Gul Agha
Benny Van Houdt (Eds.)

Quantitative Evaluation
of Systems

13th International Conference, QEST 2016
Quebec City, QC, Canada, August 23-25, 2016
Proceedings

LNCS 9826

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9826

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Gul Agha - Benny Van Houdt (Eds.)

Quantitative Evaluation
of Systems

13th International Conference, QEST 2016
Quebec City, QC, Canada, August 23-25, 2016
Proceedings

@ Springer

Editors

Gul Agha Benny Van Houdt
University of Illinois University of Antwerp
Urbana, IL Antwerp

USA Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-43424-7 ISBN 978-3-319-43425-4 (eBook)

DOI 10.1007/978-3-319-43425-4

Library of Congress Control Number: 2015944718
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Welcome to the proceedings of QEST 2016, the 13th International Conference on
Quantitative Evaluation of Systems. QEST is a leading forum on quantitative evalu-
ation and verification of computer systems and networks, through stochastic models
and measurements. QEST was first held in Enschede, The Netherlands (2004), fol-
lowed by meetings in Turin, Italy (2005), Riverside, USA (2006), Edinburgh, UK
(2007), St. Malo, France (2008), Budapest, Hungary (2009), Williamsburg, USA
(2010), Aachen, Germany (2011), London, UK (2012), Buenos Aires, Argentina
(2013), Florence, Italy (2014) and, most recently, in Madrid, Spain (2015).

This year’s QEST was held in Quebec City, Canada, and colocated with the 27th
International Conference on Concurrency Theory (CONCUR 2016) and the 14th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2016).

As one of the premier fora for research on quantitative system evaluation and
verification of computer systems and networks, QEST covers topics including classic
measures involving performance and reliability, as well as quantification of properties
that are classically qualitative, such as safety, correctness, and security. QEST wel-
comes measurement-based studies and analytic studies, diversity in the model for-
malisms and methodologies employed, as well as development of new formalisms and
methodologies. QEST also has a tradition in presenting case studies, highlighting the
role of quantitative evaluation in the design of systems, where the notion of system is
broad. Systems of interest include computer hardware and software architectures,
communication systems, embedded systems, infrastructural systems, and biological
systems. Moreover, tools for supporting the practical application of research results in
all of the aforementioned areas are also of interest to QEST. In short, QEST aims to
encourage all aspects of work centered around creating a sound methodological basis
for assessing and designing systems using quantitative means.

The Program Committee (PC) consisted of 30 experts and we received a total of 46
submissions. Each submission was reviewed by three reviewers, either PC members or
external reviewers. The review process included a one-week PC discussion phase. In
the end, 21 full papers and three tool demonstration papers were selected for the
conference program. The program was greatly enriched by the QEST keynote talk of
Carey Williamson (University of Calgary, Canada), the joint keynote talk with FOR-
MATS 2016 of Ufuk Topcu (University of Texas at Austin, USA), and the joint
FORMATS 2016 and CONCUR 2016 keynote of Scott A. Smolka (Stony Brook
University, USA). We believe the overall result is a high-quality conference program of
interest to QEST 2016 attendees and other researchers in the field.

We would like to thank a number of people. Firstly, thanks to all the authors who
submitted papers, as without them there simply would not be a conference. In addition,
we would like to thank the PC members and the additional reviewers for their hard
work and for sharing their valued expertise with the rest of the community, as well as

VI Preface

EasyChair for supporting the electronic submission and reviewing process. We are also
indebted to our proceedings chair, Karl Palmskog, and to Alfred Hofmann and Anna
Kramer for their help in the preparation of this volume. Thanks also to the Web
manager, Andrew Bedford, the local organization chair, and general chair, Josée
Desharnais, for their dedication and excellent work. Finally, we would like to thank
Joost-Pieter Katoen, chair of the QEST Steering Committee, for his guidance
throughout the past year, as well as the members of the QEST Steering Committee.

We hope that you find the conference proceedings rewarding and will consider
submitting papers to QEST 2017.

August 2016 Gul Agha
Benny Van Houdt

General Chair

Josée Desharnais

Organization

Université Laval, Canada

Program Committee Co-chairs

Gul Agha
Benny Van Houdt

University of Illinois, USA
University of Antwerp, Belgium

Local Organization Chair

Josée Desharnais

Université Laval, Canada

Proceedings and Publications Chair

Karl Palmskog

Steering Committee

Alessandro Abate
Luca Bortolussi
Javier Campos
Pedro D’Argenio
Boudewijn Haverkort
Jane Hillston
Andras Horvath
Joost-Pieter Katoen
William Knottenbelt
Gethin Norman
Anne Remke
Enrico Vicario

Program Committee

Alessandro Abate
Nail Akar
Christel Baier
Nathalie Bertrand
Luca Bortolussi
Peter Buchholz

University of Illinois, USA

University of Oxford, UK

University of Trieste, Italy

University of Zaragoza, Spain
Universidad Nacional de Cérdoba, Argentina
University of Twente, The Netherlands
University of Edinburgh, UK
University of Turin, Italy

RWTH Aachen University, Germany
Imperial College London, UK
University of Glasgow, UK

University of Twente, The Netherlands
University of Florence, Italy

University of Oxford, UK

Bilkent University, Turkey

Technical University of Dresden, Germany
Inria Rennes, France

University of Trieste, Italy

Technical University of Dortmund, Germany

VI Organization
Ana Busic

Javier Campos

Rohit Chadha

Florin Ciucu

Andres Ferragut
Dieter Fiems

Anshul Gandhi
Tingting Han

John Hasenbein

Jane Hillston
William Knottenbelt
Sasa Misailovic
Pavithra Prabhakar
Sriram Sankanarayanayan
M. Zubair Shariq
Evgenia Smirni
Mark Squillante
Tetsuya Takine

Peter Taylor

Miklés Telek

Enrico Vicario
Mahesh Viswanathan

Additional Reviewers

Alexander Andreychenko
Benoit Barbot

Simona Bernardi

Laura Carnevali

Nathalie Cauchi

Diego Cazorla

Milan Ceska

Taolue Chen

Daniel Gburek

Blaise Genest

Inria Paris, France

University of Zaragoza, Spain
University of Missouri, USA
University of Warwick, UK
Universidad ORT, Uruguay

Ghent University, Belgium

Stony Brook University, USA
Birkbeck, University of London, UK
University of Texas, USA
University of Edinburgh, UK
Imperial College London, UK

MIT, USA

Kansas State University, USA
University of Colorado Boulder, USA
University of Iowa, USA

College of William and Mary, USA
IBM, USA

Osaka University, Japan

University of Melbourne, Australia
Technical University of Budapest, Hungary
University of Florence, Italy
University of Illinois, USA

Laura Nenzi

Marco Paolieri
Elizabeth Polgreen
Daniél Reijsbergen
Ricardo J. Rodriguez

Elena Gémez-Martinez
Illes Horvath
Jean-Michel Ilié
Nadeem Jamali

Jorge Julvez

Charalampos Andreas Rogge-Solti
Kyriakopulous Dimitri Scheftelowitsch
Wenchao Li Sadegh Soudjani

Max Tschaikowski
Feng Yan

Andras Meszaros
Dimitrios Milios

Abstracts of Invited Talks

A Stroll Down Speed-Scaling Lane

Carey Williamson

Department of Computer Science, University of Calgary, Calgary, AB, Canada
carey@cpsc.ucalgary.ca

Abstract. This talk provides a retrospective look at the past, present, and future
of speed scaling systems. Such systems have the ability to auto-scale their
service capacity based on demand, which introduces many interesting tradeoffs
between response time (a classic performance metric) and energy efficiency (a
relatively recent performance metric of growing interest).

The talk highlights key results and observations from the past two decades
of speed scaling research, which appears in both the theory and systems research
communities. One theme in the talk is the dichotomy between the assumptions,
approaches, and results in these two research communities. Another theme is
that modern processors support surprisingly sophisticated speed scaling func-
tionality, which is not yet well-harnessed by current algorithms or operating
systems.

During the stroll, I will also share some insights and observations from our
own work on speed scaling designs, including coupled, decoupled, and turbo-
charged systems. This work includes analytical and simulation modeling, as
well as empirical system measurements. The talk closes with thoughts about
future opportunities in speed scaling research.

V-Formation as Optimal Control

Scott A. Smolka

Department of Computer Science, Stony Brook University,
Stony Brook, NY, USA
sas@cs.stonybrook.edu

Abstract. In this talk, I will present a new formulation of the V-formation
problem for migrating birds in terms of model predictive control (MPC). In this
approach, to drive a flock towards a desired formation, an optimal velocity
adjustment (acceleration) is performed at each time-step on each bird’s current
velocity using a model-based prediction window of T time-steps. I will present
both centralized and distributed versions of this approach. The optimization
criteria used is based on fitness metrics of candidate accelerations that V-for-
mations are known to exhibit. These include velocity matching, clear view, and
upwash benefit. This MPC-based approach is validated by showing that for a
significant majority of simulation runs, the flock succeeds in forming the desired
formation. These results help to better understand the emergent behavior of
formation flight, and provide a control strategy for flocks of autonomous aerial
vehicles. This talk represents joint work with Radu Grosu, Ashish Tiwari, and
Junxing Yang.

Adaptable Yet Provably Correct
Autonomous Systems

Ufuk Topcu

Department of Aerospace Engineering and Engineering Mechanics,
University of Texas at Austin, Austin, TX, USA
utopcu@utexas.edu

Abstract. Acceptance of autonomous systems at scales at which they can make
societal and economical impact hinges on factors including how capable they
are in delivering complicated missions in uncertain and dynamic environments
and how much we can trust that they will operate safely and correctly. In this
talk, we present a series of algorithms recently developed to address this need. In
particular, these algorithms are for the synthesis of control protocols that enable
agents to learn from interactions with their environment and/or humans while
verifiably satisfying given formal safety and other high-level mission specifi-
cations in nondeterministic and stochastic environments.

We take two complementing approaches. The first approach merges data
efficiency notions from learning (e.g., so-called probably approximate correct-
ness) with probabilistic temporal logic specifications. The second one leverages
permissiveness in temporal-logic-constrained strategy synthesis with reinforce-
ment learning.

Contents

Markov Processes

Property-Driven State-Space Coarsening for Continuous Time

Markov Chains. e 3
Michalis Michaelides, Dimitrios Milios, Jane Hillston,
and Guido Sanguinetti

Optimal Aggregation of Components for the Solution of Markov
Regenerative Processes 19
Elvio Gilberto Amparore and Susanna Donatelli

Data-Efficient Bayesian Verification of Parametric Markov Chains 35
E. Polgreen, V.B. Wijesuriya, S. Haesaert, and A. Abate

Probabilistic Reasoning Algorithms

Exploiting Robust Optimization for Interval Probabilistic Bisimulation. 55
Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns,
and Andrea Turrini

Approximation of Probabilistic Reachability for Chemical Reaction
Networks Using the Linear Noise Approximation 72
Luca Bortolussi, Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti

Polynomial Analysis Algorithms for Free Choice Probabilistic
Workflow Nets.o 89
Javier Esparza, Philipp Hoffmann, and Ratul Saha

Queueing Models

Energy-Aware Server with SRPT Scheduling: Analysis and Optimization ... 107
Misikir Eyob Gebrehiwot, Samuli Aalto, and Pasi Lassila

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join
Stationso 123
Andrea Marin and Sabina Rossi

Moment-Based Probabilistic Prediction of Bike Availability
for Bike-Sharing Systems. 139
Cheng Feng, Jane Hillston, and Daniél Reijsbergen

http://dx.doi.org/10.1007/978-3-319-43425-4_1
http://dx.doi.org/10.1007/978-3-319-43425-4_1
http://dx.doi.org/10.1007/978-3-319-43425-4_2
http://dx.doi.org/10.1007/978-3-319-43425-4_2
http://dx.doi.org/10.1007/978-3-319-43425-4_3
http://dx.doi.org/10.1007/978-3-319-43425-4_4
http://dx.doi.org/10.1007/978-3-319-43425-4_5
http://dx.doi.org/10.1007/978-3-319-43425-4_5
http://dx.doi.org/10.1007/978-3-319-43425-4_6
http://dx.doi.org/10.1007/978-3-319-43425-4_6
http://dx.doi.org/10.1007/978-3-319-43425-4_7
http://dx.doi.org/10.1007/978-3-319-43425-4_8
http://dx.doi.org/10.1007/978-3-319-43425-4_8
http://dx.doi.org/10.1007/978-3-319-43425-4_9
http://dx.doi.org/10.1007/978-3-319-43425-4_9

XVI Contents

Tools

Attack Trees for Practical Security Assessment: Ranking of Attack

Scenarios with ADTool 2.0

Olga Gadyatskaya, Ravi Jhawar, Piotr Kordy, Karim Lounis,
Sjouke Mauw, and Rolando Trujillo-Rasua

Spnps: A Tool for Perfect Sampling in Stochastic Petri Nets

Simonetta Balsamo, Andrea Marin, and Ivan Stojic

CarMma Eclipse Plug-in: A Tool Supporting Design and Analysis

of Collective Adaptive Systemsttt

Jane Hillston and Michele Loreti

Sampling, Inference, and Optimization Methods

Uniform Sampling for Timed Automata with Application to Language

Inclusion Measurementt e

Benoit Barbot, Nicolas Basset, Marc Beunardeau,
and Marta Kwiatkowska

Inferring Covariances for Probabilistic Programs.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja

Should Network Calculus Relocate? An Assessment of Current Algebraic

and Optimization-Based Analyses

Steffen Bondorf and Jens B. Schmitt

Markov Decision Processes and Markovian Analysis

Verification of General Markov Decision Processes by Approximate

Similarity Relations and Policy Refinement

Sofie Haesaert, Alessandro Abate, and Paul M.J. Van den Hof

Policy Learning for Time-Bounded Reachability in Continuous-Time

Markov Decision Processes via Doubly-Stochastic Gradient Ascent.

Ezio Bartocci, Luca Bortolussi, Tomds Brazdil, Dimitrios Milios,
and Guido Sanguinetti

Compact Representation of Solution Vectors in Kronecker-Based

Markovian Analysis.ot

Peter Buchholz, Tugrul Dayar, Jan Kriege, and M. Can Orhan

Networks

A Comparison of Different Intrusion Detection Approaches in an Advanced

Metering Infrastructure Network Using ADVISE.

Michael Rausch, Brett Feddersen, Ken Keefe, and William H. Sanders

http://dx.doi.org/10.1007/978-3-319-43425-4_10
http://dx.doi.org/10.1007/978-3-319-43425-4_10
http://dx.doi.org/10.1007/978-3-319-43425-4_11
http://dx.doi.org/10.1007/978-3-319-43425-4_12
http://dx.doi.org/10.1007/978-3-319-43425-4_12
http://dx.doi.org/10.1007/978-3-319-43425-4_13
http://dx.doi.org/10.1007/978-3-319-43425-4_13
http://dx.doi.org/10.1007/978-3-319-43425-4_14
http://dx.doi.org/10.1007/978-3-319-43425-4_15
http://dx.doi.org/10.1007/978-3-319-43425-4_15
http://dx.doi.org/10.1007/978-3-319-43425-4_16
http://dx.doi.org/10.1007/978-3-319-43425-4_16
http://dx.doi.org/10.1007/978-3-319-43425-4_17
http://dx.doi.org/10.1007/978-3-319-43425-4_17
http://dx.doi.org/10.1007/978-3-319-43425-4_18
http://dx.doi.org/10.1007/978-3-319-43425-4_18
http://dx.doi.org/10.1007/978-3-319-43425-4_19
http://dx.doi.org/10.1007/978-3-319-43425-4_19

Contents XVII

Traffic Modeling with Phase-Type Distributions and VARMA Processes. . . . 295
Jan Kriege and Peter Buchholz

An Optimal Offloading Partitioning Algorithm in Mobile Cloud Computing. . . 311
Huaming Wu, William Knottenbelt, Katinka Wolter, and Yi Sun

Performance Modeling

Maintenance Analysis and Optimization via Statistical Model Checking:

Evaluating a Train Pneumatic Compressor 331
Enno Ruijters, Dennis Guck, Peter Drolenga, Margot Peters,
and Mariélle Stoelinga

Performance Evaluation of Train Moving-Block Control 348
Giovanni Neglia, Sara Alouf, Abdulhalim Dandoush, Sebastien Simoens,
Pierre Dersin, Alina Tuholukova, Jérome Billion, and Pascal Derouet

Decoupling Passenger Flows for Improved Load Prediction 364
Stefan Haar and Simon Theissing

Author Index e 381

http://dx.doi.org/10.1007/978-3-319-43425-4_20
http://dx.doi.org/10.1007/978-3-319-43425-4_21
http://dx.doi.org/10.1007/978-3-319-43425-4_22
http://dx.doi.org/10.1007/978-3-319-43425-4_22
http://dx.doi.org/10.1007/978-3-319-43425-4_23
http://dx.doi.org/10.1007/978-3-319-43425-4_24

Markov Processes

Property-Driven State-Space Coarsening
for Continuous Time Markov Chains

Michalis Michaelides' ™), Dimitrios Milios!, Jane Hillston!,
and Guido Sanguinetti':?

1 School of Informatics, University of Edinburgh, Edinburgh, UK
mic.michaelides@ed.ac.uk
2 SynthSys, Centre for Synthetic and Systems Biology,
University of Edinburgh, Edinburgh, UK

Abstract. Dynamical systems with large state-spaces are often expen-
sive to thoroughly explore experimentally. Coarse-graining methods aim
to define simpler systems which are more amenable to analysis and explo-
ration; most current methods, however, focus on a priori state aggrega-
tion based on similarities in transition rates, which is not necessarily
reflected in similar behaviours at the level of trajectories. We propose
a way to coarsen the state-space of a system which optimally preserves
the satisfaction of a set of logical specifications about the system’s tra-
jectories. Our approach is based on Gaussian Process emulation and
Multi-Dimensional Scaling, a dimensionality reduction technique which
optimally preserves distances in non-Euclidean spaces. We show how
to obtain low-dimensional visualisations of the system’s state-space from
the perspective of properties’ satisfaction, and how to define macro-states
which behave coherently with respect to the specifications. Our approach
is illustrated on a non-trivial running example, showing promising per-
formance and high computational efficiency.

1 Introduction

Reasoning about behavioural properties of dynamical systems is a central goal
of formal modelling. Recent years have witnessed considerable progress in this
direction, with the definition of formal languages [9,10] and logics [12] which
enable compact representations of dynamical systems, and mature reasoning
tools to model-check properties in an exact [15] or statistical way [14,20].
While such advances are indubitably improving our understanding of dynam-
ical systems, the applicability of these techniques in practical scenarios is still
largely hindered by computational issues. In particular, systems with large state-
spaces quickly become infeasible to analyse via exact methods due to the phe-
nomenon of state-space explosion; even statistical methods may require compu-
tationally expensive and extensive simulations. State-space reduction method-
ologies aim to construct more compact representations for complex systems. Such

M. Michaelides, D. Milios and G. Sanguinetti are supported by the European
Research Council under grant MLCS 306999. J. Hillston is supported by the EU
project, QUANTICOL 600708.

© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 3-18, 2016.
DOI: 10.1007/978-3-319-43425-4_1

4 M. Michaelides et al.

reduced-state systems are generally amenable to more effective analysis and may
yield deeper insights into the structure and dynamics of the system.

Broadly speaking, state-space reduction can be achieved by either model sim-
plification, usually by abstracting some system behaviours into a simpler system,
or state aggregation, often by exploiting symmetries or approximate invariances.
A prime example of model simplification is the technique of time-scale separation,
which replaces a large system with multiple weakly dependent sub-systems [5].
Most aggregation methods, instead, are based on grouping different states with
similar behaviour with respect to their transition probabilities. This idea is at the
core of the concept of approximate lumpability, which extends the exact lumpability
relationship by aggregating states based on a pre-defined metric on the outgoing
exit rates [1,7,11,17,19].

In this paper we propose a novel state-space reduction paradigm by shifting
the focus from the infinitesimal properties of states (i.e. their transition rates)
to the global properties of trajectories. Namely, we seek to aggregate states that
yield behaviourally similar trajectories according to a set of pre-defined logical
specifications. Intuitively, two states will be aggregated if trajectories starting
from either state exhibit similar probabilities of satisfying the logical specifica-
tions. We define a statistical algorithm based on statistical model checking and
Gaussian Process emulation to define this behavioural similarity across the whole
state-space of the system. We then propose a dimensionality reduction and clus-
tering pipeline to aggregate states and define reduced (non-Markovian) dynam-
ics. To illustrate our approach, we give a running example of model reduction
for the Susceptible-Infected-Recovered-Susceptible (SIRS) model, a non-trivial,
non-linear stochastic system widely used in epidemiology. Our results show that
property-driven aggregation can yield an effective tool to reduce the complexity
of stochastic dynamical systems, leading to non-trivial insights in the structure
of their state-space.

2 Background

2.1 Population Continuous Time Markov Chains

A Continuous Time Markov Chain (CTMC) is a continuous-time Markovian sto-
chastic process over a discrete state-space S. We will consider only population
models, where the state-space is organised along populations: in this case, the
state-space is indexed by the counts of each population n; € NU {0}. Popula-
tion CTMCs (pCTMCs) are frequently used in many scientific and engineering
domains; we will use here the notation of chemical reactions as it is widespread
and intuitively appealing. Transitions in a pCTMC are denoted as
T’1X1 + .. .’I‘an @ 81X1 =+ ... San

meaning that r; particles of type X; are consumed and s; particles of type X;
are produced when the specific transition takes place. 7(X) is a transition rate
which depends on the current state of the system.

Property-Driven State-Space Coarsening 5

It is easy to show that waiting times between transitions are exponentially
distributed random variables; this observation is the basis of exact simulation
algorithms for pCTMCs, such as the celebrated Gillespie algorithm [13]. The
Gillespie algorithm generates trajectories of a pCTMC by randomly choosing
the next reaction to occur and the time to elapse until the reaction occurs.

Example 1.1. We introduce here our running example, the Susceptible-Infected-
Recovered-Susceptible (SIRS) model of epidemic spreading. The SIRS model is a
discrete stochastic model of disease spread in a population, where individuals in
the population can be in one of three states, Susceptible, Infected and Recovered.
There are different variations of the model, some open (individuals can enter and
exit the system), others with individuals relapsing to a susceptible state after
having recovered. Here, we consider a relapsing, closed system, which evolves
in a discrete, 2-dimensional state-space, where dimensions are the number of
Susceptible and Infected individuals in the population (Recovered numbers are
uniquely determined since the total population is constant). We also introduce a
spontaneous infection of a susceptible individual with constant rate, independent
of the number of infected individuals, to eliminate absorbing states.

With a population size of N, states in the 2D space can be represented by
x=(51),5€{0,---,N},I €{0,--- ,N — S} for a total of (N +1)(N +2)/2
states. The chemical reactions for this system are:

infection S + I 5 2I;
spontaneous infection S ﬂ ;
B
recovery I — R;
relapsing R LR S.
We set the infection rate o = 0.005, recovery rate § = 0.01, and population

size N = S+ 1+ R = 100, for a total of 5151 states in this SIRS system. Sample
trajectories of the system were simulated using the Gillespie algorithm.

2.2 Temporal Logic and Model Checking

We formally specify trajectory behaviours by using temporal logic properties. We
are particularly interested in properties that can be verified on single trajectories,
and assume metric bounds on the trajectories, so that they are observed only
for a finite amount of time. Metric Interval Temporal logic (MITL) offers a
convenient way to formalise such specifications.

Formally, MITL has the following grammar:

pr=tt || 9| o1 Ada | ¢1U7, 1,02,

where tt is the true formula, conjunction and negation are the standard boolean
connectives, and the time-bounded until Uz, 1,) is the only temporal modal-
ity. Atomic propositions p are (non-linear) inequalities on population variables.

6 M. Michaelides et al.

A MITL formula is interpreted over a function of time @, and its satisfac-
tion relation is given as in [16]. More temporal modalities, such as the time-
bounded eventually and always, can be defined in terms of the until operator:
Fir, 1,0 = ttUp, 1,19 and Giry 1,00 = ~F (7 1,179

MITL formulae evaluate as true or false on individual trajectories; when
trajectories are sampled from a stochastic process, the truth value of a MITL
formula is a Bernoulli random variable. Computing the probability of such a ran-
dom variable is a model checking problem. Model checking for MITL properties
evaluated on trajectories from a CTMC requires the computation of transient
probabilities; despite major computational efforts [15], this is seldom possible
exactly due to state-space explosion. Statistical model checking (SMC) methods
circumvent such problems by adopting a Monte Carlo perspective: by drawing
repeatedly and independently sample trajectories, one may obtain an unbiased
estimate of the truth probability, and statistical error bounds can be obtained by
employing either frequentist or Bayesian statistical approaches [14,20]. It should
be pointed out that such bounds do not carry the same guarantees as numeri-
cal results obtained say by transient analysis; however, simply by drawing more
samples one may reduce the uncertainty in the bounds arbitrarily.

Ezxample 1.2. MITL formulae can be used effectively to obtain behavioural char-
acterisations of the system’s trajectory. We turn again to the SIRS model to
illustrate this concept.

Assume one may want to express a global bound on the virulence of the
infection, so that the fraction of infected population never exceeds A. This can
be done by considering the formula ¢, defined as

p1:: = G100/ (L < AN) (1)

which translates to:

¢1(z) =

tt if I < AN ¥t € [0,100],
—-tt otherwise.

Statistical model checking of this formula is trivial: one simply draws a trajectory
using Gillespie’s algorithm, and monitors that the maximal number of infected
does not exceed the specified threshold in the [0, 100] interval.

3 Methodology

3.1 High Level Method Description

We first present a high-level description of the proposed methodology; the tech-
nical ingredients will be introduced in the following subsections. Figurel pro-
vides an intuitive roadmap of the approach. The overarching idea is to provide
a state-space aggregation algorithm which uses behavioural similarities as an
aggregation criterion.

Property-Driven State-Space Coarsening 7

Initial state space

¢-calculation GP imputation

1
Property space (¢-space) .
2
X
1
3, °
e P(¢1)
MDS projection 1.
JSD as metric P(én)* MDS extension
9m<n
A
! 2
| o
| 03
JSD space |
| X
| 10
|
—
01
Clustering Cluster labelling
9m<n
A
! 2
| o
| 03
JSD space |
| X
| 10
|
—
01

Fig. 1. The sequence of transformations from space to space are shown in the figure.
States from the original state-space (blue circles 1-3) are projected to ¢-space accord-
ing to satisfaction rate of set properties (found via simulation of the system). MDS
is used to project from ¢-space to a space where JSD of ¢ satisfaction probabil-
ity distributions between states is preserved as Euclidean distance (in the figure,
JSD[P,(2) || Ps(3)] < JSD[Ps(1) || Ps(2)],JSD[Ps(1) || P»(3)] so states 2, 3 are
placed closer together than 1). The states are then clustered to produce macro-states.
Out-of-sample states (red cross) can be projected to ¢-space, using GP imputation to
estimate satisfaction probabilities. MDS extension allows projecting from ¢-space to
JSD space without moving the sampled states. The most likely cluster for the state to
belong to (nearest centroid) is the macro-state it belongs to. (Color figure online)

8 M. Michaelides et al.

The input to the approach is a CTMC model and a set of MITL formulae
@1, ..., ¢, which define the behavioural traits we are interested in. We formalise
some of the key concepts through the following definitions.

Definition 1. A coarsening map C for a CTMC M is a surjective map
M:S—-R, (2)
from the state-space S of M to a finite set R, such that card(S) > card(R).

Definition 2. The macro-states of the coarsened system are the elements of the
image of the coarsening map C.

Therefore, the set of all macro-states is a partition of the set of initial states
S, where each element in the partition is a macro-state. In general, there is no
way to retrieve the initial state configuration of the system only from information
of the macro-state configuration, i.e., the coarsening entails an information loss.
We illustrate the various steps of the proposed procedure in Fig. 1. The first
step is to take a sample of possible initial states; we then evaluate the joint
satisfaction of the n formulae, given a particular state as initial condition. This
implicitly defines a map
$: 8 —10,1*" (3)

which associates each initial state with the probability of each possible satisfac-
tion pattern of the n formulae. Notice that all of the 2™ possible truth values
are needed to ensure correlations between properties are captured. Constructing
such a property map by exhaustive exploration of the state-space is clearly com-
putationally infeasible; we therefore evaluate it (by SMC) on a subset of possible
initial states, and then extend it using a statistical surrogate, a Gaussian Process
(Fig. 1 top).

The property representation contains the full information over the depen-
dence of the properties of interest on the initial state. It can be endowed with
an information-theoretic metric by using the JSD between the resulting proba-
bility distributions. However, the high dimensionality and likely very non-trivial
structure of the property representation may make this unwieldy. We therefore
propose a dimensionality reduction strategy which maintains approximately the
metric structure of the property representation using Multi-Dimensional Scal-
ing (MDS; Fig.1 middle). MDS will also have the advantage of automatically
identifying potentially redundant characterisations, as implied for example by
logically dependent formulae.

The low-dimensional output of the MDS projection can then be visually
inspected for groups of initial states (macro-states) with similar behaviours with
respect to the properties. This operation is a coarsening map, which can also be
automated by using a variety of clustering algorithms.

The model dynamics induce, in principle, a dynamics on this reduced space
R. In practice, such dynamics will be non-Markovian and not easily expressible
in a compact form; we propose a simple, simulation-based alternative definition
which re-uses some of the computation performed in the previous steps to define
an empirical, coarse-grained dynamics on the macro-states.

Property-Driven State-Space Coarsening 9

3.2 Satisfaction Probability as a Function of Initial Conditions

The starting point for our approach consists of embedding the initial state-space
into the property space, ¢-space. This is achieved by computing satisfaction
probabilities for the 2™ possible truth patterns of the n properties we consider.
As in general these satisfaction probabilities can only be computed via SMC, this
is potentially a tremendous computational bottleneck. To obviate this problem,
we turn the computation of the property map into a machine learning problem:
we evaluate the 2™ functions on a (sparse) subset of initial states, and predict
their values on the remaining initial states using a Gaussian Process (GP).

GPs have extensively been used in machine learning for regression purposes
and it is in this context they are used here. A GP is a generalisation of the mul-
tivariate normal distribution to function spaces with infinitely many dimensions;
within a regression context, GPs are used to provide a flexible prior distribution
over the set of candidate functions underpinning the hypothesised input-output
relationship. Given a number of input-output observations (training set), one
can use Bayes’s rule to condition the GP on the training set, obtaining a poste-
rior distribution over the regression function at other input points. For a review
of GPs and their uses in machine learning, we refer the reader to [18].

In our setting, the input-output relationship is the property map from initial
states to satisfaction probabilities of the properties. This function is defined
over a discrete space, but we can use the population structure of the pCTMC to
embed the state-space S in a (subset) of R” for some D. We can then treat the
problem as a standard regression problem, learning a function fs: RP — R2".

Remark. GPs have already been used to explore the dependence of the satis-
faction probability of a formula on model parameters in the so-called Smoothed
Model Checking approach [6]. There, the authors proved a smoothness result
which justified the use of smoothness-inducing GPs for the problem. It is easy
to see that such smoothness does not hold in general for the function fy; for
example, the probability of satisfying the formula x(0) > N has a discontinuity
at £ = N. However, since we only ever evaluate fy on a discrete set of points,
the lack of smoothness is not an issue, as a continuous function can approximate
arbitrarily well a discontinuous function when restricted to a discrete set.

Ezxample 1.3. We exemplify this procedure on the SIRS example. We consider
here three properties of interest: the global bound encoded in formula ¢; defined
in equation (1), and two further properties encoded as

d)g:l = F[0760]G[0’40] (OO5N S 1 S 02]\])7 (4)
¢3:: = F30,50)(1 > 0.3N). (5)

Satisfaction of ¢ requires that the infection has remained within 5 to 20 %
of the total population for 40 consecutive time units, starting anytime in the
first 60 time units; satisfaction of ¢3 requires that the infection peaks at above
30 % between time 30 and time 50.

10 M. Michaelides et al.

The property map in this case would have an 8-dimensional co-domain, rep-
resenting the probability of satisfaction for each of the 23 possible truth values
of the three formulae. Figure 2 plots the probability of satisfaction for the three
formulae individually, as we vary the initial state. In this case, 10 % of all possible
initial states were randomly selected and numerically mapped to the property
space via SMC, while the satisfaction probabilities for the remaining 90 % were
imputed using GPs. We see that throughout most of the state-space the sec-
ond property has low probability. Also it is of interest to observe the strong
anti-correlation between the first and third properties: intuitively, if there is
very high probability that the infection will be globally bounded below 40 % of
individuals, it becomes more difficult to reach a peak at above 30 %.

3.3 Dimensionality Reduction of Behaviours

Once states are mapped onto ¢-space, reducing dimensionality of this space is
useful to remove correlations and redundancies in the properties tracked. Prop-
erties may often capture similar behaviour, leading to strong correlations in
their satisfaction probability. Reducing the dimensionality of the property space
mostly retains the information of how behaviour differs from state to state, elim-
inating redundancies. Moreover, reduced dimensional mappings can aid practi-
tioners to visually identify structures within the state-space of the system.

In order to quantify the similarity of different initial states with respect to
property satisfaction, the Jensen-Shannon Divergence (JSD) between the prob-
ability distributions of property satisfaction is used as a metric. JSD is an infor-
mation theoretic symmetric distance between probability distributions — the
higher the difference between the distributions, the higher JSD is. Between two
distributions, P, @, JSD is defined as

JSDP || Q] = %(KL[P | M] + KL[Q || M]),

where M = 0.5(P 4+ Q) the average of the distributions, and KL[P | Q] =
> P(i)log g%;;, the Kullback-Leibler divergence.

The JSD enables us to derive a matrix of pairwise distances in property
space between different initial states. Such a distance is not FEuclidean, and is
defined in the high-dimensional property space. To map the initial states in a
more convenient, low-dimensional space, we employ a dimensionality reduction
technique known as Multi-Dimensional Scaling (MDS) [4].

MDS has its roots in the social science literature; it is a valuable and widely
used tool in psychology and similar fields where data is collected by assessing
similarity between pairs.

Given some points X in an m-dimensional space, MDS finds the position
of corresponding points Z in an n-dimensional space, where usually n < m,
such that a given metric between points is optimally preserved. In the most
common case, (also known as Torgerson—Gower scaling or Principal Component
Analysis), the metric to be preserved is the Euclidean distance, and is preserved

Property-Driven State-Space Coarsening 11

by minimisation of a loss function. This function is generally known as stress for
metric MDS, but specifically for classical MDS as strain.

For the classical MDS case, the projection is achieved by eigenvalue decom-
position of a distance matrix of the (normalised) points X X ', and subsequently
reconstructing the points from the n largest (eigenvector, eigenvalue) pairs. This
results in Z, a projection of the points to an n-dimensional space, where Euclid-
ean distance is optimally preserved.

In the classical MDS definition, the MDS projection is defined statically
for the available data points, and needs ab initio re-computation if new points
become available. In [2], the method is extended to new points by constructing a
new dissimilarity matrix of new points to old ones, by which the projection of new
points will be consistent to that of the old points. The kernel for this new matrix
achieves this by replacing the means required for centring with expectations over
the old points; such that for points z,y € X

K(z,y) = —(dzxy Zde) Zdzxy +de2ac Y)
where K (x,y) is the kernel used for the dissimilarity matrix, is replaced by

K(a,b) = —% (d2(a, b) — E.[d*(z,a)] — Eyp[d*(b,2")] + By o [d*(x, x')]),

where a can be an out-of-sample point (a ¢ X,b € X).

This reconstructs the dissimilarity matrix for the original points exactly,
and allows us to generalise to out-of-sample points and find their positions in
the embedding learned, as described in [2]. Extending MDS allows us to create
macro-states based on samples of points, and then project new points on the
space created by MDS to find in which clusters they belong.

Ezample 1.4. We have introduced three properties in Egs. (1), (4) and (5), and
the associated property map. This has an eight-dimensional co-domain, but
already some of its properties can be gleaned by the three-dimensional plot of
the single-formula probabilities shown in Fig. 2. Particularly, these reveal strong
negative correlations, indicating that MDS may prove fruitful.

Figure 3 shows the states projected to a 2D space were proximity implies
similar probability distribution over property satisfaction. This was achieved
using MDS to project the states, with JSD used as the metric to be preserved as
Euclidean distance in the new 2D space. Elements of the square-shaped structure
visible in ¢-space (Fig.2) are preserved, with the subset of states giving rise to
higher probabilities for property ¢, (top of Fig.2) appearing further from the
connected outline (bottom left group in Fig. 3).

3.4 Clustering and Structure Discovery

The MDS projection enables us to visually appreciate the existence of non-trivial
structures within the state-space, such as clusters of initial states that produce

12 M. Michaelides et al.

Fig. 2. Left: Projection of states in ¢-space via SMC (trajectory simulations for each
initial state). Notice the non-trivial state distribution structure. Right: Projection of
states in ¢-space using SMC for 10 % of the states, and GP regression to estimate P(¢)
for the rest 90 % of states (red crosses). (Color figure online)

3 %
~0.05 g ~0.05
-0.10 -0.10
P o
-0.15 g -0.15 %

-0.20 -0.20

025 —0.8 0.6 —0.4 02 0.0 0.2 023 0.0 0.2 0.4 0.6 0.8 10

Fig. 3. Left: P(¢1, ¢2,¢3) estimated via SMC for each state. MDS was then used to
project them from an 8D to a 2D space. Right: GP estimates of P(¢1, ¢2, ¢3) for 90 % of
states (red crosses) produce an almost identical MDS projection. (Color figure online)

similar behaviours with respect to the property specification. Our intuition is
that such structures should form the basis to define macro-states of the system,
groups of states that will exhibit similar satisfaction probabilities for the proper-
ties defined. To automate this process, we propose to use a clustering algorithm
to define macro-states. Since our goal is to group states with similar behaviours,
we adopt k-means clustering [3], which is based on the Euclidean distance of
the states in the MDS space (representative of the JSD between the probability
satisfaction distributions). k-means requires specification of the desired number
of clusters (the k parameter); this allows the user to select the level of coarsening
required. Figure 4 shows the clusters produced in the reduced MDS space for the
running SIRS model example, where we set the number of clusters k = 10.

3.5 Constructing Coarse Dynamics

Once states have been grouped into macro-states, a major question is how
to construct dynamics for the now coarsened system. The coarsened system
naturally inherits dynamics from the original (fine-grained) system; however,

Property-Driven State-Space Coarsening 13

0.0

-0.1

=0.2

Fig. 4. The states were clustered in the space created by the MDS projection and
coloured accordingly, using k-means (10 clusters). Since the Euclidean distance in this
space is representative of distance in probability distributions over properties, states
with different behaviour should be in different clusters. (Color figure online)

such dynamics are non-Markovian, and in general fully history dependent so
that transition probabilities would have the form

p(K' |k, t, h) = p(K' |k, t, h)p(t|k,), (6)

where h denotes the history of the process. Simulating such a non-Markovian
system is very difficult and likely to be much more computationally expensive
than simulating the original system.

We therefore seek to define approximate dynamics which are amenable to
efficient simulation, but still capture aspects of the non-Markovian dynamics.
The most natural approximation is to replace the system with a semi-Markov
system: transitions are still history-independent, but the distribution of sojourn
times is non-exponential. To evaluate the sojourn-time distribution, we resort to
an empirical strategy, and construct an empirical distribution of sojourn times by
re-using the simulated trajectories of the fine system that were drawn to define
the coarsening. In other words, once a clustering is defined, we retrospectively
inspect the trajectories to construct a histogram distribution of sojourn times,
approximating p(t|k).

A possible drawback of this semi-Markov approximation is that it may intro-
duce transitions which are actually impossible in the original state-space. This
is because states were clustered based on behaviour rather than transition rates,
and therefore states that are actually quite far in the original state-space may
end up being clustered together. Since the identity of the original states is lost
after the coarse graining, impossible transitions may be introduced.

Retrospectively inspecting whole system trajectories, rather than agnosti-
cally examining cluster transitions of the original system with a uniform ini-
tial state distribution within the cluster, ameliorates this problem. Similarly,
estimates of p(k'|t, k) are produced from the same trajectories; these are the
macro-state transition frequencies in each bin of the sojourn time probability

14 M. Michaelides et al.

histogram. This method avoids a lot of impossible trajectories one might gener-
ate, if the above probabilities were estimated by sampling randomly from initial
states in a macro-state and looking at when the macro-state is exited and to
which macro-state the system transitions. Assuming the original system has a
steady state, the empirical dynamics constructed here capture this steady state
macro-state distribution; however, accuracy of transient dynamics suffers, and
the coarsened system enters the steady state faster than the original system.

Ezxample 1.5. We illustrate and evaluate the quality of the coarsened trajectories
with respect to the original ones on the SIRS example. In particular, we examine
the probability distribution over the macro-states at different times in the evolu-
tion of the system. The macro-state distribution has been estimated empirically
by sampling trajectories using the Gillespie algorithm for the fine system, and
our coarse simulation scheme for the coarsened system. We have then constructed
histograms to capture the distribution of the categorical random variables that
represent the macro-state. Finally, we measure the histogram distance between
histograms obtained from the fine and the coarse systems. Figure5 depicts the
evolution of the macro-state histograms over time.

Fine system cluster distribution

10

9

8 0.6
5 7
2 6
s 0.4
© 4

3 0.2

2

! 0

20 40 60 80 100 120 140
time
Coarse system cluster distribution

10 ' ' ' '

9

8 0.6
5 7
2 6
ﬁ 5 0.4
© 4

3 0.2

2

! 0

20 40 60 80 100 120 140
time

Fig. 5. Evolution of the macro-state histograms over time

Quality of Approxzimation. In order to put any distance between empirical dis-
tributions into context, this has to be compared with the corresponding average
self-distance, which is the expected distance value when we compare two samples
from the same distribution. In this work, we estimate the self-distance using the

Property-Driven State-Space Coarsening 15

result of [8]: given N samples and K bins in the histogram, an upper bound
for the average histogram self-distance is given by 1/(4K)/(wN). In our exam-
ple, we have K = 10 histogram bins, which are as many as the macro-states.
In practice, a distance value smaller than the self-distance implies that the dis-
tributions compared are virtually identical for a given number of samples. In
Fig. 6, we see the estimated distances for NV = 10000 simulation runs for times
t € [0,150]. It can be seen that the steady-state behaviour of the system is cap-
tured accurately, as the majority of the distances recorded after time ¢ = 60 lie
below the self-distance threshold. However, the transient behaviour of the sys-
tem is not captured as accurately. Upon a more careful inspection of the shape
of the histograms in Fig.5, we see that the coarsened system simply converges
more quickly to steady-state. To conclude, we think that the the approximation
quality of the steady-state dynamics is a promising result, but a more accurate
approximation of the transient behaviour is subject of future work.

o © Estimated distance
o ~ — — Upper bound for average self-distance|
o
®
02
%O
° o
L)
o 01sh &%
g ®oq
g o,
2 000°
S 3
® o
®o
0.05) 3‘;@:¢
7777777777777777 B8 o 0 o5 - a9 o -2 s O
S Se
R
0 50 100 150
Time

Fig. 6. Evolution of the macro-state histogram distances over time

Computational Savings. State-space coarsening results in a more efficient sim-
ulation process, since the coarse system is characterised by lower complexity
as opposed to the fine system. We demonstrate these computational savings
empirically in terms of the average number of state transitions invoked dur-
ing simulation. More specifically, we consider a sample of 5000 trajectories of
the fine and the coarse system. We have recorded 320 + 25 initial state tran-
sitions on average in each trajectory of the fine system, compared to 56 £ 31
macro-state transitions in trajectories of the coarsened system. The number of
transitions in the coarse system is an order of magnitude lower than in the fine
one, owing to the reduction of states in the system from a total of 5151 to 10 (the
number of macro-states). Clearly, our procedure, particularly the GP imputa-
tion, incurs some computational overheads. Table 1 presents the computational
savings of using GPs to estimate satisfaction probability distributions for most
states, instead of exhaustively exploring the state-space. All simulations were
performed using a Gillespie algorithm implementation, taking 1000 trajectories
starting at each examined state, running on 10 cores.

16 M. Michaelides et al.

Table 1. Real running times for simulations of varying sample size (percentage of
state-space) and GP estimation of remaining states.

Sample size | GP &MDS time (s) | Simulation time (s) | Total time (s) | Percentage of exhaustive total
time (total time/8516s)
100 % 1616* 6900 8516 100 %
50 % 1133 3450 4583 54 %
40 % 884 2760 3644 43 %
30 % 595 2070 2665 31%
20 % 354 1380 1734 20 %
10 % 170 690 860 10 %

* No GP was performed here, just the MDS.

4 Discussion

We presented a novel approach to the coarsening of a CTMC, in order to gain a
stochastic process with a much smaller state-space. Unlike previous approaches
to CTMC aggregation, which are based on structural properties of the state-
space, our approach is based on property satisfaction, allowing the coarse-grained
system to focus on abstracting the dynamics in terms of aspects of behaviour
that are important in the modelling study. The further steps are to identify
key clusters of states in property space, or a lower-dimensional representation of
it, and approximate the transition dynamics between them. For example, this
approach might be used within multi-scale modelling to reduce the state-space
of a lower level model before embedding in a higher-level representation.

Common aggregation techniques, such as exact or approximate lumpabil-
ity, often impose stringent conditions on the symmetries and transition rates
within the original state-space. Moreover, the macro-states produced can be dif-
ficult to interpret when the reduction is applied directly at the state-space level
(i.e. without a corresponding bisimulation over transition labels). In contrast,
the property-based approach allows macro-states to be defined by high-level
behaviour, rather than them emerging from an algorithm applied to low-level
structure.

The GP regression we employed for estimating satisfaction probability of
properties for out-of-sample states proved quite accurate; simulation estimates
for 10% of the states were sufficient to reconstruct the state distribution in
the space defined by the probability of property satisfaction, ¢-space, without
substantial loss of structure. Therefore, the proposed approach may be help-
ful in effectively understanding the behavioural structure of large and complex
Markovian systems, with implications for design and verification.

Initial experiments on a simple system show that our approach can be practi-
cally deployed, with considerable computational savings. The approach induces
coarsened dynamics which empirically match the original system’s dynamics
in terms of steady-state behaviour. However, the recovery of transient coarse-
grained dynamics poses more of a challenge and this will provide a focus for
future work. In particular, we will seek to explore the possibility of quantifying
the information lost through the coarsening approach, at least asymptotically,

Property-Driven State-Space Coarsening 17

for systems which admit a steady state. Exploring the scalability of the approach
on more complex, higher dimensional examples will also be an important prior-
ity. In general, we expect our approach to be beneficial when simulation costs
dominate the overheads incurred by the GP regression approach. This condition
will be mostly met for systems with moderately large state spaces but com-
plex (e.g. stiff) dynamics. For extremely large state spaces, the cubic complexity
(in the number of retained states) of GP regression may force users to adopt
excessively sparse sub-sampling schemes, and it may be preferable to replace
the GP regression step with alternative schemes with better scalability. Explo-
ration of these computational trade-offs would likely prove insightful for the
methodology.

References

1. Abate, A., Brim, L., Ceska, M., Kwiatkowska, M.Z.: Adaptive aggregation of
Markov chains: quantitative analysis of chemical reaction networks. In: Kroen-
ing, D., Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 195-213. Springer,
Heidelberg (2015)

2. Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Le Roux, N.,
Ouimet, M.: Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and
spectral clustering. In: Proceedings of NIPS, pp. 177-184 (2004)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer-Verlag New
York, Inc., Secaucus (2006)

4. Borg, 1., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications.
Springer, New York (2005)

5. Bortolussi, L., Milios, D., Sanguinetti, G.: Efficient stochastic simulation of systems
with multiple time scales via statistical abstraction. In: Roux, O., Bourdon, J.
(eds.) CMSB 2015. LNCS, vol. 9308, pp. 40-51. Springer, Heidelberg (2015)

6. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235-253 (2016)

7. Buchholz, P., Kriege, J.: Approximate aggregation of Markovian models using alter-
nating least squares. Perform. Eval. 73, 73-90 (2014)

8. Cao, Y., Petzold, L.: Accuracy limitations and the measurement of errors in the
stochastic simulation of chemically reacting systems. J. Comput. Phys. 212(1),
6-24 (2006)

9. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. Theor. Comput. Sci. 410(33), 3065-3084 (2009)

10. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of
cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17-41. Springer, Heidelberg (2007)

11. Deng, K., Mehta, P.G., Meyn, S.P.: Optimal Kullback-Leibler aggregation via spec-
tral theory of Markov chains. IEEE Trans. Autom. Control 56(12), 2793-2808
(2011)

12. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92-106. Springer, Heidelberg (2010)

13. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 23402361 (1977)

18

14.

15.

16.

17.

18.

19.

20.

M. Michaelides et al.

Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.:
A Bayesian approach to model checking biological systems. In: Degano, P.,
Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218-234. Springer,
Heidelberg (2009)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585-591. Springer, Heidelberg (2011)

Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol.
3253, pp. 152-166. Springer, Heidelberg (2004)

Milios, D., Gilmore, S.: Component aggregation for pepa models: an approach
based on approximate strong equivalence. Perform. Eval. 94, 4371 (2015)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations
in Markovian process algebra. J. Log. Algebr. Meth. Program. 84(2), 238-258
(2015)

Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368-1409 (2006)

Optimal Aggregation of Components for the
Solution of Markov Regenerative Processes

Elvio Gilberto Amparore®™ and Susanna Donatelli

University of Torino, Corso Svizzera 187, Torino, Italy
{amparore,susi}@di.unito.it

Abstract. The solution of non-ergodic Markov Renewal Processes may
be reduced to the solution of multiple smaller sub-processes (compo-
nents), as proposed in [4]. This technique exhibits a good saving in time
in many practical cases, since components solution may reduce to the
transient solution of a Markov chain. Indeed the choice of the compo-
nents might significantly influence the solution time, and this choice is
demanded in [4] to a greedy algorithm. This paper presents a compu-
tation of an optimal set of components through a translation into an
integer linear programming problem (ILP). A comparison of the optimal
method with the greedy one is then presented.

1 Introduction

A Markov Regenerative Process (MRP) is a stochastic process defined by a
sequence of time instants called renewal times in which the process loses its mem-
ory, i.e. the age of non-exponential (general) events is 0. The behaviour between
these points is then described by a time-limited stochastic process. MRPs have
been studied extensively in the past [13,16], and many solid analysis techniques
exist. MRPs are considered the richest class of stochastic processes for which it is
still possible to compute an exact numerical solution, and have therefore attracted
a significant interest in the performance and performability community.

This paper considers the subclass of MRP in which the time limited stochastic
process is a CTMC, general events are restricted to deterministic ones, and at
most one deterministic event is enabled in each state. This type of MRPs arise
for example in the solution of Deterministic Stochastic Petri nets (DSPN), in
the model-checking of a one-clock CSL™ formula [12] and in Phased-Mission
Systems (PMS) as in [8,15].

The steady-state solution of an MRP involves the computation and the solu-
tion of its discrete time embedded Markov chain, of probability matrix P. The
construction of P is expensive, both in time and memory, because this matrix
is usually dense even if the MRP is not. The work in [13] introduces an alter-
native matriz-free technique (actually P-free), based on the idea that P can be
substituted by a function of the basic (sparse) matrices of the MRP.

When the MRP is non-ergodic it is possible to distinguish transient and
recurrent states, and specialized solution methods can be devised. The work
in [2,4] introduces an efficient steady-state solution for non-ergodic MRPs,

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 19-34, 2016.
DOI: 10.1007/978-3-319-43425-4_2

20 E.G. Amparore and S. Donatelli

in matrix-free form, called Component Method. To the best of our knowledge,
this is the best available technique for non-ergodic DSPN and for CSL™ | as well
as for non-ergodic MRPs in general.

The work in [2,4] and its application to CSL™ in [5] identify a need for
aggregating components into bigger ones, and observe that the performance
of the algorithm may depend on the number, size, and solution complexity of
the components. The aggregation is defined through a set of rules, to decide
which components can be aggregated together, and through a greedy-heuristic
algorithm that performs aggregations as much as it can. In this paper we observe
that the greedy algorithm of [4] may actually find a number of components that
is not minimal. The greedy solution seems to work quite well on the reported
example, but the lack of optimality makes it hard to determine if it is convenient.

This paper formalizes the optimality criteria used in [4] and defines an ILP
for the computation of an optimal set of components: to do so, the component
identification problem is first mapped into a graph problem.

The paper develops as follows: Sect.2 defines the necessary background.
Section 3 defines the component identification problem in terms of the MRP
graph. Section 4 defines the ILP that computes the optimal set of components.
Section 5 discusses the performance of the ILP method and how it compares to
the greedy method and concludes the paper.

2 Background and Previous Work

We assume that the reader has familiarity with MRPs. We use the definitions
of [13]. Let {(Y,,T,,) | n € N} be the Markov renewal sequence (MRS), with
regeneration points Y, € S on the state space S encountered at renewal time
instants T,. An MRP can be represented as a discrete event system (like in
[11]) where in each state a general event g is taken from a set G. As the time
flows, the age of g being enabled is kept, until either g fires (A event), or a
Markovian transition, concurrent with g, fires. Markovian events may actually
disable g (preemptive event, or Q event), clearing its age, or keep g running with
its accumulated age (non-preemptive event, or Q event).

Definition 1 (MRP Representation). A representation of an MRP is a
tuple R = (S,G,6,,1,Q, Q, A) where S is a finite set of states, G = {g1...gn}
is a set of general events, §, is the duration of event g, I' : S — G U {E}
s a function that assigns to each state a general event enabled in that state,
or the symbol E if no general event is enabled, Q : S x § — R>q is the non-
preemptive transition rates function (rates of non-preemptive Markovian events),
Q : S xS — Ry is the preemptive transition rates function (rates of preemptive
Markovian events), A : S x 8§ — Rxq is the branching probability distribution
(probability of states reached after the firing of the general event enabled in the
source state). Let o be the initial distribution vector of R.

Given a subset of states A € S, let I'(A) = {I'(s) | s € A} be the set of
events enabled in A. Let the augmented set A be defined as set of states A plus

Optimal Aggregation of Components for the Solution 21

the states of S\ A that can be reached from A with one or more non-preemptive
Markovian events (Q events). To formulate MRP matrices, we use the matriz
filter notation of [13]. Let I¢ be the matrix derived from the identity matrix of
size |S| where each row corresponding to a state s with I'(s) # {g} is set to zero.
Let I¥ be the same for I'(s) # {E}.

By assuming {Y,,,7,} to be time-homogeneous, it is possible to define the
embedded Markov chain (EMC) of the MRP. The EMC is a matrix P of size
S| x |S| defined on the MRS as P; ; % Pr{Y,, = j | Y,_; = i}. A full discussion
on the EMC matrix can be found in [13, Chap. 12]. Matrix P is usually dense
and slow to compute. To avoid this drawback, a matrix-free approach [14] is
commonly followed. We now recall briefly the matrix-free method for non-ergodic
MRP in reducible normal form.

Definition 2 (RNF). The reducible normal form of an EMC P is obtained by
rearranging the states s.t. P is in upper-triangular form:

T | Fq N
k > 0 transient subsets.

p— Ty (1)

Rit1) (m — k) recurrent subsets,

' with m > k.

R,, |

The RNF of P induces a directed acyclic graph, where each node is a subset
of states S; (called component). Let I; be the filtering identity matrix, which
1s the identity matriz where rows of states not in S; are zeroed.

When P is in RNF, the steady-state probability distribution can be computed
using the outgoing probability vectors p;. The vector p, gives for each state
s € (§\'S;) the probability of reaching s in one jump while leaving S;:

M = (Ii -o Z(Il . Nj)) - Ti)—l F,, i<k @)

j<i

Since matrix inversion is usually expensive, a product of a generic vector u with
(I — T;)~! can be reformulated as a linear equations system x - (I — T;) = u.
This system can be computed iteratively using vector x matrix products with
uT;. The steady state probability of the i-th recurrent subset is given by:

k
;= (Ii-a+Z(Ii~uj))- lim (R,)", k<i<m (3)
The Component Method computes first Eq. (2) for all transient components,
taken in an order that respects the condition j < i of the formula, and then
computes the probability for the recurrent subsets based on Eq. (3).

Since the construction of P is not always feasible, a matrix-free method has
been devised in [4] for the computations of uT; and uF;. This generalisation

22 E.G. Amparore and S. Donatelli

provides: (1) a derivation of the m subsets S; which is based only on Q, Q
and A; (2) the matrix-free form of the sub-terms T;, F; and R,;, to be used
in Egs. (2) and (3). Observing that solution costs may differ depending on the
structure of the subterms, it is convenient to distinguish three different matrix-
free formulations.

[Class Cg] Condition: I'(S;) = {E'}. No general event is enabled in the S; states.
The matrix-free products are defined as uT; = I;-a;(u) and uF; = (I-1;)-a;(u),
with the term a;(u) defined as follow, given I¥ =1, - I¥ and QF =17 - Q:

a;(u) = u- (IF — diag~ ' (QF)QF)

Time cost of a product with T; or F; is of O(|Qf|).
[Class Cy] Either |I'(S;)| > 1or I'(S;) = {9} N (Qi-L; #0 VvV A; -1, #0)
Let b;(u) be defined as:

59
b(u) = <u-ZI§-eQi59>-A+<u-ZI?~/ eQ"’””dJ;)'Q
0

geG geG

The term b;(u) gives the probability distribution of the next regeneration state
reached with the firing of the general event (A event) or with the preemption of
the general event enabled (Q event). Note that the computation of b;(u) on a
subset S; of states has to consider all the states in the augmented set §¢, since we
have to consider all states, also outside of the component, in which the system
can be found at the next regeneration state. The products with T; and F; are
defined as:

uT; =1, - (ai(u) + b;(u)), uF; = (I-L)- (ai(u) + b;(u))

The term (I — T;)~! in Eq. (2) requires a fixed-point iteration to be evaluated.
The time cost of b;(u) is that of the uniformization, which is roughly O(]Q;| x
R9), with RY the right truncation point [14, Chap. 5] of a Poisson process of
rate dg - maxses, (—Q(s, s)).

[Class C,] Condition: I'(S;) = {g} A Q;-I, =0 A A;-I; = 0. A single general
event g is enabled in S;, and all the A and Q transitions exits from S; in one
step. The matrix-free products with T; and F; are then:

llTi = 0, llFZ' = (I - Iz) . b;(u)

which means that the term (I — T;)~! in (2) reduces to the identity.

3 Identification of an Optimal Set of Components

As observed in [2,4], the performance of the Component Method may vary sig-
nificantly depending on the number, size and class of the considered components.
There are two main factors to consider. The first one is that the complexity of
the computation of the outgoing probability vector p, in Eq. (2) depends on the

Optimal Aggregation of Components for the Solution 23

class of component S;, and a desirable goal is to use the most convenient method
for each component. The second one is that the presence of many small com-
ponents, possibly with overlapping augmented sets, increases the solution time,
as observed in [4], where it was also experimentally observed that the num-
ber of SCCs of a non-ergodic MRP can be very high (tens of thousands is not
uncommon) also in non artificial MRPs. Therefore multiple components should
be joined into a single one, as far as this does not lead to solving components of
a higher complexity class.

In [4] a greedy method was proposed that aggregates components to reduce
their number, while keeping the component classes separated. The identification
of the components starts from the observation that the finest partition of the
states that produces an acyclic set of components are the strongly connected
components (SCC), where the bottom SCCs (BSCC) represent the recurrent
components of the MRP. The greedy algorithm aggregates components when
feasible and convenient. Two components can be aggregated if acyclicity is pre-
served (feasibility), thus ensuring that the MRP has a reducible normal form,
and if the resulting component has a solution complexity which is not greater
than that of the two components (convenience). The objective is then to find
the feasible and convenient aggregation with the least number of components. The
greedy algorithm works as follows:

1. Let Z be the set of SCCs of S, and let Fz C Z be the frontier of Z, i.e. the
set of SCC with in-degree of 0 (no incoming edges).

2. Take an SCC s from Fz and remove it from Z.

3. Aggregate s with as many SCCs from Fz as possible, ensuring that the class
of the aggregate remains the same of the class of s.

4. Repeat the aggregation until Z is empty.

[31 - Cur)9[Sy : CE] The main limitation of this method is that it
Y depends on the visit order, since the aggregation of
[S, : Cy J_>[S, - CgJ step 3 only visits the frontier. This limitation is nec-
essary to ensure the acyclicity, but it may lead to
sub-optimal aggregations. Indeed Fig.1 shows the
Fig. 1. Counter-example. gy of an MRP, along with their classes, where
the greedy algorithm may fail to provide the minimal aggregation. If the visit
order is 81, Sa, 83,84, at the time of visiting S the in-degree of Sy will still be 1,
since S3 is yet to visit. Therefore the method will not merge S with Sy, resulting
in a sub-optimal aggregation. Viceversa, the visit order S1,S3, S2, Sy allows the
greedy algorithm to aggregate Sy and Sy together.
The goal of this paper is indeed to propose a method that identifies the
optimal set of valid partitions (feasible and convenient).

Definition 3 (MRP Valid Partition). A set of components of an MRP state
space is a valid partition iff (1) the components are acyclic; and (2) each com-
ponent, which belongs to one of the three classes (Cg, Cy and Chr), should not
be decomposable into an acyclic group of sub-components of different classes.

24 E.G. Amparore and S. Donatelli

Acyclicity ensures that the partition is feasible and can be used for the Compo-
nent Method. Condition (2) ensures convenience, i.e. by aggregating we do not
increase the complexity of the solution method required for the component.

Definition 4 (MRP Component Optimization Problem). The MRP
component optimization problem consists in finding a valid partition of the MRP
with the smallest number of components.

It should be clear that this problem does not necessarily result in the fastest
numerical solution of the MRP, since other factors, like rates of the components
and numerical stability, may come into play: as usual the optimization is only
as good as the optimality criteria defined, but results reported in [4] show that
the component method is always equal or better, usually much better, than the
best MRP solution method that considers the whole MRP. We transform the
component optimization into a graph optimization problem for graphs with two
types of edges: joinable (for pair of vertices that can stay in the same component)
and non-joinable (for pair of vertices that have to be in different components).

3.1 Reformulation as a Graph Problem

We use standard notation for graphs. Let G = (V| E) be a directed graph, with
V' the set of vertices and F C V x V the set of edges. Notation v ~» w indicates
that vertex w is reachable from vertex v.

Definition 5 (DAG-LJ). A labelled directed acyclic graph with joinable
edges is a graph G = (V, X, Lab, E, EN), where:

- (V,E) is an acyclic (direct) graph;

— X is a finite set of labels and Lab:V — X is a vertex labelling function;

— En C FE is the set of non-joinable edges; For ease of reference we also define
Ej; = E\ En as the set of joinable edges;

- Yo, u' €V, (v,v') € Ey = Lab(v) = Lab(V');

Notations v -Z> v’ and v &> v’ are shorthands for a joinable and a non-joinable
edge from v to v/, respectively. Given a label [€ X, the section D; of G is the
set of vertices of equal label: {v € V' | Lab(v) =1}. Let D ={D; |l € X'} be the
set of sections of G. Let sect(v) be the section of vertex v.

We now define the concept of valid and optimal partition of a DAG-LJ, to
later how how an optimal valid partition of G induces a set of optimal compo-
nents of the MRP for the component method.

Definition 6. A valid partition of the vertices V of DAG-LJ G is a partitioning
P ={Py,..., Py, }of the set of vertices V such that:

1. VP € P and Vv,v' € P : Lab(v) = Lab(V');
2.VPeP:EynN(PxP)=g;
3. Partition elements P are in acyclic relation.

and we indicate with Parts(G) the set of all valid partitions of G.

Optimal Aggregation of Components for the Solution 25
Note that the presence of a non-joinable edge v &> v’ implies that v and
v’ cannot stay in the same partition element, in any valid partition. A joinable
edge v -Z> v/ means that v and v’ are allowed to be in the same partition element
(and they are, unless other constraints are violated). From a valid partition we
can build a graph which is a condensation graph, the standard construction in
which all the vertices belonging to the same partition are replaced with a single
vertex, from which we can easily check acyclicity.
An optimal partition (not necessarily unique) is then defined as:

Definition 7 (Optimal Partition of G). A walid partition P* € Parts(G) is
optimal if the number of partition elements m is minimal over Parts(G).

3.2 Partitioning an MRP

MRPs have a natural representation as directed graphs: MRP states are mapped
onto vertices and non-zero elements in Q,Q, and A are mapped onto edges.
Figure 2, upper part shows the graph of an MRP R of 10 states, s; to s1g, and
one general event g;. For each state we list the I'(s;), which is either g; or E,
if no general event is enabled. Transition rates are omitted. The mapping to
DAG-LJ cannot be done at the MRP state level, since this results in general
in a non-acyclic directed graph. Since our objective is to find an acyclic set of
components we can map SCC of the MRP (instead of MRP states) to vertices
and connection among SCCs to edges, since SCCs are the finest partition that
satisfies acyclicity. When mapping to DAG-LJ, labels are used to account for
the class of the SCCs, and non-joinable edges are used to identify connections
that violates the convenience of component aggregation.

Definition 8. Given an MRP R = (S,G,0,,1,Q,Q,A), its corresponding
DAG-LJ G(R) =(V, X, Lab, E, EN) is defined as:

-V = SCC(S). Each vertex is a strongly connected component of MRP states.
Let states(v) be the set of states in the strongly connected component v € V.

— The set X of labels is {Cg, Cp} U{Cy | g € G} and Lab(v) is defined as:

o Lab(v) = Cg iff I'(states(v)) = E;

o Lab(v) = Cy with g € G iff I'(states(v)) = {g} and Vs,s’ € states(v) :
Q(s,s') = 0 A A(s,8') = 0; (g is enabled continuously, no firing that
disables and immediately re-enables g is allowed)

o otherwise Lab(v) = Cyy.

- E = {{(v,v') : 3s € states(v) and s € states(v') such that Q(s,s’) # 0 or
Q(s,s") #0 or A(s,s') #0}.

— Edge {v,v") is a joinable edge iff Lab(v)=Lab(v") and: (1) either Lab(v) = M
or (2) all MRP transitions from the states of v to the states of v/ are Q
transitions. All other edges are non-joinable. Note that if there is a joinable
and a non-joinable edge between v and v', the former is ignored, since E; is
defined as E\ En.

26 E.G. Amparore and S. Donatelli

G(R) has |G| +2 distinct labels that induce |G|+ 2 distinct sections: (D) if the
SCC is of class Cg; (Dy) if the SCC is of class Cg, for the general event g € G;
(Dyy) if the SCC is of class Cyy.

Ezample 1. The MRP of Fig. 2 (upper part) has only two SCCs with more than
one state: {s2,s3,54} and {sg, s7}. The bottom-left part shows the DAG-LJ G
built from the SCCs of R. The DAG has three sections: Dg for SCCs of class Cg
(all the states of the SCC enables only exponential transitions), D,, for SCCs in
which all states enable g; and D), for the remaining ones. Vertices vz and vs are
connected by a joinable edge, since only Q transitions connect states of v with
states of vs, while the edge (vs,v4) is non-joinable because A(ss,sg) # 0. the
condensation graph of a valid partition of the DAG-LJ is shown on the right of
Fig. 2. The partition satisfies the requirements of Definition 6: all vertices in the
same partition element have the same label, and it is not possible to go from one
vertex to another vertex in the same partition elements through a non-joinable
edge. Since the condensation graph is acyclic this is a valid partition. a

MRP R: Valid partition P:

O N O Ss:gl)—{s@ E) Bi= (o)

W m
e {/@ D

SCCs of R = {{s1}, {5z 53,50}, {5}, {s6.57} {ss}, {59},{510}}

DAG-LJ G:
Dy has Lab(v) = M,

vy @ Oy DY Ve
/ {bz 53, 54} {58}
no: N Dy, has Lab(v) = g1
{s1} Us N Ce| ____> Joiable edge. Ps = {ve,vr}
{50} {56 57} {s10} ——> Non-joinable.

Fig. 2. Example of an MRP, its DAG-LJ, and a valid partition.

Sections:
Dp has Lab(v) = E,

We now prove that an optimal partitioning of the DAG-LJ generated from
an MRP is a solution of the MRP component optimization problem.

