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    Abstract 
   In the pig, there are thus far only a handful of examples of health/disease studies 
approaching a systems biology level analysis, and this is in sharp contrast to the 
substantial amount of published porcine data on whole genome, transcriptome 
and proteome experiments with regard to economically important swine dis-
eases. However, systems biology is very powerful since it attempts to understand 
how these distinct -ome parts work together to create emergent properties that 
are less likely to be recognized in the analysis of only one component of the 
system. By integration of the different -omics datasets, systems biology tries to 
create a more complete understanding of the observed immune response. Until 
now, such integrative analyses are still in their infancy in terms of application to 
pig health. 

 In this chapter, we will cover systems biology tools for network analyses and 
multilevel data integration, and give examples of their implementation in pig 
disease studies. Next, we will discuss the need for visualization to interpret the 
vast amount of data created in -omics studies. Furthermore, the upcoming use of 
bloodomics is described, since blood is a very relevant immune-related tissue 
and biomarkers in the blood can easily be assessed and implemented in selection 
strategies. We conclude with specifi c examples of -omics and initial systems 
biology methods on viral (PRRSv) and bacterial ( Salmonella ) infections, since 
both agents are economically important pathogens causing disease in pigs and 
substantial genomics analyses on the response to these pathogens have been con-
ducted to date. In the future, forthcoming consortia such as the FAANG project 
will accelerate our ability to apply systems biology tools to improving pig health.  
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1       The Time Is Right to Apply Genomic Tools 
for Improvement of Complex Health Traits in Pigs 

 In the last few decades, growth, meat quality, as well as feed and reproduction effi -
ciency have been the most well-studied traits in swine breeding; however, in recent 
years, pig performance in the face of disease challenge is becoming progressively 
more important. Hence, selection objectives in the swine breeding industry have 
broadened to include traits that refl ect overall robustness and disease resistance 
(Mellencamp et al.  2008 ). Heritability of cellular immune traits associated with 
resistance are often very high (Flori et al.  2011 ), so genetic selection towards more 
resistant pigs is certainly a feasible method to improve both animal production and 
welfare, but the possible existing trade-off with other traits should be kept in mind 
(Rauw  2012 ; Stear et al.  2001 ). However, the biology behind resistance towards 
even a single pathogen is highly complex and dynamic, creating an opportunity to 
apply systems immunology or systems biology to improve disease resistance (Kidd 
et al.  2014 ). The integration of experimental and computational research would 
allow a better understanding of these complex biological systems (Hollung et al. 
 2014 ), and high-throughput technologies, measuring thousands of parameters at 
once, would provide the requisite datasets (Kidd et al.  2014 ). To date, substantial 
whole genome, transcriptome and proteome data have been collected with regard to 
several economically important swine diseases; metabolome and microbiome data-
sets are also growing. The biggest challenge lies in bringing the data together to 
understand the immune responses in a comprehensive way and to use such informa-
tion to improve pig health practically and sustainably.  

2     Systems Biology Tools and Their Use in Pig Disease 
Studies 

 A multitude of pig disease genetics studies make use of knowledge gathered by 
genome-wide association studies (GWAS) through examining possible associations 
between single nucleotide polymorphisms (SNPs), insertions, deletions or copy 
number variants (CNVs) and the disease of interest (Arakawa et al.  2015 ; Fowler 
et al.  2013 ; McKnite et al.  2014 ; Sharma et al.  2015 ). When a mutation is found to 
be associated with the disease trait, one can select for it, with consideration of addi-
tional effects the mutation might have on other traits. At the transcriptomic level, 
differential expression (DE), usually over time or between disease states, can be 
informative. When the expression level of genes that differ between diseased and 
healthy phenotypes can successfully be repeated in other populations, they can be 
used as biomarkers. This is called signature-based analysis (Bebek et al.  2012 ). 
However, a single marker or a set of marker genes is usually not enough to explain 
or predict a complex phenotype. Integrative analyses merging gene expression pro-
fi les with pathway data have been shown to be helpful in understanding immune 
responses (Sahadevan et al.  2014 ). The gene set enrichment analysis (GSEA) algo-
rithm is a powerful method to fi nd enriched pathways in the transcriptome 
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(Subramanian et al.  2005 ). With this method, a pathway is scored according to how 
many and how enriched the genes representing the pathway are in the extreme up- 
regulated or down-regulated lists of genes. A similarly well-known annotation tool 
is the Database for Annotation, Visualization and Integrated Discovery (DAVID) 
(Huang da et al.  2009 ), which works together with the Gene Ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases (Kanehisa 
et al.  2014 ) for pathway visualization. InnateDB can be a powerful tool to annotate 
sets of genes to specifi cally examine the innate immune response (Lynn et al.  2008 ). 
One or more of these tools are typically used when analyzing pig transcriptomic 
data from microarray or RNA-seq. A few drawbacks in these pathway-based analy-
ses are that well-characterized pathways are easier to fi nd than those that describe 
the function of less studied genes and may be overemphasized in such annotation 
analyses. There is also the assumption that expression patterns of genes coding for 
proteins in a pathway should show a clear correlation with others in the same path-
way, which is not necessarily always the case (Bebek et al.  2012 ). 

 However, systems biology goes further than a genome or transcriptome study 
and the annotation of overrepresented and underrepresented pathways. It is a com-
bination of knowledge concerning several biological system parts, e.g. DNA, RNA, 
proteins, cells, tissues, organs, organisms and ecologies. Rather than producing 
these data and solely giving a summation of the outcome in each fi eld, systems biol-
ogy attempts to understand how the parts work together to create emergent proper-
ties that are less likely to be observed (recognized) in analyses of only components 
of the system. A further goal, specifi cally for systems immunology, is predicting 
how, in the light of health research, genetic and regulatory interactions, as well as 
environmental factors, orchestrate responses to disease (Tuggle et al.  2011 ). In what 
follows, we describe network-based and multilevel data integration analyses and, 
although both methods are still in their infancy in pig disease studies, we provide 
examples and illustrate their use. 

2.1     Network-Based Analyses of Porcine Immunological 
Responses 

 One emerging network-based tool is the Weighted Gene Co-expression Network 
Analysis (WGCNA) developed by Langfelder and Horvath ( 2008 ). WGCNA was 
originally developed for microarray analyses, but is also applicable on RNA-seq 
data (Langfelder and Horvath  2008 ). Whereas in DE analyses only genes that pass 
an arbitrarily defi ned statistical threshold for DE are used for analysis, in WGCNA 
genes with a similar expression pattern across the experiment are clustered together 
into modules. Thus, genes with only a small but consistent difference over time or 
between phenotypic groups can be clustered in a module and will be considered. A 
unique and useful component of the WGCNA package is that, after clustering, the 
calculated eigengene of a module (defi ned as the fi rst principal component of that 
module) can be correlated with an external numerical or categorical trait. Correlation 
coeffi cients together with nominal  p -values indicate the strength of a module’s 
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relationship to the trait of interest. To understand their biological relevance to the 
trait, the genes in a module can then together be analyzed with GO annotation tools. 

