situation the minimum variance would be oriented along Bı, although
this would not represent the propagation direction of each wave vector which could
propagate even at large angles from this direction. This situation can be seen in
the right hand panel of Fig. 7.7 of Sect. 7.3, which refers to a typical Alfvénic
interval within fast wind. Moreover, ızC fluctuations show a persistent anisotropy
throughout the fast stream since the minimum variance axis remains quite aligned
to the background field direction. This situation downgrades only at the very low
frequencies where �C, the angle between the minimum variance direction of ızC
and the direction of the ambient magnetic field, starts wandering between 0ı and
90ı. On the contrary, in slow wind, since Alfvénic modes have a smaller amplitude,
compressive structures due to the dynamic interaction between slow and fast wind
or, of solar origin, push the minimum variance direction to larger angles with respect
to Bı, not depending on the frequency range.

In a way, we can say that within the stream, both �C and ��, the angle between
the minimum variance direction of ız� and the direction of the ambient magnetic
field, show a similar behavior as we look at lower and lower frequencies. The
only difference is that �� reaches higher values at higher frequencies than �C.
This was interpreted by Bruno et al. (1996) as due to transverse fluctuations of
ız� which carry much less power than those of ızC and, consequently, they are
more easily influenced by perturbations represented by the background, convected
structure of the wind (e.g., TD’s and PBS’s). As a consequence, at low frequency
ız� fluctuations may represent a signature of the compressive component of the
turbulence while, at high frequency, they might reflect the presence of inward
propagating Alfvén modes. Thus, while for periods of several hours ızC fluctuations
can still be considered as the product of Alfvén modes propagating outward (Bruno
et al. 1985), ız� fluctuations are rather due to the underlying convected structure of
the wind. In other words, high frequency turbulence can be looked at mainly as a
mixture of inward and outward Alfvénic fluctuations plus, presumably, sound-like
perturbations (Marsch and Tu 1993b). On the other hand, low frequency turbulence
would be made of outward Alfvénic fluctuations and static convected structures
representing the inhomogeneities of the background medium.
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4.2.2 Numerical Simulations

Numerical simulations currently represent one of the main source of information
about non-linear evolution of fluid flows. The actual super-computers are now
powerful enough to simulate equations (NS or MHD) that describe turbulent flows
with Reynolds numbers of the order of 104 in two-dimensional configurations, or
103 in three-dimensional one. Of course, we are far from achieving realistic values,
but now we are able to investigate turbulence with an inertial range extended for
more than one decade. Rather the main source of difficulties to get results from
numerical simulations is the fact that they are made under some obvious constraints
(say boundary conditions, equations to be simulated, etc.), mainly dictated by the
limited physical description that we are able to use when numerical simulations are
made, compared with the extreme richness of the phenomena involved: numerical
simulations, even in standard conditions, are used tout court as models for the solar
wind behavior. Perhaps the only exception, to our knowledge, is the attempt to
describe the effects of the solar wind expansion on turbulence evolution like, for
example, in the papers by Velli et al. (1989, 1990), and Hellinger and Trávníček
(2008). Even with this far too pessimistic point of view, used here solely as a
few words of caution, simulations in some cases were able to reproduce some
phenomena observed in the solar wind.

Nevertheless, numerical simulations have been playing a key role, and will
continue to do so in our seeking an understanding of turbulent flows. Numerical
simulations allows us to get information that cannot be obtained in laboratory. For
example, high resolution numerical simulations provide information at every point
on a grid and, for some times, about basic vector quantities and their derivatives. The
number of degree of freedom required to resolve the smaller scales is proportional
to a power of the Reynolds number, say to Re9=4, although the dynamically relevant
number of modes may be much less. Then one of the main challenge remaining is
how to handle and analyze the huge data files produced by large simulations (of
the order of Terabytes). Actually a lot of papers appeared in literature on computer
simulations related to MHD turbulence. The interested reader can look at the book
by Biskamp (1993) and the reviews by Pouquet (1993, 1996).

4.2.3 Local Production of Alfvénic Turbulence in the Ecliptic

The discovery of the strong correlation between velocity and magnetic field
fluctuations has represented the motivation for some MHD numerical simulations,
aimed to confirm the conjecture by Dobrowolny et al. (1980b). The high level of
correlation seems to be due to a kind of self-organization (dynamical alignment) of
MHD turbulence, generated by the natural evolution of MHD towards the strongest
attractive fixed point of equations (Ting et al. 1986; Carbone and Veltri 1987, 1992).
Numerical simulations (Carbone and Veltri 1992; Ting et al. 1986) confirmed this
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conjecture, say MHD turbulence spontaneously can tends towards a state were
correlation increases, that is, the quantity 	c D 2Hc=E, where Hc is the cross-
helicity and E the total energy of the flow (see Sect. 3.2.2), tends to be maximal.

The picture of the evolution of incompressible MHD turbulence, which comes
out is rather nice but solar wind turbulence displays a more complicated behavior.
In particular, as we have reported above, observations seems to point out that solar
wind evolves in the opposite way. The correlation is high near the Sun, at larger
radial distances, from 1 to 10 AU the correlation is progressively lower, while the
level in fluctuations of mass density and magnetic field intensity increases. What is
more difficult to understand is why correlation is progressively destroyed in the solar
wind, while the natural evolution of MHD is towards a state of maximal normalized
cross-helicity. A possible solution can be found in the fact that solar wind is neither
incompressible nor statistically homogeneous, and some efforts to tentatively take
into account more sophisticated effects have been made.

A mechanism, responsible for the radial evolution of turbulence, was suggested
by Roberts and Goldstein (1988), Goldstein et al. (1989), and Roberts et al.
(1991, 1992) and was based on velocity shear generation. The suggestion to
adopt such a mechanism came from a detailed analysis made by Roberts et al.
(1987a,b) of Helios and Voyager interplanetary observations of the radial evolution
of the normalized cross-helicity 	c at different time scales. Moreover, Voyager’s
observations showed that plasma regions, which had not experienced dynamical
interactions with neighboring plasma, kept the Alfvénic character of the fluctuations
at distances as far as 8 AU (Roberts et al. 1987b). In particular, the vicinity of
Helios trajectory to the interplanetary current sheet, characterized by low velocity
flow, suggested Roberts et al. (1991) to include in his simulations a narrow low
speed flow surrounded by two high speed flows. The idea was to mimic the slow,
equatorial solar wind between north and south fast polar wind. Magnetic field profile
and velocity shear were reconstructed using the six lowest Z˙ Fourier modes as
shown in Fig. 4.10. An initial population of purely outward propagating Alfvénic
fluctuations (zC) was added at large k and was characterized by a spectral slope of
k�1. No inward modes were present in the same range. Results of Fig. 4.10 show that
the time evolution of zC spectrum is quite rapid at the beginning, towards a steeper
spectrum, and slows down successively. At the same time, z� modes are created
by the generation mechanism at higher and higher k but, along a Kolmogorov-type
slope k�5=3.

These results, although obtained from simulations performed using 2D incom-
pressible spectral and pseudo-spectral codes, with fairly small Reynolds number of
Re ' 200, were similar to the spectral evolution observed in the solar wind (Marsch
and Tu 1990). Moreover, spatial averages across the simulation box revealed
a strong cross-helicity depletion right across the slow wind, representing the
heliospheric current sheet. However, magnetic field inversions and even relatively
small velocity shears would largely affect an initially high Alfvénic flow (Roberts
et al. 1992). However, Bavassano and Bruno (1992) studied an interaction region,
repeatedly observed between 0.3 and 0.9 AU, characterized by a large velocity shear
and previously thought to be a good candidate for shear generation (Bavassano and
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Fig. 4.10 Time evolution of the power density spectra of zC and z� showing the turbulent
evolution of the spectra due to velocity shear generation (from Roberts et al. 1991)

Bruno 1989). They concluded that, even in the hypothesis of a very fast growth of
the instability, inward modes would not have had enough time to fill up the whole
region as observed by Helios 2.

The above simulations by Roberts et al. (1991) were successively implemented
with a compressive pseudo-spectral code (Ghosh and Matthaeus 1990) which
provided evidence that, during this turbulence evolution, clear correlations between
magnetic field magnitude and density fluctuations, and between z� and density
fluctuations should arise. However, such a clear correlation, by-product of the non-
linear evolution, was not found in solar wind data (Marsch and Tu 1993a; Bruno
et al. 1996). Moreover, their results did not show the flattening of e� spectrum at
higher frequency, as observed by Helios (Tu et al. 1989). As a consequence, velocity
shear alone cannot explain the whole phenomenon, other mechanisms must also
play a relevant role in the evolution of interplanetary turbulence.

Compressible numerical simulations have been performed by Veltri et al. (1992)
and Malara et al. (1996, 2000) which invoked the interactions between small
scale waves and large scale magnetic field gradients and the parametric instability,
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as characteristic effects to reduce correlations. In a compressible, statistically
inhomogeneous medium such as the heliosphere, there are many processes which
tend to destroy the natural evolution toward a maximal correlation, typical of
standard MHD. In such a medium an Alfvén wave is subject to parametric decay
instability (Viñas and Goldstein 1991; Del Zanna et al. 2001; Del Zanna 2001),
which means that the mother wave decays in two modes: (1) a compressive mode
that dissipates energy because of the steepening effect, and (2) a backscattered
Alfvénic mode with lower amplitude and frequency. Malara et al. (1996) showed
that in a compressible medium, the correlation between the velocity and the
magnetic field fluctuations is reduced because of the generation of the backward
propagating Alfvénic fluctuations, and of a compressive component of turbulence,
characterized by density fluctuations ı� 6D 0 and magnetic intensity fluctuations
ıjBj 6D 0.

From a technical point of view it is worthwhile to remark that, when a large scale
field which varies on a narrow region is introduced (typically a tanh-like field),
periodic boundary conditions should be used with some care. Roberts et al. (1991,
1992) used a double shear layer, while Malara et al. (1992) introduced an interesting
numerical technique based on both the glue between two simulation boxes and a
Chebyshev expansion, to maintain a single shear layer, say non periodic boundary
conditions, and an increased resolution where the shear layer exists.

Grappin et al. (1992) observed that the solar wind expansion increases the
lengths normal to the radial direction, thus producing an effect similar to a kind
of inverse energy cascade. This effect perhaps should be able to compete with
the turbulent cascade which transfers energy to small scales, thus stopping the
non-linear interactions. In absence of non-linear interactions, the natural tendency
towards an increase of 	c is stopped. These inferences have been corroborated by
further studies like those by Grappin and Velli (1996) and Goldstein and Roberts
(1999). A numerical model treating the evolution of eC and e�, including parametric
decay of eC, was presented by Marsch and Tu (1993b). The parametric decay
source term was added in order to reproduce the decreasing cross-helicity observed
during the wind expansion. As a matter of fact, the cascade process, when spectral
equations for both eC and e� are included and solved self-consistently, can only
steepen the spectra at high frequency. Results from this model, shown in Fig. 4.11,
partially reproduce the observed evolution of the normalized cross-helicity. While
the radial evolution of eC is correctly reproduced, the behavior of e� shows an
over-production of inward modes between 0.6 and 0.8 AU probably due to an
overestimation of the strength of the pump-wave. However, the model is applied to
the situation observed by Helios at 0.3 AU where a rather flat e� spectrum already
exists.
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Fig. 4.11 Radial evolution of eC and e� spectra obtained from the Marsch and Tu (1993b) model,
in which a parametric decay source term was added to the Tu’s model (Tu et al. 1984) that was,
in turn, extended by including both spectrum equations for eC and e� and solved them self-
consistently. Image reproduced by permission from Marsch and Tu (1993b), copyright by AGU

4.3 Turbulence in the Polar Wind

In 1994 and 1995, Ulysses gave us the opportunity to look at the solar wind
out-of-the-ecliptic, providing us with new exciting observations. For the first time
heliospheric instruments were sampling pure, fast solar wind, free of any dynamical
interaction with slow wind. There is one figure that within our scientific community
has become as popular as “La Gioconda” by Leonardo da Vinci within the world
of art. This figure produced at LANL (McComas et al. 1998) is shown in the upper
left panel of Fig. 4.12, which has been taken from a successive paper by McComas
et al. (2003), and summarizes the most important aspects of the large scale structure
of the polar solar wind during the minimum of the solar activity phase, as indicated
by the low value of the Wolf’s number reported in the lower panel. It shows speed
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Fig. 4.12 Large scale solar wind profile as a function of latitude during minimum (left panel) and
maximum (right panel) solar cycle phases. The sunspot number is also shown at the bottom panels.
Image reproduced by permission from McComas et al. (2003), copyright by AGU

profile, proton number density profile and magnetic field polarity vs. heliographic
latitude during the first complete Ulysses’ polar orbit. Fast wind fills up north and
south hemispheres of the Sun almost completely, except a narrow latitudinal belt
around the equator, where the slow wind dominates. Flow velocity, which rapidly
increases from the equator towards higher latitudes, quickly reaches a plateau and
the wind escapes the polar regions with a rather uniform speed. Moreover, polar
wind is characterized by a lower number density and shows rather uniform magnetic
polarity of opposite sign, depending on the hemisphere. Thus, the main difference
between ecliptic and polar wind is that this last one completely lacks of dynamical
interactions with slower plasma and freely flows into the interplanetary space. The
presence or not of this phenomenon, as we will see in the following pages, plays
a major role in the development of MHD turbulence during the wind expansion.
During solar maximum (look at the upper right panel of Fig. 4.12) the situation
dramatically changes and the equatorial wind extends to higher latitudes, to the
extent that there is no longer difference between polar and equatorial wind.
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4.3.1 Evolving Turbulence in the Polar Wind

Ulysses observations gave us the possibility to test whether or not we could forecast
the turbulent evolution in the polar regions on the basis of what we had learned
in the ecliptic. We knew that, in the ecliptic, velocity shear, parametric decay, and
interaction of Alfvénic modes with convected structures (see Sects. 4.2 and 4.2.3)
all play some role in the turbulent evolution and, before Ulysses reached the polar
regions of the Sun, three possibilities were given:

1. Alfvénic turbulence would have not relaxed towards standard turbulence because
the large scale velocity shears would have been much less relevant (Grappin et al.
1991);

2. since the magnetic field would be smaller far from the ecliptic, at large
heliocentric distances, even small shears would lead to an isotropization of the
fluctuations and produce a turbulent cascade faster than the one observed at low
latitudes, and the subsequent evolution would take less time (Roberts et al. 1990);

3. there would still be evolution due to interaction with convected plasma and field
structures but it would be slower than in the ecliptic since the power associated
with Alfvénic fluctuations would largely dominate over the inhomogeneities of
the medium. Thus, Alfvénic correlations should last longer than in the ecliptic
plane, with a consequent slower evolution of the normalized cross-helicity
(Bruno 1992).

A fourth possibility was added by Tu and Marsch (1995), based on their model
(Tu and Marsch 1993). Following this model they assumed that polar fluctuations
were composed by outward Alfvénic fluctuations and MFDT. The spectra of these
components would decrease with radial distance because of a WKB evolution and
convective effects of the diverging flow. As the distance increases, the field becomes
more transverse with respect to the radial direction, the s/c would sample more
convective structures and, as a consequence, would observe a decrease of both 	c

and rA.
Today we know that polar Alfvénic turbulence evolves in the same way it does

in the ecliptic plane, but much more slowly. Moreover, the absence of strong
velocity shears and enhanced compressive phenomena suggests that also some
other mechanism based on parametric decay instability might play some role in the
local production of turbulence (Bavassano et al. 2000b; Malara et al. 2001b, 2002;
Primavera et al. 2003).

The first results of Ulysses magnetic field and plasma measurements in the polar
regions, i.e., above ˙30ı latitude (left panel of Fig. 4.12), revealed the presence
of Alfvénic correlations in a frequency range from less than 1 to more than 10 h
(Balogh et al. 1995; Smith et al. 1995; Goldstein et al. 1995) in very good agreement
with ecliptic observations (Bruno et al. 1985). However, it is worth noticing that
Helios observations referred to very short heliocentric distances around 0.3 AU
while the above Ulysses observations were taken up to 4 AU. As a matter of
fact, these long period Alfvén waves observed in the ecliptic, in the inner solar
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Fig. 4.13 Magnetic field and velocity hourly correlation vs. heliographic latitude. Image repro-
duced by permission from Smith et al. (1995), copyright by AGU

wind, become less prominent as the wind expands due to stream–stream dynamical
interaction effects (Bruno et al. 1985) and strong velocity shears (Roberts et al.
1987a). At high latitude, the relative absence of enhanced dynamical interaction
between flows at different speed and, as a consequence, the absence of strong
velocity shears favors the survival of these extremely low frequency Alfvénic
fluctuations for larger heliocentric excursions.

Figure 4.13 shows the hourly correlation coefficient for the transverse com-
ponents of magnetic and velocity fields as Ulysses climbs to the south pole and
during the fast latitude scanning that brought the s/c from the south to the north
pole of the Sun in just half a year. While the equatorial phase of Ulysses journey
is characterized by low values of the correlation coefficients, a gradual increase
can be noticed starting at half of year 1993 when the s/c starts to increase its
heliographic latitude from the ecliptic plane up to 80:2ı south, at the end of 1994.
Not only the degree of ıb � ıv correlation resembled Helios observations but also
the spectra of these fluctuations showed characteristics which were very similar
to those observed in the ecliptic within fast wind like the spectral index of the
components, that was found to be flat at low frequency and more Kolmogorov-
like at higher frequencies (Smith et al. 1995). Balogh et al. (1995) and Forsyth
et al. (1996) discussed magnetic fluctuations in terms of latitudinal and radial
dependence of their variances. Similarly to what had been found within fast wind in
the ecliptic (Mariani et al. 1978; Bavassano et al. 1982a; Tu et al. 1989; Roberts
et al. 1992), variance of magnetic magnitude was much less than the variance



4.3 Turbulence in the Polar Wind 121

Fig. 4.14 Normalized magnetic field components and magnitude hourly variances plotted vs. heli-
ographic latitude during a complete latitude survey by Ulysses. Image reproduced by permission
from Forsyth et al. (1996), copyright by AGU

associated with the components. Moreover, transverse variances had consistently
higher values than the one along the radial direction and were also much more
sensitive to latitude excursion, as shown in Fig. 4.14. In addition, the level of the
normalized hourly variances of the transverse components observed during the
ecliptic phase, right after the compressive region ahead of co-rotating interacting
regions, was maintained at the same level once the s/c entered the pure polar wind.
Again, these observations showed that the fast wind observed in the ecliptic was
coming from the equatorward extension of polar coronal holes.

Horbury et al. (1995b) and Forsyth et al. (1996) showed that the interplanetary
magnetic field fluctuations observed by Ulysses continuously evolve within the fast
polar wind, at least out to 4 AU. Since this evolution was observed within the polar
wind, rather free of co-rotating and transient events like those characterizing low
latitudes, they concluded that some other mechanism was at work and this evolution
was an intrinsic property of turbulence.

Results in Fig. 4.15 show the evolution of the spectral slope computed across
three different time scale intervals. The smallest time scales show a clear evolution
that keeps on going past the highest latitude on day 256, strongly suggesting that
this evolution is radial rather than latitudinal effect. Horbury et al. (1996b) worked
on determining the rate of turbulent evolution for the polar wind.

They calculated the spectral index at different frequencies from the scaling of
the second order structure function [see Sect. 6 and papers by Burlaga (1992a),
Burlaga (1992b), Marsch and Tu (1993b), Ruzmaikin et al. (1995), and Horbury
et al. (1996a)] since the spectral scaling ˛ is related to the scaling of the structure
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Fig. 4.15 Spectral indexes of magnetic fluctuations within three different time scale intervals as
indicated in the plot. The bottom panel shows heliographic latitude and heliocentric distance of
Ulysses. Image reproduced by permission from Horbury et al. (1995b), copyright by AGU

function s by the following relation: ˛ D s C 1 (Monin and Yaglom 1975). Horbury
et al. (1996b), studying variations of the spectral index with frequency for polar
turbulence, found that there are two frequency ranges where the spectral index is
rather steady. The first range is around 10�2 Hz with a spectral index around �5=3,
while the second range is at very low frequencies with a spectral index around �1.
This last range is the one where Goldstein et al. (1995) found the best example
of Alfvénic fluctuations. Similarly, ecliptic studies found that the best Alfvénic
correlations belonged to the hourly, low frequency regime (Bruno et al. 1985).

Horbury et al. (1995c) presented an analysis of the high latitude magnetic
field using a fractal method. Within the solar wind context, this method has been
described for the first time by Burlaga and Klein (1986) and Ruzmaikin et al. (1993),
and is based on the estimate of the scaling of the length function L.�/ with the
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scale � . This function is closely related to the first order structure function and,
if statistical self-similar, has scaling properties L.�/ � �`, where ` is the scaling
exponent. It follows that L.�/ is an estimate of the amplitude of the fluctuations
at scale � , and the relation that binds L.�/ to the variance of the fluctuations
.ıB/2 � � s.2/ is:

L.�/ � N.�/Œ.ıB/2�1=2 / � s.2/=2�1;

where N.�/ represents the number of points at scale � and scales like ��1. Since
the power density spectrum W. f / is related to .ıB/2 through the relation fW. f / �
.ıB/2, if W. f / � f �˛ , then s.2/ D ˛ � 1, and, as a consequence ˛ D 2` C 3

(Marsch and Tu 1996). Thus, it results very easy to estimate the spectral index at a
given scale or frequency, without using spectral methods but simply computing the
length function.

Results in Fig. 4.16 show the existence of two different regimes, one with a
spectral index around the Kolmogorov scaling extending from 101:5 to 103 s and,
separated by a clear break-point at scales of 103 s, a flatter and flatter spectral
exponent for larger and larger scales. These observations were quite similar to
what had been observed by Helios 2 in the ecliptic, although the turbulence state
recorded by Ulysses resulted to be more evolved than the situation seen at 0.3 AU
and, perhaps, more similar to the turbulence state observed around 1 AU, as shown

Fig. 4.16 Spectral exponents for the Bz component estimated from the length function computed
from Ulysses magnetic field data, when the s/c was at about 4 AU and � �50ı latitude. Different
symbols refer to different time intervals as reported in the graph. Image reproduced by permission
from Horbury et al. (1995c)
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Fig. 4.17 Spectral exponents
for the Bz component
estimated from the length
function computed from
Helios and Ulysses magnetic
field data. Ulysses length
function (dotted line) is the
same shown in the paper by
Horbury et al. (1995c) when
the s/c was at about 4 AU and
� �50ı latitude. Image
reproduced by permission
from Marsch and Tu (1996),
copyright by AGU

by Marsch and Tu (1996). These authors compared the spectral exponents, estimated
using the same method of Horbury et al. (1995c), from Helios 2 magnetic field
observations at two different heliocentric distances: 0.3 and 1.0 AU. The comparison
with Ulysses results is shown in Fig. 4.17 where it appears rather clear that the slope
of the Bz spectrum experiences a remarkable evolution during the wind expansion
between 0.3 and 4 AU. Obviously, this comparison is meaningful in the reasonable
hypothesis that fluctuations observed by Helios 2 at 0.3 AU are representative of
out-of-the-ecliptic solar wind (Marsch and Tu 1996). This figure also shows that the
degree of spectral evolution experienced by the fluctuations when observed at 4 AU
at high latitude, is comparable to Helios observations at 1 AU in the ecliptic. Thus,
the spectral evolution at high latitude is present although quite slower with respect
to the ecliptic.

Forsyth et al. (1996) studied the radial dependence of the normalized hourly
variances of the components BR, BT and BN and the magnitude jBj of the magnetic
field (see Sect. 3.3.6 to learn about the RTN reference system). The variance along
the radial direction was computed as 	R

2 D hBR
2 > � < BRi2 and successively

normalized to jBj2 to remove the field strength dependence. Moreover, variances
along the other two directions T and N were similarly defined. Fitting the radial
dependence with a power law of the form r�˛ , but limiting the fit to the radial
excursion between 1.5 and 3 AU (Fig. 4.18), these authors obtained ˛ D 3:39˙0:07
for 	2r , ˛ D 3:45˙ 0:09 for 	2T , ˛ D 3:37˙ 0:09 for 	2N , and ˛ D 2:48˙ 0:14 for
	2B . Thus, for hourly variances, the power associated with the components showed
a radial dependence stronger than the one predicted by the WKB approximation,
which would provide ˛ D 3. These authors also showed that including data between
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Fig. 4.18 Hourly variances of the components and the magnitude of the magnetic field vs. radial
distance from the Sun. The meaning of the different symbols is also indicated in the upper right
corner. Image reproduced by permission from Forsyth et al. (1996), copyright by AGU

3 and 4 AU, corresponding to intervals characterized by compressional features
mainly due to high latitude CMEs, they would obtain less steep radial gradients,
much closer to a WKB type. These results suggested that compressive effects
can feed energy at the smallest scales, counteracting dissipative phenomena and
mimicking a WKB-like behavior of the fluctuations. However, they concluded that
for lower frequencies, below the frequency break point, fluctuations do follow the
WKB radial evolution.

Horbury and Balogh (2001) presented a detailed comparison between Ulysses
and Helios observations about the evolution of magnetic field fluctuations in high-
speed solar wind. Ulysses results, between 1.4 and 4.1 AU, were presented as wave
number dependence of radial and latitudinal power scaling. The first results of this
analysis showed (Fig. 3 of their work) a general decrease of the power levels with
solar distance, in both magnetic field components and magnitude fluctuations. In
addition, the power associated with the radial component was always less than that
of the transverse components, as already found by Forsyth et al. (1996). However,
Horbury and Balogh (2001), supposing a possible latitude dependence, performed a
multiple linear regression of the type:

log10 w D Ap C Bp log10 r C Cp sin �; (4.17)

where w is the power density integrated in a given spectral band, r is the radial
distance and � is the heliolatitude (0ı at the equator). Moreover, the same procedure
was applied to spectral index estimates ˛ of the form ˛ D A˛CB˛ log10 rCC˛ sin � .
Results obtained for Bp;Cp;B˛;C˛ are shown in Fig. 4.19.
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Fig. 4.19 (a) Scale dependence of radial power, (b) latitudinal power, (c) radial spectral index, (d)
latitudinal spectral index, and (e) spectral index computed at 2.5 AU. Solid circles refer to the trace
of the spectral matrix of the components, open squares refer to field magnitude. Correspondence
between wave number scale and time scale is based on a wind velocity of 750 km s�1 . Image
reproduced by permission from Horbury and Balogh (2001), copyright by AGU
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On the basis of variations of spectral index and radial and latitudinal dependen-
cies, these authors were able to identify four wave number ranges as indicated by the
circled numbers in the top panel of Fig. 4.19. Range 1 was characterized by a radial
power decrease weaker than WKB (�3), positive latitudinal trend for components
(more power at higher latitude) and negative for magnitude (less compressive events
at higher latitudes). Range 2 showed a more rapid radial decrease of power for both
magnitude and components and a negative latitudinal power trend, which implies
less power at higher latitudes. Moreover, the spectral index of the components
(bottom panel) is around 0.5 and tends to 0 at larger scales. Within range 3 the power
of the components follows a WKB radial trend and the spectral index is around
�1 for both magnitude and components. This hourly range has been identified as
the most Alfvénic at low latitudes and its radial evolution has been recognized to
be consistent with WKB radial index (Roberts 1989; Marsch and Tu 1990). Even
within this range, and also within the next one, the latitude power trend is slightly
negative for both components and magnitude. Finally, range 4 is clearly indicative
of turbulent cascade with a radial power trend of the components much faster than
WKB expectation and becoming even stronger at higher wave numbers. Moreover,
the radial spectral index reveals that steepening is at work only for the previous wave
number ranges as expected since the breakpoint moves to smaller wave number
during spectrum evolution. The spectral index of the components tends to �5=3
with increasing wave number while that of the magnitude is constantly flatter. The
same authors gave an estimate of the radial scale-shift of the breakpoint during the
wind expansion around k / r1:1, in agreement with earlier estimates (Horbury et al.
1996b).

Although most of these results support previous conclusions obtained for the
ecliptic turbulence, the negative value of the latitudinal power trend that starts within
the second range, is unexpected. As a matter of fact, moving towards more Alfénic
regions like the polar regions, one would perhaps expect a positive latitudinal trend
similarly to what happens in the ecliptic when moving from slow to fast wind.

Horbury and Balogh (2001) and Horbury and Tsurutani (2001) estimated that the
power observed at 80ı is about 30 % less than that observed at 30ı. These authors
proposed a possible effect due to the over-expansion of the polar coronal hole at
higher latitudes. In addition, within the fourth range, field magnitude fluctuations
radially decrease less rapidly than the fluctuations of the components, but do not
show significant latitudinal variations. Finally, the smaller spectral index reveals
that the high frequency range of the field magnitude spectrum shows a flattening.

The same authors investigated the anisotropy of these fluctuations as a function
of radial and latitudinal excursion. Their results, reported in Fig. 4.20, show that,
at 2.5 AU, the lowest compressibility is recorded within the hourly frequency
band (third and part of the fourth band), which has been recognized as the most
Alfvénic frequency range. The anisotropy of the components confirms that the
power associated with the transverse components is larger than that associated with
the radial one, and this difference slightly tends to decrease at higher wave numbers.

