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Abstract Technology can make a difference in teaching and learning mathematics
when it serves as a vehicle for learning and not just as a tool to crunch numbers and
to draw graphs. This paper discusses a technology leveraged program to develop
student understanding of core mathematical concepts. A sequence of applet-like
dynamically linked documents allows students to take a meaningful mathematical
action, immediately see the consequences, and then reflect on those consequences
in content areas associated with the middle grades U.S. Common Core State
Standards. The materials are based on the research literature about student learning,
in particular enabling students to confront typical misconceptions, and designed to
support carefully thought out mathematical progressions within and across the
grades.
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1 Introduction

Researchers have investigated challenges in teaching and learning certain mathe-
matical concepts such as fractions, ratios and proportions for years. Burrill and Dick
(2008), in investigating student achievement on high stakes state assessments,
identified core mathematical concepts in which students consistently underper-
formed. On international assessments, scores in the United States are usually below
international averages. In addition, studies of U.S. texts reported that mathematics
concepts addressed in mathematics textbooks are not well constructed, with pre-
sentations more mechanical than conceptual (Ginsburg and Leinwand 2009).

These concerns led to the development of the Common Core State Standards for
Mathematics (CCSSM) (2010), which aims to improve mathematics education in
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the US by providing a focused and coherent set of standards to guide the teaching
and learning of mathematics. The CCSSM emphasize the development of both
conceptual understanding and procedural fluency. As mentioned above, prior
emphasis in typical curricular materials was to a large degree on procedural fluency.
Building Concepts was developed as a technology-based approach to developing
mathematical understanding of core concepts that lead to computational proficiency
in the mathematical strands outlined in the CCSSM.

2 Building Concepts

2.1 Learning Progressions

Almost all content strands in the CCSSM are supported by progressions documents
(http://ime.math.arizona.edu/progressions/ 2011), narratives describing the learning
progression of a topic across a number of grade levels, informed both by research
on children’s cognitive development and by the logical structure of mathematics.
The progressions documents outline the important mathematical concepts in each
content strand. These documents provide the framework for Building Concepts
activities. The underlying premise is that static pictures or examples in the pro-
gression documents are made interactive in the Building Concepts activities.

Interactive dynamic technology is not new in mathematics education. Early work
with SimCalc (Roschelle et al. 2000) used such technology to link real contexts
with graphical representations of those contexts and provided opportunities and
experiences for students to develop understanding of the mathematics of change
and variation. Dynamic geometry software (Laborde 2001) allowed students to
interact directly with objects, their shapes and measurements related to those
shapes, looking for consequences that are invariant with respect to a certain shape.
Computer algebra systems allowed students to make changes in variable values and
parameters of functions and see immediate consequences (Heid 1995). Each of
these projects involved “active learning” experiences, which laid the foundation for
the “action consequence” principle that guides the development of the technology
platform for the Building Concepts activities.

2.2 Action Consequence Principle

Many studies have pointed to the effectiveness of active learning where students are
engaged in the process of learning by actively processing, applying, and discussing
information in a variety of ways (Kilpatrick et al. 2001; National Research Council
(NRC) 2012, 1999; Michael and Model 2003). The theories of Mezirow (1997),
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Kolb’s learning cycle model (1984), and the work of Zull (2002) on brain theory all
suggest that people learn through the mechanism of participating in an immersive
mathematics experience, reflecting on these experiences, and attempting similar
strategies on their own. Mezirow introduced the notion of transformative learning
as a change process that transforms frames of reference for the learner. Key ele-
ments in this process are an “activating event” (Cranton 2002) that contributes to a
readiness to change (Taylor 2007). This is followed by critical reflection where the
learner works through his understanding in light of the new experiences, consid-
ering the sources and underlying premises (Cranton 2002). The third element of this
process is reflective discourse or dialogue in an environment that is accepting of
diverse perspectives (Mezirow 2000). The final step is acting on the new per-
spective, central for the transformation to occur (Baumgartner 2001). Kolb’s model
of experiential learning (1984) is a cycle containing four parts: concrete experience,
reflective observation, abstract conceptualization, and active experimentation;
experimentation leads once again to concrete experience.

