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Abstract. We study Probabilistic Workflow Nets (PWNs), a model
extending van der Aalst’s workflow nets with probabilities. We give a
semantics for PWNs in terms of Markov Decision Processes and intro-
duce a reward model. Using a result by Varacca and Nielsen, we show
that the expected reward of a complete execution of the PWN is inde-
pendent of the scheduler. Extending previous work on reduction of non-
probabilistic workflow nets, we present reduction rules that preserve the
expected reward. The rules lead to a polynomial-time algorithm in the
size of the PWN (not of the Markov decision process) for the computation
of the expected reward. In contrast, since the Markov decision process
of PWN can be exponentially larger than the PWN itself, all algorithms
based on constructing the Markov decision process require exponential
time. We report on a sample implementation and its performance on a
collection of benchmarks.

1 Introduction

Workflow Petri Nets are a class of Petri nets for the representation and analysis
of business processes [1,2,5]. They are a popular formal back-end for different
notations like BPMN (Business Process Modeling Notation), EPC (Event-driven
Process Chain), or UML Activity Diagrams.

There is recent interest in extending these notations, in particular BPMN,
with the concept of cost (see e.g. [16,18,19]). The final goal is the development
of tool support for computing the worst-case or the average cost of a busi-
ness process. A sound foundation for the latter requires to extend Petri nets
with probabilities and rewards. Since Petri nets can express complex interplay
between nondeterminism and concurrency, the extension is a nontrivial semantic
problem which has been studied in detail (see e.g. [3,4,7,21]).

Fortunately, giving a semantics to probabilistic Petri nets is much simpler
for confusion-free Petri nets [3,21], a class that already captures many control-
flow constructs of BPMN. In particular, confusion-free Petri nets strictly con-
tain Workflow Graphs, also called free-choice Workflow Nets [1,9,12,13]. In this
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paper we study free choice Workflow Nets extended with rewards and probabil-
ities. Rewards are modeled as real numbers attached to the transitions of the
workflow, while, intuitively, probabilities are attached to transitions modeling
nondeterministic choices. Our main result is the first polynomial algorithm for
computing the expected reward of a workflow.

In order to define expected rewards, we give untimed, probabilistic confusion-
free nets a semantics in terms of Markov Decision Processes (MDP), with rewards
captured by a reward function. In a nutshell, at each reachable marking the
enabled transitions are partitioned into clusters. All transitions of a cluster are
in conflict, while transitions of different clusters are concurrent. In the MDP
semantics, a scheduler selects one of the clusters, while the transition inside this
cluster is chosen probabilistically.

In our first contribution, we prove that the expected reward of a confusion-
free workflow net is independent of the scheduler resolving the nondetermin-
istic choices, and so we can properly speak of the expected reward of a free-
choice workflow. The proof relies on a result by Varacca and Nielsen [20] on
Mazurkiewicz equivalent schedulers.

Since MDP semantics of concurrent systems captures all possible interleav-
ings of transitions, the MDP of a free-choice workflow can grow exponentially in
the size of the net, and so MDP-based algorithms for the expected reward have
exponential runtime. In our second contribution we provide a polynomial-time
reduction algorithm consisting of the repeated application of a set of reduction
rules that simplify the workflow while preserving its expected reward. Our rules
are an extension to the probabilistic case of a set of rules for free-choice Colored
Workflow Nets recently presented in [9]. The rules allow one to merge two alter-
native tasks, summarize or shortcut two consecutive tasks by one, and replace a
loop with a probabilistic guard and an exit by a single task. We prove that the
rules preserve the expected reward. The proof makes crucial use of the fact that
the expected reward is independent of the scheduler.

Finally, as a third contribution we report on a prototype implementation,
and on experimental results on a benchmark suite of nearly 1500 free-choice
workflows derived from industrial business processes. We compare our algorithm
with the different algorithms based on the construction of the MDP implemented
in Prism [15].

Due to space limitations, the proofs have been deferred to the extended
version [10].

2 Workflow Nets

We recall the definition of a workflow net, and the properties of soundness and
1-safeness.

Definition 1 (Workflow Net [1]). A workflow net is a tuple W = (P, T,
F, i, o) where P is a finite set of places, T is a finite set of transitions (P ∩T = ∅),
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs, i, o ∈ P are distinguished initial and
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final places such that i has no incoming arcs and o has no outgoing arcsand the
graph (P ∪ T, F ∪ (o, i)) is strongly connected.

