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Abstract This chapter highlights specific design features of tasks proposed in a
Dynamic Geometry Environment (DGE) that can foster the production of indirect
argumentations and proof by contradiction. We introduce the notion of open con-
struction problem and describe the design of two types of problems, analysing their
potential a priori, with the goal of elaborating on the potentials of designing problems in
a DGE with respect to fostering processes of indirect argumentation. Specifically, we
aim at showing how particular open construction problems, that we refer to as non-
constructability problems, are expected to make indirect argumentations emerge.
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1 Introduction

This chapter discusses the potential offered by specific tasks designed in a Dynamic
Geometry Environment (DGE) of leading to the production of indirect argumen-
tations and eventually to proof by contradiction. We will attempt to highlight the
specific design features that characterize these tasks. We start by introducing two
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main aspects, emerging from previous studies: open problems, and open con-
struction problems in particular, and explorations in a DGE. Then we characterize
the design of two types of open construction problems and analyse their potential a
priori. The main objective of this chapter is to elaborate on the potentials of
designing problems of non-constructability in a DGE with respect to fostering
processes of indirect argumentation. Such problems, indeed, withhold potential for
fostering the emergence of argumentations referring to logical dependency between
constructed properties and derived properties. Specifically, we aim at showing how
non-constructability problems are expected to make indirect argumentations
emerge. Our discussion is consistent with classical results coming from previous
studies where the dragging strategies were described (Healy 2000; Hölzl 2001;
Leung and Lopez-Real 2002; Arzarello et al. 2002), but aims at elaborating on them
to support the didactic hypothesis that designing and solving non-constructability
DGE tasks may offer a rich context for introducing proof by contradiction.

2 Indirect Argumentation

Studies in mathematics education have revealed students’ specific difficulties with
proof by contradiction (Thompson 1996; Antonini and Mariotti, 2008, 2006;
Antonini 2004), at every school level. However, on the other hand, some studies
underline that students spontaneously produce argumentations with a structure that
is very similar to that of a proof by contradiction:

The indirect proof is a very common activity (‘Peter is at home since otherwise the door
would not be locked’). A child who is left to himself with a problem, starts to reason
spontaneously ‘… if it were not so, it would happen that…’ (Freudenthal 1973, p. 629).

With the term “indirect argumentation” we intend, in line with Freudenthal, argu-
mentations that are developed starting from the negation of what is to be supported.
That is, for example,1 of the type “…if it were not so, it would happen that…”. The
transition from indirect argumentation to a (direct or indirect) proof is beyond the
scope of the analyses included.

Freudenthal concludes that “before the indirect proof is exhibited, it should have
been experienced by the pupil” (Freudenthal 1973, p. 629) and, along the same
lines, Thompson writes:

If such indirect proofs are encouraged and handled informally, then when students study the
topic more formally, teachers will be in a position to develop links between this informal
language and the more formal indirect-proof structure (Thompson 1996, p. 480).

1For a more articulated and refined analysis of argumentation supporting mathematical impossi-
bility see Antonini (2010).
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Assuming this last hypothesis proposed by Thompson, in this chapter we pro-
pose and analyse tasks that have the aim of fostering the production of indirect
argumentations in Euclidean Geometry.

3 Open Construction Problems

The term ‘open problem’ is common in the mathematics education literature (Arsac
1999) to express a task that poses a question without revealing or suggesting the
expected answer. When assigned an open problem, students are faced with a sit-
uation in which there are no precise instructions, but rather they are left free to
explore the situation and make their own conclusions. Frequently reaching a
solution involves processes of generation of conditionality after a mental and/or
physical exploration of the problematic situation (Mariotti et al. 1997). In the
literature, open problems have frequently been characterized by the presence of an
explicit request to produce a conjecture (e.g., Boero et al. 1996; Olivero 2000;
Arzarello et al. 2002; Boero et al. 2007). In these cases we will use the terminology
conjecturing open problem (as in Baccaglini-Frank 2010, p. 84).

In Geometry, a conjecturing open problem can take the following form, as
described in Mogetta et al. (1999):

The statement is short, and does not suggest any particular solution method or the solution
itself. It usually consists of a simple description of a configuration and a generic request for
a statement about relationships between elements of the configuration or properties of the
configuration (ibid, pp. 91–92).