Dynamic interactive technology provides a virtual environment in which these
kinds of learning opportunities can take place. Interactive dynamic technology goes
beyond linking students to multiple representations—visual, symbolic, numeric and
verbal—by providing them with visual representations they can directly manipulate
and control (Roschelle et al. 2000; Sacristan et al. 2010). Interactive dynamic
technology allows the learner to use technological tools to “explore and deepen
understanding of concepts” (CCSSM). Too often mathematics learning technolo-
gies are used as a “servant”, where the user employs the technology to create a
graph, perform calculations or generate a table. Building Concepts represents a shift
in the use of technology from “carrying out mathematical processes” to “learning
mathematics” (Dick and Burrill 2009).

This perspective is supported by a number of studies that suggest the strategic
use of technological tools can enhance the development of proficiencies such as
problem solving and mathematical reasoning (Kastberg and Leatham 2005;
Roschelle et al. 2010; Suh and Moyer 2007). Such technologies can help students
transfer mental images of concepts to visual interactive representations that lead to a
better and more robust understanding of the concept. Building Concepts activities
were designed to embody this notion of active learning, employing an “action/
consequence” principle, where the learner is to “deliberately take a mathematical
action, observing the consequences, and reflecting on the mathematical implications
of the consequences (Mathematics Education of Teachers II 2012, p. 34)”. The
software supports tasks that provide opportunities for the student to make mathe-
matical choices and reflect on what happens because of those choices. The next
section addresses the approach to content in Building Concepts and how it
embodies the action consequence principle.
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3 Building Conceptual Understanding

3.1 A Coherent Development of Concepts

The content in the K-8 CCSSM is designed to be focused and coherent within and
across grades with an emphasis on conceptual understanding that lays the foun-
dation for procedural fluency. Many traditional current materials in the U.S. cov-
ered a plethora of ideas in two textbook pages, giving students little opportunity to
develop any one idea fully let alone make connections among ideas. Building
Concepts is designed to thoughtfully consider the key ideas in building conceptual
understanding of important mathematical concepts. Thus, the activities focus on
fundamental concepts, typically one per activity, in a carefully developed sequence
of explorations aligned with the progressions documents. For example, the pro-
gression for ratio and proportional relationships defines a ratio as a pair of
non-negative quantities both of which are not 0, emphasizes equivalent ratios and
suggests that pairs of quantities in equivalent ratios be recorded in a table. Figure 1
displays the screen from What is a Ratio?, the first activity in Building Concepts:
Ratios and Proportional Reasoning, where the concept of ratio is introduced.
Students see a physical representation of this pairing, two circles to three rectangles,
and generate representations of equivalent ratios (action/consequence). They
observe patterns in the rectangular array, noticing the “pairing” as each row is
added to the representation and think about the numbers involved, initially addi-
tively—adding two blue circles and three green squares each time, but the multi-
plicative interpretation is also visible in the total number of circles and squares. The
arrow keys at the top allow students to change the original ratio to verify their
observations and conjectures with different numbers.

Figure 2, from Building a Table of Ratios, displays an original ratio, its physical
representation and a table of the numbers that compose equivalent ratios. Now
students are expected to reason about relationships among the numbers they see in

Fig. 1 Equivalent ratios
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the table, as well as the physical pattern, and observe the multiplicative relationship
between equivalent ratios. In Ratio Tables (Fig. 3), students move to the abstract,
where the physical representation of squares and circles is absent but can be recalled
as a basis for thinking about the ratios in the table. The next page in the file moves
one step farther, allowing students to generate equivalent ratios in any order,
building multiplicative understanding of equivalent ratios.

Another activity in Ratios and Proportional Relationships focuses on develop-
ing understanding of how to compare ratios and strategies for doing so. Figure 4
displays a problem posed in the progressions document about mixing cans of
yellow and red paint. The activity, Comparing Ratios, allows students to associate
visual representations of cans of paint with equivalent ratios displayed numerically
in a table (Fig. 5). Students refer to earlier work with equivalent ratios to answer
questions such as: Is a mixture of 2 red to 6 yellow a different shade than a mixture
of 5 red and 15 yellow? In considering different approaches for comparing the two

Fig. 2 Associating numbers
and ratios

Fig. 3 Ratio table
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mixtures, students investigate whether any of the equivalent ratios can be useful in
deciding which mixture would be more yellow.

