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   Foreword   

 The increased prominence of “systems biology” in biological research over the past 
two decades is arguably a reaction to the reductionist approach exemplifi ed by the 
genome sequencing phase of the Human Genome Project. A simplistic view of the 
genome projects was that the genome sequence of a species, whether humans, model 
organisms, plants or farmed animals, represents a blueprint for the organism of inter-
est, and thus characterising the sequence would reveal the relevant instructions. 
Subsequent targets for the reductionist or cataloguing approach were complete lists of 
transcripts (transcriptomes) and proteins (proteomes) for the organism of interest. The 
‘omics approach to the comprehensive characterisation of an organism, tissue or cell 
has also been extended to metabolites and hence metabolomes. A catalogue of parts, 
however, is insuffi cient to understand how an organism functions. Thus, a holistic 
approach that recognises the interactions between components of the system was 
required. Given the size and complexity of the data and the possible interactions, it 
was necessary to use advanced mathematical and computational methods to attempt 
to make sense of the data. Thus, “systems biology” in the ‘omics era is widely consid-
ered to concern the use of mathematical modelling and analysis together with ‘omics 
data (genome sequence, transcriptomes, proteomes, metabolomes) to understand 
complex biological systems. The predictive aspect of these models is viewed as par-
ticularly important. Moreover, it is desirable that the models’ predictions can be tested 
experimentally. Systems biology, therefore, contributes in part to converting large 
‘omics data sets from data-driven biology experiments into testable hypotheses. 

 Systems approaches and the use of predictive mathematical models in biological 
systems long pre-date the post genome project (re-)emergence of systems biology. 
Population biologists/geneticists, epidemiologists, agricultural scientists, quantita-
tive geneticists and plant and animal breeders have been developing and successfully 
exploiting predictive mathematical models and systems approaches for decades. 

 Quantitative geneticists and animal breeders, for example, have been remarkably 
successful at developing statistical animal models that are effective predictors of 
future performance. For decades, these successes were achieved without any knowl-
edge of the underlying molecular components. The accuracy of these models has been 
increased by using high-density molecular (single nucleotide polymorphism, SNP) 
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genotypes in so-called genomic selection. However, whilst the sequences and genome 
locations of the SNP markers are known little is known about the functional impact or 
relevance of the individual SNP loci. Further improvements could be achieved through 
the use of genome sequence data and by adding knowledge of the likely effects of the 
sequence variants whether coding or regulatory. Thus, there is a growing commonal-
ity between the systems approaches of quantitative geneticists and animal breeders 
and the ‘omics version of systems biology. 

 Animals are not only complex biological systems but also function within wider 
complex systems. The recognition that an animal’s phenotype is determined by a 
combination of its genotype and environmental factors simply restates the latter. 
The environmental factors include, amongst others, feed, pathogens and the micro-
biomes present in the gastrointestinal tract and other locations. The ‘omics tech-
nologies allow not only the characterisation of the components of the animal of 
interest, but also those of its commensal microbes and the microbes, including 
pathogens present in its environment. 

 As noted earlier, it is desirable that the mathematical models developed in sys-
tems biology are predictive and that the associated hypotheses are testable. Genome 
editing technologies which have been demonstrated in farmed animal species facili-
tate hypothesis testing at the level of modifying the genome sequence that deter-
mines components of the system of interest. 

 This volume of  Systems Biology in Animal Production and Health , edited by 
professor Haja Kadarmideen, explores some aspects of both quantitative genetics 
and ‘omics led approaches to applying systems approaches to tackling the chal-
lenges of improving animal productivity and reducing the burden of disease. The 
book contains some chapters with R codes and other computer programs, workfl ow/
pipeline for processing and analysing multi-omic datasets from lab all the way to 
interpretation of results. Hence, this book would be useful particularly for students, 
teachers and practitioners of integrative genomics, bioinformatics and systems biol-
ogy in animal and veterinary sciences. 

  Villa-Vialaneix et al.  (chapter “  Depicting Gene Co-expression Networks 
Underlying eQTL    ”) address the challenge of identifying the gene networks that 
capture the interaction between genes from eQTL data. The application of systems 
approaches to specifi c traits of interest in agriculture and biology are reviewed by 
 Schroyen et al.  (chapter “  Applications of Systems Biology to Improve Pig Health    ”), 
 Fukumasu et al.  (chapter “  Systems Biology Application in Feed Effi ciency in Beef 
Cattle    ”), and  Vailati-Riboni et al.  (chapter “  Nutritional Systems Biology to Elucidate 
Adaptations in Lactation Physiology of Dairy Cows    ”). The analysis of transcrip-
tomic data and specifi cally RNA-Seq data are described in greater detail by  Mazzoni  
and  Kadarmideen  (chapter “  Computational Methods for Quality Check, 
Preprocessing and Normalization of RNA-Seq Data for Systems Biology and 
Analysis    ”). 
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 Finally, farmed animal species are not only important for agriculture but are also 
used for basic biological research and as models in biomedical research.  Mashayekhi 
et al.  (chapter “  Systems Biology and Stem Cell Pluripotency: Revisiting the Discovery 
of Pluripotent Stem Cell    ”) describe a systems perspective on pluripotency. 

 Professor Alan L. Archibald FRSE 
 Deputy Director, Head of Genetics and Genomics 

 The Roslin Institute and Royal (Dick) School of Veterinary Studies 
 University of Edinburgh 

 Easter Bush, Midlothian EH25 9RG, UK  

Foreword

http://dx.doi.org/10.1007/978-3-319-43332-5_6
http://dx.doi.org/10.1007/978-3-319-43332-5_6


ix

  Pref ace   

 Systems biology is a research discipline at the crossroad of statistical, computa-
tional, quantitative and molecular biology methods. It involves joint modeling, 
combined analysis and interpretation of high-throughput omics (HTO) data col-
lected at many “levels or layers” of the biological systems within and across indi-
viduals in the population. The systems biology approach is often aimed at studying 
associations and interactions between different “layers or levels”, but not necessar-
ily one layer or level in isolation. For instance, it involves study of multidimensional 
associations or interaction among DNA polymorphisms, gene expression levels, 
proteins or metabolite abundances. With modern HTO biotechnologies and their 
decreasing costs, hugely comprehensive multi-omic data at all “levels or layers” of 
the biological system are now available. This “big data” at lower costs, along with 
development of genome scale models, network approaches and computational 
power, have spearheaded the progress of the systems biology era, including applica-
tions in human biology and medicine. Systems biology is an established indepen-
dent discipline in humans and increasingly so in animals, plants and microbial 
research. However, joint modeling and analyses of multilayer HTO data, in large 
volumes on a scale that has never been seen before, has enormous challenges from 
both computational and statistical points of view. Systems biology tackles such joint 
modeling and analyses of multiple HTO datasets using a combination of statistical, 
computational, quantitative and molecular biology methods and bioinformatics 
tools. As I wrote in my review article ( Livestock Science  2014, 166:232–248), sys-
tems biology is not only about multilayer HTO data collection from populations of 
individuals and subsequent analyses and interpretations; it is also about a philoso-
phy and a hypothesis-driven predictive modeling approach that feeds into new 
experimental designs, analyses and interpretations. In fact, systems biology revolves 
and iterates between these “wet” and “dry” approaches to converge on coherent 
understanding of the whole biological system behind a disease or phenotype and 
provide a complete blueprint of functions that leads to a phenotype or a complex 
disease. 

 It is equally important to introduce, alongside systems biology, the sub-disci-
pline of  systems genetics  as a branch of systems biology. It is akin to considering 
“genetics” as a sub-discipline of “biology”. It is well known that quantitative genet-
ics/genomics links genome-wide genetic variation with variation in disease risks or 
a performance (phenotype or trait) that we can easily measure or observe in a 
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population of individuals. However, systems genetics or systems genomics not only 
performs such genome-wide association studies (GWAS), but also performs linking 
genetic variations (e.g. SNPs, CNVs, QTLs etc.) at the DNA sequence level with 
variation in molecular profi les or traits (e.g. gene expression or metabolomic or 
proteomic levels etc. in tissues and biological fl uids) that we can measure using 
high-throughput next- and third-generation biotechnologies. The systems genetics 
approach is still “genetics”, because we are looking at those genetic variants that 
exert their effects from DNA to phenotypic expression or disease manifestations 
through a number of intermediate molecular profi les. Hence, systems genetics 
derives its name, as originally proposed in my earlier article ( Mammalian Genome , 
2006, 17:548–564), by being able to integrate analyses of all underlying genetic 
factors acting at different biological levels, namely, QTL, eQTL, mQTL, pQTL and 
so on. I have provided a complete up-to-date review and illustration of systems 
genetics or systems genomics and multi-omic data integration and analyses in our 
review paper published in  Genetics Selection Evolution  (2016), 48:38. Overall, sys-
tems genetics/genomics leads us to provide a holistic view on complex trait heredity 
at different biological layers or levels. 