Property 1. If G(R) is the DAG-LJ of an MRP R, and P* = {Py,..., P} isan
optimal partition of G, then Py = {Si,...,Sn}, with §; = U,cp, (states(v))
is a solution of the MRP component optimization problem of R according to
Definition 4.

Proof. Recall that each partition element S; is a set of SCCs of R and each SCC
belongs to one of the three classes (Cg, C, and Cjs). We need to prove that
P is a solution of the component optimization problem of Definition 4, which
requires to prove that P% is an MRP valid partition and that m is minimal.

A valid MRP partition is characterized by (1) acyclicity and (2) each com-
ponent should not be decomposable into an acyclic group of sub-components of

Optimal Aggregation of Components for the Solution 27

different classes. Acyclicity of the set of S; trivially descends from the acyclicity
of P*. For point (2) we can observe that all SCCs in the same partition element,
by Definition 6 condition 1, have the same label and therefore have the same
complexity class. Therefore point (2) can be proven by showing that it is never
the case that the union of two SCCs of the same class results in a component
of a different class if the two SCCs are in the same partition element. If the two
SCCs are classified as Cg, then all states are exponential, and the union is still
in Cg. If the two SCCs are classified as Cg4, then we know that there is no Q
nor A transitions inside the single SCC, so that the classification of their union
into an higher class (Cp) can only be originated by an arc between the states of
the two SCCs, but the presence of such an arc, by definition of the non-joinable
edges in G(R), produces a non-joinable arc between the DAG-LJ vertices of the
two SCCs, and this violates point 2 of Definition 6 (there can be no non-joinable
edges between vertices of the same partition element). If the two SCCs are clas-
sified as Cjy, then all arcs between them, if any, are joinable, and the two SCCs
can end up in the same partition element, which is also of class Cy;.
Optimality of Pxr = {S1,...,Sn} trivially descends from optimality of P* =
{P1,..., Py}, as it is never the case that two SCCs that can be joined together
result in a pair of vertices with a non-joinable edge between them, which is true
by definition of G(R). O

4 Formulation of the ILP

This section defines an optimization problem with integer variables whose solu-
tion allows to build P*. For each vertex v € V the ILP considers |D| integer
variables : a variable x,, and one variable y for each section D € D \ sect(v)
(each section excluded that of v). We shall refer to these two types of vari-
ables simply as and y variables. The optimal partition of G is then built as:

PG) = UDGD(UZ]-V:DI(PZ»D)) where PP = {v|ve D Az, =i}, and Np is

the number of partition elements of section D (optimization target).

Definition 9. The optimization problem is:
Minimize Z Np subject to:
DeD

Rule 1.Vv € V:x, >1 and ¥ D # sect(v): y? >0

Rule 2.¥YveV:x, < Np

Rule 3. Vv,v' € V with sect(v) = sect(v') and v-L>v': 2, < 1z,

Rule 4. Vv,v" € V with sect(v) = sect(v') and v-E>v': z, < 2y

Rule 5. Vv € D,v' ¢ D if v then: x, <yl

Rule 6. Yv € D,v' & D if v/ X> v then: yb < z,

Rule 7. if v-1>v" or v &> v’ then VD ¢ {sect(v), sect(v')} add: y? < yP

28 E.G. Amparore and S. Donatelli

Rule 8. Vv,w € D such that —(v ~ w) A =(w ~ v) add" the constraint: x, <
Ty = VD' # Dyl <yD.

Rule 1 sets a minimum value for the and y variables. Rule 2 defines the Np
value as the maximum of all x variables of the same section. This value is part
of the ILP goal function. Rules 3 and 4 constrains the z variables of the same
section: if there is a non-joinable edge the order must be strict. Note that the
relative order of the = variables follows the arc sense. No constraint is present if
there is no direct edge between v and v'.

e e Py e P

[’(\.(:2]D’ [Jcl %cg D

Fig. 3. The use of y variables to respect acyclicity

The remaining constraints take into account the requirement of acyclicity.
Observe the portion of DAG-LJ reported in Fig. 3, left. a; vertices are in section
D, ¢; are in section D’ and b; are in some other unspecified section(s). Since
there is no arc between a3 and a4 the first 4 rules do not generate any constraint
between the x variables of the two vertices, but if az and a4 end up in the same
partition element acyclicity will be violated. The y variables are then defined as:

yUD:maX(O,xw’weD/\wvv) (4)
For each vertex v, variables y is the maximum over the z values of the vertices
in D that can reach v. The value of y” is used for the definition of the =
variables of those vertices w € D that can be reached from wv, if any. If there
is an edge v — w, then ,, has to be strictly greater than y”. Back to Fig.3,
left, y{i stores the maximum value among z,, and z,,, therefore ylg = Tqs,

while yﬁ " has the same value of Z¢, - Indeed Rules 5 to 7 of the ILP ensure that
the optimal solution of the ILP assigns to each y the correct value, as we shall
prove in Theorem 1. In the example Rules 5 to 7 insert the following constraints:
Tay < yéZ < ylg < ylﬁ < &g,, therefore x,, # x,4,, S0 4, and z,, end up in
different elements of the partition and acyclicty is preserved.

The above rules are effective in generating a constraints between x,, and x,, of
the same section only if the two vertices are connected through a path (possibly
passing through different sections). Conslder the DAG-LJ of Flg 3, rlght Rules
9 to 7 produce four constraints: z,, < ycz, yc1 < Tgg, Ty < yas , and ya4 < Ty,

! This logic implication is not in standard ILP form. It can be transformed [10] in
ILP form as follows. Let U be a constant greater than |V|. Add a new variable ky .
subject to these constraints: 0 < ky,w < 1, Ukyw — U < Ty — T < Uky,w and
VD' € D\ {D} add y2" < yL + Uku,w.

Optimal Aggregation of Components for the Solution 29

that allows for a ILP solution with 24, = #a, = 1, &, = 2, = 1, y2 =
y(gl =0 and ch2 = yg = 1. The final partition will be P* = {a3, a4} U {c1, 2},
which clearly violates acyclicity. Rule 8 accounts for these situations for pairs
of unconnected (in the ~» sense) vertices of the same section, stating that the
values of the x and y variables in the ILP solution should respect the property
that z, # 2z, = yP < y2' (the < relation among z variables should be reflected
in the order of the corresponding y variables).

Back to Fig. 3, right, four constramts are 1nserted by Rule 8 Tay < Tay =
yb' < ya47 Tay < Tay = Y2 <yl 2e, <, = yb <y, and ze, < e, =
yg < yc2 And the assignment of z and y above does not satisfy the constraint.
In this case a feasible solution is either x,, > z4,, With z., = x., or ., > .,
with x4, > x,,. The final partition has then three components and is acyclic.

Rule 8 modifies the constraint on the y variables, and their definition should
now be based on a different notion of reachability. Let v->v" be the one-step
extended reachability relation, which is true if either (v,v') € E or sect(v) =
sect(v') A xy < . Let v-50" be the extended reachability relation, defined as
the reachability of v from v using the %+ relation. The y variables are now:

yY =max(0,z, | w € D A wSv) (5)

Theorem 1. The partition P* of G built on the solution of the ILP of Defini-
tion9 for graph G, is an optimal partition of G according to Definition7.

Proof. We need to show that the ILP solution provides a partition which is valid
(as in Definition 6) and which has a minimum number of elements.
Validity is articulated in three conditions, the first two are trivial, as partition
elements are built from vertices of the same section (and therefore of equal
label) and Rule 4 states that xz, < x, whenever there is a non-joinable edge
between v and w. Acyclicity is also rather straightforward. There is a cycle
among two partition elements if it exists a pair of partition elements PP and
P]-D/ and vertices v,w € PP and v/, w’ € PjD, such that v ~ v/ and w’ ~ w.
Obviously z, = x,, and z,, = z,s. We show that if such paths exists, then at
least one constrain of the ILP is violated. We consider separately the case in
which v’ ~» w’ and the one in which this is not true. If v’ ~» w’, then (Rules 5, 6,
and 7) z, < y{?, < <L yg, < T, which violates the hypothesis that z, = x,,.
If =(v' ~ w’) then Rule 8 ensure that, since z,, = s, we must have y2 <y
moreover, by Rule 6, we have y2, < z,,, which leads to =, < y2 < 4D, <z,
which violates the hypothesis that x, = z,,.
Minimality is more complicated, and is based on three observations: (1) the
ILP solution builds the correct value (as per Definition 5) of the y variables
of interest, (2) Np is the number of partition elements for section D, and (3)
the ILP is not over-constrained (or if v and v’ could stay in the same partition
element, then there is no < among their z).

For point 1, let’s assume that there are n vertices wy,...,w, € D such
that w; — v and v € D (the generalisation to ~ is trivial due to Rule 7 that
propagates the < constraints among y variables in presence of a direct arc). Rule

30 E.G. Amparore and S. Donatelli

5 sets a constraint x,,, < yP for each vertex w; and at least one strict constraint
yP < w0, if there is an edge from v to v' € D. Then the minimization of
assigns to y? the minimum possible value, which is the minimum value that
satisfies the z,,, < y” constraints, which is precisely the maximum over the
values. The proof indicates that the y” value computed by the ILP is exactly
equal to the maximum only in presence of a path from v back to D, in all other
cases the ILP can assign any value y > maxz(...). But if there is no path from v
back to D, then the value of y2 is inessential for the definition of the 2 variables
of D. In case instead of w~% v, the path between w and v is made either of pairs
(ag,ap) such that either ap — ap, (in this case the yfk value, set initially to x,,,
propagates according to Rule 7) or, by definition of %, sect(ay) = sect(ap) and
Za, < Xg,. This implies (by Rule 8) that also y[i < yaDh and again the value of
T, Propagates as if there were an edge between ax and ap. As in the previous
case, if there is a path between v and a vertex in D, then the y2 is set precisely
to the maximum among the z,,,.

For point 2, we need to prove that Vi € {1..Np},3v € D : z, = i. This is
true since, in the rules of the ILP, the < order between x variables only involves
x variables of the same section D, either directly (through Rule 4) or indirectly
through y? variables (Rule 6) which, by definition, carry the value of one of the
x variables of D, as proved in point 1.

For point 3, we need to prove that, if w and v are in the same partition
element in the optimal partitioning P* of G, then they are assigned the same
x value by the ILP. For simplicity, let’s assume that P* is unique in Parts(G).
We prove that if x, # x,, then the ILP solution violates a constraint. The only
way by which the ILP, given the goal of minimizing Np, can assign a different
value to z, and x,, is the presence of < among the two variables, either directly,
as in Rule 4, or indirectly, through Rule 6. In the case of Rule 4, the constraint
is inserted only if there is a non-joinable edge between w and v, which clearly
violate the hypothesis that w and v are in the same partition element in P*. In
the latter case, if it is a constraint y2 < z, (of Rule 6) that causes z,, to be
different from =z, it means that yf, > x,,. Definition 5 implies that there is a
path between w and v that passes through vertex v’. In that case, w and v could
not stay in the same partition element, otherwise acyclicity would be violated.
Clearly the path between w and v could be either through ~+ or through ~ since
we have already shown that both can create a loop among partition elements. O

We now show two small examples of DAG-LJ, whose optimal partitioning
have been constructed with the ILP method. The ILPs have been solved using
the 1p_solve tool.

Ezxample 2. Consider the DAG-LJ G shown in Fig. 4, left, that has 14 vertices
and 3 sections D 3. Each box reports in the first row the vertex and the section.
The second line of each box reports the z, number as computed by the ILP.
The minimal solution of the ILP is found with Np, = 3,Np, = 2 and
Np, = 2, which leads to a partition of the vertices in 7 subsets (partition ele-
ments). Observe that vg is not a direct successor of vy, but they cannot form

Optimal Aggregation of Components for the Solution 31

a single component because it would form a loop. Since there is v4 &> vg an
v7 Y> vg with x,, < z,,, Rule 8 adds a constraint yf3 < y53, to ensure the

acyclicity. Figure4, right, shows the optimal valid partitioning P*. O
Dy _ g,
B

qul = {1‘12>U13}

N \
v, D (v, Dy ve + Dy vy D,y vy 0 Dy 4
T, = =1 Te=2 Ty= 2 Es= 3 Ty=

\ vy D, vy + Dy ' v, D, ¥
ry=1 Ty=2 Ty= 2 DAG-LJ G

Fig. 4. Example of a DAG-LJ with the z, values and P*.

qua = {vs,v1a}

Partition P*

Example 3. Figure 5 reports a rather different DAG-LJ, as there is no connection
among the vertices of the same section, but if all the vertices of equal section
are put in the same partition element, then acyclicity is violated.

ol i i’b‘-, & .’Un.x] D1 [PIUJ = {vl}} [PZD‘ = {vs, vg,l‘lz}}
')

T

v

o o Ve .1;“] D2 {PlD" = {'!'2H17r>}} [PrzD’ = {'Um,’”u}}
n) T
& v UV’J D3 [P1D3 = {US<L'71U11}} {P‘zng :V{Uls}}

S
<
<

v, Vs o

YRR YR YaER

D. .
Pt = {vg,v8,v12,v16} Partition P*

Fig. 5. An example of a DAG-LJ and P* with a complex structure.

This is a prototypical example for the need of Rule 8in the ILP. Without that
rule, all the vertices of the same sections would form a single partition element,
resulting in a cyclic partitioning. The problem of determining where partition
elements are separated, however, is not trivial, since there are many possible
combinations. In this case, the optimization problem is crucial in finding the
partition boundaries that minimize the total number of components. a

5 Assessment and Conclusions

Since the ILP solution finds the optimal partition, the assessment of the proposed
method does not address the quality of the solution, but aims at comparing the
ILP solution with the greedy one of [4] (obviously on relatively small examples
since ILP solution is known to be NP-hard), to identify the cases in which the
greedy approach fails. Table 1 shows such a comparison.

The models used in the comparison are non-ergodic MRP created from Deter-
ministic Stochastic Petri Nets with GreatSPN [6], and could be solved in Great-
SPN using any of the implemented techniques for non-ergodic MRP (classical,

32 E.G. Amparore and S. Donatelli

Table 1. Result of the ILP method against the greedy method.

Model |D| | SCC | EJ | EN | Greedy | ILP vars | ILP | Constr.P.
PhMissionA, K=1, NP=2 |3 |47 36 |36 | 6 2767 6 20
PhMissionB, K=3, M=2 |3 |52 |47 |36 | 6 2492 5 7
PhMissionC, K=6, M=3 |3 |45 |25 |27 | 7 504 7

Cross 6 |10 020 | 7 108 7 10

MRP of Fig.5 6 |18 044 |12 372 9 13

matrix-free, or component-based). The partition computed by the ILP (or by the
greedy method) is the base for the component method, that usually is the best
solver of the three available in GreatSPN. Models can be found at www.di.unito.
it/~amparore/QEST16.zip: for each model the zip file includes the pdf of the
net (drawn with the GreatSPN editor [1]), and a representation of their DAG-LJ
and of their ILP-computed partitioning. The whole process is automatized: from
the DSPN description the MRP state space, their SCCs, and the corresponding
DAG-LJ is constructed, the ILP is produced and solved with 1p_solve, the com-
ponents are then computed and provided as input to the component method.
A similar chain is available for the greedy method. We consider 5 models: the
last two have been artificially created to investigate cases in which acyclicity
is non-trivial (cases in which Rule 8 plays a significant role in constraining the
solution), while the first three are variations of Phased Mission Systems (PMS).
In particular they are cases of a Scheduled Maintenance System (SMS), inspired
by [9], in which a system alternates between two phases: Work and Maintenance,
and behaves differently depending on the phase (as typical in PMS). The model
is studied for its transient behaviour, the stopping condition for model A is
determined by the number N P of phases, while models B and C cycle over the
two phases, and the stopping condition is triggered when the system reaches a
failure state. K and M are the number of pieces and machines.

The table reports the model name and the number of sections, SCCs, joinable
and non-joinable edges. The column ‘Greedy’ indicates the number of compo-
nents found by the greedy method, while the two subsequent columns reports the
number of variables of the ILP and the number of components found by solving
the ILP. Finally, the last column reports the number of components found by
applying a constraint propagation method, i.e. by applying the ILP constraint
in order to maximize the x and y variables until a fix-point is found. Constraint
propagation can be seen as an approximate solution of the ILP, where the found
partitioning is always valid but not necessarily optimal.

As the table shows, the greedy method performs reasonably, but it does not
always found the optimal solution, although it goes very close to it (a behaviour
that has been observed on other cases of “real” systems). It instead performs
badly in cases created ad-hoc to experiment with Rule 8 (models Cross and
MRP of Fig.5). The constraint propagation method is consistently the worst
one. The MRP size we could solve with standard computer are below a hundred

www.di.unito.it/~{}amparore/QEST16.zip
www.di.unito.it/~{}amparore/QEST16.zip

Optimal Aggregation of Components for the Solution 33

of SCCs (of course the state spaces could be much larger), which is not surprising
considering that the ILP size grows rapidly with the number of SCCs (the vertices
of the DAG-LJ) and that the problem is NP-hard.

Conclusions. This paper introduces a technique to find the optimal partition
of a non-ergodic MRP which is the basis of the Component Method solver for
MRPs. The method is both general (can be applied to any non-ergodic MRP)
and optimal, as it finds the minimum number of partition elements, and therefore
of components. Optimality is important not only for the solution time, but also
because it provides a baseline against which to assess the greedy solution. An
optimal solution is a prerequisite to compare the component method against
specific ad-hoc MRP solver. A typical example are the MRPs generated from
Phased Petri nets [8] for which an efficient ad-hoc solution technique was devised
in [15]: this technique can be interpreted as a special case of the component
method (with roughly one component per phase), moreover with the component
method the class of PMS that can be efficiently solved can be enlarged to include,
for example, different type of dependencies of the system behaviour from the
phase description that we believe are relevant for reliability analysis and that
will be investigated in our future research work. Optimality is also a prerequisite
when comparing the efficiency of a CSL™ model checker, as the one in [3], on
verifying CSL Until formulas. The component method with optimal partitioning
reduces the time complexity of the CSL™ model checker to that of a CSL one
(CSL model-checking algorithm as described in [7]), as already envisioned in [4].

A question that might arise is whether it is worth to define DAG-LJ, instead
of deriving the ILP directly from the SCCs of the MRP. The answer is that the
DAG-LJ abstraction may be used for other purposes and we are indeed currently
using it in the context of model-checking of CSL™ based on zone graph. The
idea here is that the MRP that describes the set of accepting paths of the formula
is obtained by a cross product of the Markov chain model and the zone graph
(a rather trivial construction since there is a single clock) of the timed automata
that describes the CSL™ formula. The MRP is then solved with the component
method. But this is an a-posteriori work: the MRP is first built completely, and
then solved by component. The solution we are working on translates the zone
graph in a DAG-LJ, computes the components of the DAG-LJ and then does
the cross-product between a zone graph component and the Markov chain.

Another more than legitimate question is whether it makes sense to rely on
ILP solution, in particular as it is not uncommon to have MRPs with thousands
of SCCs. But luckily this is not always the case, for example the DAG-LJ of the
zoned graph of the timed automata that describes a CSLT™ formula typically has
a very limited number of SCCs, and the ILP solution can be easily found, while
a similar situation arises in PMS, as typically the number of SCCs is related to
the number of phases, which is usually significantly less than 10. As future work,
we plan nevertheless to experiment with classical approximate ILP solvers, and
to compare it with the greedy approach.

34

E.G. Amparore and S. Donatelli

References

10.

11.

12.

13.

14.

15.

16.

. Amparore, E.G.: A new GreatSPN GUI for GSPN editing and CSL™ model check-

ing. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 170-173.
Springer, Heidelberg (2014)

Amparore, E.G., Donatelli, S.: A component-based solution method for non-ergodic
Markov regenerative processes. In: Aldini, A., Bernardo, M., Bononi, L., Cortel-
lessa, V. (eds.) EPEW 2010. LNCS, vol. 6342, pp. 236-251. Springer, Heidelberg
(2010)

Amparore, E.G., Donatelli, S.: MC4CSL™: an efficient model checking tool for
CSL™ . In: International Conference on Quantitative Evaluation of Systems, pp.
153-154. IEEE Computer Society, Los Alamitos (2010)

Amparore, E.G., Donatelli, S.: A component-based solution for reducible Markov
regenerative processes. Perform. Eval. 70(6), 400-422 (2013)

Amparore, E.G., Donatelli, S.: Improving and assessing the efficiency of the
MC4CSL™ model checker. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.)
EPEW 2013. LNCS, vol. 8168, pp. 206—220. Springer, Heidelberg (2013)

. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis,

G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev.
36(4), 4-9 (2009)

Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524-541 (2003)
Bondavalli, A., Mura, I.: High-level Petri net modelling of phased mission systems.
In: 10th European Workshop on Dependable Computing, pp. 91-95, Vienna (1999)
Bondavalli, A., Filippini, R.: Modeling and analysis of a scheduled maintenance
system: a DSPN approach. Comput. J. 47(6), 634650 (2004)

Brown, G.G., Dell, R.F.: Formulating integer linear programs: a rogues’ gallery.
INFORMS Trans. Educ. 7(2), 153-159 (2007)

Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer,
Secaucus (2006)

Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic prop-
erties with CSL™ . IEEE Trans. Softw. Eng. 35(2), 224-240 (2009)

German, R.: Performance Analysis of Communication Systems with Non-
Markovian Stochastic Petri Nets. Wiley, New York (2000)

German, R.: Iterative analysis of Markov regenerative models. Perform. Eval. 44,
51-72 (2001)

Mura, I., Bondavalli, A.: Markov regenerative stochastic petri nets to model and
evaluate phased mission systems dependability. IEEE Trans. Comput. 50(12),
1337-1351 (2001)

Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Math-
ematical Basis of Performance Modeling. Princeton University Press, Princeton
(2009)

Data-Efficient Bayesian Verification
of Parametric Markov Chains

E. Polgreen!®™) V.B. Wijesuriya!, S. Haesaert?, and A. Abate

! Department of Computer Science, University of Oxford, Oxford, UK
elizabeth.polgreen@cs.ox.ac.uk
2 Department of Electrical Engineering, Eindhoven University of Technology,
Eindhoven, The Netherlands

Abstract. Obtaining complete and accurate models for the formal ver-
ification of systems is often hard or impossible. We present a data-based
verification approach, for properties expressed in a probabilistic logic,
that addresses incomplete model knowledge. We obtain experimental
data from a system that can be modelled as a parametric Markov chain.
We propose a novel verification algorithm to quantify the confidence the
underlying system satisfies a given property of interest by using this data.
Given a parameterised model of the system, the procedure first generates
a feasible set of parameters corresponding to model instances satisfying
a given probabilistic property. Simultaneously, we use Bayesian infer-
ence to obtain a probability distribution over the model parameter set
from data sampled from the underlying system. The results of both steps
are combined to compute a confidence the underlying system satisfies the
property. The amount of data required is minimised by exploiting partial
knowledge of the system. Our approach offers a framework to integrate
Bayesian inference and formal verification, and in our experiments our
new approach requires one order of magnitude less data than standard
statistical model checking to achieve the same confidence.

1 Introduction

Complex engineering systems, such as autonomous vehicles, are often safety-
critical and demand high guarantees of correctness. Given a complete model of
the system of interest, these guarantees can be obtained through formal methods,
such as model checking [1], though the outcomes of these formal proofs are
bound to the model of the system of interest. Obtaining a complete model is
not possible for systems with uncertain stochastic dynamics, but we can capture
these dynamics with parameterised Markov chains. Model checking now produces
a result dependent on knowledge of the value of parameters within the model.

In this work we integrate the use of model checking techniques (for parameter
synthesis over the model) with data-based approaches (for parametric Bayesian
inference) in order to compute a confidence, based on observed data collected
from the system, that the system satisfies a given specification.

The proposed approach is distinctively different from statistical model check-
ing (SMC) [14], a known data-based technique for model verification, and has

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 35-51, 2016.
DOI: 10.1007/978-3-319-43425-4_3

36 E. Polgreen et al.

a distinct set-up and addresses a different objective: The original SMC tools such
as YMer and Vesper target systems with fully known models too large for con-
ventional model checking, and use the known models to generate simulated data;
SMC has also been applied in a model-free setting where system-generated data
is directly employed towards statistical validation of properties of interest [19].
Our technique instead targets partially known systems, captured as a parame-
terised model class, and still uses data collected from the original system.

In general SMC requires a large amount of sample data covering the entire
system behaviour to obtain good confidence results, our method requires much
less sample data, and can accommodate data with only partial coverage.

Our method is elucidated in three phases. In the first phase, having a para-
meterised model of our partially known system, we use parameter synthesis to
determine a set of feasible parameters over the given model class, namely those
parameters corresponding to models of the system satisfying the given specifi-
cation. Among a number of alternatives, we use an existing parameter synthesis
method implemented in PRISM [11]. The second phase, executed in parallel with
the first, uses Bayesian statistics to infer a distribution over the likely values of
the parameters of the model class, based on data collected from the underlying
system. Finally, we combine the outputs from the previous two phases to com-
pute the confidence attached to the system satisfying the given specification.

Alongside the new methodology introduced in this work (first presented over
different model class and properties in [9]), the key contribution resides in phase
two: our algorithm introduces expansions of states and transitions of the parame-
terised Markov chain, which guarantees the posterior probability distributions
over the parameters can be obtained analytically, and integrated easily. The work
discusses a case study, demonstrating the implementation of the algorithm, and
a comparison with a standard SMC procedure.

Related Work. Statistical Model Checking (SMC) [14] replaces numerical
model-based procedures with empirical testing of formalised properties. The
original SMC algorithms target fully observable stochastic systems with lit-
tle non-determinism and may require the generation of large numbers of
sample trajectories from a complete system model. SMC techniques have been
utilised to tackle verification of black box probabilistic systems [19], with no
model of the system available, but this approach requires large amounts of data.
Extensions towards the inclusion of non-determinism have been studied in [12],
with preliminary steps towards Markov decision processes. Related to SMC tech-
niques, [6,15] assume the system is encompassed by a finite-state Markov chain
and efficiently use data to learn and verify the corresponding model. Similarly,
[2,4] employ machine learning techniques to infer finite-state Markov models
from data over given logical formulae.

Bayesian inference uses Bayes theorem to update the probability distribution
of a set of hypotheses based on observed data [3]. Bayesian inference for learning
transition probabilities in Markov Processes is presented in [16].

Data-Efficient Bayesian Verification of Parametric Markov Chains 37

2 Background

2.1 Parametrised Markov Chains — Syntax and Semantics

Let S be a finite, non-empty set of states representing all possible configura-
tions of the system being modelled. A discrete-time Markov chain (DTMC) is a
stochastic time-homogeneous process over this set of states [1], as follows.

Definition 1. A discrete-time Markov chain M is a tuple (S, T, tinit, AP, L),
where S is a finite, non-empty set of states, T : S x S — [0,1] is the transition
probability function such that for Vs € S : >, 4T(s,s") = 1. The function
tinit © S — [0,1] denotes an initial probability distribution over the states S,
such that) g tinit(s) = 1. The states in S are labelled with atomic propositions
a € AP wia the labelling function L : S — 24P,

Consider the evolution of a Markov chain over a time horizon t = 0,1,..., Ny,
with NV; € N. Then an execution of the process is characterised by a state
trajectory given as {s¢|t = 0,1,..., N;}. The transition function T(s, s’) specifies
for each state s the probability of moving to s’ in one step, and hinges on the
Markov Property, which states that the conditional probability distribution of
the future possible states depends only on the current state, namely P(s" = s;41 |
Sty...80) = P(s" = 8441 | 8¢). Furthermore, the definition of M requires T is time
homogeneous, that is P(s’ = s;41 | st =) = P(s' = s | s4—1 = 5),Vt € N. The
model is extended with (internal) non-determinism in order to express lack of
complete knowledge of the underlying system.

Definition 2. A discrete-time Parametric Markov chain is defined as a tuple
Mo = (S,To, tinit, AP, L,0) where S, tinit, AP, L are as in Definition 1. The
entries in Ty are specified in terms of parameters, collected in a parameter vector
0 € ©, where O is the set of all possible evaluations of 8. Each evaluation gives
rise to an induced Markov chain M(0).

Note we require a certain type of well-posedness of the parameterisation, we
demand Vs € S,V0 € © :), s To(s,s’) = 1. More precisely, any 6 € O, induces
a Markov chain M(#) where the transition function Ty can be represented by a
stochastic matrix. Note also, we assume a distribution on the parameters of the
model.

We considered two types of parameterised Markov chain. We use the first,
simpler type, as a base case to build the method for the more complex linearly
parameterised Markov chains.

1. basic parameterised Markov chains with independently parameterised transi-
tion probabilities. Consider Mg = (S, T, tinit, AP, L,©) with © C [0, 1]™ and
parameter vector 6 := (0y,...,6,) € O build up based on individual parame-
ters 0; € [0,1]. Then the parameterised MC is considered basic if transition
probabilities between states are either known and considered constant with
a value in [0, 1], or have a single parameter 6; (or 1 — ;) associated to them
and Vs € S,V0 € O :), 4 Ty(s,s') =1 (cf. Fig. 1, left).

38 E. Polgreen et al.

1
2

1—g2(0)

start — 1 start — 1
%) 91(0)
’)
1 — g2
ol \/@ 1-1(0) @Dl

Fig. 1. Two parameterised Markov chains. The nodes of the graph represent states.
The labels over the edges provide the probability of taking a transition. The left graph
gives parameterised MC with a basic parameterisation, where the parameters 601,02
are encompassed in the vector 8 = (61,602) € © = [0,1]*. The right graph has a linear
parameterisation, characterised by affine functions g1,2 : 6 — [0, 1].

2. linearly parameterised Markov chains, where unknown transition probabil-
ities can be linearly related. Given ©® C [0,1]™ and parameter vector
0 := (61,...,0,) € © with §; € [0,1], the parameterised MC is consid-
ered linearly parameterised if there exists a set of affine functions g;(0) :=
ko + k101 + ... + k.0, with k; € [O, 1] and Zk‘, < 1, denoted gl(ﬁ)leﬁ.
All outgoing transition probabilities of states (or, graphically labels of out-
going edges of a node, cf. Fig.1) have probability g;(6) or 1 — g;(#) and

Vse S,V ecO:y cgTo(s,s')=1.

The basic case leads to simple procedures, and in Sect.5 we develop the linear
structure for Bayesian verification. Parameterisations beyond these two cate-
gories, such as non-linear ones, are out of the scope of this paper.

2.2 Properties — Probabilistic Computation Tree Logic

We consider system requirements specified in probabilistic logics. As we leverage
PRISM’s parametric model checking tool [10] for synthesis, we can consider
the set of properties supported by the synthesis tool: non-nested Probabilistic
Computational Tree Logic (PCTL) [1] formulae. For instance, P> 5(stay U get)
expresses the property “the probability of remaining in a state labelled with
atomic proposition ‘stay’ until we reach a state labelled as ‘get’, is bigger or
equal to 0.5”. PRISM also supports nested PCTL with some restrictions, and a
planned extension to this work is to use PROPHESY [8] for parameter synthesis,
which supports conditional probabilities and unbounded-time properties. We
next define PCTL in nexus to finite discrete-time Markov chains:

Definition 3. Let a discrete-time Markov chain be given. Let ¢ be a formula
interpreted over states s € S, and ¢ be a formula interpreted on paths of the
DTMC. Also, let e {<, <, > >}, neN, pe|0,1], c € AP. The syntazx of
PCTL is given by:

p:=True|c|dAP| = [Puyp(p), 0:=0¢|oU .

Data-Efficient Bayesian Verification of Parametric Markov Chains 39

We define the satisfaction function quantifying satisfaction of these properties
over the parameter space as follows. We assume it is a measurable function.

Definition 4. Let M(0) be an induced Markov chain of the parametric Markov
chain Mg indexed by parameter 6 € O, and let ¢ be a formula in PCTL. The
satisfaction function fg: © — {0,1}, defined as f4(0) =1 if M(0) = ¢, and 0
otherwise.

2.3 Bayesian Inference

Our method uses Bayesian inference to learn the probability distribution of para-
meters in our model class as more evidence or data becomes available. Bayesian
inference derives the posterior probability distribution from a prior probability
and a likelihood function derived from a statistical model for the observed data.
Bayes’ law states that, given observed data D, the posterior probability of a
hypothesis p(H | D), is proportional to the likelihood p(D | H), multiplied by
the prior p(H), as

p(D | H)p(H) "

p(D)

D comprises batches of traces of specific length generated by Markov chains
instantiated over ©. The denominator in (1) is an integral over the parameter
set ©, which in general requires numerical approximation. Hence it is of interest
to seek a conjugate prior p(H) resulting in a closed-form expression for the
posterior p(H | D): in this work we make use of the Dirichlet distribution,
which is conjugate to the multinomial [3]. When insufficient initial knowledge
is available, we choose a non-informative prior, which has minimal influence on
the posterior, such as a uniform prior.

p(H | D) =

3 Problem Statement and Overview of the Approach

Consider a partly unknown dynamical system S, and suppose we can gather
a limited amount of sample trajectories from this system as data. Assume the
knowledge about the system is encompassed within a parametric model class,
describing the behaviour of S up to the unknown parameterisation of some of
its transitions. We plan to investigate the following goal: can we efficiently use
the gathered data and the model knowledge of S to formally verify given PCTL
properties over S, quantifying a confidence in our assertions?

The three phases of our work are as follows. In the first phase, Sect. 4, we
use parameter synthesis to determine a set of feasible parameters for which the
system satisfies the given property. The second phase, Sect. 5, uses Bayesian
Inference to infer a distribution over the likely value of the parameters given
sample data from the system. In the final phase, Sect. 6, we combine the outputs
of parametric inference and parameter synthesis to quantify the confidence that
the system verifies a PCTL property of interest.

40 E. Polgreen et al.

Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification ¢ and a data set D, the confidence S |= ¢
can be quantified via inference as P(S |= ¢ | D) = [f3(0)p (0 | D) df, where
P(-) is a probability measure obtained integrating the distribution p (-) of the
uncertainty parameter over Mg, expressed as the a-posteriori p (6| D) given
the data set D and the uncertainty distribution p (0) over the parameter set 6.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sect. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter Synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, fs(6) =
P (M(0) |= ¢), is equal to 1. We denote this set O, namely

0, =1{0c6:M®) E o).

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking app-
roach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or sufficiently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian Inference in Parameterised Markov Chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised

Data-Efficient Bayesian Verification of Parametric Markov Chains 41

Markov chains, and then extend the method to linearly related parameterisa-
tions in Sect. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P(-) to denote a
probability measure, and p () to denote a probability density function.

5.1 Basic Parameterised Markov Chains

Let us consider a basic parameterised Markov chain Mg = (S, Ty, tinit, AP, L, O)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter 0; of vector 0 = (01,0s,...,60,) € O is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector @ into sub-vectors ;,, giving the parameters for the outgoing
transitions of the corresponding state s;.

Consider the parameter vector composed of one parameter, 0,, = 0;, and the
corresponding state s, € S, with outgoing transitions ¢; and 1 — 6; to states s;
and sz, respectively. We denote by p(6;) the prior over 6;, which fully defines
the transition probabilities Ty(sg,) at state s,. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk,s1) € S x S the number of transitions sy — s; in D is denoted as Dg. The
posterior density p(6; | D) over 6; based on D is

B(D | 6,)p(6;) _ p(0;) [Tures Tolsw, o) o)
P(D) B P(D.,)

and depends only on Dj, = {Df; }ses, i.e., the counts of transitions leaving

p(b; | D) =

state si. Note the likelihood function HS,GS(Tg(sk,s’))Dik takes the form of
a multinomial distribution,! which reduces to a binomial in the case of two
outgoing transitions. A closed-form expression for the posterior is obtained by
taking a conjugate prior, which, for the class of multinomial distributions, is a
Dirichlet distribution. For the pair (6,1 — ;) the Dirichlet distribution with
hyperparameters o = (o, a2) has a probability density function given by

Dir(6; | @) = 55057 (1 — ;)
on the open simplex defined by 0 < #; < 1. The normalising constant, B(c«), is
a multinomial beta function, and can be written in terms of gamma functions
as B(a) = I'(o)I(a2)/I' (o1 + a2). Hence, for a prior p(f;) = Dir(4; | o) we
obtain the posterior distribution for 6; ~ p(0; | D) = Dir(; | Ds, + «), namely

o 1= o — Djzlq 22
p(0; | D) o p(0;) [T,es To(sk, s)7r oc 051711 = 0;)2710, (1 — 0,)P=k (3)

! A multinomial is defined by its density function f(- | p, N) Hle pit, for n; €
{0,1,..., N} and such that Zle n; = N, where N € N is a parameter and p is a
discrete distribution over k outcomes.

42 E. Polgreen et al.

where the normalisation constant of the obtained Dirichlet distribution is B(a+
Dy,) = I'(ay + D) Mz + D32) /I (aq + D5t + az + D32). In other words, as
data is gathered, we analytically update the posterior probability distribution
p(0; | D) by updating the parameters of a Dirichlet distribution.

This result can be extended to the case of a state s; with m > 2 outgoing
transitions. We parameterise the outgoing transitions with the sub-vector §,, =
(61,...,0m—1) and 1 — 6y — ... — 0,,,_1, and obtain the posterior for the sub-
vector, p(f, | D). The likelihood function takes the form of an m-dimensional
multinomial distribution, and we express the prior as an m-dimensional Dirichlet.

This yields a posterior distribution as an m-dimensional Dirichlet distribu-
tion, p(fs,|D) = Dir(bs, | Ds, +).

The posterior distribution for the entire parameter vector p(6 | D) is equal to
the product of the posterior distributions for the sub-vectors of #. This holds due
to the stated independence of the parameters in a basic parameterised Markov
chain, which results in independent priors and independent likelihood functions.
Hence p(0 | D) = [[,, Dir(6s, | Ds, +).

Transition Grouping. For simplicity, given a state with multiple outgoing
transitions we may obtain the distribution for each parameter using marginal
distributions. Consider state s; with m > 2 outgoing transitions, parameterised
with the sub-vector 05, = (01,...,0,,—1) and 1 —6; — ... — 0,1 We have shown
earlier that, if the parameters are independent, the joint posterior distribution
over the transition probabilities for this state is an m-dimensional Dirichlet:
p(0s,|D) = Dir(fs, | Ds, + «). The marginal distribution of §; is a 2-dimensional
Dirichlet, or a beta distribution, 6; ~ Dir(e;, (3> -, a;) — 1). We can hence
obtain a posterior distribution for each parameter, by effectively grouping the
training data together for all transitions except the one we obtain the posterior
distribution for.

5.2 Linearly Parameterised Markov Chains

In this section we build on the Bayesian inference for basic parameterisations
and tackle linearly parameterised Markov chains. As defined before, in a linear
parameterised Markov chain, the transition probabilities will be expressed in
the form g(0) = ko + k161 + ... + k0. For a given data set D and a linearly
parameterised Markov chain we want to use Bayesian inference to get the poste-
rior distribution p (6|D) over the parameter set ©. In order to work with linear
parameters we introduce two types of transformations of the Markov chain. In
the first, we consider a compression of the data. When two states of the DTMC
have “similar” transitions, what can be learned is equivalent. These states are
referred to as being parameter similar and will be introduced more precisely
in the following. Next we show that, by introducing additional, non-observed
states, into the Markov chain and the data, the linear parameterised Markov
chain can be transformed to a basic Markov chain with unobserved states (and
hidden data). After these transformations we can apply the Bayes rule over the
expanded Markov chain and hidden data.

Data-Efficient Bayesian Verification of Parametric Markov Chains 43

Parameter Similar States. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
n [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex
because of the dependence between the variables. However, if states are parame-
ter similar, we can use the result in (3). Consider two parameter similar states,
s1 and sy, with outgoing transition probabilities §; and 1 — §;, and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(6;) = Dir(Ds, + Ds, + o,).

Parameterised Markov Chain State Expansions. Consider a parame-
terised DTMC Mg = (S, T, tinit, AP, L, ©). We wish to define a new parame-
terised DTMC M, that produces the same output for our method, but which
has a simpler parameterisation. Our method hinges on obtaining a distribution
for 6 based on collected training data D, and so if M is equivalent to Mg, the
probabilities of reaching a set of states in Mg must be the same as reaching the
equivalent states in MY, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define
hidden data. Suppose the two Markov chains have states S and S*, such that
S C S*: all states of S* not in S are defined as hidden. {2 denotes the set of
finite paths w in Mg, and §2* denotes the set of finite paths w* in M. Then
any observed state sequence consists only of states in S, and the states in S*\ S
remain hidden from the observations. The data set D over the states S consists
of transition counts Dg! for pairs s, s; € S. Observe that for the set of states S*
the data is incomplete, namely it does not represent the actual state transitions
but only the observed ones. For an observed transition count Dg!, we introduce
the extended set D3 * as the collection of counts over all hidden paths from s to
s;. Consider states sg and sz, and hidden state s§ in Fig. 3a: hidden paths from sq
to sz can be of the form {sg, s2}, {s0, S5, s2} € §2*, with the associated extended

data count D32* := {Dg? Dﬁé,DSg}. The set of possible extended transition

counts is denoted as Dj.* for the pair (sg,s;), and D* for all transitions — note
they are set-valued mappings of Dj! and D, respectively.

ETRd

Definition 5. Consider parameterised Markov chains Mg = (S, T, tinit, AP, L,
O) and MY, = (S*,T*, %, AP, L*, 0), both over set ©. We say M, is an expan-
sion of Mg if, for all D and for allf € O,

Pao) (D) = Py 0) (D),

and if tinit = Ly, The extended labelling map L™ is a trivial extension of L, assign-
ing labels L(s) for s € S and an empty label to S*\ S.

44 E. Polgreen et al.

Theorem 1. The expansion relation is transitive; if Mg 1, Mg 2, Mg 3 are all
parameterised with ©, Mg 3 is an expansion of Mg 2 and Mg 2 is an expansion
of Mg .1, then Mg 3 is an expansion of Mg ;.

Case I: Transition splitting. We split a transition probability parameterised
with kg + ZZ k;0; into transitions to hidden states with probabilities k;60;, and
refer to this operation as transition splitting. As a basic example, consider Fig. 2
where state sg in M has two outgoing transition probabilities expressed as func-
tions of the parameter vector, g(f) and 1 — g(), where g(0) = ko + k1o + ko3
We expand Mg into MY, by splitting state s; into a set of states, and splitting
the transition from sy — s; into the monomials concerning each parameter in 6,
as shown in Fig.2. Mg is an expansion of Mg as per Definition 5.

ko

start @\1
start —
1—ko—kia
1—ko— ku)z}% ko + ki = @ —k2p3 k10z

—k2f3 @ @Jrlmﬂ

kgﬁ

Fig. 2. Case I: transitions splitting

Lemma 1. Transition splitting of Mg (Case I) generates an expansion of Meg.

Case II: State splitting. We present a second case, state splitting, for a para-
meter ¢; multiplied by a constant, k;0;. Consider the simple DTMC in Fig. 3a,
and the state sg in Mg with two outgoing transition probabilities expressed as a
constant multiplied by one parameter, k161 and 1 — k161, where 0 < k; < 1. We
expand Mg to give My, by splitting state so into two states, and compute the
transition probabilities the imposed expansion demands. As an additional exam-
ple, notice the transitions studied in Case I are all of the form k;0;. Applying
the state splitting to this expanded DTMC we obtain Fig.3b. The subsequent
application of both state splitting cases (cf. Fig. 3b) induces again an expanded
parameterised Markov chain as per Definition 5.

Lemma 2. State splitting of Mg (Case II) generates an expansion of Mg.
We are led to the following result.

Theorem 2. Any linearly parameterised Markov chain can be expanded into a
basic parameterised Markov chain by application of Lemmas 1 and 2.

Data-Efficient Bayesian Verification of Parametric Markov Chains 45

o ()
start —
@

1—Fk

(a) Simple example of state splitting (b) State splitting of Fig.2 (cf. Case I).

Fig. 3. Case II: state splitting (two examples)

Bayesian Inference with Missing Data. We now consider Bayesian inference
on the newly expanded Markov chain MF. The data set D, which is sampled
from our system, corresponds to a state trajectory or set of trajectories over the
model Mg. This set further comprises only part of the corresponding trajectories
in the expanded model MF,. For a given trajectory in D, we refer to D* as the
completed trajectory, and to D* as the set of all possible completions D*. Note
the expanded parametric Markov chain has a basic parameterisation, hence for a
given completed data set D* the Bayes rule as elaborated in (1) can be applied
to obtain p(f|D*). For MY, Bayes rule can be applied over the hidden data as
follows:

Sp-co- 2 (0, D*,D) _ ¥ p.cp. p(0]D*, D)B(D|D)P(D)
P(D) P(D)

= 2 prep- P (0|D") P(D*[D).

Completed data sets have a multinomial distribution dependent on the parame—

terisation, hence the distribution of D* is given as P(D*) = [, P(D*|0)p (0) df

For a given D the condltlonal distribution]P’(D*|D) is IP’(D*|D) P(D*)/P(D)
with D* € D* and P(D) = Y p. [, P(D*(0)p (6) d6.

p(0|D) =

Remark 1. Realisations of the posterior can be obtained without computing the
entire integral as follows. A set of realisations 6; for ¢ € {1,..., N} with proba-
bility density function p (8|D) can be obtained by generating samples D} with
distribution P(D*|D) and subsequently generating samples 6; with distribution
p(0|D;F) for all i € {1,...,N'}. These samples can then directly be used to
perform the confidence calculation as in Sect. 6. O

Algorithm 1 presents the state expansion procedure, and Algorithm 2 in the
next section summarises how to obtain a realisation of the posterior p(6 | D*),
and to integrate it with the confidence computation.

46 E. Polgreen et al.

Algorithm 1. Markov chain expansion (Mg)
Mg — Mo
for all s; € S* do > Case I: transition splitting
for all Tj(s;,s;) = ko + >, k6 do
S* — {SfN}zeL U sij,0
Ty (si,s5):=0
T3 (54, 875,0) := ko and Tg(s7;0,55) =1
for alll € L do
Ts(si, s 833, 1) = ki0; and T (s} S35, 1,85) =1
for all s; € S* do > Case II: state splitting
if dsi € S* T;(SZ,Sk) =1—ko— ZZGL k;0; then
T;(Si,sk) =1 ko — Zlel) kl
for all Tj(s:, sm) = ki6; do
S* —sr
T5(si,8m) =0, Ty(si, sh,) := ki and Ty(s),/, sk) :=1— 6,
To(sry, sm) =0
return Mg > return expanded DTMC

6 Bayesian Verification: Computation of Confidence

In this section we detail the final phase of our method: a quick procedure com-
putes a confidence estimate for the satisfaction of a PCTL specification formula
¢ by a system S of interest, namely S = ¢. Our method takes as input a poste-
rior distribution over ©, obtained using Bayesian inference in Sect. 5.2, and the
feasible set for the parameters, obtained by parameter synthesis in Sect. 4.

Definition 6. Given a PCTL specification ¢, a complete trace (sample trajec-
tory) D of the system S up to time t, and a transition function T, the confidence
S = ¢ can be quantified by Bayesian Inference as

PS¢ | D)= Jg fs(0)p(0 | D)db (4)

As we only consider the satisfaction of a property S | ¢ as a binary-valued
mapping from the space of parameters, the satisfaction function in (4), fy :
O — {0,1}, (4) can be reformulated as:

P(S = ¢| D) = [o,p(0 | D)db ()

where 6, denotes the set of parameters corresponding to models verifying the
property ¢ (as generated by PRISM). Further, given the independent posterior
distributions for each parameter in 6 resulting from Sect. 5.2, the confidence
can be computed as P(S = ¢|D) = f@¢ [o,eoP(0: | D)dO. The integral of a
Dirichlet distribution can be obtained by iterative or numerical methods: here we
use a simple Monte-Carlo approach, which depends on samples of the posterior
distribution as clarified in Algorithm 2.

Data-Efficient Bayesian Verification of Parametric Markov Chains 47

Algorithm 2. Monte-Carlo Integration for linearly parameterised DTMC
N := number of Monte-Carlo samples

{Di}iequ,... . ny ~ p(D*|D) > hidden data samples

for all i € {1,...,N'} do
Compute p(0|Dy) > Bayesian inference
0; ~ p(0|D;) > posterior samples
ju < ju + Boolean[d; € O]

B(S |) = 22

return I@’(S E) > estimate of P(S | ¢)

7 Experiment Results

We show our approach requires smaller amounts of data than statistical model
checking (SMC) to verify the system satisfies a given quantitative specification
up to a prescribed confidence level. We further claim our approach is more
robust than standard SMC in situations where only data of limited trace length
is available.

Experiment Setup. We focus our experimental discussion on the basic parame-
terised Markov chain Mg in Fig. 1 and the PCTL property ¢ = Psg.5[—s3 U s3].

The ground truth for S = M(6), namely Yi ., is a step function over the
parameter 6, namely

0 if6 <05,
Yirue = {1 if 6 > 0.5, ©)

so the feasible set is ©4 = [0.5, 1]. We choose a uniform prior for both methods:
for our approach p(6 | D) = Dir(1, 1), which, for property ¢, means p(M(6) =
¢) = Dir(1,1); for SMC we set p(M(0) |= ¢) = Dir(1,1). We run both methods
over empirical data obtained from M(#), our “underlying system”, for values of
0 <6 <1, ie., different “underlying systems”, and compare the outcomes with
the ground truth. We collect data, denoted D, from our underlying system in
the form of a set of state trajectories of a set length. We vary trajectory length
to test robustness to data with incomplete coverage. We disregard the numerical
error in the Monte Carlo approximate integration, which is the same for both
techniques.

We compute the mean squared error (MSE) between the confidence outcome
and the ground truth from Eq. (6), namely MSE = 237" | (Y;,4e — Y;)?, where
n is the number of experiments run and Y; is the result P(My = ¢) for the i-th
run.

The SMC we compare our work to is “black box” and collects sample trajec-
tories from the system, then determines whether the trajectories satisfy a given
property, and applies statistical techniques (such as hypothesis testing) to decide
whether the system satisfies the property or not, with some degree of confidence.
Our “grey-box” approach collects data from the system, uses the data to deter-
mine a distribution over parameter values in the parameterised model class and

48 E. Polgreen et al.

applies statistical techniques (in this case, a Bayesian confidence calculation) to
decide whether the system satisfies the property or not, with some degree of con-
fidence. We could then additionally apply hypothesis testing to our approach.
However, as we do not do this, for a meaningful comparison with our approach
we implement the framework of the SMC procedure outlined in [14] and omit the
hypothesis testing. Instead, we compute a Bayesian confidence by integrating the
posterior distribution given over the [0,1] interval, representing the probability
of a trace satisfying the property. The trace generation and trace verification
stages of SMC are implemented in the same way in the four statistical model
checking methods in PRISM.

Results and Discussion. The first point to note is the confidence is low, and
MSE high for parameter values close to 8§ = 0.5 for both approaches. This is
due to # = 0.5 being on the edge of the feasible set and is consistent with the
information we wish to obtain from the confidence calculation: if the parameter
value is near the edge of the feasible set, we need to know its value precisely
to be sure it falls in the feasible set. Consider that in order to compute the
confidence S = ¢, we integrate the posterior distribution over the feasible set
O©4 = {0 > 0.5}. The posterior distribution for § = 0.5 should have a peak
centred at 0.5 with half of the area under the peak in the feasible set, leading
to P(M(0) = ¢) = 0.5. The height and width of the distribution p(f | D) are
characterised by the amount of data available, as well as the consistency of the
data, and so we expect the MSE to be higher for parameter values close to the
threshold.

0.7 = 0.7
0.6 0.6
= 0.5 = 0.5
0.4 0.4
n ==
03705 1 D15 Sy 1 D] 15
(a) Trace length 10 (b) Trace length 100
0.7 0.7

0.6 0.6

= 0.5 = 0.5

0.4

'104 0.3 N
05 1 |D/15 2 05 1 [D[15 2

(c) Trace length 10 (d) Trace length 100

0.4

0.3

Fig. 4. Outcomes of SMC are given in (a) and (b), outcomes of our approach are given
in (¢) and (d). The comparison is done over a data set D composed of traces of 10 and
100 transitions. On the x-axis, 1000 < |Dt| < 20000. On the y-axis, 0.3 < 6 < 0.7. The
darker (purple) colour indicates a higher mean squared error. (Color figure online)

Data-Efficient Bayesian Verification of Parametric Markov Chains 49

The key result is, for both approaches, the mean squared error reduces as |D|
increases and the variance decreases, but our approach consistently produces a
smaller error and variance than SMC for any parameter values excluding 8 = 0.5
(where both approaches perform comparably). Our approach requires an order
of magnitude less data than SMC and above |D| = 2000, the error for our
approach is smaller than the error in the Monte Carlo integration, whereas SMC
does not reach this precision threshold in our experiments, which we perform
up to |D| = 200000.

We ascribe both the reduced error and reduced variance to the data efficiency
of our approach: SMC receives the training data in the form of short traces, and
discerns whether a trace is a counter example or witness for the property. A trace
can, however, be neither, in which case it is discarded, even if that trace contains
parameterised transitions. Our approach counts each parameterised transition
in the data, and so uses more of the data available than SMC. It is unsurprising
accuracy and variance improve when more data is used.

We investigate robustness in a situation where it is only possible to col-
lect short trajectories from the system, whilst verifying an unbounded property.
Figure 4a and b show the performance of SMC with |D| made up of trace lengths
of 10 and 100 transitions respectively. We show a part of our data set, discard-
ing data above |D| = 20,000 where our approach produces no measurable error.
The mean squared error in Fig.4b is 50 % lower than in Fig.4a over the entire
parameter range, but the run with trace lengths of 10 performs better for values
of 8 > 0.55.

We explain this because, computed using PRISM, the expected length of a
witness for our property and Markov Chain ranges between 4.33, for § = 0.3
and 2.42 for 8 = 0.7 (due to the symmetrical structure of our Markov Chain,
the lengths of counter-examples are also expected to be the same). Thus a large
proportion of the traces of length 10 are discarded, and so SMC has less data to
use, explaining the increased error across the parameter range. However, when
0 > 0.55, the expected counter-example length is higher, and so the number of
traces of length 10 that are useful begins to exceed the total number of traces
of length 100 received.

In contrast, the performance of our approach, shown in Fig. 4c and d, yields
approximately the same outcomes for both trace lengths, as we consider each
transition in the training data individually and only discard non-parameterised
transitions. Admittedly it is not always the case that the performance of our
method is independent of the length of the traces: consider for example the case
of a large Markov chain where a parameterised transition is only reachable after
a large number of steps. In this case the performance of our approach would be
comparable to SMC.

We run experiments on linearly parameterised Markov chains of a similar
scale and obtain comparable results.

50 E. Polgreen et al.

8 Conclusions and Future Work

We have presented a data-based verification approach addressing incomplete
model knowledge. The method offers a framework to integrate Bayesian inference
and formal verification, and in comparison to standard statistical model checking
promises to be more parsimonious with the required data.

We plan to investigate extensions in the following directions: performing para-
meter synthesis with alternative available techniques, such as [8], which builds
on the work of [10] using graph topological properties and fixed points); work-
ing with non-linearly parameterised Markov chains; inspired by [9], integrating
external non-determinism in the form of actions, thus leading to parameterised
Markov decision processes. Finally, we are interested in the use of Bayesian
hypothesis testing, which will further solidify this method as a provable veri-
fication technique even when the prior probability distribution is not reliably
known.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Learning temporal logical properties
discriminating ECG models of cardiac arrhytmias. CoRR abs/1312.7523 (2013)
Bernardo, J., Smith, A.: Bayesian Theory. Wiley, Chichester (1994)

4. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from
logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 89-105. Springer, Heidelberg (2013)

5. Brim, L., Ceska, M., Drazan, S., Safrdnek, D.: Exploring parameter space of sto-
chastic biochemical systems using quantitative model checking. In: Sharygina, N.,
Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107-123. Springer, Heidelberg
(2013)

6. Chen, Y., Nielsen, T.D.: Active learning of Markov decision processes for system
verification. In: ICMLA, pp. 289-294. IEEE (2012)

7. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280-294. Springer,
Heidelberg (2005)

8. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J.-P., Abrahém, E.: PROPhESY: a PRObabilistic ParamEter SYnthesis tool. In:
Kroening, D., Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214-231.
Springer, Heidelberg (2015)

9. Haesaert, S., Van den Hof, P.M.J., Abate, A.: Data-driven property verification of
grey-box systems by Bayesian experiment design. In: ACC, pp. 1800-1805. IEEE
(2015)

10. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for
parametric markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 660—-664. Springer, Heidelberg (2010)

11. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. In: Pasireanu, C.S. (ed.) Model Checking Software. LNCS, vol.
5578, pp. 88-106. Springer, Heidelberg (2009)

w

12.

13.

14.

15.

16.

17.

18.

19.

Data-Efficient Bayesian Verification of Parametric Markov Chains 51

Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model
checking for Markov decision processes. In: QEST, pp. 84-93. IEEE (2012)
Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Formal Asp. Comput. 19(1), 93-109 (2007)
Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Rosu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122-135.
Springer, Heidelberg (2010)

Mao, H., Jaeger, M.: Learning and model-checking networks of I/O automata. In:
ACML. JMLR, vol. 25, pp. 285-300. JMLR.org (2012)

FEichelsbacher, P., Ganesh, A.: Bayesian inference for Markov chains. J. Appl.
Probab. 39(1), 91-99 (2002)

Poupart, P., Vlassis, N.A., Hoey, J., Regan, K.: An analytic solution to discrete
Bayesian reinforcement learning. In: ICML. ACM, vol. 148, pp. 697-704. ACM
(2006)

Su, G., Rosenblum, D.S.: Nested reachability approximation for discrete-time
Markov chains with univariate parameters. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 364-379. Springer, Heidelberg (2014)

Younes, H.L.S.: Probabilistic verification for “black-box” systems. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 253-265. Springer,
Heidelberg (2005)

Probabilistic Reasoning Algorithms

Exploiting Robust Optimization for Interval
Probabilistic Bisimulation

Ernst Moritz Hahn', Vahid Hashemi®3®™) | Holger Hermanns?,
and Andrea Turrini'

! State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
2 Max Planck Institute for Informatics, Saarbriicken, Germany
hashemi@mpi-inf.mpg.de
3 Department of Computer Science, Saarland University, Saarbriicken, Germany

Abstract. Verification of PCTL properties of MDPs with convex uncer-
tainties has been investigated recently by Puggelli et al. However, model
checking algorithms typically suffer from the state space explosion prob-
lem. In this paper, we discuss the use of probabilistic bisimulation to
reduce the size of such an MDP while preserving the PCTL properties it
satisfies. As a core part, we show that deciding bisimilarity of a pair of
states can be encoded as adjustable robust counterpart of an uncertain
LP. We show that using affine decision rules, probabilistic bisimulation
relation can be approximated in polynomial time. We have implemented
our approach and demonstrate its effectiveness on several case studies.

1 Introduction

Real world systems are usually too complex to be analyzed in full detail. To
reduce the complexity of such an analysis, a simplified but accurate enough
model of the system has to be constructed and then verified with respect to a
number of properties the system is expected to satisfy. Among others, proba-
bility, nondeterminism, and uncertainty are core aspects of a real world system
that are worth considering in the model. Probability represents the fact that
the behaviour of the system is not uniquely determined by its status and the
action it performs, but depends on random choices as well; these choices may be
present by design (as the toss of a coin in a distributed algorithm so as to break
symmetry) or to represent general properties such as transmission errors during
a communication. Nondeterminism can be used whenever a specific behavior
is unknown or it is left undetermined by purpose: an example of the former is
the unknown relative speed of several distributed systems interacting with each
other while an example of the latter is the possibility of leaving some behav-
ior undetermined so an implementation can fix it. Uncertainty appears when
some information is available but it is not precise enough to be represented as a
probability.

A problem that may occur during the formal verification of a system, for
instance by model checking it, is the notorious state-explosion problem. Such a

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 55-71, 2016.
DOI: 10.1007/978-3-319-43425-4 4

56 E.M. Hahn et al.

problem can be mitigated by reducing the size of the model to be verified while
preserving its properties. This goal can by achieved by finding another model
that is smaller than the original one while behaving the same. Bisimulation
allows us to construct such a model; this strategy has been proven very effective
[16,29] in related settings.

Several models have been proposed in literature as frameworks for modelling
real world systems, frameworks equipped with bisimulation. Among others, there
are Labelled Transition Systems, Probabilistic Automata [42], and Markov Deci-
sion Processes (MDPs). In this work we focus on the Interval Markov Decision
Processes (IMDPs) model [27,28,38,41,45,46], an extension of classical MDPs
where uncertainty is represented by intervals of probability values. It is known
that bisimilar IMDPs satisfy the same PCTL properties [27]. As established
in [27,28], computing the coarsest bisimulation on a given IMDP is a difficult
problem; our aim is to provide a polynomial algorithm that returns a non-trivial
bisimulation for the given IMDP. We achieve this goal by taking advantage of
the results from the Operations Research community about robust optimization
and uncertain Linear Programming (LP) problems.

Summarizing, the main contributions of this paper are as follows.

— We build a bridge between Probabilistic Verification and Robust Optimization
and establish a novel modelling of the probabilistic bisimulation problem for
interval MDPs as an instance of an uncertain LP problem.

— We show that, by using affine decision rules, the probabilistic bisimulation
problem for IMDPs can be approximately decided in polynomial time.

— We show promising results on a number of case studies, obtained by a proto-
typical implementation of our algorithm.

Related Work. We classify related works in four areas. Firstly, various probabilis-
tic modelling formalisms with uncertain transitions are studied in the literature.
Interval Markov chains [31,35] or Abstract Markov chains [20] extend standard
discrete-time Markov chains (MCs) with interval uncertainties and thus do not
feature the non-deterministic choice of transitions. Uncertain MDPs [38,40,45]
allow for more general sets of distributions to be associated with each transition,
not only those described by intervals. Usually, this is restricted to rectangular
uncertainty sets requiring that the uncertainty is linear and independent for any
two transitions of any two states. Our general algorithm working with polytopes
can be easily adapted to this setting. Parametric MDPs [26] to the contrary allow
for such dependencies as every probability is described as a rational function of
a finite set of global parameters.

Secondly, computational complexity of the probabilistic bisimulation for
uncertain probabilistic models has been studied quite recently in [27,28]. Among
similar concepts studied in the literature are simulation [22,47] and refinement
[18,19,31] relations for previously mentioned models.

Thirdly, from model checking viewpoint, many new verification algorithms
for interval models appeared in last few years. Reachability and expected total
reward is addressed for Interval MCs [15] as well as Interval MDPs [46]. PCTL

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 57

model checking and LTL model checking are studied for Interval MCs [9,14,15]
and also for Interval MDPs [41,45]. Among other technical tools, all these
approaches make use of (robust) dynamic programming relying on the fact
that transition probability distributions are resolved dynamically: a probabil-
ity distribution is chosen from interval restrictions each time the system enters a
state. For the static resolution of distributions, an adaptive discretization tech-
nique for PCTL parameter synthesis is given in [26]. Uncertain models are also
widely studied in the control community [23,38,46], mainly interested in maxi-
mal expected finite-horizon reward or maximal expected discounted reward.
Finally, as regards the application of Robust Optimization in Probabilistic
Verification community, to the best of our knowledge, we are not aware of any
work in the literature. Therefore, the current contribution is novel in this mat-
ter. On the other hand, the aforementioned theory has been adapted and applied
successfully in control theory realm. For instance, Abate and El Ghaoui [5] devel-
oped a robust modal predictive control using two-stage robust optimization.

2 Preliminaries

In this paper, the sets of all positive integers, rational numbers, real numbers
and non-negative real numbers are denoted by N, Q, R, and Rxq, respectively.
We denote by I the set of closed sub-intervals of [0, 1] and, for a given [a, b] € I,
we denote by inf[a, b] the lower bound a and by sup|a, b] the upper bound b. We
denote by b* the k-th element of a vector b € R™. For a set X, we denote by
A(X) the set of discrete probability distributions over X; given p € A(X), we
denote by Supp(p) = {z € X | p(z) > 0} the support of p and we say that p
is Dirac, denoted 6., if Supp(p) = {z} with € X. For an equivalence relation
R on X and p1,p2 € A(X), we write p1 L(R) p2 if for each C € X/R, it holds
that p1(C) = p2(C). By abuse of notation, we extend L(R) to distributions over
X/R, ie., for p1,p2 € A(X/R), we write p1 L(R) po if for each C € X/R, it
holds that p;(C) = p2(C).

2.1 Interval Markov Decision Processes

Let us formally define Interval Markov Decision Processes.

Definition 1 (IMDPs). An Interval Markov Decision Process (IMDP) M is
a tuple M = (5,5, A, AP, L, I), where S is a finite set of states, § € S is the
initial state, A is a finite set of actions, AP is a finite set of atomic propositions,
L: S — 2" is g labeling function, and I: S x Ax S — I is an interval transition
probability function.

Given s € S and a € A, we write s = us whenever ps, € A(S) is a feasible
distribution, i.e., for each s’ € S we have ps(s") € I(s,a,s’). Let P*% = { u, €
A(S) | s % ps }; we denote by A(s) = {a € A| P5* # ()} the set of actions
that are enabled from s and we require that A(s) # 0 for each s € S.

58 E.M. Hahn et al.

We extend I to sets of states as follows: given S’ C S, we let

min{l, Z ian(s,a,s’)} ,rnin{l7 Z sup](s,a,s’)}].

s'eS’ s'es’

I(s,a,8") =

An interval MDP is initiated in some state s; and then moves in discrete
steps from state to state forming an infinite path s;ssss. ... One step, say from
state s;, is performed as follows. First, an action a € A(s;) is chosen proba-
bilistically by scheduler. Then, nature resolves the uncertainty and chooses non-
deterministically one corresponding feasible distribution us, € P%+*. Finally, the
next state s;;+; is chosen probabilistically according to the distribution ps,.

Let us define the semantics of an IMDP formally. A path is a finite or infinite
sequence of states m = s185.... For a finite path m, we denote by last(n) the
last state of . The set of all finite and infinite paths are denoted by Paths™ and
Paths®, respectively. Furthermore, let Cyl,. = {n’ € Paths” | m < 7’} denote
the set of paths having 7w € Paths™ as prefix.

Definition 2 (Scheduler and Nature). Given an IMDP M, a scheduler is
a function o: Paths™ — A(A) such that for each m € Paths™, Supp(c(rw)) C
A(last(r)). Further, a nature is a function v: Paths™ x A — A(S) such that for
each ™ € Paths* and a € A(last(n)), v(m,a) € Pt (m)e We denote by & and
N the set of all schedulers and natures of M, respectively.

For an initial state s, a scheduler o, and a nature v, let PrJ"” denote the unique
probability measure over (Paths”,B)! such that the probability Pr?"[Cyl,] of
starting in s’ equals 1 if s’ = s and 0 otherwise and the probability PrJ"[Cyl . ./]
of traversing a finite path ms" equals Pri”[Cyl, |- > ,c 4 0(m)(a) - v(m, a)(s").

Observe that the scheduler does not choose an action but a distribution over
actions. It is well-known [42] that such a randomization is useful in the context of
bisimulations as it allows to define coarser equivalence relations. To the contrary,
nature is not allowed to randomize over the set of feasible distributions . This
is in fact not necessary, since the set P%“ is closed under convex combinations.
Finally, we call a scheduler o deterministic, or Dirac if, for each finite path
7 € Paths™, () is a Dirac distribution.

We determine the size of an IMDP M as follows. Let |S| denote the number
of states in M each state has at most |.A| actions and at most |.A|-|S| transitions,
each of which is associated with a probability interval. Therefore, the overall size

of M is |M| € O(|S|* - |A]).

2.2 Robust Optimization

Robust optimization is a new approach in mathematical optimization that is
concerned about optimization problems in which a certain level of robustness

! Here, B is the standard o-algebra over Paths“ generated from the set of all cylin-
der sets {Cyl,. | m € Paths™}. The unique probability measure is obtained by the
application of the extension theorem (see, e.g., [11]).

