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Abstract. Application partitioning splits the executions into local and
remote parts. Through optimal partitioning, the device can obtain the
most benefit from computation offloading. Due to unstable resources at
the wireless network (bandwidth fluctuation, network latency, etc.) and
at the service nodes (different speed of the mobile device and cloud server,
memory, etc.), static partitioning solutions in previous work with fixed
bandwidth and speed assumptions are unsuitable for mobile offloading
systems. In this paper, we study how to effectively and dynamically par-
tition a given application into local and remote parts, while keeping the
total cost as small as possible. We propose a novel min-cost offloading
partitioning (MCOP) algorithm that aims at finding the optimal par-
titioning plan (determine which portions of the application to run on
mobile devices and which portions on cloud servers) under different cost
models and mobile environments. The simulation results show that the
proposed algorithm provides a stable method with low time complexity
which can significantly reduce execution time and energy consumption
by optimally distributing tasks between mobile devices and cloud servers,
and in the meantime, it can well adapt to environmental changes, such
as network perturbation.

Keywords: Mobile cloud computing · Communication networks ·
Offloading · Cost graph · Application partitioning

1 Introduction

Along with the maturity of mobile cloud computing, mobile cloud offloading is
becoming a promising method to reduce task execution time and prolong battery
life of mobile devices. Its main idea is to improve execution by migrating heavy
computation from mobile devices to resourceful cloud servers and then receiving
the results from them via wireless networks. Offloading is an effective way to
overcome constraints in resources and functionalities of mobile devices since it
can release them from intensive processing.
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Offloading all computation components of an application to the remote cloud
is not always necessary or effective. Especially for some complex applications
(e.g., QR-code recognition [1], online social applications [2], health monitoring
using body sensor networks [3]) that can be divided into a set of independent
parts, a mobile device should judiciously determine whether to offload compu-
tation and which portion of the application should be offloaded to the cloud.
Offloading decisions [4,5] must be taken for all parts, and the decision made for
one part may depend on the one for other parts. As mobile computing increas-
ingly interacts with the cloud, a number of approaches have been proposed, e.g.,
MAUI [6] and CloneCloud [7], aiming at offloading some parts of the mobile
application execution to the cloud. To achieve good performance, they particu-
larly focus on a specific application partitioning problem, i.e., to decide which
parts of an application should be offloaded to powerful servers in a remote cloud
and which parts should be executed locally on mobile devices such that the
total execution cost is minimized. Through partitioning, a mobile device can
benefit most from offloading. Thus, partitioning algorithms play a critical role
in high-performance offloading systems.

The main costs for mobile offloading systems are the computational cost for
local and remote execution, respectively, and the communication cost due to
the extra communication between the mobile device and the remote cloud. Pro-
gram execution can naturally be described as a graph in which vertices represent
computation that are labelled with the computation costs and edges reflect the
sequence of computation labelled with communication costs [8] where computa-
tion is carried out in different places. By partitioning the vertices of a graph, the
calculation can be divided among processors of local mobile devices and remote
cloud servers. Traditional graph partitioning algorithms (e.g., [9–11]) cannot
be applied directly to the mobile offloading systems, because they only con-
sider the weights on the edges of the graph, neglecting the weight of each node.
Our research is situated in the context of resource-constrained mobile devices,
in which there are often multi-objective partitioning cost functions subject to
variable vertex cost, such as minimizing the total response time or energy con-
sumption on mobile devices by offloading partial workloads to a cloud server
through links with fluctuating reliability.

The problem of whether or not to offload certain parts of an application to the
cloud depends on the following factors: CPU speed of mobile device, speed of the
cloud server [12], network bandwidth and reliability, and transmission data size.
In this paper, we improve the performance of static partitioning by taking unsta-
ble network and cloud conditions into consideration. We explore methods of how
to deploy such an offloadable application in a more suitable way by dynamically
and automatically determining which parts of the application should be computed
on the cloud server and which parts should be left on the mobile device to achieve
a particular performance and dependability target (low latency, minimization of
energy consumption, low response time, in thepresence of unreliable links etc.) [13].
We study how to disintegrate and distribute modules of an application between the
mobile side and cloud side, and effectively utilize the cloud resources. We construct
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a weighted consumption graph (WCG) according to estimated computation and
communication costs, and further derive a novel min-cost offloading partitioning
(MCOP) algorithm designed especially for mobile offloading systems. The MCOP
algorithm aims at finding the optimal partitioning plan that minimizes a given
objective function (response time, energy consumption or theweighted sumof time
and energy) and can be applied to WCGs of arbitrary topology.