 Whether it is systems biology or systems genetics, the gene ontology annotation 
is one of the most important and valuable means of assigning functional information 
using standardized vocabulary. This would include annotation of genetic variants 
falling into functional groups such as trait QTL, eQTL, mQTL, pQTL. Molecular 
pathway profi ling, signal transduction and gene set enrichment analyses along with 
various types of annotations form the “icing on cake”. For this purpose, several 
bioinformatics tools are frequently used. Most chapters in this book and its associ-
ated volume cover these aspects. 

 I would like to point out that systems biology approaches have been proven to be 
very powerful and shown to produce accurate and replicable discoveries of genes, 
proteins and metabolites and their networks that are involved in complex diseases or 
traits. In very practical terms, it delivers biomarkers, drug targets, vaccine targets, 
target transcripts or metabolites, genetic markers, pathway targets etc. to diagnose 
and treat diseases better or improve traits or characteristics in animals, plants and 
humans. In the world of genomic prediction and genomic selection, there have been 
an increasing number of studies that have shown high accuracy and predictive 
power when models include functional QTLs such as eQTL, mQTL, pQTL which, 
in fact, are results from systems genetics methods. 

 This book and its associated volume cover the above-mentioned principles, the-
ory and application of systems biology and systems genetics in livestock and animal 
models and provides a comprehensive overview of open source and commercially 
available software tools, computer programing codes and other reading materials to 
learn, use and successfully apply systems biology and systems genetics in animals. 

 Overall, I believe this book is an extremely valuable source for students inter-
ested in learning the basics and could form as a textbook in higher educational 
institutes and universities around the world. Equally, the book chapters are very 
relevant and useful for scientists interested in learning and applying advanced HTO 
studies, integrative HTO data analyses (e.g. eQTLs and mQTLs) and computational 
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systems biology techniques to animal production, health and welfare. One of the 
chapters focuses on stem cell research in animal models elucidating systems biol-
ogy of pluripotency with translational applications for human neurological and 
brain diseases. The two volumes of this book is a result of contributions from highly 
reputed scientists and practitioners who originate from renowned universities and 
multinational companies in the UK, Denmark, France, Italy, Australia, USA, Brazil 
and India. I would like to thank the publisher Springer for inviting me to edit two 
volumes on this subject, publishing in an excellent form and promoting the book 
across the globe. I am grateful to all contributing authors and co-authors of this 
book. I also wish to thank Ms. Gilda Kischinovsky from my research group for 
proofreading and the staff at Springer involved in production of this book. Last but 
not least, I wish to thank my wife and children who have given me moral support 
and strength while I reviewed and edited this book. 

 Copenhagen, Denmark      Haja     N.     Kadarmideen   
 September 2016   
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Depicting Gene Co-expression Networks 
Underlying eQTLs

Nathalie Villa-Vialaneix, Laurence Liaubet, 
and Magali SanCristobal

Abstract
Deciphering the biological mechanisms underlying a list of genes whose expres-
sion is under partial genetic control (i.e., having at least one eQTL) may not be 
as easy as for a list of differential genes. Indeed, no specific phenotype (e.g., 
health or production phenotype) is linked to the list of transcripts under study. 
There is a need to find a coherent biological interpretation of a list of genes under 
(partial) genetic control. We propose a pipeline using appropriate statistical tools 
to build a co-expression network from the list of genes, then to finely depict the 
network structure. Graphical models are relevant because they are based on par-
tial correlations, closely linked with causal dependencies. Highly connected 
genes (hubs) and genes that are important for the global structure of the network 
(genes with high betweenness) are often biologically meaningful. Extracting 
modules of genes that are highly connected permits a significant enrichment in 
one biological function for each module, thus linking statistical results with bio-
logical significance. This approach has been previously used on a pig eQTL data-
set (Villa-Vialaneix et al. 2013) and was proven to be highly relevant. Throughout 
the present chapter, we define statistical notions linked with network theory, and 
apply them on a reduced dataset of genes with eQTL that were found in the pig 
species to illustrate the basics of network inference and mining.

mailto:nathalie.villa@toulouse.inra.fr
mailto:laurence.liaubet@toulouse.inra.fr
mailto:magali.san-cristobal@toulouse.inra.fr
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1	 �Introduction

In the search for genetic mechanisms underlying production or health phenotypes 
(e.g., terminal), GWAS studies have been intensively used, and have shown their 
limits. Classical tools in integrative biology aim at discovering links between termi-
nal phenotypes and fine phenotypes (e.g., transcriptome, proteome, metabolome), 
in huge numbers. Integrating both approaches is possible: searching for a genetic 
basis of fine phenotypes (e.g., eQTL, mQTL studies). The step further goes back to 
the terminal phenotypes with the precious and fine knowledge acquired with omics 
data. The focus of this chapter is linked to integrative biology and eQTL studies. 
The common pipeline for differential analysis is the use of linear models for testing 
differential expression at each gene, followed by a correction for multiple testing. 
This provides a list of genes whose expressions vary with the phenotype of interest. 
Then, a functional analysis is performed: GO terms and KEGG pathways; in addi-
tion, bibliographic mining is also interesting. The major limitation of this is the 
incomplete annotation encountered in livestock species: there may be only a part of 
transcripts that could not be given a gene name (e.g., 78 % in our pig transcripts 
have a gene name and about half have an associated function), mandatory for biblio-
graphic mining.

eQTL studies provide genetic markers (the so-called eQTLs) that have partial 
control of gene expression, and a list of genes whose expression is partially under 
genetic control (genes with eQTL). Upstream, there is some genetic control; genetic 
markers (the eQTLs) are often observed displayed in genomic clusters (e.g., 
(Liaubet et al. 2011)). Downstream, a transcriptional control exists followed by a 
regulation of biological functions. Focusing on genes whose expression is geneti-
cally controlled (at least partially), we would like to address some questions. Do 
they also cluster? Is there a link between clusters of co-expression and biological 
functions?

The most appropriate tool to achieve this goal is networks. Given the strong loss 
of information with bibliographic networks (incomplete annotation), an alternative 
is co-expression networks. Indeed, this statistical approach is based on all expres-
sion information, independent of the annotation. There exists various kinds of co-
expression networks. We will see in the following that graphical Gaussian models 
(GGM, based on partial correlation) are very appropriate, in the sense that they are 
close to causative biological meaning.

After inferring the network in a sparse manner, it is of high interest to mine its 
structure. Extracting interesting genes (e.g., highly connected, with high incidence 
on the global structure) can give clues for further biological hypotheses and future 
experiments. Extracting modules can lead to an enrichment in biological functions, 
making the link between statistical results and biological interpretation. The func-
tional annotation of the modules, based on a limited number of genes (because of 
the poor annotation), can then give insights into possible biological functions for 
unnannotated genes (“guilt by association” approach, see (Dozmorov et al. 2011) 
and (Gillis and Pavlidis 2012) for a study which questions this approach).

N. Villa-Vialaneix et al.
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In the article (Villa-Vialaneix et al. 2013), the pipeline briefly described above 
highlighted key genes, and showed a strong enrichment of one biological function 
per module. Moreover, one module was linked with meat pH, a particularly interest-
ing phenotype, since it is related to meat production and quality. In this chapter, we 
will present in detail the overall approach, explaining key aspects linked with net-
work analysis, applying them on a subset of genes with eQTLs extracted from the 
one studied in (Villa-Vialaneix et al. 2013).

This chapter is organized as follows: Sect. 2 provides basic definitions and con-
cepts for network studies. Section 3 deals with network inference and Sect. 4 deals 
with network mining. Finally, Sect.  5 deals with biological interpretation of the 
results. Throughout this article, a small example study is performed using the free 
statistical software R: codes and datasets are available at http://nathalievilla.org/
bio_network.