Typically, when solving an open problem, the student must first advance one (or
more) conjecture(s), as a culmination of what is referred to as the exploration phase
or conjecturing phase (Baccaglini-Frank and Mariotti 2010), and then s/he is
expected to engage in a proving phase that results in a proof supporting the vali-
dation of the conjecture (whether it turns out to be true or false). We will consider
tasks that make use of conjecturing open problems that inquire about the con-
structability of a certain figure. Therefore we need to preliminarily discuss con-
struction problems.

3.1 Construction Problems

Construction problems constitute the core of classic Euclidean Geometry. The use
of specific artifacts, i.e. ruler and compass, can be considered at the origin of the set
of axioms defining the theoretical system of Euclid’s Elements.

As stated by Heath (1956, in Arzarello et al. 2012),
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Euclidean Geometry is often referred to as ‘straight-edge and compass geometry’, because
of the centrality of construction problems in Euclid’s work. Since antiquity geometrical
constructions have had a fundamental theoretical importance in the Greek tradition (ibid,
p. 98).

Accordingly, any geometrical construction corresponds to a theorem, which means
that there is a proof that validates the construction procedure that solves the cor-
responding construction problem. As a matter of fact, the relationship between
construction and theorems is very complex, and such complexity is witnessed by
the discussions by the classical commentators of Euclid’s Elements (Heath 1956,
p. 124 et seq.). Proclus distinguished between problems and theorems, “the former
embracing the generation, division, subtraction or addition of figures, and generally
the changes which are brought about in them, the latter exhibiting the essential
attributes of each.” (Proclus, quoted by Heath, ibid, p. 125). While the ‘theoretical’
character of geometric constructions made them similar to theorems, the specificity
of construction problems, as open problems, seemed to reclaim the need to maintain
the distinction between the two types of statements. The distinction was to be
further underlined by the expressions that Euclid put at the end respectively of a
theorem and of a problem: in the case of a Theorem he wrote “that which was
required to prove” and in the case of a construction he wrote “that which was
required to do” (ibid, p. 126). However, the substantial unity of the Euclidean
statements led some authors to use a unique term for both types of statements. In
some of the later editions of the Elements we can find the term “Proposition”
referring to any statement of the theory, followed or not by the specification of the
theorem or by a problem (see for instance, Cametti 1755; Legendre 1802).

Thus in classic Euclidean Geometry the theoretical nature of a geometrical
construction is clearly stated, in spite of the apparent practical objective, i.e. the
accomplishment of a drawing following a certain construction procedure. We note
that the “non-constructability” of a figure may become manifest in fundamentally
two different ways: a figure may be non-constructible with certain (predefined)
theoretical tools, mostly straightedge and compass; or non-constructability may
derive from the non-existence of the figure of which one requires the construction,
that is, from the contradiction that follows once its existence is assumed.
Historically, there are many examples of the first case such as the trisection of an
angle, doubling a cube or squaring the circle. The problems of constructability with
straightedge and compass were solved definitively in the XIX Century with tools
developed in analytic geometry and through algebraic extensions. The second case
of non-constructability does not depend on the tools used to accomplish the con-
struction because it is a consequence of the theoretical non-existence of the object.
The latter is the context we will be working in throughout this chapter.
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3.2 Conjecturing Open Problems of Constructability
and Non-constructability

In this chapter we will be working with construction problems that involve the
formulation of a conjecture, so they are conjecturing open construction problems.
From the point of view of design, the main aspect we are interested in discussing
here, it is useful to distinguish two subtypes within these problems based on
whether the construction is or is not actually possible in Euclidean Geometry. If the
construction is possible we will speak of constructability problems, while if the
construction is not possible, of non-constructability problems. Clearly the solver
initially does not know whether the construction problem s/he is addressing is a
constructability or non-constructability problem, while the designer does.

We will be working, in particular, with non-constructability problems of two
types: one in which the solver is asked whether a figure with described properties is
constructible or not, and in either case s/he is required to provide an argumentation;
second one in which steps of the construction of a figure are given and the solver is
asked what kinds of figures of a specific type (e.g., of quadrilaterals) can/cannot the
figure become, providing conjectures and argumentations in each case. In either
case, the solver will probably attempt to construct the suggested or hypothesized
figure. The solution can be provided either producing the construction procedure
and its validation according the theory available (in this case Euclidean Geometry),
or proving the fact that no construction procedure can be exhibited. This latter case,
because of its very nature, may lead to an indirect argumentation, sowing seeds that
may lead to a proof by contradiction. As a matter of fact a non-constructability
statement expresses the fact that it is impossible to display a valid procedure for
constructing a certain figure.