The remainder of this paper is organized as follows. Section 2 introduces the
partitioning models. An optimal partitioning algorithm for arbitrary topology is
proposed and investigated in Sect. 3. Section 4 gives some evaluation and simu-
lation results. Finally, the paper is summarized in Sect. 5.

2 Partitioning Models

2.1 Classification of Application Tasks

Applications in a mobile device normally consist of several tasks. Since not all
the application tasks are suitable for remote execution, they need to be weighed
and distinguished as:

– Unoffloadable Tasks: some tasks should be unconditionally executed locally
on the mobile device, either because transferring relevant information would
use too much time and energy or because these tasks must access local com-
ponents (camera, GPS, user interface, accelerometer or other sensors etc.)
[6]. Tasks that might cause security issues when executed in a different place
should not be offloaded either (such as e-commerce). Local processing con-
sumes battery power of the mobile device, but there are no communication
costs or delays.

– Offloadable Tasks: some application components are flexible tasks that can
be processed either locally on the processor of the mobile device, or remotely
in a cloud infrastructure. Many tasks fall into this category, and the offloading
decision depends on whether the communication costs outweigh the difference
between local and remote costs or not [14].

For unoffloadable components no offloading decisions must be taken. However,
as for offloadable ones, since offloading all the application tasks to the remote cloud
is not necessary or effective under all circumstances, it is worth considering what
should be executed locally on the mobile device and what should be offloaded to the
remote cloud for execution based on available networks, response time or energy
consumption. The mobile device has to take an offloading decision based on the
result of a dynamic optimization problem.

2.2 Construction of Consumption Graphs

There are two types of cost in offloading systems: one is computational cost
of running an application tasks locally or remotely (including memory cost,
processing time cost etc.) and the other is communication cost for the application
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Fig. 1. Construction of Consumption Graph (CG) and Weighted Consumption Graph
(WCG). (Color figure online)

tasks’ interaction (associated with movement of data and requisite messages).
Even the same task can have different cost on the mobile device and in the cloud
in terms of execution time and energy consumption. As cloud servers usually
process much faster than mobile devices having a powerful configuration, energy
can be saved and performance improved when offloading part of the computation
to remote servers [15]. However, when vertices are assigned to different sides, the
interaction between them leads to extra communication costs. Therefore, we try
to find the optimal assignment of vertices for graph partitioning and computation
offloading by trading off the computational cost against the communication cost.

Call graphs are widely used to describe data dependencies within a compu-
tation, where each vertex represents a task and each edge represents the calling
relationship from the caller to the callee. Figure 1(a) shows a CG example consist-
ing of six tasks [16]. The computation costs are represented by vertices, while
the communication costs are expressed by edges. We depict the dependency
of application tasks and their corresponding costs as a directed acyclic graph
G = (V,E), where the set of vertices V = (v1, v2, · · · , vN ) denotes N application
tasks and an edge e(vi, vj) ∈ E represents the frequency of invocation and data
access between nodes vi and vj , where vertices vi and vj are neighbors. Each
task vi is characterized by five parameters:

– type: offloadable or unoffloadable task.
– mi: the memory consumption of vi on a mobile device platform,
– ci: the size of the compiled code of vi,
– inij : the data size of input from vi to vj ,
– outji: the data size of output from vj to vi.

