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Abstract. Utilities responsible for Advanced Metering Infrastructure
(AMI) networks must be able to defend themselves from a variety of
potential attacks so they may achieve the goals of delivering power to
consumers and maintaining the integrity of their equipment and data.
Intrusion detection systems (IDSes) can play an important part in the
defense of such networks. Utilities should carefully consider the strengths
and weaknesses of different IDS deployment strategies to choose the
most cost-effective solution. Models of adversary behavior in the pres-
ence of different IDS deployments can help with making this decision
as we demonstrate through a case study that uses a model created in
the ADversary VIew Security Evaluation (ADVISE) formalism (which
calculates metrics used to compare different IDSes). We show how these
metrics give valuable insight into the selection of the appropriate IDS
architecture for an AMI network.
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1 Introduction

Many utility companies are creating Advanced Metering Infrastructure (AMI)
networks, which incorporate smart meters and other intelligent components into
the power grid. The added functionality allows utilities to monitor and con-
trol their smart grid with more precision than was previously possible. As an
example, a utility company can use an AMI infrastructure to remotely collect
more frequent meter readings, which allows them to respond more accurately to
fluctuations in power demand.

Unfortunately, AMI networks increase the attack surface of a power grid.
For example, an unscrupulous customer may compromise a single smart meter
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so that it sends false data to under-report electricity consumption, resulting in
a lower bill. Distributed denial of service attacks, traffic injection attacks, and
Byzantine attacks are examples of new threats to these cyber-enhanced power
grids. As utility companies build and maintain AMI infrastructures they should
be aware of the possibility of these attacks, and work to create a cost-efficient
architecture that minimizes the expected damage.

One obvious way of limiting the potential damage of an attack is to detect
and respond to the attack before it can cause much harm. An intrusion detec-
tion system (IDS) can help a utility company detect an attack. There are several
different IDS architectures that can be deployed by a utility company as a defen-
sive precaution. Each architecture has a different cost and degree of effectiveness.
A utility company must decide whether its application warrants an IDS, and if
so, which would give the best protection for the best price.

One approach for informing this critical design decision is to build a sound,
state-based stochastic model of the system and the possible IDS architectures
that can be applied to it. Quantitative metrics can be calculated on the models
to determine which configuration provides the best cost/security balance.

Our approach is to study a multi-layered power grid example and the poten-
tial IDS implementations that can be applied to this grid. We used the ADversary
VIew Security Evaluation (ADVISE) [6] modeling formalism in the Möbius mod-
eling tool [10] for this work. We consider several different adversaries interested
in attacking such a system and calculate useful and relevant security metrics.
Using our approach, a utility company can make a more informed decision about
how to implement an IDS on its grid.

To make an informed decision regarding the selection and implementation of
various IDS approaches, it is necessary to know the probability that an adversary
would successfully attack a system, given its type of IDS architecture. Given a
particular adversary and IDS approach, it would be useful to know the estimated
probability of detecting the adversary, the estimated damage to the utility due
to activity of the adversary, and the type of attack chosen by the adversary. We
create a model of the adversary behavior that is detailed enough to give insight
into these metrics. We do not claim that the quantitative metrics generated
by the model are accurate in any absolute sense. However, we do believe that
they may be very useful when comparing the relative strengths and weaknesses
of modeled systems. A model that gives quantitative security metrics will give
a system designer another approach to supplement the advice and intuition of
security experts.

The remainder of this paper is organized as follows. Section 2 provides a con-
cise overview of AMI networks, IDS systems on AMI networks, and the ADVISE
formalism. Section 3 offers a description of system we modeled. Section 4 offers a
detailed explanation of the ADVISE model that was constructed, including the
adversary profiles that were considered and the metrics that were defined on the
system. Section 5 shows our quantitative results and our interpretation of them.
Section 6 discusses previous work that seeks to examine power grid security using
a variety of methods. Finally, Sect. 7 concludes the paper.
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2 Background

2.1 AMI Overview

An AMI gives a utility company the ability to remotely communicate with the
electric meters in its grid. There are many possible network hierarchies. For
example, some smart meters connect to the utility company through the con-
sumer’s Internet connection. However, our example system uses a hierarchy of
communication gateways that rely on the utility’s own network infrastructure,
as depicted in Fig. 1.