As already shown by Horbury et al. (1995a), around the 5 min range, magnetic
field fluctuations are transverse to the mean field direction the majority of the time.
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Fig. 4.20 (a) Scale dependence of power anisotropy at 2.5 AU plotted as the log10 of the ratio of BR

(solid circles), BT (triangles), BN (diamonds), and jBj (squares) to the trace of the spectral matrix;
(b) the radial, and (c) latitudinal behavior of the same values, respectively. Image reproduced by
permission from Horbury and Balogh (2001), copyright by AGU

The minimum variance direction lies mainly within an angle of about 26ı from
the average background field direction and fluctuations are highly anisotropic, such
that the ratio between perpendicular to parallel power is about 30. Since during the
observations reported in Horbury and Balogh (2001) and Horbury and Tsurutani
(2001) the mean field resulted to be radially oriented most of the time, the radial
minimum variance direction at short time scales is an effect induced by larger scales
behavior.

Anyhow, radial and latitudinal anisotropy trends tend to disappear for higher
frequencies. In the mean time, interesting enough, there is a strong radial increase
of magnetic field compression (top panel of Fig. 4.20), defined as the ratio between
the power density associated with magnetic field intensity fluctuations and that
associated with the fluctuations of the three components (Bavassano et al. 1982b;
Bruno and Bavassano 1991). The attempt to attribute this phenomenon to parametric
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Fig. 4.21 Power spectra of magnetic field components (solid circles) and magnitude (open
squares) from Ulysses (solid line) and Helios 1 (dashed line). Spectra have been extrapolated
to 1 AU using radial trends in power scalings estimated from Ulysses between 1.4 and 4.1 AU and
Helios between 0.3 and 1 AU. Image reproduced by permission from Horbury and Balogh (2001),
copyright by AGU

decay of large amplitude Alfvén waves or dynamical interactions between adjacent
flux tubes or interstellar pick-up ions was not satisfactory in all cases.

Comparing high latitude with low latitude results for high speed streams, Hor-
bury and Balogh (2001) found remarkable good agreement between observations by
Ulysses at 2.5 AU and by Helios at 0.7 AU. In particular, Fig. 4.21 shows Ulysses
and Helios 1 spectra projected to 1 AU for comparison.

It is interesting to notice that the spectral slope of the spectrum of the components
for Helios 1 is slightly higher than that of Ulysses, suggesting a slower radial
evolution of turbulence in the polar wind (Bruno 1992; Bruno and Bavassano
1992). However, the faster spectral evolution at low latitudes does not lead to strong
differences between the spectra.

4.3.2 Polar Turbulence Studied via Elsässer Variables

Goldstein et al. (1995) for the first time showed a spectral analysis of Ulysses
observations based on Elsässer variables during two different time intervals, at
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Fig. 4.22 Trace of eC (solid line) and e� (dash-dotted line) power spectra. The central and right
panels refer to Ulysses observations at 2 and 4 AU, respectively, when Ulysses was embedded in
the fast southern polar wind during 1993–1994. The leftmost panel refers to Helios observations
during 1978 at 0.3 AU. Image reproduced by permission from Goldstein et al. (1995), copyright by
AGU

4 AU and close to �40ı, and at 2 AU and around the maximum southern pass,
as shown in Fig. 4.22. Comparing the two Ulysses observations it clearly appears
that the spectrum closer to the Sun is less evolved than the spectrum measured
farther out, as will be confirmed by the next Fig. 4.23, where these authors reported
the normalized cross-helicity and the Alfvén ratio for the two intervals. Moreover,
following these authors, the comparison between Helios spectra at 0.3 AU and
Ulysses at 2 and 4 AU suggests that the radial scaling of eC at the low frequency
end of the spectrum follows the WKB prediction of 1=r decrease (Heinemann and
Olbert 1980). However, the selected time interval for Helios s/c was characterized by
rather slow wind taken during the rising phase the solar cycle, two conditions which
greatly differ from those referring to Ulysses data. As a consequence, comparing
Helios results with Ulysses results obtained within the fast polar wind might be
misleading. It would be better to choose Helios observations within high speed co-
rotating streams which resemble much better solar wind conditions at high latitude.

Anyhow, results relative to the normalized cross-helicity 	c (see Fig. 4.23) clearly
show high values of 	c, around 0.8, which normally we observe in the ecliptic
at much shorter heliocentric distances (Tu and Marsch 1995). A possible radial
effect would be responsible for the depleted level of 	c at 4 AU. Moreover, a strong
anisotropy can also be seen for frequencies between 10�6 and 10�5 Hz with the
transverse 	c much larger than the radial one. This anisotropy is somewhat lost
during the expansion to 4 AU.

The Alfvén ratio (bottom panels of Fig. 4.23) has values around 0.5 for frequen-
cies higher than roughly 10�5 Hz, with no much evolution between 2 and 4 AU. A
result similar to what was originally obtained in the ecliptic at about 1 AU (Martin
et al. 1973; Belcher and Solodyna 1975; Solodyna et al. 1977; Neugebauer et al.
1984; Bruno et al. 1985; Marsch and Tu 1990; Roberts et al. 1990). The low
frequency extension of rA? together with 	c?, where the subscript ? indicates that
these quantities are calculated from the transverse components only, was interpreted
by the authors as due to the sampling of Alfvénic features in longitude rather than
to a real presence of Alfvénic fluctuations. However, by the time Ulysses reaches
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Fig. 4.23 Normalized cross-helicity and Alfvén ratio at 2 and 4 AU, as observed by Ulysses at
�80ı and �40ı latitude, respectively. Image reproduced by permission from Goldstein et al.
(1995), copyright by AGU

to 4 AU, 	c? has strongly decreased as expected while rA? gets closer to 1, making
the situation less clear. Anyhow, these results suggest that the situation at 2 AU and,
even more at 4 AU, can be considered as an evolution of what Helios 2 recorded in
the ecliptic at shorter heliocentric distance. Ulysses observations at 2 AU resemble
more the turbulence conditions observed by Helios at 0.9 AU rather than at 0.3 AU.

Bavassano et al. (2000b) studied in detail the evolution of the power eC and
e� associated with outward ızC and inward ız� Alfvénic fluctuations, respectively.
The study referred to the polar regions, during the wind expansion between 1.4
and 4.3 AU. These authors analyzed 1 h variances of ız˙ and found two different
regimes, as shown in Fig. 4.24. Inside 2.5 AU outward modes eC decrease faster
than inward modes e�, in agreement with previous ecliptic observations performed
within the trailing edge of co-rotating fast streams (Bruno and Bavassano 1991; Tu
and Marsch 1990a; Grappin et al. 1989). Beyond this distance, the radial gradient of
e� becomes steeper and steeper while that of eC remains approximately unchanged.
This change in e� is rather fast and both species keep declining with the same rate
beyond 2.5 AU. The radial dependence of eC between r�1:39 and r�1:48, reported by
Bavassano et al. (2000b), indicate a radial decay faster than r�1 predicted by WKB
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Fig. 4.24 Left panel: values of hourly variance of ız˙ (i.e., e˙) vs. heliocentric distance, as
observed by Ulysses. Helios observations are shown for comparison and appear to be in good
agreement. Right panel: Elsässer ratio (top) and Alfvén ratio (bottom) are plotted vs. radial distance
while Ulysses is embedded in the polar wind. Image reproduced by permission from Bavassano
et al. (2000b), copyright by AGU

approximation. This is in agreement with the analysis performed by Forsyth et al.
(1996) using magnetic field observations only.

This different radial behavior is readily seen in the radial plot of the Elsässer
ratio rE shown in the top panel of the right column of Fig. 4.24. Before 2.5 AU this
ratio continuously grows to about 0.5 near 2.5 AU. Beyond this region, since the
radial gradient of the inward and outward components is approximately the same,
rE stabilizes around 0.5.

On the other hand, also the Alfvén ratio rA shows a clear radial dependence
that stops at about the same limit distance of 2.5 AU. In this case, rA constantly
decreases from � 0.4 at 1.4 AU to � 0.25 at 2.5 AU, slightly fluctuating around this
value for larger distances. A different interpretation of these results was offered by
Grappin (2002). For this author, since Ulysses has not explored the whole three-
dimensional heliosphere, solar wind parameters experience different dependencies
on latitude and distance which would result in the same radial distance variation
along Ulysses trajectory as claimed in Bavassano’s works. Another interesting
feature observed in polar turbulence is unraveled by Fig. 4.25 from Bavassano et al.
(1998, 2000a). The plot shows 2D histograms of normalized cross-helicity and
normalized residual energy (see Sect. 4.1.1 for definition) for different heliospheric
regions (ecliptic wind, mid-latitude wind with strong velocity gradients, polar wind).
A predominance of outward fluctuations (positive values of 	c) and of magnetic
fluctuations (negative values of 	r) seems to be a general feature. It results that the
most Alfvénic region is the one at high latitude and at shorter heliocentric distances.
However, in all the panels there is always a relative peak at 	c ' 0 and 	r ' �1,
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Fig. 4.25 2D histograms of normalized cross-helicity 	c (here indicated by 	C) and normalized
residual energy 	r (here indicated by 	R) for different heliospheric regions (ecliptic wind, mid-
latitude wind with strong velocity gradients, polar wind). Image reproduced by permission from
Bavassano et al. (1998), copyright by AGU

which might well be due to magnetic structures like the MFDT found by Tu and
Marsch (1991) in the ecliptic.

In a successive paper, Bavassano et al. (2002a) tested whether or not the radial
dependence observed in e˙ was to be completely ascribed to the radial expansion
of the wind or possible latitudinal dependencies also contributed to the turbulence
evolution in the polar wind.

As already discussed in the previous section, Horbury and Balogh (2001), using
Ulysses data from the northern polar pass, evaluated the dependence of magnetic
field power levels on solar distance and latitude using a multiple regression analysis
based on Eq. (4.17). In the Alfvénic range, the latitudinal coefficient “C” for power
in field components was appreciably different from 0 (around 0.3). However, this
analysis was limited to magnetic field fluctuations alone and cannot be transferred
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sic et simpliciter to Alfvénic turbulence. In their analysis, Bavassano et al. (2002b)
used the first southern and northern polar passes and removed from their dataset
all intervals with large gradients in plasma velocity, and/or plasma density, and/or
magnetic field magnitude, as already done in Bavassano et al. (2000b). As a matter
of fact, the use of Elsässer variables (see Sect. 4.1.1) instead of magnetic field, and
of selected data samples, leads to very small values of the latitudinal coefficient as
shown in Fig. 4.26, where different contributions are plotted with different colors
and where the top panel refers to the same dataset used by Horbury and Balogh
(2001), while the bottom panel refers to a dataset omni-comprehensive of south
and north passages free of strong compressive events (Bavassano et al. 2000b).
Moreover, the latitudinal effect appears to be very weak also for the data sample

Fig. 4.26 Results from the multiple regression analysis showing radial and latitudinal dependence
of the power eC associated with outward modes (see Sect. 4.1.1). The top panel refers to the
same dataset used by Horbury and Balogh (2001). The bottom panel refers to a dataset omni-
comprehensive of south and north passages free of strong compressive events (Bavassano et al.
2000b). Values of e

C

have been normalized to the value e
C

ı assumed by this parameter at 1.4 AU,
closest approach to the Sun. The black line is the total regression, the blue line is the latitudinal
contribution and the red line is the radial contribution. Image reproduced by permission from
Bavassano et al. (2002a), copyright by AGU



4.3 Turbulence in the Polar Wind 135

Fig. 4.27 eC (red) and e� (blue) radial gradient for different latitudinal regions of the solar wind.
The first three columns, labeled EQ, refer to ecliptic observations obtained with different values of
the upper limit of TBN defined as the relative fluctuations of density and magnetic intensity. The
last two columns, labeled POL, refer to observations of polar turbulence outside and inside 2.6 AU,
respectively. Image reproduced by permission from Bavassano et al. (2001), copyright by AGU

used by Horbury and Balogh (2001), although this is the sample with the largest
value of the “C” coefficient.

A further argument in favor of radial vs. latitudinal dependence is represented
by the comparison of the radial gradient of eC in different regions, in the ecliptic
and in the polar wind. These results, shown in Fig. 4.27, provide the radial slopes
for eC (red squares) and e� (blue diamonds) in different regions. The first three
columns (labeled EQ) summarize ecliptic results obtained with different values of
an upper limit (TBN) for relative fluctuations of density and magnetic intensity. The
last two columns (labeled POL) refer to the results for polar turbulence (north and
south passes) outside and inside 2.6 AU, respectively. A general agreement exists
between slopes in ecliptic and in polar wind with no significant role left for latitude,
the only exception being e� in the region inside 2.6 AU. The behavior of the inward
component cannot be explained by a simple power law over the range of distances
explored by Ulysses. Moreover, a possible latitudinal effect has been clearly rejected
by the results from a multiple regression analysis performed by Bavassano et al.
(2002a) similar to that reported above for eC.



136 4 Turbulence Studied via Elsässer Variables

4.3.3 Local Production of Alfvénic Turbulence at High
Latitude

An interesting solution to the radial behavior of the minority modes might be
represented by local generation mechanisms, like parametric decay (Malara et al.
2001b; Del Zanna et al. 2001), which might saturate and be inhibited beyond 2.5 AU.

Parametric instability has been studied in a variety of situations depending on the
value of the plasma ˇ (among others Sagdeev and Galeev 1969; Goldstein 1978;
Hoshino and Goldstein 1989; Malara and Velli 1996).

Malara et al. (2000) and Del Zanna et al. (2001) recently studied the non-linear
growth of parametric decay of a broadband Alfvén wave, and showed that the final
state strongly depends on the value of the plasma ˇ (thermal to magnetic pressure
ratio). For ˇ < 1 the instability completely destroys the initial Alfvénic correlation.
For ˇ � 1 (a value close to solar wind conditions) the instability is not able to go
beyond some limit in the disruption of the initial correlation between velocity and
magnetic field fluctuations, and the final state is 	c � 0:5 as observed in the solar
wind (see Sect. 4.3.2).

These authors solved numerically the fully compressible, non-linear MHD
equations in a one-dimensional configuration using a pseudo-spectral numerical
code. The simulation starts with a non-monochromatic, large amplitude Alfvén
wave polarized on the yz plane, propagating in a uniform background magnetic field.
Successively, the instability was triggered by adding some noise of the order 10�6
to the initial density level.

During the first part of the evolution of the instability the amplitude of unstable
modes is small and, consequently, non-linear couplings are negligible. A subsequent
exponential growth, predicted by the linear theory, increases the level of both e�
and density compressive fluctuations. During the second part of the development of
the instability, non-linear couplings are not longer disregardable and their effect is
firstly to slow down the exponential growth of unstable modes and then to saturate
the instability to a level that depends on the value of the plasma ˇ.

Spectra of e˙ are shown in Fig. 4.28 for different times during the development
of the instability. At the beginning the spectrum of the mother-wave is peaked at
k D 10, and before the instability saturation .t � 35/ the back-scattered e� and
the density fluctuations e� are peaked at k D 1 and k D 11, respectively. After
saturation, as the run goes on, the spectrum of e� approaches that of eC towards a
common final state characterized by a Kolmogorov-like spectrum and eC slightly
larger than e�.

The behavior of outward and inward modes, density and magnetic magnitude
variances and the normalized cross-helicity 	c is summarized in the left column
of Fig. 4.29. The evolution of 	c, when the instability reaches saturation, can be
qualitatively compared with Ulysses observations (courtesy of B. Bavassano) in the
right panel of the same figure, which shows a similar trend.

Obviously, making this comparison, one has to take into account that this model
has strong limitations like the presence of a peak in eC not observed in real polar
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Fig. 4.28 Spectra of eC (thick line), e� (dashed line), and e� (thin line) are shown for six different
times during the development of the instability. For t � 50 a typical Kolmogorov slope appears.
These results refer to ˇ D 1. Image reproduced by permission from Malara et al. (2001a),
copyright by EGU

Fig. 4.29 Top left panel: time evolution of eC (solid line) and e� (dashed line). Middle left panel:
density (solid line) and magnetic magnitude (dashed line) variances. Bottom left panel: normalized
cross helicity 	c. Right panel: Ulysses observations of 	c radial evolution within the polar wind
(left column is from Malara et al. 2001a, right panel is a courtesy of B. Bavassano)
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turbulence. Another limitation, partly due to dissipation that has to be included in
the model, is that the spectra obtained at the end of the instability growth are steeper
than those observed in the solar wind. Finally, a further limitation is represented
by the fact that this code is 1D. However, although for an incompressible 1-D
simulation we do not expect to have turbulence development, in this case, since
parametric decay is based on compressive phenomena, an energy transfer along the
spectrum might be at work.

In addition, Umeki and Terasawa (1992) studying the non-linear evolution of a
large-amplitude incoherent Alfvén wave via 1D magnetohydrodynamic simulations,
reported that while in a low beta plasma (ˇ 
 0:2) the growth of backscattered
Alfvén waves, which are opposite in helicity and propagation direction from the
original Alfvén waves, could be clearly detected, in a high beta plasma (ˇ 
 2)
there was no production of backscattered Alfvén waves. Consequently, although
numerical results obtained by Malara et al. (2001a) are very encouraging, the high
beta plasma (ˇ 
 2), characteristic of fast polar wind at solar minimum, plays
against a relevant role of parametric instability in developing solar wind turbulence
as observed by Ulysses. However, these simulations do remain an important step
forward towards the understanding of turbulent evolution in the polar wind until
other mechanisms will be found to be active enough to justify the observations
shown in Fig. 4.24.

4.4 The Transport of Low-Frequency Turbulent Fluctuations
in Expanding Non-homogeneous Solar Wind

One of the most interesting and challenging problem in space physics is a detailed
understanding of the transport of the low-frequency turbulent fluctuations in the
expanding non-homogeneous magnetized solar wind flow. Since the beginning of
in-situ solar wind observations, interplanetary fluctuations have been interpreted
either as evidence of the turbulent nature of the solar wind (Coleman 1968) or as
a superposition of outward propagating Alfvén waves (Belcher and Davis Jr 1971).
The turbulence point of view relied on the fact that power spectra of both plasma and
magnetic field parameters fluctuations clearly showed a typical turbulence spectrum
with a frequency scaling between Kolmogorov’s and Kraichnan’s theoretical predic-
tions (Kolmogorov 1941; Kraichnan 1974). On the other hand, the observed strong
Alfvénic character of the fluctuations could not support the possibility that a simple
superposition of non interacting Alfvén waves could produce the observed scaling
unless nonlinear interactions between inward and outward Alfvénic fluctuations
were present in order to produce a continuous energy cascade along the spectrum.
Tu et al. (1984) interpreted the radial change of the spectral slope of the fluctuations
reported by Denskat and Neubauer (1983) and Bavassano et al. (1982a) as evidence
that nonlinear processes were at work.
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However, a linear superposition of outward propagating Alfvén waves was the
starting point to derive a manageable theory based on WKB approximation able
to describe the radial evolution of the amplitude of interplanetary magnetic field
fluctuations < ıB2 >1=2 (see review by Barnes 1979). At the same time, in-situ
observations suggested that the turbulence description was by far more appropriate
and WKB theory could not incorporate dissipation processes necessary to explain
the non-adiabatic expansion of the wind. On the other hand, WKB, assuming that the
density decreases as r�2, proved to be able to accurately predict a radial dependence
of r�3 for the power associated to magnetic field fluctuations, as it had been found
by Belcher and Burchsted (1974) between 0:7 and 1:6AU.

All these considerations triggered the formulation of a new model (Tu et al.
1984) in which both inward and outward Alfvén modes, present in the solar
wind in different amounts, interact nonlinearly producing an energy cascade which
leads the fluctuations toward a fully developed turbulence. This model partially
reconciled the views of Coleman (1968) and Belcher and Davis Jr (1971) and has
been the basis of several other papers which shed further light on the nature of
solar wind fluctuations. The model by Tu et al. (1984) was able to reproduce the
radial behavior of the magnetic power spectrum as well as heating properties of
the type suggested by Coleman (1968) although it was clear that the framework of
the transport equations needed to be generalized (Zhou and Matthaeus 1989). In
addition, successive analyses performed on the interplanetary data available at that
time clearly highlighted significant departures from WKB radial evolution in the
inner and outer heliosphere (Bavassano et al. 1982a; Roberts et al. 1987a,b; Bruno
et al. 1985; Roberts et al. 1990; Zank et al. 1996; Matthaeus et al. 1999; Smith et al.
2001) and contributed to stimulate a different approach to the problem of the radial
evolution of solar wind fluctuations, possibly comprehensive of all the phenomena
contributing to the observed behavior.

Matthaeus et al. (1999) clearly showed that, on the basis of WKB approximation,
it was impossible to explain the observed simultaneous behavior of energy density
of the turbulent magnetic field, correlation length, and proton temperature from
1AU to beyond 30AU. Their turbulence theory included a simple closure for
local anisotropic magnetohydrodynamic turbulence, spatial transport, and driving
by large-scale shear and pickup ions. As a matter of fact, the non adiabatic expansion
of the solar wind suggests that it is necessary to fully understand the driving,
transport and dissipation of low frequency magnetohydrodynamic turbulence in
order to understand the heating of the solar wind. The same authors concluded that
similar models might be applied to both inner heliosphere and high latitude solar
wind environments although it is likely that they might require extra efforts in order
to include separate equations for the two Elsässer amplitudes where cross helicity
effects are important and it is not possible to neglect Alfvén wave propagation
effects which would limit an MHD nonlinear Taylor–Kármán approach to turbulent
heating (Hossain et al. 1995).

Simulation of the evolution of turbulence, from the energy-containing range, up
to the dissipative scales is a formidable task, due to the wide range of scales one
needs to reproduce, the complexity of plasma physics phenomena involved and the
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present-day capability of computers (Zank et al. 2012b; McComb and Watt 1990;
Chassaing et al. 2002). These difficulties are superimposed on the non-homogeneity
of the large-scales and the expansion of the solar wind. Very few numerical
simulations exists describing turbulence in a non homogeneous flow, because they
are so challenging numerically. This makes the MHD equations useless, so that,
to work around the problem, it can be wise to introduce some modeling transport
of turbulence in the presence of an expanding non-homogeneous field, identifying
appropriate closures.

The first attempt in this direction and able to resolve the problems inherent in
the WKB model was proposed by Zank et al. (1996). This model for the first time
coupled together turbulence transport model of the power density of the magnetic
field fluctuations and the associated correlation length by taking moments of the
two scale-separated incompressible MHD equations (Marsch and Tu 1989; Zhou
and Matthaeus 1990; Marsch and Tu 1990) expressed in terms of Elsässer variables.
Later, Matthaeus et al. (1999) and Smith et al. (2001) took into account also plasma
heating due to turbulence dissipation and the model was further improved when
also cross helicity was included (Matthaeus et al. 2004; Breech et al. 2005, 2008).
However, the resulting model could not be applied to the inner heliosphere because
of not adequate assumption for this region and did not include yet the residual energy
and the role played by the Alfvén velocity, particularly relevant for short heliocentric
distances.

A more comprehensive model was formulated by Zank et al. (2012b,a) using
a closure of the original MHD equations. These authors included also the energy
corresponding to forward and backward propagating modes and their correlation
lengths to model the dissipative term, the residual energy and its correlation length
necessary to close the system of equations. The model was based on the two
scale MHD equations describing the evolution of velocity and magnetic field
fluctuations u and b about the inhomogeneous mean velocity field U and magnetic
field B (Marsch and Tu 1989; Zhou and Matthaeus 1990), i.e., while u and b
vary on both the slowly varying large-scale spatial coordinates and the fast small-
scale coordinates, U and B depend only on the slowly varying large-scale spatial
coordinates. These MHD equations, expressed in terms of Elsässer variables, are:
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4�� are the Elsässer variables, VA is the Alfvén velocity, � is

the plasma density, I is the identity matrix, NL˙ are nonlinear dissipation terms and
S˙ are source terms. NL˙ and S˙ are modeled separately for outward and inward
modes. The model is then based on the following seven coupled turbulence transport
equations, one for each of the parameters listed above plus one that describes the
transport equation for the solar wind temperature in the super-Alfvénic solar wind.
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Here, the angle brackets hS˙ � z˙i and hS˙ � z�i represent sources of turbulence,
� represents the shear mixing term. Other quantities are  D 5=3 is the adiabatic
index, mp the proton mass, kB the Boltzmann constant and ˛ is the Kármán–Taylor
parameter which has been set ˛ D 1. The l.h.s. of the temperature equation (4.24)
describes the adiabatic temperature profile, the second term introduces the turbulent
heating term.

The main unknown terms of these equations are the source terms which can
be modeled according to phenomenological arguments. Adhikari et al. (2015)
individuate three main sources of turbulence in the heliosphere, say: (1) turbulence
driven by shear due to interaction between fast and slow streams; (2) stream–
stream interactions and shock waves which generate compressional turbulence;
(3) turbulence due to pickup ions created by charge exchange between solar wind
protons and interstellar neutral hydrogen. Clearly, the importance of these sources
of turbulence depends on the location in the heliosphere.

The first source of turbulence is due to velocity shear, which represents an
indicator for the evolution of solar wind fluctuations. These sources can be modeled
as a direct proportionality to the energies in the Elsässer modes and the residual
energy (Zank et al. 1996)

hS˙ � z˙i D Cshear.E
˙/
�Ushear

r
E˙

hS� � zCi C hSC � z�i D 

Cshear.E

C/C Cs.E
�/
� �Ushear

r
ED (4.25)

where the parameters Cshear.E˙/ represents the strength of the shear interaction
which depend on energies for the backwards and forward propagating fluctuations,
and �Ushear ' 350 km/s is the difference between slow and fast bulk solar wind
speeds. The same phenomenological arguments can be used for shocks (Zank et al.
1996), that is the same relations (4.25) are used when the source of turbulence are
shocks, where the strength of the shear interactions and the speed difference are
Cshock and �Ushock.

As far as the pickup ions are concerned, phenomenological arguments lead to

hS˙ � z˙i D F.E˙/nHUVA

nsw�ion
exp

�
� � 

r sin 

�

hS� � zCi C hSC � z�i D 0 (4.26)

where F.EC/ ' F.E�/ < 1 are positive functions which determines the fraction of
pickup ion energy transferred into excited waves. The parameters nH ' 0:1 cm�3 is
the number density of interstellar neutrals, �ions ' 106 s is the neutral ionization time
at 1AU,  is the angle between the observation point and the upstream direction
� = sin ' 8AU and � is the ionization cavity length scale. The other parameters
are nsw ' 5 cm�3 and VA ' 50 km=s.

Numerical results of the above equations represent a formidable task. Recently,
Adhikari et al. (2014, 2015) solved numerically the transport model for low
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frequency MHD turbulence introduced by Zank et al. (2012b) in order to investigate
theoretically the evolution of the various quantities forming the model. Equations
are solved in a spherical 1D coordinate system by neglecting � and � coordinates.
In the adopted idealized system all fields have been assumed to depend only on the
radial component.

Adhikari et al. (2015) applied this 1D model (Zank et al. 2012b) to the super-
Alfvénic solar wind firstly between 0:29 and 5AU with and without the Alfvén
velocity and successively between 0:29 and 100AU without Alfvén velocity. This
last choice was based on the fact that the use of 1D radially symmetric model
cannot allow to include in a satisfactory way Alfvén wave propagation along the
magnetic field especially in the outer heliosphere. In the inner heliosphere, since the
comparison with in-situ measurements was based on Helios 2 within fast wind and
Ulysses at high latitude, the assumption of radial IMF was less critical and allowed
to test the model with and without the Alfvén velocity.

Figure 4.30 shows the comparison between model predictions, with (black curve)
and without (red curve) Alfvén velocity, and in-situ measurements (blue crosses)

Fig. 4.30 Performance of the theoretical model wrt in-situ observations between 0:29 and 5AU.
Moving from left to right and top to bottom, the solid black and red curves in each panel show
the model results, including or not the Alfvén velocity, for the total turbulent energy ET , the
energy in forward propagating modes g, the energy in backward propagating modes f , and the
normalized residual energy 	D, respectively. The blue plus symbols represent the corresponding
observed values. Image adopted from Adhikari et al. (2015) and reproduced by permission of the
AAS
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imposing that the only source of turbulence is due to stream–shear interactions. The
parameters represented in this Figure are, from left to right and top to bottom: the
total turbulent energy ET , the energy in forward propagating modes g, the energy in
backward propagating modes f , and the normalized residual energy 	D, respectively.
The general behavior predicted by the model is a gradual decrease for ET , g and 	D

and a more complex behavior for f . The general agreement with observations is
quite satisfactory and becomes stronger when the Alfvén velocity is included in
the model (black curve). It is interesting to note that in case of forward modes the
better agreement is due to the fact that the presence of the Alfén velocity reduces
the decay rate of the energy. On the other hand, the non monotonic behavior of the
backward propagating modes f is due to both shear driving and the generation of
backward propagating modes in the inner heliosphere and the agreement with the
observations is worse when the Alfvén velocity is included.

Comparison with Voyager 2 observations is shown in Fig. 4.31 in the same format
of Fig. 4.30 with the difference that only the red curve is shown since VA is set D 0

Fig. 4.31 Performance of the theoretical model wrt in-situ observations between 0:29 and 100AU,
from Adhikari et al. (2015). Moving from left to right and top to bottom, the solid red curve in each
panel shows the model results having set VA D 0, for the total turbulent energy ET , the energy in
forward propagating modes g, the energy in backward propagating modes f , and the residual energy
	D, respectively. The suffix R, T, and N represent R-component, T-component, and N-component,
respectively. Image adopted from Adhikari et al. (2015) and reproduced by permission of the AAS
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and that, besides the estimates of ET ; g and f , also the corresponding R;T and N
components are reported.

Similar monotonic decrease can be observed for theoretical and experimental
results between 1 and 10AU. Beyond this distance, pick-up ions play a role driving
the turbulence and producing the observed flattening of ET , g and f . The behavior of
the normalized residual energy shows how, in the outer heliosphere, magnetic and
kinetic energy compare to each other. However,the large scatter affecting the obser-
vations makes this test of the model difficult to perform. Finally, the same paper
by Adhikari et al. (2015) reports also a quite satisfactory quantitative/qualitative
agreement with observations, approximately up to 10AU, for the correlation lengths
of residual energy, forward and backward modes which monotonically increase with
radial distance.