We further construct a WCG as depicted in Fig. 1(b). Each vertex v ∈ V is
annotated with two cost weights: w(v) =< wlocal(v), wcloud(v) >, where wlocal(v)
and wcloud(v) represent the computation cost of executing the task v locally on
the mobile device and remotely on the cloud, respectively. Each vertex is assigned
one of the values in the tuple depending on the partitioning result of the resulting
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application graph [17]. The edge set E ⊂ V × V represents the communication
cost amongst tasks. The weight of an edge w(e(vi, vj)) is denoted as:

w(e(vi, vj)) =
inij

Bupload
+

outij
Bdownload

, (1)

which is the communication cost of transferring the input and return states when
the tasks vi and vj are executed on different sides, and it closely depends on the
network bandwidth (upload Bupload and download Bdownload) and reliability as
well as the amount of transferred data.

A candidate offloading decision is described by one cut in the WCG, which
separates the vertices into two disjoint sets, one representing tasks that are exe-
cuted on the mobile device and the other one implying tasks that are offloaded
to the remote server [18]. Hence, taking the optimal offloading decision is equiva-
lent to partitioning the WCG into those two sets such that an objective function
is minimized.

The red dotted line in Fig. 1(b) is one possible partitioning cut, indicating the
partitioning of computational workload in the application between the mobile
side and the cloud side. Vl and Vc are sets of vertices, where Vl is the local set
in which tasks are executed locally at the mobile side and Vc is the cloud set
in which tasks are directly offloaded to the cloud. We have Vl ∩ Vc = ∅ and
Vl ∪ Vc = V . Further, Ecut is the edge set in which the graph is cut into two
parts.

2.3 Cost Models

Mobile application partitioning aims at finding the optimal partitioning solution
that leads to the minimum execution cost, in order to make the best tradeoff
between time/energy savings and transmission costs/delay.

The optimal partitioning decision depends on user requirements/expecta-
tions, device information, network bandwidth and reliability, and the applica-
tion itself. Device information includes the execution speed of the device and the
workloads on it when the application is launched. For a slow device where the
aim is to reduce execution time, it is better to offload more computation to the
cloud. Network bandwidth and reliability affects data transmission for remote
execution. If the bandwidth and reliability is very high, the cost in terms of data
transmission will be low. In this case, it is better to offload more computation
to the cloud.

The partitioning decision is made based on a cost estimate (computation and
communication costs) before program execution. On the basis of Fig. 1(b), the
overall cost can be calculated as:

Ctotal=
∑

v∈V

Iv · wlocal(v)

︸ ︷︷ ︸
local

+
∑

v∈V

(1 − Iv) · wcloud(v)

︸ ︷︷ ︸
remote

+
∑

e(vi,vj)∈E

Ie · w(e(vi, vj))

︸ ︷︷ ︸
communication

,(2)

where Ctotal is the sum of computation costs (local and remote) and communi-
cation costs of cut affected edges.
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The cloud server node and the mobile device node must belong to different
partitions. One possible solution for this partitioning problem will give us an
arbitrary tuple of partitions from the set of vertices < Vl, Vc > and the cut of
edge set Ecut in the following way:

Iv =
{

1, if v ∈ Vl

0, if v ∈ Vc
and Ie =

{
1, if e ∈ Ecut

0, if e /∈ Ecut
. (3)

We seek to find an optimal cut: Imin =
{
Iv, Ie|Iv, Ie ∈ {0, 1}}

in the WCG
such that some application tasks are executed on the mobile side and the remain-
ing ones on the cloud side, while satisfying the general goal of a partition:
Imin = arg minI Ctotal(I). The dynamic execution configuration of an elastic
application can be decided based on different saving objectives with respect
to response time and energy consumption. Since the communication time and
energy cost for the mobile device will vary according to the amount of data to be
transmitted and the wireless network conditions. A task’s offloading goals may
change due to a change in environmental conditions.

Minimum Response Time. The communication cost depends on the size
of data transfer and the network bandwidth, while the computation time has
an impact on its cost. If the minimum response time is selected as objective
function, we can calculate the total time spent due to offloading as:

Ttotal(I) =
∑

v∈V

Iv · T l
v

︸ ︷︷ ︸
local

+
∑

v∈V

(1 − Iv) · T c
v

︸ ︷︷ ︸
remote

+
∑

e∈E

Ie · T tr
e

︸ ︷︷ ︸
communication

, (4)

where T l
v = F · T c

v is the computation time of task v on the mobile device when
it is executed locally; F is the speedup factor, the ratio of the cloud server’s
processing speed compared to that of the mobile device. T c

v is the computa-
tion time of task v on the cloud server when it is offloaded; T tr

e = Dtr
e /B is

the communication time between the mobile device and the cloud; Dtr
e is the

amount of data that is transmitted and received; finally, B is the current wireless
bandwidth weighed with the reliability of the network.