Fig. 1. Example system diagram.

At the bottom level of our hierarchy, a smart meter forms the core of a home
area network (HAN). The HAN may include other components, such as smart
appliances designed to draw less power during times of high demand and more
power during times of low demand. If there are multiple devices in the HAN, the
smart meter itself may act as a network gateway for the other devices. Multiple
HANs, and data collection unit (DCU) gateways serving them, are connected
together to form a neighborhood area network (NAN). The DCU gateways in
NANs are connected to the utility via a wide area network (WAN).

Many different communication technologies can be used in an AMI. The
WAN usually utilizes higher bandwidth, long-range communication technologies
such as long-range wireless, satellite, or power line communication. The NANs
don’t have the same bandwidth or range requirements, and can use shorter-
range wireless. We assume in our case study that the NAN uses a wireless mesh
network.

2.2 IDS Overview

Intrusion detection systems are intended to monitor a system for suspicious
activity, to raise an alert if a security event occurs, and to log information to
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determine how an attack proceeded through the system. A number of different
IDS deployment strategies are possible in an AMI. In this paper, we consider
centralized IDSes, dedicated distributed IDSes, and embedded distributed IDSes.

A centralized IDS deployment scheme would place an IDS at the top of the
network hierarchy, in the utility company’s network. The IDS would monitor all
traffic flowing into and out of the utility company’s command and control center
LAN network, and raise an alert if it detected anything suspicious. However, it
would be completely unaware of inter-meter traffic, since that would not pass
through the top level of the hierarchy. Alternatively, a utility could deploy a
distributed set of IDSes to monitor inter-meter communication. This approach
would still require a central node to coordinate the monitoring, so it would have
all of the benefits of a centralized IDS approach, with some additional installation
and maintenance costs associated with the additional IDSes.

We studied two main varieties of distributed IDSes: dedicated and embedded.
A dedicated device IDS deployment would have the same components as a cen-
tralized deployment, and in addition it would have a number of geographically
distributed dedicated IDS devices in wireless communication with the smart
meters. These IDSes would monitor all AMI traffic within wireless range. An
embedded IDS deployment incorporates intrusion detection directly into the
smart meter. Like the dedicated IDS architecture, the embedded IDSes commu-
nicate and cooperate with the central IDS device.

There are a number of trade-offs to consider when evaluating these IDS
designs. A centralized IDS would potentially miss large families of attacks
because it is unaware of inter-meter communication. It is, however, the cheapest
IDS option. An embedded or dedicated IDS scheme would be able to observe
inter-meter communication, possibly allowing it to detect a larger set of attacks
than a centralized scheme, but would cost more. A dedicated architecture would
cost more because many additional devices would have to be purchased and
maintained, and separate permits and location sites would have to be acquired
to install these devices. However, the device would be able to monitor inter-meter
communication in the NAN. One dedicated device could serve multiple smart
meters. An embedded system would not require separate building sites or per-
mits, but every single meter would cost slightly more because of the added IDS
capability. Given the large number of meters involved, even a small increase in
price for an individual meter would potentially be very costly for a utility com-
pany. In addition to monitoring inter-meter communication, an embedded IDS
architecture would be able to detect attacks on the meter itself. This means the
embedded IDS option provides the greatest coverage against possible attacks.

Clearly, a utility company should seek the most cost-effective solution. The
choice can be made and justified with metrics derived from the analysis of math-
ematical models, such as the one we developed using the ADVISE modeling
formalism.
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2.3 ADVISE Overview

The ADversary VIew Security Evaluation (ADVISE) method [6] is used to cal-
culate quantitative security metrics via executable models of adversary behavior
in a system [5]. At a high level, a modeler creates an Attack Execution Graph
(AEG), which is similar to a standard attack tree, but incorporates additional
details about each attack’s properties, such as its cost, time to completion, and
probability of success. The AEG also contains nodes that track the state of the
model, such as the prerequisites and goals held by the adversary at a particular
discrete point in time. Different adversaries may exhibit very different behav-
iors when attacking the same system, since their initial foothold in the system,
knowledge, skills, and goals of interest may differ dramatically. An adversary’s
preference for avoiding cost, avoiding detection, and earning reward also plays a
pivotal role in the approach taken when attacking a system. A modeler is given
the ability to create different adversary profiles before executing the model in
ADVISE to reflect this reality.