2	 �Basic Definitions and Concepts for Graphs/Networks

2.1	 �Networks

A network, also frequently called a graph, is a mathematical object used to model 
relationships between entities. In its simplest form, it is composed of two sets (V, E):

•	 The set V v vp= ¼{ }1,, ,,  is a set of p nodes, also called vertices that represent the 
entities.

•	 The set E is a subset of the set of node pairs, E v v i j p i ji jÌ ( ) = ¼ ¹{ }, , , , , ,1 : 
the node pairs in E are called edges of the graph and model a given type of rela-
tionships between two entities.

In the following, nodes will be genes and edges will represent a relationship 
(e.g., co-expression) between two genes. A network is often displayed as in Fig. 1: 
the nodes are represented with circles and the edges with straight lines connecting 
two nodes.

This lesson’s scope is restricted to simple networks, i.e., to undirected graphs 
(the edges do not have any direction), with no loop (there is no edge between a given 
node and itself) and simple edges (there is one edge at most between a pair of 
nodes). But networks can deal with many other types of real-life situations:

•	 Directed graphs in which the edges have a direction, i.e., the edge from the node 
vi to the node vj is not the same as the edge from the node vj to the node vi. In 
this case, the edges are often called arcs.

•	 Weighted graphs in which a weight (often positive) is associated to each edge.
•	 Graphs with multiple edges in which a pair of nodes can be linked by several edges 

that can eventually have different labels or weights to model different types of 
relationships.

Depicting Gene Co-expression Networks Underlying eQTLs
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•	 Labeled graphs (or graph with node attributes) in which one or several labels are 
associated to each node, labels can be factors (e.g., a gene function) or numeric 
values (e.g., gene expression).

2.2	 �Overview of Standard Issues for Network Analysis

This chapter will address two main issues posed by network analysis:

•	 The first one will be discussed in Sect. 3 and is called network inference: giving 
data (i.e., variables observed for several subjects or objects), how to build a 
network whose edges represent the “direct links” between the variables? The 
nodes in the inferred network are the genes and the edges represent a strong 
“direct link” between the two gene expressions.

•	 The second issue comes when the network is already built or directly given: the 
practitioner then wants to understand the main characteristics of the network 
and to extract its most important nodes, groups, etc. This ensemble of methods, 
studied in Sect.  4, is called network mining and comprises (among other 
problems):
–– Network visualization: when displaying a network, no a priori position is 

associated with its nodes and the network can thus be displayed in many dif-
ferent ways.

Fig. 1  Example of the representation of a simple network with 15 nodes and 13 edges

N. Villa-Vialaneix et al.
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–– Node clustering: an intuitive way to understand a network structure is to focus 
not on individual connections between nodes but on connections between 
densely connected groups of nodes. These groups are often called clusters or 
communities or modules and many works in the literature have focused on the 
problem of extracting these clusters.

2.3	 �eQTL Data

Throughout this chapter, a subset of genes analyzed in (Villa-Vialaneix et al. 2013) 
will be used to illustrate the basics of network inference and mining. The applications 
will be performed using the free statistical software environment http://r-project.org 
R (version 3.2.5). The packages used are:

•	 huge (version 1.2.7) for network inference
•	 igraph (version 1.0.1) for creating network objects and for network mining

The reader interested in this topic may also want to have a look at the “gRaphical 
Models in R” task view,1 where he/she will find further interesting packages.

To illustrate key steps, we propose the analysis of a small subset of data in 
(Liaubet et al. 2011; Villa-Vialaneix et al. 2013), which is a subset of 68 genes hav-
ing at least one eQTL. This data will be refered to as “68-eqtl” throughout the chap-
ter. This dataset can be downloaded at http://nathalievilla.org/doc/csv/subsetEQTL.
csv. The dataset consists of gene expressions for a “small” list of genes (transcripts). 
It is represented by the matrix X:

	

n Xi
j

p

individuals

variabl

X =
























. . . . . .

. . . . .

. . . . . .

,

ees gene expressions( )
1 24444 34444

	

where Xij is the expression quantification of gene j in individual i. Even restricting 
to a small subset of genes, having n p<  is the standard situation which, as dis-
cussed later, poses some problems for network inference. These data can be loaded 
using the following command line:

expression = read.csv("data/subsetEQTL.csv", row.names=1)

if the dataset provided at http://nathalievilla.org/doc/csv/subsetEQTL.csv is 
stored in subdirectory “data” of R working directory.

The boxplots of the p = 68  variables (genes) of the “68-eqtl” dataset are dis-
played in Fig. 2 (left). The correlation matrix between the 68 genes is displayed in 
Fig. 2 (right) showing that a potential structure has to be highlighted.

1 https://cran.r-project.org/web/views/gR.html.

Depicting Gene Co-expression Networks Underlying eQTLs
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3	 �Network Inference

The aim of this section is to choose an appropriate type of network, then to infer the 
network based on data (expression of the 68 genes). In short, “inferring a network” 
means building a graph for which

•	 The nodes represent the p genes.
•	 The edges represent a “direct” and “strong” relationship between two genes. 

This kind of relationships aims at tracking hierarchical influence and possible 
transcriptional or genetic regulations.

The main advantage of using networks over raw data is that such a model focuses 
on “strong” links and is thus more robust. Also, inference can be combined/com-
pared with/to bibliographic networks to incorporate prior knowledge into the model 
but, unlike bibliographic networks, networks inferred from one of the models pre-
sented below can handle even unknown (i.e., not annotated) genes into the 
analysis.

Even if alternative approaches exist, a common way to infer a network from gene 
expression data is to use the steps described in Fig. 3:

	1.	 First, the user calculates pairwise similarities (correlations, partial correlations, 
information-based similarities such as the mutual information) between pairs of 
genes.

	2.	 Second, the smallest (or less significant) similarities are thresholded (using a 
simple threshold chosen by a given heuristic or a test or sparse approaches with 
penalization while calculating the similarities or other more sophisticated 
methods).

THRB
PSMC3IP
THRB.1

XIAP
ARHGAP8

X91721
BX917912

EAPP
LSM2

BX922053
DECR2
H2AFY
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Fig. 2  Left: boxplot of the gene expression distributions (68 genes). Right: heatmap of the correla-
tion matrix between pairs of gene expressions
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	3.	 Lastly, the network is built from the non-zero similarities, putting an edge between 
two genes with a non-zero similarity (which thus correspond to the highest val-
ues, in a given sense that depends on the thresholding method, of the similarity).

This approach leads to produce undirected networks. Additionaly, the edges of 
the network can be weighted by the strength of the relationship (i.e., the absolute 
value of the similarity) and signed by the sign of the relation (i.e., if the similarity is 
positive or negative). This approach is used in (Kogelman et al. 2015) to integrate DE 
genes and eQTL genes in a single co-expression network related to obesity in pigs.

3.1	 �Limits of the Pearson Correlation

A simple, naive approach to infer a network from gene expression data is to calcu-
late pairwise correlations between gene expressions and then to simply threshold 
the smallest ones, possibly, using a test of significance. This approach is sometimes 
called relevance network (Butte and Kohane 1999, 2000). The R package huge2 can 

2 http://cran.r-project.org/web/packages/huge.
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Fig. 3  Main steps in network inference
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be used to infer networks in such a way. However, if easy to interpret, this approach 
may lead to strongly misunderstanding the regulation relationships between genes. 
To better understand the problem posed by using direct correlations in network 
inference, we will discuss the simple situation described in Fig. 4. In this model, a 
single gene, denoted by x, strongly regulates the expression of two other genes, y 
and z. This situation is well illustrated using the simple mathematical model.