When students select pairs of ratios with a common unit, such as 6 cans of red
paint (Fig. 6), the “action/consequence” move produces a visual representation of
the ratios that helps them make the comparison with respect to cans of yellow paint.
They confront misconceptions such as pairing cans of red and yellow and counting
the number of left over cans of yellow paint to determine the mixture that will have
the most yellow as well as consider what other pairs of ratios might also be used to
make the comparison.

Fig. 4 Mixture problem
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A third example from Ratios and Proportional Relationships illustrates how
static diagrams in the progressions documents (Fig. 7) were made interactive. In
Fig. 8, students repeatedly generate a horizontal and then vertical change associated
with a collection of equivalent ratios, observe the corresponding table and consider
the slope triangles and their relationship to each other and the line from the per-
spective of repeated addition. In Fig. 9, students enter values in the table to generate
equivalent ratios by multiplication, and the resulting pair is graphed leading to the
notion of scaling and similarity.

Because the activities within a content strand are based on the progressions for
that content area, they are sequenced in a developmental order, beginning in middle
grades and extending into high school. Figure 10 shows the progression of ratio
concepts from the initial concept of ratio as pairings of quantities through a tra-
jectory that leads to proportions to slope to functions and a parallel trajectory that
leads to geometric ideas of scaling, similarity and trigonometric ratios. Similar

Fig. 5 Visualizing ratios

Fig. 6 Equivalent ratios
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progression maps describe other content strands. While some of the activities can be
used “out of sequence”, the cumulative learning built into the complete set for a
strand will not happen if the activities are used without regard to the progression.
The activities can be associated with a grade level in the CCSSM but could be used
at any grade level as long as the sequence of ideas is maintained.

Fig. 8 Additive structure

Fig. 7 Graphing ratios
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3.2 The Tasks

The tasks in each activity were constructed following the advice of Black and
William (1998) with respect to formative assessment: “Tasks have to be justified in
terms of the learning aims that they serve, and they can work well only if oppor-
tunities for pupils to communicate their evolving understanding are built into the
planning (p. 143).” Thompson (2002) argued that the goal of a task is to have
students participating in conversations that foster reflection on some mathematical
“thing”. Thus, the majority of tasks in the activities create opportunities to discuss

Fig. 9 Multiplicative structure

Functions

Linear equations 

Proportions 

Equivalent ratios 

Coordinates 

Scaling

Similarity

Unit rate

Slope
Grade 6

Grade 7

Grade 8

Algebra
Geometry

From Ratio to Algebra & Geometry: A
Coherent Progression

Fractions 

Grade 6

Trigonometry

Ratio

Fig. 10 Ratio learning progression
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particular mathematical objects or ideas that need to be understood and to ensure
that specific conceptual issues and misconceptions will arise for students as they
engage in discussions.

Misconceptions: The tasks in the activities have been designed in light of the
research related to student learning, challenges and misconceptions (e.g., Zehavi
and Mann 2003). The well documented misconception that ðaþ bÞ2 ¼ a2 þ b2 is
deliberately addressed in the first activity,What is an Exponent?, in the Expressions
and Equations strand, where students experiment with “distributing” exponents
over all four operations, using the definition of exponents to examine expressions
and, as is done in much of this CCSSM strand, making connections back to
arithmetic to help their thinking. The misconception is confronted again in later
activities in Building Concepts: Expressions and Equations.

A common misconception in the statistics and probability strand relates to box
plots: the longer the section, the more data in that section. To build understanding
of the connection between the data and a box plot, a dot plot “morphs” into the box
plot, and students compare the number of data values in each section of the box plot
(Fig. 11). Moving points in the dot plot immediately displays the effect on the
corresponding box plot (Fig. 12), reinforcing the fact that medians and quartiles are
summary measures based on counting.