 With regard to disease in pigs, Kommadath et al. ( 2014 ) used WGCNA to exam-
ine the blood transcriptome in pigs infected with  Salmonella enterica  serovar 
Typhimurium (ST) and grouped in extremes for the amount of fecal shedding bac-
teria, e.g. eight low shedders versus eight high-shedding animals (for more details, 
see Section  4.6 ). Four modules were correlated with shedding, two of which were 
annotated for immune functions and many of the immune genes in these modules 
were up-regulated 2 days post-inoculation. Some of the genes found by this method 
were already known to be related to a  Salmonella  infection such as  SLC11A1 ,  TLR4 , 
 CD14  and  CCR1 . For others, such as  SIGLEC5 ,  IGSF6  and  TNFSF13B , the associa-
tion with  Salmonella  shedding was novel (Kommadath et al.  2014 ). In a PRRS 
microarray study comparing four phenotypic groups of animals with extremely dif-
ferent growth rates and viremia levels after a PRRS virus (PRRSv) infection, lim-
ited information was obtained through linear modeling of blood gene DE that 
contrasted pigs with these extreme phenotypes. However, when using WGCNA, an 
interesting immune-related module was found containing cytokines, chemokines, 
interferon type I stimulated genes, apoptotic genes and genes regulating comple-
ment activation. The eigenvalue of this cluster for each pig’s data correlated both 
with weight gain (WG) after 42 days post-infection with PRRSv and the 
WUR10000125 (WUR) SNP genotype on  Sus scrofa  chromosome 4 (SSC4), which 
explained a large proportion of the genetic variance for viral load and, to a lesser 
extent, weight gain (Boddicker et al.  2012 ). The genes in this WGCNA module 
could be useful targets for further selection against PRRS resistance (Schroyen et al. 
 2015 ). For more details, see Section  4.2  entitled “Transcriptomic Analysis of Host 
Response to PRRSv”. 

 Although not directly relevant to pig health, but using the pig as a model for 
human health, Kogelman et al. ( 2014 ) applied WGCNA on RNA-seq of subcutane-
ous adipose tissue from 36 pigs with different risk levels for obesity. The module 
that showed the highest correlation with obesity-related traits contained 275 genes. 
The most signifi cant GO term defi ning this cluster was “osteoclast differentiation” 
and osteoclasts are derived from macrophages, an immune cell type highly up- 
regulated in obese individuals. Other immune-related GO terms enriched in this 
gene list involved natural killer cells and B cell receptor signaling pathways, enlight-
ening the association between obesity and immune-related complications (Kogelman 
et al.  2014 ). 

 Partial Correlation and Information Technology (PCIT) (Koesterke et al.  2013 , 
 2014 ; Reverter and Chan  2008 ), together with the regulatory impact factor (RIF) 
and phenotypic impact factor (PIF) algorithms (Reverter et al.  2010 ) were also used 
to examine differences in networks drawn from different biological states. With 
PCIT, the co-expression correlation between each gene pair in a network is calcu-
lated and changes between different phenotypic groups are noted. RIF and PIF algo-
rithms compute differential wiring between nodes for different treatments or groups 
to identify novel regulators. Using PCIT, Schroyen et al. ( 2015 ) found tighter con-
nections to genes in the immune activation pathways in the low weight gain group 
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compared to the high weight gain group after PRRS infection, indicating that one of 
the most signifi cant differences between these two phenotypic groups was an 
immune network response. However, when comparing WGCNA and PCIT results, 
the WGCNA method seems to be more sensitive, since the PCIT algorithm removes 
edges (gene interaction measures), which can sometimes lead to an underestimation 
of the importance of a hub gene, and has consequences for biological interpretations 
(Kadarmideen and Watson-Haigh  2012 ).  

2.2     Multilevel Data Integration Analyses of Pig Disease 
Biology Are Sparse 

 To date, there are only a few examples of integration of multiple -omics datasets in 
research on pig disease. Most common data integration strategies are comparisons 
between the transcriptome and miRNAome, since the correlation analysis of the 
mRNA transcriptome and miRNAome data can reveal and explain the control of 
reciprocal expression patterns of predicted target mRNAs. An example is the nega-
tive correlation between expression levels of miRNAs and their predicted target 
genes in the swine leukocyte antigen (SLA) complex region found when comparing 
mRNA-seq and miRNA-seq data for liver, longissimus dorsi and abdominal fat 
(Endale Ahanda et al.  2012 ). The SLA region was chosen since this region is highly 
associated with immune response traits in pigs, for instance, in case of infectious 
diseases or after vaccination (Lunney et al.  2009 ), and miRNAs can play a crucial 
role in fi ne-tuning this immune response. With TargetScan, PACMIT and TargetSpy, 
several polymorphic miRNA target sites were found and SNPs in these 3′ untrans-
lated regions (3′-UTR) were predicted to lead to altered miRNA regulation patterns 
(Endale Ahanda et al.  2012 ). 

 Bao et al. ( 2014 ) examined the buffering capacity of miRNAs in response to a 
 Salmonella  infection, i.e. the ability to lower the expression variation of target 
mRNAs, rather than changing their expression level. A signifi cant buffering capac-
ity was seen in lowly to moderately expressed target mRNAs when compared to 
non-target mRNAs, but this difference was not seen for highly expressed genes. In 
response to infection, at 2 days post-infection (dpi) in both up-regulated and down- 
regulated genes, an additional buffering capacity was noticed for the target mRNAs, 
which was not the case for the non-target mRNAs. This result was interpreted as 
indicating that such miRNAs cause the existing transcriptional network to rewire 
more tightly after infection (Bao et al.  2014 ). Other examples of miRNA–mRNA 
comparisons in pig disease studies will follow in the example sections of this 
chapter. 