We write •p and p• to denote the input and output transitions of a place
p, respectively, and similarly •t and t• for the input and output places of a
transition t. A marking M is a function from P to the natural numbers that
assigns a number of tokens to each place. A transition t is enabled at M if all
places of •t contain at least one token in M . An enabled transition may fire,
removing a token from each place of •t and adding one token to each place of
t•. We write M

t−→ M ′ to denote that t is enabled at M and its firing leads to
M ′. The initial marking (final marking) of a workflow net, denoted by i (o),
puts one token on place i (on place o), and no tokens elsewhere. A sequence of
transitions σ = t1 t2 · · · tn is an occurrence sequence or firing sequence if there are
markings M1,M2, . . . ,Mn such that i

t1−→ M1 · · · Mn−1
tn−→ Mn. FinW is the set

of all firing sequences of W that end in the final marking. A marking is reachable
if some occurrence sequence ends in that marking.

i

p1 p2

p3 p4

o

t1

t2 t3 t4

t5

i

p1

p2p3

p4

o

t1t2

t4

t5t6

i

p1

p2 p3

p4 p5

o

t1 t2

t3 t4t5

t6 t7

Fig. 1. Three workflow nets

Definition 2 (Soundness and 1-safeness [1]). A workflow net is sound if the
final marking is reachable from any reachable marking, and for every transition t
there is a reachable marking that enables t. A workflow net is 1-safe if M(p) ≤ 1
for every reachable marking M and for every place p.

Figure 1 shows three sound and 1-safe workflow nets. In this paper we only
consider 1-safe workflow nets, and identify a marking with the set of places
that are marked. Markings which only mark a single place are written without
brackets and in bold, like the initial marking i. In general, deciding if a workflow
net is sound and 1-safe is a PSPACE-complete problem. However, for the class of
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free-choice workflow nets, introduced below, and for which we obtain our main
result, there exists a polynomial algorithm [6].

2.1 Confusion-Free and Free-Choice Workflow Nets

We recall the notions of independent transitions and transitions in conflict.

Definition 3 (Independent Transitions, Conflict). Two transitions t1,t2 of
a workflow net are independent if •t1 ∩ •t2 = ∅. Two transitions are in conflict
at a marking M if M enables both of them and they are not independent. The
set of transitions in conflict with a transition t at a marking M is called the
conflict set of t at M .

In Fig. 1 transitions t2 and t4 of the left workflow are independent, while t2
and t3 are in conflict. The conflict set of t2 at the marking {p1, p2} is {t2, t3},
but at the marking {p1, p4} it is {t2}.

It is easy to see that in a 1-safe workflow net two transitions enabled at a
marking are either independent or in conflict. Assume that a 1-safe workflow net
satisfies that for every reachable marking M , the conflict relation at M is an
equivalence relation. Then, at every reachable marking M we can partition the
set of enabled transitions into equivalence classes, where transitions in the same
class are in conflict and transitions of different classes are independent. Such
nets have a simple stochastic semantics: at each reachable marking an equiv-
alence class is selected nondeterministically, and then a transition of the class
is selected stochastically with probability proportional to a weight attached to
the transition. However, not every workflow satisfies this property. For example,
the workflow on the left of Figure 1 does not: at the reachable marking marking
{p1, p2} transition t3 is in conflict with both t2 and t4, but t2 and t4 are indepen-
dent. Confusion-free nets, whose probabilistic semantics is studied in [20], are a
class of nets in which this kind of situation cannot occur.

Definition 4 (Confusion-Free Workflow Nets). A marking M of a work-
flow net is confused if there are two independent transitions t1, t2 enabled at M

such that M
t1−→ M ′ and the conflict sets of t2 at M and at M ′ are different.

A 1-safe workflow net is confusion-free if no reachable marking is confused.

The workflows in the middle and on the right of Fig. 1 are confusion-free.

Lemma 1 [20]. Let W be a 1-safe, confusion-free workflow net. For every reach-
able marking of W the conflict relation on the transitions enabled at M is an
equivalence relation.