Minimum Energy Consumption. If the minimum energy consumption is
chosen as the objective function, we can calculate the total energy consumed
due to offloading as:

Etotal(I) =
∑

v∈V

Iv · El
v

︸ ︷︷ ︸
local

+
∑

v∈V

(1 − Iv) · Ei
v

︸ ︷︷ ︸
idle

+
∑

e∈E

Ie · Etr
e

︸ ︷︷ ︸
communication

, (5)

where El
v = pm · T l

v is the energy consumed by task v on the mobile device
when it is executed locally; Ei

v = pi · T c
v is the energy consumed by task v on

the mobile device when it is offloaded to the cloud; Ee = ptr · T tr
e is the energy



An Optimal Offloading Partitioning Algorithm in Mobile Cloud Computing 317

spent on the communication between the mobile device and the cloud including
possibly necessary retransmissions; pm, pi and ptr are the powers of the mobile
device for computing, while being idle and for data transfer, respectively.

Minimum of the Weighted Sum of Time and Energy. If we combine
both the response time and energy consumption, we can design a cost model for
partitioning as follows [19]:

Wtotal(I) = ω · Ttotal(I)
Tlocal

+ (1 − ω) · Etotal(I)
Elocal

, (6)

where 0 ≤ ω ≤ 1 is a weighting parameter used to share relative importance
between the response time and energy consumption. Large ω favors response
time while small ω favors energy consumption [20,21]. Performance can be traded
for power consumption and vice versa [22,23], therefore we can use ω to express
preferences for different applications. If Ttotal(I)/Tlocal is less than 1, the parti-
tioning will improve the application’s performance. Similarly, if Etotal(I)/Elocal

is less than 1, it will reduce the energy consumption.
We only perform the partitioning when it is beneficial. Not all applications

can benefit from partitioning because of application-specific properties. A pre-
calibration of the computation cost on each device is necessary. Offloading is
beneficial only if the speedup of the cloud server outweighs the extra communi-
cation cost. We compare the partitioning results with two other intuitive strate-
gies without partitioning and, for ease of reference, we list all three kinds of
offloading techniques:

– No Offloading (Local Execution): all computation tasks of an application are
running locally on the mobile device and there is no communication cost.
This may be costly since the mobile device is limited in processing speed and
battery life as compared to the powerful computing capability at the cloud
side.

– Full Offloading : all computation tasks of mobile applications (except the unof-
floadable tasks) are moved from the local mobile device to the remote cloud for
execution. This may significantly reduce the implementation complexity, which
makes the mobile devices lighter and smaller. However, full offloading is not
always the optimal choice since different application tasks may have different
characteristics that make them more or less suitable for offloading [24].

– Partial Offloading (With Partitioning): with the help of the MCOP algorithm,
all tasks including unoffloadable and offloadable ones are partitioned into two
sets, one for local execution on the mobile device and the other for remote
execution on a cloud server node. Before a task is executed, it may require a
certain amount of data from other tasks. Thus, data migration via wireless
networks is needed between tasks that are executed at different sides.

We define the saved cost in the partial offloading scheme compared to that
in the no offloading scheme as Offloading Gain, which can be formulated as:

Offloading Gain = 1 − Partial Offloading Cost

No Offloading Cost
· 100%. (7)
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3 Partitioning Algorithm for Offloading

In this section, we introduce the min-cost offloading partitioning (MCOP) algo-
rithm for WCGs of arbitrary topology. The MCOP algorithm takes a WCG
as input in which an application’s operations/calculations are represented as
the nodes and the communication between them as the edges. Each node has
two costs: first the cost of performing the operation locally (e.g., on the mobile
device) and second the cost of performing it elsewhere (e.g., in the cloud). The
weight of the edges is the communication cost to the offloaded computation.
We assume that the communication cost between tasks in the same location
is negligible. The result contains information about the cost and reports which
operations should be performed locally and which should be offloaded.

