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Abstract In this chapter, excerpts of lessons on using tool-based tasks to teach the
concept of ‘rotational symmetry’ were analyzed. Both the instrumental approach
and the theory of semiotic mediation were adopted as theoretical frameworks. We
compare a lesson carried out with a tailor-made physical tool and one carried out
with the software PowerPoint (a digital tool). The analysis focuses on the oppor-
tunities and pitfalls that these two tools offer and on how the tasks could (or could
not) exploit the semiotic potential of the tool used. In particular, the notions of
feedback and discrepancy are theorized. Hypotheses on these notions in the context
of designing and implementing tool-based mathematics tasks are raised. We pro-
pose that the critical features of the object of exploration, the discrepancy oppor-
tunity and pitfall of the tool and the task as well as the teachers’ sensitivity and
insights into the discrepancy are important considerations for tool-based mathe-
matical task design. They provide a useful guiding framework for investigating the
pedagogical affordances of different mathematical tools. We hope that this chapter
can provide insights into how the choice of the tools and the design of tool-based
tasks may enhance exploitation of the semiotic potential of the tools.
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1 Introduction

The use of concrete physical manipulative objects to teach mathematics has a long
history (c.f., Dienes 1960, 1971). Designing tool-based learning tasks has been
popular in recent decades because of the developments of digital interactive envi-
ronments such as Geometer’s Sketchpad or Cabri. A tool-based task is a
teacher-designed ‘thing-to-do’ using a tool, either concrete or virtual, for students to
experience potential mathematical meanings carried by the tool involved, where the
teacher then “orchestrates” a task-based discussion to foster the development of the
intended mathematics meanings (Mariotti and Maracci 2012). The theme of this
chapter is investigating the differences and similarities between task design with
digital tools and task design with physical tools.

In this chapter, excerpts of lessons that make use of tool-based tasks to teach the
concept of ‘rotational symmetry’ were analyzed under the frameworks of the
instrumental approach and the theory of semiotic mediation. We compare a lesson
carried out with a tailor-made physical tool and one carried out with the software
PowerPoint (a digital tool).

The use of PowerPoint instead of a more sophisticated Digital Interactive
Mathematics Learning Environment was the teacher’s choice, due to an attempt to
simulate the tailor-made physical tool with a familiar software environment.

The analysis proposed focuses on opportunities and pitfalls that these two tools
may offer and on how teachers may use the tools to set up the learning tasks and
post-task mathematics discussions to exploit the semiotic potential of these tools. It
is hoped that this analysis can provide some insight into how the choices of tools
and the designs of tool-based tasks influence the exploitation of such semiotic
potential.

2 Theoretical Perspectives

2.1 Instrumental Approach

The instrumental approach was originally proposed by Vérillon and Rabardel
(1995), and Vérillon (2000), in the context of vocational and technology education.
Later, it was used extensively for investigating the use of technologies in mathe-
matics learning and teaching (see for example, Drijvers et al. 2010). The central
idea it proposes is to differentiate an artifact from an instrument. An artifact is a
man-made object or a tool designed for a specific purpose, e.g. plastic shape blocks
or computer software. An instrument is a psychological construct composed by an
artifact and its associated utilization scheme implemented by a particular user for a
specific purpose or context (Vérillon and Rabardel 1995; Vérillon 2000).
Depending on the user’s utilization scheme, an artifact may or may not be the
instrument it is originally intended to be. An artifact may be used in a way that is
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not as intended or designed; Béguin and Rabardel (2000) called this phenomenon
“catacresis”. In some situations, a same person may use a same artifact differently in
different situations or contexts, and thus, the same artifact can become two different
instruments: “a single artifact serves as several instruments in different situations”
(Vérillon 2000, p. 7). Furthermore, an artifact may become a different instrument in
the hands of different people. Thus, an instrument is situational-dependent and
personal-dependent. In some instances, “artifacts may be available but no instru-
ments are elicited” (Vérillon 2000, p. 7). The process of transforming an artifact
into an instrument, or put in another way, the process of evolution of a utilization
scheme of the artifact, is called “instrumental genesis” (Verillon and Rabardel 1995;
Vérillon 2000). It is a long-term and unexpectedly complex process (Artigue 2003)
and it is a bi-directional process between the artifact and the users (Trouche 2004).

2.2 Semiotic Mediation

The framework of “semiotic mediation” (Bussi and Mariotti 2008) rooted within
the Vygotskian perspective on social construction of knowledge (Vygotsky 1978)
highlights the mediating role of an artifact. An artifact which carries mathematical
meanings can become a “tool of semiotic mediation” by which the students can
experience the development of mathematical concepts. In particular, a tool of
semiotic mediation provides a means to express mathematical ideas. Bussi and
Mariotti (2008) point out that there is a “double semiotic link” between a tool, a
task and mathematical knowledge when the tool is used to accomplish a specific
task. They further point out that:

The main point is that of exploiting the system of relationships among artifact, task and
mathematical knowledge. On the one hand, an artifact is related to a specific task … that
seeks to provide a suitable solution. On the other hand, the same artifact is related to a
specific mathematical knowledge (Bussi and Mariotti 2008, p. 753).