Unfortunately, deciding if a 1-safe workflow net is confusion-free is a
PSPACE-complete problem (this can be proved by an easy reduction from the
reachability problem for 1-safe Petri nets, see [8] for similar proofs). Free-choice
workflow nets are a syntactically defined class of confusion-free workflow nets.
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Definition 5 (Free-Choice Workflow Nets [1,6]). A workflow net is free-
choice if for every two places p1, p2 either p•

1 ∩ p•
2 = ∅ or p•

1 = p•
2.

The workflow in the middle of Fig. 1 is not free-choice, e.g. because of the
places p3 and p4, but the one on the right is.

It is easy to see that free-choice workflow nets are confusion-free, but even more:
in free-choice workflow nets, the conflict set of a transition t is the same at all reach-
able markings that enable t. To formulate this, we use the notion of a cluster.

Definition 6 (Transition Clusters). Let W = (P, T, F, i, o) be a free-choice
workflow net. The cluster of t ∈ T is the set of transitions [t] = {t′ ∈ T |
•t ∩ •t′ 	= ∅}.1

By the free-choice property, if a marking enables a transition of a cluster,
then it enables all of them. We say that the marking enables the cluster; we also
say that a cluster fires if one of its transitions fires.
Proposition 1.

– Let t be a transition of a free-choice workflow net. For every marking that
enables t, the conflict set of t at M is the cluster [t].

– Free-choice workflow nets are confusion-free.

3 Probabilistic Workflow Nets

We introduce Probabilistic Workflow Nets, and give them a semantics in terms
of Markov Decision Processes. We first recall some basic definitions.

3.1 Markov Decision Processes

For a finite set Q, let dist(Q) denote the set of probability distributions over Q.

Definition 7 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = (Q, q0,Steps) where Q is a finite set of states, q0 ∈ Q is
the initial state, and Steps : Q → 2dist(Q) is the probability transition function.

For a state q, a probabilistic transition corresponds to first nondeterminis-
tically choosing a probability distribution μ ∈ Steps(q) and then choosing the
successor state q′ probabilistically according to μ.

A path is a finite or infinite non-empty sequence π = q0
μ0−→ q1

μ1−→ q2 . . .
where μi ∈ Steps(qi) for every i ≥ 0. We denote by π(i) the i-th state along π
(i.e., the state qi), and by πi the prefix of π ending at π(i) (if it exists). For a
finite path π, we denote by last(π) the last state of π. A scheduler is a function
that maps every finite path π of M to a distribution of Steps(last(π)).

For a given scheduler S, let PathsS denote all infinite paths π = q0
μ0−→

q1
μ1−→ q2 . . . starting in s0 and satisfying μi = S(πi) for every i ≥ 0. We define a

probability measure ProbS on PathsS in the usual way using cylinder sets [14].
We introduce the notion of rewards for an MDP.

1 In [6] clusters are defined in a slightly different way.
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Definition 8 (Reward). A reward function for an MDP is a function
rew : S → R≥0. For a path π and a set of states F , the reward R(F, π) until
F is reached and the expected reward ES(F ) to reach F are defined as

R(F, π) :=
min{j|π(j)∈F}∑

i=0

rew(π(i)) ES(F ) :=
∫

π∈PathsS
R(F, π)dProbS

where R(F, π) is ∞ if the minimum does not exist.

3.2 Syntax and Semantics of Probabilistic Workflow Nets

We introduce Probabilistic Workflow Nets with Rewards, just called Probabilis-
tic Workflow Nets or PWNs in the rest of the paper.

Definition 9 (Probabilistic Workflow Net with Rewards). A Probabilis-
tic Workflow Net with Rewards(PWN) is a tuple (P, T, F, i, o, w, r) where (P, T,
F, i, o) is a 1-safe confusion-free workflow net, and w, r : T → R

+ are a weight
function and a reward function, respectively.
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Fig. 2. Running example

Figure 2a shows a free-choice PWN. All transitions have reward 1, and so
only the weights are represented. Unlabeled transitions have weight 1.