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 59

is desirable against uncertainty [6,7]. This modelling methodology is integrated
with computational tools to treat optimization problems with uncertain data
that is only known to be included in some uncertainty set [3,24,37]. This app-
roach has been shown to be very useful in real-world applications that are entirely
or to a certain extent affected by uncertainty [8,10]. In this section, we introduce
the concept of Uncertain Linear Programming problems (ULPs) and afterwards,
we provide an overview of the essential background required for the rest of the
paper. We refer the interested reader to [6,10] for a comprehensive reference on
robust optimization.

Uncertain Linear Programming (ULPs). Linear Programming (LP) prob-
lems are problems that can be described in canonical form as:

Ming ¢ gn {ch Az < b}

where z € R"™ is the vector of decision variables, ¢ € R™ is the vector of coef-
ficients, A € R™*™ is the constant coefficient matriz and b € R™ is the right
hand side vector.

The data of an LP problem, i.e., the collection of tuples [c, A,b], in general
are not known precisely when the LP encodes a real-world problem. This issue
reveals the need for an approach to produce LP solutions which are immune
against uncertainty.

Definition 3 (cf. [6,7]). An Uncertain Linear Program (ULP) is a family
{Min, egn{c"z: Az < b}}[c,A,b]GZ (1)

of LP problems Min, cgn{cT2z : Az < b} with the same structure (i.e., same
number of constraints and variables) in which the data range over a given non-
empty compact uncertainty set Z C R™ x R™*™ x R™.

To simplify the notation, we may write {Min{c"z : Az <b}} .

In contrast to an usual single LP problem, it is not possible to associate
the notions of feasibility /optimal solutions and optimal objective value with a
collection of optimization problems like ULPs. In the setting of ULPs, the feasi-
ble solutions are solutions which are robust feasible. Roughly speaking, feasible
solutions are those which satisfy the set of constraints whatever the realization
of uncertain data is. More precisely:

Definition 4 (cf. [6,8]). A vector x € R™ is robust feasible to an ULP with
uncertainty set Z if for each [c, A,b] € Z, Ax < b. Given a robust feasible solu-
tion x, the robust value Z(x) of the objective function is 2(x) 1= sup, 4 pjcz .

After carefully defining the robust feasible/optimal solutions as well as their
robust objective value, we can describe the central concept in robust optimization
setting that is the robust counterpart (RC) of an uncertain LP problem.

60 E.M. Hahn et al.

Definition 5 (cf. [8]). Given an ULP problem {Min{c"z : Az <b}}_, the
Robust Counterpart of ULP is the optimization problem

Ming epn{#(z) = sup {c'z:Az <b}}
[c,Ab)eZ

that seeks for the best possible value of the objective function among all possible
robust feasible solutions to the ULP. Furthermore, the optimal solution/value to
the robust counterpart is called the robust optimal solution/value to the ULP.

In the robust counterpart (RC) approach, all the variables are “here and now
decisions”: they must be decided before the realization of unknown data. How-
ever, in some cases, some part of the variables are “wait and see decisions”, i.e.,
they might tune themselves to the varying parameters. In the rest of the paper,
we call the variables that may depend on the realizations of the uncertain data
as adjustable, while other variables are called non-adjustable. Therefore, we can
split the vector x of Eq. (1) from Defnition 3 as z = (u,v)T where the sub-vectors
u and v indicate the non-adjustable and the adjustable variables, respectively.

Adjustable Robust Counterpart. Splitting the decision variable x to the
adjustable and non-adjustable variables allows us to rewrite the uncertain LP
(1) as the following equivalent form:

{Min, ,{c"u: Uu+ Vv < b}}[c,U,V,b]EZ (2)

In the above presentation, without loss of generality, we assume that the
objective function is normalized with respect to the non-adjustable variables.
Moreover, the matrix V is called recourse matriz [17] and when it is not uncer-
tain, we call the uncertain LP (2) a fized recourse one. We can now define the
RC and the Adjustable robust counterpart (ARC) as follows:

RC: Min, {c"u: v :V[U,V,b] € Z : Uu+ Vv < b}; (3)
ARC: Min, {c"u: V[U,V,b] € Z: Fv: Uu+ Vv < b}. (4)

It is not difficult to see that ARC is less conservative than RC allowing for better
optimal values while still having all realizations of the constraints satisfied. The
distinction between RC and ARC can be very significant (see, e.g., [6,7]).

The RC of an uncertain LP is a computationally tractable problem in general
[8]. On the contrary, this is not the case with ARC. This fact stimulates a very
good reason to introduce the notion of Affinely Adjustable Robust Counterpart
(AARC) of an uncertain LP in which we make a simplification on how the
adjustable variables can tune themselves upon the uncertain data. By posing
v =w+ WE, we consider an affine dependency between adjustable variables and
uncertain parameter. Therefore, the AARC of the uncertain LP (2) reads as:

Ming ww {¢"u: Uu+ V(w+ WE) <bV(E=[U,V,b € 2)}

= Min, {"u: V(¢ =[U, V0] € 2) : J(w, W) : Uu+ V(w+ WE) < b}. (5)

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 61

3 Probabilistic Bisimulation for Interval MDPs

This section revisits required main results on probabilistic bisimulation for inter-
val MDPs, as developed in [27]. In the setting of this paper, we consider the
notion of probabilistic bisimulation for the cooperative interpretation of interval
MDPs. This semantics is very natural in the context of verification of parallel
systems with uncertain transition probabilities in which we assume that sched-
uler and nature are resolved cooperatively in the most adversarial way: in the
game view of the bisimulation, challenging scheduler and nature work together
in order to defeat the defender with a transition that can not be matched.

Besides the cooperative behaviour, the choice of a probability distribution
respecting the interval constraints can be done either statically [31], i.e., at the
beginning once for all, or dynamically [30,43], i.e., independently at each com-
putation step. In this paper, we focus on the dynamic approach in resolving the
stochastic nondeterminism: it is easier to work with algorithmically and can be
seen as a relaxation of the static approach that is often intractable [9,14,19,23].

Let s — us denote a transition from s to us taken cooperatively, i.e., there
is a scheduler 0 € & and a nature v € 91 such that p, =), . 4 0(s)(a) v(s,a).
In other words, s — ps if ps € CH(U,c 4(5) P**) where CH(X) denotes the
convex hull of X.

Definition 6 (cf. [27]). Given an IMDP M, let R C S x S be an equivalence
relation. We say that R is a probabilistic bisimulation if for each (s,t) € R
we have that L(s) = L(t) and for each s — s there exists t — uy such that
s L(R) pe. Furthermore, we write s ~ t if there is a probabilistic bisimulation

R such that (s,t) € R.

Intuitively, each (cooperative) step of scheduler and nature from state s needs
to be matched by a (cooperative) step of scheduler and nature from state t;
symmetrically, s also needs to match ¢. It is shown in [27] that the bisimulation
~. preserves the (cooperative) universally quantified PCTL satisfaction |=..

Theorem 7 (cf. [27]). For states s ~. t and any PCTL formula ¢, we have
s e @ if and only if t =, p.

Computation of probabilistic bisimulation for IMDPs follows the standard
partition refinement approach [13,32,39]. However, the core part of the algo-
rithm is to find out whether two states “violate the definition of bisimulation”.
Verification of this violation amounts to checking inclusion of polytopes defined
as follows. For s € S and a € A(s), recall that P*% denotes the polytope of
feasible successor distributions over states with respect to taking the action a
in the state s. By Py, we denote the polytope of feasible successor distribu-
tions over equivalence classes of R with respect to taking the action a in the
state s. Formally, for € A(S/R) we set u € PZ® if, for each C € S/R, we have
u(C) € I(s,a,C). Furthermore, we define Pg = CH(U, ¢ 4(5) P")- It is the set of
feasible successor distributions over S/R with respect to taking an arbitrary dis-
tribution over actions in state s. As specified in [27], checking violation of a given

62 E.M. Hahn et al.

pair of states, amounts to check equality of the corresponding constructed poly-
topes for the states. As regards the computational complexity of the proposed
algorithm, the following theorem indicates that it is fixed parameter tractable.

Theorem 8 (cf. [27]). Given an IMDP M, let f be the mazimal fanout, i.e.,
[=maxscgacas {8 €5]1(s,a,s)#[0,0]}]. Computing ~. can be done
in time |M|O(1) .20,

The exact time complexity of deciding probabilistic bisimulation for IMDPs
has recently been explored in [28], leading to the following result.

Theorem 9 Given an IMDP M, computing ~. is coNP-complete.

4 Computational Tractability

Definition 6 is the central definition around which the paper revolves. Given an
IMDP, the complexity of computing ~ strictly depends on finding ¢t — u;: we
show how a finer (sub-optimal) equivalence relation can be computed in poly-
nomial time. The bisimulation in Definition 6 can be reformulated equivalently
as follows:

Definition 10. Let R C S x S be an equivalence relation. We say that R is
a probabilistic bisimulation if (s,t) € R implies that L(s) = L(t) and for each
a € A(s) and each ps € Pr", there exists i, € Pr such that ps L(R) fuq.

Recall that a probabilistic bisimulation can be seen as a game between two play-
ers: in each round, the challenger, or attacker, s proposes a transition, or step,
that has to be matched by the defender t. The two states s and ¢ are bisimilar
if the defender is always able to match the challenging transitions proposed by
the attacker, that is, the game can be played forever. Correspondingly, in our
setting, probabilistic bisimulations require that each transition proposed by the
challenger s which is selected from the set Pz, is matched by the defender ¢ via a
single (combined) transition. The above definition essentially disallows the state
s to randomize over the set of its available actions. Therefore, instead of allow-
ing the challenger to pick a probability distribution from CH(U,, ¢ 4(s) PE"), we
restrict his choice to select a distribution for an action from the polytope Pz”.
This restriction does not lead to any loss of generality, since it is routine to check
that the bisimulation R from Definition 10 satisfies the condition of Definition 6.

4.1 Robust Methodologies for Probabilistic Bisimulation

We now discuss the key elements of a decision algorithm for probabilistic bisim-
ulation on IMDPs. As we will see in Sect. 5, the core part—and the main source
of the exponential complexity of the decision algorithm in [27]—is the need
to repeatedly verify the step condition, that is, given a challenging transition
w € P% and (s,t) € R, to check if there exists ¢ — p; such that u L(R) p. We
show that, using some inspiration from network flow problems, it is possible to

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 63

treat a transition ¢ — p; of the IMDP M as a flow where the initial probability
mass d; flows and splits along transitions appropriately to the transition target
distributions and the resolution of the nondeterminism fulfilled by the scheduler
and nature. This intuition essentially enables us to model the probabilistic bisim-
ulation problem as an adjustable robust counterpart of an uncertain LP problem
that is intractable in general [6,7].

4.2 Adjustable Robust Counterpart for Probabilistic Bisimulation

From now on, we assume that the IMDP M, the state ¢, the probability dis-
tribution p, and the equivalence relation R on S are given. We intend to ver-
ify or refute the existence of a transition ¢ — pu; of M satisfying p L(R) s
via the construction of a flow through the network graph G(t,R) = (V,E)
defined as follows: the set of vertices is V = {A, ¥,t} US4 U Sr U (S/R) where
Sa={ts] a€ At)} and Sg = {sr | s € S}, and the set of arcs is £ =
{(2,) }U{ (vg,C),(C,¥) | C € S/R,v e C}IU{(tts), (ta,vr) | a € A(t),v € S }.
In the flow network definition, A and ¥ are the source node and the sink node
of the network, respectively. The set of transition nodes S 4 includes vertices
that represent the interval transitions of the IMDP M. More precisely, each
transition labelled by a enabled at state t is represented by a transition node
ty, € Sa. The set Sg is a copy of the state set S that is used to represent the
states reached after having performed the transition; for such states, we connect
them to the equivalence class they belong to so to verify the condition of the
lifting. The network construction can be seen as an adaptation to the strong
case of flow networks used in [21,44].

We take advantage of the above transformation of the “IMDP into a net-
work graph” to generate an optimization problem. To this aim, we adopt the
same notation of the network optimization setting so we use f, , to show the
“flow” through the arc from u to v. In formulating the optimization problem,
we use in addition the so-called balancing constraints [44] in order to reflect the
probabilistic choices in the given IMDP M and to ensure the correct splitting
of outgoing flows from the transition nodes in the set S 4.

Definition 11. The optimization problem associated to the network G(t,R) =
(V, E) is defined as follows:

Minf 0

subject to

Juw 20 for each (u,v) € E
Jar=1

few = p(C) for each C € S/R
Z{uev\(u’v)eE} Juw — Z{ weV|(v,w)EE } fow =0 for each v € V\{A, ¥}
Jtawr = Paw * fti, =0 for each a € A(t) andv € S
Paw € I(t,a,v) for each a € A(t) andv € S

It is not difficult to see that the optimization problem just defined is not an LP
problem, as there are quadratic constraints where the flow variable f; ;, is multi-
plied with the “probability” variable p, .. As a matter of fact, for a given a € A(¢),

64 E.M. Hahn et al.

the variables p,, have to lie in the interval defined by the interval transition
I(t,a,v) and they have to induce a probability distribution, i.e., p,, > 0 for each
veSand), o gPaw = 1. The non-negativity of the variables comes for free from
the constraints p,,, € I(t,a,v) since I(t,a,v) C [0,1]; 3", . g Pa,w = 1 follows by
the flow conservation constrain Z{ weV|(uw)EEY} Suw— Z{ weV|ww) eER} fow=
0 for v = t,. Therefore, the optimization problem can be easily cast as an
LP problem by replacing the pair of constraints fi, v, — Pa,v - fet,r, = 0 and
Pa,w € I(t,a,v) with the pair of constraints f;, ,,, — inf I(¢,a,v) - f;, > 0 and
ftown —sup I(t,a,v) - fri, <0,i.e., the state v is reached from ¢ with probability
Payp = f}‘: ~“R at least inf I(¢,a,v) and at most sup I (¢, a, v), as required. Taking

this modification into account, we can reformulate the optimization problem in
Definition 11 as the following LP problem.

Definition 12 (The LP(t,u, R) LP problem). The LP(t,u, R) LP problem
associated to the network graph G(t,R) = (V, E) is defined as follows:

Minf 0

subject to

Juw 20 for each (u,v) € E
far=1

few = p(C) for each C € S/R
Z{ugV“u;u)GE} fuw — Z{ weV|(v,w)EE } fow =0 for each v € V\ {A, ¥}
ftawr —infI(t,a,0) -« fre, 20 for each a € A(t) andv € S
ftaowr —supI(t,a,v) - frs, <0 for each a € A(t) andv € S

The feasibility of the resulting LP problem can be seen as an oracle to verify
or refute the existence of a probabilistic transition ¢t — p. Formally,

Lemma 13. Given an IMDP M, t € S, u € A(S), and an equivalence relation
R on S, the LP(t,u, R) LP problem has a feasible solution if and only if there
exist 0 € 6 and v € N inducing t — p; such that p L(R) ue

It is worthwhile to be noted that the resulting scheduler and nature are
history-independent, i.e., they base their choice only on the current state (and
action, for nature). Moreover, solving the generated LP problem from Defini-
tion 11 can be done in polynomial time [33,34]. The polynomial time complex-
ity, however, is not preserved when uncertainty affects transition probabilities
in the model. In fact, in presence of uncertainty, the step condition needs to be
checked for any realization of the probability distribution ps € Pg“. This fact
is essentially the main barrier in designing efficient algorithms for probabilistic
bisimulation on such uncertain systems which particularly leads the problem to
be intractable. To this end, we first model the probabilistic bisimulation prob-
lem as the ARC of the uncertain LP(t, i, R) LP problem in which the uncertain
data is the probability distribution p. More precisely, by Lemmal3, we can
replace in Definition 10 the matching transition p; € Pk for u, € Pi® such that
ts L(R) py with the check for feasibility of LP(¢, us, R).

Modelling this probabilistic bisimulation game as ARC of an uncertain LP
allows the adjustable flow variables f; ; in the LP(t, u, R) LP problem to tune

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 65

Min; ., O

subject to

luw + 30w - pu(Cr) >0 for each (u,v) € E
Lo+ p_wk - pCr) =1

lejv + 30 wh - u(Cr) = pu(Cs) for each C; € S/R,i=1,...,n

Euweny (uw + 5 0" w(C) = X ujwmyen (o + gy w* - p(Cr)) = 0
for each v € V \ {A, ¥V}
liwor + 2op_q wh - pu(Cr) —inf I(t,a,v) - (lee, + gy w" - p(Cr)) >0
for each a € A(t) and v € S
liwor + 2opy W pu(Cr) —sup I(t,a,v) - (e, + >y w* - pu(Cr)) <0
for each a € A(t) andv € S
Vp = (M(Cl), SEE) :U'(Cﬂ)) € 737s€a

Fig. 1. Affinely adjustable robust counterpart of the ULP {LP(t,u, R)}, < Py

themselves to the uncertain probability distribution p. However, the ARC is
in general computationally hard. On the other hand, restricting the adjustable
flow variables f; ; to be affinely dependent on the uncertain probability distribu-
tions p allows us to model the bisimulation problem as affinely adjustable robust
counterpart of an uncertain LP problem and thus to arrive at a polynomial time
algorithm to compute the equivalence relation R. From the game semantics view-
point, such affine dependency restriction reduces the power of the defender to
match the challenger’s choices and therefore, it leads to a finer (sub-optimal)
equivalence relation.

4.3 Affinely Adjustable Robust Counterpart for Probabilistic
Bisimulation

In this section, we adapt the ARC theory presented in Sect. 2.2 to the setting of
probabilistic bisimulation by imposing a restriction on adjustable flow variables
fi,j to tune themselves affinely upon the uncertain probability distribution s in
the challenger’s uncertainty set Pz *. Without loss of generality, we let Cy,...,Cp
be the equivalence classes induced by R. We encode the affine dependence in
the network graph G(¢,R) = (V, E) by restricting, for each arch (i,j) € E, the
flow variable f; ; to be

fig=lij+ Zwk - 1(Cr.),
k=1

where the new optimization variables are considered in the vector [and
the matrix W. Plugging affine equivalences of flow variables, we end up
with the affinely adjustable robust counterpart (AARC) of the ULP problem
{LP(t, 1, R)}, e pzye shown in Fig. 1.

In order to show the computational tractability of the AARC, we need to
ensure that the uncertainty set Pz is itself computationally tractable. Formally,
a set Pp® is computationally tractable [25] if for any vector p, there is a tractable

66 E.M. Hahn et al.

“separation oracle” that either decides correctly 1 € Pg” or otherwise, generates
a separator, i.e., a non-zero vector r such that r7p > max, e pa rTy.

Proposition 14. For every state s € S, action a € A(s) and equivalence rela-
tion R, the polytopic uncertainty set Pr" is computationally tractable.

Computational tractability of the polytopic uncertainty sets concludes imme-
diately tractability of the AARC. Formally,

Theorem 15. Given the fized recourse ULP problem {LP(t, 11, R)}, e pse, the
AARC of {LP(t, 11, R)}, e pe is computationally tractable.

It is not difficult to see that in the setting of probabilistic bisimulation, the
polytopic uncertainty sets P are closed, convex, and well structured, i.e., they
can be described by a list of linear inequalities. Thus in our setting, the resulting
AARC is also well structured and thus can be solved using highly efficient LP
solvers (for instance, CPLEX [2] and Gurobi [1]) even for large-scale cases.

Theorem 16. Given the fized recourse ULP problem {LP(t, 1, R)}, e pse, the
AARC of {LP(t,u,R)}, epye 18 equivalent to an explicit LP program.

The “affine decision rules” used to derive the AARC counterpart of the prob-
abilistic bisimulation problem allow us to compute a sub-optimal (finer) proba-
bilistic bisimulation defined as follows.

Definition 17. Let R C S x S be an equivalence relation. We say that R is an
AARC probabilistic bisimulation if (s,t) € R implies that L(s) = L(t) and for
each a € A(s), the AARC of the ULP problem {LP(t, 11, R)}, e pse is feasible.

Furthermore, we write s ~aarc t if there exists an AARC probabilistic bisim-
ulation R such that (s,t) € R.

An immediate result relating ~44rc and ~ is that the former is a refinement
of the latter, as formalized by the following proposition.

Proposition 18. Given M, if s ~aarc t, then s ~. t, i.e., ~a4rc C ~e.

5 Decision Algorithm

In this section, we give a polynomial algorithm computing the probabilistic
bisimulation ~44rc. The general idea of the algorithm follows the one of
the algorithm in [27] and involves the construction of the polytopes of the
challenger’s probability distributions. In order to compute ~44rc an IMDP
M = (5,5, A,AP, L, T), we follow the usual partition refinement approach
[12,21,32,39,44], formalized by the BISIMULATION procedure in Algorithm 1.
Namely, we start with R being the equivalence relation containing the pairs of
states with the same labels; then we iteratively refine R by splitting the states
that violate the definition of bisimulation with respect to R. The core part is to
check whether two states “violate the definition of bisimulation”. This is where
our algorithm differs from the one proposed in [27].

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 67

| BISIMULATION(M) ‘
1: R—{(s,t) € SxS|L(s)=L(t) };
2: repeat
3: Rl — R s,a

’ Vv t, R, Py
4: for all s € S do l I0LATE(t, R, PZ*) ‘
5: D ;
6: for:ﬂ’t € [s]r do 1: Counstruct the AARC of the
T for all a € A(s) do EIII—;}(; i;{lLF]‘Diét,{i, R)}#ep%a de-
8: if V t, R, Px® :
9: ! DIO:?DTE({}};PR) 2: return is AARC not feasible?
10: split [s]z in R into D and [s]r \ D;

11: until R = R/;
12: return R;

Algorithm 1: Probabilistic bisimulation algorithm for IMDPs

The violation is checked by the procedure VIOLATE. We show that this
amounts in solving the AARC of the uncertain LP problem {LP(t, 1, R)}, ¢ pze
as follows. Recall that for s € S and an action a € A(s), we denote by Pg” the
polytope of feasible successor distributions over equivalence classes of R with
respect to taking the action a in the state s, as discussed in Sect. 3. Note that
we require that the probability of each class C must be in the interval of the sum
of probabilities that can be assigned to states of C. As specified in the procedure
VIOLATE, we show that it suffices to check the feasibility of the resulting AARC
of the constructed uncertain LP problem.

Given an IMDP M, let N = max{|S],|A|}. It is not difficult to see that the
procedure VIOLATE is called at most N* times. In every call to this procedure,
we need to generate and solve the explicit form of the AARC which is an LP
according to Theorem 16, solvable in polynomial time O(poly(N)) (see, e.g.,

[25,33]). This means that computing ~44gc can be done in time \./\/l|o !
O(poly(N)).

Theorem 19. Algorithm1 computes ~garc in time polynomial in |[M].

6 Case Studies

We have written a prototypical implementation for computing the bisimulation
presented in this paper. Our tool reads a model specification in the input lan-
guage of the probabilistic model checker PRISM [36] (extended to support also
intervals in the transitions), and constructs an explicit-state representation of
the state space. Afterwards, it computes the quotient using Algorithm 1.

Table 1 shows the performance of our prototype on a number of case studies
taken from the PRISM website [4], where we have relaxed some of the prob-
abilistic choices to intervals. The machine we used for the experiments is a
3.6 GHz Intel Core i7-4790 with 16 GB 1600 MHz DDR3 RAM of which 12 GB
were assigned to the tool. Despite using an explicit representation for the model,
the prototype is able to manage cases studies in the order of millions of states and

68 E.M. Hahn et al.

Table 1. Experimental evaluation of the bisimulation computation

Model |Si] |1 S/L |t~ (s) | |S~] |I.]

Consensus-Shared-Coin-3 5216 13380 |2 787 1770
Consensus-Shared-Coin-4 43136 144352 | 2 2 2189 5621
Consensus-Shared-Coin-5 327936 1363120 | 2 23 5025 14192
Consensus-Shared-Coin-6 | 2376448 | 11835456 | 2 219 10173 30861
Crowds-5-10 111294 261444 | 2 1 107 153
Crowds-5-20 2061951 7374951 |2 17 107 153
Crowds-5-30 12816233 | 61511033 | 2 116 107 153
Crowds-5-40 44045030 [266812421 |2 464 125 198
Mutual-Exclusion-PZ-3 3008 10868 | 2 0 1123 3939
Mutual-Exclusion-PZ-4 48128 231040 |2 7319 32630
Mutual-Exclusion-PZ-5 770048 4611072 | 2 32053 | 168151
Mutual-Exclusion-PZ-6 3377344 | 25470144 | 2 98 109986 | 649360
Dining-Phils-LR-nofair-4 9440 40120 | 4 0 1232 5037
Dining-Phils-LR-nofair-5 93068 494420 | 4 9408 49467
Dining-Phils-LR-nofair-6 917424 5848524 | 4 14 76925 | 487620
Dining-Phils-LR-nofair-7 | 9043420 | 67259808 |4 173 646 928 |4804 695

transitions (columns “Model”, “|S;|”, and “|;|”). The time in seconds required to
compute the bisimulation relation and the corresponding quotient IMDP, shown
in columns “¢.7, “|S.|”, and “|I.|”, is much less than the time expected from
the theoretical analysis of the algorithm: this is motivated by the fact that we
have implemented optimizations, such as caching equivalent LP problems, which
improve the runtime of our algorithm in practice. Because of this, we never had
to solve more than 30 LP problems in a single tool run, thereby avoiding the
potentially costly solution of LP problems from becoming a bottleneck.

Acknowledgments. We would like to thank Arkadi Nemirovski (Georgia Institute of
Technology) and Daniel Kuhn (EPFL) for many invaluable and insightful discussions.
This work is supported by the EU 7th Framework Programme under grant agree-
ments 295261 (MEALS) and 318490 (SENSATION), by the DFG as part of SFB/TR
14 AVACS, by the ERC Advanced Investigators Grant 695614 (POWVER), by the
CAS/SAFEA International Partnership Program for Creative Research Teams, by
the National Natural Science Foundation of China (Grants No. 61472473, 61532019,
61550110249, 61550110506), by the Chinese Academy of Sciences Fellowship for Inter-
national Young Scientists, and by the CDZ project CAP (GZ 1023).

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 69

References

Gurobi 4.0.2. http://www.gurobi.com/

2. IBM ILOG CPLEX Optimizer. http://www.ibm.com/software/commerce/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

optimization/cplex-optimizer/

PICOS: A Python interface for conic optimization solvers. http://picos.zib.de/
PRISM model checker. http://www.prismmodelchecker.org/

Abate, A., El Ghaoui, L.: Robust model predictive control through adjustable
variables: an application to path planning. In: CDC, pp. 2485-2490 (2004)
Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Uni-
versity Press, Princeton (2009)

Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solu-
tions of uncertain linear programs. Math. Program. 99(2), 351-376 (2004)
Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper.
Res. Lett. 25, 1-13 (1999)

Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 32-46. Springer, Heidelberg (2013)

Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust
optimization. SIAM Rev. 53(3), 464-501 (2011)

Billingsley, P.: Probability and Measure. Wiley, New York (1979)

Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In:
Brim, L., Jancar, P., Kfetinsky, M., Kucera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 371-385. Springer, Heidelberg (2002)

Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition sys-
tems for continuous state spaces and non-determinism. In: Sassone, V. (ed.) FOS-
SACS 2005. LNCS, vol. 3441, pp. 125-139. Springer, Heidelberg (2005)
Chatterjee, K., Sen, K., Henzinger, T.A.: Model-checking w-regular properties of
interval Markov chains. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962,
pp. 302-317. Springer, Heidelberg (2008)

Chen, T., Han, T., Kwiatkowska, M.: On the complexity of model checking interval-
valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210-216 (2013)
Coste, N., Hermanns, H., Lantreibecq, E., Serwe, W.: Towards performance predic-
tion of compositional models in industrial GALS designs. In: Bouajjani, A., Maler, O.
(eds.) CAV 2009. LNCS, vol. 5643, pp. 204-218. Springer, Heidelberg (2009)
Dantzig, G.B., Madansky, A.: On the solution of two-stage linear programs under
uncertainty. In: Proceedings of the Fourth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1. pp. 165-176 (1961)

Delahaye, B., Katoen, J.P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F.,
Wasowski, A.: New results on abstract probabilistic automata. In: ACSD, pp. 118—
127 (2011)

Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Decision
problems for interval Markov chains. In: Dediu, A.-H., Inenaga, S., Martin-Vide, C.
(eds.) LATA 2011. LNCS, vol. 6638, pp. 274-285. Springer, Heidelberg (2011)
Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71-88. Springer, Heidelberg
(2006)

Ferrer Fioriti, L.M., Hashemi, V., Hermanns, H., Turrini, A.: Deciding probabilistic
automata weak bisimulation: theory and practice. Form. Asp. Comput. 28(1), 109—
143 (2016)

http://www.gurobi.com/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
http://picos.zib.de/
http://www.prismmodelchecker.org/

70

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

E.M. Hahn et al.

Gebler, D.; Hashemi, V., Turrini, A.: Computing behavioral relations for proba-
bilistic concurrent systems. In: Remke, A., Stoelinga, M. (eds.) Stochastic Model
Checking. LNCS, vol. 8453, pp. 117-155. Springer, Heidelberg (2014)

Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov decision processes.
Artif. Intell. 122(1-2), 71-109 (2000)

Goerigk, M.: ROPI-a robust optimization programming interface for C++. Optim.
Methods Softw. 29(6), 1261-1280 (2014)

Grotschel, M., Lovasz, L., Schrijver, A.: The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1(2), 169-197 (1981)

Hahn, E.M., Han, T., Zhang, L.: Synthesis for PCTL in parametric Markov decision
processes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM
2011. LNCS, vol. 6617, pp. 146-161. Springer, Heidelberg (2011)

Hashemi, V., Hatefi, H., Krc¢dal, J.: Probabilistic bisimulations for PCTL model
checking of interval MDPs (extended version). In: SynCoP. EPTCS, vol. 145, pp.
19-33 (2014)

Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A.,
Wojciechowski, P.: Compositional bisimulation minimization for interval Markov
decision processes. In: Dediu, A.-H., Janousek, J., Martin-Vide, C., Truthe, B.
(eds.) LATA 2016. LNCS, vol. 9618, pp. 114-126. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-30000-9-9

Hermanns, H., Katoen, J.P.: Automated compositional Markov chain generation
for a plain-old telephone system. Sci. Comput. Program. 36(1), 97-127 (2000)
Iyengar, G.N.: Robust dynamic programming. Math. Oper. Res. 30(2), 257-280
(2005)

Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266277 (1991)

Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43-68 (1990)

Karmarkar, N.: A new polynomial-time algorithm for linear programming.
Combinatorica 4(4), 373-395 (1984)

Khachyan, L.G.: A polynomial algorithm in linear programming. Sov. Math.
Doklady 20(1), 191-194 (1979)

Kozine, I., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput.
8(2), 97-113 (2002)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585-591. Springer, Heidelberg (2011)

Lofberg, J.: Automatic robust convex programming. Optim. Methods Softw. 17(1),
115-129 (2012)

Nilim, A., El Ghaoui, L.: Robust control of Markov decision processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780-798 (2005)

Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973-989 (1987)

Puggelli, A.: Formal techniques for the verification and optimal control of proba-
bilistic systems in the presence of modeling uncertainties. Ph.D. thesis, University
of California, Berkeley (2014)

Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-
time verification of PCTL properties of MDPs with convex uncertainties. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527-542. Springer,
Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-319-30000-9_9

42.

43.

44.

45.

46.

47.

Exploiting Robust Optimization for Interval Probabilistic Bisimulation 71

Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, MIT (1995)

Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence
of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol.
3920, pp. 394-410. Springer, Heidelberg (2006)

Turrini, A., Hermanns, H.: Polynomial time decision algorithms for probabilistic
automata. Inf. Comput. 244, 134-171 (2015)

Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain Markov decision
processes with temporal logic specifications. In: CDC, pp. 3372-3379 (2012)

Wu, D., Koutsoukos, X.D.: Reachability analysis of uncertain systems using
bounded-parameter Markov decision processes. Artif. Intell. 172(8-9), 945-954
(2008)

Yi, W.: Algebraic reasoning for real-time probabilistic processes with uncertain
information. Formal Techniques in Real-Time and Fault-Tolerant Systems. LNCS,
vol. 863, pp. 680—693. Springer, Heidelberg (1994)

Approximation of Probabilistic Reachability
for Chemical Reaction Networks
Using the Linear Noise Approximation

Luca Bortolussi®, Luca Cardelli'?, Marta Kwiatkowska?,
and Luca Laurenti?(®

L Microsoft Research, Cambridge, UK
2 Department of Computer Science, University of Oxford, Oxford, UK
luca.laurenti@cs.ox.ac.uk
3 Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy

Abstract. We study time-bounded probabilistic reachability for Chem-
ical Reaction Networks (CRNs) using the Linear Noise Approximation
(LNA). The LNA approximates the discrete stochastic semantics of a
CRN in terms of a continuous space Gaussian process. We consider reach-
ability regions expressed as intersections of finitely many linear inequal-
ities over the species of a CRN. This restriction allows us to derive an
abstraction of the original Gaussian process as a time-inhomogeneous
discrete-time Markov chain (DTMC), such that the dimensionality of its
state space is independent of the number of species of the CRN, amelio-
rating the state space explosion problem. We formulate an algorithm for
approximate computation of time-bounded reachability probabilities on
the resulting DTMC and show how to extend it to more complex tem-
poral properties. We implement the algorithm and demonstrate on two
case studies that it permits fast and scalable computation of reachability
properties with controlled accuracy.

1 Introduction

It is well known that a biochemical system evolving in a spatially homoge-
neous environment, at constant volume and temperature, can be modelled as a
continuous-time Markov chain (CTMC) [18]. Stochastic modelling is necessary
to describe stochastic fluctuations for low molecular counts [14,16], when deter-
ministic models are not accurate [15]. Computing the probability distributions
of the species over time is achieved by solving the Chemical Master Equation
(CME) [25]. Unfortunately, numerical solution methods based on uniformisation
[4] are often infeasible because of the state space explosion problem. A more scal-
able transient analysis can be achieved by employing statistical model checking
based on the Stochastic Simulation Algorithm (SSA) [17], but to obtain good

This research is supported by a Royal Society Research Professorship and ERC AdG
VERIWARE. LB is supported by EU-FET project QUANTICOL (nr 600708).
© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 72-88, 2016.
DOI: 10.1007/978-3-319-43425-4_5

Approximation of Probabilistic Reachability for Chemical Reaction Networks 73

accuracy large numbers of simulations are needed, which for some systems can
be very time consuming.

A promising approach is to instead approximate the CTMC induced by a bio-
chemical system as a continuous state space stochastic process by means of the
Linear Noise Approzimation (LNA), a Gaussian process derived as an approx-
imation of the CME [25]. Its solution requires solving a number of differential
equations that is quadratic in the number of species and independent of the mole-
cular population. As a consequence, the LNA is generally much more scalable
than a discrete state stochastic representation and has been successfully used
for model checking of large biochemical systems [7,12]. However, none of these
approaches enables the computation of global probabilistic reachability proper-
ties, that is, the probability of reaching a particular region of the state space in a
particular time interval. This property is important not only to analyse biochem-
ical systems, for example to quantify the probability that a particular protein
or gene is ever expressed in Gene Regulatory Networks, but is also fundamen-
tal for the verification of more complex temporal logic properties, since model
checking for CSL [2] or LTL [24] is reduced to the computation of reachability
probabilities.

Contributions. We derive an algorithm to compute a fast and scalable approx-
imation of probabilistic reachability using the LNA, where the target region of
the state space is given by a polytope, i.e. an intersection of a set of linear
inequalities over the species of a CRN. More specifically, we compute the prob-
ability that the system falls in the target region during a specified time interval.
Given a set of k linear inequalities, and relying on the fact that a linear combina-
tion of the components of a Gaussian distribution is still Gaussian, we discretize
time and space for the k-dimensional stochastic process defined by the particular
linear combinations. This permits the derivation of an abstraction in terms of
a time-inhomogeneous discrete-time Markov chain (DTMC), whose dimension
is independent of the number of species, since a linear combination is always
uni-dimensional, and ensures scalability, as in general we are interested in one
or at most two linear inequalities. This abstraction can then be used for model
checking of complex temporal properties [2,4,21]. In order to compute such an
abstraction, the most delicate aspect is to derive equations for the transition
kernel of the resulting DTMC. This is given by the conditional probability at
the next discrete time step given the system in a particular state. Reachability
probabilities are then computed by making the target set absorbing. We use our
algorithm to extend the Stochastic Evolution Logic (SEL) introduced in [12] to
enable model checking of probabilistic reachability of linear combinations of the
species of a CRN. We show the effectiveness of our approach on two case studies,
also in cases where existing numerical model checking techniques are infeasible.

Related Work. Algorithms to compute the reachability probabilities over dis-
crete state space Markov processes are well understood [4]. They require compu-
tation of transient probabilities in a modified Markov chain, where states in the

74 L. Bortolussi et al.

target region are made absorbing. Unfortunately, their practical use is severely
hindered by state space explosion, which in a CRN grows exponentially with the
number of molecules when finite, and may be infinite, in which case finite pro-
jection methods have to be used [23]. As a consequence, approximate but faster
algorithms are appealing, in particular for CRNs, where it is not necessary to pro-
vide certified guarantees on reachability probabilities. The mainstream solution
is to rely on simulations combined with statistical inference to obtain estimates
[9]. These methods, however, are still computationally expensive. A recent trend
of works explored as an alternative whether estimates could be obtained by rely-
ing on approximations of the stochastic process based on mean-field [6] or linear
noise [7,8,12]. However, reachability properties, like those considered here, are
very challenging. In fact, most approaches consider either local properties of
individual molecules [6], or properties obtained by observing the behaviour of
individual molecules and restricting the target region to an absorbing subspace
of the (modified) model [7]. The only approach dealing with more general sub-
sets, [8], imposes restrictions on the behaviour of the mean-field approximation,
whose trajectory has to enter the reachability region in a finite time.

Our approach differs in that it is based on the LNA and considers regions
defined by polytopes, which encompasses most properties of practical interest.
The simplest idea would be to consider the LNA and compute reachability prob-
abilities for this stochastic process, invoking convergence theorems for the LNA
to prove the asymptotic correctness. Unfortunately, there is no straightforward
way to do this, since dealing with a continuous space and continuous time diffu-
sion process, e.g., Gaussian, is computationally hard, and computing reachability
is challenging (see [10]). As a consequence, discrete abstractions are appealing.

2 Background

Chemical Reaction Networks. A chemical reaction network (CRN) C =
(A, R) is a pair of finite sets, where A is a set of chemical species, |A| denotes its
size, and R is a set of reactions. Species in /A interact according to the reactions
in R. A reaction 7 € R is a triple 7 = (r,, py, k+), where r. € N4l is the reac-
tant complex, p, € NI is the product complex and k, € Rs is the coefficient
associated with the rate of the reaction. 7, and p, represent the stoichiometry
of reactants and products. Given a reaction 7, = ([1,1,0]7,[0,0,2]7, k1), where
T is the transpose of a vector, we often refer to it as 71 : A\; + Ao —*1 2)3. The
state change associated to a reaction 7 is defined by v, = p, — . For example,
for 71 as above, we have v,, = [~1,—1,2]7. Assuming well mixed environment,
constant volume V and temperature, a configuration or state x € NIl of the
system is given by a vector of the number of molecules of each species. Given a
configuration = then x(\;) represents the number of molecules of A; in the con-
figuration and % is the concentration of A; in the same configuration, where
N =V - N4 is the volumetric factor or system size, V is the volume and N4
Avogadro’s number. The deterministic semantics approximates the concentra-
tions of species over time as the solution @(¢) of the rate equations [11], a set of
differential equations of the form:

Approximation of Probabilistic Reachability for Chemical Reaction Networks 75

[A]
WO — r@m) = Y v (ke [T 1))

TER

where @7 (t) is the ith component of vector @(t) raised to the power of r; ,,
ith component of vector 7. The initial condition is #(0) = 2. It is known that
Eq. (1) is accurate in the limit of high population [15].

Stochastic Semantics. The propensity rate a.; of a reaction 7 is a function of
the current configuration z of the system such that c,(z)dt is the probability

that a reaction event occurs in the next in@lnitesimal interval dt. We assume mass
-k 12 ris! ylal (x(M)

action kinetics, therefore . (x) o = O
- 1, T

factorial of r; -, and |r;| = ZL/:Hl ri,7 [1]. To simplify the notation, N is considered

embedded inside the coefficient k for any reaction. The stochastic semantics of
the CRN C = (4, R) is represented by a time-homogeneous continuous-time
Markov chain (CTMC) [15] (XN (t),t € R>¢) with state space S, where in X%
we made explicit the dependence by N. XV () is a random vector describing
the molecular population of each species at time ¢. Let zq € N4l be the initial
condition of X then P(XN(0) = x¢) = 1. For € S, we define P(x,t) =
P(XN(t) = 2| XN (0) = x9). The transient evolution of X is described by the
Chemical Master Equation (CME), a set of differential equations

), where 7; ;! is the

% (P(z,t)) = Z{aT(x —v)P(x — vr,t) — ar(z)P(z,t)}. (2)

TER

Solving Eq. (2) requires computing the solution of a differential equation for each
reachable state. The size of the reachable state space depends on the number
of species and molecular populations and can be huge or even infinite. As a
consequence, solving the CME is generally feasible only for CRNs with very few
species and small molecular populations.

Linear Noise Approximation. The Linear Noise Approximation (LNA) is
a continuous state space approximation of the CME, which approximates the
CTMC induced by a CRN as a Gaussian process [25]. In [26], the LNA has been
derived as a linearized solution of the Chemical Langevin Equation (CLE) [19].
This derivation shows that the LNA is accurate if the two leap conditions on
the reactions are satisfied. The leap conditions are satisfied at time ¢ if (i) there
exists an infinitesimal time interval dt such that the propensity rate of each
reaction is approximately constant during dt and if (ii) each reaction fires many
times during dt. It is possible to show that, assuming mass action kinetics, in
the limit of high volume these conditions are always satisfied. The LNA at time
t approximates the distribution of X (¢) with the distribution of the random
vector YV (t) such that

XN(t) = YN(t) = No(t) + N2G(t) (3)

76 L. Bortolussi et al.

where G(t) = (G1(t),Ga(t),...,G|4)) is a random vector, independent of N,
representing the stochastic fluctuations at time ¢ and &(¢) is the solution of
Eq. (1). The probability distribution of G(t) is then given by the solution of a
linear Fokker-Planck equation [26]. As a consequence, for every time instant ¢,
G(t) has a multivariate normal distribution whose expected value E[G(t)] and
covariance matrix C[G(t)] are the solution of the following differential equations:

% = Jr(2(1)E[G(1)] (4)
% = Jp(P(t)C[G(t)] + C[G)] TE(P(t)) + W (D(t)) (5)

where Jr(®(t)) is the Jacobian of F(®(t)), JE(P(t)) its transpose, W (P(t)) =
> cr UrvrLae(P(t)) and F;(P(t)) the jth component of F(®(t)). We assume
XN(0) = z¢ with probability 1; as a consequence E[G(0)] = 0 and C[G(0)] = 0,
which implies E[G(t)] = 0 for every ¢. The following theorem illustrates the
nature of the approximation using the LNA.

Theorem 1. [15] Let C = (A, R) be a CRN and X the discrete state space
Markov process induced by C. Let ®(t) be the solution of rate equations with
initial condition (0) = 3¢ and G be the Gaussian process with expected value

and variance given by Egs. (4) and (5). Then, for any t < co and N — oo,

XN(t)
N

N|=

N

- @(t)‘ = G(1). (6)

In the above, = indicates convergence in distribution [5]. The LNA is exact in
the limit of high populations, but can also be used in different scenarios if the
leap conditions are satisfied [20,26]. To compute the LNA it is necessary to solve
O(|A]?) first order differential equations, and the complexity is independent of
the initial number of molecules of each species. Therefore, one can avoid the
exploration of the state space that methods based on uniformization rely upon.

3 Linear Noise Approximation of Reachability
Probabilities

We are interested in computing the probability that the CTMC induced by a
biochemical network enters a region of the state space at some time instant
between t; and ty. In order to exploit the LNA, we will first discretize time for
the Gaussian process given by the LNA, with a fixed (or adaptive) step size h,
which we can do effectively owing to the Markov property and the knowledge
of its mean and covariance. As a result, we obtain a discrete-time, continuous
space, Markov process with a Gaussian transition kernel. Then, by resorting to
state space discretization, we compute the reachability probability on this new
process, obtaining an approximation converging to the LNA approximation as
h tends to zero.

Approximation of Probabilistic Reachability for Chemical Reaction Networks 7

At first sight, there seems to be little gain, as we now have to deal with
a |A|-dimensional continuous state space. Indeed, for general regions this can
be the case. However, if we restrict to regions defined by linear inequalities,
we can exploit properties of Gaussian distributions (i.e. their closure wrt linear
combinations), reducing the dimension of the continuous space to the number of
different linear combinations used in the definition of the linear inequalities (in
fact, the same hyperplane can be used to fix both an upper and a lower bound).
As typically we are interested in regions defined by one or two inequalities, the
complexity will then be dramatically reduced.

3.1 Reachability Problem: Formal Definition

Recall that, given a CRN C' = (A, R) with initial configuration z, its stochastic
behaviour is described by the CTMC XV. A path of X% is a sequence w =
Tot1x1t129 ... Where x; € N4l is a state and ¢; € R+ is the time spent in the
state x;. A path is finite if there is a state xj that is absorbing. w(t) is the state
of the path at time t. Path(X™,) is the set of all (finite and infinite) paths of
the CTMC starting in xy. We work with the standard probability measure Prob
over paths Path(X",zq) defined using cylinder sets [21].

We now formalize the reachability problem we want to solve. For a simpler
presentation, we restrict to a single linear inequality over the species. This still
covers many practical scenarios, in particular in systems biology. Next, we show
how to generalise the method to regions specified by the intersection of more than
one hyperplane, though the complexity of our method will grow exponentially
with the number of different hyperplanes, unless additional approximations are
introduced.

Definition 1. Let C = (A, R) be a CRN with initial state xg, fiz vector of
weights B € ZMA1, finite set of disjoint intervals T = [l1,u1] U ... U [lg, up], k > 1,
such that, for i € [1,k], [l;,u;] C RU[—o0,+0c0], and an interval [t1,t2] C Rxo.
The reachability probability of B-weighted linear combination of species falling
in the target set I in time interval [ty,ts], for initial condition xg, is

Preach(Ba-TOaI7 [tl,tg]) = Prob{w S Path(XN,xo)\B-w(t) S I,t € [tl,tg]}. (7)

3.2 LNA and Dimensionality Reduction

In order to approximate the reachability probability in Eq. (7), we rely on the
LNA YN (t) of XN (¢) Egs. (4)and (5). By Eq. (3), we have that the distribution
of YN (t) is Gaussian with expected value and covariance matrix given by
E[Y™(t)] = No(t)
CIYN ()] = N*C[G(t)|N? = NC[G(¢)).

Let B € ZI, then Z¥ = B-Y" is a uni-dimensional process and for any ¢ it
represents the time evolution of the linear combination of the species defined by

78 L. Bortolussi et al.

B over time. Furthermore, Z™ (¢) is also Gaussian distributed, being the linear
combination of Gaussian variables. In particular, Z¥ (¢) is characterised by the
following mean and covariance:

E[Z¥(t)] = BE[Y™(t)] (8)
C[z¥(t)] = BOY ™ (1) B" (9)
Note also that the distribution of ZV depends on YV only via its mean and

covariance, which are obtained by solving ODEs (4) and (5). This is the key
feature that enables an effective dimensionality reduction.

3.3 Time Discretization Scheme

We now introduce an exact time discretization scheme for ZV. Fix a small time
step h > 0. By sampling YV at step h and invoking the Markov property,’ we
obtain a discrete-time Markov process (DTMP) YV (k) = Y~ (kh) on continuous
space. Applying the linear projection mapping ZV to YV (k), and leveraging its
Gaussian nature, we obtain a process Z~ (k) = Z~ (kh) which is also a DTMP,
though with a kernel depending on time through the mean and variance of YV,

Definition 2. A (time-inhomogeneous) discrete-time Markov process (DTMP)
(ZN(k),k € N) is uniquely defined by a triple (S,o,T), where (S,0) is a mea-
surable space and T : 0 x S x N — [0,1] is a transition kernel such that, for
any z € S, A€ o and k € N, T(A, z, k) is the probability that ZN(k +1) € A
conditioned on ZN (k) = z. S is the state space of ZN.

In order to characterise Z%, we need to compute its transition kernel. This can
be done by computing fzw (¢4n)z~ (#)=z(2), i-e. the density function of ZN(t+h)
given the event ZV (t) = z.

Consider the joint distribution YV (¢), YN (¢ + h), which is Gaussian. Its
projected counterpart ZN(t), ZN(t + h) is thus also Gaussian, with covari-
ance function cov(ZN(t), ZN(t + h)) = Beov(YN(t),YN(t + h))BT, where
cov(YN (), YN (t+h)) is the covariance function of Y at times ¢ and ¢+ h. It fol-
lows by the linearity of B that fz~)z~ (1)=z is Gaussian too, and to fully char-
acterize it we need to compute E[ZN (t+h)|ZN (t) = z] and C[ZN (t+h)|ZN (t) =
z]. To this end, we need to derive cov(Y™ (¢), YV (t-+h)). From now on, we denote
cov(YN(t+h),YN(t)) = Oy (t +h,t) and cov(ZN(t +h), ZN (t)) = Cz(t + h,t).
Following [15], we introduce the following matrix differential equation

ds2(t, s)
dt

with ¢ > s and initial condition (2(s, s) = Id, where Id is the identity matrix of
dimension |A|. Then, as illustrated in [15], we have

= Jr(2(1))$2(t, 5) (10)

Cy (Lt +h) = / 0t)T (@(5) (20t + 1 5)]Tds. (1)
0

! The Gaussian process obtained by linear noise approximation is Markov, as it is the
solution of a linear Fokker-Planck equation (stochastic differential equation) [25].

Approximation of Probabilistic Reachability for Chemical Reaction Networks 79

This is an integral equation, which has to be computed numerically. To sim-
plify this task, we derive an equivalent representation in terms of differential
equations. This is given by the following lemma.

Lemma 1. Solution of Eq.(11) is given by the solution of the following differ-
ential equations

dCy (t,t+ h)

7 =W (@) QT (t+h,t) + Jp((t))Cy (t, t+h) + Cy (t,t + k) = ((t +h)) (12)

with initial condition Cy (0, h) computed as the solution of
dCy (0, S)
ds

Q(t+h,t) can be computed by solving Eq. (10). Knowledge of Cy (¢, t+ h) allows
us to directly compute Cz(t,t + h) = BCy (t,t + h)BT. Then, by using the law
for conditional expectation of a Gaussian distribution, we finally have

EIZN(t+h)|ZN(t) =2 =
EBIZN(t+ h)]+ C(Z(t+ k), Z1)ClZ1)] " (z — E[ZN (1))

= Cy (0,0 + 8)JE(D(s)).

(13)

CLZN (t+1)|ZN (1) =] = CLZY (t+)] = Catt + WCIZY ()] Caltit +).

(14)
Note that the resulting kernel is time-inhomogeneous. The dependence on t is
via the mean and covariance of Y, which are functions of time and define
completely the distribution of Y.

3.4 Computation of Reachability Probabilities

In order to compute the reachability probability for the DTMP ZN(k), we
discretize its continuous state space, obtaining an abstraction in terms of a
discrete-time Markov chain (DTMC) ZY:P (k) with state space S. That is, the
states of the original Markov process are partitioned into a countable set of non-
overlapping sets. We assume an order relation between elements of each set and,
for each set, we consider a representative point, given by the median of the set. .S
is given by the set of representative points. In particular, we partition the state
space of ZV in intervals of length 2Az, where Az defines how fine our space
discretization is. A possible choice is Az = 0.5, which basically means S C Z.
For Az — 0 the error introduced by the space discretization goes to zero. How-
ever, when the molecular population is of the order of hundreds or thousands, it
can be beneficial to consider Az > 0.5, since a coarser state space aggregation
is reasonable.

Then, we solve the reachability problem on the resulting DTMC. For 2/, 2 €
S, the transition kernel of ZN:P (k) is defined as

2+ Az
T(Z/»'ka):/ A fZN(hk+h)|ZN(hk):z($)dffa (15)

80 L. Bortolussi et al.

where h is the discrete time step, assumed to be fixed for a simpler notation.
Finally, in order to compute the reachability of the target set I we make all the
states z € I absorbing. That is, for z € I

3 /
T(z’,z,k):{l if 2 —
0 otherwise

Algorithm 1 illustrates our approach for computing reachability probabilities. In
Line 1, we initialize the system at time 0. In the context of the algorithm, S is
a set containing the reachable states at a particular time with probability mass
greater than the threshold 7H. 7H equals 10~ !4 in all our experiments. This guar-
antees that the algorithm always terminates in finite time even if the state space
is not finite. Initially, we have that S contains only one state B - xy. Then, in
Lines 3 — 10, we propagate the probability for any discrete step until ¢ < t1, as
illustrated in [21]. For generality, we assume that the time step h is chosen adap-
tively, according to the system dynamics. Propagating probability is possible, as
for any 2’ € S, T(2',z, k), which has a Gaussian nature, defines the probability
of being in 2’ in the next discrete time step by Z™? (k) = z. From Line 12 to 20,
we compute probabilistic reachability Py.cqcn (B, o, I, [t1,t2]) by propagating the
probability only for states that are not in I. When we reach ¢ > to, we have that
Preach(B; o, I, [tl,tg]) ~ Zze[P(ZN’D(t) = Z‘ZN’D(O) =B- .’E()).

Algorithm 1. Compute Time-Bounded Probabilistic Reachability

Require: A CRN C = (4, R) with initial condition o, B € 7 a finite time interval
[t1,t2], a target set I and a threshold 7H.
1: function COMPUTEREACH(C, B, xo, I, [t1,t2], TH)
2 Sett=0,5={B- -z} and P(Z"P(0) = B-z0) =1
3 while t < t; do
4: Compute time step h
5: for each z € S do
6.
7
8

Propagate probability at time ¢ + h and update S
for each z € S do
: if P(ZV'P(t+ h) = 2) < TH then
9: S— S —{z}

10: t—t+h

11: while ¢t < t3 do

12: Compute time step h

13: for each z € S/I do

14: Propagate probability at time ¢ + h and update S
15: for each z € S/I do

16: if P(ZN'P(t+h) =2) < TH then

17: S — S —{z}

18: t—t+h

19: return Preaen (B, zo, I, [t1,t2]) =3 ; P(ZNP(t) = 2)

Approximation of Probabilistic Reachability for Chemical Reaction Networks 81

3.5 Correctness

The method we present is approximate. In particular, errors are introduced in
two ways: by resorting to the LNA and by discretisation of time and space of the
LNA. The quality of these two approximations is controlled by three parameters:
(a) N, the system size, which influences the accuracy of LNA, (b) h, the step
size, and (c) Az, the discretization step, which influences the quality of the
approximation of the reachability probability of the LNA.

Recall that X~ and ZN'P are, respectively, the CTMC induced by a CRN
and the DTMC obtained by discretization of the LNA of X% for a particular
N. Fix B € Z and I, a set of disjoint closed intervals of reals, and denote
by Pxn~ (B, t1,t2) and Pzn.p (B, t1,t2), t1 < ta, the reachability probabilities for
ZN-P and X~. Then, we have the following result

Theorem 2. With the notation above, for t; < to < co:

A}i_l)lloo }ILILI}J AEQOHPXN (B,t1,t2) — Pyn.o (B, t1,t2)|} = 0.

The convergence stated in Theorem 2 means that, since N is fixed for a given
CRN, that even if we have control over h and Az, the quality of the approxima-
tion depends on how well the LNA approximated the CRN. Error bounds would
be a viable companion to estimate the committed error, but we are not aware
of any explicit formulation of them for the convergence of the LNA. However,
experimental results in Sect. 5 show that the error committed is generally limited
also for moderately small N and quite large h.

3.6 Complexity

Complexity of the method depends on the following: (a) the equations we need
to solve, (b) the step size h, and (c) the space discretization step Az. Algorithm 1
requires solving Egs. (5) and (12), that is, a set of differential equations quadratic
in the number of species. In fact, solving these equations requires computing Jp,
Jacobian of F'. However, the number of equations we need to solve is independent
of the number of molecules in the system. This guarantees the scalability of our
approach. An important point is that Eq. (12) requires solving Eq. (11) once for
each sampling point of the numerical solution of Eq.(12). A possible way to
avoid this is to consider approximate solutions of Eq. (11), which are accurate in
the limit of A — 0. However, to keep this approximation under control, i has to
be chosen really small, slowing down the computation. Moreover, for any sample
point, Eq. (11) is solved only for a small time interval (between t and t+ h). As a
consequence, in practice, the computational cost introduced in solving Eq. (11)
is under control.

A smaller value of h implies that, for a given time interval, we have a greater
number of discrete time steps, which can slow down the computation in some
cases. The value of Az determines the number of states of the resulting DTMC.
However, we stress that we discretize ZV (t), a uni-dimensional distribution (or
m-dimensional in the case we have m > 1 linear inequalities). As a consequence,

82 L. Bortolussi et al.

the number of reachable states with probability mass is generally limited and
under control. Obviously, if the number of molecules is large and Az extremely
small, then this is detrimental on performance.

3.7 Extensions

Remark 1. Our approach can be easily extended to target regions defined by
intersections of finitely many linear inequalities over species. That is, we con-
sider a set of linear predicates ZJN = B; - XNt) € I;, j = 1...,m with
m > 1, and ask what is the probability that during a finite time interval we
are in a state where each predicate is verified. In order to do that, we can
define B = (By, ..., B,,)T € Z™*141 a matrix where each row is a vector spec-
ifying a different linear combination. As a consequence, ZV = B - Y is an
m dimensional Gaussian process and all the properties we used for the uni-
dimensional case remain valid in this extended scenario. The resulting DTMC
ZN:D is m—dimensional. However, note that m is generally equal to 1 or 2 in
practical applications (see Remark 2).

Remark 2. The method presented here can be extended to compute the proba-
bility of a non-nested until formula of C'SL [3], that is, a formula of the type

P, [Ut t2lgy),

This formula is satisfied if the probability of a path such that there exists
t € [t1,t2] for which W, is satisfied and, for all ¢’ € [0,¢], ¥; is satisfied meets the
bound p. We restrict ¥, %, to linear inequalities over species. Computing this
probability, as explained in [21], requires computing two terms: (a) the proba-
bility of reaching a state between [0,¢;) such that —¥; is satisfied, and (b) the
probability of reaching a state during [t1, t2] where —W¥; A W5 is satisfied. The for-
mer is simply reachability on —%;. The latter can be computed by considering
reachability over the bi-dimensional system given by the joint distribution of the
linear combinations associated to —¥; and ¥s.

4 Stochastic Evolution Logic (SEL)

The method presented here permits an extension of the Stochastic Evolution
Logic (SEL) introduced in [12] for approximate model checking of CRNs based on
the LNA. Here, we extend the original formulation of the logic with an operator
for computing (time-bounded) probabilistic reachability. However, as explained
in Remark 2, more complex temporal behaviours could be introduced as well.

Let C' = (A, R) be a CRN with initial state x, then SEL enables evaluation
of the probability, reachability, variance and expectation of linear combinations
of populations of the species of C. The syntax of SEL is given by

n:=Pop[B, i, 4] | FeplB 4] | Qno[Bliya] | mAm | mVn

Approximation of Probabilistic Reachability for Chemical Reaction Networks 83

where Q = {supV,infV, supE,infE}, ~= {<,>}, p€[0,1],v € R, B € ZMI,
I=1[l1,u1]U...U[lg,ug),k > 1, such that, for i € [1,k], [l;,u;] CRU[—o00,+x]
is a finite set of disjoint intervals and [t1,¢2] is a closed time interval, with the
constraint that ¢; < ¢3 and ¢;,t3 € R>¢. If t; = t5 the interval reduces to a
singleton.

Formulae n describe global properties of the stochastic evolution of the sys-
tem. (B,I) specifies a linear combination of the species, where B € Z4! is a
vector of weights defining the linear combination and I is a set of disjoint closed
real intervals. P.,[B, 1] [t1,t] 18 the probabilistic operator, which specifies the
average value of the probability that the linear combination defined by B falls
within the range I over the time interval [t1,¢2]. Given Prf;’]; (t) = Prob{w €

Path(XN,z0) | B - w(t) € T}, then, for t; = ta, its semantics is defined as
XN7$0 ’:PNP[B7I][t1,t1] e PT])B’(,]\I](tl) ~ p.
Instead, for t; < to we have

1 b2

t2 - tl t1

N
XNv»TO = P~p[B»I][t1,t2] A Prj)a(,[(t) dt ~ p.

F.,[B, I, 1,1 is the new probabilistic reachability operator, which specifies the
P [t1,t2]

probability that the linear combination of species defined by B reaches I during
[t1,t2]. Its semantics can be defined as

XN, 2o | Fop[B, 1)1, 1) < Prob(w € Path(XN,z0)|B-w(t) € I, € [t1,ta]) ~p

The operators supE,infE, infV,supV, see [12], respectively, yield the supre-
mum and infimum of expected value and variance of the random variables asso-
ciated to B within the specified time interval. The quantitative value associated
to a formula can be computed by writing =7 instead of ~ p or ~ v. For instance,
F_2[B, I, +,) gives the probability value associated to the reachability property.
The following example illustrates that the P and F' operators differ.

Ezample 1. Consider the following CRN, taken from [13], modelling a phospho-
relay network

1 L1+ ATP =% L1ip + ATP; 75 : Llp+ L2 =% L2p + L2;
13 L2p+ L3 ="V L3p+ L2; 714: L3p ="' L3;

with initial conditions z¢(L1) = x0(L2) = z¢(L3) = 50, zo(ATP) = 150 and
all other species equal 0. Then, if we consider Psg.3[L3p, [40, 00]][9,10], Which is
true if the average probability that L3p > 40 is greater that 0.3. Then, this is
evaluated to false. Instead, [0 3[L3p, [40, 00]][0,10], which models the probability
of being in a state where L3p > 40 during the first 10 seconds, is evaluated as
true.

84 L. Bortolussi et al.

5 Experimental Results

We implemented Algorithm 1 in Matlab and evaluated it on two case studies. All
the experiments were run on an Intel Dual Core i7 machine with 8 GB of RAM. The
first case study is a Phospohorelay Network with 7 species. We use this example to
show the trade-off between the different parameters and the molecular population.
More precisely, we show that the accuracy of our approach increases as the number
of molecules grows, but can still give fast and accurate results when the molecu-
lar population is not large. The second example is a Gene Regulatory network. We
use this example to show how our approach is more powerful than existing approx-
imate techniques, and is able to accurately handle properties where existing tech-
niques fail. We validate our results by comparing our method with statistical model
checking (SMC) as implemented in PRISM [22]. In fact, for both examples, exact
numerical computation of the reachability probabilities on the CTMC is infeasible
because of state space explosion.

5.1 Phosphorelay Network

The first case study is a three-layer phosphorelay network as shown in
Example 1. There are 3 layers, (L1, L2, L3), which can be found in phospho-
rylate form (L1p, L2p, L3p), and the ligand B. We consider the initial condition
zo € N7 such that z(L1) = z(L2) = z0(L3) = L € N, x¢(L1p) = zo(L2p) =
20(L3p) = 0 and xo(B) = 150. In Fig. 1, we compare the estimates obtained by
our approach for two different initial conditions (L = 100 and L = 200) with sta-
tistical model checking as implemented in PRISM [22], with 30000 simulations
and confidence interval equal to 0.01. In both experiments we consider Az = 0.5.

i / / ——PRISM —— PRISM
/ — Y 09 —— A

o
&
Fﬂ[BpMEDkD,HmE]

Fig.1. Comparison of the evaluation of Florime[L3p > 80] (Fig.la) and
Fio,rime)[L3p > 180] (Fig.1b) using statistical model checking as implemented in
PRISM and our approach. In Fig.la, we used h = 0.1, Az = 0.5, and L = 100.
In Fig. 1b, we considered h = 0.1, Az = 0.5 and L = 200. (Color figure online)

Approximation of Probabilistic Reachability for Chemical Reaction Networks 85

In Fig. 1a we can see that, if we increase the time interval of interest, the error
tends to increase. This is because, for L = 100, the LNA and CME do not have
perfect convergence. As a consequence, at every step of the discretized DTMC,
a small error is introduced. This source of error is present until we enter the
target region with probability 1. If we increase L this error disappears, and the
inaccuracies are due to the finiteness of h and Az. However, already for h = 0.1
and L = 100, the LNA produces a fast and reasonably accurate approximation.
In the following table we compare our approach and PRISM evaluations for
different values of L and h and Az = 0.5. In order to compare the accuracy
we consider the absolute average error, ||€||1, and the maximum absolute error,
lelloo- lell = 1y Sess [F2 g — FiX,]l and el oo = mazncs {1F,) ~ bl
where Y is the set of discrete times between 0 and 10, and F| [0 n] and FX [0,n] &T€ the

evaluation of the particular reachability formula in the interval [0,7n] according
to the LNA and PRISM.

Property Ex. time |h |L ||lelli | ||€lloo
F—2[L3p > 80](0,7ime], Time € [0,10] |97s 0.1/100|0.0088 | 0.11
F_2[L3p > 180]j0,7ime]» Time € [0,10] | 130s 0.1/200|0.0015 | 0.0217
F_2[L3p > 80](0 ime], Time € [0,10] | 285 0.5 100 0.0381 | 0.24
F_2[L3p > 180]j0,7ime]» Time € [0,10] | 39s 0.5200|0.0289 | 0.14

The results show that the best accuracy is obtained for h = 0.1 and L = 200,
where h = 0.1 induces a finer time discretization, whereas the worst are for
h = 0.5 and L = 100. We comment that the numerical solution of the CME
using PRISM is not feasible for this model, and our method is several orders of
magnitude faster than statistical model checking with PRISM (30000 simulations
for each time point).

5.2 Gene Expression

We consider the following gene expression model, as introduced in [27]:

1 =" mRNA; 75:mRNA "8 mRNA + P;
. mRNA —00029 y7. . p _,0.0001 .

with initial condition zg such that all the species have initial concentrations
equal to 0. We consider the property F_z[> 175](g 1ime], Which quantifies the
probability that the mRN A is produced for at least 175 molecules during the
first Time seconds, for Time € [0,1000]. This is a particularly difficult property
because the trajectory of the mean-field of the model, and so the expected value
of the LNA, does not enter the target region. As a consequence, approximate
approaches introduced in [15] and [8], which are based on the hitting times of
the mean-field model, fail and evaluate the probability as always equal to 0.

86 L. Bortolussi et al.

0.4 T T

L /]
035 - PRISM /'7

025 /1
02f /
Ve

015 /
Z

/
Z
0.05 /

0 100 200 300 400 500 600 700 800 900 1000

Fig. 2. The figure plots F_:[mRNA > 174](0 1ime) for h = 1.85 and Az = 0.5. The
x-axis represents the value of Time and the y-axis the quantitative value of the formula
for that value of Time. (Color figure online)

Conversely, our approach is able to evaluate correctly such a property.
Figure 2 compares the value computed by our approach with statistical model
checking of the same property as implemented in PRISM over 30000 simulations
for each time point and confidence interval 0.01. In Fig.2 we consider h = 1.8
and Az = 0.5 and demonstrate that our approach is able to correctly estimate
such a difficult property. Note that, as the mean-field does not enter the target
region, for each time point the probability to enter the target region depends
on a portion of the tail of the Gaussian given by the LNA. As a consequence,
the accuracy of our results strictly depends on how well the LNA approximates
the original CTMC, much more than for properties where the mean-field enters
the target region. In the following table, we evaluate our results for two different
values of h and Az = 0.5.