In summary, the model by Zank et al. (2012b) represents a quality leap towards
a better understanding to a satisfactory level of the transport of turbulence in the
super-Alfvénic solar wind since it is able to capture the overall radial trends shown
in the measurements throughout the heliosphere.
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Chapter 5
Compressive Turbulence

Interplanetary medium is slightly compressive, magnetic field intensity and proton
number density experience fluctuations over all scales and the compression depends
on both the scale and the nature of the wind. As a matter of fact, slow wind is
generally more compressive than fast wind, as shown in Fig. 5.1 where, following
Bavassano et al. (1982b) and Bruno and Bavassano (1991), we report the ratio
between the power density associated with magnetic field intensity fluctuations and
that associated with the fluctuations of the three components. In addition, as already
shown by Bavassano et al. (1982b), this parameter increases with heliocentric
distance for both fast and slow wind as shown in the bottom panel, where the
ratio between the compression at 0.9 AU and that at 0.3 AU is generally greater
than 1. It is also interesting to notice that within the Alfvénic fast wind, the lowest
compression is observed in the middle frequency range, roughly between 10�4 and
10�3 Hz. On the other hand, this frequency range has already been recognized as
the most Alfvénic one, within the inner heliosphere (Bruno et al. 1996).

As a matter of fact, it seems that high Alfvénicity is correlated with low
compressibility of the medium (Bruno and Bavassano 1991; Klein et al. 1993;
Bruno and Bavassano 1993) although compressibility is not the only cause for a
low Alfvénicity (Roberts et al. 1991, 1992; Roberts 1992).

The radial dependence of the normalized number density fluctuations ın=n for
the inner and outer heliosphere were studied by Grappin et al. (1990) and Roberts
et al. (1987) for the hourly frequency range, but no clear radial trend emerged from
these studies. However, interesting enough, Grappin et al. (1990) found that values
of e� were closely associated with enhancements of ın=n on scales longer than 1 h.

On the other hand, a spectral analysis of proton number density, magnetic field
intensity, and proton temperature performed by Marsch and Tu (1990) and Tu et al.
(1991) in the inner heliosphere, separately for fast and slow wind (see Fig. 5.2),
showed that normalized spectra of the above parameters within slow wind were
only marginally dependent on the radial distance. On the contrary, within fast wind,
magnetic field and proton density normalized spectra showed not only a clear radial
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Fig. 5.1 The first two rows show magnetic field compression (see text for definition) for fast (left
column) and slow (right column) wind at 0.3 AU (upper row) and 0.9 AU (middle row). The bottom
panels show the ratio between compression at 0.9 AU and compression at 0.3 AU. This ratio is
generally greater than 1 for both fast and slow wind
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Fig. 5.2 From left to right: normalized spectra of proton temperature (from Tu et al. 1991), number
density, and magnetic field intensity fluctuations (from Marsch and Tu 1990, copyright by AGU,
reproduced by permission). Different lines refer to different heliocentric distances for both slow
and fast wind

dependence but also similar level of power for k < 4 � 10�4 km s�1. For larger k
these spectra show a flattening that becomes steeper for increasing distance, as was
already found by Bavassano et al. (1982a) for magnetic field intensity. Normalized
temperature spectra does not suffer any radial dependence neither in slow wind nor
in fast wind.

Spectral index is around �5=3 for all the spectra in slow wind while, fast wind
spectral index is around �5=3 for k < 4 � 10�4 km�1 and slightly less steep for
larger wave numbers.

5.1 On the Nature of Compressive Turbulence

Considerable efforts, both theoretical and observational, have been made in order to
disclose the nature of compressive fluctuations. It has been proposed (Montgomery
et al. 1987; Matthaeus and Brown 1988; Zank et al. 1990; Zank and Matthaeus
1990; Matthaeus et al. 1991; Zank and Matthaeus 1992) that most of compressive
fluctuations observed in the solar wind could be accounted for by the Nearly
Incompressible (NI) model. Within the framework of this model, Montgomery
et al. (1987) showed that a spectrum of small scale density fluctuations follows a
k�5=3 when the spectrum of magnetic field fluctuations follows the same scaling.
Moreover, it was showed (Matthaeus and Brown 1988; Zank and Matthaeus 1992)
that if compressible MHD equations are expanded in terms of small turbulent sonic
Mach number, pressure balanced structures, Alfvénic and magnetosonic fluctuations
naturally arise as solutions and, in particular, the RMS of small density fluctuations
would scale like M2, being M D ıv=Cs the turbulent sonic Mach number, ıv the
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RMS of velocity fluctuations and Cs the sound speed. In addition, if heat conduction
is allowed in the approximation, temperature fluctuations dominate over magnetic
and density fluctuations, temperature and density are anticorrelated and would scale
like M. However, in spite of some examples supporting this theory (Matthaeus
et al. (1991) reported 13 % of cases satisfied the requirements of NI-theory), wider
statistical studies, conducted by Tu and Marsch (1994), Bavassano et al. (1995) and
Bavassano and Bruno (1995), showed that NI theory is not generally applicable sic
et simpliciter to the solar wind. The reason might be in the fact that interplanetary
medium is highly inhomogeneous because of the presence of an underlying structure
convected by the wind. As a matter of fact, Thieme et al. (1989) showed evidence for
the presence of time intervals characterized by clear anti-correlation between kinetic
pressure and magnetic pressure while the total pressure remained fairly constant.
These pressure balance structures were for the first time observed by Burlaga and
Ogilvie (1970) for a time scale of roughly 1–2 h. Later on, Vellante and Lazarus
(1987) reported strong evidence for anti-correlation between field intensity and
proton density, and between plasma and field pressure on time scales up to 10 h.
The anti-correlation between kinetic and magnetic pressure is usually interpreted as
indicative of the presence of a pressure balance structure since slow magnetosonic
modes are readily damped (Barnes 1979).

These features, observed also in their dataset, were taken by Thieme et al.
(1989) as evidence of stationary spatial structures which were supposed to be
remnants of coronal structures convected by the wind. Different values assumed by
plasma and field parameters within each structure were interpreted as a signature
characterizing that particular structure and not destroyed during the expansion.
These intervals, identifiable in Fig. 5.3 by vertical dashed lines, were characterized
by pressure balance and a clear anti-correlation between magnetic field intensity and
temperature.

These structures were finally related to the fine ray-like structures or plumes
associated with the underlying chromospheric network and interpreted as the
signature of interplanetary flow-tubes. The estimated dimension of these structures,
back projected onto the Sun, suggested that they over-expand in the solar wind. In
addition, Grappin et al. (2000) simulated the evolution of Alfvén waves propagating
within such pressure equilibrium ray structures in the framework of global Eulerian
solar wind approach and found that the compressive modes in these simulations
are very much reduced within the ray structures, which indeed correspond to the
observational findings (Buttighoffer et al. 1995, 1999).

The idea of filamentary structures in the solar wind dates back to Parker (1963),
followed by other authors like McCracken and Ness (1966), Siscoe et al. (1968),
and more recently has been considered again in the literature with new results (see
Sect. 7.3). These interplanetary flow tubes would be of different sizes, ranging from
minutes to several hours and would be separated from each other by tangential
discontinuities and characterized by different values of plasma parameters and a
different magnetic field orientation and intensity. This kind of scenario, because of
some similarity to a bunch of tangled, smoking “spaghetti” lifted by a fork, was then
named “spaghetti-model”.
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Fig. 5.3 From top to bottom: field intensity jBj; proton and alpha particle velocity vp and v˛;
corrected proton velocity vpc D vp � ıvA, where vA is the Alfvén speed; proton and alpha number
density np and n˛ ; proton and alpha temperature Tp and T˛ ; kinetic and magnetic pressure Pk and
Pm, which the authors call Pgas and Pmag; total pressure Ptot and ˇ D Pgas=Pmag (from Thieme et al.
1989)

A spectral analysis performed by Marsch and Tu (1993b) in the frequency range
6� 10�3–6� 10�6 showed that the nature and intensity of compressive fluctuations
systematically vary with the stream structure. They concluded that compressive
fluctuations are a complex superposition of magnetoacoustic fluctuations and
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Fig. 5.4 Correlation coefficient between number density n and total pressure pT plotted vs. the
correlation coefficient between kinetic pressure and magnetic pressure for both Helios relatively to
fast wind. Image reproduced by permission from Marsch and Tu (1993a)

pressure balance structures whose origin might be local, due to stream dynamical
interaction, or of coronal origin related to the flow tube structure. These results
are shown in Fig. 5.4 where the correlation coefficient between number density n
and total pressure Ptot (indicated with the symbols pT in the figure), and between
kinetic pressure Pk and magnetic pressure Pm (indicated with the symbols pk and pb,
respectively) is plotted for both Helios s/c relatively to fast wind. Positive values of
correlation coefficients C.n; pT/ and C.pk; pb/ identify magnetosonic waves, while
positive values of C.n; pT/ and negative values of C.pk; pb/ identify pressure balance
structures. The purest examples of each category are located at the upper left and
right corners.

Following these observations, Tu and Marsch (1994) proposed a model in which
fluctuations in temperature, density, and field directly derive from an ensemble of
small amplitude pressure balanced structures and small amplitude fast perpendicular
magnetosonic waves. These last ones should be generated by the dynamical
interaction between adjacent flow tubes due to the expansion and, eventually, they
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would experience also a non-linear cascade process to smaller scales. This model
was able to reproduce most of the correlations described by Marsch and Tu (1993b)
for fast wind.

Later on, Bavassano et al. (1996a) characterized compressive fluctuations in
terms of their polytropic index, which resulted to be a useful tool to study small
scale variations in the solar wind. These authors followed the definition of polytropic
fluid given by Chandrasekhar (1967): “a polytropic change is a quasi-static change
of state carried out in such a way that the specific heat remains constant (at some
prescribed value) during the entire process”. For such a variation of state the
adiabatic laws are still valid provided that the adiabatic index  is replaced by
a new adiabatic index  0 D .cP � c/=.cV � c/ where c is the specific heat of
the polytropic variation, and cP and cV are the specific heat at constant pressure
and constant volume, respectively. This similarity is lost if we adopt the definition
given by Courant and Friedrichs (1976), for whom a fluid is polytropic if its
internal energy is proportional to the temperature. Since no restriction applies to
the specific heats, relations between temperature, density, and pressure do not
have a simple form as in Chandrasekhar approach (Zank and Matthaeus 1991).
Bavassano et al. (1996a) recovered the polytropic index from the relation between
density n and temperature T changes for the selected scale Tn1� 0 D const: and
used it to determine whether changes in density and temperature were isobaric
( 0 D 0), isothermal ( 0 D 1), adiabatic ( 0 D  ), or isochoric ( 0 D 1).
Although the role of the magnetic field was neglected, reliable conclusions could
be obtained whenever the above relations between temperature and density were
strikingly clear. These authors found intervals characterized by variations at constant
thermal pressure P. They interpreted these intervals as a subset of total-pressure
balanced structures where the equilibrium was assured by the thermal component
only, perhaps tiny flow tubes like those described by Thieme et al. (1989) and
Tu and Marsch (1994). Adiabatic changes were probably related to magnetosonic
waves excited by contiguous flow tubes (Tu and Marsch 1994). Proton temperature
changes at almost constant density were preferentially found in fast wind, close to
the Sun. These regions were characterized by values of B and N remarkable stable
and by strong Alfvénic fluctuations (Bruno et al. 1985). Thus, they suggested that
these temperature changes could be remnants of thermal features already established
at the base of the corona.

Thus, the polytropic index offers a very simple way to identify basic properties
of solar wind fluctuations, provided that the magnetic field does not play a major
role.

5.2 Compressive Turbulence in the Polar Wind

Compressive fluctuations in high latitude solar wind have been extensively studied
by Bavassano et al. (2004) looking at the relationship between different parameters
of the solar wind and comparing these results with predictions by existing models.
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Fig. 5.5 Histograms of �.N � Pt/ and �.Pm � Pk/ per solar rotation. The color bar on the left
side indicates polar (red), mid-latitude (blue), and low latitude (green) phases. Moreover, universal
time UT, heliocentric distance, and heliographic latitude are also indicated on the left side of the
plot. Occurrence frequency is indicated by the color bar shown on the right hand side of the figure.
Image reproduced by permission from Bavassano et al. (2004), copyright EGU

These authors indicated with N;Pm;Pk; and Pt the proton number density n,
magnetic pressure, kinetic pressure and total pressure .Ptot D PmCPk/, respectively,
and computed correlation coefficients � between these parameters. Figure 5.5
clearly shows that a pronounced positive correlation for N � Pt and a negative
pronounced correlation for Pm�Pk is a constant feature of the observed compressive
fluctuations. In particular, the correlation for N � Pt is especially strong within
polar regions at small heliocentric distance. In mid-latitude regions the correlation
weakens, while almost disappears at low latitudes. In the case of Pm � Pk, the
anticorrelation remains strong throughout the whole latitudinal excursion. For polar
wind the anticorrelation appears to be less strong at small distances, just where the
N � Pt correlation is highest.

The role played by density and temperature in the anticorrelation between
magnetic and thermal pressures is investigated in Fig. 5.6, where the magnetic field
magnitude is directly compared with proton density and temperature. As regards the
polar regions, a strong B-T anticorrelation is clearly apparent at all distances (right
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Fig. 5.6 Solar rotation histograms of B-N and B-T in the same format of Fig. 5.5. Image
reproduced by permission from Bavassano et al. (2004), copyright EGU

panel). For B-N an anticorrelation tends to emerge when solar distance increases.
This means that the magnetic-thermal pressure anticorrelation is mostly due to
an anticorrelation of the magnetic field fluctuations with respect to temperature
fluctuations, rather than density (see, e.g., Bavassano et al. 1996a,b). Outside polar
regions the situation appears in part reversed, with a stronger role for the B-N
anticorrelation.

In Fig. 5.7 scatter plots of total pressure vs. density fluctuations are used to test
a model by Tu and Marsch (1994), based on the hypothesis that the compressive
fluctuations observed in solar wind are mainly due to a mixture of pressure-balanced
structures (PBS) and fast magnetosonic waves (W). Waves can only contribute to
total pressure fluctuations while both waves and pressure-balanced structures may
contribute to density fluctuations. A tunable parameter in the model is the relative
PBS/W contribution to density fluctuations ˛. Straight lines in Fig. 5.7 indicate
the model predictions for different values of ˛. It is easily seen that for all polar
wind samples the great majority of experimental data fall in the ˛ > 1 region.
Thus, pressure-balanced structures appear to play a major role with respect to
magnetosonic waves. This is a feature already observed by Helios in the ecliptic
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Fig. 5.7 Scatter plots of the relative amplitudes of total pressure vs. density fluctuations for polar
wind samples P1 to P4. Straight lines indicate the Tu and Marsch (1994) model predictions for
different values of ˛, the relative PBS/W contribution to density fluctuations. Image reproduced by
permission from Bavassano et al. (2004), copyright EGU

wind (Tu and Marsch 1994), although in a less pronounced way. Different panels
of Fig. 5.7 refer to different heliocentric distances within the polar wind. Namely,
going from P1 to P4 is equivalent to move from 1.4 to 4 AU. A comparison between
these panels indicates that the observed distribution tends to shift towards higher
values of ˛ (i.e., pressure-balanced structures become increasingly important),
which probably is a radial distance effect.

Finally, the relative density fluctuations dependence on the turbulent Mach
number M (the ratio between velocity fluctuation amplitude and sound speed) is
shown in Fig. 5.8. The aim is to look for the presence, in the observed fluctuations, of
nearly incompressible MHD behaviors. In the framework of the NI theory (Zank and
Matthaeus 1991, 1993) two different scalings for the relative density fluctuations
are possible, as M or as M2, depending on the role that thermal conduction effects
may play in the plasma under study (namely a heat-fluctuation-dominated or a heat-
fluctuation-modified behavior, respectively). These scalings are shown in Fig. 5.8 as
solid (for M) and dashed (for M2) lines.

It is clearly seen that for all the polar wind samples no clear trend emerges in
the data. Thus, NI-MHD effects do not seem to play a relevant role in driving the
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Fig. 5.8 Relative amplitude of density fluctuations vs. turbulent Mach number for polar wind.
Solid and dashed lines indicate the M and M2 scalings, respectively. Image reproduced by
permission from Bavassano et al. (2004), copyright EGU

polar wind fluctuations. This confirms previous results in the ecliptic by Helios in
the inner heliosphere (Bavassano et al. 1995; Bavassano and Bruno 1995) and by
Voyagers in the outer heliosphere (Matthaeus et al. 1991). It is worthy of note that,
apart from the lack of NI trends, the experimental data from Ulysses, Voyagers, and
Helios missions in all cases exhibit quite similar distributions. In other words, for
different heliospheric regions, solar wind regimes, and solar activity conditions, the
behavior of the compressive fluctuations in terms of relative density fluctuations and
turbulent Mach numbers seems almost to be an invariant feature.

The above observations fully support the view that compressive fluctuations
in high latitude solar wind are a mixture of MHD modes and pressure balanced
structures. It has to be reminded that previous studies (McComas et al. 1995, 1996;
Reisenfeld et al. 1999) indicated a relevant presence of pressure balanced structures
at hourly scales. Moreover, nearly-incompressible (see Sect. 5.1) effects do not seem
to play any relevant role. Thus, polar observations do not show major differences
when compared with ecliptic observations in fast wind, the only possible difference
being a major role of pressure balanced structures.
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5.3 The Effect of Compressive Phenomena on Alfvénic
Correlations

A lack of ıV�ıB correlation does not strictly indicate a lack of Alfvénic fluctuations
since a superposition of both outward and inward oriented fluctuations of the same
amplitude would produce a very low correlation as well. In addition, the rather
complicated scenario at the base of the corona, where both kinetic and magnetic
phenomena contribute to the birth of the wind, suggest that the imprints of such a
structured corona is carried away by the wind during its expansion. At this point, we
would expect that solar wind fluctuations would not solely be due to the ubiquitous
Alfvénic and other MHD propagating modes but also to an underlying structure
convected by the wind, not necessarily characterized by Alfvén-like correlations.
Moreover, dynamical interactions between fast and slow wind, built up during the
expansion, contribute to increase the compressibility of the medium.

It has been suggested that disturbances of the mean magnetic field intensity and
plasma density act destructively on ıV � ıB correlation. Bruno and Bavassano
(1993) analyzed the loss of the Alfvénic character of interplanetary fluctuations
in the inner heliosphere within the low frequency part of the Alfvénic range, i.e.,
between 2 and 10 h. Figure 5.9, from their work, shows the wind speed profile,
	c, the correlation coefficients, phase and coherence for the three components
(see Sect. 3.2.3), the angle between magnetic field and velocity minimum variance
directions, and the heliocentric distance. Magnetic field sectors were rectified
(see Sect. 4.1) and magnetic field and velocity components were rotated into the
magnetic field minimum variance reference system (see Sect. 3.3.6). Although the
three components behave in a similar way, the most Alfvénic ones are the two
components Y and Z transverse to the minimum variance component X. As a
matter of fact, for an Alfvén mode we would expect a high ıV � ıB correlation,
a phase close to zero for outward waves and a high coherence. Moreover, it is rather
clear that the most Alfvénic intervals are located within the trailing edges of high
velocity streams. However, as the radial distance increases, the Alfvénic character
of the fluctuations decreases and the angle �bv increases. The same authors found
that high values of �bv are associated with low values of 	c and correspond to
the most compressive intervals. They concluded that the depletion of the Alfvénic
character of the fluctuations, within the hourly frequency range, might be driven by
the interaction with static structures or magnetosonic perturbations able to modify
the homogeneity of the background medium on spatial scales comparable to the
wavelength of the Alfvénic fluctuations. A subsequent paper by Klein et al. (1993)
showed that the ıV � ıB decoupling increases with the plasma ˇ, suggesting that
in regions where the local magnetic field is less relevant, compressive events play a
major role in this phenomenon.
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Fig. 5.9 Wind speed profile V and j	cjV are shown in the top panel. The lower three panels
refer to correlation coefficient, phase angle and coherence for the three components of ıV and
ıB fluctuations, respectively. The successive panel indicates the value of the angle between
magnetic field and velocity fluctuations minimum variance directions. The bottom panel refers
to the heliocentric distance (from Bruno and Bavassano 1993)
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Chapter 6
A Natural Wind Tunnel

The solar wind has been used as a wind tunnel by Burlaga who, at the beginning of
the 1990s, started to investigate anomalous fluctuations (Burlaga 1991a,c,b, 1995)
as observed by measurements in the outer heliosphere by the Voyager spacecraft.
In 1991, Marsch (1992), in a review on solar wind turbulence given at the Solar
Wind Seven conference, underlined the importance of investigating scaling laws in
the solar wind and we like to report his sentence: “The recent work by Burlaga
(1991a,c) opens in my mind a very promising avenue to analyze and understand
solar wind turbulence from a new theoretical vantage point. . . . This approach may
also be useful for MHD turbulence. Possible connections between intermittent
turbulence and deterministic chaos have recently been investigated . . . We are still
waiting for applications of these modern concepts of chaos theory to solar wind
MHD fluctuations.” (cf. Marsch 1992, p. 503). A few years later Carbone (1993)
and, independently, Biskamp (1993) faced the question of anomalous scaling from
a theoretical point of view. More than 10 years later the investigation of statistical
mechanics of MHD turbulence from one side, and of low-frequency solar wind
turbulence on the other side, has produced a lot of papers, and is now mature enough
to be tentatively presented in a more organic way.

6.1 Scaling Exponents of Structure Functions

The phenomenology of turbulence developed by Kolmogorov (1941) deals with
some statistical hypotheses for fluctuations. The famous footnote remark by Landau
(Landau and Lifshitz 1971) pointed out a defect in the Kolmogorov theory, namely
the fact that the theory does not take proper account of spatial fluctuations of local
dissipation rate (Frisch 1995). This led different authors to investigate the features
related to scaling laws of fluctuations and, in particular, to investigate the departure
from the Kolmogorov’s linear scaling of the structure functions (cf. Sect. 2.8). An
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up-to-date comprehensive review of these theoretical efforts can be found in the
book by Frisch (1995).

Here we are interested in understanding what we can learn from solar wind
turbulence about the basic features of scaling laws for fluctuations. We use velocity
and magnetic fields time series, and we investigate the scaling behavior of the high-
order moments of stochastic variables defined as variations of fields separated by
a time1 interval � . First of all, it is worthwhile to remark that scaling laws and,
in particular, the exact relation (2.41) which defines the inertial range in fluid
flows, is valid for longitudinal (streamwise) fluctuations. In common fluid flows
the Kolmogorov linear scaling law is compared with the moments of longitudinal
velocity differences. In the same way for the solar wind turbulence we investigate
the scaling behavior of�u� D u.t C �/� u.t/, where u.t/ represents the component
of the velocity field along the radial direction. As far as the magnetic differences are
concerned �b� D B.t C �/ � B.t/, we are free for different choices and, in some
sense, this is more interesting from an experimental point of view. We can use the
reference system where B.t/ represents the magnetic field projected along the radial
direction, or the system where B.t/ represents the magnetic field along the local
background magnetic field, or B.t/ represents the field along the minimum variance
direction. As a different case we can simply investigate the scaling behavior of the
fluctuations of the magnetic field intensity.

Let us consider the pth moment of both absolute values2 of velocity fluctuations
Rp.�/ D hj�u� jpi and magnetic fluctuations Sp.�/ D hj�b� jpi, also called pth order
structure function in literature (brackets being time average). Here we use magnetic
fluctuations across structures at intervals � calculated by using the magnetic field
intensity. Typical structure functions of magnetic field fluctuations, for two different
values of p, for both a slow wind and a fast wind at 0.9 AU, are shown in Fig. 6.1. The
magnetic field we used is that measured by Helios 2 spacecraft. Structure functions
calculated for the velocity fields have roughly the same shape. Looking at these
figures the typical scaling features of turbulence can be observed. Starting from
low values at small scales, the structure functions increase towards a region where
Sp ! const: at the largest scales. This means that at these scales the field fluctuations
are uncorrelated. A kind of “inertial range”, that is a region of intermediate scales �

1Since the solar wind moves at supersonic speed Vsw, the usual Taylor’s hypothesis is verified, and
we can get information on spatial scaling laws ` by using time differences � D `=Vsw.
2Note that, according to the occurrence of the Yaglom’s law, that is a third-order moment is
different from zero, the fluctuations at a given scale in the inertial range must present some non-
Gaussian features. From this point of view the calculation of structure functions with the absolute
value is unappropriate because in this way we risk to cancel out non-Gaussian features. Namely
we symmetrize the probability density functions of fluctuations. However, in general, the number
of points at disposal is much lower than required for a robust estimate of odd structure functions,
even in usual fluid flows. Then, as usually, we will obtain structure functions by taking the absolute
value, even if some care must be taken in certain conclusions which can be found in literature.
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Fig. 6.1 Structure functions for the magnetic field intensity Sn.r/ for two different orders, n D 3

and n D 5, for both slow wind and fast wind, as a function of the time scale r. Data come from
Helios 2 spacecraft at 0.9 AU

where a power law can be recognized for both

Rp.�/ D hj�u� jpi � ��p

Sp.�/ D hj�b� jpi � ��p (6.1)

is more or less visible only for the slow wind. In this range correlations exists, and
we can obtain the scaling exponents �p and �p through a simple linear fit.

Since as we have seen, Yaglom’s law is observed only in some few samples,
the inertial range in the whole solar wind is not well defined. A look at Fig. 6.1
clearly shows that we are in a situation similar to a low-Reynolds number fluid
flow. In order to compare scaling exponents of the solar wind turbulent fluctuations
with other experiments, it is perhaps better to try to recover exponents using the
Extended Self-Similarity (ESS), introduced some time ago by Benzi et al. (1993),
and used here as a tool to determine relative scaling exponents. In the fluid-like case,
the third-order structure function can be regarded as a generalized scaling using the
inverse of Eq. (2.42) or of Eq. (2.41) (Politano et al. 1998). Then, we can plot the
pth order structure function vs. the third-order one to recover at least relative scaling
exponents �p=�3 and �p=�3 (6.1). Quite surprisingly (see Fig. 6.2), we find that the
range where a power law can be recovered extends well beyond the inertial range,
covering almost all the experimental range. In the fluid case the scaling exponents
which can be obtained through ESS at low or moderate Reynolds numbers, coincide
with the scaling exponents obtained for high Reynolds, where the inertial range is
very well defined (Benzi et al. 1993). This is due to the fact that, since by definition
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Fig. 6.2 Structure functions Sn.r/ for two different orders, n D 3 and n D 5, for both slow wind
and high wind, as a function of the fourth-order structure function S4.r/. Data come from Helios 2
spacecraft at 0.9 AU

�3 D 1 in the inertial range (Frisch 1995), whatever its extension might be. In our
case scaling exponents obtained through ESS can be used as a surrogate, since we
cannot be sure that an inertial range exists.

It is worthwhile to remark (as shown in Fig. 6.2) that we can introduce a general
scaling relation between the qth order velocity structure function and the pth order
structure function, with a relative scaling exponent ˛p.q/. It has been found that this
relation becomes an exact relation

Sq.r/ D 

Sp.r/

�˛p.q/
;

when the velocity structure functions are normalized to the average velocity within
each period used to calculate the structure function (Carbone et al. 1996a). This is
very interesting because it implies that the above relationship is satisfied by the
following probability distribution function, if we assume that odd moments are
much smaller than the even ones (Carbone et al. 1996a):

PDF.�u�/ D
Z 1

�1
dk eik�u�

1X
qD0

.ik/2q

2�.2q/Š



Sp.�/

�˛p.2q/
: (6.2)

That is, for each scale � the knowledge of the relative scaling exponents ˛p.q/
completely determines the probability distribution of velocity differences as a
function of a single parameter Sp.�/.
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Table 6.1 Scaling exponents
for velocity �p and magnetic
�p variables calculated
through ESS

p �p �p u.t/ (fluid) T.t/ (fluid)

1 0:37˙ 0:06 0:56˙ 0:06 0:37 0:61

2 0:70˙ 0:05 0:83˙ 0:05 0:70 0:85

3 1.00 1.00 1:00 1:00

4 1:28˙ 0:02 1:14˙ 0:02 1:28 1:12

5 1:54˙ 0:03 1:25˙ 0:03 1:54 1:21

6 1:79˙ 0:05 1:35˙ 0:05 1:78 1:38

Errors represent the standard deviations of the linear fitting.
The data used comes from a turbulent sample of slow wind
at 0.9 AU from Helios 2 spacecraft. As a comparison we
show the normalized scaling exponents of structure functions
calculated in a wind tunnel on Earth (Ruíz-Chavarría et al.
1995) for velocity and temperature. The temperature is a
passive scalar in this experiment

Relative scaling exponents, calculated by using data coming from Helios 2 at
0.9 AU, are reported in Table 6.1. As it can be seen, two main features can be
noted:

1. There is a significant departure from the Kolmogorov linear scaling, that is, real
scaling exponents are anomalous and seem to be non-linear functions of p, say
�p=�3 > p=3 for p < 3, while �p=�3 < p=3 for p > 3. The same behavior can be
observed for �p=�3. In Table 6.1 we report also the scaling exponents obtained in
usual fluid flows for velocity and temperature, the latter being a passive scalar.
Scaling exponents for velocity field are similar to scaling exponents obtained
in turbulent flows on Earth, showing a kind of universality in the anomaly.
This effect is commonly attributed to the phenomenon of intermittency in fully
developed turbulence (Frisch 1995). Turbulence in the solar wind is intermittent,
just like its fluid counterpart on Earth.

