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Preface

Welcome to the proceedings of QEST 2016, the 13th International Conference on
Quantitative Evaluation of Systems. QEST is a leading forum on quantitative evalu-
ation and verification of computer systems and networks, through stochastic models
and measurements. QEST was first held in Enschede, The Netherlands (2004), fol-
lowed by meetings in Turin, Italy (2005), Riverside, USA (2006), Edinburgh, UK
(2007), St. Malo, France (2008), Budapest, Hungary (2009), Williamsburg, USA
(2010), Aachen, Germany (2011), London, UK (2012), Buenos Aires, Argentina
(2013), Florence, Italy (2014) and, most recently, in Madrid, Spain (2015).

This year’s QEST was held in Quebec City, Canada, and colocated with the 27th
International Conference on Concurrency Theory (CONCUR 2016) and the 14th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2016).

As one of the premier fora for research on quantitative system evaluation and
verification of computer systems and networks, QEST covers topics including classic
measures involving performance and reliability, as well as quantification of properties
that are classically qualitative, such as safety, correctness, and security. QEST wel-
comes measurement-based studies and analytic studies, diversity in the model for-
malisms and methodologies employed, as well as development of new formalisms and
methodologies. QEST also has a tradition in presenting case studies, highlighting the
role of quantitative evaluation in the design of systems, where the notion of system is
broad. Systems of interest include computer hardware and software architectures,
communication systems, embedded systems, infrastructural systems, and biological
systems. Moreover, tools for supporting the practical application of research results in
all of the aforementioned areas are also of interest to QEST. In short, QEST aims to
encourage all aspects of work centered around creating a sound methodological basis
for assessing and designing systems using quantitative means.

The Program Committee (PC) consisted of 30 experts and we received a total of 46
submissions. Each submission was reviewed by three reviewers, either PC members or
external reviewers. The review process included a one-week PC discussion phase. In
the end, 21 full papers and three tool demonstration papers were selected for the
conference program. The program was greatly enriched by the QEST keynote talk of
Carey Williamson (University of Calgary, Canada), the joint keynote talk with FOR-
MATS 2016 of Ufuk Topcu (University of Texas at Austin, USA), and the joint
FORMATS 2016 and CONCUR 2016 keynote of Scott A. Smolka (Stony Brook
University, USA). We believe the overall result is a high-quality conference program of
interest to QEST 2016 attendees and other researchers in the field.

We would like to thank a number of people. Firstly, thanks to all the authors who
submitted papers, as without them there simply would not be a conference. In addition,
we would like to thank the PC members and the additional reviewers for their hard
work and for sharing their valued expertise with the rest of the community, as well as



EasyChair for supporting the electronic submission and reviewing process. We are also
indebted to our proceedings chair, Karl Palmskog, and to Alfred Hofmann and Anna
Kramer for their help in the preparation of this volume. Thanks also to the Web
manager, Andrew Bedford, the local organization chair, and general chair, Josée
Desharnais, for their dedication and excellent work. Finally, we would like to thank
Joost-Pieter Katoen, chair of the QEST Steering Committee, for his guidance
throughout the past year, as well as the members of the QEST Steering Committee.

We hope that you find the conference proceedings rewarding and will consider
submitting papers to QEST 2017.

August 2016 Gul Agha
Benny Van Houdt

VI Preface
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A Stroll Down Speed-Scaling Lane

Carey Williamson

Department of Computer Science, University of Calgary, Calgary, AB, Canada
carey@cpsc.ucalgary.ca

Abstract. This talk provides a retrospective look at the past, present, and future
of speed scaling systems. Such systems have the ability to auto-scale their
service capacity based on demand, which introduces many interesting tradeoffs
between response time (a classic performance metric) and energy efficiency (a
relatively recent performance metric of growing interest).

The talk highlights key results and observations from the past two decades
of speed scaling research, which appears in both the theory and systems research
communities. One theme in the talk is the dichotomy between the assumptions,
approaches, and results in these two research communities. Another theme is
that modern processors support surprisingly sophisticated speed scaling func-
tionality, which is not yet well-harnessed by current algorithms or operating
systems.

During the stroll, I will also share some insights and observations from our
own work on speed scaling designs, including coupled, decoupled, and turbo-
charged systems. This work includes analytical and simulation modeling, as
well as empirical system measurements. The talk closes with thoughts about
future opportunities in speed scaling research.



V-Formation as Optimal Control

Scott A. Smolka

Department of Computer Science, Stony Brook University,
Stony Brook, NY, USA

sas@cs.stonybrook.edu

Abstract. In this talk, I will present a new formulation of the V-formation
problem for migrating birds in terms of model predictive control (MPC). In this
approach, to drive a flock towards a desired formation, an optimal velocity
adjustment (acceleration) is performed at each time-step on each bird’s current
velocity using a model-based prediction window of T time-steps. I will present
both centralized and distributed versions of this approach. The optimization
criteria used is based on fitness metrics of candidate accelerations that V-for-
mations are known to exhibit. These include velocity matching, clear view, and
upwash benefit. This MPC-based approach is validated by showing that for a
significant majority of simulation runs, the flock succeeds in forming the desired
formation. These results help to better understand the emergent behavior of
formation flight, and provide a control strategy for flocks of autonomous aerial
vehicles. This talk represents joint work with Radu Grosu, Ashish Tiwari, and
Junxing Yang.



Adaptable Yet Provably Correct
Autonomous Systems

Ufuk Topcu

Department of Aerospace Engineering and Engineering Mechanics,
University of Texas at Austin, Austin, TX, USA

utopcu@utexas.edu

Abstract. Acceptance of autonomous systems at scales at which they can make
societal and economical impact hinges on factors including how capable they
are in delivering complicated missions in uncertain and dynamic environments
and how much we can trust that they will operate safely and correctly. In this
talk, we present a series of algorithms recently developed to address this need. In
particular, these algorithms are for the synthesis of control protocols that enable
agents to learn from interactions with their environment and/or humans while
verifiably satisfying given formal safety and other high-level mission specifi-
cations in nondeterministic and stochastic environments.

We take two complementing approaches. The first approach merges data
efficiency notions from learning (e.g., so-called probably approximate correct-
ness) with probabilistic temporal logic specifications. The second one leverages
permissiveness in temporal-logic-constrained strategy synthesis with reinforce-
ment learning.
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Property-Driven State-Space Coarsening
for Continuous Time Markov Chains

Michalis Michaelides1(B), Dimitrios Milios1, Jane Hillston1,
and Guido Sanguinetti1,2

1 School of Informatics, University of Edinburgh, Edinburgh, UK
mic.michaelides@ed.ac.uk

2 SynthSys, Centre for Synthetic and Systems Biology,

University of Edinburgh, Edinburgh, UK

Abstract. Dynamical systems with large state-spaces are often expen-
sive to thoroughly explore experimentally. Coarse-graining methods aim
to define simpler systems which are more amenable to analysis and explo-
ration; most current methods, however, focus on a priori state aggrega-
tion based on similarities in transition rates, which is not necessarily
reflected in similar behaviours at the level of trajectories. We propose
a way to coarsen the state-space of a system which optimally preserves
the satisfaction of a set of logical specifications about the system’s tra-
jectories. Our approach is based on Gaussian Process emulation and
Multi-Dimensional Scaling, a dimensionality reduction technique which
optimally preserves distances in non-Euclidean spaces. We show how
to obtain low-dimensional visualisations of the system’s state-space from
the perspective of properties’ satisfaction, and how to define macro-states
which behave coherently with respect to the specifications. Our approach
is illustrated on a non-trivial running example, showing promising per-
formance and high computational efficiency.

1 Introduction

Reasoning about behavioural properties of dynamical systems is a central goal
of formal modelling. Recent years have witnessed considerable progress in this
direction, with the definition of formal languages [9,10] and logics [12] which
enable compact representations of dynamical systems, and mature reasoning
tools to model-check properties in an exact [15] or statistical way [14,20].

While such advances are indubitably improving our understanding of dynam-
ical systems, the applicability of these techniques in practical scenarios is still
largely hindered by computational issues. In particular, systems with large state-
spaces quickly become infeasible to analyse via exact methods due to the phe-
nomenon of state-space explosion; even statistical methods may require compu-
tationally expensive and extensive simulations. State-space reduction method-
ologies aim to construct more compact representations for complex systems. Such

M. Michaelides, D. Milios and G. Sanguinetti are supported by the European
Research Council under grant MLCS 306999. J. Hillston is supported by the EU
project, QUANTICOL 600708.

c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-43425-4 1



4 M. Michaelides et al.

reduced-state systems are generally amenable to more effective analysis and may
yield deeper insights into the structure and dynamics of the system.

Broadly speaking, state-space reduction can be achieved by either model sim-
plification, usually by abstracting some system behaviours into a simpler system,
or state aggregation, often by exploiting symmetries or approximate invariances.
A prime example of model simplification is the technique of time-scale separation,
which replaces a large system with multiple weakly dependent sub-systems [5].
Most aggregation methods, instead, are based on grouping different states with
similar behaviour with respect to their transition probabilities. This idea is at the
core of the concept of approximate lumpability, which extends the exact lumpability
relationship by aggregating states based on a pre-defined metric on the outgoing
exit rates [1,7,11,17,19].

In this paper we propose a novel state-space reduction paradigm by shifting
the focus from the infinitesimal properties of states (i.e. their transition rates)
to the global properties of trajectories. Namely, we seek to aggregate states that
yield behaviourally similar trajectories according to a set of pre-defined logical
specifications. Intuitively, two states will be aggregated if trajectories starting
from either state exhibit similar probabilities of satisfying the logical specifica-
tions. We define a statistical algorithm based on statistical model checking and
Gaussian Process emulation to define this behavioural similarity across the whole
state-space of the system. We then propose a dimensionality reduction and clus-
tering pipeline to aggregate states and define reduced (non-Markovian) dynam-
ics. To illustrate our approach, we give a running example of model reduction
for the Susceptible-Infected-Recovered-Susceptible (SIRS) model, a non-trivial,
non-linear stochastic system widely used in epidemiology. Our results show that
property-driven aggregation can yield an effective tool to reduce the complexity
of stochastic dynamical systems, leading to non-trivial insights in the structure
of their state-space.

2 Background

2.1 Population Continuous Time Markov Chains

A Continuous Time Markov Chain (CTMC) is a continuous-time Markovian sto-
chastic process over a discrete state-space S. We will consider only population
models, where the state-space is organised along populations: in this case, the
state-space is indexed by the counts of each population ni ∈ N ∪ {0}. Popula-
tion CTMCs (pCTMCs) are frequently used in many scientific and engineering
domains; we will use here the notation of chemical reactions as it is widespread
and intuitively appealing. Transitions in a pCTMC are denoted as

r1X1 + . . . rnXn
τ(X)−−−→ s1X1 + . . . snXn

meaning that ri particles of type Xi are consumed and sj particles of type Xj

are produced when the specific transition takes place. τ(X) is a transition rate
which depends on the current state of the system.
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It is easy to show that waiting times between transitions are exponentially
distributed random variables; this observation is the basis of exact simulation
algorithms for pCTMCs, such as the celebrated Gillespie algorithm [13]. The
Gillespie algorithm generates trajectories of a pCTMC by randomly choosing
the next reaction to occur and the time to elapse until the reaction occurs.

Example 1.1. We introduce here our running example, the Susceptible-Infected-
Recovered-Susceptible (SIRS) model of epidemic spreading. The SIRS model is a
discrete stochastic model of disease spread in a population, where individuals in
the population can be in one of three states, Susceptible, Infected and Recovered.
There are different variations of the model, some open (individuals can enter and
exit the system), others with individuals relapsing to a susceptible state after
having recovered. Here, we consider a relapsing, closed system, which evolves
in a discrete, 2-dimensional state-space, where dimensions are the number of
Susceptible and Infected individuals in the population (Recovered numbers are
uniquely determined since the total population is constant). We also introduce a
spontaneous infection of a susceptible individual with constant rate, independent
of the number of infected individuals, to eliminate absorbing states.

With a population size of N , states in the 2D space can be represented by
x = (S, I), S ∈ {0, · · · , N}, I ∈ {0, · · · , N − S} for a total of (N + 1)(N + 2)/2
states. The chemical reactions for this system are:

infection S + I
α−→ 2I;

spontaneous infection S
β/5−−→ I;

recovery I
β−→ R;

relapsing R
β−→ S.

We set the infection rate α = 0.005, recovery rate β = 0.01, and population
size N = S + I +R = 100, for a total of 5151 states in this SIRS system. Sample
trajectories of the system were simulated using the Gillespie algorithm.

2.2 Temporal Logic and Model Checking

We formally specify trajectory behaviours by using temporal logic properties. We
are particularly interested in properties that can be verified on single trajectories,
and assume metric bounds on the trajectories, so that they are observed only
for a finite amount of time. Metric Interval Temporal logic (MITL) offers a
convenient way to formalise such specifications.

Formally, MITL has the following grammar:

φ:: = tt | μ | ¬φ | φ1 ∧ φ2 | φ1U[T1,T2]φ2,

where tt is the true formula, conjunction and negation are the standard boolean
connectives, and the time-bounded until U[T1,T2] is the only temporal modal-
ity. Atomic propositions μ are (non-linear) inequalities on population variables.
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A MITL formula is interpreted over a function of time x, and its satisfac-
tion relation is given as in [16]. More temporal modalities, such as the time-
bounded eventually and always, can be defined in terms of the until operator:
F[T1,T2]φ ≡ ttU[T1,T2]φ and G[T1,T2]φ ≡ ¬F[T1,T2]¬φ.

MITL formulae evaluate as true or false on individual trajectories; when
trajectories are sampled from a stochastic process, the truth value of a MITL
formula is a Bernoulli random variable. Computing the probability of such a ran-
dom variable is a model checking problem. Model checking for MITL properties
evaluated on trajectories from a CTMC requires the computation of transient
probabilities; despite major computational efforts [15], this is seldom possible
exactly due to state-space explosion. Statistical model checking (SMC) methods
circumvent such problems by adopting a Monte Carlo perspective: by drawing
repeatedly and independently sample trajectories, one may obtain an unbiased
estimate of the truth probability, and statistical error bounds can be obtained by
employing either frequentist or Bayesian statistical approaches [14,20]. It should
be pointed out that such bounds do not carry the same guarantees as numeri-
cal results obtained say by transient analysis; however, simply by drawing more
samples one may reduce the uncertainty in the bounds arbitrarily.

Example 1.2. MITL formulae can be used effectively to obtain behavioural char-
acterisations of the system’s trajectory. We turn again to the SIRS model to
illustrate this concept.

Assume one may want to express a global bound on the virulence of the
infection, so that the fraction of infected population never exceeds λ. This can
be done by considering the formula φ1, defined as

φ1:: = G[0,100](I < λN) (1)

which translates to:

φ1(x) =

{
tt if It < λN ∀t ∈ [0, 100],
¬tt otherwise.

Statistical model checking of this formula is trivial: one simply draws a trajectory
using Gillespie’s algorithm, and monitors that the maximal number of infected
does not exceed the specified threshold in the [0, 100] interval.

3 Methodology

3.1 High Level Method Description

We first present a high-level description of the proposed methodology; the tech-
nical ingredients will be introduced in the following subsections. Figure 1 pro-
vides an intuitive roadmap of the approach. The overarching idea is to provide
a state-space aggregation algorithm which uses behavioural similarities as an
aggregation criterion.
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Fig. 1. The sequence of transformations from space to space are shown in the figure.
States from the original state-space (blue circles 1–3) are projected to φ-space accord-
ing to satisfaction rate of set properties (found via simulation of the system). MDS
is used to project from φ-space to a space where JSD of φ satisfaction probabil-
ity distributions between states is preserved as Euclidean distance (in the figure,
JSD[Pφ(2) ‖ Pφ(3)] < JSD[Pφ(1) ‖ Pφ(2)], JSD[Pφ(1) ‖ Pφ(3)] so states 2, 3 are
placed closer together than 1). The states are then clustered to produce macro-states.
Out-of-sample states (red cross) can be projected to φ-space, using GP imputation to
estimate satisfaction probabilities. MDS extension allows projecting from φ-space to
JSD space without moving the sampled states. The most likely cluster for the state to
belong to (nearest centroid) is the macro-state it belongs to. (Color figure online)
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The input to the approach is a CTMC model and a set of MITL formulae
φ1, . . . , φn which define the behavioural traits we are interested in. We formalise
some of the key concepts through the following definitions.

Definition 1. A coarsening map C for a CTMC M is a surjective map

M : S −→ R, (2)

from the state-space S of M to a finite set R, such that card(S) ≥ card(R).

Definition 2. The macro-states of the coarsened system are the elements of the
image of the coarsening map C.

Therefore, the set of all macro-states is a partition of the set of initial states
S, where each element in the partition is a macro-state. In general, there is no
way to retrieve the initial state configuration of the system only from information
of the macro-state configuration, i.e., the coarsening entails an information loss.

We illustrate the various steps of the proposed procedure in Fig. 1. The first
step is to take a sample of possible initial states; we then evaluate the joint
satisfaction of the n formulae, given a particular state as initial condition. This
implicitly defines a map

Φ : S → [0, 1]2
n

(3)

which associates each initial state with the probability of each possible satisfac-
tion pattern of the n formulae. Notice that all of the 2n possible truth values
are needed to ensure correlations between properties are captured. Constructing
such a property map by exhaustive exploration of the state-space is clearly com-
putationally infeasible; we therefore evaluate it (by SMC) on a subset of possible
initial states, and then extend it using a statistical surrogate, a Gaussian Process
(Fig. 1 top).

The property representation contains the full information over the depen-
dence of the properties of interest on the initial state. It can be endowed with
an information-theoretic metric by using the JSD between the resulting proba-
bility distributions. However, the high dimensionality and likely very non-trivial
structure of the property representation may make this unwieldy. We therefore
propose a dimensionality reduction strategy which maintains approximately the
metric structure of the property representation using Multi-Dimensional Scal-
ing (MDS; Fig. 1 middle). MDS will also have the advantage of automatically
identifying potentially redundant characterisations, as implied for example by
logically dependent formulae.

The low-dimensional output of the MDS projection can then be visually
inspected for groups of initial states (macro-states) with similar behaviours with
respect to the properties. This operation is a coarsening map, which can also be
automated by using a variety of clustering algorithms.

The model dynamics induce, in principle, a dynamics on this reduced space
R. In practice, such dynamics will be non-Markovian and not easily expressible
in a compact form; we propose a simple, simulation-based alternative definition
which re-uses some of the computation performed in the previous steps to define
an empirical, coarse-grained dynamics on the macro-states.
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3.2 Satisfaction Probability as a Function of Initial Conditions

The starting point for our approach consists of embedding the initial state-space
into the property space, φ-space. This is achieved by computing satisfaction
probabilities for the 2n possible truth patterns of the n properties we consider.
As in general these satisfaction probabilities can only be computed via SMC, this
is potentially a tremendous computational bottleneck. To obviate this problem,
we turn the computation of the property map into a machine learning problem:
we evaluate the 2n functions on a (sparse) subset of initial states, and predict
their values on the remaining initial states using a Gaussian Process (GP).

GPs have extensively been used in machine learning for regression purposes
and it is in this context they are used here. A GP is a generalisation of the mul-
tivariate normal distribution to function spaces with infinitely many dimensions;
within a regression context, GPs are used to provide a flexible prior distribution
over the set of candidate functions underpinning the hypothesised input-output
relationship. Given a number of input-output observations (training set), one
can use Bayes’s rule to condition the GP on the training set, obtaining a poste-
rior distribution over the regression function at other input points. For a review
of GPs and their uses in machine learning, we refer the reader to [18].

In our setting, the input-output relationship is the property map from initial
states to satisfaction probabilities of the properties. This function is defined
over a discrete space, but we can use the population structure of the pCTMC to
embed the state-space S in a (subset) of RD for some D. We can then treat the
problem as a standard regression problem, learning a function fφ : RD → R

2n .

Remark. GPs have already been used to explore the dependence of the satis-
faction probability of a formula on model parameters in the so-called Smoothed
Model Checking approach [6]. There, the authors proved a smoothness result
which justified the use of smoothness-inducing GPs for the problem. It is easy
to see that such smoothness does not hold in general for the function fφ; for
example, the probability of satisfying the formula x(0) > N has a discontinuity
at x = N . However, since we only ever evaluate fφ on a discrete set of points,
the lack of smoothness is not an issue, as a continuous function can approximate
arbitrarily well a discontinuous function when restricted to a discrete set.

Example 1.3. We exemplify this procedure on the SIRS example. We consider
here three properties of interest: the global bound encoded in formula φ1 defined
in equation (1), and two further properties encoded as

φ2:: = F[0,60]G[0,40](0.05N ≤ I ≤ 0.2N), (4)
φ3:: = F[30,50](I > 0.3N). (5)

Satisfaction of φ2 requires that the infection has remained within 5 to 20 %
of the total population for 40 consecutive time units, starting anytime in the
first 60 time units; satisfaction of φ3 requires that the infection peaks at above
30 % between time 30 and time 50.
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The property map in this case would have an 8-dimensional co-domain, rep-
resenting the probability of satisfaction for each of the 23 possible truth values
of the three formulae. Figure 2 plots the probability of satisfaction for the three
formulae individually, as we vary the initial state. In this case, 10 % of all possible
initial states were randomly selected and numerically mapped to the property
space via SMC, while the satisfaction probabilities for the remaining 90 % were
imputed using GPs. We see that throughout most of the state-space the sec-
ond property has low probability. Also it is of interest to observe the strong
anti-correlation between the first and third properties: intuitively, if there is
very high probability that the infection will be globally bounded below 40 % of
individuals, it becomes more difficult to reach a peak at above 30 %.

3.3 Dimensionality Reduction of Behaviours

Once states are mapped onto φ-space, reducing dimensionality of this space is
useful to remove correlations and redundancies in the properties tracked. Prop-
erties may often capture similar behaviour, leading to strong correlations in
their satisfaction probability. Reducing the dimensionality of the property space
mostly retains the information of how behaviour differs from state to state, elim-
inating redundancies. Moreover, reduced dimensional mappings can aid practi-
tioners to visually identify structures within the state-space of the system.

In order to quantify the similarity of different initial states with respect to
property satisfaction, the Jensen-Shannon Divergence (JSD) between the prob-
ability distributions of property satisfaction is used as a metric. JSD is an infor-
mation theoretic symmetric distance between probability distributions — the
higher the difference between the distributions, the higher JSD is. Between two
distributions, P,Q, JSD is defined as

JSD[P ‖ Q] =
1
2
(KL[P ‖ M ] + KL[Q ‖ M ]),

where M = 0.5(P + Q) the average of the distributions, and KL[P ‖ Q] =∑
i P (i) log P (i)

Q(i) , the Kullback-Leibler divergence.
The JSD enables us to derive a matrix of pairwise distances in property

space between different initial states. Such a distance is not Euclidean, and is
defined in the high-dimensional property space. To map the initial states in a
more convenient, low-dimensional space, we employ a dimensionality reduction
technique known as Multi-Dimensional Scaling (MDS) [4].

MDS has its roots in the social science literature; it is a valuable and widely
used tool in psychology and similar fields where data is collected by assessing
similarity between pairs.

Given some points X in an m-dimensional space, MDS finds the position
of corresponding points Z in an n-dimensional space, where usually n < m,
such that a given metric between points is optimally preserved. In the most
common case, (also known as Torgerson–Gower scaling or Principal Component
Analysis), the metric to be preserved is the Euclidean distance, and is preserved
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by minimisation of a loss function. This function is generally known as stress for
metric MDS, but specifically for classical MDS as strain.

For the classical MDS case, the projection is achieved by eigenvalue decom-
position of a distance matrix of the (normalised) points XX�, and subsequently
reconstructing the points from the n largest (eigenvector, eigenvalue) pairs. This
results in Z, a projection of the points to an n-dimensional space, where Euclid-
ean distance is optimally preserved.

In the classical MDS definition, the MDS projection is defined statically
for the available data points, and needs ab initio re-computation if new points
become available. In [2], the method is extended to new points by constructing a
new dissimilarity matrix of new points to old ones, by which the projection of new
points will be consistent to that of the old points. The kernel for this new matrix
achieves this by replacing the means required for centring with expectations over
the old points; such that for points x, y ∈ X

K̃(x, y) = −1
2

(
d2(x, y) − 1

n

∑
x′

d2(x′, y) − 1
n

∑
y′

d2(x, y′) +
1
n2

∑
x′,y′

d2(x′, y′)]
)

,

where K̃(x, y) is the kernel used for the dissimilarity matrix, is replaced by

K̃(a, b) = −1
2

(
d2(a, b) − Ex[d2(x, a)] − Ex′ [d2(b, x′)] + Ex,x′ [d2(x, x′)]

)
,

where a can be an out-of-sample point (a /∈ X, b ∈ X).
This reconstructs the dissimilarity matrix for the original points exactly,

and allows us to generalise to out-of-sample points and find their positions in
the embedding learned, as described in [2]. Extending MDS allows us to create
macro-states based on samples of points, and then project new points on the
space created by MDS to find in which clusters they belong.

Example 1.4. We have introduced three properties in Eqs. (1), (4) and (5), and
the associated property map. This has an eight-dimensional co-domain, but
already some of its properties can be gleaned by the three-dimensional plot of
the single-formula probabilities shown in Fig. 2. Particularly, these reveal strong
negative correlations, indicating that MDS may prove fruitful.

Figure 3 shows the states projected to a 2D space were proximity implies
similar probability distribution over property satisfaction. This was achieved
using MDS to project the states, with JSD used as the metric to be preserved as
Euclidean distance in the new 2D space. Elements of the square-shaped structure
visible in φ-space (Fig. 2) are preserved, with the subset of states giving rise to
higher probabilities for property φ2 (top of Fig. 2) appearing further from the
connected outline (bottom left group in Fig. 3).

3.4 Clustering and Structure Discovery

The MDS projection enables us to visually appreciate the existence of non-trivial
structures within the state-space, such as clusters of initial states that produce
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Fig. 2. Left: Projection of states in φ-space via SMC (trajectory simulations for each
initial state). Notice the non-trivial state distribution structure. Right: Projection of
states in φ-space using SMC for 10 % of the states, and GP regression to estimate P (φ)
for the rest 90% of states (red crosses). (Color figure online)

Fig. 3. Left: P (φ1, φ2, φ3) estimated via SMC for each state. MDS was then used to
project them from an 8D to a 2D space. Right: GP estimates of P (φ1, φ2, φ3) for 90 % of
states (red crosses) produce an almost identical MDS projection. (Color figure online)

similar behaviours with respect to the property specification. Our intuition is
that such structures should form the basis to define macro-states of the system,
groups of states that will exhibit similar satisfaction probabilities for the proper-
ties defined. To automate this process, we propose to use a clustering algorithm
to define macro-states. Since our goal is to group states with similar behaviours,
we adopt k-means clustering [3], which is based on the Euclidean distance of
the states in the MDS space (representative of the JSD between the probability
satisfaction distributions). k-means requires specification of the desired number
of clusters (the k parameter); this allows the user to select the level of coarsening
required. Figure 4 shows the clusters produced in the reduced MDS space for the
running SIRS model example, where we set the number of clusters k = 10.

3.5 Constructing Coarse Dynamics

Once states have been grouped into macro-states, a major question is how
to construct dynamics for the now coarsened system. The coarsened system
naturally inherits dynamics from the original (fine-grained) system; however,
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Fig. 4. The states were clustered in the space created by the MDS projection and
coloured accordingly, using k-means (10 clusters). Since the Euclidean distance in this
space is representative of distance in probability distributions over properties, states
with different behaviour should be in different clusters. (Color figure online)

such dynamics are non-Markovian, and in general fully history dependent so
that transition probabilities would have the form

p(k′|k, t, h) = p(k′|k, t, h)p(t|k, h), (6)

where h denotes the history of the process. Simulating such a non-Markovian
system is very difficult and likely to be much more computationally expensive
than simulating the original system.

We therefore seek to define approximate dynamics which are amenable to
efficient simulation, but still capture aspects of the non-Markovian dynamics.
The most natural approximation is to replace the system with a semi-Markov
system: transitions are still history-independent, but the distribution of sojourn
times is non-exponential. To evaluate the sojourn-time distribution, we resort to
an empirical strategy, and construct an empirical distribution of sojourn times by
re-using the simulated trajectories of the fine system that were drawn to define
the coarsening. In other words, once a clustering is defined, we retrospectively
inspect the trajectories to construct a histogram distribution of sojourn times,
approximating p(t|k).

A possible drawback of this semi-Markov approximation is that it may intro-
duce transitions which are actually impossible in the original state-space. This
is because states were clustered based on behaviour rather than transition rates,
and therefore states that are actually quite far in the original state-space may
end up being clustered together. Since the identity of the original states is lost
after the coarse graining, impossible transitions may be introduced.

Retrospectively inspecting whole system trajectories, rather than agnosti-
cally examining cluster transitions of the original system with a uniform ini-
tial state distribution within the cluster, ameliorates this problem. Similarly,
estimates of p(k′|t, k) are produced from the same trajectories; these are the
macro-state transition frequencies in each bin of the sojourn time probability
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histogram. This method avoids a lot of impossible trajectories one might gener-
ate, if the above probabilities were estimated by sampling randomly from initial
states in a macro-state and looking at when the macro-state is exited and to
which macro-state the system transitions. Assuming the original system has a
steady state, the empirical dynamics constructed here capture this steady state
macro-state distribution; however, accuracy of transient dynamics suffers, and
the coarsened system enters the steady state faster than the original system.

Example 1.5. We illustrate and evaluate the quality of the coarsened trajectories
with respect to the original ones on the SIRS example. In particular, we examine
the probability distribution over the macro-states at different times in the evolu-
tion of the system. The macro-state distribution has been estimated empirically
by sampling trajectories using the Gillespie algorithm for the fine system, and
our coarse simulation scheme for the coarsened system. We have then constructed
histograms to capture the distribution of the categorical random variables that
represent the macro-state. Finally, we measure the histogram distance between
histograms obtained from the fine and the coarse systems. Figure 5 depicts the
evolution of the macro-state histograms over time.
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Fig. 5. Evolution of the macro-state histograms over time

Quality of Approximation. In order to put any distance between empirical dis-
tributions into context, this has to be compared with the corresponding average
self-distance, which is the expected distance value when we compare two samples
from the same distribution. In this work, we estimate the self-distance using the
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result of [8]: given N samples and K bins in the histogram, an upper bound
for the average histogram self-distance is given by

√
(4K)/(πN). In our exam-

ple, we have K = 10 histogram bins, which are as many as the macro-states.
In practice, a distance value smaller than the self-distance implies that the dis-
tributions compared are virtually identical for a given number of samples. In
Fig. 6, we see the estimated distances for N = 10000 simulation runs for times
t ∈ [0, 150]. It can be seen that the steady-state behaviour of the system is cap-
tured accurately, as the majority of the distances recorded after time t = 60 lie
below the self-distance threshold. However, the transient behaviour of the sys-
tem is not captured as accurately. Upon a more careful inspection of the shape
of the histograms in Fig. 5, we see that the coarsened system simply converges
more quickly to steady-state. To conclude, we think that the the approximation
quality of the steady-state dynamics is a promising result, but a more accurate
approximation of the transient behaviour is subject of future work.
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Fig. 6. Evolution of the macro-state histogram distances over time

Computational Savings. State-space coarsening results in a more efficient sim-
ulation process, since the coarse system is characterised by lower complexity
as opposed to the fine system. We demonstrate these computational savings
empirically in terms of the average number of state transitions invoked dur-
ing simulation. More specifically, we consider a sample of 5000 trajectories of
the fine and the coarse system. We have recorded 320 ± 25 initial state tran-
sitions on average in each trajectory of the fine system, compared to 56 ± 31
macro-state transitions in trajectories of the coarsened system. The number of
transitions in the coarse system is an order of magnitude lower than in the fine
one, owing to the reduction of states in the system from a total of 5151 to 10 (the
number of macro-states). Clearly, our procedure, particularly the GP imputa-
tion, incurs some computational overheads. Table 1 presents the computational
savings of using GPs to estimate satisfaction probability distributions for most
states, instead of exhaustively exploring the state-space. All simulations were
performed using a Gillespie algorithm implementation, taking 1000 trajectories
starting at each examined state, running on 10 cores.



16 M. Michaelides et al.

Table 1. Real running times for simulations of varying sample size (percentage of
state-space) and GP estimation of remaining states.

Sample size GP &MDS time (s) Simulation time (s) Total time (s) Percentage of exhaustive total

time (total time/8516 s)

100% 1616* 6900 8516 100%

50% 1133 3450 4583 54%

40% 884 2760 3644 43%

30% 595 2070 2665 31%

20% 354 1380 1734 20%

10% 170 690 860 10%

* No GP was performed here, just the MDS.

4 Discussion

We presented a novel approach to the coarsening of a CTMC, in order to gain a
stochastic process with a much smaller state-space. Unlike previous approaches
to CTMC aggregation, which are based on structural properties of the state-
space, our approach is based on property satisfaction, allowing the coarse-grained
system to focus on abstracting the dynamics in terms of aspects of behaviour
that are important in the modelling study. The further steps are to identify
key clusters of states in property space, or a lower-dimensional representation of
it, and approximate the transition dynamics between them. For example, this
approach might be used within multi-scale modelling to reduce the state-space
of a lower level model before embedding in a higher-level representation.

Common aggregation techniques, such as exact or approximate lumpabil-
ity, often impose stringent conditions on the symmetries and transition rates
within the original state-space. Moreover, the macro-states produced can be dif-
ficult to interpret when the reduction is applied directly at the state-space level
(i.e. without a corresponding bisimulation over transition labels). In contrast,
the property-based approach allows macro-states to be defined by high-level
behaviour, rather than them emerging from an algorithm applied to low-level
structure.

The GP regression we employed for estimating satisfaction probability of
properties for out-of-sample states proved quite accurate; simulation estimates
for 10 % of the states were sufficient to reconstruct the state distribution in
the space defined by the probability of property satisfaction, φ-space, without
substantial loss of structure. Therefore, the proposed approach may be help-
ful in effectively understanding the behavioural structure of large and complex
Markovian systems, with implications for design and verification.

Initial experiments on a simple system show that our approach can be practi-
cally deployed, with considerable computational savings. The approach induces
coarsened dynamics which empirically match the original system’s dynamics
in terms of steady-state behaviour. However, the recovery of transient coarse-
grained dynamics poses more of a challenge and this will provide a focus for
future work. In particular, we will seek to explore the possibility of quantifying
the information lost through the coarsening approach, at least asymptotically,
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for systems which admit a steady state. Exploring the scalability of the approach
on more complex, higher dimensional examples will also be an important prior-
ity. In general, we expect our approach to be beneficial when simulation costs
dominate the overheads incurred by the GP regression approach. This condition
will be mostly met for systems with moderately large state spaces but com-
plex (e.g. stiff) dynamics. For extremely large state spaces, the cubic complexity
(in the number of retained states) of GP regression may force users to adopt
excessively sparse sub-sampling schemes, and it may be preferable to replace
the GP regression step with alternative schemes with better scalability. Explo-
ration of these computational trade-offs would likely prove insightful for the
methodology.
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Abstract. The solution of non-ergodic Markov Renewal Processes may
be reduced to the solution of multiple smaller sub-processes (compo-
nents), as proposed in [4]. This technique exhibits a good saving in time
in many practical cases, since components solution may reduce to the
transient solution of a Markov chain. Indeed the choice of the compo-
nents might significantly influence the solution time, and this choice is
demanded in [4] to a greedy algorithm. This paper presents a compu-
tation of an optimal set of components through a translation into an
integer linear programming problem (ILP). A comparison of the optimal
method with the greedy one is then presented.

1 Introduction

A Markov Regenerative Process (MRP) is a stochastic process defined by a
sequence of time instants called renewal times in which the process loses its mem-
ory, i.e. the age of non-exponential (general) events is 0. The behaviour between
these points is then described by a time-limited stochastic process. MRPs have
been studied extensively in the past [13,16], and many solid analysis techniques
exist. MRPs are considered the richest class of stochastic processes for which it is
still possible to compute an exact numerical solution, and have therefore attracted
a significant interest in the performance and performability community.

This paper considers the subclass of MRP in which the time limited stochastic
process is a CTMC, general events are restricted to deterministic ones, and at
most one deterministic event is enabled in each state. This type of MRPs arise
for example in the solution of Deterministic Stochastic Petri nets (DSPN), in
the model-checking of a one-clock CSLTA formula [12] and in Phased-Mission
Systems (PMS) as in [8,15].

The steady-state solution of an MRP involves the computation and the solu-
tion of its discrete time embedded Markov chain, of probability matrix P. The
construction of P is expensive, both in time and memory, because this matrix
is usually dense even if the MRP is not. The work in [13] introduces an alter-
native matrix-free technique (actually P-free), based on the idea that P can be
substituted by a function of the basic (sparse) matrices of the MRP.

When the MRP is non-ergodic it is possible to distinguish transient and
recurrent states, and specialized solution methods can be devised. The work
in [2,4] introduces an efficient steady-state solution for non-ergodic MRPs,
c© Springer International Publishing Switzerland 2016
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in matrix-free form, called Component Method. To the best of our knowledge,
this is the best available technique for non-ergodic DSPN and for CSLTA, as well
as for non-ergodic MRPs in general.

The work in [2,4] and its application to CSLTA in [5] identify a need for
aggregating components into bigger ones, and observe that the performance
of the algorithm may depend on the number, size, and solution complexity of
the components. The aggregation is defined through a set of rules, to decide
which components can be aggregated together, and through a greedy-heuristic
algorithm that performs aggregations as much as it can. In this paper we observe
that the greedy algorithm of [4] may actually find a number of components that
is not minimal. The greedy solution seems to work quite well on the reported
example, but the lack of optimality makes it hard to determine if it is convenient.

This paper formalizes the optimality criteria used in [4] and defines an ILP
for the computation of an optimal set of components: to do so, the component
identification problem is first mapped into a graph problem.

The paper develops as follows: Sect. 2 defines the necessary background.
Section 3 defines the component identification problem in terms of the MRP
graph. Section 4 defines the ILP that computes the optimal set of components.
Section 5 discusses the performance of the ILP method and how it compares to
the greedy method and concludes the paper.

2 Background and Previous Work

We assume that the reader has familiarity with MRPs. We use the definitions
of [13]. Let {〈Yn, Tn〉 | n ∈ N} be the Markov renewal sequence (MRS), with
regeneration points Yn ∈ S on the state space S encountered at renewal time
instants Tn. An MRP can be represented as a discrete event system (like in
[11]) where in each state a general event g is taken from a set G. As the time
flows, the age of g being enabled is kept, until either g fires (Δ event), or a
Markovian transition, concurrent with g, fires. Markovian events may actually
disable g (preemptive event, or Q̄ event), clearing its age, or keep g running with
its accumulated age (non-preemptive event, or Q event).

Definition 1 (MRP Representation). A representation of an MRP is a
tuple R = 〈S, G, δg, Γ,Q, Q̄,Δ〉 where S is a finite set of states, G = {g1 . . . gn}
is a set of general events, δg is the duration of event g, Γ : S → G ∪ {E}
is a function that assigns to each state a general event enabled in that state,
or the symbol E if no general event is enabled, Q : S × S → R≥0 is the non-
preemptive transition rates function (rates of non-preemptive Markovian events),
Q̄ : S ×S → R≥0 is the preemptive transition rates function (rates of preemptive
Markovian events), Δ : S × S → R≥0 is the branching probability distribution
(probability of states reached after the firing of the general event enabled in the
source state). Let α be the initial distribution vector of R.

Given a subset of states A ∈ S, let Γ (A) = {Γ (s) | s ∈ A} be the set of
events enabled in A. Let the augmented set Â be defined as set of states A plus



Optimal Aggregation of Components for the Solution 21

the states of S \A that can be reached from A with one or more non-preemptive
Markovian events (Q events). To formulate MRP matrices, we use the matrix
filter notation of [13]. Let Ig be the matrix derived from the identity matrix of
size |S| where each row corresponding to a state s with Γ (s) �= {g} is set to zero.
Let IE be the same for Γ (s) �= {E}.

By assuming {Yn, Tn} to be time-homogeneous, it is possible to define the
embedded Markov chain (EMC) of the MRP. The EMC is a matrix P of size
|S|× |S| defined on the MRS as Pi,j

def= Pr{Yn = j | Yn−1 = i}. A full discussion
on the EMC matrix can be found in [13, Chap. 12]. Matrix P is usually dense
and slow to compute. To avoid this drawback, a matrix-free approach [14] is
commonly followed. We now recall briefly the matrix-free method for non-ergodic
MRP in reducible normal form.

Definition 2 (RNF). The reducible normal form of an EMC P is obtained by
rearranging the states s.t. P is in upper-triangular form:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1 F1
. . . ...

Tk Fk

Rk+1 . . .
Rm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎬
⎭ k ≥ 0 transient subsets.

⎫⎬
⎭ (m − k) recurrent subsets,

with m > k.

(1)

The RNF of P induces a directed acyclic graph, where each node is a subset
of states Si (called component i). Let Ii be the filtering identity matrix, which
is the identity matrix where rows of states not in Si are zeroed.

When P is in RNF, the steady-state probability distribution can be computed
using the outgoing probability vectors μi. The vector μi gives for each state
s ∈ (S \ Si) the probability of reaching s in one jump while leaving Si:

μi =
(
Ii · α +

∑
j<i

(Ii · μj)
)

· (I − Ti)−1 · Fi, i ≤ k (2)

Since matrix inversion is usually expensive, a product of a generic vector u with
(I − Ti)−1 can be reformulated as a linear equations system x · (I − Ti) = u.
This system can be computed iteratively using vector ×matrix products with
uTi. The steady state probability of the i-th recurrent subset is given by:

πi =
(
Ii · α +

k∑
j=1

(Ii · μj)
)

· lim
n→∞(Ri)n, k < i ≤ m (3)

The Component Method computes first Eq. (2) for all transient components,
taken in an order that respects the condition j < i of the formula, and then
computes the probability for the recurrent subsets based on Eq. (3).

Since the construction of P is not always feasible, a matrix-free method has
been devised in [4] for the computations of uTi and uFi. This generalisation
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provides: (1) a derivation of the m subsets Si which is based only on Q, Q̄
and Δ; (2) the matrix-free form of the sub-terms Ti, Fi and Ri, to be used
in Eqs. (2) and (3). Observing that solution costs may differ depending on the
structure of the subterms, it is convenient to distinguish three different matrix-
free formulations.
[Class CE] Condition: Γ (Si) = {E}. No general event is enabled in the Si states.
The matrix-free products are defined as uTi = Ii ·ai(u) and uFi = (I−Ii)·ai(u),
with the term ai(u) defined as follow, given IE

i = Ii · IE and QE
i = IE

i · Q:

ai(u) = u · (IE
i − diag−1(QE

i )QE
i )

Time cost of a product with Ti or Fi is of O(|QE
i |).

[Class CM ] Either |Γ (Si)| > 1 or Γ (Si) = {g} ∧ (Q̄i · Ii �= 0 ∨ Δi · Ii �= 0)
Let bi(u) be defined as:

bi(u) =

(
u ·

∑
g∈G

Ig
i · eQi δg

)
· Δ +

(
u ·

∑
g∈G

Ig
i ·

∫ δg

0

eQix dx

)
· Q̄

The term bi(u) gives the probability distribution of the next regeneration state
reached with the firing of the general event (Δ event) or with the preemption of
the general event enabled (Q̄ event). Note that the computation of bi(u) on a
subset Si of states has to consider all the states in the augmented set Ŝi, since we
have to consider all states, also outside of the component, in which the system
can be found at the next regeneration state. The products with Ti and Fi are
defined as:

uTi = Ii · (
ai(u) + b

̂i(u)
)
, uFi = (I − Ii) · (

ai(u) + b
̂i(u)

)
The term (I − Ti)−1 in Eq. (2) requires a fixed-point iteration to be evaluated.
The time cost of bi(u) is that of the uniformization, which is roughly O(|Qi| ×
Rg), with Rg the right truncation point [14, Chap. 5] of a Poisson process of
rate δg · maxs∈Si

(−Q(s, s)).
[Class Cg] Condition: Γ (Si) = {g} ∧ Q̄i · Ii = 0 ∧ Δi · Ii = 0. A single general
event g is enabled in Si, and all the Δ and Q̄ transitions exits from Si in one
step. The matrix-free products with Ti and Fi are then:

uTi = 0, uFi = (I − Ii) · b
̂i(u)

which means that the term (I − Ti)−1 in (2) reduces to the identity.

3 Identification of an Optimal Set of Components

As observed in [2,4], the performance of the Component Method may vary sig-
nificantly depending on the number, size and class of the considered components.
There are two main factors to consider. The first one is that the complexity of
the computation of the outgoing probability vector μi in Eq. (2) depends on the
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class of component Si, and a desirable goal is to use the most convenient method
for each component. The second one is that the presence of many small com-
ponents, possibly with overlapping augmented sets, increases the solution time,
as observed in [4], where it was also experimentally observed that the num-
ber of SCCs of a non-ergodic MRP can be very high (tens of thousands is not
uncommon) also in non artificial MRPs. Therefore multiple components should
be joined into a single one, as far as this does not lead to solving components of
a higher complexity class.

In [4] a greedy method was proposed that aggregates components to reduce
their number, while keeping the component classes separated. The identification
of the components starts from the observation that the finest partition of the
states that produces an acyclic set of components are the strongly connected
components (SCC), where the bottom SCCs (BSCC) represent the recurrent
components of the MRP. The greedy algorithm aggregates components when
feasible and convenient. Two components can be aggregated if acyclicity is pre-
served (feasibility), thus ensuring that the MRP has a reducible normal form,
and if the resulting component has a solution complexity which is not greater
than that of the two components (convenience). The objective is then to find
the feasible and convenient aggregation with the least number of components. The
greedy algorithm works as follows:

1. Let Z be the set of SCCs of S, and let FZ ⊆ Z be the frontier of Z, i.e. the
set of SCC with in-degree of 0 (no incoming edges).

2. Take an SCC s from FZ and remove it from Z.
3. Aggregate s with as many SCCs from FZ as possible, ensuring that the class

of the aggregate remains the same of the class of s.
4. Repeat the aggregation until Z is empty.

S1 : CM

S2 : Cg S4 : Cg

S3 : CE

Fig. 1. Counter-example.

The main limitation of this method is that it
depends on the visit order, since the aggregation of
step 3 only visits the frontier. This limitation is nec-
essary to ensure the acyclicity, but it may lead to
sub-optimal aggregations. Indeed Fig. 1 shows the
SCCs of an MRP, along with their classes, where

the greedy algorithm may fail to provide the minimal aggregation. If the visit
order is S1,S2,S3,S4, at the time of visiting S2 the in-degree of S4 will still be 1,
since S3 is yet to visit. Therefore the method will not merge S2 with S4, resulting
in a sub-optimal aggregation. Viceversa, the visit order S1,S3,S2,S4 allows the
greedy algorithm to aggregate S2 and S4 together.

The goal of this paper is indeed to propose a method that identifies the
optimal set of valid partitions (feasible and convenient).

Definition 3 (MRP Valid Partition). A set of components of an MRP state
space is a valid partition iff (1) the components are acyclic; and (2) each com-
ponent, which belongs to one of the three classes (CE, Cg and CM ), should not
be decomposable into an acyclic group of sub-components of different classes.
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Acyclicity ensures that the partition is feasible and can be used for the Compo-
nent Method. Condition (2) ensures convenience, i.e. by aggregating we do not
increase the complexity of the solution method required for the component.

Definition 4 (MRP Component Optimization Problem). The MRP
component optimization problem consists in finding a valid partition of the MRP
with the smallest number of components.

It should be clear that this problem does not necessarily result in the fastest
numerical solution of the MRP, since other factors, like rates of the components
and numerical stability, may come into play: as usual the optimization is only
as good as the optimality criteria defined, but results reported in [4] show that
the component method is always equal or better, usually much better, than the
best MRP solution method that considers the whole MRP. We transform the
component optimization into a graph optimization problem for graphs with two
types of edges: joinable (for pair of vertices that can stay in the same component)
and non-joinable (for pair of vertices that have to be in different components).

3.1 Reformulation as a Graph Problem

We use standard notation for graphs. Let G = 〈V,E〉 be a directed graph, with
V the set of vertices and E ⊆ V × V the set of edges. Notation v � w indicates
that vertex w is reachable from vertex v.

Definition 5 (DAG-LJ). A labelled directed acyclic graph with joinable
edges is a graph G = 〈V,Σ,Lab, E,EN 〉, where:

– 〈V,E〉 is an acyclic (direct) graph;
– Σ is a finite set of labels and Lab : V → Σ is a vertex labelling function;
– EN ⊆ E is the set of non-joinable edges; For ease of reference we also define

EJ = E \ EN as the set of joinable edges;
– ∀ v, v′ ∈ V, 〈v, v′〉 ∈ EJ ⇒ Lab(v) = Lab(v′);

Notations v J v′ and v N v′ are shorthands for a joinable and a non-joinable
edge from v to v′, respectively. Given a label l ∈ Σ, the section Dl of G is the
set of vertices of equal label: {v ∈ V | Lab(v) = l}. Let D = {Dl | l ∈ Σ} be the
set of sections of G. Let sect(v) be the section of vertex v.

We now define the concept of valid and optimal partition of a DAG-LJ, to
later how how an optimal valid partition of G induces a set of optimal compo-
nents of the MRP for the component method.

Definition 6. A valid partition of the vertices V of DAG-LJ G is a partitioning
P = {P1, . . . , Pm}of the set of vertices V such that:

1. ∀P ∈ P and ∀v, v′ ∈ P : Lab(v) = Lab(v′);
2. ∀P ∈ P: EN ∩ (P × P ) = ∅;
3. Partition elements P are in acyclic relation.

and we indicate with Parts(G) the set of all valid partitions of G.
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Note that the presence of a non-joinable edge v N v′ implies that v and
v′ cannot stay in the same partition element, in any valid partition. A joinable
edge v J v′ means that v and v′ are allowed to be in the same partition element
(and they are, unless other constraints are violated). From a valid partition we
can build a graph which is a condensation graph, the standard construction in
which all the vertices belonging to the same partition are replaced with a single
vertex, from which we can easily check acyclicity.

An optimal partition (not necessarily unique) is then defined as:

Definition 7 (Optimal Partition of G). A valid partition P∗ ∈ Parts(G) is
optimal if the number of partition elements m is minimal over Parts(G).

3.2 Partitioning an MRP

MRPs have a natural representation as directed graphs: MRP states are mapped
onto vertices and non-zero elements in Q, Q̄, and Δ are mapped onto edges.
Figure 2, upper part shows the graph of an MRP R of 10 states, s1 to s10, and
one general event g1. For each state we list the Γ (si), which is either g1 or E,
if no general event is enabled. Transition rates are omitted. The mapping to
DAG-LJ cannot be done at the MRP state level, since this results in general
in a non-acyclic directed graph. Since our objective is to find an acyclic set of
components we can map SCC of the MRP (instead of MRP states) to vertices
and connection among SCCs to edges, since SCCs are the finest partition that
satisfies acyclicity. When mapping to DAG-LJ, labels are used to account for
the class of the SCCs, and non-joinable edges are used to identify connections
that violates the convenience of component aggregation.

Definition 8. Given an MRP R = 〈S, G, δg, Γ,Q, Q̄,Δ〉, its corresponding
DAG-LJ G(R) = 〈V,Σ,Lab, E,EN 〉 is defined as:

– V = SCC(S). Each vertex is a strongly connected component of MRP states.
Let states(v) be the set of states in the strongly connected component v ∈ V .

– The set Σ of labels is {CE ,CM} ∪ {Cg | g ∈ G} and Lab(v) is defined as:
• Lab(v) = CE iff Γ (states(v)) = E;
• Lab(v) = Cg with g ∈ G iff Γ (states(v)) = {g} and ∀ s, s′ ∈ states(v) :

Q̄(s, s′) = 0 ∧ Δ(s, s′) = 0; (g is enabled continuously, no firing that
disables and immediately re-enables g is allowed)

• otherwise Lab(v) = CM .
– E = {〈v, v′〉 : ∃s ∈ states(v) and s′ ∈ states(v′) such that Q(s, s′) �= 0 or

Q̄(s, s′) �= 0 or Δ(s, s′) �= 0}.
– Edge 〈v, v′〉 is a joinable edge iff Lab(v)=Lab(v′) and: (1) either Lab(v) = M

or (2) all MRP transitions from the states of v to the states of v′ are Q
transitions. All other edges are non-joinable. Note that if there is a joinable
and a non-joinable edge between v and v′, the former is ignored, since EJ is
defined as E \ EN .
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G(R) has |G|+2 distinct labels that induce |G|+2 distinct sections: (DE ) if the
SCC is of class CE ; (Dg) if the SCC is of class Cg, for the general event g ∈ G;
(DM ) if the SCC is of class CM .

Example 1. The MRP of Fig. 2 (upper part) has only two SCCs with more than
one state: {s2, s3, s4} and {s6, s7}. The bottom-left part shows the DAG-LJ G
built from the SCCs of R. The DAG has three sections: DE for SCCs of class CE

(all the states of the SCC enables only exponential transitions), Dg1 for SCCs in
which all states enable g1 and DM for the remaining ones. Vertices v3 and v5 are
connected by a joinable edge, since only Q transitions connect states of v3 with
states of v5, while the edge 〈v3, v4〉 is non-joinable because Δ(s5, s8) �= 0. the
condensation graph of a valid partition of the DAG-LJ is shown on the right of
Fig. 2. The partition satisfies the requirements of Definition 6: all vertices in the
same partition element have the same label, and it is not possible to go from one
vertex to another vertex in the same partition elements through a non-joinable
edge. Since the condensation graph is acyclic this is a valid partition. ��

Fig. 2. Example of an MRP, its DAG-LJ, and a valid partition.

We now prove that an optimal partitioning of the DAG-LJ generated from
an MRP is a solution of the MRP component optimization problem.

Property 1. If G(R) is the DAG-LJ of an MRP R, and P∗ = {P1, . . . , Pm} is an
optimal partition of G, then P∗

R = {S1, . . . ,Sm}, with Si =
⋃

v∈Pi

(
states(v)

)
is a solution of the MRP component optimization problem of R according to
Definition 4.

Proof. Recall that each partition element Si is a set of SCCs of R and each SCC
belongs to one of the three classes (CE , Cg and CM ). We need to prove that
P∗

R is a solution of the component optimization problem of Definition 4, which
requires to prove that P∗

R is an MRP valid partition and that m is minimal.
A valid MRP partition is characterized by (1) acyclicity and (2) each com-

ponent should not be decomposable into an acyclic group of sub-components of
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different classes. Acyclicity of the set of Si trivially descends from the acyclicity
of P∗. For point (2) we can observe that all SCCs in the same partition element,
by Definition 6 condition 1, have the same label and therefore have the same
complexity class. Therefore point (2) can be proven by showing that it is never
the case that the union of two SCCs of the same class results in a component
of a different class if the two SCCs are in the same partition element. If the two
SCCs are classified as CE , then all states are exponential, and the union is still
in CE . If the two SCCs are classified as Cg, then we know that there is no Q̄
nor Δ transitions inside the single SCC, so that the classification of their union
into an higher class (CM ) can only be originated by an arc between the states of
the two SCCs, but the presence of such an arc, by definition of the non-joinable
edges in G(R), produces a non-joinable arc between the DAG-LJ vertices of the
two SCCs, and this violates point 2 of Definition 6 (there can be no non-joinable
edges between vertices of the same partition element). If the two SCCs are clas-
sified as CM , then all arcs between them, if any, are joinable, and the two SCCs
can end up in the same partition element, which is also of class CM .

Optimality of P∗
R = {S1, . . . ,Sm} trivially descends from optimality of P∗ =

{P1, . . . , Pm}, as it is never the case that two SCCs that can be joined together
result in a pair of vertices with a non-joinable edge between them, which is true
by definition of G(R). ��

4 Formulation of the ILP

This section defines an optimization problem with integer variables whose solu-
tion allows to build P∗. For each vertex v ∈ V the ILP considers |D| integer
variables : a variable xv and one variable yD

v for each section D ∈ D \ sect(v)
(each section excluded that of v). We shall refer to these two types of vari-
ables simply as x and y variables. The optimal partition of G is then built as:
P∗(G) =

⋃
D∈D

(⋃ND

i=1

(
PD

i

))
where PD

i =
{
v

∣∣ v ∈ D ∧ xv = i
}
, and ND is

the number of partition elements of section D (optimization target).

Definition 9. The optimization problem is:
Minimize

∑
D∈D

ND subject to:

Rule 1. ∀ v ∈ V : xv ≥ 1 and ∀D �= sect(v): yD
v ≥ 0

Rule 2. ∀ v ∈ V : xv ≤ ND

Rule 3. ∀ v, v′ ∈ V with sect(v) = sect(v′) and v J v′: xv ≤ xv′

Rule 4. ∀ v, v′ ∈ V with sect(v) = sect(v′) and v N v′: xv < xv′

Rule 5. ∀v ∈ D, v′ �∈ D if v N v′ then: xv ≤ yD
v′

Rule 6. ∀v ∈ D, v′ �∈ D if v′ N v then: yD
v′ < xv

Rule 7. if v J v′ or v N v′ then ∀D �∈ {sect(v), sect(v′)} add: yD
v ≤ yD

v′
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Rule 8. ∀ v, w ∈ D such that ¬(v � w) ∧ ¬(w � v) add1 the constraint: xv ≤
xw ⇒ ∀D′ �= D : yD′

v ≤ yD′
w .

Rule 1 sets a minimum value for the x and y variables. Rule 2 defines the ND

value as the maximum of all x variables of the same section. This value is part
of the ILP goal function. Rules 3 and 4 constrains the x variables of the same
section: if there is a non-joinable edge the order must be strict. Note that the
relative order of the x variables follows the arc sense. No constraint is present if
there is no direct edge between v and v′.

D

D D

a1 a2 a3 a4 a5

b2 b3 b4 b5

c1 c2

b1

Da3 a4

c2c1

Fig. 3. The use of y variables to respect acyclicity

The remaining constraints take into account the requirement of acyclicity.
Observe the portion of DAG-LJ reported in Fig. 3, left. ai vertices are in section
D, ci are in section D′ and bi are in some other unspecified section(s). Since
there is no arc between a3 and a4 the first 4 rules do not generate any constraint
between the x variables of the two vertices, but if a3 and a4 end up in the same
partition element acyclicity will be violated. The y variables are then defined as:

yD
v = max

(
0, xw

∣∣ w ∈ D ∧ w � v
)

(4)

For each vertex v, variables yD
v is the maximum over the x values of the vertices

in D that can reach v. The value of yD
v is used for the definition of the x

variables of those vertices w ∈ D that can be reached from v, if any. If there
is an edge v → w, then xw has to be strictly greater than yD

v . Back to Fig. 3,
left, yD

b4
stores the maximum value among xa1 and xa3 , therefore yD

b4
= xa3 ,

while yD′
b4

has the same value of xc1 . Indeed Rules 5 to 7 of the ILP ensure that
the optimal solution of the ILP assigns to each y the correct value, as we shall
prove in Theorem 1. In the example Rules 5 to 7 insert the following constraints:
xa3 ≤ yD

b2
≤ yD

b3
≤ yD

b4
< xa4 , therefore xa3 �= xa4 , so xa3 and xa4 end up in

different elements of the partition and acyclicty is preserved.
The above rules are effective in generating a constraints between xv and xw of

the same section only if the two vertices are connected through a path (possibly
passing through different sections). Consider the DAG-LJ of Fig. 3, right: Rules
9 to 7 produce four constraints: xa4 ≤ yD

c2 , yD
c1 < xa3 , xc1 ≤ yD′

a3
, and yD′

a4
< xc2 ,

1 This logic implication is not in standard ILP form. It can be transformed [10] in
ILP form as follows. Let U be a constant greater than |V |. Add a new variable kv,w
subject to these constraints: 0 ≤ kv,w ≤ 1, Ukv,w − U < xv − xw ≤ Ukv,w and

∀D′ ∈ D \ {D} add yD′
v ≤ yD′

w + Ukv,w.
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that allows for a ILP solution with xa3 = xa4 = 1, xc1 = xc2 = 1, yD
c1 =

yD′
a4

= 0 and yD
c2 = yD′

a3
= 1. The final partition will be P∗ = {a3, a4} ∪ {c1, c2},

which clearly violates acyclicity. Rule 8 accounts for these situations for pairs
of unconnected (in the � sense) vertices of the same section, stating that the
values of the x and y variables in the ILP solution should respect the property
that xv �= xw ⇒ yD′

v ≤ yD′
w (the ≤ relation among x variables should be reflected

in the order of the corresponding y variables).
Back to Fig. 3, right, four constraints are inserted by Rule 8: xa3 ≤ xa4 ⇒

yD′
a3

≤ yD′
a4

, xa4 ≤ xa3 ⇒ yD′
a4

≤ yD′
a3

, xc2 ≤ xc1 ⇒ yD
c2 ≤ yD

c1 , and xc1 ≤ xc2 ⇒
yD

c1 ≤ yD
c2 . And the assignment of x and y above does not satisfy the constraint.

In this case a feasible solution is either xa3 > xa4 , with xc2 = xc1 or xc2 > xc1 ,
with xa3 > xa4 . The final partition has then three components and is acyclic.

Rule 8 modifies the constraint on the y variables, and their definition should
now be based on a different notion of reachability. Let v ∗→ v′ be the one-step
extended reachability relation, which is true if either 〈v, v′〉 ∈ E or sect(v) =
sect(v′) ∧ xv ≤ xv′ . Let v ∗

� v′ be the extended reachability relation, defined as
the reachability of v′ from v using the ∗→ relation. The y variables are now:

yD
v = max

(
0, xw

∣∣ w ∈ D ∧ w ∗
� v

)
(5)

Theorem 1. The partition P∗ of G built on the solution of the ILP of Defini-
tion 9 for graph G, is an optimal partition of G according to Definition 7.

Proof. We need to show that the ILP solution provides a partition which is valid
(as in Definition 6) and which has a minimum number of elements.
Validity is articulated in three conditions, the first two are trivial, as partition
elements are built from vertices of the same section (and therefore of equal
label) and Rule 4 states that xv < xw whenever there is a non-joinable edge
between v and w. Acyclicity is also rather straightforward. There is a cycle
among two partition elements if it exists a pair of partition elements PD

i and
PD′

j and vertices v, w ∈ PD
i and v′, w′ ∈ PD′

j such that v � v′ and w′ � w.
Obviously xv = xw and xv′ = xw′ . We show that if such paths exists, then at
least one constrain of the ILP is violated. We consider separately the case in
which v′ � w′ and the one in which this is not true. If v′ � w′, then (Rules 5, 6,
and 7) xv ≤ yD

v′ ≤ · · · ≤ yD
w′ < xw, which violates the hypothesis that xv = xw.

If ¬(v′ � w′) then Rule 8 ensure that, since xv′ = xw′ , we must have yD
v′ ≤ yD

w′ ,
moreover, by Rule 6, we have yD

w′ < xw, which leads to xv ≤ yD
v′ ≤ yD

w′ < xw

which violates the hypothesis that xv = xw.
Minimality is more complicated, and is based on three observations: (1) the
ILP solution builds the correct value (as per Definition 5) of the y variables
of interest, (2) ND is the number of partition elements for section D, and (3)
the ILP is not over-constrained (or if v and v′ could stay in the same partition
element, then there is no < among their x).

For point 1, let’s assume that there are n vertices w1, . . . , wn ∈ D such
that wi → v and v �∈ D (the generalisation to � is trivial due to Rule 7 that
propagates the ≤ constraints among y variables in presence of a direct arc). Rule
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5 sets a constraint xwi
≤ yD

v for each vertex wi and at least one strict constraint
yD

v < xv′ , if there is an edge from v to v′ ∈ D. Then the minimization of xv′

assigns to yD
v the minimum possible value, which is the minimum value that

satisfies the xwi
≤ yD

v constraints, which is precisely the maximum over the xwi

values. The proof indicates that the yD
v value computed by the ILP is exactly

equal to the maximum only in presence of a path from v back to D, in all other
cases the ILP can assign any value y ≥ max(. . .). But if there is no path from v
back to D, then the value of yD

v is inessential for the definition of the x variables
of D. In case instead of w ∗

� v, the path between w and v is made either of pairs
〈ak, ah〉 such that either ak → ah (in this case the yD

ak
value, set initially to xwi

propagates according to Rule 7) or, by definition of ∗→, sect(ak) = sect(ah) and
xak

≤ xah
. This implies (by Rule 8) that also yD

ak
≤ yD

ah
and again the value of

xwi
propagates as if there were an edge between ak and ah. As in the previous

case, if there is a path between v and a vertex in D, then the yD
v is set precisely

to the maximum among the xwi
.

For point 2, we need to prove that ∀i ∈ {1..ND},∃v ∈ D : xv = i. This is
true since, in the rules of the ILP, the < order between x variables only involves
x variables of the same section D, either directly (through Rule 4) or indirectly
through yD variables (Rule 6) which, by definition, carry the value of one of the
x variables of D, as proved in point 1.

For point 3, we need to prove that, if w and v are in the same partition
element in the optimal partitioning P∗ of G, then they are assigned the same
x value by the ILP. For simplicity, let’s assume that P∗ is unique in Parts(G).
We prove that if xv �= xw then the ILP solution violates a constraint. The only
way by which the ILP, given the goal of minimizing ND, can assign a different
value to xv and xw is the presence of < among the two variables, either directly,
as in Rule 4, or indirectly, through Rule 6. In the case of Rule 4, the constraint
is inserted only if there is a non-joinable edge between w and v, which clearly
violate the hypothesis that w and v are in the same partition element in P∗. In
the latter case, if it is a constraint yD

v′ < xv (of Rule 6) that causes xw to be
different from xv, it means that yD

v′ ≥ xw. Definition 5 implies that there is a
path between w and v that passes through vertex v′. In that case, w and v could
not stay in the same partition element, otherwise acyclicity would be violated.
Clearly the path between w and v could be either through � or through ∗

� since
we have already shown that both can create a loop among partition elements. ��

We now show two small examples of DAG-LJ, whose optimal partitioning
have been constructed with the ILP method. The ILPs have been solved using
the lp solve tool.

Example 2. Consider the DAG-LJ G shown in Fig. 4, left, that has 14 vertices
and 3 sections D1...3. Each box reports in the first row the vertex and the section.
The second line of each box reports the xv number as computed by the ILP.

The minimal solution of the ILP is found with ND1 = 3, ND2 = 2 and
ND3 = 2, which leads to a partition of the vertices in 7 subsets (partition ele-
ments). Observe that v8 is not a direct successor of v4, but they cannot form
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a single component because it would form a loop. Since there is v4 N v6 an
v7 N v8 with xv6 ≤ xv7 , Rule 8 adds a constraint yD3

4 ≤ yD3
8 , to ensure the

acyclicity. Figure 4, right, shows the optimal valid partitioning P∗. ��

x = 1
:  Dv1 1

1

x = 3
:  Dv12 1

12

x = 3
:  Dv13 1

13

x = 2
:  Dv7 1

7

x = 2
:  Dv6 1

6

x = 2
:  Dv5 1

5

x = 1
:  Dv2 2

2

x = 1
:  Dv3 2

3 x = 2
:  Dv9 2

9

x = 2
:  Dv10 2

10

x = 2
:  Dv11 2

11

x = 1
:  Dv4 3

4

x = 2
:  Dv8 3

8

x = 2
:  Dv14 3

14

Partition P∗

PD1
1 = {v1}PD2

1 = {v2, v3}

PD1
2 = {v5, v6, v7}PD3

1 = {v4}

PD2
2 = {v9, v10, v11}

PD1
3 = {v12, v13}

PD3
2 = {v8, v14}

DAG-LJ G

Fig. 4. Example of a DAG-LJ with the xv values and P∗.

Example 3. Figure 5 reports a rather different DAG-LJ, as there is no connection
among the vertices of the same section, but if all the vertices of equal section
are put in the same partition element, then acyclicity is violated.

v1 v5 v9 v13 D1

v2 v6 v10 v14 D2

v3 v7 v11 v15 D3

v4 v8 v12 v16 D4

PD1
1 = {v1}

PD2
1 = {v2, v6}

PD3
1 = {v3, v7, v11}

PD4
1 = {v4, v8, v12, v16}

PD1
2 = {v5, v9, v13}

PD2
2 = {v10, v14}

PD3
2 = {v15}

Partition P∗

Fig. 5. An example of a DAG-LJ and P∗ with a complex structure.

This is a prototypical example for the need of Rule 8 in the ILP. Without that
rule, all the vertices of the same sections would form a single partition element,
resulting in a cyclic partitioning. The problem of determining where partition
elements are separated, however, is not trivial, since there are many possible
combinations. In this case, the optimization problem is crucial in finding the
partition boundaries that minimize the total number of components. ��

5 Assessment and Conclusions

Since the ILP solution finds the optimal partition, the assessment of the proposed
method does not address the quality of the solution, but aims at comparing the
ILP solution with the greedy one of [4] (obviously on relatively small examples
since ILP solution is known to be NP-hard), to identify the cases in which the
greedy approach fails. Table 1 shows such a comparison.

The models used in the comparison are non-ergodic MRP created from Deter-
ministic Stochastic Petri Nets with GreatSPN [6], and could be solved in Great-
SPN using any of the implemented techniques for non-ergodic MRP (classical,
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Table 1. Result of the ILP method against the greedy method.

Model |D| SCC EJ EN Greedy ILP vars ILP Constr.P.

PhMissionA, K=1, NP=2 3 47 36 36 6 2767 6 20

PhMissionB, K=3, M=2 3 52 47 36 6 2492 5 7

PhMissionC, K=6, M=3 3 45 25 27 7 504 7 7

Cross 6 10 0 20 7 108 7 10

MRP of Fig. 5 6 18 0 44 12 372 9 13

matrix-free, or component-based). The partition computed by the ILP (or by the
greedy method) is the base for the component method, that usually is the best
solver of the three available in GreatSPN. Models can be found at www.di.unito.
it/∼amparore/QEST16.zip: for each model the zip file includes the pdf of the
net (drawn with the GreatSPN editor [1]), and a representation of their DAG-LJ
and of their ILP-computed partitioning. The whole process is automatized: from
the DSPN description the MRP state space, their SCCs, and the corresponding
DAG-LJ is constructed, the ILP is produced and solved with lp solve, the com-
ponents are then computed and provided as input to the component method.
A similar chain is available for the greedy method. We consider 5 models: the
last two have been artificially created to investigate cases in which acyclicity
is non-trivial (cases in which Rule 8 plays a significant role in constraining the
solution), while the first three are variations of Phased Mission Systems (PMS).
In particular they are cases of a Scheduled Maintenance System (SMS), inspired
by [9], in which a system alternates between two phases: Work and Maintenance,
and behaves differently depending on the phase (as typical in PMS). The model
is studied for its transient behaviour, the stopping condition for model A is
determined by the number NP of phases, while models B and C cycle over the
two phases, and the stopping condition is triggered when the system reaches a
failure state. K and M are the number of pieces and machines.

The table reports the model name and the number of sections, SCCs, joinable
and non-joinable edges. The column ‘Greedy’ indicates the number of compo-
nents found by the greedy method, while the two subsequent columns reports the
number of variables of the ILP and the number of components found by solving
the ILP. Finally, the last column reports the number of components found by
applying a constraint propagation method, i.e. by applying the ILP constraint
in order to maximize the x and y variables until a fix-point is found. Constraint
propagation can be seen as an approximate solution of the ILP, where the found
partitioning is always valid but not necessarily optimal.

As the table shows, the greedy method performs reasonably, but it does not
always found the optimal solution, although it goes very close to it (a behaviour
that has been observed on other cases of “real” systems). It instead performs
badly in cases created ad-hoc to experiment with Rule 8 (models Cross and
MRP of Fig. 5). The constraint propagation method is consistently the worst
one. The MRP size we could solve with standard computer are below a hundred

www.di.unito.it/~{}amparore/QEST16.zip
www.di.unito.it/~{}amparore/QEST16.zip
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of SCCs (of course the state spaces could be much larger), which is not surprising
considering that the ILP size grows rapidly with the number of SCCs (the vertices
of the DAG-LJ) and that the problem is NP-hard.

Conclusions. This paper introduces a technique to find the optimal partition
of a non-ergodic MRP which is the basis of the Component Method solver for
MRPs. The method is both general (can be applied to any non-ergodic MRP)
and optimal, as it finds the minimum number of partition elements, and therefore
of components. Optimality is important not only for the solution time, but also
because it provides a baseline against which to assess the greedy solution. An
optimal solution is a prerequisite to compare the component method against
specific ad-hoc MRP solver. A typical example are the MRPs generated from
Phased Petri nets [8] for which an efficient ad-hoc solution technique was devised
in [15]: this technique can be interpreted as a special case of the component
method (with roughly one component per phase), moreover with the component
method the class of PMS that can be efficiently solved can be enlarged to include,
for example, different type of dependencies of the system behaviour from the
phase description that we believe are relevant for reliability analysis and that
will be investigated in our future research work. Optimality is also a prerequisite
when comparing the efficiency of a CSLTA model checker, as the one in [3], on
verifying CSL Until formulas. The component method with optimal partitioning
reduces the time complexity of the CSLTA model checker to that of a CSL one
(CSL model-checking algorithm as described in [7]), as already envisioned in [4].

A question that might arise is whether it is worth to define DAG-LJ, instead
of deriving the ILP directly from the SCCs of the MRP. The answer is that the
DAG-LJ abstraction may be used for other purposes and we are indeed currently
using it in the context of model-checking of CSLTA based on zone graph. The
idea here is that the MRP that describes the set of accepting paths of the formula
is obtained by a cross product of the Markov chain model and the zone graph
(a rather trivial construction since there is a single clock) of the timed automata
that describes the CSLTA formula. The MRP is then solved with the component
method. But this is an a-posteriori work: the MRP is first built completely, and
then solved by component. The solution we are working on translates the zone
graph in a DAG-LJ, computes the components of the DAG-LJ and then does
the cross-product between a zone graph component and the Markov chain.

Another more than legitimate question is whether it makes sense to rely on
ILP solution, in particular as it is not uncommon to have MRPs with thousands
of SCCs. But luckily this is not always the case, for example the DAG-LJ of the
zoned graph of the timed automata that describes a CSLTA formula typically has
a very limited number of SCCs, and the ILP solution can be easily found, while
a similar situation arises in PMS, as typically the number of SCCs is related to
the number of phases, which is usually significantly less than 10. As future work,
we plan nevertheless to experiment with classical approximate ILP solvers, and
to compare it with the greedy approach.
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Abstract. Obtaining complete and accurate models for the formal ver-
ification of systems is often hard or impossible. We present a data-based
verification approach, for properties expressed in a probabilistic logic,
that addresses incomplete model knowledge. We obtain experimental
data from a system that can be modelled as a parametric Markov chain.
We propose a novel verification algorithm to quantify the confidence the
underlying system satisfies a given property of interest by using this data.
Given a parameterised model of the system, the procedure first generates
a feasible set of parameters corresponding to model instances satisfying
a given probabilistic property. Simultaneously, we use Bayesian infer-
ence to obtain a probability distribution over the model parameter set
from data sampled from the underlying system. The results of both steps
are combined to compute a confidence the underlying system satisfies the
property. The amount of data required is minimised by exploiting partial
knowledge of the system. Our approach offers a framework to integrate
Bayesian inference and formal verification, and in our experiments our
new approach requires one order of magnitude less data than standard
statistical model checking to achieve the same confidence.

1 Introduction

Complex engineering systems, such as autonomous vehicles, are often safety-
critical and demand high guarantees of correctness. Given a complete model of
the system of interest, these guarantees can be obtained through formal methods,
such as model checking [1], though the outcomes of these formal proofs are
bound to the model of the system of interest. Obtaining a complete model is
not possible for systems with uncertain stochastic dynamics, but we can capture
these dynamics with parameterised Markov chains. Model checking now produces
a result dependent on knowledge of the value of parameters within the model.

In this work we integrate the use of model checking techniques (for parameter
synthesis over the model) with data-based approaches (for parametric Bayesian
inference) in order to compute a confidence, based on observed data collected
from the system, that the system satisfies a given specification.

The proposed approach is distinctively different from statistical model check-
ing (SMC) [14], a known data-based technique for model verification, and has
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 35–51, 2016.
DOI: 10.1007/978-3-319-43425-4 3
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a distinct set-up and addresses a different objective: The original SMC tools such
as YMer and Vesper target systems with fully known models too large for con-
ventional model checking, and use the known models to generate simulated data;
SMC has also been applied in a model-free setting where system-generated data
is directly employed towards statistical validation of properties of interest [19].
Our technique instead targets partially known systems, captured as a parame-
terised model class, and still uses data collected from the original system.

In general SMC requires a large amount of sample data covering the entire
system behaviour to obtain good confidence results, our method requires much
less sample data, and can accommodate data with only partial coverage.

Our method is elucidated in three phases. In the first phase, having a para-
meterised model of our partially known system, we use parameter synthesis to
determine a set of feasible parameters over the given model class, namely those
parameters corresponding to models of the system satisfying the given specifi-
cation. Among a number of alternatives, we use an existing parameter synthesis
method implemented in PRISM [11]. The second phase, executed in parallel with
the first, uses Bayesian statistics to infer a distribution over the likely values of
the parameters of the model class, based on data collected from the underlying
system. Finally, we combine the outputs from the previous two phases to com-
pute the confidence attached to the system satisfying the given specification.

Alongside the new methodology introduced in this work (first presented over
different model class and properties in [9]), the key contribution resides in phase
two: our algorithm introduces expansions of states and transitions of the parame-
terised Markov chain, which guarantees the posterior probability distributions
over the parameters can be obtained analytically, and integrated easily. The work
discusses a case study, demonstrating the implementation of the algorithm, and
a comparison with a standard SMC procedure.

Related Work. Statistical Model Checking (SMC) [14] replaces numerical
model-based procedures with empirical testing of formalised properties. The
original SMC algorithms target fully observable stochastic systems with lit-
tle non-determinism and may require the generation of large numbers of
sample trajectories from a complete system model. SMC techniques have been
utilised to tackle verification of black box probabilistic systems [19], with no
model of the system available, but this approach requires large amounts of data.
Extensions towards the inclusion of non-determinism have been studied in [12],
with preliminary steps towards Markov decision processes. Related to SMC tech-
niques, [6,15] assume the system is encompassed by a finite-state Markov chain
and efficiently use data to learn and verify the corresponding model. Similarly,
[2,4] employ machine learning techniques to infer finite-state Markov models
from data over given logical formulae.

Bayesian inference uses Bayes theorem to update the probability distribution
of a set of hypotheses based on observed data [3]. Bayesian inference for learning
transition probabilities in Markov Processes is presented in [16].
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2 Background

2.1 Parametrised Markov Chains – Syntax and Semantics

Let S be a finite, non-empty set of states representing all possible configura-
tions of the system being modelled. A discrete-time Markov chain (DTMC) is a
stochastic time-homogeneous process over this set of states [1], as follows.

Definition 1. A discrete-time Markov chain M is a tuple (S,T, ιinit,AP, L),
where S is a finite, non-empty set of states, T : S × S → [0, 1] is the transition
probability function such that for ∀s ∈ S :

∑
s′∈S T(s, s′) = 1. The function

ιinit : S → [0, 1] denotes an initial probability distribution over the states S,
such that

∑
s∈S ιinit(s) = 1. The states in S are labelled with atomic propositions

a ∈ AP via the labelling function L : S → 2AP.

Consider the evolution of a Markov chain over a time horizon t = 0, 1, . . . , Nt,
with Nt ∈ N. Then an execution of the process is characterised by a state
trajectory given as {st|t = 0, 1, . . . , Nt}. The transition function T(s, s′) specifies
for each state s the probability of moving to s′ in one step, and hinges on the
Markov Property, which states that the conditional probability distribution of
the future possible states depends only on the current state, namely P(s′ = st+1 |
st, . . . s0) = P(s′ = st+1 | st). Furthermore, the definition of M requires T is time
homogeneous, that is P(s′ = st+1 | st = s) = P(s′ = st | st−1 = s),∀t ∈ N. The
model is extended with (internal) non-determinism in order to express lack of
complete knowledge of the underlying system.

Definition 2. A discrete-time Parametric Markov chain is defined as a tuple
MΘ = (S,Tθ, ιinit,AP, L,Θ) where S, ιinit,AP, L are as in Definition 1. The
entries in Tθ are specified in terms of parameters, collected in a parameter vector
θ ∈ Θ, where Θ is the set of all possible evaluations of θ. Each evaluation gives
rise to an induced Markov chain M(θ).

Note we require a certain type of well-posedness of the parameterisation, we
demand ∀s ∈ S,∀θ ∈ Θ :

∑
s′∈S Tθ(s, s′) = 1. More precisely, any θ ∈ Θ, induces

a Markov chain M(θ) where the transition function Tθ can be represented by a
stochastic matrix. Note also, we assume a distribution on the parameters of the
model.

We considered two types of parameterised Markov chain. We use the first,
simpler type, as a base case to build the method for the more complex linearly
parameterised Markov chains.

1. basic parameterised Markov chains with independently parameterised transi-
tion probabilities. Consider MΘ = (S,Tθ, ιinit,AP, L,Θ) with Θ ⊆ [0, 1]n and
parameter vector θ := (θ1, . . . , θn) ∈ Θ build up based on individual parame-
ters θi ∈ [0, 1]. Then the parameterised MC is considered basic if transition
probabilities between states are either known and considered constant with
a value in [0, 1], or have a single parameter θi (or 1 − θi) associated to them
and ∀s ∈ S,∀θ ∈ Θ :

∑
s′∈S Tθ(s, s′) = 1 (cf. Fig. 1, left).
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Fig. 1. Two parameterised Markov chains. The nodes of the graph represent states.
The labels over the edges provide the probability of taking a transition. The left graph
gives parameterised MC with a basic parameterisation, where the parameters θ1, θ2
are encompassed in the vector θ = (θ1, θ2) ∈ Θ = [0, 1]2. The right graph has a linear
parameterisation, characterised by affine functions g1,2 : θ �→ [0, 1].

2. linearly parameterised Markov chains, where unknown transition probabil-
ities can be linearly related. Given Θ ⊆ [0, 1]n and parameter vector
θ := (θ1, . . . , θn) ∈ Θ with θi ∈ [0, 1], the parameterised MC is consid-
ered linearly parameterised if there exists a set of affine functions gl(θ) :=
k0 + k1θ1 + ... + knθn with ki ∈ [0, 1] and

∑
ki ≤ 1, denoted gl(θ)l∈L.

All outgoing transition probabilities of states (or, graphically labels of out-
going edges of a node, cf. Fig. 1) have probability gl(θ) or 1 − gl(θ) and
∀s ∈ S,∀θ ∈ Θ :

∑
s′∈S Tθ(s, s′) = 1 .

The basic case leads to simple procedures, and in Sect. 5 we develop the linear
structure for Bayesian verification. Parameterisations beyond these two cate-
gories, such as non-linear ones, are out of the scope of this paper.

2.2 Properties – Probabilistic Computation Tree Logic

We consider system requirements specified in probabilistic logics. As we leverage
PRISM’s parametric model checking tool [10] for synthesis, we can consider
the set of properties supported by the synthesis tool: non-nested Probabilistic
Computational Tree Logic (PCTL) [1] formulae. For instance, P≥0.5(stay U get)
expresses the property “the probability of remaining in a state labelled with
atomic proposition ‘stay’ until we reach a state labelled as ‘get’, is bigger or
equal to 0.5”. PRISM also supports nested PCTL with some restrictions, and a
planned extension to this work is to use PROPHESY [8] for parameter synthesis,
which supports conditional probabilities and unbounded-time properties. We
next define PCTL in nexus to finite discrete-time Markov chains:

Definition 3. Let a discrete-time Markov chain be given. Let φ be a formula
interpreted over states s ∈ S, and ϕ be a formula interpreted on paths of the
DTMC. Also, let ��∈ {<, ≤, ≥, >}, n ∈ N, p ∈ [0, 1], c ∈ AP . The syntax of
PCTL is given by:

φ := True | c | φ ∧ φ | ¬φ | P��p(ϕ), ϕ := ©φ | φ U φ.
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We define the satisfaction function quantifying satisfaction of these properties
over the parameter space as follows. We assume it is a measurable function.

Definition 4. Let M(θ) be an induced Markov chain of the parametric Markov
chain MΘ indexed by parameter θ ∈ Θ, and let φ be a formula in PCTL. The
satisfaction function fφ : Θ → {0, 1}, defined as fφ(θ) = 1 if M(θ) |= φ, and 0
otherwise.

2.3 Bayesian Inference

Our method uses Bayesian inference to learn the probability distribution of para-
meters in our model class as more evidence or data becomes available. Bayesian
inference derives the posterior probability distribution from a prior probability
and a likelihood function derived from a statistical model for the observed data.
Bayes’ law states that, given observed data D, the posterior probability of a
hypothesis p(H | D), is proportional to the likelihood p(D | H), multiplied by
the prior p(H), as

p(H | D) =
p(D | H)p(H)

p(D)
. (1)

D comprises batches of traces of specific length generated by Markov chains
instantiated over Θ. The denominator in (1) is an integral over the parameter
set Θ, which in general requires numerical approximation. Hence it is of interest
to seek a conjugate prior p(H) resulting in a closed-form expression for the
posterior p(H | D): in this work we make use of the Dirichlet distribution,
which is conjugate to the multinomial [3]. When insufficient initial knowledge
is available, we choose a non-informative prior, which has minimal influence on
the posterior, such as a uniform prior.

3 Problem Statement and Overview of the Approach

Consider a partly unknown dynamical system S, and suppose we can gather
a limited amount of sample trajectories from this system as data. Assume the
knowledge about the system is encompassed within a parametric model class,
describing the behaviour of S up to the unknown parameterisation of some of
its transitions. We plan to investigate the following goal: can we efficiently use
the gathered data and the model knowledge of S to formally verify given PCTL
properties over S, quantifying a confidence in our assertions?

The three phases of our work are as follows. In the first phase, Sect. 4, we
use parameter synthesis to determine a set of feasible parameters for which the
system satisfies the given property. The second phase, Sect. 5, uses Bayesian
Inference to infer a distribution over the likely value of the parameters given
sample data from the system. In the final phase, Sect. 6, we combine the outputs
of parametric inference and parameter synthesis to quantify the confidence that
the system verifies a PCTL property of interest.
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Bayesian probability calculus [3] leads to expressing the confidence in a prop-
erty as a measure of the uncertainty distribution over the synthesised parameter
sets. Uncertainty distributions are handled as probability distributions of ran-
dom variables. Given a specification φ and a data set D, the confidence S |= φ
can be quantified via inference as P (S |= φ | D) =

∫
Θ

fφ(θ)p (θ | D) dθ, where
P (·) is a probability measure obtained integrating the distribution p (·) of the
uncertainty parameter over MΘ, expressed as the a-posteriori p (θ | D) given
the data set D and the uncertainty distribution p (θ) over the parameter set Θ.

The computation in the third phase is a key challenge for Markov chains
with non trivial parameterisation due to the required complex manipulation of
Dirichlet posterior distributions. This motivates the introduction of a Markov
chain expansion algorithm in Sect. 5.2, which enables us to analytically obtain
samples of complex posterior distributions.

4 Parameter Synthesis

The first phase of our method uses parameter synthesis and, given a property
and a parameterised Markov chain, synthesises the feasible set of parameters
corresponding to models satisfying the given PCTL property. This corresponds
to the set of parameters for which the binary satisfaction function, fφ(θ) =
P (M(θ) |= φ), is equal to 1. We denote this set Θφ, namely

Θφ = {θ ∈ Θ : M(θ) |= φ}.

We leverage PRISM’s parametric model checking functionality based on [11]
to perform this synthesis. [11] expresses quantitative specifications as rational
functions that are later manipulated. PRISM’s parameteric model checking app-
roach can be applied to unbounded until, steady-state probabilities, reachability
reward and steady-state reward properties for parametric DTMCs. The result is
a mapping from hyper-rectangles (subsets of parameter valuations) to functions
over the parameters.

Alternatives to these techniques have not shown to be scalable or sufficiently
general. [5] explores the parameter space with the objective of model verifica-
tion. [13] employs an analytical approach to parameter synthesis for probabilis-
tic transition systems and is bound to at most two parameters. [7] employs a
language-theoretical approach based on regular expressions, which however does
not scale as the number of transitions of the Markov model increases. [18] syn-
thesise single-parameter Markov models via accurate interval propagation.

5 Bayesian Inference in Parameterised Markov Chains

In this section we consider the application of Bayesian inference to parame-
terised Markov chains, in order to infer unknown parameter probabilities based
on observed data. We will first present the technique for basic parameterised
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Markov chains, and then extend the method to linearly related parameterisa-
tions in Sect. 5.2, where we show data obtained from a linearly parameterised
Markov chain can equally be represented by data complemented with a set of
hidden (or unobserved) data of a basic Markov chain. We use P (·) to denote a
probability measure, and p (·) to denote a probability density function.

5.1 Basic Parameterised Markov Chains

Let us consider a basic parameterised Markov chain MΘ = (S,Tθ, ιinit,AP, L,Θ)
(cf. Definition 2). In this basic parameterised Markov chain, every individual
parameter θi of vector θ = (θ1, θ2, . . . , θn) ∈ Θ is exclusively used to assign
the outgoing transition probabilities of a single state. We can decompose our
parameter vector θ into sub-vectors θsi

, giving the parameters for the outgoing
transitions of the corresponding state si.

Consider the parameter vector composed of one parameter, θsk
= θj , and the

corresponding state sk ∈ S, with outgoing transitions θj and 1 − θj to states s1
and s2, respectively. We denote by p(θj) the prior over θj , which fully defines
the transition probabilities Tθ(sk, ·) at state sk. Denote a data set D giving
transition counts for trajectories generated from the real system S. For any pair
(sk, sl) ∈ S × S the number of transitions sk → sl in D is denoted as Dsl

sk
. The

posterior density p(θj | D) over θj based on D is

p(θj | D) =
P(D | θj)p(θj)

P(D)
=

p(θj)
∏

s′∈S Tθ(sk, s′)Ds′
sk

P(Dsk
)

(2)

and depends only on Dsk
= {Ds′

sk
}s′∈S , i.e., the counts of transitions leaving

state sk. Note the likelihood function
∏

s′∈S(Tθ(sk, s′))Ds′
sk takes the form of

a multinomial distribution,1 which reduces to a binomial in the case of two
outgoing transitions. A closed-form expression for the posterior is obtained by
taking a conjugate prior, which, for the class of multinomial distributions, is a
Dirichlet distribution. For the pair (θj , 1 − θj) the Dirichlet distribution with
hyperparameters α = (α1, α2) has a probability density function given by

Dir(θj | α) = 1
B(α)θ

α1−1
j (1 − θj)α2−1

on the open simplex defined by 0 < θj < 1. The normalising constant, B(α), is
a multinomial beta function, and can be written in terms of gamma functions
as B(α) = Γ (α1)Γ (α2)/Γ (α1 + α2). Hence, for a prior p(θj) = Dir(θj | α) we
obtain the posterior distribution for θj ∼ p(θj | D) = Dir(θj | Dsk

+ α), namely

p(θj | D) ∝ p(θj)
∏

s′∈S Tθ(sk, s′)Ds′
sk ∝ θα1−1

j (1 − θj)α2−1θ
Ds1

sk
j (1 − θj)

Ds2
sk (3)

1 A multinomial is defined by its density function f(· | p, N) ∝ ∏k
i=1 pni

i , for ni ∈
{0, 1, . . . , N} and such that

∑k
i=1 ni = N , where N ∈ N is a parameter and p is a

discrete distribution over k outcomes.
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where the normalisation constant of the obtained Dirichlet distribution is B(α+
Dsk

) = Γ (α1 + Ds1
sk

)Γ (α2 + Ds2
sk

)/Γ (α1 + Ds1
sk

+ α2 + Ds2
sk

). In other words, as
data is gathered, we analytically update the posterior probability distribution
p(θj | D) by updating the parameters of a Dirichlet distribution.

This result can be extended to the case of a state sl with m > 2 outgoing
transitions. We parameterise the outgoing transitions with the sub-vector θsl

=
(θ1, . . . , θm−1) and 1 − θ1 − . . . − θm−1, and obtain the posterior for the sub-
vector, p(θsl

| D). The likelihood function takes the form of an m-dimensional
multinomial distribution, and we express the prior as an m-dimensional Dirichlet.

This yields a posterior distribution as an m-dimensional Dirichlet distribu-
tion, p(θsl

|D) = Dir(θsl
| Dsl

+ α).
The posterior distribution for the entire parameter vector p(θ | D) is equal to

the product of the posterior distributions for the sub-vectors of θ. This holds due
to the stated independence of the parameters in a basic parameterised Markov
chain, which results in independent priors and independent likelihood functions.
Hence p(θ | D) =

∏
si

Dir(θsi
| Dsi

+ α).

Transition Grouping. For simplicity, given a state with multiple outgoing
transitions we may obtain the distribution for each parameter using marginal
distributions. Consider state sl with m > 2 outgoing transitions, parameterised
with the sub-vector θsl

= (θ1, . . . , θm−1) and 1− θ1 − . . .− θm−1 We have shown
earlier that, if the parameters are independent, the joint posterior distribution
over the transition probabilities for this state is an m-dimensional Dirichlet:
p(θsl

|D) = Dir(θsl
| Dsl

+ α). The marginal distribution of θi is a 2-dimensional
Dirichlet, or a beta distribution, θi ∼ Dir(αi, (

∑m
i=1 αi) − 1). We can hence

obtain a posterior distribution for each parameter, by effectively grouping the
training data together for all transitions except the one we obtain the posterior
distribution for.

5.2 Linearly Parameterised Markov Chains

In this section we build on the Bayesian inference for basic parameterisations
and tackle linearly parameterised Markov chains. As defined before, in a linear
parameterised Markov chain, the transition probabilities will be expressed in
the form g(θ) = k0 + k1θ1 + . . . + knθn. For a given data set D and a linearly
parameterised Markov chain we want to use Bayesian inference to get the poste-
rior distribution p (θ|D) over the parameter set Θ. In order to work with linear
parameters we introduce two types of transformations of the Markov chain. In
the first, we consider a compression of the data. When two states of the DTMC
have “similar” transitions, what can be learned is equivalent. These states are
referred to as being parameter similar and will be introduced more precisely
in the following. Next we show that, by introducing additional, non-observed
states, into the Markov chain and the data, the linear parameterised Markov
chain can be transformed to a basic Markov chain with unobserved states (and
hidden data). After these transformations we can apply the Bayes rule over the
expanded Markov chain and hidden data.
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Parameter Similar States. If we have the same parameter appearing multiple
times in our Markov chain, we must combine the data obtained from all these
transitions to obtain a sole posterior distribution for the parameter in our con-
fidence computation. This technique, referred to as “parameter tying”, is used
in [17]. We can perform this step analytically for Dirichlet distributions over
parameter similar states, by which we denote states with outgoing transitions
having identical parameterisations.