Property Ex. time | h llellr | €l]oo
F_o[mRNA > 174] 0 1imey, Time € [0,100]| 2085 | 1.85 | 0.0075 | 0.022
F_o[mRNA > 174) 0 1ime), Time € [0,100] | 152s |5 | 0.0147 | 0.13

6 Conclusion

We presented a method for computing (time-bounded) probabilistic reachability
for CRNs based on the LNA, which is challenging because the LNA yields a con-
tinuous time and uncountable state space stochastic process. As a consequence,
existing methods that rely on finite state spaces cannot be used directly and
discretizing the uncountable state space defined by the LNA will lead to state
space explosion. In order to overcome these issues, we considered reachability
regions defined as polytopes. Using the fact that the LNA is a solution of a lin-
ear Fokker-Planck equation, and so a Gaussian Markov process, for a given linear

Approximation of Probabilistic Reachability for Chemical Reaction Networks 87

combination of the species of a CRN, we are able to project the original, multi-
dimensional Gaussian process onto a uni-dimensional stochastic process. We then
derived an abstraction in terms of a time-inhomogeneous DTMC, whose state
space is independent of the number of the species of a CRN, as it is derived by
discretizing linear combinations of the species. This ensures scalability. Finally,
we used our approach to extend the Stochastic Evolution Logic in order to verify
complex temporal properties. On two case studies, we showed that our approach
permits fast and scalable probabilistic analysis of CRNs. The accuracy depends
on parameters controlling space and time discretization, as well as the accuracy
of the LNA.

References

1. Anderson, D.F., Kurtz, T.G.: Continuous time Markov chain models for chemical
reaction networks. In: Koeppl, H., Setti, G., di Bernardo, M., Densmore, D. (eds.)
Design and Analysis of Biomolecular Circuits, pp. 3-42. Springer, New York (2011)

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269—
276. Springer, Heidelberg (1996)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time
Markov chains. ACM Trans. Comput. Logic (TOCL) 1(1), 162-170 (2000)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms

for continuous-time markov chains. IEEE Trans. Software Eng. 29(6), 524-541

(2003)

Billingsley, P.: Convergence of probability measures. Wiley, Hoboken (1999)

6. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333-347. Springer, Heidelberg (2012)

7. Bortolussi, L., Lanciani, R.: Model checking Markov population models by central
limit approximation. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 123-138. Springer, Heidelberg (2013)

8. Bortolussi, L., Lanciani, R.: Stochastic approximation of global reachability prob-
abilities of Markov population models. In: Horvath, A., Wolter, K. (eds.) EPEW
2014. LNCS, vol. 8721, pp. 224-239. Springer, Heidelberg (2014)

9. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Information and Computation (2016)

10. Bujorianu, L.M.: Stochastic Reachability Analysis of Hybrid Systems. Springer,
London (2012)

11. Cardelli, L.: On process rate semantics. Theoret. Comput. Sci. 391(3), 190-215
(2008)

12. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reac-
tion networks using linear noise approximation. In: Roux, O., Bourdon, J. (eds.)
CMSB 2015. LNCS, vol. 9308, pp. 64-76. Springer, Heidelberg (2015)

13. Csikdsz-Nagy, A., Cardelli, L., Soyer, O.S.: Response dynamics of phosphorelays
suggest their potential utility in cell signalling. J. R. Soc. Interface 8(57), 480-488
(2011)

14. Eldar, A., Elowitz, M.B.: Functional roles for noise in genetic circuits. Nature
467(7312), 167-173 (2010)

15. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence,
vol. 282. Wiley, New York (2009)

o

88

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

L. Bortolussi et al.

Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297(5584),
1129-1131 (2002)

Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340-2361 (1977)

Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A
Stat. Mech. Appl. 188(1), 404-425 (1992)

Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113(1), 297-306
(2000)

Grima, R.: Linear-noise approximation and the chemical master equation agree
up to second-order moments for a class of chemical systems. Phys. Rev. E 92(4),
042-124 (2015)

Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SEM 2007. LNCS, vol. 4486, pp. 220-270. Springer,
Heidelberg (2007)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585-591. Springer, Heidelberg (2011)

Munsky, B., Khammash, M.: The finite state projection algorithm for the solution
of the chemical master equation. J. Chem. Phys. 124(4), 044-104 (2006)

Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science 1977, pp. 46-57. IEEE (1977)

Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier,
Amsterdam (1992)

Wallace, E., Gillespie, D., Sanft, K., Petzold, L.: Linear noise approximation is
valid over limited times for any chemical system that is sufficiently large. IET
Syst. Biol. 6(4), 102-115 (2012)

Wolf, V., Goel, R., Mateescu, M., Henzinger, T.A.: Solving the chemical master
equation using sliding windows. BMC Syst. Biol. 4(1), 1 (2010)

Polynomial Analysis Algorithms for Free Choice
Probabilistic Workflow Nets

Javier Esparza!, Philipp Hoffmann!®), and Ratul Saha?

! Technische Universitit Miinchen, Munich, Germany
esparza@in.tum.de, ph.hoffmann@tum.de
2 National University of Singapore, Singapore, Singapore
ratul@comp.nus.edu.sg

Abstract. We study Probabilistic Workflow Nets (PWNs), a model
extending van der Aalst’s workflow nets with probabilities. We give a
semantics for PWNs in terms of Markov Decision Processes and intro-
duce a reward model. Using a result by Varacca and Nielsen, we show
that the expected reward of a complete execution of the PWN is inde-
pendent of the scheduler. Extending previous work on reduction of non-
probabilistic workflow nets, we present reduction rules that preserve the
expected reward. The rules lead to a polynomial-time algorithm in the
size of the PWN (not of the Markov decision process) for the computation
of the expected reward. In contrast, since the Markov decision process
of PWN can be exponentially larger than the PWN itself, all algorithms
based on constructing the Markov decision process require exponential
time. We report on a sample implementation and its performance on a
collection of benchmarks.

1 Introduction

Workflow Petri Nets are a class of Petri nets for the representation and analysis
of business processes [1,2,5]. They are a popular formal back-end for different
notations like BPMN (Business Process Modeling Notation), EPC (Event-driven
Process Chain), or UML Activity Diagrams.

There is recent interest in extending these notations, in particular BPMN,
with the concept of cost (see e.g. [16,18,19]). The final goal is the development
of tool support for computing the worst-case or the average cost of a busi-
ness process. A sound foundation for the latter requires to extend Petri nets
with probabilities and rewards. Since Petri nets can express complex interplay
between nondeterminism and concurrency, the extension is a nontrivial semantic
problem which has been studied in detail (see e.g. [3,4,7,21]).

Fortunately, giving a semantics to probabilistic Petri nets is much simpler
for confusion-free Petri nets [3,21], a class that already captures many control-
flow constructs of BPMN. In particular, confusion-free Petri nets strictly con-
tain Workflow Graphs, also called free-choice Workflow Nets [1,9,12,13]. In this

This work was funded by the DFG Project “Negotiations: A Model for Tractable
Concurrency”.
© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 89-104, 2016.
DOI: 10.1007/978-3-319-43425-4_6

90 J. Esparza et al.

paper we study free choice Workflow Nets extended with rewards and probabil-
ities. Rewards are modeled as real numbers attached to the transitions of the
workflow, while, intuitively, probabilities are attached to transitions modeling
nondeterministic choices. Our main result is the first polynomial algorithm for
computing the expected reward of a workflow.

In order to define expected rewards, we give untimed, probabilistic confusion-
free nets a semantics in terms of Markov Decision Processes (MDP), with rewards
captured by a reward function. In a nutshell, at each reachable marking the
enabled transitions are partitioned into clusters. All transitions of a cluster are
in conflict, while transitions of different clusters are concurrent. In the MDP
semantics, a scheduler selects one of the clusters, while the transition inside this
cluster is chosen probabilistically.

In our first contribution, we prove that the expected reward of a confusion-
free workflow net is independent of the scheduler resolving the nondetermin-
istic choices, and so we can properly speak of the expected reward of a free-
choice workflow. The proof relies on a result by Varacca and Nielsen [20] on
Mazurkiewicz equivalent schedulers.

Since MDP semantics of concurrent systems captures all possible interleav-
ings of transitions, the MDP of a free-choice workflow can grow exponentially in
the size of the net, and so MDP-based algorithms for the expected reward have
exponential runtime. In our second contribution we provide a polynomial-time
reduction algorithm consisting of the repeated application of a set of reduction
rules that simplify the workflow while preserving its expected reward. Our rules
are an extension to the probabilistic case of a set of rules for free-choice Colored
Workflow Nets recently presented in [9]. The rules allow one to merge two alter-
native tasks, summarize or shortcut two consecutive tasks by one, and replace a
loop with a probabilistic guard and an exit by a single task. We prove that the
rules preserve the expected reward. The proof makes crucial use of the fact that
the expected reward is independent of the scheduler.

Finally, as a third contribution we report on a prototype implementation,
and on experimental results on a benchmark suite of nearly 1500 free-choice
workflows derived from industrial business processes. We compare our algorithm
with the different algorithms based on the construction of the MDP implemented
in PrISM [15].

Due to space limitations, the proofs have been deferred to the extended
version [10].

2 Workflow Nets

We recall the definition of a workflow net, and the properties of soundness and
1-safeness.

Definition 1 (Workflow Net [1]). A workflow net is a tuple W = (P, T,
F,i,0) where P is a finite set of places, T is a finite set of transitions (PNT = 0),
F C(PxT)U(T x P) is a set of arcs, i,0 € P are distinguished initial and

Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets 91

final places such that i has no incoming arcs and o has no outgoing arcsand the
graph (PUT, F U (0,1)) is strongly connected.

We write *p and p® to denote the input and output transitions of a place
p, respectively, and similarly °t and ¢® for the input and output places of a
transition ¢t. A marking M is a function from P to the natural numbers that
assigns a number of tokens to each place. A transition t is enabled at M if all
places of °t contain at least one token in M. An enabled transition may fire,
removing a token from each place of *¢ and adding one token to each place of

t*. We write M - M’ to denote that ¢ is enabled at M and its firing leads to
M’. The initial marking (final marking) of a workflow net, denoted by ¢ (o),
puts one token on place i (on place o), and no tokens elsewhere. A sequence of
transitions o = ¢y t9 - - - t,, 1S an occurrence sequence or firing sequence if there are
markings My, Mo, ..., M, such that 2 b, My M, 4 In, M,,. Finyy is the set
of all firing sequences of W that end in the final marking. A marking is reachable
if some occurrence sequence ends in that marking.

©

Fig. 1. Three workflow nets

Definition 2 (Soundness and 1-safeness [1]). A workflow net is sound if the
final marking is reachable from any reachable marking, and for every transition t
there is a reachable marking that enables t. A workflow net is 1-safe if M (p) < 1
for every reachable marking M and for every place p.

Figure 1 shows three sound and 1-safe workflow nets. In this paper we only
consider 1-safe workflow nets, and identify a marking with the set of places
that are marked. Markings which only mark a single place are written without
brackets and in bold, like the initial marking ¢. In general, deciding if a workflow
net is sound and 1-safe is a PSPACE-complete problem. However, for the class of

92 J. Esparza et al.

free-choice workflow nets, introduced below, and for which we obtain our main
result, there exists a polynomial algorithm [6].

2.1 Confusion-Free and Free-Choice Workflow Nets
We recall the notions of independent transitions and transitions in conflict.

Definition 3 (Independent Transitions, Conflict). Two transitions t1,ts of
a workflow net are independent if *t; N *ty = (). Two transitions are in conflict
at a marking M if M enables both of them and they are not independent. The
set of transitions in conflict with a transition t at a marking M is called the
conflict set of t at M.

In Fig. 1 transitions to and t4 of the left workflow are independent, while ¢,
and t3 are in conflict. The conflict set of to at the marking {p1,p2} is {t2, 3},
but at the marking {p1,p4} it is {t2}.

It is easy to see that in a 1-safe workflow net two transitions enabled at a
marking are either independent or in conflict. Assume that a 1-safe workflow net
satisfies that for every reachable marking M, the conflict relation at M is an
equivalence relation. Then, at every reachable marking M we can partition the
set of enabled transitions into equivalence classes, where transitions in the same
class are in conflict and transitions of different classes are independent. Such
nets have a simple stochastic semantics: at each reachable marking an equiv-
alence class is selected nondeterministically, and then a transition of the class
is selected stochastically with probability proportional to a weight attached to
the transition. However, not every workflow satisfies this property. For example,
the workflow on the left of Figure 1 does not: at the reachable marking marking
{p1,p2} transition t3 is in conflict with both ¢5 and ¢4, but t2 and t4 are indepen-
dent. Confusion-free nets, whose probabilistic semantics is studied in [20], are a
class of nets in which this kind of situation cannot occur.

Definition 4 (Confusion-Free Workflow Nets). A marking M of a work-
flow net is confused if there are two independent transitions t1,ts enabled at M
such that M 25 M’ and the conflict sets of to at M and at M' are different.
A 1-safe workflow net is confusion-free if no reachable marking is confused.

The workflows in the middle and on the right of Fig.1 are confusion-free.

Lemma 1 [20]. Let W be a 1-safe, confusion-free workflow net. For every reach-
able marking of W the conflict relation on the transitions enabled at M is an
equivalence relation.

Unfortunately, deciding if a 1-safe workflow net is confusion-free is a
PSPACE-complete problem (this can be proved by an easy reduction from the
reachability problem for 1-safe Petri nets, see [8] for similar proofs). Free-choice
workflow nets are a syntactically defined class of confusion-free workflow nets.

Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets 93

Definition 5 (Free-Choice Workflow Nets [1,6]). A workflow net is free-
choice if for every two places p1,po either p} Nps =0 or p = ps.

The workflow in the middle of Fig.1 is not free-choice, e.g. because of the
places p3 and py, but the one on the right is.

It is easy to see that free-choice workflow nets are confusion-free, but even more:
in free-choice workflow nets, the conflict set of a transition ¢ is the same at all reach-
able markings that enable ¢. To formulate this, we use the notion of a cluster.

Definition 6 (Transition Clusters). Let W = (P, T, F,i,0) be a free-choice
workflow net. The cluster of t € T is the set of transitions [t] = {t' € T |
N .tl ;é @}1

By the free-choice property, if a marking enables a transition of a cluster,
then it enables all of them. We say that the marking enables the cluster; we also
say that a cluster fires if one of its transitions fires.

Proposition 1.

— Let t be a transition of a free-choice workflow net. For every marking that
enables t, the conflict set of t at M is the cluster [t].
— Free-choice workflow nets are confusion-free.

3 Probabilistic Workflow Nets

We introduce Probabilistic Workflow Nets, and give them a semantics in terms
of Markov Decision Processes. We first recall some basic definitions.

3.1 Markov Decision Processes

For a finite set @, let dist(Q) denote the set of probability distributions over Q.

Definition 7 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = (Q, qo, Steps_) where Q is a finite set of states, qo € Q is
the initial state, and Steps: Q — 2951Q) s the probability transition function.

For a state ¢, a probabilistic transition corresponds to first nondeterminis-
tically choosing a probability distribution p € Steps(q) and then choosing the
successor state ¢ probabilistically according to p.

A path is a finite or infinite non-empty sequence ™ = gy —> q1 = ¢o. ..
where p; € Steps(g;) for every i > 0. We denote by 7(¢) the i-th state along 7
(i.e., the state ¢;), and by 7 the prefix of m ending at 7 (i) (if it exists). For a
finite path 7, we denote by last(m) the last state of m. A scheduler is a function
that maps every finite path 7 of M to a distribution of Steps(last(r)).

For a given scheduler S, let Paths® denote all infinite paths m = gy =%
g1 25 gy ... starting in so and satisfying p; = S(n?) for every i > 0. We define a
probability measure Prob® on Paths® in the usual way using cylinder sets [14].

We introduce the notion of rewards for an MDP.

! In [6] clusters are defined in a slightly different way.

94 J. Esparza et al.

Definition 8 (Reward). A reward function for an MDP is a function
rew: S — Rxg. For a path m and a set of states F', the reward R(F,m) until
F is reached and the expected reward E°(F) to reach F are defined as
min{j|r(5)EF}
R(F,7) := Z rew(m(1)) E3(F) :z/ R(F, 7)dProb®
=0 mE PathsS

where R(F,m) is 0o if the minimum does not exist.

3.2 Syntax and Semantics of Probabilistic Workflow Nets

We introduce Probabilistic Workflow Nets with Rewards, just called Probabilis-
tic Workflow Nets or PWNs in the rest of the paper.

Definition 9 (Probabilistic Workflow Net with Rewards). A Probabilis-
tic Workflow Net with Rewards(PWN) is a tuple (P, T, F,i,0,w,r) where (P, T,
F,i,0) is a 1-safe confusion-free workflow net, and w,r: T — R* are a weight
function and a reward function, respectively.

({p2,p3},t2)

({p2,ps}:ta)
({P2=§03},°\pi<ps? !
ts

/T
xe

({pa,p5},ta) ({pa,ps},ta)

O
.;@
&
.

D= [N
o
bb
o
-
— Wl vl
Q
~
3
Wl ol

E
-
AN

(a) PN with weights (b) MDP for the example

Fig. 2. Running example

Figure 2a shows a free-choice PWN. All transitions have reward 1, and so
only the weights are represented. Unlabeled transitions have weight 1.

The semantics of a PWN is an MDP with a reward function. Intuitively, the
states of the MDP are pairs (M, t), where M is a marking, and ¢ is the transition
that was fired to reach M (since the same marking can be reached by firing differ-
ent transitions, the MDP can have states (M, t1), (M,t2) for t; # t3). Addition-
ally there is a distinguished initial and final states I, O. The transition relation
Steps is independent of the transition ¢, i.e., Steps((M,t1)) = Steps((M, t3)) for
any two transitions t1,ts, and the reward of a state (M,t) is the reward of the
transition t. Figure 2b shows the MDP of the PWN of Fig. 2a, representing only
the states reachable from the initial state.

Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets 95

Definition 10 (Probability Distribution). Let W = (P, T, F,i,0,w,r) be a
PWN, let M be a 1-safe marking of W enabling at least one transition, and
let C' be a conflict set enabled at M. The probability distribution Pys ¢ over
T is obtained by normalizing the weights of the transitions in C, and assigning
probability O to all other transitions.

Definition 11 (MDP and Reward Function of a PWN). Let W = (P, T, F
yi,0,w,r) be a PWN. The MDP My, = (Q, qo, Steps) of W is defined as follows:

- Q=WMxT)U{I,O} where M are the 1-safe markings of W, and qo = I.
— For every transition t:

o Steps((0,t)) contains exactly one distribution, which assigns probability 1
to state o, and probability 0 to all other states.

e For every marking M # o enabling no transitions, Steps((M,t)) con-
tains exactly one distribution, which assigns probability 1 to (M,t), and
probability O to all other states.

e For every marking M enabling at least one transition, Steps((M,t)) con-
tains a distribution pc for each conflict set C of transitions enabled at M.
The distribution pc is defined as follows. For the states I,0: pc(I) =

0 = pc(O). For each state (M’ t') such that t' € C and M LNV
pe((M',¢) = Py o(t'). For all other states (M',t'): pc((M',t')) = 0.
o Steps(I) = Steps((i,t)) for any transition t.
o Steps(O) = Steps((o,t)) for any transition t.

The reward function rewyy of W is defined by: rewyw(I) = 0 = rewy(0), and
reww ((M,t)) = r(t).

In Fig. 2a, Steps(i) is a singleton set that contains the probability distribution
which assigns probability % to the state (p., 1) and probability % to the state
({p2,p3},t2). Steps(({p2,ps},t2)) contains two probability distributions, that

assign probability 1 to ({ps,ps},ts) and ({p2, e}, t4), respectively.
We define a correspondence between firing sequences and MDP paths.

Definition 12. Let W be a PWN, and let My, be its associated MDP. Let
o = tite ...ty be a firing sequence of W. The path II(c) of Myy corresponding
to o ismy = I £ (M, t1) , (Ms,ts) 22, .., where My = ¢ and for every
1< k:

— My, is the marking reached by firing t1 ...tx from i, and
— [1s the unique distribution of Steps(My—1,t,—1) such that u(ty) > 0.

Let m = I 2% (My,ty) - (M, t,) be a path of Myy. The sequence X(w) corre-
sponding to m is o =t1...t,.

It follows immediately from the definition of My that the functions I and
X are inverses of each other. For a path 7 of the MDP that ends in state last(7),
the distributions in Steps(last(r)) are obtained from the conflict sets enabled

96 J. Esparza et al.

after X() has fired, if any. If no conflict set is enabled the choice is always trivial
by construction. Therefore, a scheduler of the MDP My can be equivalently
defined as a function that assigns to each firing sequence ¢ € T* one of the
conflict sets enabled after o has fired. In our example, after ¢ fires, the conflict
sets {t3} and {t4} are concurrently enabled. A scheduler chooses either {t3} or
{t4}. A possible scheduler always chooses {t3} every time the marking {ps,p3}
is reached, and produces sequences in which ¢3 always occurs before ¢4, while
others may behave differently.

Convention: In the rest of the paper we define schedulers as functions from
firing sequences to conflict sets.

In particular, this definition allows us to define the probabilistic language
of a scheduler as the function that assigns to each finite firing sequence o the
probability of the cylinder of all paths that “follow” o. Formally:

Definition 13 (Probabilistic Language of a Scheduler [20]). The prob-
abilistic language vs of a scheduler S is the function vs: T* — RT defined
by vs(0) = Prob®(cyl®(I1(0))). A transition sequence o is produced by S if
Vg (O‘) > 0.

The reward function extends to transition sequences in the natural way by
taking the sum of all rewards. In pictures, we label transitions with pairs (w, ¢),
where w is a weight and ¢ a reward. See for example Fig. 3a.

We now introduce the expected reward of a PWN under a scheduler.

Definition 14 (Expected Reward of a PWN Under a Scheduler). Let
W be a PWN, and let S be a scheduler of its MDP M. The expected reward
V(W) of W under S is the expected reward E°(O) to reach the final state O
Of MW .

Given a firing sequence o, we have r(o) = R(O,II(c)) by the definition of
the reward function and the fact that O can only occur at the very end of 7,.

Lemma 2. Let W be a sound PWN, and let S be a scheduler. Then VS (W) is
finite and VS(W) = 3 o1y R(O,7) - Prob™(cyl®(m)) = Y e pimy, 7(0) - v5(0),
where Ilo are the paths of the MDP My leading from the initial state I to the
state O (without looping in O).

3.3 Expected Reward of a PWN

Using a result by Varacca and Nielsen [20], we prove that the expected reward of
a PWN is the same for all schedulers, which allows us to speak of “the” expected
reward of a PWN. We first define partial schedulers.

Definition 15 (Partial Schedulers). A partial scheduler of length n is the
restriction of a scheduler to firing sequences of length less than n. Given two
partial schedulers S1,Ss of lengths ns,,ng,, we say that Sy extends Sy if ng, >

Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets 97

ng, and Sa is the restriction of Si to firing sequences of length less than ng,.
The probabilistic language vs of a partial scheduler S of length n is the function
vg: TS" — R defined by vs(o) = Prob® (eyl®(I1(0))). A transition sequence o
is produced by S if vs(o) > 0.

Observe that if o is not a firing sequence, then vg(o) = 0 for every scheduler
S. In our running example there are exactly two partial schedulers S,Sy of
length 2; after to they choose t3 or t4, respectively: Si: e — {t;,ta} ¢ —
{ts} ta — {tz} and Sa: e — {t1,t2} t1 — {t¢} t2 — {ts}. We have
vs, (tats) = 3/5, and vg, (tats) = 0.

For finite transition sequences, Mazurkiewicz equivalence, denoted by =, is
the smallest congruence such that ot1ta0’ = otot 0’ for every o,0’ € T* and for
any two independent transitions t1,ts [17]. We extend Mazurkiewicz equivalence
to partial schedulers.

Definition 16 (Mazurkiewicz Equivalence of Partial Schedulers). Given
a partial scheduler S of length n, we denote by Fg the set of firing sequences o
of W produced by S such that either |o| = n or o leads to a marking that enables
no transitions.

Two partial schedulers S1,S2 with probabilistic languages vs, and vs, are
Mazurkiewicz equivalent, denoted S1 = Ss, if they have the same length and
there is a bijection ¢: Fs, — Fs, such that o = ¢(0) and vs, (o) = vs,(¢(0))
for every o € F,.

The two partial schedulers of our running example are not Mazurkiewicz
equivalent. Indeed, we have Fg, = {tits,t2t3} and Fs, = {tits,t2ts4}, and no
bijection satisfies o = ¢(o) for every o € Fg,. We can now present the main
result of [20], in our terminology and for PWNs.2

Theorem 1 (Equivalent Extension of Schedulers [20]%). Let Si, Sy be
two partial schedulers. There exist two partial schedulers S1, Sb such that S}
extends Sy, S extends Sy and S = S.

In our example, S; can be extended to S; by adding t1t¢ — 0 and tot3 — ty4,
and Ss to S} by adding t1tg — () and toty — t5. Now we have Fg = {t1ts, tatsts}
and Fg; = {t1ts, tatsts}. The obvious bijection shows S| = S5, because we have
t2t3t4 = t2t4t3 and 1/51 (t2t3t4) = 3/5 = Vs, (t2t4t3).

Using Theorem 1, we are able to prove one of our central theorems.

Theorem 2. Let W be a PWN. There exists a value v such that for every
scheduler S of Myy, the expected reward V(W) is equal to v.

2 In [20], enabled conflict sets are called actions, and markings are called cases.

3 Stated as Theorem 2, the original paper gives this theorem with S and S5 being
(non-partial) schedulers. However, in the paper equivalence is only defined for partial
schedulers and the schedulers constructed in the proof are also partial.

98 J. Esparza et al.

Proof Sketch. Given two schedulers, we construct a bijection between the transi-
tion sequences they produce that end in the final marking. This bijection maps
each transition sequence to a Mazurkiewicz equivalent one. To do this, for each
k > 0 we reduce the schedulers to partial schedulers of length k, extend them to
equivalent schedulers using Theorem 1, and map every sequence of length k one
of them produces to a Mazurkiewicz equivalent one of the other. Since equivalent
transition sequences have the same reward, applying Lemma 2 yields that the
values of the two schedulers are equal.

Free-choice PWNs. By Proposition 1, in free-choice PWNs the conflict set of a
given transition is its cluster, and so its probability is the same at any reachable
marking enabling it. We label a transition directly with this probability.

Convention: We assume that the weights of the transitions of a cluste are
normalized, i.e. the weights are already a probability distribution.

In the next section we present a reduction algorithm that decides if a given
free-choice PWN is sound or not, and if sound computes its expected reward. If
the PWN is unsound, then we just apply the following lemma:

Lemma 3. The expected reward of an unsound free-choice PWN is infinite.

4 Reduction Rules

We transform the reduction rules of [9] for non-probabilistic (colored) workflow
nets into rules for probabilistic workflow nets.

Definition 17 (Rules, Correctness, and Completeness). A rule R is a
binary relation on the set of PWNs. We write Wy 2w, for Wi, Ws) € R.

A rule R is correct if W, x, Wy implies that W1 and Ws are either both
sound or both unsound, and have the same expected reward.
A set R of rules is complete for a class of PWNs if for every sound PWN

W in that class there exists a sequence VW EizN Wy --- L W such that W' is a
PWN consisting of a single transition t between the two only places i and o.

As in [9], we describe rules as pairs of a guard and an action. Wy L ow,
holds if W satisfies the guard, and W is a possible result of applying the action
to Wl.

Merge Rule. The merge rule merges two transitions with the same input and
output places into one single transition. The weight of the new transition is the
sum of the old weights, and the reward is the weighted average of the reward of
the two merged transitions.

Guard: W contains two transitions t; # t2 such that *¢; = ®¢5 and ¢ = t3.

1) T := (T \ {t1,t2}) U {tw.}, where t,, is a fresh name.
2) tr =1} and °t,, := *t;.

3) r(tm) == w(tr) - r(t1) + w(ta) - r(t2).

4) w(ty,) = w(t;) +w(ta).

Action:

P

Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets 99

Iteration Rule. Loosely speaking, the iteration rule removes arbitrary iterations
of a transition by adjusting the weights of the possible successor transitions.
The probabilities are normalized again and the reward of each successor transi-
tion increases by a geometric series dependent on the reward and weight of the
removed transition.

Guard:)W contains a cluster ¢ with a transition ¢ € ¢ such that t* = °¢.

Action: (1) T := (T'\ {t}).
(2) Forall ¢ € ¢\ {t}: r(t') := 2B r(t) + r(t')

1—w(t)

(3) For all ¢’ € ¢\ {t}: w(t') := w(t’)

1—w(t)

Observe that % r(t) =1 —w®) > ow(t) - i-r(t) captures the fact
that ¢ can be executed arbitrarily often, each execution yields the reward r(¢),
and eventually some other transition occurs. For an example of an application
of the iteration rule, consult Fig. 3b and c. Transition t9 has been removed and

as a result the label of transition ¢7 changed.

Shortcut rule. The shortcut rule merges transitions of two clusters into one single
transition with the same effect. The reward of the new transition is the sum of
the rewards of the old transitions, and its weight the product of the old weights.

A transition ¢ unconditionally enables a cluster c if *t’ C t* for some transition
t’ € c. Observe that if ¢ unconditionally enables ¢ then any marking reached by
firing ¢ enables every transition in c.

Guard: W contains a transition ¢ and a cluster ¢ # [t] such that ¢
unconditionally enables c.

1) T:=(T\ {t}) U{t, | t' € c}, where t/ are fresh names.
2) For all t' € ¢: *t, :=*t and ¢.* := (¢* \ *t') U".

3) For all t' € c: r(t)) := r(t) + r(t').

4) For all ¢’ € ¢: w(t)) = w(t) - w(t').

(5) If *p = () for all p € ¢, then remove ¢ from W.

Action:

Py

For an example shortcut rule application, compare the example of Fig.2a
with the net in Fig.3a. The transition ¢; which unconditionally enabled the
cluster [tg] has been shortcut, a new transition tg has been created, and ¢1, py
and tg have been removed.

Theorem 3. The merge, shortcut and iteration rules are correct for PWNs.

Proof. That the rules preserve soundness is shown in [9]. To show that the rules
preserve the expected reward we use Theorem 2: For each rule, we carefully
choose schedulers for the PWNs before and after the application of the rule, and
show that their expected rewards are equal. We sketch the idea for the shortcut

rule. Let Wi, W5 be such that W, Shorteut, Ws. Let ¢, t be as in Definition 4.
Let S be a scheduler for W; such that S1(o1) = ¢ if 01 ends with ¢. We define
a bijection ¢ that maps firing sequences in Ws to firing sequences in W; by
replacing every occurrence of t. by tt'. We define a scheduler Sy for Wy by
Sa(02) = S1(¢(02)). Let now o2 be a firing sequence in Ws and let o1 = ¢(02).

100 J. Esparza et al.

We prove that o7 and o9 have the same reward and also vg, (01) = vg,(02).
Indeed, since the only difference is that every occurrence of ¢/ is replaced by
tt' and r(ty) = r(t) + r(t') and w(t,) = w(t)w(t’) by the definition of the
shortcut rule, the reward must be equal and vg, (01) = vg,(02). We now use
these equalities, the fact that there is a bijection between firing sequences that
end with the final marking, and Lemma 2:

Ve = Y- rloe) vsy(0) = Y r(d(o2)) s, (d(on))

o2€ Finyy, o2€ Finyy,

= > rlon) v (o) =V(W). O

o1 EFinWl

In [9] we provide a reduction algorithm for non-probabilistic free-choice work-
flow, and prove the following result.

Theorem 4 (Completeness [9]). The reduction algorithm summarizes every
sound free choice workflow net in at most O(|C|*-|T|) applications of the shortcut
rule and O(|C|* + |C|%-|T|) applications of the merge and iteration rules, where
C is the set of clusters of the net. Any unsound free-choice workflow nets can be
recognized as unsound in the same number of rule applications.

We illustrate a complete reduction by reducing the example of Fig. 2a. We
set the reward for each transition to 1, so the expected reward of the net is the
expected number of transition firings until the final marking is reached. Initially,
t; unconditionally enables [tg] and we apply the shortcut rule. Since [tg] = {t6},
exactly one new transition tg is created. Furthermore ¢1, p; and tg are removed
(Fig. 3a). Now, t5 unconditionally enables [t3] and [t4]. We apply the shortcut
rule twice and call the result tg (Fig. 3b). Transition tg now satisfies the guard of
the iteration rule and can be removed, changing the label of ¢7 (Fig.3c). Since
to unconditionally enables [t3] and [t4], we apply the shortcut rule twice and
call the result t19 (Fig.3d). After short-cutting ¢;0, we apply the merge rule
to the two remaining transitions, which yields a net with one single transition
labeled by (1,5) (Fig. 3e). So the net terminates with probability 1 after firing 5
transitions in average.

Fizing a Scheduler. Since the expected reward of a PWN W is independent of the
scheduler, we can fix a scheduler S and compute the expected reward VS (W).
This requires to compute only the Markov chain induced by S, which can be
much smaller than the MDP. However, it is easy to see that this idea does not
lead to a polynomial algorithm. Consider the free-choice PWN of Fig. 4, and the
scheduler that always chooses the largest enabled cluster according to the order
{tll,tlg} > e > {tnl,tng} > {Uu} > {U12} > e > {unl} > {ung} Then
for every subset K C {1,...,n} the Markov chain contains a state enabling
{uin | i € K}U{u;e | i ¢ K}, and has therefore exponential size. There might be
a procedure to find a suitable scheduler for a given PWN such that the Markov
chain has polynomial size, but we do not know of such a procedure.

Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets

(2,2) t811F 511 (2,2) [ts] (1, 1)[ts]
(1)

©

(a) The first shortcut (b) After two more shortcuts

)

wa

)

N

FAF“
<1

101

(3.2) (1»1) (1,1) (2,2)] (1,5)

(c) After iteration rule (d) After two more shortcuts (e) Final net

Fig. 3. Example of reduction

Fig. 4. Example

102 J. Esparza et al.

5 Experimental Evaluation

We have implemented our reduction algorithm as an extension of the algorithm
described in [9]. In this section we report on its performance and on a comparison
with PRISM [15].

Industrial benchmarks. The benchmark suite consists of 1385 free-choice work-
flow nets, previously studied in [11], of which 470 nets are sound. The workflows
correspond to business models designed at IBM. Since they do not contain prob-
abilistic information, we assigned to each transition ¢ the probability 1/ |[¢]| (i.e.,
the probability is distributed uniformly among the transitions of a cluster). We
study the following questions, which can be answered by both our algorithm and
PriIsM: Is the probability to reach the final marking equal to one (equivalent to
“is the net sound?”). And if so, how many transitions must be fired in average
to reach the final marking? (This corresponds to a reward function assigning
reward 1 to each transition.)

All experiments were carried out on an i7-3820 CPU using 1 GB of memory.

PRrisM has three different analysis engines able to compute expected rewards:
explicit, sparse and symbolic (bdd). In a preliminary experiment with a timeout
of 30s, we observed that the explicit engine clearly outperforms the other two:
It solved 1309 cases, while the bdd and sparse engines only solved 636 and
638 cases, respectively. Moreover, 418 and 423 of the unsolved cases were due
to memory overflow, so even with a larger timeout the explicit engine is still
leading. For this reason, in the comparison we only used the explicit engine.

After increasing the timeout to 10 min, the explicit engine did not solve any
further case, leaving 76 cases unsolved. This was due to the large state space of
the nets: 69 out of the 76 have over 10° reachable states.

The 1309 cases were solved by the explicit engine in 353s, with about 10s
for the larger nets. Our implementation solved all 1385 cases in 5s combined. It
never needs more than 20 ms for a single net, even for those with more than 107
states.

In the unsound case, our implementation still reduces the reachable state
space, which makes it easier to apply state exploration tools. After reduction,
the 69 nets with at least 10% states had an average of 5950 states, with the largest
at 313443 reachable states.

An Academic Benchmark. Many workflows in our suite have a large state space
because of fragments modeling the following situation. Multiple processes do a
computation step in parallel, after which they synchronize. Process ¢ may execute
its step normally with probability p;, or a failure may occur with probability 1—p;,
which requires to take a recovery action and therefore has a higher cost. Such a
scenario is modeled by the free-choice PWNs net of Fig. 5a, where the probabili-
ties and costs are chosen at random. The scenario can also be easily modeled in
PrisM. Figure 5b shows the time needed by the three PRISM engines and by our
implementation for computing the expected reward using a time limit of 10 min.
The number of reachable states grows exponentially in the number processes, and
the explicit engine runs out of memory for 15 processes, the symbolic engine times

Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets 103

1 700
(5,2 —

—e—explicit

()::D\k 800 —%¥—sparse
"

—&—Rule-
500 based

\ 100

300

Time(s)

.1

D\A 100 /A
Ol /

0
(g 0) 12 3 45 6 7 8 9 1011 121314 1516 17 18 19 20 ... 100 ... 200 ... 500
)

Mumber of processes

(a) PWN (b) Runtimes for the academic benchmark

Fig. 5. Academic benchmark

out for 13 processes, and the sparse engine reaches the time limit at 20 processes.
However, since the rule-based approach does not need to construct the state space,
we can easily solve the problem with up to 500 processes.

6 Conclusion

We have presented a set of reduction rules for PWNs with rewards that preserve
soundness and the expected reward of the net, and are complete for free-choice
PWNs. While the semantics and the expected reward are defined via an asso-
ciated MDP, our rules work directly on the workflow net. The rules lead to the
first polynomial-time algorithm to compute the expected reward.

In future work we want to generalize our algorithm to compute the probabil-
ity of non-termination and the conditional expected reward under termination,
which is of interest in the unsound case, and also to compute the expected time
to termination for timed workflow nets.

Acknowledgments. We thank the anonymous referees for their comments, and espe-
cially the one who helped us correct a mistake in Lemmas2 and 3.

References

1. Van der Aalst, W.: The application of Petri nets to workflow management. J.
Circuits Syst. Comput. 8(1), 21-66 (1998)

2. Van der Aalst, W., Van Hee, K.M.: Workflow Management: Models, Methods, and
Systems. MIT press, Cambridge (2004)

3. Abbes, S., Benveniste, A.: True-concurrency probabilistic models: Markov nets and
a law of large numbers. Theoret. Comput. Sci. 390(2-3), 129-170 (2008)

4. Abbes, S., Benveniste, A.: Concurrency, o-algebras, and probabilistic fairness. In:
de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 380-394. Springer, Hei-
delberg (2009)

104

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. Esparza et al.

Desel, J., Erwin, T.: Modeling, simulation and analysis of business processes. In:
Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management: Mod-
els, Techniques, and Empirical Studies. LNCS, vol. 1806, pp. 129-141. Springer,
Heidelberg (2000)

. Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40. Cambridge University Press,

Cambridge (2005)

. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every

GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927,
pp- 90-109. Springer, Heidelberg (2013)

. Esparza, J.: Decidability and complexity of Petri net problems — an introduction.

In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374-428.
Springer, Heidelberg (1998)

. Esparza, J., Hoffmann, P.: Reduction rules for colored workflow nets. In: Stevens,

P., et al. (eds.) FASE 2016. LNCS, vol. 9633, pp. 342-358. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49665-7_-20

Eszarza, J., Hoffmann, P., Saha, R.: Polynomial analysis algorithms for free choice
probabilistic workflow nets (2016). arXiv:1606.00175 [cs.LO]

Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Volzer, H.,
Wolf, K.: Instantaneous soundness checking of industrial business process models.
In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol.
5701, pp. 278-293. Springer, Heidelberg (2009)

Favre, C., Fahland, D., Volzer, H.: The relationship between workflow graphs and
free-choice workflow nets. Inf. Syst. 47, 197-219 (2015)

Favre, C., Volzer, H., Miiller, P.: Diagnostic information for control-flow analysis of
workflow graphs (a.k.a. Free-Choice workflow nets). In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 463-479. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49674-9_27

Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains: With a
Chapter of Markov Random Fields by David Griffeath. GTM, vol. 40. Springer
Science & Business Media, New York (2012)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585-591. Springer, Heidelberg (2011)

Magnani, M., Cucci, F.: BPMN: how much does it cost? An incremental approach.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
80-87. Springer, Heidelberg (2007)

Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 278-324. Springer, Heidelberg (1987)

Saeedi, K., Zhao, L., Sampaio, P.R.F.: Extending BPMN for supporting customer-
facing service quality requirements. In: ICWS 2010, pp. 616-623. IEEE Computer
Society (2010)

Sampath, P., Wirsing, M.: Evaluation of cost based best practices in business
processes. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt,
R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81, pp. 61-74.
Springer, Heidelberg (2011)

Varacca, D., Nielsen, M.: Probabilistic Petri nets and Mazurkiewicz equiva-
lence. Unpublished Manuscript (2003). http://www.lacl.fr/~dvaracca/works.html.
Accessed 27 May 2016

Varacca, D., Volzer, H., Winskel, G.: Probabilistic event structures and domains.
Theoret. Comput. Sci. 358(2-3), 173-199 (2006)

http://dx.doi.org/10.1007/978-3-662-49665-7_20
http://arxiv.org/abs/1606.00175
http://dx.doi.org/10.1007/978-3-662-49674-9_27
http://www.lacl.fr/~dvaracca/works.html

Queueing Models

Energy-Aware Server with SRPT Scheduling:
Analysis and Optimization

Misikir Eyob Gebrehiwot®™), Samuli Aalto, and Pasi Lassila

School of Electrical Engineering, Aalto University, Espoo, Finland
{misikir.gebrehiwot,samuli.aalto,pasi.lassila}@aalto.fi

Abstract. We consider the optimal energy-aware control of a single
server in a server farm. The server is modeled as an M/G/1 queue with
a particular control policy that allows to put the server to a sleep mode to
save energy with an additional delay cost, the setup delay, after the server
is turned on again. Our main result is the derivation of mean response
time for such a system under SRPT scheduling. In particular, we show
that the mean response time can be decomposed into two parts: the mean
response time of an ordinary M/G/1-SRPT, and an additional penalty
term for switching the server to a sleep state. Furthermore, we study the
energy-performance optimization of the system and prove that, for the
Energy Response time Weighted Sum (ERWS) and Energy Response
time Product (ERP) cost metrics, the optimal control either puts the
server into a sleep state immediately when it becomes idle or keeps it
idling until the next job arrives.

Keywords: Performance-energy trade-off -+ M/G/1-SRPT - Setup delay

1 Introduction

Server farms in data centres are known to spend a substantial proportion of time
in an idle state, having a utilization factor in the range of 10-20 % [1]. While in
this state, a server wastes about 60-70 % of the peak power it draws to process
requests [2]. This has inspired the study of low energy sleep states to be used
whenever the server becomes idle [7,8].

However, the energy saving attained by using a sleep state comes at a per-
formance cost. This is due to the fact that such sleep states are character-
ized by long setup delays required to turn the server back on to a functional
state. Many stochastic models that study this trade-off between performance and
energy consumption have been developed and studied by the research commu-
nity [3,5,6,9,13]. The most common cost metrics utilized to capture the trade-off
are the Energy Response time Weighted Sum (ERWS),

w1 E[T] + wsE[P], (1)
and the Energy Response time Product (ERP),
E[TIE[P], (2)
© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 107-122, 2016.
DOI: 10.1007/978-3-319-43425-4_7

108 M.E. Gebrehiwot et al.

where E[T] and E[P] are the mean response time and mean power consumption
of the server. The weights w; and ws are constants that can be chosen based on
the need to emphasize either performance or energy saving.

In the case of an ordinary M/G/1 system, Shortest Remaining Processing
Time (SRPT) scheduling is known to minimize mean response time [10]. How-
ever, its behaviour in such an energy-aware setup is largely unknown. In this
paper, we study the energy-performance optimization of an energy-aware M/G/1
system under SRPT scheduling. In addition to the common busy and idle states,
we assume the system is capable of switching to a sleep state, which should be
followed by a transient setup state.

We apply a similar approach as in [11] to study the energy-aware system,
although in this case, the derivation of mean response time is rather involved, and
requires dividing the process into parts. We show that the final form of the mean
response time has a simple structure consisting of the mean response time of
the ordinary M/G/1 SRPT queue and an additional penalty term related to the
setup delay. Similar decomposition results for the mean response time of systems
with setup delay have been identified, e.g., in [3-5] for other scheduling policies.
Moreover, the form turns out to be such that finally the optimal control remains
the same as for the FIFO and PS systems studied in [5,6]. That is, depending
on the parameters, either the server is immediately switched off to sleep state
after becoming idle, or the server never goes to sleep state. Additionally, our
comparison shows that SRPT still outperforms FIFO and PS.

The paper is organized as follows. In the following section a formal definition
of the model is given. In Sect. 3 we analyse the mean response time of the system,
and Sect. 4 briefly discusses optimization. Numerical examples are given in Sect. 5
and in Sect. 6 we conclude the paper.

2 Model

We consider an energy-aware M/G/1-SRPT queue to which jobs arrive according
to a Poisson process with rate A. Let S denote a generic service time having a
continuous valued cumulative distribution function F(s) and density f(s). The
tail probability is denoted by F(s). The load on the system, p, is given by
p = AE[S]. We assume a stable system, i.e., p < 1.

The energy-aware system is controlled as follows. The server is kept busy until
all the jobs in the system are served according to the SRPT service discipline.
When the last job leaves the system and the server becomes idle, a timer I,
which is a generally distributed random variable, is set. If a job arrives before
the timer expires, the timer is reset and the server starts serving the job. On the
other occasion where the timer expires before a job arrives, the server is switched
into a sleep state where it cannot serve any more jobs until it is turned back on.
The length of the sleep period is controlled by counting the number of arrivals.
The server is switched on as soon as k jobs have been accumulated. Even then,
the server has to transit through a setup period, during which it cannot serve
any job. We represent this period by a generally distributed random variable D.

Energy-Aware SRPT Queues with Setup Delay 109

In addition, let I*°* denote the total idle period accumulated between successive
expirations of the idling timer. Finally, we denote by II the whole family of these
control policies parameterized by I and k.

Note that in this model we have four states characterized by their own power
consumption values of Piusy, Pidles Psleeps and Pietup With a natural ordering
Prousy 2 Psetup > Pidie > Pesleep = 0. We denote the mean power consumption of
the system by E[P], and the mean response time of a job by E[T].

3 Analysis

In this section we derive the mean response time of the energy-aware SRPT
queue described in the preceding section.

Schrage and Miller [11] derived the well known closed form expression for
the mean response time of an ordinary M/G/1-SRPT queue, with no sleep and
setup states,

E[T\v/c/1-srpr) = ds, (3)

LRI SR e)
2% 0 ()2 f‘”'*A T p(s)

where p(s) denotes the proportion of time the server is busy processing jobs that
are originally shorter than s given by

o) = [sy (1)

Here the response time of a job is composed of waiting time and residence time.
The waiting time of a job is defined as the time elapsed between its arrival time
and the time at which it gets service for the first time. The residence time covers
the remainder of the response time, which includes its processing time plus any
additional time spent waiting due to pre-emption imposed by SRPT.

Let us now consider the mean response time in the energy-aware system using
the same decomposition. By denoting the waiting and residence times by W and
R, respectively, we have E[T] = E[W] + E[R].

The energy-aware system under study is work conserving in the sense that
it goes to sleep only when there is no job to serve. Hence, it is easy to see that
the mean residence time is not affected by the introduction of sleep and setup

states so that . - F(s)) i
Rl = [s (5)

So we can focus on the derivation of the mean waiting time.

3.1 Mean Waiting Time

To determine the mean waiting time E[W], we apply the theory of regenerative
processes by setting the regeneration point at the time epoch where the idling
timer expires. Following the same approach as in [11], we first derive the mean

110 M.E. Gebrehiwot et al.

conditional waiting time, E[W (s)], for a test job of size s. Then the mean waiting
time can be calculated as

B = [B ds

We refer to the test job as a type-s job.

During one full regenerative cycle, the server goes to sleep, waits for k jobs to
arrive, then transits through setup, and starts serving the accumulated jobs in
the busy state. After alternating between busy and idle states, it eventually goes
back to the sleep state, marking the end of one (regenerative) cycle. The test job
(of size s) may arrive during any of these periods. As illustrated in Fig. 1, the
entire busy period is further divided into several parts depending on when the
test job arrives to the system to systematically address the derivation of mean
waiting time of the test job.

We refer to the duration spent in the sleep and setup states as period 1 and
period 2, respectively. The busy period, i.e., time during which the server is in
the busy state, is composed of several parts. Period 3, period 4, and period 5
denote the durations of the associated type-s busy periods to be discussed below
during which jobs smaller than s are served. Note that, as shown in the figure,
period 3 consists of a continuous interval of time, but periods 4 and 5in fact may
consist of several parts and the period length is the sum of the respective parts.
During a cycle, period 6 has a similar structure and it corresponds to the time
during which jobs larger than s are being served. Finally, period 7 represents
the time the system is in the idle state, which may also consist of several parts
as the system may visit the idle state several times before the eventual timer I
expiration happens. Recall that the total length of period 7 is denoted by I*°t.

Let B denote an entire busy period, and B(s) be a type-s busy period, in which
all the jobs getting service have the remaining size less than s. In particular, all
jobs with size less than s that arrive during a type-s busy period are served in
this busy period. A type-s busy period can be started in three different ways
during the busy period.

Out of the jobs that accumulate during the sleep and setup states, each
job with original size shorter than s starts its own type-s sub-busy period. The
complete length of the type-s busy period induced by all jobs with sizes less than
s that arrived during periods 1 and 2 is denoted by Bs(s). Note that during a
cycle there is at most one such type-s busy period, see period 3 in Fig. 1.

On the other hand, all the remaining jobs accumulated in the sleep and
setup states, with sizes larger than s, would eventually start their own type-s
busy periods when the remaining size is reduced to s. We denote this kind of a
type-s busy period as By(s). Here the type-s busy period is started by exactly
one job, and the whole period 4 may consist of multiple By(s) busy periods, see
period 4 in Fig. 1. However, they all will be served before the system enters the
idle state for the first time after setup.

The third kind of type-s busy period is started due to an arrival in the busy
state after the sleep and setup or during the idle period. It is similar to the type-
s busy period in an ordinary M/G/1-SRPT queue (denoted by Y (p) in [11]).

Energy-Aware SRPT Queues with Setup Delay 111

Sleep Setup Busy Idle
1 Y l" I\ |
1 1 By(s) B,(s) B,(s) Bg(s) Bs(S)rj
1 1]
; — O e T e W
1 1 1 1 1 1 1 1 [1 1
S
G Pt trh Tt
k 1
L Y J\ I Y 1‘ A) A A)
Period1 Period2 Period 3 Period 4 TPeriod4 PeriodS]PeriodSPeriod7
Period 6

Fig. 1. A complete cycle between two expirations of idling timer (represented by the
cross marks at either ends of the horizontal line).

We denote it by Bs(s) in this paper. Here again the type-s busy period is started
by exactly one job, and period 5 may consist of multiple Bs(s) busy periods,
see period 5 in Fig. 1. Also note that when the system becomes idle for the first
time during a cycle, all type-s busy periods are Bs(s) busy periods after that.

Consider now a test job of size s that arrives at a random time instant. Let
p; represent the probability that the test job arrives during period . Thus, the
mean conditional waiting time of the type-s job can be derived by conditioning
over its arrival time as

7
E[W(s)] = D pE[Wi(s)], (6)
i=1

where E[W;(s)] is the mean conditional waiting time of the job assuming it
arrives in period i. We provide the derivation of these arrival probabilities and
mean conditional waiting times below in 1° and 2°, respectively.

1° Arrival Probabilities. Let N denote the number of jobs served during an entire
regeneration cycle. The mean number of arrivals E[N] has been derived in [5]
for FIFO, and since it is the same for all work-conserving policies, we have

_ k+ AE[D] + AE[I*°"]

B[] -

, (7)
where E['°"] is the mean cumulative idling time in a cycle. Note that I*°* consists
of i.i.d. idling times distributed as min{/, A}, where A denotes an inter-arrival
time. The number of such idling times has a geometric distribution with success
probability P{I < A}. Thus, E[I*°!] is given by
E[min{I, A}]
B[= ———— . 8

The probability p; that the test job arrives during period ¢ is given by the ratio
of the mean number of arrivals during period 7 to E[N].

112 M.E. Gebrehiwot et al.

Now, the proportion of time the server spends on jobs whose remaining
processing time is less than s is given by

als) = p(s) + AsF (s). (9)
On the other hand, ps + ps + p5 represents the same proportion of time. Thus,

p3 +pa+ps = a(s).

Finally, the proportion of time that the server is busy, ps 4+ ps + ps + pg, must
be equal to p,
D3 +Dpa+Dps+ps = p.

When considering p4, we observe that the random number of jobs accumulated at
the start of the busy period (i.e., after sleep and setup) consists of the k arrivals
during period 1 (sleep) and the Poisson distributed number of arrivals during
period 2 (setup). The mean value of the number of arrivals is then simply &k +
AE[D]. Out of these arrivals, each one has its size greater than s with probability
F(s). Thus, the mean number of B,(s) busy periods is given by (k+AE[D])F(s).

With all the required variables defined, the probability that an arriving job
would find the system in each period is given by

k _ AE[D]
y4! m, b2 = E[T’)
~ AE[Bs(s)] Ak + AE[D])F(s)E[Ba(s)]
P TEN b= E[N] (10)
ps =a(s) —ps —pa, pe=p—als),
B)\E[Itot]
P R

Note that above E[B3(s)] and E[By(s)] are still unknown. We will derive these
below in Sect. 3.2.

2° Mean Conditional Waiting Times. A test job of size s would have to wait
until the current type-s busy period is completed if it arrives during periods 3,
4, or 5. Thus, the mean waiting time is the mean remaining type-s busy period,

ElBi(5)’
for ¢ € {3,4,5}. Derivation of the moments of these busy periods is not quite
straightforward and will be done below in Sect. 3.2.

On the other hand, if the test job arrives during periods 1 or 2 (sleep/setup),
the test job will experience the remaining time until the end of setup and after
that also the corresponding busy period related to Bs(s). We will return to the
derivation of E[W7(s)] and E[W5(s)], when we analyze the moments of Bs(s).

Finally, as discussed earlier, during period 6 jobs larger than s are being
served. Hence, a type-s job that arrives during period 6 preempts the job being

Energy-Aware SRPT Queues with Setup Delay 113

processed and starts service immediately without any wait. Similarly, period 7
being the idle period, the test job would start service immediately upon arrival.
Hence, we obtain

We(s) = Wr(s) = 0. (12)

3.2 Moments of B3(s), B4(s), and Bs(s) Busy Periods

In this section we derive the first two moments of Bs(s), Bs(s), and Bs(s)
together with the mean values E[W;(s)] and E[W3(s)]. In the analysis, we need
the random variable S defined as the conditional service time S given that S < s.
Specifically, we need its mean value given by

1 S
B3] = B[S|S < s :—/ LE(E) dt,
5] = BISIS < 5] = 55 |
and the second moment, which equals

B[32] = B[S[S < 5] = ﬁ /OSth(t) dt.

Note also that

p(s) = \F(5)E[S].
The result for Bs(s) is given first in Proposition 1 below.

Proposition 1. The first and second moments of Bs(s) are given by

E[Bs(s)] = (k + AE[D]) Zi(f)f([j = (i + E[D]) : f(zzs), (13)
F(s)B[5?]

E[Bs(s)?] = (k + AE[D]) = p(5)°

N\ 2
F(s)E[S
+ (k(k — 1) + 2kAE[D] + A’E[D?]) (%) . (14)
Proof. Recall that Bs(s) is a type-s busy period that is started by those jobs that
arrived during period 1 (sleep) and 2 (setup) and are in size smaller than s. The
number of such jobs is a random variable and we denote it by N3. Conditioned
on the value of the set up delay D, we have

N3 | D ~ Bin(k, F(s)) + Poi(AF(s)D),

i.e., given D, the conditional value of N3 is the sum of a binomially distributed
number of jobs smaller than s from period 1 with parameters k and F'(s) and
a Poisson distributed number of jobs smaller than s with parameter AF(s)D.
These two numbers are also independent from each other. By conditioning on
D, the first and second moments of N3 are given by

E[Ns] = (k + AE[D])F(s), (15)
E[N3] = (k+ AE[D])F(s) + (k(k — 1) + 2kAE[D] + A*E[D?]) F(s)>. (16)

114 M.E. Gebrehiwot et al.

By the end of B3(s) there is no type s job in the system. The busy period
Bs(s) consists of exactly N3 sub-busy periods Bs ,, initiated by the N3 jobs,

N3
Ba(s) = B)

In SRPT scheduling, the shortest of the N3 jobs starts Bs i, the second shortest
job starts Bs 2 and so on. But since the complete length of the Bs(s) busy period
is the same for any work-conserving policy, we may assume that the N3 jobs are
randomly selected to start the sub-busy periods Bs ,. Now the key observation
is that each sub-busy period Bs ,, is i.i.d. It is initiated by a job distributed as S,
i.e., from the conditional distribution that the size is less than s. In addition, all
the subsequent arriving jobs during the sub-busy period are also from the same
distribution. Thus, such a sub-busy period behaves the same as a busy period
in a standard M/G/1 queue with arrival rate AF(s) and service times S so that
the first and second moments are given by

BIS) e IS
O R) "

In (17), the random variable N3 is independent from the distribution of Bs,,
and thus applying Wald’s equation to (17) gives the first moment of B3(s) as
follows,

E[Bs] =

E[Bs(s)] = E[Ns] E[Bs,n] = (k + AE[D])F@%,

which completes the proof for the first moment.

To find the second moment of B3(s) one can condition on the value of N3
and apply the conditional variance formula on the random sum (17), from which
we can determine the second moment as

E[Bs(5)’] = B[N3|E[B3] + (E[Ng] — E[Ns])E[Bs n]*.
Using (15), (16) and (18) in the above we arrive at
B[S
(1= p(s))*’

(EIVZ] — E[N2])E[Ban? = (k(k — 1)+ 2kAE[D] + A2E[D2])F (s)? (Em)) |

E[N3]E[B3 ,,] = (k + AE[D]) F(s)

which completes the proof. a

With the moments of Bs(s) now available we can analyze the conditional
waiting time Wi(s) and Ws(s) that the test job experiences if it arrives dur-
ing period 1 (sleep) or 2 (setup), respectively. The results are stated below in
Corollaries 1 and 2.

Energy-Aware SRPT Queues with Setup Delay 115

Corollary 1. For a test job with size s that arrives during period 1 (sleep), the
mean conditional waiting time E[W1(s)] is given by

k—1 1+p(s) E[D]
2X 1—p(s) 1—p(s)

Proof. A test job that arrives during period 1 would be one of the first k jobs.
So, assuming it is the i*" arrival in the sleep state, it would have to wait for an
aggregate time of k — ¢ arrivals and the entire setup time D. On average these
correspond to (k — 1)/(2)\) and E[D] amounts of additional waiting time for
the test job. Additionally, the test job needs to wait until the end of a slightly
modified Bs(s) busy period, which we denote by Bgl)(s). Thus,
k—1 (1)
E[Wi(s)] = T E[D] + E[B3 " (s)].

The busy period that the test job experiences is otherwise exactly as in Bjs(s)
except that the test job is one of the k jobs that arrive during period 1. Thus,

E[Wy(s)] = (19)

the mean busy period E[Bz(,)l) (s)] in this case is given by (13) with k replaced by
(k — 1), from which we arrive at the final result after some simplifications. O

Corollary 2. For a test job with size s arriving in period 2 (setup), the mean

conditional waiting time E[Wa(s)] is given by

k) | EID? 14 p0s)
A 1=p(s) E[D] 1-p(s)

E[W(s)] (20)

Proof. A test job arriving during period 2 needs to wait for the remainder of
the setup time, which equals on average E[D?]/(2E[D]). In addition, the test
job again needs to wait until the end of a slightly differently (compared to the

previous proof) modified Bs(s) busy period, which we denote by B§2)(s). Thus,

_ E[D?]
~ 2E[D]

E[Wa(s)] +E[BY(5)].

In this case, the test job arrives somewhere between the start and end of setup.
By a standard renewal argument, we know that the number of other jobs that
arrived during this setup is on average AE[D?]/E[D]. Thus, the mean busy period

E[B{¥(s)] in this case is given by (13) with E[D] replaced by E[D2]/E[D], which,
after some simplifications, completes the proof. O
In our analysis, we next consider the first and second moments of the By(s)
busy period. The results are stated in Proposition 2 below.
Proposition 2. The first and second moments of By(s) are given by
B S
1—p(s)’
AsF(s)E[S?] 52
E[B4(s)?] = .)
B =00y T O e

E[By(s)]

116 M.E. Gebrehiwot et al.

Proof. Recall that By(s) busy period is initiated by exactly one job that arrived
during periods 1 or 2, had an original size greater than s, and has by the begin-
ning of the B4(s) busy period received service so that its remaining size has
reduced to s. Thus, such a busy period behaves the same as an initial busy
period in a standard M/G/1 queue with arrival rate AF(s), service times S, and
an initial workload of size s, which gives (21) and (22), see, e.g., [12]. O

Finally, we analyze the Bj(s) busy period, and give its moments in Proposi-
tion 3.

Proposition 3. The first and second moments of Bs(s) are given by

E[By(s)] = 2

1—/)(8])’ 23)

where
el = 5T ‘jfl)%?g%]a_wi;f; - iCUR
bl = 2T S 1+ o B IPOL o

p+ E[N] _a(S)F(S)

Proof. The Bs(s) busy period is initiated by a job that has arrived during the
time that the server is busy (i.e., after periods 1 and 2), or during the time
system is idle (i.e., during period 7). Therefore, it is similar to the analysis of
the type-s busy period as done for the ordinary M/G/1-SRPT queue in [11].
The difference is that while in the ordinary SRPT analysis a type-s busy period
can be initiated by an arriving job at any time, in our system we must exclude
arrivals that occurred during periods 1 and 2.

An arriving job with size smaller than s will initiate a Bs(s) busy period
whenever it arrives during period 6, i.e., the time during which jobs with size
greater than s are served. This happens with probability peF(s). Also, when
the system is busy, if the size of an arriving job is originally greater than s,
it will eventually have remaining size s and initiate a Bs(s) busy period. This
happens with probability pF(s). Finally, with probability pr, a job arrives during
period 7 and will initiate immediately or eventually a Bj(s) busy period. The
total probability that an arriving job begins a Bs(s) busy period is thus

PeF(s) + pF(s) + pr = p+ AE[I™"]/E[N] — a(s)F(s).

Let R(s) denote the remaining service time of the job that initiates a Bs(s)
busy period. For a job with size ¢t < s arriving during period 6 or period 7, which
happens with probability

(Ps +p7)F(s) = (p+ AE[I""]/E[N] — a(s)) F(s),

Energy-Aware SRPT Queues with Setup Delay 117

we have R(s) = ¢. On the other hand, a job originally greater than s arriving
when the system is busy or idle, which happens with probability

(p+p7)F(s) = (p+ AE[I*"]/E[N])F(s),

eventually has remaining size s and starts a Bs(s) busy period with R(s) = s.
Thus, the first and second moments of R(s) are given by (25) and (26), respec-
tively.

The jobs served in a Bj(s) busy period following the initiating job all have
sizes smaller than s, i.e., they are samples of S. Thus, such a busy period behaves
the same as an initial busy period in a standard M/G/1 queue with arrival rate
MF(s), service times S, and an initial workload of size R(s), which gives (23)
and (24), see, e.g., [12]. O

Having completed the analysis, we are now ready to state the main contri-
bution of the paper, i.e., Theorem 1 which gives the complete expression for the
mean waiting time E[W (s)].

Theorem 1. For the energy-aware SRPT queue under study, the mean condi-
tional waiting time of a type-s job is given by

E[W(s)] = E[W(s)m/c/1-srp]

+ ﬁ (k(];;l) + kE[D] + ;E[DZ])

o
(1=p(s))*’

where E[W (s)um/q/1—srpr) is the mean conditional waiting time in the ordinary
M/G/1-SRPT queue given by

(27)

Ao 2 f(t) dt + s F(s)

E[W(S)M/G/l—SRPT] B) 11— p(s))2 . (28)
Proof. The proof follows directly by applying the derived results on (6). The
probabilities of arriving in a given period are expressed in equations (10) together
with (4), (7) and (9). The mean conditional waiting times for periods 1 and 2
are from Corollaries 1 and 2, while Eq. (11) combined with Propositions 1, 2,
and 3 can be used to determine the mean conditional waiting times for periods
3, 4, and 5, respectively. With some algebraic manipulations we finally arrive at
the surprisingly simple form given in (27). O

The resulting form has a strikingly compact form, consisting of the waiting
time as in the ordinary M/G/1-SRPT queue plus an additional waiting time due
to idling timer and the setup delay. Note also that, when E[I*°!] — oo the formula
reduces to the one for the ordinary M/G/1-SRPT queue, and also when k =1
and E[D] = 0. Recall that the overall mean delay satisfies E[T] = E[W] + E[R],
where E[R] is the mean residence time given by (5). Since E[R] is the same
for the ordinary M/G/1-SRPT queue as for our system, we can conclude that
the expression for the overall mean delay E[T] in our system is as expressed in
Theorem 2 below.

118 M.E. Gebrehiwot et al.

Theorem 2. For the energy-aware SRPT queue under study, the mean delay of
jobs E[T] is given by

E[T] = E[T\ja/1-sreT] +

L (kE-1) Appz) [) .
+E[N]<) 4 kE[D] + JEID })/O T s (29

where E[Tvi/c/1—srpr] @5 the mean delay in the ordinary M/G/1-SRPT queue
given in (3).

Thus, the mean delay E[T] in our energy-aware system given by (29) consists
of the mean delay in the ordinary M/G/1-SRPT queue plus an additional penalty
term for the idling and the setup delay. A similar structure holds for the mean
delay in the corresponding energy-aware M/G/1-FIFO and M/G/1-PS queues,
as well, see [5,6].

4 Optimization

Here we address energy-performance optimization of the energy-aware SRPT
queue by applying the popular ERWS (1) and ERP (2) cost metrics. We apply
the same method as in [5,6].

Theorem 3. The optimal control policy in II sets either I = 0 or I = oo for
both ERWS and ERP cost metrics.

Proof. By [5, Propositions 1 and 2] it suffices to show that both E[P] and E[T]
can be expressed in the form

E[T]:Al-#coﬁéihm]v E[P]:A2+CO+§72UM, (30)

where constants A;, As, By, Cy > 0, but By can be negative.

First, we consider E[T.

Looking at (29), E[I*°'] appears only in the denominator of the second term.
Thus, E[T] is already in the form of (30).

The mean power consumption of this system can be given as

k tot
7Plee +E[D]Psetu +E[I]Rdle
E[P] = pPousy + 2—> P

[] PLo y+ E[C] ’

where E[C] denotes the mean length of one regeneration cycle, which is given by
E[C] = E[N]/A. Substituting this in the above equation, we have

E[P] = E[Px/q] + ﬁ (k’(Psleep — Pate) + AE[D](Pretup — Pidle)>7 (31)

where E[Pyi/q/1] is the power consumption of an ordinary M/G/1 system given
by

E[PM/G/I] = ppbusy + (1 - p)ljidle-
Clearly, the E[P] expression in (31) is also in the form of (30). O

Energy-Aware SRPT Queues with Setup Delay 119

For the ERP and ERWS cost metrics, the optimal control remains the same
as for energy-aware FIFO and PS systems, studied in [5,6]. We conjecture that
this optimality result holds for any work conserving scheduling policy. The opti-
mality result might seem to be an obvious consequence of the memoryless prop-
erty of Poisson arrivals. However, it is possible to construct counter-examples,
like in [5], where the idle timer has finite optimal value, even under a Poisson
arrival process, when a more general cost metric is considered. Thus, one cannot
determine the optimal control solely based on the arrival process.

5 Numerical Results

Next we give a numerical illustration of the results obtained in the analysis
and optimization sections. For this, we use among the S-states implemented in
modern servers, the suspend sleep state, with power consumption and setup
delay values of Ps,s = 15 W and Dgys = 10s. In [8], it has been shown to give
a nice balance between sleeping power consumption and a reasonably low setup
delay. Moreover, we use Phusy = Psetup = 200 W and Pigie = 120 W. Throughout
the illustration, we also assume the turn on threshold £ =1 and E[S] = 1s.

We confirmed the validity of the mean response time expression in (29)
by developing a simulator for the energy-aware M/G/1-SRPT system. Figure 2
shows the analysis and simulation results as a function of load. Pareto, with
shape parameter o = 2.5, and exponentially distributed service times are con-
sidered. The confidence intervals on the simulation results are omitted because
they are too narrow to show in the same figure. Here it is interesting to see that
the mean response time decreases as a function of load, except at high load val-
ues. However, this is intuitive since the response time is already dominated by
the setup delay of the system, so that the waiting time increment due to increas-
ing load has little effect. The impact of setup delay is more visible at lower
load since the system becomes idle more often, causing frequent idle-sleep-setup
transitions.