This double semiotic relationship is called the “semiotic potential” of the tool
(Bussi and Mariotti 2008, p. 754). In the mathematics classroom, the teacher plays a
crucial role in the process of semiotic mediation. Empirical studies suggest that
teachers can promote the evolution of mathematics knowledge through “orches-
trating” tool-based learning tasks and post-task mathematics discussions. (See for
example, Jones 2000; Mariotti 2002; Falcade et al. 2007.) We follow Mariotti and
Maracci (2012) in using “orchestration” as a metaphor for classroom discussions
with the aim “of developing shared meanings, having an explicit formulation,
de-contextualized from the artifact [tool] use, recognizable and acceptable by the
mathematicians’ community” (p. 60). As “the voice of mathematics culture”, the
teacher guides the mathematical discussions which aim at bringing out the semiotic
potential of the tool: a progression from students’ production of mathematical
discourse to mathematical knowledge.
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2.3 Feedback and Discrepancy

During the process of semiotic mediation, an artifact supports experimental
approaches to theoretical thinking via classroom dynamic relationships among the
tool, the task, students’ productions and the teacher, and mathematical knowledge
(Arzarello et al. 2012). In this process, the teacher uses feedback from the tool to
open up mathematical discourse. In this sense, feedback plays a mediating role
between the students’ production and the mathematical concepts intended to be
taught. It is a bi-directional process. On the one hand, the tool acts towards the user
(teachers or students) through feedback. On the other hand, the teacher can adjust
the tool to ‘control’ the feedback to facilitate mediation between students’ dis-
courses and curriculum mathematics or between visualization and reasoning. Thus,
designed feedback can be regarded as “didactical intervention” which can be
developed into a tool of semiotic mediation (c.f. Leung and Bolite-Frant, p. 193).

Discrepancy is a special kind of feedback given by the tools. It deviates from the
standard representations of the intended mathematical concept of the lessons. It has
influences on students’ learning. Chan and Leung (2013) proposed this notion as a
possible way to interpret the semiotic potential of a tool. Leung and Bolite-Frant
(2015) elaborate this notion and defined the discrepancy potential of a tool as “a
pedagogical space generated by (i) feedback due to the nature of the tool or design
of the task that possibly deviates from the intended mathematical concept, or
(ii) uncertainty created due to the nature of the tool or design of the task that
requires the tool users to make decisions” (p. 212). This notion resonates with the
notion of instrumental distance which is rooted within the instrumental approach.
Haspekian (2005, 2011, 2014) introduced and elaborated this notion to highlight the
constraints and instrumental needs in integrating a computer tool into mathematics
teaching. In particular, he proposed that “the more complex the instrumental pro-
cess is, with regard to the traditional environment (paper and pencil), that is to say,
the bigger is its distance from the ‘current school habits’, the more difficult the
integration of the tool is” (p. 135). From the perspective of semiotic mediation, the
notion of instrumental distance can be regarded as the size of the gap between
the mathematics represented by the tool and the mathematical concepts intended to
be taught. In other words, instrumental distance can be regarded as the measure of
the ‘length’ of the discrepancy. Leung and Bolite-Frant (2015) and Haspekian
(2011) pointed out that discrepancy or instrumental distance does not have inherent
“good” or “bad” values.

In Chan and Leung (2013) a task based on a tailor-made physical tool designed
for developing the concept of rotational symmetry was described and discussed. In
this chapter, a similar task using a digital tool (PowerPoint) will be discussed and
compared with the non-digital task. Based on the comparison of these two tools and
the corresponding tasks, the notion of discrepancy on tool-based mathematics
education tasks will be hypothesized with respect to feedback and discrepancy
potential in tool-based tasks, and their positions in the frameworks of the instru-
mental approach and semiotic mediation will be proposed.
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3 The Context

The excerpts of lesson episodes chosen for discussion in this chapter were taken
from a Lesson Study carried out in Grade 5 classrooms at a Hong Kong primary
school1 based on the Japanese’s Lesson Study (Fernandez and Yoshida 2004) and
the Learning Study (Lo et al. 2005) models. The research lessons aimed at
improving mathematics teaching through tool-based tasks. Five Grade 5 mathe-
matics teachers worked together over a period of five months to design lessons for a
selected topic. The topic selected for the research lesson was rotational symmetry.
One teacher implemented the lesson whereas other teachers observed and evaluated
the lesson. A modified lesson was agreed upon by the teachers and was imple-
mented by another teacher (in another class). This cycle was repeated until all five
teachers had taught the lesson to their own classes. A researcher in charge (one of
the authors) acted as a participant observer and gave theoretical advice. All the
teacher preparation meetings, lessons and the post-lesson discussion were
video-recorded.

3.1 The Tool and the Task

The objective of the lesson was to introduce to the students the idea of a rotational
symmetric figure; that is, a figure that ‘overlaps itself’ at least two times during one
cycle of rotation. A toolkit was specially designed for this lesson. There were two
versions of the toolkit: a physical version and a digital version.

The physical version of the toolkit, which we call the ‘transparency toolkit’,
consisted of blue-tacks, push pins, an overhead transparency, a pen and a styrofoam
board. It was designed for the purpose of verifying whether a given/constructed
figure has the property of rotational symmetry. Students were asked to copy a figure
(or a figure constructed using given plastic shapes) on the overhead transparency.
The copied figure acted as an identical copy of the original figure and was placed on
top of the original figure. Students used the push pin to locate and fasten the
position of the centre of rotation. While rotating the transparency, the original figure
and the rotated copied figure could be seen at the same time (see Fig. 1).

The digital version of the toolkit was situated within the software PowerPoint. It
was the teacher’s choice to use a file in PowerPoint as the digital tool instead of using
dynamic geometry software. The design was similar to the transparency toolkit with
some built-in commands designed to have the same functions as some components of
the ‘transparency toolkit’. The polygons under ‘basic shapes’ in the PowerPoint
software were used to create the figures. The ‘group’ and ‘ungroup’ commands
served the same function as blue-tack in the sense that different shapes can be

1The authors would like to express their gratitude to the team of mathematics teachers form St.
Edward’s Catholic Primary School who designed and implemented this Lesson Study.
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combined as a single figure. The ‘rotational control handle’ enabled the user to rotate
a shape or a group of shapes. This was useful for figure creation and for figure
verification. While rotating a shape or a group of shapes by using the ‘rotational
control handle’, the original figure and the rotated image co-exist on the computer
screen (Fig. 2). Thus it served the same function as the overhead transparency in the
‘transparency toolkit’. This synchronic simultaneity feature of both the physical and

Fig. 1 Transparency toolkit

Fig. 2 The ‘rotational
control handle’ of PowerPoint
software
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digital toolkits enables the concept of rotational symmetry to become visible and
manipulative. The co-existence of the original figure and the rotated image demon-
strates the concept of rotational symmetry which is defined as a figure which appears
identically more than once when it is rotated about a certain point (the pushpin in the
physical toolkit or the centre embedded in the rotation function of PowerPoint) in one
cycle. This constituted part of the semiotic potential of the toolkits.