An AEG is defined by the tuple

< A,R,K, S,G,C >

where A is the set of attack steps, R is the set of access domains available to
the adversary, K is the set of information that can be known by the adversary,
S is the set of skills possessed by the adversary, and G is the set of goals that
the adversary attempts to achieve. The relation C defines the set of directed
connecting arcs from e ∈ R ∪ K ∪ S ∪ G to a ∈ A, where e is a prerequisite
element needed in order to attempt a. This relation also defines the set of directed
connecting arcs from a ∈ A to e ∈ R∪K ∪S ∪G, where e is an affected element
that may be changed by the performance of a. The elements R, K, S, and G are
state variables that hold an integer value that usually represents whether the
element represented by the state variable has been obtained (1 or 0).

An attack step is defined by the tuple

< B,T,C,O >

where B is a Boolean precondition that indicates whether or not the attack step
is currently enabled, T is the timing distribution that is sampled to determine
the time it takes to complete the attack step, C is the cost to the adversary for
attempting the attack, and O is the set of outcomes of the attack (such as success
or failure). Each outcome contains a Pr, D, and E, which are the probability
the outcome will be selected from an attack step’s O, the probability of being
detected for that outcome, and the effect of that outcome on the state of the
model, respectively. An adversary uses the solution of a Competitive Markov
Decision Process [1] as described in [6] to select the best attack step given the
adversary’s characteristics, limitations and preferences.

System metrics are then defined using rate- and event-based performance
variables [8]. Reliability of a device, preferred paths of attack for an adversary,
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and expected costs for the adversary and defender are all examples of possi-
ble metrics. Discrete event simulation is used to generate a statistically sound
estimate of the defined metrics.

3 Power Grid Description

In this case study, we consider a hypothetical utility company with an urban
deployment of an AMI network, as shown in Fig. 1 and described in Sect. 2.1.
We have based our system on the system described in [2], following it in detail
whenever possible. In this network, zero or more smart appliances connect to
a smart meter at each home and together form a HAN. Multiple HANs are
connected to one another and one or more gateways via a wireless mesh network
to form a NAN. Multiple NANs are connected to one another and to the utility
command and control center network via a WAN.

The utility wishes to supply power to consumers, protect their equipment,
ensure the integrity of communication in the AMI network, and ensure the con-
fidentiality of communication in the AMI network.

The utility company in this scenario is primarily concerned about attacks
from three classes of adversaries: unscrupulous customers who wish to under-
report their electricity consumption to unfairly lower their bill, disgruntled
insider employees who wish to cause as much monetary damage as possible in
retribution for a perceived wrong, and sophisticated, well-funded terrorist orga-
nizations or nation-states who wish to interrupt the delivery of power and cause
as much damage as possible. The utility company estimates that over a 20-year
period, there will be 1,000 attempts to under-report electricity consumption, a
0.1 % chance that a disgruntled employee will attempt a massively damaging
attack, and a 0.01 % chance of being attacked by a terrorist organization. An
adversary may choose from a variety of attacks to achieve a goal. We utilized
the literature search conducted in [3] to compile a list of attacks for inclusion in
our model.

The utility company wishes to compare the cost-effectiveness of various pro-
posed IDS architectures. In particular it wishes to compare the centralized IDS
solution with the two distributed IDS solutions: embedded and dedicated. The
utility can easily obtain the estimated installation and maintenance costs of an
IDS from vendors. However, estimating the expected benefit of implementing
the IDS is much more difficult. We attempt to make such an estimate with an
ADVISE model.

4 ADVISE Model

We used the ADVISE formalism as implemented in Möbius to construct an
Attack Execution Graph to gain insight into the adversary behavior. We created
a model that was detailed enough to calculate the quantitative security metrics
of interest, while minimizing the number of assumptions that a more detailed
model would have forced us to make. We were primarily interested in three
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Fig. 2. Attack Execution Graph of ADVISE model.

key metrics: the estimated probability of detecting an adversary, the estimated
damage to the utility company due to adversary behavior, and the attack used to
damage the utility company. To calculate these metrics, we developed a model of
the attacks against the system and a model of the adversaries that could execute
the attacks.