The semantics of a PWN is an MDP with a reward function. Intuitively, the
states of the MDP are pairs (M, t), where M is a marking, and t is the transition
that was fired to reach M (since the same marking can be reached by firing differ-
ent transitions, the MDP can have states (M, t1), (M, t2) for t1 	= t2). Addition-
ally there is a distinguished initial and final states I,O. The transition relation
Steps is independent of the transition t, i.e., Steps((M, t1)) = Steps((M, t2)) for
any two transitions t1, t2, and the reward of a state (M, t) is the reward of the
transition t. Figure 2b shows the MDP of the PWN of Fig. 2a, representing only
the states reachable from the initial state.
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Definition 10 (Probability Distribution). Let W = (P, T, F, i, o, w, r) be a
PWN, let M be a 1-safe marking of W enabling at least one transition, and
let C be a conflict set enabled at M . The probability distribution PM,C over
T is obtained by normalizing the weights of the transitions in C, and assigning
probability 0 to all other transitions.

Definition 11 (MDP and Reward Function of a PWN). Let W = (P, T, F
, i, o, w, r) be a PWN. The MDP MW = (Q, q0,Steps) of W is defined as follows:

– Q = (M × T ) ∪ {I,O} where M are the 1-safe markings of W, and q0 = I.
– For every transition t:

• Steps((o, t)) contains exactly one distribution, which assigns probability 1
to state o, and probability 0 to all other states.

• For every marking M 	= o enabling no transitions, Steps((M, t)) con-
tains exactly one distribution, which assigns probability 1 to (M, t), and
probability 0 to all other states.

• For every marking M enabling at least one transition, Steps((M, t)) con-
tains a distribution μC for each conflict set C of transitions enabled at M .
The distribution μC is defined as follows. For the states I,O: μC(I) =

0 = μC(O). For each state (M ′, t′) such that t′ ∈ C and M
t′
−→ M ′:

μC((M ′, t′)) = PM,C(t′). For all other states (M ′, t′): μC((M ′, t′)) = 0.
• Steps(I) = Steps((i, t)) for any transition t.
• Steps(O) = Steps((o, t)) for any transition t.

The reward function rewW of W is defined by: rewW(I) = 0 = rewW(O), and
rewW((M, t)) = r(t).

In Fig. 2a, Steps(i) is a singleton set that contains the probability distribution
which assigns probability 2

5 to the state (p1, t1) and probability 3
5 to the state

({p2, p3}, t2). Steps(({p2, p3}, t2)) contains two probability distributions, that
assign probability 1 to ({p5, p3}, t4) and ({p2, p6}, t4), respectively.

We define a correspondence between firing sequences and MDP paths.

Definition 12. Let W be a PWN, and let MW be its associated MDP. Let
σ = t1t2 . . . tn be a firing sequence of W. The path Π(σ) of MW corresponding
to σ is πσ = I

μ0−→ (M1, t1)
μ1−→ (M2, t2)

μ2−→ . . ., where M0 = i and for every
1 ≤ k:

– Mk is the marking reached by firing t1 . . . tk from i, and
– μk is the unique distribution of Steps(Mk−1, tk−1) such that μ(tk) > 0.

Let π = I
μ0−→ (M1, t1) · · · (Mn, tn) be a path of MW . The sequence Σ(π) corre-

sponding to π is σπ = t1 . . . tn.

It follows immediately from the definition of MW that the functions Π and
Σ are inverses of each other. For a path π of the MDP that ends in state last(π),
the distributions in Steps(last(π)) are obtained from the conflict sets enabled
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after Σ(π) has fired, if any. If no conflict set is enabled the choice is always trivial
by construction. Therefore, a scheduler of the MDP MW can be equivalently
defined as a function that assigns to each firing sequence σ ∈ T ∗ one of the
conflict sets enabled after σ has fired. In our example, after t2 fires, the conflict
sets {t3} and {t4} are concurrently enabled. A scheduler chooses either {t3} or
{t4}. A possible scheduler always chooses {t3} every time the marking {p2, p3}
is reached, and produces sequences in which t3 always occurs before t4, while
others may behave differently.

Convention: In the rest of the paper we define schedulers as functions from
firing sequences to conflict sets.

In particular, this definition allows us to define the probabilistic language
of a scheduler as the function that assigns to each finite firing sequence σ the
probability of the cylinder of all paths that “follow” σ. Formally:

Definition 13 (Probabilistic Language of a Scheduler [20]). The prob-
abilistic language νS of a scheduler S is the function νS : T ∗ → R

+ defined
by νS(σ) = ProbS(cylS(Π(σ))). A transition sequence σ is produced by S if
νS(σ) > 0.