The lesson structure was basically the same in all the five classes, while there
were slight differences in the details; in particular, some classes used the digital
toolkit and the others used the physical toolkit. The teacher started the lesson by
giving a brief review on line symmetry through a whole-class discussion and,
briefly, the idea of rotational symmetry was introduced. Then a figure was given to
the students and they were asked to verify/explore whether the figure has the
property of rotational symmetry using the chosen toolkit. The last part was the main
part of the lesson. Some identical polygons were given to the students. Students
(working in pairs) were asked to design rotational symmetric figures using these
polygons and used the toolkit to verify their work. Afterwards, a whole-class dis-
cussion was led by the teacher along with the students’ presentations.

In the next section, excerpts from lessons of three classes (Lesson A, Lesson B
and Lesson C) are described. The transparency toolkits (physical tool) were used in
Lessons A and B. A sheet of squared paper was used in Lesson A to create the
shapes while plastic square pieces were used in Lesson B. A file in PowerPoint (a
digital tool) was used in Lesson C.

4 Analysis

In this section, feedback and discrepancies observed from Lesson A, Lesson B and
Lesson C will be compared. The opportunities and pitfalls offered by the feedback
and discrepancies will be analyzed.

4.1 Feedback from Tool-Use

4.1.1 Feedback as Guidance for Creating Rotational Symmetric
Figures

In Lesson A, square grid paper was given to students to draw figures with rotational
symmetry. After guidance from the teacher, by rotating the square grid paper while
drawing, some students were able to produce simple figures with rotational
symmetry.

In Lesson B, besides square grid paper, plastic square pieces were given to the
students. The plastic pieces provided students with a tangible experience to com-
prehend the meaning of rotational symmetry. These allowed the students to rotate
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the individual square pieces and consequently to be able to produce more
complicated figures. Some students could detect and correct mistakes by rotating
the individual square pieces. For instance, a pair of students initially proposed an
incorrect figure (Fig. 3a). By rotating (some of) the square pieces, they found that
the figure did not have the sought for property of rotational symmetry (Fig. 3b).
Then they modified the figure to obtain it (Fig. 3c).

Fig. 3 a Incorrect figure. b Rotate part of the figure. c Corrected figure
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In this self-correction process enabled by the feedback of the tool (in this case,
the plastic square pieces), students experienced that the upper half and the lower
half of a rotational symmetrical figure they produced have the same distance from
the centre but in opposite directions. This may emerge from students’ intuitive
understanding of the meaning of a 2-fold rotational symmetry.

In Lesson C, students worked with the PowerPoint file. A number of identical
polygons of one type (say a triangle) created from the ‘basic shapes’ menu of the
software were given to the students. Students were required to create rotational
symmetric figures by dragging the given type of polygons around and ‘stick’ them
together. If they wished, they could reproduce more polygons of the given type
using the ‘copy-&-paste’ command. Students usually grouped, ungrouped, and
re-grouped the polygons alternatively in order to rearrange part of the figure by
using the ‘rotational control handle’. Figure 4 shows a typical working sequence in
which the figure was created by grouping and re-grouping the polygons. During this
process, the actions of rotation and grouping-and-regrouping were guided by
feedback that focused on figural accuracy (e.g. making sure that there is no gap
between the sides of two figures when they are dragged to stick).

When comparing lessons A and B, it was observed by the teachers and the
researcher that the square grid paper was not as conducive as the plastic square
pieces in bringing about the (intuitive) meaning of rotational symmetry. What made
the difference? One possibility was that the square grid paper could not be separated
into different parts. Whenever the whole sheet was rotated, all the individual
squares were changed in the same way. The lack of variation of parts in the creation
process may result in a limited experience of which features are typical in rotational
symmetry and hence the critical to be discerned in a rotational symmetric figure. In
contrast, the plastic square pieces could be manipulated as separate entities and
changed with respect to each other in different ways. This opened up wider vari-
ation and opportunity to produce more complicated figures. As seen in the
‘self-correction’ example of Lesson B, students could rotate parts of the created
figure (the middle two squares). This may have lead to discernment of critical
features of rotational symmetry (Marton 2015) and hence to an intuitive under-
standing of the concept. Thus a shift of attention between the parts and the whole of
the object of exploration (the rotational symmetric figure) could occur through
manipulation of the square pieces but this may not be the case for the grid paper. In
Lesson C, the feasibility of swapping the attention between the whole and the parts
was even more conducive, thanks to the ‘group’ and ‘ungroup’ commands. As
observed in Lesson C, these two (related) commands provided a convenient tool for
controlling which parts of the created figure should be changed (rotated) and which
parts of the figure kept invariant, and hence the shifting of attention between the
parts and the whole of the object of exploration through manipulation could be
easily managed and fortified. Consequently, a possible link between visualisation
(an intuitive idea of rotational symmetry) and reasoning (a definition and properties
of rotational symmetry) could be established.
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Fig. 4 Producing a figure by using group/ungroup commands and the rotational control handle
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4.1.2 Feedback Initiated Discussion as a Bridge to Link up Students’
Produced Figures with the Concept of Rotational Symmetry