4.1 Attack Execution Graph Model

The Attack Execution Graph, which is shown in Fig. 2, contains three main
adversary goals; three auxiliary goals; seventeen attack steps that an adver-
sary may attempt when trying to reach a goal; a number of supporting access,
knowledge, and skill state variables that may help an adversary satisfy the pre-
conditions for attempting a particular attack; and arcs that connect the attack
steps to particular accesses, knowledge, skills, and goals and signify the relation-
ships between them. The access, skill, knowledge, and goal state variables in our
model hold a value of zero if they are not held by the adversary, and a positive
integer otherwise.

The set of goals desired by the adversary drives his or her behavior and are
therefore one of the most important components of the model. Cheating the
company by under-reporting electricity consumption, interrupting the delivery
of electric power, and damaging the utility’s equipment are the three most impor-
tant goals for the adversary in this study. Those goals are represented in Fig. 2
by Goals R, S, and T, respectively. In addition, the adversary wishes to remain
undetected; this goal is represented by Goal A, the Undetected goal. Goal H is the
supporting goal of acquiring compromised smart meters. This is an important
prerequisite for several attack steps, but is also a goal in its own right for some
adversaries. Finally, Goal U represents the goal of achieving at least one of the
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three primary goals described previously. Usually goal state variables initially
hold a value of zero; and the value is incremented on the successful conclusion of
an attack. The notable exception is the Undetected goal, which initially holds a
value of 1 and is decremented to 0 if an attack fails and the adversary is detected.

We assume that the adversary may not continue to attack after being
detected. For this reason, every attack step in the graph is connected by an
arc to the Undetected goal, which is a prerequisite for attempting every attack
step. If the Undetected goal holds a value of zero, the adversary may not attempt
any attack, with the exception of the unique DoNothing attack step [6]. Attack
steps can be attempted by an adversary either to achieve a goal directly or to
change the model state to make it easier to achieve a goal later. An attack step
must have at least one outcome. In this particular ADVISE model every attack
step outcome results either in the certain detection of an adversary, or the adver-
sary remaining undetected. In other words, if po is the probability of detection
associated with an outcome o, then po = 0 or po = 1, but po /∈ (0, 1).

Attack Step 1 in the AEG diagram is an Install Long Range Jammer Attack.
This attack step requires the adversary to be undetected, to be in reasonably
close proximity to the smart meters, and to have skill in installing wireless jam-
mers. It would result in the adversary’s having access to a long-range wireless
jammer that incapacitates the wireless mesh network in the NAN. The adversary
must hold several prerequisites to attempt this attack, including the NodeInstal-
lationSkill, represented by Skill B, the PhysicalSmartMeterAccess, represented
by Access C, and the Undetected goal. At the successful conclusion of the attack,
the adversary gains the LongRangeJammerAccess, Access L, whose value is incre-
mented from 0 to 1. Attack Step 2, Install Short Range Jammer, is very similar,
but its purpose is to gain access to a short-range wireless jammer that blocks
communication in a HAN rather than a NAN, so Attack 2 is connected to Short-
RangeJammerAccess, Access M, rather than Attack 1’s LongRangeJammerAc-
cess. Attack 2’s prerequisites are identical to Attack 1’s prerequisites.

Any one of Attack Steps 3, 4, 5, and 6 may be attempted by an adversary
in an effort to obtain the NumCompromisedSmartMeters goal (Goal H), which
would give the adversary control of smart meters in the AMI network. Attack
Step 3, InstallMaliciousSmartMeter, aims to accomplish this goal by installing a
new meter (controlled by the adversary) that tricks the AMI network into accept-
ing it as one of its own smart meters. Attack Step 3 requires physical access to
the AMI network and skill in installation as prerequisites, and so is connected
to the PhysicalAccess access and the SmartMeterInstallationSkill skill, shown as
Access C and Skill D, respectively. Attack Step 4, PhysicalSmartMeterExploit,
represents an adversary attempt to physically tamper with the smart meter to
gain control of it. An adversary must have physical access to the smart meters
and skill in this exploit to attempt the attack step, so Attack Step 4 is connected
to Access C and Skill E, which are the PhysicalAccess access and the Physi-
calSmartMeterExploitSkill skill, respectively. Attack Step 5, MassMeterCompro-
mise, is very similar to Attack Step 4, with the major difference being that 50
smart meters are compromised if this attack step is achieved instead of just one.
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Finally, Attack Step 6 also compromises 50 smart meters, but it requires the
adversary to have the appropriate skill (RemoteSmartMeterExploitSkill, shown
as Skill F) and does not require the adversary to have physical access.