Manipulating posterior Dirichlet distributions is mathematically complex
because of the dependence between the variables. However, if states are parame-
ter similar, we can use the result in (3). Consider two parameter similar states,
s1 and s2, with outgoing transition probabilities θj and 1 − θj , and observed
data over the transitions. We combine the data to give one posterior Dirichlet
distribution for the parameter, p(θj) = Dir(Ds1 + Ds2 + αs1).

Parameterised Markov Chain State Expansions. Consider a parame-
terised DTMC MΘ = (S,T, ιinit,AP, L,Θ). We wish to define a new parame-
terised DTMC M∗

Θ that produces the same output for our method, but which
has a simpler parameterisation. Our method hinges on obtaining a distribution
for θ based on collected training data D, and so if M∗

Θ is equivalent to MΘ, the
probabilities of reaching a set of states in MΘ must be the same as reaching the
equivalent states in M∗

Θ, but we may disregard the length of associated paths.
Before introducing the definition of state expansion, we first need to define

hidden data. Suppose the two Markov chains have states S and S∗, such that
S ⊂ S∗: all states of S∗ not in S are defined as hidden. Ω denotes the set of
finite paths ω in MΘ, and Ω∗ denotes the set of finite paths ω∗ in M∗

Θ. Then
any observed state sequence consists only of states in S, and the states in S∗ \S
remain hidden from the observations. The data set D over the states S consists
of transition counts Dsl

sk
for pairs sk, sl ∈ S. Observe that for the set of states S∗

the data is incomplete, namely it does not represent the actual state transitions
but only the observed ones. For an observed transition count Dsl

sk
, we introduce

the extended set Dsl
sk

∗ as the collection of counts over all hidden paths from sk to
sl. Consider states s0 and s2, and hidden state s∗

0 in Fig. 3a: hidden paths from s0
to s2 can be of the form {s0, s2}, {s0, s

∗
0, s2} ∈ Ω∗, with the associated extended

data count Ds2
s0

∗ := {Ds2
s0

,D
s∗
0

s0 ,Ds2
s∗
0
}. The set of possible extended transition

counts is denoted as Dsl
sk

∗ for the pair (sk, sl), and D∗ for all transitions – note
they are set-valued mappings of Dsl

sk
and D, respectively.

Definition 5. Consider parameterised Markov chains MΘ = (S,T, ιinit,AP, L,
Θ) and M∗

Θ = (S∗,T∗, ι∗init,AP, L∗, Θ), both over set Θ. We say M∗
Θ is an expan-

sion of MΘ if, for all D and for all θ ∈ Θ,

PM(θ)(D) = PM∗(θ)(D∗),

and if ιinit = ι∗init. The extended labelling map L∗ is a trivial extension of L, assign-
ing labels L(s) for s ∈ S and an empty label to S∗ \ S.
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Theorem 1. The expansion relation is transitive; if MΘ,1,MΘ,2,MΘ,3 are all
parameterised with Θ, MΘ,3 is an expansion of MΘ,2 and MΘ,2 is an expansion
of MΘ,1, then MΘ,3 is an expansion of MΘ,1.

Case I: Transition splitting. We split a transition probability parameterised
with k0 +

∑
i kiθi into transitions to hidden states with probabilities kiθi, and

refer to this operation as transition splitting. As a basic example, consider Fig. 2
where state s0 in M has two outgoing transition probabilities expressed as func-
tions of the parameter vector, g(θ) and 1 − g(θ), where g(θ) = k0 + k1α + k2β.
We expand MΘ into M∗

Θ by splitting state s1 into a set of states, and splitting
the transition from s0 → s1 into the monomials concerning each parameter in θ,
as shown in Fig. 2. M∗

Θ is an expansion of MΘ as per Definition 5.

s0start

s1s2

k0 + k1α
+k2β

1 − k0 − k1α
−k2β

=⇒ s0

start s∗
1

s∗
1

s∗
1

s1s2

k0

k1α

k2β

1−k0−k1α
−k2β

1

1

1

Fig. 2. Case I: transitions splitting

Lemma 1. Transition splitting of MΘ (Case I) generates an expansion of MΘ.

Case II: State splitting. We present a second case, state splitting, for a para-
meter θi multiplied by a constant, kiθi. Consider the simple DTMC in Fig. 3a,
and the state s0 in MΘ with two outgoing transition probabilities expressed as a
constant multiplied by one parameter, k1θ1 and 1 − k1θ1, where 0 ≤ k1 ≤ 1. We
expand MΘ to give M∗

Θ by splitting state s0 into two states, and compute the
transition probabilities the imposed expansion demands. As an additional exam-
ple, notice the transitions studied in Case I are all of the form kiθi. Applying
the state splitting to this expanded DTMC we obtain Fig. 3b. The subsequent
application of both state splitting cases (cf. Fig. 3b) induces again an expanded
parameterised Markov chain as per Definition 5.

Lemma 2. State splitting of MΘ (Case II) generates an expansion of MΘ.

We are led to the following result.

Theorem 2. Any linearly parameterised Markov chain can be expanded into a
basic parameterised Markov chain by application of Lemmas 1 and 2.
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⇓
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1 − θ1

(a) Simple example of state splitting
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s1
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k0

k1
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1 − α

k2

β1 − β

1−k0−k1
−k2

1

1

1

(b) State splitting of Fig.2 (cf. Case I).

Fig. 3. Case II: state splitting (two examples)

Bayesian Inference with Missing Data. We now consider Bayesian inference
on the newly expanded Markov chain M∗

Θ. The data set D, which is sampled
from our system, corresponds to a state trajectory or set of trajectories over the
model MΘ. This set further comprises only part of the corresponding trajectories
in the expanded model M∗

Θ. For a given trajectory in D, we refer to D∗ as the
completed trajectory, and to D∗ as the set of all possible completions D∗. Note
the expanded parametric Markov chain has a basic parameterisation, hence for a
given completed data set D∗ the Bayes rule as elaborated in (1) can be applied
to obtain p(θ|D∗). For M∗

Θ Bayes rule can be applied over the hidden data as
follows:

p (θ|D) =
∑

D∗∈D∗ p (θ,D∗,D)
P(D)

=
∑

D∗∈D∗ p (θ|D∗,D)P(D∗|D)P(D)
P(D)

=
∑

D∗∈D∗ p (θ|D∗)P(D∗|D).

Completed data sets have a multinomial distribution dependent on the parame-
terisation, hence the distribution of D∗ is given as P(D∗) =

∫
Θ
P(D∗|θ)p (θ) dθ.

For a given D the conditional distribution P(D∗|D) is P(D∗|D) = P(D∗)/P(D),
with D∗ ∈ D∗ and P(D) =

∑
D∗

∫
Θ
P(D∗|θ)p (θ) dθ.

Remark 1. Realisations of the posterior can be obtained without computing the
entire integral as follows. A set of realisations θi for i ∈ {1, . . . ,N} with proba-
bility density function p (θ|D) can be obtained by generating samples D∗

i with
distribution P(D∗|D) and subsequently generating samples θi with distribution
p (θ|D∗

i ) for all i ∈ {1, . . . ,N}. These samples can then directly be used to
perform the confidence calculation as in Sect. 6. �

Algorithm 1 presents the state expansion procedure, and Algorithm 2 in the
next section summarises how to obtain a realisation of the posterior p(θ | D∗),
and to integrate it with the confidence computation.
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Algorithm 1. Markov chain expansion (MΘ)
M∗

Θ ← MΘ

for all si ∈ S∗ do � Case I: transition splitting
for all T∗

θ(si, sj) = k0 +
∑

l∈L klθl do
S∗ ← {s∗

ij,l}l∈L ∪ sij,0

T
∗
θ(si, sj) := 0

T
∗
θ(si, s

∗
ij,0) := k0 and T

∗
θ(s

∗
ij,0, sj) := 1

for all l ∈ L do
T

∗
θ(si, s

∗
ij,l) := klθl and T

∗
θ(s

∗
ij,l, sj) := 1

for all si ∈ S∗ do � Case II: state splitting
if ∃sk ∈ S∗ : T∗

θ(si, sk) = 1 − k0 −∑l∈L klθl then
T

∗
θ(si, sk) := 1 − k0 −∑l∈L kl

for all T∗
θ(si, sm) = klθl do

S∗ ← s∗
m′

T
∗
θ(si, sm) := 0 , T∗

θ(si, s
∗
m′) := kl and T

∗
θ(s

∗
m′ , sk) := 1 − θl

T
∗
θ(s

∗
m′ , sm) := θl

return M∗
Θ � return expanded DTMC

6 Bayesian Verification: Computation of Confidence

In this section we detail the final phase of our method: a quick procedure com-
putes a confidence estimate for the satisfaction of a PCTL specification formula
φ by a system S of interest, namely S |= φ. Our method takes as input a poste-
rior distribution over Θ, obtained using Bayesian inference in Sect. 5.2, and the
feasible set for the parameters, obtained by parameter synthesis in Sect. 4.

Definition 6. Given a PCTL specification φ, a complete trace (sample trajec-
tory) D of the system S up to time t, and a transition function T, the confidence
S |= φ can be quantified by Bayesian Inference as

P(S |= φ | D) =
∫

Θ
fφ(θ)p(θ | D)dθ. (4)

As we only consider the satisfaction of a property S |= φ as a binary-valued
mapping from the space of parameters, the satisfaction function in (4), fφ :
Θ → {0, 1}, (4) can be reformulated as:

P(S |= φ |D) =
∫

Θφ
p(θ | D)dθ, (5)

where Θφ denotes the set of parameters corresponding to models verifying the
property φ (as generated by PRISM). Further, given the independent posterior
distributions for each parameter in θ resulting from Sect. 5.2, the confidence
can be computed as P(S |= φ |D) =

∫
Θφ

∏
θi∈θ p(θi | D)dΘ. The integral of a

Dirichlet distribution can be obtained by iterative or numerical methods: here we
use a simple Monte-Carlo approach, which depends on samples of the posterior
distribution as clarified in Algorithm 2.
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Algorithm 2. Monte-Carlo Integration for linearly parameterised DTMC
N := number of Monte-Carlo samples
{D∗

i }i∈{1,...,N} ∼ p(D∗|D) � hidden data samples
for all i ∈ {1, ..., N} do

Compute p(θ|D∗
i ) � Bayesian inference

θi ∼ p(θ|D∗
i ) � posterior samples

j# ← j# + Boolean[θi ∈ Θφ]

P̂(S |= φ) :=
j#
N

return P̂(S |= φ) � estimate of P(S |= φ)

7 Experiment Results

We show our approach requires smaller amounts of data than statistical model
checking (SMC) to verify the system satisfies a given quantitative specification
up to a prescribed confidence level. We further claim our approach is more
robust than standard SMC in situations where only data of limited trace length
is available.

Experiment Setup. We focus our experimental discussion on the basic parame-
terised Markov chain MΘ in Fig. 1 and the PCTL property φ = P>0.5[¬s3 U s2].

The ground truth for S = M(θ), namely Ytrue, is a step function over the
parameter θ, namely

Ytrue =
{

0 if θ ≤ 0.5,
1 if θ > 0.5,

(6)

so the feasible set is Θφ = [0.5, 1]. We choose a uniform prior for both methods:
for our approach p(θ | D) = Dir(1, 1), which, for property φ, means p(M(θ) |=
φ) = Dir(1, 1); for SMC we set p(M(θ) |= φ) = Dir(1, 1). We run both methods
over empirical data obtained from M(θ), our “underlying system”, for values of
0 < θ < 1, i.e., different “underlying systems”, and compare the outcomes with
the ground truth. We collect data, denoted D, from our underlying system in
the form of a set of state trajectories of a set length. We vary trajectory length
to test robustness to data with incomplete coverage. We disregard the numerical
error in the Monte Carlo approximate integration, which is the same for both
techniques.

We compute the mean squared error (MSE) between the confidence outcome
and the ground truth from Eq. (6), namely MSE = 1

n

∑n
i=1(Ytrue − Yi)2, where

n is the number of experiments run and Yi is the result P(Mθ |= φ) for the i-th
run.

The SMC we compare our work to is “black box” and collects sample trajec-
tories from the system, then determines whether the trajectories satisfy a given
property, and applies statistical techniques (such as hypothesis testing) to decide
whether the system satisfies the property or not, with some degree of confidence.
Our “grey-box” approach collects data from the system, uses the data to deter-
mine a distribution over parameter values in the parameterised model class and
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applies statistical techniques (in this case, a Bayesian confidence calculation) to
decide whether the system satisfies the property or not, with some degree of con-
fidence. We could then additionally apply hypothesis testing to our approach.
However, as we do not do this, for a meaningful comparison with our approach
we implement the framework of the SMC procedure outlined in [14] and omit the
hypothesis testing. Instead, we compute a Bayesian confidence by integrating the
posterior distribution given over the [0,1] interval, representing the probability
of a trace satisfying the property. The trace generation and trace verification
stages of SMC are implemented in the same way in the four statistical model
checking methods in PRISM.

Results and Discussion. The first point to note is the confidence is low, and
MSE high for parameter values close to θ = 0.5 for both approaches. This is
due to θ = 0.5 being on the edge of the feasible set and is consistent with the
information we wish to obtain from the confidence calculation: if the parameter
value is near the edge of the feasible set, we need to know its value precisely
to be sure it falls in the feasible set. Consider that in order to compute the
confidence S |= φ, we integrate the posterior distribution over the feasible set
Θφ = {θ > 0.5}. The posterior distribution for θ = 0.5 should have a peak
centred at 0.5 with half of the area under the peak in the feasible set, leading
to P(M(θ) |= φ) = 0.5. The height and width of the distribution p(θ | D) are
characterised by the amount of data available, as well as the consistency of the
data, and so we expect the MSE to be higher for parameter values close to the
threshold.
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Fig. 4. Outcomes of SMC are given in (a) and (b), outcomes of our approach are given
in (c) and (d). The comparison is done over a data set D composed of traces of 10 and
100 transitions. On the x-axis, 1000 ≤ |Dt| ≤ 20000. On the y-axis, 0.3 ≤ θ ≤ 0.7. The
darker (purple) colour indicates a higher mean squared error. (Color figure online)



Data-Efficient Bayesian Verification of Parametric Markov Chains 49

The key result is, for both approaches, the mean squared error reduces as |D|
increases and the variance decreases, but our approach consistently produces a
smaller error and variance than SMC for any parameter values excluding θ = 0.5
(where both approaches perform comparably). Our approach requires an order
of magnitude less data than SMC and above |D| = 2000, the error for our
approach is smaller than the error in the Monte Carlo integration, whereas SMC
does not reach this precision threshold in our experiments, which we perform
up to |D| = 200000.

We ascribe both the reduced error and reduced variance to the data efficiency
of our approach: SMC receives the training data in the form of short traces, and
discerns whether a trace is a counter example or witness for the property. A trace
can, however, be neither, in which case it is discarded, even if that trace contains
parameterised transitions. Our approach counts each parameterised transition
in the data, and so uses more of the data available than SMC. It is unsurprising
accuracy and variance improve when more data is used.

We investigate robustness in a situation where it is only possible to col-
lect short trajectories from the system, whilst verifying an unbounded property.
Figure 4a and b show the performance of SMC with |D| made up of trace lengths
of 10 and 100 transitions respectively. We show a part of our data set, discard-
ing data above |D| = 20, 000 where our approach produces no measurable error.
The mean squared error in Fig. 4b is 50% lower than in Fig. 4a over the entire
parameter range, but the run with trace lengths of 10 performs better for values
of θ > 0.55.

We explain this because, computed using PRISM, the expected length of a
witness for our property and Markov Chain ranges between 4.33, for θ = 0.3
and 2.42 for θ = 0.7 (due to the symmetrical structure of our Markov Chain,
the lengths of counter-examples are also expected to be the same). Thus a large
proportion of the traces of length 10 are discarded, and so SMC has less data to
use, explaining the increased error across the parameter range. However, when
θ > 0.55, the expected counter-example length is higher, and so the number of
traces of length 10 that are useful begins to exceed the total number of traces
of length 100 received.

In contrast, the performance of our approach, shown in Fig. 4c and d, yields
approximately the same outcomes for both trace lengths, as we consider each
transition in the training data individually and only discard non-parameterised
transitions. Admittedly it is not always the case that the performance of our
method is independent of the length of the traces: consider for example the case
of a large Markov chain where a parameterised transition is only reachable after
a large number of steps. In this case the performance of our approach would be
comparable to SMC.

We run experiments on linearly parameterised Markov chains of a similar
scale and obtain comparable results.
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8 Conclusions and Future Work

We have presented a data-based verification approach addressing incomplete
model knowledge. The method offers a framework to integrate Bayesian inference
and formal verification, and in comparison to standard statistical model checking
promises to be more parsimonious with the required data.

We plan to investigate extensions in the following directions: performing para-
meter synthesis with alternative available techniques, such as [8], which builds
on the work of [10] using graph topological properties and fixed points); work-
ing with non-linearly parameterised Markov chains; inspired by [9], integrating
external non-determinism in the form of actions, thus leading to parameterised
Markov decision processes. Finally, we are interested in the use of Bayesian
hypothesis testing, which will further solidify this method as a provable veri-
fication technique even when the prior probability distribution is not reliably
known.
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Markov models. In: Păsăreanu, C.S. (ed.) Model Checking Software. LNCS, vol.
5578, pp. 88–106. Springer, Heidelberg (2009)



Data-Efficient Bayesian Verification of Parametric Markov Chains 51

12. Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model
checking for Markov decision processes. In: QEST, pp. 84–93. IEEE (2012)

13. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Formal Asp. Comput. 19(1), 93–109 (2007)

14. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
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Abstract. Verification of PCTL properties of MDPs with convex uncer-
tainties has been investigated recently by Puggelli et al. However, model
checking algorithms typically suffer from the state space explosion prob-
lem. In this paper, we discuss the use of probabilistic bisimulation to
reduce the size of such an MDP while preserving the PCTL properties it
satisfies. As a core part, we show that deciding bisimilarity of a pair of
states can be encoded as adjustable robust counterpart of an uncertain
LP. We show that using affine decision rules, probabilistic bisimulation
relation can be approximated in polynomial time. We have implemented
our approach and demonstrate its effectiveness on several case studies.

1 Introduction

Real world systems are usually too complex to be analyzed in full detail. To
reduce the complexity of such an analysis, a simplified but accurate enough
model of the system has to be constructed and then verified with respect to a
number of properties the system is expected to satisfy. Among others, proba-
bility, nondeterminism, and uncertainty are core aspects of a real world system
that are worth considering in the model. Probability represents the fact that
the behaviour of the system is not uniquely determined by its status and the
action it performs, but depends on random choices as well; these choices may be
present by design (as the toss of a coin in a distributed algorithm so as to break
symmetry) or to represent general properties such as transmission errors during
a communication. Nondeterminism can be used whenever a specific behavior
is unknown or it is left undetermined by purpose: an example of the former is
the unknown relative speed of several distributed systems interacting with each
other while an example of the latter is the possibility of leaving some behav-
ior undetermined so an implementation can fix it. Uncertainty appears when
some information is available but it is not precise enough to be represented as a
probability.

A problem that may occur during the formal verification of a system, for
instance by model checking it, is the notorious state-explosion problem. Such a
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 55–71, 2016.
DOI: 10.1007/978-3-319-43425-4 4
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problem can be mitigated by reducing the size of the model to be verified while
preserving its properties. This goal can by achieved by finding another model
that is smaller than the original one while behaving the same. Bisimulation
allows us to construct such a model; this strategy has been proven very effective
[16,29] in related settings.

Several models have been proposed in literature as frameworks for modelling
real world systems, frameworks equipped with bisimulation. Among others, there
are Labelled Transition Systems, Probabilistic Automata [42], and Markov Deci-
sion Processes (MDPs). In this work we focus on the Interval Markov Decision
Processes (IMDPs) model [27,28,38,41,45,46], an extension of classical MDPs
where uncertainty is represented by intervals of probability values. It is known
that bisimilar IMDPs satisfy the same PCTL properties [27]. As established
in [27,28], computing the coarsest bisimulation on a given IMDP is a difficult
problem; our aim is to provide a polynomial algorithm that returns a non-trivial
bisimulation for the given IMDP. We achieve this goal by taking advantage of
the results from the Operations Research community about robust optimization
and uncertain Linear Programming (LP) problems.

Summarizing, the main contributions of this paper are as follows.

– We build a bridge between Probabilistic Verification and Robust Optimization
and establish a novel modelling of the probabilistic bisimulation problem for
interval MDPs as an instance of an uncertain LP problem.

– We show that, by using affine decision rules, the probabilistic bisimulation
problem for IMDPs can be approximately decided in polynomial time.

– We show promising results on a number of case studies, obtained by a proto-
typical implementation of our algorithm.

Related Work. We classify related works in four areas. Firstly, various probabilis-
tic modelling formalisms with uncertain transitions are studied in the literature.
Interval Markov chains [31,35] or Abstract Markov chains [20] extend standard
discrete-time Markov chains (MCs) with interval uncertainties and thus do not
feature the non-deterministic choice of transitions. Uncertain MDPs [38,40,45]
allow for more general sets of distributions to be associated with each transition,
not only those described by intervals. Usually, this is restricted to rectangular
uncertainty sets requiring that the uncertainty is linear and independent for any
two transitions of any two states. Our general algorithm working with polytopes
can be easily adapted to this setting. Parametric MDPs [26] to the contrary allow
for such dependencies as every probability is described as a rational function of
a finite set of global parameters.

Secondly, computational complexity of the probabilistic bisimulation for
uncertain probabilistic models has been studied quite recently in [27,28]. Among
similar concepts studied in the literature are simulation [22,47] and refinement
[18,19,31] relations for previously mentioned models.

Thirdly, from model checking viewpoint, many new verification algorithms
for interval models appeared in last few years. Reachability and expected total
reward is addressed for Interval MCs [15] as well as Interval MDPs [46]. PCTL
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model checking and LTL model checking are studied for Interval MCs [9,14,15]
and also for Interval MDPs [41,45]. Among other technical tools, all these
approaches make use of (robust) dynamic programming relying on the fact
that transition probability distributions are resolved dynamically: a probabil-
ity distribution is chosen from interval restrictions each time the system enters a
state. For the static resolution of distributions, an adaptive discretization tech-
nique for PCTL parameter synthesis is given in [26]. Uncertain models are also
widely studied in the control community [23,38,46], mainly interested in maxi-
mal expected finite-horizon reward or maximal expected discounted reward.

Finally, as regards the application of Robust Optimization in Probabilistic
Verification community, to the best of our knowledge, we are not aware of any
work in the literature. Therefore, the current contribution is novel in this mat-
ter. On the other hand, the aforementioned theory has been adapted and applied
successfully in control theory realm. For instance, Abate and El Ghaoui [5] devel-
oped a robust modal predictive control using two-stage robust optimization.

2 Preliminaries

In this paper, the sets of all positive integers, rational numbers, real numbers
and non-negative real numbers are denoted by N, Q, R, and R≥0, respectively.
We denote by I the set of closed sub-intervals of [0, 1] and, for a given [a, b] ∈ I,
we denote by inf[a, b] the lower bound a and by sup[a, b] the upper bound b. We
denote by bk the k-th element of a vector b ∈ R

n. For a set X, we denote by
Δ(X) the set of discrete probability distributions over X; given ρ ∈ Δ(X), we
denote by Supp(ρ) = {x ∈ X | ρ(x) > 0 } the support of ρ and we say that ρ
is Dirac, denoted δx, if Supp(ρ) = {x} with x ∈ X. For an equivalence relation
R on X and ρ1, ρ2 ∈ Δ(X), we write ρ1 L(R) ρ2 if for each C ∈ X/R, it holds
that ρ1(C) = ρ2(C). By abuse of notation, we extend L(R) to distributions over
X/R, i.e., for ρ1, ρ2 ∈ Δ(X/R), we write ρ1 L(R) ρ2 if for each C ∈ X/R, it
holds that ρ1(C) = ρ2(C).

2.1 Interval Markov Decision Processes

Let us formally define Interval Markov Decision Processes.

Definition 1 (IMDPs). An Interval Markov Decision Process (IMDP) M is
a tuple M = (S, s̄,A, AP, L, I ), where S is a finite set of states, s̄ ∈ S is the
initial state, A is a finite set of actions, AP is a finite set of atomic propositions,
L : S → 2AP is a labeling function, and I : S×A×S → I is an interval transition
probability function.

Given s ∈ S and a ∈ A, we write s a−→ μs whenever μs ∈ Δ(S) is a feasible
distribution, i.e., for each s′ ∈ S we have μs(s′) ∈ I (s, a, s′). Let Ps,a = {μs ∈
Δ(S) | s a−→ μs }; we denote by A(s) = { a ∈ A | Ps,a �= ∅ } the set of actions
that are enabled from s and we require that A(s) �= ∅ for each s ∈ S.
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We extend I to sets of states as follows: given S′ ⊆ S, we let

I (s, a, S′) =

[
min

{
1,

∑
s′∈S′

inf I (s, a, s′)

}
,min

{
1,

∑
s′∈S′

sup I (s, a, s′)

}]
.

An interval MDP is initiated in some state s1 and then moves in discrete
steps from state to state forming an infinite path s1s2s3 . . . . One step, say from
state si, is performed as follows. First, an action a ∈ A(si) is chosen proba-
bilistically by scheduler. Then, nature resolves the uncertainty and chooses non-
deterministically one corresponding feasible distribution μsi

∈ Psi,a. Finally, the
next state si+1 is chosen probabilistically according to the distribution μsi

.
Let us define the semantics of an IMDP formally. A path is a finite or infinite

sequence of states π = s1s2 . . . . For a finite path π, we denote by last(π) the
last state of π. The set of all finite and infinite paths are denoted by Paths∗ and
Pathsω, respectively. Furthermore, let Cylπ = {π′ ∈ Pathsω | π � π′ } denote
the set of paths having π ∈ Paths∗ as prefix.

Definition 2 (Scheduler and Nature). Given an IMDP M, a scheduler is
a function σ : Paths∗ → Δ(A) such that for each π ∈ Paths∗, Supp(σ(π)) ⊆
A(last(π)). Further, a nature is a function ν : Paths∗ ×A → Δ(S) such that for
each π ∈ Paths∗ and a ∈ A(last(π)), ν(π, a) ∈ P last(π),a. We denote by S and
N the set of all schedulers and natures of M, respectively.

For an initial state s, a scheduler σ, and a nature ν, let Prσ,ν
s denote the unique

probability measure over (Pathsω,B)1 such that the probability Prσ,ν
s [Cyls′ ] of

starting in s′ equals 1 if s′ = s and 0 otherwise and the probability Prσ,ν
s [Cylπs′ ]

of traversing a finite path πs′ equals Prσ,ν
s [Cylπ] · ∑

a∈A σ(π)(a) · ν(π, a)(s′).
Observe that the scheduler does not choose an action but a distribution over

actions. It is well-known [42] that such a randomization is useful in the context of
bisimulations as it allows to define coarser equivalence relations. To the contrary,
nature is not allowed to randomize over the set of feasible distributions Ps,a. This
is in fact not necessary, since the set Ps,a is closed under convex combinations.
Finally, we call a scheduler σ deterministic, or Dirac if, for each finite path
π ∈ Paths∗, σ(π) is a Dirac distribution.

We determine the size of an IMDP M as follows. Let |S| denote the number
of states in M; each state has at most |A| actions and at most |A|·|S| transitions,
each of which is associated with a probability interval. Therefore, the overall size
of M is |M| ∈ O(|S|2 · |A|).

2.2 Robust Optimization

Robust optimization is a new approach in mathematical optimization that is
concerned about optimization problems in which a certain level of robustness
1 Here, B is the standard σ-algebra over Pathsω generated from the set of all cylin-

der sets {Cylπ | π ∈ Paths∗}. The unique probability measure is obtained by the
application of the extension theorem (see, e.g., [11]).
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is desirable against uncertainty [6,7]. This modelling methodology is integrated
with computational tools to treat optimization problems with uncertain data
that is only known to be included in some uncertainty set [3,24,37]. This app-
roach has been shown to be very useful in real-world applications that are entirely
or to a certain extent affected by uncertainty [8,10]. In this section, we introduce
the concept of Uncertain Linear Programming problems (ULPs) and afterwards,
we provide an overview of the essential background required for the rest of the
paper. We refer the interested reader to [6,10] for a comprehensive reference on
robust optimization.

Uncertain Linear Programming (ULPs). Linear Programming (LP) prob-
lems are problems that can be described in canonical form as:

Minx ∈Rn

{
cT x : Ax ≤ b

}
where x ∈ R

n is the vector of decision variables, c ∈ R
n is the vector of coef-

ficients, A ∈ R
m×n is the constant coefficient matrix and b ∈ R

m is the right
hand side vector.

The data of an LP problem, i.e., the collection of tuples [c,A, b], in general
are not known precisely when the LP encodes a real-world problem. This issue
reveals the need for an approach to produce LP solutions which are immune
against uncertainty.

Definition 3 (cf. [6,7]). An Uncertain Linear Program (ULP) is a family{
Minx ∈Rn{cT x : Ax ≤ b}}

[c,A,b]∈Z (1)

of LP problems Minx ∈Rn{cT x : Ax ≤ b} with the same structure (i.e., same
number of constraints and variables) in which the data range over a given non-
empty compact uncertainty set Z ⊂ R

n × R
m×n × R

m.

To simplify the notation, we may write
{
Min{cT x : Ax ≤ b}}Z .

In contrast to an usual single LP problem, it is not possible to associate
the notions of feasibility/optimal solutions and optimal objective value with a
collection of optimization problems like ULPs. In the setting of ULPs, the feasi-
ble solutions are solutions which are robust feasible. Roughly speaking, feasible
solutions are those which satisfy the set of constraints whatever the realization
of uncertain data is. More precisely:

Definition 4 (cf. [6,8]). A vector x ∈ R
n is robust feasible to an ULP with

uncertainty set Z if for each [c,A, b] ∈ Z, Ax ≤ b. Given a robust feasible solu-
tion x, the robust value ẑ(x) of the objective function is ẑ(x) := sup[c,A,b]∈Z cT x.

After carefully defining the robust feasible/optimal solutions as well as their
robust objective value, we can describe the central concept in robust optimization
setting that is the robust counterpart (RC) of an uncertain LP problem.
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Definition 5 (cf. [8]). Given an ULP problem
{
Min{cT x : Ax ≤ b}}Z , the

Robust Counterpart of ULP is the optimization problem

Minx ∈Rn

{
ẑ(x) = sup

[c,A,b]∈Z
{cT x : Ax ≤ b}}

that seeks for the best possible value of the objective function among all possible
robust feasible solutions to the ULP. Furthermore, the optimal solution/value to
the robust counterpart is called the robust optimal solution/value to the ULP.

In the robust counterpart (RC) approach, all the variables are “here and now
decisions”: they must be decided before the realization of unknown data. How-
ever, in some cases, some part of the variables are “wait and see decisions”, i.e.,
they might tune themselves to the varying parameters. In the rest of the paper,
we call the variables that may depend on the realizations of the uncertain data
as adjustable, while other variables are called non-adjustable. Therefore, we can
split the vector x of Eq. (1) from Defnition 3 as x = (u, v)T where the sub-vectors
u and v indicate the non-adjustable and the adjustable variables, respectively.

Adjustable Robust Counterpart. Splitting the decision variable x to the
adjustable and non-adjustable variables allows us to rewrite the uncertain LP
(1) as the following equivalent form:{

Minu,v{cT u : Uu + V v ≤ b}}
[c,U,V,b]∈Z (2)

In the above presentation, without loss of generality, we assume that the
objective function is normalized with respect to the non-adjustable variables.
Moreover, the matrix V is called recourse matrix [17] and when it is not uncer-
tain, we call the uncertain LP (2) a fixed recourse one. We can now define the
RC and the Adjustable robust counterpart (ARC) as follows:

RC: Minu{cT u : ∃v : ∀[U, V, b] ∈ Z : Uu + V v ≤ b}; (3)

ARC: Minu{cT u : ∀[U, V, b] ∈ Z : ∃v : Uu + V v ≤ b}. (4)

It is not difficult to see that ARC is less conservative than RC allowing for better
optimal values while still having all realizations of the constraints satisfied. The
distinction between RC and ARC can be very significant (see, e.g., [6,7]).

The RC of an uncertain LP is a computationally tractable problem in general
[8]. On the contrary, this is not the case with ARC. This fact stimulates a very
good reason to introduce the notion of Affinely Adjustable Robust Counterpart
(AARC) of an uncertain LP in which we make a simplification on how the
adjustable variables can tune themselves upon the uncertain data. By posing
v = w+Wξ, we consider an affine dependency between adjustable variables and
uncertain parameter. Therefore, the AARC of the uncertain LP (2) reads as:

Minu,w,W

{
cT u : Uu + V (w + Wξ) ≤ b,∀(ξ ≡ [U, V, b] ∈ Z)

}
≡ Minu

{
cT u : ∀(ξ ≡ [U, V, b] ∈ Z) : ∃(w,W ) : Uu + V (w + Wξ) ≤ b

}
.

(5)
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3 Probabilistic Bisimulation for Interval MDPs

This section revisits required main results on probabilistic bisimulation for inter-
val MDPs, as developed in [27]. In the setting of this paper, we consider the
notion of probabilistic bisimulation for the cooperative interpretation of interval
MDPs. This semantics is very natural in the context of verification of parallel
systems with uncertain transition probabilities in which we assume that sched-
uler and nature are resolved cooperatively in the most adversarial way: in the
game view of the bisimulation, challenging scheduler and nature work together
in order to defeat the defender with a transition that can not be matched.

Besides the cooperative behaviour, the choice of a probability distribution
respecting the interval constraints can be done either statically [31], i.e., at the
beginning once for all, or dynamically [30,43], i.e., independently at each com-
putation step. In this paper, we focus on the dynamic approach in resolving the
stochastic nondeterminism: it is easier to work with algorithmically and can be
seen as a relaxation of the static approach that is often intractable [9,14,19,23].

Let s −→ μs denote a transition from s to μs taken cooperatively, i.e., there
is a scheduler σ ∈ S and a nature ν ∈ N such that μs =

∑
a ∈ A σ(s)(a) · ν(s, a).

In other words, s −→ μs if μs ∈ CH(
⋃

a∈A(s) Ps,a) where CH(X) denotes the
convex hull of X.

Definition 6 (cf. [27]). Given an IMDP M, let R ⊆ S × S be an equivalence
relation. We say that R is a probabilistic bisimulation if for each (s, t) ∈ R
we have that L(s) = L(t) and for each s −→ μs there exists t −→ μt such that
μs L(R) μt. Furthermore, we write s ∼c t if there is a probabilistic bisimulation
R such that (s, t) ∈ R.

Intuitively, each (cooperative) step of scheduler and nature from state s needs
to be matched by a (cooperative) step of scheduler and nature from state t;
symmetrically, s also needs to match t. It is shown in [27] that the bisimulation
∼c preserves the (cooperative) universally quantified PCTL satisfaction |=c.

Theorem 7 (cf. [27]). For states s ∼c t and any PCTL formula ϕ, we have
s |=c ϕ if and only if t |=c ϕ.

Computation of probabilistic bisimulation for IMDPs follows the standard
partition refinement approach [13,32,39]. However, the core part of the algo-
rithm is to find out whether two states “violate the definition of bisimulation”.
Verification of this violation amounts to checking inclusion of polytopes defined
as follows. For s ∈ S and a ∈ A(s), recall that Ps,a denotes the polytope of
feasible successor distributions over states with respect to taking the action a
in the state s. By Ps,a

R , we denote the polytope of feasible successor distribu-
tions over equivalence classes of R with respect to taking the action a in the
state s. Formally, for μ ∈ Δ(S/R) we set μ ∈ Ps,a

R if, for each C ∈ S/R, we have
μ(C) ∈ I (s, a, C). Furthermore, we define Ps

R = CH(
⋃

a∈A(s) Ps,a
R ). It is the set of

feasible successor distributions over S/R with respect to taking an arbitrary dis-
tribution over actions in state s. As specified in [27], checking violation of a given
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pair of states, amounts to check equality of the corresponding constructed poly-
topes for the states. As regards the computational complexity of the proposed
algorithm, the following theorem indicates that it is fixed parameter tractable.

Theorem 8 (cf. [27]). Given an IMDP M, let f be the maximal fanout, i.e.,
f = maxs ∈ S,a ∈ A(s) |{ s′ ∈ S | I (s, a, s′) �= [0, 0] }|. Computing ∼c can be done
in time |M|O(1) · 2O(f).

The exact time complexity of deciding probabilistic bisimulation for IMDPs
has recently been explored in [28], leading to the following result.

Theorem 9 Given an IMDP M, computing ∼c is coNP-complete.

4 Computational Tractability

Definition 6 is the central definition around which the paper revolves. Given an
IMDP, the complexity of computing ∼c strictly depends on finding t −→ μt: we
show how a finer (sub-optimal) equivalence relation can be computed in poly-
nomial time. The bisimulation in Definition 6 can be reformulated equivalently
as follows:

Definition 10. Let R ⊆ S × S be an equivalence relation. We say that R is
a probabilistic bisimulation if (s, t) ∈ R implies that L(s) = L(t) and for each
a ∈ A(s) and each μs ∈ Ps,a

R , there exists μt ∈ Pt
R such that μs L(R) μt.

Recall that a probabilistic bisimulation can be seen as a game between two play-
ers: in each round, the challenger, or attacker, s proposes a transition, or step,
that has to be matched by the defender t. The two states s and t are bisimilar
if the defender is always able to match the challenging transitions proposed by
the attacker, that is, the game can be played forever. Correspondingly, in our
setting, probabilistic bisimulations require that each transition proposed by the
challenger s which is selected from the set Ps,a

R , is matched by the defender t via a
single (combined) transition. The above definition essentially disallows the state
s to randomize over the set of its available actions. Therefore, instead of allow-
ing the challenger to pick a probability distribution from CH(

⋃
a ∈ A(s) Ps,a

R ), we
restrict his choice to select a distribution for an action from the polytope Ps,a

R .
This restriction does not lead to any loss of generality, since it is routine to check
that the bisimulation R from Definition 10 satisfies the condition of Definition 6.

4.1 Robust Methodologies for Probabilistic Bisimulation

We now discuss the key elements of a decision algorithm for probabilistic bisim-
ulation on IMDPs. As we will see in Sect. 5, the core part—and the main source
of the exponential complexity of the decision algorithm in [27]—is the need
to repeatedly verify the step condition, that is, given a challenging transition
μ ∈ Ps

R and (s, t) ∈ R, to check if there exists t −→ μt such that μ L(R) μt. We
show that, using some inspiration from network flow problems, it is possible to
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treat a transition t −→ μt of the IMDP M as a flow where the initial probability
mass δt flows and splits along transitions appropriately to the transition target
distributions and the resolution of the nondeterminism fulfilled by the scheduler
and nature. This intuition essentially enables us to model the probabilistic bisim-
ulation problem as an adjustable robust counterpart of an uncertain LP problem
that is intractable in general [6,7].

4.2 Adjustable Robust Counterpart for Probabilistic Bisimulation

From now on, we assume that the IMDP M, the state t, the probability dis-
tribution μ, and the equivalence relation R on S are given. We intend to ver-
ify or refute the existence of a transition t −→ μt of M satisfying μ L(R) μt

via the construction of a flow through the network graph G(t,R) = (V,E)
defined as follows: the set of vertices is V = {�,�, t} ∪ SA ∪ SR ∪ (S/R) where
SA = { ta | a ∈ A(t) } and SR = { sR | s ∈ S }, and the set of arcs is E =
{(�, t)}∪{ (vR, C), (C,�) | C ∈ S/R, v ∈ C }∪{ (t, ta), (ta, vR) | a ∈ A(t), v ∈ S }.
In the flow network definition, � and � are the source node and the sink node
of the network, respectively. The set of transition nodes SA includes vertices
that represent the interval transitions of the IMDP M. More precisely, each
transition labelled by a enabled at state t is represented by a transition node
ta ∈ SA. The set SR is a copy of the state set S that is used to represent the
states reached after having performed the transition; for such states, we connect
them to the equivalence class they belong to so to verify the condition of the
lifting. The network construction can be seen as an adaptation to the strong
case of flow networks used in [21,44].

We take advantage of the above transformation of the “IMDP into a net-
work graph” to generate an optimization problem. To this aim, we adopt the
same notation of the network optimization setting so we use fu,v to show the
“flow” through the arc from u to v. In formulating the optimization problem,
we use in addition the so-called balancing constraints [44] in order to reflect the
probabilistic choices in the given IMDP M and to ensure the correct splitting
of outgoing flows from the transition nodes in the set SA.

Definition 11. The optimization problem associated to the network G(t,R) =
(V,E) is defined as follows:

Minf 0
subject to
fu,v ≥ 0 for each (u, v) ∈ E
f�,t = 1
fC,� = μ(C) for each C ∈ S/R∑

{ u∈V |(u,v)∈E } fu,v − ∑
{ w∈V |(v,w)∈E } fv,w = 0 for each v ∈ V \ {�,�}

fta,vR − pa,v · ft,ta = 0 for each a ∈ A(t) and v ∈ S
pa,v ∈ I (t, a, v) for each a ∈ A(t) and v ∈ S

It is not difficult to see that the optimization problem just defined is not an LP
problem, as there are quadratic constraints where the flow variable ft,ta is multi-
plied with the “probability” variable pa,v. As a matter of fact, for a given a ∈ A(t),
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the variables pa,v have to lie in the interval defined by the interval transition
I (t, a, v) and they have to induce a probability distribution, i.e., pa,v ≥ 0 for each
v ∈ S and

∑
v ∈ S pa,v = 1. The non-negativity of the variables comes for free from

the constraints pa,v ∈ I (t, a, v) since I (t, a, v) ⊆ [0, 1];
∑

v ∈ S pa,v = 1 follows by
the flow conservation constrain

∑
{ u ∈ V |(u,v)∈ E } fu,v −∑

{ w ∈ V |(v,w)∈ E } fv,w =
0 for v = ta. Therefore, the optimization problem can be easily cast as an
LP problem by replacing the pair of constraints fta,vR − pa,v · ft,ta = 0 and
pa,v ∈ I (t, a, v) with the pair of constraints fta,vR − inf I (t, a, v) · ft,ta ≥ 0 and
fta,vR − sup I (t, a, v) · ft,ta ≤ 0, i.e., the state v is reached from t with probability
pa,v = fta,vR

ft,ta
at least inf I (t, a, v) and at most sup I (t, a, v), as required. Taking

this modification into account, we can reformulate the optimization problem in
Definition 11 as the following LP problem.

Definition 12 (The LP(t, μ,R) LP problem). The LP(t, μ,R) LP problem
associated to the network graph G(t,R) = (V,E) is defined as follows:

Minf 0
subject to
fu,v ≥ 0 for each (u, v) ∈ E
f�,t = 1
fC,� = μ(C) for each C ∈ S/R∑

{ u∈V |(u,v)∈E } fu,v − ∑
{ w∈V |(v,w)∈E } fv,w = 0 for each v ∈ V \ {�,�}

fta,vR − inf I (t, a, v) · ft,ta ≥ 0 for each a ∈ A(t) and v ∈ S
fta,vR − sup I (t, a, v) · ft,ta ≤ 0 for each a ∈ A(t) and v ∈ S

The feasibility of the resulting LP problem can be seen as an oracle to verify
or refute the existence of a probabilistic transition t −→ μt. Formally,

Lemma 13. Given an IMDP M, t ∈ S, μ ∈ Δ(S), and an equivalence relation
R on S, the LP(t, μ,R) LP problem has a feasible solution if and only if there
exist σ ∈ S and ν ∈ N inducing t −→ μt such that μ L(R) μt.

It is worthwhile to be noted that the resulting scheduler and nature are
history-independent, i.e., they base their choice only on the current state (and
action, for nature). Moreover, solving the generated LP problem from Defini-
tion 11 can be done in polynomial time [33,34]. The polynomial time complex-
ity, however, is not preserved when uncertainty affects transition probabilities
in the model. In fact, in presence of uncertainty, the step condition needs to be
checked for any realization of the probability distribution μs ∈ Ps,a

R . This fact
is essentially the main barrier in designing efficient algorithms for probabilistic
bisimulation on such uncertain systems which particularly leads the problem to
be intractable. To this end, we first model the probabilistic bisimulation prob-
lem as the ARC of the uncertain LP(t, μ,R) LP problem in which the uncertain
data is the probability distribution μ. More precisely, by Lemma 13, we can
replace in Definition 10 the matching transition μt ∈ Pt

R for μs ∈ Ps,a
R such that

μs L(R) μt with the check for feasibility of LP(t, μs,R).
Modelling this probabilistic bisimulation game as ARC of an uncertain LP

allows the adjustable flow variables fi,j in the LP(t, μ,R) LP problem to tune
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l,w 0

lu,v + n
k=1 w

k · µ(Ck) ≥ 0 (u, v) ∈ E
l ,t + n

k=1 w
k · µ(Ck) = 1

lC, + n
k=1 w

k · µ(Ck) = µ(Ci) Ci ∈ S/R, i = 1, . . . , n

{u|(u,v)∈E }(lu,v + n
k=1 w

k · µ(Ck)) − {u|(v,u)∈E }(lv,u + n
k=1 w

k · µ(Ck)) = 0

v ∈ V \ { , }
lta,vR + n

k=1 w
k · µ(Ck) − inf I (t, a, v) · (lt,ta + n

k=1 w
k · µ(Ck)) ≥ 0

a ∈ A(t) v ∈ S

lta,vR + n
k=1 w

k · µ(Ck) − sup I (t, a, v) · (lt,ta + n
k=1 w

k · µ(Ck)) ≤ 0
a ∈ A(t) v ∈ S

∀µ = (µ(C1), . . . , µ(Cn)) ∈ Ps,a
R

Fig. 1. Affinely adjustable robust counterpart of the ULP {LP(t, μ, R)}μ ∈ Ps,a
R

.

themselves to the uncertain probability distribution μ. However, the ARC is
in general computationally hard. On the other hand, restricting the adjustable
flow variables fi,j to be affinely dependent on the uncertain probability distribu-
tions μ allows us to model the bisimulation problem as affinely adjustable robust
counterpart of an uncertain LP problem and thus to arrive at a polynomial time
algorithm to compute the equivalence relation R. From the game semantics view-
point, such affine dependency restriction reduces the power of the defender to
match the challenger’s choices and therefore, it leads to a finer (sub-optimal)
equivalence relation.

4.3 Affinely Adjustable Robust Counterpart for Probabilistic
Bisimulation

In this section, we adapt the ARC theory presented in Sect. 2.2 to the setting of
probabilistic bisimulation by imposing a restriction on adjustable flow variables
fi,j to tune themselves affinely upon the uncertain probability distribution μ in
the challenger’s uncertainty set Ps,a

R . Without loss of generality, we let C1, . . . , Cn

be the equivalence classes induced by R. We encode the affine dependence in
the network graph G(t,R) = (V,E) by restricting, for each arch (i, j) ∈ E, the
flow variable fi,j to be

fi,j = li,j +
n∑

k=1

wk · μ(Ck),

where the new optimization variables are considered in the vector l and
the matrix W . Plugging affine equivalences of flow variables, we end up
with the affinely adjustable robust counterpart (AARC) of the ULP problem
{LP(t, μ,R)}μ ∈ Ps,a

R
shown in Fig. 1.

In order to show the computational tractability of the AARC, we need to
ensure that the uncertainty set Ps,a

R is itself computationally tractable. Formally,
a set Ps,a

R is computationally tractable [25] if for any vector μ, there is a tractable
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“separation oracle” that either decides correctly μ ∈ Ps,a
R or otherwise, generates

a separator, i.e., a non-zero vector r such that rT μ ≥ maxγ ∈ Ps,a
R

rT γ.

Proposition 14. For every state s ∈ S, action a ∈ A(s) and equivalence rela-
tion R, the polytopic uncertainty set Ps,a

R is computationally tractable.

Computational tractability of the polytopic uncertainty sets concludes imme-
diately tractability of the AARC. Formally,

Theorem 15. Given the fixed recourse ULP problem {LP(t, μ,R)}μ ∈ Ps,a
R

, the
AARC of {LP(t, μ,R)}μ ∈ Ps,a

R
is computationally tractable.

It is not difficult to see that in the setting of probabilistic bisimulation, the
polytopic uncertainty sets Ps

R are closed, convex, and well structured, i.e., they
can be described by a list of linear inequalities. Thus in our setting, the resulting
AARC is also well structured and thus can be solved using highly efficient LP
solvers (for instance, CPLEX [2] and Gurobi [1]) even for large-scale cases.

Theorem 16. Given the fixed recourse ULP problem {LP(t, μ,R)}μ ∈ Ps,a
R

, the
AARC of {LP(t, μ,R)}μ ∈ Ps,a

R
is equivalent to an explicit LP program.

The “affine decision rules” used to derive the AARC counterpart of the prob-
abilistic bisimulation problem allow us to compute a sub-optimal (finer) proba-
bilistic bisimulation defined as follows.

Definition 17. Let R ⊆ S × S be an equivalence relation. We say that R is an
AARC probabilistic bisimulation if (s, t) ∈ R implies that L(s) = L(t) and for
each a ∈ A(s), the AARC of the ULP problem {LP(t, μ,R)}μ ∈ Ps,a

R
is feasible.

Furthermore, we write s ∼AARC t if there exists an AARC probabilistic bisim-
ulation R such that (s, t) ∈ R.

An immediate result relating ∼AARC and ∼c is that the former is a refinement
of the latter, as formalized by the following proposition.

Proposition 18. Given M, if s ∼AARC t, then s ∼c t, i.e., ∼AARC ⊆ ∼c.

5 Decision Algorithm

In this section, we give a polynomial algorithm computing the probabilistic
bisimulation ∼AARC . The general idea of the algorithm follows the one of
the algorithm in [27] and involves the construction of the polytopes of the
challenger’s probability distributions. In order to compute ∼AARC an IMDP
M = (S, s̄,A, AP, L, I ), we follow the usual partition refinement approach
[12,21,32,39,44], formalized by the Bisimulation procedure in Algorithm 1.
Namely, we start with R being the equivalence relation containing the pairs of
states with the same labels; then we iteratively refine R by splitting the states
that violate the definition of bisimulation with respect to R. The core part is to
check whether two states “violate the definition of bisimulation”. This is where
our algorithm differs from the one proposed in [27].
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(M)

R ← { (s, t) ∈ S × S | L(s) = L(t) }

R ← R
s ∈ S

D ← ∅
t ∈ [s]R

a ∈ A(s)
(t,R,Ps,a

R )
D ← D ∪ {t}

[s]R R D [s]R \D
R = R

R

(t,R,Ps,a
R )

{LP(t, µ,R)}µ∈Ps,a
R

The violation is checked by the procedure Violate. We show that this
amounts in solving the AARC of the uncertain LP problem {LP(t, μ,R)}μ ∈ Ps,a

R
as follows. Recall that for s ∈ S and an action a ∈ A(s), we denote by Ps,a

R the
polytope of feasible successor distributions over equivalence classes of R with
respect to taking the action a in the state s, as discussed in Sect. 3. Note that
we require that the probability of each class C must be in the interval of the sum
of probabilities that can be assigned to states of C. As specified in the procedure
Violate, we show that it suffices to check the feasibility of the resulting AARC
of the constructed uncertain LP problem.

Given an IMDP M, let N = max{|S| , |A|}. It is not difficult to see that the
procedure Violate is called at most N4 times. In every call to this procedure,
we need to generate and solve the explicit form of the AARC which is an LP
according to Theorem 16, solvable in polynomial time O(poly(N)) (see, e.g.,
[25,33]). This means that computing ∼AARC can be done in time |M|O(1) ·
O(poly(N)).

Theorem 19. Algorithm 1 computes ∼AARC in time polynomial in |M|.

6 Case Studies

We have written a prototypical implementation for computing the bisimulation
presented in this paper. Our tool reads a model specification in the input lan-
guage of the probabilistic model checker PRISM [36] (extended to support also
intervals in the transitions), and constructs an explicit-state representation of
the state space. Afterwards, it computes the quotient using Algorithm 1.

Table 1 shows the performance of our prototype on a number of case studies
taken from the PRISM website [4], where we have relaxed some of the prob-
abilistic choices to intervals. The machine we used for the experiments is a
3.6 GHz Intel Core i7-4790 with 16 GB 1600 MHz DDR3 RAM of which 12 GB
were assigned to the tool. Despite using an explicit representation for the model,
the prototype is able to manage cases studies in the order of millions of states and
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Table 1. Experimental evaluation of the bisimulation computation

Model |Si| |Ii| S/L t∼ (s) |S∼| |I∼|
Consensus-Shared-Coin-3 5 216 13 380 2 0 787 1 770

Consensus-Shared-Coin-4 43 136 144 352 2 2 2 189 5 621

Consensus-Shared-Coin-5 327 936 1 363 120 2 23 5 025 14 192

Consensus-Shared-Coin-6 2 376 448 11 835 456 2 219 10 173 30 861

Crowds-5-10 111 294 261 444 2 1 107 153

Crowds-5-20 2 061 951 7 374 951 2 17 107 153

Crowds-5-30 12 816 233 61 511 033 2 116 107 153

Crowds-5-40 44 045 030 266 812 421 2 464 125 198

Mutual-Exclusion-PZ-3 3 008 10 868 2 0 1 123 3 939

Mutual-Exclusion-PZ-4 48 128 231 040 2 0 7 319 32 630

Mutual-Exclusion-PZ-5 770 048 4 611 072 2 7 32 053 168 151

Mutual-Exclusion-PZ-6 3 377 344 25 470 144 2 98 109 986 649 360

Dining-Phils-LR-nofair-4 9 440 40 120 4 0 1 232 5 037

Dining-Phils-LR-nofair-5 93 068 494 420 4 1 9 408 49 467

Dining-Phils-LR-nofair-6 917 424 5 848 524 4 14 76 925 487 620

Dining-Phils-LR-nofair-7 9 043 420 67 259 808 4 173 646 928 4 804 695

transitions (columns “Model”, “|Si|”, and “|Ii|”). The time in seconds required to
compute the bisimulation relation and the corresponding quotient IMDP, shown
in columns “t∼”, “|S∼|”, and “|I∼|”, is much less than the time expected from
the theoretical analysis of the algorithm: this is motivated by the fact that we
have implemented optimizations, such as caching equivalent LP problems, which
improve the runtime of our algorithm in practice. Because of this, we never had
to solve more than 30 LP problems in a single tool run, thereby avoiding the
potentially costly solution of LP problems from becoming a bottleneck.
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Abstract. We study time-bounded probabilistic reachability for Chem-
ical Reaction Networks (CRNs) using the Linear Noise Approximation
(LNA). The LNA approximates the discrete stochastic semantics of a
CRN in terms of a continuous space Gaussian process. We consider reach-
ability regions expressed as intersections of finitely many linear inequal-
ities over the species of a CRN. This restriction allows us to derive an
abstraction of the original Gaussian process as a time-inhomogeneous
discrete-time Markov chain (DTMC), such that the dimensionality of its
state space is independent of the number of species of the CRN, amelio-
rating the state space explosion problem. We formulate an algorithm for
approximate computation of time-bounded reachability probabilities on
the resulting DTMC and show how to extend it to more complex tem-
poral properties. We implement the algorithm and demonstrate on two
case studies that it permits fast and scalable computation of reachability
properties with controlled accuracy.

1 Introduction

It is well known that a biochemical system evolving in a spatially homoge-
neous environment, at constant volume and temperature, can be modelled as a
continuous-time Markov chain (CTMC) [18]. Stochastic modelling is necessary
to describe stochastic fluctuations for low molecular counts [14,16], when deter-
ministic models are not accurate [15]. Computing the probability distributions
of the species over time is achieved by solving the Chemical Master Equation
(CME) [25]. Unfortunately, numerical solution methods based on uniformisation
[4] are often infeasible because of the state space explosion problem. A more scal-
able transient analysis can be achieved by employing statistical model checking
based on the Stochastic Simulation Algorithm (SSA) [17], but to obtain good
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accuracy large numbers of simulations are needed, which for some systems can
be very time consuming.

A promising approach is to instead approximate the CTMC induced by a bio-
chemical system as a continuous state space stochastic process by means of the
Linear Noise Approximation (LNA), a Gaussian process derived as an approx-
imation of the CME [25]. Its solution requires solving a number of differential
equations that is quadratic in the number of species and independent of the mole-
cular population. As a consequence, the LNA is generally much more scalable
than a discrete state stochastic representation and has been successfully used
for model checking of large biochemical systems [7,12]. However, none of these
approaches enables the computation of global probabilistic reachability proper-
ties, that is, the probability of reaching a particular region of the state space in a
particular time interval. This property is important not only to analyse biochem-
ical systems, for example to quantify the probability that a particular protein
or gene is ever expressed in Gene Regulatory Networks, but is also fundamen-
tal for the verification of more complex temporal logic properties, since model
checking for CSL [2] or LTL [24] is reduced to the computation of reachability
probabilities.

Contributions. We derive an algorithm to compute a fast and scalable approx-
imation of probabilistic reachability using the LNA, where the target region of
the state space is given by a polytope, i.e. an intersection of a set of linear
inequalities over the species of a CRN. More specifically, we compute the prob-
ability that the system falls in the target region during a specified time interval.
Given a set of k linear inequalities, and relying on the fact that a linear combina-
tion of the components of a Gaussian distribution is still Gaussian, we discretize
time and space for the k-dimensional stochastic process defined by the particular
linear combinations. This permits the derivation of an abstraction in terms of
a time-inhomogeneous discrete-time Markov chain (DTMC), whose dimension
is independent of the number of species, since a linear combination is always
uni-dimensional, and ensures scalability, as in general we are interested in one
or at most two linear inequalities. This abstraction can then be used for model
checking of complex temporal properties [2,4,21]. In order to compute such an
abstraction, the most delicate aspect is to derive equations for the transition
kernel of the resulting DTMC. This is given by the conditional probability at
the next discrete time step given the system in a particular state. Reachability
probabilities are then computed by making the target set absorbing. We use our
algorithm to extend the Stochastic Evolution Logic (SEL) introduced in [12] to
enable model checking of probabilistic reachability of linear combinations of the
species of a CRN. We show the effectiveness of our approach on two case studies,
also in cases where existing numerical model checking techniques are infeasible.

Related Work. Algorithms to compute the reachability probabilities over dis-
crete state space Markov processes are well understood [4]. They require compu-
tation of transient probabilities in a modified Markov chain, where states in the
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target region are made absorbing. Unfortunately, their practical use is severely
hindered by state space explosion, which in a CRN grows exponentially with the
number of molecules when finite, and may be infinite, in which case finite pro-
jection methods have to be used [23]. As a consequence, approximate but faster
algorithms are appealing, in particular for CRNs, where it is not necessary to pro-
vide certified guarantees on reachability probabilities. The mainstream solution
is to rely on simulations combined with statistical inference to obtain estimates
[9]. These methods, however, are still computationally expensive. A recent trend
of works explored as an alternative whether estimates could be obtained by rely-
ing on approximations of the stochastic process based on mean-field [6] or linear
noise [7,8,12]. However, reachability properties, like those considered here, are
very challenging. In fact, most approaches consider either local properties of
individual molecules [6], or properties obtained by observing the behaviour of
individual molecules and restricting the target region to an absorbing subspace
of the (modified) model [7]. The only approach dealing with more general sub-
sets, [8], imposes restrictions on the behaviour of the mean-field approximation,
whose trajectory has to enter the reachability region in a finite time.

Our approach differs in that it is based on the LNA and considers regions
defined by polytopes, which encompasses most properties of practical interest.
The simplest idea would be to consider the LNA and compute reachability prob-
abilities for this stochastic process, invoking convergence theorems for the LNA
to prove the asymptotic correctness. Unfortunately, there is no straightforward
way to do this, since dealing with a continuous space and continuous time diffu-
sion process, e.g., Gaussian, is computationally hard, and computing reachability
is challenging (see [10]). As a consequence, discrete abstractions are appealing.

2 Background

Chemical Reaction Networks. A chemical reaction network (CRN) C =
(Λ,R) is a pair of finite sets, where Λ is a set of chemical species, |Λ| denotes its
size, and R is a set of reactions. Species in Λ interact according to the reactions
in R. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N

|Λ| is the reac-
tant complex, pτ ∈ N

|Λ| is the product complex and kτ ∈ R>0 is the coefficient
associated with the rate of the reaction. rτ and pτ represent the stoichiometry
of reactants and products. Given a reaction τ1 = ([1, 1, 0]T , [0, 0, 2]T , k1), where
·T is the transpose of a vector, we often refer to it as τ1 : λ1 + λ2 →k1 2λ3. The
state change associated to a reaction τ is defined by υτ = pτ − rτ . For example,
for τ1 as above, we have υτ1 = [−1,−1, 2]T . Assuming well mixed environment,
constant volume V and temperature, a configuration or state x ∈ N

|Λ| of the
system is given by a vector of the number of molecules of each species. Given a
configuration x then x(λi) represents the number of molecules of λi in the con-
figuration and x(λi)

N is the concentration of λi in the same configuration, where
N = V · NA is the volumetric factor or system size, V is the volume and NA

Avogadro’s number. The deterministic semantics approximates the concentra-
tions of species over time as the solution Φ(t) of the rate equations [11], a set of
differential equations of the form:
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dΦ(t)
dt

= F (Φ(t)) =
∑
τ∈R

υτ · (kτ

|Λ|∏
i=1

Φ
ri,τ

i (t)) (1)

where Φ
ri,τ

i (t) is the ith component of vector Φ(t) raised to the power of ri,τ ,
ith component of vector rτ . The initial condition is Φ(0) = x0

N . It is known that
Eq. (1) is accurate in the limit of high population [15].

Stochastic Semantics. The propensity rate ατ of a reaction τ is a function of
the current configuration x of the system such that ατ (x)dt is the probability
that a reaction event occurs in the next infinitesimal interval dt. We assume mass
action kinetics, therefore ατ (x) = kτ

∏|Λ|
i=1 ri,τ !

N |rτ |−1

∏|Λ|
i=1

(
x(λi)
ri,τ

)
, where ri,τ ! is the

factorial of ri,τ , and |rτ | =
∑|Λ|

i=1 ri,τ [1]. To simplify the notation, N is considered
embedded inside the coefficient k for any reaction. The stochastic semantics of
the CRN C = (Λ,R) is represented by a time-homogeneous continuous-time
Markov chain (CTMC) [15] (XN (t), t ∈ R≥0) with state space S, where in XN

we made explicit the dependence by N . XN (t) is a random vector describing
the molecular population of each species at time t. Let x0 ∈ N

|Λ| be the initial
condition of XN then P (XN (0) = x0) = 1. For x ∈ S, we define P (x, t) =
P (XN (t) = x |XN (0) = x0). The transient evolution of XN is described by the
Chemical Master Equation (CME), a set of differential equations

d
dt

(P (x, t) ) =
∑
τ∈R

{ατ (x − υτ )P (x − υτ , t) − ατ (x)P (x, t)}. (2)

Solving Eq. (2) requires computing the solution of a differential equation for each
reachable state. The size of the reachable state space depends on the number
of species and molecular populations and can be huge or even infinite. As a
consequence, solving the CME is generally feasible only for CRNs with very few
species and small molecular populations.

Linear Noise Approximation. The Linear Noise Approximation (LNA) is
a continuous state space approximation of the CME, which approximates the
CTMC induced by a CRN as a Gaussian process [25]. In [26], the LNA has been
derived as a linearized solution of the Chemical Langevin Equation (CLE) [19].
This derivation shows that the LNA is accurate if the two leap conditions on
the reactions are satisfied. The leap conditions are satisfied at time t if (i) there
exists an infinitesimal time interval dt such that the propensity rate of each
reaction is approximately constant during dt and if (ii) each reaction fires many
times during dt. It is possible to show that, assuming mass action kinetics, in
the limit of high volume these conditions are always satisfied. The LNA at time
t approximates the distribution of XN (t) with the distribution of the random
vector Y N (t) such that

XN (t) ≈ Y N (t) = NΦ(t) + N
1
2 G(t) (3)
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where G(t) = (G1(t), G2(t), . . . , G|Λ|) is a random vector, independent of N ,
representing the stochastic fluctuations at time t and Φ(t) is the solution of
Eq. (1). The probability distribution of G(t) is then given by the solution of a
linear Fokker-Planck equation [26]. As a consequence, for every time instant t,
G(t) has a multivariate normal distribution whose expected value E[G(t)] and
covariance matrix C[G(t)] are the solution of the following differential equations:

dE[G(t)]
dt

= JF (Φ(t))E[G(t)] (4)

dC[G(t)]
dt

= JF (Φ(t))C[G(t)] + C[G(t)]JT
F (Φ(t)) + W (Φ(t)) (5)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JT
F (Φ(t)) its transpose, W (Φ(t)) =∑

τ∈R υτυτ
T αc,τ (Φ(t)) and Fj(Φ(t)) the jth component of F (Φ(t)). We assume

XN (0) = x0 with probability 1; as a consequence E[G(0)] = 0 and C[G(0)] = 0,
which implies E[G(t)] = 0 for every t. The following theorem illustrates the
nature of the approximation using the LNA.

Theorem 1. [15] Let C = (Λ,R) be a CRN and XN the discrete state space
Markov process induced by C. Let Φ(t) be the solution of rate equations with
initial condition Φ(0) = x0

N and G be the Gaussian process with expected value
and variance given by Eqs. (4) and (5). Then, for any t < ∞ and N → ∞,

N
1
2

∣∣∣∣XN (t)
N

− Φ(t)
∣∣∣∣ ⇒N G(t). (6)

In the above, ⇒ indicates convergence in distribution [5]. The LNA is exact in
the limit of high populations, but can also be used in different scenarios if the
leap conditions are satisfied [20,26]. To compute the LNA it is necessary to solve
O(|Λ|2) first order differential equations, and the complexity is independent of
the initial number of molecules of each species. Therefore, one can avoid the
exploration of the state space that methods based on uniformization rely upon.

3 Linear Noise Approximation of Reachability
Probabilities

We are interested in computing the probability that the CTMC induced by a
biochemical network enters a region of the state space at some time instant
between t1 and t2. In order to exploit the LNA, we will first discretize time for
the Gaussian process given by the LNA, with a fixed (or adaptive) step size h,
which we can do effectively owing to the Markov property and the knowledge
of its mean and covariance. As a result, we obtain a discrete-time, continuous
space, Markov process with a Gaussian transition kernel. Then, by resorting to
state space discretization, we compute the reachability probability on this new
process, obtaining an approximation converging to the LNA approximation as
h tends to zero.



Approximation of Probabilistic Reachability for Chemical Reaction Networks 77

At first sight, there seems to be little gain, as we now have to deal with
a |Λ|-dimensional continuous state space. Indeed, for general regions this can
be the case. However, if we restrict to regions defined by linear inequalities,
we can exploit properties of Gaussian distributions (i.e. their closure wrt linear
combinations), reducing the dimension of the continuous space to the number of
different linear combinations used in the definition of the linear inequalities (in
fact, the same hyperplane can be used to fix both an upper and a lower bound).
As typically we are interested in regions defined by one or two inequalities, the
complexity will then be dramatically reduced.

3.1 Reachability Problem: Formal Definition

Recall that, given a CRN C = (Λ,R) with initial configuration x0, its stochastic
behaviour is described by the CTMC XN . A path of XN is a sequence ω =
x0t1x1t1x2 . . . where xi ∈ N

|Λ| is a state and ti ∈ R>0 is the time spent in the
state xi. A path is finite if there is a state xk that is absorbing. ω(t) is the state
of the path at time t. Path(XN , x0) is the set of all (finite and infinite) paths of
the CTMC starting in x0. We work with the standard probability measure Prob
over paths Path(XN , x0) defined using cylinder sets [21].

We now formalize the reachability problem we want to solve. For a simpler
presentation, we restrict to a single linear inequality over the species. This still
covers many practical scenarios, in particular in systems biology. Next, we show
how to generalise the method to regions specified by the intersection of more than
one hyperplane, though the complexity of our method will grow exponentially
with the number of different hyperplanes, unless additional approximations are
introduced.

Definition 1. Let C = (Λ,R) be a CRN with initial state x0, fix vector of
weights B ∈ Z

|Λ|, finite set of disjoint intervals I = [l1, u1] ∪ ... ∪ [lk, uk], k ≥ 1,
such that, for i ∈ [1, k], [li, ui] ⊆ R ∪ [−∞,+∞], and an interval [t1, t2] ⊂ R≥0.
The reachability probability of B-weighted linear combination of species falling
in the target set I in time interval [t1, t2], for initial condition x0, is

Preach(B, x0, I, [t1, t2]) = Prob{ω ∈ Path(XN , x0)|B ·ω(t) ∈ I, t ∈ [t1, t2]}. (7)

3.2 LNA and Dimensionality Reduction

In order to approximate the reachability probability in Eq. (7), we rely on the
LNA Y N (t) of XN (t) Eqs. (4)and (5). By Eq. (3), we have that the distribution
of Y N (t) is Gaussian with expected value and covariance matrix given by

E[Y N (t)] = NΦ(t)

C[Y N (t)] = N
1
2 C[G(t)]N

1
2 = NC[G(t)].

Let B ∈ Z
|Λ|, then ZN = B · Y N is a uni-dimensional process and for any t it

represents the time evolution of the linear combination of the species defined by
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B over time. Furthermore, ZN (t) is also Gaussian distributed, being the linear
combination of Gaussian variables. In particular, ZN (t) is characterised by the
following mean and covariance:

E[ZN (t)] = BE[Y N (t)] (8)

C[ZN (t)] = BC[Y N (t)]BT (9)

Note also that the distribution of ZN depends on Y N only via its mean and
covariance, which are obtained by solving ODEs (4) and (5). This is the key
feature that enables an effective dimensionality reduction.

3.3 Time Discretization Scheme

We now introduce an exact time discretization scheme for ZN . Fix a small time
step h > 0. By sampling Y N at step h and invoking the Markov property,1 we
obtain a discrete-time Markov process (DTMP) Ȳ N (k) = Y N (kh) on continuous
space. Applying the linear projection mapping ZN to Ȳ N (k), and leveraging its
Gaussian nature, we obtain a process Z̄N (k) = ZN (kh) which is also a DTMP,
though with a kernel depending on time through the mean and variance of Y N .

Definition 2. A (time-inhomogeneous) discrete-time Markov process (DTMP)
(Z̄N (k), k ∈ N) is uniquely defined by a triple (S, σ, T ), where (S, σ) is a mea-
surable space and T : σ × S × N → [0, 1] is a transition kernel such that, for
any z ∈ S, A ∈ σ and k ∈ N, T (A, z, k) is the probability that Z̄N (k + 1) ∈ A
conditioned on Z̄N (k) = z. S is the state space of Z̄N .

In order to characterise Z̄N , we need to compute its transition kernel. This can
be done by computing fZN (t+h)|ZN (t)=z̄(z), i.e. the density function of ZN (t+h)
given the event ZN (t) = z̄.

Consider the joint distribution Y N (t), Y N (t + h), which is Gaussian. Its
projected counterpart ZN (t), ZN (t + h) is thus also Gaussian, with covari-
ance function cov(ZN (t), ZN (t + h)) = Bcov(Y N (t), Y N (t + h))BT , where
cov(Y N (t), Y N (t+h)) is the covariance function of Y N at times t and t+h. It fol-
lows by the linearity of B that fZN (t+h)|ZN (t)=z̄ is Gaussian too, and to fully char-
acterize it we need to compute E[ZN (t+h)|ZN (t) = z̄] and C[ZN (t+h)|ZN (t) =
z̄]. To this end, we need to derive cov(Y N (t), Y N (t+h)). From now on, we denote
cov(Y N (t + h), Y N (t)) = CY (t + h, t) and cov(ZN (t + h), ZN (t)) = CZ(t + h, t).
Following [15], we introduce the following matrix differential equation

dΩ(t, s)
dt

= JF (Φ(t))Ω(t, s) (10)

with t ≥ s and initial condition Ω(s, s) = Id, where Id is the identity matrix of
dimension |Λ|. Then, as illustrated in [15], we have

CY (t, t + h) =
∫ t

0

Ω(t, s)JF (Φ(s))[Ω(t + h, s)]T ds. (11)

1 The Gaussian process obtained by linear noise approximation is Markov, as it is the
solution of a linear Fokker-Planck equation (stochastic differential equation) [25].
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This is an integral equation, which has to be computed numerically. To sim-
plify this task, we derive an equivalent representation in terms of differential
equations. This is given by the following lemma.

Lemma 1. Solution of Eq. (11) is given by the solution of the following differ-
ential equations

dCY (t, t + h)

dt
= W (Φ(t))ΩT (t+h, t)+JF (Φ(t))CY (t, t+h)+CY (t, t+h)JT

F (Φ(t+h)) (12)

with initial condition CY (0, h) computed as the solution of

dCY (0, s)
ds

= CY (0, 0 + s)JT
F (Φ(s)).

Ω(t+h, t) can be computed by solving Eq. (10). Knowledge of CY (t, t+h) allows
us to directly compute CZ(t, t + h) = BCY (t, t + h)BT . Then, by using the law
for conditional expectation of a Gaussian distribution, we finally have

E[ZN (t + h)|ZN (t) = z̄] =

E[ZN (t + h)] + CZ(Z(t + h), Z(t))C[Z(t)]−1(z̄ − E[ZN (t)])
(13)

C[ZN (t + h)|ZN (t) = z̄] = C[ZN (t + h)] − CZ(t, t + h)C[ZN (t)]
−1

CZ(t, t + h).
(14)

Note that the resulting kernel is time-inhomogeneous. The dependence on t is
via the mean and covariance of Y N , which are functions of time and define
completely the distribution of Y N .

3.4 Computation of Reachability Probabilities

In order to compute the reachability probability for the DTMP Z̄N (k), we
discretize its continuous state space, obtaining an abstraction in terms of a
discrete-time Markov chain (DTMC) ZN,D(k) with state space S. That is, the
states of the original Markov process are partitioned into a countable set of non-
overlapping sets. We assume an order relation between elements of each set and,
for each set, we consider a representative point, given by the median of the set. S
is given by the set of representative points. In particular, we partition the state
space of Z̄N in intervals of length 2Δz, where Δz defines how fine our space
discretization is. A possible choice is Δz = 0.5, which basically means S ⊆ Z.
For Δz → 0 the error introduced by the space discretization goes to zero. How-
ever, when the molecular population is of the order of hundreds or thousands, it
can be beneficial to consider Δz > 0.5, since a coarser state space aggregation
is reasonable.

Then, we solve the reachability problem on the resulting DTMC. For z′, z ∈
S, the transition kernel of ZN,D(k) is defined as

T (z′, z, k) =
∫ z′+Δz

z′−Δz

fZN (hk+h)|ZN (hk)=z(x)dx, (15)
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where h is the discrete time step, assumed to be fixed for a simpler notation.
Finally, in order to compute the reachability of the target set I we make all the
states z ∈ I absorbing. That is, for z ∈ I

T (z′, z, k) =

{
1 if z′ = z

0 otherwise

Algorithm 1 illustrates our approach for computing reachability probabilities. In
Line 1, we initialize the system at time 0. In the context of the algorithm, S is
a set containing the reachable states at a particular time with probability mass
greater than the threshold T H. T H equals 10−14 in all our experiments. This guar-
antees that the algorithm always terminates in finite time even if the state space
is not finite. Initially, we have that S contains only one state B · x0. Then, in
Lines 3 − 10, we propagate the probability for any discrete step until t < t1, as
illustrated in [21]. For generality, we assume that the time step h is chosen adap-
tively, according to the system dynamics. Propagating probability is possible, as
for any z′ ∈ S, T (z′, z, k), which has a Gaussian nature, defines the probability
of being in z′ in the next discrete time step by ZN,D(k) = z. From Line 12 to 20,
we compute probabilistic reachability Preach(B, x0, I, [t1, t2]) by propagating the
probability only for states that are not in I. When we reach t ≥ t2, we have that
Preach(B, x0, I, [t1, t2]) ≈ ∑

z∈I P (ZN,D(t) = z|ZN,D(0) = B · x0).

Algorithm 1. Compute Time-Bounded Probabilistic Reachability
Require: A CRN C = (Λ, R) with initial condition x0, B ∈ Z

|Λ|, a finite time interval
[t1, t2], a target set I and a threshold T H.

1: function ComputeReach(C, B, x0, I, [t1, t2], T H)
2: Set t = 0, S = {B · x0} and P (ZN,D(0) = B · x0) = 1
3: while t < t1 do
4: Compute time step h
5: for each z ∈ S do
6: Propagate probability at time t + h and update S
7: for each z ∈ S do
8: if P (ZN,D(t + h) = z) < T H then
9: S ← S − {z}

10: t ← t + h
11: while t < t2 do
12: Compute time step h
13: for each z ∈ S/I do
14: Propagate probability at time t + h and update S
15: for each z ∈ S/I do
16: if P (ZN,D(t + h) = z) < T H then
17: S ← S − {z}
18: t ← t + h
19: return Preach(B, x0, I, [t1, t2]) =

∑
z∈I P (ZN,D(t) = z)
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3.5 Correctness

The method we present is approximate. In particular, errors are introduced in
two ways: by resorting to the LNA and by discretisation of time and space of the
LNA. The quality of these two approximations is controlled by three parameters:
(a) N , the system size, which influences the accuracy of LNA, (b) h, the step
size, and (c) Δz, the discretization step, which influences the quality of the
approximation of the reachability probability of the LNA.

Recall that XN and ZN,D are, respectively, the CTMC induced by a CRN
and the DTMC obtained by discretization of the LNA of XN for a particular
N . Fix B ∈ Z

|Λ| and I, a set of disjoint closed intervals of reals, and denote
by PXN (B, t1, t2) and PZN,D (B, t1, t2), t1 < t2, the reachability probabilities for
ZN,D and XN . Then, we have the following result

Theorem 2. With the notation above, for t1 ≤ t2 < ∞:

lim
N→∞

lim
h→0

lim
Δz→0

{|PXN (B, t1, t2) − PZN,D (B, t1, t2)|} = 0.

The convergence stated in Theorem 2 means that, since N is fixed for a given
CRN, that even if we have control over h and Δz, the quality of the approxima-
tion depends on how well the LNA approximated the CRN. Error bounds would
be a viable companion to estimate the committed error, but we are not aware
of any explicit formulation of them for the convergence of the LNA. However,
experimental results in Sect. 5 show that the error committed is generally limited
also for moderately small N and quite large h.

3.6 Complexity

Complexity of the method depends on the following: (a) the equations we need
to solve, (b) the step size h, and (c) the space discretization step Δz. Algorithm 1
requires solving Eqs. (5) and (12), that is, a set of differential equations quadratic
in the number of species. In fact, solving these equations requires computing JF ,
Jacobian of F . However, the number of equations we need to solve is independent
of the number of molecules in the system. This guarantees the scalability of our
approach. An important point is that Eq. (12) requires solving Eq. (11) once for
each sampling point of the numerical solution of Eq. (12). A possible way to
avoid this is to consider approximate solutions of Eq. (11), which are accurate in
the limit of h → 0. However, to keep this approximation under control, h has to
be chosen really small, slowing down the computation. Moreover, for any sample
point, Eq. (11) is solved only for a small time interval (between t and t+h). As a
consequence, in practice, the computational cost introduced in solving Eq. (11)
is under control.

A smaller value of h implies that, for a given time interval, we have a greater
number of discrete time steps, which can slow down the computation in some
cases. The value of Δz determines the number of states of the resulting DTMC.
However, we stress that we discretize ZN (t), a uni-dimensional distribution (or
m-dimensional in the case we have m > 1 linear inequalities). As a consequence,
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the number of reachable states with probability mass is generally limited and
under control. Obviously, if the number of molecules is large and Δz extremely
small, then this is detrimental on performance.

3.7 Extensions

Remark 1. Our approach can be easily extended to target regions defined by
intersections of finitely many linear inequalities over species. That is, we con-
sider a set of linear predicates ZN

j = Bj · XN (t) ∈ Ij , j = 1 . . . ,m with
m > 1, and ask what is the probability that during a finite time interval we
are in a state where each predicate is verified. In order to do that, we can
define B = (B1, ..., Bm)T ∈ Z

m×|Λ|, a matrix where each row is a vector spec-
ifying a different linear combination. As a consequence, ZN = B · Y N is an
m dimensional Gaussian process and all the properties we used for the uni-
dimensional case remain valid in this extended scenario. The resulting DTMC
ZN,D is m−dimensional. However, note that m is generally equal to 1 or 2 in
practical applications (see Remark 2).

Remark 2. The method presented here can be extended to compute the proba-
bility of a non-nested until formula of CSL [3], that is, a formula of the type

P∼p[Ψ1U
[t1,t2]Ψ2].

This formula is satisfied if the probability of a path such that there exists
t ∈ [t1, t2] for which Ψ2 is satisfied and, for all t′ ∈ [0, t], Ψ1 is satisfied meets the
bound p. We restrict Ψ1, Ψ2 to linear inequalities over species. Computing this
probability, as explained in [21], requires computing two terms: (a) the proba-
bility of reaching a state between [0, t1) such that ¬Ψ1 is satisfied, and (b) the
probability of reaching a state during [t1, t2] where ¬Ψ1 ∧Ψ2 is satisfied. The for-
mer is simply reachability on ¬Ψ1. The latter can be computed by considering
reachability over the bi-dimensional system given by the joint distribution of the
linear combinations associated to ¬Ψ1 and Ψ2.

4 Stochastic Evolution Logic (SEL)

The method presented here permits an extension of the Stochastic Evolution
Logic (SEL) introduced in [12] for approximate model checking of CRNs based on
the LNA. Here, we extend the original formulation of the logic with an operator
for computing (time-bounded) probabilistic reachability. However, as explained
in Remark 2, more complex temporal behaviours could be introduced as well.

Let C = (Λ,R) be a CRN with initial state x0, then SEL enables evaluation
of the probability, reachability, variance and expectation of linear combinations
of populations of the species of C. The syntax of SEL is given by

η := P∼p[B, I][t1,t2] | F∼p[B, I][t1,t2] | Q∼v[B][t1,t2] | η1 ∧ η2 | η1 ∨ η2
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where Q = {supV, infV, supE, infE}, ∼= {<,>}, p ∈ [0, 1], v ∈ R, B ∈ Z
|Λ|,

I = [l1, u1] ∪ . . . ∪ [lk, uk], k ≥ 1, such that, for i ∈ [1, k], [li, ui] ⊆ R∪ [−∞,+∞]
is a finite set of disjoint intervals and [t1, t2] is a closed time interval, with the
constraint that t1 ≤ t2 and t1, t2 ∈ R≥0. If t1 = t2 the interval reduces to a
singleton.

Formulae η describe global properties of the stochastic evolution of the sys-
tem. (B, I) specifies a linear combination of the species, where B ∈ Z

|Λ| is a
vector of weights defining the linear combination and I is a set of disjoint closed
real intervals. P∼p[B, I][t1,t2] is the probabilistic operator, which specifies the
average value of the probability that the linear combination defined by B falls
within the range I over the time interval [t1, t2]. Given PrXN

B,I (t) = Prob{ω ∈
Path(XN , x0) |B · ω(t) ∈ I}, then, for t1 = t2, its semantics is defined as

XN , x0 |= P∼p[B, I][t1,t1] ↔ PrXN

B,I (t1) ∼ p.

Instead, for t1 < t2 we have

XN , x0 |= P∼p[B, I][t1,t2] ↔ 1
t2 − t1

∫ t2

t1

PrXN

B,I (t) dt ∼ p.

F∼p[B, I][t1,t2] is the new probabilistic reachability operator, which specifies the
probability that the linear combination of species defined by B reaches I during
[t1, t2]. Its semantics can be defined as

XN , x0 |= F∼p[B, I][t1,t2] ↔ Prob(ω ∈ Path(XN , x0)|B·ω(t) ∈ I, t ∈ [t1, t2]) ∼ p

The operators supE, infE, infV, supV , see [12], respectively, yield the supre-
mum and infimum of expected value and variance of the random variables asso-
ciated to B within the specified time interval. The quantitative value associated
to a formula can be computed by writing =? instead of ∼ p or ∼ v. For instance,
F=?[B, I][t1,t2] gives the probability value associated to the reachability property.
The following example illustrates that the P and F operators differ.

Example 1. Consider the following CRN, taken from [13], modelling a phospho-
relay network

τ1 : L1 + ATP →0.01 L1p + ATP ; τ2 : L1p + L2 →0.01 L2p + L2;

τ3 : L2p + L3 →0.01 L3p + L2; τ4 : L3p →0.1 L3;

with initial conditions x0(L1) = x0(L2) = x0(L3) = 50, x0(ATP ) = 150 and
all other species equal 0. Then, if we consider P>0.3[L3p, [40,∞]][0,10], which is
true if the average probability that L3p > 40 is greater that 0.3. Then, this is
evaluated to false. Instead, F>0.3[L3p, [40,∞]][0,10], which models the probability
of being in a state where L3p > 40 during the first 10 seconds, is evaluated as
true.
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5 Experimental Results

We implemented Algorithm 1 in Matlab and evaluated it on two case studies. All
the experiments were run on an Intel Dual Core i7 machine with 8 GB of RAM. The
first case study is a Phospohorelay Network with 7 species. We use this example to
show the trade-off between the different parameters and the molecular population.
More precisely, we show that the accuracy of our approach increases as the number
of molecules grows, but can still give fast and accurate results when the molecu-
lar population is not large. The second example is a Gene Regulatory network. We
use this example to show how our approach is more powerful than existing approx-
imate techniques, and is able to accurately handle properties where existing tech-
niques fail. We validate our results by comparing our method with statistical model
checking (SMC) as implemented in PRISM [22]. In fact, for both examples, exact
numerical computation of the reachability probabilities on the CTMC is infeasible
because of state space explosion.

5.1 Phosphorelay Network

The first case study is a three-layer phosphorelay network as shown in
Example 1. There are 3 layers, (L1, L2, L3), which can be found in phospho-
rylate form (L1p, L2p, L3p), and the ligand B. We consider the initial condition
x0 ∈ N

7 such that x0(L1) = x0(L2) = x0(L3) = L ∈ N, x0(L1p) = x0(L2p) =
x0(L3p) = 0 and x0(B) = 150. In Fig. 1, we compare the estimates obtained by
our approach for two different initial conditions (L = 100 and L = 200) with sta-
tistical model checking as implemented in PRISM [22], with 30000 simulations
and confidence interval equal to 0.01. In both experiments we consider Δz = 0.5.

(a) (b)

Fig. 1. Comparison of the evaluation of F[0,T ime][L3p > 80] (Fig. 1a) and
F[0,T ime][L3p > 180] (Fig. 1b) using statistical model checking as implemented in
PRISM and our approach. In Fig. 1a, we used h = 0.1, Δz = 0.5, and L = 100.
In Fig. 1b, we considered h = 0.1, Δz = 0.5 and L = 200. (Color figure online)
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In Fig. 1a we can see that, if we increase the time interval of interest, the error
tends to increase. This is because, for L = 100, the LNA and CME do not have
perfect convergence. As a consequence, at every step of the discretized DTMC,
a small error is introduced. This source of error is present until we enter the
target region with probability 1. If we increase L this error disappears, and the
inaccuracies are due to the finiteness of h and Δz. However, already for h = 0.1
and L = 100, the LNA produces a fast and reasonably accurate approximation.
In the following table we compare our approach and PRISM evaluations for
different values of L and h and Δz = 0.5. In order to compare the accuracy
we consider the absolute average error, ||ε||1, and the maximum absolute error,
||ε||∞. ||ε||1 = 1

|Σ|
∑

n∈Σ |FY
[0,n] − FX

[0,n]]| and ||ε||∞ = maxn∈Σ{|FY
[0,n] − FX

[0,n]]|},
where Σ is the set of discrete times between 0 and 10, and FY

[0,n] and FX
[0,n] are the

evaluation of the particular reachability formula in the interval [0, n] according
to the LNA and PRISM.

Property Ex. time h L ||ε||1 ||ε||∞
F=?[L3p > 80][0,T ime], Time ∈ [0, 10] 97 s 0.1 100 0.0088 0.11

F=?[L3p > 180][0,T ime], Time ∈ [0, 10] 130 s 0.1 200 0.0015 0.0217

F=?[L3p > 80][0,T ime], Time ∈ [0, 10] 28 s 0.5 100 0.0381 0.24

F=?[L3p > 180][0,T ime], Time ∈ [0, 10] 39 s 0.5 200 0.0289 0.14

The results show that the best accuracy is obtained for h = 0.1 and L = 200,
where h = 0.1 induces a finer time discretization, whereas the worst are for
h = 0.5 and L = 100. We comment that the numerical solution of the CME
using PRISM is not feasible for this model, and our method is several orders of
magnitude faster than statistical model checking with PRISM (30000 simulations
for each time point).

5.2 Gene Expression

We consider the following gene expression model, as introduced in [27]:

τ1 :→0.5 mRNA; τ2 : mRNA →0.0058 mRNA + P ;

τ3 : mRNA →0.0029 W ; τ4 : P →0.0001 W ;

with initial condition x0 such that all the species have initial concentrations
equal to 0. We consider the property F=?[≥ 175][0,T ime], which quantifies the
probability that the mRNA is produced for at least 175 molecules during the
first Time seconds, for Time ∈ [0, 1000]. This is a particularly difficult property
because the trajectory of the mean-field of the model, and so the expected value
of the LNA, does not enter the target region. As a consequence, approximate
approaches introduced in [15] and [8], which are based on the hitting times of
the mean-field model, fail and evaluate the probability as always equal to 0.
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Fig. 2. The figure plots F=?[mRNA ≥ 174][0,T ime] for h = 1.85 and Δz = 0.5. The
x-axis represents the value of Time and the y-axis the quantitative value of the formula
for that value of Time. (Color figure online)

Conversely, our approach is able to evaluate correctly such a property.
Figure 2 compares the value computed by our approach with statistical model
checking of the same property as implemented in PRISM over 30000 simulations
for each time point and confidence interval 0.01. In Fig. 2 we consider h = 1.8
and Δz = 0.5 and demonstrate that our approach is able to correctly estimate
such a difficult property. Note that, as the mean-field does not enter the target
region, for each time point the probability to enter the target region depends
on a portion of the tail of the Gaussian given by the LNA. As a consequence,
the accuracy of our results strictly depends on how well the LNA approximates
the original CTMC, much more than for properties where the mean-field enters
the target region. In the following table, we evaluate our results for two different
values of h and Δz = 0.5.

Property Ex. time h ||ε||1 ||ε||∞
F=?[mRNA ≥ 174][0,T ime], Time ∈ [0, 100] 298 s 1.85 0.0075 0.022

F=?[mRNA ≥ 174][0,T ime], Time ∈ [0, 100] 152 s 5 0.0147 0.13

6 Conclusion

We presented a method for computing (time-bounded) probabilistic reachability
for CRNs based on the LNA, which is challenging because the LNA yields a con-
tinuous time and uncountable state space stochastic process. As a consequence,
existing methods that rely on finite state spaces cannot be used directly and
discretizing the uncountable state space defined by the LNA will lead to state
space explosion. In order to overcome these issues, we considered reachability
regions defined as polytopes. Using the fact that the LNA is a solution of a lin-
ear Fokker-Planck equation, and so a Gaussian Markov process, for a given linear
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combination of the species of a CRN, we are able to project the original, multi-
dimensional Gaussian process onto a uni-dimensional stochastic process. We then
derived an abstraction in terms of a time-inhomogeneous DTMC, whose state
space is independent of the number of the species of a CRN, as it is derived by
discretizing linear combinations of the species. This ensures scalability. Finally,
we used our approach to extend the Stochastic Evolution Logic in order to verify
complex temporal properties. On two case studies, we showed that our approach
permits fast and scalable probabilistic analysis of CRNs. The accuracy depends
on parameters controlling space and time discretization, as well as the accuracy
of the LNA.
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Abstract. We study Probabilistic Workflow Nets (PWNs), a model
extending van der Aalst’s workflow nets with probabilities. We give a
semantics for PWNs in terms of Markov Decision Processes and intro-
duce a reward model. Using a result by Varacca and Nielsen, we show
that the expected reward of a complete execution of the PWN is inde-
pendent of the scheduler. Extending previous work on reduction of non-
probabilistic workflow nets, we present reduction rules that preserve the
expected reward. The rules lead to a polynomial-time algorithm in the
size of the PWN (not of the Markov decision process) for the computation
of the expected reward. In contrast, since the Markov decision process
of PWN can be exponentially larger than the PWN itself, all algorithms
based on constructing the Markov decision process require exponential
time. We report on a sample implementation and its performance on a
collection of benchmarks.

1 Introduction

Workflow Petri Nets are a class of Petri nets for the representation and analysis
of business processes [1,2,5]. They are a popular formal back-end for different
notations like BPMN (Business Process Modeling Notation), EPC (Event-driven
Process Chain), or UML Activity Diagrams.

There is recent interest in extending these notations, in particular BPMN,
with the concept of cost (see e.g. [16,18,19]). The final goal is the development
of tool support for computing the worst-case or the average cost of a busi-
ness process. A sound foundation for the latter requires to extend Petri nets
with probabilities and rewards. Since Petri nets can express complex interplay
between nondeterminism and concurrency, the extension is a nontrivial semantic
problem which has been studied in detail (see e.g. [3,4,7,21]).

Fortunately, giving a semantics to probabilistic Petri nets is much simpler
for confusion-free Petri nets [3,21], a class that already captures many control-
flow constructs of BPMN. In particular, confusion-free Petri nets strictly con-
tain Workflow Graphs, also called free-choice Workflow Nets [1,9,12,13]. In this
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paper we study free choice Workflow Nets extended with rewards and probabil-
ities. Rewards are modeled as real numbers attached to the transitions of the
workflow, while, intuitively, probabilities are attached to transitions modeling
nondeterministic choices. Our main result is the first polynomial algorithm for
computing the expected reward of a workflow.

In order to define expected rewards, we give untimed, probabilistic confusion-
free nets a semantics in terms of Markov Decision Processes (MDP), with rewards
captured by a reward function. In a nutshell, at each reachable marking the
enabled transitions are partitioned into clusters. All transitions of a cluster are
in conflict, while transitions of different clusters are concurrent. In the MDP
semantics, a scheduler selects one of the clusters, while the transition inside this
cluster is chosen probabilistically.

In our first contribution, we prove that the expected reward of a confusion-
free workflow net is independent of the scheduler resolving the nondetermin-
istic choices, and so we can properly speak of the expected reward of a free-
choice workflow. The proof relies on a result by Varacca and Nielsen [20] on
Mazurkiewicz equivalent schedulers.

Since MDP semantics of concurrent systems captures all possible interleav-
ings of transitions, the MDP of a free-choice workflow can grow exponentially in
the size of the net, and so MDP-based algorithms for the expected reward have
exponential runtime. In our second contribution we provide a polynomial-time
reduction algorithm consisting of the repeated application of a set of reduction
rules that simplify the workflow while preserving its expected reward. Our rules
are an extension to the probabilistic case of a set of rules for free-choice Colored
Workflow Nets recently presented in [9]. The rules allow one to merge two alter-
native tasks, summarize or shortcut two consecutive tasks by one, and replace a
loop with a probabilistic guard and an exit by a single task. We prove that the
rules preserve the expected reward. The proof makes crucial use of the fact that
the expected reward is independent of the scheduler.