 Another example of multilevel data integration analysis can be seen in the com-
bination of GWAS and transcriptomic data. The fi rst expression quantitative trait 
loci (eQTL) studies in pig were conducted to examine muscle development, carcass 
and meat quality traits; however, more and more eQTL studies have focused on pig 
health (Ernst and Steibel  2013 ). Ponsuksili et al. ( 2012 ) investigated the relation 
between SNP markers from the PorcineSNP60 BeadChip, gene expression in liver 
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and muscle measured with an Affymetrix porcine genome array and plasma cortisol 
levels, which is important in regulating immune function. They used the network 
edge orienting (NEO) R software package to predict causal interaction between the 
three datasets and found 26 and 70 candidate genes in liver and 2 and 25 candidates 
in muscle to affect or respond to plasma cortisol levels, respectively (Ponsuksili 
et al.  2012 ). Chomwisarutkun et al. ( 2013 ) used a custom-designed microarray tar-
geting previously detected QTL regions to fi nd candidate genes for inverted teat 
defects as opposed to an earlier study which used a commercially available array. 
They found a number of DE genes in both epithelium and mesenchyme, almost all 
belonging to cell signaling pathways and encoding many members of the signaling 
cascades of growth factors (Chomwisarutkun et al.  2013 ). Reiner et al. ( 2014 ) used 
an Affymetrix porcine genome array and found 193  cis - and  trans -eQTL, including 
55 eQTL in a functional hotspot on SSC13, and they identifi ed several candidate 
genes for a genetic predisposition for susceptibility to  Actinobacillus pleuropneu-
moniae . With the increase of RNA-seq data, it has now become quite easy to assess 
allele-specifi c expression in heterozygous individuals. For an example on PRRS 
and allele-specifi c expression, we refer to the study done by Koltes et al. ( 2015 ) 
described below (see Section  4.1 ).   

3     Visualization Tools Improve Our Ability to Identify 
and Interpret Complex Relationships 

 With the increase of -omics data and the complexity of data analyses, data visualiza-
tion is becoming fundamental for the interpretation of high-dimensional molecular 
interactions. Tools to visualize GO enrichment analysis results, such as Gorilla 
(Eden et al.  2009 ), AmiGO (Carbon et al.  2009 ), Panther (Mi et al.  2013 ), REVIGO 
(Supek et al.  2011 ) and others, are freely available. In addition, there are also a few 
network expression tools available. One well-known tool to visualize large datasets 
is Cytoscape (Shannon et al.  2003 ). Cytoscape is an open source software platform 
that easily can be customized with plug-ins and shows data as nodes and edges in a 
network to which multiple levels of annotation can be added and in which genes can 
be selected or fi ltered out. Another freely available program is BioLayout Express 3D  
(BE3D), which draws co-expression networks (Freeman et al.  2007 ). A Pearson’s 
correlation coeffi cient threshold decides which genes (nodes) are kept for visualiza-
tion and a Markov clustering algorithm defi nes genes with similar expression pat-
terns into clusters. Within BE3D are numerous user-defi ned variables for displaying 
these clusters, including the ability to label nodes with any user-inputted variable. 
For example, it is possible to overlay onto a gene expression-based network a visu-
alization of correlation of such expression to an external trait such as pathogen level 
or growth during infection for the pigs in the study. 

 Kapetanovic et al. ( 2013 ) analyzed the expression profi les of pig alveolar macro-
phages (AM), bone marrow-derived macrophages (BMDM) and monocyte-derived 
macrophages (MDM) at 0 and 7 h after LPS stimulation. After stimulation, the 
expression profi les of AM were clearly distinct from those of BMDM and MDM, 
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indicating a different regulation of LPS-stimulated genes in these macrophages. 
They also used the tool to compare expression patterns after stimulation between 
human, mouse and pig macrophages and showed clusters of genes with up- regulated 
expression patterns in human and pig that were not up-regulated in mouse macro-
phages or vice versa (Kapetanovic et al.  2013 ). It is even possible to use tissue- 
specifi c expression patterns from microarray data from many tissues obtained from 
healthy pigs to visualize the relationships of immune cells and their expression pat-
terns versus other cell types (Freeman et al.  2012 ). 

 In Schroyen et al. ( 2016 ), BE3D identifi ed clusters of genes whose expression 
patterns measured by RNA-seq differed between susceptible and more resistant ani-
mals in response to PRRS according to the WUR SNP, which will be described 
below (see Section  4.1 ). One cluster of 516 transcripts showed an apparent dissimi-
larity between the two contrasted groups and could be linked to signaling pathway 
differences involved in viral entry and replication. 

 Another example of the successful use of BE3D was described by the immune 
response annotation group (IRAG) (Dawson et al.  2013 ). IRAG was able to improve 
the characterization of the pig immunome by using correlation network analyses of 
transcriptomic data. In this massive study, genes were clustered according to their 
expression patterns in blood macrophages and lymph nodes derived from a multi-
tude of pig stimulation, infection and disease studies. A cluster of 619 probesets, 
representing at least 511 transcripts, was signifi cantly enriched for human immune- 
related GO terms. Since only 16% of these genes had been annotated in the pig, 
evidence was provided for the involvement of over 500 genes in immune responses 
that had not previously annotated for function in immune response processes 
(Dawson et al.  2013 ).  

4     Bloodomics 

 More and more studies aiming to genetically improve livestock’s robustness involve 
whole blood to defi ne the immune capacity or immunocompetence of an individual 
to different stimuli (Mach et al.  2013 ) and potentially identify predictive biomarkers 
for resistance or resilient pigs (Huang et al.  2011 ). The term “bloodomics” encom-
passes all molecular profi ling -omics tools that have been applied to peripheral 
blood, in which the blood transcriptome plays an infl uential role (Mohr and Liew 
 2007 ). For the immune system, blood is a very relevant tissue, since cells of the 
immune system circulate between central and peripheral lymphoid organs as well as 
migrate to and from sites of injury via the blood (Chaussabel et al.  2010 ). Whereas 
in 2002, very few blood transcriptomic studies were executed on any animal spe-
cies, by 2014, a signifi cant number of studies based on the blood transcriptome had 
been published on several animal species, and in particular for cattle and pigs as 
livestock species (Chaussabel  2015 ; Schroyen and Tuggle  2015 ). 

 Whole blood studies have several advantages such as the ease of collection and 
the repeated sampling of the same individual during response to a stimulus, which 
allows accurate within-animal comparison back to the baseline prior to infection. 
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Examining whole blood also facilitates the ability to develop a genetic marker 
screening based test, which should be relatively easy to obtain on a large scale in a 
commercial setting given that blood sampling is a common surveillance method in 
veterinary practice. Genes expressed in peripheral blood cells have been shown to 
refl ect molecular mechanisms underlying differences in production traits and it can 
be an easily accessible source of information when monitoring physiological 
changes (Jegou et al.  2016 ). The genetic blood markers could include total and dif-
ferential white blood cell counts, peripheral blood mononuclear leukocyte subsets 
and acute phase proteins, specifi c and non-specifi c antibodies, cytokines, as well as 
a set of differentially expressed genes between a healthy and diseased status. In 
Clapperton et al. ( 2009 ) and Flori et al. ( 2011 ), sets of porcine immune trait markers 
that can be used for selection, together with their heritability coeffi cients, are listed. 
However, since whole blood comprises a varying number of cell types, gene expres-
sion and protein differences from sample to sample should be interpreted with great 
caution. Gene expression patterns are highly dependent on the composition of the 
underlying cell population. Knowledge on immune cell specifi c expression could 
help with the investigation of exactly which cells are activated (Abbas et al.  2005 ). 
Computational methods such as cell type enrichment analysis (CTEN) (Shoemaker 
et al.  2012 ) or the tissue expression module in the annotation tool DAVID, used 
effectively by Hulst et al. ( 2013 ), could give an idea of the cell types dominating the 
whole blood transcriptome/proteome response. Complete blood counts (CBCs) as a 
covariate in statistical analyses can be adjusted for such differences across replicate 
blood samples. Furthermore, with such CBC data, the transcriptional response data 
can be deconvoluted to help identify the unique regulatory control of specifi c cel-
lular responses to pathogens (Shen-Orr et al.  2010 ). 