4 The DGE Dragging Phenomenon

Literature over the last 20 years has been filled with examples of how a DGE can be
used for the exploration of open problems, and, more in general, in exploratory
learning (e.g., Yerushalmy et al. 1993; Di Sessa et al. 1995). In particular, research
has shown that a DGE impacts students’ approach to investigating open problems
in Euclidean Geometry, contributing particularly to students’ reasoning during the
conjecturing phase of open problem activities (e.g., Leher and Chazan 1998;
Mariotti 2000; Arzarello et al. 2002; Leung 2008; Leung et al. 2013). The dynamic
nature of the exploration in open problems is particularly evident in a DGE.
Any DGE figure that has been constructed using specific primitives can be acted
upon through dragging hence determining the phenomenon of moving figures.
A Dragging Exploration Principle was proposed (Leung et al. 2013) to epitomize
the DGE dragging phenomenon:
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During dragging, a figure maintains all the properties according to which it was constructed
and all the consequences that the construction properties entail within the axiomatic world
of Euclidean geometry (ibid, p. 458).

The perception of a moving figure in a DGE is the phenomenon on the screen
that something about the figure changes while something is preserved under
dragging. What is preserved under dragging (the invariant) becomes the identity of
the object/figure in contrast with what changes that determines its variation and
consequently its movement. “Dynamic geometry exteriorizes the duality
invariant/variable in a tangible way by means of motion in the space of the plane.”
(Laborde 2005, p. 22). The invariants correspond to the properties that are pre-
served and allow the user to recognize the sequence of images as the same figure in
movement. Perceiving and interpreting the interplay between variation and
invariants under dragging is the core of the process of discernment in DGE whereby
we recognize quite different objects as belonging to the same category (Leung
2008; Leung et al. 2013; Mariotti 2014).

In a DGE, it is possible to distinguish between two kinds of invariants appearing
simultaneously as a dynamic-figure is acted upon and therefore “moves”. First there
are the invariants determined by the geometrical relations defined by the commands
used to construct the figure which are called direct invariants. Second there are the
invariants that are derived (indirect invariants) as a consequence within the theory
of Euclidean Geometry (Laborde and Sträßer 1990). The relationship of depen-
dency between these two types of invariants constitutes a crucial point in the
process of exploration in a DGE, and the experience of dragging constructed figures
allows the user to interpret what appears on the screen in terms of logical conse-
quence between geometrical properties; in particular, derived invariants will be
interpreted in terms of consequences of the direct invariants. Familiarity with
explorations in a DGE will mean for a user to have high confidence of this kind of
interpretation of images and transformations of images on the screen.

Solving constructability and non-constructability problems in a DGE presents
specific visual features. Drawings realized with a straightedge and compass and
theorems validating a construction statement have specific counterparts in a DGE.
This can be described in terms of visual theorems (Davis, 1993).

Briefly, a visual theorem is the graphical or visual output from a computer program—
usually one of a family of such outputs—which the eye organizes into a coherent, iden-
tifiable whole and which is able to inspire mathematical questions of a traditional nature or
which contributes in some way to our understanding or enrichment of some mathematical
or real world situation (ibid, p. 333).

It [visual theorem] is the passage from the mathematical iteration to the perceived figure
grasped and intuited in all its stateable and unstateable visual complexities (ibid, p. 339).

Therefore a dynamic visual moving figure in a DGE stands for an interesting
epistemic aspect of experimental mathematics where both a visual and theoretical
dimensions are present. This duality has been discussed, for example, by Leung and
Lopez-Real (2002):
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During any dragging episode, the boundary between exploring new geometrical situations
and justifying a theorem is a blurred one …. The holistic nature of the dynamic visual
representation in DGE allows variation in meaning when a DGE entity is observed (via
dragging) from different points of view. Hence the dragging modality can be interpreted as
a kind of “random access” to different cognitive modes (making conjecture, formulating
proof) in the mind of the person who is interacting with DGE. This duality in interpretation
in DGE … facilitates the acquisition of deeper insight into the task at hand that could lead
to further generalization (ibid, p. 159).