Finally, as a third contribution we report on a prototype implementation,
and on experimental results on a benchmark suite of nearly 1500 free-choice
workflows derived from industrial business processes. We compare our algorithm
with the different algorithms based on the construction of the MDP implemented
in Prism [15].

Due to space limitations, the proofs have been deferred to the extended
version [10].

2 Workflow Nets

We recall the definition of a workflow net, and the properties of soundness and
1-safeness.

Definition 1 (Workflow Net [1]). A workflow net is a tuple W = (P, T,
F, i, o) where P is a finite set of places, T is a finite set of transitions (P ∩T = ∅),
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs, i, o ∈ P are distinguished initial and
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final places such that i has no incoming arcs and o has no outgoing arcsand the
graph (P ∪ T, F ∪ (o, i)) is strongly connected.

We write •p and p• to denote the input and output transitions of a place
p, respectively, and similarly •t and t• for the input and output places of a
transition t. A marking M is a function from P to the natural numbers that
assigns a number of tokens to each place. A transition t is enabled at M if all
places of •t contain at least one token in M . An enabled transition may fire,
removing a token from each place of •t and adding one token to each place of
t•. We write M

t−→ M ′ to denote that t is enabled at M and its firing leads to
M ′. The initial marking (final marking) of a workflow net, denoted by i (o),
puts one token on place i (on place o), and no tokens elsewhere. A sequence of
transitions σ = t1 t2 · · · tn is an occurrence sequence or firing sequence if there are
markings M1,M2, . . . ,Mn such that i

t1−→ M1 · · · Mn−1
tn−→ Mn. FinW is the set

of all firing sequences of W that end in the final marking. A marking is reachable
if some occurrence sequence ends in that marking.

i

p1 p2

p3 p4

o

t1

t2 t3 t4

t5

i

p1

p2p3

p4

o

t1t2

t4

t5t6

i

p1

p2 p3

p4 p5

o

t1 t2

t3 t4t5

t6 t7

Fig. 1. Three workflow nets

Definition 2 (Soundness and 1-safeness [1]). A workflow net is sound if the
final marking is reachable from any reachable marking, and for every transition t
there is a reachable marking that enables t. A workflow net is 1-safe if M(p) ≤ 1
for every reachable marking M and for every place p.

Figure 1 shows three sound and 1-safe workflow nets. In this paper we only
consider 1-safe workflow nets, and identify a marking with the set of places
that are marked. Markings which only mark a single place are written without
brackets and in bold, like the initial marking i. In general, deciding if a workflow
net is sound and 1-safe is a PSPACE-complete problem. However, for the class of
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free-choice workflow nets, introduced below, and for which we obtain our main
result, there exists a polynomial algorithm [6].

2.1 Confusion-Free and Free-Choice Workflow Nets

We recall the notions of independent transitions and transitions in conflict.

Definition 3 (Independent Transitions, Conflict). Two transitions t1,t2 of
a workflow net are independent if •t1 ∩ •t2 = ∅. Two transitions are in conflict
at a marking M if M enables both of them and they are not independent. The
set of transitions in conflict with a transition t at a marking M is called the
conflict set of t at M .

In Fig. 1 transitions t2 and t4 of the left workflow are independent, while t2
and t3 are in conflict. The conflict set of t2 at the marking {p1, p2} is {t2, t3},
but at the marking {p1, p4} it is {t2}.

It is easy to see that in a 1-safe workflow net two transitions enabled at a
marking are either independent or in conflict. Assume that a 1-safe workflow net
satisfies that for every reachable marking M , the conflict relation at M is an
equivalence relation. Then, at every reachable marking M we can partition the
set of enabled transitions into equivalence classes, where transitions in the same
class are in conflict and transitions of different classes are independent. Such
nets have a simple stochastic semantics: at each reachable marking an equiv-
alence class is selected nondeterministically, and then a transition of the class
is selected stochastically with probability proportional to a weight attached to
the transition. However, not every workflow satisfies this property. For example,
the workflow on the left of Figure 1 does not: at the reachable marking marking
{p1, p2} transition t3 is in conflict with both t2 and t4, but t2 and t4 are indepen-
dent. Confusion-free nets, whose probabilistic semantics is studied in [20], are a
class of nets in which this kind of situation cannot occur.

Definition 4 (Confusion-Free Workflow Nets). A marking M of a work-
flow net is confused if there are two independent transitions t1, t2 enabled at M

such that M
t1−→ M ′ and the conflict sets of t2 at M and at M ′ are different.

A 1-safe workflow net is confusion-free if no reachable marking is confused.

The workflows in the middle and on the right of Fig. 1 are confusion-free.

Lemma 1 [20]. Let W be a 1-safe, confusion-free workflow net. For every reach-
able marking of W the conflict relation on the transitions enabled at M is an
equivalence relation.

Unfortunately, deciding if a 1-safe workflow net is confusion-free is a
PSPACE-complete problem (this can be proved by an easy reduction from the
reachability problem for 1-safe Petri nets, see [8] for similar proofs). Free-choice
workflow nets are a syntactically defined class of confusion-free workflow nets.
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Definition 5 (Free-Choice Workflow Nets [1,6]). A workflow net is free-
choice if for every two places p1, p2 either p•

1 ∩ p•
2 = ∅ or p•

1 = p•
2.

The workflow in the middle of Fig. 1 is not free-choice, e.g. because of the
places p3 and p4, but the one on the right is.

It is easy to see that free-choice workflow nets are confusion-free, but even more:
in free-choice workflow nets, the conflict set of a transition t is the same at all reach-
able markings that enable t. To formulate this, we use the notion of a cluster.

Definition 6 (Transition Clusters). Let W = (P, T, F, i, o) be a free-choice
workflow net. The cluster of t ∈ T is the set of transitions [t] = {t′ ∈ T |
•t ∩ •t′ 	= ∅}.1

By the free-choice property, if a marking enables a transition of a cluster,
then it enables all of them. We say that the marking enables the cluster; we also
say that a cluster fires if one of its transitions fires.
Proposition 1.

– Let t be a transition of a free-choice workflow net. For every marking that
enables t, the conflict set of t at M is the cluster [t].

– Free-choice workflow nets are confusion-free.

3 Probabilistic Workflow Nets

We introduce Probabilistic Workflow Nets, and give them a semantics in terms
of Markov Decision Processes. We first recall some basic definitions.

3.1 Markov Decision Processes

For a finite set Q, let dist(Q) denote the set of probability distributions over Q.

Definition 7 (Markov Decision Process). A Markov Decision Process
(MDP) is a tuple M = (Q, q0,Steps) where Q is a finite set of states, q0 ∈ Q is
the initial state, and Steps : Q → 2dist(Q) is the probability transition function.

For a state q, a probabilistic transition corresponds to first nondeterminis-
tically choosing a probability distribution μ ∈ Steps(q) and then choosing the
successor state q′ probabilistically according to μ.

A path is a finite or infinite non-empty sequence π = q0
μ0−→ q1

μ1−→ q2 . . .
where μi ∈ Steps(qi) for every i ≥ 0. We denote by π(i) the i-th state along π
(i.e., the state qi), and by πi the prefix of π ending at π(i) (if it exists). For a
finite path π, we denote by last(π) the last state of π. A scheduler is a function
that maps every finite path π of M to a distribution of Steps(last(π)).

For a given scheduler S, let PathsS denote all infinite paths π = q0
μ0−→

q1
μ1−→ q2 . . . starting in s0 and satisfying μi = S(πi) for every i ≥ 0. We define a

probability measure ProbS on PathsS in the usual way using cylinder sets [14].
We introduce the notion of rewards for an MDP.

1 In [6] clusters are defined in a slightly different way.
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Definition 8 (Reward). A reward function for an MDP is a function
rew : S → R≥0. For a path π and a set of states F , the reward R(F, π) until
F is reached and the expected reward ES(F ) to reach F are defined as

R(F, π) :=
min{j|π(j)∈F}∑

i=0

rew(π(i)) ES(F ) :=
∫

π∈PathsS
R(F, π)dProbS

where R(F, π) is ∞ if the minimum does not exist.

3.2 Syntax and Semantics of Probabilistic Workflow Nets

We introduce Probabilistic Workflow Nets with Rewards, just called Probabilis-
tic Workflow Nets or PWNs in the rest of the paper.

Definition 9 (Probabilistic Workflow Net with Rewards). A Probabilis-
tic Workflow Net with Rewards(PWN) is a tuple (P, T, F, i, o, w, r) where (P, T,
F, i, o) is a 1-safe confusion-free workflow net, and w, r : T → R

+ are a weight
function and a reward function, respectively.
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Fig. 2. Running example

Figure 2a shows a free-choice PWN. All transitions have reward 1, and so
only the weights are represented. Unlabeled transitions have weight 1.

The semantics of a PWN is an MDP with a reward function. Intuitively, the
states of the MDP are pairs (M, t), where M is a marking, and t is the transition
that was fired to reach M (since the same marking can be reached by firing differ-
ent transitions, the MDP can have states (M, t1), (M, t2) for t1 	= t2). Addition-
ally there is a distinguished initial and final states I,O. The transition relation
Steps is independent of the transition t, i.e., Steps((M, t1)) = Steps((M, t2)) for
any two transitions t1, t2, and the reward of a state (M, t) is the reward of the
transition t. Figure 2b shows the MDP of the PWN of Fig. 2a, representing only
the states reachable from the initial state.
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Definition 10 (Probability Distribution). Let W = (P, T, F, i, o, w, r) be a
PWN, let M be a 1-safe marking of W enabling at least one transition, and
let C be a conflict set enabled at M . The probability distribution PM,C over
T is obtained by normalizing the weights of the transitions in C, and assigning
probability 0 to all other transitions.

Definition 11 (MDP and Reward Function of a PWN). Let W = (P, T, F
, i, o, w, r) be a PWN. The MDP MW = (Q, q0,Steps) of W is defined as follows:

– Q = (M × T ) ∪ {I,O} where M are the 1-safe markings of W, and q0 = I.
– For every transition t:

• Steps((o, t)) contains exactly one distribution, which assigns probability 1
to state o, and probability 0 to all other states.

• For every marking M 	= o enabling no transitions, Steps((M, t)) con-
tains exactly one distribution, which assigns probability 1 to (M, t), and
probability 0 to all other states.

• For every marking M enabling at least one transition, Steps((M, t)) con-
tains a distribution μC for each conflict set C of transitions enabled at M .
The distribution μC is defined as follows. For the states I,O: μC(I) =

0 = μC(O). For each state (M ′, t′) such that t′ ∈ C and M
t′
−→ M ′:

μC((M ′, t′)) = PM,C(t′). For all other states (M ′, t′): μC((M ′, t′)) = 0.
• Steps(I) = Steps((i, t)) for any transition t.
• Steps(O) = Steps((o, t)) for any transition t.

The reward function rewW of W is defined by: rewW(I) = 0 = rewW(O), and
rewW((M, t)) = r(t).

In Fig. 2a, Steps(i) is a singleton set that contains the probability distribution
which assigns probability 2

5 to the state (p1, t1) and probability 3
5 to the state

({p2, p3}, t2). Steps(({p2, p3}, t2)) contains two probability distributions, that
assign probability 1 to ({p5, p3}, t4) and ({p2, p6}, t4), respectively.

We define a correspondence between firing sequences and MDP paths.

Definition 12. Let W be a PWN, and let MW be its associated MDP. Let
σ = t1t2 . . . tn be a firing sequence of W. The path Π(σ) of MW corresponding
to σ is πσ = I

μ0−→ (M1, t1)
μ1−→ (M2, t2)

μ2−→ . . ., where M0 = i and for every
1 ≤ k:

– Mk is the marking reached by firing t1 . . . tk from i, and
– μk is the unique distribution of Steps(Mk−1, tk−1) such that μ(tk) > 0.

Let π = I
μ0−→ (M1, t1) · · · (Mn, tn) be a path of MW . The sequence Σ(π) corre-

sponding to π is σπ = t1 . . . tn.

It follows immediately from the definition of MW that the functions Π and
Σ are inverses of each other. For a path π of the MDP that ends in state last(π),
the distributions in Steps(last(π)) are obtained from the conflict sets enabled
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after Σ(π) has fired, if any. If no conflict set is enabled the choice is always trivial
by construction. Therefore, a scheduler of the MDP MW can be equivalently
defined as a function that assigns to each firing sequence σ ∈ T ∗ one of the
conflict sets enabled after σ has fired. In our example, after t2 fires, the conflict
sets {t3} and {t4} are concurrently enabled. A scheduler chooses either {t3} or
{t4}. A possible scheduler always chooses {t3} every time the marking {p2, p3}
is reached, and produces sequences in which t3 always occurs before t4, while
others may behave differently.

Convention: In the rest of the paper we define schedulers as functions from
firing sequences to conflict sets.

In particular, this definition allows us to define the probabilistic language
of a scheduler as the function that assigns to each finite firing sequence σ the
probability of the cylinder of all paths that “follow” σ. Formally:

Definition 13 (Probabilistic Language of a Scheduler [20]). The prob-
abilistic language νS of a scheduler S is the function νS : T ∗ → R

+ defined
by νS(σ) = ProbS(cylS(Π(σ))). A transition sequence σ is produced by S if
νS(σ) > 0.

The reward function extends to transition sequences in the natural way by
taking the sum of all rewards. In pictures, we label transitions with pairs (w, c),
where w is a weight and c a reward. See for example Fig. 3a.

We now introduce the expected reward of a PWN under a scheduler.

Definition 14 (Expected Reward of a PWN Under a Scheduler). Let
W be a PWN, and let S be a scheduler of its MDP MW . The expected reward
V S(W) of W under S is the expected reward ES(O) to reach the final state O
of MW .

Given a firing sequence σ, we have r(σ) = R(O,Π(σ)) by the definition of
the reward function and the fact that O can only occur at the very end of πσ.

Lemma 2. Let W be a sound PWN, and let S be a scheduler. Then V S(W) is
finite and V S(W) =

∑
π∈Π R(O, π) · ProbS(cylS(π)) =

∑
σ∈FinW r(σ) · νS(σ),

where ΠO are the paths of the MDP MW leading from the initial state I to the
state O (without looping in O).

3.3 Expected Reward of a PWN

Using a result by Varacca and Nielsen [20], we prove that the expected reward of
a PWN is the same for all schedulers, which allows us to speak of “the” expected
reward of a PWN. We first define partial schedulers.

Definition 15 (Partial Schedulers). A partial scheduler of length n is the
restriction of a scheduler to firing sequences of length less than n. Given two
partial schedulers S1, S2 of lengths nS1 , nS2 , we say that S1 extends S2 if nS1 ≥
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nS2 and S2 is the restriction of S1 to firing sequences of length less than nS2 .
The probabilistic language νS of a partial scheduler S of length n is the function
νS : T≤n → R

+ defined by νS(σ) = ProbS(cylS(Π(σ))). A transition sequence σ
is produced by S if νS(σ) > 0.

Observe that if σ is not a firing sequence, then νS(σ) = 0 for every scheduler
S. In our running example there are exactly two partial schedulers S1, S2 of
length 2; after t2 they choose t3 or t4, respectively: S1 : ε �→ {t1, t2} t1 �→
{t6} t2 �→ {t3} and S2 : ε �→ {t1, t2} t1 �→ {t6} t2 �→ {t4}. We have
νS1(t2t3) = 3/5, and νS2(t2t3) = 0.

For finite transition sequences, Mazurkiewicz equivalence, denoted by ≡, is
the smallest congruence such that σt1t2σ

′ ≡ σt2t1σ
′ for every σ, σ′ ∈ T ∗ and for

any two independent transitions t1, t2 [17]. We extend Mazurkiewicz equivalence
to partial schedulers.

Definition 16 (Mazurkiewicz Equivalence of Partial Schedulers). Given
a partial scheduler S of length n, we denote by FS the set of firing sequences σ
of W produced by S such that either |σ| = n or σ leads to a marking that enables
no transitions.

Two partial schedulers S1, S2 with probabilistic languages νS1 and νS2 are
Mazurkiewicz equivalent, denoted S1 ≡ S2, if they have the same length and
there is a bijection φ : FS1 → FS2 such that σ ≡ φ(σ) and νS1(σ) = νS2(φ(σ))
for every σ ∈ Fn.

The two partial schedulers of our running example are not Mazurkiewicz
equivalent. Indeed, we have FS1 = {t1t6, t2t3} and FS2 = {t1t6, t2t4}, and no
bijection satisfies σ ≡ φ(σ) for every σ ∈ FS1 . We can now present the main
result of [20], in our terminology and for PWNs.2

Theorem 1 (Equivalent Extension of Schedulers [20]3). Let S1, S2 be
two partial schedulers. There exist two partial schedulers S′

1, S′
2 such that S′

1

extends S1, S′
2 extends S2 and S′

1 ≡ S′
2.

In our example, S1 can be extended to S′
1 by adding t1t6 �→ ∅ and t2t3 �→ t4,

and S2 to S′
2 by adding t1t6 �→ ∅ and t2t4 �→ t3. Now we have FS′

1
= {t1t6, t2t3t4}

and FS′
2

= {t1t6, t2t4t3}. The obvious bijection shows S′
1 ≡ S′

2, because we have
t2t3t4 ≡ t2t4t3 and νS′

1
(t2t3t4) = 3/5 = νS2(t2t4t3).

Using Theorem 1, we are able to prove one of our central theorems.

Theorem 2. Let W be a PWN. There exists a value v such that for every
scheduler S of MW , the expected reward V S(W) is equal to v.

2 In [20], enabled conflict sets are called actions, and markings are called cases.
3 Stated as Theorem 2, the original paper gives this theorem with S′

1 and S′
2 being

(non-partial) schedulers. However, in the paper equivalence is only defined for partial
schedulers and the schedulers constructed in the proof are also partial.
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Proof Sketch. Given two schedulers, we construct a bijection between the transi-
tion sequences they produce that end in the final marking. This bijection maps
each transition sequence to a Mazurkiewicz equivalent one. To do this, for each
k ≥ 0 we reduce the schedulers to partial schedulers of length k, extend them to
equivalent schedulers using Theorem 1, and map every sequence of length k one
of them produces to a Mazurkiewicz equivalent one of the other. Since equivalent
transition sequences have the same reward, applying Lemma 2 yields that the
values of the two schedulers are equal.

Free-choice PWNs. By Proposition 1, in free-choice PWNs the conflict set of a
given transition is its cluster, and so its probability is the same at any reachable
marking enabling it. We label a transition directly with this probability.

Convention: We assume that the weights of the transitions of a cluste are
normalized, i.e. the weights are already a probability distribution.

In the next section we present a reduction algorithm that decides if a given
free-choice PWN is sound or not, and if sound computes its expected reward. If
the PWN is unsound, then we just apply the following lemma:

Lemma 3. The expected reward of an unsound free-choice PWN is infinite.

4 Reduction Rules

We transform the reduction rules of [9] for non-probabilistic (colored) workflow
nets into rules for probabilistic workflow nets.

Definition 17 (Rules, Correctness, and Completeness). A rule R is a
binary relation on the set of PWNs. We write W1

R−→ W2 for (W1,W2) ∈ R.
A rule R is correct if W1

R−→ W2 implies that W1 and W2 are either both
sound or both unsound, and have the same expected reward.

A set R of rules is complete for a class of PWNs if for every sound PWN
W in that class there exists a sequence W R1−−→ W1 · · · Rn−−→ W ′ such that W ′ is a
PWN consisting of a single transition t between the two only places i and o.

As in [9], we describe rules as pairs of a guard and an action. W1
R−→ W2

holds if W1 satisfies the guard, and W2 is a possible result of applying the action
to W1.

Merge Rule. The merge rule merges two transitions with the same input and
output places into one single transition. The weight of the new transition is the
sum of the old weights, and the reward is the weighted average of the reward of
the two merged transitions.

Guard: W contains two transitions t1 	= t2 such that •t1 = •t2 and t•1 = t•2.

Action: (1) T := (T \ {t1, t2}) ∪ {tm}, where tm is a fresh name.
(2) t•m := t•1 and •tm := •t1.
(3) r(tm) := w(t1) · r(t1) + w(t2) · r(t2).
(4) w(tm) = w(t1) + w(t2).
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Iteration Rule. Loosely speaking, the iteration rule removes arbitrary iterations
of a transition by adjusting the weights of the possible successor transitions.
The probabilities are normalized again and the reward of each successor transi-
tion increases by a geometric series dependent on the reward and weight of the
removed transition.

Guard: W contains a cluster c with a transition t ∈ c such that t• = •t.

Action: (1) T := (T \ {t}).
(2) For all t′ ∈ c \ {t}: r(t′) := w(t)

1−w(t) · r(t) + r(t′)

(3) For all t′ ∈ c \ {t}: w(t′) := w(t′)
1−w(t)

Observe that w(t)
1−w(t) · r(t) = (1 − w(t)) · ∑∞

i=0 w(t)i · i · r(t) captures the fact
that t can be executed arbitrarily often, each execution yields the reward r(t),
and eventually some other transition occurs. For an example of an application
of the iteration rule, consult Fig. 3b and c. Transition t9 has been removed and
as a result the label of transition t7 changed.

Shortcut rule. The shortcut rule merges transitions of two clusters into one single
transition with the same effect. The reward of the new transition is the sum of
the rewards of the old transitions, and its weight the product of the old weights.

A transition t unconditionally enables a cluster c if •t′ ⊆ t• for some transition
t′ ∈ c. Observe that if t unconditionally enables c then any marking reached by
firing t enables every transition in c.

Guard: W contains a transition t and a cluster c 	= [t] such that t
unconditionally enables c.

Action: (1) T := (T \ {t}) ∪ {t′s | t′ ∈ c}, where t′s are fresh names.
(2) For all t′ ∈ c: •t′s := •t and t′s

• := (t• \ •t′) ∪ t′•.
(3) For all t′ ∈ c: r(t′s) := r(t) + r(t′).
(4) For all t′ ∈ c: w(t′s) = w(t) · w(t′).
(5) If •p = ∅ for all p ∈ c, then remove c from W.

For an example shortcut rule application, compare the example of Fig. 2a
with the net in Fig. 3a. The transition t1 which unconditionally enabled the
cluster [t6] has been shortcut, a new transition t8 has been created, and t1, p1
and t6 have been removed.

Theorem 3. The merge, shortcut and iteration rules are correct for PWNs.

Proof. That the rules preserve soundness is shown in [9]. To show that the rules
preserve the expected reward we use Theorem 2: For each rule, we carefully
choose schedulers for the PWNs before and after the application of the rule, and
show that their expected rewards are equal. We sketch the idea for the shortcut
rule. Let W1, W2 be such that W1

shortcut−−−−−→ W2. Let c, t be as in Definition 4.
Let S1 be a scheduler for W1 such that S1(σ1) = c if σ1 ends with t. We define
a bijection φ that maps firing sequences in W2 to firing sequences in W1 by
replacing every occurrence of t′s by t t′. We define a scheduler S2 for W2 by
S2(σ2) = S1(φ(σ2)). Let now σ2 be a firing sequence in W2 and let σ1 = φ(σ2).
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We prove that σ1 and σ2 have the same reward and also νS1(σ1) = νS2(σ2).
Indeed, since the only difference is that every occurrence of t′s is replaced by
t t′ and r(t′S) = r(t) + r(t′) and w(t′s) = w(t)w(t′) by the definition of the
shortcut rule, the reward must be equal and νS1(σ1) = νS2(σ2). We now use
these equalities, the fact that there is a bijection between firing sequences that
end with the final marking, and Lemma2:

V (W2) =
∑

σ2∈FinW2

r(σ2) · νS2(σ) =
∑

σ2∈FinW2

r(φ(σ2)) · νS1(φ(σ2))

=
∑

σ1∈FinW1

r(σ1) · νS1(σ1) = V (W1). ��

In [9] we provide a reduction algorithm for non-probabilistic free-choice work-
flow, and prove the following result.

Theorem 4 (Completeness [9]). The reduction algorithm summarizes every
sound free choice workflow net in at most O(|C|4·|T |) applications of the shortcut
rule and O(|C|4 + |C|2 · |T |) applications of the merge and iteration rules, where
C is the set of clusters of the net. Any unsound free-choice workflow nets can be
recognized as unsound in the same number of rule applications.

We illustrate a complete reduction by reducing the example of Fig. 2a. We
set the reward for each transition to 1, so the expected reward of the net is the
expected number of transition firings until the final marking is reached. Initially,
t1 unconditionally enables [t6] and we apply the shortcut rule. Since [t6] = {t6},
exactly one new transition t8 is created. Furthermore t1, p1 and t6 are removed
(Fig. 3a). Now, t5 unconditionally enables [t3] and [t4]. We apply the shortcut
rule twice and call the result t9 (Fig. 3b). Transition t9 now satisfies the guard of
the iteration rule and can be removed, changing the label of t7 (Fig. 3c). Since
t2 unconditionally enables [t3] and [t4], we apply the shortcut rule twice and
call the result t10 (Fig. 3d). After short-cutting t10, we apply the merge rule
to the two remaining transitions, which yields a net with one single transition
labeled by (1, 5) (Fig. 3e). So the net terminates with probability 1 after firing 5
transitions in average.

Fixing a Scheduler. Since the expected reward of a PWN W is independent of the
scheduler, we can fix a scheduler S and compute the expected reward V S(W).
This requires to compute only the Markov chain induced by S, which can be
much smaller than the MDP. However, it is easy to see that this idea does not
lead to a polynomial algorithm. Consider the free-choice PWN of Fig. 4, and the
scheduler that always chooses the largest enabled cluster according to the order
{t11, t12} > · · · > {tn1, tn2} > {u11} > {u12} > · · · > {un1} > {un2}. Then
for every subset K ⊂ {1, . . . , n} the Markov chain contains a state enabling
{ui1 | i ∈ K}∪{ui2 | i /∈ K}, and has therefore exponential size. There might be
a procedure to find a suitable scheduler for a given PWN such that the Markov
chain has polynomial size, but we do not know of such a procedure.
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5 Experimental Evaluation

We have implemented our reduction algorithm as an extension of the algorithm
described in [9]. In this section we report on its performance and on a comparison
with Prism [15].

Industrial benchmarks. The benchmark suite consists of 1385 free-choice work-
flow nets, previously studied in [11], of which 470 nets are sound. The workflows
correspond to business models designed at IBM. Since they do not contain prob-
abilistic information, we assigned to each transition t the probability 1 / |[t]| (i.e.,
the probability is distributed uniformly among the transitions of a cluster). We
study the following questions, which can be answered by both our algorithm and
Prism: Is the probability to reach the final marking equal to one (equivalent to
“is the net sound?”). And if so, how many transitions must be fired in average
to reach the final marking? (This corresponds to a reward function assigning
reward 1 to each transition.)

All experiments were carried out on an i7-3820 CPU using 1 GB of memory.
Prism has three different analysis engines able to compute expected rewards:

explicit, sparse and symbolic (bdd). In a preliminary experiment with a timeout
of 30 s, we observed that the explicit engine clearly outperforms the other two:
It solved 1309 cases, while the bdd and sparse engines only solved 636 and
638 cases, respectively. Moreover, 418 and 423 of the unsolved cases were due
to memory overflow, so even with a larger timeout the explicit engine is still
leading. For this reason, in the comparison we only used the explicit engine.

After increasing the timeout to 10 min, the explicit engine did not solve any
further case, leaving 76 cases unsolved. This was due to the large state space of
the nets: 69 out of the 76 have over 106 reachable states.

The 1309 cases were solved by the explicit engine in 353 s, with about 10 s
for the larger nets. Our implementation solved all 1385 cases in 5 s combined. It
never needs more than 20 ms for a single net, even for those with more than 107

states.
In the unsound case, our implementation still reduces the reachable state

space, which makes it easier to apply state exploration tools. After reduction,
the 69 nets with at least 106 states had an average of 5950 states, with the largest
at 313443 reachable states.

An Academic Benchmark. Many workflows in our suite have a large state space
because of fragments modeling the following situation. Multiple processes do a
computation step in parallel, after which they synchronize. Process i may execute
its step normally with probability pi, or a failure may occur with probability 1−pi,
which requires to take a recovery action and therefore has a higher cost. Such a
scenario is modeled by the free-choice PWNs net of Fig. 5a, where the probabili-
ties and costs are chosen at random. The scenario can also be easily modeled in
Prism. Figure 5b shows the time needed by the three Prism engines and by our
implementation for computing the expected reward using a time limit of 10 min.
The number of reachable states grows exponentially in the number processes, and
the explicit engine runs out of memory for 15 processes, the symbolic engine times



Polynomial Analysis Algorithms for Free Choice Probabilistic Workflow Nets 103

i . . .

( 4
5 , 0)

( 1
5 , 1)

( 2
3 , 0)

( 1
3 , 2)

. . .

(a) PWN (b) Runtimes for the academic benchmark

Fig. 5. Academic benchmark

out for 13 processes, and the sparse engine reaches the time limit at 20 processes.
However, since the rule-based approach does not need to construct the state space,
we can easily solve the problem with up to 500 processes.

6 Conclusion

We have presented a set of reduction rules for PWNs with rewards that preserve
soundness and the expected reward of the net, and are complete for free-choice
PWNs. While the semantics and the expected reward are defined via an asso-
ciated MDP, our rules work directly on the workflow net. The rules lead to the
first polynomial-time algorithm to compute the expected reward.

In future work we want to generalize our algorithm to compute the probabil-
ity of non-termination and the conditional expected reward under termination,
which is of interest in the unsound case, and also to compute the expected time
to termination for timed workflow nets.

Acknowledgments. We thank the anonymous referees for their comments, and espe-
cially the one who helped us correct a mistake in Lemmas 2 and 3.
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Abstract. We consider the optimal energy-aware control of a single
server in a server farm. The server is modeled as an M/G/1 queue with
a particular control policy that allows to put the server to a sleep mode to
save energy with an additional delay cost, the setup delay, after the server
is turned on again. Our main result is the derivation of mean response
time for such a system under SRPT scheduling. In particular, we show
that the mean response time can be decomposed into two parts: the mean
response time of an ordinary M/G/1-SRPT, and an additional penalty
term for switching the server to a sleep state. Furthermore, we study the
energy-performance optimization of the system and prove that, for the
Energy Response time Weighted Sum (ERWS) and Energy Response
time Product (ERP) cost metrics, the optimal control either puts the
server into a sleep state immediately when it becomes idle or keeps it
idling until the next job arrives.

Keywords: Performance-energy trade-off · M/G/1-SRPT · Setup delay

1 Introduction

Server farms in data centres are known to spend a substantial proportion of time
in an idle state, having a utilization factor in the range of 10–20 % [1]. While in
this state, a server wastes about 60–70 % of the peak power it draws to process
requests [2]. This has inspired the study of low energy sleep states to be used
whenever the server becomes idle [7,8].

However, the energy saving attained by using a sleep state comes at a per-
formance cost. This is due to the fact that such sleep states are character-
ized by long setup delays required to turn the server back on to a functional
state. Many stochastic models that study this trade-off between performance and
energy consumption have been developed and studied by the research commu-
nity [3,5,6,9,13]. The most common cost metrics utilized to capture the trade-off
are the Energy Response time Weighted Sum (ERWS),

w1E[T ] + w2E[P ], (1)

and the Energy Response time Product (ERP),

E[T ]E[P ], (2)
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 107–122, 2016.
DOI: 10.1007/978-3-319-43425-4 7



108 M.E. Gebrehiwot et al.

where E[T ] and E[P ] are the mean response time and mean power consumption
of the server. The weights w1 and w2 are constants that can be chosen based on
the need to emphasize either performance or energy saving.

In the case of an ordinary M/G/1 system, Shortest Remaining Processing
Time (SRPT) scheduling is known to minimize mean response time [10]. How-
ever, its behaviour in such an energy-aware setup is largely unknown. In this
paper, we study the energy-performance optimization of an energy-aware M/G/1
system under SRPT scheduling. In addition to the common busy and idle states,
we assume the system is capable of switching to a sleep state, which should be
followed by a transient setup state.

We apply a similar approach as in [11] to study the energy-aware system,
although in this case, the derivation of mean response time is rather involved, and
requires dividing the process into parts. We show that the final form of the mean
response time has a simple structure consisting of the mean response time of
the ordinary M/G/1 SRPT queue and an additional penalty term related to the
setup delay. Similar decomposition results for the mean response time of systems
with setup delay have been identified, e.g., in [3–5] for other scheduling policies.
Moreover, the form turns out to be such that finally the optimal control remains
the same as for the FIFO and PS systems studied in [5,6]. That is, depending
on the parameters, either the server is immediately switched off to sleep state
after becoming idle, or the server never goes to sleep state. Additionally, our
comparison shows that SRPT still outperforms FIFO and PS.

The paper is organized as follows. In the following section a formal definition
of the model is given. In Sect. 3 we analyse the mean response time of the system,
and Sect. 4 briefly discusses optimization. Numerical examples are given in Sect. 5
and in Sect. 6 we conclude the paper.

2 Model

We consider an energy-aware M/G/ 1-SRPT queue to which jobs arrive according
to a Poisson process with rate λ. Let S denote a generic service time having a
continuous valued cumulative distribution function F (s) and density f(s). The
tail probability is denoted by F̄ (s). The load on the system, ρ, is given by
ρ = λE[S]. We assume a stable system, i.e., ρ < 1.

The energy-aware system is controlled as follows. The server is kept busy until
all the jobs in the system are served according to the SRPT service discipline.
When the last job leaves the system and the server becomes idle, a timer I,
which is a generally distributed random variable, is set. If a job arrives before
the timer expires, the timer is reset and the server starts serving the job. On the
other occasion where the timer expires before a job arrives, the server is switched
into a sleep state where it cannot serve any more jobs until it is turned back on.
The length of the sleep period is controlled by counting the number of arrivals.
The server is switched on as soon as k jobs have been accumulated. Even then,
the server has to transit through a setup period, during which it cannot serve
any job. We represent this period by a generally distributed random variable D.
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In addition, let Itot denote the total idle period accumulated between successive
expirations of the idling timer. Finally, we denote by Π the whole family of these
control policies parameterized by I and k.

Note that in this model we have four states characterized by their own power
consumption values of Pbusy, Pidle, Psleep, and Psetup with a natural ordering
Pbusy ≥ Psetup > Pidle > Psleep = 0. We denote the mean power consumption of
the system by E[P ], and the mean response time of a job by E[T ].

3 Analysis

In this section we derive the mean response time of the energy-aware SRPT
queue described in the preceding section.

Schrage and Miller [11] derived the well known closed form expression for
the mean response time of an ordinary M/G/1-SRPT queue, with no sleep and
setup states,

E[TM/G/1−SRPT] =
λ

2

∫ ∞

0

∫ s

0
t2f(t) dt + s2F̄ (s)

(1 − ρ(s))2
f(s) ds +

∫ ∞

0

F̄ (s)
1 − ρ(s)

ds, (3)

where ρ(s) denotes the proportion of time the server is busy processing jobs that
are originally shorter than s given by

ρ(s) = λ

∫ s

0

tf(t) dt. (4)

Here the response time of a job is composed of waiting time and residence time.
The waiting time of a job is defined as the time elapsed between its arrival time
and the time at which it gets service for the first time. The residence time covers
the remainder of the response time, which includes its processing time plus any
additional time spent waiting due to pre-emption imposed by SRPT.

Let us now consider the mean response time in the energy-aware system using
the same decomposition. By denoting the waiting and residence times by W and
R, respectively, we have E[T ] = E[W ] + E[R].

The energy-aware system under study is work conserving in the sense that
it goes to sleep only when there is no job to serve. Hence, it is easy to see that
the mean residence time is not affected by the introduction of sleep and setup
states so that

E[R] =
∫ ∞

0

F̄ (s)
1 − ρ(s)

ds. (5)

So we can focus on the derivation of the mean waiting time.

3.1 Mean Waiting Time

To determine the mean waiting time E[W ], we apply the theory of regenerative
processes by setting the regeneration point at the time epoch where the idling
timer expires. Following the same approach as in [11], we first derive the mean
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conditional waiting time, E[W (s)], for a test job of size s. Then the mean waiting
time can be calculated as

E[W ] =
∫ ∞

0

E[W (s)]f(s) ds.

We refer to the test job as a type-s job.
During one full regenerative cycle, the server goes to sleep, waits for k jobs to

arrive, then transits through setup, and starts serving the accumulated jobs in
the busy state. After alternating between busy and idle states, it eventually goes
back to the sleep state, marking the end of one (regenerative) cycle. The test job
(of size s) may arrive during any of these periods. As illustrated in Fig. 1, the
entire busy period is further divided into several parts depending on when the
test job arrives to the system to systematically address the derivation of mean
waiting time of the test job.

We refer to the duration spent in the sleep and setup states as period 1 and
period 2, respectively. The busy period, i.e., time during which the server is in
the busy state, is composed of several parts. Period 3, period 4, and period 5
denote the durations of the associated type-s busy periods to be discussed below
during which jobs smaller than s are served. Note that, as shown in the figure,
period 3 consists of a continuous interval of time, but periods 4 and 5 in fact may
consist of several parts and the period length is the sum of the respective parts.
During a cycle, period 6 has a similar structure and it corresponds to the time
during which jobs larger than s are being served. Finally, period 7 represents
the time the system is in the idle state, which may also consist of several parts
as the system may visit the idle state several times before the eventual timer I
expiration happens. Recall that the total length of period 7 is denoted by Itot.

Let B denote an entire busy period, and B(s) be a type-s busy period, in which
all the jobs getting service have the remaining size less than s. In particular, all
jobs with size less than s that arrive during a type-s busy period are served in
this busy period. A type-s busy period can be started in three different ways
during the busy period.

Out of the jobs that accumulate during the sleep and setup states, each
job with original size shorter than s starts its own type-s sub-busy period. The
complete length of the type-s busy period induced by all jobs with sizes less than
s that arrived during periods 1 and 2 is denoted by B3(s). Note that during a
cycle there is at most one such type-s busy period, see period 3 in Fig. 1.

On the other hand, all the remaining jobs accumulated in the sleep and
setup states, with sizes larger than s, would eventually start their own type-s
busy periods when the remaining size is reduced to s. We denote this kind of a
type-s busy period as B4(s). Here the type-s busy period is started by exactly
one job, and the whole period 4 may consist of multiple B4(s) busy periods, see
period 4 in Fig. 1. However, they all will be served before the system enters the
idle state for the first time after setup.

The third kind of type-s busy period is started due to an arrival in the busy
state after the sleep and setup or during the idle period. It is similar to the type-
s busy period in an ordinary M/G/1-SRPT queue (denoted by Y (p) in [11]).
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Fig. 1. A complete cycle between two expirations of idling timer (represented by the
cross marks at either ends of the horizontal line).

We denote it by B5(s) in this paper. Here again the type-s busy period is started
by exactly one job, and period 5 may consist of multiple B5(s) busy periods,
see period 5 in Fig. 1. Also note that when the system becomes idle for the first
time during a cycle, all type-s busy periods are B5(s) busy periods after that.

Consider now a test job of size s that arrives at a random time instant. Let
pi represent the probability that the test job arrives during period i. Thus, the
mean conditional waiting time of the type-s job can be derived by conditioning
over its arrival time as

E[W (s)] =
7∑

i=1

piE[Wi(s)], (6)

where E[Wi(s)] is the mean conditional waiting time of the job assuming it
arrives in period i. We provide the derivation of these arrival probabilities and
mean conditional waiting times below in 1◦ and 2◦, respectively.

1◦ Arrival Probabilities. Let N denote the number of jobs served during an entire
regeneration cycle. The mean number of arrivals E[N ] has been derived in [5]
for FIFO, and since it is the same for all work-conserving policies, we have

E[N ] =
k + λE[D] + λE[Itot]

1 − ρ
, (7)

where E[Itot] is the mean cumulative idling time in a cycle. Note that Itot consists
of i.i.d. idling times distributed as min{I,A}, where A denotes an inter-arrival
time. The number of such idling times has a geometric distribution with success
probability P{I < A}. Thus, E[Itot] is given by

E[Itot] =
E[min{I,A}]

P{I < A} . (8)

The probability pi that the test job arrives during period i is given by the ratio
of the mean number of arrivals during period i to E[N ].
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Now, the proportion of time the server spends on jobs whose remaining
processing time is less than s is given by

a(s) = ρ(s) + λsF̄ (s). (9)

On the other hand, p3 + p4 + p5 represents the same proportion of time. Thus,

p3 + p4 + p5 = a(s).

Finally, the proportion of time that the server is busy, p3 + p4 + p5 + p6, must
be equal to ρ,

p3 + p4 + p5 + p6 = ρ.

When considering p4, we observe that the random number of jobs accumulated at
the start of the busy period (i.e., after sleep and setup) consists of the k arrivals
during period 1 (sleep) and the Poisson distributed number of arrivals during
period 2 (setup). The mean value of the number of arrivals is then simply k +
λE[D]. Out of these arrivals, each one has its size greater than s with probability
F̄ (s). Thus, the mean number of B4(s) busy periods is given by (k+λE[D])F̄ (s).

With all the required variables defined, the probability that an arriving job
would find the system in each period is given by

p1 =
k

E[N ]
, p2 =

λE[D]
E[N ]

,

p3 =
λE[B3(s)]

E[N ]
p4 =

λ(k + λE[D])F̄ (s)E[B4(s)]
E[N ]

p5 = a(s) − p3 − p4, p6 = ρ − a(s),

p7 =
λE[Itot]
E[N ]

.

(10)

Note that above E[B3(s)] and E[B4(s)] are still unknown. We will derive these
below in Sect. 3.2.

2◦ Mean Conditional Waiting Times. A test job of size s would have to wait
until the current type-s busy period is completed if it arrives during periods 3,
4, or 5. Thus, the mean waiting time is the mean remaining type-s busy period,

E[Wi(s)] =
E[Bi(s)2]
2E[Bi(s)]

, (11)

for i ∈ {3, 4, 5}. Derivation of the moments of these busy periods is not quite
straightforward and will be done below in Sect. 3.2.

On the other hand, if the test job arrives during periods 1 or 2 (sleep/setup),
the test job will experience the remaining time until the end of setup and after
that also the corresponding busy period related to B3(s). We will return to the
derivation of E[W1(s)] and E[W2(s)], when we analyze the moments of B3(s).

Finally, as discussed earlier, during period 6 jobs larger than s are being
served. Hence, a type-s job that arrives during period 6 preempts the job being
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processed and starts service immediately without any wait. Similarly, period 7
being the idle period, the test job would start service immediately upon arrival.
Hence, we obtain

W6(s) = W7(s) = 0. (12)

3.2 Moments of B3(s), B4(s), and B5(s) Busy Periods

In this section we derive the first two moments of B3(s), B4(s), and B5(s)
together with the mean values E[W1(s)] and E[W2(s)]. In the analysis, we need
the random variable S̃ defined as the conditional service time S given that S ≤ s.
Specifically, we need its mean value given by

E[S̃] = E[S|S ≤ s] =
1

F (s)

∫ s

0

tf(t) dt,

and the second moment, which equals

E[S̃2] = E[S2|S ≤ s] =
1

F (s)

∫ s

0

t2f(t) dt.

Note also that
ρ(s) = λF (s)E[S̃].

The result for B3(s) is given first in Proposition 1 below.

Proposition 1. The first and second moments of B3(s) are given by

E[B3(s)] = (k + λE[D])
F (s)E[S̃]
1 − ρ(s)

=
(

k

λ
+ E[D]

)
ρ(s)

1 − ρ(s)
, (13)

E[B3(s)2] = (k + λE[D])
F (s)E[S̃2]
(1 − ρ(s))3

+
(
k(k − 1) + 2kλE[D] + λ2E[D2]

) (
F (s)E[S̃]
1 − ρ(s)

)2

. (14)

Proof. Recall that B3(s) is a type-s busy period that is started by those jobs that
arrived during period 1 (sleep) and 2 (setup) and are in size smaller than s. The
number of such jobs is a random variable and we denote it by N3. Conditioned
on the value of the set up delay D, we have

N3 |D ∼ Bin(k, F (s)) + Poi(λF (s)D),

i.e., given D, the conditional value of N3 is the sum of a binomially distributed
number of jobs smaller than s from period 1 with parameters k and F (s) and
a Poisson distributed number of jobs smaller than s with parameter λF (s)D.
These two numbers are also independent from each other. By conditioning on
D, the first and second moments of N3 are given by

E[N3] = (k + λE[D])F (s), (15)
E[N2

3 ] = (k + λE[D])F (s) +
(
k(k − 1) + 2kλE[D] + λ2E[D2]

)
F (s)2. (16)
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By the end of B3(s) there is no type s job in the system. The busy period
B3(s) consists of exactly N3 sub-busy periods B3,n initiated by the N3 jobs,

B3(s) =
N3∑

n=1

B3,n. (17)

In SRPT scheduling, the shortest of the N3 jobs starts B3,1, the second shortest
job starts B3,2 and so on. But since the complete length of the B3(s) busy period
is the same for any work-conserving policy, we may assume that the N3 jobs are
randomly selected to start the sub-busy periods B3,n. Now the key observation
is that each sub-busy period B3,n is i.i.d. It is initiated by a job distributed as S̃,
i.e., from the conditional distribution that the size is less than s. In addition, all
the subsequent arriving jobs during the sub-busy period are also from the same
distribution. Thus, such a sub-busy period behaves the same as a busy period
in a standard M/G/1 queue with arrival rate λF (s) and service times S̃ so that
the first and second moments are given by

E[B3,n] =
E[S̃]

1 − ρ(s)
, E[B2

3,n] =
E[S̃2]

(1 − ρ(s))3
. (18)

In (17), the random variable N3 is independent from the distribution of B3,n

and thus applying Wald’s equation to (17) gives the first moment of B3(s) as
follows,

E[B3(s)] = E[N3] E[B3,n] = (k + λE[D])F (s)
E[S̃]

1 − ρ(s)
,

which completes the proof for the first moment.
To find the second moment of B3(s) one can condition on the value of N3

and apply the conditional variance formula on the random sum (17), from which
we can determine the second moment as

E[B3(s)2] = E[N3]E[B2
3,n] + (E[N2

3 ] − E[N3])E[B3,n]2.

Using (15), (16) and (18) in the above we arrive at

E[N3]E[B2
3,n] = (k + λE[D])F (s)

E[S̃2]
(1 − ρ(s))3

,

(E[N2
3 ] − E[N3])E[B3,n]2 = (k(k − 1)+2kλE[D]+λ2E[D2])F (s)2

(
E[S̃]

1 − ρ(s)

)2

,

which completes the proof. ��
With the moments of B3(s) now available we can analyze the conditional

waiting time W1(s) and W2(s) that the test job experiences if it arrives dur-
ing period 1 (sleep) or 2 (setup), respectively. The results are stated below in
Corollaries 1 and 2.
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Corollary 1. For a test job with size s that arrives during period 1 (sleep), the
mean conditional waiting time E[W1(s)] is given by

E[W1(s)] =
k − 1
2λ

· 1 + ρ(s)
1 − ρ(s)

+
E[D]

1 − ρ(s)
. (19)

Proof. A test job that arrives during period 1 would be one of the first k jobs.
So, assuming it is the ith arrival in the sleep state, it would have to wait for an
aggregate time of k − i arrivals and the entire setup time D. On average these
correspond to (k − 1)/(2λ) and E[D] amounts of additional waiting time for
the test job. Additionally, the test job needs to wait until the end of a slightly
modified B3(s) busy period, which we denote by B

(1)
3 (s). Thus,

E[W1(s)] =
k − 1
2λ

+ E[D] + E[B(1)
3 (s)].

The busy period that the test job experiences is otherwise exactly as in B3(s)
except that the test job is one of the k jobs that arrive during period 1. Thus,
the mean busy period E[B(1)

3 (s)] in this case is given by (13) with k replaced by
(k − 1), from which we arrive at the final result after some simplifications. ��
Corollary 2. For a test job with size s arriving in period 2 (setup), the mean
conditional waiting time E[W2(s)] is given by

E[W2(s)] =
k

λ
· ρ(s)
1 − ρ(s)

+
E[D2]
E[D]

· 1 + ρ(s)
1 − ρ(s)

. (20)

Proof. A test job arriving during period 2 needs to wait for the remainder of
the setup time, which equals on average E[D2]/(2E[D]). In addition, the test
job again needs to wait until the end of a slightly differently (compared to the
previous proof) modified B3(s) busy period, which we denote by B

(2)
3 (s). Thus,

E[W2(s)] =
E[D2]
2E[D]

+ E[B(2)
3 (s)].

In this case, the test job arrives somewhere between the start and end of setup.
By a standard renewal argument, we know that the number of other jobs that
arrived during this setup is on average λE[D2]/E[D]. Thus, the mean busy period
E[B(2)

3 (s)] in this case is given by (13) with E[D] replaced by E[D2]/E[D], which,
after some simplifications, completes the proof. ��

In our analysis, we next consider the first and second moments of the B4(s)
busy period. The results are stated in Proposition 2 below.

Proposition 2. The first and second moments of B4(s) are given by

E[B4(s)] =
s

1 − ρ(s)
, (21)

E[B4(s)2] =
λsF (s)E[S̃2]
(1 − ρ(s))3

+
s2

(1 − ρ(s))2
. (22)
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Proof. Recall that B4(s) busy period is initiated by exactly one job that arrived
during periods 1 or 2, had an original size greater than s, and has by the begin-
ning of the B4(s) busy period received service so that its remaining size has
reduced to s. Thus, such a busy period behaves the same as an initial busy
period in a standard M/G/1 queue with arrival rate λF (s), service times S̃, and
an initial workload of size s, which gives (21) and (22), see, e.g., [12]. ��

Finally, we analyze the B5(s) busy period, and give its moments in Proposi-
tion 3.

Proposition 3. The first and second moments of B5(s) are given by

E[B5(s)] =
E[R(s)]
1 − ρ(s)

, (23)

E[B5(s)2] =
λE[R(s)]F (s)E[S̃2]

(1 − ρ(s))3
+

E[R(s)2]
(1 − ρ(s))2

, (24)

where

E[R(s)] =
(ρ + λE[Itot]

E[N ] − a(s))F (s)E[S̃] + (ρ + λE[Itot]
E[N ] )F̄ (s)s

ρ + λE[Itot]
E[N ] − a(s)F (s)

, (25)

E[R(s)2] =
(ρ + λλE[Itot]

E[N ] − a(s))F (s)E[S̃2] + (ρ + λE[Itot]
E[N ] )F̄ (s)s2

ρ + λE[Itot]
E[N ] − a(s)F (s)

. (26)

Proof. The B5(s) busy period is initiated by a job that has arrived during the
time that the server is busy (i.e., after periods 1 and 2), or during the time
system is idle (i.e., during period 7). Therefore, it is similar to the analysis of
the type-s busy period as done for the ordinary M/G/1-SRPT queue in [11].
The difference is that while in the ordinary SRPT analysis a type-s busy period
can be initiated by an arriving job at any time, in our system we must exclude
arrivals that occurred during periods 1 and 2.

An arriving job with size smaller than s will initiate a B5(s) busy period
whenever it arrives during period 6, i.e., the time during which jobs with size
greater than s are served. This happens with probability p6F (s). Also, when
the system is busy, if the size of an arriving job is originally greater than s,
it will eventually have remaining size s and initiate a B5(s) busy period. This
happens with probability ρF̄ (s). Finally, with probability p7, a job arrives during
period 7 and will initiate immediately or eventually a B5(s) busy period. The
total probability that an arriving job begins a B5(s) busy period is thus

p6F (s) + ρF̄ (s) + p7 = ρ + λE[Itot]/E[N ] − a(s)F (s).

Let R(s) denote the remaining service time of the job that initiates a B5(s)
busy period. For a job with size t < s arriving during period 6 or period 7, which
happens with probability

(p6 + p7)F (s) = (ρ + λE[Itot]/E[N ] − a(s))F (s),
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we have R(s) = t. On the other hand, a job originally greater than s arriving
when the system is busy or idle, which happens with probability

(ρ + p7)F̄ (s) = (ρ + λE[Itot]/E[N ])F̄ (s),

eventually has remaining size s and starts a B5(s) busy period with R(s) = s.
Thus, the first and second moments of R(s) are given by (25) and (26), respec-
tively.

The jobs served in a B5(s) busy period following the initiating job all have
sizes smaller than s, i.e., they are samples of S̃. Thus, such a busy period behaves
the same as an initial busy period in a standard M/G/1 queue with arrival rate
λF (s), service times S̃, and an initial workload of size R(s), which gives (23)
and (24), see, e.g., [12]. ��

Having completed the analysis, we are now ready to state the main contri-
bution of the paper, i.e., Theorem 1 which gives the complete expression for the
mean waiting time E[W (s)].

Theorem 1. For the energy-aware SRPT queue under study, the mean condi-
tional waiting time of a type-s job is given by

E[W (s)] = E[W (s)M/G/1−SRPT]

+
1

E[N ]

(
k(k − 1)

2λ
+ kE[D] +

λ

2
E[D2]

)
1

(1 − ρ(s))2
, (27)

where E[W (s)M/G/1−SRPT] is the mean conditional waiting time in the ordinary
M/G/1-SRPT queue given by

E[W (s)M/G/1−SRPT] =
λ

2

∫ s

0
t2f(t) dt + s2F̄ (s)

(1 − ρ(s))2
. (28)

Proof. The proof follows directly by applying the derived results on (6). The
probabilities of arriving in a given period are expressed in equations (10) together
with (4), (7) and (9). The mean conditional waiting times for periods 1 and 2
are from Corollaries 1 and 2, while Eq. (11) combined with Propositions 1, 2,
and 3 can be used to determine the mean conditional waiting times for periods
3, 4, and 5, respectively. With some algebraic manipulations we finally arrive at
the surprisingly simple form given in (27). ��

The resulting form has a strikingly compact form, consisting of the waiting
time as in the ordinary M/G/1-SRPT queue plus an additional waiting time due
to idling timer and the setup delay. Note also that, when E[Itot] → ∞ the formula
reduces to the one for the ordinary M/G/1-SRPT queue, and also when k = 1
and E[D] = 0. Recall that the overall mean delay satisfies E[T ] = E[W ] + E[R],
where E[R] is the mean residence time given by (5). Since E[R] is the same
for the ordinary M/G/1-SRPT queue as for our system, we can conclude that
the expression for the overall mean delay E[T ] in our system is as expressed in
Theorem 2 below.
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Theorem 2. For the energy-aware SRPT queue under study, the mean delay of
jobs E[T ] is given by

E[T ] = E[TM/G/1−SRPT] +

+
1

E[N ]

(
k(k − 1)

2λ
+ kE[D] +

λ

2
E[D2]

) ∫ ∞

0

f(s)
(1 − ρ(s))2

ds, (29)

where E[TM/G/1−SRPT] is the mean delay in the ordinary M/G/1-SRPT queue
given in (3).

Thus, the mean delay E[T ] in our energy-aware system given by (29) consists
of the mean delay in the ordinary M/G/1-SRPT queue plus an additional penalty
term for the idling and the setup delay. A similar structure holds for the mean
delay in the corresponding energy-aware M/G/1-FIFO and M/G/1-PS queues,
as well, see [5,6].

4 Optimization

Here we address energy-performance optimization of the energy-aware SRPT
queue by applying the popular ERWS (1) and ERP (2) cost metrics. We apply
the same method as in [5,6].

Theorem 3. The optimal control policy in Π sets either I = 0 or I = ∞ for
both ERWS and ERP cost metrics.

Proof. By [5, Propositions 1 and 2] it suffices to show that both E[P ] and E[T ]
can be expressed in the form

E[T ] = A1 + B1
C0+E[Itot] , E[P ] = A2 + B2

C0+E[Itot] , (30)

where constants A1, A2, B1, C0 > 0, but B2 can be negative.
First, we consider E[T ].
Looking at (29), E[Itot] appears only in the denominator of the second term.

Thus, E[T ] is already in the form of (30).
The mean power consumption of this system can be given as

E[P ] = ρPbusy +
k
λPsleep + E[D]Psetup + E[Itot]Pidle

E[C]
,

where E[C] denotes the mean length of one regeneration cycle, which is given by
E[C] = E[N ]/λ. Substituting this in the above equation, we have

E[P ] = E[PM/G/1] +
1

E[N ]

(
k(Psleep − Pidle) + λE[D](Psetup − Pidle)

)
, (31)

where E[PM/G/1] is the power consumption of an ordinary M/G/1 system given
by

E[PM/G/1] = ρPbusy + (1 − ρ)Pidle.

Clearly, the E[P ] expression in (31) is also in the form of (30). ��
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For the ERP and ERWS cost metrics, the optimal control remains the same
as for energy-aware FIFO and PS systems, studied in [5,6]. We conjecture that
this optimality result holds for any work conserving scheduling policy. The opti-
mality result might seem to be an obvious consequence of the memoryless prop-
erty of Poisson arrivals. However, it is possible to construct counter-examples,
like in [5], where the idle timer has finite optimal value, even under a Poisson
arrival process, when a more general cost metric is considered. Thus, one cannot
determine the optimal control solely based on the arrival process.

5 Numerical Results

Next we give a numerical illustration of the results obtained in the analysis
and optimization sections. For this, we use among the S-states implemented in
modern servers, the suspend sleep state, with power consumption and setup
delay values of Psus = 15 W and Dsus = 10 s. In [8], it has been shown to give
a nice balance between sleeping power consumption and a reasonably low setup
delay. Moreover, we use Pbusy = Psetup = 200 W and Pidle = 120 W. Throughout
the illustration, we also assume the turn on threshold k = 1 and E[S] = 1 s.

We confirmed the validity of the mean response time expression in (29)
by developing a simulator for the energy-aware M/G/1-SRPT system. Figure 2
shows the analysis and simulation results as a function of load. Pareto, with
shape parameter α = 2.5, and exponentially distributed service times are con-
sidered. The confidence intervals on the simulation results are omitted because
they are too narrow to show in the same figure. Here it is interesting to see that
the mean response time decreases as a function of load, except at high load val-
ues. However, this is intuitive since the response time is already dominated by
the setup delay of the system, so that the waiting time increment due to increas-
ing load has little effect. The impact of setup delay is more visible at lower
load since the system becomes idle more often, causing frequent idle-sleep-setup
transitions.
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Fig. 2. Mean response time comparison between analytic and simulation results. The
blue curves represent results obtained analytically. The red cross points are mean
response time values obtained using a simulator at the respective load. We assume
a deterministic setup delay of D = 10 s. (Color figure online)
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Fig. 3. Mean response time comparison among energy-aware FIFO, PS, and SRPT
queues, with I = 0 and D = 10 s.
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Fig. 4. ERP comparison of energy-aware FIFO, PS, and SRPT queues. All values are
normalized with respect to the ERP of an ordinary M/G/1-SRPT queue.

For an ordinary M/G/1 queue, SRPT scheduling is known to give the min-
imum response time [10]. Figure 3 depicts how the energy-aware M/G/1-SRPT
system performs compared to energy-aware M/G/1-FIFO and M/G/1-PS sys-
tems. Mean response time of the latter two is studied in [5] and [6] respectively.
Figure 3 shows SRPT still provides the lowest mean response time for for such
a system for both exponentially and Pareto distributed service times.

We showed in Theorem 3 that either I = 0 or I = ∞ are the optimal values
under the ERP and ERWS cost metrics. Figure 4 illustrates the ERP of energy
aware systems with SRPT, FIFO and PS scheduling (I = 0), normalized with
respect to the ERP of an ordinary M/G/1-SRPT (I = ∞). For both exponen-
tially (Fig. 4a) and Pareto (Fig. 4b) distributed service times, the ERP of the
energy-aware systems is much higher than that of the ordinary M/G/1-SRPT
system. This is due to the high setup delay of the suspend state.

Figure 5 gives a similar comparison for the ERWS cost metric, for w1 = 1 and
w2 = 1. Except at very low load, the energy-aware system still under performs
compared to the ordinary M/G/1-SRPT system. We experimented with wider
range of w2 values and the ordinary M/G/1 SRPT still resulted in the lowest
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Fig. 5. ERWS comparison of energy-aware FIFO, PS, and SRPT queues, with w1 = 1
and w2 = 1. All values are normalized with respect to the ERWS of an ordinary M/G/1-
SRPT queue. The dotted, dashed, and solid lines represent energy-aware FIFO, PS,
and SRPT systems respectively.

ERWS for most load values. However, at around 0.1 load, the ERWS of the
energy-aware system is about 10% lower than that of the ordinary SRPT.

6 Conclusion

We studied the analysis and optimal control of an energy-aware server, modelled
as an M/G/1 SRPT system. Energy can be saved by putting the server into a
sleep state when it remains idle for a certain period of time. Turning the server
back on incurs a setup cost, in the form of delay and power consumption.

Our analysis, by applying the theory of regenerative processes, shows that
the mean response time of such an energy-aware system can be decomposed into
two terms: the mean response time of an ordinary M/G/1 SRPT queue, and an
additional delay penalty introduced due to the use of a sleep state.

We also considered the Energy-performance optimization of this system
under the Energy Response time Weighted Sum (ERWS) and Energy Response
time Procuct (ERP) cost metrics. The optimal control policy lies in a set of
two distinct policies: one that switches the server to a sleep mode immediately
when it becomes idle and the other which leaves it idling. This might seem
intuitive, given the memoryless property of a Poisson arrival process. However,
these results do not necessarily hold for a more general cost metric, highlighting
the fact that the optimality results cannot be readily deduced from the arrival
process. Numerical study of these policies with real setup delay and power con-
sumption values show that the idling policy has a consistently lower ERWS and
ERP costs compared to the sleeping policy, except at very low load values. This
is mainly due to the high setup delay needed by a typical present day server.

The optimality result in this paper for SRPT, in line with our earlier results
for FIFO and PS disciplines, has relied on the explicit form of the mean response
time. The results anyway suggest that the optimality holds more generally, even
for any work-conserving discipline, but proving it remains a challenging open
problem.



122 M.E. Gebrehiwot et al.

Acknowledgement. This research was partially supported by the TOP-Energy
project funded by Academy of Finland (grant no. 268992).

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50–58 (2010)

2. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. Computer
40(12), 33–37 (2007)

3. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.A.: Optimality analysis of
energy-performance trade-off for server farm management. Perform. Eval. 67(11),
1155–1171 (2010)

4. Gandhi, A., Harchol-Balter, M., Adan, I.: Server farms with setup costs. Perform.
Eval. 67(11), 1123–1138 (2010)

5. Gebrehiwot, M.E., Aalto, S., Lassila, P.: Optimal sleep-state control of energy-
aware M/G/1 queues. In: Proceedings of the 8th International Conference on Per-
formance Evaluation Methodologies and Tools, VALUETOOLS 2014, pp. 82–89
(2014)

6. Gebrehiwot, M.E., Aalto, S., Lassila, P.: Energy-performance trade-off for proces-
sor sharing queues with setup delay. Oper. Res. Lett. 44(1), 101–106 (2016)

7. Gough, C., Steiner, I., Saunders, W.: Energy Efficient Servers: Blueprints for Data
Center Optimization. Apress, New York (2015)

8. Isci, C., McIntosh, S., Kephart, J., Das, R., Hanson, J., Piper, S., Wolford, R.,
Brey, T., Kantner, R., Ng, A., Norris, J., Traore, A., Frissora, M.: Agile, efficient
virtualization power management with low-latency server power states. In: Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA 2013), pp. 96–107, June 2013

9. Maccio, V.J., Down, D.G.: On optimal policies for energy-aware servers. In: Pro-
ceedings of IEEE 21st International Symposium on Modeling, Analysis and Simu-
lation of Computer and Telecommunication Systems (MASCOTS 2013), pp. 31–39,
August 2013

10. Schrage, L.E.: A proof of the optimality of the shortest remaining processing time
discipline. Oper. Res. 16, 687–690 (1968)

11. Schrage, L.E., Miller, L.W.: The queue M/G/1 with the shortest remaining process-
ing time discipline. Oper. Res. 14(4), 670–684 (1966)
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Abstract. The analysis of fork-join queueing systems has played an
important role for the performance evaluation of distributed systems
where parallel computations associated with the same job are carried
out and a job is considered served only when all the parallel tasks it
consists of are served and then joined. The fork-join nodes that we con-
sider consist of K ≥ 2 parallel servers each of which is equipped with
two FCFS queues, namely the service-queue and the join-queue. The
former stores the tasks waiting for being served while the latter stores
the served tasks waiting for being joined. When the queueing station
is saturated, i.e., the service-queues are never empty, we observe that
the join-queue sizes tend to grow infinitely even if the expected service
times at the servers are the same. In fact, this is due to the variance
of the service time distribution. To tackle this problem, we propose a
simple service-rate control mechanism, and show that under the expo-
nential assumption on the service times, we can analytically study a set
of relevant performance indices. We show that by selectively reducing
the speed of some servers, significant energy saving can be achieved.

1 Introduction

Fork-join queueing stations have been extensively studied in the literature
because of their wide applications in the context of distributed and parallel
systems. Such queueing stations behave as follows: jobs arrive according to a
certain arrival process and are forked into K tasks that are enqueued in the
service-queues and then served by independent servers. Once a task is served, it
is enqueued in the join-queue waiting for the service completions of all the other
tasks of the job it belongs to. Once all the tasks of a job are served, the join
operation is performed and the job leaves the system. In this work we assume
that all the queues implement a First Come First Served (FCFS) discipline.

Fork-join queues have found applications in a wide variety of domains in com-
puter science and telecommunication networks. For instance, in [21] the authors
study the response times of multiprocessor systems by means of fork-join net-
works, in [10] the authors consider parallel communication systems and in [12]
a RAID system is studied by simulating a fork-join station.

Unfortunately, despite their importance, few analytical results are known for
fork-join stations. One of the reasons is the complexity of the model consisting
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 123–138, 2016.
DOI: 10.1007/978-3-319-43425-4 8
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of two sets of queues, the service-queues and the join-queues, and no general
decomposition result is available at the state of the art [1]. Many works have
considered the fork-join station under heavy traffic (see, e.g., [13]) and provided
approximations of the expected response time based on the analysis of the asso-
ciated reflecting Brownian motion [18]. In this scenario we observe that when
K � 2 the join-queues tend to be very long because each served task has to wait
for the completion of the slowest of its siblings (which may also be enqueued at
their servers). In [20] the authors observe that such a system can be highly inef-
ficient both because it handles long join-queues and because the servers work at
maximum speed even if their join-queue length is very long. Significant energy
saving can be obtained by slowing down the servers that have already served
more tasks than others.

1.1 Contribution

In this work we introduce a rate control mechanism for the station’s servers that
allows us to control the join-queue lengths and to reduce the system’s power
consumption. The importance of containing the size of the output buffer and
reducing the energy consumption is well-known in the literature, e.g., [20,22,23].
In contrast with [20], we do not require the estimation of the amount of work
needed by a task, but we base our algorithm on a single state variable associated
with each server. We assume that each server has a neighbour defined to form
a circular dependency. For instance, the neighbour of server i can be server
(i mod K)+1. If a server has completed less or equal tasks than its neighbour then
it works at maximum speed, otherwise it reduces its speed by a certain factor.
Therefore, each server has to maintain a single variable that is incremented
by 1 at each local task completion, while it is decremented by 1 when a task
completion occurs at its neighbour. Our contribution includes an analytically
tractable model of such a rate control mechanism. We start by considering the
Flatto-Hahn-Wright (FHW) model [8,25] in saturation, i.e., the service times are
modelled by independent and identically distributed (i.i.d.) exponential random
variables, the join operation is instantaneous, and the service-queues are never
empty. We show that even in the case of two servers (K = 2), the stochastic
process modelling the join-queue lengths is unstable because of the variance in
the service times. Conversely, by the introduction of our rate-control mechanism
we show that, for any K ≥ 2, the process underlying the join-queue lengths
becomes stable and their expectation is finite. Moreover, we are able to derive an
analytical expression for the system’s throughput. The stationary probabilities,
the marginal stationary probabilities and the throughput are expressed in terms
of Kummer’s confluent hypergeometric functions. In general, the evaluation of
such functions can be done by numerical approximations, but in our case the
evaluation points are such that a closed form expression is always known.

Finally, we study by simulation the behaviour of our algorithm when the
service times are not exponentially distributed and show the impact of the service
times’ coefficients of variation (CV) on the performance indices.
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1.2 Related Work

In [9] the authors extend their previous work on fork-join queueing networks in
order to include join nodes and apply an approximate analysis to study their
stationary performance indices based on a decomposition technique or an iter-
ative solution of tractable models. In [8,25] the authors introduce the so called
Flatto-Han-Wright model [18] consisting of only two exponential servers. They
derive the stability conditions and propose an approximate analysis as well as
some exact results on the conditional join-queue lengths. In [17] the authors pro-
vide the exact expression of the mean response time for the FHW model, when
K = 2 and the service times are i.i.d. exponential random variables. They also
give an approximation technique to study the models with K > 2. In [2,3] the
authors study the stability conditions for a set of fork-join queueing networks. In
[18] the author applies the method based on the heavy traffic assumption that
lead to important results in queueing network analysis for studying the fork-join
queueing nodes. Order statistics has been used to solve a class of fork-join queues
with block-regular structure in [7].

The work that is probably closer to the one proposed here is [20] where
the authors propose to reduce the energy consumption of a fork-join station by
slowing down the servers that work on tasks with lower needs. They devise a
scheduling algorithm and prove an optimality property. However, in contrast to
what we propose here, the method requires the estimation of the tasks’ service
demands which is not always possible. In [22,23] the authors propose an approach
based on the order statistics that introduces deterministic delays at the servers
aiming at reducing the task dispersion. The delays are determined so that the
100αth percentile of variability of the distributions obtained once the delays are
inserted is minimised.

1.3 Structure of the Paper

The paper is structured as follows. In Sect. 2 we introduce the problem that
we aim to address and describe the algorithm that we propose. In Sect. 3 we
provide an analytical model for the performance evaluation of the algorithm
under the assumptions of saturated station and exponential service time distrib-
utions. Section 4 studies the performance of the rate-control algorithm by using
the results of the previous section and the stochastic simulation. Finally, Sect. 5
gives some concluding remarks.

2 Rate-Control Algorithm

In this section we formally introduce the problem we are studying and the rate-
control algorithm that we propose. In the following sections we study the per-
formance of such an algorithm in terms of throughput and energy saving.
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2.1 Problem Statement

Let us consider a fork-join queueing system with K servers as depicted in Fig. 1.
We consider a saturated model, i.e., there is always a job waiting to be processed.
As a consequence the service-queues always contain at least one task. The service
times are modelled by i.i.d. continuous time random variables and we initially
assume that the join operation occur immediately after all the tasks belonging
to the same job are served. All the queues follow a FCFS discipline. Clearly, if
the expected service time at the servers is not the same, and if a rate-control
mechanism is not applied, then the join-queue length of the fastest server tend
to grow infinitely as time t → ∞. Less obvious is the case in which all the service
times are independent and identically distributed, i.e., with the same mean. In
these cases, the variance of the service time causes an unbounded growth of the
join-queue population, i.e., the expected join-queue lengths at the servers tend to
infinity as t → ∞. In Fig. 2 we show a transient simulation of the saturated model
with three service time distributions: Erlang-2, hyperexponential and exponen-
tial. The confidence intervals have been build on 15 independent executions of
the simulation with a confidence of 95%. The plot supports the intuition that
higher coefficient of variations in the service times make the expected queue
lengths grow faster. We formally prove the model instability if the service times
are exponentially distributed.

Jobs waiting the fork

Fork

Tasks waiting for service Served tasks waiting for join

Served jobs

Servers

Join

Fig. 1. Fork-join queueing station with K = 3 servers

Proposition 1. In the long run, the saturated fork-join model with K ≥ 2,
i.i.d. exponential service times, immediate join, has an infinite expectation of
the join-queue length.

Proof. For brevity, we give the proof for K = 2. The state space of the model is

S = {(n1, n2) : n1 = 0 ∨ n2 = 0, ni ∈ N},
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Fig. 2. Growth of the expected join-queue length for K = 20 servers, exponential
(CV = 1), Erlang-2 (CV =
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2/2), Hyper-exponential (CV = 1.31)

where ni denotes the join-queue length of server i. The transitions are from
state (0, n2) to (0, n2 + 1) or to (0, n2 − 1) and from state (n1, 0) to (n1 + 1, 0)
or (n1 − 1, 0). Since the service times are exponentially distributed, then the
stochastic process is a continuous time Markov chain, and specifically it is a ran-
dom walk on the line. In this CTMC all the rates are equal and hence the states
are not positive recurrent. Therefore, let Q be the random variable associated
with the join-queue length for one of the two servers at a time t0, with
t0 → ∞, then E[Q] = ∞. If K > 2 the proof is similar but the CTMC is
multidimensional. �	

We devise an algorithm that dynamically controls the service rates (e.g., by
scaling the operating frequency of the processors) with the following aims:

– Having a finite expectation of the join-queue lengths;
– Maintaining the throughput at reasonable high levels;
– Reducing the overall energy consumption by controlling the servers’ rates.

Moreover, we will see that if the service rates are exponentially distributed, then
a Markovian model with analytically tractable solution exists, therefore one can
tackle problems of optimisation or capacity planning that would be expensive to
address by stochastic simulation.
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2.2 The Rate-Control Algorithm

The main idea of the algorithm is to slow down the servers that have already
completed their work on many tasks whereas the servers that have served less
tasks will work at maximum speed. Since it would be unrealistic to assume that
each server can take a decision about its own speed by knowing the global state of
the system, we introduce a policy that implements a rate-control strategy by just
maintaining a single integer state variable. Let us label each of the K servers with
integer numbers in {1, . . . , K} and define the following neighbourhood relation:
for each server k we define its neighbour ne(k) as:

ne(k) =

{
k + 1 if k < K

1 if k = K
.

Let nk denote the state variable of each server. When server k completes a
task, then nk is increased by 1, while when its neighbour completes a task nk

is decreased by 1. In other words, nk maintains the difference between the join-
queue length of server k and ne(k). Let μ(nk) be the local state dependent service
rate at a server (recall that they are all stochastically identical), then:

μ(nk) =

{
µ

nk+1 if nk ≥ 0
μ otherwise

. (1)

Intuitively, when a server k has completed less or the same number of tasks
than ne(k) then it works at its full service speed, otherwise it slows down in a
proportional way with the number of exceeding jobs. Notice that for server k, the
key point for regulating the join-queue length is to consider the difference in the
queue lengths of the servers rather than the total length of its join queue. Indeed
this latter value could be high because of some delay in the join operation, while
the mechanism that we propose is based on balancing the number of tasks served
by each server.

3 Analytical Model for the Rate-Control Mechanism

In this section we consider the FHW model equipped with our rate control
mechanism, i.i.d. exponentially distributed service times, immediate join and in
saturation. Let us consider the vector n = (n1, . . . , nK) of the state variables
of each server, and observe that at each time epoch we have

∑K
k=1 nk = 0.

We aim at studying the stochastic process n(t) on the state space S = {n =
(n1, . . . , nK) : nk ∈ Z,

∑K
k=1 nk = 0}. Since the service rates are the only

events that cause a state change, from the fact that they are exponentially
distributed we conclude that n(t) is a homogeneous CTMC. Although we will
derive a product-form expression for the invariant measure of n(t), it is worth
of notice that n(t) is not reversible for K > 2. In fact, consider state (0, 0, 0)
and assume that server 2 completes a task taking the state of the process to
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(−1, 1, 0). It should be clear that there does not exist any transition bringing
back the model to (0, 0, 0). One path that brings back the model state to (0, 0, 0)
is that consisting of a sequence of transitions associated with one task completion
at servers 1 and 3.

Before proceeding with the analysis we have to introduce the regularized
Kummer’s confluent hypergeometric function M(a, b, x) defined as follows (the
first equality shows an alternative common notation):

M(a, b, x) = 1F̃1(a; b;x) =
1

Γ (b)
M(a, b, x) a, b ∈ N

+, (2)

where M(a, b, x) is the Kummer’s confluent hypergeometric function defined by
the series

M(a, b, x) = 1F1(a; b;x) =
∞∑
k=0

(a)k
(b)k

xk

k!
a, b ∈ N

+, (3)

Γ is the Euler’s Gamma function and (y)k is the Pochhammer’s symbol, i.e.,
(y)k = y(y + 1) · · · (y + k − 1).

Theorem 1. Given the CTMC n(t), we have that:

1. n(t) is ergodic, i.e., it admits a unique stationary distribution πK(n);
2. The stationary distribution is given by the following expression:

πK(n) =
1

GK

1∏K
i=1(niδni>0)!

(4)

where we assume that empty products are equal to 1 and δP is 1 if proposition
P is true, 0 otherwise and

GK = 1 +
K−1∑
j=1

(
K

j

)
jK−jM(K − j,K − j + 1, j). (5)

We base the proof of the theorem on few lemmas: first we assume the ergod-
icity and derive the model’s product-form expression. Then, we show that the
normalising constant GK is finite (thanks to the properties of the Kummer’s
confluent hypergeometric function) for finite K and hence the CTMC must be
ergodic.

Lemma 1. Assume that n(t) is ergodic and hence admits a unique stationary
distribution. Then, its expression is that of Eq. (4) where:

GK =
∑
n∈S

1∏K
i=1(niδni>0)!

. (6)
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Proof. The proof can be obtained by substitution of Eq. (4) in the system
of global balance equations of the CTMC or by noticing that the process is
dynamically reversible [11,14–16]. Let n = (n1, . . . , nK) and let its renaming be
ρ(n) = (nK , . . . , n1), then by [11, Theorem 1.14] we have to prove that Eq. (4)
satisfies:

π(n)μ(nk) = π(ρ(n + 1k − 1k−1))μ(nk−1 − 1),

where 1k is a K-size vector with a 1 in the k-th position and zeros elsewhere
and we assumed 10 = 1K and n0 = nK . �	

Notice that since S is an infinite set, at the moment the fact that GK is finite,
i.e., the infinite series (6) converges, depends on the assumption of ergodicity.
We now algebraically prove that (6) and (5) are equivalent and converge. As a
consequence the CTMC n(t) is ergodic.

Lemma 2. The series (6) is equivalent to the expression given by Eq. (5) which
is finite for any K ∈ N,K ≥ 2.

Proof. Let P(n) be the multiset with all the non-negative components of n, i.e.,
P(n) = {ni : ni ≥ 0} and observe that for all the states n′ such that P(n′) = P(n)
the expression under the sum symbol of Eq. (6) is the same. Let 1 ≤ j ≤ K − 1
and (x1, . . . , xj) be a tuple such that xi ≥ 0 for all i = 1, . . . , j and

∑j
i=1 xj = n,

with n ≥ 0. Basically, j denotes the number of non-negative components in a state
and n their sum. Notice that, given j and n we can count how many states have
exactly j non-negative components whose sum is n. This is given by the product
of the number of non-negative solutions of the Diophantine’s equation y1 + . . . +
yj = n multiplied by the number of strictly positive solutions of the Diophantine’s
equation y1 + . . .+yK−j = n (since the sum of all the state components is 0), i.e.,
we can rewrite the normalising constant as:

GK = 1 +
K−1∑
j=1

∞∑
n=K−j

∑
x:x1+...+xj=n

1∏j
t=1 xt!

(
K

j

)

·
(

n − 1
K − j − 1

)
= 1 +

K−1∑
j=1

(
K

j

) ∞∑
n=K−j

jn

n!

(
n − 1

K − j − 1

)
,

where the last equality follows from the multinomial theorem. Notice that the
boundaries of j in the external summatory start from 1 (there cannot be any state
with all negative components) and terminate at K − 1. Indeed, the only state
with all non-negative components is 0 that we take into account by summing 1
at the beginning of the right-hand-side.

We can rewrite Eq. (2) as:

M(a, b, x) =
∞∑
k=0

(a)k
Γ (b + k)

xk

k!
b ∈ N

+. (7)
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So we have:

GK = 1 +
K−1∑
j=1

(
K

j

) ∞∑
w=0

jw+K−j

(w + K − j)!

(
w + K − j − 1

K − j − 1

)

= 1 +
K−1∑
j=1

(
K

j

) ∞∑
w=0

jw+K−j

(w + K − j)!
(K − j)w

w!

= 1 +
K−1∑
j=1

(
K

j

)
jK−j

∞∑
w=0

jw

Γ (w + K − j + 1)
(K − j)w

w!

= 1 +
K−1∑
j=1

(
K

j

)
jK−jM(K − j,K − j + 1, j)

where the last equality follows from Eq. (7) with a = K − j, b = K − j + 1 and
x = j. Finally, we observe that 1 < GK < ∞ since its definition does not involve
any infinite sum and function M evaluated at the specified integer parameters
is always finite and non-negative. �	
Proof of Theorem 1. The theorem follows straightforwardly by Lemmas 1 and 2.

�	
In order to derive the expression for the marginal distribution of the join-

queue lengths we have to consider that although the state space of each single
queue ranges from −∞ to +∞, the joint state space is not the Cartesian product
of the single state spaces. Therefore, the knowledge of GK is not sufficient to
obtain the marginal distribution. A similar situation arises when studying closed
queueing networks. However, while for closed product-form queueing networks
several algorithms have been proposed, e.g., [4–6], in our case we are able to
express the marginal distributions in terms of (regularized) Kummer’s hyperge-
ometric functions evaluated in points whose closed-form solution is known.

Let us consider the definition of GK given by Eq. (6), and let GN
k be the

normalising constant defined as:

GN
k =

∑
n∈SN

k

1∏k
i=1(niδni>0)!

,

where SN
k = {(n1, . . . , nk) :

∑k
i=1 ni = N}. Note that GK = G0

K . Then, we can
write the marginal distribution as:

π∗
K(n) =

1
(nδn>0)!

G−n
K−1

G0
K

. (8)

The following Lemma gives the expression for GN
k for arbitrary k ≥ 1 and N ∈ Z.
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Lemma 3. The expression for GN
k is:

– If N ≥ 0:

GN
k =

(kμ)N

N !
+ μN

k−1∑
j=1

(
k

j

)
jN+k−j M(k − j,N + k − j + 1, j).

– If N < 0 and 2 ≤ k ≤ −N :

GN
k =

(−N − 1
k − 1

)
μN + μN

k−1∑
j=1

(
k

j

)( −N − 1
k − j − 1

)
M(−N,−N − k + j + 1, j).

– If N < 0 and k > −N :

GN
k = μN

k+N−1∑
j=1

(
k

j

)
jN+k−j M(k − j,N + k − j + 1, j)

+μN
K−1∑

j=k+N

(
k

j

)( −N − 1
k − j − 1

)
M(−N,−N − k + j + 1, j)

– If k = 1:

GN
1 =

{
μN/N ! if N ≥ 0
μN if N < 0

Proof. The proof is based on hypergeometric function manipulations.

In Fig. 3b we show the distribution of π∗
K(n) for K = 2, 5, 10, 15. Notice that

while for K = 2 the distribution is symmetric with respect to n = 0, this is
not true for K > 2. Moreover, by increasing the value of K, numerical evidences
suggest that there may exist a limiting distribution for the marginal probabilities
(and hence for the throughput and the power consumption). Another important
aspect is the observation that the expression of πK and π∗

K in terms of (regular-
ized) Kummer’s confluent functions allows us to have a symbolic expression for
the stationary probabilities as shown in Fig. 3a for K = 3.

One of the most important performance indices for a rate-control algorithm
is the throughput, i.e., the number of join performed by the station per unit
of time. In fact, by slowing down some servers we surely decrease the system’s
throughput. We are able to provide an analytical expression for the station’s
throughput that depends on the number of servers K and the service rate μ.

Lemma 4. The throughput XK(μ) of the model in steady-state is:

XK(μ) =
μ

KGK

(
K +

K−1∑
j=1

(
K

j

)
j
(
jK−j+1M(K − j,K − j + 2, j)

−(j − 1)K−j+1 M(K − j,K − j + 2, j − 1)

+(K − j)jK−j−1M(K − j,K − j + 1, j
))

. (9)
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Proof. The proof is based on hypergeometric function manipulations.

In Table 1 we show the analytical expression of the throughput for some
values of K.

Table 1. Analytical expression of the throughput for the FHW model with K severs.

K XK(µ)

2
4µ(e − 1)

K(2e − 1)

3
9µ(e2 − e + 1)

K(1 + 3e2)

4
8µ(2e3 + 3e − 2)

K(4e3 + 6e2 + 2e − 1)

5
25µ(6e4 + 12e3 − 11e + 6)

2K(15e4 + 60e35e + 30E2 − 5e + 3)

6
6µ(24e5 + 120e4 + 120e3 − 40e2 + 53e − 24)

K(24e5 + 180e4 + 200e3 + 20e2 + 9e − 4)

7
147µ(40e6 + 360e5 + 600e4 + 100e3 + 120e2 − 103e + 40)

4K(210e6 + 2520e5 + 5250e4 + 2100e3 + 210e2 − 77e + 30)

The numerical evaluations of both GN
k and of XK(μ) rely on the computation

of the confluent hypergeometric function M(a, b, z) with parameters a ∈ N
+,

b ∈ N
+ and b > a. Indeed, if a and b are non-negative integers, then the series

(3) converges for all finite x. In particular, for b > a, M(a, b, z) converges to [19]:

M(a, b, x) =

(
ex

a−1∑
k=0

(1 − a)k (−x)k

k! (2 − b)k

−
b−a−1∑
k=0

(1 − b + a)k xk

k! (2 − b)k

)
(2 − b)a−1 x1−b

(a − 1)!
. (10)

4 Numerical Evaluation

In this section we study the sensitivity of the throughput, the expected join-
queue length and the power consumption with respect to the distribution of
the service times. Then, we study the performance in terms of throughput and
energy consumption of the model implementing the rate-control algorithm under
the assumptions introduced in Sect. 3. We consider three important performance
indices: the system throughput, the expected join-queue lengths and the power
consumption. While for the first index Lemma 4 gives us its analytical expression,
for the latter two indices we rely on the stochastic simulation and on the bounded
approximation described in Sect. 4.1, respectively.
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4.1 The Power Consumption

Since our rate-control mechanism reduces the computation speed of the severs,
this can be interpreted as a reduction of the operating frequency leading to a
reduction of the overall server power consumption. Clearly, the minimum power
consumption with maximum throughput corresponds to a situation in which the
servers work at a constant maximum rate, but we have already discussed that
the drawback of this approach is the infinite growth of the join-queue length in
saturated models.

Under the assumptions of Sect. 3 we know the analytical expression of the
marginal stationary distribution for each server (see Eq. (8) and Lemma 3).
This allows us to define a lower and upper bound of the energy consumption
by truncation of the probabilities. Given an integer E > 0, the expected power
consumption in steady-state PK is bounded by:

−1∑
i=−E

π∗
K(i) +

E−1∑
i=0

π∗
K(i)

1
(i + 1)3

< PK <

−1∑
i=−E

π∗
K(i)

+
E−1∑
i=0

π∗
K(i)

1
(i + 1)3

+ (1 −
E−1∑
i=−E

π∗
K(i)),

where we have assumed that the sever at maximum speed consumes 1 unit of
energy for unit of time, and that the power consumption depends on the cube
of the operating frequency, i.e.:

PK =
−1∑

i=−∞
π∗
K(i) +

∞∑
i=0

π∗
K(i)

1
(i + 1)3

.

Clearly, more accurate models of the relation between operating frequency and
power consumption can be considered, but this is out of the scope of this paper,
especially because this relation depends on the intrinsic characteristics of the
processors [20]. It is important to notice that with small values of E � 10 we
obtain tight bounds for the energy consumption as shown in Fig. 3c.

4.2 Sensitivity Analysis

The analytical model proposed in Sect. 3 requires that the service times are
state dependent i.i.d. exponential random variables. Under this assumption, and
by considering a saturated model with immediate join, we proved the stability
of the process modelling the join-queue lengths. Clearly, we expect to find a
sensitivity of the performance indices on the distribution of the service times,
because it is its variance the cause of the join-queue length growth in the model
without the rate-control mechanism. Figures 3d–f show the three considered per-
formance indices for a saturated model with immediate join. The indices with
exact or approximated analytical expression have not been simulated, while the
others have been obtained via stochastic simulation. For each scenario we run
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15 independent experiments and considered the confidence interval of 95 %. The
widths of the confidence intervals are all below 1% of the measure and are too
small to be visible in the plots. The warm up periods have been removed by
using the Welch’s method [24]. The service time distributions have mean 1 and
the Erlang 2 has a coefficient of variations of

√
2/2 while the Hyper-Exponential

has a coefficient of variation of 1.31.
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4.3 Performance of the Algorithm as Function
of the Number of Servers

In this section we focus on the saturated FHW model with immediate join
and study the impact of the number of servers K on the performance indices.
Figures 3d, e and f show the system’s throughput, the expected queue length for
the join-queues and the power consumption for each server when the maximum
service rate is μ = 1. Notice that the expected queue length is for each server
and is obtained by stochastic simulation. We notice that while the throughput
decreases very slowly with the growth of the number of servers (e.g., for K = 150
servers we compute a throughput of 0.677), the expected join-queue lengths tend
to grow with the number of servers and hence for large models the benefits of the
rate-adaptation algorithm are lower. As for the power consumption, the power
consumption is significantly lower than the reference value of the model without
rate-control, 1. For instance for K = 6 the throughput is XK(1) � 0.70 while
the power consumption PK � 0.54.

5 Conclusion

In this paper we have proposed a rate-control mechanism for fork-join stations
designed to maintain the join-queue lengths finite in the long run, even when the
station is saturated. We observed that the variance in the service time distri-
bution causes an unbounded increase of the join-queue lengths. Informally, the
idea behind our rate-control mechanism is to reduce the operating speed of the
servers that have served more customers while maintaining at the maximum level
the speed of the other servers. Each server maintains a state variable which is
incremented at a local service completion event and is decremented at a service
completion event occurring at a neighbour server. The servers maintain their
maximum speed if the state variable is not positive, otherwise they reduce their
speed. This allows for both a control of the join-queue length and a reduction on
the system’s power consumption. However, we also observed a reduction in the
system’s throughput. Despite the few analytical results available for fork-join
stations, we have provided the analytical expression for the steady-state distri-
bution of the rate-control model and derived the marginal distributions for each
server and the system’s throughput under the FHW assumptions. The stationary
distributions and the performance indices are expressed in terms of Kummer’s
confluent hypergeometric functions which are evaluated at special points that
require the computations of finite sum. We resorted to the simulation for study-
ing the impact of the rate-control algorithm on stations with different service
time distributions and the experiments have supported the intuition that the
performance degrades with the increase of the variance in the service time dis-
tribution. The main strengths of the proposed mechanism are the easiness of
implementation, since the algorithm is basically stateless and does not require
nor the estimation of the jobs’ service times as in [20], neither the knowledge
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of the service time distributions as in [22,23], and the effectiveness in drasti-
cally reducing the expected join-queue lengths with respect to the models not
implementing any rate-control mechanism for the servers.

With respect to a solution which addresses the problem of containing the
join-queue length based on a rate adaptation mechanism that considers for each
server its associated join-queue length, our approach has the advantage that
its implementation is independent of the system’s parameters since it aims at
balancing the total work performed by each server. Conversely, the join-queues
may be long because the join operation’s rate is close to the system’s throughput
and hence considering only its instantaneous state for deciding the service rate
can be counter-productive.

Future work includes the derivation of the analytical expression for other
performance indices in the case of the saturated FHW model. Moreover, we aim
at introducing a parameterisation of the algorithm so that we can control the
servers’ speed more accurately, e.g., by reducing the service rate for positive
states n by αn + 1, where 0 < α < 1 is a parameter that regulates the trade-off
between the throughput and the expected join-queue length. However, at the
moment, no analytical solution for such a model is known.
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Abstract. We study the problem of future bike availability prediction
of a bike station through the moment analysis of a PCTMC model with
time-dependent rates. Given a target station for prediction, the moments
of the number of available bikes in the station at a future time can be
derived by a set of moment equations with an initial set-up given by
the snapshot of the current state of all stations in the system. A directed
contribution graph with contribution propagation method is proposed to
prune the PCTMC to make it only contain stations which have significant
contribution to the journey flows to the target station. The underlying
probability distribution of the available number of bikes is reconstructed
through the maximum entropy approach based on the derived moments.
The model is parametrized using historical data from Santander Cycles,
the bike-sharing system in London. In the experiments, we show our
model outperforms the classic time-inhomogeneous queueing model on
several performance metrics for bike availability prediction.

Keywords: Availability prediction · PCTMC models · Moment
analysis · Maximum entropy reconstruction

1 Introduction

In recent years, we have seen significant growth of bike-sharing programs all over
the world [1]. Public bike-sharing systems have been launched in many major
cities such as London, Paris, and Vienna. Indeed, they have become an impor-
tant part of urban transportation which provides improved connectivity to other
modes of public transit. The concept of bike-sharing systems is rather simple:
the system consists of a number of bike stations distributed over a geographic
area (city). Each station is equipped with a limited number of bike slots in which
public bikes can be parked. When users arrive at a station, they pick up a bike,
use it for a while, and then return it to another station of their choice.

With the increasing popularity of the smart transport theme, there has been
great interest from the research community in the intelligent management of
bike-sharing systems. Topics include, but are not limited to, policy design [2,3],
intelligent bike redistribution [4–6], and user journey planning [7,8]. The focus
of this paper is on the probabilistic prediction of the number of available bikes in
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stations. Having a predictive model is of vital interest to both the user and the
system administrator. The user can use it to identify likely origin/destination
stations for which a trip can be successfully made. System administrators can
use the model to undertake service level agreement checking, and plan bike
redistribution for stations which are likely to break the service level requirement.

In this paper we present a novel moment-based prediction model that can
provide probabilistic forecasts for the number of available bikes in a bike sta-
tion. By representing the bike-sharing system as a Population Continuous Time
Markov Chain (PCTMC) with time-dependent rates, our model is explanatory
as the dynamics of the system is explicitly given. Gast et al. [8] show the bene-
fits of predicting (forecasting) the entire probability distributions of possible bike
availabilities in a station, compared with previous models that were only able
to produce point estimates, often using time-series-based techniques [7,9,10].
However, unlike [8], in which all the considered forecasting methods worked on
the level of isolated stations, our model also captures the journey dynamics
between stations. Guenther and Bradley [11] also provide a inhomogeneous-time
PCTMC model with time-dependent rates for bike availability prediction, how-
ever there are several key differences between that model and ours. Firstly, our
model provides the full probability distribution of the number of available bikes
in a station whereas their model only provides a point estimate. Secondly, we use
a model reduction method to prune our PCTMC such that the significant jour-
ney dynamics with respect to the target station are guaranteed to be preserved.
However, their model aggregates stations which are spatially close, assuming
that they have similar journey durations to the target station, which causes the
information about the emptiness and fullness of stations to be lost.