The reward function extends to transition sequences in the natural way by
taking the sum of all rewards. In pictures, we label transitions with pairs (w, c),
where w is a weight and c a reward. See for example Fig. 3a.

We now introduce the expected reward of a PWN under a scheduler.

Definition 14 (Expected Reward of a PWN Under a Scheduler). Let
W be a PWN, and let S be a scheduler of its MDP MW . The expected reward
V S(W) of W under S is the expected reward ES(O) to reach the final state O
of MW .

Given a firing sequence σ, we have r(σ) = R(O,Π(σ)) by the definition of
the reward function and the fact that O can only occur at the very end of πσ.

Lemma 2. Let W be a sound PWN, and let S be a scheduler. Then V S(W) is
finite and V S(W) =

∑
π∈Π R(O, π) · ProbS(cylS(π)) =

∑
σ∈FinW r(σ) · νS(σ),

where ΠO are the paths of the MDP MW leading from the initial state I to the
state O (without looping in O).

3.3 Expected Reward of a PWN

Using a result by Varacca and Nielsen [20], we prove that the expected reward of
a PWN is the same for all schedulers, which allows us to speak of “the” expected
reward of a PWN. We first define partial schedulers.

Definition 15 (Partial Schedulers). A partial scheduler of length n is the
restriction of a scheduler to firing sequences of length less than n. Given two
partial schedulers S1, S2 of lengths nS1 , nS2 , we say that S1 extends S2 if nS1 ≥
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nS2 and S2 is the restriction of S1 to firing sequences of length less than nS2 .
The probabilistic language νS of a partial scheduler S of length n is the function
νS : T≤n → R

+ defined by νS(σ) = ProbS(cylS(Π(σ))). A transition sequence σ
is produced by S if νS(σ) > 0.

Observe that if σ is not a firing sequence, then νS(σ) = 0 for every scheduler
S. In our running example there are exactly two partial schedulers S1, S2 of
length 2; after t2 they choose t3 or t4, respectively: S1 : ε �→ {t1, t2} t1 �→
{t6} t2 �→ {t3} and S2 : ε �→ {t1, t2} t1 �→ {t6} t2 �→ {t4}. We have
νS1(t2t3) = 3/5, and νS2(t2t3) = 0.

For finite transition sequences, Mazurkiewicz equivalence, denoted by ≡, is
the smallest congruence such that σt1t2σ

′ ≡ σt2t1σ
′ for every σ, σ′ ∈ T ∗ and for

any two independent transitions t1, t2 [17]. We extend Mazurkiewicz equivalence
to partial schedulers.

Definition 16 (Mazurkiewicz Equivalence of Partial Schedulers). Given
a partial scheduler S of length n, we denote by FS the set of firing sequences σ
of W produced by S such that either |σ| = n or σ leads to a marking that enables
no transitions.

Two partial schedulers S1, S2 with probabilistic languages νS1 and νS2 are
Mazurkiewicz equivalent, denoted S1 ≡ S2, if they have the same length and
there is a bijection φ : FS1 → FS2 such that σ ≡ φ(σ) and νS1(σ) = νS2(φ(σ))
for every σ ∈ Fn.

The two partial schedulers of our running example are not Mazurkiewicz
equivalent. Indeed, we have FS1 = {t1t6, t2t3} and FS2 = {t1t6, t2t4}, and no
bijection satisfies σ ≡ φ(σ) for every σ ∈ FS1 . We can now present the main
result of [20], in our terminology and for PWNs.2

Theorem 1 (Equivalent Extension of Schedulers [20]3). Let S1, S2 be
two partial schedulers. There exist two partial schedulers S′

1, S′
2 such that S′

1

extends S1, S′
2 extends S2 and S′

1 ≡ S′
2.

In our example, S1 can be extended to S′
1 by adding t1t6 �→ ∅ and t2t3 �→ t4,

and S2 to S′
2 by adding t1t6 �→ ∅ and t2t4 �→ t3. Now we have FS′

1
= {t1t6, t2t3t4}

and FS′
2

= {t1t6, t2t4t3}. The obvious bijection shows S′
1 ≡ S′

2, because we have
t2t3t4 ≡ t2t4t3 and νS′

1
(t2t3t4) = 3/5 = νS2(t2t4t3).