8F

E[ll=0s

(=)

Elll=0s

Response time
I

Response time
iy

N

E(ll=10s

E[l]=20s E[l]=20s
‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0.2 0.4 06 0.8 1.0 0.2 0.4 06 0.8 1.0
Load Load
(a) Exponential service time (b) Pareto service time

Fig. 2. Mean response time comparison between analytic and simulation results. The
blue curves represent results obtained analytically. The red cross points are mean
response time values obtained using a simulator at the respective load. We assume
a deterministic setup delay of D = 10s. (Color figure online)

120 M.E. Gebrehiwot et al.

12

10
— 8
E
“oe

4 SRPT

2

0

00 02 04 06 0.8 1.0 00 02 04 06 0.8 1.0
Load Load
(a) Exponential service time (b) Pareto service time

Fig. 3. Mean response time comparison among energy-aware FIFO, PS, and SRPT
queues, with I =0 and D = 10s.

ERP
ERP

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Load Load

(a) Exponential service time (b) Pareto service time

Fig. 4. ERP comparison of energy-aware FIFO, PS, and SRPT queues. All values are
normalized with respect to the ERP of an ordinary M/G/1-SRPT queue.

For an ordinary M/G/1 queue, SRPT scheduling is known to give the min-
imum response time [10]. Figure 3 depicts how the energy-aware M/G/1-SRPT
system performs compared to energy-aware M/G/1-FIFO and M/G/1-PS sys-
tems. Mean response time of the latter two is studied in [5] and [6] respectively.
Figure 3 shows SRPT still provides the lowest mean response time for for such
a system for both exponentially and Pareto distributed service times.

We showed in Theorem 3 that either I = 0 or I = co are the optimal values
under the ERP and ERWS cost metrics. Figure 4 illustrates the ERP of energy
aware systems with SRPT, FIFO and PS scheduling (I = 0), normalized with
respect to the ERP of an ordinary M/G/1-SRPT (I = o). For both exponen-
tially (Fig.4a) and Pareto (Fig.4b) distributed service times, the ERP of the
energy-aware systems is much higher than that of the ordinary M/G/1-SRPT
system. This is due to the high setup delay of the suspend state.

Figure 5 gives a similar comparison for the ERWS cost metric, for w; = 1 and
wy = 1. Except at very low load, the energy-aware system still under performs
compared to the ordinary M/G/1-SRPT system. We experimented with wider
range of wy values and the ordinary M/G/1 SRPT still resulted in the lowest

Energy-Aware SRPT Queues with Setup Delay 121

ERWS

I\fl/ 1[)/
w
0.5 0.5

C 0.0
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Load Load

(a) Exponential service time (b) Pareto service time

Fig. 5. ERWS comparison of energy-aware FIFO, PS, and SRPT queues, with w; =1
and wy = 1. All values are normalized with respect to the ERWS of an ordinary M/G/1-
SRPT queue. The dotted, dashed, and solid lines represent energy-aware FIFO, PS,
and SRPT systems respectively.

ERWS for most load values. However, at around 0.1 load, the ERWS of the
energy-aware system is about 10 % lower than that of the ordinary SRPT.

6 Conclusion

We studied the analysis and optimal control of an energy-aware server, modelled
as an M/G/1 SRPT system. Energy can be saved by putting the server into a
sleep state when it remains idle for a certain period of time. Turning the server
back on incurs a setup cost, in the form of delay and power consumption.

Our analysis, by applying the theory of regenerative processes, shows that
the mean response time of such an energy-aware system can be decomposed into
two terms: the mean response time of an ordinary M/G/1 SRPT queue, and an
additional delay penalty introduced due to the use of a sleep state.

We also considered the Energy-performance optimization of this system
under the Energy Response time Weighted Sum (ERWS) and Energy Response
time Procuct (ERP) cost metrics. The optimal control policy lies in a set of
two distinct policies: one that switches the server to a sleep mode immediately
when it becomes idle and the other which leaves it idling. This might seem
intuitive, given the memoryless property of a Poisson arrival process. However,
these results do not necessarily hold for a more general cost metric, highlighting
the fact that the optimality results cannot be readily deduced from the arrival
process. Numerical study of these policies with real setup delay and power con-
sumption values show that the idling policy has a consistently lower ERWS and
ERP costs compared to the sleeping policy, except at very low load values. This
is mainly due to the high setup delay needed by a typical present day server.

The optimality result in this paper for SRPT, in line with our earlier results
for FIFO and PS disciplines, has relied on the explicit form of the mean response
time. The results anyway suggest that the optimality holds more generally, even
for any work-conserving discipline, but proving it remains a challenging open
problem.

122

M.E. Gebrehiwot et al.

Acknowledgement. This research was partially supported by the TOP-Energy
project funded by Academy of Finland (grant no. 268992).

References

10.

11.

12.

13.

. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,

Patterson, D., Rabkin, A., Stoica, 1., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50-58 (2010)

Barroso, L.A., Holzle, U.: The case for energy-proportional computing. Computer
40(12), 33-37 (2007)

Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.A.: Optimality analysis of
energy-performance trade-off for server farm management. Perform. Eval. 67(11),
1155-1171 (2010)

Gandhi, A., Harchol-Balter, M., Adan, I.: Server farms with setup costs. Perform.
Eval. 67(11), 1123-1138 (2010)

Gebrehiwot, M.E., Aalto, S., Lassila, P.: Optimal sleep-state control of energy-
aware M/G/1 queues. In: Proceedings of the 8th International Conference on Per-
formance Evaluation Methodologies and Tools, VALUETOOLS 2014, pp. 82-89
(2014)

Gebrehiwot, M.E., Aalto, S., Lassila, P.: Energy-performance trade-off for proces-
sor sharing queues with setup delay. Oper. Res. Lett. 44(1), 101-106 (2016)
Gough, C., Steiner, 1., Saunders, W.: Energy Efficient Servers: Blueprints for Data
Center Optimization. Apress, New York (2015)

. Isci, C., MclIntosh, S., Kephart, J., Das, R., Hanson, J., Piper, S., Wolford, R.,

Brey, T., Kantner, R., Ng, A., Norris, J., Traore, A., Frissora, M.: Agile, efficient
virtualization power management with low-latency server power states. In: Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA 2013), pp. 96-107, June 2013

. Maccio, V.J., Down, D.G.: On optimal policies for energy-aware servers. In: Pro-

ceedings of IEEE 21st International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS 2013), pp. 31-39,
August 2013

Schrage, L.E.: A proof of the optimality of the shortest remaining processing time
discipline. Oper. Res. 16, 687-690 (1968)

Schrage, L.E., Miller, L.W.: The queue M/G/1 with the shortest remaining process-
ing time discipline. Oper. Res. 14(4), 670-684 (1966)

Takécs, L.: Introduction to the Theory of Queues. Oxford University Press, Oxford
(1962)

Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in processor
sharing systems: optimality and robustness. Perform. Eval. 69(12), 601-622 (2012)

Dynamic Control of the Join-Queue Lengths
in Saturated Fork-Join Stations

Andrea Marin®® and Sabina Rossi

DAIS - Universita Ca’ Foscari, Venezia, Italy
{marin,srossi}@dais.unive.it

Abstract. The analysis of fork-join queueing systems has played an
important role for the performance evaluation of distributed systems
where parallel computations associated with the same job are carried
out and a job is considered served only when all the parallel tasks it
consists of are served and then joined. The fork-join nodes that we con-
sider consist of K > 2 parallel servers each of which is equipped with
two FCFS queues, namely the service-queue and the join-queue. The
former stores the tasks waiting for being served while the latter stores
the served tasks waiting for being joined. When the queueing station
is saturated, i.e., the service-queues are never empty, we observe that
the join-queue sizes tend to grow infinitely even if the expected service
times at the servers are the same. In fact, this is due to the variance
of the service time distribution. To tackle this problem, we propose a
simple service-rate control mechanism, and show that under the expo-
nential assumption on the service times, we can analytically study a set
of relevant performance indices. We show that by selectively reducing
the speed of some servers, significant energy saving can be achieved.

1 Introduction

Fork-join queueing stations have been extensively studied in the literature
because of their wide applications in the context of distributed and parallel
systems. Such queueing stations behave as follows: jobs arrive according to a
certain arrival process and are forked into K tasks that are enqueued in the
service-queues and then served by independent servers. Once a task is served, it
is enqueued in the join-queue waiting for the service completions of all the other
tasks of the job it belongs to. Once all the tasks of a job are served, the join
operation is performed and the job leaves the system. In this work we assume
that all the queues implement a First Come First Served (FCFS) discipline.

Fork-join queues have found applications in a wide variety of domains in com-
puter science and telecommunication networks. For instance, in [21] the authors
study the response times of multiprocessor systems by means of fork-join net-
works, in [10] the authors consider parallel communication systems and in [12]
a RAID system is studied by simulating a fork-join station.

Unfortunately, despite their importance, few analytical results are known for
fork-join stations. One of the reasons is the complexity of the model consisting

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 123-138, 2016.
DOI: 10.1007/978-3-319-43425-4_8

124 A. Marin and S. Rossi

of two sets of queues, the service-queues and the join-queues, and no general
decomposition result is available at the state of the art [1]. Many works have
considered the fork-join station under heavy traffic (see, e.g., [13]) and provided
approximations of the expected response time based on the analysis of the asso-
ciated reflecting Brownian motion [18]. In this scenario we observe that when
K > 2 the join-queues tend to be very long because each served task has to wait
for the completion of the slowest of its siblings (which may also be enqueued at
their servers). In [20] the authors observe that such a system can be highly inef-
ficient both because it handles long join-queues and because the servers work at
maximum speed even if their join-queue length is very long. Significant energy
saving can be obtained by slowing down the servers that have already served
more tasks than others.

1.1 Contribution

In this work we introduce a rate control mechanism for the station’s servers that
allows us to control the join-queue lengths and to reduce the system’s power
consumption. The importance of containing the size of the output buffer and
reducing the energy consumption is well-known in the literature, e.g., [20,22,23].
In contrast with [20], we do not require the estimation of the amount of work
needed by a task, but we base our algorithm on a single state variable associated
with each server. We assume that each server has a neighbour defined to form
a circular dependency. For instance, the neighbour of server i can be server
(i mod K)+1. If a server has completed less or equal tasks than its neighbour then
it works at maximum speed, otherwise it reduces its speed by a certain factor.
Therefore, each server has to maintain a single variable that is incremented
by 1 at each local task completion, while it is decremented by 1 when a task
completion occurs at its neighbour. Our contribution includes an analytically
tractable model of such a rate control mechanism. We start by considering the
Flatto-Hahn-Wright (FHW) model [8,25] in saturation, i.e., the service times are
modelled by independent and identically distributed (i.i.d.) exponential random
variables, the join operation is instantaneous, and the service-queues are never
empty. We show that even in the case of two servers (K = 2), the stochastic
process modelling the join-queue lengths is unstable because of the variance in
the service times. Conversely, by the introduction of our rate-control mechanism
we show that, for any K > 2, the process underlying the join-queue lengths
becomes stable and their expectation is finite. Moreover, we are able to derive an
analytical expression for the system’s throughput. The stationary probabilities,
the marginal stationary probabilities and the throughput are expressed in terms
of Kummer’s confluent hypergeometric functions. In general, the evaluation of
such functions can be done by numerical approximations, but in our case the
evaluation points are such that a closed form expression is always known.

Finally, we study by simulation the behaviour of our algorithm when the
service times are not exponentially distributed and show the impact of the service
times’ coefficients of variation (CV) on the performance indices.

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join Stations 125

1.2 Related Work

In [9] the authors extend their previous work on fork-join queueing networks in
order to include join nodes and apply an approximate analysis to study their
stationary performance indices based on a decomposition technique or an iter-
ative solution of tractable models. In [8,25] the authors introduce the so called
Flatto-Han-Wright model [18] consisting of only two exponential servers. They
derive the stability conditions and propose an approximate analysis as well as
some exact results on the conditional join-queue lengths. In [17] the authors pro-
vide the exact expression of the mean response time for the FHW model, when
K = 2 and the service times are i.i.d. exponential random variables. They also
give an approximation technique to study the models with K > 2. In [2,3] the
authors study the stability conditions for a set of fork-join queueing networks. In
[18] the author applies the method based on the heavy traffic assumption that
lead to important results in queueing network analysis for studying the fork-join
queueing nodes. Order statistics has been used to solve a class of fork-join queues
with block-regular structure in [7].

The work that is probably closer to the one proposed here is [20] where
the authors propose to reduce the energy consumption of a fork-join station by
slowing down the servers that work on tasks with lower needs. They devise a
scheduling algorithm and prove an optimality property. However, in contrast to
what we propose here, the method requires the estimation of the tasks’ service
demands which is not always possible. In [22,23] the authors propose an approach
based on the order statistics that introduces deterministic delays at the servers
aiming at reducing the task dispersion. The delays are determined so that the
100ath percentile of variability of the distributions obtained once the delays are
inserted is minimised.

1.3 Structure of the Paper

The paper is structured as follows. In Sect.2 we introduce the problem that
we aim to address and describe the algorithm that we propose. In Sect.3 we
provide an analytical model for the performance evaluation of the algorithm
under the assumptions of saturated station and exponential service time distrib-
utions. Section 4 studies the performance of the rate-control algorithm by using
the results of the previous section and the stochastic simulation. Finally, Sect.5
gives some concluding remarks.

2 Rate-Control Algorithm

In this section we formally introduce the problem we are studying and the rate-
control algorithm that we propose. In the following sections we study the per-
formance of such an algorithm in terms of throughput and energy saving.

126 A. Marin and S. Rossi

2.1 Problem Statement

Let us consider a fork-join queueing system with K servers as depicted in Fig. 1.
We consider a saturated model, i.e., there is always a job waiting to be processed.
As a consequence the service-queues always contain at least one task. The service
times are modelled by i.i.d. continuous time random variables and we initially
assume that the join operation occur immediately after all the tasks belonging
to the same job are served. All the queues follow a FCFS discipline. Clearly, if
the expected service time at the servers is not the same, and if a rate-control
mechanism is not applied, then the join-queue length of the fastest server tend
to grow infinitely as time ¢ — o0o. Less obvious is the case in which all the service
times are independent and identically distributed, i.e., with the same mean. In
these cases, the variance of the service time causes an unbounded growth of the
join-queue population, i.e., the expected join-queue lengths at the servers tend to
infinity as ¢ — co. In Fig. 2 we show a transient simulation of the saturated model
with three service time distributions: Erlang-2, hyperexponential and exponen-
tial. The confidence intervals have been build on 15 independent executions of
the simulation with a confidence of 95%. The plot supports the intuition that
higher coefficient of variations in the service times make the expected queue
lengths grow faster. We formally prove the model instability if the service times
are exponentially distributed.

Tasks waiting for service Served tasks waiting for join

\ /
Fork 00 ()}»000_ Jom

Served jobs

|:||:| 0]0)0) O—* 00— |:||:|

Jobs waiting the fork™ "O0000 O_, Pl

Servers

Fig. 1. Fork-join queueing station with K = 3 servers

Proposition 1. In the long run, the saturated fork-join model with K > 2,
i.9.d. exponential service times, immediate join, has an infinite expectation of
the join-queue length.

Proof. For brevity, we give the proof for K = 2. The state space of the model is

S ={(n1,n2) :n; =0V ny =0,n; € N},

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join Stations 127

Expected join-queue length for saturated fork-join stations
4500
4000 +
3500 +
3000 +
2500
2000 +
1500 +
1000 +
500

0

Exponential +———
Hyper-exponential +———
Erlang-2

Expected join-queue length

0) 10 15 20 25

Simulation time

Fig. 2. Growth of the expected join-queue length for K = 20 servers, exponential
(CV = 1), Erlang-2 (CV = /2/2), Hyper-exponential (CV = 1.31)

where n; denotes the join-queue length of server i. The transitions are from
state (0,m2) to (0,n2 + 1) or to (0,n2 — 1) and from state (n1,0) to (ny + 1,0)
or (n; — 1,0). Since the service times are exponentially distributed, then the
stochastic process is a continuous time Markov chain, and specifically it is a ran-
dom walk on the line. In this CTMC all the rates are equal and hence the states
are not positive recurrent. Therefore, let Q be the random variable associated
with the join-queue length for one of the two servers at a time ¢y, with

tg — oo, then E[Q] = oco. If K > 2 the proof is similar but the CTMC is
multidimensional. O

We devise an algorithm that dynamically controls the service rates (e.g., by
scaling the operating frequency of the processors) with the following aims:

— Having a finite expectation of the join-queue lengths;
— Maintaining the throughput at reasonable high levels;
— Reducing the overall energy consumption by controlling the servers’ rates.

Moreover, we will see that if the service rates are exponentially distributed, then
a Markovian model with analytically tractable solution exists, therefore one can
tackle problems of optimisation or capacity planning that would be expensive to
address by stochastic simulation.

128 A. Marin and S. Rossi

2.2 The Rate-Control Algorithm

The main idea of the algorithm is to slow down the servers that have already
completed their work on many tasks whereas the servers that have served less
tasks will work at maximum speed. Since it would be unrealistic to assume that
each server can take a decision about its own speed by knowing the global state of
the system, we introduce a policy that implements a rate-control strategy by just
maintaining a single integer state variable. Let us label each of the K servers with
integer numbers in {1,..., K} and define the following neighbourhood relation:
for each server k we define its neighbour ne(k) as:

kE+1 ifk< K
ne(k) = {1 ifh=K

Let nj denote the state variable of each server. When server k completes a
task, then ny is increased by 1, while when its neighbour completes a task nj
is decreased by 1. In other words, n; maintains the difference between the join-
queue length of server k and ne(k). Let u(ny) be the local state dependent service
rate at a server (recall that they are all stochastically identical), then:

1 ifng >0
p(ng) = {"”1 b= (1)

I otherwise

Intuitively, when a server k has completed less or the same number of tasks
than ne(k) then it works at its full service speed, otherwise it slows down in a
proportional way with the number of exceeding jobs. Notice that for server k, the
key point for regulating the join-queue length is to consider the difference in the
queue lengths of the servers rather than the total length of its join queue. Indeed
this latter value could be high because of some delay in the join operation, while
the mechanism that we propose is based on balancing the number of tasks served
by each server.

3 Analytical Model for the Rate-Control Mechanism

In this section we consider the FHW model equipped with our rate control
mechanism, i.i.d. exponentially distributed service times, immediate join and in
saturation. Let us consider the vector n = (ny,...,nk) of the state variables
of each server, and observe that at each time epoch we have Ele ng = 0.
We aim at studying the stochastic process n(t) on the state space S = {n =
(n1,...,ng) : np € Z, Eiil nr = 0}. Since the service rates are the only
events that cause a state change, from the fact that they are exponentially
distributed we conclude that n(t) is a homogeneous CTMC. Although we will
derive a product-form expression for the invariant measure of n(t), it is worth
of notice that n(t) is not reversible for K > 2. In fact, consider state (0,0, 0)
and assume that server 2 completes a task taking the state of the process to

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join Stations 129

(=1,1,0). It should be clear that there does not exist any transition bringing
back the model to (0,0,0). One path that brings back the model state to (0, 0,0)
is that consisting of a sequence of transitions associated with one task completion
at servers 1 and 3.

Before proceeding with the analysis we have to introduce the regularized
Kummer’s confluent hypergeometric function M(a, b, z) defined as follows (the
first equality shows an alternative common notation):

M(avba LE) = 1F1(a;b; .’,E) = M(a’ba‘r) a7b € N+a (2)

1
I(b)
where M(a, b, z) is the Kummer’s confluent hypergeometric function defined by
the series

= (a), z*

M — R +

(a,b,2) = 1 Fy(a;b;z) = Zb o wbeNT, (3)
k=0

I' is the Euler’s Gamma function and (y) is the Pochhammer’s symbol, i.e.,

e =yly+1)---(y+k=1).

Theorem 1. Given the CTMC n(t), we have that:

1. n(t) is ergodic, i.e., it admits a unique stationary distribution T (n);
2. The stationary distribution is given by the following expression:

R
Gr 11 (36, >0)!

where we assume that empty products are equal to 1 and ép is 1 if proposition
P is true, 0 otherwise and

(4)

T (n) =

K—
K .

We base the proof of the theorem on few lemmas: first we assume the ergod-
icity and derive the model’s product-form expression. Then, we show that the
normalising constant Gk is finite (thanks to the properties of the Kummer’s
confluent hypergeometric function) for finite K and hence the CTMC must be
ergodic.

Lemma 1. Assume that n(t) is ergodic and hence admits a unique stationary
distribution. Then, its expression is that of Eq. (4) where:

CA o N — (6)

nes Hi:l (ni5n¢>0)!

130 A. Marin and S. Rossi

Proof. The proof can be obtained by substitution of Eq. (4) in the system
of global balance equations of the CTMC or by noticing that the process is
dynamically reversible [11,14-16]. Let n = (nq,...,nk) and let its renaming be
p(n) = (nk,...,n1), then by [11, Theorem 1.14] we have to prove that Eq. (4)
satisfies:

m(m)p(nk) = m(p(n + 1k — Lp—1))p(ne—1 — 1),

where 1, is a K-size vector with a 1 in the k-th position and zeros elsewhere
and we assumed 1o = 1 and ng = ng. O

Notice that since S is an infinite set, at the moment the fact that G g is finite,
i.e., the infinite series (6) converges, depends on the assumption of ergodicity.
We now algebraically prove that (6) and (5) are equivalent and converge. As a
consequence the CTMC n(¢) is ergodic.

Lemma 2. The series (6) is equivalent to the expression given by Eq. (5) which
is finite for any K € N, K > 2.

Proof. Let P(n) be the multiset with all the non-negative components of n, i.e.,
P(n) = {n; : n; > 0} and observe that for all the states n’ such that P(n’) = P(n)
the expression under the sum symbol of Eq. (6) is the same. Let 1 < j < K — 1
and (z1,...,x;) be a tuple such that ; >0 forall¢ =1,...,j and Zgzl T;=n,
with n > 0. Basically, j denotes the number of non-negative components in a state
and n their sum. Notice that, given j and n we can count how many states have
exactly j non-negative components whose sum is n. This is given by the product
of the number of non-negative solutions of the Diophantine’s equation y; + ... +
y; = n multiplied by the number of strictly positive solutions of the Diophantine’s
equation y1 + ...+ yx—; = n (since the sum of all the state components is 0), i.e.,
we can rewrite the normalising constant as:

a1y > x (f)

j=1 n=K—j x:@1+...+z;=n Llt=1 Tt

'(Kn—;—1> +Z() ;_i;(K:l_l)

n J

where the last equality follows from the multinomial theorem. Notice that the
boundaries of j in the external summatory start from 1 (there cannot be any state
with all negative components) and terminate at K — 1. Indeed, the only state
with all non-negative components is 0 that we take into account by summing 1
at the beginning of the right-hand-side.

We can rewrite Eq. (2) as:

M(a, b, z) ZF - beNt (7)
k=0

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join Stations 131

So we have:

where the last equality follows from Eq. (7) witha =K —j, b= K —j+ 1 and
x = j. Finally, we observe that 1 < Gx < oo since its definition does not involve
any infinite sum and function M evaluated at the specified integer parameters
is always finite and non-negative. a

Proof of Theorem 1. The theorem follows straightforwardly by Lemmas 1 and 2.
O

In order to derive the expression for the marginal distribution of the join-
queue lengths we have to consider that although the state space of each single
queue ranges from —oo to +00, the joint state space is not the Cartesian product
of the single state spaces. Therefore, the knowledge of Gi is not sufficient to
obtain the marginal distribution. A similar situation arises when studying closed
queueing networks. However, while for closed product-form queueing networks
several algorithms have been proposed, e.g., [4-6], in our case we are able to
express the marginal distributions in terms of (regularized) Kummer’s hyperge-
ometric functions evaluated in points whose closed-form solution is known.

Let us consider the definition of G given by Eq. (6), and let GY be the
normalising constant defined as:

G]kV: Z ;7

k
nesy [Ti—1 (ni0n;>0)!

where S = {(n1,...,n) : Ele n; = N}. Note that Gx = GY%. Then, we can
write the marginal distribution as:

i) = G G ¥

The following Lemma gives the expression for G§ for arbitrary k > 1 and N € Z.

132 A. Marin and S. Rossi

Lemma 3. The expression for GY is
- IfN>0:

GN—

uN Z() NI M(k — j,N + k — j+1,5).

- IfN<Oand2<k<-—N:

k—1
-N-1 B\ /-N-1
N — NN M(—N,—N — i+ 1, 9).
G (k_1>u +u ;ﬂ()(k_j_J (=N, k+j+1.4)

- IfN<O0andk>—N:

k+N—-1 k)
Gy =p" Y (j)jN+kJ M(k —j,N+k—j+1,7)
j=1

K-1
k -N -1 . .
j=k+N
Cfk=1:

! uy ifN <0

Proof. The proof is based on hypergeometric function manipulations.

In Fig.3b we show the distribution of 7} (n) for K = 2,5,10,15. Notice that
while for K = 2 the distribution is symmetric with respect to n = 0, this is
not true for K > 2. Moreover, by increasing the value of K, numerical evidences
suggest that there may exist a limiting distribution for the marginal probabilities
(and hence for the throughput and the power consumption). Another important
aspect is the observation that the expression of mx and 7} in terms of (regular-
ized) Kummer’s confluent functions allows us to have a symbolic expression for
the stationary probabilities as shown in Fig.3a for K = 3.

One of the most important performance indices for a rate-control algorithm
is the throughput, i.e., the number of join performed by the station per unit
of time. In fact, by slowing down some servers we surely decrease the system’s
throughput. We are able to provide an analytical expression for the station’s
throughput that depends on the number of servers K and the service rate pu.

Lemma 4. The throughput X (u) of the model in steady-state is:
X KIHIM(K — K —j+2,]
) = KGK(+Z()((K K —j+2.)
(= DFIT MK — 5 K —j+2,j 1)

+U<—jMKﬁ”hﬂK—JJ(—j+1J)>4m

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join Stations 133

Proof. The proof is based on hypergeometric function manipulations.

In Tablel we show the analytical expression of the throughput for some
values of K.

Table 1. Analytical expression of the throughput for the FHW model with K severs.

K| Xk(p)
o | Aple—1)
K(2e —1)
3 u(e* —e+1)
K(1+ 3e2)
4 8u(2e® + 3¢ — 2)
K(4e3 + 6e? + 2e — 1)
5 25u(6e + 12¢® — 11e + 6)
2K (15e* 4 60e35e + 30E2 — 5e + 3)
6 611(24€” 4 120e” + 120e® — 40e? 4 53e — 24)
K (24€® + 180e* + 200e + 20e? + 9e — 4)
. 14711(40€° + 360e® + 600e* 4 100e® + 120e* — 103e + 40)

4K (210e8 + 2520e5 + 5250e* 4+ 2100e3 + 210e? — 77e + 30)

The numerical evaluations of both G and of Xk (1) rely on the computation
of the confluent hypergeometric function M(a,b, z) with parameters a € NT,
b € NT and b > a. Indeed, if a and b are non-negative integers, then the series
(3) converges for all finite x. In particular, for b > a, M(a, b, z) converges to [19]:

a—1
(1—-a) (—)k
b xT
M(a, b, x) (e > N Q*b)k

4 Numerical Evaluation

In this section we study the sensitivity of the throughput, the expected join-
queue length and the power consumption with respect to the distribution of
the service times. Then, we study the performance in terms of throughput and
energy consumption of the model implementing the rate-control algorithm under
the assumptions introduced in Sect. 3. We consider three important performance
indices: the system throughput, the expected join-queue lengths and the power
consumption. While for the first index Lemma 4 gives us its analytical expression,
for the latter two indices we rely on the stochastic simulation and on the bounded
approximation described in Sect. 4.1, respectively.

134 A. Marin and S. Rossi

4.1 The Power Consumption

Since our rate-control mechanism reduces the computation speed of the severs,
this can be interpreted as a reduction of the operating frequency leading to a
reduction of the overall server power consumption. Clearly, the minimum power
consumption with maximum throughput corresponds to a situation in which the
servers work at a constant maximum rate, but we have already discussed that
the drawback of this approach is the infinite growth of the join-queue length in
saturated models.

Under the assumptions of Sect.3 we know the analytical expression of the
marginal stationary distribution for each server (see Eq. (8) and Lemma 3).
This allows us to define a lower and upper bound of the energy consumption
by truncation of the probabilities. Given an integer E > 0, the expected power
consumption in steady-state Px is bounded by:

-1

E—-1
> mi(i)+ ; w;(i)ﬁ < Pg < 42 Tk ()

1=—F i=—F
E-1 o B-1 .
+ ; WK(Z)m +(1— Z;E T (7)),

where we have assumed that the sever at maximum speed consumes 1 unit of
energy for unit of time, and that the power consumption depends on the cube
of the operating frequency, i.e.:

—1 0o
Pr=Y W}((i)—k;w}(i)(ijl)g.

1=—00

Clearly, more accurate models of the relation between operating frequency and
power consumption can be considered, but this is out of the scope of this paper,
especially because this relation depends on the intrinsic characteristics of the
processors [20]. It is important to notice that with small values of E ~ 10 we
obtain tight bounds for the energy consumption as shown in Fig. 3c.

4.2 Sensitivity Analysis

The analytical model proposed in Sect.3 requires that the service times are
state dependent i.i.d. exponential random variables. Under this assumption, and
by considering a saturated model with immediate join, we proved the stability
of the process modelling the join-queue lengths. Clearly, we expect to find a
sensitivity of the performance indices on the distribution of the service times,
because it is its variance the cause of the join-queue length growth in the model
without the rate-control mechanism. Figures 3d—f show the three considered per-
formance indices for a saturated model with immediate join. The indices with
exact or approximated analytical expression have not been simulated, while the
others have been obtained via stochastic simulation. For each scenario we run

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join Stations 135
15 independent experiments and considered the confidence interval of 95 %. The
widths of the confidence intervals are all below 1% of the measure and are too
small to be visible in the plots. The warm up periods have been removed by
using the Welch’s method [24]. The service time distributions have mean 1 and
the Erlang 2 has a coefficient of variations of v/2/2 while the Hyper-Exponential
has a coefficient of variation of 1.31.

Marginal distribution

0.25
n m3(n) || n | m5(n) ﬁ =2 A
e-2 e 02 be— 10 /
32— | 1] 25— 2K =10 /
3e2 +1 3e2+1 K =15
015 |
o | 26=3 || 241 = 4
3e2 + 1 6e2 +2 ooa A
/
4
e—1 e+1 =
1| 2——1 3 — 0.05 -
3e2 +1 9e? +3 e
0
o | 2e=1 || 243 N
3¢ 1 7262 + 24 "

(a) Marginal distribution for K =3 (b) Plot of marginal distributions

Bounds on the power consumption Throughput vs. number of servers

0.66 - - - o 0.84 T T T T—r—
ower ’ yperz —— |
0.64 Uppor 1 0.82 Erlang2 —«—
0.62 4 0.8 Exponential ———
0.6 | =
0.58 1 =
O ES
B s 1 2
0.54 1 3
0.52 1
0.5 g
0.48
16
K K
(c) Bounds of the power consumption (d) Throughput as function of K with
p=1
Expected join-queue length vs. number of servers Power consumption vs. number of servers
7 T T T T T T 0.75 T T T T T T
= Hyper2 —+— Hyper2 ——
6 Erlang2 —— 4 0.7 Erlang2 —»— |
) Exponential ——— g Exponential ——»—
) | B
3 53
g 1 Z
g] 8
] 8
< 1 E
g | &
7
<]
16
K K

(e) Expected join-queue length as func-
tion of K with p=1

(f) Power consumption as function of K
with p =1

Fig. 3. Numerical evaluation.

136 A. Marin and S. Rossi

4.3 Performance of the Algorithm as Function
of the Number of Servers

In this section we focus on the saturated FHW model with immediate join
and study the impact of the number of servers K on the performance indices.
Figures 3d, e and f show the system’s throughput, the expected queue length for
the join-queues and the power consumption for each server when the maximum
service rate is u = 1. Notice that the expected queue length is for each server
and is obtained by stochastic simulation. We notice that while the throughput
decreases very slowly with the growth of the number of servers (e.g., for K = 150
servers we compute a throughput of 0.677), the expected join-queue lengths tend
to grow with the number of servers and hence for large models the benefits of the
rate-adaptation algorithm are lower. As for the power consumption, the power
consumption is significantly lower than the reference value of the model without
rate-control, 1. For instance for K = 6 the throughput is Xk (1) ~ 0.70 while
the power consumption Pg ~ 0.54.

5 Conclusion

In this paper we have proposed a rate-control mechanism for fork-join stations
designed to maintain the join-queue lengths finite in the long run, even when the
station is saturated. We observed that the variance in the service time distri-
bution causes an unbounded increase of the join-queue lengths. Informally, the
idea behind our rate-control mechanism is to reduce the operating speed of the
servers that have served more customers while maintaining at the maximum level
the speed of the other servers. Each server maintains a state variable which is
incremented at a local service completion event and is decremented at a service
completion event occurring at a neighbour server. The servers maintain their
maximum speed if the state variable is not positive, otherwise they reduce their
speed. This allows for both a control of the join-queue length and a reduction on
the system’s power consumption. However, we also observed a reduction in the
system’s throughput. Despite the few analytical results available for fork-join
stations, we have provided the analytical expression for the steady-state distri-
bution of the rate-control model and derived the marginal distributions for each
server and the system’s throughput under the FHW assumptions. The stationary
distributions and the performance indices are expressed in terms of Kummer’s
confluent hypergeometric functions which are evaluated at special points that
require the computations of finite sum. We resorted to the simulation for study-
ing the impact of the rate-control algorithm on stations with different service
time distributions and the experiments have supported the intuition that the
performance degrades with the increase of the variance in the service time dis-
tribution. The main strengths of the proposed mechanism are the easiness of
implementation, since the algorithm is basically stateless and does not require
nor the estimation of the jobs’ service times as in [20], neither the knowledge

Dynamic Control of the Join-Queue Lengths in Saturated Fork-Join Stations 137

of the service time distributions as in [22,23], and the effectiveness in drasti-
cally reducing the expected join-queue lengths with respect to the models not
implementing any rate-control mechanism for the servers.

With respect to a solution which addresses the problem of containing the
join-queue length based on a rate adaptation mechanism that considers for each
server its associated join-queue length, our approach has the advantage that
its implementation is independent of the system’s parameters since it aims at
balancing the total work performed by each server. Conversely, the join-queues
may be long because the join operation’s rate is close to the system’s throughput
and hence considering only its instantaneous state for deciding the service rate
can be counter-productive.

Future work includes the derivation of the analytical expression for other
performance indices in the case of the saturated FHW model. Moreover, we aim
at introducing a parameterisation of the algorithm so that we can control the
servers’ speed more accurately, e.g., by reducing the service rate for positive
states n by an + 1, where 0 < o < 1 is a parameter that regulates the trade-off
between the throughput and the expected join-queue length. However, at the
moment, no analytical solution for such a model is known.

References

1. Baccelli, F., Makowski, M.A.: Queueing models for systems with synchronization
constraints. Proc. IEEE 77(1), 138-161 (1989)

2. Baccelli, F., Liu, Z.: On the execution of parallel programs on multiprocessor sys-
tems: a queuing theory approach. J. ACM 37(2), 373-414 (1990)

3. Baccelli, F., Massey, W.A., Towsley, D.: Acyclic fork-join queuing networks.
J. ACM 36(3), 615-642 (1989)

4. Bruell, S.C., Balbo, G., Afshari, P.V.: Mean value analysis of mixed, multiple class
BCMP networks with load dependent service stations. Perform. Eval. 4, 241-260
(1984)

5. Buzen, J.P.: Computational algorithms for closed queueing networks with expo-
nential servers. Commun. ACM 16(9), 527-531 (1973)

6. Casale, G.: A generalized method of moments for closed queueing networks. Per-
form. Eval. 68(2), 180-200 (2011)

7. Fiorini, P.M., Lipsky, L.: Exact analysis of some split-merge queues. SIGMETRICS
Perform. Eval. Rev. 43(2), 51-53 (2015)

8. Flatto, L., Hahn, S.: Two parallel queues created by arrivals with two demands.
SIAM J. Appl. Math. 44(5), 1041-1053 (1984)

9. Heidelberger, P., Trivedi, K.: Analytic queueing models for programs with internal
concurrency. IEEE Trans. Comput. C-32, 73-82 (1983)

10. Hoekstra, G.J., van der Mei, R.D., Bhulai, S.: Optimal job splitting in parallel
processor sharing queues. Stoch. Models 28, 144-166 (2012)

11. Kelly, F.: Reversibility and Stochastic Networks. Wiley, New York (1979)

12. Lebrecht, A.S., Dingle, N.J., Knottenbelt, W.J.: Modelling zoned RAID systems
using fork-join queueing simulation. In: Bradley, J.T. (ed.) EPEW 2009. LNCS,
vol. 5652, pp. 16-29. Springer, Heidelberg (2009)

13. Lu, H., Pang, G.: Gaussian limits for a fork-join network with nonexchangeable
synchronization in heavy traffic. Math. Oper. Res. 41(2), 560-595 (2016)

138

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Marin and S. Rossi

Marin, A., Rossi, S.: On discrete time reversibility modulo state renaming and its
applications. In: 8th International Conference on Performance Evaluation Method-
ologies and Tools, VALUETOOLS, pp. 1-8 (2014)

Marin, A., Rossi, S.: On the relations between lumpability and reversibility. In:
Proceedings of the IEEE 22nd International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS 2014),
pp. 427-432 (2014)

Marin, A., Rossi, S.: On the relations between Markov chain lumpability and
reversibility. Acta Inform. 1-39 (2016)

Nelson, R., Tantawi, A.N.: Approximate analysis of fork/join synchronization in
parallel queues. IEEE Trans. Comput. 37(6), 739-743 (1986)

Nguyen, V.: Processing networks with parallel and sequential tasks: heavy traffic
analysis and Browinian limits. Ann. Appl. Probab. 3(1), 28-55 (1993)

Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Math-
ematical Functions, 1st edn. Cambridge University Press, New York (2010)
Rauber, T., Riinger, G.: Energy-aware execution of fork-join-based task paral-
lelism. In: Proceedings of the 20th IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, (MAS-
COTS), pp. 231-240 (2012)

Towsley, D., Romel, G., Astankovic, J.: Analysis of fork-join program response
times on multiprocessors. IEEE Trans. Parallel Distrib. Syst. 1(3), 286-303 (1990)
Tsimashenka, 1., Knottenbelt, W., Harrison, P.G.: Controlling variability in split-
merge systems. In: Al-Begain, K., Fiems, D., Vincent, J.-M. (eds.) ASMTA 2012.
LNCS, vol. 7314, pp. 165-177. Springer, Heidelberg (2012)

Tsimashenka, I., Knottenbelt, W.J., Harrison, P.G.: Controlling variability in split-
merge systems and its impact on performance. Ann. Oper. Res. 239(2), 569-588
(2016)

Welch, P.D.: On the problem of the initial transient in steady-state simulations.
Technical report, IBM Watson Research Center, Yorktown Heights, NY (1981)
Wright, P.E.: Two parallel processors with coupled inputs. Adv. Appl. Probab. 24,
986-1007 (1992)

Moment-Based Probabilistic Prediction of Bike
Availability for Bike-Sharing Systems

Cheng Feng®), Jane Hillston, and Daniél Reijsbergen

LFCS, School of Informatics, University of Edinburgh, Scotland, UK
511098730@sms.ed.ac.uk, jane.hillston@ed.ac.uk, dreijsbe@inf.ed.ac.uk

Abstract. We study the problem of future bike availability prediction
of a bike station through the moment analysis of a PCTMC model with
time-dependent rates. Given a target station for prediction, the moments
of the number of available bikes in the station at a future time can be
derived by a set of moment equations with an initial set-up given by
the snapshot of the current state of all stations in the system. A directed
contribution graph with contribution propagation method is proposed to
prune the PCTMC to make it only contain stations which have significant
contribution to the journey flows to the target station. The underlying
probability distribution of the available number of bikes is reconstructed
through the maximum entropy approach based on the derived moments.
The model is parametrized using historical data from Santander Cycles,
the bike-sharing system in London. In the experiments, we show our
model outperforms the classic time-inhomogeneous queueing model on
several performance metrics for bike availability prediction.

Keywords: Availability prediction - PCTMC models + Moment
analysis + Maximum entropy reconstruction

1 Introduction

In recent years, we have seen significant growth of bike-sharing programs all over
the world [1]. Public bike-sharing systems have been launched in many major
cities such as London, Paris, and Vienna. Indeed, they have become an impor-
tant part of urban transportation which provides improved connectivity to other
modes of public transit. The concept of bike-sharing systems is rather simple:
the system consists of a number of bike stations distributed over a geographic
area (city). Each station is equipped with a limited number of bike slots in which
public bikes can be parked. When users arrive at a station, they pick up a bike,
use it for a while, and then return it to another station of their choice.

With the increasing popularity of the smart transport theme, there has been
great interest from the research community in the intelligent management of
bike-sharing systems. Topics include, but are not limited to, policy design [2,3],
intelligent bike redistribution [4-6], and user journey planning [7,8]. The focus
of this paper is on the probabilistic prediction of the number of available bikes in
© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 139-155, 2016.
DOI: 10.1007/978-3-319-43425-4_9

140 C. Feng et al.

stations. Having a predictive model is of vital interest to both the user and the
system administrator. The user can use it to identify likely origin/destination
stations for which a trip can be successfully made. System administrators can
use the model to undertake service level agreement checking, and plan bike
redistribution for stations which are likely to break the service level requirement.

In this paper we present a novel moment-based prediction model that can
provide probabilistic forecasts for the number of available bikes in a bike sta-
tion. By representing the bike-sharing system as a Population Continuous Time
Markov Chain (PCTMC) with time-dependent rates, our model is explanatory
as the dynamics of the system is explicitly given. Gast et al. [8] show the bene-
fits of predicting (forecasting) the entire probability distributions of possible bike
availabilities in a station, compared with previous models that were only able
to produce point estimates, often using time-series-based techniques [7,9,10].
However, unlike [8], in which all the considered forecasting methods worked on
the level of isolated stations, our model also captures the journey dynamics
between stations. Guenther and Bradley [11] also provide a inhomogeneous-time
PCTMC model with time-dependent rates for bike availability prediction, how-
ever there are several key differences between that model and ours. Firstly, our
model provides the full probability distribution of the number of available bikes
in a station whereas their model only provides a point estimate. Secondly, we use
a model reduction method to prune our PCTMC such that the significant jour-
ney dynamics with respect to the target station are guaranteed to be preserved.
However, their model aggregates stations which are spatially close, assuming
that they have similar journey durations to the target station, which causes the
information about the emptiness and fullness of stations to be lost.

We summarize the contribution of our paper as follows. Firstly, a novel
PCTMC model with time-dependent rates is presented to successfully capture
the journey dynamics between bike stations. Secondly, we propose a novel model
reduction technique to prune the PCTMC model based on the directed contri-
bution graph with a contribution propagation method for a given target station
for bike availability prediction. Finally, we reconstruct the underlying proba-
bility distribution of the number of available bikes in the target station using
the maximum entropy principle based on a few moments generated from fluid
approximation of the PCTMC, and show that the model has a better perfor-
mance on a set of metrics for bike availability prediction compared with the
classic Markov single-station queueing model.

The rest of this paper is structured as follows. We briefly introduce the con-
cepts of PCTMC with time-dependent rates in the next section. Section 3 gives
the introduction of the classic Markov queueing model for bike availability pre-
diction. In Sect. 4, we present our PCTMC model for the bike-sharing scenario.
In the next section we show how to reconstruct the probability distribution
of number of available bikes using the maximum entropy approach. Section 6
presents the experimental results of our model on the London bike-sharing sys-
tem compared with the classic Markov queueing model. Finally, Sect. 7 discusses
possible extensions of our model and draws final conclusions.

Moment-Based Probabilistic Prediction of Bike Availability 141

2 PCTMC with Time-Dependent Rates

A PCTMC is a stochastic process which consists of a number of distinct agent
populations and a set of transition classes. The state of a PCTMC is captured
by an integer vector counting the number of each agent type. The model evolves
with the firing of transitions. When a transition fires, one or more agent pop-
ulations are updated. Each transition is associated with a rate function, which
assigns a rate governed by an exponential distribution to the transition based
on the current state of the PCTMC. In this paper, we specifically consider time-
inhomogeneous PCTMCs, in which transition rates can also be time-dependent.
Specifically, a PCTMC with time-dependent rates can be expressed as a tuple
P =(X(t),7,Xo):

= X(t) = (X1(t), ..., Xn(t)) € ZL is an integer vector with the ith (1 <7 <n)
component representing the current number of an agent type S;.
— T ={71,..., T} is the set of transition classes, of the form 7 = (r,(X,t),d,),

1. r(X,t) € R > 0 is a time-dependent rate function, associating with each
transition the rate of an exponential distribution, depending on the state
of the PCTMC X as well as the current time ¢.

2. d, € Z" is the update vector which gives the net change for each element
of X caused by transition 7.

- Xg € Z%, is the initial state of the model.

Transition rules can be easily expressed in the chemical reaction style, as
05 +...+L,S, —~ 0,51 +...+4¢,S, atrate T+ (X, 1)

where the net change of agents of type S; due to transition 7 is

given by d. = 4 — ¢ (1 < i < mn), and the transition rate is
r- (X, 1) itX,>¢, Vi=1,2....n
0 otherwise.

As the state space of PCTMC models is often very large or even infinite,
numerical techniques traditionally used for performance analysis, based on a
Markovian approach, are entirely infeasible. Stochastic simulation is feasible,
but deriving useful metrics such as mean, variance, probability distribution
of populations often requires a large number of simulation runs, thus making
this approach extremely costly in terms of computational resources, particularly
when estimating full probability distributions over large state spaces. In this
paper, we will adopt a much more computationally efficient approach to analyse
the PCTMC for the bike-sharing model. Specifically, we approximate the evolu-
tion of the moments of the underlying population-level stochastic process of a
PCTMC model by the following set of ODEs [12]:

iE[M(X(lﬁ))] = > E[(M(X(t) +dr) — M(X(1)))r+ (X, 1)] (2.1)

d¢ TeT

142 C. Feng et al.

where M (X) denotes the moment to be calculated. For instance, by substitut-
ing M(X) with X;, X; and XiX;, we get the set of ODEs to describe the
first moment, second moment and second-order joint moment respectively, of
population variables in an arbitrary PCTMC model. The set of ODEs can be
directly solved by numerical simulation as long as there is no transition rate
in the PCTMC with non-linear polynomials. With time-dependent rates, the
system becomes hybrid with discrete jumps of rates at some specific points of
numerical simulation.

3 Markov Queueing Model

Before introducing our model, we first give the traditional Markov queueing
model for bike stations which is going to serve as our comparator.

The most straightforward way to evaluate the behaviour of a station is
to analyse it in isolation. In this case, a station can be modelled as a time-
inhomogeneous Markov queue M/M/1/k;, illustrated in Fig. 1.

Ai(t) Ai(t) Ai(t) Ai(t)
e
i (t) i (t) pi(t) i (t)

Fig. 1. The time-inhomogeneous Markov queue for station 4

Specifically, k; denotes the capacity of a station ¢, A;(¢) and p,(t) are the
time-dependent bike arrival and pickup rates of station i at time ¢ of a day.
Usually, the time of a day is split into n even slots.

Then, using the transition rate matrix for station i: Q(\;(t), ui(t)), where

—H Y
A =(p+A) p
A =(p+A) p
A =

one can predict the probability that there are y bikes in station i at time t + h
given the station has x bikes at time ¢, by the following equation:

h
Pr(y | z,t,h) = exp (/ Q(t+ s)ds)
0 T,y
where exp(M),,, is the element at row & and column y of the matrix exponential

of M. Such a model has been used to make bike availability or station inventory
level predictions in several papers in the literature (e.g. [6,8,13]).

Moment-Based Probabilistic Prediction of Bike Availability 143

Two assumptions are made in this model. First, the bike arrivals and pickups
at stations form Poisson processes. Second, the state of a particular station
does not depend on the state of the others. The first assumption is successfully
validated for busy stations in [8], using historical data from the Velib bike-sharing
system in Paris. However, we conjecture that the second assumption is generally
not true in practice. For example, when a station is empty, no bikes can depart
from it, therefore the arrival rate at other stations should be reduced. Hence,
we seek a more realistic model, which captures the journey dynamics between
stations.

4 PCTMC of Bike-Sharing Model

4.1 A Naive PCTMC Model

To faithfully represent the journey dynamics between bike stations in a bike-
sharing system with N stations, we first propose a naive PCTMC model which
contains the following transitions:

Bike; — Slot; + Journey;:@lﬁ at ui(t)p§ (t) Vi,j € (1,N)
Journey;QP, — Journey;@QP 1 at (P} /d}) #(Journey;QP)

I>1AL< P}, Vi,j€(1,N)
Journeyji-@PP; + Slot; — Bike; at (Pj/d}) #(Journeyé@PP];) Vi,j € (1,N)

where Bike;, Slot; represent a bike and a slot agent in station i respectively;
J ourneyé@ﬂ represents a bike agent which is currently on a journey from station
i to station j at phase [. Note that since journey durations are generally not
exponentially distributed, we fit the journey duration from station i to station j
as an Erlang distribution with P; phases each with rate P; / d;-, where d; is the
mean journey duration. p;(t) is the bike pickup rate in station ¢ at time ¢, pj» is
the probability that a journey will end at station j given that it started from
station ¢ at time t. #(.5) denotes the population of an agent type S.

Obviously, the above model is not scalable. Since the total number of bike
stations N is usually very large (for example there are around 750 bike stations
in London), it is computationally infeasible to analyse a model which captures
the full set of bike stations. Fortunately, since we are only interested in the
prediction of bike availability of a single target station at a time, we only need
to model stations which have a significant contribution to the journey flows
to the target station (knowing the state of a station which has a very small
contribution to the journey flows to the target station will have negligible impact
on the accuracy of bike availability prediction for the target station). Thus, a
directed contribution graph together with a contribution propagation method is
proposed to automatically identify the set of stations which need to be modelled
with respect to a given target station for bike availability prediction.

144 C. Feng et al.

4.2 Directed Contribution Graph with Contribution Propagation

Here, we show how to derive a set of bike stations ©(v) in which all stations
have a significant contribution to the journey flows to a given target station
v € (1,2,...,N) for bike availability prediction. Concretely, we first need a
way to quantify the contribution of one station to the journey flows to another
station. Specifically, we let C;; denote the contribution coefficient of station j to
station ¢ which quantifies the contribution of station j to the journey flows to
station q.

One station can contribute to the journey flows to another station both
directly and indirectly. The definition of a direct contribution coefficient at time
t is given by the following simple formula:

cij(t) = X () /Ni(t)

in which)\f (t) represents the bike arrival rate from station j to station ¢ at time
tand Ai(t) =3, A (t). Then, it is clear that c;;(t) € [0,1], 0 < >4 Gij(t) < 1.

With the definition of directed contribution coefficient, we can construct a
directed contribution graph for the bike-sharing system at each time slot of a
day. The definition of the directed contribution graph is given as follows (for
convenience, we abbreviate ¢;;(t) to ¢;;):

Definition 1. For an arbitrary time t, the directed contribution graph for a
bike-sharing system at time t is a graph in which nodes represent the stations in
the system, and there is a weighted directed edge from node i to node j if c;; > 0,
and in this case the weight of the edge is c;;. Thus, the direction of edges is the
tnwverse of contribution flows.

Figure 2 shows a sample directed contribution graph which consists of six bike
stations.

Fig. 2. An example directed contribution graph with six stations

For those stations which are not directly connected in the directed relation
graph, by using a contribution propagation method, we can evaluate the indirect

Moment-Based Probabilistic Prediction of Bike Availability 145

contribution coefficient of one station on the journey flows to another station.
Specifically, the indirect contribution coefficient is quantified by a path depen-
dent coefficient c¢;; ., which is the product of the direct contribution coeflicients
along an acyclic path « from node i to node j. Then, the contribution coefficient
of station j to station ¢ is characterized by the maximum of the path dependent
coefficients:

Cijy = H Ckl
kley

all paths v

max ¢;j if there exists a path from nodeito node j
Ci; =

0, otherwise

For example, according to Fig.2, the contribution coefficient of station j to
station i is Cij = Cik X Clm X Cmyj = 0.504, since cii X Cim X Cmj > Cin X Cni X €15 >
Cin X Cnl X Clkg X Ckm, X Cmj-

With the contribution coefficient, given a target station v, then for i €
(1,2,...,N), we can infer:

i€ O() if Cp; >0

where @ € (0,1) is threshold value which can be used to control the extent of
model reduction. A point to note is that we choose to characterize contribu-
tion coefficients by the maximum instead of the sum of path dependent coeffi-
cients because we only want to model stations which have at least a significant
(direct or indirect) journey flow to the target station. To model stations which
have many small journey flows to the target station is costly but the impact is
rather unpredictable. Moreover, the maximum of path dependent coefficients has
another nice property that if ¢ € ©(v) and Cy; = ¢y, then for a station j which
is on the path 7, it is certain that C,; > 6, thus j € ©(v). As a result, for all
stations which have a significant journey flow to the target station, that journey
flow will certainly be captured in the resulting reduced PCTMC. However, this
property will not be preserved if we use the sum of path dependent coefficients.
For example in Fig.2, if we set § = 0.55, then > c¢;;, > 6, thus station j is
included in the reduced PCTMC. However, since zi cit,y < 0, station [will not
be included, thus 3 ¢;;, < 6 will not be satisfied in the reduced PCTMC.

As an illustration of the extent of model reduction, Fig. 3 shows the empirical
cumulative distribution function of contribution coeflicients between all bike
stations during all time slots (which is computed by journey data from the
London Santander Bike-sharing system, with 20 min slot duration). It can be
seen that more than 96 % stations can be excluded even if 6 is set to the small
value 0.01.

4.3 The Reduced PCTMC Model

Given a target station v and current time ¢, suppose we are interested in the
number of bikes at the station at time ¢ 4 h, then let s = (s1, 82, ..., 8,) be the

146 C. Feng et al.

Empirical CDF of contribution coefficients

Fig.3. The empirical cumulative distribution function of contribution coefficients
(z is the value of contribution coefficients)

minimal set of time slots which covers [t,¢ 4+ h], we obtain O(v) = O(v,s1) U
O(v,s2)U...UB(v, s,) Uv, where O(v, s;) is the set of bike stations which have
significant contribution to the journey flows to the target station at time slot s;.

Therefore, the PCTMC for the prediction of bike availability at station v at
time t 4+ h can be represented as follows:

Bike; — Slot; at p;(t) (1 — Z P} (t)) Vi € O(v) (4.1)
j¢@(v)\/cji§0
Slot; — Bike; at Y M(t) Vi € O(v) (4.2)
J¢O(v)Vei; <0

Bike; — Slot; + Journeyé@Pl at pi(t)pj- (t) Vi,jeOw)Acj >0 (4.3)
Journey;-@Pl — Journey?@PlH at (P;/d;) #(Journeyé@Pl)
I>1ANL<P}Vi,j€O)Acj; >0 (4.4)
Slot; + Journey;-@Pp; — Bike; at (P;/d;) #(Journey;- QPp:i)
Vi, j € @(’U) A cj; > 0 (4.5)
Journey;@Pp; — @ at 1(Slot;(t) =0) (P;/d;) #(Journey}@Pp;')
J J
VZ,] € @(’U) N Cji > 0 (46)
where (4.1) represents a bike in station i is picked up for a journey to a station
outside O(v) or a station to which the journey flow is negligible (the direct
contribution coefficient cj; < 6 indicates that journey flow from 7 to j must not

be a significant journey flow); (4.2) represents a bike is returned to station ¢ from
a station outside ©(v) or a station from which the journey flow is negligible;

Moment-Based Probabilistic Prediction of Bike Availability 147

(4.3) represents a bike in station ¢ is picked up for a journey to a station j
inside ©(v) and the journey flow is significant; (4.4), (4.5) represent progress
and completion of the journey, respectively; (4.6) assumes a bike in transit from
station 7 to station j will be returned to another station outside ©(v) when there
is no empty slot in station j, where 1(Slot;(t) = 0) is an indicator function which
returns 1 when the number of empty slots at station j at time ¢ is zero, otherwise
returns 0.

Dealing with Indicator Function. Since we are going to numerically solve the
PCTMC using moment ODEs as illustrated in Eq. (2.1), we can only access the
moments of the number of empty slots at a station ¢ at time ¢, denoted as u}",
during numerical simulation (here we let u* denote E[(Sloti(t))m], where m is
the order of the moment), whereas the number of empty slots at station ¢ at
time ¢ is a random variable. Thus, we propose a method to approximate the
indicator function by a function of the moments u]" of the number of empty
slots and the capacity of the station: 1(Slot;(t) = 0) ~ f(ul,u?, ..., ul" k;).
Concretely, given the first m moments of the random variable Slot;(t), and
the value domain Slot;(t) € [0,1,...,k;], we can approximate the probability
distribution of Slot;(t) by a discrete distribution with finite support k;. For
example, if we only know the first moment of Slot;(t) (which is u}), we can
fit a binomial distribution Slot;(t) ~ Binomial(k;,u}/k;) to the probability
distribution of Slot;(t). In this case, we get Pr(Slot;(t) = 0) = (1 — u}/k;)*.
Furthermore, if we know the first two moments (u}, u?), then we can fit a beta-
binomial distribution Slot;(t) ~ BetaBinomial(k;, o, 3), where

B utu? — ki(u})? (ki — ul)(kju} — u?)
ki(u))? + kg = kud — (uf)? kiui)? + kiug — kuf — (u;)?

1,

8=

Thus, we get
B(a, k‘i + 5)

B(e,)
where B(a,b) is a beta function. Theoretically, with knowledge of more moments
of Slot;(t), the estimation of Pr(Slot;(t) = 0) will be more accurate. Finally, we
let

Pr(Slot;(t) = 0) =

1 if Pr(Slot;(t) =
1(Slot;(t) = 0) = if Pr(Stoty(t) = 0) >

0 if Pr(Slot;(t) =0)<p
where Pr(Slot;(t) = 0) = f(u},u?,...,u" k;), p is a threshold value beyond
which we believe the number of empty slots in station i is zero. In general p

should be set to a value close to 1. In our later experiments, we explicitly set
p=0.9.

Specifying the Initial State. Given a snapshot of the bike-sharing system at a
time instant ¢ which contains the following information!:

Bike;(t),...,Sloty(t),..., Journey'(t, At),. ..

! This information is actually recorded for the London bike-sharing system.

148 C. Feng et al.

where Bike;(t) and Slot;(t) are the current number of available bikes and empty
slots at a station i; Journey'(t, At) represents there is a bike currently en
route from station 4, and the journey started at time t — At. Then, for each
Journey'(t, At), we use a random number to determine the destination of the
journey, and the time At to determine the appropriate phase of the journey
time. Thus we generate a random number « uniformly distributed in (0,1), and
let pt (t — At),Vk be the probability that the journey will end at station k given
that the journey started from station ¢ at time t — At. Then

Journey'(t, At) = Journey] (t, At) if @ > Z (t—At) and o < Zpk (t— At).
—0 k=0

Furthermore, we let
Journey;- (t, At) = Journey;-@Pl if At > (I — 1)d§-/P; and At < x d;-/P;

where [< PJ. Otherwise, if [> P}, we let Journey!(t, At) = Journeyé@PP;.

Solving the Moment ODEs. We derive the moment ODEs following Eq. (2.1) for
the above PCTMC for the first m order of moments. Furthermore, using the
correlation heuristics introduced in [14], we can make a further reduction on the
size of the moment ODEs, utilizing the neighbourhood relation between agents in
the above PCTMC. Specifically, we let E[(X;)™ (X;)™] =~ E[(X;)™]E[(X;)™]
if there does not exist a transition in the PCTMC in which both agent S; and S;
are directly involved. Due to limited space, we refer to [14] for more detail of the
reduction algorithm. The moment ODEs can be solved by numerical simulation
using standard methods.

5 Reconstructing the Probability Distribution Using
the Maximum Entropy Approach

From the moment analysis of the PCTMC for bike-sharing model, we gain the
first m moments of the number of available bikes in the target station at the
prediction time t+h, i.e. ((Bikev (t+h)) ! (Bik:ev(t—i—h))2 (sz:ev(t—&—h))m)

which we denote as (u',u?,...,u™) in the following. Our goal is to predict the

probability that the station has a specific number of bikes at time ¢ + h. This
means the problem is to reveal Pr (Bikev (t+h)=1d|u'u? ... ,um, kv), where

€ (1,2,...,k,). Therefore, we need to reconstruct the entire probability distri-
bution of the random variable Bike,(t + h) based on its first m moments. The
corresponding distribution is generally not uniquely determined. Hence, to select
a particular distribution, we apply the maximum entropy principle to minimize
the amount of bias in the reconstruction process. In this way, we assume the
least amount of prior information about the true distribution. Note that the
maximum entropy approach has been successfully applied to reconstruct distri-
butions based on moments in many areas, e.g. physics [15], stochastic chemical
kinetics [16], and performance analysis [17].

Moment-Based Probabilistic Prediction of Bike Availability 149

5.1 Reconstruction Algorithm

Let X, denote Bike, (t+h) for convenience, G be the set of all possible probability
distributions for X,. Then, based on the maximum entropy principle, the goal
is to select a distribution g to maximize the entropy H(g) over all distributions
in G. The problem can be denoted as follows:

arg max H = ar max) In
gmax H(g) = arg Zg g(x

Furthermore, given (u!,u?,...,u™), we know the following constraints should

be satisfied: i
Zx”g(x) =u", n=0,1,...,m
=0

where 4’ = 1 to ensure that g is a probability distribution. Now, the prob-
lem becomes a constrained optimization program. Thus to perform the con-
strained maximization of the entropy, we introduce one Lagrange multiplier A\,
per moment constraint. We thus seek extrema of the Lagrangian functional:

ko
Zg YIng(zx Z)\,L(Zx"g(x) —u”)
n=0 =0

Functional variation with respect to the unknown distribution function g(x)

yields:
oL “
=0 — g(x):exp(—l—)\o—Z)\nx">
99(x) —=

Since u’ = 1, we get

Zexp(—l—)\o—f:)\nx) =1.

Thus we can express \g in terms of the remaining Lagrange multipliers

ky m
ettho = Zexp (— Z)\ngc”> =7
=0 n=1

Then, the general form of g(x) can be given as follows:

g(x) = exp(Z)\ x)

Insert the preceding equation into the Lagrangian, we can then transform the
problem into an unconstrained minimization problem of the following function
with respect to variables A1, Ao, ..., Ayt

F(A Az,) =InZ+) Au”

150 C. Feng et al.

The convexity of the function I is proved in [15], which guarantees the existence
of a unique solution. Thus, a close approximation (A}, A3,..., %) of the true
solution can be obtained by the classic gradient descent approach [18].

Thus, after finding (A}, A\5,..., A¥) through gradient descent, we can finally
predict

6 Experiments

In this section, we test the time cost and accuracy of our prediction model in
different cases and compare the accuracy of our model with the classic Markov
queueing model. We use the historic journey data and bike availability data from
January 2015 to March 2015 from the London Santander Cycles Hire scheme to
train our PCTMC model as well as the Markov queueing model, and the data
in April 2015 to test their prediction accuracy. As in [11], we fit the number
of journey phases between stations using the HyperStar tool [19] command line
interface. Specifically, we set the maximum value of Pj to 20 to make our model
compact and also avoid overfitting. Moreover, for parameters estimation, we split
a day into slots of 20 min duration. In our experiments, given the bike availability
in a station at time ¢, we predict the probability distribution of the number of
available bikes in that station at time ¢ + h, where h is set to 10 min for short
range prediction and 40 min for long range prediction.

The evaluation of our model is twofold. The first is accuracy, the second is
efficiency. These two aspects are both influenced by the value of two important
parameters, namely m, the highest order of moments being derived, and 6, the
coefficient threshold for the identification of bike stations which have significant
contribution to the journey flow to the target station. For higher values of m, the
solution cost of our model becomes larger since more moment ODEs are derived,
however the model should become more accurate due to more constraints in the
probability distribution reconstruction based on the maximum entropy principle.
For higher values of 6, more stations are excluded in the reduced PCTMC for
a target station whereas the model accuracy can be potentially reduced. Thus,
to observe the effects on these two parameters, we do experiments with values
m=1,2,3, 6 =0.01,0.02,0.03.

6.1 Root Mean Square Error

For prediction accuracy, we first consider the classic criterion based on root
mean square error (RMSE), a commonly used metric for evaluating point
predictions (i.e., predictions that only state the expected number of bikes).

Moment-Based Probabilistic Prediction of Bike Availability 151

Table 1. The calculated RMSE on the prediction of the number of available bikes

10 min | 40 min

Markov queueing model | 1.52 3.03
PCTMC with 6 =0.03 |1.49 2.81 m=1,2,3
PCTMC with 6 =0.02 |1.49 281 |m=1,2,3
PCTMC with 6 =0.01 [1.48 279 |m=1,2,3

Table 1 compares the RMSE of the prediction results of our PCTMC model with
the Markov queueing model. As can be seen, the PCTMC model outperforms the
Markov queueing model in both prediction ranges. Especially in the long range,
a considerable improvement is observed. For the PCTMC models, smaller values
of 6 only reduce the RMSE slightly. This means capturing less significant journey
flows will have little impact on the prediction accuracy. Moreover, we find that the
derived highest moments have almost no impact on the RMSE. This is obvious
since the expected number of available bikes is only decided by the first moment.

6.2 Probability of Making a Right Recommendation

Predicting the expected number of available bikes is important for system admin-
istrators when they want to decide how to redistribute bikes in the system. How-
ever, a user is interested in whether there is a bike in the target station when
she wants to pick up a bike from there, or whether there is a free slot in the
target station when she wants to return a bike to that station. We are specifically
interested in being able to make correct recommendations for the queries “Will
there be a bike?” and “Will there be a slot?”? to measure the accuracy of our
model. Specifically, for the “Will there be a bike?” query, we respond “Yes” if
the predicted probability of that station having more than one bike is greater
than 0.8, and respond “No” if the predicted probability of that station having
more than one bike is less than 0.8. As is argued in [8], the root mean square
error is not an appropriate evaluation metric in this setting. After all, we need
a prediction of the probability of the recommendation being correct rather than
just a point estimate of the number of available bikes/slots. Instead, a suitable
evaluation scheme is proposed in [8] that ensures that the best prediction algo-
rithm can always be expected to obtain the highest score. Such a scheme is called
a proper scoring rule. For the setting described above, the following scoring rule
is proper:

1 if Pr(X, >0)>08Az, >0
— if Pr(X, >0)>08Az,=0
Score =
if Pr(X, >0)<08Az,=0
-1 if Pr(X, >0)<08Az, >0

2 These queries can be readily extended to “Will there be n bikes?” and “Will there
be n slots?”.

152 C. Feng et al.

Table 2. Average score of making a recommendation to the “Will there be a bike?”
query with 95 % confidence interval

10 min 40 min

Markov queueing model | 0.9 £ 0.05 | 0.87 £ 0.06
PCTMC with § =0.03 |0.914+0.04 0.89£0.05| m =2
0.92+0.04/0.91+0.04 m=3
PCTMC with § =0.02 |0.914+0.04 0.89£0.05| m =2
0.92+0.04/0.91+0.04 m=3
PCTMC with § =0.01 |0.924+0.04 | 0.89 & 0.05
0.93 +0.04 | 0.91 +0.04

3
|

3

Table 3. Average score of making a recommendation to the “Will there be a slot?”
query with 95 % confidence interval

10 min 40 min
Markov queueing model | 0.91 4+ 0.04 | 0.88 £ 0.05
PCTMC with § =0.03 [0.91£0.04| 0.94+0.05
0.92+£0.04|/0.91+£0.04 | m =3
PCTMC with § =0.02 [0.91+£0.04| 094+0.05m=2
0.92+£0.04|/0.91+£0.04 | m =3
PCTMC with § =0.01 |0.92+0.04|0.91+0.05| m =2
0.934+0.040.92+0.04 | m =

3
\

Note that incorrect predictions need to be penalised by a negative score for the
rule to be proper. The evaluation of recommendations to the “Will there be
a slot?” query follows a similar pattern. Tables2 and 3 show the experimental
results for different models and parameters. Note that the PCTMC model with
m = 1 is excluded since at least two moments are needed to make a meaningful
reconstruction of the probability distribution. As can be seen from the tables, the
PCTMC model clearly has a better performance in making such recommenda-
tions. Moreover, we also observe that with higher values of m, the average score
increases. This is because, with higher values of m, the reconstructed probability
distribution is closer to the true distribution.