After the group activity that involved creating the figure, the teacher selected a few
student groups to report on their works in front of the class and initiated a math-
ematical discussion which aimed at exploiting aspects of the semiotic potential of
the tool. The structure of this phase was basically the same. First, the teacher asked
the students whether the figure had the property of rotational symmetry and then
verified it by using either the transparency toolkit (we will call this the physical
toolkit) or the ‘rotational control handle’ of the PowerPoint file (the digital toolkit).
In Lessons A and B, the transparency toolkit was used. The students were asked to
use the pushpin to fasten the centre of rotation. Then, they were asked to demon-
strate the figure’s rotational symmetry by using the transparency toolkit. While
rotating the transparency, the whole class was instructed to pay attention to when
the original figure (i.e. the figure composed by the square pieces) and the rotated
figure (i.e. the figure on the transparency) overlapped. In Lesson C, PowerPoint was
used. The procedure was similar but the ‘rotational control handle’ was used to do
the demonstration. The polygons were combined into one whole figure through the
‘grouping’ command. Then, the figure was rotated by using the ‘rotational control
handle’. The synchronic simultaneous appearance of the original figure and the
rotated image served the same function as the overhead transparency used in
Lessons A and B. When the two figures overlapped, the whole class counted the
number of times the overlapping occurred. After a cycle of rotation, the teacher
asked the whole class whether the figure had the property of rotational symmetry
and highlighted the reason (i.e. the figure overlapped at least two times in one
cycle).

Despite the fact that the structures of the post-activity discussions were similar
across the lessons, a subtle difference between the lessons using the transparency
toolkit and the lessons using PowerPoint was observed. Some students rotated the
figure too quickly without paying attention to whether the original figure and the
image ever overlapped. This problem was more severe in Lesson C (the lesson
which used PowerPoint) than Lessons A and B (the lessons which used the
transparency toolkit). A possible reason was that it was much easier to rotate a
figure using the ‘rotational control handle’ in PowerPoint than by the manual
control of the physical transparency toolkit. The students only needed to hold down
one button (the ‘rotational control handle’) in PowerPoint. Hence, they may have
been putting their attention more on the mechanical operation of the created figure
rather than on the mathematics behind it. That is, students may fail to interpret the
feedback from the digital tool with respect to the intended mathematical concept
due to the more easy to manipulate design of the software. The role of the teacher in
Lesson C was important in the interpretation process. She prompted the students to
rotate the figure slowly in order to count the number of overlappings. In this last
part of the lesson, the teacher used the feedback from the tool to mediate students’
productions into the formal definition of rotational symmetry (that is, a figure
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appears the same more than once when it is rotated about a certain point in one
cycle). The definition was made explicit through the actions in a well-structured
group reporting procedure: locating the centre, rotating the figure on the trans-
parency or by using the rotation function of the software, and then counting the
number of times of overlapping. In this orchestrated process, the potentials of the
transparency toolkit and the rotation function of PowerPoint software as tools of
semiotic mediation emerged through evaluation of the students’ productions by
manipulating the tool and counting the number of times overlapping occurred at the
same time. The defining property of rotational symmetry was then verbalized.

In Lesson C, due to the nature of the design of the ‘rotational control handle’, the
students had an inclination to rotate the figure too quickly which led to failure of
linking up the simultaneity of manipulating the tool and speaking out the key
concepts explicitly. It suggests that the influence of the tool design (no matter how
minor it is) can cause (unexpected) pitfalls for the emergence of mathematical
concepts. This kind of subtle effect deriving from tool design may not be
acknowledged unless the task is empirically tested in the lessons. Teachers’ sen-
sitivity in identifying this effect is successively required for constructing the
intended mathematical knowledge from the feedback of the tool use. In the next
section, two more unexpected types of feedback from tool use (one is extracted
from Lesson B and another is from Lesson C) will be described. These two episodes
can be classified as discrepancy caused by the tool utilization. They exemplified the
opportunities and pitfalls provided by discrepancy in tool-based mathematics
education tasks.

4.2 Discrepancy: Opportunities and Pitfalls

The concepts represented by the feedback from the tool use may deviate from the
mathematical concepts intended to be taught. This “discrepancy” (Leung and
Bolite-Frant 2015) can open up an opportunity to extend students’ knowledge
development but it can also be a pitfall which hinders students’ shaping of the
intended learning objective. The following two episodes illustrate these two pos-
sibilities. In both episodes, the feedback given by the tools deviated from the
standard representations of rotational symmetry (the intended mathematical concept
of the lessons) and had influences on students’ learning. The discrepancy in the first
episode had a positive influence whereas the discrepancy in the second episode had
a negative influence. In both excerpts, the teachers played an important role in
maintaining the learning effectiveness by changing the “instrumental distances”
(Haspekian 2005, 2011) of the discrepancy. We will interpret these two episodes
from the perspectives of semiotic mediation and the instrumental approach.

The first episode was extracted from the whole class post-activity discussion in
Lesson B. A group of students used three plastic square pieces to create a 3-fold
rotational symmetric figure (Fig. 5a). Students in the group reported a routine for
locating the centre, rotating the figure on the transparency, and then counting the
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number of times of overlapping. Although the explanation given by the students
was basically correct, the teacher deliberately extended the discussion by pointing
out that the original figure and the rotated figure did not overlap exactly (Fig. 5b).
In other words, he amplified the instrumental distance (that is, the size of the gap
between the mathematics represented by the tool and the mathematical concepts
intended to be taught) so that the discrepancy became explicit. He proceeded to ask

Fig. 5 a A 3-fold rotational symmetric figure created by plastic square pieces. b Verify the figure
by transparency toolkit. c Teacher’s further elaboration
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the whole class how to modify the figure in order to make these two figures overlap
exactly. After thinking for a while, a student suggested that the sizes of the angles
between each of the adjacent squares should be the same. In order to further
elaborate this idea, the teacher compared this figure with a 4-fold rotational sym-
metric figure which was produced by another group (Fig. 5c). After a brief dis-
cussion, it was concluded that the more times overlapping is obtained in one cycle,
the smaller the size of the angle is between adjacent squares. This property was
actually beyond the mathematics knowledge that the teacher intended to teach.