We summarize the contribution of our paper as follows. Firstly, a novel
PCTMC model with time-dependent rates is presented to successfully capture
the journey dynamics between bike stations. Secondly, we propose a novel model
reduction technique to prune the PCTMC model based on the directed contri-
bution graph with a contribution propagation method for a given target station
for bike availability prediction. Finally, we reconstruct the underlying proba-
bility distribution of the number of available bikes in the target station using
the maximum entropy principle based on a few moments generated from fluid
approximation of the PCTMC, and show that the model has a better perfor-
mance on a set of metrics for bike availability prediction compared with the
classic Markov single-station queueing model.

The rest of this paper is structured as follows. We briefly introduce the con-
cepts of PCTMC with time-dependent rates in the next section. Section 3 gives
the introduction of the classic Markov queueing model for bike availability pre-
diction. In Sect. 4, we present our PCTMC model for the bike-sharing scenario.
In the next section we show how to reconstruct the probability distribution
of number of available bikes using the maximum entropy approach. Section 6
presents the experimental results of our model on the London bike-sharing sys-
tem compared with the classic Markov queueing model. Finally, Sect. 7 discusses
possible extensions of our model and draws final conclusions.
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2 PCTMC with Time-Dependent Rates

A PCTMC is a stochastic process which consists of a number of distinct agent
populations and a set of transition classes. The state of a PCTMC is captured
by an integer vector counting the number of each agent type. The model evolves
with the firing of transitions. When a transition fires, one or more agent pop-
ulations are updated. Each transition is associated with a rate function, which
assigns a rate governed by an exponential distribution to the transition based
on the current state of the PCTMC. In this paper, we specifically consider time-
inhomogeneous PCTMCs, in which transition rates can also be time-dependent.
Specifically, a PCTMC with time-dependent rates can be expressed as a tuple
P = (X(t), T ,X0):

– X(t) = (X1(t), ...,Xn(t)) ∈ Z
n
≥0 is an integer vector with the ith (1 ≤ i ≤ n)

component representing the current number of an agent type Si.
– T = {τ1, ..., τm} is the set of transition classes, of the form τ = (rτ (X, t),dτ ),

where:
1. rτ (X, t) ∈ R ≥ 0 is a time-dependent rate function, associating with each

transition the rate of an exponential distribution, depending on the state
of the PCTMC X as well as the current time t.

2. dτ ∈ Z
n is the update vector which gives the net change for each element

of X caused by transition τ .
– X0 ∈ Z

n
≥0 is the initial state of the model.

Transition rules can be easily expressed in the chemical reaction style, as

�1S1 + . . . + �nSn −→τ �nS1 + . . . + �nSn at rate rτ (X, t)

where the net change of agents of type Si due to transition τ is
given by di

τ = �i − �i (1 ≤ i ≤ n), and the transition rate is{
rτ (X, t) if Xi ≥ �i ∀i = 1, 2, . . . , n

0 otherwise.
As the state space of PCTMC models is often very large or even infinite,

numerical techniques traditionally used for performance analysis, based on a
Markovian approach, are entirely infeasible. Stochastic simulation is feasible,
but deriving useful metrics such as mean, variance, probability distribution
of populations often requires a large number of simulation runs, thus making
this approach extremely costly in terms of computational resources, particularly
when estimating full probability distributions over large state spaces. In this
paper, we will adopt a much more computationally efficient approach to analyse
the PCTMC for the bike-sharing model. Specifically, we approximate the evolu-
tion of the moments of the underlying population-level stochastic process of a
PCTMC model by the following set of ODEs [12]:

d
dt

E[M(X(t))] =
∑
τ∈T

E[(M(X(t) + dτ ) − M(X(t)))rτ (X, t)] (2.1)
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where M(X) denotes the moment to be calculated. For instance, by substitut-
ing M(X) with Xi, Xi

2 and XiXj , we get the set of ODEs to describe the
first moment, second moment and second-order joint moment respectively, of
population variables in an arbitrary PCTMC model. The set of ODEs can be
directly solved by numerical simulation as long as there is no transition rate
in the PCTMC with non-linear polynomials. With time-dependent rates, the
system becomes hybrid with discrete jumps of rates at some specific points of
numerical simulation.

3 Markov Queueing Model

Before introducing our model, we first give the traditional Markov queueing
model for bike stations which is going to serve as our comparator.

The most straightforward way to evaluate the behaviour of a station is
to analyse it in isolation. In this case, a station can be modelled as a time-
inhomogeneous Markov queue M/M/1/ki, illustrated in Fig. 1.

0 1 2 . . . ki

λi(t)

μi(t)

λi(t)

μi(t)

λi(t)

μi(t)

λi(t)

μi(t)

Fig. 1. The time-inhomogeneous Markov queue for station i

Specifically, ki denotes the capacity of a station i, λi(t) and μi(t) are the
time-dependent bike arrival and pickup rates of station i at time t of a day.
Usually, the time of a day is split into n even slots.

Then, using the transition rate matrix for station i: Q(λi(t), μi(t)), where

Q(λ, μ) =

⎛
⎜⎜⎜⎜⎜⎝

−μ μ
λ −(μ + λ) μ

. . . . . . . . .
λ −(μ + λ) μ

λ −λ

⎞
⎟⎟⎟⎟⎟⎠ ,

one can predict the probability that there are y bikes in station i at time t + h
given the station has x bikes at time t, by the following equation:

Pr(y | x, t, h) = exp

(∫ h

0

Q(t + s)ds

)
x,y

where exp(M)x,y is the element at row x and column y of the matrix exponential
of M . Such a model has been used to make bike availability or station inventory
level predictions in several papers in the literature (e.g. [6,8,13]).
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Two assumptions are made in this model. First, the bike arrivals and pickups
at stations form Poisson processes. Second, the state of a particular station
does not depend on the state of the others. The first assumption is successfully
validated for busy stations in [8], using historical data from the Velib bike-sharing
system in Paris. However, we conjecture that the second assumption is generally
not true in practice. For example, when a station is empty, no bikes can depart
from it, therefore the arrival rate at other stations should be reduced. Hence,
we seek a more realistic model, which captures the journey dynamics between
stations.

4 PCTMC of Bike-Sharing Model

4.1 A Naive PCTMC Model

To faithfully represent the journey dynamics between bike stations in a bike-
sharing system with N stations, we first propose a naive PCTMC model which
contains the following transitions:

Bikei −→ Sloti + Journeyi
j@P1 at μi(t)p

i
j(t) ∀i, j ∈ (1, N)

Journeyi
j@Pl −→ Journeyi

j@Pl+1 at (P i
j /di

j) #(Journeyi
j@Pl)

l ≥ 1 ∧ l < P i
j , ∀i, j ∈ (1, N)

Journeyi
j@PP i

j
+ Slotj −→ Bikej at (P i

j /di
j) #(Journeyi

j@PP i
j
) ∀i, j ∈ (1, N)

where Bikei, Sloti represent a bike and a slot agent in station i respectively;
Journeyi

j@Pl represents a bike agent which is currently on a journey from station
i to station j at phase l. Note that since journey durations are generally not
exponentially distributed, we fit the journey duration from station i to station j
as an Erlang distribution with P i

j phases each with rate P i
j/di

j , where di
j is the

mean journey duration. μi(t) is the bike pickup rate in station i at time t, pi
j is

the probability that a journey will end at station j given that it started from
station i at time t. #(S) denotes the population of an agent type S.

Obviously, the above model is not scalable. Since the total number of bike
stations N is usually very large (for example there are around 750 bike stations
in London), it is computationally infeasible to analyse a model which captures
the full set of bike stations. Fortunately, since we are only interested in the
prediction of bike availability of a single target station at a time, we only need
to model stations which have a significant contribution to the journey flows
to the target station (knowing the state of a station which has a very small
contribution to the journey flows to the target station will have negligible impact
on the accuracy of bike availability prediction for the target station). Thus, a
directed contribution graph together with a contribution propagation method is
proposed to automatically identify the set of stations which need to be modelled
with respect to a given target station for bike availability prediction.
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4.2 Directed Contribution Graph with Contribution Propagation

Here, we show how to derive a set of bike stations Θ(v) in which all stations
have a significant contribution to the journey flows to a given target station
v ∈ (1, 2, . . . , N) for bike availability prediction. Concretely, we first need a
way to quantify the contribution of one station to the journey flows to another
station. Specifically, we let Cij denote the contribution coefficient of station j to
station i which quantifies the contribution of station j to the journey flows to
station i.

One station can contribute to the journey flows to another station both
directly and indirectly. The definition of a direct contribution coefficient at time
t is given by the following simple formula:

cij(t) = λj
i (t)/λi(t)

in which λj
i (t) represents the bike arrival rate from station j to station i at time

t and λi(t) =
∑

j λj
i (t). Then, it is clear that cij(t) ∈ [0, 1], 0 ≤ ∑

j �=i cij(t) ≤ 1.
With the definition of directed contribution coefficient, we can construct a

directed contribution graph for the bike-sharing system at each time slot of a
day. The definition of the directed contribution graph is given as follows (for
convenience, we abbreviate cij(t) to cij):

Definition 1. For an arbitrary time t, the directed contribution graph for a
bike-sharing system at time t is a graph in which nodes represent the stations in
the system, and there is a weighted directed edge from node i to node j if cij > 0,
and in this case the weight of the edge is cij. Thus, the direction of edges is the
inverse of contribution flows.

Figure 2 shows a sample directed contribution graph which consists of six bike
stations.

i

n

k

l

m

j

cin = 0.2

cik = 0.7

cnl = 0.5

clk = 0.3

ckm = 0.8

clj = 0.6

cmj = 0.9

Fig. 2. An example directed contribution graph with six stations

For those stations which are not directly connected in the directed relation
graph, by using a contribution propagation method, we can evaluate the indirect
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contribution coefficient of one station on the journey flows to another station.
Specifically, the indirect contribution coefficient is quantified by a path depen-
dent coefficient cij,γ , which is the product of the direct contribution coefficients
along an acyclic path γ from node i to node j. Then, the contribution coefficient
of station j to station i is characterized by the maximum of the path dependent
coefficients:

cij,γ =
∏
kl∈γ

ckl

Cij =

{
max

all paths γ
cij,γ if there exists a path from node i to node j

0, otherwise

For example, according to Fig. 2, the contribution coefficient of station j to
station i is Cij = cik ×ckm ×cmj = 0.504, since cik ×ckm ×cmj > cin ×cnl ×clj >
cin × cnl × clk × ckm × cmj .

With the contribution coefficient, given a target station v, then for i ∈
(1, 2, . . . , N), we can infer:

i ∈ Θ(v) if Cvi > θ

i /∈ Θ(v) if Cvi ≤ θ

where θ ∈ (0, 1) is threshold value which can be used to control the extent of
model reduction. A point to note is that we choose to characterize contribu-
tion coefficients by the maximum instead of the sum of path dependent coeffi-
cients because we only want to model stations which have at least a significant
(direct or indirect) journey flow to the target station. To model stations which
have many small journey flows to the target station is costly but the impact is
rather unpredictable. Moreover, the maximum of path dependent coefficients has
another nice property that if i ∈ Θ(v) and Cvi = cvi,γ , then for a station j which
is on the path γ, it is certain that Cvj > θ, thus j ∈ Θ(v). As a result, for all
stations which have a significant journey flow to the target station, that journey
flow will certainly be captured in the resulting reduced PCTMC. However, this
property will not be preserved if we use the sum of path dependent coefficients.
For example in Fig. 2, if we set θ = 0.55, then

∑
γ cij,γ > θ, thus station j is

included in the reduced PCTMC. However, since
∑

γ cil,γ < θ, station l will not
be included, thus

∑
γ cij,γ < θ will not be satisfied in the reduced PCTMC.

As an illustration of the extent of model reduction, Fig. 3 shows the empirical
cumulative distribution function of contribution coefficients between all bike
stations during all time slots (which is computed by journey data from the
London Santander Bike-sharing system, with 20 min slot duration). It can be
seen that more than 96% stations can be excluded even if θ is set to the small
value 0.01.

4.3 The Reduced PCTMC Model

Given a target station v and current time t, suppose we are interested in the
number of bikes at the station at time t + h, then let s = (s1, s2, . . . , sn) be the
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Fig. 3. The empirical cumulative distribution function of contribution coefficients
(x is the value of contribution coefficients)

minimal set of time slots which covers [t, t + h], we obtain Θ(v) = Θ(v, s1) ∪
Θ(v, s2) ∪ . . . ∪ Θ(v, sn) ∪ v, where Θ(v, si) is the set of bike stations which have
significant contribution to the journey flows to the target station at time slot si.

Therefore, the PCTMC for the prediction of bike availability at station v at
time t + h can be represented as follows:

Bikei −→ Sloti at μi(t)
(
1 −

∑
j /∈Θ(v)∨cji≤θ

pi
j(t)

)
∀i ∈ Θ(v) (4.1)

Sloti −→ Bikei at
∑

j /∈Θ(v)∨cij≤θ

λj
i (t) ∀i ∈ Θ(v) (4.2)

Bikei −→ Sloti + Journeyi
j@P1 at μi(t)pi

j(t) ∀i, j ∈ Θ(v) ∧ cji > θ (4.3)

Journeyi
j@Pl −→ Journeyi

j@Pl+1 at (P i
j/di

j) #(Journeyi
j@Pl)

l ≥ 1 ∧ l < P i
j ,∀i, j ∈ Θ(v) ∧ cji > θ (4.4)

Slotj + Journeyi
j@PP i

j
−→ Bikej at (P i

j/di
j) #(Journeyi

j@PP i
j
)

∀i, j ∈ Θ(v) ∧ cji > θ (4.5)

Journeyi
j@PP i

j
−→ ∅ at 1

(
Slotj(t) = 0

)
(P i

j/di
j) #(Journeyi

j@PP i
j
)

∀i, j ∈ Θ(v) ∧ cji > θ (4.6)
where (4.1) represents a bike in station i is picked up for a journey to a station
outside Θ(v) or a station to which the journey flow is negligible (the direct
contribution coefficient cji ≤ θ indicates that journey flow from i to j must not
be a significant journey flow); (4.2) represents a bike is returned to station i from
a station outside Θ(v) or a station from which the journey flow is negligible;
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(4.3) represents a bike in station i is picked up for a journey to a station j
inside Θ(v) and the journey flow is significant; (4.4), (4.5) represent progress
and completion of the journey, respectively; (4.6) assumes a bike in transit from
station i to station j will be returned to another station outside Θ(v) when there
is no empty slot in station j, where 1(Slotj(t) = 0) is an indicator function which
returns 1 when the number of empty slots at station j at time t is zero, otherwise
returns 0.

Dealing with Indicator Function. Since we are going to numerically solve the
PCTMC using moment ODEs as illustrated in Eq. (2.1), we can only access the
moments of the number of empty slots at a station i at time t, denoted as um

i ,
during numerical simulation (here we let um

i denote E[
(
Sloti(t)

)m], where m is
the order of the moment), whereas the number of empty slots at station i at
time t is a random variable. Thus, we propose a method to approximate the
indicator function by a function of the moments um

i of the number of empty
slots and the capacity of the station: 1(Sloti(t) = 0) ∼ f(u1

i , u
2
i , . . . , u

m
i , ki).

Concretely, given the first m moments of the random variable Sloti(t), and
the value domain Sloti(t) ∈ [0, 1, . . . , ki], we can approximate the probability
distribution of Sloti(t) by a discrete distribution with finite support ki. For
example, if we only know the first moment of Sloti(t) (which is u1

i ), we can
fit a binomial distribution Sloti(t) ∼ Binomial(ki, u

1
i /ki) to the probability

distribution of Sloti(t). In this case, we get Pr(Sloti(t) = 0) = (1 − u1
i /ki)ki .

Furthermore, if we know the first two moments (u1
i , u

2
i ), then we can fit a beta-

binomial distribution Sloti(t) ∼ BetaBinomial(ki, α, β), where

α =
u1

i u
2
i − ki(u1

i )
2

ki(u1
i )2 + kiu1

i − kiu2
i − (u1

i )2
β =

(ki − u1
i )(kiu

1
i − u2

i )
ki(u1

i )2 + kiu1
i − kiu2

i − (u1
i )2

Thus, we get

Pr(Sloti(t) = 0) =
B(α, ki + β)

B(α, β)

where B(a, b) is a beta function. Theoretically, with knowledge of more moments
of Sloti(t), the estimation of Pr(Sloti(t) = 0) will be more accurate. Finally, we
let

1(Sloti(t) = 0) =

{
1 if Pr(Sloti(t) = 0) > p

0 if Pr(Sloti(t) = 0) ≤ p

where Pr(Sloti(t) = 0) = f(u1
i , u

2
i , . . . , u

m
i , ki), p is a threshold value beyond

which we believe the number of empty slots in station i is zero. In general p
should be set to a value close to 1. In our later experiments, we explicitly set
p = 0.9.

Specifying the Initial State. Given a snapshot of the bike-sharing system at a
time instant t which contains the following information1:

Bikei(t), . . . , Sloti(t), . . . , Journeyi(t,Δt), . . .
1 This information is actually recorded for the London bike-sharing system.
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where Bikei(t) and Sloti(t) are the current number of available bikes and empty
slots at a station i; Journeyi(t,Δt) represents there is a bike currently en
route from station i, and the journey started at time t − Δt. Then, for each
Journeyi(t,Δt), we use a random number to determine the destination of the
journey, and the time Δt to determine the appropriate phase of the journey
time. Thus we generate a random number α uniformly distributed in (0, 1), and
let pi

k(t − Δt),∀k be the probability that the journey will end at station k given
that the journey started from station i at time t − Δt. Then

Journeyi(t,Δt) = Journeyi
j(t,Δt) if α ≥

j−1∑
k=0

pi
k(t−Δt) and α <

j∑
k=0

pi
k(t−Δt).

Furthermore, we let

Journeyi
j(t,Δt) = Journeyi

j@Pl if Δt ≥ (l − 1)di
j/P i

j and Δt < l × di
j/P i

j ,

where l ≤ P i
j . Otherwise, if l > P i

j , we let Journeyi
j(t,Δt) = Journeyi

j@PP i
j
.

Solving the Moment ODEs. We derive the moment ODEs following Eq. (2.1) for
the above PCTMC for the first m order of moments. Furthermore, using the
correlation heuristics introduced in [14], we can make a further reduction on the
size of the moment ODEs, utilizing the neighbourhood relation between agents in
the above PCTMC. Specifically, we let E[(Xi)mi(Xj)mj ] ≈ E[(Xi)mi ]E[(Xj)mj ]
if there does not exist a transition in the PCTMC in which both agent Si and Sj

are directly involved. Due to limited space, we refer to [14] for more detail of the
reduction algorithm. The moment ODEs can be solved by numerical simulation
using standard methods.

5 Reconstructing the Probability Distribution Using
the Maximum Entropy Approach

From the moment analysis of the PCTMC for bike-sharing model, we gain the
first m moments of the number of available bikes in the target station at the
prediction time t+h, i.e.

((
Bikev(t+h)

)1
,
(
Bikev(t+h)

)2
, . . . ,

(
Bikev(t+h)

)m
)
,

which we denote as (u1, u2, . . . , um) in the following. Our goal is to predict the
probability that the station has a specific number of bikes at time t + h. This
means the problem is to reveal Pr

(
Bikev(t + h) = i | u1, u2, . . . , um, kv

)
, where

i ∈ (1, 2, . . . , kv). Therefore, we need to reconstruct the entire probability distri-
bution of the random variable Bikev(t + h) based on its first m moments. The
corresponding distribution is generally not uniquely determined. Hence, to select
a particular distribution, we apply the maximum entropy principle to minimize
the amount of bias in the reconstruction process. In this way, we assume the
least amount of prior information about the true distribution. Note that the
maximum entropy approach has been successfully applied to reconstruct distri-
butions based on moments in many areas, e.g. physics [15], stochastic chemical
kinetics [16], and performance analysis [17].
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5.1 Reconstruction Algorithm

Let Xv denote Bikev(t+h) for convenience, G be the set of all possible probability
distributions for Xv. Then, based on the maximum entropy principle, the goal
is to select a distribution g to maximize the entropy H(g) over all distributions
in G. The problem can be denoted as follows:

arg max
g∈G

H(g) = arg max
g∈G

( −
kv∑

x=0

g(x) ln g(x)
)

Furthermore, given (u1, u2, . . . , um), we know the following constraints should
be satisfied:

kv∑
x=0

xng(x) = un, n = 0, 1, . . . , m

where u0 = 1 to ensure that g is a probability distribution. Now, the prob-
lem becomes a constrained optimization program. Thus to perform the con-
strained maximization of the entropy, we introduce one Lagrange multiplier λn

per moment constraint. We thus seek extrema of the Lagrangian functional:

L(g, λ) = −
kv∑

x=0

g(x) ln g(x) −
m∑

n=0

λn

( kv∑
x=0

xng(x) − un
)

Functional variation with respect to the unknown distribution function g(x)
yields:

∂L

∂g(x)
= 0 =⇒ g(x) = exp

(
− 1 − λ0 −

m∑
n=1

λnxn

)

Since u0 = 1, we get

kv∑
x=0

exp

(
− 1 − λ0 −

m∑
n=1

λnxn

)
= 1.

Thus we can express λ0 in terms of the remaining Lagrange multipliers

e1+λ0 =
kv∑

x=0

exp

(
−

m∑
n=1

λnxn

)
≡ Z

Then, the general form of g(x) can be given as follows:

g(x) =
1
Z

exp

(
−

m∑
n=1

λnxn

)

Insert the preceding equation into the Lagrangian, we can then transform the
problem into an unconstrained minimization problem of the following function
with respect to variables λ1, λ2, . . . , λn:

Γ (λ1, λ2, . . . , λn) = lnZ +
m∑

n=1

λnun
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The convexity of the function Γ is proved in [15], which guarantees the existence
of a unique solution. Thus, a close approximation (λ∗

1, λ
∗
2, . . . , λ

∗
n) of the true

solution can be obtained by the classic gradient descent approach [18].
Thus, after finding (λ∗

1, λ
∗
2, . . . , λ

∗
n) through gradient descent, we can finally

predict

Pr
(
Xv = x

)
=

exp

(
− ∑m

n=1 λ∗
nxn

)

∑kv

i=0 exp

(
− ∑m

n=1 λ∗
nin

) , ∀x ∈ (1, 2, . . . , kv).

6 Experiments

In this section, we test the time cost and accuracy of our prediction model in
different cases and compare the accuracy of our model with the classic Markov
queueing model. We use the historic journey data and bike availability data from
January 2015 to March 2015 from the London Santander Cycles Hire scheme to
train our PCTMC model as well as the Markov queueing model, and the data
in April 2015 to test their prediction accuracy. As in [11], we fit the number
of journey phases between stations using the HyperStar tool [19] command line
interface. Specifically, we set the maximum value of P i

j to 20 to make our model
compact and also avoid overfitting. Moreover, for parameters estimation, we split
a day into slots of 20 min duration. In our experiments, given the bike availability
in a station at time t, we predict the probability distribution of the number of
available bikes in that station at time t + h, where h is set to 10 min for short
range prediction and 40 min for long range prediction.

The evaluation of our model is twofold. The first is accuracy, the second is
efficiency. These two aspects are both influenced by the value of two important
parameters, namely m, the highest order of moments being derived, and θ, the
coefficient threshold for the identification of bike stations which have significant
contribution to the journey flow to the target station. For higher values of m, the
solution cost of our model becomes larger since more moment ODEs are derived,
however the model should become more accurate due to more constraints in the
probability distribution reconstruction based on the maximum entropy principle.
For higher values of θ, more stations are excluded in the reduced PCTMC for
a target station whereas the model accuracy can be potentially reduced. Thus,
to observe the effects on these two parameters, we do experiments with values
m = 1, 2, 3, θ = 0.01, 0.02, 0.03.

6.1 Root Mean Square Error

For prediction accuracy, we first consider the classic criterion based on root
mean square error (RMSE), a commonly used metric for evaluating point
predictions (i.e., predictions that only state the expected number of bikes).
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Table 1. The calculated RMSE on the prediction of the number of available bikes

10 min 40 min

Markov queueing model 1.52 3.03

PCTMC with θ = 0.03 1.49 2.81 m = 1, 2, 3

PCTMC with θ = 0.02 1.49 2.81 m = 1, 2, 3

PCTMC with θ = 0.01 1.48 2.79 m = 1, 2, 3

Table 1 compares the RMSE of the prediction results of our PCTMC model with
the Markov queueing model. As can be seen, the PCTMC model outperforms the
Markov queueing model in both prediction ranges. Especially in the long range,
a considerable improvement is observed. For the PCTMC models, smaller values
of θ only reduce the RMSE slightly. This means capturing less significant journey
flows will have little impact on the prediction accuracy. Moreover, we find that the
derived highest moments have almost no impact on the RMSE. This is obvious
since the expected number of available bikes is only decided by the first moment.

6.2 Probability of Making a Right Recommendation

Predicting the expected number of available bikes is important for system admin-
istrators when they want to decide how to redistribute bikes in the system. How-
ever, a user is interested in whether there is a bike in the target station when
she wants to pick up a bike from there, or whether there is a free slot in the
target station when she wants to return a bike to that station. We are specifically
interested in being able to make correct recommendations for the queries “Will
there be a bike?” and “Will there be a slot?”2 to measure the accuracy of our
model. Specifically, for the “Will there be a bike?” query, we respond “Yes” if
the predicted probability of that station having more than one bike is greater
than 0.8, and respond “No” if the predicted probability of that station having
more than one bike is less than 0.8. As is argued in [8], the root mean square
error is not an appropriate evaluation metric in this setting. After all, we need
a prediction of the probability of the recommendation being correct rather than
just a point estimate of the number of available bikes/slots. Instead, a suitable
evaluation scheme is proposed in [8] that ensures that the best prediction algo-
rithm can always be expected to obtain the highest score. Such a scheme is called
a proper scoring rule. For the setting described above, the following scoring rule
is proper:

Score =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if Pr(Xv > 0) > 0.8 ∧ xv > 0
−4 if Pr(Xv > 0) > 0.8 ∧ xv = 0
1 if Pr(Xv > 0) < 0.8 ∧ xv = 0
− 1

4 if Pr(Xv > 0) < 0.8 ∧ xv > 0

2 These queries can be readily extended to “Will there be n bikes?” and “Will there
be n slots?”.
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Table 2. Average score of making a recommendation to the “Will there be a bike?”
query with 95 % confidence interval

10min 40 min

Markov queueing model 0.9 ± 0.05 0.87 ± 0.06

PCTMC with θ = 0.03 0.91 ± 0.04 0.89 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.02 0.91 ± 0.04 0.89 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.01 0.92 ± 0.04 0.89 ± 0.05 m = 2

0.93 ± 0.04 0.91 ± 0.04 m = 3

Table 3. Average score of making a recommendation to the “Will there be a slot?”
query with 95 % confidence interval

10min 40 min

Markov queueing model 0.91 ± 0.04 0.88 ± 0.05

PCTMC with θ = 0.03 0.91 ± 0.04 0.9 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.02 0.91 ± 0.04 0.9 ± 0.05 m = 2

0.92 ± 0.04 0.91 ± 0.04 m = 3

PCTMC with θ = 0.01 0.92 ± 0.04 0.91 ± 0.05 m = 2

0.93 ± 0.04 0.92 ± 0.04 m = 3

Note that incorrect predictions need to be penalised by a negative score for the
rule to be proper. The evaluation of recommendations to the “Will there be
a slot?” query follows a similar pattern. Tables 2 and 3 show the experimental
results for different models and parameters. Note that the PCTMC model with
m = 1 is excluded since at least two moments are needed to make a meaningful
reconstruction of the probability distribution. As can be seen from the tables, the
PCTMC model clearly has a better performance in making such recommenda-
tions. Moreover, we also observe that with higher values of m, the average score
increases. This is because, with higher values of m, the reconstructed probability
distribution is closer to the true distribution.

6.3 Time Cost

The time cost of making a prediction is also important. Table 4 shows the time
cost for making a prediction using our PCTMC model with different parame-
ters (we do not show the time costs for the Markov queueing model since they
are negligible due to its small state space because of independence assumption).
For real time application, we assume that the time cost of making a prediction
must be less than one second. Thus, for point prediction, we recommend to set
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Table 4. Time cost to make a prediction with 95 % confidence interval

10 min 40 min

PCTMC with θ = 0.03 1.76 ± 0.2ms 6.98 ± 0.77ms m = 1

103 ± 13.7 ms 328 ± 43 ms m = 2

2.2 ± 0.2 s 8.9 ± 0.83 s m = 3

PCTMC with θ = 0.02 4.25 ± 0.4 ms 15.72 ± 1.42 ms m = 1

251 ± 25.5 ms 1.1 ± 0.1 s m = 2

8.9 ± 1.2 s 37 ± 3.5 s m = 3

PCTMC with θ = 0.01 13.5 ± 0.9 ms 49.1 ± 3.92 ms m = 1

8.8 ± 1.1 s 30.1 ± 0.31 s m = 2

33.9 ± 5.4 s 157 ± 17.8 s m = 3

θ = 0.01,m = 1 for both prediction ranges. For probability distribution pre-
diction, we recommend to set θ = 0.02,m = 2 for short range prediction,
θ = 0.03,m = 2 for long range prediction. Note that we used an Intel CORE i7
laptop with 8 GB RAM to run our experiments, the time cost could be consid-
erably reduced if a more powerful machine, e.g. a server, were used.

7 Conclusion

We have presented a moment-based approach to make predictions of availabil-
ity in bike-sharing systems. The moments of the number of available bikes are
automatically derived via a PCTMC with time-inhomogeneous rates, fitted from
historical data. The entire probability distribution is reconstructed using a max-
imum entropy approach. Our model is easy to understand since it explicitly
captures the dynamics of the bike-sharing system. We demonstrated that it out-
performs the classic Markov queueing model in several performance metrics for
prediction accuracy. Moreover we have also shown that by using the direct con-
tribution graph and the contribution propagation method, the model size can be
significantly reduced to such an extent that it is suitable for real time application.

In future work we plan to explore the impact of neighbouring stations, and
extend our model to capture their effects. For example, if a station is empty, then
the user is likely to pick up a bike from a neighbouring station, thus increasing
the pickup rate at the neighbouring station. Conversely, if a station is full, then
the user is likely to return a bike to a neighbouring station, increasing the bike
arrival rate there. We think another merit of our PCTMC model is that it can be
easily extended to capture such impact by using the indicator function to check
whether a neighbouring station is empty or full in order to alter the bike arrival
and pickup rate of a station. Unfortunately we do not currently have data to
capture the impact of neighbouring stations.
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Abstract. In this tool demonstration paper we present the ADTool2.0:
an open-source software tool for design, manipulation and analysis of
attack trees. The tool supports ranking of attack scenarios based on
quantitative attributes entered by the user; it is scriptable; and it incor-
porates attack trees with sequential conjunctive refinement.

1 Introduction

Attack trees are a well-known and established methodology for security assess-
ment that facilitates brainstorming, structures available information, and assists
human experts in analysis. An attack tree is a graphical model, and as such it
is better comprehensible than pure text-based approaches. However, graphical
models require usable and efficient tools with suitable Graphical User Interfaces
(GUIs) in order to be practical. Moreover, recent advances in automated risk
assessment techniques now call for tool support to handle automatically gener-
ated attack trees with many thousands of nodes [2,3]. Therefore, the need for
more comprehensive analysis tools emerged in the community. In this paper we
present the ADTool2.0 that provides advanced capabilities for design, visualiza-
tion, and analysis of attack trees [9], attack-defense trees [6], and attack trees
with sequential conjunctive refinement (SAND attack trees for short) [4].

The ADTool2.0 is not a simple extension of the previous tool [5], but a fully
revamped, more advanced system. It has been reimplemented using the advanced
cross-platform Docking Frames library1. The new version of the tool brings in
many new features, including ranking of critical attack scenarios, attack trees
with the sequential AND (SAND) operator, and scriptability.

In contrast to many commercial tools, such as SecurITree2 and AttackTree+3,
the ADTool2.0 is an open source software, freely available to the community4.

The research leading to the results presented in this work received funding from the
European Commission’s Seventh Framework Programme (FP7/2007–2013) under
grant agreement number 318003 (TREsPASS) and Fonds National de la Recherche
Luxembourg under the grant C13/IS/5809105 (ADT2P).

1 http://www.docking-frames.org/.
2 http://www.amenaza.com.
3 http://www.isograph.com/software/.
4 https://github.com/tahti/ADTool2.
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Moreover, it continues to be the only software tool providing support for the
attack-defense tree modeling language [6]. In that sense, the ADTool2.0 pro-
vides unique features in comparison to integration frameworks (e.g., the Möbius
framework [1]) and tools based on attack graphs (e.g., ADVISE [8]).

2 Main Features of the ADTool2.0

Sequential Conjunct Refinements in Attack Trees. The ADTool2.0 inte-
grates a crucial modelling aspect: creation of attack trees with SAND refinements
(consistent with the graphical language and semantics described in [4]) and their
quantitative analysis. Usage of the SAND refinement allows the analyst to model
and analyze attack scenarios involving several attack steps that need to be all
executed in a specific order, as opposed to the standard AND refinement used to
model execution of several attack steps in parallel.

After constructing a SAND attack tree, the user can assign an attribute domain
(e.g., minimum time for the attack, probability of success) to the tree. Each
leaf node is then initialized with a default value representing the worst case
scenario (e.g., ∞ as the minimum time for the attack), and all other nodes
are automatically assigned using an n-ary function, depending on the type of
attribute and refinement operator, in order to evaluate the security scenario. The
ADTool2.0 will automatically compute new attribute values using a bottom-up
algorithm.

Ranking Attack Trees. Human ability to visualize and understand attack
trees quickly decreases with the increase in size and complexity of the tree.
Identifying important portions of an attack tree is therefore of paramount impor-
tance for security analysts; it allows to prioritize and focus on those branches
that contribute most to the attacker goal. A systematic approach to prioritiza-
tion is ranking, whereby a set of elements is sorted with respect to a total order.
In attack graphs, a modelling language similar to attack trees, several ranking
approaches have been defined [10]. In attack trees, however, ranking has been
mostly neglected by both quantification methods and tools.

The ADTool2.0 implements an efficient and formal approach to rank
attack scenarios. In particular, we have extended the bottom-up computation
approaches proposed for attack trees [9], attack-defense trees [6], and SAND attack
trees [4], in order to efficiently rank attack scenarios, where an attack scenario
is either a bundle as in the formalisms in [6,9] or an SP graph as in [4]. Our
approach works intuitively as follows. Given a set of quantitative values V for
attack scenarios and a total order ≤ on V , we store at every node of the tree
n least attacks with respect to the total order ≤, where n is a natural number
representing a bound on the number of attack scenarios to be ranked.

Ranking results in the ADTool2.0 are shown in the Ranking View window,
which can be opened from the menu Windows → Ranking View. As in the
Attribute window, the Ranking window gives the option to open or create an
attribute domain. By default, the ADTool2.0 uses as a total order the operator
assigned to the OR gate in the attribute domain. A screenshot of the ADTool2.0
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Fig. 1. Screenshot of the ADTool2.0 with the ranking feature. The SAND attack tree
used represents the Stuxnet attack, and the ranking is based on the minimal time of
attack parameter. The attack scenario (all its attack nodes) with the minimal time of
execution is highlighted in green by the tool.

provided in Fig. 1 shows an example of the ranking feature applied to a SAND
attack tree modelling the Stuxnet attack (inspired by [7]).

In order to rank attack scenarios up to a given node in the tree, we ought to
click that node in the domain for which we want to see the ranking. Doing so, the
Ranking view window will automatically update with a table containing optimal
attacks with respect to the chosen attribute domain. The ADTool2.0 also offers
the option to highlight those nodes that contribute most to the attack, which
can be done by clicking on attack scenarios in the ranking table.

Scripting. Scriptability, whereby a tool can be run by scripts and without a
GUI, is an important feature of security assessment tools. It allows sensitivity
analysis (a standard technique to automatically assess how changes in some
attribute values affect the overall security posture) and integration into tool
chains. With the current version of the tool, it is now also possible to experiment
with countermeasure selection: we can write scripts that will input several attack-
defense trees with different defense scenarios applied to a particular attack, and
output the best countermeasure set based on the results of the ranking.

In the scripting mode, which is typically executed from the command line5,
the ADTool2.0 supports input files of different formats (e.g., XML files) con-
taining any of the supported attack trees (e.g., SAND trees), and provides various
types of outputs such as the most critical attacks or the result of a bottom-up
calculation. By using this scriptability feature, the ADTool2.0 has been inte-
grated into the TREsPASS project tool chain6, where it is used to visualize
attack-defense scenarios and automatically or manually produced attack trees.
5 Execute java -jar ADTool-2.0.jar --help from the command line for basic help.
6 http://www.trespass-project.eu/.
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Usability Features. The ADTool2.0 includes many usability features, e.g.,
copy-paste of subtrees, handling of multiple trees, reorder of children nodes, and
extended input format (automatically generated attack trees [3] not conforming
to the ADTool2.0 XML schema). The ADTool2.0 can handle and analyze large
trees with several thousand nodes (automatically generated trees are typically
of that size).

3 Conclusion

In this tool demonstration paper we presented the main features of the
ADTool2.0, which is an open-source software tool for displaying, designing and
analyzing attack trees in many flavors (SAND attack trees [4], attack-defense trees
[6], and classical attack trees [9]). The ADTool2.0 supports ranking of attack sce-
narios based on the quantitative values selected by the end-user (e.g., time of
attack, cost, and probability). In addition, it can be scripted for performing
sensitivity analysis or running in tool chains.
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Università Ca’ Foscari Venezia, DAIS, via Torino 155, Venice, Italy
{balsamo,marin,stojic}@dais.unive.it

Abstract. This paper presents a tool spnps for perfect sampling (PS) in
stochastic Petri nets (SPN). SPNs are an important formalism for perfor-
mance evaluation of telecommunication systems and computer hardware
and software architectures. Stochastic process underlying an SPN is a
continuous time Markov chain, and the tool obtains samples from this
chain, distributed according to its stationary probability distribution.
The tool is implemented in C++ and is based on an efficient implemen-
tation of coupling from the past, an algorithm for PS in Markov chains.
It can be obtained at http://www.dais.unive.it/∼stojic/soft.html.

Keywords: stochastic Petri net · Perfect sampling · Stationary perfor-
mance analysis

1 Introduction

Simulation is widely used in stationary performance analysis of stochastic Petri
nets (SPN) with large state spaces, when exact numerical solution is infeasible.
When simulation is used for stationary analysis, the warm-up period of a sim-
ulation run—during which state of the simulated system strongly depends on
the initial state—needs to be discarded. This requires estimation of the length
of the warm-up period, which can in some cases be done prior to simulation and
in general can be performed during the simulation [7,9].

An alternative to the above approach is to estimate the stationary perfor-
mance indices by sampling directly from stationary probability distribution of
the model; this is referred to as perfect sampling (PS) [11]. The samples obtained
by PS are distributed according to the exact stationary distribution of the model,
and not according to an approximate stationary distribution which is obtained in
simulation runs. If performance of a PS algorithm is not good enough to obtain
enough samples needed to achieve required precision of estimates of performance
indices, a smaller number of samples can be obtained and used as initial states
of the simulation runs, obviating the need for the simulation warm-up period.

The presented tool, called spnps, implements PS for SPN models that have
finite state spaces. In contrast to previous approaches [2–5], no special model
structure is required and general SPNs with very large state spaces can be han-
dled. The tool is implemented in C++ and is based on an optimised version [1] of
c© Springer International Publishing Switzerland 2016
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a classic perfect sampling algorithm, coupling from the past [11]. The optimised
algorithm uses multi-valued decision diagrams (MDD) [8] and exploits certain
regularities present in Markov chains underlying SPN models to greatly speed
up the coupling from the past; in some cases, models with over 10100 states can
be handled by the tool [1].

2 Objectives

Spnps is targeted at researchers and analysts that perform stationary performance
analyses of SPN models. Primary purpose of the tool is obtaining samples from
stationary probability distributions of SPNs with finite state spaces. State spaces
of some models can be decomposed into subsets between which there is very little
communication, and stochastic process defined by such models will, with very high
probability, stay constrained to one of the subsets for a large number of steps. This
complicates the stationary simulation, especially if this property of the model is
unknown to the analyst. Such multimodal behaviour can be heuristically detected
by the tool by performing incomplete PS runs [1] (Table 1).

Table 1. Objectives of spnps

Application domain Stationary performance analysis of SPN models

Targeted users Researchers and analysts

Primary purpose Sampling from stationary distribution of SPN models

Secondary purpose Detection of multimodal model behaviour

3 Functionality

Spnps is a command line application that allows the user to load an SPN model
from a file and generate a chosen number of perfect samples from the reachability
set of the SPN model. Stopping criterion can be changed so that PS runs are
stopped before completion, which can be useful in the analysis of models that
exhibit multimodal behaviour [1].

3.1 Program Options

Program options are set via command line switches. Switch -x selects an input
file containing a description of an SPN model. Format and contents of the input
file are described in the next subsection. Switch -r allows selection of quality
level of a high quality pseudorandom number generator [10] (PRNG) and -s
allows selection of PRNG seed; if the seed is omitted or set to 0, local time is
used as the seed. Switch -n specifies the number of sampling runs that are to be
performed by the tool. Switch -c sets stopping cardinality; when this is set to
1 samples from the stationary probability distribution are obtained, and larger
values can be used to examine multimodal models. Finally, switch -v enables
verbose output, and switches -d and -t enable output of diagnostic information.
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3.2 Input

Input file is assumed to be in Petri Net Markup Language (PNML) [12] format.
PNML is an XML-based syntax for Petri nets which aims at becoming the
standard interchange format for Petri net tools. Since PNML is very flexible and
extendable, leaving many format details to be defined based on specific needs
of a tool using the format, an XML Schema defining the particular structure
of PNML files supported by the present tool is also included in the distribution
archive. In addition to entries describing structure and initial marking of the SPN
model, additional data loaded from the input file are firing rates and semantics
for transitions and marking bounds and ordering of places.

3.3 Output

In normal usage, only the results of the sampling runs—perfect samples or sets
of markings, depending on the stopping cardinality—are output to the standard
output stream of the tool process. Using the verbose output switch -v causes
additional output, such as lengths of sampling runs, to be produced during the
sampling procedure. Switch -d enables output of program options and loaded
model data, and switch -t enables output of timing information. When the tool
is invoked without any parameters, a message explaining its usage is output.

4 Installation

Spnps is distributed in the form of C++ source code, and is licensed under
GNU General Public Licence, version 31. The distribution archive containing the
source code and build system files, along with compilation and usage instructions,
can be obtained from the web page2 of one of the authors.

5 Conclusion

In this paper we have presented spnps, a tool for perfect sampling from the
stationary distribution of stochastic Petri nets with finite reachability sets. The
obtained samples can be used in stationary performance analysis. Secondary use
of the tool is detection and analysis of models with multimodal behaviour, which
is a class of models which are especially hard to simulate.

Further development of the tool is expected in several directions. It is known
that there are more efficient encodings of the subsets of the reachability set by
MDDs, than the encoding used in the present tool [6]. Use of these encodings is
expected to lead to better performance of the tool. Additionally, the tool could
be adapted to other structured formalisms used in performance evaluation.

Acknowledgment. Work partially supported by MIUR fund Fondo per il sostegno
dei giovani “Programma strategico: ICT e componentistica elettronica”.
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Abstract. Collective Adaptive Systems (CAS) are heterogeneous pop-
ulations of autonomous task-oriented agents that cooperate on common
goals forming a collective system. This class of systems is typically com-
posed of a huge number of interacting agents that dynamically adjust
and combine their behaviour to achieve specific goals. Existing tools and
languages are typically not able to describe the complex interactions
that underpin such systems, which operate in a highly dynamic environ-
ment. For this reason, recently, new formalisms have been proposed to
model CAS. One such is Carma, a process specification language that is
equipped with linguistic constructs specifically developed for modelling
and programming systems that can operate in open-ended and unpre-
dictable environments. In this paper we present the Carma Eclipse plug-
in, a toolset integrated in Eclipse, developed to support the design and
analysis of CAS.

1 Introduction

Collective adaptive systems (CAS) typically consist of very large numbers of
components which exhibit autonomic behaviour depending on their properties,
objectives and actions. Decision-making in such systems is complicated and inter-
action between their components may introduce new and sometimes unexpected
behaviours. CAS are open, in the sense that components may enter or leave
the collective at any time. Components can be highly heterogeneous (machines,
humans, networks, etc.) each operating at different temporal and spatial scales,
and having different (potentially conflicting) objectives. We are still far from
being able to design and engineer real collective adaptive systems, or even spec-
ify the principles by which they should operate.

Existing tools and languages are challenged by the complex and evolving
interaction patterns that occur within CAS. Nevertheless, the pervasive yet
transparent nature of these applications makes it of paramount importance that
their behaviour is thoroughly assessed during their design, prior to deployment,
and throughout their lifetime.

This work is partially supported by the EU project QUANTICOL, 600708.
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Within the QUANTICOL project1, the definition of a formal language to
capture CAS has been investigated. Our objective was to develop a coherent,
integrated set of linguistic primitives, methods and tools to build systems that
can operate in open-ended, unpredictable environments. We named this language
Carma, Collective Adaptive Resource-sharing Markovian Agents. Carma com-
bines the lessons we learnt from other stochastic process algebras such as PEPA
[8], EMPA [2], MTIPP [7] and MoDEST [3], with those learnt from languages
specifically designed to model CAS, such as SCEL [5], the AbC calculus [1],
PALOMA [6], and the Attributed Pi calculus [9], which feature attribute-based
communication and explicit representation of locations.

To support analysis of Carma models a prototype simulator has been also
developed. This software tool, which has been written in Java, can be used to
perform stochastic simulation and will also form the basis for implementing fur-
ther analysis techniques in the future. An Eclipse plug-in, integrating an editor,
static analysis tools and various views on a model, has also been developed.
Using this plug-in, Carma systems can be specified by means of an appropriate
high-level language, which is mapped to the Carma process algebra to enable
qualitative and quantitive analysis of CAS.

In this paper we first briefly describe the basic ingredients of Carma. After
that an overview of the Carma Eclipse plug-in and its features is provided.

2 CARMA in a Nutshell

Carma is a new stochastic process algebra for the representation of systems
developed in the CAS paradigm [4]. The language offers a rich set of commu-
nication primitives, and exploits attributes, captured in a store associated with
each component, to enable attribute-based communication. For example, for
many CAS systems the location is likely to be one of the attributes. Thus it is
straightforward to model systems in which, for example, there is limited scope of
communication, or interaction is restricted to co-located components, or where
there is spatial heterogeneity in the behaviour of agents.

A Carma system consists of a collective operating in an environment. The
collective is a multiset of components that models the behaviour of a system;
it is used to describe a group of interacting agents. The environment models all
those aspects which are intrinsic to the context where the agents are operating.
The environment mediates agent interactions. This is one of the key features of
Carma. It is not a centralised controller but rather something more pervasive
and diffusive — the physical context of the real system — which is abstracted
within the model to be an entity which exercises influence and imposes con-
straints on the different agents in the system. The role of the environment is
also related to the spatially distributed nature of CAS — we expect that the
location where an agent is will have an effect on what an agent can do.

1 http://www.quanticol.eu.

http://www.quanticol.eu
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A Carma component captures an agent operating in the system. It consists
of a process, that describes the agent’s behaviour, and of a store, that models
its knowledge. A store is a function which maps attribute names to basic values.

Processes located within a Carma component interact with other compo-
nents via a rich set of communication primitives. Specifically, Carma supports
both unicast and broadcast communication, and permits locally synchronous,
but globally asynchronous communication. Distinct predicates (boolean expres-
sions over attributes), associated with senders and potential receivers are used to
filter possible interactions. Thus, a component can receive a message only when
its store satisfies the target predicate. Similarly, a receiver also uses a predicate to
identify accepted sources. The execution of communicating actions takes time,
which is assumed to be an exponentially distribution random variable whose
parameter is determined by the environment.

3 CARMA Eclipse Plug-in

An Eclipse plug-in for supporting the specification and analysis of CAS in
Carma has been developed. A screenshot of the plug-in is presented in Fig. 1.

The Carma Eclipse plug-in is available at http://quanticol.sourceforge.net/.
At the same site detailed installation instructions can be found together with a
set of case studies that shows how CAS can be modelled and verified with the
provided tool.

The Carma Eclipse plug-in provides a rich editor for CAS specification using
an appropriate high-level language, called the Carma Specification Language
(CaSL). This high-level language is not intended to add to the expressiveness

Fig. 1. A screenshot of the Carma Eclipse plug-in.

http://quanticol.sourceforge.net/
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of Carma, which we believe to be well-suited to capturing the behaviour of
CAS, but rather to ease the task of modelling for users who are unfamiliar with
process algebra and similar formal notations. Each Carma specification provides
definitions for: structured data types and the relative functions; prototypes of
components occurring in the system; systems composed by collective and envi-
ronment; and the measures, that identify the relevant data to measure during
simulation runs.

Given a Carma specification, the Carma Eclipse Plug-in automatically gen-
erates the Java classes needed to simulate the model. This generation procedure
can be specialised to different kinds of simulators. Currently, a simple ad-hoc
simulator is used. The simulator provides generic classes for representing models
to be simulated. To perform the simulation each model provides a collection of
activities each of which has its own execution rate. The simulation environment
applies a standard kinetic Monte-Carlo algorithm to select the next activity to
be executed and to compute the execution time. The execution of an activity
triggers an update in the simulation model and the simulation process contin-
ues until a given simulation time is reached. From a Carma specification, these
activities correspond to the actions that can be executed by processes located
in the system components. Indeed, each such activity mimics the execution of
a transition of the Carma operational semantics. Specific measure functions
can be passed to the simulation environment to collect simulation data at given
intervals. To perform statistical analysis of collected data the Statistics package
of Apache Commons Math Library is used2.

The results are reported within the Experiment Results View (see Fig. 2).
Two possible representations are available. The former, on the left side of Fig. 2,
provides a graphical representation of collected data; the latter, on the right
side of Fig. 2, shows average and standard deviation of the collected values,
which correspond to the measures selected during the simulation set-up, and are
reported in a tabular form. These values can then be exported in CSV format.

Fig. 2. Carma Eclipse plug-in: experiment results view.
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Abstract. Monte Carlo model checking introduced by Smolka and
Grosu is an approach to analyse non-probabilistic models using sampling
and draw conclusions with a given confidence interval by applying sta-
tistical inference. Though not exhaustive, the method enables verifica-
tion of complex models, even in cases where the underlying problem is
undecidable. In this paper we develop Monte Carlo model checking tech-
niques to evaluate quantitative properties of timed languages. Our app-
roach is based on uniform random sampling of behaviours, as opposed
to isotropic sampling that chooses the next step uniformly at random.
The uniformity is defined with respect to volume measure of timed lan-
guages previously studied by Asarin, Basset and Degorre. We improve
over their work by employing a zone graph abstraction instead of the
region graph abstraction and incorporating uniform sampling within a
zone-based Monte Carlo model checking framework. We implement our
algorithms using tools PRISM, SageMath and COSMOS, and demon-
strate their usefulness on statistical language inclusion measurement in
terms of volume.

1 Introduction

Since the seminal work of Alur and Dill [1], timed automata (TAs) have been
widely studied in the context of real-time systems verification. Several algorithms
from the classical automata-theoretic verification were successfully lifted to the
timed case. In spite of this, many problems become undecidable, the most impor-
tant being the inclusion of timed languages. One way to circumvent undecidabil-
ity is to employ statistical methods, where results are given with some confidence
level. However, timed automata are non-stochastic models and it is not clear a
priori with what probability to sample runs when performing statistical exper-
iments. A natural answer is given by the maximal entropy principle: “without
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knowledge a priori on the distribution of probability to be taken, the one with
maximal entropy should be preferred” [15]. A maximal entropy stochastic process
for timed automata was recently proposed in [7]. Essentially, this is the stochas-
tic process that yields the most uniform sampling when the length of the timed
words tends to infinity. By uniform sampling we mean that all timed words of a
given length have the same density of probability to be chosen.

In this paper we propose several algorithms to achieve uniform sampling of
timed words in timed languages. The methods are based on the theory of vol-
umetry of timed languages recently developed by Asarin et al. [3], which provides
means for quantitative measurement of languages in terms of volume. Here, we
employ this theory to achieve statistical estimation of volume and demonstrate
its usefulness for language inclusion measurement. The accuracy of statistical esti-
mation depends on the ability to uniformly sample the executions. The method
provided in [7], where the transitions of a TA were annotated with probability
functions so that the resulting stochastic process enables random simulation in the
most uniform way possible, is based on spectral attributes of a functional opera-
tor Ψ (an analogue in the TA context of the adjacency matrix of a graph) [3].
Unfortunately, it is not practical, as it relies on the region graph abstraction and
the computation of eigenfunctions. In this paper, we overcome this problem by
adopting a zone-based approach and approximating the probability functions of
[7] with quotients of the volume functions.

Contributions. (i) We provide a zone-based computation of volume functions for
TAs, which enables the first practical implementation of volumetry of timed lan-
guages. (ii) We develop three methods (Methods 1, 2 and 3) to sample in a (quasi)
uniform manner timed words in a language recognised by a deterministic timed
automaton (DTA). In particular, we propose a receding horizon framework that
allows us to approximate the maximal entropy stochastic process discussed above.
(iii) We apply uniform sampling for DTAs to uniform sampling and volume mea-
surement for arbitrary timed languages, provided the membership problem for the
language is decidable. (iv) We have implemented the algorithms presented here
in PRISM [16] (for the splitting of the DTA into zones), SageMath [20] (for the
computation of volume functions) and COSMOS [4] (for the random generation
of timed words and property checking) and illustrate them on several examples,
with encouraging results. Omitted proofs and further details can be found in [5].

Related Work. The theory of volumetry of timed languages has been studied and
applied to robustness analysis [3], timed channel coding [2] and combinatorics of
permutations [6], but has not yet been applied in practice.

The recursive method for uniform sampling is a well-known method in discrete
combinatorics [12] whose generalisation to the timed case (Method 1 here) was
already done for very specific timed languages in [6].

Monte Carlo model checking was proposed in [13] for discrete models to ran-
domly explore their behaviour by means of simulating execution paths. Similarly,
statistical model checking [21] uses simulation to verify temporal logic proper-
ties with statistical guarantees, and has been applied to stochastic timed/hybrid
systems [10]. This avoids state-space explosion, thus ensuring the feasibility of
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verification of complex models, and has also been used to check undecidable prop-
erties [10]. Here we implement Monte Carlo techniques for TAs.

Monte Carlo or statistical model checking usually employs an isotropic ran-
dom walk to explore the executions (as explained in [11,19] for discrete models).
This involves choosing uniformly at random, at each step of the simulation, the
next transition from those available. It has been argued that the isotropic meth-
ods are not able to efficiently perform uniform sampling of the behaviours (see
e.g. the pathological examples in [19] for sampling of lassos and [11] for sampling
paths in a finite-state automaton). Here we implement uniform sampling based
on the tool COSMOS, but the techniques are more generally applicable and can
be implemented in other tools, for example UPPAAL-SMC [10], which supports
user-defined distributions.

Statistical model checkers such as UPPAAL-SMC consider timed automata
augmented with probability distribution on transitions that are either user-
defined or given “by default”. Thus, the model to verify is already probabilistic
and specifications are written in temporal logic with probabilistic operators. Our
work addresses a different and novel question: how can one use statistical exper-
iments on a non-probabilistic timed language and draw conclusions about that
language, without being given probability distributions on it?

2 Preliminaries

2.1 Timed Languages and Volumetry

A timed word α = (t1, a1) . . . (tn, an) is a word over the alphabet R≥0 × Σ,
where R≥0 denotes the set of non-negative reals and Σ is a finite alphabet of
events. Times ti represent delays between events ai−1 and ai. Throughout this
paper, delays will be bounded1 by an integer constant M . A timed language L
is a set of timed words. Given n ≥ 0, we denote by Ln the timed language L
restricted to timed words of length n. For every timed language L and every word
w = a1 . . . an ∈ Σn, we define PL

w = {(t1, . . . , tn) | (t1, a1) . . . (tn, an) ∈ L}, and
denote by Vol(PL

w ) its (hyper-)volume.

Example 1 (Running example). Examples of such hyper-volumes are given in
Fig. 1. Anticipating what follows, these sets correspond to the timed language
restricted to timed words of length 2 of the TA depicted in Fig. 2 (Left).

For a fixed n, we define the n-volume of L as follows:

Vol(Ln) =
∑

w∈Σn

Vol(PL
w ) =

∑
a1∈Σ

∫ M

0

· · ·
∑

an∈Σ

∫ M

0

1P L
w

(t)dt1 · · · dtn.

Continuing the example; the hyper-volume for dimension 2 is calculated as

Vol(L2) = Vol(PL
ab) + Vol(PL

aa) + Vol(PL
ba) + Vol(PL

bb) = 3.5 + 2 + 4 + 2 = 11.5.

1 Our approach to timed languages is based on volume and does not apply, in its present
form, to unbounded delays that result in innite volume.
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Fig. 1. From left to right, languages PL
ab, PL

aa, PL
ba and PL

bb for the running example
(Example 1). The darker areas corresponds to initial clock vector (x, y) = (0.5, 0).

q

a,
0 < x < 2,
0 < y < 4
y := 0

b,
0 < x < 3,
0 < y < 2
x := 0

0 1 2

1
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3

a, y := 0

b, x := 0

a, y := 0 b, x := 0

b, x := 0

a, y := 0

Fig. 2. Left: a DTA. Right: the same DTA obtained after applying the forward reacha-
bility algorithm. Entry zones are represented in red. Guards for a and b are the same in
the two TAs. The blue part represents clock vectors reachable through entry zones by
time elapsing. In location 2, the guard of transition b should be split along the dotted
line to obtain the split DTA of Fig. 3. (Color figure online)

We define the uniform probability distribution on a timed language L by assign-
ing weight 1/Vol(Ln) to every timed word of length n. The main purpose of this
article is to show how to sample according to that distribution when the language
is recognised by a timed automaton. For instance, the probability of a uniformly
sampled timed word to fall in the set E = {(t1, b)(t2, a) | t1 ∈ (0, 1), t2 ∈ (0, 2)}
is Vol(E)/Vol(L2) = 2/11.5 ≈ 0.17.

Given two timed languages L, L′ over the same alphabet of events Σ, we say
that L′ is a tight under-approximation of L if, for all w ∈ Σ∗, PL′

w ⊆ PL
w and

Vol(PL
w \ PL′

w ) = 0 ; hence Vol(PL
w ) = Vol(PL′

w ). In particular, timed words
uniformly sampled in L′ are uniformly sampled in L.

2.2 Timed Automata

Let X be a finite set of non-negative real-valued variables called clocks. Here we
assume that clocks remain bounded by a constant M ∈ N. A clock constraint has
the form x ∼ c or x−y ∼ c where ∼∈ {≤, <,=, >,≥}, x, y ∈ X, c ∈ N. A guard is
a finite conjunction of clock constraints; it is called open if its constraints involve
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only strict inequalities. A zone is a set of clock vectors x ∈ [0,M ]X satisfying a
guard. For a clock vector x ∈ [0,M ]X and a non-negative real t, we denote by
x + t (resp. x − t) the vector x + (t, . . . , t) (resp. x − (t, . . . , t)).

A timed automaton (TA) A is a tuple (Σ,X,Q, i0, F,Δ) where Σ is a finite set
of events; X is a finite set of clocks; Q is the finite set of locations; i0 is the initial
location; F ⊆ Q is the set of final locations; and Δ is the finite set of transitions.
Any transition δ ∈ Δ has an origin δ− ∈ Q, a destination δ+ ∈ Q, a label aδ ∈ Σ,
a guard gδ and a reset function rδ determined by a subset of clocks B ⊆ X: it
resets to 0 all the clocks in B and does not modify the value of the other clocks.

A timed transition is an element (t, δ) of A def= [0,M ] × Δ. The delay t rep-
resents the time before firing the transition δ. A state s = (q,x) ∈ Q × [0,M ]X

is a pair of a location and a clock vector. Given a state s = (q,x) and a timed
transition α = (t, δ) ∈ A, the successor of s by α is denoted by sα and defined
as follows. If δ− = q and x + t satisfies the guard gδ then sα = (δ+, rδ(x + t))
else sα = ⊥. Here and in the rest of the paper ⊥ represents undefined states.
A sequence of timed transitions is called a timed path. We extend the successor
action to timed paths by induction: sε = s and s(αα′) = (sα)α′ for all states s,
timed transitions α ∈ A and timed paths α′ ∈ A

∗. The initial state of the timed
automaton is s = (i0,0). The labelling of a timed path (t1, δ1) . . . (tn, δn) is the
timed word (t1, aδ1) . . . (tn, aδn

) ∈ ([0,M ] × Σ)∗. The timed language L(A) of a
timed automaton A is the set of timed words that are labellings of timed paths α
such that sα ∈ F × [0,M ]X . We also write Ln(A) instead of (L(A))n.

For a guard g, we denote by TE−1(g) the set of clock vectors from which g can
be reached when time elapses; formally, TE−1(g) = {x | ∃t ≥ 0,x + t ∈ g}. Given
a state s = (q,x) we denote by Δ(s) the set of transition available from s, that
is such that δ− = q and x ∈ TE−1(gδ). Given a state s = (q,x) and a transition
δ ∈ Δ(s), we define lbδ(s)

def= inf {t|x + t ∈ gδ} and ubδ(s)
def= sup {t|x + t ∈ gδ}

so that the condition x + t ∈ gδ is equivalent to t ∈ (lbδ(s),ubδ(s)).
A deterministic timed automaton (DTA) is a TA such that no clock vector can

satisfy guards of pairwise distinct transitions with the same label and origin. This
implies that timed words and timed paths of a DTA are in one-to-one correspon-
dence. We are interested in the prefixes of infinite timed words of a DTA. To be
sure that Ln(A) contains exactly the prefixes of size n, we consider only DTAs
that satisfy the two following conditions: (i) every location is final, (ii) from every
reachable state, there is a timed transition that can be taken.

2.3 Equations on Timed Languages and Volumes

Given a DTA A, we denote by Ln(s) the n-th timed language recognised from a
state s and defined inductively as follows: L0(s) = {ε}, and

Ln+1(s) =
⋃

δ∈Δ(s)

⋃
t∈I(s,δ)

(t, aδ)Ln(s(t,δ)). (1)
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For the running example and initial state [q, (0.5, 0)] we have:

L2([q, (0.5, 0)]) =
⋃

t∈(0,1.5)

(t, a)L1([q, (0.5 + t, 0)]) ∪
⋃

t∈(0,2)

(t, b)L1([q, (0, t)]). (2)

The language L2([q, (0.5, 0)]) is depicted in Fig. 1.
We also parametrise the volume by the initial state and define the n-th vol-

ume function as vn(s) = Vol(Ln(s)). These functions can be defined recursively
by replacing union over intervals by integrals and union over transitions by finite
sums in (1). We obtain v0(s) = 1 and

vn+1(s) =
∑

δ∈Δ(s)

∫ ubδ(s)

lbδ(s)

vn(s(t,δ))dt. (3)

For the running example, passing to volumes in (2) yields

v2([q, (0.5, 0)]) =
∫ 1.5

0

v1([q, (0.5 + t, 0)])dt +
∫ 2

0

v1([q, (0, t)])dt. (4)

A key idea used in [3,7] is to rewrite (3) as

vn+1(s) = Ψ(vn)(s) (5)

where Ψ is an integral operator defined by

Ψ(f)(s) =
∑

δ∈Δ(s)

Ψδ(f)(s) with (6)

Ψδ(f)(s) =
∫ ubδ(s)

lbδ(s)

f(s(t,δ))dt. (7)

Thus, volume functions are defined via iteration of the operator Ψ on the constant
function 1: vn = Ψn(1). In [3,7], the state space was decomposed into regions,
which guaranteed algebraic properties such as polynomial volume functions at the
price of an explosion of the number of locations of the TA. A TA before such a
decomposition into regions has volume functions that are complicated (piecewise
defined), and hence difficult to handle in practice. Here we want to keep volume
functions simple (polynomial) while keeping the set of locations small. For this we
adopt a zone-based approach.

Table 1. First volume functions vn[li, (x, y)] associated to the TA of Fig. 3.

[l0, (0, 0)] [l1, (x, 0)] [l2, (0, y)] [l3, (x, 0)]

v0 1111

v1 4 −x + 4 −y + 4 −2x + 5

v2 15 −4x + 15 1
2
y2 − 4y + 15 − 1

2
x2 − 6x + 35

2

v3
335
6

−15x + 335
6

− 1
6
y3 + 2y2 − 15y + 335

6
− 1

6
x3 − 1

2
x2 − 25x + 133

2
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The idea of the zone-based decomposition described in the next section is to
split the state space into several pieces in which the functions lbδ(s) and ubδ(s)
have simple form, ensuring that every volume function vn = Ψn(1) restricted to
any location is polynomial (see Table 1).

3 Volume Function Computation for DTAs

In this section we explain how to transform a DTA A into a DTA A′ called split
DTA that facilitates efficient volume computation.

Decomposition into Zones. We first apply a forward reachability algorithm,
implemented for instance in PRISM [16], which returns the so-called forward-
reachability graph, that is, a finite graph with annotations, which we view as a
DTA (the annotations are essentially, for each edge δ, the guard gδ and label aδ

and, for each location l, the zone Zl which is entered). Formally, we say that a TA
is decomposed into zones if, for every l ∈ Q, there is a zone Zl called the entry zone
of l, such that the entry zone of the initial state is {0} and, for every transition δ,
the successors of states in {δ−}×Zδ− through δ with some delay are in {δ+}×Zδ+ ,
that is, {rδ(x + t) | x ∈ Zδ− ,x + t ∈ gδ} ⊆ Zδ+ . We denote by S = ∪l∈Q{l} × Zl

the set of states corresponding to entry zones. The forward-reachability graph for
the running example is given in Fig. 2 (Right).

Guard Split. Let δ be the transition from location 2 to location 3 in the automaton
of Fig. 2 (Right), then gδ

def= (0 < x < 3) ∧ (0 < y < 2). Then one can see that
ubδ(2, (x, 0)) = 2 if x ∈ (0, 1) (due to guard y < 2) and ubδ(2, (x, 0)) = 3 − x
if x ∈ (1, 2) (due to guard x < 3). The guard gδ thus needs to be split into two
(along the dotted line in the figure) to achieve a simpler form for ubδ. It is well
known how to get the tightest constraints of a guard and get rid of redundant
constraints using the Floyd-Warshall algorithm (see e.g. [8]). A guard is said to
be upper-split (lower-split) if there is at most one useful constraint (that is, not
implied by other constraints) of the form xj < a (xj > a). The guard gδ discussed
above is not upper-split as the two constraints x < 3 and y < 2 are both useful.
Analogous definitions hold for lower-bounds and a guard is said to be split if it is
both lower-split and upper-split.

Pre-stability. A second phenomenon we want to avoid is when the set of available
transitions Δ(q,x) is not constant on the entry zone of q. A TA decomposed into
zones is called pre-stable if, for every location q and clock vector x ∈ Zq, the set of
transitions Δ(q,x) is exactly the set of transitions δ whose origin is q. Equivalently,
a TA is pre-stable if Zδ− ⊆ TE−1(gδ) for every δ. In case we detect a transition such
that Zδ− �⊆ TE−1(gδ) we will split the zone Zδ− to isolate TE−1(gδ) ∩ Zδ− from
its complement. Continuing the example above, after splitting gδ the functions
associated to each new guard are null for x ∈ (0, 1) or x ∈ (1, 2). Location 2
is split into two locations of the final TA of Fig. 3: l1 for (0, 1) and l3 for (1, 2).
Every incoming transition to location 2 is split accordingly into two transitions
(one orange to l1 and one purple to l3).
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Trimming. Last but not least, we say that a TA is trimmed if the set of outgoing
transitions of each location is non-empty. A TA is called split if it is pre-stable,
trimmed and all the guards of its transitions are split and open. It implies, in par-
ticular, that, for every entry state s ∈ S, Δ(s) is not empty and for all transition
δ ∈ Δ(s) it holds that ubδ(s)−lbδ(s) > 0. Note that opening guards, that is, trans-
forming non-strict inequalities into strict ones is made wlog., as it only removes
part of the language that has a null volume measure.

Splitting Algorithm. We propose an algorithm to transform a DTA into a split
DTA such that the language of the latter is a tight under-approximation of the
language of the former (see Theorem 1). First, we apply a forward reachability
algorithm to obtain a DTA decomposed into zones and open its guards. Then
we successively split zones that falsify pre-stability and guard split conditions,
until the conditions are satisfied in the DTA. The splitting algorithm maintains a
stack of transitions that need to be checked, which initially contains all the tran-
sitions. As the algorithm proceeds, transitions are popped from the stack and are
checked against pre-stability and guard split conditions. If one test fails, the zone
(or guard) is split accordingly into several zones (or open guards) and the transi-
tions that are affected are added to the stack (incoming transitions to, and outgo-
ing transitions from the split zone). When no more transition need to be checked
(i.e. the stack is empty), the TA is split and the algorithm terminates. This occurs
in a finite number of steps since transitions are added to the stack only when a zone
is split into strictly smaller sub-zones, and there are finitely many zones (as the
clocks are bounded by a constant M).

Theorem 1. Given a DTA A, one can construct (using the algorithm sketched
above) a split DTA A′ that recognises a tight under-approximation of L(A).

The splitting algorithm and the proof can be found in the technical report [5].

Volume Function of a Split DTA. We have the following result.

Proposition 1. Given a split DTA A and n ∈ N, denote by c the maximal affine
dimension of an entry zone of A. One can compute the volume function vk for k ≤ n
in time and space complexity O(nc+2|QA|) using dynamic programming based on
the recursive equation (3). Each volume function vk restricted to a location q is a
polynomial of degree at most k that is positive on Zq.

Example 2. We have implemented the splitting algorithm sketched in Sect. 3 and
applied it to the DTA of Fig. 2 (Right) to obtain the DTA of Fig. 3. Our program
also returns for each transition δ of the output DTA the interval (lbδ,ubδ), allow-
ing us to compute with SageMath the operator Ψ as well as the volume functions.
On the example, for f : S → R, (x, y) ∈ Zl with l ∈ {l0, . . . , l3},

Ψ(f)[l0, (0, 0)] =
∫ 1

0
f(l1, (t, 0))dt +

∫ 2

0
f(l2, (0, t))dt +

∫ 2

1
f(l3, (t, 0))dt;

Ψ(f)[l1, (x, 0)] =
∫ 1−x

0
f(l1, (x + t, 0))dt +

∫ 2

0
f(l2, (0, t))dt +

∫ 2−x

1−x
f(l3, (x + t, 0))dt;

Ψ(f)[l2, (0, y)] =
∫ 1

0
f(l1, (t, 0))dt +

∫ 2−y

0
f(l2, (0, y + t))dt +

∫ 2

1
f(l3, (t, 0))dt;

Ψ(f)[l3, (x, 0)] =
∫ 3−x

0
f(l2, (0, t))dt +

∫ 2−x

0
f(l3, (x + t, 0))dt.

First volume functions computed using Eq. (5) are given in Table 1.
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Fig. 3. The split form of the running example (Example 1).

4 SamplingMethods for Timed Languages of DTAs

In this section we consider random sampling of timed words. We first give a
method that achieves exact uniform sampling when the length of timed words
to be generated is finite; we speak of finite horizon. When the length is infinite
or too long to be treated by the previous method, we consider a receding horizon
method, where, at the k-th step of the generation, the next timed letter is chosen
according to the volume of the timed words for the next m steps; these possible
futures constitute a finite receding horizon. At the limit, where the receding hori-
zon becomes infinite (m → ∞), this can be interpreted as a stochastic process
over runs of maximal entropy [7].

Parametric Probability Distributions. A discrete probability distribution (DPD)
on a finite set A is a function dpd : A → [0, 1] such that

∑
a∈A dpd(a) = 1.

A probability density function (PDF) on an interval (a, b) is a Lebesgue measur-
able function pdf : (a, b) → R≥0 such that

∫ b

a
pdf(t)dt = 1. Values of DPD and

PDF are referred to as weights. The DPD isoDPD(A) on a set A (resp. the PDF
isoPDF(a, b) on an interval (a, b)) that attributes the same weight to every a ∈ A
(resp. t ∈ (a, b)) is called isotropic. In other words, isoDPD(A)(a) = 1/|A| for
every a ∈ A (resp. isoPDF(a, b)(t) = 1/(b − a) for every t ∈ (a, b)). PDFs consid-
ered in the following are just polynomials on the delay variable t. Their coefficients
depend on the current state (location and clock values) and on the transition to
fire. Choosing a delay t according to a PDF can be done using the inverse method :
a random number r is drawn uniformly in (0, 1), and the output t ∈ (a, b) is the
unique solution of

∫ t

a
pdf(t′)dt′ − r = 0. In the case of the isotropic PDF on (a, b),

the output t is just a + r(b − a).
Random generation of timed words in Ln(s) for a given state s ∈ S is done

as follows: for k = 1..n, pick randomly the next transition δ according to a DPD
dpdk

s parametrised by the current state s, then chose the delay t in (lbδ(s),ubδ(s))
according to a PDF pdfk

s,δ parametrised by the current state s and the transition
just chosen; take the successor of s by (t, δ) as the new current state s; output
(t, aδ) and repeat the loop.
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Isotropic Receding horizon m=0 Receding horizon m=9

Fig. 4. Trajectories of the running example (Fig. 3) sampled using isotropic sampling
(Left) and Method 2 with receding horizon m = 0 (Middle) and m = 9 (Right). Each
point of a given colour corresponds to a clock vector where a transition of that colour
occurs. Each plot visualises a single trajectory with 200, 000 transitions. The receding
horizon m = 9 visibly yields the most uniform sampling. The receding horizon sampling
with m = 0 is already more uniform than the isotropic sampling as the former assigns

weights to transitions proportional to lengths of intervals
(
dpds = ubδ(s)−lbδ(s)

v1(s)

)
. (Color

figure online)

This random generation outputs timed words of Ln(s) with weights given by

Weight[(t1, a1) · · · (tn, an)] def=
n∏

k=1

dpdk
sk−1

(δk)pdfk
sk−1,δk

(tk). (8)

where, for every k = 1..n, sk−1 is the state before the kth sampling loop, (tk, δk)
is the kth timed transition randomly picked during the kth sampling loop and ak

is the label of δk.

Isotropic and Uniform Sampling. Isotropic sampling2 relies on using in each step
the isotropic DPD isoDPD(Δ(s)) and the isotropic PDF isoPDF(I(s, δ)). These
distributions are particularly simple to sample, but when the length of samples
grows the probability concentrates on small sections of the runs, see Fig. 4 (Left).
By contrast, uniform sampling for Ln(s) assigns the same weight 1/vn(s) to every
timed word. In other words, for any measurable set B ⊆ Ln(s) the probability
Vol(B)/vn(s) to fall in this set is proportional to its measure.

The Recursive Method for Uniform Sampling. The idea of the recursive method
for uniform sampling of n-length timed words from a state s is to choose the first
delay t and transition δ according to well chosen DPD and PDF that depend on
the volume functions vn and vn−1, and then recursively apply uniform sampling
to generate an (n − 1)-length timed word from the updated state s(t,δ).

2 Note that some works, consider instead sampling the delay first and then the transi-
tions available in the state updated by the delay (see [9]).
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Define, for every function f : S → R>0 and state s, the DPD ω(f, s) : δ �→
Ψδ(f)(s)
Ψ(f)(s) . If moreover δ is given, define the PDF ϕ(f, s, δ) : t �→ f(s(t,δ))

Ψδ(f)(s)
from

(lbδ(s),ubδ(s)) to R>0.

Method 1 (Exact uniform sampling). Given a split DTA and n ∈ N, pre-
compute the volume functions v0 = 1, . . . , vn = Ψn(1) (see Proposition 1), then
the uniform sampling of n-length timed words can be achieved in linear time using
the following sequences of DPDs and PDFs: (ω(vn−k, s), ϕ(vn−k, s, δ))k=1..n

Proof. Using the same notation as in (8), it holds that

Weight[(t1, a1) · · · (tn, an)] =
n∏

k=1

ω(vn−k, sk−1)(δk)ϕ(vn−k, sk−1, δk)(tk)

=
n∏

k=1

Ψδ(vn−k)(sk−1)
vn−k+1(sk−1)

vn−k(sk)
Ψδ(vn−k)(sk−1)

=
v0(sn−1)
vn(s0)

=
1

vn(s0)
.

Example 3. We illustrate the DPDs and PDFs used in the last but one step of the
uniform random sampling for the running example, obtained from volume func-
tions of Table 1. Consider the state s = (l1, (x, 0)) with x ∈ (0, 1) and δ the self-
loop on l1 (see Fig. 3). Then (lbδ(s),ubδ(s)) = (0, 1−x) and s(t,δ) = (l1, (x+t, 0)).
The DPD used to choose δ is

dpdn−1
s (δ) =

1
v2(s)

∫ ubδ(s)

lbδ(s)

v1(s(t,δ))dt =
∫ 1−x

0

4 − x − t

15 − 4x
dt =

7 − 8x + x2

30 − 8x

The PDF used to choose t is

pdfn−1
s,δ (t) =

1t∈(lbδ(s),ubδ(s))

dpdn−1
s (δ)

v1(s(t,δ))
v2(s)

= 1t∈(0,x)
8 − 2x − 2t

7 − 6x + x2

Random Sampling with Finite Receding Horizon. With the previous method, the
k-th timed transition of a run of length n is sampled according to DPD and PDF
that depend on k and n. This dependency on k and n is not suitable for large n
as it requires storage of as many polynomials as the length of the run to gener-
ate n. Also, one might wish to randomly generate arbitrarily long runs without a
prescribed bound on the length. To take the kth timed transition in the recursive
method for uniform sampling, we use DPD and PDF that depend on vn−k, that is,
on the volume measure of the possible (n − k) step future. The idea of the follow-
ing method is to replace (n − k) by a fixed m � n at every step of the sampling.
The constant m can be seen as a receding horizon used in control theory [17]. At
each step we consider only the possible m step future to generate the next timed
transition.

Method 2 (Random Sampling with Finite Receding Horizon m). Given
a split DTA, n ∈ N and m ∈ N, precompute the volume functions v0 = 1, . . . , vm =
Ψm(1) (see Proposition 1), then sample n-length timed words in linear time using
the same DPD ω(vm, s) and PDF ϕ(vm, s, δ) for every k = 1..n.

The precomputation is polynomial in m. Hence this methods is more efficient
than Method 1 when m � n, but it does not yield exact uniform sampling.
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Table 2. Table for Example 4.

m (C+/C−) − 1 n0.01

0 3 1
1 0.3229 2
2 1.659 × 10−2 3
3 4.444 × 10−3 6

m (C+/C−) − 1 n0.01

4 3.272 × 10−4 35
5 8.431 × 10−5 124
6 9.308 × 10−6 1 076
7 1.409 × 10−6 7 069

m (C+/C−) − 1 n0.01

8 2.364 × 10−7 42 098
9 2.520 × 10−8 394 801
10 5.304 × 10−9 1.8760 × 106

11 4.487 × 10−10 2.2178 × 107

Quasi-Uniform Random Sampling. We now present a trade-off between exact uni-
form sampling (Method 1) and the finite receding horizon sampling (Method 2).
We give bounds on the distance to uniformity for this method, which we conjec-
ture to be small in practice for small horizon m. This conjecture is supported by
theoretical results of previous works [3,5,7] and by practical experiments (notably
in Example 4 below).

Method 3 (Switching Method for Quasi-uniform Sampling). Given a
split DTA, n ∈ N and m ∈ N, precompute the volume functions v0 = 1, . . . , vm =
Ψm(1) (see Proposition 1), then generate the n−m first letters as in Method 2 and
use Method 1 from the current state for the last m steps.

This method ensures quasi-uniform sampling in the following sense.

Theorem 2. If in Method 3 there exist constants C−, C+ ∈ R>0 such that
C−vm+1 ≤ vm ≤ C+vm+1, then the weight of every timed word lies in the interval
[(1 − εm,n)/vn(s0), (1 + εm,n)/vn(s0)], with εm,n = (C+/C−)(n−m−1) − 1.

Example 4. For the running example (Example 1) we determine the tightest con-
straints C− def= infs∈S vm(s)/vm+1(s) and C+ def= sups∈S

vm(s)/vm+1(s) for m =
0..11. We observe empirically that C+/C− tends to 1 exponentially fast when m
grows (see Table 2). Given a maximal tolerated error of ε, one can determine for
every m the maximal n, called nε, such that εm,n ≤ ε for every n ≤ nε; formally,

nε
def= m + 1 + �log(C+/C−)(1 + ε)�. First values of n0.01 as a function of m are

given in Table 2; for instance, using receding horizon for m = 11 one can generate
timed words of length 20, 000, 000 with a divergence to uniformity less than 1%.

Our sampling method requires the computation of a complete zone graph, as
opposed to on-the-fly techniques used in state-of-the-art statistical model check-
ers; this is the price we pay for statistical evaluation of quantities of timed words
in complex sub-languages as described in the next section.

5 Applications and Experiments

5.1 Tackling General Timed Languages

It is well known that language inclusion for languages recognised by non-
deterministic TAs (NTAs) is undecidable, even when a robust semantics is consid-
ered [14]. The situation is even worse for stopwatch automata, hybrid automata,
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etc., for which the reachability problem is undecidable. However, we can handle
a statistical variant of the inclusion problem when, first, an overapproximation of
the language described by a DTA is known and, second, the languages admit deci-
sion procedures for the membership problem defined as: given a language L and
a word w, is w ∈ L? Our method is based on statistical volume estimation that
relies on the quasi-uniform random sampling developed in the previous section.
The complexity results given below are expressed in terms of the number of mem-
bership queries one has to solve.

Application 1 (Statistical Volume Estimation). Given a timed language
L, n ∈ N, a confidence level θ, an error bound ε, and an over-approximation
of the language recognised by a DTA C, that is, Ln ⊂ Ln(C), define N ≥
(1/ε2) log (θ/2) (Chernoff-Hoeffding bound); draw N samples uniformly at ran-
dom in Ln(C) and answer N queries for membership in L to return a value p such
that Vol(Ln)/Vol(Ln(C)) lies in [p − ε, p + ε] with confidence 1 − θ.

Application 2 (Inclusion Measurement). Given two timed languages L′, L′′

and an over-approximation of the two languages recognised by a DTA C one can use
the previous application with L = L′ \ L′′ to evaluate the volume Vol(L′

n \ L′′
n). If

a positive value is returned, a timed word in L′
n \L′′

n has been detected and one can
surely claim L′

n �⊆ L′′
n. Otherwise, a null value allows one to claim with confidence

1−θ that either the inclusion holds or the difference of the two languages is smaller
than εVol(Ln(C)).

Application 3 (Uniform Sampling). Given a timed language L and n ∈ N,
and an over-approximation of the language recognised by a DTA C, that is, Ln ⊆
Ln(C), draw samples uniformly at random in Ln(C) until one falls in Ln.

The sampling is uniform: every timed word of Ln has the same density of prob-
ability to be output. The expected number of samplings in Ln(C) to sample one
timed word in Ln is Vol(Ln)/Vol(Ln(C)). The choice of C is crucial, since if Ln(C)
is a too coarse approximation of Ln the probability of a sample from Ln(C) to be
in Ln is small and the methods become inefficient. We leave as future work the
design of heuristics that, given a general timed language L, automatically gener-
ate a DTA that recognises a good over-approximation of L.

5.2 Implementation and Experiments

We implemented the techniques using three tools: PRISM [16], SageMath [20] and
COSMOS [4]. The workflow is depicted in Fig. 5. We modify the tools to meet
our needs. We adapted PRISM’s forward reachability algorithm to implement the
splitting algorithm of Sect. 3. We also export the split zone graph in a file for-
mat easy to read for SageMath. We use SageMath to compute distributions and
weights of transitions as rational functions of clock valuations, which are exported
and read by COSMOS in the form of a Stochastic Petri Net with general distribu-
tions. COSMOS then samples trajectories of this model, checks the membership of
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Split

DTA

COSMOS

model

Trajectory
DTA

NTA

ResultForward
Reachability

Splitting
Volume and
Distribution
Computation

Sampling Membership

PRISM SageMath COSMOS

Fig. 5. Tool workflow. For the running example (Example 1), the DTA is the automaton
in Fig. 2 (Left), the zone graph is the automaton in Fig. 3, the COSMOS model is the
zone graph annotated with probability distributions as described in Example 3, and
examples of trajectories are depicted in Fig. 4.

z := 0

a

x := 0

b, x ≥ 1

y := 0

a, x ≤ 3 ∧ y ≥ 1

z ≤ 10

a, ba, b a, b a, b

l1 l2 l3 l4

Fig. 6. The NTA B for Example 5. Every transition has a guard z ≤ 10 omitted.

the language of a given NTA, and returns the probability. We have modified COS-
MOS to handle distributions given by arbitrary rational functions and to compute
the membership of a timed word in an NTA. Our implementation can be found at
http://www.prismmodelchecker.org/files/qest16.

Example 5. Let A be the DTA of the running example (Example 1). The NTA
B of Fig. 6 recognises the timed words that contain aba as a subword within the
first 10 time units, where the latter a occurs at most 3 time units after the for-
mer and there is at least 1 time unit between b and both as. We have estimated
Vol(L10(A)∩L10(B))/Vol(L10(A)) by implementing Application 1. Sampling was
performed using Method 2 with m = 5. The result is in the interval [0.679, 0.688]
with confidence level 0.99; 58, 000 simulations were used in 5s.

A Case Study. We additionally consider a larger case study of a failure and repair
system modelled as an NTA (see [5] for more details). We consider a model with
K machines that need to be fully repaired for the overall system to work properly.
Each machine contains N levels of failure and can fail at most nb times between
two full repairs. The model is implemented by an NTA A with Nnb locations and
K +1 clocks. The property we are interested in is encoded in another NTA B with
4 locations and 2 clocks. We apply our method by over-approximating the NTA
A with a DTA C with R

def= KN locations and 2 clocks. The results are reported
in Table 3. We use our approach to sample timed words of length 50 of the DTA C
and check their membership in L50(A) and L50(B). We compare receding horizon
sampling to isotropic sampling. We observe that for isotropic sampling the proba-
bility for a timed word in L50(A) to be in L50(B) (denoted by P50(B|A)) tends to 1
quickly when R increases, which, for large values of R, might be interpreted as an
inclusion of the languages. On the other hand, with the receding horizon sampling
the same probability (P50(B|A)) tends to zero, which shows that the model does
not satisfy the property. This result demonstrates the necessity of (quasi)-uniform

http://www.prismmodelchecker.org/files/qest16
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Table 3. Result of receding horizon sampling compared to isotropic sampling for the
case study with two machines (K = 2). “Pre Time” is the pre-computation time, “Sim
Time” is the simulation time. The meaning of R, P50(A|C) and P50(B|A) is described
in the text. The receding horizon is 8 + R. The number of samples is 100, 000.

R Receding horizon Isotropic
Pre Time #Zones Sim Time P50(B|A) P50(A|C) Sim Time P50(B|A) P50(A|C)

4 45s 380 133s 0.999977 0.86539 36s 0.990439 0.03347
6 99s 581 369s 0.997717 0.58701 39s 0.975795 0.05123
8 219s 783 5005s 0.930944 0.06111 56s 0.995179 0.07052
10 417s 985 5773s 0.509091 0.00275 55s 0.999893 0.09325
12 745s 1187 7954s 0.0344828 0.00029 64s 1 0.1019

sampling to explore the behaviour of the model, since the results of isotropic sim-
ulation significantly diverge from those of (quasi)-uniform simulation, and thus
do not yield reliable information about the system.

We also observe that the probability for timed words in the over-approximation
L50(C) to fall in L50(A) (denoted by P50(A|C)) tends to zero, meaning that it
becomes too crude for large values of R. Thus, tight over-approximations are
important to obtain efficient simulation of an NTA through a DTA.

The time required for receding horizon simulation is high compared to
isotropic, since it requires sampling of complex distributions involving many poly-
nomials.

6 Conclusion and FurtherWork

We have developed the foundations for the practical application of xsvolumetry of
timed languages to quantitative and statistical verification of complex properties
for TAs. We implemented our work in a tool chain and provide first experiments.

On the theoretical side, we want to show that constants in Method 3 and The-
orem 2 can be chosen to guarantee arbitrarily small divergence from exact uni-
form sampling and consider extending the theory to probabilistic TAs. We would
also like to implement membership checking in COSMOS for generaltimed lan-
guages (e.g. recognised by stopwatch automata, LHA, etc.). We also plan to use
our random sampling algorithms to detect forgetful cycles described in [3], which
are needed to synthesise controllers robust to timing imprecision [18].
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Abstract. We study weakest precondition reasoning about the (co)
variance of outcomes and the variance of run–times of probabilistic
programs with conditioning. For outcomes, we show that approximat-
ing (co)variances is computationally more difficult than approximating
expected values. In particular, we prove that computing both lower and
upper bounds for (co)variances is Σ0

2–complete. As a consequence, nei-
ther lower nor upper bounds are computably enumerable. We therefore
present invariant–based techniques that do enable enumeration of both
upper and lower bounds, once appropriate invariants are found. Finally,
we extend this approach to reasoning about run–time variances.

Keywords: Probabilistic programs · Covariance · Run–time

1 Introduction

Probabilistic programs describe manipulations on uncertain data in a succinct
way. They are normal–looking programs describing how to obtain a distribu-
tion over the outputs. Using mostly standard programming language constructs,
a probabilistic program transforms a prior distribution into a posterior dis-
tribution. Probabilistic programs provide a structured means to describe e.g.,
Bayesian networks (from AI), random encryption (from security), or predator–
prey models (from biology) [5] succinctly.

The posterior distribution of a program is mostly determined by approximate
means such as Markov Chain Monte Carlo (MCMC) sampling using (variants
of) the well–known Metropolis–Hasting approach. This yields estimates for var-
ious measures of interest, such as expected values, second moments, variances,
covariances, and the like. Such estimates typically come with weak guarantees
in the form of confidence intervals, asserting that with a certain confidence the
measure has a certain value. In contrast to these weak guarantees, we aim at
the exact inference of such measures and their bounds. We hereby focus both on
correctness and on run–time analysis of probabilistic programs. Put shortly, we
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are interested in obtaining quantitative statements about the possible outcomes
of programs well as their run times.

This paper studies reasoning about the (co)variance of outcomes and the
variance of run–times of probabilistic programs. Our programs support sampling
from discrete probability distributions, conditioning on the outcomes of exper-
iments by observations [5], and unbounded while–loops1. In the first part of
the paper, we study the theoretical complexity of obtaining (co)variances on out-
comes. We show that obtaining bounds on (co)variances is computationally more
difficult than for expected values. In particular, we prove that computing both
upper and lower bounds for (co)variances of program outcomes is Σ0

2–complete,
thus not recursively enumerable. This contrasts the case for expected values
where lower bounds are recursively enumerable, while only upper bounds are Σ0

2–
complete [7]. We also show that determining the precise values of (co)variances
as well as checking whether the (co)variance is infinite are both Π0

2–complete.
These results rule out analysis techniques based on finite loop–unrollings as com-
plete approaches for reasoning about the covariances of outcomes of probabilistic
programs.

In the second part of the paper, we therefore develop a weakest precondition
reasoning technique for obtaining covariances on outcomes and variances on run–
times. As with deductive reasoning for ordinary sequential programs, the crux
is to find suitable loop–invariants. We present a couple of invariant–based proof
rules that provide a sound and complete method to computably enumerate both
upper and lower bounds on covariances, once appropriate invariants are found.
We establish similar results for variances of the run–time of programs. The results
of this paper extend McIver and Morgans approach for obtaining expectations of
probabilistic programs [11], recent techniques for expected run–time analysis [9],
and complement results on termination analysis [4,7].

Some proofs had to be omitted due to lack of space. They can be found in
an extended version of this paper [8].

2 Preliminaries

We study approximating the covariance of two random variables (ranging over
program states) after successful termination of a probabilistic program on a given
input state. Our development builds upon the conditional probabilistic guarded
command language (cpGCL) [6]—an extension of Dijkstra’s guarded command
language [3] endowed with probabilistic choice and conditioning constructs.

Definition 1 (cpGCL [6]). Let V be a finite set of program variables2. Then
the set of programs in cpGCL, denoted P, adheres to the grammar

P :: = skip
∣∣ empty ∣∣ diverge ∣∣ halt ∣∣ x := E

∣∣ P; P
∣∣ if (B) {P} else {P}∣∣ {P} [p] {P} ∣∣ while (B) {P} ∣∣ observe B ,

1 This contrasts MCMC–based analysis, as this is restricted to bounded programs.
2 We restrict ourselves to a finite set of program variables for reasons of cleanness of

the presentation. In principle, a countable set of program variables could be allowed.
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where x ∈ V, E is an arithmetical expression over V, p ∈ [0, 1] ∩Q is a rational
probability, and B is a Boolean expression over arithmetic expressions over V.

If a program C contains neither a probabilistic choice {C ′} [p] {C ′′} nor an
observe–statement, we say that C is non–probabilistic.

We briefly go over the meaning of the language constructs. Furthermore, we
assign each statement an execution time in order to reason about the run–time
of programs. skip (empty) does nothing—i.e. does not alter the current variable
valuations—and consumes one (no) unit of time. diverge is syntactic sugar for
the certainly non–terminating program while (true) {skip}. halt consumes no
unit of time and halts program execution immediately (even when encountered
inside a loop). It represents an improper termination of the program. x := E, C1;
C2, if (B) {C1} else {C2}, and while (B) {C ′} are standard variable assign-
ment, sequential composition, conditional choice, and while–loop constructs.
Assignments and guard evaluations consume one unit of time.

{C1} [p] {C2} is a probabilistic choice construct: With probability p the pro-
gram C1 is executed and with probability 1 − p the program C2 is executed.
Flipping the p–coin itself consumes one unit of time. observe B is the con-
ditioning construct. Whenever in the execution of a program, an observe B
is encountered, such that the current variable valuation satisfies the guard B,
nothing happens except that one unit of time is being consumed. If, however,
an observe B is encountered along an execution trace that occurs with prob-
ability q, such that B is not satisfied, this trace is blocked as it is considered
an undesired execution. The probabilities of the remaining execution traces are
then conditioned to the fact that this undesired trace was not encountered, i.e.
the probabilities of the remaining execution traces are renormalized by 1−q. We
refer to encountering such an undesired execution as an observation violation.
For more details on conditioning and its semantics, see [6].

Notice that we do not include non–deterministic choice constructs
(as opposed to probabilistic choice construct) in our language, as we would then
run into similar problems as in [6, Sect. 6] in the presence of conditioning.