Figure 4 is a small model showing the limit of the correlation coefficient to track 
regulation links: when two genes y and z are regulated by a common gene x, the 
correlation coefficient between the expression of y and the expression of z is strong 
as a consequence. For instance,

	
X Y X Z X~ [ ] ~ + + ~ - + + 01 2 1 2 21 2, and, e e 	

in which  01,[ ]  is the uniform distribution in [0, 1], and ε1 and ε2 are independent 
and centered Gaussian random variables independent of X with a standard deviation 
equal to 0.1. A quick simulation with R gives the following results:

x = rnorm(100)
y = 2*x+1+rnorm(100,0,0.1)
cor(x,y)

    ##   [1]   0.9988261

z = -2*x+1+rnorm(100,0,0.1)
cor(x,z)

    ##   [1]   -0.998756

cor(y,z)

    ##   [1]   -0.9980506

Hence, even though there is no direct (regulation) link between z and y, these two 
variables are highly correlated (the correlation coefficient is larger than 0.99) as a 
result of their common regulation by x.

x

y z

Fig. 4  Small model 
showing the limit of the 
correlation coefficient to 
track regulation links

N. Villa-Vialaneix et al.
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3.2	 �Partial Correlation and Gaussian Graphical Model (GGM)

This result is unwanted and using a partial correlation can deal with such strong 
indirect correlation coefficients. The partial correlation between y and z is the 
correlation between the expression of y and z, knowing the expression of x. In 
the above example, it is equal to the correlation between the residuals of the 
linear models:

	 Y X Z X= + = +b e b e1 1 2 2and 	

and in our case, it is equal to

cor(lm(z˜x)$residuals,lm(y˜x)$residuals)

    ##   [1]   -0.1933699

which is much smaller than the direct correlation, while the other two partial cor-
relations remain large:

cor(lm(x˜y)$residuals,lm(z˜y)$residuals)

    ##   [1]   -0.6208908

cor(lm(x˜z)$residuals,lm(y˜z)$residuals)

    ##   [1]   0.6481373

When using partial correlation, the conditional dependency graph is thus esti-
mated. Under a Gaussian model (see (Edwards 1995) for further explanations), in 
which the gene expressions X X j

j p
= ( )

= ¼1, ,
 are supposed to be distributed as cen-

tered Gaussian random variables with covariance matrix Σ, this graph is defined as 
follows:

	
v v j j X X Xj j

j j k

k j j
« ( )Û ( )( ) ¹¢¢

¢

¢¹
genes and are linked or , |

,
0

	

in which the last quantity is called partial correlation, p jj¢ . In this framework, 
S = -S 1  is called the concentration matrix and is related to the partial correlation 
p jj¢  between Xj and X j¢  by the following relation:

	

p jj
jj

jj j j

¢
¢

¢ ¢

= -
S

S S
.
	

(1)

This equation indicates that non-zero partial correlations (i.e., edges in the condi-
tional dependency graph) are also non-zero entries of the concentration matrix S.

Depicting Gene Co-expression Networks Underlying eQTLs
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3.3	 �Estimating the Conditional Dependency Graph 
with Graphical LASSO

The empirical estimator S�  of Σ is calculated from the n p´  matrix of gene expres-
sion X generated from the Gaussian distribution  0,S( ) ,

	
S� jj

i
i
j j j

i
i
j

n
X X

n
′ = −( ) =∑ ∑:

1 12
X Xwith ,

	

calculated from the observations X. A major issue when using S-1  for estimating S 
is that the empirical estimator S�  is ill-conditioned because it is calculated with only 
a small number n of observations: the sample size n is usually much lower than the 
number of variables p. Hence, S�

−1
 is a poor estimate of S and must not be used as 

it is.
Several attempts to deal with such a problem have been proposed. The seminal 

work (Schäfer and Strimmer 2005a, b) uses shrinkage, i.e., S is estimated by 
S �= +( )−S l

1
 (for a given small l Î + ). Then, the obtained partial correlations 

are thresholded either by choosing a given thresholding value or a given number of 
edges or by using a test statistics presented in (Schäfer and Strimmer 2005a), which 
is itself based on a Bayesian model. This method is implemented in the R package 
GeneNet.3

The previous method is a two-step method which first estimates the partial cor-
relations and then selects the most significant ones. An alternative method is to 
simultaneously estimate and select the partial correlations using a sparse penalty. It 
is known under the name Graphical LASSO (or GLasso). Under a GGM frame-
work, partial correlation is also related to the estimation of the following linear 
models:

	
X Xj

k j
k
j k

j= +
¹
åb e

	
(2)

by the relation

	

bk
j jk

jj

= -
S

S 	

which, combined with Eq. (1) shows again that non-zero entries of the linear model 
coefficients correspond exactly to non-zero partial correlations.

Hence, several authors (Friedman et al. 2008; Meinshausen and Bühlmann 2006) 
have proposed to integrate a sparse penalty in the estimation of (2) by ordinary least 
squares (OLS):

	

" = ¼ -
æ

è
ç

ö

ø
÷ +

é

ë
ê
ê

ù

û
ú

= ¹
å åj p

j
i

n

i
j

k j
k
j

i
k j

L
1

1

2

1, , , argmin
b

b l bX X � �
úú 	

(3)

3 https://cran.r-project.org/web/packages/GeneNet.
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where � �b bj

L k
j

k j1 = ≠∑  is the L1 -norm of b j pÎ - 1 , which is added to the OLS 
minimization problem in order to force only a restricted number of non-zero entries 
in βj. λ is a regularization parameter that controls the sparseness of βj (the larger λ, 
the fewer the number of non-zero entries in βj). It is generally varied during the 
learning process and the most adequate value is selected. This method is imple-
mented in the R package huge.

Finally, several approaches have been proposed to deal with the choice of a 
proper λ: (Liu et al. 2010) proposes the StARS approach, which is based on a stabil-
ity criterion, while (Lysen 2009) and (Foygel and Drton 2010) propose approaches 
based on a modification of the BIC criterion. All these methods are implemented in 
the R package huge.

3.4	 �Application

Using the “68-eqtl” data, a network can be inferred using the method described in 
(Meinshausen and Bühlmann 2006) with the R package huge. The package is 
loaded with

library(huge)

The concentration matrix is estimated for several values of λ with:

glassoRes = huge(as.matrix(expression), nlambda=100, 
    method="glasso")

The option nlambda is used to set the number of regularization parameter val-
ues λ used for the estimation. The result is a list of estimated concentration matrices 
(one for each value of λ, whose sparsity decreases when λ decreases), stored in 
glassoRes$icov. These matrices are (almost) all sparse, which means that most 
of their entries are equal to zero (the matrices obtained with small λ contains much 
fewer zeros than the ones with larger λ).

To select one of the 100 concentration matrices, the function huge.select 
implements several model selection methods. Among them, the “StARS” method 
chooses the largest λ so that the obtained concentration matrix is replicable with 
random subsampling. More precisely, many random subsamples are generated and 
a criterion is computed to assess the stability of any given edges in the inference 
obtained from all subsamples. The most sparse graph which is still stable according 
to these criteria is the one chosen by the method. This approach can be used with:

glassoFinal = huge.select(glassoRes, criterion="stars")

which results in an object that contains the optimal value of lambda, 
glassoFinal$opt.lambda (here equals to 0.3551), the optimal 68 68´  

Depicting Gene Co-expression Networks Underlying eQTLs
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concentration matrix in glassoFinal$opt.icov and the optimal sparse adja-
cency matrix of the inferred network in glassoFinal$refit. The result of the 
selection is summarized in Fig. 5, which is produced by the following command line:

plot(glassoFinal)

Finally, a network R object can be obtained for further studies using the R pack-
age igraph. More precisely, the function graph_from_adjacency_matrix can be 
used on the sparse adjacency matrix glassoFinal$refit and the function simplify is 
used to remove multiple edges and loops.

glassoNet = graph_from_adjacency_matrix(glassoFinal$refit, mode="max")

glassoNet = simplify(glassoNet)

glassoNet

 ## IGRAPH U--- 68 232 –

 ## + edges:

 ##	[1]	 1--18	 1--27	 1--31	 1--40	 1--41	 2--17	 4--8	 4--11	 4--62	 5--6

 ##	[11]	5--7	 5--11	 5--19	 5--20	 5--21	 5--26	 5--39	 5--40	 5--43	 5--44

 ##	[21]	5--52	 5--56	 5--63	 5--64	 5--65	 5--67	 5--68	 6--7	 6--10	 6--11

 ##	[31]	6--19	 6--20	 6--25	 6--26	 6--39	 6--40	 6--43	 6--44	 6--56	 6--61

 ##	[41]	6--67	 6--68	 7--10	 7--11	 7--19	 7--20	 7--21	 7--26	 7--34	 7--35

 ##	[51]	7--39	 7--40	 7--43	 7--44	 7--46	 7--52	 7--56	 7--61	 7--63	 7--65

 ##	[61]	7--67	 7--68	 9--29	 10--11	10--21	10--25	10--34	10--39	10--43	10--44

 ##	[71]	10--49	10--61	10--67	10--68	11--19	11--20	11--21	11--25	11--34	11--35

 ##	[81]	11--39	11--40	11--43	11--44	11--67	11--68	12--28	12--46	12--64	13--18

 ## +  …  omitted several edges
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Fig. 5  Summary of the result of the “StARS” selection method. Left: selected network. Right: 
solution sparsity (% of inferred edges over the number of pairs of nodes in the graph) versus λ. The 
chosen λ is emphasized with a dot on the curve
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This graph (an igraph object) contains p =  68 nodes and 232 edges.
Gene names (included in the column names of the expression matrix) can be 

attached to the nodes as an attribute called “name” which is then easily used when 
displaying the network or selecting nodes. This setting is performed with the 
function V:

V(glassoNet)$name = colnames(expression)

As shown in Fig. 5, the inferred network is composed of several groups of nodes 
that are not connected with each other. These groups are called the connected com-
ponents of the graph. Using igraph, they can be extracted with the function 
components:

glassoComp = components(glassoNet)
head(glassoComp$membership)

    ##   THRB   PSMC3IP   THRB.1   XIAP   ARHGAP8   X91721
    ##     1       1        2       1        1       1

glassoComp$csize

    ##   [1]   55   1   2   1   1   1   1   1   1   1   1   1   1

glassoComp$no
    ##   [1]   13

The inferred network has glassoComp$no=13 connected components, most of 
them composed of only one node. The largest connected component has 
glassoComp$csize=55 nodes. The number of the connected component of a 
given gene in the gene network is given in glassoComp$membership and the con-
nected components can thus be obtained with the function induced_subgraph:

glassoSubNet = induced_subgraph(glassoNet,
    glassoComp$membership==which.max(glassoComp$csize))

Finally, the largest connected component of the inferred network, which contains 
55 nodes and 231 edges, will be named “55-eqtl network” in the sequel. This net-
work is the one that will be studied further in the next section which is devoted to 
network mining. This graph can be exported into an external format, such as the 
widely used “graphml” format, with the function write_graph

write_graph(glassoSubNet, file="results/lcc.graphml",
             format="graphml")

The obtained file can then be imported in most softwares dedicated to graph min-
ing for exploratory purposes. More information about the possible formats for graph 
exportation is available with

help(write_graph)

Depicting Gene Co-expression Networks Underlying eQTLs
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4	 �Network Mining

In this section, a graph  = ( )V E,  is supposed to be given, where V v vp= ¼{ }1,, ,,  
is the set of nodes and E is the set of edges. Mining a network is the process in which 
the user extracts information about the most important nodes or about groups of 
nodes that are densely connected.

4.1	 �Network Visualization

Visualization tools are used to display the graph in a meaningful and aesthetic 
way. Standard approaches in this area use force directed placement (FDP) algo-
rithms (see (Fruchterman and Reingold 1991), among others). The principle of 
these algorithms can be illustrated by an analogy to the following physical mecha-
nism which:

•	 Attaches attractive forces to the edges of the graph (similar to springs) in order 
to force connected nodes to be represented close to each other.

•	 Attaches repulsive forces between all pairs of nodes (similar to electric forces) to 
force nodes to be displayed separately.

The algorithm performs iteratively from an (usually random) initial position of 
the nodes until stabilization. The R package igraph (see (Csardi and Nepusz 2006)) 
implements several layouts and even several FDP based layouts for static represen-
tation of the network.

Using igraph, the network inferred in Sect. 3 can be displayed using the func-
tions layout.fruchterman.reingold (for calculating the layout with the 
FDP method of (Fruchterman and Reingold 1991)) and plot.igraph (for dis-
playing it on a graphical device). The result of the function layout.fruch-
terman.reingold is a matrix with two columns and 55 rows that contains the 
positions of the nodes. It can be attached to the igraph object as a graph attribute 
named “layout” to be used when passed to the function plot (Fig. 6). Several 
characteristics of the graph representation, that are related to nodes and edges 
(colours, shapes, labels…), can be defined in the plot.igraph options.

glassoSubNet$layout =
    layout.fruchterman.reingold(glassoSubNet)
plot(glassoSubNet, vertex.size=0,
     vertex.label.color="black",
     vertex.label.cex=0.8)

More information on the plot.igraph options are provided in the help:

help(igraph.plotting)

N. Villa-Vialaneix et al.
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The free softwares Gephi4 (Bastian et al. 2009), Tulip5 (Auber 2003) or Cytoscape6 
(Shannon et al. 2003), among others, can also be used to visualize a network inter-
actively (they support zooming and panning, among other features).

4.2	 �Global Characteristics

This section gives the definition of two global numerical characteristics that can 
help to understand the network structure.

Definition 1 (density)  The density of a network is the number of edges divided by 

the number of pairs of nodes, 
E

p p −( )1 2/
.

4 http://gephi.org.
5 http://tulip.labri.fr.
6 http://www.cytoscape.org.
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Fig. 6  Representation of the inferred network with Fruchterman and Reingold force directed 
placement algorithm
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In the toy example given in Fig. 7, the number of edges is equal to 4 and the 

number of pairs of nodes is equal to 4 3

2
6

× =  so the density is equal to 
4

6
66 7� . %.7

Because it is equal to the frequency of edges over the number of possible edges, 
the density is a measure of how densely connected the network is.

The “55-eqtl network” has 231 edges for 55 nodes; its density is thus equal to 
231

55 54 2
15 6

× /
.� %. It can be obtained with the function edge_density:

edge_density(glassoSubNet)

    ##   [1]   0.1555556

It is expected that the density tends to decrease with the number of edges (see 
(Dorogovtsev and Mendes 2003) for examples of real-world networks together with 
their main characteristics).

Definition 2 (transitivity)  The transitivity of a network is the number of triangles 
in the network divided by the number of triplets of nodes that are connected by at 
least two edges.

In the toy example given in Fig. 7, the transitivity is equal to 
1

3
33 3� . % (one tri-

angle linking the nodes {1, 2, 3} and three triplets with at least two edges: {1, 2, 3}, 

{2, 3, 4} and {1, 2, 4}.
Speaking in terms of a social network, the transitivity thus measures the proba-

bility that two of my friends are also friends. A transitivity which is much larger 
than the density indicates that the nodes are not connected at random but on the 
contrary that there is a strong local connectivity (a kind of “modular structure”), 
which is often the case in real-world networks.

7 The number of pairs for a set of n objects is equal to 
n n −( )1

2
.

1

2

3

4

Fig. 7  Simple network 
with a transitivity equal to 
1/3
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The “55-eqtl network” has a transitivity equal to 68.7 % that is obtained with the 
function transitivity:

transitivity(glassoSubNet)

    ##   [1]   0.6868448

As expected, the transitivity is much larger than the density for the “55-eqtl net-
work” which shows a strong local connectivity.

4.3	 �Individual Characteristics

Once the network structure is analyzed globally, one may want to focus more pre-
cisely on nodes individually so as to extract the most “important” ones. Some sim-
ple numeric characteristics can be used to do so.

Definition 3 (degree)  The degree of a node vi is the number of edges adjacent to 

this node: d v v E j ii i j= ( )Î ¹{ }, : .

Nodes that have a large degree are called hubs.
In the toy example given in Fig. 7, the degree of the node 2 is equal to 3 (three 

edges are afferent to node 2 linking node 2 to nodes 1, 3 and 4).
The degree is a measure of the node’s “popularity.” Using the function degree, 

the degrees of all nodes in the “55-eqtl network” can be obtained:

head(degree(glassoSubNet), n=5)

    ##   THRB   PSMC3IP   XIAP   ARHGAP8   X91721
    ##     5       1        3       18       16

The degree distribution of the “55-eqtl network” is shown in Fig. 8. This figure 
shows that most of the nodes have a very small degree (smaller than 5) whereas a 
few nodes have (comparatively) very large degrees (more than 20).

Many real-world networks are reported to have a degree distribution (i.e., the 
values (ℙ(k))k that counts the number of nodes with a given degree k) which fits a 

power law:  k k( ) ~ -g  for a given g > 0 . Thus, degree distributions are often dis-

played with log–log scales (i.e., log ℙ(k) versus log k). In this case, a good linear fit 
indicates a power law distribution. The “55-eqtl network” is a bit too small to observe 
such a distribution but nevertheless, the degree distribution is skewed. Also, there is 
a higher proportion of nodes with a degree between 15 and 20. Looking at Fig. 9, we 
can see that this corresponds to the set of nodes that are highly connected.