2. The degree of intermittency is measured through the distance between the curve
�p=�3 and the linear scaling p=3. It can be seen that the magnetic field is more
intermittent than the velocity field. The same difference is observed between
the velocity field and a passive scalar (in our case the temperature) in ordinary
fluid flows (Ruíz-Chavarría et al. 1995). That is the magnetic field, as long as
intermittency properties are concerned, has the same scaling laws of a passive
field. Of course this does not mean that the magnetic field plays the same role
as a passive field. Statistical properties are in general different from dynamical
properties.

In Table 6.1 we show scaling exponents up to the sixth order. Actually, a question
concerns the validation of high-order moments estimates, say the maximum value
of the order p which can be determined with a finite number of points of our dataset.
As the value of p increases, we need an increasing number of points for an optimal
determination of the structure function (Tennekes and Wyngaard 1972). Anomalous
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scaling laws are generated by rare and intense events due to singularities in the
gradients: the higher their intensity the more rare these events are. Of course, when
the data set has a finite extent, the probability to get singularities stronger than a
certain value approaches zero. In that case, scaling exponents �p of order higher
than a certain value become linear functions of p. Actually, the structure function
Sp.�/ depends on the probability distribution function PDF.�u� / through

Sp.�/ D
Z
�up

� PDF.ıu� / d�u�

and, the function Sp is determined only when the integral converges. As p increases,
the function Fp.ıu� / D �up

� PDF.�u� / becomes more and more disturbed, with
some spikes, so that the integral becomes more and more undefined, as can be seen
for example in Fig. 1 of the paper by Dudok de Wit (2004). A simple calculation
(Dudok de Wit 2004) for the maximum value of the order pm which can reliably
be estimated with a given number N of points in the dataset, gives the empirical
criterion pm ' log N. Structure functions of order p > pm cannot be determined
accurately.

Only few large structures are enough to generate the anomalous scaling laws.
In fact, as shown by Salem et al. (2009), by suppressing through wavelets analysis
just a few percentage of large structures on all scales, the scaling exponents become
linear functions of p, respectively p=4 and p=3 for the kinetic and magnetic fields.

As far as a comparison between different plasmas is concerned, the scaling expo-
nents of magnetic structure functions, obtained from laboratory plasma experiments
of a Reversed-Field Pinch at different distances from the external wall (Carbone
et al. 2000) are shown in Table 6.2. In laboratory plasmas it is difficult to measure
all the components of the vector field at the same time, thus, here we show only
the scaling exponents obtained using magnetic field differences Br.t C �/ � Br.t/
calculated from the radial component in a toroidal device where the z-axis is directed
along the axis of the torus. As it can be seen, intermittency in magnetic turbulence is
not so strong as it appears to be in the solar wind, actually the degree of intermittency

Table 6.2 Normalized
scaling exponents �p=�3 for
radial magnetic fluctuations
in a laboratory plasma, as
measured at different
distances a=R (R ' 0:45 cm
being the minor radius of the
torus in the experiment) from
the external wall

p a=R D 0:96 a=R D 0:93 a=R D 0:90 a=R D 0:86

1 0:39˙ 0:01 0:38˙ 0:01 0:37˙ 0:01 0:36˙ 0:01

2 0:74˙ 0:01 0:73˙ 0:02 0:71˙ 0:01 0:70˙ 0:01

3 1.00 1.00 1.00 1.00

4 1:20˙ 0:02 1:24˙ 0:02 1:27˙ 0:01 1:28˙ 0:01

5 1:32˙ 0:03 1:41˙ 0:03 1:51˙ 0:03 1:55˙ 0:03

6 1:38˙ 0:04 1:50˙ 0:04 1:71˙ 0:03 1:78˙ 0:04

Errors represent the standard deviations of the linear fitting.
Scaling exponents have been obtained using the ESS
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Table 6.3 Normalized
scaling exponents �p=�3 for
Alfvénic, velocity, and
magnetic fluctuations
obtained from data of high
resolution 2D MHD
numerical simulations

p ZC Z� v B

1 0:36˙ 0:06 0:56˙ 0:06 0:37˙ 0:01 0:46˙ 0:02

2 0:70˙ 0:05 0:83˙ 0:05 0:70˙ 0:01 0:78˙ 0:01

3 1.00 1.00 1.00 1.00

4 1:28˙ 0:02 1:14˙ 0:02 1:28˙ 0:02 1:18˙ 0:02

5 1:53˙ 0:03 1:25˙ 0:03 1:54˙ 0:03 1:31˙ 0:03

6 1:79˙ 0:05 1:35˙ 0:05 1:78˙ 0:05 1:40˙ 0:03

Scaling exponents have been calculated from spatial fluctua-
tions; different times, in the statistically stationary state, have
been used to improve statistics. The scaling exponents have
been calculated by ESS using Eq. (2.41) as characteristic scale
rather than the third-order structure function (cf. Politano et al.
1998, for details

increases when going toward the external wall. This last feature appears to be similar
to what is currently observed in channel flows, where intermittency also increases
when going towards the external wall (Pope 2000).

Scaling exponents of structure functions for Alfvén variables, velocity, and
magnetic variables have been calculated also for high resolution 2D incompressible
MHD numerical simulations (Politano et al. 1998). In this case, we are freed from
the constraint of the Taylor hypothesis when calculating the fluctuations at a given
scale. From 2D simulations we recover the fields u.r; t/ and b.r; t/ at some fixed
times. We calculate the longitudinal fluctuations directly in space at a fixed time,
namely �u` D Œu.r C `; t/ � u.r; t/� � `=` (the same are made for different
fields, namely the magnetic field or the Elsässer fields). Finally, averaging both in
space and time, we calculate the scaling exponents through the structure functions.
These scaling exponents are reported in Table 6.3. Note that, even in numerical
simulations, intermittency for magnetic variables is stronger than for the velocity
field.

6.2 Probability Distribution Functions and Self-Similarity
of Fluctuations

The presence of scaling laws for fluctuations is a signature of the presence of self-
similarity in the phenomenon. A given observable u.`/, which depends on a scaling
variable `, is invariant with respect to the scaling relation ` ! �`, when there exists
a parameter 
.�/ such that u.`/ D 
.�/u.�`/. The solution of this last relation is a
power law u.`/ D C`h, where the scaling exponent is h D � log� 
.
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Since, as we have just seen, turbulence is characterized by scaling laws, this
must be a signature of self-similarity for fluctuations. Let us see what this means.
Let us consider fluctuations at two different scales, namely �z˙̀ and �z�̇`. Their
ratio �z�̇`=�z˙̀ � �h depends only on the value of h, and this should imply that
fluctuations are self-similar. This means that PDFs are related through

P.�z�̇`/ D PDF.�h�z˙̀/:

Let us consider the normalized variables

y˙̀ D �z˙̀

h.�z˙̀/2i1=2 :

When h is unique or in a pure self-similar situation, PDFs are related through
P.y˙̀/ D PDF.y�̇`/, say by changing scale PDFs coincide.

The PDFs relative to the normalized magnetic fluctuations ıb� D �b�=h�b2�i1=2,
at three different scales � , are shown in Fig. 6.3. It appears evident that the global
self-similarity in real turbulence is broken. PDFs do not coincide at different scales,

Fig. 6.3 Left panel: normalized PDFs for the magnetic fluctuations observed in the solar wind
turbulence by using Helios data. Right panel: distribution function of waiting times �t between
structures at the smallest scale. The parameter ˇ is the scaling exponent of the scaling relation
PDF.�t/ � �t�ˇ for the distribution function of waiting times
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rather their shape seems to depend on the scale � . In particular, at large scales
PDFs seem to be almost Gaussian, but they become more and more stretched as
� decreases. At the smallest scale PDFs are stretched exponentials. This scaling
dependence of PDFs is a different way to say that scaling exponents of fluctuations
are anomalous, or can be taken as a different definition of intermittency. Note that
the wings of PDFs are higher than those of a Gaussian function. This implies
that intense fluctuations have a probability of occurrence higher than that they
should have if they were Gaussianly distributed. Said differently, intense stochastic
fluctuations are less rare than we should expect from the point of view of a Gaussian
approach to the statistics. These fluctuations play a key role in the statistics of
turbulence. The same statistical behavior can be found in different experiments
related to the study of the atmosphere (see Fig. 6.4) and the laboratory plasma (see
Fig. 6.5).

Fig. 6.4 Left panel: normalized PDFs of velocity fluctuations in atmospheric turbulence. Right
panel: distribution function of waiting times �t between structures at the smallest scale. The
parameter ˇ is the scaling exponent of the scaling relation PDF.�t/ � �t�ˇ for the distribution
function of waiting times. The turbulent samples have been collected above a grass-covered forest
clearing at 5 m above the ground surface and at a sampling rate of 56 Hz (Katul et al. 1997)



178 6 A Natural Wind Tunnel

Fig. 6.5 Left panel: normalized PDFs of the radial magnetic field collected in RFX magnetic
turbulence (Carbone et al. 2000). Right panel: distribution function of waiting times �t between
structures at the smallest scale. The parameter ˇ is the scaling exponent of the scaling relation
PDF.�t/ � �t�ˇ for the distribution function of waiting times

6.3 What is Intermittent in the Solar Wind Turbulence?
The Multifractal Approach

Time dependence of �u� and �b� for three different scales � is shown in Figs. 6.6
and 6.7, respectively. These plots show that, as � becomes small, intense fluctuations
become more and more important, and they dominate the statistics. Fluctuations
at large scales appear to be smooth while, as the scale becomes smaller, intense
fluctuations becomes visible. These dominating fluctuations represent relatively
rare events. Actually, at the smallest scales, the time behavior of both �u� and
�b� is dominated by regions where fluctuations are low, in between regions where
fluctuations are intense and turbulent activity is very high. Of course, this behavior
cannot be described by a global self-similar behavior. Allowing the scaling laws to
vary with the region of turbulence we are investigating would be more convincing.

The behavior we have just described is at the heart of the multifractal approach to
turbulence (Frisch 1995). In that description of turbulence, even if the small scales
of fluid flow cannot be globally self-similar, self-similarity can be reintroduced as
a local property. In the multifractal description it is conjectured that turbulent flows
can be made by an infinite set of points Sh.r/, each set being characterized by a
scaling law �Z˙̀ � `h.r/, that is, the scaling exponent can depend on the position r.
The usual dimension of that set is then not constant, but depends on the local value
of h, and is quoted as D.h/ in literature.
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Fig. 6.6 Differences for the longitudinal velocity ıu� D u.t C �/� u.t/ at three different scales
� , as shown in the figure

Fig. 6.7 Differences for the magnetic intensity�b� D B.t C �/� B.t/ at three different scales � ,
as shown in the figure
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Then, the probability of occurrence of a given fluctuation can be calculated
through the weight the fluctuation assumes within the whole flow, i.e.,

P.�Z˙̀/ � .�Z˙̀/h � volume occupied by fluctuations;

and the pth order structure function is immediately written through the integral over
all (continuous) values of h weighted by a smooth function 
.h/ � 0.1/, i.e.,

Sp.`/ D
Z

.h/.�Z˙̀/ph.�Z˙̀/3�D.h/dh:

A moment of reflection allows us to realize that in the limit ` ! 0 the integral is
dominated by the minimum value (over h) of the exponent and, as shown by Frisch
(1995), the integral can be formally solved using the usual saddle-point method. The
scaling exponents of the structure function can then be written as

�p D min
h
Œph C 3 � D.h/�:

In this way, the departure of �p from the linear Kolmogorov scaling and thus
intermittency, can be characterized by the continuous changing of D.h/ as h varies.
That is, as p varies we are probing regions of fluid where even more rare and intense
events exist. These regions are characterized by small values of h, that is, by stronger
singularities of the gradient of the field.

Owing to the famous Landau footnote on the fact that fluctuations of the energy
transfer rate must be taken into account in determining the statistics of turbulence,
people tried to interpret the non-linear energy cascade typical of turbulence theory,
within a geometrical framework. The old Richardson’s picture of the turbulent
behavior as the result of a hierarchy of eddies at different scales has been modified
and, as realized by Kraichnan (1974), once we leave the idea of a constant energy
cascade rate we open a “Pandora’s box” of possibilities for modeling the energy
cascade. By looking at scaling laws for �z˙̀ and introducing the scaling exponents
for the energy transfer rate h�p

`i � r�p , it can be found that �p D p=m C �p=m

(being m D 3 when the Kolmogorov-like phenomenology is taken into account,
or m D 4 when the Iroshnikov-Kraichnan phenomenology holds). In this way the
intermittency correction are determined by a cascade model for the energy transfer
rate. When �p is a non-linear function of p, the energy transfer rate can be described
within the multifractal geometry (see, e.g., Meneveau 1991, and references therein)
characterized by the generalized dimensions Dp D 1 � �p=.p � 1/ (Hentschel and
Procaccia 1983). The scaling exponents of the structure functions are then related
to Dp by

�p D
� p

m
� 1

�
Dp=m C 1:
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The correction to the linear scaling p=m is positive for p < m, negative for p > m,
and zero for p D m. A fractal behavior where Dp D const: < 1 gives a linear
correction with a slope different from 1=m.

6.4 Fragmentation Models for the Energy Transfer Rate

Cascade models view turbulence as a collection of fragments at a given scale `,
which results from the fragmentation of structures at the scale `0 > `, down to
the dissipative scale (Novikov 1969). Sophisticated statistics are applied to obtain
scaling exponents �p for the pth order structure function.

The starting point of fragmentation models is the old ˇ-model, a “pedagogical”
fractal model introduced by Frisch et al. (1978) to account for the modification
of the cascade in a simple way. In this model, the cascade is realized through the
conjecture that active eddies and non-active eddies are present at each scale, the
space-filling factor for the fragments being fixed for each scale. Since it is a fractal
model, the ˇ-model gives a linear modification to �p. This can account for a fit on
the data, as far as small values of p are concerned. However, the whole curve �p is
clearly nonlinear, and a multifractal approach is needed.

The random-ˇ model (Benzi et al. 1984), a multifractal modification of the ˇ-
model, can be derived by invoking that the space-filling factor for the fragments at
a given scale in the energy cascade is not fixed, but is given by a random variable ˇ.
The probability of occurrence of a given ˇ is assumed to be a bimodal distribution
where the eddies fragmentation process generates either space-filling eddies with
probability � or planar sheets with probability .1� �/ (for conservation 0 � � � 1).
It can be found that

�p D p

m
� log2



1 � � C �2p=m�1� ; (6.3)

where the free parameter � can be fixed through a fit on the data.
The p-model (Meneveau 1991; Carbone 1993) consists in an eddies fragmenta-

tion process described by a two-scale Cantor set with equal partition intervals. An
eddy at the scale `, with an energy derived from the transfer rate �r, breaks down
into two eddies at the scale `=2, with energies 
�r and .1 � 
/�r. The parameter
0:5 � 
 � 1 is not defined by the model, but is fixed from the experimental data.
The model gives

�p D 1 � log2



p=m C .1� 
/p=m

�
: (6.4)

In the model by She and Leveque (see, e.g., She and Leveque 1994; Politano
and Pouquet 1998) one assumes an infinite hierarchy for the moments of the energy
transfer rates, leading to �.pC1/

r � Œ�
.p/
r �ˇŒ�

.1/
r �1�ˇ , and a divergent scaling law for
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the infinite-order moment �.1/
r � r�x, which describes the most singular structures

within the flow. The model reads

�p D p

m
.1 � x/C C

�
1 �

�
1 � x

C

�p=m
�
: (6.5)

The parameter C D x=.1 � ˇ/ is identified as the codimension of the most singular
structures. In the standard MHD case (Politano and Pouquet 1995) x D ˇ D 1=2,
so that C D 1, that is, the most singular dissipative structures are planar sheets. On
the contrary, in fluid flows C D 2 and the most dissipative structures are filaments.
The large p behavior of the p-model is given by �p � .p=m/ log2.1=
/C 1, so that
Eqs. (6.4) and (6.5) give the same results providing
 ' 2�x. As shown by Carbone
et al. (1996b) all models are able to capture intermittency of fluctuations in the
solar wind. The agreement between the curves �p and normalized scaling exponents
is excellent, and this means that we realistically cannot discriminate between the
models we reported above. The main problem is that all models are based on a
conjecture which gives a curve �p as a function of a single free parameter, and that
curve is able to fit the smooth observed behavior of �p. Statistics cannot prove, just
disprove. We can distinguish between the fractal model and multifractal models, but
we cannot realistically distinguish among the various multifractal models.

6.5 A Model for the Departure from Self-Similarity

Besides the idea of self-similarity underlying the process of energy cascade in
turbulence, a different point of view can be introduced. The idea is to characterize
the behavior of the PDFs through the scaling laws of the parameters, which describe
how the shape of the PDFs changes when going towards small scales. The model,
originally introduced by Castaing et al. (2001), is based on a multiplicative process
describing the cascade. In its simplest form the model can be introduced by saying
that PDFs of increments ıZ˙̀, at a given scale, are made as a sum of Gaussian
distributions with different widths 	 D h.ıZ˙̀/2i1=2. The distribution of widths is
given by G�.	/, namely

P.ıZ˙̀/ D 1

2�

Z 1

0

G�.	/ exp

 
� .ıZ

˙̀/2

2	2

!
d	

	
: (6.6)

In a purely self-similar situation, where the energy cascade generates only a trivial
variation of 	 with scales, the width of the distribution G�.	/ is zero and, invariably,
we recover a Gaussian distribution for P.ıZ˙̀/. On the contrary, when the cascade
is not strictly self-similar, the width of G�.	/ is different from zero and the scaling
behavior of the width �2 of G�.	/ can be used to characterize intermittency.
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6.6 Intermittency Properties Recovered via a Shell Model

Shell models have remarkable properties which closely resemble those typical of
MHD phenomena (Gloaguen et al. 1985; Biskamp 1994; Giuliani and Carbone
1998; Plunian et al. 2012). However, the presence of a constant forcing term always
induces a dynamical alignment, unless the model is forced appropriately, which
invariably brings the system towards a state in which velocity and magnetic fields
are strongly correlated, that is, where Zṅ 6D 0 and Z�

n D 0. When we want to
compare statistical properties of turbulence described by MHD shell models with
solar wind observations, this term should be avoided. It is possible to replace the
constant forcing term by an exponentially time-correlated Gaussian random forcing
which is able to destabilize the Alfvénic fixed point of the model (Giuliani and
Carbone 1998), thus assuring the energy cascade. The forcing is obtained by solving
the following Langevin equation:

dFn

dt
D �Fn

�
C 
.t/; (6.7)

where 
.t/ is a Gaussian stochastic process ı-correlated in time h
.t/
.t0/i D
2Dı.t0 � t/. This kind of forcing will be used to investigate statistical properties.

A statistically stationary state is reached by the system (Gloaguen et al. 1985;
Biskamp 1994; Giuliani and Carbone 1998; Plunian et al. 2012), with a well defined
inertial range, say a region where Eq. (2.49) is verified. Spectra for both the velocity
jun.t/j2 and magnetic jbn.t/j2 variables, as a function of kn, obtained in the stationary
state using the GOY MHD shell model, are shown in Figs. 6.8 and 6.9. Fluctuations
are averaged over time. The Kolmogorov spectrum is also reported as a solid line.
It is worthwhile to remark that, by adding a random term like iknB0.t/Zṅ to a little
modified version of the MHD shell models (B0 is a random function with some

Fig. 6.8 We show the kinetic energy spectrum jun.t/j2 as a function of log2 kn for the MHD shell

model. The full line refer to the Kolmogorov spectrum k�2=3
n
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Fig. 6.9 We show the magnetic energy spectrum jbn.t/j2 as a function of log2 kn for the MHD

shell model. The full line refer to the Kolmogorov spectrum k�2=3
n

statistical characteristics), a Kraichnan spectrum, say E.kn/ � k�3=2
n , where E.kn/ is

the total energy, can be recovered (Biskamp 1994; Hattori and Ishizawa 2001). The
term added to the model could represent the effect of the occurrence of a large-scale
magnetic field.

Intermittency in the shell model is due to the time behavior of shell variables. It
has been shown (Okkels 1997) that the evolution of GOY model consists of short
bursts traveling through the shells and long period of oscillations before the next
burst arises. In Figs. 6.10 and 6.11 we report the time evolution of the real part of
both velocity variables un.t/ and magnetic variables bn.t/ at three different shells.
It can be seen that, while at smaller kn variables seems to be Gaussian, at larger kn

variables present very sharp fluctuations in between very low fluctuations.
The time behavior of variables at different shells changes the statistics of

fluctuations. In Fig. 6.12 we report the probability distribution functions P.ıun/ and
P.ıBn/, for different shells n, of normalized variables

ıun D <e.un/phjunj2i
and ıBn D <e.bn/phjbnj2i

;

where <e indicates that we take the real part of un and bn. Typically we see that
PDFs look differently at different shells: At small kn fluctuations are quite Gaussian
distributed, while at large kn they tend to become increasingly non-Gaussian, by
developing fat tails. Rare fluctuations have a probability of occurrence larger than
a Gaussian distribution. This is the typical behavior of intermittency as observed in
usual fluid flows and described in previous sections.

The same phenomenon gives rise to the departure of scaling laws of structure
functions from a Kolmogorov scaling. Within the framework of the shell model the
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Fig. 6.10 Time behavior of the real part of velocity variable un.t/ at three different shells n, as
indicated in the different panels

Fig. 6.11 Time behavior of the real part of magnetic variable bn.t/ at three different shells n, as
indicated in the different panels
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Fig. 6.12 In the first three panels we report PDFs of both velocity (left column) and magnetic
(right column) shell variables, at three different shells `n. The bottom panels refer to probability
distribution functions of waiting times between intermittent structures at the shell n D 12 for the
corresponding velocity and magnetic variables

analogous of structure functions are defined as

hjunjpi � k
��p
n I hjbnjpi � k

��p
n I hjZṅ jpi � k

��˙

p
n :

For MHD turbulence it is also useful to report mixed correlators of the flux variables,
i.e.,

hŒTṅ �
p=3i � k

�ˇ˙

p
n :
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Table 6.4 Scaling exponents for velocity and magnetic variables, Elsässer variables, and fluxes.
Errors on ˇ˙

p are about one order of magnitude smaller than the errors shown

p �p �p �C

p ��

p ˇC

p ˇ�

p

1 0:36˙ 0:01 0:35˙ 0:01 0:35˙ 0:01 0:36˙ 0:01 0:326 0:318

2 0:71˙ 0:02 0:69˙ 0:03 0:70˙ 0:02 0:70˙ 0:03 0:671 0:666

3 1:03˙ 0:03 1:01˙ 0:04 1:02˙ 0:04 1:02˙ 0:04 1:000 1:000

4 1:31˙ 0:05 1:31˙ 0:06 1:30˙ 0:05 1:32˙ 0:06 1:317 1:323

5 1:57˙ 0:07 1:58˙ 0:08 1:54˙ 0:07 1:60˙ 0:08 1:621 1:635

6 1:80˙ 0:08 1:8˙ 0:10 1:79˙ 0:09 1:87˙ 0:10 1:91 1:94

Scaling exponents have been determined from a least square fit in the inertial range
3 � n � 12. The values of these exponents are reported in Table 6.4. It is interesting
to notice that, while scaling exponents for velocity are the same as those found in
the solar wind, scaling exponents for the magnetic field found in the solar wind
reveal a more intermittent character. Moreover, we notice that velocity, magnetic
and Elsässer variables are more intermittent than the mixed correlators and we think
that this could be due to the cancelation effects among the different terms defining
the mixed correlators.

Time intermittency in the shell model generates rare and intense events. These
events are the result of the chaotic dynamics in the phase-space typical of the
shell model (Okkels 1997). That dynamics is characterized by a certain amount of
memory, as can be seen through the statistics of waiting times between these events.
The distributions P.ıt/ of waiting times is reported in the bottom panels of Fig. 6.12,
at a given shell n D 12. The same statistical law is observed for the bursts of total
dissipation (Boffetta et al. 1999).

6.7 Observations of Yaglom’s Law in Solar Wind Turbulence

To avoid the risk of misunderstanding, let us start by recalling that Yaglom’s
law (2.40) has been derived from a set of equations (MHD) and under assumptions
which are far from representing an exact mathematical model for the solar wind
plasma. Yaglom’s law is valid in MHD under the hypotheses of incompressibility,
stationarity, homogeneity, and isotropy. Also, the form used for the dissipative terms
of MHD equations is only valid for collisional plasmas, characterized by quasi-
Maxwellian distribution functions, and in case of equal kinematic viscosity and
magnetic diffusivity coefficients (Biskamp 2003). In solar wind plasmas the above
hypotheses are only rough approximations, and MHD dissipative coefficients are
not even defined (Tu and Marsch 1995). At frequencies higher than the ion cyclotron
frequency, kinetic processes are indeed present, and a number of possible dissipation
mechanisms can be discussed. When looking for the Yaglom’s law in the SW, the
strong conjecture that the law remains valid for any form of the dissipative term is
needed.
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Despite the above considerations, Yaglom’s law results surprisingly verified in
some solar wind samples. Results of the occurrence of Yaglom’s law in the ecliptic
plane, has been reported by MacBride et al. (2008, 2010) and Smith et al. (2009)
and, independently, in the polar wind by Sorriso-Valvo et al. (2007). It is worthwhile
to note that, the occurrence of Yaglom’s law in polar wind, where fluctuations are
Alfvénic, represents a double surprising feature because, according to the usual
phenomenology of MHD turbulence, a nonlinear energy cascade should be absent
for Alfénic turbulence.

In a first attempt to evaluate phenomenologically the value of the energy
dissipation rate, MacBride et al. (2008) analyzed the data from ACE to evaluate
the occurrence of both the Kolmogorov’s 4/5-law and their MHD analog (2.40).
Although some words of caution related to spikes in wind speed, magnetic
field strength caused by shocks and other imposed heliospheric structures that
constitute inhomogeneities in the data, authors found that both relations are more
or less verified in solar wind turbulence. They found a distribution for the energy
dissipation rate, defined in the above paper as � D .�C

ii C ��
ii /=2, with an average of

about � ' 1:22 � 104 J=kg s.
In order to avoid variations of the solar activity and ecliptic disturbances (like

slow wind sources, coronal mass ejections, ecliptic current sheet, and so on), and
mainly mixing between fast and slow wind, Sorriso-Valvo et al. (2007) used high
speed polar wind data measured by the Ulysses spacecraft. In particular, authors
analyze the first 7 months of 1996, when the heliocentric distance slowly increased
from 3 to 4 AU, while the heliolatitude decreased from about 55ı to 30ı. The third-
order mixed structure functions have been obtained using 10-days moving averages,
during which the fields can be considered as stationary. A linear scaling law, like
the one shown in Fig. 6.13, has been observed in a significant fraction of samples
in the examined period, with a linear range spanning more than two decades. The
linear law generally extends from few minutes up to 1 day or more, and is present
in about 20 periods of a few days in the 7 months considered. This probably reflects
different regimes of driving of the turbulence by the Sun itself, and it is certainly
an indication of the nonstationarity of the energy injection process. According to
the formal definition of inertial range in the usual fluid flows, authors attribute to
the range where Yaglom’s law appear the role of inertial range in the solar wind
turbulence (Sorriso-Valvo et al. 2007). This range extends on scales larger than the
usual range of scales where a Kolmogorov relation has been observed, say up to
about few hours (cf. Fig. 3.4).

Several other periods are found where the linear scaling range is reduced and,
in particular, the sign of Y˙̀ is observed to be either positive or negative. In some
other periods the linear scaling law is observed either for YC

` or Y�̀ rather than for
both quantities. It is worth noting that in a large fraction of cases the sign switches
from negative to positive (or viceversa) at scales of about 1 day, roughly indicating
the scale where the small scale Alfvénic correlations between velocity and magnetic
fields are lost. This should indicate that the nature of fluctuations changes across the
break. The values of the pseudo-energies dissipation rates �˙ has been found to be
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Fig. 6.13 An example of the linear scaling for the third-order mixed structure functions Y˙,
obtained in the polar wind using Ulysses measurements. A linear scaling law represents a range of
scales where Yaglom’s law is satisfied. Image reproduced by permission from Sorriso-Valvo et al.
(2007), copyright by APS

of the order of magnitude about few hundreds of J/kg s, higher than that found in
usual fluid flows which result of the order of 1 50 J=kg s.

The occurrence of Yaglom’s law in solar wind turbulence has been evidenced
by a systematic study by MacBride et al. (2010), which, using ACE data, found a
reasonable linear scaling for the mixed third-order structure functions, from about
64 s. to several hours at 1 AU in the ecliptic plane. Assuming that the third-order
mixed structure function is perpendicular to the mean field, or assuming that this
function varies only with the component of the scale `˛ that is perpendicular to the
mean field, and is cylindrically symmetric, the Yaglom’s law would reduce to a 2D
state. On the other hand, if the third-order function is parallel to the mean field or
varies only with the component of the scale that is parallel to the mean field, the
Yaglom’s law would reduce to a 1D-like case. In both cases the result will depend
on the angle between the average magnetic field and the flow direction. In both
cases the energy cascade rate varies in the range 103  104 J=kg s (see MacBride
et al. 2010, for further details).