6.3 Time Cost

The time cost of making a prediction is also important. Table4 shows the time
cost for making a prediction using our PCTMC model with different parame-
ters (we do not show the time costs for the Markov queueing model since they
are negligible due to its small state space because of independence assumption).
For real time application, we assume that the time cost of making a prediction
must be less than one second. Thus, for point prediction, we recommend to set

Moment-Based Probabilistic Prediction of Bike Availability 153

Table 4. Time cost to make a prediction with 95 % confidence interval

10 min 40 min
PCTMC with § =0.03|1.76 = 0.2ms | 6.98 £ 0.77ms
103 £ 13.7ms | 328 =+ 43 ms
2.2+0.2s 8.9+0.83s
PCTMC with § = 0.02 |4.25+ 0.4ms | 15.72 + 1.42ms
251 +£25.5ms | 1.1£0.1s
89+1.2s 37£3.5s
PCTMC with 6 =0.01|13.54+0.9ms |49.1 £ 3.92ms
8.8£1.1s 30.1+0.31s
33.9+5.4s 157 £17.8s

3|S|3|8|8|8|8|8|3
|
w| |~ w l\‘J =~

0 = 0.01,m = 1 for both prediction ranges. For probability distribution pre-
diction, we recommend to set # = 0.02,m = 2 for short range prediction,
0 = 0.03,m = 2 for long range prediction. Note that we used an Intel CORE i7
laptop with 8 GB RAM to run our experiments, the time cost could be consid-
erably reduced if a more powerful machine, e.g. a server, were used.

7 Conclusion

We have presented a moment-based approach to make predictions of availabil-
ity in bike-sharing systems. The moments of the number of available bikes are
automatically derived via a PCTMC with time-inhomogeneous rates, fitted from
historical data. The entire probability distribution is reconstructed using a max-
imum entropy approach. Our model is easy to understand since it explicitly
captures the dynamics of the bike-sharing system. We demonstrated that it out-
performs the classic Markov queueing model in several performance metrics for
prediction accuracy. Moreover we have also shown that by using the direct con-
tribution graph and the contribution propagation method, the model size can be
significantly reduced to such an extent that it is suitable for real time application.

In future work we plan to explore the impact of neighbouring stations, and
extend our model to capture their effects. For example, if a station is empty, then
the user is likely to pick up a bike from a neighbouring station, thus increasing
the pickup rate at the neighbouring station. Conversely, if a station is full, then
the user is likely to return a bike to a neighbouring station, increasing the bike
arrival rate there. We think another merit of our PCTMC model is that it can be
easily extended to capture such impact by using the indicator function to check
whether a neighbouring station is empty or full in order to alter the bike arrival
and pickup rate of a station. Unfortunately we do not currently have data to
capture the impact of neighbouring stations.

Acknowledgement. This work is supported by the EU project QUANTICOL,
600708.

154

C. Feng et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Fishman, E.: Bikeshare: a review of recent literature. Transp. Rev. 36(1), 1-22

(2015)

. Lin, J.R., Yang, T.H.: Strategic design of public bicycle sharing systems with ser-

vice level constraints. Transp. Res. Part E: Logist. Transp. Rev. 47(2), 284-294
(2011)

Pfrommer, J., Warrington, J., Schildbach, G., Morari, M.: Dynamic vehicle redis-
tribution and online price incentives in shared mobility systems. IEEE Trans. Intell.
Transp. Syst. 15(4), 1567-1578 (2014)

Nair, R., Miller-Hooks, E.: Fleet management for vehicle sharing operations.
Transp. Sci. 45(4), 524-540 (2011)

Contardo, C., Morency, C., Rousseau, L.M.: Balancing a Dynamic Public Bike-
Sharing System, vol. 4. CIRRELT, Montreal (2012)

Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory rebalancing and vehicle
routing in bike sharing systems. In: Technical report, Schuijbroek (2013)

Yoon, J.W., Pinelli, F., Calabrese, F.: Cityride: a predictive bike sharing journey
advisor. In: 2012 IEEE 13th International Conference on Mobile Data Management
(MDM), pp. 306-311. IEEE (2012)

Gast, N., Massonnet, G., Reijsbergen, D., Tribastone, M.: Probabilistic forecasts
of bike-sharing systems for journey planning. In: The 24th ACM International
Conference on Information and Knowledge Management (CIKM 2015) (2015)
Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city
through shared bicycling. IJCAI 9, 1420-1426 (2009)

Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., Banchs, R.: Urban cycles
and mobility patterns: exploring and predicting trends in a bicycle-based public
transport system. Pervasive Mob. Comput. 6(4), 455-466 (2010)

Guenther, M.C., Bradley, J.T.: Journey data based arrival forecasting for bicycle
hire schemes. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984,
pp. 214-231. Springer, Heidelberg (2013)

Engblom, S.: Computing the moments of high dimensional solutions of the master
equation. Appl. Math. Comput. 180(2), 498-515 (2006)

Raviv, T., Kolka, O.: Optimal inventory management of a bike-sharing station. IIE
Trans. 45(10), 1077-1093 (2013)

Feng, C., Hillston, J., Galpin, V.: Automatic moment-closure approximation of
spatially distributed collective adaptive systems. ACM Trans. Model. Comput.
Simul. (TOMACS) 26(4), 26 (2016)

Mead, L.R., Papanicolaou, N.: Maximum entropy in the problem of moments.
J. Math. Phys. 25(8), 24042417 (1984)

Andreychenko, A., Mikeev, L., Wolf, V.: Model reconstruction for moment-based
stochastic chemical kinetics. ACM Trans. Model. Comput. Simul. (TOMACS)
25(2), 12 (2015)

Tari, A., Telek, M., Buchholz, P.. A unified approach to the moments
based distribution estimation — unbounded support. In: Bravetti, M., Kloul, L.,
Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp. 79-93. Springer,
Heidelberg (2005)

18.

19.

Moment-Based Probabilistic Prediction of Bike Availability 155

Snyman, J.: Practical Mathematical Optimization: An Introduction to Basic Opti-
mization Theory and Classical and New Gradient-Based Algorithms, vol. 97.
Springer Science & Business Media, Heidelberg (2005)

Reinecke, P., Krauss, T., Wolter, K.: Hyperstar: phase-type fitting made easy. In:
2012 Ninth International Conference on Quantitative Evaluation of Systems, pp.

201-202. IEEE (2012)

Tools

Attack Trees for Practical Security Assessment:
Ranking of Attack Scenarios with ADTool 2.0

Olga Gadyatskaya, Ravi Jhawar, Piotr Kordy, Karim Lounis, Sjouke Mauw,
and Rolando Trujillo-Rasua(®®

SnT, University of Luxembourg, Luxembourg City, Luxembourg
{olga.gadyatskaya,ravi. jhawar,Piotr.Kordy,karim.lounis,
sjouke.mauw,rolando.trujillo}@uni.lu

Abstract. In this tool demonstration paper we present the ADT0012.0:
an open-source software tool for design, manipulation and analysis of
attack trees. The tool supports ranking of attack scenarios based on
quantitative attributes entered by the user; it is scriptable; and it incor-
porates attack trees with sequential conjunctive refinement.

1 Introduction

Attack trees are a well-known and established methodology for security assess-
ment that facilitates brainstorming, structures available information, and assists
human experts in analysis. An attack tree is a graphical model, and as such it
is better comprehensible than pure text-based approaches. However, graphical
models require usable and efficient tools with suitable Graphical User Interfaces
(GUIs) in order to be practical. Moreover, recent advances in automated risk
assessment techniques now call for tool support to handle automatically gener-
ated attack trees with many thousands of nodes [2,3]. Therefore, the need for
more comprehensive analysis tools emerged in the community. In this paper we
present the ADTo012.0 that provides advanced capabilities for design, visualiza-
tion, and analysis of attack trees [9], attack-defense trees [6], and attack trees
with sequential conjunctive refinement (SAND attack trees for short) [4].

The ADT0012.0 is not a simple extension of the previous tool [5], but a fully
revamped, more advanced system. It has been reimplemented using the advanced
cross-platform Docking Frames library!. The new version of the tool brings in
many new features, including ranking of critical attack scenarios, attack trees
with the sequential AND (SAND) operator, and scriptability.

In contrast to many commercial tools, such as SecurITree? and AttackTree+2,
the ADT0012.0 is an open source software, freely available to the community*.

The research leading to the results presented in this work received funding from the
European Commission’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement number 318003 (TREsPASS) and Fonds National de la Recherche
Luxembourg under the grant C13/1S/5809105 (ADT2P).

! http://www.docking-frames.org/.

2 http://www.amenaza.com.

3 http://www.isograph.com/software/.

* https://github.com/tahti/ ADTool2.

© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 159-162, 2016.
DOI: 10.1007/978-3-319-43425-4_10

http://www.docking-frames.org/
http://www.amenaza.com
http://www.isograph.com/software/
https://github.com/tahti/ADTool2

160 O. Gadyatskaya et al.

Moreover, it continues to be the only software tool providing support for the
attack-defense tree modeling language [6]. In that sense, the ADT0012.0 pro-
vides unique features in comparison to integration frameworks (e.g., the M&bius
framework [1]) and tools based on attack graphs (e.g., ADVISE [§]).

2 Main Features of the ADT0012.0

Sequential Conjunct Refinements in Attack Trees. The ADToo0l2.0 inte-
grates a crucial modelling aspect: creation of attack trees with SAND refinements
(consistent with the graphical language and semantics described in [4]) and their
quantitative analysis. Usage of the SAND refinement allows the analyst to model
and analyze attack scenarios involving several attack steps that need to be all
executed in a specific order, as opposed to the standard AND refinement used to
model execution of several attack steps in parallel.

After constructing a SAND attack tree, the user can assign an attribute domain
(e.g., minimum time for the attack, probability of success) to the tree. Each
leaf node is then initialized with a default value representing the worst case
scenario (e.g., oo as the minimum time for the attack), and all other nodes
are automatically assigned using an n-ary function, depending on the type of
attribute and refinement operator, in order to evaluate the security scenario. The
ADTo0012.0 will automatically compute new attribute values using a bottom-up
algorithm.

Ranking Attack Trees. Human ability to visualize and understand attack
trees quickly decreases with the increase in size and complexity of the tree.
Identifying important portions of an attack tree is therefore of paramount impor-
tance for security analysts; it allows to prioritize and focus on those branches
that contribute most to the attacker goal. A systematic approach to prioritiza-
tion is ranking, whereby a set of elements is sorted with respect to a total order.
In attack graphs, a modelling language similar to attack trees, several ranking
approaches have been defined [10]. In attack trees, however, ranking has been
mostly neglected by both quantification methods and tools.

The ADT0012.0 implements an efficient and formal approach to rank
attack scenarios. In particular, we have extended the bottom-up computation
approaches proposed for attack trees [9], attack-defense trees [6], and SAND attack
trees [4], in order to efficiently rank attack scenarios, where an attack scenario
is either a bundle as in the formalisms in [6,9] or an SP graph as in [4]. Our
approach works intuitively as follows. Given a set of quantitative values V for
attack scenarios and a total order < on V', we store at every node of the tree
n least attacks with respect to the total order <, where n is a natural number
representing a bound on the number of attack scenarios to be ranked.

Ranking results in the ADTo012.0 are shown in the Ranking View window,
which can be opened from the menu Windows — Ranking View. As in the
Attribute window, the Ranking window gives the option to open or create an
attribute domain. By default, the ADT0012.0 uses as a total order the operator
assigned to the OR gate in the attribute domain. A screenshot of the ADT0012.0

Attack Trees for Practical Security Assessment 161

Fig. 1. Screenshot of the ADTo012.0 with the ranking feature. The SAND attack tree
used represents the Stuxnet attack, and the ranking is based on the minimal time of
attack parameter. The attack scenario (all its attack nodes) with the minimal time of
execution is highlighted in green by the tool.

provided in Fig.1 shows an example of the ranking feature applied to a SAND
attack tree modelling the Stuxnet attack (inspired by [7]).

In order to rank attack scenarios up to a given node in the tree, we ought to
click that node in the domain for which we want to see the ranking. Doing so, the
Ranking view window will automatically update with a table containing optimal
attacks with respect to the chosen attribute domain. The ADTo012.0 also offers
the option to highlight those nodes that contribute most to the attack, which
can be done by clicking on attack scenarios in the ranking table.

Scripting. Scriptability, whereby a tool can be run by scripts and without a
GUI, is an important feature of security assessment tools. It allows sensitivity
analysis (a standard technique to automatically assess how changes in some
attribute values affect the overall security posture) and integration into tool
chains. With the current version of the tool, it is now also possible to experiment
with countermeasure selection: we can write scripts that will input several attack-
defense trees with different defense scenarios applied to a particular attack, and
output the best countermeasure set based on the results of the ranking.

In the scripting mode, which is typically executed from the command line®,
the ADTo0l2.0 supports input files of different formats (e.g., XML files) con-
taining any of the supported attack trees (e.g., SAND trees), and provides various
types of outputs such as the most critical attacks or the result of a bottom-up
calculation. By using this scriptability feature, the ADT0012.0 has been inte-
grated into the TREsSPASS project tool chain®, where it is used to visualize
attack-defense scenarios and automatically or manually produced attack trees.

5 Execute java -jar ADTool-2.0.jar --help from the command line for basic help.
5 http://www.trespass-project.cu/.

http://www.trespass-project.eu/

162 O. Gadyatskaya et al.

Usability Features. The ADT0012.0 includes many usability features, e.g.,
copy-paste of subtrees, handling of multiple trees, reorder of children nodes, and
extended input format (automatically generated attack trees [3] not conforming
to the ADTo012.0 XML schema). The ADT0012.0 can handle and analyze large
trees with several thousand nodes (automatically generated trees are typically
of that size).

3 Conclusion

In this tool demonstration paper we presented the main features of the
ADTo0012.0, which is an open-source software tool for displaying, designing and
analyzing attack trees in many flavors (SAND attack trees [4], attack-defense trees
[6], and classical attack trees [9]). The ADTool2.0 supports ranking of attack sce-
narios based on the quantitative values selected by the end-user (e.g., time of
attack, cost, and probability). In addition, it can be scripted for performing
sensitivity analysis or running in tool chains.

References

1. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J.M.,
Sanders, W.H., Webster, P.G.: The mobius framework and its implementation.
IEEE Trans. Softw. Eng. 28(10), 956-969 (2002)

2. Gadyatskaya, O.: How to generate security cameras: towards defence generation
for socio-technical systems. In: Mauw, S., et al. (eds.) GraMSec 2015. LNCS, vol.
9390, pp. 50-65. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29968-6_4

3. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammdiiller, F.: Transforming graph-
ical system models to graphical attack models. In: Mauw, S., et al. (eds.) GraM-
Sec 2015. LNCS, vol. 9390, pp. 82-96. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-29968-6_6

4. Jhawar, R., Kordy, B., Mauw, S., Radomirovié, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D., Chakravarthy, S.R.
(eds.) SEC 2015. IFIP AICT, vol. 455, pp. 339-353. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-18467-8_23

5. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with
attack—defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 173-176. Springer, Heidelberg (2013)

6. Kordy, B., Mauw, S., Radomirovié, S., Schweitzer, P.: Attack-defense trees. J. Log.
Comput. 24(1), 55-87 (2014)

7. Kriaa, S., Bouissou, M., Pietre-Cambacedes, L.: Modeling the Stuxnet attack with
BDMP: towards more formal risk assessments. In: Proceedings of the CRiSIS

2012

8. ieMa)y, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based secu-
rity metrics using ADversary VIew Security Evaluation (ADVISE). In: Proceedings
of QEST 2011, pp. 191-200. IEEE Computer Society, Washington, DC (2011)

9. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186-198. Springer, Heidelberg (2006)

10. Mehta, V., Bartzis, C., Zhu, H., Clarke, E.: Ranking attack graphs. In: Zam-
boni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 127-144. Springer,
Heidelberg (2006)

http://dx.doi.org/10.1007/978-3-319-29968-6_4
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1007/978-3-319-29968-6_6
http://dx.doi.org/10.1007/978-3-319-18467-8_23

Spnps: A Tool for Perfect Sampling in Stochastic
Petri Nets

Simonetta Balsamo®), Andrea Marin, and Ivan Stojic

Universita Ca’ Foscari Venezia, DAIS, via Torino 155, Venice, Italy
{balsamo,marin,stojic}@dais.unive.it

Abstract. This paper presents a tool spnps for perfect sampling (PS) in
stochastic Petri nets (SPN). SPNs are an important formalism for perfor-
mance evaluation of telecommunication systems and computer hardware
and software architectures. Stochastic process underlying an SPN is a
continuous time Markov chain, and the tool obtains samples from this
chain, distributed according to its stationary probability distribution.
The tool is implemented in C++ and is based on an efficient implemen-
tation of coupling from the past, an algorithm for PS in Markov chains.
It can be obtained at http://www.dais.unive.it/~stojic/soft.html.

Keywords: stochastic Petri net - Perfect sampling - Stationary perfor-
mance analysis

1 Introduction

Simulation is widely used in stationary performance analysis of stochastic Petri
nets (SPN) with large state spaces, when exact numerical solution is infeasible.
When simulation is used for stationary analysis, the warm-up period of a sim-
ulation run—during which state of the simulated system strongly depends on
the initial state—mneeds to be discarded. This requires estimation of the length
of the warm-up period, which can in some cases be done prior to simulation and
in general can be performed during the simulation [7,9].

An alternative to the above approach is to estimate the stationary perfor-
mance indices by sampling directly from stationary probability distribution of
the model; this is referred to as perfect sampling (PS) [11]. The samples obtained
by PS are distributed according to the exact stationary distribution of the model,
and not according to an approximate stationary distribution which is obtained in
simulation runs. If performance of a PS algorithm is not good enough to obtain
enough samples needed to achieve required precision of estimates of performance
indices, a smaller number of samples can be obtained and used as initial states
of the simulation runs, obviating the need for the simulation warm-up period.

The presented tool, called spnps, implements PS for SPN models that have
finite state spaces. In contrast to previous approaches [2-5], no special model
structure is required and general SPNs with very large state spaces can be han-
dled. The tool is implemented in C++ and is based on an optimised version [1] of

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 163-166, 2016.
DOI: 10.1007/978-3-319-43425-4_11

http://www.dais.unive.it/~stojic/soft.html

164 S. Balsamo et al.

a classic perfect sampling algorithm, coupling from the past [11]. The optimised
algorithm uses multi-valued decision diagrams (MDD) [8] and exploits certain
regularities present in Markov chains underlying SPN models to greatly speed
up the coupling from the past; in some cases, models with over 1010 states can
be handled by the tool [1].

2 Objectives

Spnps is targeted at researchers and analysts that perform stationary performance
analyses of SPN models. Primary purpose of the tool is obtaining samples from
stationary probability distributions of SPNs with finite state spaces. State spaces
of some models can be decomposed into subsets between which there is very little
communication, and stochastic process defined by such models will, with very high
probability, stay constrained to one of the subsets for a large number of steps. This
complicates the stationary simulation, especially if this property of the model is
unknown to the analyst. Such multimodal behaviour can be heuristically detected
by the tool by performing incomplete PS runs [1] (Table 1).

Table 1. Objectives of spnps

Application domain | Stationary performance analysis of SPN models

Targeted users Researchers and analysts

Primary purpose Sampling from stationary distribution of SPN models

Secondary purpose | Detection of multimodal model behaviour

3 Functionality

Spnps is a command line application that allows the user to load an SPN model
from a file and generate a chosen number of perfect samples from the reachability
set of the SPN model. Stopping criterion can be changed so that PS runs are
stopped before completion, which can be useful in the analysis of models that
exhibit multimodal behaviour [1].

3.1 Program Options

Program options are set via command line switches. Switch -x selects an input
file containing a description of an SPN model. Format and contents of the input
file are described in the next subsection. Switch -r allows selection of quality
level of a high quality pseudorandom number generator [10] (PRNG) and -s
allows selection of PRNG seed; if the seed is omitted or set to 0, local time is
used as the seed. Switch -n specifies the number of sampling runs that are to be
performed by the tool. Switch -c sets stopping cardinality; when this is set to
1 samples from the stationary probability distribution are obtained, and larger
values can be used to examine multimodal models. Finally, switch -v enables
verbose output, and switches -d and -t enable output of diagnostic information.

Spnps: A Tool for Perfect Sampling in Stochastic Petri Nets 165

3.2 Input

Input file is assumed to be in Petri Net Markup Language (PNML) [12] format.
PNML is an XML-based syntax for Petri nets which aims at becoming the
standard interchange format for Petri net tools. Since PNML is very flexible and
extendable, leaving many format details to be defined based on specific needs
of a tool using the format, an XML Schema defining the particular structure
of PNML files supported by the present tool is also included in the distribution
archive. In addition to entries describing structure and initial marking of the SPN
model, additional data loaded from the input file are firing rates and semantics
for transitions and marking bounds and ordering of places.

3.3 Output

In normal usage, only the results of the sampling runs—perfect samples or sets
of markings, depending on the stopping cardinality—are output to the standard
output stream of the tool process. Using the verbose output switch -v causes
additional output, such as lengths of sampling runs, to be produced during the
sampling procedure. Switch -d enables output of program options and loaded
model data, and switch -t enables output of timing information. When the tool
is invoked without any parameters, a message explaining its usage is output.

4 Installation

Spnps is distributed in the form of C++ source code, and is licensed under
GNU General Public Licence, version 3'. The distribution archive containing the
source code and build system files, along with compilation and usage instructions,
can be obtained from the web page? of one of the authors.

5 Conclusion

In this paper we have presented spnps, a tool for perfect sampling from the
stationary distribution of stochastic Petri nets with finite reachability sets. The
obtained samples can be used in stationary performance analysis. Secondary use
of the tool is detection and analysis of models with multimodal behaviour, which
is a class of models which are especially hard to simulate.

Further development of the tool is expected in several directions. It is known
that there are more efficient encodings of the subsets of the reachability set by
MDDs, than the encoding used in the present tool [6]. Use of these encodings is
expected to lead to better performance of the tool. Additionally, the tool could
be adapted to other structured formalisms used in performance evaluation.

Acknowledgment. Work partially supported by MIUR fund Fondo per il sostegno
dei giovani “Programma strategico: ICT e componentistica elettronica”.

! The GNU General Public License v3.0 - GNU Project - Free Software Foundation,
http://www.gnu.org/licenses/gpl-3.0.en.html.
2 Ivan Stojic - software, http://www.dais.unive.it /~stojic/soft.html.

http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.dais.unive.it/~stojic/soft.html

166 S. Balsamo et al.
References
1. Balsamo, S., Marin, A., Stojic, I.: Perfect sampling in stochastic Petri nets

10.

11.

12.

using decision diagrams. In: Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), 2015 IEEE 23rd International
Symposium on. pp. 126-135., October 2015

Bouillard, A., Busgi¢, A., Rovetta, C.: Perfect sampling for closed queueing net-
works. Performance Evaluation 79, 146-159 , special Issue: Performance 2014(2014)
Bouillard, A., Gaujal, B.: Backward coupling in Petri nets. In: Proceedings of the
1st International Conference on Performance Evaluation Methodologies and Tools.
VALUETOOLS ’06, NY, USA. ACM, New York (2006)

Busié, A., Gaujal, B., Perronnin, F.: Perfect Sampling of Networks with Finite
and Infinite Capacity Queues. In: Al-Begain, K., Fiems, D., Vincent, J.-M. (eds.)
ASMTA 2012. LNCS, vol. 7314, pp. 136-149. Springer, Heidelberg (2012)

Busié, A., Gaujal, B., Vincent, J.M.: Perfect simulation and non-monotone Markov-
ian systems. In: VALUETOOLS ’08: Proceedings of the 3rd International Confer-
ence on Performance Evaluation Methodologies and Tools. pp. 1-10. ICST (Insti-
tute for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), ICST, Brussels, Belgium, Belgium (2008)

. Ciardo, G.: Reachability Set Generation for Petri Nets: Can Brute Force Be Smart?

In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 17-34.
Springer, Heidelberg (2004)

. Haas, P.J.: Stochastic Petri nets: Modelling, stability, simulation. Springer-Verlag,

New York (2002)

. Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Multi-valued decision

diagrams: theory and applications. Multiple-Valued Logic 4(1), 9-62 (1998)

. Law, A.M., Kelton, D.M.: Simulation Modeling and Analysis. McGraw-Hill Higher

Education, 3rd edn. (1999)

Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators
based on linear recurrences modulo 2. ACM Trans. Math. Softw. 32(1), 1-16 (2006).
http://acm.org/10.1145/1132973.1132974

Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Struct. Algorithms 9(1-2), 223252
(1996)

Weber, M., Kindler, E.: The Petri net markup language. In: Ehrig, H., Reisig, W.,
Rozenberg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based
Systems. LNCS, vol. 2472, pp. 124-144. Springer, Berlin Heidelberg (2003)

http://acm.org/10.1145/1132973.1132974

CARMA Eclipse Plug-in: A Tool Supporting
Design and Analysis of Collective Adaptive
Systems

Jane Hillston! and Michele Loreti2®)

! Laboratory for Foundations of Computer Science,
University of Edinburgh, Edinburgh, UK
2 Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti”,
Universita di Firenze, Firenze, Italy
michele.loreti@unifi.it

Abstract. Collective Adaptive Systems (CAS) are heterogeneous pop-
ulations of autonomous task-oriented agents that cooperate on common
goals forming a collective system. This class of systems is typically com-
posed of a huge number of interacting agents that dynamically adjust
and combine their behaviour to achieve specific goals. Existing tools and
languages are typically not able to describe the complex interactions
that underpin such systems, which operate in a highly dynamic environ-
ment. For this reason, recently, new formalisms have been proposed to
model CAS. One such is CARMA, a process specification language that is
equipped with linguistic constructs specifically developed for modelling
and programming systems that can operate in open-ended and unpre-
dictable environments. In this paper we present the CARMA Eclipse plug-
in, a toolset integrated in Eclipse, developed to support the design and
analysis of CAS.

1 Introduction

Collective adaptive systems (CAS) typically consist of very large numbers of
components which exhibit autonomic behaviour depending on their properties,
objectives and actions. Decision-making in such systems is complicated and inter-
action between their components may introduce new and sometimes unexpected
behaviours. CAS are open, in the sense that components may enter or leave
the collective at any time. Components can be highly heterogeneous (machines,
humans, networks, etc.) each operating at different temporal and spatial scales,
and having different (potentially conflicting) objectives. We are still far from
being able to design and engineer real collective adaptive systems, or even spec-
ify the principles by which they should operate.

Existing tools and languages are challenged by the complex and evolving
interaction patterns that occur within CAS. Nevertheless, the pervasive yet
transparent nature of these applications makes it of paramount importance that
their behaviour is thoroughly assessed during their design, prior to deployment,
and throughout their lifetime.

This work is partially supported by the EU project QUANTICOL, 600708.

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 167-171, 2016.
DOI: 10.1007/978-3-319-43425-4_12

168 J. Hillston and M. Loreti

Within the QUANTICOL project!, the definition of a formal language to
capture CAS has been investigated. Our objective was to develop a coherent,
integrated set of linguistic primitives, methods and tools to build systems that
can operate in open-ended, unpredictable environments. We named this language
CARMA, Collective Adaptive Resource-sharing Markovian Agents. CARMA com-
bines the lessons we learnt from other stochastic process algebras such as PEPA
[8], EMPA [2], MTIPP [7] and MoDEST [3], with those learnt from languages
specifically designed to model CAS, such as SCEL [5], the AbC calculus [1],
PALOMA [6], and the Attributed Pi calculus [9], which feature attribute-based
communication and explicit representation of locations.

To support analysis of CARMA models a prototype simulator has been also
developed. This software tool, which has been written in Java, can be used to
perform stochastic simulation and will also form the basis for implementing fur-
ther analysis techniques in the future. An Eclipse plug-in, integrating an editor,
static analysis tools and various views on a model, has also been developed.
Using this plug-in, CARMA systems can be specified by means of an appropriate
high-level language, which is mapped to the CARMA process algebra to enable
qualitative and quantitive analysis of CAS.

In this paper we first briefly describe the basic ingredients of CARMA. After
that an overview of the CARMA Eclipse plug-in and its features is provided.

2 CARMA in a Nutshell

CARMA is a new stochastic process algebra for the representation of systems
developed in the CAS paradigm [4]. The language offers a rich set of commu-
nication primitives, and exploits attributes, captured in a store associated with
each component, to enable attribute-based communication. For example, for
many CAS systems the location is likely to be one of the attributes. Thus it is
straightforward to model systems in which, for example, there is limited scope of
communication, or interaction is restricted to co-located components, or where
there is spatial heterogeneity in the behaviour of agents.

A CARMA system consists of a collective operating in an environment. The
collective is a multiset of components that models the behaviour of a system;
it is used to describe a group of interacting agents. The environment models all
those aspects which are intrinsic to the context where the agents are operating.
The environment mediates agent interactions. This is one of the key features of
CARMA. It is not a centralised controller but rather something more pervasive
and diffusive—the physical context of the real system —which is abstracted
within the model to be an entity which exercises influence and imposes con-
straints on the different agents in the system. The role of the environment is
also related to the spatially distributed nature of CAS—we expect that the
location where an agent is will have an effect on what an agent can do.

! http://www.quanticol.eu.

http://www.quanticol.eu

CARMA Eclipse Plug-in: A Tool Supporting Design and Analysis 169

A CARMA component captures an agent operating in the system. It consists
of a process, that describes the agent’s behaviour, and of a store, that models
its knowledge. A store is a function which maps attribute names to basic values.

Processes located within a CARMA component interact with other compo-
nents via a rich set of communication primitives. Specifically, CARMA supports
both unicast and broadcast communication, and permits locally synchronous,
but globally asynchronous communication. Distinct predicates (boolean expres-
sions over attributes), associated with senders and potential receivers are used to
filter possible interactions. Thus, a component can receive a message only when
its store satisfies the target predicate. Similarly, a receiver also uses a predicate to
identify accepted sources. The execution of communicating actions takes time,
which is assumed to be an exponentially distribution random variable whose
parameter is determined by the environment.

3 CArMA Eclipse Plug-in

An Eclipse plug-in for supporting the specification and analysis of CAS in
CARMA has been developed. A screenshot of the plug-in is presented in Fig. 1.

The CARMA Eclipse plug-in is available at http://quanticol.sourceforge.net/.
At the same site detailed installation instructions can be found together with a
set of case studies that shows how CAS can be modelled and verified with the
provided tool.

The CARMA Eclipse plug-in provides a rich editor for CAS specification using
an appropriate high-level language, called the CARMA Specification Language
(CASL). This high-level language is not intended to add to the expressiveness

- Qupos ‘o B 1 [Cresource
2 Project Explorer £3 =% v=08 855 carma = =8

> Prest component User(int loc , int dest) {

store {
attrib loc := loc;
attrib dest := dest;
}

behaviour {
P = get[my.loc == loc]J().B;
B = move*[false J<>{ my.loc := my.dest }.W;
W = ret[my.loc == loc J(.kill;

0 20 40 60 80 100 140160 200 240 280300 340
X-

|- AverageBikes 0 ——MaxBikes 0 ——MinBikes 0

Fig. 1. A screenshot of the CARMA Eclipse plug-in.

http://quanticol.sourceforge.net/

170 J. Hillston and M. Loreti

of CARMA, which we believe to be well-suited to capturing the behaviour of
CAS, but rather to ease the task of modelling for users who are unfamiliar with
process algebra and similar formal notations. Each CARMA specification provides
definitions for: structured data types and the relative functions; prototypes of
components occurring in the system; systems composed by collective and envi-
ronment; and the measures, that identify the relevant data to measure during
simulation runs.

Given a CARMA specification, the CARMA Eclipse Plug-in automatically gen-
erates the Java classes needed to simulate the model. This generation procedure
can be specialised to different kinds of simulators. Currently, a simple ad-hoc
simulator is used. The simulator provides generic classes for representing models
to be simulated. To perform the simulation each model provides a collection of
activities each of which has its own execution rate. The simulation environment
applies a standard kinetic Monte-Carlo algorithm to select the next activity to
be executed and to compute the execution time. The execution of an activity
triggers an update in the simulation model and the simulation process contin-
ues until a given simulation time is reached. From a CARMA specification, these
activities correspond to the actions that can be executed by processes located
in the system components. Indeed, each such activity mimics the execution of
a transition of the CARMA operational semantics. Specific measure functions
can be passed to the simulation environment to collect simulation data at given
intervals. To perform statistical analysis of collected data the Statistics package
of Apache Commons Math Library is used?.

The results are reported within the Experiment Results View (see Fig.2).
Two possible representations are available. The former, on the left side of Fig. 2,
provides a graphical representation of collected data; the latter, on the right
side of Fig.2, shows average and standard deviation of the collected values,
which correspond to the measures selected during the simulation set-up, and are
reported in a tabular form. These values can then be exported in CSV format.

Fig. 2. CARMA Eclipse plug-in: experiment results view.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for
attribute-based communication. In: Proceedings of 30th Annual ACM Symposium
on Applied Computing, Salamanca, Spain, pp. 1840-1845, 13—17 April 2015

2 http://commons.apache.org.

http://commons.apache.org

CARMA Eclipse Plug-in: A Tool Supporting Design and Analysis 171

. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoret. Comput. Sci.
202(1-2), 1-54 (1998)

. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812-830 (2006)

. Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hillston, J., Latella, D.,
Loreti, M., Massink, M.: CARMA: collective adaptive resource-sharing Markovian
agents. In: Proceedings of Workshop on Quantitative Analysis of Programming
Languages (2015)

. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. TAAS 9(2), 7 (2014)

. Feng, C., Hillston, J.: PALOMA: a process algebra for located Markovian agents.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265—280.
Springer, Heidelberg (2014)

. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences and axioms for
MTIPP. In: Herzog, U., Rettelbach, M. (eds.) Proceedings of 2nd Process Algebra
and Performance Modelling Workshop (1994)

. Hillston, J.: A Compositional Approach to Performance Modelling. CUP,
Cambridge (1995)

. John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed Pi calcu-
lus. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307,
pp. 83-102. Springer, Heidelberg (2008)

Sampling, Inference, and Optimization
Methods

Uniform Sampling for Timed Automata
with Application to Language Inclusion
Measurement

Benoit Barbot!, Nicolas Basset!®), Marc Beunardeau??,
and Marta Kwiatkowska'

! Department of Computer Science, University of Oxford, Oxford, UK
bassetnicolas@yahoo.fr
2 Ingenico Labs, Paris, France
3 Fcole Normale Supérieure, Paris, France

Abstract. Monte Carlo model checking introduced by Smolka and
Grosu is an approach to analyse non-probabilistic models using sampling
and draw conclusions with a given confidence interval by applying sta-
tistical inference. Though not exhaustive, the method enables verifica-
tion of complex models, even in cases where the underlying problem is
undecidable. In this paper we develop Monte Carlo model checking tech-
niques to evaluate quantitative properties of timed languages. Our app-
roach is based on uniform random sampling of behaviours, as opposed
to isotropic sampling that chooses the next step uniformly at random.
The uniformity is defined with respect to volume measure of timed lan-
guages previously studied by Asarin, Basset and Degorre. We improve
over their work by employing a zone graph abstraction instead of the
region graph abstraction and incorporating uniform sampling within a
zone-based Monte Carlo model checking framework. We implement our
algorithms using tools PRISM, SageMath and COSMOS, and demon-
strate their usefulness on statistical language inclusion measurement in
terms of volume.

1 Introduction

Since the seminal work of Alur and Dill [1], timed automata (TAs) have been
widely studied in the context of real-time systems verification. Several algorithms
from the classical automata-theoretic verification were successfully lifted to the
timed case. In spite of this, many problems become undecidable, the most impor-
tant being the inclusion of timed languages. One way to circumvent undecidabil-
ity is to employ statistical methods, where results are given with some confidence
level. However, timed automata are non-stochastic models and it is not clear a
priori with what probability to sample runs when performing statistical exper-
iments. A natural answer is given by the maximal entropy principle: “without

This work is supported by ERC AdG VERIWARE.
B. Barbot—Now in LACL, Université Paris Est Créteil, France
M. Beunardeau—Contributed to the work during an internship funded by ERC AdG
VERIWARE.
© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 175-190, 2016.
DOI: 10.1007/978-3-319-43425-4_13

176 B. Barbot et al.

knowledge a priori on the distribution of probability to be taken, the one with
maximal entropy should be preferred” [15]. A maximal entropy stochastic process
for timed automata was recently proposed in [7]. Essentially, this is the stochas-
tic process that yields the most uniform sampling when the length of the timed
words tends to infinity. By uniform sampling we mean that all timed words of a
given length have the same density of probability to be chosen.

In this paper we propose several algorithms to achieve uniform sampling of
timed words in timed languages. The methods are based on the theory of vol-
umetry of timed languages recently developed by Asarin et al. [3], which provides
means for quantitative measurement of languages in terms of volume. Here, we
employ this theory to achieve statistical estimation of volume and demonstrate
its usefulness for language inclusion measurement. The accuracy of statistical esti-
mation depends on the ability to uniformly sample the executions. The method
provided in [7], where the transitions of a TA were annotated with probability
functions so that the resulting stochastic process enables random simulation in the
most uniform way possible, is based on spectral attributes of a functional opera-
tor ¥ (an analogue in the TA context of the adjacency matrix of a graph) [3].
Unfortunately, it is not practical, as it relies on the region graph abstraction and
the computation of eigenfunctions. In this paper, we overcome this problem by
adopting a zone-based approach and approximating the probability functions of
[7] with quotients of the volume functions.

Contributions. (i) We provide a zone-based computation of volume functions for
TAs, which enables the first practical implementation of volumetry of timed lan-
guages. (i) We develop three methods (Methods 1, 2 and 3) to sample in a (quasi)
uniform manner timed words in a language recognised by a deterministic timed
automaton (DTA). In particular, we propose a receding horizon framework that
allows us to approximate the maximal entropy stochastic process discussed above.
(iii) We apply uniform sampling for DTAs to uniform sampling and volume mea-
surement for arbitrary timed languages, provided the membership problem for the
language is decidable. (iv) We have implemented the algorithms presented here
in PRISM [16] (for the splitting of the DTA into zones), SageMath [20] (for the
computation of volume functions) and COSMOS [4] (for the random generation
of timed words and property checking) and illustrate them on several examples,
with encouraging results. Omitted proofs and further details can be found in [5].

Related Work. The theory of volumetry of timed languages has been studied and
applied to robustness analysis [3], timed channel coding [2] and combinatorics of
permutations [6], but has not yet been applied in practice.

The recursive method for uniform sampling is a well-known method in discrete
combinatorics [12] whose generalisation to the timed case (Method 1 here) was
already done for very specific timed languages in [6].

Monte Carlo model checking was proposed in [13] for discrete models to ran-
domly explore their behaviour by means of simulating execution paths. Similarly,
statistical model checking [21] uses simulation to verify temporal logic proper-
ties with statistical guarantees, and has been applied to stochastic timed/hybrid
systems [10]. This avoids state-space explosion, thus ensuring the feasibility of

Uniform Sampling for Timed Automata with Application 177

verification of complex models, and has also been used to check undecidable prop-
erties [10]. Here we implement Monte Carlo techniques for TAs.

Monte Carlo or statistical model checking usually employs an isotropic ran-
dom walk to explore the executions (as explained in [11,19] for discrete models).
This involves choosing uniformly at random, at each step of the simulation, the
next transition from those available. It has been argued that the isotropic meth-
ods are not able to efficiently perform uniform sampling of the behaviours (see
e.g. the pathological examples in [19] for sampling of lassos and [11] for sampling
paths in a finite-state automaton). Here we implement uniform sampling based
on the tool COSMOS, but the techniques are more generally applicable and can
be implemented in other tools, for example UPPAAL-SMC [10], which supports
user-defined distributions.

Statistical model checkers such as UPPAAL-SMC consider timed automata
augmented with probability distribution on transitions that are either user-
defined or given “by default”. Thus, the model to verify is already probabilistic
and specifications are written in temporal logic with probabilistic operators. Our
work addresses a different and novel question: how can one use statistical exper-
iments on a non-probabilistic timed language and draw conclusions about that
language, without being given probability distributions on it?

2 Preliminaries

2.1 Timed Languages and Volumetry

A timed word o = (t1,a1)...(tn,an) is a word over the alphabet R>o x X,
where R>(denotes the set of non-negative reals and X' is a finite alphabet of
events. Times t; represent delays between events a;_1 and a;. Throughout this
paper, delays will be bounded! by an integer constant M. A timed language L
is a set of timed words. Given n > 0, we denote by L,, the timed language L
restricted to timed words of length n. For every timed language L and every word
w=aj...a, € X" wedefine PL = {(t1,...,t,) | (t1,a1)...(tn,an) € L}, and
denote by Vol(PZL) its (hyper-)volume.

Ezample 1 (Running example). Examples of such hyper-volumes are given in
Fig. 1. Anticipating what follows, these sets correspond to the timed language
restricted to timed words of length 2 of the TA depicted in Fig. 2 (Left).

For a fixed n, we define the n-volume of L as follows:
M M
Vol(L) = 3 ver(Ph)= 3 / 3 / Lps (8)dty - dty.
wexn aexs”’0 anex”’0
Continuing the example; the hyper-volume for dimension 2 is calculated as
Vol(Ls) = Vol(PL) 4+ Vol(PL) + Vol (PL) + Vol(PL) =3.54+2+4+2 = 11.5.

1 Qur approach to timed languages is based on volume and does not apply, in its present
form, to unbounded delays that result in innite volume.

178 B. Barbot et al.

hh HAL

1152 ta 1.5 2 6@ 1.5 2 6

Fig. 1. From left to right, languages PL PL . PL and P% for the running example
(Example 1). The darker areas corresponds to initial clock vector (z,y) = (0.5,0).

b,
0<z<3 a,y:=0
’ 1, Y = U byx:=0
O<y<?2
0<y VY S e S
J a,y =10 |4
- b,x:=0
. 3
a
0<ax<?2 b,z :=0 |2
0<y<4 >
y =0 !
0 1 2 3 J 0 1 2 3)

Fig. 2. Left: a DTA. Right: the same DTA obtained after applying the forward reacha-
bility algorithm. Entry zones are represented in red. Guards for a and b are the same in
the two TAs. The blue part represents clock vectors reachable through entry zones by
time elapsing. In location 2, the guard of transition b should be split along the dotted
line to obtain the split DTA of Fig. 3. (Color figure online)

We define the uniform probability distribution on a timed language L by assign-
ing weight 1/Vol(L,,) to every timed word of length n. The main purpose of this
article is to show how to sample according to that distribution when the language
is recognised by a timed automaton. For instance, the probability of a uniformly
sampled timed word to fall in the set E = {(¢1,b)(t2,a) | t1 € (0,1),t2 € (0,2)}
is Vol(E)/Vol(Lg) = 2/11.5 ~ 0.17.

Given two timed languages L, L’ over the same alphabet of events X, we say
that L' is a tzght under-approximation of L if, for all w € X*, PL - PL and
Vol(PL \ PL) = 0 ; hence Vol(PL) = Vol(PL). In partlcular, timed Words
uniformly sampled in L’ are uniformly sampled in L.

2.2 Timed Automata

Let X be a finite set of non-negative real-valued variables called clocks. Here we
assume that clocks remain bounded by a constant M € N. A clock constraint has
the form z ~ cor z—y ~ c¢where ~€ {<, <, =,> >}, z,y € X, c € N. A guard is
a finite conjunction of clock constraints; it is called open if its constraints involve

Uniform Sampling for Timed Automata with Application 179

only strict inequalities. A zone is a set of clock vectors & € [0, M]X satisfying a
guard. For a clock vector & € [0, M]* and a non-negative real ¢, we denote by
x +t (resp. — t) the vector @ + (¢,...,t) (resp. & — (¢,...,1)).

A timed automaton (TA) Ais atuple (X, X, Q, 49, F, A) where X' is a finite set
of events; X is a finite set of clocks; @ is the finite set of locations; i¢ is the initial
location; F' C @ is the set of final locations; and A is the finite set of transitions.
Any transition § € A has an origin §~ € Q, a destination dT € @, alabel as € X,
a guard gs and a reset function ts determined by a subset of clocks B C X: it

resets to 0 all the clocks in B and does not modify the value of the other clocks.

A timed transition is an element (¢,6) of A dof [0, M] x A. The delay t rep-

resents the time before firing the transition §. A state s = (¢,z) € Q x [0, M]¥X
is a pair of a location and a clock vector. Given a state s = (¢, x) and a timed
transition a = (t,0) € A, the successor of s by « is denoted by s, and defined
as follows. If 6~ = ¢ and x + ¢ satisfies the guard gs then s, = (67, t5(x + 1))
else s, = L. Here and in the rest of the paper L represents undefined states.
A sequence of timed transitions is called a timed path. We extend the successor
action to timed paths by induction: s. = s and s(qa’) = (Sa)a’ for all states s,
timed transitions o € A and timed paths o’ € A*. The initial state of the timed
automaton is s = (ig,0). The labelling of a timed path (¢1,01) ... (tn,0,) is the
timed word (t1,as,) ... (tn,as,) € ([0, M] x X)*. The timed language L(A) of a
timed automaton A is the set of timed words that are labellings of timed paths «
such that s, € F x [0, M]X. We also write L,,(A) instead of (L(A)),.

For a guard g, we denote by TE™1(g) the set of clock vectors from which g can
be reached when time elapses; formally, TE™1(g) = {z | 3t > 0,z +t € g}. Given
a state s = (g, x) we denote by A(s) the set of transition available from s, that

is such that = = g and € TE"!(gs). Given a state s = (¢, z) and a transition

d € A(s), we define 1bs(s) 4 inf {tlx +t € g5} and ubs;(s) L sup {tle +tecgs}

so that the condition @ + ¢ € g; is equivalent to t € (Ibs(s), ubs(s)).

A deterministic timed automaton (DTA) is a TA such that no clock vector can
satisfy guards of pairwise distinct transitions with the same label and origin. This
implies that timed words and timed paths of a DTA are in one-to-one correspon-
dence. We are interested in the prefixes of infinite timed words of a DTA. To be
sure that L, (A) contains exactly the prefixes of size n, we consider only DTAs
that satisfy the two following conditions: (i) every location is final, (ii) from every
reachable state, there is a timed transition that can be taken.

2.3 Equations on Timed Languages and Volumes

Given a DTA A, we denote by L, (s) the n-th timed language recognised from a
state s and defined inductively as follows: Lo(s) = {¢}, and

Lyyi(s) = U U (t,a5)Ln(8¢,5))- (1)

SEA(s) teI(s,0)

180 B. Barbot et al.

For the running example and initial state [g, (0.5, 0)] we have:

Ly([0, (050D = |J (ta)Li(la, (05 +40))u ([(¢b)Li(lg (0,)])- (2)

te(0,1.5) t€(0,2)

The language L2 ([g, (0.5,0)]) is depicted in Fig. 1.

We also parametrise the volume by the initial state and define the n-th vol-
ume function as v, (s) = Vol(Ly(s)). These functions can be defined recursively
by replacing union over intervals by integrals and union over transitions by finite
sums in (1). We obtain vg(s) = 1 and

ubs (s)
o) = 3 [(st 3)

seA(s) /1bs(s)

For the running example, passing to volumes in (2) yields

1.5 2
va([g, (0.5,0)]) = /0 v1([g, (0.5 4 ¢,0)])dt + /0 v1([g, (0,1)])dt. (4)
A key idea used in [3,7] is to rewrite (3) as

Unt1(s) = ¥ (vn)(s) ()

where ¥ is an integral operator defined by

U(f)(s)= Y W(f)(s) with (6)
SEA(s)
ubs (s)

T5(f)(s) = / F(s(es)dt. (7)

Ibs(s)

Thus, volume functions are defined via iteration of the operator ¥ on the constant
function 1: v, = ¥™(1). In [3,7], the state space was decomposed into regions,
which guaranteed algebraic properties such as polynomial volume functions at the
price of an explosion of the number of locations of the TA. A TA before such a
decomposition into regions has volume functions that are complicated (piecewise
defined), and hence difficult to handle in practice. Here we want to keep volume
functions simple (polynomial) while keeping the set of locations small. For this we
adopt a zone-based approach.

Table 1. First volume functions v, [l;, (z,y)] associated to the TA of Fig. 3.

[0, (0,0)] [lr, (%,0)] [l2,(0,y)] (L3, (x,0)]
v 1 1 1 1
v1 4 —x+4 —y+4 —2r+5
vy 15 —dz+15 Ly*—4dy+15 —1a® —6x+ 32

V3 3%5 715x+% f%y3+2y2715y+% ,éx3,%$2,25x+%

Uniform Sampling for Timed Automata with Application 181

The idea of the zone-based decomposition described in the next section is to
split the state space into several pieces in which the functions lbs(s) and ubs(s)
have simple form, ensuring that every volume function v,, = ¥™(1) restricted to
any location is polynomial (see Table 1).

3 Volume Function Computation for DTAs

In this section we explain how to transform a DTA A into a DTA A’ called split
DTA that facilitates efficient volume computation.

Decomposition into Zones. We first apply a forward reachability algorithm,
implemented for instance in PRISM [16], which returns the so-called forward-
reachability graph, that is, a finite graph with annotations, which we view as a
DTA (the annotations are essentially, for each edge J, the guard gs and label as
and, for each location [, the zone Z; which is entered). Formally, we say that a TA
is decomposed into zones if, for every [€ @, there is a zone Z; called the entry zone
of [, such that the entry zone of the initial state is {0} and, for every transition d,
the successors of states in {5~} x Z5- through § with some delay are in {67} x Z5+,
that is, {ts(x +t) |x € Zs—,x+1t € gs} C Zs+. We denote by S = Ujeq{l} X Z;
the set of states corresponding to entry zones. The forward-reachability graph for
the running example is given in Fig. 2 (Right).

Guard Split. Let § be the transition from location 2 to location 3 in the automaton

of Fig. 2 (Right), then g5 def (0 <z <3)A(0 <y < 2). Then one can see that
ubs(2, (z,0)) = 2if z € (0,1) (due to guard y < 2) and ubs(2, (z,0)) = 3 — =
if x € (1,2) (due to guard < 3). The guard gs thus needs to be split into two
(along the dotted line in the figure) to achieve a simpler form for ubs. It is well
known how to get the tightest constraints of a guard and get rid of redundant
constraints using the Floyd-Warshall algorithm (see e.g. [8]). A guard is said to
be upper-split (lower-split) if there is at most one useful constraint (that is, not
implied by other constraints) of the form z; < a (z; > a). The guard gs discussed
above is not upper-split as the two constraints x < 3 and y < 2 are both useful.
Analogous definitions hold for lower-bounds and a guard is said to be split if it is
both lower-split and upper-split.

Pre-stability. A second phenomenon we want to avoid is when the set of available
transitions A(g,) is not constant on the entry zone of g. A TA decomposed into
zones is called pre-stable if, for every location ¢ and clock vector € Z, the set of
transitions A(g, x) is exactly the set of transitions § whose origin is ¢. Equivalently,
a TA is pre-stable if Zs- C TE~!(gs) for every 4. In case we detect a transition such
that Zs- € TE~!(gs) we will split the zone Z5- to isolate TE™!(gs) N Zs— from
its complement. Continuing the example above, after splitting g5 the functions
associated to each new guard are null for z € (0,1) or € (1,2). Location 2
is split into two locations of the final TA of Fig.3: I for (0,1) and I3 for (1,2).
Every incoming transition to location 2 is split accordingly into two transitions
(one orange to 1 and one purple to I3).

182 B. Barbot et al.

Trimming. Last but not least, we say that a TA is trimmed if the set of outgoing
transitions of each location is non-empty. A TA is called split if it is pre-stable,
trimmed and all the guards of its transitions are split and open. It implies, in par-
ticular, that, for every entry state s € S, A(s) is not empty and for all transition
§ € A(s) it holds that ubs(s)—1bs(s) > 0. Note that opening guards, that is, trans-
forming non-strict inequalities into strict ones is made wlog., as it only removes
part of the language that has a null volume measure.

Splitting Algorithm. We propose an algorithm to transform a DTA into a split
DTA such that the language of the latter is a tight under-approximation of the
language of the former (see Theorem 1). First, we apply a forward reachability
algorithm to obtain a DTA decomposed into zones and open its guards. Then
we successively split zones that falsify pre-stability and guard split conditions,
until the conditions are satisfied in the DTA. The splitting algorithm maintains a
stack of transitions that need to be checked, which initially contains all the tran-
sitions. As the algorithm proceeds, transitions are popped from the stack and are
checked against pre-stability and guard split conditions. If one test fails, the zone
(or guard) is split accordingly into several zones (or open guards) and the transi-
tions that are affected are added to the stack (incoming transitions to, and outgo-
ing transitions from the split zone). When no more transition need to be checked
(i.e. the stack is empty), the TA is split and the algorithm terminates. This occurs
in a finite number of steps since transitions are added to the stack only when a zone
is split into strictly smaller sub-zones, and there are finitely many zones (as the
clocks are bounded by a constant M).

Theorem 1. Given a DTA A, one can construct (using the algorithm sketched
above) a split DTA A’ that recognises a tight under-approximation of L(A).

The splitting algorithm and the proof can be found in the technical report [5].

Volume Function of a Split DTA. We have the following result.

Proposition 1. Given a split DTA A andn € N, denote by ¢ the mazimal affine
dimension of an entry zone of A. One can compute the volume function vy fork <n
in time and space complexity O(n°*t2|Q 4|) using dynamic programming based on
the recursive equation (3). Each volume function vy, restricted to a location q is a
polynomial of degree at most k that is positive on Z,.

Ezample 2. We have implemented the splitting algorithm sketched in Sect. 3 and
applied it to the DTA of Fig. 2 (Right) to obtain the DTA of Fig. 3. Our program
also returns for each transition ¢ of the output DTA the interval (lbs, ubs), allow-
ing us to compute with SageMath the operator ¥ as well as the volume functions.
On the example, for f: S — R, (z,y) € Z; with [€ {ly,...,l3},

()lo,oo]_fO (11, (t,0) dt+f0 l2,0tdt+f1 l37t0))dt

[
U()[l1, (x,0)] = fo‘“” (I, (z +t,0)) dt+f0 (12, (0,1)) dt+f fls, (z +t,0))dt;
()[127)] _fo l17 t O dt+f0 yf lQ:(O ert dt+f1 ld: t 0))d
U (f)[is, (x,0)] = [77F f(l2, (0,1))dt + [f(Is, (z +t,0))dt.

First volume functlons computed using Eq. (5) are given in Table 1.

Uniform Sampling for Timed Automata with Application 183

I,TIZU

4

3
y:=0

2

)
I
o8
=

Fig. 3. The split form of the running example (Example 1).

4 Sampling Methods for Timed Languages of DTAs

In this section we consider random sampling of timed words. We first give a
method that achieves exact uniform sampling when the length of timed words
to be generated is finite; we speak of finite horizon. When the length is infinite
or too long to be treated by the previous method, we consider a receding horizon
method, where, at the k-th step of the generation, the next timed letter is chosen
according to the volume of the timed words for the next m steps; these possible
futures constitute a finite receding horizon. At the limit, where the receding hori-
zon becomes infinite (m — o0), this can be interpreted as a stochastic process
over runs of maximal entropy [7].

Parametric Probability Distributions. A discrete probability distribution (DPD)
on a finite set A is a function dpd : A — [0,1] such that) _,dpd(a) = 1.
A probability density function (PDF) on an interval (a,b) is a Lebesgue measur-

able function pdf : (a,b) — Rx>g such that f; pdf(t)dt = 1. Values of DPD and
PDF are referred to as weights. The DPD isoDPD(A) on a set A (resp. the PDF
isoPDF(a,b) on an interval (a,b)) that attributes the same weight to every a € A
(resp. t € (a,b)) is called isotropic. In other words, isoDPD(A)(a) = 1/|A| for
every a € A (resp. isoPDF(a,b)(t) = 1/(b — a) for every t € (a,b)). PDFs consid-
ered in the following are just polynomials on the delay variable ¢. Their coefficients
depend on the current state (location and clock values) and on the transition to
fire. Choosing a delay t according to a PDF can be done using the inverse method:
a random number 7 is drawn uniformly in (0, 1), and the output ¢ € (a,b) is the
unique solution of fat pdf (t')dt’ —r = 0. In the case of the isotropic PDF on (a, b),
the output ¢ is just a + (b — a).

Random generation of timed words in L, (s) for a given state s € S is done
as follows: for kK = 1..n, pick randomly the next transition ¢ according to a DPD
dpd® parametrised by the current state s, then chose the delay ¢ in (Ibs(s), ubs(s))
according to a PDF pdf’; s parametrised by the current state s and the transition
just chosen; take the successor of s by (¢,d) as the new current state s; output
(t,as) and repeat the loop.

184 B. Barbot et al.

0 3

Isotropic Receding horizon m=0 Receding horizon m=9

Fig. 4. Trajectories of the running example (Fig.3) sampled using isotropic sampling
(Left) and Method 2 with receding horizon m = 0 (Middle) and m = 9 (Right). Each
point of a given colour corresponds to a clock vector where a transition of that colour
occurs. Each plot visualises a single trajectory with 200,000 transitions. The receding
horizon m = 9 visibly yields the most uniform sampling. The receding horizon sampling

with m = 0 is already more uniform than the isotropic sampling as the former assigns
v1(s)

weights to transitions proportional to lengths of intervals (dpdS = lebé(s)). (Color
figure online)

This random generation outputs timed words of L, (s) with weights given by

Weight((ti,a1) -~ (tn, an)] < [dpd®,_ (5)pdst 5 (t0). 8)
k=1

where, for every k = 1..n, si_1 is the state before the kth sampling loop, (¢, dx)
is the kth timed transition randomly picked during the kth sampling loop and aj
is the label of dy.

Isotropic and Uniform Sampling. Isotropic sampling? relies on using in each step
the isotropic DPD isoDPD(A(s)) and the isotropic PDF isoPDF(I(s,d)). These
distributions are particularly simple to sample, but when the length of samples
grows the probability concentrates on small sections of the runs, see Fig. 4 (Left).
By contrast, uniform sampling for L, (s) assigns the same weight 1/v,,(s) to every
timed word. In other words, for any measurable set B C L, (s) the probability
Vol(B)/vy(s) to fall in this set is proportional to its measure.

The Recursive Method for Uniform Sampling. The idea of the recursive method
for uniform sampling of n-length timed words from a state s is to choose the first
delay t and transition J according to well chosen DPD and PDF that depend on
the volume functions v,, and v,_1, and then recursively apply uniform sampling
to generate an (n — 1)-length timed word from the updated state s 4).

2 Note that some works, consider instead sampling the delay first and then the transi-
tions available in the state updated by the delay (see [9]).

Uniform Sampling for Timed Automata with Application 185

Define, for every function f : S — R<(and state s, the DPD w(f,s) : § —

%5((]{))((;))' If moreover § is given, define the PDF o(f,s,d) : t — éés((ft)?’sg from

(Ibs(s), ubs(s)) to Rxo.

Method 1 (Exact uniform sampling). Given a split DTA and n € N, pre-
compute the volume functions vog = 1,...,v, = W™(1) (see Proposition 1), then
the uniform sampling of n-length timed words can be achieved in linear time using
the following sequences of DPDs and PDFs: (w(vn—k, S), ©(Un—k, $,0))k=1..n

Proof. Using the same notation as in (8), it holds that

Weight[(t1,a1) - (tn,an)] = H W(Vn—t Sk—1)(0k)0(Un—rk, Sk—1, 0k) (tk)
k=1

_ ﬁ Ws(vn—k)(sk-1) Vn-r(sk) _ wolsn—1) _ 1
i Un—k+1(su-1) Ps(vn—i)(sk—1) va(so) vn(so)

Ezxample 3. We illustrate the DPDs and PDF's used in the last but one step of the
uniform random sampling for the running example, obtained from volume func-
tions of Table 1. Consider the state s = (I3, (z,0)) with z € (0,1) and § the self-
loop on [; (see Fig. 3). Then (Ibs(s),ubs(s)) = (0,1—x) and s(¢ 5) = (I1, (x+t,0)).
The DPD used to choose 9 is

1 ubs(s) =2y ot 7 _ 81 + 22
dpd;~'(0) = / v1(8(1,5))dt = / dt =
1

v2(8) Jibs(s) 0 15 — 4z 30 — 8z
The PDF used to choose t is
_ Lee(ibs(s),ubs(s)) V1(5(t,5)) 8 — 2z — 2t
a5t (t) = Lo s =Lleow) 2
P)= "o 10) uals) €O T 6x + 22

Random Sampling with Finite Receding Horizon. With the previous method, the
k-th timed transition of a run of length n is sampled according to DPD and PDF
that depend on k and n. This dependency on k and n is not suitable for large n
as it requires storage of as many polynomials as the length of the run to gener-
ate n. Also, one might wish to randomly generate arbitrarily long runs without a
prescribed bound on the length. To take the kth timed transition in the recursive
method for uniform sampling, we use DPD and PDF that depend on v,, _x, that is,
on the volume measure of the possible (n — k) step future. The idea of the follow-
ing method is to replace (n — k) by a fixed m < n at every step of the sampling.
The constant m can be seen as a receding horizon used in control theory [17]. At
each step we consider only the possible m step future to generate the next timed
transition.

Method 2 (Random Sampling with Finite Receding Horizon m). Given
a split DTA, n € N andm € N, precompute the volume functionsvg = 1,..., v, =
U™ (1) (see Proposition 1), then sample n-length timed words in linear time using
the same DPD w(vy,, s) and PDF ¢(vm,, s,0) for every k = 1..n.

The precomputation is polynomial in m. Hence this methods is more efficient
than Method 1 when m < n, but it does not yield exact uniform sampling.

186 B. Barbot et al.

Table 2. Table for Example 4.

m (C+/C_)71 no.01 M (C+/C_)fl 10.01 m (C+/O_)71 10.01

0 3 1 4 3272x107% 35 8 2364 x 1077 42098
1 0.3229 2 5 8.431x107° 124 9 2,520 x 10°% 394 801
2 1.659 %1072 3 6 9.308x107% 1076 10 5.304 x 107° 1.8760 x 10°
3 4444 x107% 6 7 1409 x107% 7069 11 4.487 x 10710 2.2178 x 107

Quasi-Uniform Random Sampling. We now present a trade-off between exact uni-
form sampling (Method 1) and the finite receding horizon sampling (Method 2).
We give bounds on the distance to uniformity for this method, which we conjec-
ture to be small in practice for small horizon m. This conjecture is supported by
theoretical results of previous works [3,5, 7] and by practical experiments (notably
in Example 4 below).

Method 3 (Switching Method for Quasi-uniform Sampling). Given a
split DTA, n € N and m € N, precompute the volume functionsvg = 1,..., 0, =
vm(1) (see Proposition 1), then generate the n—m first letters as in Method 2 and
use Method 1 from the current state for the last m steps.

This method ensures quasi-uniform sampling in the following sense.

Theorem 2. If in Method 3 there exist constants C~,Ct € Rsq such that
C Vi1 < Uy < CTop,y, then the weight of every timed word lies in the interval
[(1 = €mn)/vn(50), (1 + Emn) /vn(50)], with ey = (CF/C7)m=1 — 1.

Ezample 4. For the running example (Example 1) we determine the tightest con-
straints ¢~ infses Uy (8) /Vma1(s) and CT def SUPgeg Um (8)/Vm+1(s) for m =
0..11. We observe empirically that CT/C~ tends to 1 exponentially fast when m

grows (see Table 2). Given a maximal tolerated error of €, one can determine for

every m the maximal n, called n., such that ¢,, ,, < € for every n < n.; formally,

ne € m+1+ [log(c+ /oy (1 + €)]. First values of ng o1 as a function of m are

given in Table 2; for instance, using receding horizon for m = 11 one can generate
timed words of length 20,000,000 with a divergence to uniformity less than 1 %.

Our sampling method requires the computation of a complete zone graph, as
opposed to on-the-fly techniques used in state-of-the-art statistical model check-
ers; this is the price we pay for statistical evaluation of quantities of timed words
in complex sub-languages as described in the next section.

5 Applications and Experiments

5.1 Tackling General Timed Languages

It is well known that language inclusion for languages recognised by non-
deterministic TAs (NTAs) is undecidable, even when a robust semantics is consid-
ered [14]. The situation is even worse for stopwatch automata, hybrid automata,

Uniform Sampling for Timed Automata with Application 187

etc., for which the reachability problem is undecidable. However, we can handle
a statistical variant of the inclusion problem when, first, an overapproximation of
the language described by a DTA is known and, second, the languages admit deci-
sion procedures for the membership problem defined as: given a language £ and
a word w, is w € L? Our method is based on statistical volume estimation that
relies on the quasi-uniform random sampling developed in the previous section.
The complexity results given below are expressed in terms of the number of mem-
bership queries one has to solve.

Application 1 (Statistical Volume Estimation). Given a timed language
L, n € N, a confidence level 8, an error bound €, and an over-approximation
of the language recognised by a DTA C, that is, L, C L,(C), define N >
(1/e%)log (8/2) (Chernoff-Hoeffding bound); draw N samples uniformly at ran-
dom in L, (C) and answer N queries for membership in L to return a value p such
that Vol(Ly)/Vol(L,(C)) lies in [p — €, p + €] with confidence 1 — 6.

Application 2 (Inclusion Measurement). Given two timed languages L', L
and an over-approximation of the two languages recognised by a DTA C one can use
the previous application with £ = L'\ L" to evaluate the volume Vol (L], \ LV). If
a positive value is returned, a timed word in L, \ L' has been detected and one can
surely claim L, € LI'. Otherwise, a null value allows one to claim with confidence
1—0 that either the inclusion holds or the difference of the two languages is smaller
than eVol(L,(C)).

Application 3 (Uniform Sampling). Given a timed language L and n € N,
and an over-approximation of the language recognised by a DTA C, that is, L,, C
L, (C), draw samples uniformly at random in L, (C) until one falls in L,,.

The sampling is uniform: every timed word of £,, has the same density of prob-
ability to be output. The expected number of samplings in L, (C) to sample one
timed word in £,, is Vo1(L,,)/Vol(L,(C)). The choice of C is crucial, since if L, (C)
is a too coarse approximation of £,, the probability of a sample from L,,(C) to be
in £,, is small and the methods become inefficient. We leave as future work the
design of heuristics that, given a general timed language £, automatically gener-
ate a DTA that recognises a good over-approximation of L.

5.2 Implementation and Experiments

We implemented the techniques using three tools: PRISM [16], SageMath [20] and
COSMOS [4]. The workflow is depicted in Fig. 5. We modify the tools to meet
our needs. We adapted PRISM’s forward reachability algorithm to implement the
splitting algorithm of Sect.3. We also export the split zone graph in a file for-
mat easy to read for SageMath. We use SageMath to compute distributions and
weights of transitions as rational functions of clock valuations, which are exported
and read by COSMOS in the form of a Stochastic Petri Net with general distribu-
tions. COSMOS then samples trajectories of this model, checks the membership of

188 B. Barbot et al.

: _ COSMOS _
{ Volume and ECOSMO Trajectory Result

Distribution ;:é(sampling):(>(Mcmbcrship)ﬁ:b
p : model : :

Fig. 5. Tool workflow. For the running example (Example 1), the DTA is the automaton
in Fig. 2 (Left), the zone graph is the automaton in Fig. 3, the COSMOS model is the
zone graph annotated with probability distributions as described in Example 3, and
examples of trajectories are depicted in Fig. 4.

a b,xElQa,xS?)/\yzl\

i) 2 <10 '

Fig. 6. The NTA B for Example 5. Every transition has a guard z < 10 omitted.

the language of a given NTA, and returns the probability. We have modified COS-
MOS to handle distributions given by arbitrary rational functions and to compute
the membership of a timed word in an NTA. Our implementation can be found at
http://www.prismmodelchecker.org/files/qest 16.