 As with systems biology in general, one of the current hurdles with the interpre-
tation of data from blood transcriptomic research is the organization of the data and 
the integration of different components such as sample information, quality of data, 
clinical information collected at the time of sampling and results of other cellular 
and molecular platforms (Chaussabel et al.  2010 ). 

  Example 1: Overview of -Omics Studies Concerning Porcine Reproductive 
and Respiratory Syndrome (PRRS) in Pig 
 Porcine reproductive and respiratory syndrome (PRRS), also known as mystery 
swine disease or blue ear disease, emerged in the late 1980s and 1990s and is to date 
one of the most economically important diseases affecting pigs worldwide 
(Holtkamp et al.  2013 ; Zimmerman  2003 ). The disease is caused by a single- 
stranded RNA virus belonging to the Arteriviridae family and, as its name refl ects, 
affects two branches of the pig breeding industry. On the one hand, there are severe 
reproduction losses due to infertility, late-term abortions and mummifi ed and still-
born fetuses. On the other hand, grower-to-fi nisher pigs suffer from serious pneu-
monia, which leads to increased pig morbidity and mortality rates (Rossow  1998 ). 
Depressed growth rates in subclinical infections are also signifi cant, and to date 
production costs are estimated at $664 million a year, and that is only for the USA 
(Holtkamp et al.  2013 ). It is therefore not surprising that many efforts were made to 
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understand PRRSv and its replicative life cycle, but the host point of view during 
PRRSv infection is also extensively studied. In this section, we give an overview of 
the different host-related -omics studies performed (Fig.  1 ) and, whenever present, 
the systems biology approaches utilized.

4.1          Linking Host Genomic Variation to Responses to PRRS 

 The fi rst studies on host genetic variation associated with variation in response to 
PRRS used a limited set of SNPs. Galina-Pantoja et al. ( 2006 ) examined the asso-
ciation of phenotypes with 60 SNPs targeting host genes known to be associated 
with virus replication and viral entry into cells, as well as genes for receptors, 
macrophage and other innate immunity functions. They showed that in sows before 
and after infection with the virus, several of the SNPs tested were found to be asso-
ciated with reproductive traits such as number of piglets born alive (Galina-Pantoja 
et al.  2006 ); these experiments were also summarized by Mellencamp et al. ( 2008 ). 
However, resistance is a complex and polygenic trait with substantial environmen-
tal infl uences; therefore, it is clear that selecting the best DNA marker or the best 
marker combination is complicated. Markers have to be consistent across datasets 
and they must have a positive effect on multiple traits and not be favorable for 
some and detrimental for others. Wimmers et al. ( 2009 ) used 88 markers, including 
72 microsatellites and 16 biallelic markers, to fi nd loci controlling the immune 
responsiveness in grower-to-fi nisher pigs. They screened for quantitative trait loci 
(QTL) by measuring complement activity, acute phase response and antibody 
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  Fig. 1    Overview of -omics studies concerning porcine reproductive and respiratory syndrome 
(PRRS) in pig. For more details, see “Example 1: Overview of -omics studies concerning porcine 
reproductive and respiratory syndrome (PRRS) in pig”       
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response in animals before and after vaccination against  Mycoplasma hyopneu-
moniae , herpesvirus I and PRRSv. In total, 21 QTLs were detected with a genome-
wide signifi cance level of 1%. These QTLs harbor several candidate genes for the 
traits examined (Wimmers et al.  2009 ). Uddin et al. ( 2011 ) used a panel of 79 
microsatellites and 3 biallelic markers to search for immune-related QTLs. As 
innate immune traits they measured interleukin 2 (IL2), IL10, interferon gamma 
(IFNG), Toll-like receptor 2 (TLR2) and TLR9 levels in serum before and after 
vaccination with  M. hyopneumoniae , PRRSv or tetanus toxoid (Uddin et al.  2011 ). 
The fi ve traits were infl uenced by earlier described and newly found QTL on mul-
tiple chromosomes, implying multiple genes involved. Several candidate genes 
contributing to immune function were proposed for the three different vaccination 
experiments (Uddin et al.  2011 ). 

 However, although such analyses do help to discover regions containing QTL 
of interest, denser marker sets such as the porcine 60 K SNP chip could fi ne map 
the underlying genetic basis for these immune responses. However, substantially 
larger datasets are needed for such analyses. Serão et al. ( 2014 ) used the porcine 
60 K SNP chip to perform a GWAS in a sow herd ( n  = 641) before and after a 
PRRS outbreak. They found a number of genomic regions strongly correlated 
with number of stillborn piglets, number and percentage of born dead piglets and 
sample-to-positive antibody ratios during and/or before PRRS infection. SNPs in 
these regions were found near genes associated with reproductive performance 
or immune response (Serão et al.  2014 ). Boddicker et al. ( 2012 ) also used this 
60 K SNP chip, but focused on grower-to-fi nisher pigs and their genomics in 
relation to PRRSv infection. They found the QTL on SSC4 harboring the WUR 
SNP marker that has been associated with WG as well as PRRSv viremia levels, 
as described above (Boddicker et al.  2012 ). The effect of the SSC4 region and of 
WUR in particular was successfully validated in additional trials on animals with 
a different genetic background (Boddicker et al.  2013 ,  2014 ). This WUR marker 
maps close to several members of the guanylate binding protein (GBP) family 
which are known to be induced by gamma interferon. A transcriptomic approach 
was performed to identify differential expression between pigs with alternate 
QTL genotypes and potentially elucidate the underlying causal mutation. Koltes 
et al. ( 2015 ) specifi cally examined the expression of all genes in the region with 
high linkage disequilibrium to the WUR marker and determined that  GBP5  was 
differentially expressed between WUR genotype groups. Through deeper analy-
sis of the RNA-seq data, they found a putative causal mutation causing differen-
tial splice variants of  GBP5 . 