Attack Steps 7, 9, and 10 are related because their sequence leads to Access O,
the RoutingCapability access, which is a prerequisite for Attack Steps 14, 15, and
16. Attack Step 7, CollectCryptoKeys, represents the adversary’s attempt to col-
lect cryptographic keys from the compromised smart meters. The adversary must
have access to compromised smart meters to attempt the attack, and if the attack
step is successful, it leads to the acquisition of knowledge of the cryptographic
keys, which is represented by Knowledge Item J. The AnalyzeTraffic attack step
(Attack Step 9) requires the adversary to hold Knowledge Item J and Skill I (I
being the TrafficAnalysis skill) in order to attempt the attack step. If successful,
the adversary gains sufficient knowledge of the traffic in the network to launch
sophisticated routing and Byzantine attacks. This knowledge is represented by
the knowledge item TrafficKnowledge, which is Knowledge Item K. Finally, the
adversary may attempt Attack Step 10, GainRoutingCapability, if he or she has
knowledge of the keys and traffic and at least one compromised smart meter. If
the prerequisites have been satisfied, the adversary will successfully execute the
attack step and gain the RoutingCapability access.

Attack Step 8, CreateBotnet, gives the adversary the BotnetAccess access,
depicted as Access Q, which is a prerequisite for launching resource exhaustion
attacks such as DDoS attacks. To attempt the attack step, the adversary must
hold Skill G, the BotnetShepherd skill, as well as at least 50 smart meters,
represented by a value greater than or equal to 50 in Goal H.

There are seven attack steps that directly achieve at least one of the three most
significantgoals (Attacks11–17).First,AttackStep11, theMajorJammingAttack,
requires the adversary to have access to a long range jammer; it results in a signifi-
cant interruption of service in the NAN, and also damages equipment, since impor-
tant commands for coordinating the network are not delivered. Attack Step 12,
which is the Minor Jamming Attack, requires access to a short-range jammer: it
does not result in loss of power or damage to equipment but may be utilized to help
an unscrupulous customer give a false power reading. Attack Step 13, PhysicalAt-
tack, represents a major physical, non-cyber attack on the equipment of the utility
company, e.g. shooting one or more transformers. This attack requires only physi-
cal access to the equipment, and causes a significant blackout and major damage to
the equipment. It has a relatively high probability of detection, but requires only
minimal prerequisites to attempt. Attack Steps 14 and 15, MinorRoutingAttack
and MajorRoutingAttack, respectively, are similar in that they have the same pre-
requisites,RoutingAttack skill andRoutingCapability access (Skill N andAccessO,
respectively), but have different intended goals. The MinorRoutingAttack under-
reports the electricity consumption of one customer. The MajorRoutingAttack,
in contrast, leads to interrupted service and damage to the AMI network equip-
ment. Attack Step 16, ByzantineAttack, requires that the adversary hold the Rout-
ingCapability access and the ByzantineAttack skill (Access O and Skill P, respec-
tively), anda successful outcome for the adversary leads todamagedequipmentand
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interrupted service. Finally, Attack Step 17, the ResourceExhaustion attack,
requires BotnetAccess and results in damaged equipment and interrupted service.

In addition, there is one implied attack step not shown in the diagram, the
DoNothing attack step, which an adversary may attempt at any time and has
no effect on the model state, costs nothing, and will never lead to the detection
of the adversary. This attack step may be attempted by an adversary when the
payoff for attempting any other attack step does not justify the risk of detection
and the cost of attempting the attack step.