The second episode is an excerpt from the whole class post-activity discussion in
Lesson C. A group of students used three regular hexagons from the ‘standard
shapes’ provided in PowerPoint to create a 3-fold rotational symmetric figure
(Fig. 6a). The figure was accurate and the centre of rotation was easily recognized.
However, when the students used the ‘rotational handle control’ of PowerPoint to
rotate the figure, the rotation trajectory deviated from the expected locus and the
rotated image failed to overlap with the original figure (Fig. 6b).

In order to handle this unexpected disturbance, the teacher decided to diminish
the instrumental distance by telling the students that the figure was indeed a rota-
tional symmetric figure and the deviation was due to technical error. The teacher
continued her teaching agenda and discussed the angle of rotation with her students.
She rotated the figure until the original figure and the rotated image had the same
orientation in which she ‘pretended’ that they overlapped. Then, she asked her
students, “Of how many angles has the figure been rotated when it overlaps [with
the image] the first time?” After a brief discussion, the relationship between the
number of times overlapping occurred in one cycle and the angle of rotation was
established.

In both episodes, the feedback of the tools deviated from the teacher’s expected
representation of ‘rotational symmetry’. In other words, there was discrepancy
between the mathematical representation provided by the tool and the mathematical
representation intended to be taught through the task. However, there was a subtle
difference in the influences of the discrepancy on students’ learning in these two
episodes. In the first episode, the teacher made use of the tool’s ‘inaccurate rep-
resentation’ to extend the conceptual understanding of rotational symmetry from
merely recognizing a descriptive definition to discerning a critical feature about
angle size in rotational symmetry. The occurrence of this tool-based discourse could
be regarded as an incidental opportunity offered by the discrepancy embedded in
the tool. It happened that the pair of students created a 3-fold rotational symmetric
figure by three identical square pieces in such a way that the resulting figure was
difficult to be arranged accurately (by eye). The angle between two adjacent square
pieces needs to be 30° in order to create a rotational symmetric figure using three
identical squares. For Grade five students, it is difficult to arrange the square pieces
visually so that all three gaps are of 30°. Rotating the figure using the transparency
toolkit made this discrepancy explicit which gave an opportunity for the teacher to
orchestrate meaningful mathematics discussion with the students. From the
instrumental approach perspective, the teacher highlighted the discrepancy by
amplifying the instrumental distance between the tool representation and the
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intended mathematical concepts. The transparency toolkit was instrumentalized as a
tool of semiotic mediation for the teacher. The pedagogical space was expanded,
and in it mathematical rich discourse was brought out.

In the second episode, the source of discrepancy was due to the design of
PowerPoint. The figure created by the students in the episode was an accurate
rotational symmetric figure but the rotation function of PowerPoint software failed
to verify it. The reason was that PowerPoint assigns the centre of rotation auto-
matically and does not allow manual assignment. (In contrast, the centre of rotation

Fig. 6 a A 3-fold rotational symmetry figure created by using PowerPoint software. b The
rotation trajectory deviated from the expected locus
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can be assigned easily by fastening the location with a pushpin of the transparency
toolkit used in the first episode.) More importantly, the centre of rotation assigned
by PowerPoint is based on the rectangular box that encloses the figure. Its location
may be inconsistent with the rotation centre of the figure itself. That is why the
rotation centre of the figure in this episode has been ‘shifted’ upwards. PowerPoint
is a general computer tool which is not designed for the purpose of learning and
teaching mathematics. Although some same vocabulary is used, there is discrep-
ancy in the meaning of the vocabulary used in the software and in curricular
mathematics. In our case, ‘rotation’ in PowerPoint means rotating the rectangular
frame containing the figure rather than rotating the figure itself. This discrepancy
influences the location of the centre of rotation as was evidenced in this episode.
From the semiotic standpoint, this discrepancy can be regarded as a defect (not of
the software per se but of using the software for teaching the mathematical concept
of rotational symmetry) because the software failed to provide a semiotic link
between the manipulation task (rotating the figure) and the mathematical meaning
(the standard definition of rotation symmetry). In other words, the instrumental
distance between the mathematical knowledge embedded in the tool and in cur-
ricular mathematics is too large. Indeed, this kind of defect is not uncommon when
a general computer tool, which is not given as a mathematics didactical tool, is used
for teaching mathematics. For instance, Haspekian (2011) points out that the dis-
tinction between absolute referencing (i.e. the ‘$’ sign in the variable formula) in a
spreadsheet and the usual algebraic expressions in the school context may cause
difficulties in teaching algebra by using a spreadsheet. The teacher has strong
instrumental needs to fix these defects. In the episode of our rotational symmetry
lesson, the teacher tried to diminish the instrumental distance by simply telling her
students that the figure was in fact rotational symmetric and claiming that the figure
would be overlapped if the centre were moved to a further up position. In other
words, the teacher gave up using PowerPoint as a tool of semiotic mediation for
rotational symmetry. She withdrew her initial intention of enabling the students to
experience the abstract concept of rotational symmetry through manipulation of
concrete tools but decided (more or less consciously) to transmit facts to her stu-
dents directly.