 However, although these genomic analyses could lead to SNPs with large 
effects on phenotypes or even discover causal mutations, and the pig breeding 
industry could use them for selection towards better performing animals, such 
analyses often give little or no information about the molecular mechanisms that 
underlie these differences in phenotypes. In an integration of SNP association 
data with genome functional annotation, Waide et al. ( submitted ) performed GO 
enrichment analyses on sets of genes in close vicinity of SNPs associated with 
viral load and weight gain. They analyzed gene sets located within 250 kb of 
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SNPs that were associated with these traits (−log 10 ( p -value) > 2.5). Analyses were 
performed using Panther (Mi et al.  2013 ) on a total of 13 trials of approximately 
200 animals per trial and infected with the KS06 or NVSL PRRSv strain (Waide 
et al.  submitted ). For the SNPs associated with viral load, enriched biological 
processes (BP) terms for the KS06 strain included natural killer cell activation, 
immune response and B cell-mediated immunity, although the latter was not sig-
nifi cantly enriched after Bonferroni correction. For the NVSL strain, enriched BP 
terms were immune response, metabolic process and lysosomal transport. For the 
SNPs associated with weight gain, antigen processing and presentation via MHC 
class II was the most enriched BP GO term for KS06; however, after Bonferroni 
correction, this term was no longer signifi cant. Hence, it is possible to fi nd groups 
of genes predicted to have functional differences between pigs with extreme phe-
notypes while using genomic rather than transcriptomic data. Since there are a 
large number of GWA studies available, it might be worthwhile to apply this 
approach to other existing datasets.  

4.2      Transcriptomic Analysis of Host Response to PRRSv 

 Without doubt, the majority of research on host response to PRRSv is performed on 
the transcriptomic level. At the beginning of the twenty-fi rst century, a multitude of 
microarray studies were performed examining host response to PRRSv, and these 
mostly in porcine alveolar macrophages (PAMs) (Genini et al.  2008 ; Zhou et al. 
 2011 ), lung (Bates et al.  2008 ; Xing et al.  2014 ), bronchial lymph nodes (Bates et al. 
 2008 ) and blood (Schroyen et al.  2015 ; Wysocki et al.  2012 ). Some of these studies 
compared non-infected with infected cells or tissues, while others focused on breed- 
specifi c (Ait-Ali et al.  2011 ; Xing et al.  2014 ) or within-breed resistance differences 
after infection (Boddicker et al.  2014 ). At the present time, the fi rst RNA-seq studies 
on host response to PRRS have been reported (Badaoui et al.  2014 ; Koltes et al. 
 2015 ; Miller et al.  2012 ; Sang et al.  2014 ; Schroyen et al.  2016 ). These RNA-seq 
studies examined blood, macrophages and tracheobronchial lymph nodes. 
Differentially expressed genes were often annotated as pro-infl ammatory and several 
signaling pathways linked to the innate immune response surfaced. Overall, it has 
been shown that the PRRS virus triggers an atypical innate immune response, with 
less type I interferon α (IFNα) production compared to other viruses (Van Reeth et al. 
 1999 ), which leads to a reduced expression of interferon-induced genes and path-
ways. Better performing animals, that are less affected by viral infection, are believed 
to trigger their immune system earlier and possibly have a more effective response 
than the more susceptible animals, as seen by the expression profi le differences (Ait-
Ali et al.  2011 ; Schroyen et al.  2015 ), as well as when comparing cytokine levels in 
the sera (Souza et al.  2013 ; Van Reeth et al.  1999 ). The earlier described BE3D 
analysis of all available Affymetrix data on porcine immune response (IR) studies 
identifi ed a general cluster of genes up-regulated due to different infectious agents 
(Dawson et al.  2013 ). This cluster was also up-regulated after a PRRSv infection in 
both alveolar macrophages and lymph nodes, albeit at a slower pace when comparing 
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to  Salmonella  spp. infection or stimulation with LPS (Dawson et al.  2013 ). Using all 
available porcine IR microarray data, including many array platforms, Badaoui et al. 
( 2013 ) performed a meta-analysis using the software Pointillist. They compared 
multiple PRRS microarray studies including many different breeds, tissues and viral 
strains with many immune response experiments to fi nd PRRS-specifi c expression 
responses (Badaoui et al.  2013 ). Several interferon regulatory transcription factors 
(IRF1, IRF3, IRF5 and IRF8) were among those found to respond to immune stimu-
lation only in PRRS-specifi c experiments. In an extension of the WUR-specifi c tran-
scriptomic analysis by Koltes et al. ( 2015 ), Schroyen et al. ( 2016 ) looked at the 
whole transcriptome in order to fi nd differences in pathways between the different 
genotypes and found pathway differences as a result of the inability of the truncated 
GBP5 protein in susceptible pigs to restrain viral entry and replication as fast as the 
intact GBP5 protein in the more resistant pigs. 

 More recently, Loving et al. (in preparation) performed RNA-seq studies on 
thymus from non-infected animals and animals infected with different PRRSv 
strains to investigate thymic atrophy during the infection and how this is refl ected 
in the thymic transcriptome. Thymic samples were collected from four groups of 
±5 animals per group (non-infected animals and animals infected with a mild, 
moderate and severe strain) at 4 and 10 dpi. The number of up-regulated and 
down-regulated genes between the non-infected and infected animals increased 
with severity of strain. The transcriptome of the animals infected with the mild or 
moderate strain showed an infl ammatory response at 4 dpi but the infection was 
resolved by 10 dpi, whereas for the most virulent strain, infl ammation was still 
present at 10 dpi. The most severe PRRSv strain also caused the largest impact on 
thymic atrophy due to apoptosis, so that the amount and types of cells should be 
taken into account to fully understand the data. This experiment is therefore a 
further illustration of the impact of cell counts, as described above for blood 
transcriptomics. 

 Since miRNAs play an important role in infl uencing gene expression levels in a 
post-transcriptional manner, especially during an immune response (Contreras and 
Rao  2012 ), the miRNAome has also been examined with regard to PRRS infection. 
Several miRNAs are differentially expressed between infected and non-infected 
animals (Hicks et al.  2013 ), and there are responses unique to different PRRSv 
strains (Cong et al.  2014 ) or within different pig breeds (Li et al.  2015a ). 
Interestingly, in two studies published this year, several miRNAs that were previ-
ously identifi ed as infl uencing innate immunity or have antiviral functions were 
tested for their ability to reduce PRRSv in infected alveolar macrophages or 
MARC-145 cells. Jia et al. ( 2015 ) transfected MARC-145 cells with 10 miRNAs 
and at 24 h after transfection infected them with PRRSv at multiplicity of infection 
(MOI) of 0.1. Compared with the other miRNAs, a fi vefold reduction of the viral 
titer was shown at 72 hours post-inoculation (hpi) when the cells were transfected 
with miR-26a. PRRSv also induced miR-26a expression in a dose-dependent man-
ner. Li et al. ( 2015b ) looked at 15 miRNAs in both alveolar macrophages or 
MARC-145 cells and found similar results at a MOI of 0.01 with a 25% and 50% 
reduction of viral titer at 24 and 48 hpi, respectively, when cells were transfected 
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with miR-26a. Both groups used a luciferase reporter analysis to show that the 
overexpression of miR-26a affects PRRSv infection, not by attacking the PRRS 
genome directly but by up-regulation of the innate antiviral response and activation 
of type I interferon and interferon-induced genes (Jia et al.  2015 ; Li et al.  2015b ).  