Quite interestingly, Smith et al. (2009) found that the pseudo-energy cascade
rates derived from Yaglom’s scaling law reveal a strong dependence on the amount
of cross-helicity. In particular, they showed that when the correlation between
velocity and magnetic fluctuations are higher than about 0.75, the third-order
moment of the outward-propagating component, as well as of the total energy and
cross-helicity are negative. As already made by Sorriso-Valvo et al. (2007), they
attribute this phenomenon to a kind of inverse cascade, namely a back-transfer
of energy from small to large scales within the inertial range of the dominant
component. We should point out that experimental values of energy transfer rate
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in the incompressive case, estimated with different techniques from different data
sets (Vasquez et al. 2007; MacBride et al. 2010), are only partially in agreement with
that obtained by Sorriso-Valvo et al. (2007). However, the different nature of wind
(ecliptic vs. polar, fast vs. slow, at different radial distances from the Sun) makes
such a comparison only indicative.

As far as the scaling law (2.47) is concerned, Carbone et al. (2009) found that a
linear scaling for W˙̀ as defined in (2.47), appears almost in all Ulysses dataset. In
particular, the linear scaling for W˙̀ is verified even when there is no scaling at all
for Y˙̀ (2.40). In particular, it has been observed (Carbone et al. 2009) that a linear
scaling for WC

` appears in about half the whole signal, while W�̀ displays scaling on
about a quarter of the sample. The linear scaling law generally extends on about two
decades, from a few minutes up to 1 day or more, as shown in Fig. 6.14. At variance
to the incompressible case, the two fluxes W˙̀ coexist in a large number of cases.
The pseudo-energies dissipation rates so obtained are considerably larger than the
relative values obtained in the incompressible case. In fact it has been found that on
average �C ' 3� 103 J=kg s. This result shows that the nonlinear energy cascade in
solar wind turbulence is considerably enhanced by density fluctuations, despite their
small amplitude within the Alfvénic polar turbulence. Note that the new variables
�wi̇ are built by coupling the Elsässer fields with the density, before computing the
scale-dependent increments. Moreover, the third-order moments are very sensitive
to intense field fluctuations, that could arise when density fluctuations are correlated
with velocity and magnetic field. Similar results, but with a considerably smaller
effect, were found in numerical simulations of compressive MHD (Mac Low and
Klessen 2004).
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Fig. 6.14 The linear scaling relation is reported for both the usual third-order structure function
YC

` and the same quantity build up with the density-mediated variables WC

` . A linear relation full
line is clearly observed. Data refer to the Ulysses spacecraft. Image reproduced by permission from
Carbone et al. (2009), copyright by APS
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Finally, it is worth reporting that the presence of Yaglom’s law in solar wind
turbulence is an interesting theoretical topic, because this is the first real exper-
imental evidence that the solar wind turbulence, at least at large-scales, can be
described within the magnetohydrodynamic model. In fact, Yaglom’s law is an exact
law derived from MHD equations and, let us say once more, their occurrence in a
medium like the solar wind is a welcomed surprise. By the way, the presence of the
law in the polar wind solves the paradox of the presence of Alfvénic turbulence as
first pointed out by Dobrowolny et al. (1980). Of course, the presence of Yaglom’s
law generates some controversial questions about data selection, reliability and a
brief discussion on the extension of the inertial range. The interested reader can find
some questions and relative answers in Physical Review Letters (Forman et al. 2010;
Sorriso-Valvo et al. 2010).
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Chapter 7
Intermittency Properties in the 3D Heliosphere

In this section, we present a reasoned look at the main aspect of what has
been reported in literature about the problem of intermittency in the solar wind
turbulence. In particular, we present results from data analysis.

7.1 Structure Functions

Apart from the earliest investigations on the fractal structure of magnetic field as
observed in interplanetary space (Burlaga and Klein 1986), the starting point for the
investigation of intermittency in the solar wind dates back to 1991, when Burlaga
(1991a) started to look at the scaling of the bulk velocity fluctuations at 8.5 AU
using Voyager 2 data. This author found that anomalous scaling laws for structure
functions could be recovered in the range 0:85 � r � 13:6 h. This range of scales
has been arbitrarily identified as a kind of “inertial range”, say a region were a
linear scaling exists between log S.p/

r and log r, and the scaling exponents have
been calculated as the slope of these curves. However, structure functions of order
p � 20 were determined on the basis of only about 4500 data points. Nevertheless
the scaling was found to be quite in agreement with that found in ordinary fluid
flows. Although the data might be in agreement with the random-ˇ model, from
a theoretical point of view Carbone (1993, 1994b) showed that normalized scaling
exponents �p=�4 calculated by Burlaga (1991a) would be better fitted by using a
p-model derived from the Kraichnan phenomenology (Kraichnan 1965; Carbone
1993), and considering the parameter 
 ' 0:77. The same author Burlaga (1991c)
investigated the multifractal structure of the interplanetary magnetic field near
25 AU and analyzed positive defined fields as magnetic field strength, temperature,
and density using the multifractal machinery of dissipation fields (Paladin and
Vulpiani 1987; Meneveau 1991). Burlaga (1991b) showed that intermittent events
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observed in co-rotating streams at 1 AU should be described by a multifractal
geometry. Even in this case the number of points used was very low to assure the
reliability of high-order moments.

Marsch and Liu (1993) investigated the structure of intermittency of the tur-
bulence observed in the inner heliosphere by using Helios 2 data. They analyzed
both bulk velocity and Alfvén speed to calculate structure functions in the whole
range 40.5 s (the instrument resolution) up to 24 h to estimate the pth order scaling
exponents. Note that also in this analysis the number of data points used was too
small to assure a reliability for order p D 20 structure functions as reported by
Marsch and Liu (1993). From the analysis analogous to Burlaga (1991a), authors
found that anomalous scaling laws are present. A comparison between fast and
slow streams at two heliocentric distances, namely 0.3 and 1 AU, allows authors
to conjecture a scenario for high speed streams were Alfvénic turbulence, originally
self-similar (or poorly intermittent) near the Sun, “. . . loses its self-similarity and
becomes more multifractal in nature” (Marsch and Liu 1993), which means that
intermittent corrections increase from 0.3 to 1 AU. No such behavior seems to occur
in the slow solar wind. From a phenomenological point of view, Marsch and Liu
(1993) found that data can be fitted with a piecewise linear function for the scaling
exponents �p, namely a ˇ-model �p D 3 � D C p.D � 2/=3, where D ' 3 for
p � 6 and D ' 2:6 for p > 6. Authors say that “We believe that we see similar
indications in the data by Burlaga, who still prefers to fit his whole �p dataset with
a single fit according to the non-linear random ˇ-model.”. We like to comment that
the impression by Marsch and Liu (1993) is due to the fact that the number of data
points used was very small. As a matter of fact, only structure functions of order
p � 4 are reliably described by the number of points used by Burlaga (1991a).

However, the data analyses quoted above, which in some sense present some
contradictory results, are based on high order statistics which is not supported
by an adequate number of data points and the range of scales, where scaling
laws have been recovered, is not easily identifiable. To overcome these difficulties
Carbone et al. (1996) investigated the behavior of the normalized ratios �p=�3
through the ESS procedure described above, using data coming from low-speed
streams measurements of Helios 2 spacecraft. Using ESS the whole range covered
by measurements is linear, and scaling exponent ratios can be reliably calculated.
Moreover, to have a dataset with a high number of points, authors mixed in the
same statistics data coming from different heliocentric distances (from 0.3 AU up
to 1 AU). This is not correct as far as fast wind fluctuations are taken into account,
because, as found by Marsch and Liu (1993) and Bruno et al. (2003b), there is
a radial evolution of intermittency. Results showed that intermittency is a real
characteristic of turbulence in the solar wind, and that the curve �p=�3 is a non-linear
function of p as soon as values of p � 6 are considered.

Marsch et al. (1996) for the first time investigated the geometrical and scaling
properties of the energy flux along the turbulent cascade and dissipation rate of
kinetic energy. They showed the multifractal nature of the dissipation field and
estimated, for the first time in solar wind MHD turbulence, the associated singularity
spectrum which resulted to be very similar to those obtained for ordinary fluid
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turbulence (Meneveau and Sreenivasan 1987). They also estimated the energy
dissipation rate for time scales of 102 s to be around 5:4 � 10�16 erg cm�3 s�1. This
value was similar to the theoretical heating rate required in the model by Tu (1988)
with Alfvén waves to explain the radial temperature dependence observed in fast
solar wind. Looking at the literature, it can be realized that often scaling exponents
�p, as observed mainly in the high-speed streams of the inner solar wind, cannot
be explained properly by any cascade model for turbulence. This feature has been
attributed to the fact that this kind of turbulence is not in a fully-developed state with
a well defined spectral index. Models developed by Tu et al. (1984) and Tu (1988)
were successful in describing the evolution of the observed power spectra. Using
the same idea Tu et al. (1996) and Marsch and Tu (1997) investigated the behavior
of an extended cascade model developed on the base of the p-model (Meneveau and
Sreenivasan 1987; Carbone 1993). Authors conjectured that: (1) the scaling laws for
fluctuations are still valid in the form ıZ˙̀ � `h, even when turbulence is not fully
developed; (2) the energy cascade rate is not constant, its moments rather depend
not only on the generalized dimensions Dp but also on the spectral index ˛ of the
power spectrum, say h�p

r i � �p.`; ˛/`. p�1/Dp , where the averaged energy transfer
rate is assumed to be

�.`; ˛/ � `�.m=2C1/P˛=2` ;

being P` � `˛ the usual energy spectrum (` � 1=k). The model gives

�p D 1C
� p

m
� 1

�
Dp=m C

h
˛

m

2
�
�
1C m

2

�i p

m
; (7.1)

where the generalized dimensions are recovered from the usual p-model

Dp D log2 Œ

p C .1 � 
/p�

.1 � p/
:

In the limit of “fully developed turbulence”, say when the spectral slope is ˛ D
2=m C 1 the usual Eq. (6.4) is recovered. The Helios 2 data are consistent with
this model as far as the parameters are 
 ' 0:77 and ˛ ' 1:45, and the fit
is relatively good (Tu et al. 1996). Recently, Horbury et al. (1997) and Horbury
and Balogh (1997) studied the magnetic field fluctuations of the polar high-speed
turbulence from Ulysses measurements at 3.1 AU and at 63ı heliolatitude. These
authors showed that the observed magnetic field fluctuations were in agreement
with the intermittent turbulence p-model of Meneveau and Sreenivasan (1987). They
also showed that the scaling exponents of structure functions of order p � 6, in
the scaling range 20 � r � 300 s followed the Kolmogorov scaling instead of
Kraichnan scaling as expected. In addition, the same authors Horbury et al. (1997)
estimated the applicability of the model by Tu et al. (1996) and Marsch and Tu
(1997) to the spectral transition range where the spectral index changes during the
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spectral evolution and concluded that this model was able to fit the observations
much better than the p-model when values of the parameters p change continuously
with the scale.

Analysis of scaling exponents of pth order structure functions has been per-
formed using different spacecraft datasets of Ulysses spacecraft. Horbury et al.
(1995b) and Horbury et al. (1995a) investigated the structure functions of magnetic
field as obtained from observations recorded between 1.7 and 4 AU, and covering
a heliographic latitude between 40ı and 80ı south. By investigating the spectral
index of the second order structure function, they found a decrease with heliocentric
distance attributed to the radial evolution of fluctuations. Further investigations (see,
e.g., Ruzmaikin et al. 1995) were obtained using structure functions to study the
Ulysses magnetic field data in the range of scales 1 � r � 32min. Ruzmaikin et al.
(1995) showed that intermittency is at work and developed a bi-fractal model to
describe Alfvénic turbulence. They found that intermittency may change the spectral
index of the second order structure function and this modifies the calculation of the
spectral index (Carbone 1994a). Ruzmaikin et al. (1995) found that polar Alfvénic
turbulence should be described by a Kraichnan phenomenology (Kraichnan 1965).
However, the same data can be fitted also with a fluid-like scaling law (Tu et al.
1996) and, due to the relatively small amount of data, it is difficult to decide, on
the basis of the second order structure function, which scaling relation describes
appropriately intermittency in the solar wind.

In a further paper Carbone et al. (1995) provided evidence for differences in
the ESS scaling laws between ordinary fluid flows and solar wind turbulence.
Through the analysis of different datasets collected in the solar wind and in ordinary
fluid flows, it was shown that normalized scaling exponents �p=�3 are the same
as far as p � 8 are considered. This indicates a kind of universality in the
scaling exponents for the velocity structure functions. Differences between scaling
exponents calculated in ordinary fluid flows and solar wind turbulence are confined
to high-order moments. Nevertheless, the differences found in the datasets were
related to different kind of singular structures in the model described by Eq. (6.5).
Solar wind data can be fitted by that model as soon as the most intermittent
structures are assumed to be planar sheets C D 1 and m D 4, that is a Kraichnan
scaling is used. On the contrary, ordinary fluid flows can be fitted only when C D 2

and m D 3, that is, structures are filaments and the Kolmogorov scaling have been
used. However it is worthwhile to remark that differences have been found for high-
order structure functions, just where measurements are unreliable.

7.2 Probability Distribution Functions

As said in Sect. 6.2 the statistics of turbulent flows can be characterized by the PDF
of field differences over varying scales. At large scales PDFs are Gaussian, while
tails become higher than Gaussian (actually, PDFs decay as expŒ�ıZ˙̀�) at smaller
scales.
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Marsch and Tu (1994) started to investigate the behavior of PDFs of fluctuations
against scales and they found that PDFs are rather spiky at small scales and quite
Gaussian at large scales. The same behavior have been obtained by Sorriso-Valvo
et al. (1999, 2001) who investigated Helios 2 data for both velocity and magnetic
field.

In order to make a quantitative analysis of the energy cascade leading to the
scaling dependence of PDFs just described, the distributions obtained in the solar
wind have been fitted (Sorriso-Valvo et al. 1999) by using the log-normal ansatz

G�.	/ D 1p
2��

exp

 
� ln2 	=	0

2�2

!
: (7.2)

The width of the log-normal distribution of 	 is given by �2.`/ D ph.ı	/2i, while
	0 is the most probable value of 	 .

The Eq. (6.6) has been fitted to the experimental PDFs of both velocity and
magnetic intensity, and the corresponding values of the parameter � have been
recovered. In Fig. 7.1 the solid lines show the curves relative to the fit. It can be seen
that the scaling behavior of PDFs, in all cases, is very well described by Eq. (6.6). At
every scale r, we get a single value for the width �2.r/, which can be approximated
by a power law �2.r/ D 
r� for r < 1 h, as it can be seen in Fig. 7.2. The values
of parameters 
 and  obtained in the fit, along with the values of 	0, are reported
in Table 7.1. The fits have been obtained in the range of scales � � 0:72 h for the
magnetic field, and � � 1:44 h for the velocity field. The analysis of PDFs shows
once more that magnetic field is more intermittent than the velocity field.

The same analysis has been repeated by Forman and Burlaga (2003). These
authors used 64 s averages of radial solar wind speed reported by the SWEPAM
instrument on the ACE spacecraft, increments have been calculated over a range of

Fig. 7.1 Left: normalized PDFs of fluctuations of the longitudinal velocity field at four different
scales � . Right: normalized PDFs of fluctuations of the magnetic field magnitude at four different
scales � . Solid lines represent the fit made by using the log-normal model. Image reproduced by
permission from Sorriso-Valvo et al. (1999), copyright by AGU
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Fig. 7.2 Scaling laws of the
parameter �2.�/ as a function
of the scales � , obtained by
the fits of the PDFs of both
velocity and magnetic
variables (see Fig. 7.1). Solid
lines represent fits made by
power laws. Image
reproduced by permission
from Sorriso-Valvo et al.
(1999), copyright by AGU

Table 7.1 The values of the parameters 	0, 
, and  , in the fit of �2.�/ [see Eq. (7.2) as a kernel
for the scaling behavior of PDFs]

Parameter B field (SW) V field (SW) B field (FW) V field (FW)

	0 0:90˙ 0:05 0:95˙ 0:05 0:85˙ 0:05 0:90˙ 0:05


 0:75˙ 0:03 0:38˙ 0:02 0:90˙ 0:03 0:54˙ 0:03

 0:18˙ 0:03 0:20˙ 0:04 0:19˙ 0:02 0:44˙ 0:05

FW and SW refer to fast and slow wind, respectively, as obtained from the Helios 2 spacecraft, by
collecting in a single dataset all periods

lag times from 64 s to several days. From the PDF obtained through the Eq. (7.2)
authors calculated the structure functions and compared the free parameters of the
model with the scaling exponents of the structure functions. Then a fit on the scaling
exponents allows to calculate the values of �2 and 	0. Once these parameters have
been calculated, the whole PDF is evaluated. The same authors found that the
PDFs do not precisely fit the data, at least for large values of the moment order.
Interesting enough, Forman and Burlaga (2003) investigated the behavior of PDFs
when different kernels G�.	/, derived from different cascade models, are taken into
account in Eq. (6.6). They discussed the physical content of each model, concluding
that a cascade model derived from lognormal or log-Lévy theories,1 modified by
self-organized criticality proposed by Schertzer et al. (1997), seems to avoid all
problems present in other cascade models.

1The lognormal model is derived by using a multiplicative process, where random variable
generates the cascade. Then, according to the Central Limit Theorem, the process converges to
a lognormal distribution of finite variance. The log-Lévy model is a modification of the lognormal
model. In such case, the Central Limit Theorem is used to derive the limit distribution of an infinite
sum of random variables by relaxing the hypothesis of finite variance usually used. The resulting
limit function is a Lévy function.
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7.3 Turbulent Structures

The non-linear energy cascade towards smaller scales accumulates fluctuations only
in relatively small regions of space, where gradients become singular. As a rather
different point of view (see Farge 1992) these regions can be viewed as localized
zones of fluid where phase correlation exists, in some sense coherent structures.
These structures, which dominate the statistics of small scales, occur as isolated
events with a typical lifetime greater than that of stochastic fluctuations surrounding
them. The idea of a turbulence in the solar wind made by a mixture of structures
convected by the wind and stochastic fluctuations is not particularly new (see, e.g.,
Tu and Marsch 1995). However, these large-scale structures cannot be considered
as intermittent structures at all scales. Structures continuously appear and disappear
apparently in a random fashion, at some random location of fluid, and carry a great
quantity of energy of the flow. In this framework intermittency can be considered
as the result of the occurrence of coherent (non-Gaussian) structures at all scales,
within the sea of stochastic Gaussian fluctuations.

This point of view is the result of data analysis of scaling laws of turbulent
fluctuations made by using wavelets filters (see Sect. 7.3.1) instead of the usual
Fourier transform. Unlike the Fourier basis, wavelets allow a decomposition both
in time and frequency (or space and scale). In analyzing intermittent structures it
is useful to introduce a measure of local intermittency, as for example the Local
Intermittency Measure (LIM) introduced by Farge (1992) and described below.

7.3.1 Local Intermittency Measure

Following Farge et al. (1990) and Farge (1992), intermittent events can be viewed
as localized zones of fluid where phase correlation exists, in some sense coherent
structures. These structures, which dominate the statistics of small scales, occur as
isolated events with a typical lifetime which is greater than that of stochastic fluctu-
ations surrounding them. Structures continuously appear and disappear, apparently
in a random fashion, at some random location of fluid, and they carry most of the
flow energy. In this framework, intermittency can be considered as the result of
the occurrence of coherent (non-Gaussian) structures at all scales, within the sea of
stochastic Gaussian fluctuations.

It follows that, since these structures are well localized in spatial scale and time,
it would be advisable to analyze them using wavelets filter instead of the usual
Fourier transform. Unlike the Fourier basis, wavelets allow a decomposition both
in time and frequency (or space and scale). The wavelet transform Wf f .t/g of a
function f .t/ consists of the projection of f .t/ on a wavelet basis to obtain wavelet
coefficients w.�; t/. These coefficients are obtained through a convolution between
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the analyzed function and a shifted and scaled version of an optional wavelet base

w.�; t/ D
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where the wavelet function
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has zero mean and compact support. Some examples of translated and scaled version
of this function for a particular wavelet called “charro”, because its profile resembles
the Mexican hat “El Charro”, are given in Fig. 7.3, and the analytical expression for
this wavelet is
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Since the Parceval’s theorem exists, the square modulus jw.�; t/j2 represents the
energy content of fluctuations f .t C �/ � f .t/ at the scale � at position t.

Fig. 7.3 Some examples of Mexican Hat wavelet, for different values of the parameters � and t0
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In analyzing intermittent structures it is useful to introduce a measure of local
intermittency, as for example the Local Intermittency Measure (LIM) introduced by
Farge (see, e.g., Farge et al. 1990; Farge 1992)

LIM D jw.�; t/j2
hjw.�; t/j2it

(7.4)

(averages are made over all positions at a given scale �). The quantity from
Eq. (7.4) represents the energy content of fluctuations at a given scale with respect
to the standard deviation of fluctuations at that scale. The whole set of wavelets
coefficients can then be split in two sets: a set which corresponds to “Gaussian”
fluctuations wg.�; t/, and a set which corresponds to “structure” fluctuations ws.�; t/,
that is, the whole set of coefficients w.�; t/ D wg.�; t/ ˚ ws.�; t/ (the symbol ˚
stands here for the union of disjoint sets). A coefficient at a given scale and position
will belong to a structure or to the Gaussian background according whether LIM
will be respectively greater or lesser than a threshold value. An inverse wavelets
transform performed separately on both sets, namely fg.t/ D W�1fwg.�; t/g and
fs.t/ D W�1fws.�; t/g, gives two separate fields: a field fg.t/ where the Gaussian
background is collected, and the field fs.t/ where only the non-Gaussian fluctuations
of the original turbulent flow are taken into account. Looking at the field fs.t/ one
can investigate the spatial behavior of structures generating intermittency. The Haar
basis have been applied to time series of 13 months of velocity and magnetic data
from ISEE space experiment for the first time by Veltri and Mangeney (1999).

In our analyses we adopted a recursive method (Bianchini et al. 1999; Bruno et al.
1999b) similar to the one introduced by Onorato et al. (2000) to study experimental
turbulent jet flows. The method consists in eliminating, for each scale, those events
which cause LIM to exceed a given threshold. Subsequently, the flatness value for
each scale is checked and, in case this value exceeds the value of 3 (characteristic
of a Gaussian distribution), the threshold is lowered, new events are eliminated and
a new flatness is computed. The process is iterated until the flatness is equal to
3, or reaches some constant value, for each scale of the wavelet decomposition.
This process is usually accomplished eliminating only a few percent of the wavelet
coefficients for each scale, and this percentage reduces moving from small to large
scales.

The black curve in Fig. 7.4 shows the original profile of the magnetic field
intensity observed by Helios 2 between day 50 and 52 within a highly velocity
stream at 0:9AU. The overlapped red profile refers to the same time series after
intermittent events have been removed using the LIM method. Most of the peaks,
present in the original time series, are not longer present in the LIMed curve. The
intermittent component that has been removed can be observed as the blue curve
centered around zero.
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Fig. 7.4 The black curve indicates the original time series, the red one refers to the LIMed data,
and the blue one shows the difference between these two curves

7.3.2 On the Nature of Intermittent Events

The spatial structures generating intermittency have been investigated by Veltri
and Mangeney (1999), using the Haar basis applied to time series of 13 months
of velocity and magnetic data from ISEE s/c. Analyzing intermittent events, they
found that intermittent events occur on time scale of the order of few minutes and
that they are one-dimensional structures (in agreement with Carbone et al. 1995). In
particular, they found different types of structures which can represent two different
categories:

1. Some of the structures are the well known one-dimensional current sheets,
characterized by pressure balance and almost constant density and temperature.
When a minimum variance analysis is made on the magnetic field near the
structure, it can be seen that the most variable component of the magnetic field
changes sign. This component is perpendicular to the average magnetic field,
the third component being zero. An interesting property of these structures is
that the correlation between velocity and magnetic field within them is opposite
with respect to the rest of fluctuations. That is, when they occur during Alfvénic
periods velocity and magnetic field correlation is low; on the contrary, during
non-Alfvénic periods the correlation of structure increases.

2. A different kind of structures looks like a shock wave. They can be parallel
shocks or slow-mode shocks. In the first case they are observed on the radial



7.3 Turbulent Structures 205

component of the velocity field, but are also seen on the magnetic field intensity,
proton temperature, and density. In the second case they are characterized by
a very low value of the plasma ˇ parameter, constant pressure, anti-correlation
between density and proton temperature, no magnetic fluctuations, and velocity
fluctuations directed along the average magnetic field.

However, Salem et al. (2009), as already anticipated in Sect. 3.3.1, demonstrated
that a monofractal can be recovered and intermittency eliminated simply by
subtracting a small subset of the events at small scales.

Given a turbulent time series, as derived in the solar wind, a very interesting
statistics can be made on the time separation between the occurrence of two
consecutive structures. Let us consider a signal, for example u.t/ or b.t/ derived
from solar wind, and let us define the wavelets set ws.r; t/ as the set which captures,
at time t, the occurrence of structures at the scale r. Then define the waiting times
ıt, as that time between two consecutive structures at the scale r, that is, between
ws.r; t/ and ws.r; tCıt/. The PDFs of waiting times P.ıt/ are reported in Fig. 6.3. As
it can be seen, waiting times are distributed according to a power law P.ıt/ � ıt�ˇ
extended over at least two decades. This property is very interesting, because this
means that the underlying process for the energy cascade is non-Poissonian. Waiting
times occurring between isolated Poissonian events, must be distributed according
to an exponential function. The power law for P.ıt/ represents the asymptotic
behavior of a Lévy function with characteristic exponent ˛ D ˇ � 1. This describes
self-affine processes and are obtained from the central limit theorem by relaxing
the hypothesis that the variance of variables is finite. The power law for waiting
times we found is a clear evidence that long-range correlation (or in some sense
“memory”) exists in the underlying cascade process.

On the other hand, Bruno et al. (2001), analyzing the statistics of the occurrence
of waiting times of magnetic field intensity and wind speed intermittent events for
a short time interval within the trailing edge of a high velocity stream, found a
possible Poissonian-like behavior with a characteristic time around 30 min for both
magnetic field and wind speed. These results are to be compared with previous
estimates of the occurrence of interplanetary discontinuities performed by Tsurutani
and Smith (1979), who found a waiting time around 14 min. In addition, Bruno
et al. (2001), taking into account the wind speed and the orientation of the magnetic
field vector at the site of the observation, in the hypothesis of spherical expansion,
estimated the corresponding size at the Sun surface that resulted to be of the order
of the photospheric structures estimated also by Thieme et al. (1989). Obviously,
the Poissonian statistics found by these authors does not agree with the clear power
law shown in Fig. 6.3. However, Bruno et al. (2001) included intermittent events
found at all scales while results shown in Fig. 6.3 refer to waiting times between
intermittent events extracted at the smallest scale, which results to be about an order
of magnitude smaller than the time resolution used by Bruno et al. (2001). A detailed
study on this topic would certainly clarify possible influences on the waiting time
statistics due to the selection of intermittent events according to the corresponding
scale.
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In the same study by Bruno et al. (2001), these authors analyzed in detail an event
characterized by a strong intermittent signature in the magnetic field intensity. A
comparative study was performed choosing a close-by time interval which, although
intermittent in velocity, was not characterized by strong magnetic intermittency.
This time interval was located a few hours apart from the previous one. These
two intervals are indicated in Fig. 7.5 by the two vertical boxes labeled 1 and 2,

Fig. 7.5 From top to bottom: 81 s averages of velocity wind profile in km s�1, magnetic field
intensity in nT, the logarithmic value of magnetic (blue line), thermal (red line), and total pressure
(black line) in dyne/cm2 and field intensity residuals in nT. The two vertical boxes delimit the two
time intervals #1 and #2 which were chosen for comparison. While the first interval shows strong
magnetic intermittency, the second one does not. Image reproduced by permission from Bruno
et al. (2001), copyright by Elsevier
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respectively. Wind speed profile and magnetic field magnitude are shown in the first
two panels. In the third panel, the blue line refers to the logarithmic value of the
magnetic pressure Pm, here indicated by PB; the red line refers to the logarithmic
value of the thermal pressure Pk, here indicated by PK and the black line refers to
the logarithmic value of the total pressure Ptot, here indicated by PT D PB C PK ,
including an average estimate of the electrons and ˛s contributions. Magnetic field
intensity residuals, obtained from the LIM technique, are shown in the bottom panel.
The first interval is characterized by strong magnetic field intermittency while the
second one is not. In particular, the first event corresponds to a relatively strong
field discontinuity which separates two regions characterized by a different bulk
velocity and different level of total pressure. While kinetic pressure (red trace) does
not show any major jump across the discontinuity but only a light trend, magnetic
pressure (blue trace) clearly shows two distinct levels.

A minimum variance analysis further reveals the intrinsic different nature of
these two intervals as shown in Fig. 7.6 where original data have been rotated into
the field minimum variance reference system (see Sect. 3.3.4) where maximum,
intermediate and minimum variance components are identified by �3, �2, and �1,
respectively. Moreover, at the bottom of the column we show the hodogram on the
maximum variance plane �3 � �2, as a function of time on the vertical axis.

The good correlation existing between magnetic and velocity variations for both
time intervals highlights the presence of Alfvénic fluctuations. However, only within
the first interval the magnetic field vector describes an arc-like structure larger than
90ı on the maximum variance plane (see rotation from A to B on the 3D graph at
the bottom of the left column in Fig. 7.6) in correspondence with the time interval
identified in the profile of the magnetic field components by the thick line. At this
location, the magnetic field intensity shows a clear discontinuity, BŒ�3� changes sign,
BŒ�2� shows a hump whose maximum is located where the previous component
changes sign and, finally, BŒ�1� keeps its value close to zero across the discontinuity.
Velocity fluctuations are well correlated with magnetic field fluctuations and, in
particular, the minimum variance component VŒ�1� has the same value on both sides
of the discontinuity, approximately 350 km s�1, indicating that there is no mass
flux through the discontinuity. During this interval, which lasts about 26 min, the
minimum variance direction lies close to the background magnetic field direction
at 11:9ı so that the arc is essentially described on a plane perpendicular to the
average background magnetic field vector. However, additional although smaller
and less regular arc-like structures can be recognized on the maximum variance
plane �2 � �3, and they tend to cover the whole 2� interval.