Tough to teach/tough to learn concepts: Many students struggle with adding
fractions, where they typically follow an algorithm they do not understand.
The CCSS stress the number line as a representation for fractions and the unit
fraction as a building block for developing operations with fractions. Figure 13
displays a screen from the activity on adding fractions with a common denominator,
where students visibly see how addition is the concatenation of two fractions both
multiples of the same unit fraction. They explicitly change the denominator of the
fractions and observe the results, giving them a physical model for the algebraic
formula, a/b + c/b = (a + c)/b. Students consider the number of unit fractions in
each of the two fractions and justify why the sum of the two fractions is the total

Fig. 11 Highlighting values
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number of unit fractions. Reflecting on the process of adding fractions with unlike
denominators in light of the visual representation of the sum of unit fractions,
students recognize that to add they must find equivalent fractions based on a
common unit fraction.

A second example of fragile conceptual understanding with respect to fractions
is the fact that a fraction has meaning only when the unit related to the fraction is
known. Figure 14 illustrates an activity in which students use geometric models to
create equivalent fractions and compare their work with others to make sense of a
“unit” using a visual model of equivalence.

In statistics, the conceptual transition from data represented in bar graphs to
plotting data on a number line has long been problematic. One consequence is the
fragile understanding of histograms, and another is the “make everything into a bar
graph” approach to graphical representations. In the activity Mean as Fair Share
students explore giving dogs “fair shares” of bags of dog food, first using a “take

Fig. 12 Moving points

Fig. 13 Adding fractions
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from the most and give to the least” strategy and then using a pooling strategy. At
the end of the activity students return to the first strategy, but this time the display
includes a number line (Fig. 15) where each dot represents a dog and its position on
the number line indicates the number of bags of dog food assigned to that dog.
Selecting a dot highlights the dog in the pictograph and vice versa. As students
move the bags from dog to dog, the corresponding points move. When each dog has
its “fair share”, the points are stacked at the mean number of bags of dog food per
dog. This lays the foundation for the next activity, which extends the definition of
mean as fair share to mean as the balance point of a distribution of data.

Note that the nature of the activities indicates they are not intended to be used for
“doing” mathematical procedures but rather provide a foundation for reasoning
about the mathematics that can support the transition to procedural fluency. When
students have a solid conceptual foundation, they can reason about the mathematics,

Fig. 14 Different size units

Fig. 15 Fair shares
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are less susceptible to common errors, less prone to forgetting and are able to see
connections and build relationships among ideas (NRC 1999).

3.3 Posing Questions

In addition to making sure that the tasks surface misconceptions and develop
conceptual understanding of “tough to teach/tough to learn” concepts, the questions
for each of the activities are created using some general guidelines below:

1. Activate prerequisite knowledge before it is used: e.g., Remember what the
solution to an equation represents. How is the solution to the equation reflected
in the picture on the screen? How do you know? (Equations and Operations)

2. Point out things to notice so students focus on what is important to observe; e.g.,
When you increase the value of the denominator of a unit fraction, how does the
number of equal parts in the interval from 0 to 1 change? What happens to the
length of those parts? (What is a Fraction?)

3. Ask for justifications and explanations; e.g., Make a conjecture about which data
set will have the largest mean. Explain why you think your conjecture might be
correct. Use the file to check your thinking (Mean as Balance Point).

4. Make connections to earlier tasks or to an immediately previous action taken by
the student. (Questions should not come out of the blue.); e.g., Look at your
answers for question 2 and see if you want to change them now that you have
looked at the values when they are ordered (Median and Interquartile Range).

5. Include both positive and negative examples in developing understanding of
definitions, theorems and rules; e.g., Which of the following seems like the best
definition of an exponent? Explain your reasoning. An exponent a) is a multi-
plier; b) is a factor, c) tells how many times a number is used as a factor; d) tells
you to multiply a number by another number (What is an Exponent?).

6. Have students consider the advantages/disadvantages of each approach when it
is possible to carry out a task using multiple strategies; e.g., Petra claims you
should always use a unit fraction or a unit rate for solving missing value ratio
problems. Do you agree? Give an example to support your thinking? (Double
Number Line)

7. Be explicit about possible misconceptions: e.g., Decide whether the following
statements are true or false. Give an example to support your thinking.
(a) Some equations have more than one solution. (b) Some equations do not
have any solutions. (c) Some equations have an infinite number of solutions.
(d) Some expressions always have even numbers as outputs (What is an
Equation?).