Each attack step contains detailed information about the probability of suc-
cess, probability of detection, cost to attempt, effects on the system, duration,
and other information. Space considerations prevent us from explaining the
details of every attack step in this model, but we discuss one attack step as an
example. The CreateBotnet attack, Attack Step 8 in the diagram, is assumed to
cost the adversary $1,000 to attempt, and to take 8 h to complete. If the attack is
to be attempted, the Undetected goal state variable and the BotnetShepherdSkill
skill state variable must both contain a positive value, and the NumCompro-
misedSmartMeters goal state variable must hold a value greater than or equal
to 50. If these conditions are not met, the attack step cannot be attempted.
If the attack step is attempted, one of three outcomes, FailureUndetected,
FailureDetected, or Success, is randomly chosen according to their probabilities
of occurrence. The FailureUndetected outcome represents the event in which the
adversary attempts the attack and fails, but remains undetected. It has no effect
on the state of the model, and has a probability of 0.05. The FailureDetected
outcome represents the event in which the adversary attempts the attack, fails,
and is detected. If this outcome is randomly selected by the simulation, it mod-
ifies the model state by changing the value of the Undetected goal from 1 to 0,
disabling any future attack. This outcome is also assumed to have a probability
of 0.05. Finally, the Success outcome represents the successful completion of
the attack. It has the effect of giving the adversary access to a botnet of smart
meters, which is represented by changing the value of the BotnetAccess, State
Variable Q, from 0 to 1. This outcome has a 0.9 probability of being selected
if the attack step is attempted. All the other attack steps in the model have a
similar level of detail.

The probability that an attack step will lead to a successful outcome for an
adversary, as well as the effect an outcome will have on the system, may be
adjusted based on the IDS approach being modeled.

4.2 Attacker Model

In addition to a model of attacks against the system, we need a model of the adver-
sary, since different adversaries have different goals, and different initial access,
skills, and knowledge related to the system. Even adversaries with identical goals
mayweigh these goals differently.Thesedifferences can lead toverydifferentbehav-
iors when the attackers are confronted by the same system. Table 1 shows the state
variables initially held by each adversary, and corresponds to an initial configu-
ration of state variables in the AEG (Fig. 1). As can be seen from the table, the
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Table 1. Initial state values and parameters for adversaries.

Initial state Customer Insider Terrorist

BotnetAccess X

RoutingCapability X

PhysicalAccess X X X

CryptoKeys X

TrafficKnowledge X

RoutingAttackSkill X X X

NodeInstallationSkill X X X

SmartMeterInstallationSkill X X

TrafficAnalysisSkill X X X

BotnetShepherdSkill X X

ByzantineAttackSkill X X X

PhysicalSmartMeterExploit X X X

NumCompromisedMeters 51

Undetected X X X

customer adversary is assumed to have access to a physical smart meter (his or her
own) and some skill in various attacks, perhaps obtained via compromises pub-
lished on the Internet.The customerwants to achieve the goal of cheating the power
company by under-reporting electricity consumption. The insider adversary is in
some ways the most powerful adversary, because the insider starts with the most
access, knowledge, and skills of anyadversary considered, and inaddition is the only
adversary assumed to start with a number of compromised smart meters. However,
this adversary is constrained by a relatively high desire to avoid detection, which
is expressed in the model by placing a high payoff on maintaining the Undetected
goal. The insider wishes to cause as much monetary damage as possible to the util-
ity company without being detected. Finally, the terrorist adversary has fewer ini-
tial forms of access, knowledge, and skill than the insider, but wants to achieve
the same goal of causing the utility company as much monetary damage as possi-
ble by interrupting the delivery of power and damaging equipment. The terrorist is
assumed to be less concerned than the insider with the possibility of being detected
and apprehended (expressed in the model by a relatively low payoff on maintain-
ing the Undetected goal), which means the terrorist is much more likely to try risky
attacks.

4.3 Metrics

We use the ADVISE model described above to calculate three metrics. All three
are determined through the creation of performance variables [8] calculated by
simulation in Möbius. We took the cross-product of the adversaries {Insider, Cus-
tomer,Terrorist} and the IDSapproaches {None,Central,Dedicated, Embedded},
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and ran a simulation for every element of this set. We estimated the mean of every
performance variable with a 0.95 confidence level and a 0.1 confidence interval.