Thus the user is let free to explore the possibility of realizing the requested prop-
erties. Different possible situations may occur leading to different possible explo-
ration processes or strategies. As discussed by Sinclair and Robutti (2013), dynamic
figures can be interpreted in two fundamentally different ways: one according to
which the dynamic figure constitutes a “whole” whose behaviour is analysed all
together; and a second way according to which the figure constitutes a (very large
and discrete) set of static “examples”. The authors remarked on how

It is still unclear whether learners somehow naturally see the draggable diagrams as a series of
examples or as one continuously changing object, and whether this depends on their previous
exposure to the static geometric discourse of the typical classroom […] (ibid, p. 574).

The second modality described may be more present in explorations of
non-constructability problems. Now let us consider a conjecturing open construction
problem in a DGE that consists in asking to realize an image with a required set of
properties. First let us look at the case in which a (robust2) construction is possible.
The order of construction of the required properties may be important, in that it may
not be possible to invert the order of robust construction of the properties and still
reach the desired figure. For example, constructing a parallelogram with a right angle
is not possible starting from a robust parallelogram. Instead, the solver needs to first
construct a right angle and from there proceed to define the three other vertices and
two sides of the parallelogram. So the possibility of realizing a figure with specific
properties may be subordinated to selecting a certain order of construction of the
properties. If the user starts with a robust parallelogram and then tries to impose a right
angle in one of its vertices, all s/he can obtain is the right angle as a soft property.

In the case of impossibility of the construction, no matter in what order the
solver chooses to construct the properties, s/he will not be able to generate a figure
with the desired properties. However, the choice of which property to start con-
structing robustly may heavily influence the exploration. This issue is touched upon
in the paper by Baccaglini-Frank et al. (2013) and will be further elaborated on in
the present chapter, as it is key in capturing aspects of the didactical potential of the
types of activities proposed in explorative learning contexts. Let us analyse
examples of two paradigmatic types of tasks for non-constructability problems. We
will give an a priori analysis of possible solution processes showing how indirect
argumentations might emerge.

2The terminology “robust” and “soft” comes from Healy (2000) and refers to the fact that certain
properties are or are not invariant under dragging.
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5 Two Types of Non-constructability Task

5.1 Type One

The first type of non-constructability task can be given in the following form:

Is it possible to construct a figure of type X with properties Y1, Y2, … Yn? If so
construct it robustly. If not explain why not.

Here “figure of type X” indicates a class of figures such as triangles, quadri-
laterals, etc., and Yi are properties of figures in Euclidean Geometry.

5.1.1 Example Task 1a

The task is formulated as follows: “Is it possible to construct a triangle with two
perpendicular angle bisectors? If so, provide steps for a construction. If not, explain
why not.” The answer to the question posed by the problem is “No. A triangle with
two perpendicular angle bisectors cannot be constructed”.

Figure 1 depicts a robust construction of the triangle with soft angle bisectors.
A proof by contradiction might go along the following lines (refer to Fig. 1).

On the one hand, let \CDA be right and CD be the bisector of \BCA and AD
the bisector of \CAB. Then, passing to the angle measures,
1
2m\BCA + 1

2m\BAC = 90�, so m\BCA + m\BAC = 180�. On the other hand,
m\BCA + m\BAC \180� because ∠BCA and ∠BAC are two angles of a tri-
angle. Therefore, we have a contradiction, that is the conjunction between a
proposition and its negation.

In a DGE the solver can choose to construct and reason in one of two funda-
mentally different ways as follows.

Fig. 1 Possible attempt at
constructing a suitable
triangle
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(1) Construct the angle bisectors meeting at a right angle first, then construct the
angles of which these are the bisectors and drag to try to “close” the triangle
(see Fig. 2).

The solver drags the base points, but his/her attempt at constructing the triangle
fails. At this point s/he may ask him/herself why s/he cannot close the triangle. S/he
could discover that two sides of the triangle are parallel and so it is possible to
construct other figures (like parallelograms, rhombuses …) but it is not possible to
obtain a triangle. S/he could also continue to look for a particular configuration that
satisfies the requirements and produce degenerate figures making the sides overlap
in a single segment. The problem could move to accepting or not the obtained
figure as in Fig. 2 as a triangle. If the solver accepts it as a triangle, what was
requested has been constructed; otherwise s/he may conclude that the only way to
obtain the requested figure is to make it degenerate, therefore excluding all together
the possibility of constructing a triangle. In this second case, the argumentation
supporting the conclusion may take an indirect form.