Example 1 (Conditioning Inside a Loop). Consider the following loop:

while (c = 1){ {c := 0} [0.5] {x := x + 1}; observe c = 1 ∨ x is odd }
Without the observe–statement, this loop would generate a geometric distribu-
tion on x. By considering the observe–statement, this distribution is conditioned
to the fact that after termination x is odd. �
Given a probabilistic program C, an initial state σ, and a random variable f
mapping program states to positive reals, we could now ask: What is the con-
ditional expected value of f after proper termination of program C on input σ,
given that no observation was violated during the execution? An answer to this
question is given by the conditional weakest pre–expectation calculus introduced
in [6]. For summarizing this calculus, we first formally characterize the random
variables f , commonly called expectations [11]:
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Definition 2 (Expectations [6,11]). Let S = {σ | σ : V → Q}, where Q is the
set of rational numbers, be the set of program states.3 Then the set of expecta-
tions is defined as E =

{
f

∣∣ f : S → R
∞
≥0

}
, and the set of bounded expectations

is defined as E≤1 = {f | f : S → [0, 1]}. A complete partial order � on both E

and E≤1 is given by f1 � f2 iff ∀σ ∈ S : f1(σ) ≤ f2(σ).

The weakest (liberal) pre–expectation transformer wp : P → (E → E) (wlp : P →
(E≤1 → E≤1)) is defined according to Table 1 (middle column). By means of
these two transformers, we can give an answer to the question posed above:
Namely, the fraction wp[C](f)(σ)/wlp[C](1)(σ) is indeed the conditional expected
value of f after termination of C on input σ, given that no observation was
violated during C’s execution [6]. Consequently, we define:

Table 1. Definition of wp, wlp, and rt. [x/E] is a syntactic replacement with
f [x/E] (σ) = f(σ[x �→ σ(E)]). [B] is the indicator function of B with [B](σ) = 1
if σ |= B, and [B](σ) = 0 otherwise. F ◦ H(f) is the functional composition of F and
H applied to f . lfpX. F (X) (gfpX. F (X)) is the least (greatest) fixed point of F with
respect to �. Definitions of wlp for the other language constructs are as for wp and
thus omitted.

3 Notice that S is countable and computably enumerable as V is finite.
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Definition 3 (Conditional Expected Values [6]). Let C ∈ P, σ ∈ S, and
f ∈ E. Then the conditional expected value of f after executing C on input σ
given that no observation was violated is defined as4

E�C�(σ)(f) =
wp [C] (f) (σ)
wlp [C] (1) (σ)

.

Having the definition for conditional expected values readily available, we can
now turn towards defining the conditional (co)variance of a (two) random vari-
ables. We simply translate the textbook definition to our setting:

Definition 4 (Conditional (Co)variances). Let C ∈ P, σ ∈ S, and f, g ∈
E. Then the conditional covariance of the two random variables f and g after
executing C on input σ, given that no observation was violated is defined as

Cov�C�(σ) (f, g) = E�C�(σ) (f · g) − E�C�(σ) (f) · E�C�(σ) (g) .

The conditional variance of the single random variable f after executing C on
input σ, given that no observation was violated is defined as the conditional
covariance of f with itself, i.e. Var�C�(σ) (f) = Cov�C�(σ) (f, f).

3 Computational Hardness of Computing (Co)variances

In this section, we will investigate the computational hardness of computing
upper and lower bounds for conditional (co)variances. The results will be stated
in terms of levels in the arithmetical hierarchy—a concept we first briefly recall:

Definition 5 (The Arithmetical Hierarchy [10,12]). For every n ∈ N,
the class Σ0

n is defined as Σ0
n =

{A ∣∣ A =
{
x

∣∣ ∃y1 ∀y2 ∃y3 · · · ∃/∀yn : (x, y1,

y2, y3, . . . , yn) ∈ R}
, R is a decidable relation

}
and the class Π0

n is defined as
Π0

n =
{A ∣∣ A =

{
x

∣∣ ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (x, y1, y2, y3, . . . , yn) ∈ R}
, R

is a decidable relation
}
. Note that we require the values of variables to be drawn

from a computable domain. Multiple consecutive quantifiers of the same type can
be contracted to one quantifier of that type, so the number n really refers to the num-
ber of necessary quantifier alternations. A set A is called arithmetical, iff A ∈ Γ 0

n ,
for Γ ∈ {Σ, Π} and n ∈ N. The arithmetical sets form a strict hierarchy, i.e.
Γ 0

n ⊂ Γ 0
n+1 holds for Γ ∈ {Σ, Π} and n ≥ 0. Furthermore, note that Σ0

0 = Π0
0 is

exactly the class of the decidable sets and Σ0
1 is exactly the class of the computably

enumerable sets.

4 We make use of the convention that 0
0

= 0. Note that since our probabilistic choice
is a discrete choice and our language does not support sampling from continuous
distributions, the problematic case of “ 0

0
” can only occur if executing C on input σ

will result in a violation of an observation with probability 1.
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Next, we recall the concept of many–one reducibility and completeness:

Definition 6 (Many–One Reducibility and Completeness [2,12,14]).
Let A, B be arithmetical sets and let X be some appropriate universe such that
A,B ⊆ X. A is called many–one reducible (or simply reducible) to B, denoted
A ≤m B, iff there exists a computable function r : X → X, such that ∀x ∈ X :(
x ∈ A ⇐⇒ r(x) ∈ B)

. If r is a function such that r reduces A to B, we denote
this by r : A ≤m B. Note that ≤m is transitive.

A is called Γ 0
n–complete, for Γ ∈ {Σ, Π}, iff both A ∈ Γ 0

n and A is Γ 0
n–hard,

meaning C ≤m A, for any set C ∈ Γ 0
n . Note that if B ∈ Γ 0

n and A ≤m B, then
A ∈ Γ 0

n , too. Furthermore, note that if A is Γ 0
n–complete and A ≤m B, then B

is necessarily Γ 0
n–hard. Lastly, note that if A is Σ0

n–complete, then A ∈ Σ0
n \Π0

n.
Analogously, if A is Π0

n–complete, then A ∈ Π0
n \ Σ0

n.

In the following, we study the hardness of obtaining covariance approximations
both from above and from below. Furthermore, we are interested in exact values
of covariances as well as in deciding whether the covariance is infinite. In order
to formally investigate the arithmetical complexity of these problems, we define
four problem sets which relate to upper and lower bounds for covariances and
to the question whether the covariance is infinite:

Definition 7 (Approximation Problems for Covariances). We define the
following decision problems:

(C, σ, f, g, q) ∈ LCOVAR ⇐⇒ Cov�C�(σ) (f, g) > q

(C, σ, f, g, q) ∈ RCOVAR ⇐⇒ Cov�C�(σ) (f, g) < q

(C, σ, f, g, q) ∈ COVAR ⇐⇒ Cov�C�(σ) (f, g) = q

(C, σ, f, g) ∈ ∞COVAR ⇐⇒ Cov�C�(σ) (f, g) ∈ {−∞, +∞}
where C ∈ P, σ ∈ S, f, g ∈ E, and q ∈ Q.5

The first fact we establish about the hardness of computing upper and lower
bounds of covariances is that this is at most Σ0

2–hard, thus not harder than
deciding whether a non–probabilistic program, i.e. a program without obser-
vations and probabilistic choice, does not terminate on all inputs, or deciding
whether a probabilistic program terminates after an expected finite number of
steps [7,13]. Formally, we establish the following results:

Lemma 1. LCOVAR and RCOVAR are both in Σ0
2 .

For proving Lemma1, we revert to a fact established in [7]: All lower bounds for
expected outcomes are computably enumerable. As a consequence, there exists
a computable function wpk [C] (f) (σ) that is ascending in k, such that for given
C ∈ P, σ ∈ S, and f ∈ E, we have

∀ k ∈ N : wpk [C] (f) (σ) ≤ wp [C] (f) (σ), and

sup
k∈N

wpk [C] (f) (σ) = wp [C] (f) (σ) .

5 Note that, for obvious reasons, we restrict to computable expectations f, g only.
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Intuitively, for every k ∈ N the function wpk [C] (f) (σ) outputs a lower bound
of wp [C] (f) (σ) in ascending order.

Similarly, lower bounds for wlp [C] (1) (σ) can be enumerated. To see this,
note that wp [C] (1) (σ) = 1 for any observe–free program C and any state σ.
wp [C] (1) (σ) can only be decreased by violation of an observation. Informally,

wp [C] (1) (σ) = 1 − “Probability of C violating an observation” .

Lower bounds for the latter probability can be enumerated by successively
exploring the computation tree of C on input σ and accumulating the prob-
ability mass of all execution traces that lead to a violation of an observation.
As a consequence, there must exist a computable function wlpk [C] (1) (σ) that
is descending in k, such that for given C ∈ P and σ ∈ S,

∀ k ∈ N : wlp [C] (1) (σ) ≤ wlpk [C] (1) (σ), and

wlp [C] (1) (σ) = inf
k∈N

wlpk [C] (1) (σ) .

Since wpk [C] (f) (σ) is ascending and wlpk [C] (1) (σ) is descending in k, the
quotient wpk[C](f)(σ)/wlpk[C](1)(σ) is ascending in k. We can now prove Lemma 1:

Proof (Lemma 1). For LCOVAR ∈ Σ0
2 , consider (C, σ, f, g, q) ∈ LCOVAR iff

∃ k ∀ � :
wpk [C] (f · g) (σ)
wlpk [C] (1) (σ)

− wp� [C] (f) (σ) · wp� [C] (g) (σ)
wlp� [C] (1) (σ)2

> q .

For the proof for RCOVAR, see [8] ��
Regarding the hardness of deciding whether a given rational is equal to the
covariance and the hardness of deciding non–finiteness of covariances, we estab-
lish that this is at most Π0

2–hard, thus not harder than deciding whether a non–
probabilistic program terminates on all inputs, or deciding whether a probabilis-
tic program does not terminate after an expected finite number of steps [7,13].
Formally, we establish the following:

Lemma 2. COVAR and ∞COVAR are both in Π0
2 .

So far we provided upper bounds for the computational hardness of solving
approximation problems for covariances. We now show that these bounds are
tight in the sense that these problems are complete for their respective level of the
arithmetical hierarchy. For that we need a Σ0

2– and a Π0
2–hard problem in order

to perform the necessary reductions for proving the hardness results. Adequate
problems are the problem of almost–sure termination and its complement:

Theorem 1 (Hardness of the Almost–Sure Termination Problem [7]).
Let C ∈ P be observe–free. Then C terminates almost–surely on input σ ∈ S, iff
it does so with probability 1. The problem set AST is defined as (C, σ) ∈ AST
iff C terminates almost–surely on input σ. We denote the complement of AST
by AST .6 AST is Π0

2–complete and AST is Σ0
2–complete.

6 Note that by “complement” we mean not exactly a set theoretic complement but
rather all pairs (C, σ) such that C does not terminate almost–surely on σ.
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1
2 10

wp [C ] (1) (σ)

1
4

0

wp [C ] (1) (σ) − wp [C ] (1) (σ)2

Fig. 1. Plot of the termination probability of a program against the resulting variance.

By reduction from AST we now establish the following hardness results:

Lemma 3. LCOVAR and RCOVAR are both Σ0
2–hard.

Proof. For proving the Σ0
2–hardness of LCOVAR, consider the reduction func-

tion rL(C, σ) = (C ′, σ, v, v, 0)7, with C ′ = v := 0; {skip} [1/2] {C}; v := 1,
where variable v does not occur in C. Now consider the following:

Cov�C′�(σ) (v, v) =
wp [C ′]

(
v2

)
(σ)

wlp [C ′] (1) (σ)
− wp [C ′] (v) (σ)2

wlp [C ′] (1) (σ)2

=
wp [C ′]

(
v2

)
(σ)

1
− wp [C ′] (v) (σ)2

12
(C ′ is observe–free)

= wp [C ′]
(
v2

)
(σ) − wp [C ′] (v) (σ)2

Since v does not occur in C and v is set from 0 to 1 if and only if C ′ has
terminated, this is equal to:

= wp [C ′]
(
12

)
(σ) − wp [C ′] (1) (σ)2

= wp [C ′] (1) (σ) − wp [C ′] (1) (σ)2

Note that wp [C ′] (1) (σ) is exactly the probability of C ′ terminating on input σ.
A plot of this termination probability against the resulting variance is given in
Fig. 1. We observe that Cov�C′�(σ) (v, v) = wp [C ′] (1) (σ) − wp [C ′] (1) (σ)2 > 0
iff C ′ terminates neither with probability 0 nor with probability 1. Since, how-
ever, C ′ terminates by construction at least with probability 1/2, we obtain
that Cov�C′�(σ) (v, v) > 0 iff C ′ terminates with probability less than 1, which
is the case iff C terminates with probability less than 1. Thus rL(C, σ) =
(C ′, σ, v, v, 0) ∈ LCOVAR iff (C, σ) ∈ AST . Thus, rL : AST ≤m LCOVAR.
Since AST is Σ0

2–complete, if follows that LCOVAR is Σ0
2–hard.

For the the proof for RCOVAR, see [8]. ��
A hardness results for COVAR is obtained by reduction from AST .

7 We write v for the expectation that in state σ returns σ(v).
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Lemma 4. COVAR is Π0
2–hard.

Proof. Similar to Lemma 3 using rV(C, σ) =
(
C ′, σ, v, v, 1

4

)
, with C ′ = v := 0;

{diverge} [1/2] {C}; v := 1. For details, see [8]. ��
For a hardness result on ∞COVAR we use the universal halting problem for
non–probabilistic programs.

Theorem 2 (Hardness of the Universal Halting Problem [13]). Let C
be a non–probabilistic program. The universal halting problem is the problem of
deciding whether C terminates on all inputs. Let UH denote the problem set,
defined as C ∈ UH iff ∀σ ∈ S : C terminates on input σ. UH is Π0

2–complete.

We now establish by reduction from UH the remaining hardness result:

Lemma 5. ∞COVAR is Π0
2–hard.

Proof. For proving the Π0
2–hardness of ∞COVAR we use the reduction function

r∞(C) = (C ′, σ, v, v), where σ is arbitrary but fixed and C ′ is the program

c := 1; i := 0; x := 0; v := 0; term := 0; InitC;
while (c �= 0){

StepC; if (term = 1){ v := 2x; i := i + 1; term := 0; InitC };
{c := 0} [0.5] {c := 1}; x := x + 1 } ,

where InitC is a non–probabilistic program that initializes a simulation of the
program C on input e(i) (where e : N → S is some computable enumeration of
S), and StepC is a non–probabilistic program that does one single (further) step
of that simulation and sets term to 1 if that step has led to termination of C.

Intuitively, the program C ′ starts by simulating C on input e(0). During
the simulation, it—figuratively speaking—gradually looses interest in further
simulating C by tossing a coin after each simulation step to decide whether to
continue the simulation or not. If eventually C ′ finds that C has terminated
on input e(0), it sets the variable v to a number exponential in the number of
coin tosses that were made so far, namely to 2x. C ′ then continues with the same
procedure for the next input e(1), and so on.

The variable x keeps track of the number of loop iterations (starting from
1 as the first loop iteration will definitely take place), which equals the number
of coin tosses. The x–th loop iteration takes place with probability 1/2x. The
expected value E�C′�(σ) (v) is thus given by a series of the form S =

∑∞
i=1

vi/2i,
where vi = 2j for some j ∈ N. Two cases arise:

(1) C ∈ UH, i.e. C terminates on every input. In that case, v will infi-
nitely often be updated to 2x. Therefore, summands of the form 2i

/2i will
appear infinitely often in S and so S diverges. Hence, the expected value of
v is infinity and therefore, the variance of v must be infinite as well. Thus,
(C ′, σ, v, v) ∈ ∞COVAR.

(2) C �∈ UH, i.e. there exists some input σ′ with minimal i ∈ N such that
e(i) = σ′ on which C does not terminate. In that case, the numerator of all
summands of S is upper bounded by some constant 2j and thus S converges.
Boundedness of the vi’s implies that the series

∑∞
i=1

vi
2
/2i = E�C′�(σ)

(
v2

)
also

converges. Hence, the variance of v is finite and (C ′, σ, v, v) �∈ ∞COVAR. ��
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Lemmas 1 to 5 together directly yield the following completeness results:

Theorem 3 (The Hardness of Approximating Covariances).

1. LCOVAR and RCOVAR are both Σ0
2–complete.

2. COVAR and ∞COVAR are both Π0
2–complete.

Remark 1 (The Hardness of Approximating Variances). It can be shown that
variance approximation is not easier than covariance approximation: exactly the
same completeness results as in Theorem 3 hold for analogous variance approxi-
mation problems. In fact, we have always reduced to approximating a variance
for obtaining our hardness results on covariances. �
As an immediate consequence of Theorem 3, computing both upper and lower
bounds for covariances is equally difficult. This is contrary to the case for expected
values: While computing upper bounds for expected values is also Σ0

2–complete,
computing lower bounds is Σ0

1–complete, thus lower bounds are computably
enumerable [7]. Therefore we can computably enumerate an ascending sequence
that converges to the sought–after expected value. By Theorem3 this is not
possible for a covariance as Σ0

2–sets are in general not computably enumerable.
Theorem 3 rules out techniques based on finite loop–unrollings as complete

approaches for reasoning about the covariances of outcomes of probabilistic pro-
grams. As this is a rather sobering insight, in the next section we will investigate
invariant–aided techniques that are complete and can be applied to tackle these
approximation problems.

4 Invariant–Aided Reasoning on Outcome Covariances

For straight–line (i.e. loop–free) programs, upper and lower bounds for covarian-
ces are obviously computable, e.g. by using the decompositions from Definitions 3
and 4, and the inference rules from Table 1. Problems do arise, however, for
loops. We have seen in the previous section that neither upper nor lower bounds
are computably enumerable. In this section we therefore present an invariant–
aided approach for enumerating bounds on covariances of loops. The underlying
principle of such techniques is quite commonly a result due to Park:

Theorem 4 (Park’s Lemma [15]). Let (D, �) be a complete partial order
and F : D → D be continuous. Then, for all d ∈ D, it holds that F (d) � d
implies lfpF � d, and d � F (d) implies d � gfpF .

Using this theorem, we can verify in a relatively easy fashion that some element
is an over–approximation of the least fixed point or an under–approximation of
the greatest fixed point of a continuous mapping on a complete partial order.
In the following, let C = while (B) {C ′}. In order to exploit Park’s Lemma for
enumerating bounds on covariances for this while–loop, recall

Cov�C�(σ) (f, g) = E�C�(σ) (f · g) − E�C�(σ) (f) · E�C�(σ) (g)

=
wp [C] (f · g) (σ)
wlp [C] (1) (σ)

− wp [C] (f) (σ) · wp [C] (g) (σ)
wlp [C] (1) (σ)2

.
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By inspection of the last line, we can see that for obtaining an over–approxima-
tion of Cov�C�(σ) (f, g), it suffices to over–approximate wp[C′](f ·g)(σ)/wlp[C′](1)(σ),
which can be done by over–approximating wp [C ′] (f · g) (σ) and under–approxi-
mating wlp [C ′] (1) (σ). Since wp (wlp) of a loop is defined in terms of a least
(greatest) fixed point, we can apply Park’s Lemma for over–approximating this
fraction. This leads us to the following proof rule:

Theorem 5 (Invariant–Aided Over–Approximation of Covariances).
Let C = while (B) {C ′}, σ ∈ S, f, g ∈ E, Fh(X) = [¬B] · h + [B] ·wp [C ′] (X),
for any h ∈ E, and G(Y ) = [¬B] + [B] · wlp [C ′] (Y ). Furthermore, let X̂ ∈ E

and Ŷ ∈ E≤1, such that Ff ·g
(
X̂

) � X̂, Ŷ � G
(
Ŷ

)
, and Ŷ (σ) > 0. Then for all

k ∈ N it holds that8

Cov�C�(σ) (f, g) ≤ X̂(σ)

Ŷ (σ)
− F k

f (0)(σ) · F k
g (0)(σ)

Gk(1)(σ)2
.

By this method we can computably enumerate upper bounds for covariances once
appropriate invariants are found. The catch is that if we choose the invariants,
such that Ff ·g

(
X̂

)
(σ) < X̂(σ) or Ŷ (σ) < G

(
Ŷ

)
(σ), then the enumeration will

not get arbitrarily close to the actual covariance. Note, however, that our method
is complete since we could have chosen X̂ = lfpFf ·g and Ŷ = gfpG:

Corollary 1 (Completeness of Theorem5). Let C = while (B) {C ′}, σ ∈
S, f, g ∈ E. Then there exist X̂ ∈ E and Ŷ ∈ E≤1, such that

inf
k∈N

X̂(σ)

Ŷ (σ)
− F k

f (0)(σ) · F k
g (0)(σ)

Gk(1)(σ)2
= Cov�C�(σ) (f, g) .

By considerations analogous to the ones above, we can formulate dual results
for lower bounds. For details, see [8].

Example 2 (Application of Theorem5). Reconsider the loop from Example 1. For
reasoning about the variance of x, we pick the invariants

X̂ = [c �= 0] · x2 + [c = 1] · ([x is even] · 1/27 (
9x2 + 30x + 41

)
+ [x is odd] · 2/27 (

9x2 + 12x + 20
))

, and

Ŷ = [c �= 0] + [c = 1] · ([x is even] · 1/3 + [x is odd] · 2/3) ,

which satisfy the preconditions of Theorem5. If we enter the loop in a state
σ with σ(c) = 1 and σ(x) = 0, we have ̂X(σ)/̂Y (σ) = 41/9 which is our first
upper bound. We can now enumerate further upper bounds by doing fixed point
iteration on Fx(X) = [c �= 1] · x + [c = 1] · wp [loop body ] (X) = [c �= 1] ·

8 Here F k
h (X) stands for k–fold application of Fh to X.
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x + [c = 1] · 1
2

(
[x is odd] · X[c/0] +X[x/x + 1]

)
and G(Y ) = [c �= 1] + [c =

1] · wlp [loop body ] (Y ) = [c �= 1] + [c = 1] · 1
2

(
[x is odd] · Y [c/0] +Y [x/x + 1]

)
:

41
9

− F 1
x (0)(σ)2

G1(1)(σ)2
=

41
9

− F 2
x (0)(σ)2

G2(1)(σ)2
=

41
9

,
41
9

− F 3
x (0)(σ)2

G3(1)(σ)2
=

37
9

, . . .

Finally, this sequence converges to 41/9 − 25/9 = 16/9 as the variance of x. �

5 Reasoning About Run–Time Variances

In addition to the (co)variance of outcomes we are interested in the variance of
the program’s run–time. Intuitively, the run–time of a program corresponds to
its number of executed operations, where each operation is weighted according to
some run–time model. For simplicity, our run–time model assumes skip, guard
evaluations and assignments to consume one unit of time. Other statements are
assumed to consume no time at all. More elaborated run–time models, e.g. in
which the run–time of assignments depends on the size of a given expression,
are possible design choices that can easily be integrated in our formalization.

We describe the run–time variance in terms of an operational model Markov
Chain (MC) with rewards. The model is similar to the ones studied in [6,9], but
additionally keeps track of the run–time in a dedicated variable τ which is not
accessible by the program, but may occur in expectations.

Definition 8 (Run–Time Expectations). Let Sτ = {σ | V ∪· {τ} → Q}. The
set of run–time expectations is then defined as Eτ =

{
t

∣∣ t : Sτ → R
∞
≥0

}
.

A corresponding wp–style calculus to reason about expected run–times and vari-
ances of probabilistic programs is presented afterwards.

We first briefly recall some necessary notions about MCs and refer to [1,
Chap. 10] for a comprehensive introduction. A Markov Chain is a tuple M =
(S,P, sI , rew), where S is a countable set of states, sI ∈ S is the initial state,
P : S × S → [0, 1] is the transition probability function such that for each state
s ∈ S,

∑
s′∈S P(s, s′) ∈ {0, 1}, and rew : S → R≥0 is a reward function. Instead

of P(s, s′) = p, we often write s
p−→ s′. A path in M is a finite or infinite sequence

π = s0s1 . . . such that si ∈ S and P(si, si+1) > 0 for each i ≥ 0 (where we
tacitly assume P(si, si+1) = 0 if π is a finite path of length n and i ≥ n). The
cumulative reward and the probability of a finite path π̂ = s0 . . . sn are given
by rew(π̂) =

∑n−1
k=0 rew(sk) and PrM {π̂} =

∏n−1
k=0 P(sk, sk+1). These notions

are lifted to infinite paths by the standard cylinder set construction (cf. [1]).
Given a set of target states T ⊆ S, ♦T denotes the set of all paths in M

reaching a state in T from initial state sI . Analogously, all paths starting in sI

that never reach a state in T are denoted by ¬♦T . The expected reward that M
eventually reaches T from a state s ∈ S is defined as follows:

ExpRewM (♦T ) =

{∑
π∈♦T PrM {π} · rew(π) if

∑
π∈♦T PrM {π} = 1

∞ if
∑

π∈♦T PrM {π} < 1.
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Moreover, the conditional expected reward of M reaching T from s under the
condition that a set of undesired states U ⊆ S is never reached is given by9

CExpRewM (♦T | ¬♦U) =
ExpRewM (♦T ∩ ¬♦U)

PrM {¬♦U} .

We are now in a position to define an operational model for our probabilistic
programming language P. Let ↓ and E be two special symbols denoting successful
termination of a program and failure of an observation, respectively.

Definition 9 (The Operational MC of a P–Program). Given a program
C ∈ P, an initial program state σ0 ∈ Sτ and a post–run–time t ∈ E, the according
MC is given by M t

σ0
[C] = (S, P, sI , rew), where

– S = ((P ∪ {↓} ∪ {↓;C | C ∈ P}) × Sτ ) ∪ {〈 sink 〉, 〈 E 〉},
– the transition probability function P is given by the rules in Fig. 2,
– sI = 〈C, σ0 〉, and
– rew : S → R≥0 is the reward function defined by rew(s) = t(σ) if s = 〈 ↓, σ 〉

for some σ ∈ Sτ and rew(s) = 0, otherwise.

In this construction, σ0(τ) represents the post–execution time of a program,
i.e. the run–time that is added after a program finishes its execution. Hence, τ
precisely captures the run–time of a program if σ0(τ) = 0. The rules presented
in Fig. 2 defining the transition probability function are mostly self–explanatory.
Since we assume guard evaluations, probabilistic choices, assignments and the
statement skip to consume one unit of time. Hence, τ is incremented accordingly
for each of these statements and remains untouched otherwise.

Figure 3 sketches the structure of the operational MC M t
σ [C]. Here, clouds

represent a set of states and squiggly arrows indicate that a set of states is
reachable by one or more paths. Each run either terminates successfully (i.e.
it visits some state 〈 ↓, σ′ 〉), or violates an observation (i.e. it visits 〈 E 〉), or
diverges. In the first two cases each run eventually ends up in the 〈 sink 〉 state.
Note that states of the form 〈 ↓, σ′ 〉 are the only ones that may have a positive
reward. Furthermore, each of the auxiliary states of the form 〈 ↓, σ′ 〉, 〈 E 〉 and
〈 sink 〉 is needed to properly deal with diverge, halt and observe B.

Since τ precisely captures the run–time of a program if τ is initially set to
0, the expected run–time of executing C ∈ P on input σ ∈ Sτ with σ(τ) = 0 is
given by the conditional expected reward of M τ

σ [C] reaching 〈 sink 〉, given that
no observation fails, i.e. E�C�(σ) (τ) = CExpRewM τ

σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉). Then,
in compliance with Definition 4, the run–time variance RTVar�C�(σ) of C ∈ P in
state σ ∈ Sτ with σ(τ) = 0 is given by E�C�(σ)

(
τ2

) − (
E�C�(σ) (τ)

)2 which is

CExpRewM τ2
σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉) −

(
CExpRewM τ

σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉)
)2

.

In the following we provide a corresponding wp–style calculus to reason about
expected run–times and run–time variances of probabilistic programs. A formal
9 Again, we stick to the convention that 0

0
= 0.



204 B.L. Kaminski et al.

, σ
1

sink
[terminated]

sink
1

sink
[sink]

empty, σ
1

, σ
[empty]

skip, σ
1

, σ[τ/τ + 1]
[skip]

halt, σ
1

sink
[halt]

x := E, σ
1

, σ[x/E, τ/τ + 1]
[assgn]

C1, σ
p

C1, σ 0 < p ≤ 1

C1; C2, σ
p

C1; C2, σ
[seq-1]

; C2, σ
1

C2, σ
[seq-2]

C1} [p] {C2} , σ
p

C1, σ[τ/τ + 1]
[pc-1]

C1} [p] {C2} , σ
1−p

C2, σ[τ/τ + 1]
[pc-2]

[B](σ) = 1

if (B) {C1} else {C2} , σ
1

C1, σ[τ/τ + 1]
[if-true]

[B](σ) = 0

if (B) {C1} else {C2} , σ
1

C2, σ[τ/τ + 1]
[if-false]

while (B) {C} , σ
1

if (B) {C; while (B) {C}} else {empty} , σ
[while]

diverge, σ
1

diverge, σ
[diverge]

[B](σ) = 1

observe B, σ
1

, σ[τ/τ + 1]
[observe-true]

[B](σ) = 0

observe B, σ
1 E

[observe-false]
E 1

sink
[observe-failed]

Fig. 2. Rules for defining the transition probability function of the MC of a P–program.

definition of the run–time transformer rt : P → (Eτ → Eτ ) is provided in
Table 1 (rightmost column). Intuitively, it behaves like wp except that a dedicated
run–time variable τ is updated accordingly for each program statement that
consumes time. In [9], a transformer for expected run–times without the need for
an additional variable τ is studied. However, this approach fails when reasoning
about run–time variances since it fails to capture expected squared run–times.
The run–time transformer rt precisely captures the notion of expected run–time
of our operational model.



Inferring Covariances for Probabilistic Programs 205

C, σ ↓ sink

diverge

↓
↓ ↓

↓ ↓

Fig. 3. Schematic depiction of the structure of the operational MC M t
σ [C].

Theorem 6 (Operational–Denotational Correspondence). Let C ∈ P,
t ∈ Eτ , and σ ∈ Sτ . Then

CExpRewM t
σ[C] (♦〈 sink 〉 | ¬♦〈 E 〉) =

rt [C] (t) (σ)
wlp [C] (1) (σ)

.

As a result of Theorem 6 we immediately obtain a formal definition of the
run–time variance of probabilistic programs in terms of rt and wlp. Formally, the
run–time variance of C ∈ P in state σ ∈ Sτ with σ(τ) = 0 is given by

RTVar�C�(σ) = CExpRewM τ2
σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉)

−
(
CExpRewM τ

σ [C] (♦〈 sink 〉 | ¬♦〈 E 〉)
)2

=
rt [C]

(
τ2

)
(σ)

wlp [C] (1) (σ)
− (rt [C] (τ) (σ))2

(wlp [C] (1) (σ))2
.

Since rt is continuous (cf. [8] for a formal proof), the invariant–aided approach
based on Park’s Lemma (Theorem 4) presented in Sect. 4 is applicable to approx-
imate run–time variances as well. We present the result for approximating upper
bounds only. The dual result for lower bounds is obtained analogously.

Theorem 7 (Invariant–AidedOver–Approximation of Run–TimeVari-
ances). Let C = while (B) {C ′} and σ ∈ Sτ with σ(τ) = 0. Moreover, let
Fh(X) = [¬B] ·h+[B] · rt [C ′] (X), and G(Y ) = [¬B]+ [B] ·wlp [C ′] (Y ). Further-
more, let X̂ ∈ Eτ and Ŷ ∈ E≤1, such that Fτ2

(
X̂

) � X̂, Ŷ � G
(
Ŷ

)
, and Ŷ (σ) > 0.

Then for each k ∈ N, it holds

RTVar�C�(σ) ≤ X̂(σ)

Ŷ (σ)
−

(
F k

τ (0)(σ)
Gk(1)(σ)

)2

.

The proof of Theorem7 is analogous to the proof of Theorem5. Again, since it
is always possible to choose X̂ = lfpFτ2 and Ŷ = gfpG, Theorem 7 is complete,
i.e. there exist X̂ ∈ Eτ and Ŷ ∈ E≤1 such that

inf
k∈N

X̂(σ)

Ŷ (σ)
−

(
F k

τ (0)(σ)
Gk(1)(σ)

)2

= RTVar�C�(σ).
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6 Conclusion

We have studied the computational hardness of obtaining both upper and lower
bounds on (co)variance of outcomes and established that this is Σ0

2–complete.
Thus neither upper nor lower bounds are computably enumerable. Furthermore,
we have established that deciding whether the (co)variance equals a given ratio-
nal and deciding whether the covariance is infinite is Π0

2–complete.
In the second part of the paper, we continued by presenting a sound and com-

plete invariant–aided approach which allows to computably enumerate upper and
lower bounds on (co)variances of while–loops, once appropriate loop–invariants
are found. Finally, we have shown how this approach can be extended to reason
about the variance of run–times.
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Abstract. Network calculus (NC) offers a framework for worst-case
analysis of queueing networks. It enables to derive deterministic bounds
on flow delay and server backlog. The continuous evolution of NC led to
a set of different analyses. In fact, it even resulted in two entirely dif-
ferent branches of the methodology. Both start with a common network
description based on bounding functions on flow arrivals and forward-
ing service. Anything that follows, i.e., the actual analysis leading to a
worst-case performance bound, vastly differs. For long, there was only
the algebraic NC, the formalism created as a system theory for commu-
nication networks. It matured and eventually seemed to have reached
its limits regarding the accuracy of bounds. The problems preventing
it from attaining tight bounds in feed-forward networks were overcome
with optimization-based analysis. However, this approach was proven
NP-hard without an efficient analysis algorithm known for it. Therefore,
it was proposed to confine to a less complex optimization-based analy-
sis instead. Like algebraic NC analyses, it derives tight bounds for some
networks and valid bounds with varying accuracy for other networks. In
this paper, we investigate the consequences of this tradeoff and identify
a new and crucial analysis principle that allows us to compare both NC
branches more comprehensively than simply ranking delay bounds.

Keywords: Network calculus · Algebraic analysis · Optimization

1 Introduction

Network calculus (NC) is a methodology for the worst-case analysis of queueing
systems. It provides different analysis procedures to derive deterministic bounds
on buffer requirements and flow delays. Thus, it can be employed in the verifi-
cation of real-time systems. In fact, algebraic network calculus has seen appli-
cation in avionics [8,11,12]. E.g., the Airbus A380’s backbone AFDX network
(Avionics Full-Duplex Ethernet) has been certified using network calculus. Addi-
tionally, tool support is available for algebraic network calculus: open-source [2],
commercial [9] as well as an internal tool of a company manufacturing AFDX
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 207–223, 2016.
DOI: 10.1007/978-3-319-43425-4 15
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switches (Rockwell Collins: ConfGen [13]) and others (Hirschmann Automation
[17], SIEMENS [14]). Moreover, algebraic NC has continuously seen improve-
ments, e.g., w.r.t. the procedure of a feed-forward analysis and the computational
effort [3,4], as well as attainable features [3] and accuracy of results [4,5].

All these developments took place despite the introduction of an entirely dif-
ferent analysis approach based on the NC system description: optimization-based
network calculus. Initially developed by [19] to prove a property of algebraic NC
analysis that can inhibit deriving tight bounds, it was further developed into an
alternative feed-forward analysis, the LP analysis, in [7]. The LP analysis is able
to derive tight bounds, yet, it is also NP-hard with no efficient algorithm known
for it. As this insight obviously prevents network calculus to relocate to opti-
mization, an accurate (not necessarily tight) ULP analysis was proposed based
on the new optimization approach. It is of course not NP-hard, however, neither
was it benchmarked comprehensively against the current algebraic NC analy-
ses. Therefore, the question of switching the fundamental analysis approach of
network calculus has not been answered yet.

In this paper, we derive a new analysis principle for feed-forward networks –
similar to the existing principles – that pinpoints the problem of algebraic NC,
a problem theoretically solved with the LP analysis of [7]. With this principle at
hand, we can provide an in-depth NC analysis evaluation. This treatment of NC
also allows us to reveal the weaknesses of the ULP. We comprehensively compare
it to current algebraic network calculus analyses, foremost the PMOO analysis
and its extensions, and finally provide an evaluation that gives insight on the gap
between both NC branches. Our work helps to better assess the severity of the
shortfall of current algebraic NC and thus tool implementations. Moreover, our
insights provide a guide to future work w.r.t. improving algebraic NC accuracy.

The remainder of this paper is structured as follows: Sect. 2 presents some
background on NC: The system description common to both branches as well
as the algebraic operations. In Sect. 3, we examine the two NC branches regard-
ing their approaches, strengths and weaknesses when analyzing a network. This
allows us to assess accuracy of the currently employed four NC analyses (SFA,
PMOO, LP, and ULP) in Sect. 4. Section 5 concludes the paper.

2 Network Calculus Background

2.1 The System Description

Data Arrivals and Forwarding Service. Flows are characterized by func-
tions cumulatively counting their data. They belong to the set F0 of non-
negative, wide-sense increasing functions:

F0 =
{
f : R → R

+
∞ | f (0) = 0, ∀s ≤ t : f (s)≤f (t)

}
, R+

∞ := [0,+∞) ∪ {+∞}.
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We are particularly interested in the functions A(t) and A′(t) cumulatively
counting a flow’s data put into a server s and put out from s, both up until time
t. These functions allow for a straight-forward derivation of flow delays.

Definition 1. (Flow Delay) Assume a flow with input A crosses a server s and
results in the output A′. The (virtual) delay for a data unit arriving at time t is

D(t) = inf {τ ≥ 0 | A(t) ≤ A′(t + τ)}.

Note, that the order of data within the flow needs to be retained for the
(virtual) delay calculation [18].

Network calculus operates in the interval time domain, i.e., its functions of
F0 bound the maximum data arrivals of a flow during any duration of length d.

Definition 2. (Arrival Curve) Given a flow with input A, a function α ∈ F0 is
an arrival curve for A iff

∀t ∀d 0 ≤ d ≤ t : A(t) − A(t − d) ≤ α(d).

For example, periodic traffic with a maximum packet size b and a maximum
arrival rate r can be bounded by token-bucket curves FTB = {γr,b | γr,b (0) = 0,
∀d > 0 : γr,b(d)= b + r · d} ⊆ F0.

Scheduling and buffering leading to the output function A′(t) depend on a
server’s forwarding service. It is lower bounded in interval time as well.

Definition 3. (Service Curve) If the service provided by a server s for a given
input A results in an output A′, then s offers a service curve β ∈ F0 iff

∀t : A′(t) ≥ inf
0≤d≤t

{A(t − d) + β(d)}.

For instance, service offered by Ethernet connections can be described by
rate-latency curves FRL = {βR,T |βR,T (d) = max{0, R · (d − T )} ⊆ F0.

A number of servers fulfill a stricter definition of service curves that guaran-
tees a higher output during periods of queued data (backlogged periods).

Definition 4. (Strict Service Curve) Let β ∈ F0. Server s offers a strict service
curve β to a flow iff, during any backlogged period of duration d, the output of
the flow is at least equal to β(d).

2.2 Algebraic Network Calculus

Network calculus was cast in a (min,+)-algebraic framework in [10,15]. We will
first depict the basic operations and then present their combination for flow
analysis.
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Table 1. Network calculus notation for flows, arrivals and service.

Quantifier Definition

foi Flow of interest, the flow under analysis

〈sx, . . . , sy〉 Tandem of consecutive servers sx to sy

P (f) Path of flow f (a tandem of servers)

αf ,αf
s Arrival curve of flow f , arrival bound at server s

βs Service curve of server s

βl.o.f
s , βl.o.f

〈sx,...,sy〉 Left-over service curve for f at server s, on tandem 〈sx, . . . , sy〉

(min,+)-Operations. The following operations allow to manipulate arrival
and service curves while retaining their worst-case semantic.

Definition 5. ((min,+)-Operations) The (min,+)-aggregation, -convolution
and -deconvolution of two functions f, g ∈ F0 are defined as

aggregation: (f + g)(t) = f(t) + g(t),
convolution: (f ⊗ g)(t) = inf

0≤s≤t
{f(t − s) + g(s)} ,

deconvolution: (f � g)(t) = sup
u≥0

{f(t + u) − g(u)} .

The system description’s service curve definition then translates to A′ ≥
A⊗β, the arrival curve definition to A⊗α ≥ A, and performance characteristics
can be bounded using the deconvolution α � β:

Theorem 1. (Performance Bounds) Consider a server s that offers a service
curve β. Assume a flow f with arrival curve α traverses the server. Then we
obtain the following performance bounds for f :

delay bound: ∀t ∈ R
+ : D (t) ≤ inf {d ≥ 0 |(α � β) (−d) ≤ 0} ,

output bound: ∀d ∈ R
+ : α′(d)= (α � β) (d),

where the delay bound holds independent of t and α′ is an arrival curve for A′.

Analyzing an entire flow with cross-traffic on its path is enabled by the fol-
lowing theorems. Table 1 depicts the notation we use for the network analysis.

Theorem 2. (Concatenation of Servers) Consider a single flow f crossing a
tandem of servers s1, . . . , sn where each si offers a service curve βsi

. The overall
service curve for f is their concatenation by convolution

βs1 ⊗ . . . ⊗ βsn
=

⊗n

i=1
βsi

.

Theorem 3. (Left-Over Service Curve) Consider a server s that offers a strict
service curve β and that serves two input flows, f1 and f2 with arrival curves
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αf1 and αf2 , respectively. The minimum service f1 is guaranteed to receive is
lower bounded by the so-called left-over service curve

βl.o.f1
s = βs � αf0 ,

with (β � α) (d) := sup0≤u≤d {(β − α) (u)} denoting the non-decreasing upper
closure of (β − α) (d).

3 Network Calculus Feed-Forward Analyses (FFA)

3.1 Algebraic Network Calculus Analysis

An algebraic network calculus FFA computes the end-to-end delay bound for a
specific flow interest (foi). Conceptually, the analysis proceeds in two steps [2,3]:

1. The analysis abstracts from the feed-forward network to the analyzed flow’s
path (tandem of servers). This step is enabled by recursively backtracking
flows, decomposing the network into tandems [2] along their paths and bound-
ing output arrivals of cross-traffic with Theorem1, the output bound. Then,
arrival curves that bound the worst-case shape of cross-flows are known at
the location of interference with the foi.

2. The foi’s end-to-end delay bound in the feed-forward network can now be
calculated with a less complex tandem analysis. The flow’s end-to-end service
curve is derived and the delay bound computed.

The second step of the algebraic feed-forward analysis procedure has seen much
treatment in the literature. Effort focused on improving the ability to capture
flow scheduling and cross-traffic multiplexing effects in a tandem analysis. This
effort resulted in two basic principles for left-over service curve derivation of
tandems that improve algebraic NC’s accuracy:

The PBOO-Principle and the Separate Flow Analysis [15]: The SFA is
a straight-forward, hop-by-hop application of Theorems 3 and 2: First subtract
cross-traffic arrivals and then concatenate the left-over service curves. Deriving
the delay bound with a single, end-to-end left-over service curve will consider
the flow of interest’s burst term only once. This principle is therefore called
Pay Bursts Only Once (PBOO). However, for cross-flows present at multiple
consecutive hops, bursts impact the derivation multiple times.

The PMOO-Principle and -Analysis [20]: The PMOO analysis provides an
alternative derivation containing each burst term only once. Its left-over service
curve derivation reverses the operations, i.e., it convolves the tandem of servers
before subtracting cross-traffic. Due to this end-to-end approach for all flows on
the analyzed tandem, the PMOO analysis was considered superior to SFA. Yet,
[19] shows that the SFA can arbitrarily outperform a PMOO tandem analysis.
Both algebraic analyses thus complement each other.
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βs1 βs2

βs3 βs4αf1

αf2

αf3
αf4

Fig. 1. The square network and the result of the algebraic FFA applied to it if f1(α
f1)

is the analyzed flow of interest.

3.2 A New Principle for Feed-Forward Analysis: PSOO

Artifacts of Algebraic FFA. In [4], the expression cross-flow segregation was
coined for the situation where a network calculus analysis considers cross-flows
to be mutually interfering in the worst case. It was identified in a procedure for
the FFA step 1 that derives an individual arrival bound for each cross-flow [6].
While this situation could be avoided easily, we found further problems in the
FFA, so-called analysis artifacts, enforcing segregation nonetheless.

Artifact 1: The FFA Procedure. During the backtracking in step 1, several tan-
dem analyses are executed such that the FFA can re-compose tandem-local
results. This imposes a fundamental problem: Each tandem analysis is an inde-
pendent instance of SFA or PMOO analysis, operating on its own worst-case
assumptions that retain the overall FFA’s worst-case modeling. The worst case
is, in fact, a segregation of flows. Problems arise if flows share a server, demulti-
plex and rejoin again – either each other directly or indirectly via another flow.
For an example see Fig. 1: The flows at server s1 (service βs1) are treated inde-
pendently of each other, i.e., they assume worst-case mutual interference that is
not attainable in a real network. This independence is expressed by the segrega-
tion of service βs1 into βl.o.f2

s1
and βl.o.f3

s1
, both with a latency for the respective

flow that is greater than βs1 ’s latency. Thus, they cannot sum up to the full
service βs1 .

Artifact 2: Interdependence Between FFA Steps. We also found the need for
segregation in tandem networks – although this topology does not allow flows
to demultiplexing, take different paths and rejoin again. This second artifact
is illustrated in the non-nested tandem with cross-traffic arrival bounding in
Fig. 2. Applying a PMOO FFA, i.e., using PMOO in the FFA step 2, requires
knowledge about each cross-flow’s arrival bounds individually. This can only be
achieved by segregately executing the FFA step 1 for each cross-flow xf1 and
xf2. This artifact thus leads to two independently computed left-over service
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Fig. 2. A non-nested tandem and the result of the PMOO FFA applied to it.

curves βl.o.xf1
s0

and βl.o.xf2
s0

that do not add up to βs0 , i.e., the overly pessimistic
analysis does not consider usage of the entire forwarding resources.

Effect on the Analysis Result. The pessimism of independent left-over service
curve derivations inevitable results in less accurate delay bounds. We illustrate
this situation for the tandem network of Fig. 2. In the following, we compare
the PMOO delay bound for f1 delay bound with PMOO FFA (left side, Fig. 2b)
against a derivation using the entire service offered by s1 (right side, Fig. 2a):

βl.o.xf1
s0

+ βl.o.xf2
s0

< βs0

⇒ (
αxf1 � βl.o.xf1

s0

)
︸ ︷︷ ︸

=:α
xf1
s1

+
(
αxf2 � βl.o.xf2

s0

)
︸ ︷︷ ︸

=:α
xf2
s1

>
(
αxf1 + αxf2

) � βs0︸ ︷︷ ︸
=:α

[xf1,xf2]
s1

⇒ βs1 � (
αxf1

s1
+ αxf2

s1

)
< βs1 � α[xf1,xf2]

s1

⇒ β
l.o.segrfoi

〈s1,s2〉 < βl.o.foi
〈s1,s2〉

⇒ Dfoi
segr > Dfoi

As the segregated left-over service curves do not sum up to the original service
curve, they cause larger output bounds for xf1 and xf2. This, in turn, results in
a smaller left-over service curve for the foi at server s1. Therefore, the end-to-end
left-over service curve under flow segregation, β

l.o.segrfoi

〈s1,s2〉 , is smaller than the one
without flow segregation, βl.o.foi

〈s1,s2〉. This results in a larger delay bound.
All of the segregated flows consider each other with isolated, local worst-case

assumptions that retain the global worst case. This leads to an overall situation
assumed by the analysis that cannot be attained in a realistic system. We capture
this problem in a novel principle to be strived for in a feed-forward network
calculus analysis, formulating it similar to PBOO and PMOO (Sect. 3.1).

The Pay Segregation Only Once (PSOO) Principle: If the arrivals of two
flows have to be bounded segregately in the feed-forward analysis and these flows
both cross the same server before interfering with the flow of interest, then they
should not be segregated in a way that imposes worst-case mutual interference
assumptions on both. Segregation of cross-flows should only be paid for once by
the ensemble of the two flows.
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For instance, in the algebraic FFA equation, segregated flows should not
have to consider each other fully in their respective arrival bounding. Although
this leads to valid intermediate bounds on arrivals and left-over service, the
according behavior is not attainable by a realistic system and thus the eventual
performance bound cannot be tight.

Mitigation with by Aggregation. Having derived these artifacts of algebraic
FFA, we can mitigate them in different ways. On the one hand, it is possible to
prevent their occurrence by routing restrictions. However, adapting the network
to be analyzed may not be justifiable. Thus, we strife for a different mitigation
strategy: flow aggregation. Yet, aggregation is not universally practical in alge-
braic NC. Therefore, we depict the state-of-the-art optimization-based NC that
does not suffer from these artifacts next. Then, we benchmark it against imple-
mentations of our mitigation strategy and evaluate accuracy loss in networks
where we cannot prevent algebraic NC from violating the PSOO principle.

3.3 Optimization-Based Network Calculus Analysis and PSOO

An optimization-based FFA was proposed in [7]. It transforms the NC system
description of Sect. 2.1 into a set of linear programs as follows:

1. Starting from the foi’s sink server, flows and their cross-flows are recursively
backtracked. For every link traversed backwards, the start of backlogged peri-
ods at the connected servers is related. This results in a partial order where
there is no given order relation for servers on parallel paths.

2. Next, the partial order is extended to the set of all compatible total orders.
In contrast to algebraic FFA, the backtracking result is not directly used to
derive performance bounds. The extension enumerates all potential relations
of backlogged periods on parallel paths to attain all potential entanglement in
the network. Total orders of particular interest are those assuming an equal
(start of) backlogged period for flows that later are demultiplexed. I.e., in
Fig. 1’s network, the flows f2 and f3 are related with a common start of the
backlogged period at server s1 in order to implement PSOO.

3. Based on the network calculus model, each total order is converted into one
linear program. Strict service curves, arrival curves, non-decreasing functions,
non-negativity and the flow constraint derive LP constraints.

4. The set of LPs represents all potential entanglements in the network, not
only worst-case ones. Therefore, all linear programs must be solved in the
final step. The maximum among their solutions is a valid worst-case delay for
the foi.

The LP FFA was, however, shown to be NP-hard due to step 2. Therefore, the
authors propose to confine to a less complex, accurate analysis by skipping the
extension of the partial order. This analysis is known as the unique LP (ULP).
The ULP is, of course, less constrained than any single linear program of the
LP; the constraints are chosen such that it guarantees to derive an upper bound
on delay and backlog.
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Fig. 3. Tandem network with non-nested cross-traffic arrivals.

4 Accuracy Evaluation of Network Calculus Analyses

The LP analysis and the ULP analysis both implement the PBOO and the
PMOO principle. Yet, the ULP skips the LP’s step 2 that is crucial for the PSOO
principle. Therefore, it must operate on worst-case assumptions when bounding
the arrivals of cross-traffic. As arrival bounding is not distinguishable from the
foi analysis during an optimization-based analysis, we aim to gain knowledge
about the attained worst case by evaluations. In contrast to the literature, we
add the PMOO analysis that implements PBOO and PMOO principles but not
PSOO in order to observe the impact of LP’s PSOO implementation on the
accuracy of NC delay bounds.

As there is no comprehensive tool support for the LP or the ULP available,
we need to rely on the tooling provided by the authors of these analyses1. It
allows to analyze arbitrary tandem networks. Additionally, LpSolve lp files for
the square network are available.

In this paper, we benchmark instances of these networks against the advanced
algebraic NC that has been implemented in the DiscoDNC [2] in the meantime.
Additionally, we provide the equations created by different analyses where it
is helpful for illustration of analysis principle violations. We are the first to
contribute PMOO delay bounds to a comparison of the two NC branches.

4.1 The Non-nested Tandem with Overlapping Interference

In [7], the so-called non-nested tandem was analyzed first. It consists of a
sequence of servers crossed by the flow of interest and overlapping interference
of cross-flows such that there are three flows at every server (see Fig. 3). This
is a classic example in network calculus; it was already used when introducing
the PMOO principle and analysis [20]. Two evaluations are carried out: one
that investigates the impact of the tandem’s length and another one varying
the utilization for the tandem of length 20. Arrival curves and service curves
are taken from [7]: Both evaluations assign rate-latency service βR,T = β10, 1

10
.

The evaluation with varying utilization u ∈ {0.1, . . . , 0.9} assigns token-bucket
arrival curves of α = γr,b = γ 10u

3 ,1 where 10u
3 is rounded to two decimal digits.

The evaluation of tandem length impact is carried out at a utilization of 0.2,
i.e., all arrivals are shaped to α = γ0.67,1.

1 http://perso.bretagne.ens-cachan.fr/∼bouillar/NCbounds/.

http://perso.bretagne.ens-cachan.fr/~{}bouillar/NCbounds/
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Fig. 4. Delay bounds in the non-nested tandem with overlapping interference.

Separate Flow Analysis (SFA). First, we derive the flow of interest’s end-
to-end left-over service curve (FFA step 2):

βl.o.foi
P (foi) = βl.o.foi

s1
⊗ βl.o.foi

s2
⊗ . . . ⊗ βl.o.foi

sn

=
(
βs1 �(

αxf1
s1

+ αxf2
s1

))⊗(
βs2 �(

αxf2
s2

+ αxf3
s2

))⊗. . .⊗(
βsn

�(
αxfn

sn
+ αxfn+1

sn

))
=

(
βs1 �(

αxf1 + αxf2
))⊗(

βs2 �(
αxf2

s2
+ αxf3

))⊗. . .⊗(
βsn

�(
αxfn

sn
+ αxfn+1

))
(1)

In the equation, we can see that the PMOO property is not fulfilled. We need to
pay for xfm arrivals, m ∈ {2, . . . n}, at both servers the cross-flow shares with the
foi. Thus, we need to compute the xfm arrivals at the respective second server
of interference (FFA step 1; Eq. 1: αs with server indices). For each server si,
i ∈ {2, . . . , n}, we get:

βsi
� (

αxfi
si

+ αxfi+i
si

)
= βsi

� ((
αxfi � (

βsi−1 � (
αxfi−2 � (

. . .
(
βs1 � αxf1

)
. . .

))))
+ αxfi+1

)
(2)

Note, that cross-traffic arrival bounding demands to recursively backtrack cross-
flows of cross-flows at every server, yet, this backtracking never leaves the foi’s
path. The recursion terminates when the sources of flows are reached. See Eq. 2
where αs do not have server indices as we know αxf1

s1
= αxf1 , α

xfn+1
sn = αxfn+1

and αxfm
sm−1

= αxfm for m ∈ {2, . . . n} from the network description.

Pay Multiplexing Only Once (PMOO) Analysis. PMOO was specifically
designed to counteract the burstiness increase being considered in the analy-
sis multiple times. I.e, each xfm’s burstiness only appears once in its βl.o.foi

P (foi)-
derivation [20]. The PMOO analysis does not demand the cross-flow arrival
bounding (Eq. 2) and thus performs better on this non-nested tandem.

Linear Programming (LP) Analysis and Comparison. The results for
the LP analysis are depicted alongside PMOO and SFA in Fig. 4. They all scale
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Fig. 5. Tandem with algebraic FFA Artifact 2 and mitigation by flow extension.

linearly with the length of the tandem (Figs. 4a) – the PBOO principle is respon-
sible for this behavior. The second evaluation shows that all delay bounds grow
super-linearly when increasing the utilization. Yet, the PMOO principle imple-
mented by the eponymous analysis and the LP analysis leads to much smaller,
better scaling delay bounds compared to the SFA (Fig. 4b).

For both parts of this evaluation, the PMOO analysis that was omitted in [7]
performs equal to the LP analysis.

4.2 The Non-nested Tandem with Cross-Traffic Arrival Bounding

In this section, we will evaluate a tandem network with arbitrarily many PSOO
violations due to algebraic FFA Artifact 2. To do so, we generalize the network
of Fig. 2a by adding a variable number of servers to be traversed by the two
cross-flows (see Fig. 5a). Each server constitutes one PSOO violation. Parameters
are chosen according to the previous tandem evaluation: We assign rate-latency
service βR,T = β10, 1

10
and token-bucket arrival curves α = γr,b. These are either

fixed to γ2,1 for a network utilization of 60% or kept variable at γ 10u
3 ,1, u ∈

{0.1, . . . , 0.9}, where 10u
3 is rounded to two decimal digits.

Separate Flow Analysis (SFA). While SFA can aggregately bound both
cross-flows xf1 and xf2 at server s1, its left-over service curve derivation at s2
requires segregation in order to only consider xf2 there. [5] presents a new coun-
termeasure to this artifact called Burst Reduction (BR). It caps xf2’s burstiness
at s2 with the backlog bound aggregately caused by both flows at server s1.

Pay Multiplexing Only Once (PMOO) Analysis. The PMOO analysis
enforces PSOO violations in this network, too (see Sect. 3.2). This can be miti-
gated by a preceding step to the analysis called Flow Extension (FE) [1]. This
step transforms the analyzed network to a different one that is worse form the
foi’s point of view: Interference of cross-flow xf1 is extended to server s2 as
depicted in Fig. 5b. While this reduces the service available to the foi at s2 in
the network, the PMOO FFA does not suffer from Artifact 2 anymore. It can
now handle the cross-flows aggregately and convolve the servers they traverse.
Therefore, it computes a better delay bound in the worse network setting. We
are the first to show FE’s benefits in arbitrary multiplexing networks.
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Fig. 6. Delays in the non-nested tandem with cross-traffic arrival bounding.

Linear Programming (LP) Analysis and Comparison. Equal to the previ-
ous tandem network, we carry out two evaluations: one that increases the length
of the cross-traffic tandem s−n+1, . . . , s0 and thus the amount of PSOO viola-
tions and another one that increases the maximum utilization in the network.

The scaling with respect to the tandem length is depicted in Fig. 6a. We fixed
the network utilization, defined by server s1 crossed by three flows, at 60 %.
SFA and PMOO analysis both scale super-linearly with the length of the cross-
traffic tandem, i.e., with the amount of PSOO violations. Burst reduction (BR)
significantly decreases the delay bound of the SFA for long tandems, however, it
is outperformed by PMOO with flow extension (FE). The difference between the
LP analysis and PMOO + FE remains small and steady for all tandem lengths –
it is the penalty of assuming xf1 crossing server s2, too.

For the second evaluation, we fixed the tandem length at 12 servers, i.e., 10
servers with PSOO violations. Again, plain analyses (SFA and PMOO) scale
super-linearly and the deviation from LP delays becomes large with growing
utilization. The two analyses amended with aggregation-based countermeasures
perform considerably better; PMOO + FE derives nearly identical bounds to
the LP analysis. The difference does not remain steady, yet, it does not grow
much. In Fig. 6b, PMOO + FE’s triangles stay within LP’s squares, i.e., current
algebraic NC analyses counteract the PSOO violations with small amendments
and their results are highly competitive with the ones derived by optimization.

4.3 The Square Network

Next, we evaluate the square network from [7] (see Fig. 1). This network is eval-
uated for varying utilizations: service curves remain βsi

= βR,T = β10, 1
10

, i ∈
{1, 2, 3, 4} and arrival curves are adapted to the utilization u ∈ {0.1, . . . , 0.9}. As
there are only two flows per server, this setting translates to αfi = γr,b = γ 10u

2 ,1.
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Separate Flow Analysis (SFA). We start with the SFA left-over service curve
derivation steps shared by every utilization’s analysis:

βl.o.f1
〈s3,s4〉 = βl.o.f1

s3
⊗ βl.o.f1

s4
=

(
βs3 � αf2

s3

) ⊗ (
βs4 � αf4

s4

)
(3)

with the following cross-traffic arrival boundings:

αf2
s3

= αf2 � βl.o.f2
s1

= αf2 � (
βs1 � αf3

)
(4)

αf4
s4

= αf4 � βl.o.f4
s2

= αf4 � (
βs2 � (

αf3 � (
βs1 � αf2

)))
(5)

The cross-traffic arrival boundings show mutual interference assumptions of
Fig. 1: It computes βs1 � αf3 and βs1 � αf2 , both will be in the SFA left-over
service curve derivation of Eq. 3 – the PSOO principle is not implemented.

This derivation illustrates the different approaches applied by algebraic NC to
model the flow of interest’s worst-case scenario in a feed-forward network. On the
foi’s path (i.e., the foi tandem analysis part of step 2), the left-over service curve
derivation assumes lowest priority for the flow of interest (cf. Theorem3). In
the arrival bounding, each flow’s worst-case interference is modeled individually.
Therefore, at server s1, flows f2 and f3 are considered as mutual interference:
βl.o.f2

s1
=

(
βs1 � αf3

)
and βl.o.f3

s1
=

(
βs1 � αf2

)
. Note, that we cannot exploit

burst reduction because flows only interfere with each other on single servers.

Pay Multiplexing Only Once (PMOO) Analysis. The PMOO left-over
service curve [20] is derived as follows:

βl.o.f1
〈s3,s4〉 = β

R
l.o.f1
〈s3,s4〉,T

l.o.f1
〈s3,s4〉

(6)

Rl.o.f1
〈s3,s4〉 =

(
Rs3 − rf2

) ∧ (
Rs4 − rf4

)
(7)

T l.o.f1
〈s3,s4〉 = Ts3 + Ts4 +

bf2
s3

+ bf4
s4

+ rf2
s3

· Ts3 + rf4
s4

· Ts4

Rl.o.f1
〈s3,s4〉

(8)

The mutual interference modeling persists. It can be seen in the cross-flow burst
terms bf2

s3
and bf4

s4
in Eq. 8 that equal the one of the according arrival bounds

αf2
s3

and αf4
s4

used in the SFA. Cross-traffic is bounded with Eqs. 4 and 5, again,
as it belongs to FFA step 1. I.e., the PMOO left-over service curve derivation
of Eq. 6 will also suffer from the mutual interference problem depicted in Fig. 1
due to Eq. 8. In this network, flow extension is not beneficial as both cross-flows
of f1 arrive from different links.

Linear Programming (LP, ULP) Analysis and Comparison. Based on
the derivation of algebraic analysis of the non-nested tandems and the square
network (Eqs. 1 to 8) as well as the observed properties and delay bounds, we
can predict the relative performance of NC analyses in the square network:

Recall that the LP approach enumerates all potential entanglements of flows
by extending the partial order (defined by consecutive hops of flows) to the set
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Fig. 7. Delay bounds in the square network.

of all compatible total orders – the benefit is pointed out in Sect. 3.3, step 2.
The ULP, in contrast, is solely based on the partial order, the extension step
is omitted due to its combinatorial explosion. This results in a smaller set of
ULP constraints, especially the potential entanglements of f2 and f3 at s1 are
not considered anymore. Instead, they are assumed to constitute the respective
flow’s worst case. Based on this insight, it is not surprising that the ULP actually
does not beat the PMOO analysis in the square network (see Fig. 7a). In fact,
even the SFA yields the same delays. The reason for SFA’s accuracy is the lack
of multi-hop interference, the effect captured with the PMOO principle does not
manifest in this network.

Our evaluation shows that the ULP models the worst-case interference
between f2 and f3 in the same way as the algebraic analyses do.

The square network also illustrates the case where we cannot mitigate the
PSOO violation in algebraic NC. Thus, we conclude our evaluation by investi-
gating the potential superiority of LP delay bounds over PMOO delay bounds.
Figure 7b depicts three different settings:

– First, we fixed the utilization of server s1 at 100 %. For the mutual interfer-
ence assumptions violating the PSOO principle, this leads to the maximum
burstiness increase attainable for flows f2 and f3. As depicted in Sect. 3, the
burstiness will propagate through the analysis and eventually result in a loose
delay bound. However, the final impact also depends on the utilization of
servers that forward the flows with overly pessimistic burstiness. We evalu-
ated utilizations of the remaining servers s2, s3 and s4 ranging from 10 % to
90 % (see [7]). As expected, we can first observe an amplification of the PSOO
violation’s effect that lets the LP analysis outperform the algebraic ones by
an increasing margin. Yet, it reaches its maximum of 9.15 % at 80 % utiliza-
tion. After this peak, its impact declines to a level below the 40 % network
utilization.

– A similar decline can be observed in the second evaluation, taken from [7] and
depicted in Fig. 7a, where the rate at s1 varies with the other servers.
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– We added another utilization level to the evaluation to confirm this observa-
tion. With a fixed utilization of 10 % at s1, the peak is already reached at a
network utilization of 10 %.

Thus, our results show that the benefit of implementing the PSOO principle
is bounded as the network utilization becomes more impactful. Compared to
the impact of previous analysis principles, the PSOO did not lead to a vast
decrease of delay bounds. Moreover, implementing it requires huge effort. There
are already eleven linear programs derives from this small square network alone.

4.4 Outlook

Evaluation of Larger, More Involved Networks. In this paper, we restricted
our evaluation to tandem networks and the square network. This restriction is
caused by a practical problem of the LP analysis. Besides being NP-hard, the effort
to derive its linear programs them scales super-exponentiallywith the network size.
The authors of this analysis point out two particular problems [6]:

1. The LPs relate the start of backlogged periods at servers. The amount of
these dates to be related to each other grows exponentially with the network
size. This problem directly impact the second one.

2. Dates are not totally ordered. This problem corresponds to step 2 given in
Sect. 3.3: extension of a partial order to the set of all compatible total orders.
Even for rather small networks, this step suffers from combinatorial explo-
sion [16] and known algorithms for linear extensions like the Varol-Rotem
algorithm [21] do not allow for the analysis of larger networks. Computa-
tional effort becomes prohibitive.

For these reasons, network calculus lacks comprehensive tool support for the only
analysis implementing the PSOO principle as of today. In tandem networks, flows
cannot take parallel paths and thus there is only one total order. This fact is
exploited by the tool we used for the evaluations in Sects. 4.1 and 4.2. For the
square network evaluation of Sect. 4.3, the authors of the LP analysis provide
the required linear programs. Analyzing larger networks remains an open issue.

Improving the Accuracy of the ULP Analysis. The ULP constitutes the
return to accurate, yet, untight bounds in general feed-forward networks. How-
ever, for some special networks it derives tight bounds nonetheless. The special
case holds in tandem networks (see Fig. 1) where there is only one order. For
more involved networks, we only know that the ULP has less constraints than
any of the LPs. Improving the ULP’s result can only be achieved by adding
more constraints to it. The addition of constraints found in a total order can,
however, result in a linear program that produces an invalid bound. Identify-
ing constraints that improve the derived bound while guaranteeing to retain its
validity is an open research topic of optimization-based NC.
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5 Conclusion

In this paper, we assessed both branches of network calculus, the algebraic and
the optimization-based analysis branch. We aimed at a more comprehensive
comparison of those generally incomparable alternatives to derive delay bounds
from a NC system description. A new principle for feed-forward analysis, the
Pay Segregation Only Once (PSOO), enabled us to derive new insights on both
branches of NC such that we were able to predict the relative results between
analyses. Moreover, we provide evidence that the PSOO principle that is only
implemented by the NP-hard LP analysis does not lead to vastly improved delay
bounds when it is compared to the PMOO analysis of algebraic network calculus.
Thus, there is currently no clear proof for the necessity to relocate network
calculus by abandoning the idea of an algebraic system theory. In current NC,
the LP analysis is rather a tool to benchmark algebraic NC analysis in small
networks and as such it helps to find algebraic NC’s weak spots, e.g., the violation
of the PSOO principle we present and evaluate in this work.
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Abstract. In this work we introduce new approximate similarity rela-
tions that are shown to be key for policy (or control) synthesis over
general Markov decision processes. The models of interest are discrete-
time Markov decision processes, endowed with uncountably-infinite state
spaces and metric output (or observation) spaces. The new relations,
underpinned by the use of metrics, allow in particular for a useful trade-
off between deviations over probability distributions on states, and dis-
tances between model outputs. We show that the new probabilistic simi-
larity relations can be effectively employed over general Markov decision
processes for verification purposes, and specifically for control refinement
from abstract models.

1 Introduction

The formal verification of computer systems allows for the quantification of their
properties and for their correct functioning. Whilst verification has classically
focused on finite-state models, with the ever more ubiquitous embedding of dig-
ital components into physical systems richer models are needed, and correct
functioning can only be expressed over the combined behaviour of both a digi-
tal computer and its surrounding physical system. It is in particular of interest
to synthesise the part of the computer software that controls or interacts with
the physical system automatically, with low likelihood of malfunctioning. Quite
importantly, when computers interact with physical systems such as biological
processes, power networks, and smart-grids, stochastic models are key.

Systems with uncertainty and non-determinism can be naturally modelled
as Markov decision processes (MDP). In this work, we focus on general Markov
decision processes (gMDP) with uncountable state spaces as well as metric out-
put spaces. The characterisation of properties or the synthesis of policies over
such processes can in general not be attained analytically [4], so an alternative is
the approximation of the original (concrete) models by simpler (abstract) models
that are prone to be analysed or algorithmically verified [12], such as finite-state
MDP [11]. Clearly, it is then paramount to provide formal guarantees on this
approximation step.

In this work we develop a new notion of approximate similarity relation to
assist in the computationally efficient controller synthesis of gMDP. The use of
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 227–243, 2016.
DOI: 10.1007/978-3-319-43425-4 16
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similarity relations on finite-state probabilistic models has been broadly inves-
tigated, either via exact notions of probabilistic simulation and bisimulation
relations [17,21], or via approximate notions [9,10]. On the other hand, similar
notions over general, uncountable-state spaces have been only recently stud-
ied: available relations either hinge on stability requirements on model outputs
[16,24] (established via martingale theory or contractivity analysis), or alter-
natively enforce structural abstractions of a model [8] by exploiting continuity
conditions on its probability laws [1,3].

In this work, we want to quantify properties with a certified precision both
in the deviation of the probability laws for finite-time events (as in the classical
notion of probabilistic bisimulation) and of the output trajectories (as studied
for dynamical models). To this end, we generalise the exact probabilistic sim-
ulation and bisimulation relations to allow for errors in the probability laws
and deviations over the output space (Sect. 4). A case study on smart buildings
(Sect. 5) is used to evaluate this new approximate similarity relations, which are
specifically tailored to perform control synthesis. The new approximate similar-
ity relation generalises notions of probabilistic simulation relations [17,21], and
their approximate versions [9,10].

Key to this work, we further show that a control strategy for a gMDP can be
obtained as a refinement of a strategy synthesised for an abstract model, at the
expense of bounded deviations in transition probabilities and outputs as defined
by their similarity relation.

In view of space, details on measurability properties and precise derivations
of proofs of the statements are relegated to an extended version [14], which also
contains a more detailed comparison with literature.

2 Verification of General Markov Decision Processes

2.1 Preliminaries and Notations

For two sets A and B a relation R ⊂ A × B is a subset of their Cartesian
product that relates elements x ∈ A with elements y ∈ B, denoted as xRy. We
use the following notation for the mappings R(Ã) := {y : xRy, x ∈ Ã} and
R−1(B̃) := {x : xRy, y ∈ B̃} for Ã ⊆ A and B̃ ⊆ B. A relation over a set
defines a preorder if it is reflexive, ∀x ∈ A : xRx; and transitive, ∀x, y, z ∈ A : if
xRy and yRz then xRz. A relation R ⊆ A × A is an equivalence relation if it is
reflexive, transitive and symmetric, ∀x, y ∈ A : if xRy then yRx.

A measurable space is a pair (X,F) with sample space X and σ-algebra F
defined over X, which is equipped with a topology. As a specific instance of
F consider the Borel measurable space (X,B(X)). In this work, we restrict our
attention to Polish spaces and generally consider the Borel σ-field [6]. Recall
that a Polish space is a separable and completely metrisable topological space.
A simple example of such a space is the real line.

A probability measure P (·) for (X,F) is a non-negative map, P (·) : F →
[0, 1] such that P (X) = 1 and such that for all countable collections {Ai}∞

i=1 of
pairwise disjoint sets in F , it holds that P (

⋃
i Ai) =

∑
i P (Ai). Together with
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the measurable space, such a probability measure P defines the probability space,
which is denoted as (X,F ,P) and has realisations x ∼ P. Let us further denote
the set of all probability measures for a given measurable pair (X,F) as P(X,F).
For a probability space1 (X,FX,P) and a measurable space (Y,FY), a (Y,FY)-
valued random variable is a function y : X → Y that is (FX,FY)-measurable,
and which induces the probability measure y∗P in P(Y,FY). For a given set X

a metric or distance function dX is a function dX : X × X → R
+
0 .

2.2 gMDP Models - Syntax and Semantics

General Markov decision processes are related to control Markov processes [3]
and Markov decision processes [5,20], and are formalised as follows.

Definition 1 (Markov Decision Process (MDP)). A discrete-time MDP
M = (X, π,T,U) is defined over an uncountable state space X, and characterised
by T, a conditional stochastic kernel that assigns to each point x ∈ X and control
u ∈ U a probability measure T(· |x, u) over (X,B(X)). For any set A ∈ B(X),
Px,u(x(t + 1) ∈ A) = T(A |x(t) = x, u), where Px,u denotes the conditional
probability P(· |x, u). The initial probability distribution is π : B(X) → [0, 1].

At every state the state transition depends non-deterministically on the choice of
u ∈ U. When chosen according to a distribution μu : B(U) → [0, 1], we refer to
the stochastic control input as μu. Moreover the transition kernel is denoted as
T(· |x, μu) =

∫
U
T(· |x, u)μu(du) ∈ P(X,B(X)). Given a string of inputs (possibly

randomised) u(0), u(1), . . . , u(N), over a finite time horizon {0, 1, . . . , N}, and an
initial condition x0 (sampled from distribution π), the state at the (t + 1)-st time
instant, x(t + 1), is obtained as a realisation of the controlled Borel-measurable
stochastic kernel T (· |x(t), u(t)) – these semantics induce paths (or executions) of
the MDP.

Definition 2 (General Markov Decision Process (gMDP)). A discrete-
time gMDP M = (X, π,T,U, h,Y) is an MDP combined with a metric output
space (Y,dY), and a measurable output mapping h : X → Y.

The gMDP semantics are directly inherited from those of the MDP. Fur-
ther, output traces of gMDP are obtained as mappings of MDP paths, namely
{y(t)}0:N := y(0), y(1), . . . , y(N), where y(t) = h

(
x(t)

)
. Denote the class of all

gMDP with the metric output space Y as MY. Note that gMDP can be regarded
as a super-class of the known labelled Markov processes (LMP) [8] as elucidated
in [1].

Example 1. Consider a stochastic process defined as the solution of the stochastic
difference equation

M : x(t + 1) = f(x(t), u(t)) + e(t), y(t) = h(x(t)) ∈ Y,

1 The index X in FX distinguishes the given σ-algebra on X from that on Y, which is
denoted as FY. Whenever possible this index will be dropped.
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with variables x(t), u(t), e(t), taking values in R
n, representing the state, control

input (external non-determinism), and noise terms respectively. The process is
initialised as x(0) ∼ π, and driven by e(t), a white noise sequence with zero-
mean normal distributions and variance Σe. This stochastic process, defined
as a dynamical model with dynamics characterised by the stochastic difference
equation above, is a gMDP characterised by a tuple (Rn, π,T,Rn, h,Y), where
the conditional transition kernel is defined as T(· |x, u) = N (· |f(x(t), u(t)), Σe),
a normal probability distribution with mean f(x(t), u(t)) and variance Σe. �	
A policy is a selection of control inputs based on the past history of states and
actions. We allow controls to be selected via universally measurable maps [5] from
the state to the control space, so that time-bounded properties such as safety can
be maximised [12]. When the selected controls are only dependent on the current
states and thus conditionally independent of history (or memoryless), the policy
is referred to as Markov. A Markov policy μ for a gMDP M = (X, π,T,U, h,Y)
is a sequence μ = (μ1, μ2, μ3, . . .) of universally measurable maps μt : X →
P(U,B(U)) t = 0, 1, 2, . . ., from the state space X to the set of controls. Recall
that a function f : Z1 → Z2 is universally measurable if the inverse image of
every Borel set is measurable with respect to every complete probability measure
on Z1 that measures all Borel subsets of Z1.

The execution {x(t), t ∈ [0, N ]} initialised by x0 ∈ X and controlled with
Markov policy μ is a stochastic process defined on the canonical sample space
Ω := X

N+1 endowed with its product topology B(Ω). This stochastic process
has a probability measure P uniquely defined by the transition kernel T, policy
μ, and initial distribution π [5, Prop. 7.45].

Of interest to us are time-dependent properties such as those expressed as
specifications in a temporal logic of choice. This leads to problems where one
maximises the probability that a sequence of labelled sets is reached within
a time limit and in the right order. One can intuitively understand that in
general the optimal policy leading to the maximal probability is not a Markov
(memoryless) policy. We introduce the notion of a control strategy, and define
it as a broader, memory-dependent version of the Markov policy above. Such a
strategy for controlling a gMDP is formulated next as a Markov process that
takes the state of the gMDP as input.

Definition 3 (Control Strategy). A control strategy C = (XC, xC0,X,
T

t
C, ht

C) for a gMDP M with state space X and control space U over the time
horizon t = 0, 1, 2, . . . , N is an inhomogenous Markov process with state space
XC; an initial state xC0; inputs x ∈ X; time-dependent, universally measur-
able kernels T

t
C, t = 0, 1, . . . , N ; and with universally measurable output maps

ht
C : XC → P(U,B(U)), t = 1, . . . , N , with elements μ ∈ P(U,B(U)). �	

Unlike a Markov policy, the control strategy is in general dependent on the
history, as it has an internal state that can be used to remember relevant past
events. Note that the first control u(0) is selected by drawing xC(1) according
to T

0
C( · |xC(0), x(0)), where xC(0) = xC0, and selecting u(0) from measure

μ0
C = h0

C(xC(1)). This is then repeated at every time step, when the controller
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selects a control u(t) by updating its internal state T
t
C( · |xC(t), x(t)) and then

selecting u(t) according to μt
C = ht

C(xC(t + 1)). The control strategy applied to
M can be both stochastic (it is a realisation of Tt

C(· | xC(t), x(t)) ), a function of
the initial state x(0), and of time.

The execution {(x(t), xC(t)), t ∈ [0, N ]} of a gMDP M controlled with strat-
egy C, is defined on the canonical sample space Ω := (X × XC)N+1 endowed
with its product topology B(Ω). This stochastic process is associated to a unique
probability measure PC×M, since the stochastic kernels T

t
C and T are Borel mea-

surable and composed via universally measurable policies [5, Prop. 7.45].

2.3 gMDP Verification and Strategy Refinement: The Idea

We qualitatively anticipate the main result of this work. We intend to provide a
general framework to synthesise control policies over a formal abstraction M̃ of a
concrete complex model M, with the understanding that M̃ is much simpler to be
manipulated (analytically or computationally) than M is. We define a simulation
relation under which a policy C̃ for the abstract Markov process M̃ implies
the existence of a policy C for M, so that we can quantify differences in the
stochastic transition kernels and in the output trajectories for the two closed-loop
models. This allows us to derive bounds on the probability of satisfaction of a
specification for M×C from the satisfaction probability of modified specifications
for M̃ × C̃. This setup allows dealing with finite-horizon temporal properties,
including safety verification as a relevant instance.

The results in this paper are to be used in parallel with optimisation, both
for selecting the control refinement and for synthesising a policy on the abstract
model. It has been shown in [5] that stochastic optimal control, even for a system
on a “basic” state space, can lead to measurability issues: in order to avoid these
issues we follow [5,9] and the developed theory for Polish spaces and Borel (or
universally) measurable notions. Throughout the paper we will give as clarifying
examples Markov processes evolving, as in Example 1, over Euclidean spaces
which are a special instances of Polish spaces.

3 Exact (Bi-)simulation Relations Based on Lifting

In this section we define probabilistic simulation and bisimulation relations that
are, respectively, a preorder and an equivalence relation on MY. Before intro-
ducing these relations, we first extend Segala’s notion [21] of lifting to uncount-
able state spaces, which allows us to equate the transition kernels of two given
gMDPs. Thereafter, we leverage liftings to define (bi-)simulation relations over
MY, which characterise the similarity in the controllable behaviours of the two
gMDPs. Subsequently we show that these similarity relations also imply con-
troller refinement, i.e., within the similarity relation a control strategy for a given
gMDP can be refined to a controller for another gMDP. In the next section, we
show that this exact notion of similarity allows a more general notion of approx-
imate probabilistic simulation. The new notions of similarity relations extend
the known exact notions in [17], and the approximate notions of [9,10].
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3.1 Lifting for General Markov Decision Processes

Consider two gMDP M1,M2 ∈ MY mapping to a common output space Y with
metric dY. For M1 = (X1, π1,T1,U1, h1,Y) and M2 = (X2, π2,T2,U2, h2,Y) at
given state-action pairs x1 ∈ X1, u1 ∈ U1 and x2 ∈ X2, u2 ∈ U2, respectively,
we want to relate the corresponding transition kernels, namely the probability
measures T1(· |x1, u1) ∈ P(X1,B(X1)) and T2(· |x2, u2) ∈ P(X2,B(X2)).

Similar to the coupling of measures in P(X,F) [2,18], consider the coupling
of two arbitrary probability spaces (X1,F1,P1) and (X2,F2,P2) (cf. [22]). A
probability measure Pc defined on (X1 × X2,F) couples the two spaces if the
projections p1, p2, with x1 = p1(x1, x2) and x2 = p2(x1, x2), define respectively
an (X1,F1)- and an (X2,F2)-valued random variable, such that P1 = p1∗Pc

and P2 = p2∗Pc. For finite- or countably infinite-state stochastic processes a
closely-related concept has been introduced in [21] and referred to as lifting :
the transition probabilities are coupled using a weight function in a way that
respects a given relation over the combined state spaces. Rather than using
weight functions over a countable or finite domain [21], we introduce lifting as a
coupling of measures over Polish spaces.

Since we assume that the state spaces are Polish and have a corresponding
Borel σ-field for the given probability spaces (X1,B(X1),P1) and (X2,B(X2),P2)
with P1 := T1(· |x1, u1) and P2 := T2(· |x2, u2), the natural choice for the σ-
algebra becomes2 B(X1 × X2) = B(X1) ⊗ B(X2) and the question of finding a
coupling can be reduced to finding a probability measure in P(X1×X2,B(X1×X2)).

Definition 4 (Lifting for General State Spaces). Let X1,X2 be two sets
with associated measurable spaces (X1,B(X1)) and (X2,B(X2)) and let the Borel
measurable set R ⊆ X1 × X2 be a relation. We denote by R̄ ⊆ P(X1,B(X1)) ×
P(X2,B(X2)) the corresponding lifted relation, so that ΔR̄Θ holds if there exists
a probability space (X1×X2,B(X1×X2),W) (equivalently, a lifting W) satisfying

1. for all X1 ∈ B(X1): W(X1 × X2) = Δ(X1);
2. for all X2 ∈ B(X2): W(X1 × X2) = Θ(X2);
3. for the probability space (X1 × X2,B(X1 × X2),W) it holds that sRt with

probability 1, or equivalently that W (R) = 1.

Remark 1. We have implicitly required that the σ-algebra B(X1 × X2) contains
not only sets of the form X1 ×X2 and X1 ×X2, but also specifically the sets that
characterise the relation R. Since the spaces X1 and X2 have been assumed to be
Polish, it holds that every open (closed) set in X1×X2 belongs to B(X1)⊗B(X2) =
B(X1 ×X2) [6, Lemma 6.4.2]. As an example also consider the diagonal relation
Rdiag := {(x, x) : x ∈ X} over X×X, of importance for some examples introduced
later. This is a Borel measurable set [6, Theorem 6.5.7]. �	

3.2 Exact Probabilistic (Bi-)simulation Relations via Lifting

Similar to the alternating notions for probabilistic game structures in [25], we
provide a simulation that relates any input chosen for the abstract process with
2 B(X1) ⊗ B(X2) denotes the product σ-algebra of B(X1) and B(X2).
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one for the concrete process. We aim to compare the models behaviour with
respect to how they can be controlled, and thus allow for more elaborate handling
of the inputs than in the probabilistic simulation relations of [9,10,21], paving
the way to controller refinement. We introduce the notion of interface function
in order to connect the controllable behaviour of the two gMDP:

Uv : U1 × X1 × X2 → P(U2,B(U2)),

where we require that Uv is a Borel measurable function. This means that Uv

induces a Borel measurable stochastic kernel, denoted by Uv, over U2 given
U1×X1×X2. The notion of interface function is known in the context of correct-
by-design controller synthesis and of hierarchical controller refinement [13,23].
The lifting of the transition kernels for the chosen interface generates a stochastic
kernel WT conditioned on the inputs U1 and X1 ×X2. Let us trivially extend the
interface function to Uv(μ1, x1, x2) :=

∫
U1

Uv(u1, x1, x2)μ1(du1).

Definition 5 (Probabilistic Simulation). Consider two gMDP Mi, i = 1, 2,
Mi = (Xi, πi,Ti,Ui, hi,Y). The gMDP M1 is stochastically simulated by M2 if
there exists an interface function Uv and relation R ⊆ X1 × X2 ∈ B(X1 × X2),
for which there exists a Borel measurable stochastic kernel WT( · |u1, x1, x2) on
X1 × X2 given U1 × X1 × X2, such that ∀(x1, x2) ∈ R :

1. h1(x1) = h2(x2);
2. ∀u1 ∈ U1, T1(· |x1, u1) R̄ T2(· |x1,Uv(u1, x1, x2)), with lifted probability mea-

sure WT( · |u1, x1, x2);
3. π1R̄π2.

The relationship between the two models is denoted as M1 � M2.

Definition 6 (Probabilistic Bisimulation). Under the same conditions as
above, M1 is a probabilistic bisimulation of M2 if there exists a relation R ⊆
X1 × X2 such that M1 � M2 w.r.t. R and M2 � M1 w.r.t. the inverse relation
R−1 ⊆ X2 × X1. M1 and M2 are said to be probabilistically bisimilar, which is
denoted M1 ≈ M2.

For every gMDP M: M � M and M ≈ M. This can be seen by consider-
ing the diagonal relation Rdiag = {(x1, x2) ∈ X × X | x1 = x2} and selecting
equal inputs for the associated interfaces. The resulting equal transition ker-
nels T(· |x, u)R̄diagT(· |x, u) are lifted by the measure WT(dx′

1 × dx′
2|u, x1, x2) =

δx′
1
(dx′

2)T(dx′
1|x1, u) where δ denotes the Dirac distribution.

Example 2 (Lifting for Diagonal Relations). Consider the specific case of the
gMDP (M1) introduced in Example 1, and a slight variation of it (M2), both
given as stochastic dynamic processes as

M1 : x(t + 1) = ax(t) + bu(t) + e(t) ∈ R, y(t) = h(x(t)) ∈ R,

M2 : x(t + 1) = ax(t) + bu(t) + ẽ(t) + ũ(t) ∈ R, y(t) = h(x(t)) ∈ R,

with variables x(t), x(t + 1), u(t), ũ(t), e(t), ẽ(t) and constants a, b taking values
in R, and with dynamics initialised with the same probability distribution at
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t = 0 and driven by white noise sequences e(t), ẽ(t), both with zero-mean normal
distributions and with variance equal to 1 and 1.25, respectively. M1 � M2. For
every action u1 chosen for M1, select the control input pair (u2, ũ2) ∈ U2 = R

2

as u2 = u1, and ũ2 according to the zero-mean normal distribution with variance
0.25, then the associated interface is Uv(· |u1, x1, x2) = δu1(du2)N (dũ2|0, 0.25).
For this interface the stochastic dynamics of the two processes are equal, and
can be lifted with Rdiag, namely T1(· |x, u)R̄diagT2(· |x,Uv). �	
Remark 2. Over MY, the class of gMDP with a shared output space, the relation
� is a preorder, as it is reflexive (see Example 2) and transitive (see Corollary 6).
Moreover ≈ is an equivalence relation as it is also symmetric (Corollary 6). �	

3.3 Controller Refinement via Probabilistic Simulation Relations

The ideas underlying the controller refinement are first discussed, after which it
is shown that the refined controller induces a strategy as per Definition 3. Finally
the equivalence of properties defined over the closed-loop gMDPs is shown.

Consider two gMDP Mi = (Xi, πi,Ti,U,hi,Y) i = 1, 2 with M1 � M2. Given
the entities Uv and WT associated to M1 � M2, the distribution of the next
state x′

2 of M2 is given as T2(· |x2,Uv(u1, x1, x2)), and is equivalently defined
via the lifted measure as the marginal of WT(· |u1, x1, x2) on X2. Therefore, the
distribution of the combined next state (x′

1, x
′
2), defined as WT(· |u1, x1, x2), can

be expressed as

WT(dx′
1 × dx′

2|u1, x1, x2) = WT(dx′
1|x′

2, u1, x1, x2)T2(dx′
2|x2,Uv(u1, x1, x2)),

where WT(dx′
1|x′

2, u1, x1, x2) is referred to as the conditional probability given x′
2

(c.f. [7, Corollary 3.1.2]). Similarly, the conditional measure for the initialisation
Wπ is denoted as Wπ(dx1(0) × dx2(0)) = Wπ(dx1(0)|x2(0))π2(dx2(0)).

Now suppose that we have a control strategy for M1, referred to as C1, and
we want to construct the refined control strategy C2 for M2, which is such that
events defined over the output space have equal probability. This refinement
procedure follows directly from the interface and the conditional probability
distributions, and is described in Algorithm 1. The above execution algorithm is
separated into the refined control strategy C2 and its gMDP M2. C2 is composed
of C1, the stochastic kernel WT, and the interface Uv, and it remembers the
previous state of M2.

Theorem 1 (Refined Control Strategy). Let gMDP M1 and M2 be related
as M1 � M2, and consider the control strategy C1 = (XC1 , xC10,X1,T

t
C1

, ht
C1

)
for M1 as given. Then there exists at least one refined control strategy C2 =
(XC2 , xC20,X2,T

t
C2

, ht
C2

) as defined in Definition 3, with

– state space XC2 := XC1 × X1 × X2, with elements xC2 = (xC1 , x1, x2);
– initial state xC20 := (xC10, 0, 0);
– input variable x2 ∈ X2, namely the state variable of M2;
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– time-dependent stochastic kernels T
t
C2

, defined as

T
0
C2

(dxC2 |xC20, x2(0)) := T
0
C1

(dxC1 |xC10, x1)Wπ(dx1|x2)δx2(0)(dx2) and

T
t
C2

(dx′
C2

|xC2(t), x2(t)) := T
t
C1

(dx′
C1

|xC1 , x
′
1)

WT(dx′
1|x′

2, h
t
C1

(xC1), x2, x1)δx2(t)(dx′
2) for t ∈ [1, N ];

– measurable output maps ht
C2

(xC1 , x̃1, x2) := Uv(ht
C1

(xC1), x1, x2). �	

Algorithm 1: Refinement of Control Strategy C1 as C2

Given the interface function Uv, and the (conditional) stochastic kernels
WT(dx′

1|x′
2, u1, x1, x2) and Wπ(dx1(0)|x2(0)).

Initialise by drawing
– the initial state x2(0) from π2, and
– the initial state x1(0) from Wπ(· |x2(0)).
Run starting at t = 0,
1. given x1(t), select u1(t) according C1,
2. choose randomised input μ2t = Uv(u1(t), x1(t), x2(t)),

draw x2(t + 1) from T2(· |x2(t), μ2t),
3. draw x1(t + 1) from WT( · |x2(t + 1), u1(t), x1(t), x2(t)),
4. set t := t + 1, return.

Both the time-dependent stochastic kernels T
t
C2

and the output maps ht
C2

, for
t ∈ [0, N ], are universally measurable, since Borel measurable maps are univer-
sally measurable and the latter are closed under composition [5, Chapter 7].

Since, by the above construction of C2, traces in the output spaces of the
closed loop systems C1 × M1 and C2 × M2 have equal distribution, it follows
that measurable events have equal probability, as stated next.

Theorem 2. If M1 � M2, then for all control strategies C1 there exists a
control strategy C2 such that, for all measurable events A ∈ B (

Y
N+1

)
,

PC1×M1 ({y1(t)}0:N ∈ A) = PC2×M2 ({y2(t)}0:N ∈ A) ,

with respective output traces {y1(t)}0:N and {y2(t)}0:N of C1×M1 and C2×M2.

4 New Approximate (Bi-)simulation Relations via Lifting

The requirement on an exact simulation relation between two models is evidently
restrictive. This is also shown in the following example of gMDPs.

Example 3 (Models with a Shared Noise Source). Consider an output space
Y := R

d, with a metric dY(x, y) := ‖x − y‖ (the Euclidean norm), and two
gMDP expressed as noisy dynamic processes:

M1 : x1(t + 1) = f(x1(t), u1(t)) + e1(t), y1(t) = h(x1(t)),
M2 : x2(t + 1) = f(x2(t), u2(t)) + e2(t), y2(t) = h(x2(t)),

where f and h are both globally Lipschitz. Namely, there is an 0 < L < 1
such that ‖f(x1, u) − f(x2, u)‖ ≤ L‖x1 − x2‖ for all x1, x2 ∈ R

n and for all
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u, and in addition an 0 < H such that ‖h(x1) − h(x2)‖ ≤ H‖x1 − x2‖. Sup-
pose the probability distributions of the random variable e1 and of e2 can be
coupled with distribution Pe1×e2 , and that there exists a value c ∈ R, such
that Pe1×e2 [‖e1 − e2‖ < c ] = 1. Then for every pair of states x1(t) and x2(t) of
M1 and M2 respectively, the difference between state transitions is bounded as
‖x1(t + 1) − x2(t + 1)‖ ≤ L‖x1(t) − x2(t)‖ + c with probability 1. Therefore, we
know that if ‖x1(0) − x2(0)‖ ≤ c

1−L , then for all t ≥ 0, ‖x1(t) − x2(t)‖ ≤ c
1−L ,

and ‖y1(t) − y2(t)‖ ≤ cH
1−L .

Even though the difference in the output of the two models is bounded with
probability 1, it is impossible to provide an approximation error using either the
method in [16] (hinging on stochastic stability assumptions), or using (approxi-
mate) relations as in [9,10]: with the former approach, for the same input sequence
u(t) the output trajectories of M1 and M2 have bounded difference, but do not
converge to each other; with the latter approach, the relation defined via a normed
difference cannot satisfy the required notion of transitivity. �	
As mentioned before and highlighted in the previous Example 3, we are interested
in introducing a new approximate version of the notion of probabilistic simula-
tion relation, which allows for both δ-differences in the stochastic transition
kernels, and ε-differences in the output trajectories. For the former prerequisite,
we relax the requirements on the lifting in Definition 4.

Definition 7 (δ-Lifting for General State Spaces). Let X1,X2 be two sets
with associated measurable spaces (X1,B(X1)), (X2,B(X2)), and let R ⊆ X1 ×X2

be a relation for which R ∈ B(X1 × X2). We denote by R̄δ ⊆ P(X1,B(X1)) ×
P(X2,B(X2)) the corresponding lifted relation (acting on ΔR̄δΘ), if there exists
a probability space (X1 × X2,B(X1 × X2),W) satisfying

1. for all X1 ∈ B(X1): W(X1 × X2) = Δ(X1);
2. for all X2 ∈ B(X2): W(X1 × X2) = Θ(X2);
3. for the probability space (X1 × X2,B(X1 × X2),W) it holds that sRt with

probability at least 1 − δ, or equivalently that W (R) ≥ 1 − δ.

We leverage Definition 7 to introduce a new approximate similarity relation
that encompasses both approximation requirements, obtaining the following ε, δ-
approximate probabilistic simulation.