Using Theorem 1, we are able to prove one of our central theorems.

Theorem 2. Let W be a PWN. There exists a value v such that for every
scheduler S of MW , the expected reward V S(W) is equal to v.

2 In [20], enabled conflict sets are called actions, and markings are called cases.
3 Stated as Theorem 2, the original paper gives this theorem with S′

1 and S′
2 being

(non-partial) schedulers. However, in the paper equivalence is only defined for partial
schedulers and the schedulers constructed in the proof are also partial.
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Proof Sketch. Given two schedulers, we construct a bijection between the transi-
tion sequences they produce that end in the final marking. This bijection maps
each transition sequence to a Mazurkiewicz equivalent one. To do this, for each
k ≥ 0 we reduce the schedulers to partial schedulers of length k, extend them to
equivalent schedulers using Theorem 1, and map every sequence of length k one
of them produces to a Mazurkiewicz equivalent one of the other. Since equivalent
transition sequences have the same reward, applying Lemma 2 yields that the
values of the two schedulers are equal.

Free-choice PWNs. By Proposition 1, in free-choice PWNs the conflict set of a
given transition is its cluster, and so its probability is the same at any reachable
marking enabling it. We label a transition directly with this probability.

Convention: We assume that the weights of the transitions of a cluste are
normalized, i.e. the weights are already a probability distribution.

In the next section we present a reduction algorithm that decides if a given
free-choice PWN is sound or not, and if sound computes its expected reward. If
the PWN is unsound, then we just apply the following lemma:

Lemma 3. The expected reward of an unsound free-choice PWN is infinite.

4 Reduction Rules

We transform the reduction rules of [9] for non-probabilistic (colored) workflow
nets into rules for probabilistic workflow nets.

Definition 17 (Rules, Correctness, and Completeness). A rule R is a
binary relation on the set of PWNs. We write W1

R−→ W2 for (W1,W2) ∈ R.
A rule R is correct if W1

R−→ W2 implies that W1 and W2 are either both
sound or both unsound, and have the same expected reward.

A set R of rules is complete for a class of PWNs if for every sound PWN
W in that class there exists a sequence W R1−−→ W1 · · · Rn−−→ W ′ such that W ′ is a
PWN consisting of a single transition t between the two only places i and o.

As in [9], we describe rules as pairs of a guard and an action. W1
R−→ W2

holds if W1 satisfies the guard, and W2 is a possible result of applying the action
to W1.

Merge Rule. The merge rule merges two transitions with the same input and
output places into one single transition. The weight of the new transition is the
sum of the old weights, and the reward is the weighted average of the reward of
the two merged transitions.

Guard: W contains two transitions t1 	= t2 such that •t1 = •t2 and t•1 = t•2.

Action: (1) T := (T \ {t1, t2}) ∪ {tm}, where tm is a fresh name.
(2) t•m := t•1 and •tm := •t1.
(3) r(tm) := w(t1) · r(t1) + w(t2) · r(t2).
(4) w(tm) = w(t1) + w(t2).
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Iteration Rule. Loosely speaking, the iteration rule removes arbitrary iterations
of a transition by adjusting the weights of the possible successor transitions.
The probabilities are normalized again and the reward of each successor transi-
tion increases by a geometric series dependent on the reward and weight of the
removed transition.

Guard: W contains a cluster c with a transition t ∈ c such that t• = •t.

Action: (1) T := (T \ {t}).
(2) For all t′ ∈ c \ {t}: r(t′) := w(t)

1−w(t) · r(t) + r(t′)

(3) For all t′ ∈ c \ {t}: w(t′) := w(t′)
1−w(t)

Observe that w(t)
1−w(t) · r(t) = (1 − w(t)) · ∑∞

i=0 w(t)i · i · r(t) captures the fact
that t can be executed arbitrarily often, each execution yields the reward r(t),
and eventually some other transition occurs. For an example of an application
of the iteration rule, consult Fig. 3b and c. Transition t9 has been removed and
as a result the label of transition t7 changed.

Shortcut rule. The shortcut rule merges transitions of two clusters into one single
transition with the same effect. The reward of the new transition is the sum of
the rewards of the old transitions, and its weight the product of the old weights.