(2) Construct the triangle first, then the angle bisectors, and drag to force the angle
at their intersection to become right (objective-property) (see Fig. 3).

Fig. 2 Possible construction
with robust angle bisectors
intersecting at a robust right
angle. One could drag to see if
it is possible to make the lines
AC′ and CA′ intersect to close
the triangle

Fig. 3 Possible construction
with a robust triangle and
angle bisectors, but soft
perpendicularity. One could
drag to force the angle at the
intersection to become right
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The exploration leads to observing that it seems possible to make the angle a
right angle, without however obtaining a single soft instantiation of this property.
To check whether the angle is right, the solver may construct an additional element,
for example the perpendicular line to the bisector CF through D or s/he might
activate the measure of the angle. The fact that the angle can get closer and closer to
a right angle can lead the student to thinking that a construction is in fact possible.
This can lead him/her to trying to understand what the triangle should be like, and
therefore it can lead to assuming that the figure is already properly constructed and
searching for hypothetical additional properties to add to it (a typical process of
analysis in Euclidean Geometry) in order to obtain a robust version of the desired
figure. Starting from the assumption of having constructed the figure could lead to
an argumentation like “if the triangle had perpendicular bisectors, then…” leading
to indirect argumentations that can end in a contradiction or, at least, in properties
that are unacceptable for the solver.

Different argumentations could be developed starting from the properties of the
bisectors of the triangle, reaching a consequence that comes into conflict with the
request of being perpendicular. For example, one can reach a conclusion that the
angle between the bisectors has to be strictly greater than a right angle. Finally,
theoretical considerations and the observation of the configurations emerging
through dragging can lead to particular cases in which the properties are satisfied,
but this happens only in degenerate cases in which the triangle collapses into a
segment. Although obtaining the contradiction from a theoretical point of view is
sufficient to prove that the triangle does not exist, from a cognitive point of view,
we could have the necessity to see the consequence of the proposition
m\BCA + m\BAC = 180� which implies that sides BC and BA either coincide or
are parallel. Then either B does not exist and so the initial triangle does not exist, or
A, B, and C must be collinear, and so again the triangle cannot exist in a
non-degenerate form. In other words, a determining difference of how this situation
may be seen is how the figure degenerates. In one case the triangle can be seen to
degenerate, breaking into an open figure (when BC and BA are seen as becoming
parallel, see Mariotti and Antonini 2009), or it can be perceived as turning into a
single line (for example, BC and BA are seen as collapsing onto the same line).

5.1.2 Example Task 1b

Task 1a can be given in a slightly different form: “Is it possible to construct a
triangle with two perpendicular external angle bisectors? If so, provide steps for a
construction. If not, explain why not.” The answer to the question posed by the
problem is “No. A triangle with two perpendicular external angle bisectors cannot
be constructed”.

Figure 4 depicts a robust construction of the triangle with soft external angle
bisectors. A proof by contradiction might go along the following lines (refer to
Fig. 4). Let \ADC be right and AD be the bisector of the external angle of the
triangle in A(a), and CD be the bisector of the external angle of the triangle in C(c).
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Then, passing to the angle measures, c ¼ 180��aþ\ABC. Considering the sum of
the internal angles of triangle ACD,

1
2
a +

180� � aþ\ABC
2

¼ 180� � \ADC
1
2
aþ 180� � aþ\ABC

2
¼ 180� � 90�

a
2
þ 90� � a

2
þ \ABC

2
¼ 90�

\ABC
2

¼ 0�:

Therefore, we have a contradiction, because \ABC is not zero in a non-degenerate
triangle.

In a DGE the solver can choose to proceed in one of two fundamentally different
ways, as follows.

(1) Construct the external angle bisectors meeting at a right angle first, then
construct the angles of which these are bisectors and try to drag B1 to B2 to
“close” the triangle (see Fig. 5).

(2) Construct the triangle first, then the external angle bisectors, and drag to force
the angle at the intersection D to become right (objective-property) (see
Fig. 6).