Choosing good tasks, paying attention to cognitive demand and to student
misconceptions, and asking the right questions are not the whole story. When a
dynamic interactive platform is integral to the development of ideas, the platform
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must support both the mathematics and the user as a learner, i.e., careful attention
must be paid to the design of the activities. The next section describes the principles
used in designing Building Concepts interactive activities.

4 Design Principles for Building Concepts Activities

4.1 Mathematical Fidelity

To have mathematical fidelity, the software should be mathematically correct; for
example, the boundary line for the graph of y\2xþ 3 should not be solid; a side of
a triangle in the Euclidean plane should not be associated with a negative slope
without reference to a coordinate system. To maintain mathematical fidelity, what
students view onscreen should always be mathematically acceptable, i.e., two box
plots on the same screen should refer to the same scale. Some technologies have
serious flaws in their ability to be mathematical faithful (for example, round off
error and limited precision can result in bizarre graphs in given situations). This
suggests that the design of activities using the software should consider the context
and the mathematical behaviours of objects on screen.

4.2 User Experience

To support the action/consequence principle, the user interface should eliminate
obstacles that get in the way or distract the user from easily and immediately being
able to attach meaning to both the action and the consequence. The design of the
tool should pay attention to cognitive processes appropriate for students’ reasoning
and knowledge base. A decimal scale on the horizontal axis of a dot plot of data
such as that in Fig. 16 (Statkey 2012), which might be appropriate for upper level
students, would be conceptually difficult for younger students to interpret. They
would typically struggle with why three of the dots are colored and what 0.025 on
the right side of the screen represents. The aim should be to support mathematical
thinking as opposed to finding results efficiently (the shortest way to a solution) or a
“showy” illustration with little mathematical substance. Students should not be
asked to spend time sorting out the actions on the screen but rather on making sense
of the mathematics they can observe. (For example, in Fig. 17, dragging the point L
changes measures on the screen, but the display is cluttered and does not help
students see the connections between the sides, angles and proportions.)

Even the location of plots within a panel can make a difference in student
understanding. Budgett and colleagues (2013) hypothesized that the vertical
arrangement of the graphics panel within the dynamic visualization tool
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(http://www.stat.auckland.ac.nz/*wild/VIT/) used in their study of randomization
in statistics made a difference in what students took from the activities.

Design principles used for creating websites can be useful in thinking about the
user interface when designing interactive applets. Visual design guidelines advo-
cated by the US Department of Health and Human Services (http://www.usability.
gov/what-and-why/visual-design.html) include:

Fig. 16 Sampling proportions

Fig. 17 Similarity
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• Unity: everything on a page visually and conceptually belongs together; e.g., an
image must relate to the text it is next to, for the overall message to make sense.

• Gestalt: users perceive the overall design as opposed to individual elements.
• Space: placement of objects reduces noise and increases readability. Simple

designs are best.
• Hierarchy: difference in importance of items is conveyed using font sizes,

colors, and placement on the page. Usually, items at the top are perceived as
most important.

• Contrast: some items stand out because of differences in size, color, direction,
and other characteristics.

• Consistency: continuity is maintained throughout a design where pieces work
together over an interface. This simplifies learning the interface for the user.

Implicit in these principles is the notion of clarity, (Schwier and Misanchuk
1993) where the meaning of an image is readily apparent to the viewer and the
message is reduced to the absolute essentials.

In Building Concepts, these guidelines from web design were adapted to ensure
that the experience would maximize learning opportunities for students by creating
interactive files that:

• Use simple but mathematically meaningful actions (examples: entering a value,
changing a parameter by clicking on a directional arrow, dragging a point on a
number line) (gestalt);

• Have visible cues for actions students can take and for the consequences stu-
dents should be noticing or thinking about (space);

• Minimize use of text on screen (clarity);
• Use color only to make connections and enhance understanding (contrast);
• Locate changing quantities as close together as possible (proximity/unity);
• Display information in order of importance, in terms of position, font size

(contrast);
• Use same core design features within and across the files (reset, representation

of moveable dots, behaviour of arrow keys, etc.) (consistency).