Depicting Gene Co-expression Networks Underlying eQTLs
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Fig. 8  Degree distribution for the “55-eqtl network”

Fig. 9  “55-eqtl network”: the node sizes and their colour intensities are proportional to their 
degrees
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Definition 4 (betweenness)  The betweenness of a node v is the number of shortest 
paths between any pair of nodes that pass through this node.

In the toy example given in Fig.  7, the betweenness of node 2 is equal to 2 
because the shortest path between nodes 1 and 4 is 1 2 4® ®  and the shortest 

path between nodes 3 and 4 is 1 2 4® ® . All the other nodes have a betweenness 
equal to 0.

The betweenness is a centrality measure: nodes that have a large betweenness are 
those that are the most likely to disconnect the network if removed. They may thus 
correspond to genes of high importance. Using the function betweenness, the 
betweenness of the 55 nodes of the “55-eqtl network” can be obtained:

head(betweenness(glassoSubNet), n=4)

    ##     THRB    PSMC3IP    XIAP     ARHGAP8
    ##   137.41563  0.00000  57.47527   54.33676

The betweenness of every node is displayed in Fig. 10. It is interesting to note 
that nodes with high betweenness are not necessarily hubs. The nodes with the 
highest betweenness are more outside the set of nodes which are highly 
connected.

THRB

BX917912

FTCD
RPS11

UBE2H.

ERC1

EEF1A.2

WDFY3

BX676048

Fig. 10  “55-eqtl network”: the node sizes and their colour intensities are proportional to their 
betweenness
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4.4	 �Clustering

Clustering nodes in a network consists of partitioning the network into densely con-
nected groups that we will call modules in the sequel. The nodes in a given module 
share a few number of edges (comparatively) with the nodes of other modules. Modules 
are often called communities in social sciences and clusters in statistics. A number of 
methods have been designed to address this issue and this section is much too small to 
go beyond scratching the surface of this topic. For further references on this topic, we 
advise the reader to refer to (Fortunato and Barthélémy 2007; Schaeffer 2007).

One of the most popular approaches for node clustering consists of maximizing 
a quality criterion called modularity (Newman and Girvan 2004):

Definition 5 (modularity)  Given a partition  1,, ,,¼( )K  of the nodes of the 
graph, the modularity of the partition is equal to
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, di the degree of node i and m E=  is the number of edges in the 
network.

In this definition, Pij plays the role of a probability to have an edge between vi 
and vj according to a “null model.” In the “null model”, the edges depend only on 
the degrees of each node and not on the clusters themselves: the larger the modular-
ity, the more the edges are concentrated in the clusters  j j

( ) . This model slightly 
differs from maximizing the number of edges in the clusters: edges that correspond 
to nodes with a large degree have a lesser impact in the modularity value: this aims 
at encompassing in the criterion the notion of preferential attachment (Barabási and 
Albert 1999), which is the fact that, in real networks, people tend to connect prefer-
ably with people who already have a large number of connections. Hence, the edges 
of very popular nodes (hubs) seem to be less “significant” (or, in other words, less 
important to define an homogeneous module). In particular, the modularity is known 
to better separate hubs (as compared to a naive approach consisting of minimizing 
the number of edges between clusters, that leads more frequently to have huge clus-
ters and tiny ones with isolated nodes). Also, the modularity is not monotonous in 
the number of modules: it can thus be useful to decide on an adequate number of 
clusters. However, it is also known to fail to detect small modules (Fortunato and 
Barthélémy 2007). Several method can be used to find a partition that approxi-
mately optimizes the modularity.8 In the R package igraph, several methods are 
implemented. In the following, we will use the function cluster_spinglass, which 
implements the method described in (Reichardt and Bornholdt 2006) (equivalent in 
certain cases to modularity optimization) and based on simulated annealing:

8 The modularity maximization is an intractable problem which can be solved only for small net-
works. For large networks, fast algorithms are usually used to find an approximate solution.
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finalClustering = cluster_spinglass(glassoSubNet)
modularity(finalClustering)

    ##   [1]   0.3102359

head(membership(finalClustering))

    ##   THRB   PSMC3IP   XIAP   ARHGAP8   X91721   BX917912
    ##     4       4       5       2        2          2

sizes(finalClustering)

    ## Community sizes
    ##   1   2   3   4   5
    ##   8   21  7  15   4

Using this method algorithm,9 the “55-eqtl network” could be partitioned into 
five modules (Fig. 11), of 8, 21, 7, 15 and 4 nodes, respectively. The modularity of 
this partition is equal to 0.31.

To assess if the modularity is significantly large (and hence if the partition is 
meaningful), a test of significance has been performed, as described in (Montastier 
et al. 2015; Rossi and Villa-Vialaneix 2011). This test is based on the computation of 

9 As the algorithm is partially stochastic, it has been run 100 times and only the best result has been 
kept.
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module membership
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the maximum modularity for 100 random graphs with the same degree distributions 
as “55-eqtl network.” The distribution of the maximum modularity for the random 
graphs is compared to the maximum modularity of the “55-eqtl network” in Fig. 12.

5	 �Biological Mining

Apart from providing easy-to-handle graphical displays, network analysis can be 
used forward to interpret the data. To that end, the analyst needs to go back to bio-
logical knowledge and extract coherent biological findings from statistical results. 
This analysis can be conducted in three steps:

	1.	 Gene annotation
	2.	 Biological enrichment
	3.	 Biological networks

5.1	 �Gene Annotation

In the previous sections, expression data were used without taking into account the 
biological functions associated with nodes. Nodes are first a DNA sequence coming 

0

10

20

0.20 0.24 0.28

Modularity

F
re
qu

en
cy

Fig. 12  Distribution of the maximum modularity over 100 random graphs with the same degree 
distribution as the “55-eqtl network” compared to the maximum modularity found for this network 
(red vertical line)
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from RNA sequencing or probes on microarrays. According to the quality of the 
annotation of the studied genome, only part of the nodes are annotated. One of the 
advantages of a gene network is that all probes, even those that correspond to unan-
notated probes, can be used for the analysis whereas they are often left aside in other 
approaches. In the example of the greatest connected component of 55 nodes, 34 
nodes were annotated in 2013 (Villa-Vialaneix et al. 2013) while 43 were annotated 
in 2015 thanks to the progress of the annotation of the pig genome.

Giving access to the original sequences is of prime importance when publishing 
transcriptomic data (see MIAME, Minimum Information About a Microarray 
Experiment (Brazma et al. 2001)). Data must be submitted to public repositories such 
as Gene Expression Omnibus (GEO, NCBI website)10 or ArrayExpress (EMBL 
website)11 and many others allowing the complete access to the probe sequence. At 
the time of publication, some related information may be associated with the sequence: 
current annotation with gene name or symbol, gene description, aliases, known ortho-
logs, accession number of the sequence from which the probe has been designed.

Functional information could be associated to each gene product. A consortium 
tries to attribute functional terms with a curated approach (controlled vocabulary) 
named Gene Ontology (GO).12 The biology is cleaved in three domains: Biological 
processes (e.g., glycolytic process), molecular function (e.g., acetyl-CoA trans-
porter activity) and cellular component (e.g., glycosome). Other reliable functions 
may be obtained with KEGG (Kyoto Encyclopedia of Genes and Genomes).13 
KEGG is a database which gives access to many well-documented pathways such 
as signaling (e.g., PI3K-Akt signaling pathway), metabolism (e.g., lipid metabo-
lism) or biological processes (e.g., cell growth and death).

Functional information for a full list of genes can be obtained from databases like 
DAVID (Database for Annotation, Visualization and Integrated Discovery)14 with the 
downloadable application EASE (Expression Analysis Systematic Explorer)15 or 
“Ensembl” with BioMart.16 Care must be taken if an updated version is available. For 
instance, current annotation in Ensembl is the release 81—July 2015 at the time of 
this review. Also, the user has to carefully make the choice of the genome annotation 
to which to refer. For instance, for the pig genome, two genome annotations can be 
used: the one of the pig or the one of the human. At the date of this review, in BioMart:

•	 Pig genome: there are 18,466 Ensembl gene IDs (from 21,630) with at least one 
GO and a total of 180,197 GO term accessions. One gene is associated with 0 to 
246 GO term accessions (the average is about 8 GO per Ensembl gene ID).