3.1 Steps

The MCOP algorithm can be divided into two steps as follows:

1. Unoffloadable Vertices Merging: An unoffloadable vertex is the one that has
special features making it unable to be migrated outside of the mobile device
and thus it is located only in the unoffloadable partition. Apart from this,
we can choose any task to be executed locally according to our preferences
or other reasons. Then all vertices that are not going to be migrated to the
cloud are merged into one that is selected as the source vertex. By ‘merging’,
we mean that these nodes are coalesced into one, whose weight is the sum of
the weights of all merged nodes. Let G represent the original graph after all
the unoffloadable vertices are merged.

2. Coarse Partitioning: The target of this step is to coarsen G to the coarsest
graph G|V |. To coarsen means to merge two nodes and reduce the node count
by one. Therefore, the algorithm has |V | − 1 phases. In each phase i (for
1 ≤ i ≤ |V | − 1), the cut value, i.e. the partitioning cost in a graph Gi =
(Vi, Ei) is calculated. Gi+1 arises from Gi by merging “suitable nodes”, where
G1 = G. The partitioning results are the minimum cut among all the cuts in
an individual phase i and the corresponding group lists for local and cloud
execution. Furthermore, in each phase i of the coarse partitioning we still
have five steps:
(a) Start with A={a}, where a is usually an unoffloadable node in Gi.
(b) Iteratively add the vertex to A that is the most tightly connected to A.
(c) Let s, t be the last two vertices (in order) added to A.
(d) The graph cut of the phase i is (Vi\{t}, {t}).
(e) Gi+1 arises from Gi by merging vertices s and t.

3.2 Algorithmic Process

The algorithmic process is illustrated as the MinCut function in Algorithm 2, and
in each phase i, it calls the MinCutPhase function as described in Algorithm 3.
Since some tasks have to be executed locally, we need to merge them into one node.
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The merging function is used to merge two vertices into one new vertex,
which is implemented as in Algorithm 1. If nodes s, t ∈ V (s �= t), then they can
be merged as follows:

1. Nodes s and t are chosen.
2. Nodes s and t are replaced by a new node xs,t. All edges that were previously

incident to s or t are now incident to xs,t (except the edge between nodes s
and t when they are connected).

3. Multiple edges are resolved by adding edge weights. The weights of the node
xs,t are resolved by adding the weights of s and t.

For example, we can merge nodes 2 and 4 as shown in Fig. 2.
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Fig. 2. An example of merging two nodes

The core of this algorithm is to make it easy to select the next vertex to be
added to the local set A. We have the following definition.

Definition 1. ∃v ∈ V \A, if the potential benefit from offloading once v is
offloaded:

Δ(v) = [wlocal(v) − wcloud(v)] − w(e(A, v))

is the minimum, then task v has the most chance to be executed locally, and the
vertex v is called Most Tightly Connected Vertex (MTCV).

Further, we have the total cost from partitioning:

Ccut(A−t,t) = C local −
[
wlocal(t) − wcloud(t)

]
+

∑

v∈A\t
w(e(t, v)), (8)

where the cut value Ccut(A−t,t) is the partitioning cost, C local =
∑

v∈V wlocal(v)
is the total of local costs, wlocal(t)−wcloud(t) is the gain of node t from offloading,
and

∑
v∈A\t w(e(t, v)) is the total of extra communication costs due to offloading.