Color is often misused in creating visual representations. If objects and text are
colored gratuitously, the color can introduce unnecessary distractions rather than
suggesting important connections. Figure 18 shows the color wheel (invented by
Newton in 1666 when he transformed the bar of colors created by light passing
through a prism into a segmented circle, where the size of segment differed
according to wavelength and width in the spectrum) can help designers choose
effective color combinations. To find a harmonious color scheme, use any two
colors straight across from each other on the wheel, any three colors that are the
vertices of an equilateral triangle or of an isosceles triangle or any four colors that
are the vertices of a rectangle. Thus, blue and orange or purple, red-orange and
yellow-green could be used to enhance visual images.
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One facet of hierarchy or emphasis is sometimes not obvious; displaying
information in order of importance has relevance for the location of buttons and
elements that change. Eye tracking studies suggest that people scan computer
screens in an “F” pattern, starting from the top and left of the screen. The right side
of the screen is rarely seen. This suggests the design of interactive files should
position important interactions or information at the top or left of the screen. http://
shortiedesigns.com/2014/03/10-top-principles-effective-web-design/.

Figures 19 and 20 from Building Concepts: Equations and Operations illustrate
the use of both color and emphasis. The additive change is colored green in both
files (+10 and +4), a purplish pink color is used for the variable, and blue is used for
the constant on the right. A violet color, complementary to the pinkish color,
represents the multiplicative factor on Sect. 2.2. The arrow buttons and the
important things to observe, the changing equation, are at the top. The cues sig-
naling which objects are moveable are given by the handles on the line segments.

Designing technology interfaces should be attentive to user interface issues to
fully exploit the action consequence principle, making both the action and conse-
quences transparent and immediate. The next section describes TI Nspire software
as a choice for the interactive dynamic documents.

Fig. 18 Color wheel (sustland.umn.edu)
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5 Use of TI Nspire Platform

The TI Nspire platform easily lends itself to the construction of the interactive
documents, which are related to the applet-family concept (Dick and Burrill 2009).
The documents are written in Lua and can be used on handhelds, computers or
iPads. The developer has devised several “meta” programs, such as an interactive
number line, buttons, and clickers that are used frequently in creating the files. Lua
allows the creator to program behaviors using the infrastructure of the Nspire, but
the end product restricts the user from interacting with any of the Nspire applica-
tions (spreadsheet, graphs, geometry, data collection). This has two advantages.
First, the documents provide “safe” environments in which students can play with a
mathematical idea in a variety of ways but where the opportunity to go astray is

Fig. 20 Equation cx ¼ b

Fig. 19 Equation xþ a ¼ b
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limited (Dick 2008). Second, the technology learning curve is short. The user needs
only to know how to get the files on their device, find and open them, and turn
pages. The interactivity is restricted to dragging, clicking or selecting an object, and
entering numerical values.

Challenges to using the documents vary with the hardware platform. A user
might experience some frustration due to lack of familiarity with the touchpad on
the handheld device. To address this, when possible, the movements are enabled by
using the arrows and tab keys on the handheld keyboard. In some instances, such as
changing the factor in a multiplication problem, the user can select the handheld
Menu and use the document specific options given there instead of moving the
cursor over the number and making the change directly. Entering numerical values
poses a problem on the iPad with its touchscreen interface. This was addressed by
building a keypad into the document when it was necessary (See Fig. 3). Screen
size, especially on the handheld, limits the use of multiple displays.

One challenge related to the computer software and displaying the documents on
LCD projectors is the diffusion of color; projectors have various interfaces that
change, mute or enhance certain colors in ways that vary from machine to machine.
This makes testing the colors a time consuming task, and one that still may not
produce effective results for some projectors.

Building Concepts is intended to serve each of the content strands in the
CCSSM. The next section describes the activities in three of those strands.