The first metric is qualitative, it is the attack that the adversary attempts
that leads to one of the three major goals (stealing electricity, disrupting the
delivery of electricity, and damaging the equipment). To find this metric, we
created a set of interval-of-time impulse-reward variables, one for each attack step
that achieves one of the three main goals. If any one of the outcomes of an attack
step is selected during the course of the simulation the performance variable
associated with that attack step accumulates a reward. After the simulation, we
determine which attack step the adversary chose by observing which element of
this set of performance variables accumulated a reward.

The second metric, the probability that the adversary will remain undetected
through the end of the attack, was constructed as an instant-of-time rate-reward
variable that returned the value of the Undetected goal variable at the end of
the simulation. At the beginning of the simulation, the Undetected goal variable
would hold a value of one. Most attack steps in the AEG had an outcome that
represented the event in which an adversary was detected if the attack step
was executed. If that outcome occurs at some point during the course of the
simulation, one of its effects is to set the value of the Undetected goal variable to
zero. If no outcome representing the detection of the adversary is chosen during
the course of the simulation, the value of the Undetected goal variable remains
1. In that way we determine whether the adversary was detected during one run
of the simulation. Multiple runs of the simulation show the probability that the
adversary will remain undetected through the duration of the attack.

The final and perhaps most important metric, the expected monetary damage
to the system in the event of an attack by an adversary, was also calculated by an
instant-of-time rate-reward variable. The integer values held in the StealElectric-
ity, InterruptService, and DamageEquipment goal state variables represent units
of damage. We let one unit of StealElectricity equal $600 of damage, one unit
of InterruptService equal $10,000 of damage, and one unit of DamageEquipment
equal $100,000 of damage. Initially these goal state variables hold a value of 0,
but the value can be increased at the successful conclusion of certain attacks.

5 Results and Discussion

The attack each adversary would attempt when faced with each possible IDS
and the total monetary damage in dollars the system would sustain as result of
each attack, according to our simulations, are given in Table 2. The probability
that the adversary will manage to evade detection to the end of the attack is
given in Fig. 3.

When we examine the results, we see that an insider adversary will attempt
a major routing attack if there is no IDS or if there is a centralized IDS, but will
not attempt any attack at all if the dedicated or embedded IDS is present in the
system. When an insider attempts to attack the system and there is no IDS, the
expected damage to the system is about one million dollars, but if a centralized
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Fig. 3. Probability of remaining undetected.

IDS is present, the expected damage is halved, since the centralized IDS should
be able to detect and limit the effectiveness of the routing attack. Since the
insider will attempt no damaging attack when the dedicated or embedded IDS
approach is used, the monetary damage to the system in this case is 0. This
adversary is strongly incentivized to avoid detection, which can be seen in Fig. 3.

If there is no IDS present, the customer will attempt to jam the wireless com-
munication between the smart meter and the rest of the network to under-report
electricity consumption, causing about $600 of damage, and will successfully com-
plete the attack without being detected in the majority of cases. However, if any
of the IDS options are enabled, the customer will not attempt any attack, because
the probability of obtaining the payoff is too small compared to the probability of
being detected and having to pay a fine or penalty. Since no attack is attempted in
these cases, the probability of remaining undetected is 1.

The terrorist is not highly incentivized to avoid detection and does not start
out with many types of access, knowledge, or skills, so during our simulations
the PhysicalAttack (which requires minimal prerequisites and causes massive
damage with a high risk of detection) was chosen no matter what IDS archi-
tecture confronted the terrorist. When an adversary attempts this attack, the
expected monetary damage to the system is about $5,000,000. However, there
is a greater than 50 % chance that the attack will end unsuccessfully with the
detection of the adversary, which we see in Fig. 3.

A utility company can use these metrics to compare intrusion detection
approaches. The expected monetary loss sustained by a utility company, M ,
for an IDS configuration, i ∈ IDS, can be calculated with Eq. 1

Mi =
∑

a

Na ∗ Da (1)
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Table 2. Simulation results.