Theorem 1. cut(A − t, t) is always a minimum s − t cut in the current graph,
where s and t are the last two vertices added in the phase, the s− t cut separates
nodes s and t on two different sides.
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Algorithm 1. The Merging function
//This function takes s and t as vertices in the given graph and merges them into one
Function: G′=Merge(G, w, s, t)

Input: G: the given graph, G = (V, E)
w: the weights of edges and vertices
s, t: two vertices in previous graph that are to be merged

Output: G′: the new graph after merging two vertices

1: xs,t ⇐ s ∪ t
2: for all nodes v ∈ V do
3: if v �= {s, t} then
4: w(e(xs,t, v)) = w(e(s, v)) + w(e(t, v))
5: //adding weights of edges
6:

[
wlocal(xs,t), w

cloud(xs,t)
]

=
[
wlocal(s) + wlocal(t), wcloud(s) + wcloud(t)

]

7: //adding weights of nodes
8: E ⇐ E ∪ e(xs,t, v) //adding edges
9: end if

10: E′ ⇐ E\{e(s, v), e(t, v)} //deleting edges
11: end for
12: V ′ ⇐ V \{s, t} ∪ xs,t

13: return G′ = (V ′, E′)

Algorithm 2. The MinCut function
//This function performs an optimal offloading partition algorithm
Function: [minCut, MinCutGroupsList] = MinCut(G, w, SourceV ertices)

Input: G: the given graph, G = (V, E)
w: the weights of edges and vertices
SourceVertices: a list of vertices that have to be kept in one side of the cut

Output: minCut : the minimum sum of weights of edges and vertices among the cut
MinCutGroupsList : two lists of vertices, one local list and one remote list

1: w(minCut) ⇐ ∞
2: for i = 1 : length(SourceV ertices) do
3: //Merge all the source vertices (unoffloadable) into one
4: (G, w) = Merge(G, w, SourceV ertices(1), SourceV ertices(i))
5: end for
6: while |V | > 1 do
7: [cut(A − t, t), s, t] = MinCutPhase(G, w)
8: if w(cut(A − t, t)) < w(minCut) then
9: minCut ⇐ cut(A − t, t)

10: end if
11: Merge(G, w, s, t)
12: //Merge the last two vertices (in order) into one
13: end while
14: return minCut and MinCutGroupsList
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Algorithm 3. The MinCutPhase function
//This function perform one phase of the partitioning algorithm
Function: [cut(A − t, t), s, t]=MinCutPhase(Gi, w)

Input: Gi: the graph in Phase i, i.e., Gi = (Vi, Ei)
w: the weights of edges and vertices
SourceVertices: a list of vertices that are forced to be kept in one side of the cut

Output: s, t: the lasted two vertices that are added to A
cut(A − t, t): the cut between {A − t} and {t} in phase i

1: a ⇐ arbitrary vertex of Gi

2: A ⇐ {a}
3: while A �= Vi do
4: min = −∞
5: vmin = null
6: for v ∈ Vi do
7: if v /∈ A then
8: //Performance gain through offloading the task v to the cloud
9: Δ(v) ⇐ [wlocal(v) − wcloud(v)] − w(e(A, v))

10: //Find the vertex that is the most tightly connected to A
11: if Δ(v) < min then
12: min = Δ(v)
13: vmin = v
14: end if
15: end if
16: end for
17: A ⇐ A ∪ {vmin}
18: a ⇐ Merge(G, w, a, vmin)
19: end while
20: t ⇐ the last vertex (in order) added to A
21: s ⇐ the last second vertex (in order) added to A
22: return cut(A − t, t)

The run of each MinCutPhase function orders the vertices of the current graph
linearly, starting with a and ending with s and t, according to the order of
addition into A. We want to show that Ccut(A−t,t) ≤ Ccut(H) for any arbitrary
s − t cut H.

Lemma 1. We define H as an arbitrary s− t cut, Av as a set of vertices added
to A before v, and Hv as a cut of Av ∪ {v} induced by H. For all active vertices
v, we have Ccut(Av, v) ≤ Ccut(Hv).
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Proof. As shown in Fig. 3, we use induction on the number of active vertices, k.

1. When k = 1, the claim is true,
2. Assume the inequality holds true up to u, that is Ccut(Au, u) ≤ Ccut(Hu),
3. Suppose v is the first active vertex after u, according to the assumption that

Ccut(Au, u) ≤ Ccut(Hu), then we have:

Ccut(Av, v) = Ccut(Au, v) + Ccut(Av − Au, v)
≤ Ccut(Au, u) + Ccut(Av − Au, v) (u is MTCV )
≤ Ccut(Hu) + Ccut(Av − Au, v)
≤ Ccut(Hv).