4.3     Initial Proteomics Approaches to Understanding Host 
Response to PRRSv 

 Using iTRAQ labeling, Lu et al. ( 2012 ) examined the proteome in PAMs during 
PRRSv infection. A total of 160 proteins were differentially expressed between 
uninfected animals and infected animals for at least one time point from 12 up to 
48 h post-inoculation of the cells with the virus (Lu et al.  2012 ). Among them were 
proteins involved in cytoskeleton networks and cell–cell communication, which is 
not surprising since viruses can hijack or interact with the host cytoskeletal trans-
port machinery (Dohner and Sodeik  2005 ). This result was recently confi rmed (and 
extended), as an RNA-seq analysis of blood also saw differences in network con-
nections of genes involved in cytoskeleton rearrangement between susceptible and 
more resistant pigs (Schroyen et al.  2016 ). Other DE proteins found were involved 
in the oxidation-reduction system, RNA-binding proteins or heat shock proteins, 
which was also reported in other proteomics studies performed on porcine alveolar 
macrophages (PAMs) or lungs after PRRSv infection (Lu et al.  2012 ; Xiao et al. 
 2010 ; Zhang et al.  2009 ). However, the question remains how specifi c these proteins 
are up-regulated due to the PRRS virus, in contrast with the response to other 
viruses. 

 In order to fi nd biomarker proteins in serum to detect early-onset PRRSv infec-
tion, Genini et al. ( 2012 ) used surface-enhanced laser desorption ionization time of 
fl ight mass spectrometry (SELDI-TOF MS). At the day of serum collection, no 
clinical signs were noted, and none of the piglets were treated. Genini et al. ( 2012 ) 
were able to fi nd a set of 14 discriminatory proteins that could assign pigs to PRRSv- 
negative and PRRSv-positive groups with high accuracy. They used a dataset of 50 
piglet serum samples (from 25 PRRS positive and 25 PRRS negative pigs) to dis-
cover these proteins and validated this set in an additional 70 serum samples from 
35 PRRS positive and 35 PRRS negative pigs (Genini et al.  2012 ). We compared 
these 14 proteins with mRNA information from transcriptomic studies examining 
host response to PRRSv and some of these proteins could be linked directly to DE 
or differentially wired (DW) genes, while others belonged to families of genes that 
were DE in those studies. One of the 14 proteins was the S100 calcium-binding 
protein A10 (S100A10) and Miller et al. ( 2012 ) identifi ed three family members 
( S100A8 ,  S100A9  and  S100A12 ) among the top 10 up-regulated genes after PRRSv 
infection. This DE occurred at the mRNA level in trachea–bronchial lymph nodes 
when animals infected with PRRS were compared to non-infected animals (Miller 
et al.  2012 ). Other interesting proteins among those 14 biomarkers were proteasome 
activator family member 28 beta, ubiquitin and vacuolar protein sorting 29 (vps29). 
Interestingly, in Schroyen et al. ( 2016 ), proteasome activator family member 28 
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beta ( PSME2 ) and ubiquitin protein ligase E3A ( UBE3A ) were DW between sus-
ceptible and more resistant animals. Furthermore,  VPS41  had a high phenotypic 
impact factor, which meant that it was DE between the susceptible and more resis-
tant animals and at the same time highly expressed (Schroyen et al.  2016 ). 

 Recently, Luo et al. ( 2014 ) were the fi rst to examine the PRRSv host response 
phosphoproteome, a large-scale study of protein phosphorylation levels in PAMs, 
using a TiO 2 -based enrichment method combined with liquid chromatography tan-
dem mass spectrometry (LC-MS/MS). The phosphorylation level of over 200 pro-
teins was altered at both 12 and 36 h post-infection (Luo et al.  2014 ). Pathway 
analysis revealed that several signal transduction pathways such as MAPK, NF-kB 
and PI3K-AKT signaling pathways were signifi cantly activated after infection. It 
has been reported that the PI3K-Akt signal transduction pathway is involved in 
PRRSv entry (Ni et al.  2015 ; Zhu et al.  2013 ).  

4.4     Mathematical models to help in the integration 
of PRRS data 

 A systems biology approach to understand the host response to PRRS would inte-
grate these genomic, transcriptomic and proteomic results. Alternatively, mathe-
matical host–pathogen interaction models could integrate these diverse empirical 
fi ndings and contribute to enhancing our understanding of the immune responses 
even further (Doeschl-Wilson  2011 ). A useful example of mathematical modeling 
of host–PRRS interactions has been provided by Doeschl-Wilson and Galina- 
Pantoja ( 2010 ). Such modeling approaches start off as basic host–pathogen models 
describing the interaction between virus and host macrophages without host immune 
response, and increase complexity gradually by adding innate, humoral and cellular 
immune responses (Doeschl-Wilson and Galina-Pantoja  2010 ). Besides giving bet-
ter insights, such models can also point towards missing system components and 
open up to further experimental investigations. 

 Doeschl-Wilson et al. ( 2012 ) applied the dynamical systems theory on individu-
als after a PRRSv infection. They could distinguish nine different performances 
versus pathogen burden trajectories in pigs infected with the same dose of PRRSv. 
They propose to use these trajectories as reliable categorical tolerance phenotypes 
in subsequent genetic studies (Doeschl-Wilson et al.  2012 ). While inspecting the 
viremia patterns in the blood over a time period from 0 dpi to 42 dpi, another cate-
gorical distinction emerged: cleared, persistent and rebound phenotypes. Islam et al. 
( 2013 ) used Wood’s curves to fi t these blood viremia patterns and linked the analy-
sis of neutralizing antibody (nAb) to these patterns (Islam et al.  2013 ). In the pigs 
that were classifi ed as cleared, a narrow nAb response was noted, showing an effi -
cient immune response by which the virus used in the infectious dose is rapidly 
cleared. Pigs that were persistently viremic over the 42-day period displayed a 
broad nAb spectrum, indicating a more ineffi cient antibody response to the original 
strain as well as potentially a more diverse response due to new viral quasi-species 
that arise from within the inoculum via selection pressure from the host immune 
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response. It would be of great interest to link these different types of immune 
response to transcriptomic and/or proteomic data and identify markers for success-
ful adaptive immunity to PRRSv.  