Ezample 5. Let A be the DTA of the running example (Example1). The NTA
B of Fig. 6 recognises the timed words that contain aba as a subword within the
first 10 time units, where the latter a occurs at most 3 time units after the for-
mer and there is at least 1 time unit between b and both as. We have estimated
Vol(L1o(A)NL1o(B))/Vol(L10(.A)) by implementing Application 1. Sampling was
performed using Method 2 with m = 5. The result is in the interval [0.679, 0.688]
with confidence level 0.99; 58, 000 simulations were used in 5s.

A Case Study. We additionally consider a larger case study of a failure and repair
system modelled as an NTA (see [5] for more details). We consider a model with
K machines that need to be fully repaired for the overall system to work properly.
Each machine contains N levels of failure and can fail at most n,; times between
two full repairs. The model is implemented by an NTA A with Nny locations and
K +1 clocks. The property we are interested in is encoded in another NTA B with

4 locations and 2 clocks. We apply our method by over-approximating the NTA

A with a DTA C with R % KN locations and 2 clocks. The results are reported

in Table 3. We use our approach to sample timed words of length 50 of the DTA C
and check their membership in L5q(A) and Lso(B). We compare receding horizon
sampling to isotropic sampling. We observe that for isotropic sampling the proba-
bility for a timed word in Lso(.A) to be in Lso(B) (denoted by Pso(B|.A)) tends to 1
quickly when R increases, which, for large values of R, might be interpreted as an
inclusion of the languages. On the other hand, with the receding horizon sampling
the same probability (Psq(B|.A)) tends to zero, which shows that the model does
not satisfy the property. This result demonstrates the necessity of (quasi)-uniform

http://www.prismmodelchecker.org/files/qest16

Uniform Sampling for Timed Automata with Application 189

Table 3. Result of receding horizon sampling compared to isotropic sampling for the
case study with two machines (K = 2). “Pre Time” is the pre-computation time, “Sim
Time” is the simulation time. The meaning of R, Pso(A|C) and Pso(B|.A) is described
in the text. The receding horizon is 8 + R. The number of samples is 100, 000.

R Receding horizon Isotropic

Pre Time #Zones Sim Time Pso(BJA) Pso(A|C) Sim Time Pso(B|.A) Pso(A|C)
4 45s 380 133s 0.999977 0.86539 36s 0.990439 0.03347
6 99s 581 369s 0.997717 0.58701 39s 0.975795 0.05123
8 219s 783 5005s 0.930944 0.06111 56s 0.995179 0.07052
10 417s 985 5773s 0.509091 0.00275 55s 0.999893 0.09325
12 745s 1187 7954s 0.0344828 0.00029 64s 1 0.1019

sampling to explore the behaviour of the model, since the results of isotropic sim-
ulation significantly diverge from those of (quasi)-uniform simulation, and thus
do not yield reliable information about the system.

We also observe that the probability for timed words in the over-approximation
L50(C) to fall in Lsp(A) (denoted by Pso(A|C)) tends to zero, meaning that it
becomes too crude for large values of R. Thus, tight over-approximations are
important to obtain efficient simulation of an NTA through a DTA.

The time required for receding horizon simulation is high compared to
isotropic, since it requires sampling of complex distributions involving many poly-
nomials.

6 Conclusion and Further Work

We have developed the foundations for the practical application of xsvolumetry of
timed languages to quantitative and statistical verification of complex properties
for TAs. We implemented our work in a tool chain and provide first experiments.

On the theoretical side, we want to show that constants in Method 3 and The-
orem 2 can be chosen to guarantee arbitrarily small divergence from exact uni-
form sampling and consider extending the theory to probabilistic TAs. We would
also like to implement membership checking in COSMOS for generaltimed lan-
guages (e.g. recognised by stopwatch automata, LHA, etc.). We also plan to use
our random sampling algorithms to detect forgetful cycles described in [3], which
are needed to synthesise controllers robust to timing imprecision [18].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183—
235 (1994)

2. Asarin, E., Basset, N., Béal, M.-P., Degorre, A., Perrin, D.: Toward a timed theory
of channel coding. In: Jurdzinski, M., Ni¢kovié, D. (eds.) FORMATS 2012. LNCS,
vol. 7595, pp. 27-42. Springer, Heidelberg (2012)

3. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Inf. Com-
put. 241, 142-176 (2015)

190

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

B. Barbot et al.

Ballarini, P., Barbot, B., Duflot, M., Haddad, S., Pekergin, N.: HASL: a new app-
roach for performance evaluation and model checking from concepts to experimen-
tation. Perform. Eval. 90, 53-77 (2015)

. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for

timed automata with application to language inclusion measurement. Technical
report CS-RR-16-04, University of Oxford (2016)

. Basset, N.: Counting and generating permutations using timed languages. In: Pardo,

A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 502-513. Springer, Heidelberg
(2014)

. Basset, N.: A maximal entropy stochastic process for a timed automaton. In: Fomin,

F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS,
vol. 7966, pp. 61-73. Springer, Heidelberg (2013)

. Bengtsson, J.E., Yi, W.: Timed automata: semantics, algorithms and tools. In:

Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 87-124. Springer, Heidelberg (2004)

. Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.: A

review of statistical model checking pitfalls on real-time stochastic models. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 177-192.
Springer, Heidelberg (2014)

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: UPPAAL SMC
tutorial. STTT 17(4), 397-415 (2015)

Denise, A., Gaudel, M.-C., Gouraud, S.-D., Lassaigne, R., Oudinet, J., Peyronnet,
S.: Coverage-biased random exploration of large models and application to testing.
STTT 14(1), 73-93 (2012)

Flajolet, P., Zimmerman, P., Van Cutsem, B.: A calculus for the random generation
of labelled combinatorial structures. Theoret. Comput. Sci. 132(1), 1-35 (1994)
Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck, L.D.
(eds.) TACAS 2005. LNCS, vol. 3440, pp. 271-286. Springer, Heidelberg (2005)
Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145-159.
Springer, Heidelberg (2000)

Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. Online
Arch. (PROLA) 108(2), 171-190 (1957)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585-591. Springer, Heidelberg (2011)

Murray, R.M., Hauser, J., Jadbabaie, A., Milam, M.B., Petit, N., Dunbar,
W.B., Franz, R.: Online control customization via optimization-based control. In:
Software-Enabled Control: Information Technology for Dynamical Systems, p. 149
(2003)

Oualhadj, Y., Reynier, P.-A., Sankur, O.: Probabilistic robust timed games. In:
Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 203-217.
Springer, Heidelberg (2014)

Oudinet, J., Denise, A., Gaudel, M.-C., Lassaigne, R., Peyronnet, S.: Uniform
monte-carlo model checking. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011.
LNCS, vol. 6603, pp. 127-140. Springer, Heidelberg (2011)

Stein, W.A., et al.: Sage Mathematics Software (Version 6.9). The Sage Develop-
ment Team (2015). http://www.sagemath.org

Younes, H.LL.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368-1409 (2006)

http://www.sagemath.org

Inferring Covariances for Probabilistic Programs

Benjamin Lucien Kaminski®™?, Joost-Pieter Katoen®™,
and Christoph Matheja(®)

Software Modeling and Verification Group, RWTH Aachen University,
Aachen, Germany
{benjamin.kaminski,katoen,matheja}@cs.rwth-aachen.de

Abstract. We study weakest precondition reasoning about the (co)
variance of outcomes and the variance of run—times of probabilistic
programs with conditioning. For outcomes, we show that approximat-
ing (co)variances is computationally more difficult than approximating
expected values. In particular, we prove that computing both lower and
upper bounds for (co)variances is Y9—complete. As a consequence, nei-
ther lower nor upper bounds are computably enumerable. We therefore
present invariant—based techniques that do enable enumeration of both
upper and lower bounds, once appropriate invariants are found. Finally,
we extend this approach to reasoning about run—time variances.

Keywords: Probabilistic programs - Covariance - Run—time

1 Introduction

Probabilistic programs describe manipulations on uncertain data in a succinct
way. They are normal-looking programs describing how to obtain a distribu-
tion over the outputs. Using mostly standard programming language constructs,
a probabilistic program transforms a prior distribution into a posterior dis-
tribution. Probabilistic programs provide a structured means to describe e.g.,
Bayesian networks (from AI), random encryption (from security), or predator—
prey models (from biology) [5] succinctly.

The posterior distribution of a program is mostly determined by approximate
means such as Markov Chain Monte Carlo (MCMC) sampling using (variants
of) the well-known Metropolis—Hasting approach. This yields estimates for var-
ious measures of interest, such as expected values, second moments, variances,
covariances, and the like. Such estimates typically come with weak guarantees
in the form of confidence intervals, asserting that with a certain confidence the
measure has a certain value. In contrast to these weak guarantees, we aim at
the ezact inference of such measures and their bounds. We hereby focus both on
correctness and on run—time analysis of probabilistic programs. Put shortly, we

This work was supported by the Excellence Initiative of the German federal and
state government.
© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 191-206, 2016.
DOI: 10.1007/978-3-319-43425-4_14

192 B.L. Kaminski et al.

are interested in obtaining quantitative statements about the possible outcomes
of programs well as their run times.

This paper studies reasoning about the (co)variance of outcomes and the
variance of run—times of probabilistic programs. Our programs support sampling
from discrete probability distributions, conditioning on the outcomes of exper-
iments by observations [5], and unbounded while-loops!. In the first part of
the paper, we study the theoretical complexity of obtaining (co)variances on out-
comes. We show that obtaining bounds on (co)variances is computationally more
difficult than for expected values. In particular, we prove that computing both
upper and lower bounds for (co)variances of program outcomes is X9—complete,
thus not recursively enumerable. This contrasts the case for expected values
where lower bounds are recursively enumerable, while only upper bounds are X9
complete [7]. We also show that determining the precise values of (co)variances
as well as checking whether the (co)variance is infinite are both IT9—complete.
These results rule out analysis techniques based on finite loop—unrollings as com-
plete approaches for reasoning about the covariances of outcomes of probabilistic
programs.

In the second part of the paper, we therefore develop a weakest precondition
reasoning technique for obtaining covariances on outcomes and variances on run—
times. As with deductive reasoning for ordinary sequential programs, the crux
is to find suitable loop—invariants. We present a couple of invariant—based proof
rules that provide a sound and complete method to computably enumerate both
upper and lower bounds on covariances, once appropriate invariants are found.
We establish similar results for variances of the run—time of programs. The results
of this paper extend Mclver and Morgans approach for obtaining expectations of
probabilistic programs [11], recent techniques for expected run—time analysis [9],
and complement results on termination analysis [4,7].

Some proofs had to be omitted due to lack of space. They can be found in
an extended version of this paper [8].

2 Preliminaries

We study approximating the covariance of two random variables (ranging over
program states) after successful termination of a probabilistic program on a given
input state. Our development builds upon the conditional probabilistic guarded
command language (¢cpGCL) [6]—an extension of Dijkstra’s guarded command
language [3] endowed with probabilistic choice and conditioning constructs.

Definition 1 (cpGCL [6]). Let V be a finite set of program variables®. Then

the set of programs in cpGCL, denoted P, adheres to the grammar

P = skip |empty ’ diverge ‘ halt ‘ z:=FE|P;P|if (B) {P} else {P}
| {P} [p] {P} | while (B) {P} | observe B,

msts MCMC-based analysis, as this is restricted to bounded programs.

2 We restrict ourselves to a finite set of program variables for reasons of cleanness of
the presentation. In principle, a countable set of program variables could be allowed.

Inferring Covariances for Probabilistic Programs 193

where © € V, E is an arithmetical expression over V, p € [0, 11N Q is a rational
probability, and B is a Boolean expression over arithmetic expressions over V.

If a program C' contains neither a probabilistic choice {C'} [p] {C"} nor an
observe-statement, we say that C' is non—probabilistic.

We briefly go over the meaning of the language constructs. Furthermore, we
assign each statement an execution time in order to reason about the run—time
of programs. skip (empty) does nothing—i.e. does not alter the current variable
valuations—and consumes one (no) unit of time. diverge is syntactic sugar for
the certainly non—terminating program while (true) {skip}. halt consumes no
unit of time and halts program execution immediately (even when encountered
inside a loop). It represents an improper termination of the program. z := E, Cf;
Cy, if (B) {C1} else {C>}, and while (B) {C'} are standard variable assign-
ment, sequential composition, conditional choice, and while-loop constructs.
Assignments and guard evaluations consume one unit of time.

{C1} [p] {C2} is a probabilistic choice construct: With probability p the pro-
gram C; is executed and with probability 1 — p the program Cs is executed.
Flipping the p—coin itself consumes one unit of time. observe B is the con-
ditioning construct. Whenever in the execution of a program, an observe B
is encountered, such that the current variable valuation satisfies the guard B,
nothing happens except that one unit of time is being consumed. If, however,
an observe B is encountered along an execution trace that occurs with prob-
ability ¢, such that B is not satisfied, this trace is blocked as it is considered
an undesired execution. The probabilities of the remaining execution traces are
then conditioned to the fact that this undesired trace was not encountered, i.e.
the probabilities of the remaining execution traces are renormalized by 1—¢q. We
refer to encountering such an undesired execution as an observation violation.
For more details on conditioning and its semantics, see [6].

Notice that we do not include non-deterministic choice constructs
(as opposed to probabilistic choice construct) in our language, as we would then
run into similar problems as in [6, Sect. 6] in the presence of conditioning.

Ezample 1 (Conditioning Inside a Loop). Consider the following loop:
while (¢ =1{ {c¢:=0} [0.5] {z:=x+1}; observe c=1 V zisodd }

Without the observe—statement, this loop would generate a geometric distribu-
tion on x. By considering the observe—statement, this distribution is conditioned
to the fact that after termination x is odd. A

Given a probabilistic program C, an initial state o, and a random variable f
mapping program states to positive reals, we could now ask: What is the con-
ditional expected value of f after proper termination of program C on input o,
given that no observation was violated during the execution? An answer to this
question is given by the conditional weakest pre-expectation calculus introduced
in [6]. For summarizing this calculus, we first formally characterize the random
variables f, commonly called expectations [11]:

194 B.L. Kaminski et al.

Definition 2 (Expectations [6,11]). LetS = {o | 0 : V — Q}, where Q is the
set of rational numbers, be the set of program states.® Then the set of expecta-
tions is defined as E = {f | f:S— R°>°0}, and the set of bounded expectations
is defined as E<; = {f | f:S — [0, 1]}. A complete partial order < on both E
and E<q is given by f1 < fa iff Vo € S: f1(o) < fa(o).

The weakest (liberal) pre—expectation transformer wp : P — (E — E) (wlp : P —
(E<1 — E<1)) is defined according to Table1l (middle column). By means of
these two transformers, we can give an answer to the question posed above:
Namely, the fraction wplCI(f)(9)/wip[C](1)(s) is indeed the conditional expected
value of f after termination of C' on input o, given that no observation was
violated during C’s execution [6]. Consequently, we define:

Table 1. Definition of wp, wlp, and rt. [z/E] is a syntactic replacement with
flz/E] (o) = f(o[x — o(F)]). [B] is the indicator function of B with [B](c) = 1
if o = B, and [B](0) = 0 otherwise. F' o H(f) is the functional composition of F' and
H applied to f. Ifp X. F(X) (gfp X. F(X)) is the least (greatest) fixed point of F with
respect to <. Definitions of wlp for the other language constructs are as for wp and

thus omitted.

C wp [C] (f) rt [C] (t)
skip tr/T+1]
empty f t
diverge 0 oo
halt 0 0
z=F flz/E] tlz/E, T/ + 1]
Ci; Co wp[C1] o wp [C2] (f) rt[Ci] o rt [C2] (t)
if (B) {C1} else {C2} (B] - wp [C1] (f) ([B] - rt[C1] ()
+[=B] - wp [C:] (f) +[=B] -t [Co) (1)) [r/7 + 1]
{C1} [p] {C2} p-wp[Ch] (f) (p-rt[C1] (1)
+(1—=p)-wp[Ca] (/) +(1 = p) - rt[Co] (1)) [r/7 + 1]
while (B) {C'} Ifp X. [-B] - f Ifp X. ([=B] -t

+[B] - wp [C] (X)

+[B] - rt[C'](X))[r/7 + 1]

observe B B]- f [B] - t[r/T + 1]
c wip [C] (f)

diverge 1

halt 1

while (B) {C'}

gfp X. [-B] - f +[B] - wip [C'] (X)

3 Notice that S is countable and computably enumerable as V is finite.

Inferring Covariances for Probabilistic Programs 195

Definition 3 (Conditional Expected Values [6]). Let C € P, o0 € S, and
f € E. Then the conditional expected value of f after executing C' on input o
given that no observation was violated is defined as*

wp [C](f) (o)
wip [C] (1) (o) -

Having the definition for conditional expected values readily available, we can
now turn towards defining the conditional (co)variance of a (two) random vari-
ables. We simply translate the textbook definition to our setting:

Eiero (f) =

Definition 4 (Conditional (Co)variances). LetC € P, 0 €S, and f,g €
E. Then the conditional covariance of the two random wvariables f and g after
executing C' on input o, given that no observation was violated is defined as

Covicyo) (fs 9) = Epeqo) (f - 9) = Epeqo) (f) - Efeqeo (9) -

The conditional variance of the single random variable f after executing C' on
imput o, given that no observation was violated is defined as the conditional

covariance of f with itself, i.e. Varjeyo (f) = Covicyeey (f, f)-

3 Computational Hardness of Computing (Co)variances

In this section, we will investigate the computational hardness of computing
upper and lower bounds for conditional (co)variances. The results will be stated
in terms of levels in the arithmetical hierarchy—a concept we first briefly recall:

Definition 5 (The Arithmetical Hierarchy [10,12]). For everyn € N,
the class X9 is defined as X = {A | A= {z | Fy1 Vyo Jys -+ I/ Vyn = (, Y1,
Y2y Y3y -+ Yn) € R}, R is a decidable relation} and the class II? is defined as
o = {A | A= {x } Yy JyaVys -+ 3/ Vyn o (2, Y1, Y2, Y3, -+, Yn) € R}, R
s a decidable relation}. Note that we require the values of variables to be drawn
from a computable domain. Multiple consecutive quantifiers of the same type can
be contracted to one quantifier of that type, so the numbern really refers to the num-
ber of necessary quantifier alternations. A set A is called arithmetical, iff A € I'?,
for I' € {X, II} and n € N. The arithmetical sets form a strict hierarchy, i.e.
I c I, holds for I' € {X, IT} andn > 0. Furthermore, note that X3 = II{ is
ezactly the class of the decidable sets and XY is exactly the class of the computably
enumerable sets.

4 We make use of the convention that % = 0. Note that since our probabilistic choice
is a discrete choice and our language does not support sampling from continuous
distributions, the problematic case of “%” can only occur if executing C on input o
will result in a violation of an observation with probability 1.

196 B.L. Kaminski et al.

Next, we recall the concept of many—one reducibility and completeness:

Definition 6 (Many—One Reducibility and Completeness [2,12,14]).
Let A, B be arithmetical sets and let X be some appropriate universe such that
A, B C X. A is called many—one reducible (or simply reducible) to B, denoted
A <., B, iff there exists a computable function r : X — X, such thatVr € X :
(x € A< r(z) € B). If r is a function such that r reduces A to B, we denote
this by r : A <,, B. Note that <., is transitive.

A is called I'’—complete, for I" € {E II}, iff both A € T? and A is I'’~hard,
meaning C <., A, for any set C € I')). Note that if B € FO and A <, B then
AeTI?, too. Furthermore note that zfA is I'0—complete and A <, B then B
is necessarily I'°—hard. Lastly, note that if A is X0 —complete, then A € 22\]72,
Analogously, if A is II2—complete, then A € TI0 \ X9.

In the following, we study the hardness of obtaining covariance approximations
both from above and from below. Furthermore, we are interested in exact values
of covariances as well as in deciding whether the covariance is infinite. In order
to formally investigate the arithmetical complexity of these problems, we define
four problem sets which relate to upper and lower bounds for covariances and
to the question whether the covariance is infinite:

Definition 7 (Approximation Problems for Covariances). We define the
following decision problems:

(C, o, f, g, q) € LCOVAR
(C, 0, f, 9, q) € RCOVAR
(C, 0, f, 9, q) € COVAR
(C, o, f, g) € °COVAR

where C €P, 0 €S, f,g€E, and g € Q.°

The first fact we establish about the hardness of computing upper and lower
bounds of covariances is that this is at most X9-hard, thus not harder than
deciding whether a non—probabilistic program, i.e. a program without obser-
vations and probabilistic choice, does not terminate on all inputs, or deciding
whether a probabilistic program terminates after an expected finite number of
steps [7,13]. Formally, we establish the following results:

Lemma 1. LCOVAR and RCOVAR are both in X9.

For proving Lemma 1, we revert to a fact established in [7]: All lower bounds for
expected outcomes are computably enumerable. As a consequence, there exists
a computable function wp* [C] (f) (o) that is ascending in k, such that for given
CeP,o€S, and f € E, we have

VkeN:wp*[C](f) (o) < wp[C](f) (o), and
supwp® [C] (f) (0) = wp[C](f) () -

keN

Covicy(o) (f;
Covicy(o) (f
Covicy(o) (f
Covicy(o) (f;

11t

5 Note that, for obvious reasons, we restrict to computable expectations f, g only.

Inferring Covariances for Probabilistic Programs 197

Intuitively, for every k € N the function wp* [C] (f) (¢) outputs a lower bound
of wp [C] (f) (o) in ascending order.

Similarly, lower bounds for wlp [C] (1) (¢) can be enumerated. To see this,
note that wp [C] (1) (o) = 1 for any observe—free program C and any state o.
wp [C] (1) (o) can only be decreased by violation of an observation. Informally,

wp[C] (1) (0) = 1 — “Probability of C violating an observation” .

Lower bounds for the latter probability can be enumerated by successively
exploring the computation tree of C' on input ¢ and accumulating the prob-
ability mass of all execution traces that lead to a violation of an observation.
As a consequence, there must exist a computable function wlp® [C] (1) (¢) that
is descending in k, such that for given C € P and o € S,

VkeN:wlp[C](1) (o) < wip¥[C](1) (o), and
wlp[C] (1) (0) = inf wip® (€] (1) (o) .
keN
Since wp® [C] (f) (o) is ascending and wlp” [C] (1) (0) is descending in k, the
quotient we*[C1(£)(2) lwip* [C](1) (o) is ascending in k. We can now prove Lemma 1:

Proof (Lemma 1). For LCOVAR € X9, consider (C, o, f, g, q) € LCOVAR iff
Spvp. WPTLCI(f - 9) (o) we'[C](f) (0) - wp’ [C](9) (o)

wip® [C] (1) (o) wip® [C] (1) (0)?
For the proof for RCOVAR, see [8] O

Regarding the hardness of deciding whether a given rational is equal to the
covariance and the hardness of deciding non—finiteness of covariances, we estab-
lish that this is at most I19—hard, thus not harder than deciding whether a non—
probabilistic program terminates on all inputs, or deciding whether a probabilis-
tic program does not terminate after an expected finite number of steps [7,13].
Formally, we establish the following:

Lemma 2. COVAR and *COVAR are both in IIY.

So far we provided upper bounds for the computational hardness of solving
approximation problems for covariances. We now show that these bounds are
tight in the sense that these problems are complete for their respective level of the
arithmetical hierarchy. For that we need a X9— and a I19—hard problem in order
to perform the necessary reductions for proving the hardness results. Adequate
problems are the problem of almost—sure termination and its complement:

Theorem 1 (Hardness of the Almost—Sure Termination Problem [7]).
Let C € P be observe—free. Then C' terminates almost—surely on input o € S, iff
it does so with probability 1. The problem set AST ‘s defined as (C, o) € AST
iff C terminates almost—surely on input o. We denote the complement of AST
by AST.S AST is IIS—complete and AST is X9—complete.

6 Note that by “complement” we mean not exactly a set theoretic complement but
rather all pairs (C, o) such that C' does not terminate almost—surely on o.

198 B.L. Kaminski et al.

wp [C'](1) () = wp[C'] (1) (0)?

Fig. 1. Plot of the termination probability of a program against the resulting variance.

By reduction from AS7 we now establish the following hardness results:

Lemma 3. LCOVAR and RCOVAR are both X3—hard.

Proof. For proving the Y§-hardness of LCOVAR, consider the reduction func-
tion rz(C, o) = (C, 0, v, v, 0)7, with ¢’ = v:=0; {skip} [I/2] {C}; v:=1,
where variable v does not occur in C'. Now consider the following:

wp [C'] (v) (0) wp[C] (v) (0)?

cnete) = e) (o) Wb O] (1) (0
_ wp[C(v?) () wp[C(v) (0) ..
= . - B (C" is observe—free)

— wp[C'] (+?) (0) — wp [C"] (v) ()

Since v does not occur in C' and v is set from 0 to 1 if and only if C’ has
terminated, this is equal to:

= wp[C](1%) (0) —wp[C'] (1) (0)?
= wp[C'] (1) (¢) —wp[C] (1) (0)?

Note that wp [C’] (1) (o) is exactly the probability of C’ terminating on input o.
A plot of this termination probability against the resulting variance is given in
Fig.1. We observe that Covjcr(y) (v, v) = wp[C’] (1) (6) —wp[C’] (1) (6)® > 0
iff ¢’ terminates neither with probability 0 nor with probability 1. Since, how-
ever, C' terminates by construction at least with probability /2, we obtain
that Covjcry(e (v, v) > 0 iff C” terminates with probability less than 1, which
is the case iff C' terminates with probability less than 1. Thus r-(C, o) =
(C', 0, v,v,0) € LCOVAR iff (C, o) € AST. Thus, rp : AST <,, LCOVAR.
Since AST is X9—complete, if follows that LCOVAR is X9-hard.

For the the proof for RCOVAR, see [8]. O

A hardness results for COVAR is obtained by reduction from AS7T.

T We write v for the expectation that in state o returns o(v).

Inferring Covariances for Probabilistic Programs 199

Lemma 4. COVAR s II9-hard.

Proof. Similar to Lemma 3 using r,(C, o) = (C’, o, v, v, %), with ¢/ = v := 0;
{diverge} [Y/2] {C}; v := 1. For details, see [8]. O

For a hardness result on *COVAR we use the universal halting problem for
non—probabilistic programs.

Theorem 2 (Hardness of the Universal Halting Problem [13]). Let C
be a non—probabilistic program. The universal halting problem is the problem of
deciding whether C terminates on all inputs. Let UH denote the problem set,
defined as C € UH iff Vo € S : C terminates on input o. UH is II9-complete.

We now establish by reduction from UH the remaining hardness result:
Lemma 5. *°COVAR is II9-hard.

Proof. For proving the IT9-hardness of *COVAR we use the reduction function
Too(C) = (C', 0, v, v), where o is arbitrary but fixed and C” is the program

c:=1; i:=0; z:=0; v:=0; term:=0; InitC;

while (¢ # 0){
StepC'; if (term = D{ v:=2%; i:=i+1; term:=0; InitC };
{c:=0} [0.5] {c:=1}; z:=x+1 } ,

where InitC is a non-probabilistic program that initializes a simulation of the
program C on input e(i) (where e : N — S is some computable enumeration of
S), and StepC' is a non—probabilistic program that does one single (further) step
of that simulation and sets term to 1 if that step has led to termination of C'.

Intuitively, the program C’ starts by simulating C' on input e(0). During
the simulation, it—figuratively speaking—gradually looses interest in further
simulating C by tossing a coin after each simulation step to decide whether to
continue the simulation or not. If eventually C’ finds that C has terminated
on input e(0), it sets the variable v to a number exponential in the number of
coin tosses that were made so far, namely to 2*. C’ then continues with the same
procedure for the next input e(1), and so on.

The variable z keeps track of the number of loop iterations (starting from
1 as the first loop iteration will definitely take place), which equals the number
of coin tosses. The z—th loop iteration takes place with probability 1/2¢. The
expected value Ejcrp(r) (v) is thus given by a series of the form S = Yoo vif2t,
where v; = 27 for some j € N. Two cases arise:

(1) C € UH, i.e. C terminates on every input. In that case, v will infi-
nitely often be updated to 2%. Therefore, summands of the form 2'/2' will
appear infinitely often in S and so S diverges. Hence, the expected value of
v is infinity and therefore, the variance of v must be infinite as well. Thus,
(C,0, v, v) € °COVAR.

(2) C &€ UH, i.e. there exists some input ¢’ with minimal ¢ € N such that
e(i) = o’ on which C does not terminate. In that case, the numerator of all
summands of S is upper bounded by some constant 27 and thus S converges.
Boundedness of the v;’s implies that the series Y o, vi®/2i = Efcrpeo) (02) also
converges. Hence, the variance of v is finite and (C”, 0, v, v) &€ *COVAR. O

200 B.L. Kaminski et al.

Lemmas 1 to 5 together directly yield the following completeness results:
Theorem 3 (The Hardness of Approximating Covariances).

1. LCOVAR and RCOVAR are both X9-complete.
2. COVAR and *COVAR are both IT13-complete.

Remark 1 (The Hardness of Approximating Variances). It can be shown that
variance approximation is not easier than covariance approximation: exactly the
same completeness results as in Theorem 3 hold for analogous variance approxi-
mation problems. In fact, we have always reduced to approximating a variance
for obtaining our hardness results on covariances. A

As an immediate consequence of Theorem 3, computing both upper and lower
bounds for covariances is equally difficult. This is contrary to the case for expected
values: While computing upper bounds for expected values is also X§—complete,
computing lower bounds is X?-complete, thus lower bounds are computably
enumerable [7]. Therefore we can computably enumerate an ascending sequence
that converges to the sought—after expected value. By Theorem 3 this is not
possible for a covariance as X9—sets are in general not computably enumerable.

Theorem 3 rules out techniques based on finite loop—unrollings as complete
approaches for reasoning about the covariances of outcomes of probabilistic pro-
grams. As this is a rather sobering insight, in the next section we will investigate
invariant—aided techniques that are complete and can be applied to tackle these
approximation problems.

4 Invariant—Aided Reasoning on Outcome Covariances

For straight-line (i.e. loop—free) programs, upper and lower bounds for covarian-
ces are obviously computable, e.g. by using the decompositions from Definitions 3
and 4, and the inference rules from Table1l. Problems do arise, however, for
loops. We have seen in the previous section that neither upper nor lower bounds
are computably enumerable. In this section we therefore present an invariant—
aided approach for enumerating bounds on covariances of loops. The underlying
principle of such techniques is quite commonly a result due to Park:

Theorem 4 (Park’s Lemma [15]). Let (D, C) be a complete partial order
and F : D — D be continuous. Then, for all d € D, it holds that F(d) C d
implies Ifp F C d, and d C F(d) implies d C gfp F.

Using this theorem, we can verify in a relatively easy fashion that some element
is an over—approximation of the least fixed point or an under—approximation of
the greatest fixed point of a continuous mapping on a complete partial order.
In the following, let C' = while (B) {C’}. In order to exploit Park’s Lemma for
enumerating bounds on covariances for this while-loop, recall

Covicyoy (f; 9) = Epeqeo) (f - 9) — Efeyeo) (f) - Eqeqeo) (9)
wp[C](f-9g) (o) wp[C](f)(a) wp[C](9) (o)

wlp [C] (1) (9) wip [C] (1) (0)?

Inferring Covariances for Probabilistic Programs 201

By inspection of the last line, we can see that for obtaining an over—approxima-
tion of Covycy(o) (f, 9), it suffices to over-approximate WP[C/](.f'!J)(U)/WIp[C’](1)(0’),
which can be done by over—approximating wp [C’] (f - ¢) (¢0) and under—approxi-
mating wlp [C'] (1) (o). Since wp (wlp) of a loop is defined in terms of a least
(greatest) fixed point, we can apply Park’s Lemma for over—approximating this
fraction. This leads us to the following proof rule:

Theorem 5 (Invariant—Aided Over—Approximation of Covariances).
Let C =while (B) {C'}, 0 €8S, f,g €E, Fh(X) =[-B]-h+[B]-wp[C'] (X),
for any h € E, and G(Y) = [-B] + [B] - wilp[C'] (V). Furthermore, let X € E

and Y € E<1, such that Fy.4 (X) X, Y=< G(Y), and)A/(J) > 0. Then for all
k € N it holds that®

Covicpoy (fr 9) < @) _

By this method we can computably enumerate upper bounds for covariances once
appropriate invariants are found. The catch is that if we choose the invariants,
such that Fy.,(X)(0) < X(0) or Y (o) < G(Y)(0), then the enumeration will
not get arbitrarily close to the actual covariance. Note, however, that our method
is complete since we could have chosen X = Ifp Fy.4 and Y =gfpG:

Corollary 1 (Completeness of Theorem 5). Let C = while (B) {C'}, 0 €
S, f,g € E. Then there exist X € E and Y € E<y, such that

. X(o) F¥FO)(0) FF0)(o)
Igellf\l ?EU; - GF(1)(0)? = Covicy(o) (f; 9)-

By considerations analogous to the ones above, we can formulate dual results
for lower bounds. For details, see [8].

Ezample 2 (Application of Theorem 5). Reconsider the loop from Example 1. For
reasoning about the variance of x, we pick the invariants
X = [e#0] 22+ [c=1]- ([z is even] - Yo7 (922 + 30z + 41)
+ [z is odd] - 2/27 (92* 4 122 + 20)), and
Y = [c#£0]+[c=1]-([zis even] - I/3 + [z is odd] - 2/3)
which satisfy the preconditions of Theorem5. If we enter the loop in a state
o with o(¢) = 1 and o(x) = 0, we have X(9)/¥(s) = 41/9 which is our first

upper bound. We can now enumerate further upper bounds by doing fixed point
iteration on F(X) = [c # 1] -x + [c = 1] - wp[loop body] (X) = [c # 1] -

8 Here Fy'(X) stands for k—fold application of F, to X.

202 B.L. Kaminski et al.

v+ [c=1]5([zisodd] - X[c/0]+X[z/x+1]) and G(Y) = [c # 1] + [c =
1] - wip [loop body] (Y) = [c # 1] + [c = 1] - 3([& is odd] - Y[c/0] +Y [z/z + 1]):

41 F}(0)(0)> 41 F2(0)(0)*> 41 41 F}0)(0)* 37

9 G2 9 G()e)? 9’ 9 G2 9’

Finally, this sequence converges to 41/9 — 25/9 = 16/9 as the variance of x. A

5 Reasoning About Run—Time Variances

In addition to the (co)variance of outcomes we are interested in the variance of
the program’s run—time. Intuitively, the run—time of a program corresponds to
its number of executed operations, where each operation is weighted according to
some run—time model. For simplicity, our run—time model assumes skip, guard
evaluations and assignments to consume one unit of time. Other statements are
assumed to consume no time at all. More elaborated run—time models, e.g. in
which the run—time of assignments depends on the size of a given expression,
are possible design choices that can easily be integrated in our formalization.

We describe the run—time variance in terms of an operational model Markov
Chain (MC) with rewards. The model is similar to the ones studied in [6,9], but
additionally keeps track of the run—time in a dedicated variable 7 which is not
accessible by the program, but may occur in expectations.

Definition 8 (Run—Time Expectations). LetS,; = {0 | VU {7} — Q}. The
set of run—time expectations is then defined as E, = {t ’ t:S; — R‘;’O}.

A corresponding wp—style calculus to reason about expected run—times and vari-
ances of probabilistic programs is presented afterwards.

We first briefly recall some necessary notions about MCs and refer to [1,
Chap. 10] for a comprehensive introduction. A Markov Chain is a tuple M =
(S,P,sr,rew), where S is a countable set of states, s; € S is the initial state,
P:S xS —[0,1] is the transition probability function such that for each state
5€8,) esP(s,8") €{0,1}, and rew : S — Rxq is a reward function. Instead

of P(s,s’) = p, we often write s L, §'. A path in 9 is a finite or infinite sequence
T = 5081 ... such that s; € S and P(s;,s;41) > 0 for each ¢ > 0 (where we
tacitly assume P(s;,s;41) = 0 if 7 is a finite path of length n and ¢ > n). The
cumulative reward and the probability of a finite path 7 = s¢...s, are given
by rew(w) = Y374 rew(sy) and Pr¥ {7} = []'Z) P(sk,skt1)- These notions
are lifted to infinite paths by the standard cylinder set construction (cf. [1]).

Given a set of target states T' C S, 0T denotes the set of all paths in M
reaching a state in 7' from initial state s;. Analogously, all paths starting in sy
that never reach a state in T' are denoted by —~QT. The expected reward that M
eventually reaches 7" from a state s € S is defined as follows:

Y oreor Pr¥{r} - rew(r) if Y orcoT Pr¥{r} =1

ExpRew™ (0T) =
xpRew™ (0T) {oo i Y Cop PY{r} < 1.

Inferring Covariances for Probabilistic Programs 203

Moreover, the conditional expected reward of M reaching T from s under the
condition that a set of undesired states U C S is never reached is given by®

ExpRew™ (0T N=QU)
Pr{=0U} .

CExpRew™ (0T | ~QU) =

We are now in a position to define an operational model for our probabilistic
programming language P. Let | and # be two special symbols denoting successful
termination of a program and failure of an observation, respectively.

Definition 9 (The Operational MC of a P-Program). Given a program
C € P, an initial program state oy € S; and a post—run—time t € E, the according
MC is given by M} [C] = (S, P, s1, rew), where

- S=((PU{I}U{;C| CeP}) xS,) U {(sink), (£)},

— the transition probability function P is given by the rules in Fig. 2,

- Sr = <an—0>7 and

- rew: S — Rxq is the reward function defined by rew(s) =t(o) if s=(],0)
for some o € S; and rew(s) =0, otherwise.

In this construction, oo(7) represents the post-execution time of a program,
i.e. the run—time that is added after a program finishes its execution. Hence, 7
precisely captures the run—time of a program if o¢(7) = 0. The rules presented
in Fig. 2 defining the transition probability function are mostly self-explanatory.
Since we assume guard evaluations, probabilistic choices, assignments and the
statement skip to consume one unit of time. Hence, 7 is incremented accordingly
for each of these statements and remains untouched otherwise.

Figure 3 sketches the structure of the operational MC af! [C]. Here, clouds
represent a set of states and squiggly arrows indicate that a set of states is
reachable by one or more paths. Each run either terminates successfully (i.e.
it visits some state (|, ¢’)), or violates an observation (i.e. it visits (£)), or
diverges. In the first two cases each run eventually ends up in the (sink) state.
Note that states of the form (|, ¢’) are the only ones that may have a positive
reward. Furthermore, each of the auxiliary states of the form (|, ¢'), (#) and
(sink) is needed to properly deal with diverge, halt and observe B.

Since 7 precisely captures the run—time of a program if 7 is initially set to
0, the expected run—time of executing C' € P on input o € S, with o(7) = 0 is
given by the conditional expected reward of M [C] reaching (sink), given that
no observation fails, i.e. Ejoy() (1) = CExpRew™~ [(¢/(sink) | =0 (#)). Then,
in compliance with Definition 4, the run—time variance RTVar|cy(s) of C € P in

state o € S; with o(7) = 0 is given by Ejcyoy (%) — (Efepo (7'))2 which is

CEprewM;Q[C}(O(sink) | =0(#)) — (CEprewM;[C]((sink) | =O(# >)>2 .

In the following we provide a corresponding wp—style calculus to reason about
expected run—times and run—time variances of probabilistic programs. A formal

9 Again, we stick to the convention that % =0.

204 B.L. Kaminski et al.

——————— [terminated] ———— [sink]
(l,0) = (sink) (sink) — (sink)
T [empty] - [skip]
(empty, o) — (|,o0 (skip,0) = (|,olr/T+1])
T [halt] T [assgn]
(halt,o) — (sink) (z:=FE,0) = (|,0clz/E, 7/T+1])
(Cr,o0) B (Cl,0")y 0<p<1
- eq-1 eq-2
(C1; Cay0) 5 (C1; Cay0’) fsea-1] <l;0270'>i><02,0'> Isec2]
5 [pe-1]
({C1} Pl {C2},0) = (Cr,olr/T+1])
T [pc-2]
({1} I {C2},0) —= (Cay0lr/7 +1])
[Blo) = 1 [if-true]
(if (B) {C1} else {Ca},0) = (Cu,0lr/r+1])
[Bl(o) = 01 [if-false]
(if (B) {C1} else {Cs},0) — (Ca,0(r/T+1])
. [while]
(while (B) {C},0) — (if (B) {C; while (B) {C}} else {empty},o))
- [diverge]
(diverge,o) — (diverge,o)
[B](Ul) -1 [observe-true]
(observe B,o) — (|,o[r/7+1])
[Bl(o) = 01 [observe-false] ——————— [observe-failed]
(observe B,o) — (E) (E) — (sink)

Fig. 2. Rules for defining the transition probability function of the MC of a P—program.

definition of the run—time transformer rt : P — (E, — E.) is provided in
Table 1 (rightmost column). Intuitively, it behaves like wp except that a dedicated
run—time variable T is updated accordingly for each program statement that
consumes time. In [9], a transformer for expected run—times without the need for
an additional variable 7 is studied. However, this approach fails when reasoning
about run—time variances since it fails to capture expected squared run—times.
The run—time transformer rt precisely captures the notion of expected run—time
of our operational model.

Inferring Covariances for Probabilistic Programs 205

(£)

— (C,o) sink _
A

Fig. 3. Schematic depiction of the structure of the operational MC a2 [C].

Theorem 6 (Operational-Denotational Correspondence). Let C € P,
teE,, and o €S,. Then
t[C] (1) (0)
wip [C] (1) (o)
As a result of Theorem 6 we immediately obtain a formal definition of the

run—time variance of probabilistic programs in terms of rt and wlp. Formally, the
run—time variance of C' € P in state o € S; with o(7) = 0 is given by

CEprewaﬁ[C](O(sink) | =0(4)) =

RTVarioyo) = CExpRew™ (€1 (0 (sink) | ~0(#))
— (CEprewMg[C]((sink) | =O(¢ >))2
t[C](7*) (o) (rt[C](7) (0))*

C wp[C1(1) (o) (wip[C] (1) (0))*
Since rt is continuous (cf. [8] for a formal proof), the invariant—aided approach
based on Park’s Lemma (Theorem 4) presented in Sect. 4 is applicable to approx-
imate run—time variances as well. We present the result for approximating upper
bounds only. The dual result for lower bounds is obtained analogously.

Theorem 7 (Invariant—Aided Over—Approximation of Run—Time Vari-
ances). Let C = while (B) {C'} and o € S; with o(t) = 0. Moreover, let
() = |-+ B 1 [C)(X0), andG(Y) = [BL+[B] e O (1), Pt
more, let X € B, andY € E<y, suchthat Fr2(X) < X, Y X G(Y), andY () > 0.
Then for each k € N, it holds

X o k g ?
RTVar[[C]](U) < X() — <FT(O)()) .

Y (o) G*(1)(0)
The proof of Theorem 7 is analogous to the proof of Theorem 5. Again, since it

is always possible to choose X = Ifp F» and Y = gfp G, Theorem 7 is complete,
i.e. there exist X € E, and Y € E<; such that

2
) = RTVar[[C]](J).

206 B.L. Kaminski et al.

6 Conclusion

We have studied the computational hardness of obtaining both upper and lower
bounds on (co)variance of outcomes and established that this is X9—complete.
Thus neither upper nor lower bounds are computably enumerable. Furthermore,
we have established that deciding whether the (co)variance equals a given ratio-
nal and deciding whether the covariance is infinite is IT9-complete.

In the second part of the paper, we continued by presenting a sound and com-
plete invariant—aided approach which allows to computably enumerate upper and
lower bounds on (co)variances of while-loops, once appropriate loop—invariants
are found. Finally, we have shown how this approach can be extended to reason
about the variance of run-times.

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Davis, M.D.: Computability, Complexity, and Languages: Fundamentals of Theo-
retical Computer Science. Academic Press, Cambridge (1994)

3. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

4. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, completeness,
and compositionality. In: POPL 2015, pp. 489-501. ACM (2015)

5. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering (FOSE), pp. 167-181. ACM (2014)

6. Jansen, N., Kaminski, B.L., Katoen, J.P., Olmedo, F., Gretz, F., Mclver, A.: Con-
ditioning in probabilistic programming. ENTCS 319, 199-216 (2015)

7. Kaminski, B.L., Katoen, J.-P.: On the hardness of almost—sure termination. In:
Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234,
pp. 307-318. Springer, Heidelberg (2015)

8. Kaminski, B.L., Katoen, J.P., Christoph, M.: Inferring covariances for probabilistic
programs. ArXiv e-prints, June 2016

9. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run—times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364-389. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49498-1_15

10. Kleene, S.C.: Recursive predicates and quantifiers. Trans. AMS 53(1), 41-73 (1943)

11. Mclver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Springer, Heidelberg (2004)

12. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Elsevier, Amsterdam (1992)

13. Odifreddi, P.: Classical Recursion Theory, vol. II. Elsevier, Amsterdam (1999)

14. Post, E.L.: Recursively enumerable sets of positive integers and their decision prob-
lems. Bull. AMS 50(5), 284-316 (1944)

15. Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on
Theoretical Computer Science, vol. 25. Springer, Heidelberg (1992)

http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1007/978-3-662-49498-1_15

Should Network Calculus Relocate?
An Assessment of Current Algebraic
and Optimization-Based Analyses

Steffen Bondorf®) and Jens B. Schmitt

Distributed Computer Systems (DISCO) Lab,
University of Kaiserslautern, Kaiserslautern, Germany
{bondorf, jschmitt}@cs.uni-kl.de

Abstract. Network calculus (NC) offers a framework for worst-case
analysis of queueing networks. It enables to derive deterministic bounds
on flow delay and server backlog. The continuous evolution of NC led to
a set of different analyses. In fact, it even resulted in two entirely dif-
ferent branches of the methodology. Both start with a common network
description based on bounding functions on flow arrivals and forward-
ing service. Anything that follows, i.e., the actual analysis leading to a
worst-case performance bound, vastly differs. For long, there was only
the algebraic NC, the formalism created as a system theory for commu-
nication networks. It matured and eventually seemed to have reached
its limits regarding the accuracy of bounds. The problems preventing
it from attaining tight bounds in feed-forward networks were overcome
with optimization-based analysis. However, this approach was proven
NP-hard without an efficient analysis algorithm known for it. Therefore,
it was proposed to confine to a less complex optimization-based analy-
sis instead. Like algebraic NC analyses, it derives tight bounds for some
networks and valid bounds with varying accuracy for other networks. In
this paper, we investigate the consequences of this tradeoff and identify
a new and crucial analysis principle that allows us to compare both NC
branches more comprehensively than simply ranking delay bounds.

Keywords: Network calculus - Algebraic analysis - Optimization

1 Introduction

Network calculus (NC) is a methodology for the worst-case analysis of queueing
systems. It provides different analysis procedures to derive deterministic bounds
on buffer requirements and flow delays. Thus, it can be employed in the verifi-
cation of real-time systems. In fact, algebraic network calculus has seen appli-
cation in avionics [8,11,12]. E.g., the Airbus A380’s backbone AFDX network
(Avionics Full-Duplex Ethernet) has been certified using network calculus. Addi-
tionally, tool support is available for algebraic network calculus: open-source [2],
commercial [9] as well as an internal tool of a company manufacturing AFDX
© Springer International Publishing Switzerland 2016

G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 207-223, 2016.
DOI: 10.1007/978-3-319-43425-4_15

208 S. Bondorf and J.B. Schmitt

switches (Rockwell Collins: ConfGen [13]) and others (Hirschmann Automation
[17], SIEMENS [14]). Moreover, algebraic NC has continuously seen improve-
ments, e.g., w.r.t. the procedure of a feed-forward analysis and the computational
effort [3,4], as well as attainable features [3] and accuracy of results [4,5].

All these developments took place despite the introduction of an entirely dif-
ferent analysis approach based on the NC system description: optimization-based
network calculus. Initially developed by [19] to prove a property of algebraic NC
analysis that can inhibit deriving tight bounds, it was further developed into an
alternative feed-forward analysis, the LP analysis, in [7]. The LP analysis is able
to derive tight bounds, yet, it is also NP-hard with no efficient algorithm known
for it. As this insight obviously prevents network calculus to relocate to opti-
mization, an accurate (not necessarily tight) ULP analysis was proposed based
on the new optimization approach. It is of course not NP-hard, however, neither
was it benchmarked comprehensively against the current algebraic NC analy-
ses. Therefore, the question of switching the fundamental analysis approach of
network calculus has not been answered yet.

In this paper, we derive a new analysis principle for feed-forward networks —
similar to the existing principles — that pinpoints the problem of algebraic NC,
a problem theoretically solved with the LP analysis of [7]. With this principle at
hand, we can provide an in-depth NC analysis evaluation. This treatment of NC
also allows us to reveal the weaknesses of the ULP. We comprehensively compare
it to current algebraic network calculus analyses, foremost the PMOO analysis
and its extensions, and finally provide an evaluation that gives insight on the gap
between both NC branches. Our work helps to better assess the severity of the
shortfall of current algebraic NC and thus tool implementations. Moreover, our
insights provide a guide to future work w.r.t. improving algebraic NC accuracy.

The remainder of this paper is structured as follows: Sect.2 presents some
background on NC: The system description common to both branches as well
as the algebraic operations. In Sect. 3, we examine the two NC branches regard-
ing their approaches, strengths and weaknesses when analyzing a network. This
allows us to assess accuracy of the currently employed four NC analyses (SFA,
PMOO, LP, and ULP) in Sect.4. Section 5 concludes the paper.

2 Network Calculus Background

2.1 The System Description

Data Arrivals and Forwarding Service. Flows are characterized by func-
tions cumulatively counting their data. They belong to the set Fy of non-
negative, wide-sense increasing functions:

Fo={fR=RL|f(0)=0,VYs<t: f(s)<[f(t)}, R =[0,+00) U{+oo}.

Should Network Calculus Relocate? 209

We are particularly interested in the functions A(t) and A’(t) cumulatively
counting a flow’s data put into a server s and put out from s, both up until time
t. These functions allow for a straight-forward derivation of flow delays.

Definition 1. (Flow Delay) Assume a flow with input A crosses a server s and
results in the output A’. The (virtual) delay for a data unit arriving at time ¢ is

D#t)=inf{r > 0| A(t) < A(t+7)}.

Note, that the order of data within the flow needs to be retained for the
(virtual) delay calculation [18].

Network calculus operates in the interval time domain, i.e., its functions of
Fo bound the maximum data arrivals of a flow during any duration of length d.

Definition 2. (Arrival Curve) Given a flow with input A, a function a € Fy is
an arrival curve for A iff

VIVd 0 <d<t: A(t)— A(t —d) < o(d).

For example, periodic traffic with a maximum packet size b and a maximum
arrival rate r can be bounded by token-bucket curves Frg = {7V, |7 (0) = 0,
Vd >0 : v p(d)=b+r-d} C Fo.

Scheduling and buffering leading to the output function A’(¢) depend on a
server’s forwarding service. It is lower bounded in interval time as well.

Definition 3. (Service Curve) If the service provided by a server s for a given
input A results in an output A’, then s offers a service curve 3 € Fy iff

A > i — .
vt A(t) = inf {A(t—d)+B(d)}
For instance, service offered by Ethernet connections can be described by
rate-latency curves Fri, = {fr, 7| Br,r (d) = max{0,R- (d —T)} C Fo.
A number of servers fulfill a stricter definition of service curves that guaran-
tees a higher output during periods of queued data (backlogged periods).

Definition 4. (Strict Service Curve) Let 8 € Fy. Server s offers a strict service
curve (to a flow iff, during any backlogged period of duration d, the output of
the flow is at least equal to 5(d).

2.2 Algebraic Network Calculus

Network calculus was cast in a (min, +)-algebraic framework in [10,15]. We will
first depict the basic operations and then present their combination for flow
analysis.

210 S. Bondorf and J.B. Schmitt

Table 1. Network calculus notation for flows, arrivals and service.

Quantifier Definition
foi Flow of interest, the flow under analysis
(Sawy- -y Sy) Tandem of consecutive servers sz to sy
P(f) Path of flow f (a tandem of servers)
af af Arrival curve of flow f, arrival bound at server s
Os Service curve of server s
Lo.f ﬁl(sifSy) Left-over service curve for f at server s, on tandem (s, ..., sy)

(min,~+)-Operations. The following operations allow to manipulate arrival
and service curves while retaining their worst-case semantic.

Definition 5. ((min,+)-Operations) The (min,+)-aggregation, -convolution
and -deconvolution of two functions f, g € Fy are defined as

aggregation: (f +g)(t) = f(t) + g(t),
convolution: (f ® g)(t) = nggt {f(t—s)+g(s)},

deconvolution: (f @ g)(t) =sup {f(t+u)—g(u)}.
u>0
The system description’s service curve definition then translates to A’ >

A® (3, the arrival curve definition to A® o > A, and performance characteristics
can be bounded using the deconvolution o @ 3:

Theorem 1. (Performance Bounds) Consider a server s that offers a service
curve 3. Assume a flow f with arrival curve a traverses the server. Then we
obtain the following performance bounds for f:

delay bound: Vt € RT: D(t) <inf{d >0|(a @ B)(—d) <0},
output bound: Vd € R* : o/(d)= (a @) (d),

where the delay bound holds independent of t and o is an arrival curve for A’.

Analyzing an entire flow with cross-traffic on its path is enabled by the fol-
lowing theorems. Table 1 depicts the notation we use for the network analysis.

Theorem 2. (Concatenation of Servers) Consider a single flow f crossing a
tandem of servers si,..., s, where each s; offers a service curve Bs,. The overall
service curve for f is their concatenation by convolution

551 ®®ﬂsn = ®?:1ﬂsr

Theorem 3. (Left-Over Service Curve) Consider a server s that offers a strict
service curve 3 and that serves two input flows, fi and fo with arrival curves

Should Network Calculus Relocate? 211

aft and of?, respectively. The minimum service fi is guaranteed to receive is
lower bounded by the so-called left-over service curve

Bl =p,6ak,

with (86 a) (d) = supg<,<4{(8 —a) (v)} denoting the non-decreasing upper
closure of (6 — «) (d).

3 Network Calculus Feed-Forward Analyses (FFA)

3.1 Algebraic Network Calculus Analysis

An algebraic network calculus FFA computes the end-to-end delay bound for a
specific flow interest (foi). Conceptually, the analysis proceeds in two steps [2,3]:

1. The analysis abstracts from the feed-forward network to the analyzed flow’s
path (tandem of servers). This step is enabled by recursively backtracking
flows, decomposing the network into tandems [2] along their paths and bound-
ing output arrivals of cross-traffic with Theorem 1, the output bound. Then,
arrival curves that bound the worst-case shape of cross-flows are known at
the location of interference with the foi.

2. The foi’s end-to-end delay bound in the feed-forward network can now be
calculated with a less complex tandem analysis. The flow’s end-to-end service
curve is derived and the delay bound computed.

The second step of the algebraic feed-forward analysis procedure has seen much
treatment in the literature. Effort focused on improving the ability to capture
flow scheduling and cross-traffic multiplexing effects in a tandem analysis. This
effort resulted in two basic principles for left-over service curve derivation of
tandems that improve algebraic NC’s accuracy:

The PBOO-Principle and the Separate Flow Analysis [15]: The SFA is
a straight-forward, hop-by-hop application of Theorems3 and 2: First subtract
cross-traffic arrivals and then concatenate the left-over service curves. Deriving
the delay bound with a single, end-to-end left-over service curve will consider
the flow of interest’s burst term only once. This principle is therefore called
Pay Bursts Only Once (PBOO). However, for cross-flows present at multiple
consecutive hops, bursts impact the derivation multiple times.

The PMOO-Principle and -Analysis [20]: The PMOO analysis provides an
alternative derivation containing each burst term only once. Its left-over service
curve derivation reverses the operations, i.e., it convolves the tandem of servers
before subtracting cross-traffic. Due to this end-to-end approach for all flows on
the analyzed tandem, the PMOO analysis was considered superior to SFA. Yet,
[19] shows that the SFA can arbitrarily outperform a PMOO tandem analysis.
Both algebraic analyses thus complement each other.

212 S. Bondorf and J.B. Schmitt

ol aft

w— Bs,
o (e y—((50.) N (6..)

i e

(a) Square network. (b) Algebraic FFA leading to flow segrega-
tion.

Fig. 1. The square network and the result of the algebraic FFA applied to it if f1 (af 1)
is the analyzed flow of interest.

3.2 A New Principle for Feed-Forward Analysis: PSOO

Artifacts of Algebraic FFA. In [4], the expression cross-flow segregation was
coined for the situation where a network calculus analysis considers cross-flows
to be mutually interfering in the worst case. It was identified in a procedure for
the FFA step 1 that derives an individual arrival bound for each cross-flow [6].
While this situation could be avoided easily, we found further problems in the
FFA, so-called analysis artifacts, enforcing segregation nonetheless.

Artifact 1: The FFA Procedure. During the backtracking in step 1, several tan-
dem analyses are executed such that the FFA can re-compose tandem-local
results. This imposes a fundamental problem: Each tandem analysis is an inde-
pendent instance of SFA or PMOO analysis, operating on its own worst-case
assumptions that retain the overall FFA’s worst-case modeling. The worst case
is, in fact, a segregation of flows. Problems arise if flows share a server, demulti-
plex and rejoin again — either each other directly or indirectly via another flow.
For an example see Fig. 1: The flows at server s; (service (5,) are treated inde-
pendently of each other, i.e., they assume worst-case mutual interference that is
not attainable in a real network. This independence is expressed by the segrega-
tion of service 3, into 8L°/2 and BL°/2, both with a latency for the respective
flow that is greater than [,,’s latency. Thus, they cannot sum up to the full
service G, .

Artifact 2: Interdependence Between FFA Steps. We also found the need for
segregation in tandem networks — although this topology does not allow flows
to demultiplexing, take different paths and rejoin again. This second artifact
is illustrated in the non-nested tandem with cross-traffic arrival bounding in
Fig.2. Applying a PMOO FFA, i.e., using PMOO in the FFA step 2, requires
knowledge about each cross-flow’s arrival bounds individually. This can only be
achieved by segregately executing the FFA step 1 for each cross-flow zf; and
x fo. This artifact thus leads to two independently computed left-over service

Should Network Calculus Relocate? 213

zfa OéfOi| T 4 M |

O=o=0 S|
[B

(a) Tandem network. (b) PMOO analysis enforces segregation.

L »

|
|

Fig. 2. A non-nested tandem and the result of the PMOO FFA applied to it.

curves ﬁl‘oo'””fl and ﬁ;g”f? that do not add up to fs,, i.e., the overly pessimistic
analysis does not consider usage of the entire forwarding resources.

Effect on the Analysis Result. The pessimism of independent left-over service
curve derivations inevitable results in less accurate delay bounds. We illustrate
this situation for the tandem network of Fig.2. In the following, we compare
the PMOO delay bound for f; delay bound with PMOO FFA (left side, Fig. 2b)
against a derivation using the entire service offered by s; (right side, Fig. 2a):

61 o.zf1 + ﬁlo xfo < ﬁso
= (axfl %) ﬁ;.o.zfl) + (alfg %) ﬁ}qo acfg) > (awﬁ + awfz) %) Bso

— a§{1 — af{z =:aL“”1f1’If2]
= B © (o +off2) < B, © alffrh]
L.o.segr f 1 o. f01
= ﬁ S1,82> (s1,82)
= Df01 > Df01

segr

As the segregated left-over service curves do not sum up to the original service
curve, they cause larger output bounds for = f; and x fo. This, in turn, results in
a smaller left-over service curve for the foi at server s1. Therefore, the end-to-end

.o. Mgrf

left-over service curve under flow segregation, ﬁ (51.59) , is smaller than the one

without flow segregation, 61 O f°;> This results in a larger delay bound.

All of the segregated ﬂows consider each other with isolated, local worst-case
assumptions that retain the global worst case. This leads to an overall situation
assumed by the analysis that cannot be attained in a realistic system. We capture
this problem in a novel principle to be strived for in a feed-forward network
calculus analysis, formulating it similar to PBOO and PMOO (Sect. 3.1).

The Pay Segregation Only Once (PSOO) Principle: If the arrivals of two
flows have to be bounded segregately in the feed-forward analysis and these flows
both cross the same server before interfering with the flow of interest, then they
should not be segregated in a way that imposes worst-case mutual interference
assumptions on both. Segregation of cross-flows should only be paid for once by
the ensemble of the two flows.

214 S. Bondorf and J.B. Schmitt

For instance, in the algebraic FFA equation, segregated flows should not
have to consider each other fully in their respective arrival bounding. Although
this leads to valid intermediate bounds on arrivals and left-over service, the
according behavior is not attainable by a realistic system and thus the eventual
performance bound cannot be tight.

Mitigation with by Aggregation. Having derived these artifacts of algebraic
FFA, we can mitigate them in different ways. On the one hand, it is possible to
prevent their occurrence by routing restrictions. However, adapting the network
to be analyzed may not be justifiable. Thus, we strife for a different mitigation
strategy: flow aggregation. Yet, aggregation is not universally practical in alge-
braic NC. Therefore, we depict the state-of-the-art optimization-based NC that
does not suffer from these artifacts next. Then, we benchmark it against imple-
mentations of our mitigation strategy and evaluate accuracy loss in networks
where we cannot prevent algebraic NC from violating the PSOO principle.

3.3 Optimization-Based Network Calculus Analysis and PSOO

An optimization-based FFA was proposed in [7]. It transforms the NC system
description of Sect. 2.1 into a set of linear programs as follows:

1. Starting from the foi’s sink server, flows and their cross-flows are recursively
backtracked. For every link traversed backwards, the start of backlogged peri-
ods at the connected servers is related. This results in a partial order where
there is no given order relation for servers on parallel paths.

2. Next, the partial order is extended to the set of all compatible total orders.
In contrast to algebraic FFA, the backtracking result is not directly used to
derive performance bounds. The extension enumerates all potential relations
of backlogged periods on parallel paths to attain all potential entanglement in
the network. Total orders of particular interest are those assuming an equal
(start of) backlogged period for flows that later are demultiplexed. Le., in
Fig. 1I’s network, the flows fo and f3 are related with a common start of the
backlogged period at server s; in order to implement PSOO.

3. Based on the network calculus model, each total order is converted into one
linear program. Strict service curves, arrival curves, non-decreasing functions,
non-negativity and the flow constraint derive LP constraints.

4. The set of LPs represents all potential entanglements in the network, not
only worst-case ones. Therefore, all linear programs must be solved in the
final step. The maximum among their solutions is a valid worst-case delay for
the foi.

The LP FFA was, however, shown to be NP-hard due to step 2. Therefore, the
authors propose to confine to a less complex, accurate analysis by skipping the
extension of the partial order. This analysis is known as the unigue LP (ULP).
The ULP is, of course, less constrained than any single linear program of the
LP; the constraints are chosen such that it guarantees to derive an upper bound
on delay and backlog.

Should Network Calculus Relocate? 215

ot ot
| oo i
oo (Bo =l Bos = o B el 8] |
| }] | }
a®h a™fs %

Fig. 3. Tandem network with non-nested cross-traffic arrivals.

4 Accuracy Evaluation of Network Calculus Analyses

The LP analysis and the ULP analysis both implement the PBOO and the
PMOO principle. Yet, the ULP skips the LP’s step 2 that is crucial for the PSOO
principle. Therefore, it must operate on worst-case assumptions when bounding
the arrivals of cross-traffic. As arrival bounding is not distinguishable from the
fol analysis during an optimization-based analysis, we aim to gain knowledge
about the attained worst case by evaluations. In contrast to the literature, we
add the PMOO analysis that implements PBOO and PMOO principles but not
PSOO in order to observe the impact of LP’s PSOO implementation on the
accuracy of NC delay bounds.

As there is no comprehensive tool support for the LP or the ULP available,
we need to rely on the tooling provided by the authors of these analyses'. It
allows to analyze arbitrary tandem networks. Additionally, LpSolve lp files for
the square network are available.

In this paper, we benchmark instances of these networks against the advanced
algebraic NC that has been implemented in the DiscoDNC [2] in the meantime.
Additionally, we provide the equations created by different analyses where it
is helpful for illustration of analysis principle violations. We are the first to
contribute PMOO delay bounds to a comparison of the two NC branches.

4.1 The Non-nested Tandem with Overlapping Interference

In [7], the so-called non-nested tandem was analyzed first. It consists of a
sequence of servers crossed by the flow of interest and overlapping interference
of cross-flows such that there are three flows at every server (see Fig.3). This
is a classic example in network calculus; it was already used when introducing
the PMOO principle and analysis [20]. Two evaluations are carried out: one
that investigates the impact of the tandem’s length and another one varying
the utilization for the tandem of length 20. Arrival curves and service curves
are taken from [7]: Both evaluations assign rate-latency service Sr.r = By, 1.
The evaluation with varying utilization v € {0.1,...,0.9} assigns token-bucket
arrival curves of a = v, = Yigu where 107“ is rounded to two decimal digits.
The evaluation of tandem length impact is carried out at a utilization of 0.2,

i.e., all arrivals are shaped to o = vp.67.,1-

! http://perso.bretagne.ens-cachan.fr/~bouillar/NChounds/.

http://perso.bretagne.ens-cachan.fr/~{}bouillar/NCbounds/

216 S. Bondorf and J.B. Schmitt

o _|
= E
g 2%
g 3
a 8 ©-
N~
USRS NESUNE
0 10 20 30 40 50 60 70 80 90
Tandem length Utilization
(a) 20% utilization, increasing tandem size. (b) 20 servers, increasing utilization.

Fig. 4. Delay bounds in the non-nested tandem with overlapping interference.

Separate Flow Analysis (SFA). First, we derive the flow of interest’s end-
to-end left-over service curve (FFA step 2):

l.o.foi __ pl.o.foi l.o.foi l.o.foi
Biliot) = Bsy * ® B, ' ® ... ®

Sn

= (Bao(aif + o) e (Buc(ail+ail) e 08,0 (atl + alln))
= (Bs,0 (@™ + a™2)) (85,0 (22 + a™) @...® (B, © (aZf" + o Im1)) (1)

In the equation, we can see that the PMOO property is not fulfilled. We need to
pay for xf,, arrivals, m € {2,...n}, at both servers the cross-flow shares with the
foi. Thus, we need to compute the zf,, arrivals at the respective second server
of interference (FFA step 1; Eq.1: as with server indices). For each server s;,
1 €{2,...,n}, we get:

Bs; © (a?fz + a;cif,:ﬂ)
= 657; S ((Oﬂfz‘ %) (/651‘,—1 © (awfifz (%) (.. (ﬂsl S awfl) »)))) + a;vfi+1) (2)

Note, that cross-traffic arrival bounding demands to recursively backtrack cross-
flows of cross-flows at every server, yet, this backtracking never leaves the foi’s
path. The recursion terminates when the sources of flows are reached. See Eq. 2
where as do not have server indices as we know aflfl = oﬂ’fl, af,{"“ = o%fn+1
and a?/m = a®/m for m € {2,...n} from the network description.

Pay Multiplexing Only Once (PMOO) Analysis. PMOO was specifically
designed to counteract the burstiness increase being considered in the analy-
sis multiple times. I.e, each af,,’s burstiness only appears once in its 5;‘2&3—
derivation [20]. The PMOO analysis does not demand the cross-flow arrival
bounding (Eq.2) and thus performs better on this non-nested tandem.

Linear Programming (LP) Analysis and Comparison. The results for
the LP analysis are depicted alongside PMOO and SFA in Fig.4. They all scale

Should Network Calculus Relocate? 217

mfz f2 afoi

Iﬂ NNy \ﬁ B
Tfl Tfl ll

(a) Tandem network, n PSOO wviolations. (b) Flow extension counteracts segrega-
tion.

Fig. 5. Tandem with algebraic FFA Artifact 2 and mitigation by flow extension.

linearly with the length of the tandem (Figs. 4a) — the PBOO principle is respon-
sible for this behavior. The second evaluation shows that all delay bounds grow
super-linearly when increasing the utilization. Yet, the PMOO principle imple-
mented by the eponymous analysis and the LP analysis leads to much smaller,
better scaling delay bounds compared to the SFA (Fig.4b).