Since t is always an active vertex with respect to H, by Lemma 1, we can
conclude that Ccut(A−t,t) ≤ Ccut(H) which says exactly that the cost of cut(A −
t, t) is at most as heavy as the cost of cut(H). This proves Theorem 1.

  t sa

At

(a) The s − t cut

  t sa

Ht

(b) An arbitrary s − t cut

Fig. 3. The illustration for the proof of Lemma 1

3.3 Computational Complexity

As the running time of the algorithm MinCut is essentially equal to the added
running time of the |V | − 1 runs of MinCutPhase, which is called on graphs
with decreasing number of vertices and edges, it suffices to show that a single
MinCutPhase needs at most O(|V | log |V |+ |E|) time yielding an overall running
time. The computational complexity of the MCOP algorithm can be noted as
O(|V |2 log |V | + |V ||E|).

As a comparison, Linear Programming (LP) solvers are widely used in
schemes like MAUI [6] and CloneCloud [7]. An LP solver is based on branch
and bound, which is an algorithm design paradigm for discrete and combinator-
ial optimization problems, as well as general real valued problems. The number
of its optional solutions grows exponentially with the number of tasks, which
means higher time complexity O

(
2|V |).

While the partitioning e.g., MAUI has exponential time complexity by using
LP, our algorithm only has low-order polynomial run time in the number of
tasks. Therefore, the MCOP algorithm can handler larger call graphs, which
shows its advantage over simple partitioning models as used in MAUI: it can
group tasks that process large amounts of data on one side, either the Cloud or
the mobile, depending on the network condition.
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4 Performance Evaluation

Comparing the execution time spent on the mobile device and the one on the
cloud, the speedup factor F is obtained. In practice, we will first access to the
cloud server to estimate the remote execution time. We use the average value,
since the mobile device might assign more computation resources to a process at
different moments of its execution. Therefore, during runtime of an application
the link and node cost is constantly updated (the updated value will be an
average of the past values and the newly obtained one).

The construction of WCG closely depends on profiling, i.e., the process of gath-
ering the information required to make offloading decisions. Such information may
consist of the computation and communication costs of the execution units (pro-
gram profiler), the network status (network profiler), and the mobile device specific
characteristics such as energy consumption (energy profiler). Since the focus of this
paper is on the partitioning algorithm we will not enter into the details of profiling
techniques, which can be found in many existing references [6,25].

We take a face recognition application1 as an example. By analyzing this
application with Soot [26], the call graph could be built as a tree-based topology
shown in Fig. 4(a). We further construct weighted consumption graph under
the condition of the speedup factor F = 2 and the bandwidth B = 1 MB/s
with reliability = 1, where the main and checkAgainst methods are assumed as
unoffloadable nodes.
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(b) A partitioning result

Fig. 4. An optimal partitioning result of the face recognition application

1 The face recognition application is built using an open source code http://darnok.
org/programming/face-recognition/, which implements the Eigenface face recogni-
tion algorithm.

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
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We then implement the MCOP algorithm in Java2. The optimal partitioning
result is depicted in Fig. 4(b), where red nodes represent the application tasks
that should be offloaded to the remote cloud and the blue nodes are the tasks
that are supposed to be executed locally on the mobile device.

We do a simple simulation with the WCG as predicted in Fig. 2. We have
received different results under the different parameters of speedup factor F and
reliable wireless bandwidth B. The partitioning results will change as B or F
vary.