A transition t unconditionally enables a cluster c if •t′ ⊆ t• for some transition
t′ ∈ c. Observe that if t unconditionally enables c then any marking reached by
firing t enables every transition in c.

Guard: W contains a transition t and a cluster c 	= [t] such that t
unconditionally enables c.

Action: (1) T := (T \ {t}) ∪ {t′s | t′ ∈ c}, where t′s are fresh names.
(2) For all t′ ∈ c: •t′s := •t and t′s

• := (t• \ •t′) ∪ t′•.
(3) For all t′ ∈ c: r(t′s) := r(t) + r(t′).
(4) For all t′ ∈ c: w(t′s) = w(t) · w(t′).
(5) If •p = ∅ for all p ∈ c, then remove c from W.

For an example shortcut rule application, compare the example of Fig. 2a
with the net in Fig. 3a. The transition t1 which unconditionally enabled the
cluster [t6] has been shortcut, a new transition t8 has been created, and t1, p1
and t6 have been removed.

Theorem 3. The merge, shortcut and iteration rules are correct for PWNs.

Proof. That the rules preserve soundness is shown in [9]. To show that the rules
preserve the expected reward we use Theorem 2: For each rule, we carefully
choose schedulers for the PWNs before and after the application of the rule, and
show that their expected rewards are equal. We sketch the idea for the shortcut
rule. Let W1, W2 be such that W1

shortcut−−−−−→ W2. Let c, t be as in Definition 4.
Let S1 be a scheduler for W1 such that S1(σ1) = c if σ1 ends with t. We define
a bijection φ that maps firing sequences in W2 to firing sequences in W1 by
replacing every occurrence of t′s by t t′. We define a scheduler S2 for W2 by
S2(σ2) = S1(φ(σ2)). Let now σ2 be a firing sequence in W2 and let σ1 = φ(σ2).
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We prove that σ1 and σ2 have the same reward and also νS1(σ1) = νS2(σ2).
Indeed, since the only difference is that every occurrence of t′s is replaced by
t t′ and r(t′S) = r(t) + r(t′) and w(t′s) = w(t)w(t′) by the definition of the
shortcut rule, the reward must be equal and νS1(σ1) = νS2(σ2). We now use
these equalities, the fact that there is a bijection between firing sequences that
end with the final marking, and Lemma2:

V (W2) =
∑

σ2∈FinW2

r(σ2) · νS2(σ) =
∑

σ2∈FinW2

r(φ(σ2)) · νS1(φ(σ2))

=
∑

σ1∈FinW1

r(σ1) · νS1(σ1) = V (W1). ��

In [9] we provide a reduction algorithm for non-probabilistic free-choice work-
flow, and prove the following result.

Theorem 4 (Completeness [9]). The reduction algorithm summarizes every
sound free choice workflow net in at most O(|C|4·|T |) applications of the shortcut
rule and O(|C|4 + |C|2 · |T |) applications of the merge and iteration rules, where
C is the set of clusters of the net. Any unsound free-choice workflow nets can be
recognized as unsound in the same number of rule applications.

We illustrate a complete reduction by reducing the example of Fig. 2a. We
set the reward for each transition to 1, so the expected reward of the net is the
expected number of transition firings until the final marking is reached. Initially,
t1 unconditionally enables [t6] and we apply the shortcut rule. Since [t6] = {t6},
exactly one new transition t8 is created. Furthermore t1, p1 and t6 are removed
(Fig. 3a). Now, t5 unconditionally enables [t3] and [t4]. We apply the shortcut
rule twice and call the result t9 (Fig. 3b). Transition t9 now satisfies the guard of
the iteration rule and can be removed, changing the label of t7 (Fig. 3c). Since
t2 unconditionally enables [t3] and [t4], we apply the shortcut rule twice and
call the result t10 (Fig. 3d). After short-cutting t10, we apply the merge rule
to the two remaining transitions, which yields a net with one single transition
labeled by (1, 5) (Fig. 3e). So the net terminates with probability 1 after firing 5
transitions in average.