6 Building Concepts Content Strands

6.1 Building Concepts: Fractions

Building Concepts: Fractions (2014) consists of a series of 15 interactive dynamic
files designed to develop concepts related to fractions and operations with fractions.
The development, based on the approach advocated by Wu (2011) and aligned with
the CCSSM, uses number lines and area models to help students visualize a fraction
as a number (Mack 1995) and develop the arithmetic operations and concepts
related to the meaning of fraction, with a particular emphasis on equivalent fractions
and their role in fraction operations. A strong emphasis is placed on the notion of a
unit fraction and the role of unit in interpreting fraction relationships (Clark and
Roche 2009; Lamon 1999). The file and questions are intended to support the
transition from words to symbols (Sowder 1992), and enable students to recognize
that fractions can be larger than 1, understand that whole numbers can be repre-
sented as fractions (Siegler and Pyke 2012), and recognize a larger denominator
does not determine the larger fraction (Fazio et al. 2012).
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6.2 Building Concepts: Ratios and Proportions

The 15 activities in Building Concepts: Ratios and Proportions (2015) develop
ratio as pairings of quantities that vary together. Consistent with the CCSSM and
countries such as Japan (Ministry of Education 2008), while a fraction such as a
unit rate can be associated with a ratio, ratio as a concept is broader than fraction.
Students engage in visual and interactive strategies (i.e., double number lines, ratio
tables) for solving problems involving ratios and proportion to overcome the dif-
ficulty they typically have using algorithms (Lamon 2007; Singh 2000), where they
often think any problem with three values and one unknown is a proportional
relationship. The activities provide a deliberate and careful investigation into the
difference between multiplicative and additive situations (Lamon 1999). A major
focus is on equivalent ratios. Research suggests students can create equivalent ratios
using simple numbers such as doubling and halving (Empson and Knudsen 2003)
but have trouble with more complicated situations. The activities relate collections
of equivalent ratios to ordered pairs in a coordinate grid, develop the notion of
a slope triangle and the relation of slope to unit rates, introduce proportional
relationships and connect them to graphs, and relate proportional reasoning to scale
factors.

6.3 Building Concepts: Statistics and Probability

The activities in Building Concepts: Statistics and Probability (2016) are closely
aligned with the CCSSM and also with the Guidelines for Assessment and
Instruction in Statistics Education (Franklin et al. 2007), which describe the sta-
tistical process as consisting of four parts: formulating a question, collecting data,
analyzing data and interpreting results. All of these are enacted in the presence of
variability, a recurring theme in the statistics and probability progression. The
activities begin with a focus on asking a statistical question and looking at distri-
butions of life spans and maximum speed of animals. Measures of center and spread
are introduced together, recognizing that either measure alone tells a very incom-
plete story about the distribution of the data. This helps students take both center
and spread into account when reasoning about variation in a variety of situations
(Shaughnessy et al. 1999). When appropriate, data points are moveable to call
attention to features of the data and of the different plots. Probability is introduced
through games, and a choice of simulation models such as coins and spinners
allows students to simulate probability distributions and sampling distributions. The
activities enable students to experience variability by comparing random samples,
generating simulated distributions of sample statistics, and observing the effect of
sample size on sampling distributions (Hodgson 1996; del Mas et al. 1999). The
middle grade activities end with an investigation fitting models to data sets and
examining the error in various models.
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Each file is accompanied by supporting materials that include (1) a description of
the mathematics that underlies the file; (2) a description of the file and how to use it;
(3) possible mathematical objectives for student learning; (4) sample questions for
student investigation; and (5) a set of typical assessment tasks.

7 Issues and Potential Pitfalls

7.1 Potential Pitfalls in Designing Activities

The platform affords a vast number of opportunities to enact the action/consequence
principle by exploiting the dynamic linkages that can be created between virtually
any two objects (where an object is a number, or an expression, or a graph, or a
point, or a geometric figure, or a spreadsheet cell, or …). Using this feature allows
for the creation of mathematical scenarios or “microworlds” where a student can
take an action on at least one of the objects and immediately see a change in the
linked object(s). But it is also very easy to create a microworld that leaves the
student as a passive observer where the “consequence” may be simply an animation
triggered by pushing a button. Design decisions must be made as to what conse-
quences are supplied by the device and which must be supplied by the student. For
example, in a probability simulation, should the student or the device record the
outcomes of tossing a coin until you have four heads? When should the process be
automated with the number of successes being plotted for 500 repetitions of the
simulation? The challenge is to design the interaction in ways that engage students
in thinking about the mathematics and not just observing an outcome. Without
careful guidance and questioning, this can too easily happen when students use a
computer algebra system (CAS), where they turn over the mechanics to the device
but are not engaged in reasoning about the process.