Within the second interval, magnetic field intensity is rather constant and the
three components do not show any particular fluctuation, which could resemble any
sort of rotation. In other words, the projection on the maximum variance plane does
not show any coherent path. Even in this case, these fluctuations happen to be in
a plane almost perpendicular to the average field direction since the angle between
this direction and the minimum variance direction is about 9:3ı.
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Fig. 7.6 Left column, from top to bottom: we show magnetic field intensity, maximum �3,
intermediate �2 and minimum �1 variance components for magnetic field and wind velocity
relative to the time interval #1 shown in Fig. 7.5. Right below, we show the hodogram on the
maximum variance plane �3 � �2, as a function of time. Projections onto the side planes are
also shown. The large arc, from A to B, corresponds to the thick segment in the profile of the
magnetic field components shown in the upper panel. The same parameters are shown for interval
#2 (Fig. 7.5), in the same format, on the right hand side of the figure. The time resolution of the
data is 81 s. Image reproduced by permission from Bruno et al. (2001), copyright by Elsevier

Further insights about differences between these two intervals can be obtained
when we plot the trajectory followed by the tip of the magnetic field vector in
the minimum variance reference system, as shown in Fig. 7.7. The main difference
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Fig. 7.7 Trajectory followed by the tip of the magnetic field vector (blue color line) in the
minimum variance reference system for interval #1 (left) and #2 (right). Projections on the three
planes (red color lines) formed by the three eigenvectors �1; �2; �3, and the average magnetic field
vector, with its projections on the same planes, are also shown. The green line extending from
label A to label B refers to the arc-like discontinuity shown in Fig. 7.6. The time resolution of the
magnetic field averages is 6 s. Image reproduced by permission from Bruno et al. (2001), copyright
by Elsevier

between these two plots is that the one relative to the first interval shows a rather
patchy trajectory with respect to the second interval. As a matter of fact, if we follow
the displacements of the tip of the vector as the time goes by, we observe that the
two intervals have a completely different behavior.

Within the first time interval, the magnetic field vector experiences for some time
small displacements around a given direction in space and then it suddenly performs
a much larger displacement towards another direction in space, about which it starts
to wander again. This process keeps on going several times within this time interval.
In particular, the thick green line extending from label A to label B refers to the arc-
like discontinuity shown in Fig. 7.6, which is also the largest directional variation
within this time interval. Within the second interval, the vector randomly fluctuates
in all direction and, as a consequence, both the 3D trajectory and its projection on
the maximum variance plane do not show any large empty spot. In practice, the
second time interval, although longer, is similar to any sub-interval corresponding
to one of the trajectory patches recognizable in the left hand side panel. As a matter
of fact, selecting a single patch from the first interval and performing a minimum
variance analysis, the maximum variance plane would result to be perpendicular to
the local average magnetic field direction and the tip of the vector would randomly
fluctuate in all directions. The first interval can be seen as a collection of several
sub-intervals similar to interval #2 characterized by different field orientations
and, possibly, intensities. Thus, magnetic field intermittent events mark the border
between adjacent intervals populated by stochastic Alfvénic fluctuations.
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Fig. 7.8 Simple visualization of hypothetical flux tubes which tangle up in space. Each flux tube
is characterized by a local field direction, and within each flux tube the presence of Alfvénic
fluctuations makes the magnetic field vector randomly wander about this direction. Moreover,
the large scale is characterized by an average background field direction aligned with the local
interplanetary magnetic field. Moving across different flux-tubes, characterized by a different
values of jBj, enhances the intermittency level of the magnetic field intensity time series (from
Bruno et al. 2001)

The observations reported above suggested these authors to draw the sketch
shown in Fig. 7.8 that shows a simple visualization of hypothetical flux tubes,
convected by the wind, which tangle up in space. Each flux tube is characterized
by a local field direction and intensity, and within each flux tube the presence of
Alfvénic fluctuations makes the magnetic field vector randomly wander bout this
direction. Moreover, the large scale is characterized by an average background field
direction aligned with the local interplanetary magnetic field. This view, based on
the idea that solar wind fluctuations are a superposition of propagating Alfvén waves
and convected structures (Bavassano and Bruno 1989), strongly recalls the work
by Tu and Marsch (1990, 1993) who suggested the solar wind fluctuations being
a superposition of pressure balance structure (PBS) type flux tubes and Alfvén
waves. In the inner heliosphere these PBS-type flux tubes are embedded in the large
structure of fast solar wind streams and would form a kind of spaghetti-like sub-
structure, which probably has its origin t the base of the solar atmosphere.

The border between these flux tubes can be a tangential discontinuity where
the total pressure on both sides of the discontinuity is in equilibrium or, as in
the case of interval #1, the discontinuity is located between two regions not in
pressure equilibrium. If the observer moves across these tubes he will record the
patchy configuration shown in Fig. 7.7, panel (A). Within each flux tube he will
observe a local average field direction and the magnetic field vector would mainly
fluctuate on a plane perpendicular to this direction. Moving to the next tube, the
average field direction would rapidly change and magnetic vector fluctuations would
cluster around this new direction. Moreover, if we imagine a situation with many
flux tubes, each one characterized by a different magnetic field intensity, moving
across them would possibly increase the intermittent level of the fluctuations. On
the contrary, moving along a single flux tube, the same observer would constantly
be in the situation typical of interval #2, which is mostly characterized by a rather
constant magnetic field intensity and directional stochastic fluctuations mainly on a
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plane quasi perpendicular to the average magnetic field direction. In such a situation,
magnetic field intensity fluctuations would not increase their intermittency.

A theoretical effort by Chang et al. (2004), Chang (2003), and Chang and
Wu (2002) was dedicated to model MHD turbulence in a way that recalls the
interpretation of the interplanetary observations given by Bruno et al. (2001) and,
at the same time, reminds also the point of view expressed by Farge (1992) in this
section. These authors stress the fact that propagating modes and coherent, con-
vected structures share a common origin within the general view described by the
physics of complexity. Propagating modes experience resonances which generate
coherent structures, possibly flux tubes, which, in turn, will migrate, interact, and,
eventually, generate new modes. This process, schematically represented in Fig. 7.9,
which favors the local generation of coherent structures in the solar wind, fully
complement the possible solar origin of the convected component of interplanetary
MHD turbulence.

Fig. 7.9 Composite figure made adapting original figures from the paper by Chang et al. (2004).
The first element on the upper left corner represents field-aligned spatio-temporal coherent
structures. A cross-section of two of these structures of the same polarity is shown in the upper
right corner. Magnetic flux iso-contours and field polarity are also shown. The darkened area
represents intense current sheet during strong magnetic shear. The bottom element of the figure
is the result of 2D MHD simulations of interacting coherent structures, and shows intermittent
spatial distribution of intense current sheets. In this scenario, new fluctuations are produced which
can provide new resonance sites, possibly nucleating new coherent structures
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7.3.3 On the Statistics of Magnetic Field Directional
Fluctuations

Interesting enough is to look at the statistics of the angular jumps relative to the
orientation of the magnetic field vector. Studies of this kind can help to infer the
relevance of modes and advected structures within MHD turbulent fluctuations.
Bruno et al. (2004) found that PDFs of interplanetary magnetic field vector angular
displacements within high velocity streams can be reasonably fitted by a double log-
normal distribution, reminiscent of multiplicative processes following turbulence
evolution (Fig. 7.10). As a matter of fact, the multiplicative cascade notion was
introduced by Kolmogorov into his statistical theory (Kolmogorov 1941, 1991,
1962) of turbulence as a phenomenological framework to accommodate extreme
behavior observed in real turbulent fluids.

The same authors, studying the radial behavior of the two lognormal components
of this distribution concluded that they could be associated with Alfvénic fluctu-
ations and advected structures, respectively. In particular, it was also suggested
that the nature of these advected structures could be intimately connected to
tangential discontinuities separating two contiguous flux tubes (Bruno et al. 2001).
Whether or not these fluctuations should be identified with the 2D turbulence
was uncertain since their relative PDF, differently from the one associated with
Alfvénic fluctuations, did not show a clear radial evolution. As a matter of fact, since
2D turbulence is characterized by having its k vectors perpendicular to the local
field it should experience a remarkable evolution given that the turbulent cascade
acts preferably on wave numbers perpendicular to the ambient magnetic field
direction, as suggested by the three-wave resonant interaction (Shebalin et al. 1983).
Obviously, an alternative solution would be the solar origin of these fluctuations.
However, it is still unclear whether these structures come directly from the Sun or
are locally generated by some mechanism. Some theoretical results (Primavera et al.
2003) would indicate that coherent structures causing intermittency in the solar wind
(Bruno et al. 2003a), might be locally created by parametric decay of Alfvén waves.
As a matter of fact, coherent structures like current sheets are continuously created
when the instability is active (Primavera et al. 2003).

A more recent analysis (Borovsky 2008) on changes in the field direction
experienced by the solar wind magnetic field vector reproposed the picture that the
inner heliosphere is filled with a network of entangled magnetic flux tubes (Bruno
et al. 2001) and interpreted these flux tubes like fossil structures that originate at
the solar surface. These tubes are characterized by strong changes in the magnetic
field direction as shown by the distribution illustrated in Fig. 7.11 that refers to the
occurrence of changes in the magnetic field direction observed by ACE for about
7 years for a time scale of roughly 2 min. Two exponential curves have been used to
fit the distribution, one for the small angular change population and one for the large
angular change population. The small angular-change population is associated with
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Fig. 7.10 Probability distributions of the angular displacements experienced by magnetic vector
on a time scale of 6 s at 0.3 and 0.9 AU, for a fast wind, respectively. Solid curves refer to
lognormals contributing to form the thick solid curve which best fits the distribution. Image
reproduced by permission from Bruno et al. (2004), copyright EGU

fluctuations active within the flux tube while, the second population would be due to
large directional jumps identifying the crossing of the border between adjacent flux
tubes. The same authors performed similar analyses on several plasma and magnetic
field parameters like velocity fluctuations, alpha to proton ratio, proton and electron
entropies, and found that also for these parameters small/large changes of these
parameters are associated with small/large angular changes confirming the different
nature of these two populations. Larger flux tubes, originating at the Sun, thanks to
wind expansion which would inhibit reconnection, would eventually reach 1 AU.

In another recent paper, Li (2008) developed a genuine data analysis method to
localize individual current sheets from a turbulent solar wind magnetic field sample.
He noticed that, in the presence of a current sheet, a scaling law appears for the
cumulative distribution function of the angle between two magnetic field vectors
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Fig. 7.11 Measurements of angular differences of magnetic field direction on time scale of 128 s.
Data set is from ACE measurements for the years 1998–2004. Exponential fits to two portions
of the distribution are shown as dashed curves. Images reproduced by permission from Borovsky
(2008), copyright by AGU

separated by some time lags. In other words, if we define the function F.�; �/ to
represent the frequency of having the measured angle between magnetic vectors
separated by a time lag � larger than � we expect to have the following scaling
relation:

F.�;N�/ � NF.�; �/: (7.5)

As a matter of fact, if the distribution function F.�; �/ above a certain critical
angle �0 is dominated by current-sheet crossing separating two adjacent flux tubes,
we expect to find the scaling represented by relation (7.5). On the contrary, if we
are observing these fluctuations within the same side of the current sheet F.�; �/ is
dominated by small angular fluctuations and we do not expect to find any scaling.

Using the same methodology, Li et al. (2008) also studied fluctuations in the
Earth’s magnetotail to highlight the absence of similar structures and to conclude
that most of those advected structures observed in the solar wind must be of solar
origin (Fig. 7.12).
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Fig. 7.12 Distribution function for two time periods. The left panels show the dependence of
F.�; �/ on � , and the right panels show the dependence of F.�; �/ on �. The presence of a
current sheet makes F.�; �/ to increases linearly with � (dashed lines in the right panels). Image
reproduced by permission from Li (2008), copyright by AAS

7.4 Radial Evolution of Intermittency in the Ecliptic

Marsch and Liu (1993) investigated for the first time solar wind scaling properties
in the inner heliosphere. These authors provided some insights on the different
intermittent character of slow and fast wind, on the radial evolution of intermittency,
and on the different scaling characterizing the three components of velocity. In
particular, they found that fast streams were less intermittent than slow streams and
the observed intermittency showed a weak tendency to increase with heliocentric
distance. They also concluded that the Alfvénic turbulence observed in fast streams
starts from the Sun as self-similar but then, during the expansion, decorrelates
becoming more multifractal. This evolution was not seen in the slow wind,
supporting the idea that turbulence in fast wind is mainly made of Alfvén waves
and convected structures (Tu and Marsch 1993), as already inferred by looking at the
radial evolution of the level of cross-helicity in the solar wind (Bruno and Bavassano
1991).

Bruno et al. (2003a) investigated the radial evolution of intermittency in the
inner heliosphere, using the behavior of the flatness of the PDF of magnetic field
and velocity fluctuations as a function of scale. As a matter of fact, probability
distribution functions of fluctuating fields affected by intermittency become more
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and more peaked at smaller and smaller scales. Since the peakedness of a distribu-
tion is measured by its flatness factor, they studied the behavior of this parameter
at different scales to estimate the degree of intermittency of their time series, as
suggested by Frisch (1995).

In order to study intermittency they computed the following estimator of the
flatness factor F :

F .�/ D hS4�i
hS2�i2

; (7.6)

where � is the scale of interest and Sp
� D hjV.t C �/ � V.t/jpi is the structure

function of order p of the generic function V.t/. They considered a given function
to be intermittent if the factor F increased when considering smaller and smaller
scales or, equivalently, higher and higher frequencies.

In particular, vector field, like velocity and magnetic field, encompasses two
distinct contributions, a compressive one due to intensity fluctuations that can be
expressed as ıjB.t; �/j D jB.tC�/j� jB.t/j, and a directional one due to changes in

the vector orientation ıB.t; �/ D
qP

iDx;y;z.Bi.t C �/� Bi.t//2. Obviously, relation

ıB.t; �/ takes into account also compressive contributions, and the expression
ıB.t; �/ � jıjB.t; �/jj is always true.

Looking at Figs. 7.13 and 7.14, taken from the work of Bruno et al. (2003a), the
following conclusions can be drawn:

• Magnetic field fluctuations are more intermittent than velocity fluctuations.
• Compressive fluctuations are more intermittent than directional fluctuations.
• Slow wind intermittency does not show appreciable radial dependence.
• Fast wind intermittency, for both magnetic field and velocity, clearly increases

with distance.
• Magnetic and velocity fluctuations have a rather Gaussian behavior at large

scales, as expected, regardless of type of wind or heliocentric distance.

Moreover, they also found that the intermittency of the components rotated into
the mean field reference system (see Sect. 3.3.4) showed that the most intermittent
component of the magnetic field is the one along the mean field, while the other two
show a similar level of intermittency within the associated uncertainties. Finally,
with increasing the radial distance, the component along the mean field becomes
more and more intermittent with respect to the transverse components. These results
agree with conclusions drawn by Marsch and Tu (1994) who, analyzing fast and
slow wind at 0.3 AU in Solar Ecliptic (SE hereafter) coordinate system, found that
the PDFs of the fluctuations of transverse components of both velocity and magnetic
fields, constructed for different time scales, were appreciably more Gaussian-like
than fluctuations observed for the radial component, which resulted to be more and
more spiky for smaller and smaller scales.
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Fig. 7.13 Flatness F vs. time scale � relative to magnetic field fluctuations. The left column
[panels (a) and (c)] refers to slow wind and the right column [panels (b) and (d)] refers to fast
wind. The upper panels refer to compressive fluctuations and the lower panels refer to directional
fluctuations. Vertical bars represent errors associated with each value of F . The three different
symbols in each panel refer to different heliocentric distances as reported in the legend. Image
reproduced by permission from Bruno et al. (2003b), copyright by AGU
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Fig. 7.14 Flatness F vs. time scale � relative to wind velocity fluctuations. In the same format
of Fig. 7.13 panels (a) and (c) refer to slow wind and panels (b) and (d) refer to fast wind. The
upper panels refer to compressive fluctuations and the lower panels refer to directional fluctuations.
Vertical bars represent errors associated with each value of F . Image reproduced by permission
from Bruno et al. (2003b), copyright by AGU
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However, at odds with Bruno et al. (2003a), Tu et al. (1996) could not establish
any radial dependence since their analysis was performed in the SE reference system
instead of the mean field reference system (see Sect. 3.1) as in the analysis of Bruno
et al. (2003a). As a matter of fact, the mean field reference system is a more natural
reference system where to study magnetic field fluctuations.

The reason is that components normal to the mean field direction are more
influenced by Alfvénic fluctuations and, as a consequence, their fluctuations
are more stochastic and less intermittent. This effect largely reduces during the
radial excursion mainly because in the SE reference system cross-talking between
different components is artificially introduced. As a matter of fact, the presence
of the large scale spiral magnetic field breaks the spatial symmetry introducing
a preferential direction parallel to the mean field. The same Bruno et al. (2003b)
showed that it was not possible to find a clear radial trend unless magnetic field data
were rotated into this more natural reference system.

On the other hand, it looks more difficult to reconcile the radial evolution of
intermittency found by Bruno et al. (2003b) and Marsch and Liu (1993) in fast wind
with conclusions drawn by Tu et al. (1996), who stated that “Neither a clear radial
evolution nor a clear anisotropy can be established. The value of P1 in high-speed
and low-speed wind are not prominent different.”. However, it is very likely that
the conclusions given above are related with how to deal with the flat slope of the
spectrum in fast wind near 0:3AU. Tu et al. (1996) concluded, indeed: “It should
be pointed out that the extended model cannot be used to analyze the intermittency
of such fluctuations which have a flat spectrum. If the index of the power spectrum
is near or less than unity . . . P1 would be 0.5. However, this does not mean there
is no intermittency. The model simply cannot be used in this case, because the
structure function(1) does not represent the effects of intermittency adequately for
those fluctuations which have a flat spectrum and reveal no clear scaling behavior”.

Bruno et al. (2003a) suggested that, depending on the type of solar wind sample
and on the heliocentric distance, the observed scaling properties would change
accordingly. In particular, as the radial distance increases, convected, coherent
structures of the wind assume a more relevant role since the Alfvénic component
of the fluctuations is depleted. This would be reflected in the increased intermittent
character of the fluctuations. The coherent nature of the convected structures
would contribute to increase intermittency while the stochastic character of the
Alfvénic fluctuations would contribute to decrease it. This interpretation would also
justify why compressive fluctuations are always more intermittent than directional
fluctuations. As a matter of fact, coherent structures would contribute to the
intermittency of compressive fluctuations and, at the same time, would also produce
intermittency in directional fluctuations. However, since directional fluctuations are
greatly influenced by Alfvénic stochastic fluctuations, their intermittency will be
more or less reduced depending on the amplitude of the Alfvén waves with respect
to the amplitude of compressive fluctuations.

The radial dependence of the intermittency behavior of solar wind fluctuations
stimulated Bruno et al. (1999a) to reconsider previous investigations on fluctuations
anisotropy reported in Sect. 3.3.4. These authors studied magnetic field and velocity



220 7 Intermittency Properties in the 3D Heliosphere

fluctuations anisotropy for the same co-rotating, high velocity stream observed by
Bavassano et al. (1982) within the framework of the dynamics of non-linear systems.
Using the Local Intermittency Measure Farge et al. (1990), Farge (1992) and Bruno
et al. (1999a) were able to justify the controversy between results by Klein et al.
(1991) in the outer heliosphere and Bavassano et al. (1982) in the inner heliosphere.
Exploiting the possibility offered by this technique to locate in space and time those
events which produce intermittency, these authors were able to remove intermittent
events and perform again the anisotropy analysis. They found that intermittency
strongly affected the radial dependence of magnetic fluctuations while it was less
effective on velocity fluctuations. In particular, after intermittency removal, the
average level of anisotropy decreased for both magnetic and velocity field at all
distances. Although magnetic fluctuations remained more anisotropic than their
kinetic counterpart, the radial dependence was eliminated. On the other hand, the
velocity field anisotropy showed that intermittency, although altering the anisotropic
level of the fluctuations, does not markedly change its radial trend.

7.5 Radial Evolution of Intermittency at High Latitude

Recently, Pagel and Balogh (2003) studied intermittency in the outer heliosphere
using Ulysses observations at high heliographic latitude, well within high speed
solar wind. In particular, these authors used Castaing distribution (Castaing et al.
2001) to study the Probability Distribution Functions (PDF) of the fluctuations of
magnetic field components (see Sect. 7.2 for description of Castaing distribution
and related governing parameters definition � and 	). They found that intermittency
of small scales fluctuations, within the inertial range, increased with increasing the
radial distance from the Sun as a consequence of the growth to larger scales of the
inertial range.

As a matter of fact, using the scaling found by Horbury et al. (1996) between
the transition scale (the inverse of the frequency corresponding to the break-point in
the magnetic field spectrum) TB � r1:1˙0:1, Pagel and Balogh (2003) quantitatively
evaluated how the top of the inertial range in their data should shift to larger time
scales with increasing heliocentric distance. Moreover, taking into account that
inside the inertial range �2 � ��ˇ H) �2 D a��ˇ and that the proposed scaling
from Castaing et al. (2001) would be �2 � const:.�=T/�ˇ, we should expect that
for � D T the parameter �2 D const: Thus, these authors calculated 	2 and �2 at
different heliocentric distances and made the hypothesis of a similar scaling for 	2

and �2, although this is not assured by the model. Figure 7.15 reports values of �2

and 	2 vs. distance calculated for the top of the inertial range at that distance using
the above procedure. The radial behavior shown in this figure suggests that there is
no radial dependence for these parameters for all the three components (indicated
by different symbols), as expected if the observed radial increase of intermittency
in the inertial range is due to a broadening of the inertial range itself.
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Fig. 7.15 Values of �2 (upper panel) and 	2 (lower panel) vs. heliocentric distance (see Sect. 7.2
for description of Castaing distribution and definition of � and 	 ). These values have been
calculated for the projected low frequency beginning of the inertial range relative to each distance
(see text for details). R, T, and N components are indicated by asterisks, crosses and circles,
respectively. Image reproduced by permission from Pagel and Balogh (2003), copyright by AGU

They also found that, in the RTN reference system, transverse magnetic field
components exhibit less Gaussian behavior with respect to the radial component.
This result should be compared with results from similar studies by Marsch and Tu
(1994) and Bruno et al. (2003b) who, studying the radial evolution of intermittency
in the ecliptic, found that the components transverse to the local magnetic field
direction, are the most Gaussian ones. Probably, the above discrepancy depends
totally on the reference system adopted in these different studies and it would be
desirable to perform a new comparison between high and low latitude intermittency
in the mean-field reference system.

Pagel and Balogh (2002) focused also on the different intermittent level of
magnetic field fluctuations during two fast latitudinal scans which happened to
be during solar minimum the first one, and during solar maximum the second
one. Their results showed a strong latitudinal dependence but were probably not,
or just slightly, affected by radial dependence given the short heliocentric radial
variations during these time intervals. They analyzed the anomalous scaling of the
third order magnetic field structure functions looking at the value of the parameter

 obtained from the best fit performed using the p-model (see Sect. 6.4). In a
previous analysis of the same kind, but focalized on the first latitudinal scan, the
same authors tested three intermittency models, namely: “lognormal”, “p” and “G-
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infinity” models. In particular, this last model was an empirical model introduced
by Pierrehumbert (1999) and Cho et al. (2000) and was not intended for turbulent
systems. Anyhow, the best fits were obtained with the lognormal and Kolmogorov-p
model. These authors concluded that magnetic field components display a very high
level of intermittency throughout minimum and maximum phases of solar cycle,
and slow wind shows a lower level of intermittency compared with the Alfvénic
polar flows. These results do not seem to agree with ecliptic observations (Marsch
and Liu 1993; Bruno et al. 2003a) which showed that fast wind is generally less
intermittent than slow wind not only for wind speed and magnetic field magnitude,
but also for the components. At this point, since it has been widely recognized
that low latitude fast wind collected within co-rotating streams and fast polar wind
share many common turbulence features, they should be expected to have many
similarities also as regards intermittency. Thus, it is possible that also in this case the
reference system in which the analysis is performed plays some role in determining
some of the results regarding the behavior of the components. In any case, further
analyses should clarify the reasons for this discrepancy.
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Chapter 8
Solar Wind Heating by the Turbulent Energy
Cascade

The Parker theory (Parker 1958; Parker 1963) predicts an adiabatic expansion of
the solar wind from the hot corona without further heating. For such a model,
the proton temperature T.r/ should decrease with the heliocentric distance r as
T.r/ � r�4=3. The radial profile of proton temperature have been obtained from
measurements by the Helios spacecraft at 0.3 AU (Marsch et al. 1982; Marsch
1983; Schwenn 1983; Freeman 1988; Goldstein 1996), up to 100 AU or more by
Voyager and Pioneer spacecrafts (Gazis 1984; Gazis et al. 1994; Richardson et al.
1995). These measurements show that the temperature decay, at least within fast
and Alfvénic wind, is in fact considerably slower than expected. Fits of the radial
temperature profile gave an effective decrease T � T0.r0=r/� in the ecliptic plane,
with the exponent � 2 Œ0:7I 1�, much smaller than the adiabatic case. Actually
� ' 1 within 1 AU, while � flattens to � ' 0:7 beyond 30 AU, where pickup ions
probably contribute significantly (Richardson et al. 1995; Zank et al. 1996; Smith
et al. 2001a). These observations imply that some heating mechanism must be at
work within the wind plasma to supply the energy required to slow down the decay.
The nature of the heating process of solar wind is an open problem.

The primary process governing the solar wind heating is probably active locally
in the wind. However, since collisions are very rare in the solar wind plasma, the
usual viscous coefficients have no meaning, say energy must be transferred to very
small scales before it can be efficiently dissipated, perhaps by kinetic processes. As a
consequence, the presence of a turbulent energy flux is the crucial first step towards
the understanding of solar wind heating (Coleman 1968; Tu and Marsch 1995a)
because, as said in Sect. 2.4, the turbulent energy cascade represents nothing but
the way for energy to be efficiently dissipated in a high-Reynolds number flow.1 In
other words, before to face the problem of what actually be the physical mechanisms
responsible for energy dissipation, if we conjecture that these processes happens at

1For a discussion on non-turbulent mechanism of solar wind heating cf. Tu and Marsch (1995a).
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small scales, the turbulent energy flux towards small scales must be of the same
order of the heating rate.

Using the hypothesis that the energy dissipation rate is equal to the heat addition,
one can use the omnidirectional power law spectrum derived by Kolmogorov

P.k/ D CK�
2=3
P k�5=3

(CK is the Kolmogorov constant that can be obtained from measurements) to infer
the energy dissipation rate (Leamon et al. 1999)

�P D
�
5

3
P.k/C�1

K

�3=2
k5=2 ; (8.1)

where k D 2�f=V ( f is the frequency in the spacecraft frame and V is the solar
wind speed). The same conjecture can be made by using Elsässer variables, thus
obtaining a generalized Kolmogorov phenomenology for the power spectra P˙.k/
of the Elsässer variables (Zhou and Matthaeus 1989, 1990; Marsch 1991)

�Ṗ D C�3=2
k P˙.k/

p
P�.k/k5=2 : (8.2)

Even if the above expressions are affected by the presence of intermittency, namely
extreme fluctuations of the energy transfer rate, and an estimated value for the
Kolmogorov constant is required, the estimated energy dissipation rates roughly
agree with the heating rates derived from gradients of the thermal proton distribution
(MacBride et al. 2010).