Definition 8 (ε, δ-Approximate Probabilistic Simulation). Consider
gMDP Mi = (Xi, πi,Ti,Ui, hi,Y), i = 1, 2, over a shared metric output space
(Y,dY). M1 is ε, δ-stochastically simulated by M2 if there exists an interface
function Uv and a relation R ⊆ X1 ×X2, for which there exists a Borel measur-
able stochastic kernel WT( · |u1, x1, x2) on X1 ×X2 given U1 ×X1 ×X2, such that
∀(x1, x2) ∈ R :

1. dY (h1(x1), h2(x2)) ≤ ε;
2. ∀u1 ∈ U1, T1(· |x1, u1) R̄δ T2(· |x2,Uv(u1, x1, x2)), with lifted probability mea-

sure WT( · |u1, x1, x2);
3. π1R̄δπ2.

The simulation relation is denoted as M1 �δ
ε M2.
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Definition 9 (ε, δ-Approximate Probabilistic Bisimulation). Under the
same conditions as before M1 is an ε, δ-probabilistic bisimulation of M2 if there
exists a relation R ⊆ X1 × X2 such that M1 �δ

ε M2 w.r.t. R and M1 �δ
ε M2

w.r.t. R−1 ⊂ X2 ×X1. M1 and M2 are said to be ε, δ-probabilistically bisimilar,
denoted as M1 ≈δ

ε M2.

In the next section we use the introduced similarity relations to quantify the
probability of events of a gMDP via its abstraction and to refine controllers.

4.1 Controller Refinement via Approximate Simulation Relations

Consider two gMDP M1 and M2 for which M1 is the abstraction of the concrete
model M2. The following result is an approximate version of Theorem2, and
provides the main result of this paper, i.e., approximate equivalence of properties
defined over the gMDP M1 and M2.

Theorem 3. If M1 �δ
ε M2, then for all control strategies C1 there exists a

control strategy C2 such that for the output traces {y1(t)}0:N and {y2(t)}0:N of
C1 × M1 and C2 × M2, it holds that for all measurable events A ⊂ Y

N+1

PC1×M1

({y1(t)}0:N∈A−ε

) − γ ≤ PC2×M2
({y2(t)}0:N∈A) ≤ PC1×M1

({y1(t)}0:N∈Aε) + γ,

with constant 1 − γ := (1 − δ)N+1, and with the ε-expansion of A defined as

Aε :=
{{yε(t)}0:N |∃{y(t)}0:N ∈ A : maxt∈[0,N ] dY(yε(t), y(t)) ≤ ε

}
and similarly the ε-contraction defined as A−ε := {{y(t)}0:N |{{y(t)}0:N}ε ⊂ A}
where {{y(t)}0:N}ε is the point-wise ε-expansion of {y(t)}0:N .

Key to show this result is the existence of a refined control strategy C2, which we
detail next. Given a control strategy C1 over the time horizon t ∈ {0, . . . , N},
there is a control strategy C2 that refines C1 over M2. The control strategy
is conceptually given in Algorithm 2. Whilst the state (x1, x2) of C2 is in R,
the control refinement from C1 follows in the same way as for the exact case of
Sect. 3.3. Hence, similar to the control refinement for exact probabilistic simula-
tions, the basic ingredients of C2 are the states x1 and x2, whose stochastic tran-
sition to the pair (x′

1, x
′
2) is governed firstly by a point distribution δx2(t)(dx′

2)
based on the measured state x2(t) of M2; and, subsequently, by the lifted prob-
ability measure WT(dx′

1 | x′
2, u1, x2, x1), conditioned on x′

2.
On the other hand, whenever the state (x1, x2) leaves R the control chosen

by strategy C1 cannot be refined to M2 and fails. A new control strategy Crec,
referred to as recovery, can be used to control the residual trajectory of M2.
The choice is of no importance to the result in Theorem 3, as it bounds errors
on probabilistic events based on the event that the states stay in the relation.

Theorem 4 (Refined Control Strategy). Let gMDP M1 and M2, with
M1 �δ

ε M2, and control strategy C1 = (XC1 , xC10,X1,T
t
C1

, ht
C1

) for M1 be
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given. Then for every recovery control strategy Crec, a refined control strategy
C2 =(XC2, xC20, X2,T

t
C2

, ht
C2

) is obtained as an inhomogenous Markov process
with two discrete modes of operation, {refinement} and {recovery}, based on
Algorithm 2.

By dividing the execution in Algorithm 2 into a control strategy and a gMDP
M2, we again obtain a refined control strategy with tuple (XC2 , xC20,X2,
T

t
C2

, ht
C2

).

Algorithm 2: Refinement of C1 as C2

Given the interface function Uv, the (conditional) stochastic kernels
WT(dx′

1|x′
2, u1, x1, x2) and Wπ(dx1(0)|x2(0)), and the chosen recovery strategy

Crec.
Initialise by drawing

– the initial state x2(0) from π2, and
– the initial state x1(0) from Wπ(· |x2(0)).
Run starting at t = 0, while t ≤ N

1. if (x1(t), x2(t)) ∈ R go to 2. else skip to 6.
2. given x1(t), select u1(t) from C1, {refine}
3. choose randomised input μ2t = Uv(u1(t), x1(t), x2(t)),

draw x2(t + 1) from T2(· |x2(t), μ2t),
4. draw x1(t + 1) from WT( · |x2(t + 1), u1(t), x1(t), x2(t)),
5. set t := t + 1, go to 1.
6. given x2(t), compute μt (from Crec), {recover}
7. draw x2(t + 1) from T2(· |x2(t), μt),
8. set t := t + 1, go to 6.

4.2 Examples and Properties

Example 4 (Models with a Shared Noise Source – Contin’d from Above). Based
on the relation R := {(x1, x2) : ‖x1 − x2‖ ≤ c

1−L} it can be shown that
M1 ≈0

ε M2 with ε = Hc
1−L , since, firstly, it holds that dY(h(x1), h(x2)) ≤ ε for all

(x1, x2) ∈ R, with dY = ‖h(x1)−h(x2)‖. Additionally, for all (x1, x2) ∈ R and for
any input u1 the selection u2 = u1 is such that T1(· |x1, u1)R̄0T2(· |x2, u1), note
that R̄0 is equal to R̄ (the lifted relation from R). The lifted stochastic kernel
is WT(dx′

1 × dx′
2|u1, x1, x2) :=

∫
ω

δf(x1,u1)+g1(ω)(dx′
1)δf(x2,u)+g2(ω)(dx′

2)Pω(dω),
this stochastic kernel is Borel measurable if f(x1, u1)+g1(ω) and f(x2, u)+g2(ω)
are Borel measurable mappings. The identity interface is Borel measurable. �	
Example 5 (Relationship to Model with Truncated Noise). Consider the stochas-
tic dynamical process M1 : x(t + 1) = f(x(t), u(t)) + e(t) with output map-
ping y(t) = h(x(t)), operating over the Euclidean state space R

n, and driven
by a white noise sequence e(t) ∈ R

n with distribution Pe. The output space
y ∈ Y ⊆ R

d is endowed with the Euclidean norm dY = ‖ · ‖. Select a domain
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D ⊂ R
n so that, at any given time instant t, e(t) ∈ D with probability 1 − δ.

Then define a truncated white noise sequence ẽ(t), with distribution Pe (· |D).
The resulting model M2 driven by ẽ(t) is M2 : x(t + 1) = f(x(t), u(t)) + ẽ(t),
with the same output mapping y(t) = h(x(t)). We show that M2 is a 0, δ-
approximate probabilistic bisimulation of M1, i.e. M1 ≈δ

0 M2. Select R :=
{(x1, x2) for x1, x2 ∈ R

n|x1 = x2}, and choose as interface the identity function,
i.e., Uv(u1, x1, x2) = u1. Denote t1(e) = f(x1, u1) + e and t2(ẽ) = f(x2, u1) + ẽ,
then a lifting measure depending on x1, x2 ∈ R and u1, is

WT(dx′
1 × dx′

2|u1, x1, x2) :=
∫

e∈D
δx′

1
(dx′

2)δt1(e)(dx′
1)Pe(de) (1)

+
∫

e∈Rn\D
δt1(e)(dx′

1)Pe(de)
∫

ẽ
δt2(ẽ)(dx′

2)Pe(dẽ|D).

�	
Example 6 (Relationship Between Noiseless and Truncated-Noise Models). Con-
tinuing with Example 5, consider the model with truncated noise M2 as defined
before. In what sense is M2 approximated by its noiseless version M3, namely
M3 : x(t + 1) = f(x(t), u(t)), with y(t) = h(x(t))? Under requirements on
the Lipschitz continuity ‖f(x1, u) − f(x2, y)‖ ≤ L‖x1 − x2‖ 0 < L < 1,
‖h(x1) − h(x2)‖ ≤ H‖x1 − x2‖, and on the boundedness of D and of c =
maxd∈D ‖d‖, Example 3 can be leveraged by concluding that M2 ≈0

ε M3, with
ε = Hc

1−L .3 �	
In the Examples 5 and 6 we have that M1 is approximated by M2, which is
subsequently approximated by M3. The following theorem and corollary attains
a quantitative answer on the question whether M1 is approximated by M3.

Theorem 5 (Transitivity of �δ
ε). Consider three gMDP Mi, i = 1, 2, 3,

defined by tuples (Xi, πi,Ti,Ui, hi,Y), with shared output space.

If M1 �δa
εa M2 andM2 �δb

εb
M3, thenM1 �δa+δb

εa+εb
M3.

Next, as a corollary of this theorem, we discuss further transitivity properties
for simulation and bisimulation relations.

Corollary 6 (Transitivity Properties). Following Theorem5, it holds that

– if M1 ≈δa
εa M2 and M2 ≈δb

εb
M3, then M1 ≈δa+δb

εa+εb
M3, and

– if M1 � M2 and M2 � M3, then M1 � M3, and
– if M1 ≈ M2 and M2 ≈ M3, then M1 ≈ M3.

Example 7 (Combination of Examples 5 and 6 via Corollary 6). For the mod-
els in Examples 5 and 6 we can conclude that M1 ≈δ

ε M3. This means that a
stochastic system as in M1 in Example 5 can be approximated via its determin-
istic counterpart, and that the approximation error can be expressed via the
probability (i.e. amount of truncation cf. Example 5) and the output error (i.e.
Example 6). This allows for explicit trading off between output deviation and
deviation in probability. �	
3 Alternatively, if M2 with non-deterministic input ẽ ∈ D is an εa- alternating bisim-

ulation [23] of M3 then M2 ≈0
εa M3.
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5 Case Study: Energy Management in Smart Buildings

We are interested in developing advanced solutions for the energy management of
smart buildings. We consider a simple building that is divided in two connected
zones, each with a radiator affecting the heat exchange in that zone. The tem-
perature fluctuations in the two zones and the ambient temperature dynamics
are modelled via M as a Gaussian process [15]:

M : x(t + 1) = Ax(t) + Bu(t) + Fe(t), y(t) = [ 1 0 0
0 1 0 ] x(t), (2)

with stable dynamics characterised by matrices

A =
0.8725 0.0625 0.0375
0.0625 0.8775 0.0250

0 0 0.9900
, B =

0.0650 0
0 0.60
0 0

, F =
0.05 −0.02 0

−0.02 0.05 0
0 0 0.1

,

where x1,2(t) are the temperatures in zone 1 and 2, respectively; x3(t) is the
deviation of the ambient temperature from its mean; and u(t) ∈ R

2 is the control
input. The state variables are initiated as x(0) = [16 14 − 5]T . The disturbance
e(t) is a sequence of independent distributed standard Gaussian distributions,
for all t ∈ R

+. This stochastic process can be written as a gMDP as detailed in
Example 1. For the model abstraction, we select the controllable dynamics of the
mean of the state variables, and consequently omit the ambient temperature:

M̃ :
{

x̃(t + 1) = Ãx̃(t) + B̃ũ(t) ∈ R
2, with Ã := [ 0.8725 0.0625

0.0625 0.8775 ] ,
ỹ(t) = [ 1 0

0 1 ] x̃(t), B̃ := [ 0.0650 0
0 0.60 ] .

(3)

We then obtain that, as intuitive, M̃ �δ
ε M.

0 0.1 0.2 0.3 0.4
0

0.2
0.4
0.6
0.8

1

(0.16,0.073)

deviation in outputde
vi

at
io

n
in

pr
ob

ab
ili

ty
δ M̃ δ M

Fig. 1. Figure of trade-off between the output error ε and the probability error δ for
the δ, ε-approximate probabilistic simulation M̃ �δ

ε M. We have selected the pair
(ε, δ) = (0.16, 0.073) as an ideal trade-off.

In order to compute specific values of ε and δ, we select the relation R :=
{(x̃, x) ∈ R

2 × R
3 | √

(x̃1 − x1)2 + (x̃2 − x2)2 ≤ ε} and the interface function
Uv(ũ, x̃, x) = ũ + B̃−1(Ãx̃ − Āx), with Ā = [ 0.8725 0.0625 0.0375

0.0625 0.8775 0.0250 ]. A stochastic ker-
nel WT for the lifting is WT(dx̃′ × dx′ | ũ, x̃, x) =

∫
e
δf̃ (dx̃′) δf(e)(dx′)N (de | 0, I),

with f̃ = Ãx̃ + B̃ũ and f(e) = Ax + BUv(ũ, x̃, x) + Fe. The lower bound on
WT(R | ũ, x̃, x) ≤ 1 − δ has been computed and traded off against the output
deviation in Fig. 1.
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We are interested in the goal, expressed for the model M, of increasing the
likelihood of reaching the target set T = [20.5, 21]2 and staying there thereafter.
For the abstract model we have developed a strategy, as in [15], satisfying by
construction the property expressed in LTL-like notation with the formula ϕ =
♦�T and shrunken to ϕ−ε (as per Theorem 3). This strategy is synthesised as a
correct-by-construction controller using PESSOA [19], where the discrete-time
dynamics are further discretised over state and action spaces: we have selected
a state quantisation of 0.05 over the range [15, 25]2, and an input quantisation
of 0.05 over the set [10, 30]2. It can be observed that the controller regulates the
abstract model M̃ to eventually remain within the target region, as shown in
Fig. 2. We now want to verify that indeed, when refined to the concrete stochastic
model, this strategy implies the reaching and staying in the safe set up to some
probabilistic error. The refined strategy is obtained from this control strategy as
discussed in Sect. 4.1, and recovers from exits out of the relation R by resetting
the abstract states in the relation. A simulation study is given in Fig. 2: as
predicted, the behaviour of the controlled concrete model M stays close to that
of M̃. Over a time horizon of 200 steps the output error exceeds the level ε = 0.16
only a few (four) times. Indeed, the probability that the concrete state leaves
the relation with the abstract model (≤ δ, with δ = 0.073) leads, over N time
steps, to a bound on the probability that it does not satisfy the LTL property:
Theorem 3 ensures that this probability is provably less than 1− (1− δ)N ≈ Nδ.
In practice, whenever state exits the relation, then the controller recovers by
resetting the state of the abstract model and re-applying the strategy again, and
thanks to the ε-contraction ϕ−ε of the concrete specification, M will abide by ϕ
with a high confidence.
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Fig. 2. Refined control for deterministic model applied to M. The figure (above left)
evaluates the accuracy of the approximation, and gives with red circles the instances in
which the relation is left. The plot (below left) gives the ambient temperature. The plots
on the right give the temperature inside the rooms. The (very small) blue crosses give
the actual temperature in the rooms (x1, x2) and cover the deterministic simulation of
(x̃1, x̃2) drawn in black. (Color figure online)
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6 Conclusions

In this work we have discussed new approximate similarity relations for general
control Markov processes, and shown that they can be effectively employed for
abstraction-based verification and controller refinement. The new relations in
particular allow for a useful trade-off over deviations between probability distri-
butions on the states and distances between model outputs.

Alongside practical applications of the developed notions, current research
efforts focus on further generalisation of Theorem3 to specific quantitative prop-
erties expressed via temporal logics. We are moreover interested in expanding
on the properties of the similarity relations.

Acknowledgement. The research of Sofie Haesaert is supported by DISC through a
personal grant from the NWO graduate program.
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Abstract. Continuous-time Markov decision processes are an important
class of models in a wide range of applications, ranging from cyber-
physical systems to synthetic biology. A central problem is how to devise
a policy to control the system in order to maximise the probability of
satisfying a set of temporal logic specifications. Here we present a novel
approach based on statistical model checking and an unbiased estimation
of a functional gradient in the space of possible policies. The statistical
approach has several advantages over conventional approaches based on
uniformisation, as it can also be applied when the model is replaced by
a black box, and does not suffer from state-space explosion. The use
of a stochastic gradient to guide our search considerably improves the
efficiency of learning policies. We demonstrate the method on a proof-of-
principle non-linear population model, showing strong performance in a
non-trivial task.

1 Introduction

Continuous-time Markov Decision Processes (CTMDPs) [2] are a very pow-
erful mathematical framework to solve control and dependability problems in
real-time systems featuring both probabilistic and nondeterministic behaviours.
Examples include applications such as the control of epidemic processes [15,20],
power management [27], queueing systems [32] and cyber-physical systems [22].
A CTMDP extends a continuous-time Markov chain (CTMC) by introducing a
decision maker (also called scheduler) that can perform actions with an associ-
ated cost or reward. CTMDPs are particularly useful modelling tools to address
important problems such as model checking [1] and planning.

Model checking aims to verify if a CTMDP satisfies a desired requirement
for a given class of schedulers or for all possible schedulers. The requirement of
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 244–259, 2016.
DOI: 10.1007/978-3-319-43425-4 17
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interest is usually expressed in terms of the min/max probability for a CTMDP
to satisfy the temporal logic property [1] of interest. In particular, the main
target of the current quantitative model checking techniques for CTMDPs is the
time-bounded reachability [2,13,25,28,29], a property that requires a CTMDP
to reach a particular set of states within a time bound.

Planning or scheduling is an orthogonal problem w.r.t. model checking. It
consists in devising the optimal sequence of actions (or policy) to control the
system in order to maximise the probability to satisfy a temporal logic spec-
ification such as the aforementioned time-bounded reachability. In the case of
CTMDP the optimal scheduling can be either timed or untimed depending on
whether or not the scheduler is aware of the passing of time. Timed optimal
scheduling can be further classified in late or early depending on whether the
decision of choosing an action can change while the time passes in a state or it
remains unchanged.

In this paper we present a novel statistical approach to compute lower bounds
on the maximum reachability probability of a CTMDP. Our method uses a
basis-function regression approach to compactly encode schedulers and effectively
search for an optimal one. We consider here randomised time-dependent early
schedulers, and focus on population models, where the state space of the CTMDP
is represented by a set of integer-valued variables counting how many entities of
each kind are in the system. This is a large class of models: queueing and per-
formance models [13], epidemic scenarios, biological systems are all members of
this class. Population models, despite being so common, suffer severely from state
space explosion, with the number of states growing exponentially with the num-
ber of variables. This reflects on the size of the schedulers: in principle, we would
need to store a function of time for each state of the CTMDP, which is unfeasible.
This paper contains two main novel insights. First, we leverage the structure of
the state space, which can be embedded as a discrete grid in real space, to obtain
a continuous relaxation of the problem and consider schedulers defined on such
a continuous space. The advantage now is that we can treat time and space uni-
formly, representing schedulers as continuous functions. This opens up the use of
machine learning methods to represent continuous functions as combinations of
basis functions, and allows us to define the optimisation problem as a search in
such a continuous function space. The second main contribution of the work is to
set up an efficient stochastic gradient ascent search algorithm, which considerably
speeds up the search in the space of functions. This is based on a novel algorithm
using Gaussian Processes (GPs) and statistical model checking to sample in an
unbiased manner the gradient of the functional associating a reachability prob-
ability with a randomized scheduler. This method allows us to effectively learn
schedulers that maximise (locally) the reachability probability.

Organisation of the Paper. In Sect. 2 we present the related work and in Sect. 3
we provide the necessary formal background on CTMDPs. In Sect. 4 we present
our algorithm to learn optimal policies using stochastic functional gradient ascent
techniques. In Sect. 5 we demonstrate our algorithm on an epidemiology case
study. Finally, we draw our conclusion in Sect. 6.
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2 Related Work

Symbolic model checking algorithms for discrete-time Markov decision processes
have been intensively investigated in [3,7] and implemented in popular tools such
as PRISM [19]. In the area of CTMDPs, the problem of time optimal planning
has been first considered from a theoretical point of view in [23]. In the last
decade there has been a great effort on developing practical model checking
techniques for CTMDPs [2,13,25,28,29] (i.e., based on uniformization [2]) with
the introduction of efficient approximation algorithms that provide also formal
error bounds. Generally, all these techniques rely on the a-priori knowledge of the
CTMDP model under investigation and they suffer the state-explosion problem.

In this light, methods based on statistical model checking are particularly
attractive, even though they may suffer when the property to be verified is
a rare-event. In [16] the authors presented a statistical model checking algo-
rithm for the discrete-time case; their approach was however based on random
search combined with a greedy selection criterion, which is difficult to analyse
in terms of convergence properties, and may be practically difficult to tune.
The availability of an unbiased estimate of the (functional) gradient allows us
to improve on the efficiency, and to leverage a rich theory on the convergence
of stochastic gradient ascent algorithms. Our approach relies on using Gaussian
Processes (GPs), a probability distribution over the space of functions which
universally approximates continuous functions. This ability of GPs to provide
efficient approximations to intractable functions has been recently exploited in
a formal modelling context in a number of publications [5,9,10].

Our work is closely related to research in the area of machine learning, where
much research has gone on defining good local search methods to learn effec-
tive randomised schedulers, for different criteria like time bounded reward, time
unbounded discounted reward, receding horizon. These approaches combine sim-
ulation with efficient exploration schemes, like gradient ascent [6,31], path inte-
gral policy improvement [33], or the cross entropy method [21], see [34] for a
survey. Our approach differs in two main directions: firstly, we are interested
in complex rewards associated with trajectories of the system, i.e. reachability
probabilities. Secondly, we work directly in continuous time, which prevents the
use of simple finite-dimensional gradient ascent methods. In particular, the GP-
based method of defining a stochastic gradient ascent algorithm is novel, to the
best of our knowledge.

3 Preliminaries

Definition 1. A continuous-time Markov decision process (CTMDP) is a tuple
M = (S,A, R, s0), where S is a finite set of states, A is a finite set of actions,
R : S × A × S → R≥0 is the rate function, and s0 ∈ S is the initial state.

An action a ∈ A is enabled in a state s ∈ S if there is a state s′ ∈ S such that
R(s, a, s′) > 0. We call A(s) the set of enabled actions in s. A continuous-time
Markov chain (CTMC) is a CTMDP where every A(s) is a singleton.
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We define E(s, a) =
∑

s′ R(s, a, s′) the exit rate from a state s when an
action a is chosen. We also let P (s, a, s′) = R(s, a, s′)/E(s, a) be the probability
of jumping from s to s′ if a is selected.

Intuitively, a run of CTMDP starts in a state s0 and proceeds as follows:
Assume that the CTMDP is currently in a state si. First, an action ai is selected,
then the CTMDP waits for a delay ti randomly chosen according to an expo-
nential distribution with the exit rate E(si, ai), and then a next state si+1

is chosen randomly with the probability P (si, ai, si+1). This produces a run
s0a0t0s1a1t1 · · · .

In order to obtain a complete semantics, we need to specify how the actions
are selected in every step. Obviously, in CTMC, only a single action is enabled
in each state. In CTMDP, actions need to be chosen by a scheduler defined as
follows.

Definition 2. An (early timed) scheduler is a function σ : R≥0×S ×A → [0, 1]
which to every t ∈ R≥0, s ∈ S and a ∈ A assigns a probability measure σ(t, s, a)
that the action a is chosen in s at time t.

A scheduler σ is deterministic if for every t ∈ R≥0, s ∈ S and a ∈ A we have
that σ(t, s, a) ∈ {0, 1}. We denote by Σ and ΣD the sets of all schedulers and
all deterministic schedulers, respectively.

Remark 1. An early scheduler has the following property: whenever an execution
of the CTMDP enters into a state s at time t, the scheduler chooses an action
and commits to it. It cannot be changed while the system remains in state s, in
contrast with late schedulers, that can change action while in a state.

Once a scheduler σ and an initial state s is fixed, we obtain the unique prob-
ability measure P

M,s
σ over the space of all runs initiated in s using standard

definitions [26].

Time-Bounded Reachability. Let G ⊂ S be a set of goal states and let I =
[t1, t2] ⊆ [0,∞) be a closed interval. Denote by P

M,s
σ (�IG) the probability that

G is reached from s within the time interval I using the scheduler σ. Our goal
is to maximize P

M,s
σ (�IG), i.e. compute a scheduler σ∗ satisfying

P
M,s
σ∗ (�IG) = sup

σ ∈ Σ
P

M,s
σ (�IG)

We say that such a scheduler σ∗ is optimal.

Proposition 1 [26]. There always exists an optimal scheduler.

A proof for the proposition above can be found in the archive version of the
paper [4].

When dealing with time-bounded reachability, we may safely assume that
schedulers are defined only on the interval [0, T ], i.e., on a compact set. An
equivalent problem is to maximise a time-bounded safety property �IG, requir-
ing the CTMDP to remain in a region G during the time-interval I. In this case,
we have that P

M,s
σ∗ (�IG) = P

M,s
σ∗ (¬ �I S \ G) = infσ∈Σ P

M,s
σ (�IS \ G).



248 E. Bartocci et al.

Population CTMDPs. In this work, we will consider CTMDPs modelled in a
special way, reminiscent of population processes which are very common in per-
formance modelling, epidemiology, systems biology. The basic idea is that we will
have populations of agents, belonging to one or more classes, that can interact
together and thus evolve in time. Individual agents are typically indistinguish-
able, hence the state of the system can be described by a set of variables counting
the amount of agents of each kind in the system. A non-deterministic action in
this context typically represents an action of a global controller, enforcing a
policy controlling the system, or effects on the environment.

More formally, we will describe a Population CTMDP (PCTMDP), extending
population processes [8,17], as a tuple (X , T ,A, s0), where:

– X = X1, . . . , Xn is a vector of population variables, Xi ∈ N, which we assume
take values on S = N

n ∩ E, where E is a compact subset of Rn (hence S is
finite);

– s0 ∈ S is the initial state;
– τ ∈ T is the set of transitions, of the form (a, v , f(X )), where a is an action

from the set A, v is an update vector, specifying that the state after the
execution of a transition in state s is s + v , and f(X ) is the state-dependent
rate function.

The idea of this model is that in each state an action a is chosen, and then the
model evolves by a race condition between transitions guarded by the action a.
If a transition is enabled by all possible actions, we can either specify a copy
of it guarded by each model action a, or use the notation (∗, v , f(X )). The
CTMDP M = (S,A, R) associated with a PCTMDP (X , T ,A,x 0) is defined
by specifying the state space S = N

n ∩ E and the rate function R as

R(s, a, s’ ) =
∑

{fτ (s) | τ = (a, v , f(s)) ∧ s’ = s + v}.

It is easy to observe, modulo the introduction of enough variables and actions,
that the expressive power of PCTMDPs is the same as that of CTMDPs intro-
duced earlier.

4 Learning Optimal Policies via Stochastic Functional
Gradient Ascent

In this section we give a variational formulation of the control problem of deter-
mining the optimal scheduler for a CTMDP. We show how to approximate sta-
tistically in an unbiased way the functional gradient of the time-bounded reach-
ability probability, and give a convergent algorithm to achieve this.

4.1 Reachability Probability as a Functional

As defined in Sect. 3, a scheduler is a way of resolving non-determinism by asso-
ciating a (time-dependent) probability to each action/ state pair. We will realise



Policy Learning for Time-Bounded Reachability in CTMDPs 249

a scheduler as a vector f of functions fα : E × [0, T ] → R, one for each action
α ∈ A, where E is the compact subset of Rn used to define S for the PCTMDP
formalism. The corresponding probability of an action α at a state X can be
retrieved using the soft-max (logistic) transform as follows:

pX (α | t) ≡ σ(t, α,X ) =
exp(fα(X , t))∑

α′∈A exp(fα′(X , t))
, X ∈ S, t ∈ [0, T ] (1)

Given a scheduler σ, a CTMDP is reduced to a CTMC Mσ, and the problem of
estimating the probability of a reachability property φ = �IG can be reduced to
the computation of a transient probability for Mσ by standard techniques [1].
The satisfaction probability can be therefore viewed as a functional

Q : F → R

where F is the set of all possible scheduler functions. The functional is defined
explicitly as follows: consider a sample trajectory {s, a, t}n ≡ s0

α0,t0−−−→ s1
α1,t1−−−→

. . . sn
αn,tn−−−−→ sn+1 from the CTMC Mσ obtained from the CTMDP by selecting

a scheduler. Let φ = �IG, I = [t1, t2] be a reachability property, and denote by
{s, a, t}n |= φ the fact that the trajectory reaches G within the specified time
bound. We can encode it in the following indicator function:

Iφ({s, a, t}n) =

{
1, {s, a, t}n |= φ

0, otherwise.
(2)

Then the expected reachability value associated with the scheduler σ, repre-
sented by the vector of functions f = {fα}α ∈ A, is defined as follows:

Q [f(X , t)] = EMσ
[Iφ({s, a, t}n)] , (3)

where expectation is taken with respect to the distribution on trajectories of
Mσ. Notice that in general it is computationally very hard to analytically com-
pute the r.h.s. in the above equation, as it amounts to transient analysis for
a time-inhomogeneous CTMC; we therefore need to resort to statistical model
checking methods [18,35] to approximate in a Monte Carlo way the expectation
in equation (3).

To formulate the continuous time control problem of determining the optimal
scheduler, we need to define the concept of functional derivative.

Definition 3. Let Q : F → R be a functional defined on a space of functions F .
The functional derivative of Q at f ∈ F along a function g ∈ F , denoted by δQ

δf ,
is defined by∫

δQ

δf
(X, t) g(X, t) dsdt = lim

ε→0

Q[f(X, t) + εg(X, t)] − Q[f(X, t)]
ε

(4)

whenever the limit on the r.h.s. exists.
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Notice that if we restrict ourselves to piecewise constant functions on a grid, the
definition above returns the standard definition of gradient of a finite-dimensional
function. We can now give a variational definition of optimal scheduler

Lemma 1. An optimal scheduler σ is associated with a function f such that

maxg ∈ F

∥∥∥∥
∫

δQ

δf
(X, t) g(X, t) dsdt

∥∥∥∥
2

= 0 (5)

where ‖ · ‖2 denotes the L2 norm on functions.

The variational formulation above allows us to attack the problem via direct
optimisation through a gradient ascent algorithm, as we will see below.

4.2 Stochastic Estimation of the Functional Gradient

It is well-known that a gradient ascent approach is guaranteed to find the global
optimum of a convex objective function. Gradient ascent starts from an initial
solution which is updated iteratively towards the direction that induces the
steepest change in the objective function; that direction is given by the gradient
of the function. For a functional Q[f ] the concept of gradient is captured by the
functional derivative δQ

δf , which is a function of X , t that dictates the rate of
change of the functional Q when f is perturbed at the point (X , t). In the case
of functional optimisation, the gradient ascent update will have the form:

f ′ = f + γ
δQ

δf
(6)

where γ is the learning rate which controls the effect of each update, and δQ
δf

is the functional derivative of Q. Unfortunately, an analytic expression for the
functional derivative of the functional defined in (3) is usually not available.

We can however obtain an unbiased estimate of the functional derivative by
using the infinite-dimensional generalisation of this simple lemma.

Lemma 2. Let q : Rn → R be a smooth function, and let ∇q(v) be its gradient
at a point v. Let w be a random vector from an isotropic, zero mean distribution
p(w). For ε � 1, define

ŵ =

{
w, if q(v + εw) − q(v) > 0
−w, otherwise.

(7)

Then
Ep [εŵ] ∝ ∇q(v) + O(ε2).

Proof. The tangent space of Rn at the point v is naturally decomposed in the
orthogonal direct sum of a subspace of dimension 1 parallel to the gradient, and
a subspace of dimension n−1 tangent to the level surfaces of the function q. For
small ε, any change in the value of the function q will be due to movement in the
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gradient direction. As the distribution p is isotropic, every direction is equally
likely in w; however, the flipping operation in the definition of ŵ in (7) ensures
that the component of ŵ along the gradient ∇q(v) is always positive, while it
does not affect the orthogonal components. Therefore, in expectation, ŵ returns
the direction of the functional gradient.

4.3 Scheduler Representation in Terms of Basis Functions

In order to obtain an unbiased estimate of a functional gradient, we need to
define a zero-mean isotropic distribution on a suitable space of functions. To
do so, we introduce the concept of Gaussian Process, a generalisation of the
multivariate Gaussian distribution to infinite dimensional spaces of functions
(see, e.g. [30]).

Definition 4. A Gaussian Process (GP) over an input space X is an infinite-
dimensional family of real-valued random variables indexed by x ∈ X such that,
for every finite subset X ⊂ X , the finite dimensional marginal obtained by
restricting the GP to X follows a multi-variate normal distribution.

Thus, a GP can be thought as a distribution over functions f : X → R such that,
whenever the function is evaluated at a finite number of points, the resulting
random vector is normally distributed. In the following, we will only consider
X = R

d for some integer d.
Just as the Gaussian distribution is characterised by two parameters, a GP

is characterised by two functions, the mean and covariance function. The mean
function plays a relatively minor role, as one can always add a deterministic
mean function, without loss of generality; in our case, since we are interested
in obtaining small perturbations, we will set it to zero. The covariance func-
tion, which captures the correlations between function values at different inputs,
instead plays a vital role, as it defines the type of functions which can be sampled
from a GP. We will use the Radial Basis Function (RBF) covariance, defined as
follows:

cov(f(x1), f(x2)) = k(x1, x2) = α2 exp
[
−‖x1 − x2‖2

λ2

]
. (8)

where α and λ are the amplitude and length-scale parameters of the covariance
function. To gain insight into the geometry of the space of functions associated
with a GP with RBF covariance, we report without proof the following lemma
(see e.g. Rasmussen and Williams, Ch 4.2.1 [30]).

Lemma 3. Let FN be the space of random functions f =
∑N

j=1 wjφj(x) gen-

erated by taking linear combinations of basis functions φj(x) = exp
[
−‖x−μj‖2

λ2

]
,

with μj ∈ R and independent Gaussian coefficients wj ∼ N (0, α2/N). The sam-
ple space of a GP with RBF covariance defined by (8) is the infinite union of
the spaces FN .
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We refer to the basis functions entering in the constructive definition of GPs
given in Lemma 3 as kernel functions. Two immediate consequences of the pre-
vious Lemma are important for us:

– A GP with RBF covariance defines an isotropic distribution in its sample space
(this follows immediately from the i.i.d. definition of the weights in Lemma3);

– The sample space of a GP with RBF covariance is a dense subset of the space
of all continuous functions (see also [9] and references therein).

GPs therefore provide us with a convenient way of extending the procedure
described in Lemma 2 to the infinite dimensional setting. In particular, Lemma3
implies that any scheduler function f ∈ F that is a sample from a GP (with
RBF covariance) can be approximated to arbitrary accuracy in terms of basis
functions as follows:

f(X , t) =
N∑

j=1

wj exp
[−0.5([X , t]	 − μj)	Λ−1([X , t]	 − μj)

]
(9)

where μj ∈ R
n × [0, T ] is the centre of a Gaussian kernel function, Λ is a diag-

onal matrix that contains n + 1 squared length-scale parameters of the kernel
functions, and n is the dimensionality of the state-space. This formulation allows
describing functions (aka points in an infinitely dimensional Hilbert space) as
points in the finite vector space spanned by the weights w. Note that the pro-
posed basis function representation implies relaxation of the population variables
to the continuous domain, though in practice we are only interested in evaluating
f(X , t) for integer-valued X .

The advantage of the kernel representation is that we do not need to account
for all states X ∈ S, but only for N Gaussian kernels with centres μj for 1 ≤
j ≤ N . Therefore, the value of the scheduler at a particular state X will be
determined as a linear combination of the kernel functions, with proximal kernels
contributing more due to the exponential decay of the kernel functions. This
method offers a compact representation of the scheduler, and essentially does
not suffer from state-space explosion, as we treat states as continuous. Moreover,
we do not lose accuracy, as every function on S can be extended to a continuous
function on E by interpolation. On the practical side, we consider that the kernel
functions are spread evenly across the joint space (state space & time), and the
length-scale for each dimension is considered to be equal to the distance of two
successive kernels.1

4.4 A Stochastic Gradient Ascent Algorithm

Given a scheduler σ, we first evaluate the reachability probability via statistical
model checking. We then perturb the corresponding functions fα by adding a
draw from a zero-mean GP with marginal variance scaled by ε � 1, and evaluate
1 Kernel functions typically also have an amplitude parameter, which we consider to

be equal to 1.
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again by statistical model checking the probability of the perturbed scheduler.
If this is increased, we take a step in the perturbed direction, otherwise we take
a step in the opposite direction. Notice that this procedure can be repeated for
multiple independent perturbation functions to obtain a more robust estimate.
The whole procedure is described in Algorithm 1, which produces an estimate
for the gradient of the functional Q at a vector f of functions fα by considering
the average of k random directions. We are now ready to state our main result:

Algorithm 1. Estimate the functional gradient of Q[f ]
Require: Vector f of functions fα, scaling factor ε, batch size k
Ensure: An estimate of the functional derivative (gradient) ∇Q ≡ δQ

δf

Set gradient ∇Q = 0
Evaluate Q[f ] via statistical model checking
for i = 1 to k do

Consider random direction g such that ∀α ∈ A, we have:

ga ∼ N (0, 1)

Evaluate Q[f + εg]
Estimate the directional derivative:

∇gQ =
Q[f + εg] − Q[f ]

ε

if ∇gQ > 0 then
∇Q ← ∇Q + 1

k
g

else
∇Q ← ∇Q − 1

k
g

end if
end for

Theorem 1. Algorithm1 gives an unbiased estimate of the functional gradient
of the functional Q[fα].

Proof. Since both the statistical model checking estimation and the gradient
estimation are unbiased and independent of each other, this follows.

Therefore, we can use this stochastic estimate of the functional gradient to
devise a stochastic gradient ascent algorithm which directly solves the variational
problem in equation (5). This is summarised in Algorithm 2, which requires as
input an initial vector of functions f0, and a learning rate γ0. The effects of the
learning rate on the convergence properties of the method have been extensively
studied in the literature. In particular, for a decreasing learning rate convergence
is guaranteed in the strictly convex scenario, if the following conditions are satis-
fied:

∑
n γn = ∞ and

∑
n γ2

n < ∞ [11,24], suggesting a Θ(n−1) decrease for the
learning rate. In non-convex problems, such as the ones considered in this work,
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Algorithm 2. Stochastic gradient ascent for Q[f ]
Require: Initial function vector f0, learning rate γ0, nmax iterations
Ensure: A function vector f that approximates a local optimum of Q

for n ← 1 to nmax do
Estimate the functional gradient ∇Q by using Algorithm 1
Update: fn ← fn−1 + γn−1∇Q

end for

the Θ(n−1) decrease is generally too aggressive, leading to vulnerability to local
optima. Following the recommendations of [12], we adopt a more conservative
strategy:

γn = γ0 n−1/2 (10)

where γ0 is an initial value for the learning rate, which is problem dependent.

5 Example

We demonstrate the stochastic gradient ascent algorithm on a simple epidemiol-
ogy that features no permanent recovery, also known as the SIS model. The
system is modelled as a PCTMDP, in which the state is described by two
variables denoting the population of susceptible (XS) and infected individu-
als (XI). We assume that no immunity to the infection is gained upon recov-
ery. The objective is to monitor how infection progresses over time, given
that there is a non-deterministic choice at each step among actions in A =
{no treatment , treatment}, indicating whether an external action is taken to deal
with the infection.

This non-deterministic choice will affect the dynamics of the system, which
are represented by a list of transitions together with their rate functions, in the
biochemical notation style (see e.g. [14]):

infection (*): S + I
ki→ I + I, with rate function ki XS XI ;

slow recovery (no treatment): I
kr→S, with rate function kr XI ;

self-infection (no treatment): S
ki→ I, with rate function ki XS/2;

fast recovery (treatment): I
kr→S, with rate function αkr XI ;

death (treatment): I
kr→∅, with rate function kd XI ;

death (treatment): S
kr→∅, with rate function kd XS ;

Among the transitions above, only infection has the same rate regardless of any
non-deterministic choice. If the no treatment action is chosen, infected individ-
uals recover slowly as prescribed by the slow recovery transition, while there
is a small chance of self-infection. If treatment is applied, the recovery rate is
increased by a factor α > 1, and the chance of spontaneous infection is elimi-
nated. We assume however that the treatment is associated with some very neg-
ative side-effects that result in a small probability of death, either for healthy of
infected individuals.
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In this example, we seek to construct a scheduler that maximises the prob-
ability of having no deaths and no infected individuals during the time interval
[t1, t2], i.e. maximising the safety property

�[t1,t2]G G = {S = N} (11)

The application of treatment contributes in accelerating the extinction of the
infected population, but it also introduces a possibility of death. Therefore a
policy of constantly applying treatment cannot be optimal with respect to the
satisfiability of the property considered. Moreover, maximising the satisfaction
probability requires a time-dependent scheduler, as the treatment application
has to be appropriately timed so that it has effect in the time-interval [t1, t2].

In the experiments that follow, we illustrate how the stochastic gradient
ascent algorithm converges to solutions that maximise this probability. We con-
sider a system with total population N = 100, and initial populations XS0 = 90
and XI0 = 10. The rate constants are ki = 0.0012 for infection, kr = 0.1 for
recovery, kd = 0.0002 for the death event, while the increase in the recovery rate
due to treatment is fixed to α = 10. The time bounds for the safety property
considered are t1 = 50 and t2 = 60. Regarding the stochastic gradient ascent
parameters, the learning rate at the n-th step is γn = γ0/

√
n, where γ0 = 5. For

the numerical estimation of the directional derivatives, we consider ε = 0.1 and
the batch size for the gradient estimation was fixed to k = 5. For each estimation
of the Q function, we have used 1000 simulation runs. In all cases, the algorithm
was run for 100 iterations, meaning that a total of 600000 simulation runs were
used for each experiment.

We first present an example that illustrates the importance of time in the
satisfaction of the time-bounded property in (11). Figure 1 reports a scheduler
which is given as a solution by the stochastic gradient ascent approach. The
scheduler is presented as a multivariate function that takes values in [0, 1], indi-
cating the probability of selecting the no treatment action for different values
of state and time. In particular, we have a series of surface plots, each of which
summarises the probability of no treatment as function of the 2-dimensional
state-space for a different time-point. The white colour denotes that no treat-
ment is selected with probability 1, while the black colour implies that treatment
is used instead. We can see that treatment is only preferable for a particular time
window and for certain parts of the state-space, that is XS > 80 and XI < 20.
This makes sense, as the probability of achieving full recovery from a state with
more than 20 infected is too small to justify the risks connected with treatment.
More specifically, treatment is selected with high probability for t ∈ [33.75, 52.5],
which precedes with a very small overlap the time interval if interest, which
is [50, 60]. Intuitively, to maximise the probability that all of the population is
recovered over the course of a particular interval, the treatment action should
be engaged just before. In a different case, there is an increased risk of death, as
a consequence of the negative effects of prolonged treatment.
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Fig. 1. Example of scheduler that (locally) maximises the probability of G[t1,t2]S = N .
The white area indicates high probability of choosing the no treatment action; the dark
area indicates high probability of choosing treatment.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Iteration

V
al

ue

(a) no treatment only initial scheduler

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Iteration

V
al

ue

(b) treatment only initial scheduler

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Iteration

V
al

ue

(c) Uniform initial scheduler

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Iteration

V
al

ue

(d) Random initial scheduler

Fig. 2. Stochastic gradient ascent starting from different initial schedulers
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We next investigate how the algorithm responds to different initial sched-
ulers. In Fig. 2, we monitor how the value of the functional Q as function of
the scheduler evolves during the course of the algorithm, starting from different
initial solutions. More specifically, Fig. 2(a) depicts the evolution of Q values
starting from a scheduler where no treatment is globally selected as an action.
The initial satisfaction probability is very small, but after a number of iterations
it converges to values above 0.6. Figure 2(b) summarises the results where the
initial solution selects treatment everywhere; apparently this initial solution has
been closer to the local optimum and the convergence rate had been significantly
faster in this case. Convergence is even faster in Fig. 2(c), where a uniform ini-
tial solution was used; that is that each of the two possible actions has equal
probability ∀s ∈ S and ∀t ∈ T . Finally, in Fig. 2(d) we report the Q values for
a run starting from a randomly initialised scheduler. In the last two instances,
the starting point has had Q values at around 0.4, which is closer to the maxi-
mum; therefore the algorithm naturally required fewer iterations to converge to
a good solution. Although the convergence rate is apparently dependent on the
initial solution, the experiments considered resulted in solutions of similar value,
which obtain satisfaction probabilities at around 0.65. It is important to note
however that there is no guarantee that the algorithm will converge to the global
maximum, since the problem considered in not convex in the general case.

6 Conclusions

Continuous time Markov Decision processes play an important role in many
applications, yet they are relatively understudied in the formal methods liter-
ature. Part of the problem resides in the difficulty to provide effective charac-
terisations of time-varying schedulers. Recent methodologies [13] have focussed
on iterative algorithms based on uniformisation over an increasingly fine time
discretisation. While such methods have the ability to compute exactly (up to
numerical precision) the objective function (reachability probability), their scal-
ability to large systems is significantly hampered by the state-space explosion
problem. Furthermore, such approaches rely on the availability of a mathematical
description of the systems, and are therefore not applicable to control black-box
systems where a reliable model is not available.

Our approach is suitable instead when the model of the system we want to
control is not available a-priori. Our algorithm relies on using GPs, a proba-
bility distribution over the space of functions which universally approximates
continuous functions.

A potentially significant limitation of our approach is its vulnerability to
locally optimal choices. This is a common problem in optimisation, where global
convergence in the non-convex case is well known to be hard. Theoretically, this
means that our approach can only provide a lower-bound on the reachability
probability; nevertheless, this can still be a very valuable result in practical sce-
narios. Empirically, we observed that the algorithm had excellent performance
in a challenging test set; its computational efficiency also means that practi-
cal strategies to avoid local optima, such as multiple restarts, can be feasibly
employed.
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Abstract. It is well known that the infinitesimal generator underlying
a multi-dimensional Markov chain with a relatively large reachable state
space can be represented compactly on a computer in the form of a block
matrix in which each nonzero block is expressed as a sum of Kronecker
products of smaller matrices. Nevertheless, solution vectors used in the
analysis of such Kronecker-based Markovian representations still require
memory proportional to the size of the reachable state space, and this
becomes a bigger problem as the number of dimensions increases. The
current paper shows that it is possible to use the hierarchical Tucker
decomposition (HTD) to store the solution vectors during Kronecker-
based Markovian analysis relatively compactly and still carry out the
basic operation of vector-matrix multiplication in Kronecker form rel-
atively efficiently. Numerical experiments on two different problems of
varying sizes indicate that larger memory savings are obtained with the
HTD approach as the number of dimensions increases.

Keywords: Markov chains · Kronecker products · Hierarchical Tucker
decomposition · Reachable state space · Compact vectors

1 Introduction

Modelling and analysis of multi-dimensional Markov chains (MC) on high end
desk-top computers is an area of research with ongoing interest. When a discrete-
event dynamic system is composed of interacting subsystems, it may be possi-
ble to provide a state-based mathematical model for its behaviour as a multi-
dimensional MC with each dimension of the MC representing a different sub-
system and a number of events that trigger state changes at certain transition
rates. In this kind of model, subsystems can change state locally by themselves,
that is, independently of states the other subsystems are in, or they can change
state synchronously with some or all the other subsystems depending on their
local states. The state space of such a model is therefore determined by the
combination of states the subsystems can be in under the operational semantics
of the system. Hence, a subset of the Cartesian product of the subsystem state
c© Springer International Publishing Switzerland 2016
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spaces forms the so called reachable state space. Usually not all states from the
Cartesian product are reachable because synchronized transitions prohibit some
specific combinations of subsystem states to be reachable [3,6]. It is important
to be able to represent this reachable state space and the transitions among its
states compactly and then analyse the steady-state or transient behaviour of the
underlying system as accurately and as efficiently as possible.

When the reachable state space at hand is relatively large but finite, the
infinitesimal generator underlying the MC can be represented as a block matrix
in which each nonzero block is expressed as a sum of Kronecker products of
smaller rectangular matrices [7]. This is the form of the Kronecker representa-
tion in hierarchical Markovian models [3], where rectangularity of the smaller
matrices is possible due to the product state space of the modelled system being
larger than its reachable state space [9]. When the product state space is equal
to the reachable state space, the smaller matrices turn out to be square as in
stochastic automata networks [19,20].

For Kronecker-based Markovian representations, analysis methods employ
vector-Kronecker product multiplication as the basic operation [21]. Therein,
the challenge is to perform this operation in as little of memory and as fast as
possible. When the factors in the Kronecker product terms are relatively dense,
the operation can be performed efficiently by the shuffle algorithm [10]. When
the factors are relatively sparse, it may be more efficient to obtain nonzeros of the
generator in Kronecker form on the fly and multiply them with corresponding
elements of the vector [6]. Recently, the shuffle algorithm has been modified so
that relevant elements of the vector are multiplied with submatrices of factors
in which zero rows and columns are omitted [8]. This approach is shown to
avoid unnecessary floating-point operations (flops) that evaluate to zero during
the course of the multiplication and possibly reduces the amount of memory
used. In many cases, a smaller number of flops than the shuffle algorithm and
the algorithm that generates nonzeros on the fly is possible. Nevertheless, the
memory allocated for the vectors in all mentioned algorithms is still proportional
to the size of the reachable state space, and this size increases rapidly with the
number of dimensions.

The current paper takes a different approach and attempts to reduce the
amount of memory allocated to solution vectors in Kronecker-based Markovian
analysis by using the hierarchical Tucker decomposition (HTD) [14,15]. HTD
is originally conceived in the context of providing a compact approximate rep-
resentation for dense multi-dimensional data [12] in a manner similar to the
tensor-train decomposition [18], but is somewhat more suitable to our require-
ments in that the decomposition is available through a tree data structure with
logarithmic depth in the number of dimensions. Both decompositions have the
special feature of possessing approximation errors that can be user controlled,
and hence, approximations accurate to machine precision are computable using
them. Clearly, with such decompositions it is always possible to trade quality of
approximation for compactness of representation, and how compact the solution
vector in HTD format remains throughout the solution process is an interesting
question to investigate. The tensor train decomposition has been applied in [13]
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to approximate the solution vector for models where the product space is reach-
able using an alternating least squares approach. HTD has, to the best of our
knowledge, not been applied to structured Markov chains yet.

Here, we show that a compact solution vector in HTD format can be multi-
plied with a sum of Kronecker products to yield another compact solution vector
in HTD format. In doing this, we note that the multiplication of the compact
solution vector in HTD format with a Kronecker product term does not increase
the memory requirements of the compact vector, but the addition of two compact
vectors does, which necessitates some kind of truncation, hence, approximation,
to be introduced to the addition operation only. Then, starting from an initial
solution, the compact vector in HTD format is iteratively multiplied with the
uniformized generator matrix of a given MC in Kronecker form until a predeter-
mined stopping criterion is met. Indeed, we are interested in observing how the
memory requirements of the compact solution vector in HTD format changes
over the course of iterations due to the sequence of multiply, add, and truncate
operations in each iteration, together with the average time it takes to perform
the iteration and the influence of the approximation error on the quality of the
solution. The same numerical experiment is performed with a flat solution vector
as long as the reachable state space size using the modified shuffle algorithm. The
two approaches are compared for their memory and timing requirements, lead-
ing us to the conclusion that compact vectors in HTD format become relatively
more memory efficient as the number of dimensions increases.

In passing to the organization of the paper, we remark that compact repre-
sentations for solution vectors in Markovian analysis have also been considered
from the perspective of binary decision diagrams [5,16]. The proposed compact
structures therein have not been time-wise competitive, whereas the approach
investigated in this paper seems to be a step forward. The organization of the
paper is as follows. In Sect. 2, we provide background information on HTD and
the related algorithms that are be used in our Kronecker setting. In Sect. 3,
we discuss implementation issues associated with using HTD within the NSolve
package of the Abstract Petri Net Notation (APNN) toolbox [1,2]. In Sect. 4,
we present results of numerical experiments on two different problems of varying
sizes and having transitions that take place at different time scales. Section 5
concludes the paper.

2 Compact Vectors in Kronecker Setting

Let us consider a d-dimensional Markovian system, where Sh denotes the state
space of the hth (h = 1, . . . , d) component in the d-dimensional MC, and assume
that Sh are defined on consecutive nonnegative integers starting from 0. We
denote the reachable state space of the system by S ⊆ ×d

h=1Sh, where ×d
h=1Sh

is the product state space. Now, let S(i) = ×d
h=1S(i)

h , where S(i)
h is a partition of

Sh in the form of consecutive integers for i = 1, . . . , J . Then S(1), . . . ,S(J) is a
Cartesian product partitioning of S if S = ∪J

i=1S(i) and S(i) ∩ S(j) = ∅ for i �= j
and i, j = 1, . . . , J [9].
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The infinitesimal generator Q underlying the MC can be viewed as a (J ×J)
block matrix induced by the Cartesian product partitioning of S as in [7,9]

Q =

⎡
⎢⎣

Q(1,1) . . . Q(1,J)

...
. . .

...
Q(J,1) . . . Q(J,J)

⎤
⎥⎦ .

Block (i, j) of Q for i, j = 1, . . . , J is given by

Q(i,j) =

{∑
k∈K(i,j) Q

(i,j)
k + Q(i)

D if i = j,∑
k∈K(i,j) Q

(i,j)
k otherwise,

where

Q(i,j)
k = αk

d⊗
h=1

Q(i,j)
k,h , Q(i)

D = −
J∑

j=1

∑
k∈K(i,j)

αk

d⊗
h=1

diag(Q(i,j)
k,h e),

⊗ is the Kronecker product operator, αk is the rate associated with continuous-
time transition k, K(i,j) is the set of transitions in block (i, j), e represents a
column vector of ones, diag(a) denotes the diagonal matrix with the entries of
vector a along its diagonal, and Q(i,j)

k,h is the submatrix of the transition matrix

Qk,h whose row and column state spaces are S(i)
h and S(j)

h , respectively [3]. In
practice, the matrices Qk,h are sparse [7] and held in sparse row format since
the nonzeros in each of its rows indicate the possible transitions from the state
with that row index. The advantage of partitioning the reachable state space is
the elimination of unreachable states from the set of rows and columns of the
generator to avoid unnecessary flops due to unreachable states. We also remark
that the continuous-time transition rate of a Kronecker product term, αk, can
be eliminated by scaling one factor in the term with that rate.

To simplify the discussion and the notation, we consider the multiplication
of a single block of Q from the left with a (sub)vector, and therefore, omit the
indices (i, j) and write the index k associated with the transition as a superscript
in parentheses above the matrices forming the block. Hence, we concentrate on
the operation

yT := xT
K∑

k=1

d⊗
h=1

Q(k)
h ,

where Q(k)
h is a (mh×nh) matrix, implying

⊗d
h=1 Q(k)

h is a (
∏d

h=1 mh×∏d
h=1 nh)

matrix, and x is a (
∏d

h=1 mh × 1) vector. K is equal to the number of terms in
the sum, i.e., |K(i,j)| if we consider block (i, j). Observe that this is the operation
that takes place when each block of a block matrix in Kronecker form such as Q
gets multiplied on the left by an iteration subvector. In fact, the same subvector
multiplies all blocks in a row of the matrix in Kronecker form.
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To be consistent with the literature, we consider in the following multiplica-
tions of Kronecker products ⊗d

h=1A
(k)
h with column vector x and their summa-

tion in the usual matrix-vector form

y :=
K∑

k=1

(
d⊗

h=1

A(k)
h

)
x,

where A(k)
h is the transpose of Q(k)

h and of size (nh × mh). In particular, we are
interested in its implementation as

y(1) := 0, x(k) :=

(
d⊗

h=1

A(k)
h

)
x, y(k+1) := y(k) + x(k) for k = 1, . . . ,K,

and y := y(K+1), where 0 is a column vector of 0’s. Now, we turn to the HTD
format.

2.1 HTD Format

Assuming without loss of generality that d is a power of 2, the (
∏d

h=1 mh × 1)
vector x in (orthogonalized) HTD format can be expressed as

x = (U1 ⊗ · · · ⊗ Ud)c,

where Uh for h = 1, . . . , d are (mh × rh) orthogonal basis matrices for the
different dimensions in the model and

c = (B1,2 ⊗ · · · ⊗ Bd−1,d) · · · (B1,...,d/2 ⊗ Bd/2+1,...,d)B1,...,d

is a (
∏d

h=1 rh × 1) vector in the form of a product of log2 d matrices each of
which except the last is a Kronecker product of a number of transfer matrices
Bt related to each other as in the full binary tree of Fig. 1. The transfer matrix

Fig. 1. Matrices forming x in HTD format for d = 8.
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Bt is of size (rtlrtr ×rt) with the node index t defined as t := tl, tr, and r1,...,d = 1
since B1,...,d is at the root of the tree [14, pp. 5–6].

The (d − 1) intermediate nodes of the binary tree in Fig. 1 store the transfer
matrices Bt and its leaves store the basis matrices Uh so that each intermediate
node has two children. In orthogonalized HTD format of x, one can also conceive
of orthogonal basis matrices Ut = (Utl ⊗Utr )Bt, at intermediate nodes with rt
columns that relate the orthogonal basis matrices Utl and Utr for the two chil-
dren of transfer matrix Bt with the transfer matrix itself. In fact, the orthogonal
matrix Ut has in its columns the singular vectors associated with the largest rt
singular values [11, pp. 76–79] of the matrix obtained by taking index t as row
index, the remaining indices in order as column index of the d-dimensional data
at hand (i.e., with a slight abuse of notation, x(t, {1, . . . , d}−t)). Hence, we have
the concepts of “hierarchy of matricizations” and “higher-order singular value
decomposition (HOSVD)”, and rt is the rank of the truncated HOSVD. More
detailed information regarding this can be found in [12,14]. We remark that Bt

may also be viewed as a 3-dimensional array of size (rtl ×rtr ×rt) having as many
indices in each of its three dimensions as the number of columns in the matrices
in its two children and itself, respectively. The number of transfer matrices in
the lth factor forming c is the Kronecker product of 2log2 d−l transfer matrices
for l = 1, . . . , log2 d − 1. In fact, c is a product of Kronecker products, and so is
x, but neither has to be formed explicitly.

When d is not a power of 2, it is still useful to keep the tree in a balanced
form, for instance, as in Fig. 2 for which

x = (((U1 ⊗ U2)B1,2) ⊗ U3 ⊗ U4 ⊗ U5)(B1,2,3 ⊗ B4,5)B1,2,3,4,5.

Fig. 2. Matrices forming x in HTD format for d = 5.

Assuming that rmax = maxt(rt) and mmax = max(m1, . . . ,md), memory
requirement for matrices in the binary tree associated with HTD format is
bounded by dmmaxrmax at the leaves, r2max at the root, and (d − 2)r3max at
other intermediate nodes, thus, totally dmmaxrmax + (d − 2)r3max + r2max. In the
next subsection, we show how a particular rank-1 vector can be represented in
HTD format.
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2.2 Uniform Distribution in HTD Format

Let x = e/m be the (m × 1) uniform distribution vector, where m =
∏d

h=1 mh.
Then x may be represented in HTD format with all matrices having rank-1
for which the basis matrices given by Uh = e/

√
mh are of size (mh × 1) for

h = 1, . . . , d and the transfer matrices given by

Bt =
{

(
∏d

h=1

√
mh)/m if t corresponds to root

1 otherwise

are (1×1). Note that memory taken up by flat representation of x is m nonzeros,
whereas that with HTD format is d − 1 +

∑d
h=1 mh nonzeros since the (d − 1)

transfer matrices are all scalars equal to 1 except the one corresponding to the
root. In passing to the multiplication of a compact vector with a Kronecker
product, we remark that each basis matrix Uh for the uniform distribution
has only a single column and that column is unit 2-norm, implying all Uh are
orthogonal.

2.3 Multiplication of Vector in HTD Format with Kronecker
Product

Assuming that x is in HTD format with orthogonal basis matrices Uh and
transfer matrices Bt forming vector c, the operation

x(k) :=

(
d⊗

h=1

A(k)
h

)
x is equivalent to performing x(k) :=

(
d⊗

h=1

A(k)
h Uh

)
c

since x = (⊗d
h=1Uh)c. Hence, the only thing that needs to be done to carry out

the computation of x(k) in HTD format is to multiply the (nh × mh) Kronecker
factor A(k)

h with the corresponding (mh × rh) orthogonal basis matrix Uh for
h = 1, . . . , d. Clearly, the (nh × rh) product matrix A(k)

h Uh need not be orthog-
onal. But this does not pose much of a problem, since x(k) can be transformed
into orthogonalized HTD format if the need arises by computing the QR decom-
position [11, pp. 246–250] of A(k)

h Uh = ŨhRh for h = 1, . . . , d, propagating
the triangular factors Rh into the transfer matrices, and orthogonalizing the
updated transfer matrices at intermediate nodes in a similar manner up to the
root as in Algorithm 1 in [14, p. 12]. However, the situation is not as good for
the addition of two compact vectors.

2.4 Addition of Two Vectors in HTD Format and Truncation

Addition of two matrices Y and X with given singular value decompositions
(SVDs) [11, pp. 76–79]

Y = UYΣYVT
Y and X = UXΣXVT

X

results in
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Y + X := (UY UX)
(

ΣY

ΣX

)
(VY VX)T .

Here, ΣY,ΣX are diagonal matrices of singular values, whereas UY, UX and
VY, VX are orthogonal matrices of left and right singular (row) vectors asso-
ciated with matrices Y, X, respectively. SVD is a rank revealing factorization
in that the number of nonzero singular values of a matrix corresponds to its
column rank. This implies that the sum (Y + X) has a rank equal to the sum
of the ranks of the two matrices that are added.

The situation for the sum y(k+1) of the two vectors y(k) and x(k) in HTD for-
mat is no different if one replaces the SVD with HOSVD. This is conveniently
illustrated for d = 4 by Fig. 5 in [14, p. 11]. For the following steps performing
the addition and representing the resulting vector in HTD format, we exploit the
algorithms presented in [14]. Among three alternative approaches that have been
investigated therein for computing y, the best seems to be to multiply, add and
then truncate K times as demonstrated in Fig. 11 of [14]. This approach is coded
in Algorithm 7 of [14, p. 23] which works by calling Algorithm 3 that takes care of
the reduced Gramians computations of a compact vector in non-orthogonalized
HTD format. Recall that the compact vector x(k) obtained after multiplication
does not need to be in orthogonal HTD format even though x might have been.
Once Algorithm 3 is executed, Algorithm 7 takes over and computes the trun-
cated HOSVD for the sum of two vectors y(k) and x(k) in HTD format with-
out initial orthogonalization. The output y(k+1) of Algorithm 7 is a truncated
compact vector in orthogonalized HTD format and this operation is repeated
K times until y is obtained. The number of flops executed by Algorithm 7 is
O(dK2r2max(nmax + r2max +Krmax)), where nmax = max(n1, . . . , nd). The signif-
icance of this algorithm is that one can impose an accuracy of ε on the truncated
HOSVD by choosing rank rt in node t based on dropping the smallest singular
values whose squared sum is less than or equal to ε2/(2d−3) [14, pp. 18–19]. This
is a very nice result but also implies that the truncation leads to an approximate
solution vector.

2.5 Computing the 2-Norm of a Vector in HTD Format

Normally, it is more relevant to compute the maximum (i.e., infinity) norm of
a solution vector in probabilistic analysis even though all norms are known to
be equivalent [11, pp. 68–70]. However, the computation of the maximum value
(in magnitude) of the elements of a compact vector requires being able to know
which indexed value is the largest and also its value, which seems to be costly
for a compact vector in HTD format. Therefore, we consider the computation of
the 2-norm of vector y given by ||y||2 =

√
yTy.

Fortunately, ||y||2 can be obtained using Algorithm 2 in [14, p. 14], which
computes inner products of two compact vectors in HTD format. Here, the only
difference is that the two vectors are the same vector y. The algorithm starts
from the leaves of the binary tree and moves towards the root, requiring the same
sequence of operations in the first part of the computation of reduced Gramians
in Algorithm 3 in [14, p. 17]. But, this has already been discussed in the previous
subsection.
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Now, we can move to implementation issues regarding compact solution vec-
tors in HTD format for Kronecker-based Markovian representations.

3 Implementation Issues

The implementation is done within the NSolve package of the APNN Toolbox
[1,2]. The binary tree data structure accompanying the HTD format is allocated
at the outset depending on the value of d. It is stored in the form of an array of
tree nodes from root to leaves level by level so that accessing the children of a
parent node or the parent of a child node becomes relatively easy. In a tree node t,
there are pointers to matrices Ut for leaves and Bt for intermediate nodes which
we have seen and accounted for before, but also pointers to matrices Rt and, as
we explain shortly, (2 × 2) block matrices Mt and Gt for each node. Since we
expect solution vectors to be dense, the matrices in the compact representation
are stored as full matrices including those corresponding to the blocks of Mt

and Gt. The nonzero elements of the full matrices are kept in a one-dimensional
real array so that relevant LAPACK methods available at [17] can be called
without having to copy vectors. We choose to store transposes of the matrices
representing the compact solution vector in row sparse format (meaning they are
stored by columns) so that relevant LAPACK methods can be called without
having to transpose the input matrices.

The multiplication of the sparse Kronecker factors A(k)
h with the orthogonal

basis matrices Uh in x(k) :=
(⊗d

h=1 A(k)
h Uh

)
c is implemented using straight-

forward sparse matrix-vector multiplication. After the compact vector x(k) is
computed, the tree nodes of y(k) are visited and its respective fields are updated
so that we have y(k+1) at hand. Efficient computation of the reduced Gramian
matrices Gt as in Algorithm 3 of [14, p. 17] for y(k+1) requires exploiting the
block structure of the new transfer matrices Bt whose blocks are already available
in the corresponding tree nodes of y(k+1) after the addition operation. Clearly,
there is no need to generate block matrices (or a cubic blocks as in Fig. 5 of [14,
p. 11]) with these blocks explicitly. We prefer to store Mt and Gt as (2 × 2)
block matrices because of the add a term and then truncate approach followed.
Let us next elaborate on this.

Assuming that rt(y(k)) and rt(x(k)) denote the ranks of matrices in compact
representations of the two vectors that are summed up in node t, Mt and Gt

become (rt(y(k))rt(x(k)) × rt(y(k))rt(x(k))) matrices, where the first diagonal
block is (rt(y(k))×rt(y(k))) and the second diagonal block is (rt(x(k))×rt(x(k))).
Then the computation Mt := UT

t Ut for leaf nodes can be formulated in (2 × 2)
block manner as

M(i,j)
t := (U(i)

t )T (U(j)
t ) for i, j = 1, 2,

where U(1)
t and U(2)

t denote basis matrices of y(k) and x(k) at leaf node t,
respectively. This computation requires multiplying two full matrices for which
the DGEMM routine of LAPACK may be used. On the other hand, the computation
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Mt := BT
t (Mtl ⊗ Mtr )Bt for intermediate nodes can be formulated from the

bottom of the tree to the root in (2 × 2) block manner as

M(i,j)
t := (B(i)

t )T (M(i,j)
tl

⊗ M(i,j)
tr )(B(j)

t ) for i, j = 1, 2,

where B(1)
t and B(2)

t denote transfer matrices of y(k) and x(k) at node t, respec-
tively.

Similarly, we have reduced Gramian computations, but in opposite direction
from root to leaves, that can be formulated in (2×2) block manner for i, j = 1, 2
as G(i,j)

t := 1 when t corresponds to root; otherwise,

G(i,j)
tl

:= (B(i)
t:2,3)

T (M(i,j)
tr ⊗ G(i,j)

t )B(j)
t:2,3

and
G(i,j)

tr := (B(i)
t:1,3)

T (M(i,j)
tl

⊗ G(i,j)
t )B(j)

t:1,3,

where B(1)
t:2,3 and B(1)

t:1,3 are transfer matrices B(1)
t of y(k) organized respectively

as (rtr (y
(k))rt(y(k)) × rtl(y

(k))) and (rtl(y
(k))rt(y(k)) × rtr (y

(k))) matrices and
B(2)

t:2,3 and B(2)
t:1,3 are transfer matrices B(2)

t of x(k) organized respectively as
(rtr (x

(k))rt(x(k)) × rtl(x
(k))) and (rtl(x

(k))rt(x(k)) × rtr (x
(k))) matrices. Such

matrices are called matricizations of the given matrix (in this case, the transfer
matrix B(1)

t or B(2)
t along specific dimensions), and therefore, represent different

organizations of the same data. We remark that the off-diagonal blocks of Mt

and Gt respectively satisfy the relationships M(i,j)
t = (M(j,i)

t )T and G(i,j)
t =

(G(j,i)
t )T . Therefore, only one off-diagonal block for these two matrices in each

node needs to be computed. The computation of the three blocks of Mt and
Gt requires multiplications using DGEMM with matricizations and contraction of
multi-dimensional data involving B(i)

t matrices for i = 1, 2 as discussed in [14,
pp. 9–10, 12–13]. We use two auxiliary vectors of length maxtl,tr,t(rtlrtrrt) to
implement these operations. The disadvantage of not storing Mt and Gt as (2×2)
block matrices is that longer auxiliary vectors would need to be allocated.

Truncation of a compact vector requires QR and singular value decomposi-
tions [11, pp. 76–79, 246–250] as in Algorithm 7 of [14, p. 23] to be performed. In
order to compute these decompositions, DGEQRF and DGESDD routines of LAPACK
are used. Since we expect input matrices to be dense, we do not call routines
expecting sparse matrices. For a leaf node t, the (mt × (rt(y(k)) + rt(x(k))))
input matrix Ut maybe obtained by concatenating the matrices U(1)

t and U(2)
t

corresponding to y(k) and x(k), respectively. Since the input matrix is also an out-
put matrix, the upper-triangular factor Rt of the QR decomposition is returned
from DGEQRF in the upper-triangular part of the input matrix in which the lower-
triangular part has the Householder reflections amounting to the orthogonal fac-
tor Qt. After Rt is obtained, RtGtRT

t needs to be formed. To this end, we first
transform the block matrix Gt to a dense matrix (with a single block) and mul-
tiply this new matrix held as a one-dimensional array from left and right using
the DTRMM routine of LAPACK. Note that DTRMM does not accept a trapezoid
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Rt; however, this case can be handled by multiplying triangular and rectangular
parts of Rt separately using DTRMM and DGEMM. Hence, there is no need to copy
the output of DGEQRF to another matrix including Rt. Once RtGtRT

t is formed,
it needs to be decomposed for its singular values and vectors. To this end, we
prefer to use the DGESDD routine over the DGESVD routine since it is said to be
faster [17]. We remark that this routine computes singular values through the
symmetric eigenvalue decomposition, and the singular vectors are truncated at a
certain number or possibly by omitting some corresponding to the smaller singu-
lar values based on an error tolerance. St ends up being the matrix holding the
rt singular vectors. Then the orthogonal basis matrix Ut = QtSt is computed
using the DORMQR routine. In order to avoid storing St, we prefer to update Rt

with ST
t as in the htucker package [15].

The same sequence of operations are carried out level by level from the par-
ents of the leaves to the top of the tree excluding the root. The product ST

t Rt

is computed using DTRMM (also possibly with an additional call to DGEMM when
Rt is trapezoid) and stored in the matrix that was allocated for Rt. Note that
ST
t Rt = (F(1)

t F(2)
t ) is an (rt × (rt(y(k)) + rt(x(k)))) matrix with the two blocks

F(l)
t for l = 1, 2, where rt is the rank of node t after truncation. Then for a non-

leaf node t, the QR factorization of
∑2

i=1(F
(i)
tl

⊗F(i)
tl

)B(i)
t needs to be computed.

This computation requires multiplications using DGEMM with matricizations of
multi-dimensional data involving B(i)

t matrices for i = 1, 2 as discussed in [14,
pp. 9–10]. Finally, the transfer matrix Bt = QtSt is computed using DORMQR.

4 Results of Numerical Experiments

In this section, we consider two example models that have been used as bench-
marks in [4]. The first is an availability model with d subsystems in which
different time scales occur. Each subsystem models a processing node with 2
processors, one acting as a cold spare, a bus and two memory modules. Time to
failure is exponentially distributed with rate 5 × 10−4 for processors, 4 × 10−4

for buses and 10−4 for memory modules. Components are repaired by a global
repair facility with preemptive priority such that components from subsystem
1 have the highest priority and components from subsystem d have the least
priority. Furthermore, the repair of the bus has priority over the repair of the
processor which has priority over the repair of the memory module. The repair
times of components are exponentially distributed. The repair rates of a proces-
sor, a bus, and a memory from subsystem 1 are given respectively as 1, 2, and 4.
The same rates for other subsystems are given respectively as 0.1, 0.2, and 0.4.
For this model, the reachable state space is equal to the product state space and
contains 12d states. We consider availability models with d = 3, 4, 5, 6, 7, 8.

The second example is a model of a polling system of two servers serving cus-
tomers from d finite capacity queues, which are cyclically visited by the servers.
Customers arrive to the system according to a Poisson process with rate 1.5
and are distributed with queue specific probabilities among the queues each of
which is assumed to have a capacity of 10. If a server visits a nonempty queue,



Compact Representation of Solution Vectors 271

it serves one customer and then travels to the next queue. On the other hand, a
server arriving at an empty queue, skips the queue and travels to the next queue.
Service and travelling times of servers are exponentially distributed respectively
with rates 1 and 10. Each subsystem in the model describes one queue, and the
J partitions of the reachable state space for this model are defined according
to the number of servers serving customers at a queue or travelling to the next
queue. For each subsystem we obtain 62 states partitioned into 3 subsets. The
reachable state space of the complete model has J =

(
d+1
2

)
partitions, and we

consider polling system models with d = 3, 4, 5, 6, 7.

Table 1. Properties of availability and polling models

Availability Polling

d J |S| J |S|
3 1 1,728 6 25,443

4 1 20,736 10 479,886

5 1 248,832 15 8,065,860

6 1 2,985,984 21 125,839,395

7 1 35,831,808 28 1,863,521,121

8 1 429,981,696

The goal of this paper is to compare the memory and timing requirements for
a vector-matrix product computation using the full vector and the HTD format
approaches. Furthermore, we have to evaluate the accuracy of the computation
if truncation is performed in the HTD format. Therefore, we consider in the
following iteration steps of the Power method. This is not the most efficient
solution method for steady-state analysis, but similar iteration steps can be
applied in more advanced iterative techniques and they can be directly used in
uniformization for transient analysis. For each model, the solution vector π(it)

at iteration it is multiplied with

P := I + ΔQ, where Δ := 0.999/max
s∈S

|qs,s|,

starting with the uniform distribution in π(0), so that we have

π(it) := π(it−1)P for it = 1, 2, . . . , maxit

with the associated error vector e(it) := π(it) − π(it−1). Note that e(it) =
Δπ(it−1)Q, the scaled residual vector corresponding to the previous itera-
tion vector. Here, maxit is the maximum number of iterations and we set
maxit := 1, 000. The numerical experiments are performed on an an Intel Core
i7 Quad-Core 3.6 GHz processor with 32 GB of main memory.

Table 2 contains the results for the availability model. Time is in seconds and
Memory indicates the number of allocated real array elements. For the chosen
truncation accuracy of ε ∈ [10−9, 10−7], the norm of the final error vector is



272 P. Buchholz et al.

the same for the full and HTD representations. Due to the reduced memory
requirements of the vector, the compact representation results even in smaller
iteration times when d increases. It should be mentioned that the model is not
symmetric due to the priority repair strategy but, as it is common in availability
models, the probability distribution becomes unbalanced because repair rates
are higher than failure rates.

Table 2. Numerical results for availability models

Full Compact

d Time Memory ||e(maxit)||2 ε Time Memory ||e(maxit)||2
3 0 5,391 5 × 10−7 10−7 1 2,102 7 × 10−7

10−8 1 2,298 5 × 10−7

10−9 2 3,400 5 × 10−7

4 0 62,598 3 × 10−6 10−7 3 2,809 2 × 10−6

10−8 4 4,107 3 × 10−6

10−9 6 6,938 3 × 10−6

5 2 747,132 1 × 10−5 10−7 6 3,719 9 × 10−6

10−8 9 5,327 1 × 10−5

10−9 13 9,278 1 × 10−5

6 38 8,958,897 3 × 10−5 10−7 13 6,756 3 × 10−5

10−8 18 9,398 3 × 10−5

10−9 28 14,120 3 × 10−5

7 513 107,496,741 7 × 10−5 10−7 15 6,726 7 × 10−5

10−8 28 10,381 7 × 10−5

10−9 43 16,150 7 × 10−5

8 6,329 1,289,946,786 2 × 10−6 10−7 22 9,078 9 × 10−5

10−8 37 12,340 9 × 10−6

10−9 66 26,041 3 × 10−6

The situation is more ambiguous for the polling example whose results are
given in Table 3. For the larger configurations, we obtain savings in memory by
several orders of magnitude even with the smallest truncation accuracy of ε.
Time-wise the conventional approach is faster for small configurations, but it is
outperformed by the compact representation for larger state spaces (i.e. d = 6),
if ε is not too small. The largest configuration with d = 7 can only be analysed
with the compact vector representation.

In Fig. 3 the ranks of the different matrices forming the HTD are shown for a
truncation accuracy of ε = 10−7. It can be seen that the ranks remain moderate.
The matrices are fairly dense such that a sparse storage of the matrices for the
vector representation is not necessary which can be seen in Fig. 4.
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Table 3. Numerical results for polling models

Full Compact

d Time Memory ||e(maxit)||2 ε Time Memory ||e(maxit)||2
3 0 82,599 4 × 10−6 10−7 50 49,297 4 × 10−6

10−8 83 72,281 4 × 10−6

10−9 108 89,257 4 × 10−6

4 5 1,496,563 5 × 10−6 10−7 285 143,436 5 × 10−6

10−8 1,175 397,349 5 × 10−6

10−9 3,272 774,834 5 × 10−6

5 103 24,791,966 5 × 10−6 10−7 409 221,850 5 × 10−6

10−8 2,522 800,742 5 × 10−6

10−9 10,951 2,136,401 5 × 10−6

6 1,896 383,988,648 3 × 10−6 10−7 254 177,534 3 × 10−6

10−8 2,448 883,360 3 × 10−6

10−9 19,423 3,564,320 3 × 10−6

7 n/a 5,661,610,381 n/a 10−7 196 217,254 3 × 10−6

10−8 1,831 900,220 2 × 10−6

10−9 21,668 5,037,050 2 × 10−6
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Fig. 3. Ranks of basis and transfer matrices forming π(it), availability d = 8 (Color
figure online)
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Fig. 4. Densities of basis and transfer matrices forming π(it), availability d = 8 (Color
figure online)

5 Conclusion

We present in this paper a compact representation for the iteration vector of
large structured Markov models which has been adopted from numerical analy-
sis where the techniques have been developed in the recent years. It is shown that
this vector representation can be combined naturally with a hierarchical Kro-
necker representation of generator matrices of structured Markov models. The
basic step of iterative numerical algorithms to compute transient or steady-state
solutions can be conveniently combined with the compact vector representation.
Our first examples indicate that in contrast to previously tried compact repre-
sentations for the vector (e.g., [5,16]), the new approach is memory and also
relatively time efficient such that it bears the potential to increase the size of
solvable models on a given computer significantly.

There are several things to be done. In particular, more experiments are
necessary to confirm our results. The vector-matrix multiplications have to be
embedded in more advanced solution techniques like projection or multi-level
solution techniques. However, this can be easily done with the available software
environment.
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Abstract. Utilities responsible for Advanced Metering Infrastructure
(AMI) networks must be able to defend themselves from a variety of
potential attacks so they may achieve the goals of delivering power to
consumers and maintaining the integrity of their equipment and data.
Intrusion detection systems (IDSes) can play an important part in the
defense of such networks. Utilities should carefully consider the strengths
and weaknesses of different IDS deployment strategies to choose the
most cost-effective solution. Models of adversary behavior in the pres-
ence of different IDS deployments can help with making this decision
as we demonstrate through a case study that uses a model created in
the ADversary VIew Security Evaluation (ADVISE) formalism (which
calculates metrics used to compare different IDSes). We show how these
metrics give valuable insight into the selection of the appropriate IDS
architecture for an AMI network.

Keywords: Advanced Metering Infrastructure (AMI) · Smart grid ·
ADversary VIew Security Evaluation (ADVISE) · Security modeling ·
Intrusion Detection Systems (IDS)

1 Introduction

Many utility companies are creating Advanced Metering Infrastructure (AMI)
networks, which incorporate smart meters and other intelligent components into
the power grid. The added functionality allows utilities to monitor and con-
trol their smart grid with more precision than was previously possible. As an
example, a utility company can use an AMI infrastructure to remotely collect
more frequent meter readings, which allows them to respond more accurately to
fluctuations in power demand.

Unfortunately, AMI networks increase the attack surface of a power grid.
For example, an unscrupulous customer may compromise a single smart meter
c© Springer International Publishing Switzerland 2016
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so that it sends false data to under-report electricity consumption, resulting in
a lower bill. Distributed denial of service attacks, traffic injection attacks, and
Byzantine attacks are examples of new threats to these cyber-enhanced power
grids. As utility companies build and maintain AMI infrastructures they should
be aware of the possibility of these attacks, and work to create a cost-efficient
architecture that minimizes the expected damage.

One obvious way of limiting the potential damage of an attack is to detect
and respond to the attack before it can cause much harm. An intrusion detec-
tion system (IDS) can help a utility company detect an attack. There are several
different IDS architectures that can be deployed by a utility company as a defen-
sive precaution. Each architecture has a different cost and degree of effectiveness.
A utility company must decide whether its application warrants an IDS, and if
so, which would give the best protection for the best price.

One approach for informing this critical design decision is to build a sound,
state-based stochastic model of the system and the possible IDS architectures
that can be applied to it. Quantitative metrics can be calculated on the models
to determine which configuration provides the best cost/security balance.

Our approach is to study a multi-layered power grid example and the poten-
tial IDS implementations that can be applied to this grid. We used the ADversary
VIew Security Evaluation (ADVISE) [6] modeling formalism in the Möbius mod-
eling tool [10] for this work. We consider several different adversaries interested
in attacking such a system and calculate useful and relevant security metrics.
Using our approach, a utility company can make a more informed decision about
how to implement an IDS on its grid.

To make an informed decision regarding the selection and implementation of
various IDS approaches, it is necessary to know the probability that an adversary
would successfully attack a system, given its type of IDS architecture. Given a
particular adversary and IDS approach, it would be useful to know the estimated
probability of detecting the adversary, the estimated damage to the utility due
to activity of the adversary, and the type of attack chosen by the adversary. We
create a model of the adversary behavior that is detailed enough to give insight
into these metrics. We do not claim that the quantitative metrics generated
by the model are accurate in any absolute sense. However, we do believe that
they may be very useful when comparing the relative strengths and weaknesses
of modeled systems. A model that gives quantitative security metrics will give
a system designer another approach to supplement the advice and intuition of
security experts.

The remainder of this paper is organized as follows. Section 2 provides a con-
cise overview of AMI networks, IDS systems on AMI networks, and the ADVISE
formalism. Section 3 offers a description of system we modeled. Section 4 offers a
detailed explanation of the ADVISE model that was constructed, including the
adversary profiles that were considered and the metrics that were defined on the
system. Section 5 shows our quantitative results and our interpretation of them.
Section 6 discusses previous work that seeks to examine power grid security using
a variety of methods. Finally, Sect. 7 concludes the paper.
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2 Background

2.1 AMI Overview

An AMI gives a utility company the ability to remotely communicate with the
electric meters in its grid. There are many possible network hierarchies. For
example, some smart meters connect to the utility company through the con-
sumer’s Internet connection. However, our example system uses a hierarchy of
communication gateways that rely on the utility’s own network infrastructure,
as depicted in Fig. 1.

Fig. 1. Example system diagram.

At the bottom level of our hierarchy, a smart meter forms the core of a home
area network (HAN). The HAN may include other components, such as smart
appliances designed to draw less power during times of high demand and more
power during times of low demand. If there are multiple devices in the HAN, the
smart meter itself may act as a network gateway for the other devices. Multiple
HANs, and data collection unit (DCU) gateways serving them, are connected
together to form a neighborhood area network (NAN). The DCU gateways in
NANs are connected to the utility via a wide area network (WAN).

Many different communication technologies can be used in an AMI. The
WAN usually utilizes higher bandwidth, long-range communication technologies
such as long-range wireless, satellite, or power line communication. The NANs
don’t have the same bandwidth or range requirements, and can use shorter-
range wireless. We assume in our case study that the NAN uses a wireless mesh
network.

2.2 IDS Overview

Intrusion detection systems are intended to monitor a system for suspicious
activity, to raise an alert if a security event occurs, and to log information to
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determine how an attack proceeded through the system. A number of different
IDS deployment strategies are possible in an AMI. In this paper, we consider
centralized IDSes, dedicated distributed IDSes, and embedded distributed IDSes.

A centralized IDS deployment scheme would place an IDS at the top of the
network hierarchy, in the utility company’s network. The IDS would monitor all
traffic flowing into and out of the utility company’s command and control center
LAN network, and raise an alert if it detected anything suspicious. However, it
would be completely unaware of inter-meter traffic, since that would not pass
through the top level of the hierarchy. Alternatively, a utility could deploy a
distributed set of IDSes to monitor inter-meter communication. This approach
would still require a central node to coordinate the monitoring, so it would have
all of the benefits of a centralized IDS approach, with some additional installation
and maintenance costs associated with the additional IDSes.

We studied two main varieties of distributed IDSes: dedicated and embedded.
A dedicated device IDS deployment would have the same components as a cen-
tralized deployment, and in addition it would have a number of geographically
distributed dedicated IDS devices in wireless communication with the smart
meters. These IDSes would monitor all AMI traffic within wireless range. An
embedded IDS deployment incorporates intrusion detection directly into the
smart meter. Like the dedicated IDS architecture, the embedded IDSes commu-
nicate and cooperate with the central IDS device.

There are a number of trade-offs to consider when evaluating these IDS
designs. A centralized IDS would potentially miss large families of attacks
because it is unaware of inter-meter communication. It is, however, the cheapest
IDS option. An embedded or dedicated IDS scheme would be able to observe
inter-meter communication, possibly allowing it to detect a larger set of attacks
than a centralized scheme, but would cost more. A dedicated architecture would
cost more because many additional devices would have to be purchased and
maintained, and separate permits and location sites would have to be acquired
to install these devices. However, the device would be able to monitor inter-meter
communication in the NAN. One dedicated device could serve multiple smart
meters. An embedded system would not require separate building sites or per-
mits, but every single meter would cost slightly more because of the added IDS
capability. Given the large number of meters involved, even a small increase in
price for an individual meter would potentially be very costly for a utility com-
pany. In addition to monitoring inter-meter communication, an embedded IDS
architecture would be able to detect attacks on the meter itself. This means the
embedded IDS option provides the greatest coverage against possible attacks.

Clearly, a utility company should seek the most cost-effective solution. The
choice can be made and justified with metrics derived from the analysis of math-
ematical models, such as the one we developed using the ADVISE modeling
formalism.
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2.3 ADVISE Overview

The ADversary VIew Security Evaluation (ADVISE) method [6] is used to cal-
culate quantitative security metrics via executable models of adversary behavior
in a system [5]. At a high level, a modeler creates an Attack Execution Graph
(AEG), which is similar to a standard attack tree, but incorporates additional
details about each attack’s properties, such as its cost, time to completion, and
probability of success. The AEG also contains nodes that track the state of the
model, such as the prerequisites and goals held by the adversary at a particular
discrete point in time. Different adversaries may exhibit very different behav-
iors when attacking the same system, since their initial foothold in the system,
knowledge, skills, and goals of interest may differ dramatically. An adversary’s
preference for avoiding cost, avoiding detection, and earning reward also plays a
pivotal role in the approach taken when attacking a system. A modeler is given
the ability to create different adversary profiles before executing the model in
ADVISE to reflect this reality.

An AEG is defined by the tuple

< A,R,K, S,G,C >

where A is the set of attack steps, R is the set of access domains available to
the adversary, K is the set of information that can be known by the adversary,
S is the set of skills possessed by the adversary, and G is the set of goals that
the adversary attempts to achieve. The relation C defines the set of directed
connecting arcs from e ∈ R ∪ K ∪ S ∪ G to a ∈ A, where e is a prerequisite
element needed in order to attempt a. This relation also defines the set of directed
connecting arcs from a ∈ A to e ∈ R∪K ∪S ∪G, where e is an affected element
that may be changed by the performance of a. The elements R, K, S, and G are
state variables that hold an integer value that usually represents whether the
element represented by the state variable has been obtained (1 or 0).

An attack step is defined by the tuple

< B,T,C,O >

where B is a Boolean precondition that indicates whether or not the attack step
is currently enabled, T is the timing distribution that is sampled to determine
the time it takes to complete the attack step, C is the cost to the adversary for
attempting the attack, and O is the set of outcomes of the attack (such as success
or failure). Each outcome contains a Pr, D, and E, which are the probability
the outcome will be selected from an attack step’s O, the probability of being
detected for that outcome, and the effect of that outcome on the state of the
model, respectively. An adversary uses the solution of a Competitive Markov
Decision Process [1] as described in [6] to select the best attack step given the
adversary’s characteristics, limitations and preferences.

System metrics are then defined using rate- and event-based performance
variables [8]. Reliability of a device, preferred paths of attack for an adversary,
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and expected costs for the adversary and defender are all examples of possi-
ble metrics. Discrete event simulation is used to generate a statistically sound
estimate of the defined metrics.

3 Power Grid Description

In this case study, we consider a hypothetical utility company with an urban
deployment of an AMI network, as shown in Fig. 1 and described in Sect. 2.1.
We have based our system on the system described in [2], following it in detail
whenever possible. In this network, zero or more smart appliances connect to
a smart meter at each home and together form a HAN. Multiple HANs are
connected to one another and one or more gateways via a wireless mesh network
to form a NAN. Multiple NANs are connected to one another and to the utility
command and control center network via a WAN.

The utility wishes to supply power to consumers, protect their equipment,
ensure the integrity of communication in the AMI network, and ensure the con-
fidentiality of communication in the AMI network.

The utility company in this scenario is primarily concerned about attacks
from three classes of adversaries: unscrupulous customers who wish to under-
report their electricity consumption to unfairly lower their bill, disgruntled
insider employees who wish to cause as much monetary damage as possible in
retribution for a perceived wrong, and sophisticated, well-funded terrorist orga-
nizations or nation-states who wish to interrupt the delivery of power and cause
as much damage as possible. The utility company estimates that over a 20-year
period, there will be 1,000 attempts to under-report electricity consumption, a
0.1 % chance that a disgruntled employee will attempt a massively damaging
attack, and a 0.01 % chance of being attacked by a terrorist organization. An
adversary may choose from a variety of attacks to achieve a goal. We utilized
the literature search conducted in [3] to compile a list of attacks for inclusion in
our model.

The utility company wishes to compare the cost-effectiveness of various pro-
posed IDS architectures. In particular it wishes to compare the centralized IDS
solution with the two distributed IDS solutions: embedded and dedicated. The
utility can easily obtain the estimated installation and maintenance costs of an
IDS from vendors. However, estimating the expected benefit of implementing
the IDS is much more difficult. We attempt to make such an estimate with an
ADVISE model.

4 ADVISE Model

We used the ADVISE formalism as implemented in Möbius to construct an
Attack Execution Graph to gain insight into the adversary behavior. We created
a model that was detailed enough to calculate the quantitative security metrics
of interest, while minimizing the number of assumptions that a more detailed
model would have forced us to make. We were primarily interested in three
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Fig. 2. Attack Execution Graph of ADVISE model.

key metrics: the estimated probability of detecting an adversary, the estimated
damage to the utility company due to adversary behavior, and the attack used to
damage the utility company. To calculate these metrics, we developed a model of
the attacks against the system and a model of the adversaries that could execute
the attacks.

4.1 Attack Execution Graph Model

The Attack Execution Graph, which is shown in Fig. 2, contains three main
adversary goals; three auxiliary goals; seventeen attack steps that an adver-
sary may attempt when trying to reach a goal; a number of supporting access,
knowledge, and skill state variables that may help an adversary satisfy the pre-
conditions for attempting a particular attack; and arcs that connect the attack
steps to particular accesses, knowledge, skills, and goals and signify the relation-
ships between them. The access, skill, knowledge, and goal state variables in our
model hold a value of zero if they are not held by the adversary, and a positive
integer otherwise.

The set of goals desired by the adversary drives his or her behavior and are
therefore one of the most important components of the model. Cheating the
company by under-reporting electricity consumption, interrupting the delivery
of electric power, and damaging the utility’s equipment are the three most impor-
tant goals for the adversary in this study. Those goals are represented in Fig. 2
by Goals R, S, and T, respectively. In addition, the adversary wishes to remain
undetected; this goal is represented by Goal A, the Undetected goal. Goal H is the
supporting goal of acquiring compromised smart meters. This is an important
prerequisite for several attack steps, but is also a goal in its own right for some
adversaries. Finally, Goal U represents the goal of achieving at least one of the
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three primary goals described previously. Usually goal state variables initially
hold a value of zero; and the value is incremented on the successful conclusion of
an attack. The notable exception is the Undetected goal, which initially holds a
value of 1 and is decremented to 0 if an attack fails and the adversary is detected.

We assume that the adversary may not continue to attack after being
detected. For this reason, every attack step in the graph is connected by an
arc to the Undetected goal, which is a prerequisite for attempting every attack
step. If the Undetected goal holds a value of zero, the adversary may not attempt
any attack, with the exception of the unique DoNothing attack step [6]. Attack
steps can be attempted by an adversary either to achieve a goal directly or to
change the model state to make it easier to achieve a goal later. An attack step
must have at least one outcome. In this particular ADVISE model every attack
step outcome results either in the certain detection of an adversary, or the adver-
sary remaining undetected. In other words, if po is the probability of detection
associated with an outcome o, then po = 0 or po = 1, but po /∈ (0, 1).

Attack Step 1 in the AEG diagram is an Install Long Range Jammer Attack.
This attack step requires the adversary to be undetected, to be in reasonably
close proximity to the smart meters, and to have skill in installing wireless jam-
mers. It would result in the adversary’s having access to a long-range wireless
jammer that incapacitates the wireless mesh network in the NAN. The adversary
must hold several prerequisites to attempt this attack, including the NodeInstal-
lationSkill, represented by Skill B, the PhysicalSmartMeterAccess, represented
by Access C, and the Undetected goal. At the successful conclusion of the attack,
the adversary gains the LongRangeJammerAccess, Access L, whose value is incre-
mented from 0 to 1. Attack Step 2, Install Short Range Jammer, is very similar,
but its purpose is to gain access to a short-range wireless jammer that blocks
communication in a HAN rather than a NAN, so Attack 2 is connected to Short-
RangeJammerAccess, Access M, rather than Attack 1’s LongRangeJammerAc-
cess. Attack 2’s prerequisites are identical to Attack 1’s prerequisites.