Another potential pitfall is to ensure that the focus of the activities is on
developing conceptual understanding and not just “doing” the mathematics.
Essential to the action/consequence principle is the notion that the action taken by
the student is a purposeful choice that has mathematical meaning for the student.
When the action is pushing a button and the consequence is the graph of a large
data set, the action itself may not be perceived by the student as mathematically
meaningful; the interaction between mathematical objects is missing, and the same
results could have been achieved with simple graphing software. Such results, while
obviously very useful, do not push students to reflect on connections to underlying
concepts. In contrast, moving a point and observing no change in the interquartile
range for a distribution of data provokes the opportunity to reflect on what an
interquartile range is and how one is constructed. The challenge is to focus some of
these output driven procedures in a more conceptual direction.

Designing Interactive Dynamic Technology Activities to Support … 323



7.2 The Role of the Teacher

Technology alone will not make a difference in student learning. The teacher is the
mediator of the interaction between the students, the technology and the learning
(Drijvers 2012; Laborde 2001; Roschelle et al. 2010; Suh 2010). Research about
effective use of interactive applets in learning statistical concepts suggests teachers
should engage students in activities that not only help them confront their mis-
conceptions but also provide them with feedback (del Mas et al. 1999). Allowing
students to engage in unfettered “play” with interactive technology is appealing but
by itself will not maximize learning opportunities; even a well-designed interactive
activity is unlikely to be effective unless students’ interaction with it is carefully
structured by the teacher (Lane and Peres 2006). Managing classrooms to effec-
tively use technology means involving students in discussing observations after an
activity to focus on important observations, helping them become aware of missed
observations, and engaging them in reflecting on how important observations are
connected (Chance et al. 2007).

The teacher notes offer potential questions for the activities, suggestions for
structuring lessons and for managing discussions in ways that support learning. But
implementing the activities requires that teachers have confidence in their content
knowledge and an understanding of what it means to teach, something not all
school teachers in the U.S. are prepared to do.

7.3 Changes in Content

Perhaps the biggest challenge to the CCSSM and to Building Concepts is that
“teachers prefer to teach as they were taught” (Cheek and Castle 1981; Kennedy
1991). The CCSSM advocates for coherent and consistent mathematical stories
across the grades and not only organizes but presents mathematics from a different
perspective. Unfortunately, many teachers work new ideas into their old curriculum
and traditional practice rather than accepting an entirely new approach.

8 Conclusion

Very preliminary results from piloting seem promising. Initial results of a study
using Building Concepts: Fractions (2014) with teachers in a preservice methods
course for elementary teachers suggest that the activities made a difference for
teachers’ understanding of and ability to use fractions. Pre and posttest scores were
compared for those who used the technology based activities with those who
received instruction in use of concrete manipulatives, such as Cuisenaire rods and
fraction strips. Evidence from a school test site suggests that students struggling
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with mathematical concepts outperformed other students on the state assessment
after using Building Concepts: Ratios and Proportional Reasoning (2015). Other
pilot sites are currently being established for the materials as they are being
developed.

In Ben-Zvi and Friedland (1997) noted that technology for teaching and learning
has evolved over the years, progressively allowing the work to shift to a higher
cognitive level enabling a focus on planning and anticipating results rather than on
carrying out procedures. Since then technology has provided powerful new ways to
assist students in exploring and thinking about ideas, allowing them to focus on
interpretation of results and understanding concepts rather than on computational
mechanics. And technology continues to change and offers opportunity to rethink
what and how we operate in our classrooms and how that is related to the world
outside of the classrooms (Gould 2011). If we use technology to do what we have
been doing, we will get the same results (Ehrmann 1995). This paper proposes a
program based on an action consequence principle to add new thinking to new
technology to enhance mathematics teaching and learning for all students.
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