In Fig. 5 the speedup factor is set to F = 3. Since the low bandwidth results
in much higher cost for data transmission, the full offloading scheme can not
benefit from offloading. Given a relatively large bandwidth and stable network,
the response time or energy consumption obtained by the full offloading scheme
slowly approaches the partial offloading scheme because the optimal partition
includes more and more tasks running on the cloud side until all offloadable tasks
are offloaded to the cloud. With higher bandwidth and more stable network, they
begin to coincide with each other and only decrease because all possible nodes are
offloaded and the transmissions become faster. Both, response time and energy
consumption have the same trend as the wireless bandwidth increases. Therefore,
bandwidth and network reliability is a crucial element for offloading since the
mobile system could benefit a lot from offloading in stable, high bandwidth
environments, while with low bandwidth and fragile network, the no offloading
scheme is preferred.
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Fig. 5. Comparisons of different schemes under different wireless bandwidths when the
speedup factor F = 3

In Fig. 6 the bandwidth is fixed at B = 3 MB/s. It can be seen that offloading
benefits from higher speedup factors. When F is very small, the full offloading

2 An optimal partitioning algorithm, the code can be found in https://github.com/
carlosmn/work-offload, thanks to Daniel Seidenstücker and Carlos Mart́ın Nieto for
their help.

https://github.com/carlosmn/work-offload
https://github.com/carlosmn/work-offload
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Fig. 6. Comparisons of different schemes under different speedup factors when the
bandwidth B = 3 MB/s

scheme can reduce energy consumption of the mobile device. However, it takes
much longer than without offloading. The partial offloading scheme that adopts
the MCOP algorithm can effectively reduce execution time and energy consump-
tion, while adapting to environmental changes.

From Figs. 5 and 6, we can tell that the full offloading scheme performs much
better than the no offloading scheme under certain adequate wireless network
conditions, because the execution cost of running methods on the cloud server
is significantly lower than on the mobile device when the speedup factor F
is high. The partial offloading scheme outperforms the no offloading and full
offloading schemes and significantly improves the application performance, since
it effectively avoids offloading tasks in the case of large communication cost
between consecutive tasks compared to the full offloading scheme, and offloads
more appropriate tasks to the cloud server. In other words, neither running all
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Fig. 7. Offloading gains under different environment conditions when ω = 0.5
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tasks locally on the mobile terminal nor always offloading their execution to a
remote server can offer an efficient solution, but our partial offloading scheme
can do.

In Fig. 7(a) when the bandwidth is low, the offloading gain for all three cost
models is very small and almost identical. That is because more time/energy will
be spent in transferring the same amount of data due to the poor network and low
bandwidth, resulting in increased execution cost. As the bandwidth increases,
the offloading gain first rises drastically and then the increase becomes slower.
It can be concluded that the optimal partitioning plan includes more and more
tasks running on the cloud side until all the tasks are offloaded to the cloud when
the network condition and bandwidth increases. In Fig. 7(b) when F is small, the
offloading gain for all three cost models is very low since a small value means very
little computational cost reduction from remote execution. As F increases, the
offloading gain first rises drastically and then approaches the same value. That
is because the benefits from offloading cannot neglect the extra communication
cost. From Fig. 7, the proposed MCOP algorithm is able to effectively reduce
the application’s energy consumption as well as its execution time. Further, it
can adapt to environmental changes to some extent and avoids a sharp decline
in application performance once the network deteriorates and the bandwidth
decreases.

5 Conclusion

To tackle the problem of dynamic partitioning in a mobile environment, we have
proposed a novel offloading partitioning algorithm (MCOP algorithm) that finds
the optimal application partitioning under different cost models to arrive at the
best tradeoff between saving time/energy and transmission costs/delay. Contrary
to the traditional graph partitioning problem, our algorithm is not restricted to
balanced partitions but takes the infrastructure heterogeneity into account.

The MCOP algorithm provides a stably quadratic runtime complexity for
determining which parts of application tasks should be offloaded to the cloud
server and which parts should be executed locally, in order to save energy of
the mobile device and to reduce the execution time of an application. Since the
reliability of wireless bandwidth can vary due to mobility and interference, it
strongly affects the application’s optimal partitioning result. When the network
is poor, high communication cost will be incurred, and the MCOP algorithm will
include more application tasks for local execution. Experimental results show
that according to environmental changes (e.g., network bandwidth and cloud
server performance), the proposed algorithm can effectively achieve the optimal
partitioning result in terms of time and energy saving. Offloading benefits a lot
from high bandwidths and large speedup factors, while low bandwidth favors
the no offloading scheme.

The concept of optimal application partitioning under constraints generalises
to many scenarios in distributed computing where should be explored further.
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