IDS Adversary Attack Monetary damage Error

None Insider Major routing $1.07M +/− $7.29K

Customer Minor jamming $594 +/− $0.583

Terrorist Physical $4.98M +/- $50K

Centralized Insider Major routing 435K +/− $2.97K

Customer Do nothing $0 +/− $0

Terrorist Physical $4.98M +/− $50K

Dedicated Insider Do nothing $0 +/− $0

Customer Do nothing $0 +/− $0

Terrorist Physical $4.98M +/− $50K

Embedded Insider Do nothing $0 +/− $0

Customer Do nothing $0 +/− $0

Terrorist Physical $5.02M +/− $52.1K

where N is the expected number of attack attempts and Da is the expected
monetary damage to the system, D, per adversary, a ∈ Adversaries.

Consider a hypothetical utility that estimates 1,000 attempts by unscrupu-
lous customers, 0.001 attempts by an insider, and 0.0001 attempts by a terrorist
over a 20-year period.

Using Eq. 1 and the numbers in Table 2, we calculate the results shown in
Table 3. The utility can use Table 3, along with information about installation
and maintenance costs provided by vendors, to help determine the most cost-
effective architecture for its system.

Table 3. Estimated monetary loss by IDS approach over a 20-year period.

IDS Monetary damage

None $595,568

Centralized $933

Dedicated $498

Embedded $502

Space limitations force us to examine a small subset of the possible system
configurations, adversaries, and attacks, but we find that the ADVISE formalism
is flexible and scales well. More detail could be added by a utility company as
needed. In addition, we chose to use synthetic data in our analysis as input
parameters for the model. Utility companies would not have allowed us to publish
unsanitized data, and it is uncertain whether any hypothetical sanitized data
would have been more accurate than our educated guesses. This is not a weakness
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of our approach, since a utility company would already have the data needed
for the input parameters for its own ADVISE model. Our synthetic data were
based on the existing literature regarding security of AMI, especially [2,3].

6 Related Work

The academic community, recognizing the importance of the topic, has done
prior work comparing different security approaches in AMI. The analysis in [4]
uses a cost-benefit study to determine whether the added cost of RFID technol-
ogy is justified given its ability to prevent electricity theft. That paper considers
only energy theft, while our analysis considers attacks on the availability and
integrity of the system in addition to energy theft. In [9] the authors propose
an IDS for AMI and compare its security and performance with other IDSes for
AMI. However, in contrast to our analysis, they explicitly do not include attacks
on the meter’s availability. The techniques proposed in [7] seek to compare and
evaluate the security of different AMI IDSes through penetration testing and
the use of archetypal and concrete attack trees. These attack trees could help
a modeler create an Attack Execution Graph for an ADVISE model. In con-
trast to our approach, [7] does not explicitly model the attacker’s attributes or
motivations in detail. The authors of [2] provide a framework for evaluating the
cost-effectiveness of different IDS architectures in an AMI network. However,
their approach does not explicitly account for the differences in the behaviors of
adversaries when attacking the system. By incorporating the adversary behavior
into the model, we hope to achieve more realistic results.

7 Conclusion

In this work we showed how to use the ADVISE state-based stochastic modeling
approach to calculate security metrics that are relevant in comparing different
IDS architectures in an AMI network.

Unfortunately, it is often not possible to estimate many characteristics of
attack steps precisely with a high degree of confidence, including the probabilities
of success and the magnitude of damage given a successful attack, as well as the
exact amount of protection provided by an IDS against an attack. In addition,
adversary characteristics and motivations cannot usually be definitively known.
Therefore, the quantitative metrics produced by the ADVISE model should not
be thought of as producing exact, accurate predictions of the future. We believe,
however, that these metrics can contribute to a development of a relative ranking
of IDS approaches in an AMI network and provide insight into general trends of
adversary behavior.

We argue that the scientific approach ADVISE offers for security evaluation is
a useful complement to a common method of estimating the relative effectiveness
of different security approaches: consultation of one or more security experts, who
rely on intuition and experience. In contrast, the metrics calculated by ADVISE
are easily auditable by other parties and assumptions are explicitly stated, which
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allows multiple security experts with different backgrounds to use the ADVISE
formalism as a modeling language to collaboratively analyze different system
designs.
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