Fig. 4 Possible attempt at
constructing a suitable
triangle
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Summing up, in both cases the difficulties in trying to obtain what is requested can
prompt a search for a number of different arguments, at different moments, and with
different objectives:

• understanding, explaining, verifying failure (or the difficulties) of the search,
and therefore explaining why the two properties cannot coexist at the same
instant;

• identifying “when” the objective-property is satisfied;
• analysing the acceptability of the anomalous cases obtained.

Whatever the objectives, we expect both direct and indirect argumentations.
Direct argumentations may stem from a certain property to identify consequences

Fig. 5 Possible construction
with robust external angle
bisectors intersecting at a
robust right angle

Fig. 6 Possible construction
with robust external angle
bisectors intersecting at a soft
right angle
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that can be incompatible with the second property. In other cases the solver may
start from the triangle with all the desired coexisting properties, using processes of
analysis and synthesis to see whether the construction is possible, or to motivate the
impossibility of the construction. In both cases indirect argumentations may arise.

5.2 Type Two

The second type of non-constructability task can be given in the following form:

Given the construction with steps S1, S2, … Sn, consider figure F originating from
the steps. Which kinds of figures of type X is it possible for F to become? Make
conjectures and explain.

Here Si corresponds to a command in the DGE, F is a subset of elements
originating from the construction which the solver’s attention is called upon, and
“figure of type X” indicates a class of figures such as triangles, quadrilaterals, etc.

First, the robust construction of a figure is required, the solver is asked to explore
possible specifications of the original figure. Geometrically speaking, this will
correspond to asking the solver to identify possible properties that can be consis-
tently added to the construction properties that have been already realized. Let us
discuss possible solutions in the following case.

Construct the following figure:

• a point P
• a line r through P
• the perpendicular to r through P
• a point C on the perpendicular
• point A symmetric to C with respect to P
• a point D on the semi plane opposite to C with respect to r
• line through D and P
• a circle with centre C and radius CP
• B as the 2nd intersection of the circle with the line through DP
• the quadrilateral ABCD.

Once the construction is achieved, an image appears like that in Fig. 7. What kinds
of quadrilaterals can ABCD become?

As soon as the exploration begins, it will be easy to realize that ABCD can
become a parallelogram (Fig. 8). Exploring this case, the solver can discover how
to make ABCD into a robust parallelogram by only adding one new property to the
construction, adding the following construction steps:

• a circle with centre in A and radius AP
• redefine D on this new circle.
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Fig. 7 Quadrilateral ABCD arising from the steps of the task

Fig. 8 The solver has discovered a way to transform ABCD into a robust parallelogram
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The new properties are geometrically consistent with the previous properties and
the construction is successfully achieved. At this point, the exploration could
continue in two different directions. The solver decides either to come back to the
original figure or to address the problem of constructing new quadrilaterals as
subcases of the case of the parallelogram. In the latter case, a square would seem to
be possible, since it is a particular kind of parallelogram.

The solver may notice that now the figure has new robust invariants PB con-
gruent to PD; BC parallel and congruent to DA; BA parallel and congruent to CD;
etc. The solver might attempt to obtain a figure that visually could be perceived as a
square and to do this s/he may decide to see when ABCD has right angles,
obtaining such configuration at specific instances. This is in fact possible, however
the property is not sufficient for ABCD to be a square, but only a non-square
rectangle (Fig. 9).

However, the solver may not grasp the theoretical reasons of such impossibility,
therefore acknowledging the failure of his/her attempt. Instead s/he may search for
another way of obtaining a square, identifying another property to add to the
previous ones. For example, the solver may search for configurations in which the
parallelogram has perpendicular diagonals. This happens only when the whole
parallelogram collapses onto segment CA (Fig. 10).

Fig. 9 The solver finds a position at which ABCD is a soft rectangle
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The solver has found a particular configuration for which the desired property is
visually verified. The solver may also become convinced that there is no other way
to obtain the desired property (no matter where s/he places D on the circle).
However s/he may now be concerned with which might be the other properties that
the figure assumes when the desired property is visually verified. Why is this the
case? Is the collapsed quadrilateral a square? These questions may trigger a rich
production of argumentations.