Any one of Attack Steps 3, 4, 5, and 6 may be attempted by an adversary
in an effort to obtain the NumCompromisedSmartMeters goal (Goal H), which
would give the adversary control of smart meters in the AMI network. Attack
Step 3, InstallMaliciousSmartMeter, aims to accomplish this goal by installing a
new meter (controlled by the adversary) that tricks the AMI network into accept-
ing it as one of its own smart meters. Attack Step 3 requires physical access to
the AMI network and skill in installation as prerequisites, and so is connected
to the PhysicalAccess access and the SmartMeterInstallationSkill skill, shown as
Access C and Skill D, respectively. Attack Step 4, PhysicalSmartMeterExploit,
represents an adversary attempt to physically tamper with the smart meter to
gain control of it. An adversary must have physical access to the smart meters
and skill in this exploit to attempt the attack step, so Attack Step 4 is connected
to Access C and Skill E, which are the PhysicalAccess access and the Physi-
calSmartMeterExploitSkill skill, respectively. Attack Step 5, MassMeterCompro-
mise, is very similar to Attack Step 4, with the major difference being that 50
smart meters are compromised if this attack step is achieved instead of just one.
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Finally, Attack Step 6 also compromises 50 smart meters, but it requires the
adversary to have the appropriate skill (RemoteSmartMeterExploitSkill, shown
as Skill F) and does not require the adversary to have physical access.

Attack Steps 7, 9, and 10 are related because their sequence leads to Access O,
the RoutingCapability access, which is a prerequisite for Attack Steps 14, 15, and
16. Attack Step 7, CollectCryptoKeys, represents the adversary’s attempt to col-
lect cryptographic keys from the compromised smart meters. The adversary must
have access to compromised smart meters to attempt the attack, and if the attack
step is successful, it leads to the acquisition of knowledge of the cryptographic
keys, which is represented by Knowledge Item J. The AnalyzeTraffic attack step
(Attack Step 9) requires the adversary to hold Knowledge Item J and Skill I (I
being the TrafficAnalysis skill) in order to attempt the attack step. If successful,
the adversary gains sufficient knowledge of the traffic in the network to launch
sophisticated routing and Byzantine attacks. This knowledge is represented by
the knowledge item TrafficKnowledge, which is Knowledge Item K. Finally, the
adversary may attempt Attack Step 10, GainRoutingCapability, if he or she has
knowledge of the keys and traffic and at least one compromised smart meter. If
the prerequisites have been satisfied, the adversary will successfully execute the
attack step and gain the RoutingCapability access.

Attack Step 8, CreateBotnet, gives the adversary the BotnetAccess access,
depicted as Access Q, which is a prerequisite for launching resource exhaustion
attacks such as DDoS attacks. To attempt the attack step, the adversary must
hold Skill G, the BotnetShepherd skill, as well as at least 50 smart meters,
represented by a value greater than or equal to 50 in Goal H.

There are seven attack steps that directly achieve at least one of the three most
significantgoals (Attacks11–17).First,AttackStep11, theMajorJammingAttack,
requires the adversary to have access to a long range jammer; it results in a signifi-
cant interruption of service in the NAN, and also damages equipment, since impor-
tant commands for coordinating the network are not delivered. Attack Step 12,
which is the Minor Jamming Attack, requires access to a short-range jammer: it
does not result in loss of power or damage to equipment but may be utilized to help
an unscrupulous customer give a false power reading. Attack Step 13, PhysicalAt-
tack, represents a major physical, non-cyber attack on the equipment of the utility
company, e.g. shooting one or more transformers. This attack requires only physi-
cal access to the equipment, and causes a significant blackout and major damage to
the equipment. It has a relatively high probability of detection, but requires only
minimal prerequisites to attempt. Attack Steps 14 and 15, MinorRoutingAttack
and MajorRoutingAttack, respectively, are similar in that they have the same pre-
requisites,RoutingAttack skill andRoutingCapability access (Skill N andAccessO,
respectively), but have different intended goals. The MinorRoutingAttack under-
reports the electricity consumption of one customer. The MajorRoutingAttack,
in contrast, leads to interrupted service and damage to the AMI network equip-
ment. Attack Step 16, ByzantineAttack, requires that the adversary hold the Rout-
ingCapability access and the ByzantineAttack skill (Access O and Skill P, respec-
tively), anda successful outcome for the adversary leads todamagedequipmentand
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interrupted service. Finally, Attack Step 17, the ResourceExhaustion attack,
requires BotnetAccess and results in damaged equipment and interrupted service.

In addition, there is one implied attack step not shown in the diagram, the
DoNothing attack step, which an adversary may attempt at any time and has
no effect on the model state, costs nothing, and will never lead to the detection
of the adversary. This attack step may be attempted by an adversary when the
payoff for attempting any other attack step does not justify the risk of detection
and the cost of attempting the attack step.

Each attack step contains detailed information about the probability of suc-
cess, probability of detection, cost to attempt, effects on the system, duration,
and other information. Space considerations prevent us from explaining the
details of every attack step in this model, but we discuss one attack step as an
example. The CreateBotnet attack, Attack Step 8 in the diagram, is assumed to
cost the adversary $1,000 to attempt, and to take 8 h to complete. If the attack is
to be attempted, the Undetected goal state variable and the BotnetShepherdSkill
skill state variable must both contain a positive value, and the NumCompro-
misedSmartMeters goal state variable must hold a value greater than or equal
to 50. If these conditions are not met, the attack step cannot be attempted.
If the attack step is attempted, one of three outcomes, FailureUndetected,
FailureDetected, or Success, is randomly chosen according to their probabilities
of occurrence. The FailureUndetected outcome represents the event in which the
adversary attempts the attack and fails, but remains undetected. It has no effect
on the state of the model, and has a probability of 0.05. The FailureDetected
outcome represents the event in which the adversary attempts the attack, fails,
and is detected. If this outcome is randomly selected by the simulation, it mod-
ifies the model state by changing the value of the Undetected goal from 1 to 0,
disabling any future attack. This outcome is also assumed to have a probability
of 0.05. Finally, the Success outcome represents the successful completion of
the attack. It has the effect of giving the adversary access to a botnet of smart
meters, which is represented by changing the value of the BotnetAccess, State
Variable Q, from 0 to 1. This outcome has a 0.9 probability of being selected
if the attack step is attempted. All the other attack steps in the model have a
similar level of detail.

The probability that an attack step will lead to a successful outcome for an
adversary, as well as the effect an outcome will have on the system, may be
adjusted based on the IDS approach being modeled.

4.2 Attacker Model

In addition to a model of attacks against the system, we need a model of the adver-
sary, since different adversaries have different goals, and different initial access,
skills, and knowledge related to the system. Even adversaries with identical goals
mayweigh these goals differently.Thesedifferences can lead toverydifferentbehav-
iors when the attackers are confronted by the same system. Table 1 shows the state
variables initially held by each adversary, and corresponds to an initial configu-
ration of state variables in the AEG (Fig. 1). As can be seen from the table, the
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Table 1. Initial state values and parameters for adversaries.

Initial state Customer Insider Terrorist

BotnetAccess X

RoutingCapability X

PhysicalAccess X X X

CryptoKeys X

TrafficKnowledge X

RoutingAttackSkill X X X

NodeInstallationSkill X X X

SmartMeterInstallationSkill X X

TrafficAnalysisSkill X X X

BotnetShepherdSkill X X

ByzantineAttackSkill X X X

PhysicalSmartMeterExploit X X X

NumCompromisedMeters 51

Undetected X X X

customer adversary is assumed to have access to a physical smart meter (his or her
own) and some skill in various attacks, perhaps obtained via compromises pub-
lished on the Internet.The customerwants to achieve the goal of cheating the power
company by under-reporting electricity consumption. The insider adversary is in
some ways the most powerful adversary, because the insider starts with the most
access, knowledge, and skills of anyadversary considered, and inaddition is the only
adversary assumed to start with a number of compromised smart meters. However,
this adversary is constrained by a relatively high desire to avoid detection, which
is expressed in the model by placing a high payoff on maintaining the Undetected
goal. The insider wishes to cause as much monetary damage as possible to the util-
ity company without being detected. Finally, the terrorist adversary has fewer ini-
tial forms of access, knowledge, and skill than the insider, but wants to achieve
the same goal of causing the utility company as much monetary damage as possi-
ble by interrupting the delivery of power and damaging equipment. The terrorist is
assumed to be less concerned than the insider with the possibility of being detected
and apprehended (expressed in the model by a relatively low payoff on maintain-
ing the Undetected goal), which means the terrorist is much more likely to try risky
attacks.

4.3 Metrics

We use the ADVISE model described above to calculate three metrics. All three
are determined through the creation of performance variables [8] calculated by
simulation in Möbius. We took the cross-product of the adversaries {Insider, Cus-
tomer,Terrorist} and the IDSapproaches {None,Central,Dedicated, Embedded},



290 M. Rausch et al.

and ran a simulation for every element of this set. We estimated the mean of every
performance variable with a 0.95 confidence level and a 0.1 confidence interval.

The first metric is qualitative, it is the attack that the adversary attempts
that leads to one of the three major goals (stealing electricity, disrupting the
delivery of electricity, and damaging the equipment). To find this metric, we
created a set of interval-of-time impulse-reward variables, one for each attack step
that achieves one of the three main goals. If any one of the outcomes of an attack
step is selected during the course of the simulation the performance variable
associated with that attack step accumulates a reward. After the simulation, we
determine which attack step the adversary chose by observing which element of
this set of performance variables accumulated a reward.

The second metric, the probability that the adversary will remain undetected
through the end of the attack, was constructed as an instant-of-time rate-reward
variable that returned the value of the Undetected goal variable at the end of
the simulation. At the beginning of the simulation, the Undetected goal variable
would hold a value of one. Most attack steps in the AEG had an outcome that
represented the event in which an adversary was detected if the attack step
was executed. If that outcome occurs at some point during the course of the
simulation, one of its effects is to set the value of the Undetected goal variable to
zero. If no outcome representing the detection of the adversary is chosen during
the course of the simulation, the value of the Undetected goal variable remains
1. In that way we determine whether the adversary was detected during one run
of the simulation. Multiple runs of the simulation show the probability that the
adversary will remain undetected through the duration of the attack.

The final and perhaps most important metric, the expected monetary damage
to the system in the event of an attack by an adversary, was also calculated by an
instant-of-time rate-reward variable. The integer values held in the StealElectric-
ity, InterruptService, and DamageEquipment goal state variables represent units
of damage. We let one unit of StealElectricity equal $600 of damage, one unit
of InterruptService equal $10,000 of damage, and one unit of DamageEquipment
equal $100,000 of damage. Initially these goal state variables hold a value of 0,
but the value can be increased at the successful conclusion of certain attacks.

5 Results and Discussion

The attack each adversary would attempt when faced with each possible IDS
and the total monetary damage in dollars the system would sustain as result of
each attack, according to our simulations, are given in Table 2. The probability
that the adversary will manage to evade detection to the end of the attack is
given in Fig. 3.

When we examine the results, we see that an insider adversary will attempt
a major routing attack if there is no IDS or if there is a centralized IDS, but will
not attempt any attack at all if the dedicated or embedded IDS is present in the
system. When an insider attempts to attack the system and there is no IDS, the
expected damage to the system is about one million dollars, but if a centralized
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Fig. 3. Probability of remaining undetected.

IDS is present, the expected damage is halved, since the centralized IDS should
be able to detect and limit the effectiveness of the routing attack. Since the
insider will attempt no damaging attack when the dedicated or embedded IDS
approach is used, the monetary damage to the system in this case is 0. This
adversary is strongly incentivized to avoid detection, which can be seen in Fig. 3.

If there is no IDS present, the customer will attempt to jam the wireless com-
munication between the smart meter and the rest of the network to under-report
electricity consumption, causing about $600 of damage, and will successfully com-
plete the attack without being detected in the majority of cases. However, if any
of the IDS options are enabled, the customer will not attempt any attack, because
the probability of obtaining the payoff is too small compared to the probability of
being detected and having to pay a fine or penalty. Since no attack is attempted in
these cases, the probability of remaining undetected is 1.

The terrorist is not highly incentivized to avoid detection and does not start
out with many types of access, knowledge, or skills, so during our simulations
the PhysicalAttack (which requires minimal prerequisites and causes massive
damage with a high risk of detection) was chosen no matter what IDS archi-
tecture confronted the terrorist. When an adversary attempts this attack, the
expected monetary damage to the system is about $5,000,000. However, there
is a greater than 50 % chance that the attack will end unsuccessfully with the
detection of the adversary, which we see in Fig. 3.

A utility company can use these metrics to compare intrusion detection
approaches. The expected monetary loss sustained by a utility company, M ,
for an IDS configuration, i ∈ IDS, can be calculated with Eq. 1

Mi =
∑
a

Na ∗ Da (1)
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Table 2. Simulation results.

IDS Adversary Attack Monetary damage Error

None Insider Major routing $1.07M +/− $7.29K

Customer Minor jamming $594 +/− $0.583

Terrorist Physical $4.98M +/- $50K

Centralized Insider Major routing 435K +/− $2.97K

Customer Do nothing $0 +/− $0

Terrorist Physical $4.98M +/− $50K

Dedicated Insider Do nothing $0 +/− $0

Customer Do nothing $0 +/− $0

Terrorist Physical $4.98M +/− $50K

Embedded Insider Do nothing $0 +/− $0

Customer Do nothing $0 +/− $0

Terrorist Physical $5.02M +/− $52.1K

where N is the expected number of attack attempts and Da is the expected
monetary damage to the system, D, per adversary, a ∈ Adversaries.

Consider a hypothetical utility that estimates 1,000 attempts by unscrupu-
lous customers, 0.001 attempts by an insider, and 0.0001 attempts by a terrorist
over a 20-year period.

Using Eq. 1 and the numbers in Table 2, we calculate the results shown in
Table 3. The utility can use Table 3, along with information about installation
and maintenance costs provided by vendors, to help determine the most cost-
effective architecture for its system.

Table 3. Estimated monetary loss by IDS approach over a 20-year period.

IDS Monetary damage

None $595,568

Centralized $933

Dedicated $498

Embedded $502

Space limitations force us to examine a small subset of the possible system
configurations, adversaries, and attacks, but we find that the ADVISE formalism
is flexible and scales well. More detail could be added by a utility company as
needed. In addition, we chose to use synthetic data in our analysis as input
parameters for the model. Utility companies would not have allowed us to publish
unsanitized data, and it is uncertain whether any hypothetical sanitized data
would have been more accurate than our educated guesses. This is not a weakness
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of our approach, since a utility company would already have the data needed
for the input parameters for its own ADVISE model. Our synthetic data were
based on the existing literature regarding security of AMI, especially [2,3].

6 Related Work

The academic community, recognizing the importance of the topic, has done
prior work comparing different security approaches in AMI. The analysis in [4]
uses a cost-benefit study to determine whether the added cost of RFID technol-
ogy is justified given its ability to prevent electricity theft. That paper considers
only energy theft, while our analysis considers attacks on the availability and
integrity of the system in addition to energy theft. In [9] the authors propose
an IDS for AMI and compare its security and performance with other IDSes for
AMI. However, in contrast to our analysis, they explicitly do not include attacks
on the meter’s availability. The techniques proposed in [7] seek to compare and
evaluate the security of different AMI IDSes through penetration testing and
the use of archetypal and concrete attack trees. These attack trees could help
a modeler create an Attack Execution Graph for an ADVISE model. In con-
trast to our approach, [7] does not explicitly model the attacker’s attributes or
motivations in detail. The authors of [2] provide a framework for evaluating the
cost-effectiveness of different IDS architectures in an AMI network. However,
their approach does not explicitly account for the differences in the behaviors of
adversaries when attacking the system. By incorporating the adversary behavior
into the model, we hope to achieve more realistic results.

7 Conclusion

In this work we showed how to use the ADVISE state-based stochastic modeling
approach to calculate security metrics that are relevant in comparing different
IDS architectures in an AMI network.

Unfortunately, it is often not possible to estimate many characteristics of
attack steps precisely with a high degree of confidence, including the probabilities
of success and the magnitude of damage given a successful attack, as well as the
exact amount of protection provided by an IDS against an attack. In addition,
adversary characteristics and motivations cannot usually be definitively known.
Therefore, the quantitative metrics produced by the ADVISE model should not
be thought of as producing exact, accurate predictions of the future. We believe,
however, that these metrics can contribute to a development of a relative ranking
of IDS approaches in an AMI network and provide insight into general trends of
adversary behavior.

We argue that the scientific approach ADVISE offers for security evaluation is
a useful complement to a common method of estimating the relative effectiveness
of different security approaches: consultation of one or more security experts, who
rely on intuition and experience. In contrast, the metrics calculated by ADVISE
are easily auditable by other parties and assumptions are explicitly stated, which
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allows multiple security experts with different backgrounds to use the ADVISE
formalism as a modeling language to collaboratively analyze different system
designs.
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Abstract. In discrete event systems event times are often correlated
among events of one event stream and also between different event
streams. If this correlation is neglected, then resulting simulation mod-
els do not describe the real behavior in a sufficiently accurate way. In
most input modeling approaches, no correlation or at most the autocor-
relation of one event stream is considered, correlation between different
event streams is usually neglected. In this paper we present an approach
to combine multi-dimensional time series and acyclic phase type distrib-
utions as a general model for event streams in discrete event simulation
models. The paper presents the basic model and methods to determine
its parameters from measured traces.

Keywords: Input modeling · Stochastic simulation · Phase type
distributions · Time series · Cross-correlation

1 Introduction

The adequate modeling of uncertainty is a key aspect in building realistic simu-
lation models of real systems. The term input modeling subsumes techniques to
build a mathematical model for the occurrence of events in a discrete event model
[1]. In simulation historically events are characterized by distributions that are
selected from a set of standard distributions like exponential, log-normal, Weibull
to mention only a few examples [19]. In the recent decade also phase type dis-
tributions (PHDs), which originally have been applied in models that are solved
analytically or numerically, became more popular in simulation [6,25]. PHDs
allow a detailed approximation of measured densities but the parameter estima-
tion is complex although nowadays algorithms are available that allow a fairly
efficient and sufficiently exact determination of distribution parameters.

The use of distributions to model times between the occurrence of events,
i.e., the inter-event times, is well established but implicitly assumes identically
and independently distributed times. However, in practice, inter-event times are
often correlated and the negligence of correlation results in unrealistic models
and wrong results [9]. Correlations occur in various application areas like job-
processing in manufacturing systems, traffic processes in computer networks or
failure processes in technical systems. For modeling such dependencies time series
c© Springer International Publishing Switzerland 2016
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[4] and Markovian arrival processes (MAPs) [23] are used. Classical time series
are based on the normal distribution which is often not adequate to describe
inter-event times in simulations. MAPs are a natural extension of PHDs but
the adequate fitting of parameters to capture correlations is a complex and only
partially solved problem such that MAPs often fail if larger correlations over
various lags are present. In [7] the autoregressive to anything (ARTA) approach
has been proposed which allows one to combine time series with other distribu-
tions where the distribution function can be easily inverted. This approach does
not cover PHDs directly and has been extended in [17] to include a sufficiently
general subclass of PHDs for modeling the distribution which is then combined
with classical time series models like moving average (MA), autoregressive (AR)
and autoregressive moving average (ARMA). The corresponding model is suffi-
ciently general to model correlated inter-event times and parameter fitting can
be performed efficiently.

In several applications not only the inter-event times of one event type
are correlated, also inter-event times of different events show so called cross-
correlation. Examples for such cross-correlations can be found in manufactur-
ing systems where different service times are correlated [27], in internet traffic
where traffic streams from different sources are correlated [26] or in grids where
failure times are correlated in time and space [14]. To model such phenomena
vector autoregressive to anything processes (VARTA) have been proposed in
[2]. VARTA processes are based on marginal distributions of the Johnson type
which allow one to fit the parameters according to the first four moments [19].
Distributions of the Johnson type are not as flexible as PHDs are.

In this paper we extend the approach from [17] to vector autoregressive
processes and include also discrete time PHDs. The paper is structured as fol-
lows. In the next section we introduce the basic concepts, namely multivariate
traces, PHDs, ARMA processes and the VARTA approach. Afterwards, in Sect. 3
vector correlated acyclic phase type processes are defined and the corresponding
algorithms for parameter fitting are introduced. Section 4 contains some experi-
mental results. The paper ends with the conclusions.

2 Background and Definitions

The notation we use in this paper is based on the common notation in the
literature on time series [4] which is also adopted in the papers introducing
the ARTA and VARTA approach [2]. Vectors and matrices are denoted by bold
letters and elements are accessed by putting indices in brackets. If ε is a column
vector, then ε′ is the transposed row vector, 1 is the column vector where all
elements are 1.

2.1 Multivariate Traces

Since we are interested in modeling several interrelated measurements simulta-
neously, we assume that these measurements have been recorded in form of a
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multivariate trace. A k-variate trace T (k) describes k sequences of measurements
(i.e. inter-event times, packet sizes etc.). We assume that the elements at position
j from all sequences are associated, i.e. they are for example the inter-arrival and
service time of a customer. This implies that all sequences are of equal length r.
We denote the j-th entry of the i-th sequence by t

(i)
j . Statistical properties can

be computed for a single sequence and the complete trace, e.g. the j-th moment
of sequence i and the variance are estimated from

μ̂
(i)
j =

1
r

r∑
m=1

(t(i)m )j and σ̂2
(i) =

1
r − 1

r∑
m=1

(t(i)m − μ̂
(i)
1 )2,

respectively. If we consider the complete trace the dependencies between the ele-
ments are of special interest. For a multivariate trace we can compute the auto-
correlations between elements of a single sequence but also correlations between
elements of different sequences resulting in correlation matrices ρ̂h that contain
at position (i1, i2) the cross-correlation between elements of sequences i1 and i2
that are lag h apart. Element ρ̂h(i1, i2) is estimated as

ρ̂h(i1, i2) =
1

(r − h − 1)σ̂(i1)σ̂(i2)

r−h∑
m=1

(t(i1)m − μ̂
(i1)
1 )(t(i2)m+h − μ̂

(i2)
1 ). (1)

In input modeling one is interested in fitting these traces, i.e. in estimating the
parameters of a distribution or a process such that it resembles the characteristics
of the trace. In the following we present some distributions and processes used
for input modeling that are relevant for our work.

2.2 Phase-Type Distributions

PHDs describe independent and identically distributed random variables as
absorption times of a finite Markov chain [23]. PHDs can be defined in con-
tinuous (CPHDs) and discrete (DPHDs) time. Most of the existing literature
covers CPHDs which will be introduced first. A CPHD of order n consists of n
transient and one absorbing state and is defined by an n × n matrix D0 and
an initial distribution vector π. Matrix D0 is the subgenerator of an absorbing
continuous time Markov chain that contains the transition rates between tran-
sient states. It holds that π1 = 1, D0(i, i) < 0,D0(i, j) ≥ 0, i �= j and D01 ≤ 0.
Events are generated whenever the absorbing state is reached and the process is
restarted immediately afterwards as defined by π. Properties of the distribution
can be defined in terms of this matrix and vector, e.g. for the moments and
cumulative distribution function we have

μi = E(Xi) = i!πM i1 and F (t) = 1 − πexp(D0t)1, (2)

respectively, where M = −(D0)−1.
DPHDs [3] are defined in a similar way. They are described by an n × n

matrix T that contains the transition probabilities between transient states and
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an initial distribution vector τ where T (i, j) ≥ 0, T1 ≤ 1 and for τ the same
constraints as for π apply. Then, factorial moments and distribution function
are given by

mi = i!τ (I − T )−iT i−11 and F (t) = 1 − τT t1, t ≥ 0. (3)

In general, it is difficult to obtain the moments μi from the factorial moments
mi. However, for the following ideas we only need mean and variance, which are
given by

μ1 = m1 and σ2 = 2τ (I − T )−2T1 + τ (I − T −1)1 − (τ (I − T )−11)2. (4)

Depending on the structure of matrix D0 (or T ) and vector π (or τ ) several
subclasses of PHDs have been defined in the past. If the states can be ordered
such that the matrix becomes upper triangular we have an acyclic CPHD or
DPHD. Simpler and well known subclasses include the Exponential, Erlang and
Hyper-Erlang distributions in the continuous case and the geometric and nega-
tive binomial distributions in the discrete case.

There exists a wide theory on fitting CPHDs to the empirical distribution
of a trace. Many approaches are Expectation Maximization (EM) algorithms,
which try to maximize the likelihood and work on the complete trace. Since
EM algorithms are very slow in the general case, they have been tailored for
fitting special subclasses of CPHDs like Hyper-Exponential distributions in [16]
or Hyper-Erlang distributions in [28]. Faster approaches usually derive some
characteristics like moments from the trace and fit the PHD according to these
characteristics. An example for fitting PHDs according to empirical moments
can be found in [5]. For DPHDs [3] describes a parameter estimation algorithm.
A more complete list on fitting approaches can be found in [6].

2.3 (Vector) Autoregressive Moving Average Processes

Autoregressive Moving Average Processes (ARMA(p, q)) are well established in
time series modeling (see [4]) and are defined as

Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + β1εt−1 + β2εt−2 + . . . + βqεt−q + εt (5)

where the αi are autoregressive coefficients, the βi are moving average coefficients
and the εt are called innovations that have normal distribution with mean zero
and variance σ2

ε . If the moving average terms in Eq. 5 are omitted the process
becomes an AR(p) and if the autoregressive terms are omitted an MA(q).

A generalization of ARMA processes are Vector ARMA processes (V ARMA
(p, q)) that can model multivariate time series [21]. If we assume that the Zt

in Eq. 5 are vectors and the coefficients are defined by matrices we immediately
obtain the definition of a V ARMA(p, q) process:

Zt = α1Zt−1+α2Zt−2+. . .+αpZt−p+β1εt−1+β2εt−2+. . .+βqεt−q+εt (6)
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where the Zt = (Z(1)
t , Z

(2)
t , . . . , Z

(k)
t )′ are (k × 1) vectors with the observations

at time t, the αi and βi are (k × k) matrices with autoregressive and moving
average coefficients, respectively, and εt = (ε(1)t , ε

(2)
t , . . . , ε

(k)
t )′ is a (k ×1) vector

with innovations introducing randomness into the sequence. We will assume that
the εt are Gaussian with covariance matrix Σε and E[εt] = 0, E[εtεt

′] = Σε,
E[εtεs

′] = 0, s �= t. Similar to the univariate case we obtain a V AR(p) for q = 0
and a V MA(q) for p = 0.

2.4 Stochastic Processes with an (V)ARMA Background Process

ARMA processes are very flexible in modeling autocorrelation, e.g. an AR(p)
can model p lags of autocorrelation exactly. However, the processes as defined
in Eq. 5 result in a normal marginal distribution, which makes them not really
suitable for simulation input modeling in most cases where the distribution is
clearly non-normal.

A promising approach to overcome this limitation is to use ARMA processes
as a background process for only modeling the autocorrelation and combine them
with an arbitrary marginal distributions.

This idea has been introduced by ARTA processes [7] that combine an AR(p)
base process as defined in Eq. 5 with a marginal distribution F using the inversion
method by setting Yt = F−1[Φ(Zt)], (t = 1, 2, . . .) where Φ is the standard normal
cumulative distribution function. The AR(p) process is constructed such that the
distribution of the {Zt} is N(0, 1), resulting in Φ(Zt) to have uniform distribution
on (0, 1). The inverse transformation finally yields a time series Yt with the
desired marginal distribution. Since the Zt are autocorrelated, the Yt are as
well, and it is possible to establish a relation between the two autocorrelations.

In [2] ARTA processes have been generalized to Vector ARTA (VARTA)
processes that can model multivariate time series. In this case the base process
is a V AR(p) process as defined in Eq. 6 and the VARTA process Y t =
(Y (1)

t , Y
(2)
t , . . . , Y

(k)
t ) is obtained by Y

(i)
t = F−1

(i) (Φ(Z(i)
t )), i = 1, . . . , k. [2]

assumed that the F(i) are marginal distributions from the Johnson system of
distributions though other distributions are possible as well of course.

(V)ARTA processes rely on the inversion of the distribution function and
therefore are applicable for all marginal distributions F for which a closed-form
expression for the inverse cdf exists or for which F−1 can be computed numer-
ically in an efficient way. In practice some interesting and useful distributions
cannot be used as part of ARTA processes because of this. PHDs from Sect. 2.2
have proven to be suitable distributions when it comes to modeling complicated
empirical distributions from real-world observations that for example have been
recorded in computer or communication networks [6]. However, as we can see
from Eq. 2 the cumulative distribution function of CPHDs contains a matrix
exponential which makes it in general inefficient and difficult to numerically
compute the inverse of the cdf. [17] presented a different approach to combine
acyclic CPHDs and ARMA processes, denoted as CAPP (Correlated Acyclic
Phase-Type Process), that will be used as basis for the work in this paper.
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The key idea is to interpret the CPHD as a set of paths from an initial state
(i.e. states i with π(i) > 0) to the absorbing state and use a background ARMA
process to choose the next path when restarting after absorption.

In the following we will extend CAPPs in two directions. First, we will inte-
grate acyclic DPHDs into the process, which will be helpful to model measure-
ments with discrete values. Second, we will generalize the process description to
the multivariate case to allow for correlation between the different variates.

3 Vector Correlated Acyclic Phase-Type Processes

In the following we present our approach to combine k acyclic PHDs (discrete and
continuous) with a VARMA background process, denoted as Vector Correlated
Acyclic Phase-Type Process V CAPPk(n1, . . . , nk, p, q), where n1, . . . , nk define
the number of transient states of the PHDs and p, q give the order of the VARMA
base process.

We first describe how the PHDs are represented as paths from an initial to
the absorbing state (called elementary series), then show how the PHDs and
the VARMA process are combined, how we can compute basic properties of
the process and finally present algorithms for parameter estimation and random
number generation for the process class.

3.1 Splitting Acyclic PHDs into Paths

As already mentioned we express a PHDs in terms of its elementary series, where
each series describes one path from an initial state to the absorbing state. For
CPHDs this concept has been introduced in [10] and it was later extended to
DPHDs in [3].

For an acyclic CPHD (π,D0) the i-th series is described by a vector Λi

that contains the transition rates of the states of the series and an associated
probability υi that is computed from the transition rates along the path and the
initial probability of the first state of the path, i.e. υi is the probability that this
path is chosen. More formally, let i1, i2, . . . , ik be the states of an elementary
series. Then the probability of this series is given by

υi = π(i1)
D0(i1, i2)

−D0(i1, i1)
D0(i2, i3)

−D0(i2, i2)
· · · d1(ik)

−D0(ik, ik)

where d1(ik) denotes the transition rate from state ik to the absorbing state.
The vector of transition rates is given by

Λi = (−D0(i1, i1),−D0(i2, i2), . . . ,−D0(ik, ik)).

An example for an acyclic CPHD and its elementary series is given in Fig. 1a.
In the discrete case the i-th series of a PHD (τ ,T ) is represented by a vector
P i with transition probabilities of the states of the series and the associated
probability φi. Now we have for a series of states i1, i2, . . . , ik that

P i = (T (i1, i1), . . . , T (ik, ik)) and φi =
τ (i1)T (i1, i2)

1 − T (i1, i1)

T (i2, i3)

1 − T (i2, i2)
· · · t(ik)

1 − T (ik, ik)
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Fig. 1. Representing acyclic PHDs as elementary series

where t(ik) denotes the transition probability from state ik to the absorbing
state. An example for an acyclic DPHD and its elementary series is given in
Fig. 1b.

Note, that an elementary series describes a generalized Erlang (or hypo-
exponential) distribution in the continuous case and a sequence of geometric
distributions in the discrete case.

3.2 Combining PHDs and VARMA Process

Now assume, that we have k PHDs each expressed in terms of their elementary
series, i.e. for PHD i we have the series j = 1, . . . ,mi each consisting of an
initial probability υij and the transition rates Λij in the continuous case or a
probability φij and vector P ij in the discrete case. To simplify notations we
denote the probability of an elementary series j of PHD i with ψij if it is not
important whether it is a series from a continuous or discrete distribution. We
additionally introduce a stationary V ARMA(p, q) base process Zt as defined in
Eq. 6 that is used to choose between these series, thereby introducing correlation
into the sequence of phase-type distributed random variables. More formally, we
use the following definitions to describe VCAPPs: For the elementary series of
PHD i we define

bi1
= 0

b̄ij = bij
+ ψij j = 1, . . . ,mi and δ(U, i, j) =

{
1, U ∈ [bij

, b̄ij )
0, otherwise

bij
= b̄ij−1 j = 2, . . . ,mi

(7)

for some random variable U with uniform distribution. Let {X
(i,j)
t } be sequences

of iid random variables that either have a generalized Erlang distribution
described by the rates in Λij if i is a CPHD or describe a sequence of geo-
metric distributions as defined by the probabilities in Pij if i is discrete.
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Using the above definitions a V CAPPk(n1, . . . , nk, p, q) describes a time-series
Y t = (Y (1)

t , Y
(2)
t , . . . , Y

(k)
t )′ where each Y

(i)
t is defined as

Y
(i)
t =

mi∑
j=1

δ(Φ(Z(i)
t ), i, j)X(i,j)

t . (8)

The Z
(i)
t are generated by a V ARMA(p, q) process as defined in Eq. 6 and we

require them to have standard normal marginal distribution. Φ(·) is the standard
normal cumulative distribution function which implies that Φ(Z(i)

t ) have uniform
distribution on (0, 1) (cf. [11]). Then Eq. 8 uses the elementary series to describe
a sequence of correlated random variables with the same acyclic PHD that the
elementary series have been computed from (see also [17]).

In the following we relate the VARMA base process and the VCAPP auto-
correlation and describe a procedure to construct a base process that results
in the desired VCAPP correlation and that respects the requirements pointed
out above (i.e. a stable process where the Z

(i)
t have standard normal marginal

distribution).

3.3 Computation of the VCAPP Autocorrelation

Assume that a V CAPPk(n1, . . . , nk, p, q) is given. The autocorrelation and auto-
covariance of a V ARMA(p, q) process can be expressed in terms of the autocor-
relation and autocovariance matrices. Note, that we required the Z

(i)
t to have

standard normal marginal distribution and thus, autocorrelation and autoco-
variance are identical for the base process. In the following we will sketch how to
compute the autocorrelations of the V ARMA(p, q) base process and then relate
the base process correlation with the V CAPPk(n1, . . . , nk, p, q) correlation.

The theoretical background and the methods for the computation of the
V ARMA(p, q) correlation are given in [21]. We will only summarize the
basic steps. The key idea of the computation is the transformation of the
V ARMA(p, q) into an equivalent V AR(1) representation, from which the cor-
relation can be computed easily. Let {Zt} be a stable k-variate V ARMA(p, q)
process as defined in Eq. 6. We denote the equivalent V AR(1) process Z̃t =
α̃Z̃t−1 + ε̃t. The construction of the matrices is summarized in [18, Sect. 2] (see
also [21] for the details). For the V AR(1) representation Σ̃Z̃(0), i.e. the covari-
ance matrix at lag 0 can be easily obtained from

vec(Σ̃Z̃(0)) = (I − α̃ ⊗ α̃)−1
vec(Σ̃ε) (9)

where the vec() operator transforms a matrix into a vector by stacking the
columns. Σ̃Z̃(0) now contains the desired covariance matrices ΣZ(h) for h =
0, . . . , p − 1 of the original V ARMA(p, q) process as submatrices (i.e. ΣZ(h)
is a block in the upper left, followed by ΣZ(1) and so on) [21]. If ΣZ(h) for
h = 0, . . . , p − 1 is known higher lags can be computed recursively from [21]

ΣZ(h) = α1ΣZ(h − 1) + · · · + αpΣZ(h − p). (10)
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The computation of the autocovariances requires p > q. Therefore, if p ≤ q
we have to add additional matrices αi = 0 before the transformation into the
V AR(1) process. The autocorrelations can be obtained from the autocovariances
by ρZ(h) = D−1ΣZ(h)D−1 where D is a diagonal matrix that has the square
roots of the diagonal elements of ΣZ(0) as elements. Recall, that this last step is
not necessary in our case, because we required the Zt to have standard normal
distribution. Thus, D−1 = I and ΣZ(h) = ρZ(h).

Once the VARMA(p,q) autocorrelation matrices are known, we can use them
to compute the autocorrelation matrices of the VCAPP. Let ρZ(h) be a matrix
with autocorrelation coefficients at lag h from a VARMA(p,q) process computed
as described above. Then, we want to determine matrix ρY (h) that contains the
corresponding correlation coefficients of the VCAPP. Furthermore, let ρZ(i, j, h)
and ρY (i, j, h) be the elements at position (i, j) of ρZ(h) and ρY (h), respectively.
Then,

ρY (i, j, h) = Corr[Y (i)
t , Y

(j)
t+h] =

E[Y (i)
t Y

(j)
t+h] − E[Y (i)]E[Y (j)]√

V ar[Y (i)]V ar[Y (j)]
(11)

Since E[Y (i)], E[Y (j)], V ar[Y (i)] and V ar[Y (j)] are fixed by the acyclic PHDs i
and j, i.e. they can be computed using Eq. 2 or Eq. 4, the only remaining part
when computing the VCAPP correlation is the joint moment E[Y (i)

t Y
(j)
t+h]. After

some substitutions and rearranging we get (cf. [17])

E[Y (i)
t Y

(j)
t+h] = E

[(
mi∑
k=1

δ(Φ(Z(i)
t ), i, k)X(i,k)

t

) (
mj∑
l=1

δ(Φ(Z(j)
t+h), j, l)X(j,l)

t+h

)]

=
∑
k,l

E
[
δ(Φ(Z(i)

t ), i, k)δ(Φ(Z(j)
t+h), j, l)

]
E

[
X

(i,k)
t

]
E

[
X

(j,l)
t+h

]
(12)

=
∑
k,l

(
μ(i,k)μ(j,l)

∫ ∞

−∞

∫ ∞

−∞
δ(Φ(Z(i)

t ), i, k)δ(Φ(Z(j)
t+h), j, l)

ϕρZ(i,j,h)(z
(i)
t , z

(j)
t+h)dz

(i)
t dz

(j)
t+h

)

=
∑
k,l

(
μ(i,k)μ(j,l)

∫ Φ−1(b̄ik )

Φ−1(bik
)

∫ Φ−1(b̄jl )

Φ−1(bjl
)

ϕρZ(i,j,h)(z
(i)
t , z

(j)
t+h)dz

(i)
t dz

(j)
t+h

)
(13)

where μ(i,k) is the first moment of the k-th elementary series of the i-th PHD.
Since the series of a PHD are either a generalized Erlang distribution or a
sequence of geometric distributions, the series are, of course, simple PHDs them-
selves and the moments can be easily computed according to Eqs. 2 and 4.
ϕρZ(i,j,h)(z

(i)
t , z

(j)
t+h) is the bivariate standard normal density function with cor-

relation ρZ(i, j, h). Note, that Eq. 12 holds because in our process description
the base process is used to determine which series of the PHDs are taken but
the duration in that series is independent of the base process. Equation 13 holds
because δ(u, i, k) is 1 for u ∈ [bik

, b̄ik) and 0 otherwise (cf. Eq. 7) and we can
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exploit this information to determine the integration bounds. For the computa-
tion of the bivariate normal integral fast numerical procedures exist [12]. Observe
from Eq. 13 that for a given PHD the VCAPP correlation only depends on the
VARMA correlation which appears in ϕρZ(i,j,h)(z

(i)
t , z

(j)
t+h). Therefore, we may

express ρY (i, j, h) as a function of ρZ(i, j, h), i.e. ρY (i, j, h) = ω(ρZ(i, j, h)). In
the following we assume that the elementary series of a PHD i are sorted accord-
ing to their mean values μ(i,k). Then ω(·) has the following properties that are
useful for the construction of the base process in Sect. 3.4 and that we state with-
out proof: ω(·) is a continuous and non-decreasing function. This immediately
implies that the maximal and minimal possible autocorrelations ρ̂max and ρ̂min

for a VCAPP are given by ρ̂max = ω(1) and ρ̂min = ω(−1), respectively. Further-
more we have that ω(0) = 0 and ρZ(i, j, h) ≤ 0 (≥ 0) ⇒ ω(ρZ(i, j, h)) ≤ 0 (≥ 0).

3.4 An Algorithm for Fitting VCAPPs

Using the considerations from Sect. 3.3 we can sketch the algorithm from Fig. 2
for fitting VCAPPs from observations from a real system. As inputs the algo-
rithm takes a k-variate trace T (k) and the order p, q of the base process. In the
first step the algorithm fits a PHD to each of the sequences of T (k) using one
of the available approaches mentioned in Sect. 2.2. Next the correlation matrices
ρ̂Y (i), i = 1, . . . , H are estimated from the multivariate trace which describe
the desired correlation the VCAPP should have. After that the algorithm deter-
mines the elementary series of the acyclic PHDs as described in Sect. 3.1 and
sorts them according to their mean values. In the next step the VARMA corre-
lation ρ̂Z(i), i = 1, . . . , H that yields a VCAPP correlation ρ̂Y (i), i = 1, . . . , H
has to be determined. Observe from Eq. 13 that we can compute a ρ̂Y (i, j, h)
for a given ρ̂Z(i, j, h) but not the other way round, which is necessary for con-
structing the VARMA base process. Consequently, we have to determine the
base process autocorrelation numerically using Eq. 13 which can be done using a
simple line search algorithm [24], since ω(·) is a continuous and non-decreasing
function. It should be noted that also for the original CAPP approach and the
(V)ARTA approaches a numerical procedure has to be applied for computing
the base process autocorrelation [2,7,17].

Fig. 2. Basic steps for parameter estimation of VCAPPs
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Once the base process autocorrelations ρ̂Z(h) have been determined we have
to construct a VARMA(p,q) base process that exhibits this structure. Depending
on whether the base process is a VARMA(p,q) process or a V AR(p) process
without moving average coefficients this can be done using a general purpose
optimization algorithm or by solving Yule-Walker equations. Fitting a V AR(p)
is very fast but might result in a large base process because it requires p = H,
where H equals the number of autocorrelation lags that are considered, i.e.
we need a matrix with autoregressive coefficients for each correlation matrix.
Fitting a VARMA(p,q) process can result in a smaller model but the parameter
estimation is more elaborate.

A V AR(p) model can be obtained by solving the the Yule-Walker equations
[21], i.e. α = (α1, . . . ,αp) is obtained from

α = ΣΣZ
−1 (14)

where Σ = (ΣZ(1),ΣZ(2), . . . ,ΣZ(p)) and

ΣZ =

⎡
⎢⎢⎢⎣

ΣZ(0) ΣZ(1) · · · ΣZ(p − 2) ΣZ(p − 1)
Σ′

Z(1) ΣZ(0) · · · ΣZ(p − 3) ΣZ(p − 2)
...

...
. . .

...
...

Σ′
Z(p − 1) Σ′

Z(p − 2) · · · Σ′
Z(1) ΣZ(0)

⎤
⎥⎥⎥⎦ . (15)

Once the αi are known we compute Σε = ΣZ(0) − α1Σ
′
Z(1) − · · · − αpΣ

′
Z(p).

If we set ΣZ(i) = ρ̂Z(i) in the above equations, i.e. we assume that the autoco-
variance equals the autocorrelation, we get a process with the desired property
to have standard normal marginal distribution.

When fitting a VARMA(p,q) process to ρ̂Z(h) we use the Nelder-Mead algo-
rithm from [22] to minimize

arg min
αi,i=1,...,p,βj ,j=1,...,q

k∑
l=1

k∑
m=1

H∑
h=1

(
ρZ(l,m, h)∗

ρ̂Z(l,m, h)
− 1

)2

(16)

where k is the number of variates, H is the number of autocorrelation lags to
consider for fitting, ρ̂Z(l,m, h) is the desired autocorrelation of the base process
and ρZ(l,m, h)∗ is the autocorrelation of the VARMA process constructed during
the fitting process. Since we are only interested in stationary base processes, non-
stationary solutions have to be penalized in the fitting step. According to [21]
stability of a VARMA process implies stationarity and a VARMA process is
stable if all roots of the reverse characteristic polynomial |Ik×k − α1z − α2z

2 −
· · ·−αpz

p| = 0 lie outside the unit circle. Hence, for VARMA processes that are
constructed during the fitting process and that do not fulfill this requirement we
add a penalty term to Eq. 16.

Observe, that the covariance matrix of the innovations Σε is not part of
the minimization in Eq. 16. Instead we set the values of Σε separately, such
that the VARMA process has standard normal marginal distributions. For given
AR and MA coefficient matrices we use Eq. 9 to construct a system of linear
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equations to determine the entries of Σε. This requires Σε to be a diagonal
matrix. Restricting the structure of the covariance matrix is not uncommon to
cope with the complexity of VARMA processes [8]. Details on the construction
of Σε can be found in [18, Sect. 3].

The minimization can be performed for different values of p and q and the best
model according to Eq. 16 is selected. Of course, one has to find a compromise
between a moderate size of the parameters p and q to keep the model size small
and an adequate fitting of the lag h (h = 1, . . . , H) correlations. Finally, the
PHDs and the VARMA(p,q) are combined into a V CAPPk(n1, . . . , nk, p, q).

3.5 Generating Random Numbers from VCAPPs

The generation of multivariate samples from a V CAPPk(n1, . . . , nk, p, q) can be
efficiently performed in two steps. In the first step a multivariate sample from
the VARMA(p,q) base process is generated using standard theory [21]. In the
second step this sample is used to generate the VCAPP random vector.

From the VARMA(p,q) description the coefficient matrices αi, i = 1, . . . , p
and βj , j = 1, . . . , q and the covariance matrix Σε for the innovations are known.
Furthermore, we assume that the previous observations zt−1, . . . ,zt−p and the
previous innovations εt−1, . . . , εt−q are known, either from previous simulation
steps of the VARMA(p,q) process or from an initialization step that is described
in [21] and summarized in [18, Sect. 4]. Then, the next random sample can be
determined recursively using Eq. 6. First, we compute the next vector with inno-
vations εt. This is done by determining matrix S with SS′ = Σε applying a
Cholesky decomposition [13]. Now, εt = Svt where v′

t = (v1, . . . , vk) contains
k random numbers drawn from a standard normal distribution. Since now all
values from Eq. 5 are known we can compute zt according to that definition.

In the second step of the random number generation procedure the zt are
used to determine the VCAPP random vector yt using Eq. 8. For each y

(i)
t we

compute Φ(z(i)
t ), determine the interval j for which Φ(z(i)

t ) ∈ [bij
, b̄ij ]. If PHD

i is continuous we draw from an exponential distribution for each rate from Λi.
The sum of these exponentially distributed random numbers is returned as y

(i)
t .

If PHD i is discrete we draw from the geometric distributions that are defined
by P i and return the sum of the number of trials as y

(i)
t .

4 Experimental Results

We conducted two series of experiments to show the performance of VCAPPs
when fitting real traffic data. For the first experiments we used the well known
trace BC-pAug89 [20] that is often used as a benchmark trace and that contains
the interarrival times and packet sizes of 1 million packets in a local area net-
work. The second more recent trace was recorded at Dartmouth College [15] and
additionally includes user mobility in a wireless network.

As mentioned above BC-pAug89 is a 2-variate trace consisting of one
sequence for the interarrival times of packets and another sequence with the
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Fig. 3. Results for trace BC-pAug89

corresponding packet sizes. We fitted CPHDs with different number of states
to both of the sequences using the approach from [28]. The results for CPHDs
with 15 and 35 states are shown in Figs. 3a and b. As we can see the CPHDs
provided a good approximation for the interarrival times, but only were able to
capture the first peak of the packet sizes. According to the algorithm from Fig. 2
we expanded the CPHDs into two VCAPPs. The larger VCAPPs consists of the
two CPHDs with 35 states and a V AR(20) base process, the smaller VCAPP
of the two CPHDs with 15 states and a V AR(5) base process. Since we used
VAR processes the VCAPPs provided an exact matching of 5 and 20 lags of
correlation, respectively. The correlation matrices for the first lags are shown
in Fig. 3c. As a last measure for the quality of the fitting we determined the
queue length distribution of a single server queue with a buffer capacity of 50.
The VCAPPs are used to obtain the interarrival times of the packets and the
exponentially distributed service time depends on the packet sizes also obtained
from the VCAPPs. To obtain reference values we also simulated the model with
the original trace values. Figure 3d shows the queue length distribution obtained
from 10 replications and approx. 1 million generated packets per replication. As
we can see the large V CAPP2(35, 35, 20, 0) provides a very good approximation
of the trace results, while for the smaller V CAPP2(15, 15, 5, 0) the results are
not as good. For comparison we also generated results from the two CPHDs
of the larger VCAPP without using the base process, i.e. the generated values
are uncorrelated. The curve shows that neglecting the correlation significantly
impairs the quality of the approximation. Finally, we used a modified version of
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the V CAPP2(35, 35, 20, 0) where we sorted the packets into bins of size 50 bytes
resulting in a much smaller number of discrete values and used a DPHD for
fitting. For the simulation each bin was represented by its midpoint. As shown
in Fig. 3d the curves for the original V CAPP2(35, 35, 20, 0) and the variant with
bins almost completely overlap.

At Dartmouth College large traces of data have been recorded from their
wireless network over the past years. The traces contain movement data and
tcpdump data with generated traffic. The movement data consists of a trace
for every user seen in the network with dwell times and assignments to different
access points. A summary of the data and collection methods can be found in [15].
Out of this data we generated a 3-variate trace consisting of the dwell times and
locations from the movement data and the generated traffic from the tcpdump
data. Unfortunately the movement data was recorded for a larger period of time
than the tcpdump data. Moreover, tcpdump data does not exist for all access
points occurring in the movement data. To obtain suitable traces for fitting we
preprocessed the data in the following way: We parsed every movement trace and
for each entry in the trace we checked the tcpdump data if packets have been
recorded for that user in the time period specified by the movement data and
summed up the amount of traffic from all packets in that period. Since traffic
information is not available for all entries of the movement data we extracted
consecutive sequences of at least 100 entries from the movement data for that
the traffic amount could be computed. Hence, we obtained traces of the form
Ti = ((ti,1, li,1, pi,1), (ti,2, li,2, pi,2), · · · ) describing the behavior of i = 1, · · · , 501
users in the network where ti,j , li,j and pi,j are the j-th dwell time, location and
amount of traffic of user i, respectively. Thus, we generated traces with realistic
movement patterns, although the traces of course do not fully reflect the original
situation at Dartmouth College because some original entries had to be ignored
and some movements of a single user have been split into several traces. As
locations we used 14 different building on the campus (i.e. all access points that
lie in the same building are aggregated into a single location). The locations were
fitted with a DPHD with 14 states such that we can ensure that only values from
1 to 14 can be drawn from that distribution. The CPHDs for dwell times and
traffic are again fitted with the approach from [28]. For distribution fitting we
can just combine all traces Ti under the assumptions that the users behave
identically. For the computation of the correlation matrices this is not possible.
Therefore, we computed correlation matrices ρ̂i(h) for each trace Ti and then
weighted them according to the number of entries, i.e. ρ̂(h) =

∑
i ri/r · ρ̂i(h),

where ri is the number of entries in Ti and r is the total number of entries in
all traces and fitted VCAPPs according to ρ̂(h). To assess the fitting quality we
set up a model with 25 users each driven by a VCAPP. For each of the locations
we use a router with buffer size 50. The random samples from the VCAPP then
determine what amount of traffic a user generates at a location/router and how
long he stays there before moving to the next location. As reference values we
again simulated the model using the trace files. Since we have more traces than
users in the model each user randomly selects a trace for the simulation and
we run the model with 100 replications. The queue length distributions for the
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Fig. 4. Results for trace Dartmouth

traces and two different VCAPPs of two of the routers are shown in Fig. 4. As
we can see we obtained a very good approximation for some routers as in Fig. 4a,
while for other routers the approximation was not that good but still acceptable
(Fig. 4b).

5 Conclusions

We presented an approach for parameter estimation of multivariate traces that
uses PHDs for fitting the marginal distributions of the trace and a VARMA
process for adding correlation. The approach divides the complex problem of
fitting multivariate traces into several steps that can be performed independent
of each other, i.e. the PHDs determine the correlation matrices of the VARMA
process, but have no further influence when constructing the process. Our experi-
ments with different traces suggest that the process is suitable for approximating
real traffic data. For the wireless data it is probably possible to further improve
the results by dividing the users into classes according to their behavior and fit
a VCAPP for each of the classes, but this is subject to further research.
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Abstract. Application partitioning splits the executions into local and
remote parts. Through optimal partitioning, the device can obtain the
most benefit from computation offloading. Due to unstable resources at
the wireless network (bandwidth fluctuation, network latency, etc.) and
at the service nodes (different speed of the mobile device and cloud server,
memory, etc.), static partitioning solutions in previous work with fixed
bandwidth and speed assumptions are unsuitable for mobile offloading
systems. In this paper, we study how to effectively and dynamically par-
tition a given application into local and remote parts, while keeping the
total cost as small as possible. We propose a novel min-cost offloading
partitioning (MCOP) algorithm that aims at finding the optimal par-
titioning plan (determine which portions of the application to run on
mobile devices and which portions on cloud servers) under different cost
models and mobile environments. The simulation results show that the
proposed algorithm provides a stable method with low time complexity
which can significantly reduce execution time and energy consumption
by optimally distributing tasks between mobile devices and cloud servers,
and in the meantime, it can well adapt to environmental changes, such
as network perturbation.

Keywords: Mobile cloud computing · Communication networks ·
Offloading · Cost graph · Application partitioning

1 Introduction

Along with the maturity of mobile cloud computing, mobile cloud offloading is
becoming a promising method to reduce task execution time and prolong battery
life of mobile devices. Its main idea is to improve execution by migrating heavy
computation from mobile devices to resourceful cloud servers and then receiving
the results from them via wireless networks. Offloading is an effective way to
overcome constraints in resources and functionalities of mobile devices since it
can release them from intensive processing.
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Offloading all computation components of an application to the remote cloud
is not always necessary or effective. Especially for some complex applications
(e.g., QR-code recognition [1], online social applications [2], health monitoring
using body sensor networks [3]) that can be divided into a set of independent
parts, a mobile device should judiciously determine whether to offload compu-
tation and which portion of the application should be offloaded to the cloud.
Offloading decisions [4,5] must be taken for all parts, and the decision made for
one part may depend on the one for other parts. As mobile computing increas-
ingly interacts with the cloud, a number of approaches have been proposed, e.g.,
MAUI [6] and CloneCloud [7], aiming at offloading some parts of the mobile
application execution to the cloud. To achieve good performance, they particu-
larly focus on a specific application partitioning problem, i.e., to decide which
parts of an application should be offloaded to powerful servers in a remote cloud
and which parts should be executed locally on mobile devices such that the
total execution cost is minimized. Through partitioning, a mobile device can
benefit most from offloading. Thus, partitioning algorithms play a critical role
in high-performance offloading systems.

The main costs for mobile offloading systems are the computational cost for
local and remote execution, respectively, and the communication cost due to
the extra communication between the mobile device and the remote cloud. Pro-
gram execution can naturally be described as a graph in which vertices represent
computation that are labelled with the computation costs and edges reflect the
sequence of computation labelled with communication costs [8] where computa-
tion is carried out in different places. By partitioning the vertices of a graph, the
calculation can be divided among processors of local mobile devices and remote
cloud servers. Traditional graph partitioning algorithms (e.g., [9–11]) cannot
be applied directly to the mobile offloading systems, because they only con-
sider the weights on the edges of the graph, neglecting the weight of each node.
Our research is situated in the context of resource-constrained mobile devices,
in which there are often multi-objective partitioning cost functions subject to
variable vertex cost, such as minimizing the total response time or energy con-
sumption on mobile devices by offloading partial workloads to a cloud server
through links with fluctuating reliability.

The problem of whether or not to offload certain parts of an application to the
cloud depends on the following factors: CPU speed of mobile device, speed of the
cloud server [12], network bandwidth and reliability, and transmission data size.
In this paper, we improve the performance of static partitioning by taking unsta-
ble network and cloud conditions into consideration. We explore methods of how
to deploy such an offloadable application in a more suitable way by dynamically
and automatically determining which parts of the application should be computed
on the cloud server and which parts should be left on the mobile device to achieve
a particular performance and dependability target (low latency, minimization of
energy consumption, low response time, in thepresence of unreliable links etc.) [13].
We study how to disintegrate and distribute modules of an application between the
mobile side and cloud side, and effectively utilize the cloud resources. We construct
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a weighted consumption graph (WCG) according to estimated computation and
communication costs, and further derive a novel min-cost offloading partitioning
(MCOP) algorithm designed especially for mobile offloading systems. The MCOP
algorithm aims at finding the optimal partitioning plan that minimizes a given
objective function (response time, energy consumption or theweighted sumof time
and energy) and can be applied to WCGs of arbitrary topology.

The remainder of this paper is organized as follows. Section 2 introduces the
partitioning models. An optimal partitioning algorithm for arbitrary topology is
proposed and investigated in Sect. 3. Section 4 gives some evaluation and simu-
lation results. Finally, the paper is summarized in Sect. 5.

2 Partitioning Models

2.1 Classification of Application Tasks

Applications in a mobile device normally consist of several tasks. Since not all
the application tasks are suitable for remote execution, they need to be weighed
and distinguished as:

– Unoffloadable Tasks: some tasks should be unconditionally executed locally
on the mobile device, either because transferring relevant information would
use too much time and energy or because these tasks must access local com-
ponents (camera, GPS, user interface, accelerometer or other sensors etc.)
[6]. Tasks that might cause security issues when executed in a different place
should not be offloaded either (such as e-commerce). Local processing con-
sumes battery power of the mobile device, but there are no communication
costs or delays.

– Offloadable Tasks: some application components are flexible tasks that can
be processed either locally on the processor of the mobile device, or remotely
in a cloud infrastructure. Many tasks fall into this category, and the offloading
decision depends on whether the communication costs outweigh the difference
between local and remote costs or not [14].

For unoffloadable components no offloading decisions must be taken. However,
as for offloadable ones, since offloading all the application tasks to the remote cloud
is not necessary or effective under all circumstances, it is worth considering what
should be executed locally on the mobile device and what should be offloaded to the
remote cloud for execution based on available networks, response time or energy
consumption. The mobile device has to take an offloading decision based on the
result of a dynamic optimization problem.

2.2 Construction of Consumption Graphs

There are two types of cost in offloading systems: one is computational cost
of running an application tasks locally or remotely (including memory cost,
processing time cost etc.) and the other is communication cost for the application
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Fig. 1. Construction of Consumption Graph (CG) and Weighted Consumption Graph
(WCG). (Color figure online)

tasks’ interaction (associated with movement of data and requisite messages).
Even the same task can have different cost on the mobile device and in the cloud
in terms of execution time and energy consumption. As cloud servers usually
process much faster than mobile devices having a powerful configuration, energy
can be saved and performance improved when offloading part of the computation
to remote servers [15]. However, when vertices are assigned to different sides, the
interaction between them leads to extra communication costs. Therefore, we try
to find the optimal assignment of vertices for graph partitioning and computation
offloading by trading off the computational cost against the communication cost.

Call graphs are widely used to describe data dependencies within a compu-
tation, where each vertex represents a task and each edge represents the calling
relationship from the caller to the callee. Figure 1(a) shows a CG example consist-
ing of six tasks [16]. The computation costs are represented by vertices, while
the communication costs are expressed by edges. We depict the dependency
of application tasks and their corresponding costs as a directed acyclic graph
G = (V,E), where the set of vertices V = (v1, v2, · · · , vN ) denotes N application
tasks and an edge e(vi, vj) ∈ E represents the frequency of invocation and data
access between nodes vi and vj , where vertices vi and vj are neighbors. Each
task vi is characterized by five parameters:

– type: offloadable or unoffloadable task.
– mi: the memory consumption of vi on a mobile device platform,
– ci: the size of the compiled code of vi,
– inij : the data size of input from vi to vj ,
– outji: the data size of output from vj to vi.

We further construct a WCG as depicted in Fig. 1(b). Each vertex v ∈ V is
annotated with two cost weights: w(v) =< wlocal(v), wcloud(v) >, where wlocal(v)
and wcloud(v) represent the computation cost of executing the task v locally on
the mobile device and remotely on the cloud, respectively. Each vertex is assigned
one of the values in the tuple depending on the partitioning result of the resulting
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application graph [17]. The edge set E ⊂ V × V represents the communication
cost amongst tasks. The weight of an edge w(e(vi, vj)) is denoted as:

w(e(vi, vj)) =
inij

Bupload
+

outij
Bdownload

, (1)

which is the communication cost of transferring the input and return states when
the tasks vi and vj are executed on different sides, and it closely depends on the
network bandwidth (upload Bupload and download Bdownload) and reliability as
well as the amount of transferred data.

A candidate offloading decision is described by one cut in the WCG, which
separates the vertices into two disjoint sets, one representing tasks that are exe-
cuted on the mobile device and the other one implying tasks that are offloaded
to the remote server [18]. Hence, taking the optimal offloading decision is equiva-
lent to partitioning the WCG into those two sets such that an objective function
is minimized.

The red dotted line in Fig. 1(b) is one possible partitioning cut, indicating the
partitioning of computational workload in the application between the mobile
side and the cloud side. Vl and Vc are sets of vertices, where Vl is the local set
in which tasks are executed locally at the mobile side and Vc is the cloud set
in which tasks are directly offloaded to the cloud. We have Vl ∩ Vc = ∅ and
Vl ∪ Vc = V . Further, Ecut is the edge set in which the graph is cut into two
parts.

2.3 Cost Models

Mobile application partitioning aims at finding the optimal partitioning solution
that leads to the minimum execution cost, in order to make the best tradeoff
between time/energy savings and transmission costs/delay.

The optimal partitioning decision depends on user requirements/expecta-
tions, device information, network bandwidth and reliability, and the applica-
tion itself. Device information includes the execution speed of the device and the
workloads on it when the application is launched. For a slow device where the
aim is to reduce execution time, it is better to offload more computation to the
cloud. Network bandwidth and reliability affects data transmission for remote
execution. If the bandwidth and reliability is very high, the cost in terms of data
transmission will be low. In this case, it is better to offload more computation
to the cloud.

The partitioning decision is made based on a cost estimate (computation and
communication costs) before program execution. On the basis of Fig. 1(b), the
overall cost can be calculated as:

Ctotal=
∑
v∈V

Iv · wlocal(v)

︸ ︷︷ ︸
local

+
∑
v∈V

(1 − Iv) · wcloud(v)

︸ ︷︷ ︸
remote

+
∑

e(vi,vj)∈E

Ie · w(e(vi, vj))

︸ ︷︷ ︸
communication

,(2)

where Ctotal is the sum of computation costs (local and remote) and communi-
cation costs of cut affected edges.
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The cloud server node and the mobile device node must belong to different
partitions. One possible solution for this partitioning problem will give us an
arbitrary tuple of partitions from the set of vertices < Vl, Vc > and the cut of
edge set Ecut in the following way:

Iv =
{

1, if v ∈ Vl

0, if v ∈ Vc
and Ie =

{
1, if e ∈ Ecut

0, if e /∈ Ecut
. (3)

We seek to find an optimal cut: Imin =
{
Iv, Ie|Iv, Ie ∈ {0, 1}}

in the WCG
such that some application tasks are executed on the mobile side and the remain-
ing ones on the cloud side, while satisfying the general goal of a partition:
Imin = arg minI Ctotal(I). The dynamic execution configuration of an elastic
application can be decided based on different saving objectives with respect
to response time and energy consumption. Since the communication time and
energy cost for the mobile device will vary according to the amount of data to be
transmitted and the wireless network conditions. A task’s offloading goals may
change due to a change in environmental conditions.

Minimum Response Time. The communication cost depends on the size
of data transfer and the network bandwidth, while the computation time has
an impact on its cost. If the minimum response time is selected as objective
function, we can calculate the total time spent due to offloading as:

Ttotal(I) =
∑
v∈V

Iv · T l
v

︸ ︷︷ ︸
local

+
∑
v∈V

(1 − Iv) · T c
v

︸ ︷︷ ︸
remote

+
∑
e∈E

Ie · T tr
e

︸ ︷︷ ︸
communication

, (4)

where T l
v = F · T c

v is the computation time of task v on the mobile device when
it is executed locally; F is the speedup factor, the ratio of the cloud server’s
processing speed compared to that of the mobile device. T c

v is the computa-
tion time of task v on the cloud server when it is offloaded; T tr

e = Dtr
e /B is

the communication time between the mobile device and the cloud; Dtr
e is the

amount of data that is transmitted and received; finally, B is the current wireless
bandwidth weighed with the reliability of the network.

Minimum Energy Consumption. If the minimum energy consumption is
chosen as the objective function, we can calculate the total energy consumed
due to offloading as:

Etotal(I) =
∑
v∈V

Iv · El
v

︸ ︷︷ ︸
local

+
∑
v∈V

(1 − Iv) · Ei
v

︸ ︷︷ ︸
idle

+
∑
e∈E

Ie · Etr
e

︸ ︷︷ ︸
communication

, (5)

where El
v = pm · T l

v is the energy consumed by task v on the mobile device
when it is executed locally; Ei

v = pi · T c
v is the energy consumed by task v on

the mobile device when it is offloaded to the cloud; Ee = ptr · T tr
e is the energy
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spent on the communication between the mobile device and the cloud including
possibly necessary retransmissions; pm, pi and ptr are the powers of the mobile
device for computing, while being idle and for data transfer, respectively.

Minimum of the Weighted Sum of Time and Energy. If we combine
both the response time and energy consumption, we can design a cost model for
partitioning as follows [19]:

Wtotal(I) = ω · Ttotal(I)
Tlocal

+ (1 − ω) · Etotal(I)
Elocal

, (6)

where 0 ≤ ω ≤ 1 is a weighting parameter used to share relative importance
between the response time and energy consumption. Large ω favors response
time while small ω favors energy consumption [20,21]. Performance can be traded
for power consumption and vice versa [22,23], therefore we can use ω to express
preferences for different applications. If Ttotal(I)/Tlocal is less than 1, the parti-
tioning will improve the application’s performance. Similarly, if Etotal(I)/Elocal

is less than 1, it will reduce the energy consumption.
We only perform the partitioning when it is beneficial. Not all applications

can benefit from partitioning because of application-specific properties. A pre-
calibration of the computation cost on each device is necessary. Offloading is
beneficial only if the speedup of the cloud server outweighs the extra communi-
cation cost. We compare the partitioning results with two other intuitive strate-
gies without partitioning and, for ease of reference, we list all three kinds of
offloading techniques:

– No Offloading (Local Execution): all computation tasks of an application are
running locally on the mobile device and there is no communication cost.
This may be costly since the mobile device is limited in processing speed and
battery life as compared to the powerful computing capability at the cloud
side.

– Full Offloading : all computation tasks of mobile applications (except the unof-
floadable tasks) are moved from the local mobile device to the remote cloud for
execution. This may significantly reduce the implementation complexity, which
makes the mobile devices lighter and smaller. However, full offloading is not
always the optimal choice since different application tasks may have different
characteristics that make them more or less suitable for offloading [24].

– Partial Offloading (With Partitioning): with the help of the MCOP algorithm,
all tasks including unoffloadable and offloadable ones are partitioned into two
sets, one for local execution on the mobile device and the other for remote
execution on a cloud server node. Before a task is executed, it may require a
certain amount of data from other tasks. Thus, data migration via wireless
networks is needed between tasks that are executed at different sides.

We define the saved cost in the partial offloading scheme compared to that
in the no offloading scheme as Offloading Gain, which can be formulated as:

Offloading Gain = 1 − Partial Offloading Cost

No Offloading Cost
· 100%. (7)
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3 Partitioning Algorithm for Offloading

In this section, we introduce the min-cost offloading partitioning (MCOP) algo-
rithm for WCGs of arbitrary topology. The MCOP algorithm takes a WCG
as input in which an application’s operations/calculations are represented as
the nodes and the communication between them as the edges. Each node has
two costs: first the cost of performing the operation locally (e.g., on the mobile
device) and second the cost of performing it elsewhere (e.g., in the cloud). The
weight of the edges is the communication cost to the offloaded computation.
We assume that the communication cost between tasks in the same location
is negligible. The result contains information about the cost and reports which
operations should be performed locally and which should be offloaded.

3.1 Steps

The MCOP algorithm can be divided into two steps as follows:

1. Unoffloadable Vertices Merging: An unoffloadable vertex is the one that has
special features making it unable to be migrated outside of the mobile device
and thus it is located only in the unoffloadable partition. Apart from this,
we can choose any task to be executed locally according to our preferences
or other reasons. Then all vertices that are not going to be migrated to the
cloud are merged into one that is selected as the source vertex. By ‘merging’,
we mean that these nodes are coalesced into one, whose weight is the sum of
the weights of all merged nodes. Let G represent the original graph after all
the unoffloadable vertices are merged.

2. Coarse Partitioning: The target of this step is to coarsen G to the coarsest
graph G|V |. To coarsen means to merge two nodes and reduce the node count
by one. Therefore, the algorithm has |V | − 1 phases. In each phase i (for
1 ≤ i ≤ |V | − 1), the cut value, i.e. the partitioning cost in a graph Gi =
(Vi, Ei) is calculated. Gi+1 arises from Gi by merging “suitable nodes”, where
G1 = G. The partitioning results are the minimum cut among all the cuts in
an individual phase i and the corresponding group lists for local and cloud
execution. Furthermore, in each phase i of the coarse partitioning we still
have five steps:
(a) Start with A={a}, where a is usually an unoffloadable node in Gi.
(b) Iteratively add the vertex to A that is the most tightly connected to A.
(c) Let s, t be the last two vertices (in order) added to A.
(d) The graph cut of the phase i is (Vi\{t}, {t}).
(e) Gi+1 arises from Gi by merging vertices s and t.

3.2 Algorithmic Process

The algorithmic process is illustrated as the MinCut function in Algorithm 2, and
in each phase i, it calls the MinCutPhase function as described in Algorithm 3.
Since some tasks have to be executed locally, we need to merge them into one node.
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The merging function is used to merge two vertices into one new vertex,
which is implemented as in Algorithm 1. If nodes s, t ∈ V (s �= t), then they can
be merged as follows:

1. Nodes s and t are chosen.
2. Nodes s and t are replaced by a new node xs,t. All edges that were previously

incident to s or t are now incident to xs,t (except the edge between nodes s
and t when they are connected).

3. Multiple edges are resolved by adding edge weights. The weights of the node
xs,t are resolved by adding the weights of s and t.

For example, we can merge nodes 2 and 4 as shown in Fig. 2.
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Fig. 2. An example of merging two nodes

The core of this algorithm is to make it easy to select the next vertex to be
added to the local set A. We have the following definition.

Definition 1. ∃v ∈ V \A, if the potential benefit from offloading once v is
offloaded:

Δ(v) = [wlocal(v) − wcloud(v)] − w(e(A, v))

is the minimum, then task v has the most chance to be executed locally, and the
vertex v is called Most Tightly Connected Vertex (MTCV).

Further, we have the total cost from partitioning:

Ccut(A−t,t) = C local −
[
wlocal(t) − wcloud(t)

]
+

∑
v∈A\t

w(e(t, v)), (8)

where the cut value Ccut(A−t,t) is the partitioning cost, C local =
∑

v∈V wlocal(v)
is the total of local costs, wlocal(t)−wcloud(t) is the gain of node t from offloading,
and

∑
v∈A\t w(e(t, v)) is the total of extra communication costs due to offloading.

Theorem 1. cut(A − t, t) is always a minimum s − t cut in the current graph,
where s and t are the last two vertices added in the phase, the s− t cut separates
nodes s and t on two different sides.
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Algorithm 1. The Merging function
//This function takes s and t as vertices in the given graph and merges them into one
Function: G′=Merge(G, w, s, t)

Input: G: the given graph, G = (V, E)
w: the weights of edges and vertices
s, t: two vertices in previous graph that are to be merged

Output: G′: the new graph after merging two vertices

1: xs,t ⇐ s ∪ t
2: for all nodes v ∈ V do
3: if v �= {s, t} then
4: w(e(xs,t, v)) = w(e(s, v)) + w(e(t, v))
5: //adding weights of edges
6:

[
wlocal(xs,t), w

cloud(xs,t)
]

=
[
wlocal(s) + wlocal(t), wcloud(s) + wcloud(t)

]

7: //adding weights of nodes
8: E ⇐ E ∪ e(xs,t, v) //adding edges
9: end if

10: E′ ⇐ E\{e(s, v), e(t, v)} //deleting edges
11: end for
12: V ′ ⇐ V \{s, t} ∪ xs,t

13: return G′ = (V ′, E′)

Algorithm 2. The MinCut function
//This function performs an optimal offloading partition algorithm
Function: [minCut, MinCutGroupsList] = MinCut(G, w, SourceV ertices)

Input: G: the given graph, G = (V, E)
w: the weights of edges and vertices
SourceVertices: a list of vertices that have to be kept in one side of the cut

Output: minCut : the minimum sum of weights of edges and vertices among the cut
MinCutGroupsList : two lists of vertices, one local list and one remote list

1: w(minCut) ⇐ ∞
2: for i = 1 : length(SourceV ertices) do
3: //Merge all the source vertices (unoffloadable) into one
4: (G, w) = Merge(G, w, SourceV ertices(1), SourceV ertices(i))
5: end for
6: while |V | > 1 do
7: [cut(A − t, t), s, t] = MinCutPhase(G, w)
8: if w(cut(A − t, t)) < w(minCut) then
9: minCut ⇐ cut(A − t, t)

10: end if
11: Merge(G, w, s, t)
12: //Merge the last two vertices (in order) into one
13: end while
14: return minCut and MinCutGroupsList



An Optimal Offloading Partitioning Algorithm in Mobile Cloud Computing 321

Algorithm 3. The MinCutPhase function
//This function perform one phase of the partitioning algorithm
Function: [cut(A − t, t), s, t]=MinCutPhase(Gi, w)

Input: Gi: the graph in Phase i, i.e., Gi = (Vi, Ei)
w: the weights of edges and vertices
SourceVertices: a list of vertices that are forced to be kept in one side of the cut

Output: s, t: the lasted two vertices that are added to A
cut(A − t, t): the cut between {A − t} and {t} in phase i

1: a ⇐ arbitrary vertex of Gi

2: A ⇐ {a}
3: while A �= Vi do
4: min = −∞
5: vmin = null
6: for v ∈ Vi do
7: if v /∈ A then
8: //Performance gain through offloading the task v to the cloud
9: Δ(v) ⇐ [wlocal(v) − wcloud(v)] − w(e(A, v))

10: //Find the vertex that is the most tightly connected to A
11: if Δ(v) < min then
12: min = Δ(v)
13: vmin = v
14: end if
15: end if
16: end for
17: A ⇐ A ∪ {vmin}
18: a ⇐ Merge(G, w, a, vmin)
19: end while
20: t ⇐ the last vertex (in order) added to A
21: s ⇐ the last second vertex (in order) added to A
22: return cut(A − t, t)

The run of each MinCutPhase function orders the vertices of the current graph
linearly, starting with a and ending with s and t, according to the order of
addition into A. We want to show that Ccut(A−t,t) ≤ Ccut(H) for any arbitrary
s − t cut H.

Lemma 1. We define H as an arbitrary s− t cut, Av as a set of vertices added
to A before v, and Hv as a cut of Av ∪ {v} induced by H. For all active vertices
v, we have Ccut(Av, v) ≤ Ccut(Hv).



322 H. Wu et al.

Proof. As shown in Fig. 3, we use induction on the number of active vertices, k.

1. When k = 1, the claim is true,
2. Assume the inequality holds true up to u, that is Ccut(Au, u) ≤ Ccut(Hu),
3. Suppose v is the first active vertex after u, according to the assumption that

Ccut(Au, u) ≤ Ccut(Hu), then we have:

Ccut(Av, v) = Ccut(Au, v) + Ccut(Av − Au, v)
≤ Ccut(Au, u) + Ccut(Av − Au, v) (u is MTCV )
≤ Ccut(Hu) + Ccut(Av − Au, v)
≤ Ccut(Hv).

Since t is always an active vertex with respect to H, by Lemma 1, we can
conclude that Ccut(A−t,t) ≤ Ccut(H) which says exactly that the cost of cut(A −
t, t) is at most as heavy as the cost of cut(H). This proves Theorem 1.

  t sa

At

(a) The s − t cut

  t sa

Ht

(b) An arbitrary s − t cut

Fig. 3. The illustration for the proof of Lemma 1

3.3 Computational Complexity

As the running time of the algorithm MinCut is essentially equal to the added
running time of the |V | − 1 runs of MinCutPhase, which is called on graphs
with decreasing number of vertices and edges, it suffices to show that a single
MinCutPhase needs at most O(|V | log |V |+ |E|) time yielding an overall running
time. The computational complexity of the MCOP algorithm can be noted as
O(|V |2 log |V | + |V ||E|).

As a comparison, Linear Programming (LP) solvers are widely used in
schemes like MAUI [6] and CloneCloud [7]. An LP solver is based on branch
and bound, which is an algorithm design paradigm for discrete and combinator-
ial optimization problems, as well as general real valued problems. The number
of its optional solutions grows exponentially with the number of tasks, which
means higher time complexity O

(
2|V |).

While the partitioning e.g., MAUI has exponential time complexity by using
LP, our algorithm only has low-order polynomial run time in the number of
tasks. Therefore, the MCOP algorithm can handler larger call graphs, which
shows its advantage over simple partitioning models as used in MAUI: it can
group tasks that process large amounts of data on one side, either the Cloud or
the mobile, depending on the network condition.
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4 Performance Evaluation

Comparing the execution time spent on the mobile device and the one on the
cloud, the speedup factor F is obtained. In practice, we will first access to the
cloud server to estimate the remote execution time. We use the average value,
since the mobile device might assign more computation resources to a process at
different moments of its execution. Therefore, during runtime of an application
the link and node cost is constantly updated (the updated value will be an
average of the past values and the newly obtained one).

The construction of WCG closely depends on profiling, i.e., the process of gath-
ering the information required to make offloading decisions. Such information may
consist of the computation and communication costs of the execution units (pro-
gram profiler), the network status (network profiler), and the mobile device specific
characteristics such as energy consumption (energy profiler). Since the focus of this
paper is on the partitioning algorithm we will not enter into the details of profiling
techniques, which can be found in many existing references [6,25].

We take a face recognition application1 as an example. By analyzing this
application with Soot [26], the call graph could be built as a tree-based topology
shown in Fig. 4(a). We further construct weighted consumption graph under
the condition of the speedup factor F = 2 and the bandwidth B = 1 MB/s
with reliability = 1, where the main and checkAgainst methods are assumed as
unoffloadable nodes.
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(a) A call graph
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(b) A partitioning result

Fig. 4. An optimal partitioning result of the face recognition application

1 The face recognition application is built using an open source code http://darnok.
org/programming/face-recognition/, which implements the Eigenface face recogni-
tion algorithm.

http://darnok.org/programming/face-recognition/
http://darnok.org/programming/face-recognition/
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We then implement the MCOP algorithm in Java2. The optimal partitioning
result is depicted in Fig. 4(b), where red nodes represent the application tasks
that should be offloaded to the remote cloud and the blue nodes are the tasks
that are supposed to be executed locally on the mobile device.

We do a simple simulation with the WCG as predicted in Fig. 2. We have
received different results under the different parameters of speedup factor F and
reliable wireless bandwidth B. The partitioning results will change as B or F
vary.

In Fig. 5 the speedup factor is set to F = 3. Since the low bandwidth results
in much higher cost for data transmission, the full offloading scheme can not
benefit from offloading. Given a relatively large bandwidth and stable network,
the response time or energy consumption obtained by the full offloading scheme
slowly approaches the partial offloading scheme because the optimal partition
includes more and more tasks running on the cloud side until all offloadable tasks
are offloaded to the cloud. With higher bandwidth and more stable network, they
begin to coincide with each other and only decrease because all possible nodes are
offloaded and the transmissions become faster. Both, response time and energy
consumption have the same trend as the wireless bandwidth increases. Therefore,
bandwidth and network reliability is a crucial element for offloading since the
mobile system could benefit a lot from offloading in stable, high bandwidth
environments, while with low bandwidth and fragile network, the no offloading
scheme is preferred.
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Fig. 5. Comparisons of different schemes under different wireless bandwidths when the
speedup factor F = 3

In Fig. 6 the bandwidth is fixed at B = 3 MB/s. It can be seen that offloading
benefits from higher speedup factors. When F is very small, the full offloading

2 An optimal partitioning algorithm, the code can be found in https://github.com/
carlosmn/work-offload, thanks to Daniel Seidenstücker and Carlos Mart́ın Nieto for
their help.

https://github.com/carlosmn/work-offload
https://github.com/carlosmn/work-offload
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Fig. 6. Comparisons of different schemes under different speedup factors when the
bandwidth B = 3 MB/s

scheme can reduce energy consumption of the mobile device. However, it takes
much longer than without offloading. The partial offloading scheme that adopts
the MCOP algorithm can effectively reduce execution time and energy consump-
tion, while adapting to environmental changes.

From Figs. 5 and 6, we can tell that the full offloading scheme performs much
better than the no offloading scheme under certain adequate wireless network
conditions, because the execution cost of running methods on the cloud server
is significantly lower than on the mobile device when the speedup factor F
is high. The partial offloading scheme outperforms the no offloading and full
offloading schemes and significantly improves the application performance, since
it effectively avoids offloading tasks in the case of large communication cost
between consecutive tasks compared to the full offloading scheme, and offloads
more appropriate tasks to the cloud server. In other words, neither running all
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Fig. 7. Offloading gains under different environment conditions when ω = 0.5
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tasks locally on the mobile terminal nor always offloading their execution to a
remote server can offer an efficient solution, but our partial offloading scheme
can do.

In Fig. 7(a) when the bandwidth is low, the offloading gain for all three cost
models is very small and almost identical. That is because more time/energy will
be spent in transferring the same amount of data due to the poor network and low
bandwidth, resulting in increased execution cost. As the bandwidth increases,
the offloading gain first rises drastically and then the increase becomes slower.
It can be concluded that the optimal partitioning plan includes more and more
tasks running on the cloud side until all the tasks are offloaded to the cloud when
the network condition and bandwidth increases. In Fig. 7(b) when F is small, the
offloading gain for all three cost models is very low since a small value means very
little computational cost reduction from remote execution. As F increases, the
offloading gain first rises drastically and then approaches the same value. That
is because the benefits from offloading cannot neglect the extra communication
cost. From Fig. 7, the proposed MCOP algorithm is able to effectively reduce
the application’s energy consumption as well as its execution time. Further, it
can adapt to environmental changes to some extent and avoids a sharp decline
in application performance once the network deteriorates and the bandwidth
decreases.

5 Conclusion

To tackle the problem of dynamic partitioning in a mobile environment, we have
proposed a novel offloading partitioning algorithm (MCOP algorithm) that finds
the optimal application partitioning under different cost models to arrive at the
best tradeoff between saving time/energy and transmission costs/delay. Contrary
to the traditional graph partitioning problem, our algorithm is not restricted to
balanced partitions but takes the infrastructure heterogeneity into account.

The MCOP algorithm provides a stably quadratic runtime complexity for
determining which parts of application tasks should be offloaded to the cloud
server and which parts should be executed locally, in order to save energy of
the mobile device and to reduce the execution time of an application. Since the
reliability of wireless bandwidth can vary due to mobility and interference, it
strongly affects the application’s optimal partitioning result. When the network
is poor, high communication cost will be incurred, and the MCOP algorithm will
include more application tasks for local execution. Experimental results show
that according to environmental changes (e.g., network bandwidth and cloud
server performance), the proposed algorithm can effectively achieve the optimal
partitioning result in terms of time and energy saving. Offloading benefits a lot
from high bandwidths and large speedup factors, while low bandwidth favors
the no offloading scheme.

The concept of optimal application partitioning under constraints generalises
to many scenarios in distributed computing where should be explored further.
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Abstract. Maintenance is crucial to ensuring and improving system
dependability: By performing timely inspections, repairs, and renewals
the lifespan and reliability of systems can be significantly improved.
Good maintenance planning, however, has to balance these improve-
ments against the downsides of maintenance, such as costs and planned
downtime.

In this paper, we study the effect of different maintenance strategies on
a pneumatic compressor used in trains. This compressor is critical to the
operation of the train, and a failure can lead to a lengthy and expensive
disruption. Within the rolling stock maintenance company NedTrain, we
have modelled this compressor as a fault maintenance tree (FMT), i.e. a
fault tree augmented with maintenance aspects. We show how this FMT
naturally models complex maintenance plans including condition-based
maintenance with regular inspections. The FMT is analysed using statis-
tical model checking, which allows us to obtain several key performance
indicators such as the system reliability, number of failures, and required
unscheduled maintenance.

Our analysis demonstrates that FMTs can be used to model the com-
pressor, a practical system used in industry, including its maintenance
policy. We validate this model against experiences in the field, compute
the importance of performing minor services at a reasonable frequency,
and find that the currently scheduled overhaul may not be cost-effective.

1 Introduction

Maintenance of Critical Assets. The current trend in asset management
is to use reliability-centered maintenance (RCM), with the goal of optimizing
maintenance planning by maintaining critical assets more intensively than less
critical ones. By focusing maintenance where it is most effective, RCM seeks to
balance maintenance costs against system dependability. To achieve this balance,
it is necessary to have a good understanding of the effects of a maintenance pol-
icy on the system’s dependability, measured by key performance indicators like
c© Springer International Publishing Switzerland 2016
G. Agha and B. Van Houdt (Eds.): QEST 2016, LNCS 9826, pp. 331–347, 2016.
DOI: 10.1007/978-3-319-43425-4 22
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Fig. 1. A pneumatic compressor. Air is drawn in from the environment via the air filter
and compressed by a set of screws. The compressed air is then cooled, and moisture and
oil particulates are removed before the air enters the pneumatic system of the train.

availability, reliability, mean time to failure, etc. Achieving this understanding
calls for an integrated analysis of system dependability and maintenance. This
paper shows a method to perform such an integral analysis, namely fault main-
tenance trees (FMTs), and demonstrates that this method yields useful results
on RCM strategies by studying a typical rolling stock asset (namely a pneumatic
compressor, shown in Fig. 1) via FMTs.

Fault Trees and Fault Maintenance Trees. Fault tree analysis (FTA) [15]
is a popular methodology for dependability analysis, and is commonly used in
industry. A fault tree (FT) models component failures at the leaves of the tree.
Then gates (like AND and OR) show how component failures lead to system
failure — indeed not every single failure causes a system failure in a system with
redundancy. When the failure rates of the components are known, then FTA can
compute the probability for a compound event, typically a system failure.

Traditional FTA is very useful to analyse the reliability of systems when failure
rates are given. In practice, however, these failure rates are strongly affected by
maintenance, which is not taken into account by fault trees. Thus, FTA is not
suitable to compare the performance of different maintenance policies. Moreover,
many existing approaches support only exponentially distributed failure times of
components.

To overcome these limitations and to determine the effect of different mainte-
nance strategies on system reliability and costs, fault maintenance trees (FMTs)
have been developed [11] combining fault trees with arbitrary failure time dis-
tributions and maintenance models. The latter represent the necessary elements
for modelling maintenance: degradation of components, inspections, and repairs.
Moreover, FMTs introduce a new gate: the rate dependency (RDEP) gate enables
the failure of one component to accelerate the degradation of other components.
In this paper, we find that RDEPs are necessary to accurately model the compres-
sor. Certain failure modes, like loss of lubricating oil, severely accelerate failures
of components such as motors.
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FMT Analysis via Stochastic and Statistical Model Checking. FMTs
are analysed by converting each element of the FMT, i.e. leaf, gate, and mainte-
nance element, into a priced timed automaton (PTA). These automata are then
composed to yield a stochastic model of the system, which is analysed using sta-
tistical model checking (SMC) [10], a Monte Carlo simulation technique [9] to
obtain numerous important dependability metrics, including system reliability,
availability, MTTF, expected cost, etc.

A major advantage of our approach is that, in addition to obtaining quantita-
tive results using SMC, we can qualitatively validate the structural correctness of
our model using traditional model checking techniques in the UPPAAL tool [6].

TheTrain-BoundPneumatic Compressor. Many systems on modern trains,
such as the brakes and automatic doors, are controlled and powered by compressed
air generated by a pneumatic compressor (shown in Fig. 1). For example, when
the door on a train opens, one often hears a hissing sound. This is the flow of air
produced by the compressor. Since the doors and especially the brakes are safety-
critical components, a loss of air pressure will leave the train stranded until it can
be repaired or towed. It is thus critical to keep the compressor functioning.

The compressor generates compressed air from air in the environment. This
air is filtered of dust and particulates, and pushed by motor-driven screws into
a high-pressure chamber. The compressed air is then cooled and compressed
moisture removed. As the screws are lubricated with oil, small droplets of oil
enter the stream of air and also need to be removed. Finally, the compressed air
is stored in a high-pressure reservoir to be used in the pneumatically-powered
systems. Various safety elements such as pressure valves and temperature sensors
ensure the compressor and the systems it powers are not damaged.

Maintenance of this compressor is required to keep it functioning correctly.
The compressor contains consumable parts such as filters that need periodic
replacements, and other components wear out over time. This maintenance is
typical for the railway industry, with periodic replacements and inspections, and
different costs for planned and unplanned maintenance. Furthermore, failure
costs are high for unscheduled breakdowns during operation.

The compressor is a relevant case study for three reasons: (1) The analysis
is useful for NedTrain’s internal operations for logistics and maintenance engi-
neering purposes; (2) The failure characteristics of the compressor are well doc-
umented through FMEAs, internal documentation and historical failure data;
(3) Maintenance on the compressor is performed relatively independent of the
rest of the train, as a defective compressor can be replaced by a functioning one
from stock. This gives more freedom to optimize the maintenance program.

Modelling and Analysis. We have conducted a reliability analysis of a par-
ticular model of pneumatic compressor. We analyse the dependability of these
compressors, computing the reliability, expected number of failures, and expected
number of required unscheduled maintenance events. In particular, we investi-
gate the current maintenance strategy, as well as potentially better strategies.
We consider (1) variations in maintenance intervals, and (2) the usefulness of
periodic overhauls.
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This analysis was conducted together with NedTrain, the company that per-
forms rolling stock maintenance for the Dutch Railways and other train opera-
tors. NedTrain is responsible for the maintenance of over 800 trains.

Our analysis finds that performing periodic servicing of the compressor has
a major effect on its reliability. The periodic minor overhaul, on the other hand,
does not appear to have a strong influence.

Contributions. An important contribution is the demonstration that our
method can easily be extended to include system-specific constructs for mod-
elling unusual aspects of the degradation behaviour. Specifically, we included
events whose failure rate depends on the state of several other components, and
maintenance actions depending on the state of components that are not relevant
for the system failure.

Last but not least, we conclude that FMTs are a useful framework to inves-
tigate maintenance optimization problems from industrial practice: FMTs are a
convenient model, have sufficient expressive power to capture complex mainte-
nance aspects, and are able to produce predictive analysis results.

1.1 Related Work

A large number of analysis techniques and extensions for fault trees exist, for
an overview we refer the reader to [12]. Current FTA techniques support simple
repair strategies by either equipping leaves with repair times [15] or with repair
boxes [3]. These techniques consider a BE to be either failed or functioning,
while FMTs add support for degraded states and maintenance actions taken
depending on the level of degradation.

Extending traditional fault trees, Bucci et al. [4] present a tool that can
analyse FTs with non-Markovian failure distributions, which can also be used to
analyse component failures due to wear over time. This method, however, does
not consider maintenance to undo this wear.

An alternative extension of FTs is the Extended fault tree formalism by
Buchacker et al. [5], which can model systems where some components have
failure rates that depend on the status of other components. They still model
failure times as exponential distributions, and do not include repairs or inspec-
tions dependent on full subtrees.

When FTA is not applicable, many techniques exist to analyse and optimize
maintenance strategies without using FTA. We refer the reader to reviews such
as [1] on the use of simulation techniques or [13] for techniques including analytic
approximations and Bayesian reasoning.

One such approach, by Carnevali et al. [7], considers maintenance in phased
systems where resources are used in a sequence of tasks, with detection and
repair actions in-between these tasks.

If a system consists of a single components or a group of identical components,
van Noortwijk and Frangopol [14] consider in detail two models of the effects
of various maintenance choices on the reliability and cost in civil infrastructure.
Neither of these models consider the failure behaviour of systems of different
components.
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1.2 Organization of the Paper

This paper begins with a description of the pneumatic compressor in Sect. 2
and the methodology in Sect. 3. The modelling of the compressor by FMTs
is explained in Sect. 4. Then, Sect. 5 explains how the FMT is analysed, and
provides the results of this analysis. Finally, we provide our conclusions in Sect. 6.

2 Case Description: The Pneumatic Compressor

Pneumatic compressors (see Fig. 1) are devices that produce compressed air. In
modern trains, a pipe of compressed air runs throughout the train, and valves
control the air pressure to certain installations such as the pantograph (connect-
ing the train to the overhead power line) and automatic doors. The air pressure
controls the operation of these installations, as well as providing the necessary
power to operate them.

As these compressors are critical to the operation of the train, they are also
a potential cause of disruptions. Various types of failures can occur, such as oil
leaks and clogged filters. Inspections are performed to determine whether failures
are likely to occur soon, and preventive action, such as replacing a nearly-full
filter, can be taken to prevent the failure occurring in the field. Some components
such as filters are also periodically replaced, since replacing them all in one
service is cheaper than spreading the replacements over multiple services when
inspections find a problem.

Below, we describe the operation of the compressor, its main failure modes,
and the current maintenance plan.

2.1 Purpose and Operation

Pneumatic systems have long been used as a control mechanism in trains. Brak-
ing systems operated by air pressure date back to 1868 [16], and are still in use
today. Although electronics are starting to replace or supplement pneumatic
control, modern trains still use pneumatics for emergency brakes and other
applications, such as opening and closing doors automatically and raising the
pantograph to connect to the overhead electrical line.

Safety-critical pneumatic systems are designed to be fail-safe: A loss of air
pressure disrupts functionality, but poses no danger. Brakes, for example, are
loosed by high pressure and applied when the pressure drops. A failed com-
pressor, therefore, does not constitute a safety risk. Nonetheless, since a failed
compressor leaves the train stranded, such failures cause costly and lengthy dis-
ruptions.

To provide high-pressure air for the pneumatics, modern trains use electric
compressors. In addition to generating a high pressure, the compressor also clears
the air of dust and debris, and removes moisture which could cause corrosion or
freezing in pipes and pneumatically-powered devices.