A different estimate for the energy dissipation rate in spherical symmetry can be
derived from an expression that uses the adiabatic cooling in combination with local
heating rate �. In a steady state situation the equation for the radial profile of ions
temperature can be written as (Verma et al. 1995)

dT.r/

dr
C 4

3

T.r/

r
D mp�

.3=2/VSW.r/kB
; (8.3)

where mp is the proton mass and VSW.r/ is the radial profile of the bulk wind speed
in km s�1. (kB is the Boltzmann constant). Equation (8.3) can be solved using the
actual radial profile of temperature thus obtaining an expression for the radial profile
of the heating rate needed to heat the wind at the actual value (Vasquez et al. 2007)

�.r/ D 3

2

�
4

3
� �

�
VSW.r/kBT.r/

rmp
: (8.4)

This relation is obtained by considering a polytropic index  D 5=3 for the adiabatic
expansion of the solar wind plasma, the protons being the only particles heated in the
process. Such assumptions are only partially correct, since the electrons could play
a relevant role in the heat exchange. Heating rates obtained using Eq. (8.4) should
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thus be only seen as a first approximation that could be improved with better models
of the heating processes. Using the expected solar wind parameters at 1 AU, the
expected heating rate ranges from 102 J=kg s for cold wind to 104 J=kg s in hot wind.
Cascade rates estimated from the energy-containing scale of turbulence at 1 AU
obtained by evaluating triple correlations of fluctuations and the correlation length
scale of turbulence give values in this range (Smith et al. 2001b, 2006; Isenberg
2005; Vasquez et al. 2007)

Rather than estimating the heating rate by typical solar wind fluctuations and the
Kolmogorov constant, it is perhaps much more convenient to get a direct estimate of
the energy dissipation rate by measurements of the turbulent energy cascade using
the Yaglom’s law, say from measurements of the third-order mixed moments of
fluctuations. In fact, the roughly constant values of Y˙̀=`, or alternatively their
compressible counterpart W˙̀=` will result in an estimate for the pseudo-energy
dissipation rates �˙ (at least within a constant of order unity), over a range of scales
`, which by definition is unaffected by intermittency. This has been done both in
the ecliptic plane (MacBride et al. 2008, 2010) and in polar wind (Marino et al.
2009; Carbone et al. 2009). Preliminary attempts (MacBride et al. 2008) already
estimated that the energy dissipation rate �E was close to the value required for the
heating of solar wind. However, refined analysis (MacBride et al. 2010) indicated
that at 1 AU, in the ecliptic plane, the solar wind can be sufficiently heated by a
turbulent energy cascade. As a different approach, Marino et al. (2009), using data
from the Ulysses spacecraft in the polar wind, calculated values of the pseudo-
energies from the relation Y˙̀=`, and compared these values with the radial profile
of the heating rate (8.4) required to maintain the observed temperature against the
adiabatic cooling. The Ulysses database provides two different estimates for the
temperature, T1, indicated as Tlarge in literature, and T2, known as Tsmall. In general,
T1 and T2 are known to give sometimes an overestimate and an underestimate
of the true temperature, respectively, so that the analysis was performed using
both temperatures (Marino et al. 2008; Marino et al. 2009; Marino et al. 2011).
The heating rate was estimated at the same locations where the energy cascade
was observed. As shown in Fig. 8.1, results indicate that turbulent transfer rate
represents a significant amount of the expected heating, say the MHD turbulent
cascade contributes to the in situ heating of the wind from 8 to 50% (for T1
and T2 respectively), up to 100 % in some cases. The authors concluded that,
although the turbulent cascade in the polar wind must be considered an important
ingredient of the heating, the turbulent cascade alone seems unable to provide all
the heating needed to explain the observed slowdown of the temperature decrease,
in the framework of the model profile given in Eq. (8.4). The situation is completely
different as far as compressibility is taken into account. In fact, when the pseudo-
energy transfer rates have been calculated through W˙̀=`, the radial profile of energy
dissipation rate is well described thus indicating that the turbulent energy cascade
provides the amount of energy required to locally heat the solar wind to the observed
values.
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Fig. 8.1 Radial profile of the pseudoenergy transfer rates obtained from the turbulent cascade rate
through the Yaglom relation, for both the compressive and the incompressive case. The solid lines
represent the radial profiles of the heating rate required to obtain the observed temperature profile.
Figure adapted from Marino et al. (2011)

8.1 Dissipative/Dispersive Range in the Solar Wind
Turbulence

As we saw in Sect. 6.7, the energy cascade in turbulence can be recognized by
looking at Yaglom’s law. The presence of this law in the solar wind turbulence
showed that an energy cascade is at work, thus transferring energy to small scales
where it is dissipated by some mechanism. While, as we showed before, the inertial
range of turbulence in solar wind can be described more or less in a fluid framework,
the small scales dissipative region can be much more (perhaps completely) different.
The main motivation for this is the fact that the collision length in the solar wind,
as a rough estimate the thermal velocity divided by the collision frequency, results
to be of the order of 1 AU. Then the solar wind behaves formally as a collisionless
plasma, that is the usual viscous dissipation is negligible. At the same time, in a
magnetized plasma there are a number of characteristic scales, then understanding
the physics of the generation of the small-scale region of turbulence in solar wind
is a challenging topic from the point of view of basic plasma physics. With small-
scales we mean scales ranging between the ion-cyclotron frequency fci D eB=mi

(which in the solar wind at 1 AU is about fci ' 0:1Hz, see Table 1.3), or the ion
inertial length �i D c=!pi, and the electron-cyclotron frequency fce D eB=me.
At these scales the usual MHD approximation breaks down in favour of a more
complex description of plasma where kinetic processes take place.
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Fig. 8.2 (a) Typical interplanetary magnetic field power spectrum obtained from the trace of the
spectral matrix. A spectral break at about � 0:4Hz is clearly visible. (b) Corresponding magnetic
helicity spectrum. Image reproduced by permission from Leamon et al. (1998), copyright by AGU

Some time ago, Leamon et al. (1998) analyzed small-scales magnetic field
measurements at 1 AU, by using 33 1-h intervals of the MFI instrument on board
Wind spacecraft. Figure 8.2 shows the trace of the power spectral density matrix for
hour 13:00 on day 30 of 1995, which is a typical interplanetary magnetic field power
spectrum representative of those analysed by Leamon et al. (1998). It is evident that
a spectral break exists at about fbr ' 0:44Hz, slightly above to the ion-cyclotron
frequency. Below the ion-cyclotron frequency, the spectrum follows the usual power
law f �˛ , where the spectral index is close to the Kolmogorov value ˛ ' 5=3. At
small-scales, namely at frequencies above fbr, the spectrum steepens significantly,
but is still described by a power law with a slope in the range ˛ 2 Œ2–4� (Leamon
et al. 1998; Smith et al. 2006). As a direct analogy to hydrodynamics where the
steepening of the inertial range spectrum corresponds to the onset of dissipation, the
authors attribute the steepening of the spectrum to the occurrence of a “dissipative”
range (Leamon et al. 1998).

In this respect, Smith et al. (2006) performed a wide statistical study on the
spectral index in the dissipation range using about 900 intervals of interplanetary
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magnetic field recorded by ACE spacecraft at 1 AU. These authors found that while
within the inertial range the distribution of the values of the spectral index was quite
narrow and peaked between �5=3 and �3=2 that corresponding to the dissipation
range was much broader, roughly varying between �1 and �4 with a broad peak
between �2 and �3. These authors were able to correlate this power-law index to
the rate of the magnetic energy cascade �. They found steeper dissipation range
spectra associated with higher cascade rates. In particular, they found � following
� �1:05�0:09. These results corroborated previous findings by Leamon et al. (1998)
who found that the spectral slope in the dissipation range was directly correlated
to the thermal proton temperature, i.e. steeper slopes would imply greater heating
rates. Markovskii et al. (2006) found that turbulence spectra often have power-law
dissipation ranges with an average spectral index of �3 and suggested that this
fact is a consequence of a marginal state of the instability in the dissipation range.
However, they concluded that their mechanism, acting together with the Landau
damping, would produce an entire range of spectral indices, not just �3, in better
agreement with the observations.

Later, Bruno et al. (2014), similarly to previous analyses reported in literature,
investigated the behavior of the spectral index within the first frequency decade
beyond the spectral break analyzing different solar wind samples along the speed
profile of several high velocity streams within the inner heliosphere. They found the
same large variability already reported in literature (Leamon et al. 1998; Smith et al.
2006) but were able to highlight a robust tendency for this parameter to indicate
steeper spectra within the trailing edge of fast streams and lower values within
the subsequent slow wind, following a gradual transition between these two states.
These results were successively confirmed also for the parallel and perpendicular
spectra (Bruno and Telloni 2015). The value of the spectral index seems to depend
firmly on the power associated to the fluctuations within the inertial range, higher
the power steeper the slope (see also Smith et al. 2006). In particular, the spectral
index tends to approach �5=3, typical of the inertial range, within the slow wind
while, a simple fit of all the estimates recorded at 1 AU, would suggest a limiting
value of roughly �4:2 ˙ 0:43 within the fast wind. These same authors suggested
also that it would be interesting to investigate whether not only the power level of
the fluctuations but also their Alfvénic character might play a role in the observed
behavior of the spectral index at ion scales in the framework of ion-cyclotron
resonance mechanism (see Marsch 2006, and references therein).

Further properties of turbulence in the high-frequency region have been evi-
denced by looking at solar wind observations by the FGM (flux-gate magnetometer)
instrument onboard Cluster satellites (Alexandrova et al. 2008) spanning a 0:02 
0:5Hz frequency range. The authors found that the same spectral break by Leamon
et al. (1998) exists when different datasets (Helios for large-scales and Cluster
for small scales) are used. The break (cf. Fig. 1 of Alexandrova et al. 2008) has
been found at about fbr ' 0:3Hz, near the ion cyclotron frequency fci ' 0:1Hz,
which roughly corresponds to spatial scales of about 1900 km ' 15�i (being
�i ' 130 km the ion-skin-depth). However, as shown in Fig. 1 of Alexandrova
et al. (2008), the compressible magnetic fluctuations, measured by magnetic field
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parallel spectrum Sk, are enhanced at small-scales (see Bruno and Telloni 2015;
Podesta 2009, and references therein). This means that, after the break compressible
fluctuations become much more important than in the low-frequency part. The
parameter hSki=hSi= ' 0:03 in the low-frequency range (S is the total power
spectrum density and brackets means averages value over the whole range) while
compressible fluctuations are increased to about hSki=hSi= ' 0:26 in the high-
frequency part. The increase of the above ratio were already noted in the paper by
Leamon et al. (1998). Moreover, Alexandrova et al. (2008) found that, similarly
to the low-frequency region (cf. Sect. 6.2), intermittency is a basic property also
in the high-frequency range. In fact, the authors found that PDFs of normalized
magnetic field increments strongly depend on the scale (Alexandrova et al. 2008), a
typical signature of intermittency in fully developed turbulence (cf. Sect. 6.2). More
quantitatively, the behavior of the fourth-order moment of magnetic fluctuations at
different frequencies K. f / is shown in Fig. 8.3.

It is evident that this quantity increases with frequency, indicating the presence
of intermittency. However the rate at which K. f / increases is pronounced above the
ion cyclotron frequency, meaning that intermittency in the high-frequency range
is much more effective than in the low-frequency region. Recently, analyzing a
different datasets recorded by Cluster spacecraft, it was found that the intermittent
character of magnetic fluctuations within the kinetic range persists at least to
electron scales (Perri et al. 2012; Wan et al. 2012; Karimabadi et al. 2013) and this
was ascribed to the presence of small scale coherent magnetic structures. Further

Fig. 8.3 The fourth-order moment K. f / of magnetic fluctuations as a function of frequency f is
shown. Dashed line refers to data from Helios spacecraft while full line refers to data from Cluster
spacecrafts at 1 AU. The inset refers to the number of intermittent structures revealed as da function
of frequency. Image reproduced by permission from Alexandrova et al. (2008), copyright by AAS
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analyses associated elevated plasma temperature and anisotropy events with these
structures, suggesting that inhomogeneous dissipation was at work (Servidio et al.
2012).

Different results were obtained by Wu et al. (2013) who, using both flux-gate
and search-coil magnetometers on board Cluster, found kinetic scales that are much
less intermittent than fluid scales. These authors recorded a remarkable and sudden
decrease back to near-Gaussian values of intermittency around scales of about ten
times the ion inertial scale (see also results by Telloni et al. 2015; Bruno and
Telloni 2015), followed by a modest increase moving toward electron scales, in
agreement with Kiyani et al. (2009). These last authors, using high-order statistics
of magnetic differences, showed that the scaling exponents of structure functions,
evaluated at small scales, are no more anomalous like the low-frequency range, even
if Yordanova et al. (2008, 2009) showed that the situation is not so clear.

The above results provide a good example of absence of universality in turbu-
lence, a topic which received renewed attention in the last years (Chapman et al.
2009; Lee et al. 2010; Matthaeus 2009).

8.2 The Origin of the High-Frequency Region

How is the high-frequency region of the spectrum generated? This has become
the urgent topic which must be addressed. Ghosh et al. (1996) appeals to change
of invariants in controlling the flow of spectral energy transfer in the cascade
process, and in this picture no dissipation is required to explain the steepening of
the magnetic power spectrum. Furthermore it is believed that the high-frequency
region is highly anisotropic, with a significant fraction of turbulent energy cascades
mostly in the quasi 2D structures, perpendicular to the background magnetic field.
How magnetic energy is dissipated in the anisotropic energy cascade still remains
an unsolved and fascinating question.

8.2.1 A Dissipation Range

As we already said, in their analysis of Wind data, Leamon et al. (1998) attribute
the presence of the region at frequencies higher than the ion-cyclotron frequency
to a kind of dissipative range. Besides analyzing the power spectrum, the authors
examined also the normalized reduced magnetic helicity 	m. f / and, they found an
excess of negative values at high frequencies. Since this quantity is a measure of the
spatial handedness of the magnetic field (Moffatt 1978) and can be related to the
polarization in the plasma frame once the propagation direction is known (Smith
et al. 1983), the above observations were consistent with the ion-cyclotron damping
of Alfvén waves which would leave an excess of kinetic Alfvén waves responsible
for the observed value of magnetic helicity. In particular, using a reference system
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relative to the mean magnetic field direction eB and radial direction eR as .eB �
eR; eB � .eB � eR/; eB/, they conclude that transverse fluctuations are less dominant
than in the inertial range and the high frequency range is best described by a mixture
of 46 % slab waves and of 54 % 2D geometry. Since in the low-frequency range they
found 11 and 89 % respectively, the increased slab fraction my be explained by the
preferential dissipation of oblique structures. Thermal particles interactions with the
2D slab component may be responsible for the formation of dissipative range, even
if the situation seems to be more complicated. In fact they found that also kinetic
Alfvén waves propagating at large angles with the background magnetic field might
be consistent with the observations and form some portion of the 2D component.

Recently the question of the increased power anisotropy of the high-frequency
region has been addressed by Perri et al. (2009) who investigated the scaling
behavior of the eigenvalues of the variance matrix of magnetic fluctuations, which
provide information on the anisotropy due to different polarizations of fluctuations.
These authors investigated data coming from Cluster spacecraft when these satellites
orbited in front of the Earth’s parallel Bow Shock. Their results showed that
magnetic turbulence in the high-frequency region is strongly anisotropic, the
minimum variance direction being almost parallel to the background magnetic field
at scales larger than the ion cyclotron scale. A very interesting result is the fact
that the eigenvalues of the variance matrix have a strong intermittent behavior,
with very high localized fluctuations below the ion cyclotron scale. This behavior,
never investigated before, generates a cross-scale effect in magnetic turbulence.
Indeed, PDFs of eigenvalues evolve with the scale, namely they are almost Gaussian
above the ion cyclotron scale and become power laws at scales smaller than the
ion cyclotron scale. As a consequence it is not possible to define a characteristic
value (as the average value) for the eigenvalues of the variance matrix at small
scales. Since the wave-vector spectrum of magnetic turbulence is related to the
characteristic eigenvalues of the variance matrix (Carbone et al. 1995), the absence
of a characteristic value means that a typical power spectrum at small-scales cannot
be properly defined. This is a feature which received little attention, and represents a
further indication for the absence of universal characteristics of turbulence at small-
scales.

8.2.2 A Dispersive Range

The presence of a frequency range of the magnetic power density spectrum
characterized by a clear spectral slope, whose value fluctuates between �2 and �4,
(Leamon et al. 1998; Smith et al. 2006; Bruno et al. 2014; Bruno and Telloni 2015),
suggests that the high-frequency region above the ion-cyclotron frequency might
be interpreted as a kind of different energy cascade due to dispersive effects. Then
turbulence in this region can be described through the Hall-MHD models, which is
the simplest model apt to investigate dispersive effects in a fluid-like framework. In
fact, at variance with the usual MHD, where the effect of ion inertia is taken into
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account, the generalized Ohm’s law reads

E D �V � B C mi

�e
.r � B/ � B;

where the second term on the r.h.s. of this equation represents the Hall term (mi

being the ion mass). This means that MHD equations are enriched by a new term in
the equation describing the magnetic field and derived from the induction equation

@B
@t

D r �
�

V � B � mi

�e
.r � B/ � B C �r � B

�
; (8.5)

which is quadratic in the magnetic field. The above equation contains three different
physical processes characterized by three different times. By introducing a length
scale ` and characteristic fluctuations �`, B`, and u`, we can define an eddy-turnover
time TNL � `=u`, related to the convective process, a Hall time TH � �``

2=B`
which characterizes typical processes related to the presence of the Hall term, and
a dissipative time TD � `2=�. At large scales the first term on the r.h.s. of Eq. (8.5)
describes the Alfvénic turbulent cascade, realized in a time TNL. At very small
scales, the dissipative time becomes the smallest timescale, and dissipation takes
place.2 However, one can conjecture that at intermediate scales a cascade is realized
in a time which is no more TNL and not yet TD, rather the cascade is realized in a
time TH . This happens when TH � TNL. Since at these scales density fluctuations
become important, the mean volume rate of energy transfer can be defined as
�V � B2`=TH � B3`=`

2�`, where TH is used as a characteristic time for the cascade.
Using the usual Richardson’s cartoon for the energy cascade which is viewed as a
hierarchy of eddies at different scales, and following von Weizsäcker (1951), the
ratio of the mass density �` at two successive levels `� > `�C1 of the hierarchy is
related to the corresponding scale size by

��

��C1
�
�

`�

`nuC1

��3r

; (8.6)

where 0 � jrj � 1 is a measure of the degree of compression at each level `� . Using
a scaling law for compressive effects �` � `�3r and assuming a constant spectrum
energy transfer rate, we have B` � `.2=3�2r/, from which the spectral energy density

E.k/ � k�7=3Cr: (8.7)

2Of course, this is based on classical turbulence. As said before, in the solar wind the dissipative
term is unknown, even if it might happens at very small kinetic scales.
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The observed range of scaling exponents observed in solar wind ˛ 2 Œ2 , 4� (Smith
et al. 2006; Bruno et al. 2014), can then be reproduced by different degree of
compression of the solar wind plasma �5=6 � r � 1=6.

8.3 Further Questions About Small-Scale Turbulence

The most “conservative” way to describe the presence of a dissipative/dispersive
region in the solar wind turbulence, as we reported before, is for example through
the Hall-MHD model. While when dealing with large-scale we can successfully
approach the problem of turbulence by saying that some form of dissipation must
exist at small-scales, the dissipationless character of solar wind cannot be avoided
when we deal with small-scales. The full understanding of the physical mechanisms
that allow the dissipation of energy in the absence of collisional viscosity would
be a step of crucial importance in the problem of high frequency turbulence in
space plasmas. Another fundamental question concerns the dispersive properties
of small-scale turbulence beyond the spectral break. This last question has been
reformulated by saying: what are the principal constituent modes of small-scale
turbulence? This approach explicitly assumes that small-scale fluctuations in solar
wind can be described through a weak turbulence framework. In other words, a
dispersion relation, namely a precise relationship between the frequency ! and the
wave-vector k, is assumed.

As it is well known from basic plasma physics, linear theory for homogeneous,
collisionless plasma yields three kind of modes at and below the proton cyclotron
frequency ˝p. At wave-vectors transverse to the background magnetic field and
˝p > !r (being !r the real part of the frequency of fluctuation), two modes
are present, namely a left-hand polarized Alfvén cyclotron mode and a right-
hand polarized magnetosonic mode. A third ion-acoustic (slow) mode exists but
is damped, except when Te � Tp, which is not common in solar wind turbulence.
At quasi-perpendicular propagation the Alfvénic branch evolves into Kinetic Alfvén
Waves (KAW) (Hollweg 1999), while magnetosonic modes may propagate at˝p �
!r as whistler modes. As the wave-vector becomes oblique to the background
magnetic field both modes develop a nonzero magnetic compressibility where
parallel fluctuations become important. There are two distinct scenarios for the
subsequent energy cascade of KAW and whistlers (Gary and Smith 2009).

8.3.1 Whistler Modes Scenario

This scenario involves a two-mode cascade process, both Alfvénic and magne-
tosonic modes which are only weakly damped as the plasma ˇ � 1, transfer energy
to quasi-perpendicular propagating wave-vectors. The KAW are damped by Landau
damping which is proportional to k2?, so that they cannot contribute to the formation
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of dispersive region (unless for fluctuations propagating along the perpendicular
direction). Even left-hand polarized Alfvén modes at quasi-parallel propagation
suffer for proton cyclotron damping at scales kk � !p=c and do not contribute.
Quasi-parallel magnetosonic modes are not damped at the above scale, so that a
weak cascade of right-hand polarized fluctuations can generate a dispersive region
of whistler modes (Stawicki et al. 2001; Gary and Borovsky 2004, 2008; Goldstein
et al. 1994). The cascade of weakly damped whistler modes has been reproduced
through electron MHD numerical simulations (Biskamp et al. 1996, 1999; Wareing
and Hollerbach 2009; Cho and Lazarian 2004) and Particle-in-Cell (PIC) codes
(Gary et al. 2008; Saito et al. 2008).

8.3.2 Kinetic Alfvén Waves and Ion-Cyclotron Waves Scenario

In the KAWs scenario (Howes 2008; Schekochihin et al. 2009) long-wavelength
Alfvénic turbulence transfer energy to quasi-perpendicular propagation for the
primary turbulent cascade up to the thermal proton gyroradius where fluctuations are
subject to the proton Landau damping. The remaining fluctuation energy continues
the cascade to small-scales as KAWs at quasi-perpendicular propagation and at
frequencies !r > ˝p (Bale et al. 2005; Sahraoui et al. 2009). Fluctuations are
completely damped via electron Landau resonance at wavelength of the order of the
electron gyroradius. This scenario has been observed through gyrokinetic numerical
simulations (Howes et al. 2008b), where the spectral breakpoint k? � ˝p=vth (being
vth the proton thermal speed) has been observed. In addition, Salem et al. (2012),
using Cluster observations in the solar wind, showed that the properties of the small-
scale fluctuations are inconsistent with the whistler wave model, but strongly agree
with the prediction of a spectrum of KAWs with nearly perpendicular wavevectors.

Several other authors studied the nature of the fluctuations at proton scales near
the frequency break fb (He et al. 2011, 2012b,a; Podesta and Gary 2011; Telloni
et al. 2015) adopting new data analysis techniques (Horbury et al. 2008; Bruno
et al. 2008). These techniques allowed to infer the polarization of the magnetic
fluctuations in a plane perpendicular to the sampling direction and for different
sampling directions with respect to the local mean magnetic field orientation,
for each scale of interest. These analyses showed the simultaneous signature of
polarized fluctuations identified as right-handed KAWs propagating at large angles
with the local mean magnetic field and left-handed Alfvén ion-cyclotron waves
outward propagating at small angles from the local field. However, Podesta and
Gary (2011) remarked that also inward-propagating whistler waves, in the case
of a field-aligned drift instability, would give the same left-handed signature like
outward-propagating Alfvén ion-cyclotron waves. The presence of KAWs had been
already suggested by previous data analyses (Goldstein et al. 1994; Leamon et al.
1998; Hamilton et al. 2008) which, on the other hand, were not able to unravel the
simultaneous presence also of left-handed polarized Alfvén ion-cyclotron waves.
Figure 8.4 from Telloni et al. (2015) shows the distribution of the normalized
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Fig. 8.4 Normalized magnetic helicity, scale by scale, vs the pitch angle �VB between the local
mean magnetic field and the flow direction. Data were collected during a radial alignment between
MESSENGER and WIND spacecraft, at 0.56 AU (left) and 0.99 AU (right), respectively. The black
contour lines represent the 99 % confidence levels. Characteristic frequencies corresponding to
proton inertial length fi, proton Larmor radius fL, the observed spectral break fb and, the resonance
condition for parallel propagating Alfvén waves fr are represented by the horizontal solid, dotted,
dashed and dot-dashed lines, respectively. Figure adopted from Telloni et al. (2015)

magnetic helicity with respect to the local field pitch angle at MESSENGER (left
panel) and WIND (right panel) distances, 0:56 and 0:99 AU, respectively. The
frequencies corresponding to the proton inertial length fi, to the proton Larmor
radius fL, to the observed spectral break fb, and to the resonance condition for
parallel propagating Alfvén waves fr (Leamon et al. 1998; Bruno and Trenchi 2014),
are shown as horizontal solid, dotted, dashed and dot-dashed lines, respectively.

Two populations with opposite polarization can be identified at frequencies right
beyond the location of the spectral break. Right-handed polarized KAWs are found
for sampling directions highly oblique with respect to the local magnetic field,
while left-handed polarized Alfvén ion-cyclotron fluctuations are observed for quasi
anti-parallel directions. The same authors found that KAWs dominate the overall
energy content of magnetic fluctuations in this frequency range and are largely
more compressive than Alfvén ion-cyclotron waves. The compressive character of
the KAWs is expected since they generate magnetic fluctuations ıBk parallel to the
local field, particularly for low plasma beta, ˇ . 1 (TenBarge and Howes 2012).

Finally, it is interesting to remark that during the wind expansion from Messen-
ger’s to WIND’s location, the spectral break moved to a lower frequency (Bruno and
Trenchi 2014), and both KAWs and Alfvén ion-cyclotron waves shifted accordingly.
This observation, per se, is an experimental evidence that relates the location of the
frequency break to the presence of these fluctuations (Fig. 8.4).
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8.4 Where Does the Fluid-Like Behavior Break Down
in Solar Wind Turbulence?

Till now spacecraft observations do not allow us to unambiguously distinguish
between both previous scenarios. As stated by Gary and Smith (2009) at our present
level of understanding of linear theory, the best we can say is that quasi-parallel
whistlers, quasi-perpendicular whistlers, and KAW all probably could contribute to
dispersion range turbulence in solar wind. Thus, the critical question is not which
mode is present (if any exists in a nonlinear, collisionless medium as solar wind),
but rather, what are the conditions which favor one mode over the others. On the
other hand, starting from observations, we cannot rule out the possibility that strong
turbulence rather than “modes” are at work to account for the high-frequency part
of the magnetic energy spectrum. One of the most striking observations of small-
scale turbulence is the fact that the electric field is strongly enhanced after the
spectral break (Bale et al. 2005). This means that turbulence at small scales is
essentially electrostatic in nature, even if weak magnetic fluctuations are present.
The enhancement of the electrostatic part has been viewed as a strong indication for
the presence of KAW, because gyrokinetic simulations show the same phenomenon
(Howes et al. 2008b). However, as pointed out by Matthaeus et al. (2008) (see also
the Reply by Howes et al. 2008a to the comment by Matthaeus et al. 2008), the
enhancement of electrostatic fluctuations can be well reproduced by Hall-MHD
turbulence, without the presence of KAW modes. Actually, the enhancement of
the electric field turns out to be a statistical property of the inviscid Hall MHD
(Servidio et al. 2008), that is in the absence of viscous and dissipative terms the
statistical equilibrium ensemble of Hall-MHD equations in the wave-vectors space
is built up with an enhancement of the electric field at large wave-vectors. This
represents a thermodynamic equilibrium property of equations, and has little to do
with a non-equilibrium turbulent cascade.3 This would mean that the enhancement
of the electrostatic part of fluctuations cannot be seen as a proof firmly establishing
that KAW are at work in the dispersive region.

One of the most peculiar possibility from the Cluster spacecraft was the
possibility to separate the time domain from the space domain, using the tetrahedral
formation of the four spacecrafts which form the Cluster mission (Escoubet et al.
2001). This allows us to obtain a 3D wavevector spectrum and the possibility to
identify the actual dispersion relation of solar wind turbulence, if any exists, at small
scales. This can be made by using the k-filtering technique which is based on the

3It is worthwhile to remark that a turbulent fluid flows is out of equilibrium, say the cascade
requires the injection of energy (input) and a dissipation mechanism (output), usually lying on
well separated scales, along with a transfer of energy. Without input and output, the nonlinear
term of equations works like an energy redistribution mechanism towards an equilibrium in the
wave vectors space. This generates an equilibrium energy spectrum which should in general be the
same as that obtained when the cascade is at work (cf., e.g., Frisch et al. 1975). However, even
if the turbulent spectra could be anticipated by looking at the equilibrium spectra, the physical
mechanisms are different. Of course, this should also be the case for the Hall MHD.
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strong assumption of plane-wave propagation (Glassmeier et al. 2001). Of course,
due to the relatively small distances between spacecrafts, this cannot be applied to
large-scale turbulence.

Apart for the spectral break identified by Leamon et al. (1998), a new break
has been identified in the solar wind turbulence using high-frequency Cluster
data, at about few tens of Hz. In fact, Cluster data in burst mode can reach the
characteristic electron inertial scale �e and the electron Larmor radius �e. Using the
Flux Gate Magnetometer (FGM) (Balogh et al. 2001) and the STAFF-Search Coil
(SC) (Cornilleau-Wehrlin et al. 2003) magnetic field data and electric field data from
the Electric Field and Wave experiment (EFW) (Gustafsson et al. 2001), Sahraoui
et al. (2009) showed that the turbulent spectrum changes shape at wavevectors of
about k�e � k�e ' 1. This result, which perhaps identifies the occurrence of
a dissipative range in solar wind turbulence, has been obtained in the upstream
solar wind magnetically connected to the bow shock. However, in these studies the
plasma ˇ was of the order of ˇe ' 1, thus not allowing the separation between
both scales. Alexandrova et al. (2009), using three instruments onboard Cluster
spacecrafts operating in different frequency ranges, resolved the spectrum up to
300 Hz. They confirmed the presence of the high-frequency spectral break at about
k�e � Œ0:1; 1� and, interesting enough, they fitted this part of the spectrum through
an exponential decay � expŒ�p

k�e�, thus indicating the onset of dissipation.
The 3D spectral shape reveals poor surprise, that is the energy distribution

exhibits anisotropic features characterized by a prominently extended structure
perpendicular to the mean magnetic field preferring the ecliptic north direction
and also by a moderately extended structure parallel to the mean field (Narita
et al. 2010). Results of the 3D energy distribution suggest the dominance of quasi
2D turbulence toward smaller spatial scales, overall symmetry to changing the
sign of the wave vector (reflectional symmetry) and absence of spherical and
axial symmetry. This last was one of the main hypothesis for the Maltese Cross
(Matthaeus et al. 1990), even if bias due to satellite fly through can generate artificial
deviations from axisymmetry (Turner et al. 2011).