4.5     Systems Biology on PRRS 

 In some of the studies described above, some form of “systems-wide analyses” was 
utilized. When RNA-seq is performed to examine expression differences between 
animals with a different genotype for an SNP marker related to viral load and weight 
gain, transcriptomics meets genomics (e.g. Koltes et al.  2015 , Schroyen et al.  2016 ). 
When the gene ontology analysis of genes in the vicinity of genetic markers associ-
ated with response traits elucidates differentially expressed pathways between sus-
ceptible and more resistant animals, genomics meets transcriptomics (e.g. Waide 
et al.  submitted ). When the genes encoding proteins found with proteomics are also 
identifi ed by using RNA-seq analyses, or when altered expression of phosphoryla-
tion levels are found in proteins of a specifi c pathway, whose genes are up-regulated 
or down-regulated in microarray or RNA-seq experiments, proteomics meets tran-
scriptomics (Genini et al.  2012 ; Lu et al.  2012 ; Luo et al.  2014 ; Miller et al.  2012 ; 
Schroyen et al.  2016 ). 

 To integrate the data from our whole blood microarray experiment described in 
Schroyen et al. ( 2015 ) with knowledge on protein interaction data, we re-analyzed 
the genes found in the immune-related module and performed a protein–protein 
interaction (PPI) analysis on these genes using NetworkAnalyst (Xia et al.  2014 ). 
By fi rstly annotating the genes in this module, it could be seen that the cluster is 
enriched for interesting annotations, including cytokines, chemokines, interferon 
type I stimulated genes, apoptotic genes and genes involved in complement path-
ways. Because all genes were allocated to the same co-expression module, their 
mRNA expression pattern from animal to animal was similar. By using 
NetworkAnalyst, knowledge about existing (human) protein–protein interactions is 
added on top of the mRNA information. We determined the largest zero-order inter-
action network between proteins encoded by the 506 genes in the immune-related 
module and found a set of 33 proteins, of which the topology is shown in Fig.  2a . In 
Schroyen et al. ( 2015 ), components of this protein network were identifi ed, namely 
the infl ammasome gene  NLRP3 , which is known to activate  CASP1  and in turn 
leads to the activation of  IL1B  and  IL18 . However, with the PPI analysis, other con-
nections become clear. For instance,  TXNIP  was found DE in PRRSv-infected lungs 
and bronchial lymph nodes (Bates et al.  2008 ) and its protein interacts with the 
NLRP3 protein. The pathogen-recognition RIG1 receptor or DDX58 interacts with 
CASP1, which in turn is linked to the interferon-stimulated IFIT3. The anti- 
apoptosis BCL2 family member MCL1 is linked to CASP1 through CASP3. To 
further explore this PPI network, the genes in this PPI network that exhibit up- 
regulation or down-regulation after 4 dpi compared to 0 dpi is shown in Fig.  2b . 
Because the animals in this microarray experiment had been genotyped for the 
WUR SNP described earlier by Boddicker et al. ( 2012 ) as a marker for 
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susceptibility, the immune-related module was also correlated with WUR genotype. 
Looking at this reduced protein network, the substantial differences in expression 
pattern between more and less susceptible animals is very clear (Fig.  3a, b ). These 
multi- omics analyses can help us better understand biological processes such as 
immune responses and they can be used to confi rm or reject hypotheses made after 
performing a single-omics study. In any case, more information can be gained, often 
at low cost. As with the PPI example, the introduction of a protein network on top 
of transcriptomic data displayed a distinct small subset of 33 correlated genes that 
was evidently different between WUR genotypes animals and was not visible when 
looking at the micro-array dataset alone.

     Example 2: Systems Biology in  Salmonella  Studies in Pig 
 Another important pathogen in the swine industry is  Salmonella . It is a foodborne 
pathogen hazardous for human consumption, causing severe gastroenteritis and 
deaths worldwide. In the USA alone, costs for human salmonellosis are estimated 
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  Fig. 2    NetworkAnalyst protein–protein interactions (PPI) on immune-related module found in 
the whole blood PRRS microarray study of Schroyen et al.  2015 . ( a ) Nodes are colored according 
to connectivity; more red means more connections. ( b ) Nodes are colored according to up- 
regulation ( red ) and down-regulation ( green ) of genes at 4 dpi compared to 0 dpi after PRRS 
infection       
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at more than $2.4 billion annually. Human salmonellosis can often be linked to an 
animal source such as poultry, eggs, pork, beef and dairy cattle (Callaway et al. 
 2008 ). Other than affecting human health,  Salmonella  spp. also infect and/or multi-
ply in almost all known vertebrates, from reptiles to birds and mammals (Edwards 
et al.  2002 ), and clinical and subclinical salmonellosis in pigs has been estimated to 
contribute to substantial economic losses to the swine industry (Haley et al.  2012 ).   

4.6      Network-Based Analysis of  Salmonella  in Pigs 

 Probably the two most examined  Salmonella  serovars concerning pig gene expres-
sion regulation are  S. enterica  serovar Typhimurium (ST) and  S. enterica  serovar 
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  Fig. 3    NetworkAnalyst protein–protein interactions (PPI) on immune-related module found in 
the whole blood PRRS microarray study of Schroyen et al.  2015 , split between animals with the 
different WUR marker, predicting for susceptibility to PRRS found by Boddicker et al.  2012 . ( a ) 
Nodes are colored according to positive average expression ( orange ) and negative average expres-
sion ( blue ) after LIMMA normalization of microarray data of genes (Schroyen et al.  2015 ) in more 
susceptible animals at 4 dpi. ( b ) Nodes are colored according to positive average expression 
( orange ) and negative average expression ( blue ) after normalization of genes in less susceptible 
animals at 4 dpi       
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Choleraesuis (SC). ST causes enterocolitis in a wide variety of vertebrates, while 
ST is host-adapted and predominantly affects swine (Edwards et al.  2002 ). In pigs, 
SC was the most common serovar from 1986 to 1995, but in the mid-1990s, it was 
replaced by ST (Foley et al.  2008 ). Recently, several transcriptomic studies were 
performed to determine differences in whole blood causing variation in outcome 
between low (LS) and persistently shedding (PS) pigs after inoculation with ST 
(Huang et al.  2011 ; Knetter et al.  2015 ; Uthe et al.  2009 ,  2011 ). In order to fi nd 
biomarkers that could distinguish between LS and PS animals before infection, 
Kommadath et al. ( 2014 ) performed a network-based analysis. Using recently 
acquired RNA-seq data of blood from ST-infected pigs and WGCNA, they found 
day 0 modules that contained genes annotated for innate defense against bacteria—
or Salmonella in particular—and that had distinct expression patterns in LS versus 
PS animals, with the mean expression levels higher in the LS than PS animals. 
Examining the connectivity of the genes revealed that connections to hub genes 
within these modules were signifi cantly stronger in LS than PS animals, which 
could be an indication of a more tightly regulated transcriptional response of the 
genes in these modules in the LS animals (Kommadath et al.  2014 ), and supports the 
hypothesis that LS animals are better prepared for an infection and quicker to 
respond. 