Both tools used in Lesson B and Lesson C have embedded discrepancy with
respect to the task of experiencing the concept of rotational symmetry. However,
the discrepancy embedded in the physical tool used in Lesson B had a positive
effect on the construction of mathematical knowledge whereas the discrepancy
embedded in the digital tool used in Lesson C had a negative effect. It resonates
with Leung and Bolite-Frant (2015) in that “the notion of discrepancy potential
does not have an inherent good/bad value” (p. 213). In this connection, we dis-
tinguish discrepancy which has positive effect towards learning as discrepancy
opportunity and that which has negative effect as discrepancy pitfall. As Haspekian
(2011) points out, too large an instrumental distance is a constraint on technology
integration whereas suitable distance can lead to the opportunity of opening up new
mathematical representations which may not have appeared in paper-and-pencil
environments. Whether a discrepancy is an opportunity or a pitfall relies on the
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teacher’s competence in identifying and modifying the instrumental distance into a
suitable ‘length’. As evidenced in these two episodes, teacher-led mathematical
discussions can amplify/diminish the instrumental distances to turn discrepancy into
an opportunity rather than a pitfall. It is important to point out that we are not trying
to make an oversimplified conclusion that a physical tool always embeds dis-
crepancy opportunities and a digital tool always embeds discrepancy pitfalls.
Indeed, from the perspective of instrumental approach, an instrument is dependent
on context and users (teachers and students). Along this line of thought, whether the
discrepancy of a tool is an opportunity or a pitfall depends on the intended object of
learning (mathematical concept) and on many other contextual factors. However,
the teacher plays an important role in instrumentalizing the tool so that the dis-
crepancy opportunities can be brought out and the discrepancy pitfalls avoided.
While designing a tool-based task, it is important to identify the discrepancy
potential embedded in the tool and the possible instrumental distance between the
mathematical concept intended to be learnt and the representation offered by the
tool. Appropriate questions for amplifying/diminishing the instrumental distance
into suitable ‘length’ through mathematical discussion is an important part of the
task design. If possible, these issues should be carefully addressed before the task is
implemented.

5 Feedback and Discrepancy in Tool-Based Mathematics
Education Tasks

In this section, we suggest theoretical perspectives on the notions of feedback and
discrepancy in the context of tool-based task design in mathematics education,
particularly using digital technologies in designing mathematics education tasks.
The notion of discrepancy will be refined. Then, designing and implementing
tool-based mathematics education tasks will be discussed from the perspectives of
feedback and discrepancy. The discussion will be integrated into the existing the-
oretical frameworks of the instrumental approach and the theory of semiotic
mediation. Some hypotheses related to feedback and discrepancy in tool-based
tasks will be advanced.

5.1 The Notion of Discrepancy

Within the instrumental approach, the choice of tools is crucial in designing a
tool-based mathematics task because the affordances and constraints of the tool play
a significant role in shaping students’ mathematical concepts, as highlighted in the
description of instrumental genesis by Drijvers, Kieran and Mariotti (2010):
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Instrumental genesis is an ongoing, nontrivial and time-consuming evolution. A bilateral
relationship between the artifact and the user is established: while the student’s knowledge
guides the way the tool is used and in a sense shapes the tool (this is called instrumen-
talization), the affordances and constraints of the tool influence the student’s problem
solving strategies and the corresponding emergent conceptions (this is called instrumen-
tation) (pp. 108–109).

Discrepancy embedded in a tool can be regarded as the tool’s affordances or
constraints. What counts as discrepancy is a relative notion which depends on the
perceived nature of the chosen tool. In our example of rotational symmetry, the
physical toolkit (‘transparency toolkit’) was expected to be a crude tool. For
instance, slight errors such as the case illustrated in Fig. 5a above were usually
regarded as acceptable and not as a discrepancy. (If the teacher did not deliberately
amplify the instrumental distance, the discrepancy would not be perceived to exist
and hence no longer be an affordance of the tool.) On the contrary, the digital
toolkit of rotational symmetry (the PowerPoint software) was expected to be an
accurate tool. However, as illustrated in Fig. 6b, the effect of the rotation was not
‘accurate’ enough even if the rotated figure was accurately created. The constraints
due to this inaccurate rotation were ‘amplified’ by a common perception (or
expectation) that computer software is always accurate. (In Lesson C, the teacher
was sensitive enough in her attempt to diminish the instrumental distance so that the
constraints could be minimized.)

Based on the above discussion, it seems that there are two levels of discrepancy.
The first level is of embedded discrepancy. It is the tool’s not being able to perform
certain actions, a feature embedded in the tool per se. However, it has potential
contribution to the affordances and constraints of the tool (and hence to instru-
mental genesis) which may be conducive to teaching and learning. The second level
of discrepancy is enacted discrepancy. This type of discrepancy contributes actu-
ally to the affordances and constraints of the tool via feedback given to the user by
the embedded discrepancy and hence it has actual influences on the emergence of
mathematical knowledge. With respect to the instrumental approach, enacted dis-
crepancy is a result of the process of instrumentation. Thus enacted discrepancy is
an interaction between the perceived nature of the tool (such as whether the tool is
expected to be crude or accurate) and the discrepancy embedded in the tool (that is,
the potential discrepancy) regulated by the user, hence it is ‘subjective’ in the sense
that it is user dependent. The same embedded discrepancy may be perceived by
different people as different feedback and hence may result in different enacted
discrepancies. To a certain extent, the teacher’s or the students’ knowledge guides
the way the nature of the tool is perceived and hence how the enacted discrepancy is
shaped. In this respect, we suggest a dual instrumental process for the discrepancy.
On the one hand, the potential emergence of mathematical knowledge offered by
the tool is shaped by the embedded discrepancy. On the other hand, the enacted
discrepancy is shaped by the teacher’s or students’ knowledge already possessed.
Mathematical knowledge and discrepancy are shaped together in this process.
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5.2 Designing Tool-Based Mathematics Education Tasks
from the Perspective of Feedback and Discrepancy

Having chosen an appropriate tool which has appropriate affordances and con-
straints (including discrepancy) is one thing, designing a suitable task based on this
tool is another thing. Based on his previous research studies in dynamic geometry
environments, Leung (2011) proposes an epistemic model of task design in
technology-rich pedagogical environments. This model provides a guiding frame-
work to think about how to design a tool-based mathematics education task which
can capitalize on the affordances and constraints (in particular, the discrepancies) of
the tool (digital or physical). The model is made up of a nested structure of three
epistemic modes in the sense that the first mode is a “cognitive extension” (p. 328)
of the second mode and the second mode is a “cognitive extension” of the third
mode. The three epistemic modes, in the nested sequence, are: Establishing
Practices Mode, Critical Discernment Mode, and Establishing Situated Discourse
Mode. In the following, we will discuss the positions of feedback and discrepancy
in these three modes (see a further discussion of these nested epistemic modes in
Chapter One of this book).