10 http://www.ncbi.nlm.nih.gov/geo.
11 https://www.ebi.ac.uk/arrayexpress.
12 http://geneontology.org.
13 http://www.genome.jp/kegg.
14 https://david.ncifcrf.gov.
15 https://david.ncifcrf.gov/ease/ease1.htm.
16 http://www.ensembl.org/biomart/martview/79399dc2f5745752a66a5a4a43f32a38.
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•	 Human genome: there are 20,632 Ensembl gene ID (from 22,699) with at least 
one GO and a total of 774,505 GO term accessions. One gene is associated to 0 
to 1849 GO term accessions (the average is about 31 GO per Ensembl gene ID).

For genes in the same family, the gene annotation may be ambiguous between 
species, with possible false contributions to a function when using the human 
genome instead of the pig genome. However, using the human genome strongly 
increases the number of associated functions. For this reason, the human genome is 
preferred in the sequel, as a referenced mammalian genome. The lists of genes 
obtained from the different clusters obtained in Sect. 4.4 will be further studied. For 
instance, Table 1 shows an extract of some related functions for four of the 43 anno-
tated genes. No functional information could be retrieved for the ACBD5 gene while 
the PDE8A gene is much better annotated.

5.2	 �Biological Enrichment

Here, the reference genome for the pig species is the human genome in order to obtain 
richer biological information related to each gene. Another reliable step of the analy-
sis of large transcriptomic data or of the clustering of co-expressed genes consists in 
identifying enriched biological functions associated with a set of selected genes.

Many free software (STRING,17 GeneCodis,18 WebGestalt19 and DAVID20 among 
others) or software under license, such as Ingenuity Pathway Analysis (IPA21 and 

17 http://string-db.org.
18 http://genecodis.cnb.csic.es.
19 http://bioinfo.vanderbilt.edu/webgestalt.
20 https://david.ncifcrf.gov.
21 http://www.ingenuity.com/products/ipa.

Table 1  Example of some systematic functional annotation for four genes out of the 43 that are 
annotated

Gene GO Biological GO Cellular GO Molecular KEGG

Symbol Process Component Function Pathway

ACBD5

DECR2 Alcohol; metabolism Peroxisome Oxidoreductase 
activity

ITGA8 Cell adhesion Plasma 
membrane

Cell adhesion; 
molecule activity

PDE8A Cell Insoluble 
fraction

Transition; metal Purine

Communication Ion binding Metabolism

These results were obtained with the EASE application

N. Villa-Vialaneix et al.
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others), are available to obtain enriched biological functions under different terms. 
The overall process is most often the same:

	1.	 The first step is to attribute known biology terms for each gene from several 
databases (see Sect. 5.1). The most usual ones can be found below, but other 
reference databases may be more relevant to the studied species:
•	 Gene Ontology.22

•	 KEGG.23

•	 Transcription factors24 may give information about the transcription regula-
tion of the targeted gene in the reference genome based on the known cis-
regulatory element. This information could be particularly interesting with a 
co-expression analysis but must be used with care when dealing with data 
from homologous species.

•	 Others, such as Omic Tools,25 are useful for retrieving regulating miRNA or 
other non-coding RNA, common protein domain, co-cited in publications.

	2.	 The second step is to identify the terms from the above lists and count the num-
ber of genes for each term (da Huang et al. 2009). A statistical test will then give 
the significance of the enrichment (Fisher’s exact tests based on hypergeometric 
distribution (Fisher 1922) and correction for multiple testing (Benjamini and 
Hochberg 1995)).

With the 43 annotated nodes provided in this example, Webgestalt26 recognized 
40 unique genes with, e.g., “RNA transport” pathway significantly enriched (related 
to three nodes/genes, PABPC1, EEF1A1, EEF1A2). With GeneCodis,27 co-
occurrence findings are possible: three genes (EEF1A1, NCOA2 and THRB) are 
significantly associated with “regulation of transcription, DNA-dependent (BP), 
nucleus (CC), protein binding (MF), V$MAZ_Q6” (transcription factor targets) 
meaning that the products of these three genes are localized in the nucleus with 
protein binding activity to regulate the transcription. The transcription factor MAZ 
(MYC-associated zinc finger protein (purine-binding transcription factor)) was 
demonstrated to be able to regulate the expression of these three genes.

In Table 2, from the 11 recognized genes (column “list size”), out of the 21 nodes 
of cluster 5 (see Fig.  11), two gene products (DECR2 and ACBD5, column 
“Support”) are associated with a peroxisome localization in the cell. This function 
was said to be enriched compared to the 105 genes (column “Reference support”), 
which are localized in the peroxisome, among the 34,208 genes (column “Reference 
size”) of the human genome. To evaluate this enrichment, a p-value based on 

22 http://geneontology.org.
23 http://www.genome.jp/kegg.
24 http://www.broadinstitute.org/gsea/msigdb.
25 http://omictools.com/transcriptomics-c1178-p1.html.
26 http://bioinfo.vanderbilt.edu/webgestalt.
27 http://genecodis.cnb.csic.es/analysis.
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hypergeometric distribution (column “p-value”) and its corresponding corrected 
p-value (column “adj. p-value”) were calculated.

5.3	 �Biological Networks

Biological networks can be constructed with free software like STRING (http://
string-db.org) for functional association networks mainly based on Known and 
Predicted Protein–Protein Interactions but using also indirect (functional) associa-
tions (conserved co-expression data) or previous knowledge from literature.

Another software is Ingenuity Pathway Analysis (IPA), under license, not only 
allows the user to find enrichment for the called canonical pathways or biofunctions 
and others but also extracts biological networks based on all possible relationships 
across many databases and literature. IPA can propose networks with a limited total 
number of nodes (35, 70 or 140 nodes) including the best interactions between the 
input genes (in priority) and additional genes to obtain significant networks ranked 
with an associated score. Biological functions are associated with the proposed net-
works. In our example, cluster 2 contains 21 nodes, out of which five genes had an 
associated biological process enriched with GeneCodis and only 2 genes with 
Webgestalt. Only 50 % of the nodes were used to find associated biological func-
tions because of the limitation of annotation and there was available biological 
information for about 10–35 % of the nodes.

The Ingenuity Pathway Analysis recognized the 11 annotated genes. IPA pos-
sessed a rich Ingenuity Knowledge Base with automated and manually curated 
information from all the databases presented before and also referenced all genes by 
possible gene interaction. Figure 13 shows the IPA network including all the 11 
annotated genes of cluster 2. Associated functions are organismal survival (four 
genes), development (three genes), expression regulation (two genes). The colour 
code is related to the betweenness centrality of the node in the largest connected 
component before clustering (highest for ERC1). Figure 14 shows the network as 
displayed by Gephi28 (Bastian et al. 2009) (this software easily imports graphs in 
graphml format as described in Sect. 4.4). The node size corresponds to the between-
ness centrality and the colour intensity corresponds to the node degree, both 
restricted to the subgraph induced by the nodes in cluster 2.

Figures 13 and 14 correspond to two representations of the same cluster 2. The 
first one used the available biological information to propose an optimized network. 
The second one is built with the initial information on co-expression without prior 
biological knowledge. As observed in our previous work (Villa-Vialaneix et  al. 
2013), every cluster was associated with only one IPA network. In this case, 100 % 
of the annotated genes of cluster 2 are included in the same IPA network (it was only 
about 80 % for all clusters in our original work). Compared to the original paper 
(Villa-Vialaneix et al. 2013), it has to be noted that the initial annotation of CCDC56 
was changed into COA3 (cytochrome c oxidase assembly protein 3) by IPA: both 

28 https://gephi.github.io.
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names are indeed aliases. This simple example shows that a careful control of all the 
steps of functional annotation has to be performed. Finally, a biological hypothesis 
could be proposed for cluster 2, the density of which (0.74) is much higher than that 
of the entire network (0.15). Cluster 2 was found to correspond to the Ubiquitin 
Proteasome Pathway (see http://www.genome.jp/kegg-bin/show_pathway?hsa03050 
for details) where the Ubiquitin protein binds most substrate proteins before their 
degradation by the proteasome.