Fixing a Scheduler. Since the expected reward of a PWN W is independent of the
scheduler, we can fix a scheduler S and compute the expected reward V S(W).
This requires to compute only the Markov chain induced by S, which can be
much smaller than the MDP. However, it is easy to see that this idea does not
lead to a polynomial algorithm. Consider the free-choice PWN of Fig. 4, and the
scheduler that always chooses the largest enabled cluster according to the order
{t11, t12} > · · · > {tn1, tn2} > {u11} > {u12} > · · · > {un1} > {un2}. Then
for every subset K ⊂ {1, . . . , n} the Markov chain contains a state enabling
{ui1 | i ∈ K}∪{ui2 | i /∈ K}, and has therefore exponential size. There might be
a procedure to find a suitable scheduler for a given PWN such that the Markov
chain has polynomial size, but we do not know of such a procedure.
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5 Experimental Evaluation

We have implemented our reduction algorithm as an extension of the algorithm
described in [9]. In this section we report on its performance and on a comparison
with Prism [15].

Industrial benchmarks. The benchmark suite consists of 1385 free-choice work-
flow nets, previously studied in [11], of which 470 nets are sound. The workflows
correspond to business models designed at IBM. Since they do not contain prob-
abilistic information, we assigned to each transition t the probability 1 / |[t]| (i.e.,
the probability is distributed uniformly among the transitions of a cluster). We
study the following questions, which can be answered by both our algorithm and
Prism: Is the probability to reach the final marking equal to one (equivalent to
“is the net sound?”). And if so, how many transitions must be fired in average
to reach the final marking? (This corresponds to a reward function assigning
reward 1 to each transition.)

All experiments were carried out on an i7-3820 CPU using 1 GB of memory.
Prism has three different analysis engines able to compute expected rewards:

explicit, sparse and symbolic (bdd). In a preliminary experiment with a timeout
of 30 s, we observed that the explicit engine clearly outperforms the other two:
It solved 1309 cases, while the bdd and sparse engines only solved 636 and
638 cases, respectively. Moreover, 418 and 423 of the unsolved cases were due
to memory overflow, so even with a larger timeout the explicit engine is still
leading. For this reason, in the comparison we only used the explicit engine.

After increasing the timeout to 10 min, the explicit engine did not solve any
further case, leaving 76 cases unsolved. This was due to the large state space of
the nets: 69 out of the 76 have over 106 reachable states.

The 1309 cases were solved by the explicit engine in 353 s, with about 10 s
for the larger nets. Our implementation solved all 1385 cases in 5 s combined. It
never needs more than 20 ms for a single net, even for those with more than 107

states.
In the unsound case, our implementation still reduces the reachable state

space, which makes it easier to apply state exploration tools. After reduction,
the 69 nets with at least 106 states had an average of 5950 states, with the largest
at 313443 reachable states.

An Academic Benchmark. Many workflows in our suite have a large state space
because of fragments modeling the following situation. Multiple processes do a
computation step in parallel, after which they synchronize. Process i may execute
its step normally with probability pi, or a failure may occur with probability 1−pi,
which requires to take a recovery action and therefore has a higher cost. Such a
scenario is modeled by the free-choice PWNs net of Fig. 5a, where the probabili-
ties and costs are chosen at random. The scenario can also be easily modeled in
Prism. Figure 5b shows the time needed by the three Prism engines and by our
implementation for computing the expected reward using a time limit of 10 min.
The number of reachable states grows exponentially in the number processes, and
the explicit engine runs out of memory for 15 processes, the symbolic engine times
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out for 13 processes, and the sparse engine reaches the time limit at 20 processes.
However, since the rule-based approach does not need to construct the state space,
we can easily solve the problem with up to 500 processes.

6 Conclusion

We have presented a set of reduction rules for PWNs with rewards that preserve
soundness and the expected reward of the net, and are complete for free-choice
PWNs. While the semantics and the expected reward are defined via an asso-
ciated MDP, our rules work directly on the workflow net. The rules lead to the
first polynomial-time algorithm to compute the expected reward.

In future work we want to generalize our algorithm to compute the probabil-
ity of non-termination and the conditional expected reward under termination,
which is of interest in the unsound case, and also to compute the expected time
to termination for timed workflow nets.

Acknowledgments. We thank the anonymous referees for their comments, and espe-
cially the one who helped us correct a mistake in Lemmas 2 and 3.
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