More interestingly, Sahraoui et al. (2010a) investigated the occurrence of a
dispersion relation. They claimed that the energy cascade should be carried by
highly oblique KAW with doppler-shifted plasma frequency !plas � 0:1!ci down to
k?�i � 2. Each wavevector spectrum in the direction perpendicular to an “average”
magnetic field B0 shows two scaling ranges separated by a breakpoint in the interval
Œ0:1; 1�k?�i, say a Kolmogorov scaling followed by a steeper scaling. The authors
conjectured that the turbulence undergoes a transition-range, where part of energy
is dissipated into proton heating via Landau damping, and the remaining energy
cascades down to electron scales where Electron Landau damping may dominate.
The dispersion relation, compared with linear solutions of the Maxwell–Vlasov
equations (Fig. 8.5), seems to identify KAW as responsible for the cascade at small
scales. However, the conjecture by Sahraoui et al. (2010a) does not take into account
the fact that Landau damping is rapidly saturating under solar wind conditions
(Marsch 2006; Valentini et al. 2008).
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Fig. 8.5 Observed dispersion relations (dots), with estimated error bars, compared to linear
solutions of the Maxwell–Vlasov equations for three observed angles between the k vector and
the local magnetic field direction (damping rates are represented by the dashed lines). Proton and
electron Landau resonances are represented by the black curves Lp;e. Proton cyclotron resonance
are shown by the curves Cp. (the electron cyclotron resonance lies out of the plotted frequency
range). Image reproduced by permission from Sahraoui et al. (2010b), copyright by APS

The question of the existence of a dispersion relation was investigated by
Narita et al. (2011), who considered three selected time intervals of magnetic
field data of CLUSTER FGM in the solar wind. They used a refined version of
the k-filtering technique, called MSR technique, to obtain high-resolution energy
spectra in the wavevector domain. Like the wave telescope, the MSR technique
performs fitting of the measured data with a propagating plane wave as a function
of frequency and wave vector. The main result is the strong spread in the frequency-
wavevector domain, namely none of the three intervals exhibits a clear organization
of dispersion relation (see Fig. 8.6). Frequencies and wave vectors appear to be
strongly scattered, thus not allowing for the identification of wave-like behavior.

The above discussed papers shed some “darkness” on the scenario of small scales
solar wind turbulence as only made by “modes”, or at least they indicate that solar
wind turbulence, at least at small scales, is far from universality.

Another grey area of investigation is related to the frequency locations of the
spectral break separating fluid from kinetic regime.

This break is found at scales of the order of the proton inertial length �i D c=!p

and the proton Larmor radius �L D vth=˝p, where !p is the local plasma frequency
while ˝p is the local gyro-frequency, with vth and c the thermal speed and the
speed of light, respectively. Several authors tried to match the location of the
frequency break with �i or �L (Perri et al. 2011; Leamon et al. 1998; Bourouaine
et al. 2012) with little success. In particular, Markovskii et al. (2008) showed that
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Fig. 8.6 Top: Angles
between the wave vectors and
the mean magnetic field as a
function of the wave number.
Bottom: Frequency-wave
number diagram of the
identified waves in the plasma
rest frame. Magnetosonic
(MS), whistler (WHL), and
kinetic Alfvén waves (KAW)
dispersion relations are
represented by dashed, solid,
and dotted lines, respectively.
Image reproduced by
permission from Narita et al.
(2011), copyright by AGU

none of the available model could predict a value for the frequency break in good
agreement with the observations. Landau damping of obliquely propagating kinetic
Alfvén waves (KAW) was proposed by Leamon et al. (1999) and, in this case,
the frequency break would correspond to the scale of the Larmor radius �L; for
Dmitruk et al. (2004) 2-D turbulence dissipation through turbulence reconnection
process and generation of current sheets of the order of the ion inertial length �i

enhances the role of this scale which is the most relevant one also in the framework
of incompressible Hall MHD used by Galtier (2006) to explain the break. Only
recently, Bruno and Trenchi (2014), using higher time resolution magnetic field data
and exploiting selected radial alignments between Messenger, WIND and Ulysses,
to restrict the analysis as much as possible to the same fast wind plasma samples,
were able to observe a large frequency shift of the high frequency break of about
one decade between Messenger location at about 0:42 AU and Ulysses at about
5:3 AU. The same authors found that the resonant condition for outward parallel
propagating Alfvén ion-cyclotron waves (ICWs) was the mechanism able to provide
the best agreement with the observations, as shown in Fig. 8.7 panel a. Moreover,
they showed that this agreement held even taking into account the angle between
the background field and the sampling direction, as shown in panel b of the same
figure. However, this result was not expected on the basis of anisotropy predictions
by any turbulent cascade (Chen et al. 2014) and remains a point which needs to
be understood if the ion-cyclotron resonance mechanism for parallel propagating
waves is discharged on a theoretical basis.

At this point, having shown that also the high frequency break experiences a shift
with distance towards lower frequency, Telloni et al. (2015) proposed a new version
of Fig. 3.21 as shown in Fig. 8.8 which unravels the radial behaviour of the whole
spectrum between injection and the kinetic scales. Low and high frequency spectral
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Fig. 8.7 Panel (a): radial dependence of wavenumbers associated with the scales corresponding
to the observed frequency break �b (cyan circles), the local proton inertial length �i (blue circles),
the proton Larmor radius �L (green circles), the wavenumber �r corresponding to the resonant
condition and the one corresponding to the local cyclotron frequency �g (magenta circles). The
relative best fit curves are shown in the same corresponding colors. Panel (b): Wavenumbers
associated with the local proton inertial length �i (blue circles), the proton Larmor radius �L (green
circles) and the wavenumber �r (red circles) are displayed versus �b= cos.�BR/. Figure adopted
from Bruno and Trenchi (2014)

breaks move to lower and lower frequencies as the wind expands but their radial
dependence is different. The low frequency break has a faster radial evolution R�1:5
compared with the high frequency break R�1:1. Therefore, the inertial range grows
with increasing the heliocentric distance and this confirms previous inferences
suggesting that magnetic fluctuations in high speed streams become more and more
turbulent with distance (see references in Tu and Marsch 1995b; Bruno and Carbone
2013).

Since the low and high frequency breaks are strictly related to the correlation
length �C and to the Taylor scale �T (see Sect. 3.2.1), respectively, they can be used
to determine empirically the effective magnetic Reynolds number Reff

m as (Matthaeus
et al. 2005):

Reff
m D

�
�C

�T

�2
: (8.8)
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Fig. 8.8 Magnetic field
spectral densities for different
heliocentric distance as
observed by different s/c:
MESSENGER (at 0.42 and
0.56 AU), Helios 2 (at 0.29,
0.65 and 0.89 AU), WIND at
the Lagrangian point L1 and,
ULYSSES at 1.4 AU. Data
refer to high speed streams
observed in the ecliptic. Low
and high frequency breaks are
marked by red dots. The solid
line shows, for reference, the
Kolmogorov-like spectral
slope ( f �5=3). Figure adopted
from Telloni et al. (2015)

In doing so, Telloni et al. (2015) obtained the following values: 3 � 104 at about
0.35 AU, 1:1�105 at about 0.65 AU, 1:5�105 at about 0.95 AU and, finally, 3:2�105
at 1.4 AU. The same authors remarked that the estimate at about 1 AU was in good
agreement with the value of 2:3 � 105 provided by Matthaeus et al. (2005) who,
using simultaneous measurements of interplanetary magnetic field from the WIND,
ACE, and Cluster spacecrafts, were able to build the canonical two-point correlation
function.

8.5 What Physical Processes Replace “Dissipation”
in a Collisionless Plasma?

As we said before, the understanding of the small-scale termination of the turbulent
energy cascade in collisionless plasmas is nowadays one of the outstanding unsolved
problem in space plasma physics. In the absence of collisional viscosity and
resistivity the dynamics of small-scales is kinetic in nature and must be described
by the kinetic theory of plasma. The identification of the physical mechanism that
“replaces” dissipation in the collisionless solar wind plasma and establishes a link
between the macroscopic and the microscopic scales would open new scenarios
in the study of the turbulent heating in space plasmas. This problem is yet in its
infancy. Kinetic theory is known since long time from plasma physics, the interested
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reader can read the excellent review by Marsch (2006). However, it is restricted
mainly to linear theoretical arguments. The fast technological development of
supercomputers gives nowadays the possibility of using kinetic Eulerian Vlasov
codes that solve the Vlasov–Maxwell equations in multi-dimensional phase space.
The only limitation to the “dream” of solving 3D-3V problems (3D in real space
and 3D in velocity space) resides in the technological development of fast enough
solvers. The use of almost noise-less codes is crucial and allows for the first time
the possibility of analyzing kinetic nonlinear effects as the nonlinear evolution of
particles distribution function, nonlinear saturation of Landau damping, etc. Of
course, faster numerical way to solve the dissipation issue in collisionless plasmas
might consist in using intermediate gyrokinetic descriptions (Brizard and Hahm
2007) based on a gyrotropy and strong anisotropy assumptions kk � k?.

As we said before, observations of small-scale turbulence showed the presence of
a significant level of electrostatic fluctuations (Gurnett and Anderson 1977; Gurnett
and Frank 1978; Gurnett et al. 1979; Bale et al. 2005). Old observations of plasma
wave measurements on the Helios 1 and 2 spacecrafts (Gurnett and Anderson 1977;
Gurnett and Frank 1978; Gurnett et al. 1979) revealed the occurrence of electric field
wave-like turbulence in the solar wind at frequencies between the electron and ion
plasma frequencies. Wavelength measurements using the IMP 6 spacecraft provided
strong evidence for the presence of electric fluctuations which were identified as
ion acoustic waves which are Doppler-shifted upward in frequency by the motion
of the solar wind (Gurnett and Frank 1978). Comparison of the Helios results
showed that the ion acoustic wave-like turbulence detected in interplanetary space
has characteristics essentially identical to those of bursts of electrostatic turbulence
generated by protons streaming into the solar wind from the earth’s bow shock
(Gurnett and Frank 1978; Gurnett et al. 1979). Gurnett and Frank (1978) observed
that in a few cases of Helios data, ion acoustic wave intensities are enhanced in
direct association with abrupt increases in the anisotropy of the solar wind electron
distribution. This relationship strongly suggests that the ion acoustic wave-like
structures detected by Helios far from the earth are produced by an electron heat
flux instability or by protons streaming into the solar wind from the earth’s bow
shock. Further evidences (Marsch 2006) revealed the strong association between
the electrostatic peak and nonthermal features of the velocity distribution function
of particles like temperature anisotropy and generation of accelerated beams.

Araneda et al. (2008) using Vlasov kinetic theory and one-dimensional Particle-
in-Cell hybrid simulations provided a novel explanation of the bursts of ion-acoustic
activity occurring in the solar wind. These authors studied the effect on the proton
velocity distributions in a low-ˇ plasma of compressible fluctuations driven by the
parametric instability of Alfvén-cyclotron waves. Simulations showed that field-
aligned proton beams are generated during the saturation phase of the wave-particle
interaction, with a drift speed which is slightly greater than the Alfvén speed. As a
consequence, the main part of the distribution function becomes anisotropic due to
phase mixing (Heyvaerts and Priest 1983). This observation is relevant, because the
same anisotropy is typically observed in the velocity distributions measured in the
fast solar wind (Marsch 2006).
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In recent papers, Valentini et al. (2008) and Valentini and Veltri (2009) used
hybrid Vlasov–Maxwell model where ions are considered as kinetic particles, while
electrons are treated as a fluid. Numerical simulations have been obtained in 1D-
3V phase space (1D in the physical space and 3D in the velocity space) where
a turbulent cascade is triggered by the nonlinear coupling of circularly left-hand
polarized Alfvén waves, in the perpendicular plane and in parallel propagation, at
plasma-ˇ of the order of unity. Numerical results show that energy is transferred
to short scales in longitudinal electrostatic fluctuations of the acoustic form. The
numerical dispersion relation in the k � ! plane displays the presence of two
branches of electrostatic waves. The upper branch, at higher frequencies, consists
of ion-acoustic waves while the new lower frequency branch consists of waves
propagating with a phase speed of the order of the ion thermal speed. This new
branch is characterized by the presence of a plateau around the thermal speed in the
ion distribution function, which is a typical signature of the nonlinear saturation of
wave-particle interaction process.

Numerical simulations show that energy should be “dissipated” at small-scales
through the generation of an ion-beam in the velocity distribution function as
a consequence of the trapping process and the nonlinear saturation of Landau
damping. This mechanism would produce bursts of electrostatic activity. Whether
or not this picture, which seems to be confirmed by recent numerical simulations
(Araneda et al. 2008; Valentini et al. 2008; Valentini and Veltri 2009), represents
the final fate of the real turbulent energy cascade observed at macroscopic scales,
requires further investigations. Available plasma measurements in the interplanetary
space, even using Cluster spacecrafts, do not allow analysis at typical kinetic scales.
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Chapter 9
Conclusions and Remarks

There are several famous quotes on turbulence which describe the difficulty to treat
mathematically this problem but, the following two are particularly effective. While,
on one hand, Richard Feynman used to say “Turbulence is the most important
unsolved problem of classical physics.” Horace Lamb, on the other hand, asserted
“I am an old man now, and when I die and go to heaven there are two matters on
which I hope for enlightenment. One is quantum electrodynamics, and the other is
the turbulent motion of fluids. And about the former I am rather optimistic.”.

We believe that also our readers, looking at the various problems that we briefly
touched in this review, will realize how complex is the phenomenon of turbulence in
general and, in particular, in the solar wind. More than four decades of observations
and theoretical efforts have not yet been sufficient to fully understand how this
natural and fascinating phenomenon really works in the solar wind.

We certainly are convinced that we cannot think of a single mechanism able
to reproduce all the details we have directly observed since physical boundary
conditions favor or inhibit different generation mechanisms, like for instance,
velocity-shear or parametric decay, depending on where we are in the heliosphere.
On the other hand, there are some aspects which we believe are at the basis of
turbulence generation and evolution like: (a) we do need non-linear interactions to
develop the observed Kolmogorov-like spectrum; (b) in order to have non-linear
interactions we need to have inward modes and/or convected structures which the
majority of the modes can interact with; (c) outward and inward modes can be
generated by different mechanisms like velocity shear or parametric decay; (d)
convected structures actively contribute to turbulent development of fluctuations and
can be of solar origin or locally generated.

In particular, ecliptic observations have shown that what we call Alfvénic
turbulence, mainly observed within high velocity streams, tends to evolve towards
the more “standard” turbulence that we mainly observe within slow wind regions,
i.e., a turbulence characterized by eC � e�, an excess of magnetic energy, and a
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Kolmogorov-like spectral slope. Moreover, the presence of a well established “back-
ground” spectrum already at short heliocentric distances and the low Alfvénicity of
the fluctuations suggest that within slow wind turbulence is mainly due to convected
structures frozen in the wind which may well be the remnants of turbulent processes
already acting within the first layers of the solar corona. In addition, velocity shear,
whenever present, seems to have a relevant role in driving turbulence evolution in
low-latitude solar wind.

Polar observations performed by Ulysses, combined with previous results in the
ecliptic, finally allowed to get a comprehensive view of the Alfvénic turbulence
evolution in the 3D heliosphere, inside 5 AU. However, polar observations, when
compared with results obtained in the ecliptic, do not appear as a dramatic break.
In other words, the polar evolution is similar to that in the ecliptic, although slower.
This is a middle course between the two opposite views (a non-relaxing turbulence,
due to the lack of velocity shear, or a quick evolving turbulence, due to the large
relative amplitude of fluctuations) which were popular before the Ulysses mission.
The process driving the evolution of polar turbulence still is an open question
although parametric decay might play some role. As a matter of fact, simulations of
non-linear development of the parametric instability for large-amplitude, broadband
Alfvénic fluctuations have shown that the final state resembles values of 	c not far
from solar wind observations, in a state in which the initial Alfvénic correlation is
partially preserved. As already observed in the ecliptic, polar Alfvénic turbulence
appears characterized by a predominance of outward fluctuations and magnetic
fluctuations. As regards the outward fluctuations, their dominant character extends
to large distances from the Sun. At low solar activity, with the polar wind filling
a large fraction of the heliosphere, the outward fluctuations should play a relevant
role in the heliospheric physics. Relatively to the imbalance in favor of the magnetic
energy, it does not appear to go beyond an asymptotic value. Several ways to alter
the balance between kinetic and magnetic energy have been proposed (e.g., 2D
processes, propagation in a non-uniform medium, and effect of magnetic structures,
among others). However, convincing arguments to account for the existence of
such a limit have not yet been given, although promising results from numerical
simulations seem to be able to qualitatively reproduce the final imbalance in favor
of the magnetic energy.

Definitely, the relatively recent adoption of numerical methods able to highlight
scaling laws features hidden to the usual spectral methods, allowed to disclose a new
and promising way to analyze turbulent interplanetary fluctuations. Interplanetary
space is now looked at as a natural wind tunnel where scaling properties of the solar
wind can be studied on scales of the order of (or larger than) 109 times laboratory
scales.

Within this framework, intermittency represents an important topic in both
theoretical and observational studies. Intermittency properties have been recovered
via very promising models like the MHD shell models, and the nature of intermittent
events has finally been disclosed thanks to new numerical techniques based
on wavelet transforms. Moreover, similar techniques have allowed to tackle the
problem of identify the spectral anisotropic scaling although no conclusive and final
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analyses have been reported so far. In addition, recent studies on intermittency of
magnetic field and velocity vector fluctuations, together with analogous analyses
on magnitude fluctuations, contributed to sketch a scenario in which propagating
stochastic Alfvénic fluctuations and advected structures, possibly flux tubes embed-
ded in the wind, represent the main ingredients of interplanetary turbulence. The
varying predominance of one of the two species, waves or structures would make
the observed turbulence more or less intermittent. However, the fact that we can
make measurements just at one point of this natural wind tunnel represented by the
solar wind does not allow us to discriminate temporal from spatial phenomena. As
a consequence, we do not know whether these advected structures are somehow
connected to the complicated topology observed at the Sun surface or can be
considered as by-product of chaotic developing phenomena. Comparative studies
based on the intermittency phenomenon within fast and slow wind during the wind
expansion would suggest a solar origin for these structures which would form a sort
of turbulent background frozen in the wind. As a matter of fact, intermittency in
the solar wind is not limited to the dissipation range of the spectrum but abundantly
extends orders of magnitude away from dissipative scales, possibly into the inertial
range which can be identified taking into account all the possible caveats related
to this problem and briefly reported in this review. This fact introduces serious
differences between hydrodynamic turbulence and solar wind MHD turbulence, and
the same “intermittency” assumes a different intrinsic meaning when observed in
interplanetary turbulence. In practice, coherent structures observed in the wind are
at odds with filaments or vortices observed in ordinary fluid turbulence since these
last ones are dissipative structures continuously created and destroyed by turbulent
motion.

Small-scale turbulence, namely observations of turbulent fluctuations at frequen-
cies greater than say 0.1 Hz. revealed a rich and yet poorly understood physics,
mainly related to the big problem of dissipation in a dissipationless plasma. Data
analysis received a strong impulse from the Cluster spacecrafts, thus revealing a
few number of well established and not contradictory observations, as the presence
of a double spectral breaks. However, the interpretation of the presence of a
power spectrum at small scales is not completely clear and a number of contra-
dictory interpretations can be found in literature. Numerical simulations, based on
Vlasov–Maxwell, gyrokinetic and PIC codes, have been made possible due to the
increasingly power of computers. They indicated some possible interpretation of the
high-frequency part of the turbulent spectrum, but unfortunately the interpretation
is not unequivocal. The study of the high-frequency part of the turbulent spectrum
is a rapidly growing field of research and, in this review mainly dedicated to MHD
scales, the kinetic range of fluctuations has been only marginally treated.

As a final remark, we would like to point out that we tried to describe the
turbulence in the solar wind from a particular point of view. We are aware that there
are still several topics which we did not discuss in this review and we apologize
for the lack of some aspects of the phenomenon at hand which can be of particular
interest for some of the readers.



Appendix A
On-Board Plasma and Magnetic Field
Instrumentation

In this Appendix, we briefly describe the working principle of two popular instru-
ments commonly used on board spacecraft to measure magnetic field and plasma
parameters. For sake of brevity, we will only concentrate on one kind of plasma
and field instruments, i.e., the top-hat ion analyzer and the flux-gate magnetometer.
Ample review on space instrumentation of this kind can be found, for example, in
Pfaff et al. (1998a,b).

A.1 Plasma Instrument: The Top-Hat

The top-hat electrostatic analyzer is a well known type of ion deflector and has
been introduced by Carlson et al. (1982). It can be schematically represented by
two concentric hemispheres, set to opposite voltages, with the outer one having a
circular aperture centered around the symmetry axis (see Fig. A.1). This entrance
allows charged particles to penetrate the analyzer for being detected at the base of
the electrostatic plates by the anodes, which are connected to an electronic chain.
To amplify the signal, between the base of the plates and the anodes are located
the Micro-Channel Plates (not shown in this picture). The MCP is made of a huge
amount of tiny tubes, one close to the next one, able to amplify by a factor up to 106

the electric charge of the incoming particle. The electron avalanche that follows hits
the underlying anode connected to the electronic chain. The anode is divided in a
certain number of angular sectors depending on the desired angular resolution.

© Springer International Publishing Switzerland 2016
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Fig. A.1 Outline of a top-hat plasma analyzer

The electric field E.r/ generated between the two plates when an electric
potential difference ıV is applied to them, is simply obtained applying the Gauss
theorem and integrating between the internal (R1) and external (R2) radii of the
analyzer

E.r/ D ıV
R1R2

R1 � R2

1

r2
: (A.1)

In order to have the particle q to complete the whole trajectory between the
two plates and hit the detector located at the bottom of the analyzer, its centripetal
force must be equal to the electric force acting on the charge. From this simple
consideration we easily obtain the following relation between the kinetic energy of
the particle Ek and the electric field E.r/:

Ek

q
D 1

2
E.r/r: (A.2)

Replacing E.r/ with its expression from Eq. (A.1) and differentiating, we get the
energy resolution of the analyzer

ıEk

Ek
D ır

r
D const:; (A.3)
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where ır is the distance between the two plates. Thus, ıEk=Ek depends only on
the geometry of the analyzer. However, the field of view of this type of instrument
is limited essentially to two dimensions since ı� is usually rather small (� 5ı).
However, on a spinning s/c, a full coverage of the entire solid angle 4� is obtained
by mounting the deflector on the s/c, keeping its symmetry axis perpendicular to the
s/c spin axis. In such a way the entire solid angle is covered during half period of
spin.

Such an energy filter would be able to discriminate particles within a narrow
energy interval .Ek;Ek C ıEk/ and coming from a small element d˝ of the solid
angle. Given a certain energy resolution, the 3D particle velocity distribution
function would be built sampling the whole solid angle 4� , within the energy
interval to be studied.

A.1.1 Measuring the Velocity Distribution Function

In this section, we will show how to reconstruct the average density of the
distribution function starting from the particles detected by the analyzer. Let us
consider the flux through a unitary surface of particles coming from a given
direction. If f .vx; vy; vz/ is the particle distribution function in phase space,
f .vx; vy; vz/ dvx dvy dvz is the number of particles per unit volume .pp=cm3/ with
velocity between vx and vx C dvx; vy and vy C dvy; vz and vz C dvz, the consequent
incident flux ˚i through the unit surface is

˚i D
Z Z Z

vf d3!; (A.4)

where d3! D v2dv sin � d� d� is the unit volume in phase space (see Fig. A.2).

Fig. A.2 Unit volume in
phase space
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The transmitted flux Ct will be less than the incident flux ˚i because not all
the incident particles will be transmitted and ˚i will be multiplied by the effective
surface S.< 1/, i.e.,

Ct D
Z Z Z

Svf d3! D
Z Z Z

Svfv2 dv sin � d� d� (A.5)

Since for a top-hat Equation A.3 is valid, then

v2 dv D v3
dv

v
� v3:

We have that the counts recorded within the unit phase space volume would be
given by

Ct
�;�;v D f�;�;vSv4ı�ı�

dv

v
sin � D f�;�;vv

4G; (A.6)

where G is called Geometrical Factor and is a characteristic of the instrument. Then,
from the previous expression it follows that the phase space density function f�;�;v
can be directly reconstructed from the counts

f�;�;v D Ct
�;�;v

v4G
: (A.7)

A.1.1.1 Computing the Moments of the Velocity Distribution Function

Once we are able to measure the density particle distribution function f�;�;v , we
can compute the most used moments of the distribution in order to obtain the
particle number density, velocity, pressure, temperature, and heat-flux Paschmann
et al. (1998).

If we simply indicate with f .v/ the density particle distribution function, we
define as moment of order n of the distribution the quantity Mn, i.e.,

Mn D
Z
vn f .v/d3!: (A.8)

It follows that the first 4 moments of the distribution are the following:

• the number density

n D
Z

f .v/d3!; (A.9)
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• the number flux density vector

nV D
Z

f .v/vd3!; (A.10)

• the momentum flux density tensor

˘ D m
Z

f .v/vvd3!; (A.11)

• the energy flux density vector

Q D m

2

Z
f .v/v2vd3!: (A.12)

Once we have computed the zero-order moment, we can obtain the velocity
vector from Eq. (A.10). Moreover, we can compute ˘ and Q in terms of velocity
differences with respect to the bulk velocity, and Eqs. (A.11) and (A.12) become

P D m
Z

f .v/.v � V/.v � V/ d3!; (A.13)

and

H D m

2

Z
f .v/jv � Vj2.v � V/ d3!: (A.14)

The new Eqs. (A.13) and (A.14) represent the pressure tensor and the heat
flux vector, respectively. Moreover, using the relation P D nKT we extract the
temperature tensor from Eqs. (A.13) and (A.9). Finally, the scalar pressure P and
temperature T can be obtained from the trace of the relative tensors

P D Tr.Pij/

3

and

T D Tr.Tij/

3
:

A.2 Field Instrument: The Flux-Gate Magnetometer

There are two classes of instruments to measure the ambient magnetic field:
scalar and vector magnetometers. While nuclear precession and optical pumping
magnetometers are the most common scalar magnetometers used on board s/c
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Fig. A.3 Outline of a flux-gate magnetometer. The driving oscillator makes an electric current,
at frequency f , circulate along the coil. This coil is such to induce along the two bars a magnetic
field with the same intensity but opposite direction so that the resulting magnetic field is zero. The
presence of an external magnetic field breaks this symmetry and the resulting field ¤ 0 will induce
an electric potential in the secondary coil, proportional to the intensity of the component of the
ambient field along the two bars

(see Pfaff et al. 1998b, for related material), the flux-gate magnetometer is, with no
doubt, the mostly used one to perform vector measurements of the ambient magnetic
field. In this section, we will briefly describe only this last instrument just for those
who are not familiar at all with this kind of measurements in space.

The working principle of this magnetometer is based on the phenomenon of
magnetic hysteresis. The primary element (see Fig. A.3) is made of two bars of high
magnetic permeability material. A magnetizing coil is spooled around the two bars
in an opposite sense so that the magnetic field created along the two bars will have
opposite polarities but the same intensity. A secondary coil wound around both bars
will detect an induced electric potential only in the presence of an external magnetic
field.

The field amplitude BB produced by the magnetizing field H is such that the
material periodically saturates during its hysteresis cycle as shown in Fig. A.4.

In absence of an external magnetic field, the magnetic field B1 and B2 produced
in the two bars will be exactly the same but out of phase by 180ı since the two coils
are spooled in an opposite sense. As a consequence, the resulting total magnetic field
would be 0 as shown in Fig. A.4. In these conditions no electric potential would be
induced on the secondary coil because the magnetic flux ˚ through the secondary
is zero.

On the contrary, in case of an ambient field HA ¤ 0, its component parallel to
the axis of the bar is such to break the symmetry of the resulting B (see Fig. A.5).
HA represents an offset that would add up to the magnetizing field H, so that the
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Fig. A.4 Left panel: This figure refers to any of the two sensitive elements of the magnetometer.
The thick black line indicates the magnetic hysteresis curve, the dotted green line indicates the
magnetizing field H, and the thin blue line represents the magnetic field B produced by H in each
bar. The thin blue line periodically reaches saturation producing a saturated magnetic field B. The
trace of B results to be symmetric around the zero line. Right panel: magnetic fields B1 and B2
produced in the two bars, as a function of time. Since B1 and B2 have the same amplitude but out
of phase by 180ı, they cancel each other

resulting field B would not saturate in a symmetric way with respect to the zero line.
Obviously, the other sensitive element would experience a specular effect and the
resulting field B D B1 C B2 would not be zero, as shown in Fig. A.5.

In these conditions the resulting field B, fluctuating at frequency f , would induce
an electric potential V D �d˚=dt, where ˚ is the magnetic flux of B through the
secondary coil (Fig. A.6).

At this point, the detector would measure this voltage which would result
proportional to the component of the ambient field HA along the axis of the two bars.
To have a complete measurement of the vector magnetic field B it will be sufficient
to mount three elements on board the spacecraft, like the one shown in Fig. A.3,
mutually orthogonal, in order to measure all the three Cartesian components.
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Fig. A.5 Left panel: the net effect of an ambient field HA is that of introducing an offset which
will break the symmetry of B with respect to the zero line. This figure has to be compared with
Fig. A.4 when no ambient field is present. The upper side of the B curve saturates more than the
lower side. An opposite situation would be shown by the second element. Right panel: trace of the
resulting magnetic field B D B1 C B2. The asymmetry introduced by HA is such that the resulting
field B is different from zero

Fig. A.6 Time derivative of the curve B D B1 C B2 shown in Fig. A.5 assuming the magnetic flux
is referred to a unitary surface
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