The process of instrumental genesis begins in the Establishing Practices Mode in
which the utilization scheme of a tool develops. It relates to developing the prag-
matic knowledge of how to use the tool. From the instrumental approach point of
view, developing this knowledge cannot be taken for granted and could be a
complicated process. Take, as examples, fastening the centre of rotation in the
transparency toolkit and in the PowerPoint software. In the former case, the pushpin
in the transparency toolkit is a convenient tool for fastening the centre accurately.
However, as illustrated in the teaching episode described in previous section, there
is no similar ‘pushpin’ in PowerPoint, hence there is (potential) discrepancy
embedded in fastening the centre of rotation by using this software. It illustrates the
substantial differences between the utilization scheme of PowerPoint and the uti-
lization scheme of the transparency toolkit for the same purpose of developing the
concept of rotational symmetry. In designing a tool-based task, more efforts and
longer time may be needed for establishing the utilization practice if the tool has a
large instrumental distance between the actual effect of the manipulation and the
expected effect represented by the intended mathematical concepts. This could be
regarded as the first criteria in deciding whether a tool is suitable to be used for a
particular task. In retrospect, if dynamic geometry software (instead of PowerPoint)
had been used for this task, the whole story may have been completely different.
Dynamic geometry software has a built-in command for marking the centre of
rotation. This command serves the same function as the pushpin in the transparency
toolkit. If a dynamic geometry software had been used, the embedded discrepancy
pitfall described above may not have appeared (if the students had been already
familiar with the basic skills of using the software).
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The second epistemic mode in the model is the Critical Discernment Mode. It
refers to discerning critical features of the intended mathematical objects (or con-
cepts). The line of thought of this epistemic mode is rooted in Ference Marton’s
phenomenography and variation theory of learning (Marton and Booth 1997;
Marton and Tsui 2004; Marton 2015) and later Leung’s application to studies on
dynamic geometry environments (see for instance, Leung 2003; Leung and Chan
2006; Leung 2008; Leung et al. 2013). Learning is considered as seeing or expe-
riencing something (or some phenomenon) in a different way due to the discern-
ment of different critical features (or aspects) of the phenomenon under study. “To
discern an aspect is to differentiate among the various aspects and focus on the one
most relevant to the situation. Without variation there is no discernment” (Bowden
and Marton 1998, p. 7). In particular, critical features of something can be discerned
by means of discernment strategies that focus on variation and invariance. An
efficient tool-based learning task can enable the students to instrumentalize the tool
in such a way that variation and invariance can be observed. Take the task of
rotational symmetry as an example. Both the transparency toolkit (with plastic
shape pieces) and the PowerPoint software allow the students to freely shift their
attention (a variation strategy) between the parts and the whole of the object of
exploration (creating rotational symmetric figures). Thanks to the blue-tack of the
transparency toolkit and the group/ungroup commands in PowerPoint. As evi-
denced from the data, the feedback from the tools while working on the task of
figure creation provided an opportunity for the students to experience the
part/whole shifting and hence establish the link between visualization and rea-
soning. In general, it seems that the semiotic potential of a tool may be enhanced if
the task based on this tool enables the students to freely shift their attention between
the parts and the whole of the object of exploration. This kind of tool feedback
gives rise to an opportunity for the students to establish a better grasp on the
part-whole relationship and to discern invariant features from the incidental ones.

The third epistemic mode is the Establishing Situated Discourse Mode; it
involves the development of mathematical reasoning and arguments which are
situated in the tools used and it acts as a bridge connecting the tool-based task to
formal mathematics discourse. A tool-based task which allows uncertainty due to
tool discrepancy may initiate meaningful situated discourse which could lead to
deeper conceptual understanding. Meaningful mistakes are a source for mathe-
matics discussion leading to construction of mathematical knowledge. Some set-
tings of a task have a higher chance of allowing the student to make (meaningful)
mistakes than other settings when the same task is used. As evidenced in the first
episode of the transparency toolkit in Sect. 4.2, when creating a rotational sym-
metric figure by using three identical square pieces, it is easier to make ‘mistakes’
than by using four identical square pieces. Though the ‘mistake opportunity’ that
occurred in this episode was rather incidental, ‘mistake opportunity’ could be
planned in the task design so that the embedded discrepancy can be more likely to
be developed into an enacted discrepancy that carries mathematical meaning. Hence
the mathematics implied by the ‘mistakes’ could be an important consideration for
task design. Furthermore, the tool used in a task may also influence the chance of
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making mistakes. When a digital tool (e.g. PowerPoint or a dynamic geometry
software) was used for this task (Lesson C), it was observed that the enacted
discrepancy that occurred in Lesson B did not occur because the drawings produced
by the digital tools are usually accurate (at least the discrepancy cannot be discerned
visually). In this connection, it is interesting to note that empirical studies have been
conducted where students deliberately construct ‘wrong’ figures in dynamic
geometry environment in the process of exploration and argumentation (See for
example, Leung and Lopez-Real 2002; Mariotti and Antonini 2009;
Baccaglini-Frank et al. 2011; and Chapter “Designing Non-constructability Tasks
in a Dynamic Geometry Environment” in this book). Therefore, there is also user-
created tool discrepancy.