Similarly, another issue could be the fact that in no other placement of D on the
circle is it possible to obtain the desired configuration and thus a square. Finally, the
solver may try to drag other points such as P or C to see if the desired property can
be obtained for other—less awkward—configurations. In this case, more argu-
mentations about why the configuration is not obtainable may follow.

Even if the solver had not constructed a robust parallelogram and started to
explore the possibilities of obtaining a square by overlapping r and the line through
PD, s/he would have ended up with a strange figure, such as the one below
(Fig. 11), in which B and P coincide, thus new pressing questions might arise. Does
this always happen? Why? These are more triggers for indirect argumentation
processes. All these questions may originate further argumentation processes.

Fig. 10 ABCD has perpendicular diagonals only when the whole parallelogram collapses onto
segment CA
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In summary, because of these two types of non-constructability task, it is likely
that the arising argumentations will be indirect.

6 Nature of DGE Non-constructability Tasks and Design
Considerations

In contrast to doodling with pen and paper to somehow draw what can appear to be
impossible geometrical figures, in a DGE one cannot construct a “wrong”
(Euclidean) figure! This makes a DGE a possible, and maybe even powerful, digital
environment to explore and develop different types of argumentation in Euclidean
Geometry. The visual robustness of DGE figures can force a certain desired
property or condition into a visual anomaly which may produce experiential aspects
that do not have immediate conceptual counterparts in the realm of Euclidean
Geometry. The anomaly (here, possibly, a degenerated figure resulted from drag-
ging to impose a condition) opens up a rich epistemic space for the solver to come

Fig. 11 Figure resulting from the solver’s attempt of overlapping r and the line through PD
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up with logical argumentations to make sense out of it. Leung and Lopez-Real
(2002) discussed a student exploration case about how to use a “biased DGE figure”
(mentally projecting a condition on a robust DGE figure) to come up with a proof
by contradiction and a related visual theorem under a drag-to-vanish strategy.
Baccaglini-Frank et al. (2013) continued and expanded this discussion using tasks
of the first type. In particular, they showed how a DGE can offer guidance in the
solver’s development of an indirect argumentation thanks to the potential it offers of
both constructing chosen properties robustly. Therefore asking students to solve
non-constructability tasks in a DGE can be conducive to developing their skills
related to geometrical reasoning, proof and argumentation. Here we discuss the
nature and considerations for this type of task design.

6.1 Task Nature

In Sect. 5, two task types were discussed:

1. Is it possible to construct a figure of type X with properties Y1, Y2, … Yn? If so
construct it robustly. If not explain why not.

2. Given the construction with steps S1, S2, … Sn, consider figure F originating
from the steps. Which kinds of figures of type X is it possible for F to become?
Make conjectures and explain.

“Is it possible?” is the common theme of these task types. Rather than the usual
aiming to construct a DGE figure to ascertain a conjecture or to validate a theorem,
an uncertainty is given as the main driving force for the task. In our experience we
have noticed that the solver seems to initially be under the impression that a DGE
can construct anything, possibly because of the Euclidean fidelity provided by a
DGE. When the solver encounters a visual conflict with what s/he is expecting, or
when s/he is unable to obtain an objective-property, s/he is prompted towards a
dragging reasoning/discourse to re-solve the situation. The types of
reasoning/discourse that the solver develops to re-solve the visual uncertainty are
the main didactical goals of the task. In Sect. 5 the a priori analyses of the different
tasks gave a glimpse of what possible dragging discourses can be developed due to
the design of the tasks.

6.2 Visual Anomaly

The crux of this type of task design is to lead the solver to seeing a DGE phe-
nomenon that does not seem to make sense at the first instant during a
construction/dragging activity. That is, a cognitive conflict is created by a visual
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anomaly. Take, for instance, the case described in Figs. 10 and 11 in which B and P
coincide, while the solver was expecting P to be the point of intersection of a
square’s (ABCD) diagonals. The anomaly forces the solver to combine concepts in
Euclidean Geometry with her/his dragging strategies and the figures they lead to. In
this case the solver would like to see a square (and may be seeing one mentally) but
is forced by the DGE to recognize an isosceles right triangle which could be
interpreted as “half of the square”. In the task analyses in Sect. 5, we saw how this
can happen for other figures (e.g., a triangle) that degenerated (e.g., into a line
segment) when the solver was dragging in the attempt at realizing a desired
condition/property. In these cases of degeneration, the anomaly seems to appear
through a continuous dragging process that, in a certain sense, culminates with the
generation of the anomaly: the objective property is obtained and in that instant
something else is lost.