 miRNA-seq was performed on whole blood samples of the same set of LS and 
PS animals and together with the mRNA-seq data used by Kommadath et al. ( 2014 ), 
a potential involvement of miRNAs was examined (Bao et al.  2015 ). In both LS and 
PS pigs, miR-214 and miR-331-3p were associated with ST infection. Targets for 
miR-214 were predicted to be  SLC11A1  and  LILR -like. The expression of the 
mRNA for these two genes increased at 2 dpi, while the expression of miR-214 
expression decreased. Both these genes are involved in immune response, but no 
role for miRNAs to control them has yet been described.  VAV2  plays a role in the 
entry process of several pathogenic microbes. It is a target gene for miR-331-3p and 
had a lower expression after infection, which could be the result of an observed 
increase in miR-331-3p expression. Results were of a similar magnitude in both LS 
and PS animals. For comparisons between LS and PS, no miRNAs were DE at 0 
dpi, and only three were DE at 2 dpi. Bao et al. ( 2014 ), as described earlier, reported 
a more tightly rewired network after  Salmonella  infection, and it would be interest-
ing to look at DW between LS and PS animals of target mRNAs at 0 dpi.  

4.7     Salmonella and the Microbiome 

 The pig microbiome has been the subject of many immune-related studies and gut 
microbiota are widely recognized to play a crucial role in animal health and well- 
being (Kim and Isaacson  2015 ). Bearson et al. ( 2013 ) compared the microbiome in 
non-infected (NI), LS and PS animals at days 0, and 2, 7 and at 21 dpi. At 0 dpi, 
signifi cant differences in microbial community structure were seen between LS and 
PS animals; however, these two groups were both not signifi cantly different from 
the NI group. At 2 and 7 dpi, there was no difference in the microbiome between the 
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LS group and the NI animals, but a clear difference was shown between PS and the 
other two groups of animals. At 21 dpi, these differences between LS and PS groups 
were gone; however, microbiota profi les for both LS and PS were signifi cantly dif-
ferent from the NI group at 21 dpi, suggesting a Salmonella-induced alteration in 
microbiota regardless of shedding status (Bearson et al.  2013 ). 

 With regard to screening for biomarkers for resistance/tolerance versus suscepti-
bility before infection, DNA sequence analysis of day 0 microbiota samples in this 
study revealed an enriched presence of  Ruminococcaceae  in the LS animals 
(Bearson et al.  2013 ). This positive effect of  Ruminococcaceae  on resistance/toler-
ance is described in several studies focusing on intestinal microbiota compositions 
with regard to diarrhea, whether caused by  Salmonella  spp. or not (Pop et al.  2014 ; 
Suchodolski et al.  2012 ; Videnska et al.  2013 ). Members of this microbial family 
produce short-chain fatty acids (SCFA) with acetate, butyrate and propionate being 
the major SCFA produced in the colon. Specifi cally, butyrate can be infl uential in 
gut health due to its anti-infl ammatory properties and its capacity to strengthen the 
colonic barrier and reduce the intestinal epithelial permeability (Hamer et al.  2008 ). 
In a study on gut microbiota in children with eczema, a negative association was 
reported between  Ruminococcaceae  and TLR2-induced IL6 and TNFα levels (West 
et al.  2015 ). Earlier, Huang et al. ( 2011 ) found that only in PS pigs, TNFα RNA in 
blood was elevated after 2 dpi ST infection (Huang et al.  2011 ). One interpretation 
of these results is that PS animals, with less  Ruminococcaceae  in their intestine 
compared to LS animals, do elevate the TNFα pathway, whereas in LS animals this 
is not the case. Certainly, more research is required to ascertain the generality of 
these proposed relationships.   

5     Current Challenges and Future Directions 

 In the pig, there are only a handful of examples of studies approaching a systems 
biology analysis described thus far, but the merit of such research is becoming more 
and more apparent. Immunology is a highly relevant research domain for a systems- 
level approach because of the multitude of tissues, cells, proteins or genes interact-
ing with one another when facing a disease challenge, with such interactions 
occurring at multiple scales of time. Currently, data created and analyzed by differ-
ent labs and different experiments are hard to integrate in a powerful way due to 
different breeds used, different time points examined, and different protocols fol-
lowed. To make a systems biology approach easier, consortia led by a complemen-
tary set of laboratories or institutions are being established (Benoist et al.  2012 ). 
Genetics research is far more active in consortium science, since it is easier to iden-
tify, map or sequence genes by several groups than it is to examine a complex 
immunological research question (Benoist et al.  2012 ). For pig, the PiGMaP con-
sortium (Archibald et al.  1995 ) and the Swine Genome Sequencing Consortium 
(Schook et al.  2005 ) were the fi rst consortia established. For pig diseases, and spe-
cifi cally to examine PRRS virus infections in pigs, the PRRS Host Genetics 
Consortium (PHGC) was founded (Lunney et al.  2011 ). Some of the research 
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described above is part of this consortium (Boddicker et al.  2012 ,  2013 ,  2014 ; 
Koltes et al.  2015 ; Schroyen et al.  2015 ,  2016 ; Waide et al.  submitted ), and the 
genetic and immunological insights gained strongly demonstrate the value of col-
laborative efforts that increase the power of such challenge experiments. 

 A substantial advantage of these consortia is that variation is reduced by shared 
and standardized protocols and procedures, as is described for the Human 
Encyclopedia of DNA Elements (ENCODE) project (ENCODE project consortium 
 2011 ). By using standards, data quality is assured, data utility can be extended and 
data comparison and thus the establishment of a systems biology approach, has 
become easier. The ENCODE project has been expanded from humans to classical 
model species and recently the Functional Annotation of Animal Genomes 
(FAANG) consortium for domesticated animal species was launched (The FAANG 
consortium et al.  2015 ). As a start, this consortium will focus on chicken, pig, cattle, 
horse, goat and sheep, species with a high-quality reference genome and often a 
plentitude of (ancestor’s) phenotypic data already stored (The FAANG consortium 
et al.  2015 ). Cells and tissues relevant to pig health, including blood cells and liver, 
are being collected on healthy pigs in the FAANG project (  www.faang.org    ). In addi-
tion, several groups have pathogen challenge projects that will provide data relevant 
to a deeper understanding of the porcine immune response and the parts of the 
genome that are responsible for these responses. Thus, the FAANG project will 
accelerate our ability to apply systems biology tools to improving pig health in the 
future.     
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