We examine the particular model of compressor used in Dutch VIRM 1/2/3
trains. This compressor operates using rotating screws that take air from the
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outside and compress it into a pipe. Before reaching the screw, the air first
passes through a filter to remove any dust or debris. The screw is lubricated
using oil. Due to the relatively high temperatures and airflow, micro-particles
of oil are carried in the airflow through the system. To remove this oil, the air
passes through two additional filters. Finally, the air is cooled and passed to the
pneumatic system.

Several safety features are in place to prevent damage to the compressor or
pneumatic systems: Pressure-controlled valves ensure the compressed air does
not reach unsafe pressures, and a temperature switch disables the compressor if
the oil temperature gets too high.

2.2 Failure Modes

Compressor failures can be divided into two categories: Complete failures where
the compressor does not operate at all, and degraded operation where the com-
pressor does not generate a sufficiently high pressure. For this paper, we consider
only failures that prevent the train from operating, meaning complete failure or
so much degradation that immediate repair is necessary. Other forms of degraded
operation can be analyzed similarly.

Table 1. Parameters of the failure modes of the com-
pressor. The failure times of the components follow an
Erlang distribution with the indicated number of phases
and total expected time to failure (in years) assuming no
maintenance is performed. The values have been scaled
for anonymity. Failure mode 3 is not strictly a failure,
but rather an event that is required for mode 2 to lead
to failures. Also failure modes 14 and 15 are not fail-
ures, but rather indicators of degradation that are used
to initiate maintenance actions, as described in Sect. 4.

Nr. Failure mode Nr. of phases ETTF

1 Motor does not start when asked 3 16.6

2 De-aeration valve defective 3 200

3 Two starts in short time 2 0.001

4 Radiator obstructed 4 5.5

5 Oil thermostat defective 3 16.6

6 Low oil level 4 5.5

7 Pressure valve leakage 3 3.3

8 Air filter obstructed 2 500

9 Degraded air filter 4 5

10 Particle-induced damage 4 120

11 Oil pollution 4 5.5

12 Lubrication-induced wear 4 120

13 Motor/bearings degraded 4 120

14 Oil fine filter full 3 30

15 Degraded capacity 2 10

Table 1 lists the types
of failure that can occur,
together with their fail-
ure parameters: Each fail-
ure mode is characterized
by the expected time to
failure assuming no main-
tenance is performed, and
the number of degradation
phases we consider in our
model.

The wear of the com-
pressor screws and the
motor and bearings is
complicated due to mul-
tiple causes. Particles can
enter the compressor despite
the filter, which causes
degradation of the screws.
The rate at which parti-
cles pass through the filter
is significantly increased if
the filter is already worn.
A second mode of wear is
caused by insufficient lubrication of the screws and of the motor. This can be
caused by pollution of the oil, or by insufficient oil, or a combination of both.
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2.3 Maintenance

The current maintenance policy followed by NedTrain consists of some specific
inspections every two days, and scheduled services every three months with a
larger service every nine months. A minor overhaul is performed every three
years and a major overhauls every six years (for reasons of confidentiality, these
times have been scaled with the same factor as the BE failure rates).

The bi-daily inspection is mostly performed at night, while the train is pre-
pared for service. Mechanics check the on-board diagnostic system for recorded
events such as overpressure, and perform an inspection to find oil leaks or exces-
sive noise. If this inspection finds a defect, an unscheduled service is necessary
to correct it.

During the scheduled services, consumable parts such as filters are replaced,
and components of the compressor are inspected for signs of wear. Some func-
tional tests of the overall performance of the compressor are also performed,
such as measuring the time needed to pressurize the pneumatic system for the
entire train starting from atmospheric pressure.

Every three years, the compressor is removed from the train and shipped
to NedTrain’s component workshop for an overhaul. Minor and major over-
hauls are alternated. During an overhaul, the compressor is disassembled and
all components are examined and replaced if needed. During a minor overhaul
components with a small amount of wear are reused. During a major overhaul,
all worn components are replaced, and the compressor is considered as good as
new afterwards.

Each maintenance action can also lead to more intensive services if problems
are found that cannot be corrected during the scheduled service. For example, if
a minor service inspection finds that the compressor is not producing sufficient
pressure but cannot find the cause, the compressor can be sent in for an overhaul.

3 Methodology

To analyse and optimize the maintenance strategy for the compressor, we have
modelled the compressor in terms of fault maintenance trees. Below, we briefly
describe the main ingredients of this framework: fault trees, maintenance models,
analysis methods, and metrics.

3.1 Fault Trees

Fault trees (FTs) are a graphical method for performing reliability and safety
analysis, widely used in industry. An FT models how component failures prop-
agate through a system to lead to system failure, and allows a wide range of
qualitative and quantitative properties to be analyzed [12,15].

FTs are directed acyclic graphs in which the leaves are called basic events
(BEs) and describe component failures, and internal nodes are called gates and
describe what combinations of basic events cause compound failures. The gate
at the root of the tree is called the top level event and typically denotes a system
failure or other undesired event.
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Train stranded due to compressor failure

No operation Reduced capacity

1
Safety relay
engaged

3

2

Oil temperature
safety engaged

4 5 6

7 8 Compressor screws worn

10 12

13

9
11

Fig. 2. Fault Tree describing the major failure modes of the compressor. The numbers
in the basic events correspond to the numbers of the failures modes in Table 1. Failure
modes 14 and 15 are not shown, as they do not contribute to the top event.

The gates of standard fault trees are AND-, OR-, and VOT(k)-gates, which
fail when all, any, or at least k of their children fail, respectively. The leaves of
a traditional continuous-time FT are equipped with exponential failure rates,
describing the progression of failure probabilities over time.

Classic fault tree analysis includes techniques to compute the reliability and
availability of the system, to find the biggest contributors to system unreliability,
and to compute the sensitivity of these metrics to the parameters of the BEs [12].

3.2 Fault Maintenance Trees

Fault maintenance trees (FMTs) [11] are an extension of FTs that can model sev-
eral additional contributors to system reliability, such as maintenance through
inspections and repairs, degradation of components over time, and situations
where one failure causes accelerated wear of another component. The FMT mod-
elling the compressor is shown in Fig. 2.

Extended Basic Events. The BEs in an FMT are more expressive than in
standard BEs: Standard BEs generally model only exponential or Weibull dis-
tributions of failure times, while FMTs support failures that occur when a com-
ponent gradually wears out, and where the effect of this wear can be reversed
by maintenance actions.

BEs represent the components’ failure behaviour over time. A BE can be
equipped with multiple phases, representing different stages of degradation.
A threshold specifies at which phase an inspection should trigger a maintenance
action. The transition time into a next phase can be described by an arbitrary
probability distribution, but usually follows an exponential distribution, in which
case the total failure behaviour of a BE is described by an Erlang distribution.
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RDEP Gates. FMTs support all the gates of static and dynamic FTs [8].
Additionally, they include a rate dependency (RDEP) gate, representing depen-
dencies between components leading to accelerated wear. This gate has one input
event, and one or more dependent children. When the input event occurs, the
failure behaviours of the dependent children are all accelerated by a factor γ,
independently specified for each child. When the input is repaired, degradation
of the children returns to their normal rates.

Repair and Inspection Modules. Standard FTs can support relatively sim-
ple repair policies using distributions over repair times, or via repair boxes [3].
FMTs enable more advanced maintenance policies via repair modules (RM) and
inspection modules (IM).

An IM describes at what frequency components are inspected as well as
the so-called repair threshold. The latter is the (minimal) degradation phase
where repairs will be performed. When the repair threshold is reached, the next
inspection will trigger a repair and send a repair request to the RM associated
with the IM.

The RM listens for repair requests of specific IMs and initiates the repair or
partial replacement of a specific set of BEs. When the RM is invoked, the BEs
change their phases to a less degraded phase. Moreover, the RM can invoke a
periodic renewal of components, e.g. the replacement of a tire after four years.

IMs and RMs can be combined to model more complex policies, such as
periodic replacements or simultaneous repair of a group of components when
one fails.

C

C

n failures += 1
fail [id]!
phase == n phaseslambda

thres phase ==
n phases

thres [insp id]!
thres phase != n phases

repair [rep id]?

repaired [id]!
phase := 1

repair [rep id]?
phase := 1

C C

phase < n phases

phase != thres phase
thres [insp id]!

phase == thres phase

phase += 1

Fig. 3. PTA of a basic event with failure time given by an Erlang distribution with
n phases phases and a repair threshold at thres phase. From the initial state, the
PTA waits an exponentially distributed time with mean lambda, and moves downward
if it has not yet reached the last phase in the Erlang distribution, or rightward if
it has. If it is not in the final phase, it advances by one phase, and it may emit a
signal thres[insp id] to a listening inspection module. The BE may also receive a signal
repair[rep id] and return the initial phase. Upon completing the final phase, the failure
counter is incremented and a signal fail[id] is emitted. A threshold signal may be sent,
and then the BE waits to receive a repair[rep id] signal. After receiving this signal, the
failed BE emits a signal repaired[id], and returns to the initial phase and state.
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3.3 Analysis of FMTs by Statistical Model Checking

Technically, FMTs are analysed using statistical model checking of priced timed
automata (PTAs) [2]. That is, we first convert the FMTs into a network of PTAs
and use the statistical model checker UPPAAL [6] to compute the requested
metrics.

PTAs are an extension of timed automata with costs on locations and actions.
PTAs are transition systems using real-valued clocks to specify deadlines, with
enabling conditions for actions. Costs can be incurred at a fixed amount when
taking a transition, or proportional to the time spent in a certain location.

Each element of the FMT (i.e. each BE, IM, RM, and gate) is assigned
a unique ID, and a template of the appropriate PTA is instantiated with the
specific parameters for the element.The PTAs for the basic event, repair module
and the inspection module are shown in Figs. 3, 4, and 5, respectively. The IDs
are used to instantiate the synchronization signals.

The PTA is then analyzed using the UPPAAL model checker. This approach
has the advantage of allowing both quantitative analysis of the metrics described
in Sect. 3.4 using statistical model checking, and qualitative analysis and valida-
tion of the structural correctness of the model using traditional model checking.
The latter enables us to check properties of the model such as that every BE
can be repaired, that every gate can fail, etc.

x := 0
x == Tperiod

x <= Tperiod force[id]?
x := 0

x <= Trepair

x == Trepair

Ctotal += C
Cmaint += C

x := 0
repair[id]!

Fig. 4. PTA for a repair module. The
PTA begins in the leftmost state with
clock x initially zero. It waits until
either the waiting time for a periodic
repair (Tperiod) elapses, or a repair
request signal (force[id]) is received.
In either case, the module waits some
time Trepair, incurs the C for a repair,
sends a signal (repair[id]) to any BEs
repaired by this module, and resets the
timer.

x <= Tperiod

x <= Tperiod

thres[id]?

force[rep id]!
x == Tperiod

Ctotal += C
Cinsp += C

x == Tperiod

x := 0
Ctotal += C
Cinsp += C

Fig. 5. PTA for an inspection module.
The PTA begins in the leftmost state,
and waits until either the time until the
inspection interval (Tperiod) elapses, or
a threshold signal (thres[id]) is received
from a BE. If the time elapses before a
signal is received, the inspection cost
is incurred and the timer resets. If a
threshold signal is received, the module
waits for the scheduled inspection time,
then signals its associated repair mod-
ule to begin a repair (force[rep id]),
and resets the timer.

Qualitative checks require state-space exploration of the model, which leads
to exponential time-complexity as the number of FMT elements increases.
Fortunately, the statistical model checker does not need to generate the full
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state-space, and thus its computation time is relatively independent of the num-
ber of elements, but rather grows with the desired accuracy of the result.

3.4 Metrics

We analyse several aspects of the dependability of the compressor, namely the
reliability, expected number of failures, and expected number of unplanned main-
tenance activities. These can be used to compare different maintenance policies
and help in deciding which policy is better, as well as to check that the com-
pressor population will meet its performance requirements under a given policy.

Reliability. The probability of experiencing no system failures within a given
time period. We compute the probability that within a certain period, there is
never a time where a set of BEs is in a failed state leading to the occurrence of the
top level event of the FMT. In LTL, we annotate the state corresponding to the
failure of the top-level event as failed, and express the reliability within time t as
P (�≤tfailed).

The term unreliability denotes the probability that at least one failure occurs
in the time of interest.

Expected Number of Failures. We compute the expected number of occur-
rences of the top event within a given time window. Since the compressor can
always be repaired after a failure, there can be multiple failures over time. We
can also compute the number of failures of individual components or subtrees of
the FMT.

Expected Number of Unplanned Maintenance Activities. We compute
the expected number of times that an inspection finds a defect that is not cor-
rected during the normal maintenance procedure. In the case of the compressor,
this occurs for any failure found during the bi-daily inspection, or at certain lev-
els of degradation of components during servicing. These cases require a repair to
be scheduled in the maintenance depot or overhaul facility. During an overhaul,
all repairs are considered part of planned maintenance.

4 Modelling of the Compressor Table 2. Specification of
the acceleration factor of
BEs 12 and 13, depend-
ing on the states of BEs 6
and 11. The non-degraded
state is state 0, the failed
state is state 3.

State BE 6

State BE 11 0 1 2 3

0 1 2 4 6

1 2 4 6 10

2 4 6 10 15

3 6 10 15 30

The fault tree and maintenance plan described in
Sect. 2 were constructed by the research department
of NedTrain.

Based on documentation of failure characteristics
and expert opinions of system engineers and mechan-
ics, the structure of the FMT was constructed. The
resulting FMT is displayed in Fig. 2. As described in
Sect. 2.2, compressor failures are divided into complete
failures and reduced capacity. This division helps val-
idate the model, since these categories of failures are
easy to distinguish in a practical fault condition.



342 E. Ruijters et al.

Table 3. Maintenance des-
cription for the compressor.
Given a BE, a phase of degra-
dation, and a maintenance
action, the table lists the effect
of that action on the degra-
dation of the BE. I.e. the last
column lists the phase to which
the BE moves when the given
action is performed while the
BE is in the listed phase. If
the top event occurs, and after
some maintenance actions
denoted with result ‘O2’, a
large overhaul is immediately
performed resetting all com-
ponents to their undegraded
state.

BE Phase Maintenance Result

action phase

1 2 M1 1

1 2 O1 1

2 2 O1 1

3 2 Any 1

4 3 M1 2

4 Any O1 1

5 2 M1 O2

5 2 O1 1

6 Any M1 1

6 Any O1 1

7 2 I1 1

7 2 M1 1

8 Any M1 1

8 Any O1 1

9 Any M1 1

9 Any O1 1

11 3 or 4 M1 1

11 Any M2 1

11 Any O1 1

13 2 or 3 M1 1

13 2 or 3 O1 1

14 2 M1 1

14 3 M1 O2

14 Any O1 1

15 2 M1 O2

15 Any O1 1

Legend

I1 Bi-daily inspection

M1 Three-monthly maintenance

M2 Nine-monthly maintenance

O1 Minor overhaul

O2 Major overhaul

While modeling the compressor, it was noted
that several failure modes are related to each
other, such as degradation of the air filter lead-
ing to increased wear of the screws. While
it is possible to model these independently as
‘particle-induced wear under normal condition’
and ‘particle-induced wear with ruptured filter’
(since a degraded air filter is not by itself a cause
of failure), this leads to difficulty when describing
the maintenance policy. The RDEP gates offer a
much more natural description of a single BE with
degradation that is accelerated by another BE.
For BEs 12 and 13, special variants are used that
capture the simultaneous but non-linear accelerat-
ing effects of BEs 6 and 11. Table 2 specified how
much the affected BEs are accelerated depending
on the states of the triggering BEs.

Quantitative parameters on degradation pat-
terns and parameters were estimated based on
interviews with maintenance engineers responsi-
ble for the maintenance plan and system engineers
specialized in pneumatics, as well as experiment
reports of a simulation environment where com-
pressors can be tested.

While FMTs support arbitrary failure time
distributions, determining the exact distribution
of each BE was beyond the scope of this case
study. Instead, we have modeled the BEs as expo-
nential distributions or Erlang distributions with
few phases, as these overestimate the number of
failures in the relatively short times between main-
tenance actions. Due to the very high cost of fail-
ure compared to maintenance, relying on a conser-
vative model and performing more maintenance
than required is preferable to using an optimistic
models and experiencing more failures in the field.

While describing the maintenance policy, we
found two properties of the system that are used
in maintenance scheduling (BEs 14 and 15), which
are in fact complex properties influenced by the
degradation of most basic events. Since the exact
effect is too complex to include in the model, we
instead treat these as basic events that do not
contribute to the top level event but are included
in the maintenance policy.
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Another behaviour that was not included in the model is the low oil level,
which can be accelerated by oil leaks in several components. Since it is unlikely
that multiple such leaks occur at the same time, we instead chose to model the
oil pressure as a single BE.

The parameters of the BEs are listed in Table 1. The failure rates were
obtained by consultation with experts within NedTrain, specifically system engi-
neers and mechanics, to include both theoretical estimates and practical infor-
mation. The estimates were further informed by experiments conducted at the
overhaul facility operating a compressor in a simulated environment.

4.1 Maintenance Modelling

We compare the dependability and costs of compressors subject to different
maintenance policies. This allows us both to validate the model against actual
recorded failures, and to offer suggestions for improvements in the policy that
lead to cost savings or increased dependability.

NedTrain has specified the current maintenance policy, which is based on a
balance between performance, risks, and costs. The specification of this policy
consists of the frequency with which each maintenance action must be performed,
and for each BE and degradation level the effect of the action.

In the FMT, inspection modules describe the inspection rates and the thresh-
old at which corrective action is performed. Different BEs have different thresh-
olds, depending on the visibility of the degradation of a component and the
importance of correction.

Most maintenance actions return various components to the undegraded state
if they are found in a certain degraded state. This is modelled using separate
inspection and repair modules for the different BEs. For example, as shown in
Table 3, an inspection module inspects BE 11 every month checking whether
it has reached phase 3 and if so, repairs it. Some repair actions, in particular
the major overhaul, are initiated when other maintenance actions find excess
wear. In this case, the BE is modified to have multiple inspection thresholds for
different inspection modules.

The current model makes a few assumptions: First, we assume that all main-
tenance is carried out exactly on schedule. In practice, maintenance actions with
scheduled intervals greater than one month are sometimes performed in the last
10–20 % of the interval, to optimise allocation of resources. Since the fluctua-
tions in inspection times are small compared to the inspection interval and do
not occur often, we expect this assumption not to significantly distort the results.

We also assume that inspections are perfect, i.e. an inspection always leads
to a repair if the degradation level is past the threshold. While this may seem
questionable, we argue that the actual inspections are performed well enough
that this is not a significant source of error in the model. Moreover, we assume
that repairs occur instantly. Since the degradation rates already factor in that
the compressor is not in use all the time, we consider it reasonable to also factor
in the relatively short time spent in repair.
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5 Analysis and Results

In this section we describe the results of several experiments we conducted on
the FMT of the compressor. As a first step, we have validated the FMT using
the current maintenance policy against observations from the field. Therefore, we
used the model as constructed, i.e. we analysed the compressor under the current
policy. Since we concluded that the model is in line with our expectations based
on failure data, we continued with finding possible improvements of the current
policy. Therefore, the maintenance strategy within the FMT was modified by
changing inspection frequencies and replacements. This led to a description of
how an optimal maintenance strategy of the compressor can be constructed.

Note that the results in this section are averages of 40,000 simulation runs
each. The variance between the simulation runs is low enough that a 95 % con-
fidence interval around the mean results has a width of less than 5 % of the
indicated value, both with the original and the anonymized values. The analysis
required approx. 6 CPU-hours per model on an Intel Opteron 4386.
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Fig. 6. Results for the compressor under the current maintenance policy. (Color figure
online)
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Table 4. Listing of the expected failure
rates of different causes of compressor fail-
ures. Values are yearly occurrences in a
population of 233 compressors.

Failure cause Failure rate

Motor does not start when asked 0.41

De-aeration valve defective 0.025

Radiator obstructed 2.48

Oil thermostat defective 0.40

Low oil level 0.34

Pressure valve leakage 0.22

Air filter obstructed 0

Particle-induced rupture 0.71

Lubrication-induced wear 0.86

Motor/bearings degraded 0.82

First, we estimate the total failure
rate of the compressor over time. We
consider NedTrain’s fleet of 239 com-
pressors since this model of train began
operation in 1994 until 2015. Although
a direct comparison with the model is
not possible due to long periods of time
when compressors are kept unused in
a warehouse, the model’s prediction
is in agreement with NedTrain’s esti-
mate of the operational failure rate to
within 50 %.

A graph of the cumulative number
of failures over time is shown in Fig. 6a.
We observe that the unplanned maintenance events increase almost linearly with
time, as they are mostly caused by failures that are not wear-related, and thus
occur with exponentially distributed failure times. We only consider the interval
between two major overhauls, since the compressor is expected to be as good as
new after a major overhaul.

Other Maintenance Policies. To examine the leading causes of failures, the
expected number of occurrences of each failure mode per year was estimated.
Table 4 shows the annual number of expected failures, averaged over the six-year
period between major overhauls. A graphical breakdown of the causes of failures
is displayed in Fig. 6b. We see that the failure mode ‘radiator obstructed’ is by
far the leading cause of failure. The current maintenance policy for the radiator
is to remove large obstructions when found during visual inspections, and more
thoroughly clean it during larger maintenance operations. Our analysis suggests
that more frequent cleaning may cheaply reduce failures, although we note that
these failures are also usually quickly and cheaply resolved when they do occur.

Next, we consider two possible variations to the maintenance policy: Fig. 7a
shows the number of failures over time for different frequencies of the minor
service. We find that this service has a significant effect on the expected failure
rate. It is therefore useful to carefully examine the costs associated with this
service, to find an optimal balance between servicing and failure costs.

We also consider the possibility of omitting the minor overhaul after three
years, and of omitting the major overhaul after twelve years (instead perform-
ing a minor overhaul at this time). The effects of which are graphed in Fig. 7b.
After six years, the minor overhaul has prevented approx. 0.02 failures per com-
pressor. This suggests that the overhaul may not be cost-effective, although this
depends strongly on the relative costs of the overhaul and the failure. Further-
more, the effects of replacing the major overhaul by a minor one are too small to
be measured by our approach, offering a further possibility for cost savings. We
do note, that although we have no indications that the degradation behaviour
will be noticeably different after six years, we do not have the data to prove that
nonlinear effects such as metal fatigue will not cause more unexpected failures.



346 E. Ruijters et al.

6 Conclusion

We have modelled and analysed several maintenance policies for the compressor
via fault maintenance trees. We conclude that FMTs are a useful tool for main-
tenance analysis and optimization. In particular, the modelling process is not
too difficult, and the analysis provides useful insights. Obtaining correct failure
rates and degradation data from the field required additional effort, but was also
feasible in practice.

We obtain dependability estimates for the compressor, which maintenance
planners can use in combination with known costs of maintenance and effects
of failures to determine which plan results in the lowest cost with optimal effec-
tiveness.

Future work includes the extension of FMTs with continuous degradation
phases, models that take into account specific conditions and usage scenarios that
influence degradation. We would further like to explore how to convert the per-
compressor failure estimates into per-train estimates, given that compressors are
commonly swapped between trains or left in storage for extended periods of time.
Finally, we would like to extend FMTs to include imperfect maintenance, such as
inspections that have some probability of not detecting a degraded component.
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Abstract. In moving block systems for railway transportation a central
controller periodically communicates to the train how far it can safely
advance. On-board automatic protection mechanisms stop the train if no
message is received during a given time window.

In this paper we consider as reference a typical implementation of
moving-block control for metro and quantify the rate of spurious Emer-
gency Brakes (EBs), i.e. of train stops due to communication losses and
not to an actual risk of collision. Such unexpected EBs can happen at
any point on the track and are a major service disturbance.

Our general formula for the EB rate requires a probabilistic charac-
terization of losses and delays. Calculations are surprisingly simple in
the case of homogeneous and independent packet losses. Our approach
is computationally efficient even when emergency brakes are very rare
(as they should be) and can no longer be estimated via discrete-event
simulations.

Keywords: Emergency brakes · Communication Based Train Control
(CBTC) · European Train Control System (ETCS)

1 Introduction

In order to avoid collisions between consecutive trains traveling on the same
track, the track is traditionally divided in fixed sections—called blocks—and
only one train at a time is allowed to be in a given block.

The increasing demand for efficient mass transit transport requires to uti-
lize railway infrastructure more efficiently. The improvements of train-sidetrack
wireless communications, on board processing and actuators have made possible
the introduction in the last 15 years of moving block systems, where blocks
are dynamically calculated. Figure 1 schematically illustrates the two differ-
ent approaches. The moving-block control can reduce the headway taking into
c© Springer International Publishing Switzerland 2016
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account the actual distance between the trains as well as their speeds. It is being
deployed as Communication-Based Train Control (CBTC) for urban mass tran-
sit system and is under consideration for next generation of European Train
Control System (ETCS). This is referred as ETCS level 3 and is currently under
standardization.

end of block 1

maximum 
distance
to travel

block 1 block 2

train B train A

FIXED BLOCKS

end of train B’s block 

maximum 
distance
to travel

train B train A

MOVING BLOCKS

train C

end of train C’s block 

maximum 
distance
to travel

Fig. 1. Fixed-block and moving-block operation.

Moving-block systems require a continuous information exchange (detailed
in Sect. 2) between an on board local controller, called the Carborne Controller
(CC) and an external ground controller, called the Zone Controller (ZC) because
it monitors all the trains in a given zone. Safety-critical messages are exchanged
using standard or proprietary radio technologies. If no message is received dur-
ing a given interval then the CC will no longer have valid guarantees that train
movement is still safe and will trigger an Emergency Brake (EB). It is clearly
desirable to limit the frequency of spurious emergency brakes, i.e. emergency
brakes that are simply due to losses on the wireless channel and not to a poten-
tial collision risk. Indeed spurious emergency brakes can be themselves a cause of
danger, with trains potentially blocked in tunnels, risks of passengers disembark-
ing on the tracks, etc. Moreover, a spurious EB can generate legitimate EBs on
the following trains on the track, causing in this way major service disturbance.
For this reason, the so-called performance based contracts can bind rail trans-
port companies to specify the maximum number of spurious emergency brakes
over a given period of time.

In spite of their criticality, the estimation of the rate of spurious EBs is mostly
based on historical operational data. This approach strongly limits the possibility
to evaluate ahead of time the performance when significant changes are deployed
and in particular when new lines based on new technologies are built. It is often
required to experimentally adapt different system parameters (e.g. transmission
power levels, timer values, . . . ) after the deployment of the line, and sometimes
even to deploy additional trackside equipment (e.g. radio transmitters). These dif-
ficulties are often considered one of the reasons for the delay in the standardization
of ETCS level 3. For example [8] shows that the official quality of service specifi-
cations for the different subcomponents of the ETCS level 3 system can lead to a
ridiculously high rate of spurious EBs (one every 30 min).
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A model-based analysis can then play a fundamental role for a preliminary
evaluation of the real performance of moving block control. Some work has been
done in this direction following [8], and then considering its abstraction from
ETCS level 3 specifications mostly using Stochastic Petri Nets (SPNs) [1–3,5,9].
In particular the approach proposed in [8] to numerically solve the SPN works
only under the so-called enabling restriction, i.e. only one transition can be gen-
erally distributed and all the others should be exponential random variables. In
the more realistic cases, the authors rely then on Monte Carlo simulations of the
SPN. The naive simulation approach presented in [8] cannot manage to quantify
EB rate smaller than 2 EBs per hour. Importance splitting techniques used in [9]
allow to estimate much smaller rates (about 10−10 per hour). It is not clear if
the computational cost of this numerical approach is insensitive to the packet
loss probability p. References [5,7] show how UML descriptions can be used to
describe the moving block control in ETCS level 3 and can be automatically
translated to MoDeST formal language (a process algebra-based formalism) and
to SPNs, but they do not solve the problem of quantitative evaluation of such
rates when losses are rare. In the very recent paper [2] Carnevali et al. use the
tool ORIS to solve numerically the SPN proposed in [8,9], without the need to
rely on Monte Carlo simulations. The tool indeed overcomes the limit of the
enabling restriction thanks to recent advancements based on the method of sto-
chastic state classes [6]. Moreover, it allows for a transient analysis of the system.
As a case study, the authors consider a toy-example similar to that in [8] leading
to very high EB rates. From a preliminary analysis using their tool, it is not
clear if more realistic scenarios can be solved in a reasonable amount of time.

Our approach differs from the related literature in three main aspects. First,
rather than moving from the current proposals for ETCS level 3, we consider
as reference an actual implementation of the moving-block system for metro by
Alstom, one of the world largest company in the domain of rail transport and
signaling. Looking at an actual implementation has led us to identify the impor-
tance of the time-slotted operation of the two controllers (the CC and the ZC).
Indeed, the most important delay component in the messages’ exchange between
the CC and the ZC is due to the waiting time for the next clock tick at which the
controller can process the message. This waiting time can be equal to hundreds
of milliseconds versus the tens of milliseconds due to network delays. This aspect
was ignored in the previous literature and we show that it has to be addressed
to correctly evaluate the system performance. In particular, a consequence of
the time-slotted operation is that the EB rate exhibits non-trivial discontinuity
as the timer value changes. A second (methodological) difference in comparison
to the direction of [8] and follow-ups is that we push as further as possible the
probabilistic analysis to derive closed-formula expressions. We derive a general
formula for the rate of spurious EBs under general loss and delay processes, and
a simple formula for the case of independent and homogeneous packet losses. The
analysis allows to better understand the role of the different system parameters.
On the contrary, the existing literature only relies on simulations or (in the case
of [2]) on the numerical solution of a SPN. In both cases the dependence on the



Performance Evaluation of Train Moving-Block Control 351

system parameters is hidden. Finally, from the algorithmic point of view, it is not
clear if the numerical approaches proposed until now can be practically used to
estimate EB rates as low as in this paper. Our guess is that this is probably not
the case but, perhaps, for [2,9]. Indeed our approach does not need to simulate
rare sequences of packet losses and is then practically implementable.

The paper is organized as follows. In Sect. 2 we describe our assumptions
about the train scenario and the details of the moving-block control including
typical values for system parameters. Then in Sect. 3 we describe our general
approach to study the system, we show that a worst case analysis is of limited
utility (Sect. 3.1) and then move to derive a general formula for the EB rate
(Sect. 3.1) that requires to characterize system delays (Sect. 3.2) and losses. The
case of independent and homogeneous packet losses is considered in Sect. 3.3.
Some numerical experiments are in Sect. 4. Section 5 concludes the paper and
discusses how to extend our approach to more general loss scenarios. The most
frequently used acronyms are listed in Table 1. Due to space constraints some of
the results are in the companion technical report [4].

Table 1. List of acronyms

CBTC Communication Based Train Control

CC Carborne Controller

DCS Data Communication Sub-System

EB Emergency Brake

EOA End-Of-Authority

ETCS European Train Control System

LOC Location report

TM validity duration Timer of a LOC

ZC Zone Controller

2 Scenario

Here we describe the specific railway scenario we consider. In our description
we will refer to transmission technologies and parameters typical of a urban
rail network (and then of a CBTC system), but our following analysis does not
depend on these specific implementation details. What is instead required is
that the random variables (r.v.s) defined below (train speed, distances between
access points, etc.) have bounded support and are lower bounded by a positive
constant. For a given r.v. α, we denote by αmin > 0 its lower bound and by
αmax < ∞ its upper bound.1

We consider a train moving on an infinitely long track. The train has two
WiFi On Board Modems (OBMs) with directional antennas: one is located at
1 Throughout the paper Greek letters always denote random variables, while capital

letters usually denote system parameters.



352 G. Neglia et al.

the front of the train, the other at the back. We refer to them respectively as the
blue and the red OBMs. Along the track there are pairs of closely-located WiFi
Access Points (APs), using the same channel. The pair is called a Trackside Radio
Equipment (TRE). Each AP in a TRE is devoted to communicate with one of
the two OBMs and is connected to an independent wired network through which
the Zone Controller (ZC) can be reached. We also label the APs, the wireless
channels and the wired networks blue or red as the corresponding OBM. Hence
communications between the train and the ZC are possible through separate
paths, each with a single wireless link.

2.1 Train Moving-Block Control

In this section we describe the detailed operation of a moving block system
considering as reference the specific CBTC implementation by Alstom.2

Figure 2 shows a messages exchange between the on board controller (the
CC) and the ground controller (the ZC). Observe that both the controllers oper-
ate in discrete time on the basis of clock periods of hundreds of milliseconds.
This is due to the fact that they are actually e-out-of-f voting systems where
different processors perform in parallel the same calculations and a time-slotted
operation simplifies the synchronism of the processors. The clock periods at the
ZC and at the CC (respectively TZC and TCC) are in general different because
the subsystems are provided by different vendors and also because they have
different computational loads during one period.

TZC

pD

TCC

Fig. 2. Illustration of LOC-EOA exchanges.

The most important CBTC messages are location reports (LOC) and end-of-
authority ones (EOA). A LOC is a message periodically transmitted from the on
board CC through the Data Communication Sub-System (DCS) to the ground
ZC. The message is actually sent twice through the blue and the red networks. The
first LOC arriving at the ZC is processed. Each LOC is acknowledged by an EOA

2 The parameters’ values have been slightly changed and some specific implementation
details are hidden to protect Alstom industrial know-how.
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message in the reverse direction (again sent through the two networks). The EOA
communicates to the CC how far the train can advance. The LOC has a validity
duration TM and a timer with such duration is activated at the generation of the
LOC. An EOA is said to be valid if the timer of the corresponding LOC has not
expired yet. The CC-ZC-CC exchange works as follows.

1. A LOC is generated at the CC every TLOC , multiple of the CC clock period
TCC .

2. The LOC (say LOC k) is ready to be emitted and passed to the DCS after
a processing delay equal to TCC .

3. The delivery delay introduced by the DCS is a random variable χ1 with
support in [TDCS,min, TDCS,max].

4. At the ZC the LOC is available for computing at the next tick of the clock.
5. The computing time at the ZC required to process the LOCs from all the

trains in the zone and generate the corresponding EOAs is TZC .
6. The EOA k is emitted within the next cycle of the ZC at an offset O depend-

ing on the train.
7. The EOA is delivered to the CC after a random delay χ2, distributed as χ1,

but independent from it.
8. At the CC the EOA gets in a processing queue, at the next tick of the CC

clock the most recent EOA present in the queue is processed unless there
are higher priority tasks arrived during the same CC clock period (which
happens with probability pD). In any case an EOA processing is not delayed
more than an additional CC period.

9. The EOA k is actually processed only if it remains valid until the end of the
current CC clock. Once processing starts, all the pending timers for older
LOCs (i.e. LOC h for h ≤ k) are deactivated.

10. If the timer of a LOC is not deactivated before its expiration, the EB pro-
cedure is triggered.

In what follows we refer to the k-th LOC and its corresponding EOA as the
k-th LOC-EOA exchange, but note that any later EOA can deactivate the timer
of the k-th LOC. We say that a LOC-EOA exchange is lost if either the LOC or
the EOA does not arrive to destination.

3 Analysis

In this paper we consider that the system is described by a stationary stochastic
process and calculate the steady-state rate at which emergency brakes occur (as
common to all the related literature but [2]). In particular we consider that the
train is moving according to some stationary mobility model and the algorithm
described above is running all the time, even after the occurrence of an emergency
brake. Ignoring the train stopping time after an EB is a reasonable approximation
because we are estimating rare events.

We denote by Lk the event that the exchange k is lost, Tk the event that
the k-th LOC experiences a timeout and Ā the complement of set A. The k-th
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Table 2. Notation and typical values for the variables. In the paper some of the
variables appear with subscripts. A subscript b (r) denotes that the variable refers to
the blue (red) OBM or network. A subscript L (E) denotes that it refers to a LOC (an
EOA).

Symbol Quantity Value

TZC ZC clock period 378 ms

TCC CC clock period 225 ms

TLOC LOC generation period 3TCC

TM validity duration of a LOC 5.5 s

TDCS transmission delay [10, 50] ms

τ positive random component of TDCS [0, 40] ms

φ positive random component of TDCS for first message to arrive [0, 40] ms

O EOA transmission offset [0, TZC ]

ωCC number of CC ticks an EOA waits until CC processes it {0, 1}
pD probability that ωCC is 1 0.01

ωZC time interval between LOC arrival at ZC and next ZC tick

σ time interval between earliest arrival time of a LOC at ZC and next ZC tick

qEB emergency brake probability

rEB emergency brake rate

p packet loss

p̃ probability to lose a LOC-EOA exchange

Tk arrival time of k-th EOA

γk tick at which k-th EOA is processed

Dk event that k-th EOA is late to deactivate the timer of LOC 1

Tk event that k-th LOC experiences a timeout

Lk event of k-th LOC-EOA exchange loss

LOC experiences a timeout if the k-th exchange is lost and the later EOAs do
not arrive or arrive too late, then Tk ⊂ Lk

3. We observe that a sequence of
consecutive timeouts generates a single EB and then a timeout for a given LOC,
say LOC 1, is counted as an EB only if the previous LOC 0 does not experience
a timeout. The probability qEB that a random LOC experiences an emergency
break is then qEB = Pr(T̄0∩T1) that does not depend on the specific pair of LOCs
considered because the process is stationary. Moreover, under the condition that
LOC 1 experiences a timeout, LOC 0 experiences a timeout if and only if the
corresponding exchange is lost, because later EOAs are not able to block the
timer of LOC 1 and a fortiori the timer of LOC 0. Then T̄0 ∩ T1 = L̄0 ∩ T1 and
the rate of emergency brakes is

rEB =
qEB

TLOC
=

Pr(L̄0 ∩ T1)
TLOC

. (1)

3 In this paper A ⊂ B denotes that A is a subset of B, not necessarily proper.
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3.1 EB Probability

Fig. 3. Different delay components of the k-th LOC-EOA exchange for two different
values of the LOC transmission delay φ′

L,k and φ
′′
L,k.

In this section we first derive some simple bounds for qEB . The bounds will
reveal to be too loose to be practically used, but they are nevertheless useful
for the subsequent analysis. We conclude the section with a general formula for
the EB rate, whose terms will be calculated in the following sections. We report
numerical values corresponding to the typical scenario presented in Sect. 2.

Minimum and Maximum LOC-EOA Round Trip Times. We calculate
the minimum and the maximum time between the generation of a LOC and the
instant T when the corresponding EOA is available for computation at the CC.
Consider a LOC generated at time 0. Its EOA arrives at the CC at time (see
also Fig. 3):

T = Tmin + φL + φE + ωZC + O, (2)

where Tmin = TCC + 2TDCS,min + TZC = 623 ms, ωZC is the time interval
between the arrival of the LOC at the ZC and the next ZC tick and φL and φE

are the random components of the transmission delays respectively for the first
LOC and the first EOA to arrive at destination.

The earliest arrival time Tmin + O occurs when the LOC and the EOA expe-
rience the minimum travel times on the DCS (i.e. φL = φE = 0) and the LOC is
available for computing at the ZC immediately before a ZC tick (i.e. ωZC = 0).

The latest arrival time Tmax +O occurs when the LOC and the EOA experi-
ence the maximum travel time on the DCS (i.e. φL = φE = TDCS,max−TDCS,min)
and the LOC is available for computing at the ZC immediately after a ZC tick. In
this case the LOC will wait an additional TZC before being processed (i.e. ωZC =
TZC). Hence Tmax = TCC + TDCS,max + TZC + TZC + TDCS,max = 1081 ms.

Number of Potential LOC-EOA Exchanges Before a TimeOut. Even
if a LOC or an EOA is lost, the EOAs corresponding to following LOCs could
still deactivate its timer and then the emergency brake would be prevented. In
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this section we calculate how many LOC-EOA exchanges can happen between
the generation of a LOC and the expiration of the corresponding timer, i.e. how
many other EOAs can have a chance to block the timer.

Let us consider that the first LOC is generated at time t = 0, then its
timer would expire at time t = TM . The maximum number nmax of LOC-EOA
exchanges can be calculated considering that i) the last potentially useful EOA
arrives in the shortest time possible and ii) it is immediately processed by the
following CC tick, which is the last one before the timer expires.

The last potential useful EOA arrives at (nmax−1)TLOC +Tmin+O and it can
then be processed at TCC �((nmax − 1)TLOC + Tmin + O) /TCC�. The CC tick
just before the timer expires occurs at time TCC �TM/TCC	. We determine nmax

by imposing that
⌈
(nmax−1)TLOC+Tmin+O

TCC

⌉
=

⌊
TM
TCC

⌋
,4 and we can manipulate this

equality as in [4], to obtain:

nmax = 1 +

⎢⎢⎢⎣TM −
⌈

Tmin+O
TCC

⌉
TCC

TLOC

⎥⎥⎥⎦ . (3)

Similarly the minimum number nmin of LOC-EOA exchanges can be calcu-
lated considering that (i) the last potentially useful EOA arrives in the longest
time possible and (ii) it is processed 2 CC ticks later in correspondence of the
last tick before the timer expires. Then we determine nmin by imposing that⌈
(nmin−1)TLOC+Tmax+O

TCC

⌉
=

⌊
TM
TCC

⌋
− 1, and proceeding as above we obtain:

nmin = 1 +

⎢⎢⎢⎣TM −
(⌈

Tmax+O
TCC

⌉
+ 1

)
TCC

TLOC

⎥⎥⎥⎦ . (4)

Fig. 4. Minimum and maximum number of LOC-EOA exchanges for O = 50 ms,
calculated through Eqs. (4) and (3).

4 This assumes nmax > 1. The first EOA needs to be valid until the end of the CC
clock during which it is processed and then its processing time should start the latest

at the tick number
⌊

TM−TCC
TCC

⌋
.
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The difference between nmax and nmin depends on the timer TM and also on
the offset. For the typical values in Table 2 they differ by at most 2 exchanges,
i.e. nmax ≤ nmin + 2. Figure 4 shows nmin and nmax for different values of the
timer TM and an offset O = 50 ms. It also shows that the difference of two
exchanges is achieved for some values of TM .

The two values nmin and nmax allow us to provide respectively upper and
lower bounds for the EB probability and then for the EB rate, but these bounds
can be too loose for practical uses. We are going to show it in the simple case
when packet losses on the two wireless blue and red channels are independent
Bernoulli random variables with parameter p. In this case a LOC or an EOA
message is received with probability 1 − p2 and the probability p̃ to lose a LOC-
EOA exchange is then p̃ = 1 − (1 − p2)2. An emergency brake requires that
the exchange 0 is not lost. Moreover the EB will necessarily occur if the nmax

following LOC-EOA exchanges are lost (even if the (nmax + 1)-st EOA arrives,
it will be after the timer expiration) and cannot occur unless nmin exchanges are
lost (the first nmin EOA cannot arrive late even in the worst case). It follows
that

(1 − p̃)p̃nmax ≤ qEB ≤ (1 − p̃)p̃nmin . (5)

With the values in Table 2 the upper bound can be up to p̃−2 times larger than
the lower bound. A typical value for the packet loss probability is p = 5%,
and then p̃ ≈ 0.5% and the ratio of the two bounds is almost 4 × 104. In this
case, as we are going to show later, the upper bound can be too pessimistic and
practically of no utility to set the parameter TM . For this reason a more refined
analysis is required.

Exact Formula. LOC 1 is generated at time t = 0 and then the k-th LOC is
generated at (k − 1)TLOC . The k-th EOA is the EOA corresponding to the k-th
LOC. The timer of LOC 1 would expire at time t = TM . Remember that Lk

denotes the event that the k-th LOC-EOA exchange is lost. Let Dk denote the
event that the k-th EOA arrives too late to deactivate the timer of LOC 1. The
two events are disjoint, i.e. Lk ∩ Dk = ∅. LOC 1 experiences a timeout if and
only if all the following exchanges are lost or their EOAs arrive too late, i.e.

T1 =
∞∩

k=1
(Lk ∪ Dk) =

nmax∩
k=1

(Lk ∪ Dk) , (6)

where the last equality follows from the fact that only the first nmax exchanges
have a possibility to stop the timer (Pr(Lk ∪ Dk) = 1 for k > nmax).

Due to timing constraints EOAs cannot arrive out of order. A consequence is
that if the k-th EOA arrives too late to deactivate the timer of LOC 1, no later
EOA will be able to deactivate it. In particular later EOAs will be lost or will
arrive too late, i.e. Dk ⊂ Dk′ ∪ Lk′ for all k′ ≥ k. This simple relation allows us
to conclude [4] that for any m

m∩
k=1

(Lk ∪ Dk) =
m∪

k=1

(
Dk ∩

(
k−1∩
h=1

Lh

))
∪

(
m∩

h=1
Lh

)
. (7)
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We can now move to calculate qEB . From Eqs. (6) and (7), it follows that

qEB = Pr
(L̄0 ∩ T1

)
= Pr

(
L̄0 ∩ nmax∩

k=1
(Lk ∪ Dk)

)

= Pr
(

L̄0∩
(

nmax∪
k=1

(
Dk ∩

(
k−1∩
h=1

Lh

))
∪

(
nmax∩
h=1

Lh

)))
. (8)

This expression can be simplified observing that the first nmin − 1 EOAs cannot
arrive late (Pr(Dk) = 0 for k ≤ nmin)

qEB = Pr
(

L̄0∩
(

nmax∪
k=nmin+1

(
Dk ∩

(
k−1∩
h=1

Lh

))
∪

(
nmax∩
h=1

Lh

)))
. (9)

Equation (9) can be read as follows: a timeout occurs if there is a sequence of
nmin, nmin + 1 up to . . . nmax − 1 exchanges lost and the following EOA arrives
late or if all the nmax exchanges are lost. These events are disjoint, because
Dk ∩ Lk = ∅, and then we can conclude:

qEB =
nmax∑

k=nmin+1

Pr
(

Dk ∩
(

L̄0∩ k−1∩
h=1

Lh

))
+ Pr

(
L̄0∩ nmax∩

h=1
Lh

)
(10)

=
nmax∑

k=nmin+1

Pr
(

Dk

∣∣∣ L̄0∩ k−1∩
h=1

Lh ∩ L̄k

)
Pr

(
L̄0∩ k−1∩

h=1
Lh ∩ L̄k

)

+ Pr
(

L̄0∩ nmax∩
h=1

Lh

)
. (11)

The last equality holds because Dk = Dk ∩ L̄k. The reason why we introduce
the additional set L̄k will be clear in the following sections, where we will move
to characterize delays and losses in order to compute the terms appearing in
Eq. (11). We denote this sequence of loss events as SL,k � L̄0∩ ∩k−1

h=1 Lh ∩ L̄k.
As observed, for the typical values in Table 2 it is nmax ≤ nmin + 2 and then

there are at most 3 terms in Eq. (11).

3.2 Delay

In this section we characterize the event Dk. In particular, we are interested to
evaluate the probabilities Pr (Dk | SL,k) appearing in Eq. (11). To this purpose
we will study in detail the different components that determine if the k-th EOA
arrives before or after the expiration of the timer of the first LOC.

Again, assume that LOC 1 is generated at time 0. If the k-th exchange LOC-
EOA is not lost, then the arrival time of the k-th EOA is

Tk = Tmin,k + φL,k + φE,k + ωZC,k (12)

where Tmin,k = TCC + 2TDCS,min + TZC + (k − 1)TLOC + O and the random
variables ωZC,k, φL,k, φE,k represent the same quantities as those in Eq. (2),
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but are referred to the k-th exchange rather than to the first one. The EOA is
processed at the tick

γk �
⌈

Tk

TCC

⌉
+ ωCC,k, (13)

where ωCC,k represents the processing delay at the CC expressed in number of
ticks. According to the description in Sect. 2.1 ωCC,k can assume value 0, if the
EOA is going to be processed at the first CC tick after Tk, or value 1, if it is
going to be processed at the following tick. We are going to characterize the
Bernoulli r.v. ωCC,k soon, for the moment we observe that the EOA arrives too
late if γk > TM

TCC
i.e. the EOA starts being processed after the expiration of the

timeout. Then, the event Dk can be expressed as Dk = L̄k ∩
{

γk > TM
TCC

}
, and

Pr
(
Dk

∣∣∣ SL,k

)
= Pr

(
γk >

TM

TCC

∣∣∣ SL,k

)
, (14)

because L̄k ⊂ SL,k. In order to calculate this probability we now move to consider
each source of randomness in γk.

Processing Delay at the CC. Observe that ωCC,k is independent of the
arrival time of the k-th EOA Tk, as well as on arrival of any other EOA. In
fact the queuing delay for the k-th EOA depends only on higher-priority traffic
and not on the previous EOAs (that may or not being present in the processing
queue), because only the most recent EOA is processed. It follows that ωCC,k is
independent of the event ∩k−1

h=1Lh and its conditional distribution is equal to the
a priori distribution provided in Sect. 2.1, i.e. ωCC,k in Eq. (14) is a Bernoulli
random variable with parameter pD. While ωCC,k as introduced is defined only
when the k-th exchange is not lost, we can define it for any k as an independent
Bernoulli random variable with parameter pD. It can then be interpreted as the
processing delay experienced by a hypothetical EOA arriving at a given time.
The distribution of ωCC,k does not depend on k and is independent of SL,k.

Processing Delay at the ZC. Going back to Eq. (12), the random variable
ωZC,k is dependent on the relative position of the ticks of the two clocks but also
on the value of φL,k. In fact the later the LOC arrives at the ZC (the larger φL,k)
the less the LOC has to wait until the next ZC tick (the smaller ωZC,k), unless
the LOC arrives so late that it misses the first available ZC tick and needs to wait
for the next one. While we cannot get rid completely of this dependence, it is
simpler to reverse it. With reference to Fig. 3, we express Tk with this equivalent
expression:

Tk = Tmin,k + σk + 1φL,k>σk
TZC + φE,k (15)

where σk denotes the time interval between the earliest possible instant at which
the k-th LOC could be received at the ZC and the next ZC tick and 1φL,k>σk
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is a Bernoulli random variable indicating if the random component of the com-
munication delay will cause the LOC to miss this ZC tick and then to wait for
the following one. It can be easily verified that σk depends on the specific LOC
we are considering because the two clock periods are different. Then coherently
with the idea that, in order to evaluate qEB , the first LOC is chosen at random,
σk is a random variable. Observe that the variable σk is independent of the loss
processes and in particular of SL,k. Moreover, it is independent of communica-
tion delays (i.e. of the variables φL,k, φE,k) and of processing delay at the ZC
(i.e. of ωCC,k). Our next task is to determine σk’s distribution.

Given the value σ1 = s1 for the first LOC, the values of the other r.v.s σk for
k > 1 are uniquely determined, let σk = sk. Assuming that TZC and TLOC are
commensurable numbers and choosing an opportune unit so that their values
can be expressed as integers, in [4] we show that the possible values for sk are
the values s in [0, TZC) for which the following Diophantine equation in m and
n admits integer solutions:

mTZC − nTLOC = s − s1. (16)

The study of this equation in [4] leads to the conclusions that sk assumes all
and only the values in the set S = {s̃ + iM, i = 0, 1, . . . qZC − 1} where M is
the greatest common divisor of TZC and TLOC , TZC = qZCM and s̃ = s1 %M .
For example for the typical values we consider (TZC = 378 ms, TLOC = 675 ms)
it is M = 27, qZC = 14. Moreover, the sequence sn is periodic with period qZC

and then assumes the qZC values in S only once during each period. When we
consider that the first LOC is a LOC selected at random, we conclude then that
the variable σk is a uniform random variable over the set S = {s̃ + kM, k =
0, 1, . . . qZC − 1}.5

Communication Delays. In order to completely characterize the probability
in Eq. (14), we need to discuss the two random variables φL,k and φE,k. Remem-
ber that φL,k is the delay experienced by the “fastest” of the two LOC packets
conditional on one of them arriving at the ZC. Let τr,L denote the random com-
ponent of the delay experienced by the k-th LOC packet transmitted on the
red network if it is not lost (we omit for simplicity the dependence on k). We
can similarly introduce τb,L, τr,E and τb,E . These delays are independent and
identically distributed random variables with Cumulative Distribution Function
(CDF) Fτ (t). In particular, under the typical values in Sect. 2.1 they have sup-
port [0, 40] ms.

3.3 Independent Losses

As an application of Eq. (11) we consider the case when packet losses are inde-
pendent and homogeneous and Eq. (11) reduces to an easy-to-calculate exact
formula. The independence allows to write:
5 The analysis can be easily adapted to take into account the effect of clocks’ frequency-

shift [4].
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Pr
(
Dk

∣∣∣ SL,k

)
= Pr

(
Dk

∣∣∣ L̄k

)
= Pr

(
γk >

TM

TCC

)
� d(k), (17)

where γk is a function of the independent r.v.s ωCC,k, σk (already characterized
in the previous section) and φL,k and φE,k, whose CDF Fφ(t) can be easily
derived by conditioning on the number of packets arriving at the ZC/CC:

Fφ(t) =
(1 − p)2

1 − p2

(
1 − (1 − Fτ (t))2

)
+

2(1 − p)p

1 − p2
Fτ (t) =

Fτ (t) (2 − Fτ (t)(1 − p))

1 + p
.

Our definition of d(k) stresses that Pr(γk > TM/TCC) is a function of k, but
this happens because of the constant Tmin,k, while the distributions of the r.v.s
ωZC,k, σCC,k, φL,k and φE,k do not depend on k.

Finally, by developing the terms Pr (SL,k) in Eq. (11), we obtain

qEB =
nmax∑

k=nmin+1

d(k)p̃k−1(1 − p̃)2 + p̃nmax(1 − p̃), (18)

where p̃ = 1 − (1 − p2)2 is the probability that an exchange is lost.

4 Numerical Experiments

In this section we validate Eq. (18) through discrete-event simulations of the
system, for which we have developed an ad-hoc Python simulator. The scenario
tested by discrete-event simulations matches that described in Sect. 2 and consid-
ered in our analysis. For constant system parameters and the support of random
variables, we have considered the typical values indicated in Table 2.

Figure 5 shows the EB rate versus different values of the packet loss probabil-
ity p for TM = 5.5 s. The red solid curve is obtained through Eq. (18). Simulation
results obtained by the Python simulator for selected values of p are reported
as 95% confidence intervals in blue. About the computational time, Eq. (18)
requires a few seconds on a current commodity PC. On the same machine the

Fig. 5. Number of emergency brakes per hour when TM = 5.5 s. (Color figure online)
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Fig. 6. Rate of emergency brakes when O = 50 ms and p = 0.3. (Color figure online)

Python simulator is able to simulate roughly 104 hours of train operation in one
hour. It follows a rate of the order of 10−4 EBs per hour requires roughly 100
hours to be estimated with a precision of 1 % through the Python simulator. It
is clear that lower EB rates are out of reach for the Python simulator.

Figure 5 also shows the black dashed curves that plot the functions (1 −
p̃)p̃nmin/TLOC and (1 − p̃)p̃nmax/TLOC and that correspond to the upper and
lower bound in Eq. (5) in presence of independent Bernoulli packet losses with
probability p. We observe that the produced bounds are very loose.

As a final application of our methodology, Fig. 6 shows the expected number
of emergency brakes per hour for different values of the timer TM , O = 50 ms
and packet loss probability p = 0.3. The theoretical values calculated from
Eqs. (18) and (1) (red dots) are compared with the bounds (black dashed lines).
The figure shows that the simple upper bound can be orders of magnitude larger
than the actual value. We now discuss the discontinuities appearing in the EB
rate curve. From Eq. (18) we observe that the EB probability exhibits discon-
tinuities only if nmin, nmax or the functions d(k) do. The small gaps of the EB
rate correspond indeed to changes in the values nmin or nmax as it is revealed by
the corresponding jumps of the bounds. The other gaps correspond to changes
of the functions d(k). We remember that d(k) = Pr (γk > TM/TCC), where γk

is an integer. Then d(k) does not depend on TM as far as h ≤ TM/TCC < h+1
for some integer h. Indeed, it can be checked that the other discontinuities in
the curve (when neither nmin nor nmax change) correspond to integer values of
TM/TCC . This high sensitivity to the timer value is not only easily revealed by
our numerical method, but well explained by our theoretical analysis.

5 Conclusion

In this paper we study the moving block control to quantify the rate of spurious
EBs. Differently from existing literature, our starting point is not the current
recommendation for the future ETCS level 3, but an actual implementation for
metro. Equation (11) characterizes the EB rate in a general stationary setting,
but it requires to compute the probability to observe specific patterns of packet
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losses, that can be a difficult task in general. Nevertheless, in the simple case of
independent and homogeneous packet losses, the equation reduces to a simple
analytical formula whose computational cost does not depend on the loss proba-
bility value. The formula can then be used to quantify extremely rare events (as
emergency brakes should be). We are currently working to study more general
loss scenarios, where losses are strongly correlated and time-variant. Our current
results are in [4] and rely on a Monte Carlo approach to efficiently sample from
the stationary distribution of the system.

This work is partially funded by the Inria-Alstom virtual lab.
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Abstract. This paper continues our work on perturbation analysis of
multimodal transportation networks (TNs) by means of a stochastic
hybrid automaton (SHA) model. We focus here on the approximate
computation, in particular on the major bottleneck consisting in the
high dimensionality of systems of stochastic differential balance equa-
tions (SDEs) that define the continuous passenger-flow dynamics in the
different modes of the SHA model. In fact, for every pair of a mode
and a station, one system of coupled SDEs relates the passenger loads
of all discrete points such as platforms considered in this station, and
all vehicles docked to it, to the passenger flows in between. In general,
such an SDE system has many dimensions, which makes its numerical
computation and thus the approximate computation of the SHA model
intractable. We show how these systems can be canonically replaced by
lower-dimensional ones, by decoupling the passenger flows inside every
mode from one another. We prove that the resulting approximating
passenger-flow dynamics converges to the original one, if the replacing
set of balance equations set up for all decoupled passenger flows commu-
nicate their results among each other in vanishing time intervals.

Keywords: Stochastic hybrid automata · Transportation networks ·
Fluid Petri nets · Stochastic differential equations modelling

1 Introduction

Apart from some exceptions, the different modes and lines in modern multi-
modal transportation networks do not share infrastructure elements, but are
loosely connected through passenger transfers. Understanding how these pas-
senger transfers connect their modes and lines is thus crucial if one wants to
analyse how perturbations spread across such TNs. In this context, the present
work is a contribution to our SHA model from [6] that we have developed for
the computation of passenger load forecasts in multimodal TNs; given (i) esti-
mations for all uncertain initial passenger loads (platforms, vehicles, etc.) and
uncertain continuous passenger arrival flows, and (ii) the possibility to track
individual vehicles so as to study the impact of well-directed interventions to
their operation such as early departures.
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Our SHA Model. Our SHA model from [6] extends a previous deterministic
hybrid automaton (DHA) model from [4]. In this, a finite set of vehicles is oper-
ated, and every vehicle is confined to a particular mode or line which does
not share infrastructure elements with any other modes or lines. Passengers are
grouped into a finite set of trip profiles, which define routes in the TN at hand,
together with preferences for choosing different vehicle missions. Every mode of
the DHA model corresponds to a particular configuration of the vehicles’ dis-
crete positions and discrete operational states. With these parameters, every
mode defines which passenger flows between stations and vehicles are possible.
In this way, a system of coupled ordinary differential equations (ODEs), one
equation per station, is associated to every mode. This system relates the pas-
senger loads of all stations and of all stopped vehicles docked to these stations,
to the passenger flows such as boarding and alighting in between. Transitions
between modes are triggered by (i) vehicles that must depart, i.e. whose elapsed
driving and dwell times exceed some deterministic thresholds fixed by operation
rules, and (ii) by passenger load trajectories hitting some pre-defined regions
and thus triggering the departure of some vehicle (examples: boarding a train
must stop if the train is full, or if the number of passengers on the platform is
small and the train is scheduled to leave, etc.).

Now a TN is everything but deterministic: The influx of passengers into the
system is a random process (from a macroscopic point of view, in fact a very
continuous and measurable random process as compared to e.g. single passenger
incidents), and the distribution of the passengers over the different possible trip
profiles - is also unknown and can only be given statistically. This motivated the
stochastic hybrid automaton (SHA) model that we introduced in [6]: Compared
to our above DHA model, we replaced all systems of ODEs by systems of (Itô-)
stochastic differential equations (SDEs), so as to be able to (i) start our analy-
ses with uncertain initial passenger loads, and (ii) include uncertain passenger
arrival flows into the model’s continuous time dynamics. The mechanism of trig-
gering mode transitions via thresholds remains the same; however, these hitting
times are not deterministic, isolated points in time any more, but rather random
variables with a continuous range of values.

Our SHA model thus does not fully cover the dynamical spectrum of the
stochastic hybrid system (SHS) from [8], but only implements a particular real-
ization thereof: In our SHA model, there are no mode transitions which are
exponentially distributed w.r.t. time. In this context, also note that the SHS
from [8] is an abstract mathematical model for a system with a mixed discrete
and continuous dynamics; no more no less. The definition of e.g. all vector fields
or possible mode transitions therein might be non-trivial and often cannot be
done by pen and paper. That is why, we employ artefacts from the Petri nets
formalism so as to e.g. derive all differential balance equations in a canonical
way; which was proposed in many papers such as [10] before.

Problem Formulation. In [5], we introduced a strategy for the approximate com-
putation of our above SHA model: We let the automaton change its mode only at
equidistantly-spaced discrete points in time. Several challenges then arise. On the
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one hand, we are confronted with an explosion of the SHA model’s timed mode
graph, that - as its name suggests - captures the evolution of the SHA model’s
mode in discrete time steps; but we do not consider this combinatorial problem
here, it will be treated in another work. Rather, our present paper focusses on
another major bottleneck, namely the high dimensionality of the SDE systems
defining the passenger flow dynamics in any given mode. The dimension of the-
ses systems of coupled SDEs that we set up for every pair (mode, station) in the
SHA model from [6] corresponds to the number of the passengers’ different trip
profiles, multiplied by the number of different discrete positions for the passen-
gers within this station and the vehicles docked to it. Our major concern with
this high dimensionality then is the fact that all algorithms that we have found
so far are prone to what is known as the curse of dimensionality.

Simulation of SDEs. Monte Carlo simulations [9] require to sample realiza-
tions of the uncertain initial states of the considered random variables. For
one-dimensional RVs subjected to one-dimensional SDEs this sampling might
be trivial e.g. by employing the inverse transform sampling. However, it seems
that sampling the uncertain initial state of multidimensional RVs is a non-trivial
task that is active and still an open problem. Among the algorithms proposed
thus far, we mention the Metropolis-Hastlings and the Gibbs sampler, which can
be integrated into what is called a Markov Chain Monte Carlo simulation [1].
Other more exotic sampling techniques might involve e.g. neural networks [7].

Analytic Methods. Instead of sampling as above, another approach that we shall
study elsewhere is to numerically integrate a multivariate Fokker-Planck equa-
tion. Such a system of partial ordinary differential equations is derived from
the original multidimensional SDE, and describes the time evolution of an ini-
tial probability density function (PDF) under the system’s dynamics; here, it
concerns the passenger load vector’s density function, giving the distribution of
the number of passengers in the different trip profiles. However, many compu-
tational drawbacks also come along with this method, or more specifically with
the numerical integrations required. First, not all numerical integration schemes
can ensure the conservation of the probability flux in their basic set up; with
the Finite Volume method [2] being one exception. Second, those schemes which
can ensure the conservation of the probability flux are not easily extendible from
common two or three dimensional applications to higher-dimensional problems.

Alternative Approaches. Alternatives to the computation or simulation of high-
dimensional SDEs might involve their discrete approximation, which we do not
pursue here. The technique studied here aims at decoupling the dynamics in
the SDEs, so as to produce an alternative set of lower-dimensional SDEs that
reproduces, or at least approximates, the original model dynamics. For instance,
the authors of [3] mention the local specification of flows in a fluid stochastic
Petri net model as a means for the decoupling. However, in contrast to our
approach, they look at scalar rather than vectorial (passenger) flows.

In the rest of this paper, we shortly review our SHA model from [6] in Sect. 2
together with the discrete time computation of its state space from [5]. We also
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discuss the set up of all high-dimensional SDEs for the passenger flow dynam-
ics in the SHA model’s different modes. We then explain in Sect. 3 how the
passenger flows in all modes can be systematically decoupled so as to replace
the original systems of SDEs by approximating lower-dimensional ones. In this
context, we also proof asymptotic convergence of the dynamics produced by
the lower-dimensional SDEs w.r.t. the original dynamics. Last but not least, we
summarize the contribution of our approach, and give a brief outlook on future
work in Sect. 4.

2 Our SHA Model

2.1 Model Structure

Infrastructure. Basic modelling blocks of the SHA model are place/transition
nets (= Petri nets with the token flow left out), which capture the structure of
a finite set of stations S and a finite set of transportation grids G (TGs).

Every station s ∈ S is made up of a finite set P s of gathering points p ∈ P s (=
places; represented by double circles) that can accommodate a limited number
of passengers, and a finite set T s of corridors t ∈ T s (= transitions; represented
by double boxes) connecting (i) GPs to other GPs, or (ii) GPs to the station’s
exterior (cf. Fig. 1 below). Here, connected means “possibility of a passenger
flow” in the direction of the edges that connect the corridors with the GPs.

Station S1

Transportation Grid
Station S2

Station S3

PlatformAccess

1,2,3

x1: 1,2
x2: 2,3

Board

1,2,3

Wayp.
w11,2,3

x1, x2

Track
t1,2

1,2,3

Wayp.
w2

1,2,3

x1, x2

Track
t3,1

x1, x2
Track
t2,3

2,3

Wayp.
w3

2,3

x1

Alight

11

x1, x2

Alight

2,32,3

Fig. 1. Representation of the infrastructure of a sample TN in our SHA model, together
with (i) the paths of two different vehicle missions x1 and x2, and (ii) an indication of
the stops along these paths for the specification of three different trip profiles (TPs).

Every TG g ∈ G captures the structure of a particular mode or line; and
in doing so, all possible vehicle movements between its finite set W g of discrete
waypoints w ∈ W g (= places; represented by simple circles) which accommo-
date the vehicle tokens (at maximum one vehicle per waypoint) via tracks (=
transitions; represented by simple boxes).
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A finite set of tuples (a, b) ∈ I, with I ⊆ (T × W ) ∪ (W × T ), T :=⋃
s∈S T s and W :=

⋃
g∈G W g, composed of a transition in a station and a way-

point in a TG, defines the interface between the stations and the TGs (repre-
sented by dashed arcs in Fig. 1 above): Every tuple (a, b) ∈ I either connects
some GP in a station s ∈ S to a waypoint in a TG g ∈ G, in which case a ∈ P s

and b ∈ W g; or vice versa. In this way, every tuple defines which passenger flow
between a vehicle stopped at a waypoint in a TG and a GP (= platform) in a
station is possible for the purpose of boarding & alighting; see below.

Vehicle Operation. At the heart of the operation of a finite set V of all vehicle
tokens v ∈ V considered in the SHA model are missions: Every mission defines a
path in a particular transportation grid, together with (i) a sequence of stops at
the waypoints along that path; (ii) deterministic-timed (minimum & maximum
dwell times) and passenger load-dependent departure conditions from the stops
which might state that a vehicle cannot depart from a stop as long as some
passengers still want to alight from or board it; and (iii) driving times between
all waypoints which might be functions of the positions of all vehicle tokens.

Passenger Routing. We group all passengers into a finite set Y := {1, 2, . . . , n} of
n ∈ N different trip profiles (TPs): Every y ∈ Y defines a particular path in TN’s
infrastructure, together with the passengers’ preferences for the different vehicle
missions (cf. Fig. 1 above). However, this does not mean that the passengers
cannot change their TPs as we will highlight in a short (see Sect. 2.3).

2.2 Hybrid State

As common in the literature of hybrid automata, we refer to the discrete state of
our SHA model at any time τ ≥ 0 as its mode: A particular mode q ∈ Q from
the finite set of all different modes Q defines for every v ∈ V (i) the position of
v in form of a waypoint in a TG; (ii) the driving condition of v which is either
parked, stopped or driving; (iii) the operational state of v in form of a mission to be
executed, a discrete state therein, and a sequence of missions to be accomplished.
Thus, every q ∈ Q tells us which vehicle is docked to which station; and in doing
so, defines the (continuous) passenger flow dynamics in TN.

Remark 1. We say that a vehicle v ∈ V is docked to a station s ∈ S iff (i) v
is stopped at a waypoint w ∈ W g in some TG g ∈ G; (ii) acc. to I, either
passengers can board v stopped at w from some GP in s, or alight from it to
some GP in s. Moreover, we denote by V (s, q) ⊆ V the subset of all vehicles
that are docked to s in q.

Remark 2. If k is a row (column) vector, then we denote by k[i] the element in
its i-th column (row).

The continuous state of the SHA model at any τ ≥ 0, defines (i) the elapsed
dwell times of all stopped vehicles, (ii) the elapsed driving times of all moving
vehicles, and (iii) the passenger load M (b, τ), with M : (b, τ) ∈ (P ∪ V)×R≥0 →
M (b) and
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M (b) :=

⎧⎨
⎩k ∈ (R≥0)

|Y| :
|Y|∑
i=1

k[i] ≤ c (b)

⎫⎬
⎭ , (1)

for every vehicle b ∈ V and every GP in a station b ∈ P . Therein, P :=
⋃

s∈S P s,
M (b, τ) [i] gives the number of passenger at/on-board b, who travel acc. to the
TP i ∈ Y, and c (b), with c : P ∪ V → R>0, gives the maximum number of
passengers b can accommodate at the same time.

2.3 Balance Equations

For any q ∈ Q, we adapt the notation •b (q) for the preset and b• (q) for the
postset of any b ∈ P ∪ V ′ (q), with V ′ (q) :=

⋃
s∈S V (s, q) , from the Petri nets

literature for our purposes: •b (q) denotes the set of all corridors in the stations
that are connected by an arc pointing towards b. Accordingly, b• (q) denotes the
set of all corridors in the stations that are connected by an arc pointing away from
b. For b ∈ V ′ (q), those arcs (dashed arcs in Fig. 1 above) point towards/away
from the waypoint which accommodates b.

Note that all corridors in the stations of our SHA model are connected in a
special way to the rest of the modelled infrastructure (GPs in the stations and
waypoints in the TGs).

Remark 3. For any t ∈ T , we denote by �t (q) := b the single GP in a station
or vehicle docked to a station b ∈ P ∪ V ′ (q) which is connected to t in q by an
arc pointing towards t iff t ∈ b• (q). Accordingly, we denote by t� (q) := a, for
any t ∈ T , the single GP or vehicle docked to a station a ∈ P ∪ V ′ (q) which is
connected to t in q by an arc pointing away from t iff t ∈ •a (q).

This special structure allows us to decompose all corridors in q ∈ Q into three
disjoint sets; implementing inflows, transfer flows, and outflows: Inflows model the
arrival processes of the passengers who join the SHA model from TN’s exterior.

Definition 1 (Inflow). An inflow is a passenger flow assigned to any t ∈ T 1,
with

T 1 :=
{
t ∈ T : ∃ p ∈ P s.t. t ∈ •p∧

� p′ ∈ P s.t. t ∈ p• ∧ � w ∈ W s.t. (w, t) ∈ I}
.

(2)

Transfer flows model passenger flows within the SHA model; including passenger
transfers between the GPs in the stations, as well as passenger transfers between
GPs in the stations and vehicles docked to the stations.

Definition 2 (Transfer Flow). A transfer flow in q ∈ Q is a passenger flow
assigned to any t ∈ T 2 (q), with

T 2 (q) :=
{
t ∈ T : ∃ b ∈ P ∪ V (q) s.t. t ∈ •b∧

∃ b′ ∈ P ∪ V ′ (q) s.t. t ∈ (b′)•}
.

(3)

Finally, outflows model the SHA model’s drain of passengers to TN’s exterior.
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Definition 3 (Outflow). An outflow is a passenger flow assigned to any t ∈
T 3, with

T 3 :=
{
t ∈ T : ∃ p ∈ P s.t. t ∈ p• ∧

� p′ ∈ P s.t. t ∈ p• ∧ � w ∈ W s.t. (t, w) ∈ I}
.

(4)

With that said, we denote by T ′ (q), with T ′ (q) := T 1 ∪ T 2 (q) ∪ T 3, the set of
all corridors active in q ∈ Q; and by γ (τ), with γ : R≥0 → Q, the mode of our
SHA model at time τ ≥ 0.

dM (b, τ) :=
∑

t∈•b∩T ′(γ(τ))

R (t)

Passenger flow into b︷ ︸︸ ︷
[φ (t, τ) dτ + δ (t) dW (τ)] −

∑
t∈b•∩T ′(γ(τ))

[φ (t, τ) dτ + δ (t) dW (τ)]︸ ︷︷ ︸
Passenger flow leaving b

(5)

then defines the time evolution of the passenger load of every GP in a station
and of every vehicle docked to a station b ∈ P ∪ V ′ (q) at any time τ ≥ 0
when the SHA model is in q ∈ Q. This balance equation relates M (b, τ) to all
passenger flows into b and leaving it: We capture the routing of all passengers
along the different TPs as well as their local re-routing among these TPs in
so-called routing matrices.

Remark 4. We denote by Ψd1×d2 , for some d1, d2 ∈ N>0 and any set Ψ , the set
of all matrices with d1 rows and d2 columns, whose elements are from Ψ . In the
case that d2 = 1, we drop d2 in Ψd1×d2 and write Ψd1 instead.

The i-th row and the j-th column of a particular routing matrix R (t) assigned
to t ∈ T , with

R : T →
⎧⎨
⎩K ∈ (R≥0)

|Y|×|Y| :
|Y|∑
i=1

K[i, j] = 1,∀j = Y
⎫⎬
⎭ ,

defines the relative amount of the flow of passengers who join t acc. to the TP
j ∈ Y, and who leave t acc. to the TP i ∈ Y; and the fact that every column of
R (t) must either sum up to one or to zero, implies that all passenger flows are
conserved.

Remark 5. Time could be included in the domain of the routing matrices above so
that they might change values during mode transitions of the SHA model depend-
ing on the hybrid state; so as to account e.g. for loudspeaker announcements.

We next write down the passenger flow assigned to every corridor t ∈ T (q)
in q acc. to its impact on M (p, τ) as the sum of a drift term φ (t, τ), with

φ : (t, τ) ∈
⋃
q∈Q

T ′ (q) × R≥0 →
⎧⎨
⎩v ∈ (R≥0)

|Y| :
|Y|∑
i=1

v[i] ≤ φmax (q, t)

⎫⎬
⎭ ,

and a constant diagonal diffusion term
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δ :
⋃
q∈Q

T ′ (q) →
{

K ∈ R
|Y|×|Y| : K[i, j] = 0,∀i �= j

}
.

Therein, φmax (q, t), with φmax : q ∈ Q×T ′ (q) → R≥0, is the maximum passenger
throughput of the corridor t ∈ T ′ (q), when the SHA model is in q ∈ Q.

Remark 6. Let X be a continuous RV. Then, pdf (X) denotes its PDF; σ (X)
denotes its state space; and pdf (X,x) denotes the evaluation of pdf (X) at x for
some x ∈ σ (X).

We discuss the specification of φ (·) and δ (·) in more detail in the rest of this
paper. Here, only note that the drift term of a flow into some b ∈ P ∪ V ′ (q)
shifts the density of M (b, τ) in its domain. The flow’s diffusion term narrows or
broadens the density of M (b, τ).

2.4 Grouping of Balance Equations

In principle, the passenger flows in (5) can be defined as any functions of the
SHA model’s complete hybrid state as long as they are capacity- and demand-
sensitive; crucial properties that we assume for all passenger flows in our SHA
model: We say that some passenger flow is capacity-sensitive iff its drift does
not cause the passenger load of some GP or vehicle to exceed the capacity limit
of that GP or vehicle.

Definition 4 (Capacity-Sensitive Flow). A passenger flow assigned to some
t ∈ T ′ (q) in q ∈ Q is capacity-sensitive iff t ∈ T 3 or

|Y|∑
i=1

M (t�, τ) [i] → c (t�)

implies that φ (t, τ) → 0 for any τ ≥ 0.

Additionally, we say that a passenger flow is demand-sensitive iff its drift does
not cause any passenger load to become negative.

Definition 5 (Demand-Sensitive Flow). A passenger flow assigned to some
t ∈ T ′ (q) in q ∈ Q is demand-sensitive iff t ∈ T 1 or

M (�t, τ) [j]
|Y|∑
i=1

R (t) [i, j] → 0

implies that φ (t, τ) [j] → 0 for all j ∈ Y and for any τ ≥ 0.

Remark 7. Definitions 4 and 5 taken alone cannot ensure the non-negativity and
capacity limits of the passenger loads assuming non-zero diffusion terms in (5).
Instead both properties must be explicitly ensured during the computation or
simulation of (5) in form of reflecting boundary conditions. See e.g. [6], where
we derive reflecting boundary conditions for the numerical integration of a mul-
tivariate Fokker-Planck equation obtained from (5).
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For our purposes however, we do not need this kind of global inclusion of
the SHA model’s complete hybrid state into the specification of the passenger
flows: We restrict the domains of their drift terms to the passenger loads in their
presets and postsets.

Definition 6 (Local Flow). A passenger flow assigned to some t ∈ T ′ (q) in
q ∈ Q is local iff for any τ ≥ 0,

– t ∈ T 1, and the flow’s drift term only depends on M (t�, τ), or
– t ∈ T 2 (q), and the flow’s drift term only depends on M (�t, τ) and M (t�, τ),

or
– t ∈ T 3, and the flow’s drift term only depends on M (�t, τ).

This local specification of all passenger flows produces a natural decomposition
of all SDEs set up for any q ∈ Q: The balance equations in form of (5) set up
for the passenger loads of all GPs p ∈ P s and vehicles v ∈ V (s, q), for some
station s ∈ S, are independent from the passenger loads of all GPs outside s
and vehicles not docked to s. We can thus group them into one common system
of coupled SDEs of dimension k := (|P s| + |V (s, q)|) |Y|, which latter system is
decoupled from those systems set up for all other stations.

Remark 8. In practice, we do only have to consider all those TPs in the domain
specification for the passenger load of a particular GP or vehicle, whose paths
cover this GP or vehicle. Thus, k as defined above only defines an upper bound
for the dimension of the system of SDEs set up for s in q.

2.5 Mode Transitions

We assume that at the initial simulation time τ = 0, with τ ≥ 0, our SHA
model is in one particular mode with marginal probability one, and we know
the elapsed driving &dwell times of all vehicles. We then let our SHA model
transition between its discrete modes only at discrete time steps τ = i Δτ , with
i ∈ N>0, of fixed length Δτ > 0. In this context, we also let the elapsed driving
&dwell times of all vehicles only evolve at τ = i Δτ by Δτ . A directed acyclic
graph (DAG) then captures the time evolution of our SHA model’s vehicle load
(= particular mode and particular realization of all elapsed discrete driving
&dwell times). We do not go into details of its computation here, but only stress
some important points. Refer to [5] for more information: Every node, say m,
in this DAG, say G, represents a particular vehicle load for our SHA model in
the half-closed time interval

[
hm Δτ , (hm + 1) Δτ

)
iff hm ∈ N≥0 is the height

of m in G. Thus, two nodes with the same height h′ ∈ N>0 in G represent two
alternatives for our SHA model’s vehicle load in

[
h′

Δτ , (h′ + 1) Δτ
)
. Two or

more branches away from m indicate the possibility of mode transitions; with
one branch for every alternative mode transition, and one additional branch for
the continuation of m-th mode. Several nodes with the same height in G can
have the same mode and thus the same passenger flow dynamics in common.



Decoupling Passenger Flows for Improved Load Prediction 373

q0

q1

τ > 3 Δτ

q2

τ ≥ 0,
x ∈

(a)

r0[0, Δτ) :

r1[Δτ , 2 Δτ) : r2

x ∈

r3[2 Δτ , 3 Δτ) : r4

x ∈

(b)

Fig. 2. Schematic comparison of a (classical) mode graph (a) and a timed mode graph
(b) for our SHA model: X denotes a compact region in the SHA model’s complete
passenger load space as entrance condition for a not further specified passenger load-
driven mode transition, and Δτ > 0 is the fixed time step that separates every pair of
two consecutive time layers when the SHA model can change its mode

2.6 Propagation of Passenger Loads

At any simulation time τ = i Δτ , with i ∈ N≥0 and Δτ > 0, one single marginal
joint PDF, say pdf (i), defines the passenger loads of all GPs in the stations and of
all vehicles. For i = 0, we assume that pdf (i) is known with marginal probability
one. Then, starting from i = 0, all passenger loads have to be propagated forward
in time from one time layer in the SHA model’s DAG to the next: For the com-
putation of pdf (i + 1), for some i ∈ N≥0, all high-dimensional systems of SDEs
defined by our SHA model’s different modes in the time layer

[
i Δτ , (i + 1) Δτ

)
of the DAG, must be computed from τ = i Δτ to τ = (i + 1) Δτ with pdf (i) as
common initial PDF. Depending on the particular use case at hand so as to e.g.
forecast the risk of overcrowded platforms, this forward propagation is normally
terminated once the simulation time exceeds some constant threshold. Refer to
[5] for more details.

3 The Decoupling of All Passenger Flows

3.1 Overview

Our decoupling approach is perhaps best described by the following sequence of
images: We assume that every GP in a station and every vehicle b ∈ P ∪ V has
the shape of a circular area, say Ab. We next assume that the passenger load of
b is equally distributed on Ab at any simulation time step τ = i Δτ , with τ ≥ 0,
i ∈ N≥0, and Δτ > 0; in which Δτ is the fixed time step that separates every
pair of two consecutive time layers confining all mode transitions.

Remark 9. We denote by Γ (τ), with Γ : R≥0 → 2Q \ ∅, the subset of all modes
our SHA model can be in at time τ ∈ R≥0.

For any time τ ∈ Hi, from the time interval Hi :=
[
i Δτ , (i + 1) Δτ

)
, any mode

q ∈ Γ (τ), and any b ∈ P ∪ V ′ (q), we divide Ab into |(•b ∪ b•) ∩ T ′ (q)| non-
overlapping slices (cf. Fig. 3 below); in which one slice is attributed to every
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passenger flow into or leaving b, i.e., the passenger flow assigned to every corridor
t ∈ (•b ∪ b•)∩T ′ (q). Our assumptions above then imply that at τ = i Δτ (i) the
surface area of a particular slice defines how many passengers it accommodates
at τ , and (ii) the distribution of this latter number of passengers w.r.t. the
passengers’ different TPs is identical to the distribution of the total number
of passengers at b and τ w.r.t. the different TPs. We moreover assume that
a retractable wall is installed along every frontier separating two neighbouring
slices (dashed lines in Fig. 3 below). These walls prevent the equidistant re-
distribution of the slices’ passenger loads at any τ ∈ Hi, which diffusion is
restricted to the discrete time step τ = (i + 1) Δτ when all walls are removed.

λ (p1,t12,q) c (p1)

λ (p1,t1,q) c (p1)

λ (p1,t2,q) c (p1)

p1

t1: inflow

t2: outflow

t12: transfer

p2

Fig. 3. Schematic representation of our decoupling approach: all GPs and vehicles
docked to the stations in a particular mode, say q, of the SHA model are divided into
slices, with impenetrable walls separating neighbouring slices until the next discrete
point in time, say τ , arrives when the SHA model can change its mode. As long as the
SHA model stays in q, all passengers flow into or out of the slices. They do not flow
into or out of the original GPs and vehicles. A re-distribution of the slices’ passenger
loads occurs at τ .

So in our physically-touched model above, the slices’ passenger loads are
decoupled at any τ ∈ Hi, which implies that they might be filled and emptied
at different rates if we assume that the passengers flow into and leave the slices
of b; instead of flowing into and leaving b itself. For the specification of the
slices’ surface areas, we use the maximum passenger throughputs assigned to
the corridors for the different modes; see below.

3.2 Decoupled Balance Equations

General Structure. The system of SDEs that we will set up for the decoupled
passenger flow assigned to every t ∈ T ′ (q) for any q ∈ Q next, defines how
this flow manipulates the passenger load Mq,t (�t, τ) of the isolated slice from �t
attributed to t in q and/or the passenger load Mq,t (t�, τ) of the isolated slice
from t� attributed to t in q; when our SHA model is in q. We write it down in
the very general form of

dXq,t (τ) := Aq,t (Xq,t (τ)) dτ + Bq,t (Xq,t (τ)) dW (τ) , (6)

with the state vector Xq,t, the drift vector Aq,t, the diffusion matrix Bq,t, and
the vector of |Y| uncorrelated Wiener processes W.
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Remark 10. We write the tuple of a mode q ∈ Q and a transition t ∈ T ′ (q)
in form of subscript separating both in the given order by a comma next to a
variable or constant iff we refer to the projection of that variable or constant in
(6) set up for the decoupled passenger flow assigned to t in q.

Projection of Passenger Loads and Flows. As outlined in the figurative overview
of our decoupling approach above, we project M (b, τ), for any b ∈ P ∪V ′ (q) and
q ∈ Q, to Mq,t (t, τ), with Mq,t : T ′ (q) × R≥0 → Mq,t (b) and

Mq,t (b) :=

⎧⎨
⎩k ∈ (R≥0)

|Y| :
|Y|∑
i=1

k[i] ≤ λ (b, t, q) c (b)

⎫⎬
⎭ ,

at τ = i Δτ , with i ∈ N≥0, acc. to

Mq,t (b, i Δτ) := λ (b, t, q) M (b, i Δτ) (7)

iff our SHA model is in mode q at τ = i Δτ . Therein, λ (b, t, q), with

λ (b, t, q) :=
φmax (q, t)∑

t′∈(•b∪b•)∩T ′(q)
φmax (q, t′)

, (8)

defines the maximum number λ (b, t, q) c (b) of passengers the isolated slice from
b ∈ P ∪ V ′ (q) assigned to t ∈ (•b ∪ b•) ∩ T ′ (q) in q can accommodate (cf. Fig. 3
above). This simple projection implies

pdf (Mq,t (b, i Δτ) = λ (b, t) k) = pdf (M (b, i Δτ) = k) ,∀k ∈ M (b) , (9)

with M (b) from (1). We also use (8) to project φ (t, τ) - which we assume to
be local, demand- &capacity sensitive - to φq,t (t, τ) acc. to Table 1 below, which
implies that all qualitative properties of φ (t, τ) such as demand-sensitiveness are
adopted by φq,t (t, τ).

Table 1. Specification of φq,t (t, τ) assigned to t ∈ T ′ (q) in q ∈ Q

Inflow: φ
(
λ−1 (t�, t, q) Mq,t (t�, τ)

)

Transfer Flow: φ
(
λ−1 (�t, t, q) Mq,t (�t, τ) , λ−1 (t�, t, q) Mq,t (t�, τ)

)

Outflow: φ
(
λ−1 (�t, t, q) Mq,t (�t, τ)

)

Inflows. In general, we neither know the passengers’ exact arrival times, nor
the TPs of the new arriving passengers. However, in most situations we know
some reference values, and we can estimate quite reasonably fluctuations around
them (e.g. from statistical considerations); which latter knowledge we can then
map to the systems of SDEs set up for all decoupled inflows. More specifically,
we set up for every t ∈ T 1 a balance equation in form of (5), which defines the
impact of the inflow assigned to t, to the passenger load of t�; and integrate this
balance equation into (6). Table 2 lists the corresponding ingredients.
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Transfer Flows. Once having joined the SHA model, we assume that the passen-
ger transfer dynamics regarded in isolation within the SHA model in a particular
mode is deterministic; which implies zero diffusion terms for the specification of
all decoupled passenger transfer flows: For every t ∈ T 2 (q) in q ∈ Q, we set up two
balance equations in form of (5). The first balance equation defines the impact of
the transfer flow assigned to t, to the passenger load of �t. Accordingly, the second
balance equation relates the passenger load of t� to the same decoupled transfer
flow. We then integrate both balance equations into (6) acc. to Table 2.

Table 2. Specification of the system of SDEs set up for the decoupled inflow, transfer
flow, or outflow assigned to t ∈ T ′ (q) in mode q ∈ Q of our SHA model

Inflow Transfer Flow Outflow

Schematic
structure t�t �t

t

t� �t t

Xq,t (τ) Mq,t (t�, τ)
Mq,t (�t, τ)
Mq,t (t�, τ)

Mq,t (�t, τ)

Aq,t (τ) R (t) φq,t (t, τ)
−φq,t (t, τ)

R (t) φq,t (t, τ)
−φq,t (t, τ)

Bq,t δ (t) 0 0

Outflows. Similar to the specification of all transfer flows above, we demand zero
diffusion terms for all passenger outflows: For every t ∈ T 3, we set up a balance
equation in form of (5) and integrate it into (6). This balance equation relates
the passenger load of �t, to the outflow assigned to t (cf. Table 2).

3.3 Correctness of Our Decoupling Approach

Assume that our SHA model is in mode q ∈ Q at time τ = i Δτ , for some
i ∈ N≥0; in which Δτ > 0 is the fixed time step that separates every pair of two
consecutive time layers confining all mode transitions. Moreover, assume that we
like to compute the probability of a particular mode transition of the SHA model
at time τ = (i + 1) Δτ ; which is triggered by the passenger load trajectory of
some GP in a station or vehicle docked to a station b ∈ P ∪V ′ (q) taking a value
from k ∈ K, with K ⊆ M (b) and M (b) from (1). More formally speaking, we
thus like to compute the probability

P (M (b, (i + 1) Δτ) ∈ K) :=
∫

K

pdf (M (b, (i + 1) Δτ) = k) dk (10)

with M (b, τ) specified at τ = i Δτ by pdf (M (b, i Δτ)) acc. to (9).

Remark 11. Let X1, X2, . . . , Xn be a vector of n ∈ N>0 continuous RVs.
Then, pdf (Xj ; j ∈ {1, 2, . . . , n}) denotes the joint PDF of X1, X2, . . . , Xn;
pdf (Xj = xj ; j ∈ {1, 2, . . . , n}) denotes the evaluation of pdf (Xj ; j ∈ {1, 2, . . . , n})

at (x1, x2, . . . , xn), with xj ∈ σ (Xj), ∀j ∈ {1, 2, . . . , n}.
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Look at

P

⎛
⎝ ∑

t∈(•b∪b•)∩T ′(q)

Mq,t (b, (i + 1) Δτ) ∈ K

⎞
⎠ =

∫
K

pdf

⎛
⎝ ∑

t∈(•b∪b•)∩T ′(q)

Mq,t (b, (i + 1) Δτ) = k

⎞
⎠ dk

(11)

instead, which is the probability that the sum of the decoupled passenger loads
of the different isolated slices from b (isolated in q) takes a value from K at
τ = (i + 1) Δτ . Let

l := |(•b ∪ b•) ∩ T ′ (q)| , (12)

and introduce the set M (b, k), with

M (b, k) :=

⎧⎨
⎩(k1, k2, . . . , kl) ∈ (M (b))l :

l∑
j=1

kj = k

⎫⎬
⎭ (13)

Moreover, let {t1, t2, . . . , tl} := (•b ∪ b•)∩T ′ (q). Then, write down (11) in form of

P

⎛
⎝ ∑

t∈(•b∪b•)∩T ′(q)

Mq,t (b, (i + 1) Δτ) ∈ K

⎞
⎠ =

∫
K

∫
M(b,k)

pdf
(
Mq,tj

(b, (i + 1) τ) = kj ; j ∈ {1, 2, . . . , l}) d (k1, k2, . . . , kl) dk

(14)

Therein, note that Mq,t1 (b, (i + 1) Δτ), . . . , Mq,tl
(b, (i + 1) Δτ) are independent

RVs. Thus, (14) simplifies to

P

⎛
⎝ ∑

t∈(•b∪b•)∩T ′(q)

Mt (b, (i + 1) Δτ) ∈ K

⎞
⎠ =

∫
K

∫
M(b,k)

∏
tj∈(•b∪b•)∩T ′(q)

pdf
(
Mtj

(b, (i + 1) τ) = kj

)
d (k1, k2, . . . , kl) dk

(15)

Theorem 1. For any q ∈ Q, b ∈ P ∪ V ′ (q), and k ∈ M (b), the integral∫
M(b,k)

∏
tj∈(•b∪b•)∩T ′(q)

pdf (Mti
(b, (i + 1) τ) = ki) d (k1, k2, . . . , kl)

from (15) converges to pdf (M (b, (i + 1) Δτ) = k) from (10) for Δτ Δτ>0−→ 0.

Note that Theorem 1 implies that our above decoupling approach produces
a set of SDEs (one for every decoupled flow) for the different modes of our SHA
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model; this set approximates the original coupled passenger flow dynamics in
the limiting case of vanishing discrete simulation time steps, when we let the
decoupled slices communicate their results.

Proof of Theorem 1. Common Initial State: From (7), note that∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, i Δτ) =
∑

t∈(•b∪b•)∩T ′(q)

λ (b, t, q) M (b, i Δτ)

= M (b, i Δτ)
∑

t∈(•b∪b•)∩T ′(q)

λ (b, t, q) .
(16)

From (9) follows ∑
t∈(•b∪b•)∩T ′(q)

λ (b, t, q) = 1, (17)

which in turn implies ∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, i Δτ) = M (b, i Δτ) . (18)

Common Differential Dynamics: The continuous time evolution of∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, τ)

in the time interval τ ∈ [
i Δτ , (i + 1) Δτ

)
is defined by

d

⎛
⎝ ∑

t∈(•b∪b•)∩T ′(q)

Mq,t (b, τ)

⎞
⎠ =

∑
t∈(•b∪b•)∩T ′(q)

dMq,t (b, τ), (19)

with initial state
Mq,t (b, i Δτ) ,

for some i ∈ N≥0 and τΔτ > 0, which is identical to (5) for Δτ → 0 given the
specification of (6) acc. to Tables 1 and 2, q.e.d.

3.4 Consequence of Our Decoupling Approach

In the original approximate computation of our SHA model’s state space, we were
confronted with one system of coupled SDEs for every station s ∈ S in every
mode. The dimension of this system is n := (ns,1 + ns,2) ny iff ns,1 corresponds
to the number of different gathering points in s, ns,2 corresponds to the number of
vehicles docked to s, and ny := |Y| corresponds to the number of the passengers’
different trip profiles in the TN at hand. Now our decoupling approach replaces
this n-dimensional system of SDEs by a set of probably much smaller systems
of ODEs (with uncertain initial states) and SDEs: Every of this new/replacing
system of equations has 2 ny dimensions if it captures a transfer flow, and ny

dimensions otherwise.
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4 Summary and Outlook

In this paper, we have considered one major bottleneck that may arise in the
approximate computation of our SHA model from [5]: the numerical computation
of the many high-dimensional SDEs, which define the passenger flow dynamics
in its different modes. More specifically, we have shown how all passenger flows
can be systematically decoupled in the different modes of our SHA model, which
produces a set of lower-dimensional ODEs and SDEs replacing the original SDEs.
We proved correctness of this decoupling approach. Numerical experiments are
under way. We want to share our insights obtained from them in future pub-
lications, where we also intend to (i) discuss improvements targeting the com-
putation of the SHA model’s discrete state, and (ii) show how our model and
algorithms for its approximate computation can be applied to the perturbation
analysis of a multimodal TN.
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