In general, visual anomalies can be generated when a certain condition is
imposed on a construction, and the expected figure becomes something else. This
can be the case when the solver chooses to robustly construct perpendicular angle
bisectors and proceeds “backwards” to construct the sides of the triangle using
reflections on the bisectors. The triangle’s sides end up being robustly parallel, all
of a sudden, and no matter how the solver drags, these sides will never intersect. As
before, the solver may be mentally seeing a triangle, but actually with the DGE s/he
will never be able to generate one. From these visual anomalies, the solver needs to
resolve to Euclidean Geometry to explain the visual phenomena (Antonini and
Mariotti 2010). Using the idea of figural concept (Fischbein 1993) as a “harmony”
between a figural and conceptual component (Mariotti and Antonini 2009), an
anomaly can be thought of as a break between the two components (figural and
conceptual). It may be possible to restore the harmony within the figural concept by
dragging to make a certain configuration vanish or degenerate, or by re-interpreting
the obtained figure, rectifying the anomaly. This kind of solver-DGE interactive
phenomenon should be typical in the solution of tasks designed as DGE
non-constructible tasks.

We have been investigating the actual argumentations provided by students
when solving tasks such as the ones analyzed in this chapter (Baccaglini-Frank
et al. 2013), and we are currently working on associating specific types of dragging
experiences and interpretation of the dynamic figures to the production of indirect
argumentation. Our previous studies and preliminary results of our current research
study suggest that specific types of dragging experiences and of interpretation of the
dynamic figures seem to be associated to the production of indirect argumentation.
Moreover, the non-constructability tasks analyzed in this chapter have proven to be
particularly rich for gathering interesting data in this respect.
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6.3 Didactical Reflections

We wish to conclude the chapter with some didactical reflections on the two types
of task discussed. We find the two types of task to have different degrees of
openness. The first type of task asks about the possibility of constructing a
well-defined type of figure. The second type asks the solver to make conjectures on
possible types of figures that might be obtainable given a certain (explicit)
construction.

Though tasks of the first type are open, tasks of the second type appear to have a
higher degree of openness, in that it is up to the solver to think of a particular
configuration and then decide whether it is obtainable or not. Also, while in solving
tasks of the first type the solver almost necessarily will explore (some form of) the
impossibility of constructing a figure with the required properties; in solving tasks
of the second type, the solver may concentrate on possible configurations that s/he
encounters using wandering or guided dragging (Arzarello et al. 2002). This may
occur for various reasons, for example: the solver is attracted to configurations s/he
“recognizes”, since it may be easier to “read” the figure interpreting it theoretically
(ascending process3) as opposed to “impose something theoretical on the figure”
(descending process); the search for ways to robustly impose a new condition on
the figure and obtain a particular (possible) configuration may be time and energy
consuming, and leave little time for the exploration of impossible cases; the solver
thinks the teacher expects certain types of explorations from him/her because of the
didactical contract, and such expectations may not include “impossible” cases since
these might not be a typical aim of dynamic explorations; the student may not have
developed a “mathematical eye” that allows him/her to attend to aspects that an
expert mathematician would deem interesting (e.g., Hölzl 2001); etc.

Therefore, when proposing tasks of the second type, the teacher should consider
the possible necessity of reformulating the task (maybe after some time or only for
some students) in a more guided way, though maintaining the exploratory nature of
the task. For example, in the case of the problem analysed in Sect. 5.2, the teacher
might explicitly ask whether it is possible to obtain a square, thus making it clear
for the students that “square” is a configuration considered interesting/relevant by
the teacher and worth spending some time on.

On the other hand, we expect that tasks of the first type will relatively quickly
put students in front of the fact that “it might not be that easy” to construct the
desired figure, immediately opening the terrain to processes of argumentation.
Moreover because the formulation of the task can guide the solver’s attention to the
contradictory properties, since these are stated explicitly in the task—although it is
not stated that they are contradictory—some students may actualize processes of
indirect argumentation.

3Ascending and descending processes are presented in Arzarello et al. (2002), referring to
Saada-Robert (1989).
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