5.3 Implementing Tool-Based Mathematics Tasks
from the Perspective of Feedback and Discrepancy

A well designed and implemented tool-based mathematics education task can
amplify the pedagogical potential of the embedded discrepancy and diminish the
potential pitfalls caused by the discrepancy which in turn increase the probability of
bringing about the intended mathematical concepts. In this regard, the teacher plays
a deterministic role.

The process from students’ performing a tool-based task activity to students’
acquisition of mathematical knowledge is usually not automatic. As an expert
representative of mathematics culture, the teacher plays a significant role in the
process of semiotic mediation by guiding the evolution of mathematical meanings
related to the tool and its use within the mathematics classroom. A teacher needs to
use the students’ productions to foster the processes of semiotic mediation (Mariotti
2002; Bussi and Mariotti 2008). The feedback given by the task has potential to
bring out the intended mathematical concepts. However, the correspondence
between the feedback and the mathematics knowledge may not be explicit. It is
because appropriate mathematics terminology (vocabulary) may not be provided by
the tool especially for those tools (either physical or digital) which are not initially
designed as a tool for mathematics teaching and learning (for example PowerPoint).
This point of view resonates with the idea that the vocabulary involved in using the
tool can be a source of “instrumental distance” (Haspekian 2005). It is part of the
role of the teacher to make this correspondence explicit. In the lesson episodes
described in Sect. 4.1.2, the teachers made use of a well-structured orchestration
procedure which involved students’ evaluation of their own productions by
manipulating the tool and expressing the key mathematics concepts explicitly, at the
same time, to create the correspondence. During this orchestration, the teacher
deliberately highlighted the mathematical terminology corresponding to function-
alities of the tool. (For example, the push pin corresponds to the “centre of rota-
tion”.) The correspondence between students’ tool-based productions and the
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mathematics knowledge may be seen as matching a tool-based discussion to the
formal (at least curriculum-wise) mathematical discussion. The lesson episodes
described in Sect. 4.2 suggest that a tool-based task which can capitalize on the
embedded discrepancy potentials in the tool may bring about a higher level of
conceptual understanding. This happened due to the teacher’s insight and flexibility
during the task orchestration. In the first episode described in Sect. 4.2, the teacher
made use of the students’ incorrect (or not-so-correct) production to extend the
mathematics discussion so that a deeper conceptual understanding of rotational
symmetry evolved. This was incidental in the sense that it was not part of the
teacher’s original plan. If the teacher had ignored the discrepancy and simply told
the students that their ideas were correct, then the situated mathematics discourse
would not have been so rich and fruitful. On the other hand, not all the mistakes
were equally as fruitful for extending the discussion. In the second episode
described in Sect. 4.2, the centre of rotation was shifted to an incorrect position
which caused failure in demonstrating the rotational symmetry of the figure pro-
duced by the students. This ‘mistake’ was not due to the students but to a ‘defect’ of
PowerPoint when it was used for teaching the concept of rotational symmetry. The
teacher chose to ignore the ‘mistake’ and continued the mathematical discussion as
initially planned. The former case is a discrepancy opportunity and the latter is a
discrepancy pitfall. Teacher’s sensitivity in determining whether a student’s (mis-
taken or unexpected) production (or response) is a discrepancy opportunity or a
discrepancy pitfall and the ability in adjusting the “instrumental distance”
(Haspekian 2005, 2011) to an appropriate ‘length’ is one of the factors contributing
to successfully bringing about the semiotic potential of a tool-based task.
Developing such ability is an important aspect in teachers’ proficiency in designing
and implementing tool-based mathematics education tasks.

6 Conclusion

In this chapter, the opportunities and pitfalls given by the feedback of tool-based
mathematics education tasks are discussed. Two similar tasks (one based on a
tailor-made physical toolkit and another based on a digital toolkit) for developing the
concept of rotational symmetry are compared. Based on comparing the discrepancy of
these two tasks, the notions of embedded and enacted discrepancies and their peda-
gogical significance in tool-based mathematics education task design are expounded.

Tool discrepancy influences mathematics learning positively or negatively,
respectively bringing about discrepancy opportunity and discrepancy pitfall.
Embedded discrepancy is objective referring to the ‘physicality’ of the tool while
enacted discrepancy is ‘subjective’ depending on the interaction between the
user-perceived nature of the tool and the embedded discrepancy. Enacted dis-
crepancy is a tool-user feedback, hence it has actual influences on the emergence of
mathematical knowledge. Based on our data from the rotational symmetry task,
four tool-based mathematics task design considerations are raised.
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1. The tool should enable students to shift their attention freely between the parts
and the whole of the object of exploration. This can help students discern critical
features of the object of exploration and be aware of the mathematical concepts.

2. The task should bring out the embedded discrepancy opportunity of the tool (for
instance, by providing ‘meaningful mistake opportunity’) in order to initiate
mathematical discussion which may lead to deeper conceptual understanding.

3. If the instrumental distance between the actual effect of the manipulation and the
expected effect as represented by the intended mathematical concepts is too
large, the tool has an embedded discrepancy pitfall in the sense that the students
need more time and effort to instrumentalize the tool.

4. Teacher’s sensitivity and insight in identifying the discrepancy opportunity and
discrepancy pitfall (both embedded and enacted) and the ability to adjust the
instrumental length are a key factors in successfully exploiting the semiotic
potential of the tool-based task.

These four tool-based task design considerations could serve as a guide for a
larger scale study on investigating teachers’ design and implementation of mathe-
matics education tool-based tasks for different tools and compare the pedagogical
opportunities and pitfalls afforded by the tools in the process of mathematics
teaching and learning.
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