For both parts of this evaluation, the PMOO analysis that was omitted in [7]
performs equal to the LP analysis.

4.2 The Non-nested Tandem with Cross-Traffic Arrival Bounding

In this section, we will evaluate a tandem network with arbitrarily many PSOO
violations due to algebraic FFA Artifact 2. To do so, we generalize the network
of Fig.2a by adding a variable number of servers to be traversed by the two
cross-flows (see Fig. 5a). Each server constitutes one PSOO violation. Parameters
are chosen according to the previous tandem evaluation: We assign rate-latency
service B, = 51071710 and token-bucket arrival curves a = 7, ;. These are either
fixed to 72,1 for a network utilization of 60% or kept variable at Yigu 1, U €

{0.1,...,0.9}, where 13“ is rounded to two decimal digits.

Separate Flow Analysis (SFA). While SFA can aggregately bound both
cross-flows x fi; and xfy at server sy, its left-over service curve derivation at s
requires segregation in order to only consider x f5 there. [5] presents a new coun-
termeasure to this artifact called Burst Reduction (BR). It caps x f2’s burstiness
at so with the backlog bound aggregately caused by both flows at server s;.

Pay Multiplexing Only Once (PMOO) Analysis. The PMOO analysis
enforces PSOO violations in this network, too (see Sect.3.2). This can be miti-
gated by a preceding step to the analysis called Flow Extension (FE) [1]. This
step transforms the analyzed network to a different one that is worse form the
foi’s point of view: Interference of cross-flow zf; is extended to server s; as
depicted in Fig.5b. While this reduces the service available to the foi at s in
the network, the PMOO FFA does not suffer from Artifact 2 anymore. It can
now handle the cross-flows aggregately and convolve the servers they traverse.
Therefore, it computes a better delay bound in the worse network setting. We
are the first to show FE’s benefits in arbitrary multiplexing networks.

218 S. Bondorf and J.B. Schmitt

— - 3 ~N [
©— = ’
: PMOO 1T~ Pmoo
o SFA 211, s
2 SFA + BR T SFA+BR |
S C 00— -
g Y| 4 PMOO+FE 3 4 PMOO+FE|
a o LP o ! :
> o > ©o{ 08 LP EE
& T & : [
Sad 3 S<«4 SR S N N
. ® ¢ . ®
A ﬁé@r@m S S S w @ -t
| | | e & & & 8 7 |
D I Y R I N N Sl T \ LR T T T
1.2 3 4 5 6 7 8 9 10 10 20 30 40 50 60 70 80 90
Length of the cross-traffic tandem Utilization
(a) 60% utilization, increasing tandem size. (b) 10 cross-traffic servers, incr. util.

Fig. 6. Delays in the non-nested tandem with cross-traffic arrival bounding.

Linear Programming (LP) Analysis and Comparison. Equal to the previ-
ous tandem network, we carry out two evaluations: one that increases the length
of the cross-traffic tandem s_,11,...,s0 and thus the amount of PSOO viola-
tions and another one that increases the maximum utilization in the network.

The scaling with respect to the tandem length is depicted in Fig. 6a. We fixed
the network utilization, defined by server s; crossed by three flows, at 60 %.
SFA and PMOO analysis both scale super-linearly with the length of the cross-
traffic tandem, i.e., with the amount of PSOO violations. Burst reduction (BR)
significantly decreases the delay bound of the SFA for long tandems, however, it
is outperformed by PMOO with flow extension (FE). The difference between the
LP analysis and PMOO + FE remains small and steady for all tandem lengths —
it is the penalty of assuming x f1 crossing server ss, too.

For the second evaluation, we fixed the tandem length at 12 servers, i.e., 10
servers with PSOO violations. Again, plain analyses (SFA and PMOO) scale
super-linearly and the deviation from LP delays becomes large with growing
utilization. The two analyses amended with aggregation-based countermeasures
perform considerably better; PMOO + FE derives nearly identical bounds to
the LP analysis. The difference does not remain steady, yet, it does not grow
much. In Fig. 6b, PMOO + FE’s triangles stay within LP’s squares, i.e., current
algebraic NC analyses counteract the PSOO violations with small amendments
and their results are highly competitive with the ones derived by optimization.

4.3 The Square Network

Next, we evaluate the square network from [7] (see Fig.1). This network is eval-
uated for varying utilizations: service curves remain g5, = Br1 = B, 1 1€
{1,2,3,4} and arrival curves are adapted to the utilization v € {0.1,...,0.9}. As
there are only two flows per server, this setting translates to aft = 7,.;, = v 10u ;.

Should Network Calculus Relocate? 219

Separate Flow Analysis (SFA). We start with the SFA left-over service curve
derivation steps shared by every utilization’s analysis:

By = Bt @ Byt = (B, 0 0f2) @ (Bu, © af2) (3)

(83,84

with the following cross-traffic arrival boundings:

a{; — of? ®5i»f»f2 o2 (/6181 fa af3) (4)
045: _ Oéf4 @5;-20-& _ af4 % (/852 o (af3 % (ﬁSI o afz))) (5)

The cross-traffic arrival boundings show mutual interference assumptions of
Fig. 1: It computes (s, © af? and By, © o2, both will be in the SFA left-over
service curve derivation of Eq.3 — the PSOO principle is not implemented.

This derivation illustrates the different approaches applied by algebraic NC to
model the flow of interest’s worst-case scenario in a feed-forward network. On the
foi’s path (i.e., the foi tandem analysis part of step 2), the left-over service curve
derivation assumes lowest priority for the flow of interest (cf. Theorem 3). In
the arrival bounding, each flow’s worst-case interference is modeled individually.
Therefore, at server s1, flows fo and f3 are considered as mutual interference:
pLo-fz = (B,, ©af?) and B0 = (B,, © af?2). Note, that we cannot exploit
burst reduction because flows only interfere with each other on single servers.

Pay Multiplexing Only Once (PMOO) Analysis. The PMOO left-over
service curve [20] is derived as follows:

Lo.f1 _
Pl = Prizys, ity)
Lo. 2
Ry = (Boy =) A (Roy = 1) (7)
ble 4 pfa gpfo . Lpfa.T
lo.fi __ S3 Sq S3 53 S4 S4
(s3,84) T53 + T54 + l.o.f1 (8)
(s3,54)

The mutual interference modeling persists. It can be seen in the cross-flow burst
terms b{i and b{j in Eq.8 that equal the one of the according arrival bounds
afﬁ and agj used in the SFA. Cross-traffic is bounded with Eqs. 4 and 5, again,
as it belongs to FFA step 1. Le., the PMOO left-over service curve derivation
of Eq. 6 will also suffer from the mutual interference problem depicted in Fig. 1
due to Eq. 8. In this network, flow extension is not beneficial as both cross-flows
of f1 arrive from different links.

Linear Programming (LP, ULP) Analysis and Comparison. Based on
the derivation of algebraic analysis of the non-nested tandems and the square
network (Egs.1 to 8) as well as the observed properties and delay bounds, we
can predict the relative performance of NC analyses in the square network:
Recall that the LP approach enumerates all potential entanglements of flows
by extending the partial order (defined by consecutive hops of flows) to the set

220 S. Bondorf and J.B. Schmitt

: Te
S|l | = — s1at100%
| o @ c—| —— slvariable |- o\
sw | | s — s1at10% <~ A\
S~ | o ©
o | o
o i -
B St z
57| F
g,*,,,ﬁ ,,, Ead S A7 L
1 >
. o i
! ! | | | | | Q !
g T T T 1 T T 1 T T 1 IS I f f f I I I I I
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Utilization at all servers [%] Utilization at other servers [%]
(a) Uniform increase of utilization. (b) Relative 1mprovement of bounds.

Fig. 7. Delay bounds in the square network.

of all compatible total orders — the benefit is pointed out in Sect. 3.3, step 2.
The ULP, in contrast, is solely based on the partial order, the extension step
is omitted due to its combinatorial explosion. This results in a smaller set of
ULP constraints, especially the potential entanglements of fo and f3 at s; are
not considered anymore. Instead, they are assumed to constitute the respective
flow’s worst case. Based on this insight, it is not surprising that the ULP actually
does not beat the PMOO analysis in the square network (see Fig. 7a). In fact,
even the SFA yields the same delays. The reason for SFA’s accuracy is the lack
of multi-hop interference, the effect captured with the PMOO principle does not
manifest in this network.

Our evaluation shows that the ULP models the worst-case interference
between fo and f3 in the same way as the algebraic analyses do.

The square network also illustrates the case where we cannot mitigate the
PSOO violation in algebraic NC. Thus, we conclude our evaluation by investi-
gating the potential superiority of LP delay bounds over PMOO delay bounds.
Figure 7b depicts three different settings:

— First, we fixed the utilization of server s; at 100 %. For the mutual interfer-
ence assumptions violating the PSOO principle, this leads to the maximum
burstiness increase attainable for flows fy and f3. As depicted in Sect. 3, the
burstiness will propagate through the analysis and eventually result in a loose
delay bound. However, the final impact also depends on the utilization of
servers that forward the flows with overly pessimistic burstiness. We evalu-
ated utilizations of the remaining servers sq, s3 and s4 ranging from 10% to
90 % (see [7]). As expected, we can first observe an amplification of the PSOO
violation’s effect that lets the LP analysis outperform the algebraic ones by
an increasing margin. Yet, it reaches its maximum of 9.15% at 80 % utiliza-
tion. After this peak, its impact declines to a level below the 40 % network
utilization.

A similar decline can be observed in the second evaluation, taken from [7] and
depicted in Fig. 7Ta, where the rate at s; varies with the other servers.

Should Network Calculus Relocate? 221

— We added another utilization level to the evaluation to confirm this observa-
tion. With a fixed utilization of 10 % at s1, the peak is already reached at a
network utilization of 10 %.

Thus, our results show that the benefit of implementing the PSOO principle
is bounded as the network utilization becomes more impactful. Compared to
the impact of previous analysis principles, the PSOO did not lead to a vast
decrease of delay bounds. Moreover, implementing it requires huge effort. There
are already eleven linear programs derives from this small square network alone.

4.4 Outlook

Evaluation of Larger, More Involved Networks. In this paper, we restricted
our evaluation to tandem networks and the square network. This restriction is
caused by a practical problem of the LP analysis. Besides being NP-hard, the effort
to deriveits linear programs them scales super-exponentially with the network size.
The authors of this analysis point out two particular problems [6]:

1. The LPs relate the start of backlogged periods at servers. The amount of
these dates to be related to each other grows exponentially with the network
size. This problem directly impact the second one.

2. Dates are not totally ordered. This problem corresponds to step 2 given in
Sect. 3.3: extension of a partial order to the set of all compatible total orders.
Even for rather small networks, this step suffers from combinatorial explo-
sion [16] and known algorithms for linear extensions like the Varol-Rotem
algorithm [21] do not allow for the analysis of larger networks. Computa-
tional effort becomes prohibitive.

For these reasons, network calculus lacks comprehensive tool support for the only
analysis implementing the PSOO principle as of today. In tandem networks, flows
cannot take parallel paths and thus there is only one total order. This fact is
exploited by the tool we used for the evaluations in Sects.4.1 and 4.2. For the
square network evaluation of Sect.4.3, the authors of the LP analysis provide
the required linear programs. Analyzing larger networks remains an open issue.

Improving the Accuracy of the ULP Analysis. The ULP constitutes the
return to accurate, yet, untight bounds in general feed-forward networks. How-
ever, for some special networks it derives tight bounds nonetheless. The special
case holds in tandem networks (see Fig.1) where there is only one order. For
more involved networks, we only know that the ULP has less constraints than
any of the LPs. Improving the ULP’s result can only be achieved by adding
more constraints to it. The addition of constraints found in a total order can,
however, result in a linear program that produces an invalid bound. Identify-
ing constraints that improve the derived bound while guaranteeing to retain its
validity is an open research topic of optimization-based NC.

222 S. Bondorf and J.B. Schmitt

5 Conclusion

In this paper, we assessed both branches of network calculus, the algebraic and
the optimization-based analysis branch. We aimed at a more comprehensive
comparison of those generally incomparable alternatives to derive delay bounds
from a NC system description. A new principle for feed-forward analysis, the
Pay Segregation Only Once (PSOO), enabled us to derive new insights on both
branches of NC such that we were able to predict the relative results between
analyses. Moreover, we provide evidence that the PSOO principle that is only
implemented by the NP-hard LP analysis does not lead to vastly improved delay
bounds when it is compared to the PMOO analysis of algebraic network calculus.
Thus, there is currently no clear proof for the necessity to relocate network
calculus by abandoning the idea of an algebraic system theory. In current NC,
the LP analysis is rather a tool to benchmark algebraic NC analysis in small
networks and as such it helps to find algebraic NC’s weak spots, e.g., the violation
of the PSOO principle we present and evaluate in this work.

References

1. Bisti, L., Lenzini, L., Mingozzi, E., Stea, G.: Estimating the worst-case delay in
FIFO tandems using network calculus. In: Proceedings of ValueTools (2008)

2. Bondorf, S., Schmitt, J.B.: The DiscoDNC v2 — a comprehensive tool for deter-
ministic network calculus. In: Proceedings of ValueTools (2014)

3. Bondorf, S., Schmitt, J.B.: Boosting sensor network calculus by thoroughly bound-
ing cross-traffic. In: Proceedings of IEEE INFOCOM (2015)

4. Bondorf, S., Schmitt, J.B.: Calculating accurate end-to-end delay bounds - you
better know your cross-traffic. In: Proceedings of ValueTools (2015)

5. Bondorf, S., Schmitt, J.B.: Improving cross-traffic bounds in feed-forward networks
- there is a job for everyone. In: Remke, A., Haverkort, B.R. (eds.) MMB & DFT
2016. LNCS, vol. 9629, pp. 9-24. Springer, Heidelberg (2016)

6. Bouillard, A.: Algorithms and efficiency of network calculus. Habilitation thesis,
ENS (2014)

7. Bouillard, A., Jouhet, L., Thierry, E.: Tight performance bounds in the worst-case
analysis of feed-forward networks. In: Proceedings of IEEE INFOCOM (2010)

8. Boyer, M., Fraboul, C.: Tightening end-to-end delay upper bound for AFDX net-
work calculus with rate latency FIFO servers using network calculus. In: Proceed-
ings of IEEE WFCS (2008)

9. Boyer, M., Navet, N., Olive, X., Thierry, E.: The PEGASE project: precise and
scalable temporal analysis for aerospace communication systems with network cal-
culus. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp.
122-136. Springer, Heidelberg (2010)

10. Chang, C.-S.: Performance Guarantees in Communication Networks. Springer,
Heidelberg (2000)

11. Frances, F., Fraboul, C., Grieu, J.: Using Network Calculus to Optimize AFDX
Network. In: ERTS (2006)

12. Geyer, F., Carle, G.: Network engineering for real-time networks: comparison of
automotive and aeronautic industries approaches. IEEE Commun. Mag. 54(2),
106-112 (2016)

13.

14.

15.

16.
17.

18.

19.

20.

21.

Should Network Calculus Relocate? 223

Grieu, J.: Analyse et évaluation de techniques de commutation Ethernet pour
Iinterconnexion des systémes avioniques. Ph.D. thesis, INPT (2004)
Kerschbaum, S., Hielscher, K.-S.J., Klehmet, U., German, R.: A framework for
establishing performance guarantees in industrialautomation networks. In: Fis-
chbach, K., Krieger, U.R. (eds.) MMB & DFT 2014. LNCS, vol. 8376, pp. 177-191.
Springer, Heidelberg (2014)

Le Boudec, J.-Y., Thiran, P.: Network calculus. In: Thiran, P., Boudec, J.-Y. (eds.)
Network Calculus. LNCS, vol. 2050, pp. 3-81. Springer, Heidelberg (2001)
Ruskey, F.: Combinatorial Generation. CRC Press, Boca Raton (2003)

Schmidt, M., Veith, S., Menth, M., Kehrer, S.: DelayLyzer: a tool for analyzing
delay bounds in industrial ethernet networks. In: Fischbach, K., Krieger, U.R.
(eds.) MMB & DFT 2014. LNCS, vol. 8376, pp. 260—263. Springer, Heidelberg
(2014)

Schmitt, J.B., Gollan, N., Bondorf, S., Martinovic, I.: Pay bursts only once holds
for (some) non-FIFO Systems. In: Proceedings of IEEE INFOCOM (2011)
Schmitt, J.B., Zdarsky, F.A., Fidler, M.: Delay bounds under arbitrary multiplex-
ing: when network calculus leaves you in the lurch... In: Proceedings of IEEE
INFOCOM (2008)

Schmitt, J.B., Zdarsky, F.A., Martinovic, I.: Improving performance bounds
in feed-forward networks by paying multiplexing only once. In: Proceedings of
GI/ITG MMB (2008)

Varol, Y.L., Rotem, D.: An algorithm to generate all topological sorting arrange-
ments. Comput. J. 24(1), 83-84 (1981)

Markov Decision Processes
and Markovian Analysis

Verification of General Markov Decision
Processes by Approximate Similarity Relations
and Policy Refinement

Sofie Haesaert' ™) Alessandro Abate?, and Paul M.J. Van den Hof

! Eindhoven University of Technology, Eindhoven, The Netherlands
s.haesaert@tue.nl
2 University of Oxford, Oxford, UK
alessandro.abate@cs.ox.ac.uk

Abstract. In this work we introduce new approximate similarity rela-
tions that are shown to be key for policy (or control) synthesis over
general Markov decision processes. The models of interest are discrete-
time Markov decision processes, endowed with uncountably-infinite state
spaces and metric output (or observation) spaces. The new relations,
underpinned by the use of metrics, allow in particular for a useful trade-
off between deviations over probability distributions on states, and dis-
tances between model outputs. We show that the new probabilistic simi-
larity relations can be effectively employed over general Markov decision
processes for verification purposes, and specifically for control refinement
from abstract models.

1 Introduction

The formal verification of computer systems allows for the quantification of their
properties and for their correct functioning. Whilst verification has classically
focused on finite-state models, with the ever more ubiquitous embedding of dig-
ital components into physical systems richer models are needed, and correct
functioning can only be expressed over the combined behaviour of both a digi-
tal computer and its surrounding physical system. It is in particular of interest
to synthesise the part of the computer software that controls or interacts with
the physical system automatically, with low likelihood of malfunctioning. Quite
importantly, when computers interact with physical systems such as biological
processes, power networks, and smart-grids, stochastic models are key.

Systems with uncertainty and non-determinism can be naturally modelled
as Markov decision processes (MDP). In this work, we focus on general Markov
decision processes (gMDP) with uncountable state spaces as well as metric out-
put spaces. The characterisation of properties or the synthesis of policies over
such processes can in general not be attained analytically [4], so an alternative is
the approximation of the original (concrete) models by simpler (abstract) models
that are prone to be analysed or algorithmically verified [12], such as finite-state
MDP [11]. Clearly, it is then paramount to provide formal guarantees on this
approximation step.

In this work we develop a new notion of approximate similarity relation to
assist in the computationally efficient controller synthesis of gMDP. The use of

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 227-243, 2016.
DOI: 10.1007/978-3-319-43425-4_16

228 S. Haesaert et al.

similarity relations on finite-state probabilistic models has been broadly inves-
tigated, either via exact notions of probabilistic simulation and bisimulation
relations [17,21], or via approximate notions [9,10]. On the other hand, similar
notions over general, uncountable-state spaces have been only recently stud-
ied: available relations either hinge on stability requirements on model outputs
[16,24] (established via martingale theory or contractivity analysis), or alter-
natively enforce structural abstractions of a model [8] by exploiting continuity
conditions on its probability laws [1,3].

In this work, we want to quantify properties with a certified precision both
in the deviation of the probability laws for finite-time events (as in the classical
notion of probabilistic bisimulation) and of the output trajectories (as studied
for dynamical models). To this end, we generalise the exact probabilistic sim-
ulation and bisimulation relations to allow for errors in the probability laws
and deviations over the output space (Sect.4). A case study on smart buildings
(Sect. 5) is used to evaluate this new approximate similarity relations, which are
specifically tailored to perform control synthesis. The new approximate similar-
ity relation generalises notions of probabilistic simulation relations [17,21], and
their approximate versions [9,10].

Key to this work, we further show that a control strategy for a gMDP can be
obtained as a refinement of a strategy synthesised for an abstract model, at the
expense of bounded deviations in transition probabilities and outputs as defined
by their similarity relation.

In view of space, details on measurability properties and precise derivations
of proofs of the statements are relegated to an extended version [14], which also
contains a more detailed comparison with literature.

2 Verification of General Markov Decision Processes

2.1 Preliminaries and Notations

For two sets A and B a relation R C A x B is a subset of their Cartesian
product that relates elements z € A with elements y € B, denoted as xRy. We
use the following notation for the mappings R(fl) ={y: 2Ry, z € A} and
RYB) := {x : 2Ry, y € B} for A C A and B C B. A relation over a set
defines a preorder if it is reflexive, Vo € A : xRz; and transitive, Vx,y,z € A : if
xRy and yRz then zRz. A relation R C A x A is an equivalence relation if it is
reflexive, transitive and symmetric, Va,y € A : if 2Ry then yRzx.

A measurable space is a pair (X, F) with sample space X and o-algebra F
defined over X, which is equipped with a topology. As a specific instance of
F consider the Borel measurable space (X, B(X)). In this work, we restrict our
attention to Polish spaces and generally consider the Borel o-field [6]. Recall
that a Polish space is a separable and completely metrisable topological space.
A simple example of such a space is the real line.

A probability measure P (-) for (X,F) is a non-negative map, P(-) : F —
[0,1] such that P (X) = 1 and such that for all countable collections {4;}5°, of
pairwise disjoint sets in F, it holds that P (|J, Ai) = >_, P (A;). Together with

Verification of General Markov Decision Processes 229

the measurable space, such a probability measure IP defines the probability space,
which is denoted as (X, F,P) and has realisations ~ P. Let us further denote
the set of all probability measures for a given measurable pair (X, F) as P(X, F).
For a probability space! (X, Fx,P) and a measurable space (Y, Fy), a (Y, Fy)-
valued random variable is a function y : X — Y that is (Fx, Fy)-measurable,
and which induces the probability measure y,.P in P(Y, Fy). For a given set X
a metric or distance function dx is a function dx : X x X — R

2.2 gMDP Models - Syntax and Semantics

General Markov decision processes are related to control Markov processes [3]
and Markov decision processes [5,20], and are formalised as follows.

Definition 1 (Markov Decision Process (MDP)). A discrete-time MDP
M = (X, 7, T,U) is defined over an uncountable state space X, and characterised
by T, a conditional stochastic kernel that assigns to each point x € X and control
u € U a probability measure T(-|z,u) over (X,B(X)). For any set A € B(X),
Pypo(z(t +1) € A) = T(A|z(t) = z,u), where Py, denotes the conditional
probability P(- |z, u). The initial probability distribution is 7 : B(X) — [0,1].

At every state the state transition depends non-deterministically on the choice of
u € U. When chosen according to a distribution u,, : B(U) — [0, 1], we refer to
the stochastic control input as p,. Moreover the transition kernel is denoted as

T(- |2, pu) = [y T(- |2, u)po(du) € P(X, B(X)). Given a string of inputs (possibly
randomised) u(0), u(1),...,u(N), over a finite time horizon {0, 1,..., N}, and an
initial condition zq (sampled from distribution 7), the state at the (¢ + 1)-st time
instant, (¢ + 1), is obtained as a realisation of the controlled Borel-measurable
stochastic kernel T (- |« (¢), u(t)) — these semantics induce paths (or executions) of
the MDP.

Definition 2 (General Markov Decision Process (gMDP)). A discrete-
time gMDP M = (X,m, T, U, h,Y) is an MDP combined with a metric output
space (Y,dy), and a measurable output mapping h: X — Y.

The gMDP semantics are directly inherited from those of the MDP. Fur-
ther, output traces of gMDP are obtained as mappings of MDP paths, namely
{y®)}Yo.n = y(0),y(1),...,y(N), where y(t) = h(z(t)). Denote the class of all
gMDP with the metric output space Y as My. Note that gMDP can be regarded
as a super-class of the known labelled Markov processes (LMP) [8] as elucidated
in [1].

Example 1. Consider a stochastic process defined as the solution of the stochastic
difference equation

M:z(t+1) = fx(t),u(t)) + e(t), y(t) = h(z(t)) €Y,

! The index X in Fx distinguishes the given o-algebra on X from that on Y, which is
denoted as Fy. Whenever possible this index will be dropped.

230 S. Haesaert et al.

with variables z(t), u(t), e(t), taking values in R™, representing the state, control
input (external non-determinism), and noise terms respectively. The process is
initialised as x(0) ~ =, and driven by e(t), a white noise sequence with zero-
mean normal distributions and variance X.. This stochastic process, defined
as a dynamical model with dynamics characterised by the stochastic difference
equation above, is a gMDP characterised by a tuple (R™,m, T,R", h,Y), where
the conditional transition kernel is defined as T(- |z, u) = N (- | f(z(t), u(t)), Xe),
a normal probability distribution with mean f(z(¢),u(t)) and variance X.. O

A policy is a selection of control inputs based on the past history of states and
actions. We allow controls to be selected via universally measurable maps [5] from
the state to the control space, so that time-bounded properties such as safety can
be maximised [12]. When the selected controls are only dependent on the current
states and thus conditionally independent of history (or memoryless), the policy
is referred to as Markov. A Markov policy p for a gMDP M = (X, 7, T, U, h,Y)
is a sequence pu = (u1, o, p3,...) of universally measurable maps p; : X —
P(U,B(U)) t =0,1,2,..., from the state space X to the set of controls. Recall
that a function f : Z; — Zs is universally measurable if the inverse image of
every Borel set is measurable with respect to every complete probability measure
on Z; that measures all Borel subsets of Z;.

The execution {z(t),t € [0,N]} initialised by o € X and controlled with
Markov policy u is a stochastic process defined on the canonical sample space
2 := XN+ endowed with its product topology B(2). This stochastic process
has a probability measure P uniquely defined by the transition kernel T, policy
u, and initial distribution 7 [5, Prop. 7.45].

Of interest to us are time-dependent properties such as those expressed as
specifications in a temporal logic of choice. This leads to problems where one
maximises the probability that a sequence of labelled sets is reached within
a time limit and in the right order. One can intuitively understand that in
general the optimal policy leading to the maximal probability is not a Markov
(memoryless) policy. We introduce the notion of a control strategy, and define
it as a broader, memory-dependent version of the Markov policy above. Such a
strategy for controlling a gMDP is formulated next as a Markov process that
takes the state of the gMDP as input.

Definition 3 (Control Strategy). A control strategy C = (X¢,zco,X,
T, hi) for a gMDP M with state space X and control space U over the time
horizon t = 0,1,2,..., N is an inhomogenous Markov process with state space
Xc; an initial state xco; inputs x € X; time-dependent, universally measur-
able kernels Ty, t = 0,1,...,N; and with universally measurable output maps
hs : Xe — P(U,B(U)), t =1,...,N, with elements p € P(U, B(U)). 0

Unlike a Markov policy, the control strategy is in general dependent on the
history, as it has an internal state that can be used to remember relevant past
events. Note that the first control u(0) is selected by drawing xc(1) according
to T&(- |zc(0),z(0)), where zc(0) = zco, and selecting u(0) from measure
e = hg(xc(1)). This is then repeated at every time step, when the controller

Verification of General Markov Decision Processes 231

selects a control u(t) by updating its internal state T (- |xc(t),z(t)) and then
selecting u(t) according to s = hiz(zc(t + 1)). The control strategy applied to
M can be both stochastic (it is a realisation of T (- | zc(t), z(t))), a function of
the initial state z(0), and of time.

The execution {(x(¢),zc(t)),t € [0, N]} of a gMDP M controlled with strat-
egy C, is defined on the canonical sample space 2 := (X x X¢)V*! endowed
with its product topology B(£2). This stochastic process is associated to a unique
probability measure P, since the stochastic kernels ’]I‘E and T are Borel mea-
surable and composed via universally measurable policies [5, Prop. 7.45].

2.3 gMDP Verification and Strategy Refinement: The Idea

We qualitatively anticipate the main result of this work. We intend to provide a
general framework to synthesise control policies over a formal abstraction M of a
concrete complex model M, with the understanding that M is much simpler to be
manipulated (analytically or computationally) than M is. We define a simulation
relation under which a policy C for the abstract Markov process M implies
the existence of a policy C for M, so that we can quantify differences in the
stochastic transition kernels and in the output trajectories for the two closed-loop
models. This allows us to derive bounds on the probability of satisfaction of a
specification for M x C from the satisfaction probability of modified specifications
for M x C. This setup allows dealing with finite-horizon temporal properties,
including safety verification as a relevant instance.

The results in this paper are to be used in parallel with optimisation, both
for selecting the control refinement and for synthesising a policy on the abstract
model. It has been shown in [5] that stochastic optimal control, even for a system
on a “basic” state space, can lead to measurability issues: in order to avoid these
issues we follow [5,9] and the developed theory for Polish spaces and Borel (or
universally) measurable notions. Throughout the paper we will give as clarifying
examples Markov processes evolving, as in Example 1, over Euclidean spaces
which are a special instances of Polish spaces.

3 Exact (Bi-)simulation Relations Based on Lifting

In this section we define probabilistic simulation and bisimulation relations that
are, respectively, a preorder and an equivalence relation on My. Before intro-
ducing these relations, we first extend Segala’s notion [21] of lifting to uncount-
able state spaces, which allows us to equate the transition kernels of two given
gMDPs. Thereafter, we leverage liftings to define (bi-)simulation relations over
My, which characterise the similarity in the controllable behaviours of the two
gMDPs. Subsequently we show that these similarity relations also imply con-
troller refinement, i.e., within the similarity relation a control strategy for a given
¢gMDP can be refined to a controller for another gMDP. In the next section, we
show that this exact notion of similarity allows a more general notion of approx-
imate probabilistic simulation. The new notions of similarity relations extend
the known exact notions in [17], and the approximate notions of [9,10].

232 S. Haesaert et al.

3.1 Lifting for General Markov Decision Processes

Consider two gMDP M7, My € My mapping to a common output space Y with
metric dy. For M; = (X1,7T1, Ty, Uy, hl,Y) and My = (X2,7T2, To, Us, hQ,Y) at
given state-action pairs x1 € Xj,u; € Uy and x2 € X5, us € Us, respectively,
we want to relate the corresponding transition kernels, namely the probability
measures Ty (- |z1,u1) € P(Xq, B(X1)) and Ta(- |22, u2) € P(Xq, B(Xs)).

Similar to the coupling of measures in P(X, F) [2,18], consider the coupling
of two arbitrary probability spaces (Xi, F1,P1) and (Xo, F2,P2) (cf. [22]). A
probability measure P. defined on (X; x Xy, F) couples the two spaces if the
projections pi, p2, with &1 = p1(z1, z2) and x5 = pa(x1,x2), define respectively
an (X1,71)- and an (X3, F»)-valued random variable, such that P; = p;.P.
and Py = po,P.. For finite- or countably infinite-state stochastic processes a
closely-related concept has been introduced in [21] and referred to as lifting:
the transition probabilities are coupled using a weight function in a way that
respects a given relation over the combined state spaces. Rather than using
weight functions over a countable or finite domain [21], we introduce lifting as a
coupling of measures over Polish spaces.

Since we assume that the state spaces are Polish and have a corresponding
Borel o-field for the given probability spaces (X, B(X1),P;) and (Xo, B(X3),P3)
with Py := Ty(-|z1,u1) and Py := Ta(: |z2, us), the natural choice for the o-
algebra becomes? B(X; x Xz) = B(X;) ® B(Xz2) and the question of finding a
coupling can be reduced to finding a probability measure in P(X;xXs, B(X1xX)).

Definition 4 (Lifting for General State Spaces). Let X1,Xs be two sets
with associated measurable spaces (X1,B(Xy)) and (X, B(X3)) and let the Borel
measurable set R C Xy x Xy be a relation. We denote by R C P(Xy,B(Xy)) x
P(Xg, B(X3)) the corresponding lifted relation, so that ARO holds if there exists
a probability space (X1 x Xg, B(X;1 xX2), W) (equivalently, a lifting W) satisfying
1. fO?” all X7 € B(Xl) W(Xl X Xg) = A(Xl),
2. fOT all Xy € B(Xg) W(Xl X XQ) = Q(Xg),
3. for the probability space (X1 x Xo, B(Xy x X2),W) it holds that sRt with
probability 1, or equivalently that W (R) = 1.

Remark 1. We have implicitly required that the o-algebra B(X; x X5) contains
not only sets of the form X; x X5 and X; x X5, but also specifically the sets that
characterise the relation R. Since the spaces X; and X5 have been assumed to be
Polish, it holds that every open (closed) set in X; xX5 belongs to B(X;)®B(Xz) =
B(X; x X3) [6, Lemma 6.4.2]. As an example also consider the diagonal relation
Raiag := {(z,z) : © € X} over XxX, of importance for some examples introduced
later. This is a Borel measurable set [6, Theorem 6.5.7]. O

3.2 Exact Probabilistic (Bi-)simulation Relations via Lifting

Similar to the alternating notions for probabilistic game structures in [25], we
provide a simulation that relates any input chosen for the abstract process with

2 B(Xy) ® B(X2) denotes the product o-algebra of B(X;1) and B(Xz).

Verification of General Markov Decision Processes 233

one for the concrete process. We aim to compare the models behaviour with
respect to how they can be controlled, and thus allow for more elaborate handling
of the inputs than in the probabilistic simulation relations of [9,10,21], paving
the way to controller refinement. We introduce the notion of interface function
in order to connect the controllable behaviour of the two gMDP:

Z/{U : Ul X Xl X Xg — P(UQ,B(UQ)),

where we require that U, is a Borel measurable function. This means that i,
induces a Borel measurable stochastic kernel, denoted by U,, over Us given
U; x X1 x X5. The notion of interface function is known in the context of correct-
by-design controller synthesis and of hierarchical controller refinement [13,23].
The lifting of the transition kernels for the chosen interface generates a stochastic
kernel Wt conditioned on the inputs U; and X; x Xs,. Let us trivially extend the
interface function to U, (p1,x1,x2) 1= fUl Uy (uy, 1, 22) 1 (duy).

Definition 5 (Probabilistic Simulation). Consider two gMDP M;,i = 1,2,
M, = (X;, 7, T;, Ui, by, Y). The gMDP M is stochastically simulated by My if
there exists an interface function U, and relation R C Xy x Xg € B(X; x Xa),

for which there exists a Borel measurable stochastic kernel W (- |uy,z1,x2) on
X1 x Xy given Uy x Xy x Xo, such that V(x1,22) € R :

1. hl(l'l) = h2($2); B

2. VYur € Uy, Ti(-|z1,u1) R To(-|x1, Uy (ur, x1,22)), with lifted probability mea-
sure Wr (- |uy, z1, z2);

3. 7T17?,7T2.

The relationship between the two models is denoted as My < Ms.

Definition 6 (Probabilistic Bisimulation). Under the same conditions as
above, M1 is a probabilistic bisimulation of My if there exists a relation R C
X; x Xy such that My =< My w.r.t. R and My < My w.r.t. the inverse relation
R C Xy xXq. My and My are said to be probabilistically bisimilar, which is
denoted M ~ M.

For every gMDP M: M < M and M ~ M. This can be seen by consider-
ing the diagonal relation Ryiqq = {(21,22) € X x X | 1 = @2} and selecting
equal inputs for the associated interfaces. The resulting equal transition ker-
nels T(- |z, u)RaiagT(- |z, u) are lifted by the measure Wr(dz) x dab|u, z1,22) =
01 (dxy)T(dx |21, u) where § denotes the Dirac distribution.

Ezample 2 (Lifting for Diagonal Relations). Consider the specific case of the
gMDP (M) introduced in Example 1, and a slight variation of it (Mz), both
given as stochastic dynamic processes as

)) €R,

M, s z(t+1) = ax(t) + bu(t) + e(t) € R, y(t) = h(z(
= h(z(t)) € R,

M :z(t+1) =azx(t) +bu(t) +e(t) +a(t) e R, y(t) (z(

with variables x(t), x(t + 1), u(t), @(t), e(t), é(t) and constants a,b taking values
in R, and with dynamics initialised with the same probability distribution at

t
t

234 S. Haesaert et al.

t = 0 and driven by white noise sequences e(t), (), both with zero-mean normal
distributions and with variance equal to 1 and 1.25, respectively. M; < Ms. For
every action u; chosen for My, select the control input pair (ug,iz) € Uy = R?
as ug = u1, and us according to the zero-mean normal distribution with variance
0.25, then the associated interface is U, (- |u1, x1,x2) = 0y, (dug)N (diz|0,0.25).
For this interface the stochastic dynamics of the two processes are equal, and
can be lifted with Rgiag, namely Ti (- |2, u)Raiag T2 (- |2, Uy)- O

Remark 2. Over My, the class of gMDP with a shared output space, the relation
= is a preorder, as it is reflexive (see Example 2) and transitive (see Corollary 6).
Moreover = is an equivalence relation as it is also symmetric (Corollary 6). O

3.3 Controller Refinement via Probabilistic Simulation Relations

The ideas underlying the controller refinement are first discussed, after which it
is shown that the refined controller induces a strategy as per Definition 3. Finally
the equivalence of properties defined over the closed-loop gMDPs is shown.

Consider two gMDP M,; = (X;, m;, T;,U h;, Y) i = 1,2 with M; < Ms. Given
the entities U, and Wr associated to M; =< My, the distribution of the next
state x5 of My is given as Ta(: |22, Uy (u1, 21, 22)), and is equivalently defined
via the lifted measure as the marginal of Wr (- |uy, 21, 22) on Xs. Therefore, the
distribution of the combined next state (2, x%), defined as Wr(- |uy, z1,x2), can
be expressed as

WT(dxll X dl'/2|U1,$1,.132) = W’H‘(dl‘“l‘é,’ul,.731,$2)T2(dx/2|$2,uv(rd1,3317%'2))7

where Wr(da] |24, uy, 21, x2) is referred to as the conditional probability given %
(c.f. [7, Corollary 3.1.2]). Similarly, the conditional measure for the initialisation
W is denoted as W, (dz1(0) x dxo(0)) = Wi (dx1(0)|x2(0))me(dzo(0)).

Now suppose that we have a control strategy for My, referred to as Cy, and
we want to construct the refined control strategy Cs for My, which is such that
events defined over the output space have equal probability. This refinement
procedure follows directly from the interface and the conditional probability
distributions, and is described in Algorithm 1. The above execution algorithm is
separated into the refined control strategy Cs and its gMDP M. Cs is composed
of Cq, the stochastic kernel Wr, and the interface U,, and it remembers the
previous state of Mo.

Theorem 1 (Refined Control Strategy). Let gMDP M; and My be related
as My < My, and consider the control strategy C1 = (Xc,,zc,0,X1, T, , hi,)
for My as given. Then there exists at least one refined control strategy Co =
(Xcys 2000, Xo, Tg,, hi,) as defined in Definition 3, with

- state space X¢, = X, X Xy x Xg, with elements vc, = (xc,, %1, T2);
— initial state xc,o = (xc,0,0,0);
— input variable xo € Xy, namely the state variable of Ms;

Verification of General Markov Decision Processes 235

— time-dependent stochastic kernels TEQ, defined as

Tocz(dxcz|xczo,x2(0)) = T%l(dxcl|xclo,ml)Wﬂ(dxﬂasg)ém(o)(dxg) and
Te,(dzg,|rc, (t), 12(t) = Tg, (dzg, lzc, , 1)

Wr(da|ah, he, (Te,), T2, ©1) 04, 1) (dah) for t € [1, N];

— measurable output maps hi, (vc,, T1,12) == Uy (hg, (zc,), 71, T2). O

Algorithm 1: Refinement of Control Strategy C; as Cy

Given the interface function U,, and the (conditional) stochastic kernels

W (dzi |2y, u, 21, 22) and W (dz1(0)]22(0)).

Initialise by drawing

— the initial state x2(0) from 72, and

— the initial state x1(0) from W (-|z2(0)).

Run starting att =0,

1. given x1(t), select ui(t) according Cy,

2. choose randomised input por = Uy, (ur (t), 21 (t), 22(t)),
draw xo(t + 1) from Ta(- |x2(t), p2t),

3. draw z1(t + 1) from Wr(-|za(t + 1), u1(t), z1(t), z2(t)),

4. sett: =1+ 1, return.

Both the time-dependent stochastic kernels T¢, and the output maps hg,, for
t € [0, N], are universally measurable, since Borel measurable maps are univer-
sally measurable and the latter are closed under composition [5, Chapter 7.

Since, by the above construction of Cs, traces in the output spaces of the
closed loop systems C; x M; and Cy x My have equal distribution, it follows
that measurable events have equal probability, as stated next.

Theorem 2. If M; < M, then for all control strategies Cy there exists a
control strateqy Co such that, for all measurable events A € B (YN+1),

Po,xm; ({y1(H)}o:n € A) = Poyxm, ({y2(H) }on € 4),
with respective output traces {y1(t)}o.n and {y2(t)}o.n 0of C1 xM;j and Cax Ms.

4 New Approximate (Bi-)simulation Relations via Lifting

The requirement on an exact simulation relation between two models is evidently
restrictive. This is also shown in the following example of gMDPs.

Ezample 8 (Models with a Shared Noise Source). Consider an output space

Y := R%, with a metric dy(z,y) := ||z — y| (the Euclidean norm), and two
gMDP expressed as noisy dynamic processes:

My @y (E+1) = f(z1(t),ua(t)) + ea(t), yi(t) = h(z1(t)),

My @ z5(t + 1) = f(w2(t), ua(t)) + e2(?), y2(t) = h(z2(t)),

where f and h are both globally Lipschitz. Namely, there is an 0 < L < 1
such that ||f(z1,u) — f(z2,u)] < Lljzy — a2 for all z1,22 € R™ and for all

236 S. Haesaert et al.

u, and in addition an 0 < H such that ||h(z1) — h(z2)|| < H||z1 — 22||. Sup-
pose the probability distributions of the random variable e; and of ey can be
coupled with distribution P, x,, and that there exists a value ¢ € R, such
that Pe, xe, [||e1 — e2|| < ¢] = 1. Then for every pair of states x1(¢) and x2(t) of
M; and M, respectively, the difference between state transitions is bounded as
lz1(t+1) —22(t + 1)|| < L1 () — 22(t)|| + ¢ with probability 1. Therefore, we
know that if ||z1(0) — 22(0)|| < %5, then for all ¢t > 0, ||z1(t) — z2(t)]| < 55,
and [ly: (1) — ya(8)| < 224

Even though the difference in the output of the two models is bounded with
probability 1, it is impossible to provide an approximation error using either the
method in [16] (hinging on stochastic stability assumptions), or using (approxi-
mate) relations as in [9,10]: with the former approach, for the same input sequence
u(t) the output trajectories of My and My have bounded difference, but do not
converge to each other; with the latter approach, the relation defined via a normed
difference cannot satisfy the required notion of transitivity. a

As mentioned before and highlighted in the previous Example 3, we are interested
in introducing a new approximate version of the notion of probabilistic simula-
tion relation, which allows for both J-differences in the stochastic transition
kernels, and e-differences in the output trajectories. For the former prerequisite,
we relax the requirements on the lifting in Definition 4.

Definition 7 (4-Lifting for General State Spaces). Let X1, Xz be two sets
with associated measurable spaces (X1, B(X1)), (X, B(X3)), and let R C X3 x Xo
be a relation for which R € B(Xy x X3). We denote by Rs C P(Xy,B(X;)) x
P(Xa, B(X3)) the corresponding lifted relation (acting on AR50), if there exists
a probability space (X1 x Xo, B(X; x X2), W) satisfying

1. fO?” all X1 € B(Xl) W(Xl X Xg) = A(Xl),

2. fOT all X5 € B(Xg) W(Xl X XQ) = Q(XQ),

3. for the probability space (X; x Xo, B(Xy x X3), W) it holds that sRt with
probability at least 1 — &, or equivalently that W (R) > 1 —4.

We leverage Definition 7 to introduce a new approximate similarity relation
that encompasses both approximation requirements, obtaining the following e, d-
approximate probabilistic simulation.

Definition 8 (¢, 0-Approximate Probabilistic Simulation). Consider
gMDP M,; = (X;,m;, T;,U;, by, Y), i = 1,2, over a shared metric output space
(Y,dy). My is €,0-stochastically simulated by My if there exists an interface
function U, and a relation R C X1 X Xg, for which there exists a Borel measur-
able stochastic kernel Wr(- |uy,x1,22) on X1 x Xa given Uy x Xy x Xy, such that
V(z1,22) € R :

1. dy (hl(zl), hg(xg)) S 6;_

2. Yuy € Uy, Ti(|x1,u1) Rs Ta(- |ze, Uy (ur, 1, 22)), with lifted probability mea-
sure Wr (- |uy, z1,22);

3. 7T17?,57T2.

The simulation relation is denoted as My j‘g M.

Verification of General Markov Decision Processes 237

Definition 9 (e, d-Approximate Probabilistic Bisimulation). Under the
same conditions as before My is an €, d-probabilistic bisimulation of My if there
exists a relation R C Xy x Xy such that My jf My w.r.t. R and M; 53 M,
w.rt. RV C Xo x Xq. M1 and My are said to be €, §-probabilistically bisimilar,
denoted as M; ~2 M.

In the next section we use the introduced similarity relations to quantify the
probability of events of a gMDP via its abstraction and to refine controllers.

4.1 Controller Refinement via Approximate Simulation Relations

Consider two gMDP M; and M5 for which M} is the abstraction of the concrete
model M. The following result is an approximate version of Theorem 2, and

provides the main result of this paper, i.e., approximate equivalence of properties
defined over the gMDP M; and M.

Theorem 3. If M; j‘g M,, then for all control strategies Cy there exists a

control strategy Ca such that for the output traces {y1(t)},.y and {y2(t)},.n of
C1 x M; and Cy x My, it holds that for all measurable events A C YN*+!

PC]XM <{y1 (t)}O:NG Afg) -7 < PC:xMz({yQ (t)}O:NE A) <]P)QXM ({yl (t)}o:NeAE) +

with constant 1 — v := (1 — §)N*, and with the e-expansion of A defined as

Ac={{ye()}YonFH{y(t) }o.n € A maxyepo vy dy (ye(t),y(t) < €}

and similarly the e-contraction defined as A_. := {{y(t)}o.n|{{y(t)}o.n}c C A}
where {{y(t) }o.n }c s the point-wise e-expansion of {y(t)}o.n-

Key to show this result is the existence of a refined control strategy Cs, which we
detail next. Given a control strategy C; over the time horizon ¢ € {0,..., N},
there is a control strategy Cs that refines C; over Ms. The control strategy
is conceptually given in Algorithm 2. Whilst the state (z1,22) of Cs is in R,
the control refinement from C; follows in the same way as for the exact case of
Sect. 3.3. Hence, similar to the control refinement for exact probabilistic simula-
tions, the basic ingredients of Cy are the states x1 and zo, whose stochastic tran-
sition to the pair (2, z5) is governed firstly by a point distribution &, (dx5)
based on the measured state x5 (t) of May; and, subsequently, by the lifted prob-
ability measure Wr(da) | 5, u1, z2, 21), conditioned on x}.

On the other hand, whenever the state (x1,z2) leaves R the control chosen
by strategy C; cannot be refined to My and fails. A new control strategy C, .,
referred to as recovery, can be used to control the residual trajectory of Ms.
The choice is of no importance to the result in Theorem 3, as it bounds errors
on probabilistic events based on the event that the states stay in the relation.

Theorem 4 (Refined Control Strategy). Let ¢MDP M; and Ma, with
M; =<? My, and control strategy C; = (Xe, s zc,0, X1, T, b,) for My be

238 S. Haesaert et al.

given. Then for every recovery control strateqy C, ., a refined control strategy
Cy =(Xcy Tey0, X2, Tg,, h,) is obtained as an inhomogenous Markov process
with two discrete modes of operation, {refinement} and {recovery}, based on
Algorithm 2.

By dividing the execution in Algorithm 2 into a control strategy and a gMDP
M,, we again obtain a refined control strategy with tuple (Xc,,zc,0,Xo,
Th, ,hE).

27 7Co

Algorithm 2: Refinement of C; as C,

Given the interface function U,, the (conditional) stochastic kernels
W (da) |, ur, x1,x2) and W, (dz1(0)|xz2(0)), and the chosen recovery strategy
Crec~

Initialise by drawing

— the initial state z2(0) from 7y, and

— the initial state z1(0) from W, (- |z2(0)).

Run starting at t = 0, while t < N

1. if (x1(t),22(t)) € R go to 2. else skip to 6.

2. given x1(t), select uq(t) from Cy, {refine}
3. choose randomised input por = U, (u1(t), z1(t), z2(1)),

draw xo(t + 1) from Ta(- |z2(t), uat),

draw z1(t + 1) from Wr(- |z2(t + 1), u1(t), z1(t), z2(t)),

set t:=t+ 1, go to 1.

given x5(t), compute u; (from C,.ec), {recover}
draw zo(t + 1) from Ta(- |x2(t), 1e),

set t:=t+ 1, go to 6.

@ NSO

4.2 Examples and Properties

Ezample 4 (Models with a Shared Noise Source — Contin’d from Above). Based
on the relation R := {(x1,72) : [[z1 — x2f| < 75} it can be shown that
M; ~? M, with e = lff—cL, since, firstly, it holds that dy(h(z1), h(z2)) < € for all
(z1,22) € R, withdy = ||h(z1)—h(z2)||. Additionally, for all (1, x2) € R and for
any input u; the selection us = u; is such that Ty (- |z1, u1)RoTa2(: |T2, u1), note
that Rg is equal to R (the lifted relation from R). The lifted stochastic kernel
is WT(dxll X dx/2|u173317$2) = fw 6f(1:1,u1)+g1(w)(dxll)éf(mz,U)+gz(w) (dmé)]?u)(dw)a
this stochastic kernel is Borel measurable if f(x1,u1)+g1(w) and f(z2, u)+ga2(w)
are Borel measurable mappings. The identity interface is Borel measurable. O

Ezample 5 (Relationship to Model with Truncated Noise). Consider the stochas-
tic dynamical process My : z(t + 1) = f(z(t),u(t)) + e(t) with output map-
ping y(t) = h(x(t)), operating over the Euclidean state space R™, and driven
by a white noise sequence e(t) € R™ with distribution P.. The output space
y € Y C R? is endowed with the Euclidean norm dy = || - ||. Select a domain

Verification of General Markov Decision Processes 239

D C R™ so that, at any given time instant ¢, e(t) € D with probability 1 — 4.
Then define a truncated white noise sequence é(t), with distribution P, (-|D).
The resulting model My driven by é(t) is My : x(t + 1) = f(z(t),u(t)) + é(t),
with the same output mapping y(t) = h(z(t)). We show that My is a 0, -
approximate probabilistic bisimulation of My, i.e. M; =% M. Select R :=
{(x1,x2) for z1,22 € R"|z1 = 22}, and choose as interface the identity function,
i.e., Uy(u1,71,T2) = uy. Denote t1(e) = f(x1,u1) + e and t3(€) = f(w2,u1) + €,
then a lifting measure depending on x1,x2 € R and uy, is

Wr(day x dablur, w1,22) = [, p, 0ur (d2h)d¢, (o) (d2))Pe (de) (1)
+ Jocrm p Ot (e) (d27)Pe(de) [; O, e (dwy)Pe(dE| D).
O

Ezample 6 (Relationship Between Noiseless and Truncated-Noise Models). Con-
tinuing with Example 5, consider the model with truncated noise My as defined
before. In what sense is My approximated by its noiseless version M3, namely
M; : z2(t+1) = f(x(t),u(t)), with y(¢) = h(x(t))? Under requirements on
the Lipschitz continuity ||f(z1,u) — f(z2,y)|| < Lljz1 — 2] 0 < L < 1,
|h(z1) — h(z2)|| < Hl||z1 — 22|, and on the boundedness of D and of ¢ =
maxgep ||d||, Example 3 can be leveraged by concluding that My ~¢ M3, with

Hc 3 O

€ = 1-L°

In the Examplesb and 6 we have that M; is approximated by Ms, which is

subsequently approximated by Mgs. The following theorem and corollary attains
a quantitative answer on the question whether M; is approximated by Mj.

Theorem 5 (Transitivity of <°). Consider three gMDP M;, i = 1,2,3,
defined by tuples (X, m;, T;, Us, by, Y), with shared output space.
If M, <% Myand My <2 M, then M; <2212 M.

—€qt€p

Next, as a corollary of this theorem, we discuss further transitivity properties
for simulation and bisimulation relations.

Corollary 6 (Transitivity Properties). Following Theorem 5, it holds that
— if My % My and My ~% Mj, then My ~2 1% M, and

€qt€p

- ifMl j M2 and M2 j Mg, then M1 j Mg, and
— if M; = My and My ~ Mg, then My ~ Mj3.

Ezample 7 (Combination of Examples5 and 6 via Corollary 6). For the mod-
els in Examples5 and 6 we can conclude that M; %g Mj. This means that a
stochastic system as in M; in Example 5 can be approximated via its determin-
istic counterpart, and that the approximation error can be expressed via the
probability (i.e. amount of truncation cf. Example5) and the output error (i.e.
Example 6). This allows for explicit trading off between output deviation and
deviation in probability. a

3 Alternatively, if My with non-deterministic input é € D is an e,- alternating bisim-
ulation [23] of M3 then M ~° Ms.

240 S. Haesaert et al.

5 Case Study: Energy Management in Smart Buildings

We are interested in developing advanced solutions for the energy management of
smart buildings. We consider a simple building that is divided in two connected
zones, each with a radiator affecting the heat exchange in that zone. The tem-
perature fluctuations in the two zones and the ambient temperature dynamics

are modelled via M as a Gaussian process [15]:
M:z(t+1) = Ax(t) + Bu(t) + Fe(t), y(®) =[o16]z(®), (2

with stable dynamics characterised by matrices

0.8725 0.0625 0.0375 0.0650 0 0.05 —0.02 0
A = |006250.87750.0250 |, B =0 060, F =1]-002 005 0],
0 0 0.9900 0 00.1

where x1 2(t) are the temperatures in zone 1 and 2, respectively; x3(t) is the
deviation of the ambient temperature from its mean; and u(t) € R? is the control
input. The state variables are initiated as z(0) = [16 14 — 5]7. The disturbance
e(t) is a sequence of independent distributed standard Gaussian distributions,
for all + € RT. This stochastic process can be written as a gMDP as detailed in
Example 1. For the model abstraction, we select the controllable dynamics of the
mean of the state variables, and consequently omit the ambient temperature:

NI {£<t+1) = Az(t) + Ba(t) € B?, with A:= [G5B 088, o)
gty =159, B =% 0G0l

We then obtain that, as intuitive, M =<2 M.

pe M <! M

£ 1 \

;i 0.8

g 06 3

g 04 !

g 02 1(0.16,0.073)

= g s [S=g- - om-----
E 0 0.1 0.2 0.3 0.4
°

deviation in output e

Fig. 1. Figure of trade-off between the output error € and the probability error ¢ for
the 8, e-approximate probabilistic simulation M <¢ M. We have selected the pair
(e,0) = (0.16,0.073) as an ideal trade-off.

In order to compute specific values of € and &, we select the relation R :=
{(Z,2) € RZ x R® | \/(Z1 — 21)2 + (¥2 — 22)% < €} and the interface function
U, (1, &,x) = @ + B~ (A% — Az), with A = [{:8725 0.0625 0.0375) A stochastic ker-
nel Wr for the lifting is Wr(dz' x dz’ | @, Z,z) = [, 0 7(dz") df(e) (da")N (de |0, 1),
with f = AZ + Ba and f(e) = Az + BU, (i, &,x) + Fe. The lower bound on
Wr(R | @,%,2) <1 — 6 has been computed and traded off against the output
deviation in Fig. 1.

Verification of General Markov Decision Processes 241

We are interested in the goal, expressed for the model M, of increasing the
likelihood of reaching the target set T = [20.5, 21]? and staying there thereafter.
For the abstract model we have developed a strategy, as in [15], satisfying by
construction the property expressed in LTL-like notation with the formula ¢ =
OOT and shrunken to ¢_. (as per Theorem 3). This strategy is synthesised as a
correct-by-construction controller using PESSOA [19], where the discrete-time
dynamics are further discretised over state and action spaces: we have selected
a state quantisation of 0.05 over the range [15,25]2, and an input quantisation
of 0.05 over the set [10,30]°. It can be observed that the controller regulates the
abstract model M to eventually remain within the target region, as shown in
Fig. 2. We now want to verify that indeed, when refined to the concrete stochastic
model, this strategy implies the reaching and staying in the safe set up to some
probabilistic error. The refined strategy is obtained from this control strategy as
discussed in Sect. 4.1, and recovers from exits out of the relation R by resetting
the abstract states in the relation. A simulation study is given in Fig.2: as
predicted, the behaviour of the controlled concrete model M stays close to that
of M. Over a time horizon of 200 steps the output error exceeds the level € = 0.16
only a few (four) times. Indeed, the probability that the concrete state leaves
the relation with the abstract model (< §, with § = 0.073) leads, over N time
steps, to a bound on the probability that it does not satisfy the LTL property:
Theorem 3 ensures that this probability is provably less than 1 — (1 —6)" ~ NJ.
In practice, whenever state exits the relation, then the controller recovers by
resetting the state of the abstract model and re-applying the strategy again, and
thanks to the e-contraction ¢_. of the concrete specification, M will abide by ¢
with a high confidence.

7 -yl
o ¢
o —_
:vl(t)
= =
(=2} oo
i —
|

0 50 100 150 200 0 50 100 150 200
t t
T =22
0 P = P
s MFM %18 f B
= ! I i T16) ! I Bl
0 50 100 150 200 0 50 100 150 200
t t

Fig. 2. Refined control for deterministic model applied to M. The figure (above left)
evaluates the accuracy of the approximation, and gives with red circles the instances in
which the relation is left. The plot (below left) gives the ambient temperature. The plots
on the right give the temperature inside the rooms. The (very small) blue crosses give
the actual temperature in the rooms (z1,z2) and cover the deterministic simulation of
(Z1,%2) drawn in black. (Color figure online)

242 S. Haesaert et al.

6 Conclusions

In this work we have discussed new approximate similarity relations for general
control Markov processes, and shown that they can be effectively employed for
abstraction-based verification and controller refinement. The new relations in
particular allow for a useful trade-off over deviations between probability distri-
butions on the states and distances between model outputs.

Alongside practical applications of the developed notions, current research
efforts focus on further generalisation of Theorem 3 to specific quantitative prop-
erties expressed via temporal logics. We are moreover interested in expanding
on the properties of the similarity relations.

Acknowledgement. The research of Sofie Haesaert is supported by DISC through a
personal grant from the NWO graduate program.

References

1. Abate, A., Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking
of labelled markov processes via finite approximate bisimulations. In: van Breugel,
F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. LNCS,
vol. 8464, pp. 40-58. Springer, Heidelberg (2014)

2. Abate, A., Redig, F., Tkachev, I.: On the effect of perturbation of conditional
probabilities in total variation. Stat. Probab. Lett. 88, 1-8 (2014)

3. Abate, A.: Approximation metrics based on probabilistic bisimulations for general
state-space Markov processes: a survey. Electron. Notes Theor. Comput. Sci. 297,
3-25 (2013)

4. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724-2734 (2008)

5. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case.
Athena Scientific, Belmont (1996)

6. Bogachev, V.I.: Measure Theory. Springer Science & Business Media, Heidelberg
(2007)

7. Borkar, V.S.: Probability Theory: An Advanced Course. Springer Science & Busi-
ness Media, Heidelberg (2012)

8. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comput. Sci. 318(3), 323-354 (2004)

9. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic
processes: logic, simulation and games. In: QEST, pp. 264273, September 2008

10. D’Innocenzo, A., Abate, A., Katoen, J.P.: Robust PCTL model checking. In: Pro-
ceedings of the 15th ACM International Conference on Hybrid Systems: Compu-
tation and Control, pp. 275-285 (2012)

11. Esmaeil Zadeh Soudjani, S., Gevaerts, C., Abate, A.: FAUST?: Formal Abstrac-
tions of Uncountable-STate STochastic processes. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 272-286. Springer, Heidelberg (2015)

12. Esmaeil Zadeh Soudjani, S., Abate, A.: Adaptive and sequential gridding proce-
dures for the abstraction and verification of stochastic processes. SIAM J. Appl.
Dyn. Syst. 12(2), 921-956 (2013)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Verification of General Markov Decision Processes 243

Girard, A., Pappas, G.J.: Hierarchical control system design using approximate
simulation. Automatica 45(2), 566-571 (2009)

Haesaert, S., Esmaeil Zadeh Soudjani, S., Abate, A.: Verification of general Markov
decision processes by approximate similarity relations and policy refinement, May
2016. arXiv preprint arXiv:1605.09557

Haesaert, S., Abate, A., Van den Hof, P.M.J.: Correct-by-design output feedback
of LTT systems. In: Conference on Decision and Control, pp. 6159-6164 (2015)
Julius, A.A., Pappas, G.J.: Approximations of stochastic hybrid systems. IEEE
Trans. Autom. Control 54(6), 1193-1203 (2009)

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1-28 (1991)

Lindvall, T.: Lectures on the Coupling Method. Courier Corporation, North
Chelmsford (2002)

Mazo Jr., M., Davitian, A., Tabuada, P.: PESSOA: a tool for embedded controller
synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 566-569. Springer, Heidelberg (2010)

Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Communica-
tions and Control Engineering Series. Springer, London (1993)

Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology (1995)

Skala, H.J.: The existence of probability measures with given marginals. Ann.
Probab. 21, 136-142 (1993)

Tabuada, P.: Verification and Control of Hybrid Systems. Springer, Heidelberg
(2009)

Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A., Lygeros, J.: Symbolic con-
trol of stochastic systems via approximately bisimilar finite abstractions. IEEE
Trans. Autom. Control 59(12), 3135-3150 (2014)

Zhang, C., Pang, J.: On probabilistic alternating simulations. In: Calude, C.S.,
Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 71-85. Springer, Heidelberg
(2010)

http://arxiv.org/abs/1605.09557
http://arXiv.org/abs/1605.09557

Policy Learning for Time-Bounded Reachability
in Continuous-Time Markov Decision Processes
via Doubly-Stochastic Gradient Ascent

Ezio Bartocci!, Luca Bortolussi®®#, Tomas Brazdil®, Dimitrios Milios®®),
and Guido Sanguinetti®”

! Faculty of Informatics, Vienna University of Technology, Vienna, Austria
2 Department of Maths and Geosciences, University of Trieste, Trieste, Italy
3 CNR/ISTI, Pisa, Italy
4 Modelling and Simulation Group, Saarland University, Saarbriicken, Germany
5 Faculty of Informatics, Masaryk University, Brno, Czech Republic
6 School of Informatics, University of Edinburgh, Edinburgh, UK
dmilios@inf.ed.ac.uk
" SynthSys, Centre for Synthetic and Systems Biology,
University of Edinburgh, Edinburgh, UK

Abstract. Continuous-time Markov decision processes are an important
class of models in a wide range of applications, ranging from cyber-
physical systems to synthetic biology. A central problem is how to devise
a policy to control the system in order to maximise the probability of
satisfying a set of temporal logic specifications. Here we present a novel
approach based on statistical model checking and an unbiased estimation
of a functional gradient in the space of possible policies. The statistical
approach has several advantages over conventional approaches based on
uniformisation, as it can also be applied when the model is replaced by
a black box, and does not suffer from state-space explosion. The use
of a stochastic gradient to guide our search considerably improves the
efficiency of learning policies. We demonstrate the method on a proof-of-
principle non-linear population model, showing strong performance in a
non-trivial task.

1 Introduction

Continuous-time Markov Decision Processes (CTMDPs) [2] are a very pow-
erful mathematical framework to solve control and dependability problems in
real-time systems featuring both probabilistic and nondeterministic behaviours.
Examples include applications such as the control of epidemic processes [15,20],
power management [27], queueing systems [32] and cyber-physical systems [22].
A CTMDP extends a continuous-time Markov chain (CTMC) by introducing a
decision maker (also called scheduler) that can perform actions with an associ-
ated cost or reward. CTMDPs are particularly useful modelling tools to address
important problems such as model checking [1] and planning.

Model checking aims to verify if a CTMDP satisfies a desired requirement
for a given class of schedulers or for all possible schedulers. The requirement of

© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 244-259, 2016.
DOI: 10.1007/978-3-319-43425-4_17

Policy Learning for Time-Bounded Reachability in CTMDPs 245

interest is usually expressed in terms of the min/maz probability for a CTMDP
to satisfy the temporal logic property [1] of interest. In particular, the main
target of the current quantitative model checking techniques for CTMDPs is the
time-bounded reachability [2,13,25,28,29], a property that requires a CTMDP
to reach a particular set of states within a time bound.

Planning or scheduling is an orthogonal problem w.r.t. model checking. It
consists in devising the optimal sequence of actions (or policy) to control the
system in order to maximise the probability to satisfy a temporal logic spec-
ification such as the aforementioned time-bounded reachability. In the case of
CTMDP the optimal scheduling can be either timed or untimed depending on
whether or not the scheduler is aware of the passing of time. Timed optimal
scheduling can be further classified in late or early depending on whether the
decision of choosing an action can change while the time passes in a state or it
remains unchanged.

In this paper we present a novel statistical approach to compute lower bounds
on the maximum reachability probability of a CTMDP. Our method uses a
basis-function regression approach to compactly encode schedulers and effectively
search for an optimal one. We consider here randomised time-dependent early
schedulers, and focus on population models, where the state space of the CTMDP
is represented by a set of integer-valued variables counting how many entities of
each kind are in the system. This is a large class of models: queueing and per-
formance models [13], epidemic scenarios, biological systems are all members of
this class. Population models, despite being so common, suffer severely from state
space explosion, with the number of states growing exponentially with the num-
ber of variables. This reflects on the size of the schedulers: in principle, we would
need to store a function of time for each state of the CTMDP, which is unfeasible.
This paper contains two main novel insights. First, we leverage the structure of
the state space, which can be embedded as a discrete grid in real space, to obtain
a continuous relaxation of the problem and consider schedulers defined on such
a continuous space. The advantage now is that we can treat time and space uni-
formly, representing schedulers as continuous functions. This opens up the use of
machine learning methods to represent continuous functions as combinations of
basis functions, and allows us to define the optimisation problem as a search in
such a continuous function space. The second main contribution of the work is to
set up an efficient stochastic gradient ascent search algorithm, which considerably
speeds up the search in the space of functions. This is based on a novel algorithm
using Gaussian Processes (GPs) and statistical model checking to sample in an
unbiased manner the gradient of the functional associating a reachability prob-
ability with a randomized scheduler. This method allows us to effectively learn
schedulers that maximise (locally) the reachability probability.

Organisation of the Paper. In Sect. 2 we present the related work and in Sect. 3
we provide the necessary formal background on CTMDPs. In Sect. 4 we present
our algorithm to learn optimal policies using stochastic functional gradient ascent
techniques. In Sect.5 we demonstrate our algorithm on an epidemiology case
study. Finally, we draw our conclusion in Sect. 6.

246 E. Bartocci et al.

2 Related Work

Symbolic model checking algorithms for discrete-time Markov decision processes
have been intensively investigated in [3,7] and implemented in popular tools such
as PRISM [19]. In the area of CTMDPs, the problem of time optimal planning
has been first considered from a theoretical point of view in [23]. In the last
decade there has been a great effort on developing practical model checking
techniques for CTMDPs [2,13,25,28,29] (i.e., based on uniformization [2]) with
the introduction of efficient approximation algorithms that provide also formal
error bounds. Generally, all these techniques rely on the a-priori knowledge of the
CTMDP model under investigation and they suffer the state-explosion problem.

In this light, methods based on statistical model checking are particularly
attractive, even though they may suffer when the property to be verified is
a rare-event. In [16] the authors presented a statistical model checking algo-
rithm for the discrete-time case; their approach was however based on random
search combined with a greedy selection criterion, which is difficult to analyse
in terms of convergence properties, and may be practically difficult to tune.
The availability of an unbiased estimate of the (functional) gradient allows us
to improve on the efficiency, and to leverage a rich theory on the convergence
of stochastic gradient ascent algorithms. Our ap