These tools may be useful to help biologists to explore lists of genes or pro-
teins coming from high-throughput technologies or lists coming from co-expres-
sion networks to explore associated functions with each community/cluster/
module. However, the biologist must not forget his/her original biological ques-
tion. In (Villa-Vialaneix et  al. 2013), the aim was to identify key genes being 
regulated by a cis-eQTL and to underline possible important relationships 
between the original list of genes. Key genes could be unknown genes important 
from an eQTL point of view or important in the network. Such insights may 
encourage further biological analyses. Taken altogether, this complete set of tools 
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Fig. 13  IPA network including all the 11 annotated genes of cluster 2
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may be powerful to decipher the biological mechanisms and the genetics regulat-
ing the biology of a tissue and underlying complex traits of interest in an agro-
nomic context.

6	 �Link with a Phenotype

Since an eQTL study is not a differential study, links of the genes with eQTLs and 
any phenotype are expected to be erratic a priori. In the pig example, let us consider 
the meat pH as a phenotype of interest: it is linked with meat quality. No high cor-
relation was found between pH and gene expressions. A finer analysis is hence 
needed. The idea is to link the network structure with the phenotype of interest 
using spatial statistical tools. On average, are the genes of one cluster more corre-
lated to the pH? Which genes are particularly correlated to the pH as well as their 
neighbouring genes on the network? Using spatial statistics, it is possible to detect 
modules and specific genes that are linked with a terminal phenotype. This analysis 

Fig. 14  Cluster 2 as displayed by Gephi
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is not detailed in the present chapter and we encourage the interested readers to refer 
to (Villa-Vialaneix et al. 2013).

�Conclusion

The prime objective was to decipher the processes underlying a list a genes 
whose expression is (partially) under genetic control. Due to an incomplete 
annotation of mammalian genomes, we proposed a statistical approach based on 
Gaussian graphical models for estimating and mining co-expression of a list of 
genes. This has led us to highlight a small subset of interesting genes (that are 
highly linked or central in the graph structure), and modules of densely con-
nected genes. Roughly speaking, these modules were enriched in a single bio-
logical function, leading to a better clarity in the biological interpretation of the 
complex system under study. Last but not least, all these meaningful results are 
the consequence of joint work between statisticians and biologists, which proves 
the importance of the collaboration between the two fields.
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    Abstract 
   In the pig, there are thus far only a handful of examples of health/disease studies 
approaching a systems biology level analysis, and this is in sharp contrast to the 
substantial amount of published porcine data on whole genome, transcriptome 
and proteome experiments with regard to economically important swine dis-
eases. However, systems biology is very powerful since it attempts to understand 
how these distinct -ome parts work together to create emergent properties that 
are less likely to be recognized in the analysis of only one component of the 
system. By integration of the different -omics datasets, systems biology tries to 
create a more complete understanding of the observed immune response. Until 
now, such integrative analyses are still in their infancy in terms of application to 
pig health. 

 In this chapter, we will cover systems biology tools for network analyses and 
multilevel data integration, and give examples of their implementation in pig 
disease studies. Next, we will discuss the need for visualization to interpret the 
vast amount of data created in -omics studies. Furthermore, the upcoming use of 
bloodomics is described, since blood is a very relevant immune-related tissue 
and biomarkers in the blood can easily be assessed and implemented in selection 
strategies. We conclude with specifi c examples of -omics and initial systems 
biology methods on viral (PRRSv) and bacterial ( Salmonella ) infections, since 
both agents are economically important pathogens causing disease in pigs and 
substantial genomics analyses on the response to these pathogens have been con-
ducted to date. In the future, forthcoming consortia such as the FAANG project 
will accelerate our ability to apply systems biology tools to improving pig health.  
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1       The Time Is Right to Apply Genomic Tools 
for Improvement of Complex Health Traits in Pigs 

 In the last few decades, growth, meat quality, as well as feed and reproduction effi -
ciency have been the most well-studied traits in swine breeding; however, in recent 
years, pig performance in the face of disease challenge is becoming progressively 
more important. Hence, selection objectives in the swine breeding industry have 
broadened to include traits that refl ect overall robustness and disease resistance 
(Mellencamp et al.  2008 ). Heritability of cellular immune traits associated with 
resistance are often very high (Flori et al.  2011 ), so genetic selection towards more 
resistant pigs is certainly a feasible method to improve both animal production and 
welfare, but the possible existing trade-off with other traits should be kept in mind 
(Rauw  2012 ; Stear et al.  2001 ). However, the biology behind resistance towards 
even a single pathogen is highly complex and dynamic, creating an opportunity to 
apply systems immunology or systems biology to improve disease resistance (Kidd 
et al.  2014 ). The integration of experimental and computational research would 
allow a better understanding of these complex biological systems (Hollung et al. 
 2014 ), and high-throughput technologies, measuring thousands of parameters at 
once, would provide the requisite datasets (Kidd et al.  2014 ). To date, substantial 
whole genome, transcriptome and proteome data have been collected with regard to 
several economically important swine diseases; metabolome and microbiome data-
sets are also growing. The biggest challenge lies in bringing the data together to 
understand the immune responses in a comprehensive way and to use such informa-
tion to improve pig health practically and sustainably.  

2     Systems Biology Tools and Their Use in Pig Disease 
Studies 

 A multitude of pig disease genetics studies make use of knowledge gathered by 
genome-wide association studies (GWAS) through examining possible associations 
between single nucleotide polymorphisms (SNPs), insertions, deletions or copy 
number variants (CNVs) and the disease of interest (Arakawa et al.  2015 ; Fowler 
et al.  2013 ; McKnite et al.  2014 ; Sharma et al.  2015 ). When a mutation is found to 
be associated with the disease trait, one can select for it, with consideration of addi-
tional effects the mutation might have on other traits. At the transcriptomic level, 
differential expression (DE), usually over time or between disease states, can be 
informative. When the expression level of genes that differ between diseased and 
healthy phenotypes can successfully be repeated in other populations, they can be 
used as biomarkers. This is called signature-based analysis (Bebek et al.  2012 ). 
However, a single marker or a set of marker genes is usually not enough to explain 
or predict a complex phenotype. Integrative analyses merging gene expression pro-
fi les with pathway data have been shown to be helpful in understanding immune 
responses (Sahadevan et al.  2014 ). The gene set enrichment analysis (GSEA) algo-
rithm is a powerful method to fi nd enriched pathways in the transcriptome 
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(Subramanian et al.  2005 ). With this method, a pathway is scored according to how 
many and how enriched the genes representing the pathway are in the extreme up- 
regulated or down-regulated lists of genes. A similarly well-known annotation tool 
is the Database for Annotation, Visualization and Integrated Discovery (DAVID) 
(Huang da et al.  2009 ), which works together with the Gene Ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases (Kanehisa 
et al.  2014 ) for pathway visualization. InnateDB can be a powerful tool to annotate 
sets of genes to specifi cally examine the innate immune response (Lynn et al.  2008 ). 
One or more of these tools are typically used when analyzing pig transcriptomic 
data from microarray or RNA-seq. A few drawbacks in these pathway-based analy-
ses are that well-characterized pathways are easier to fi nd than those that describe 
the function of less studied genes and may be overemphasized in such annotation 
analyses. There is also the assumption that expression patterns of genes coding for 
proteins in a pathway should show a clear correlation with others in the same path-
way, which is not necessarily always the case (Bebek et al.  2012 ). 

 However, systems biology goes further than a genome or transcriptome study 
and the annotation of overrepresented and underrepresented pathways. It is a com-
bination of knowledge concerning several biological system parts, e.g. DNA, RNA, 
proteins, cells, tissues, organs, organisms and ecologies. Rather than producing 
these data and solely giving a summation of the outcome in each fi eld, systems biol-
ogy attempts to understand how the parts work together to create emergent proper-
ties that are less likely to be observed (recognized) in analyses of only components 
of the system. A further goal, specifi cally for systems immunology, is predicting 
how, in the light of health research, genetic and regulatory interactions, as well as 
environmental factors, orchestrate responses to disease (Tuggle et al.  2011 ). In what 
follows, we describe network-based and multilevel data integration analyses and, 
although both methods are still in their infancy in pig disease studies, we provide 
examples and illustrate their use. 

2.1     Network-Based Analyses of Porcine Immunological 
Responses 

 One emerging network-based tool is the Weighted Gene Co-expression Network 
Analysis (WGCNA) developed by Langfelder and Horvath ( 2008 ). WGCNA was 
originally developed for microarray analyses, but is also applicable on RNA-seq 
data (Langfelder and Horvath  2008 ). Whereas in DE analyses only genes that pass 
an arbitrarily defi ned statistical threshold for DE are used for analysis, in WGCNA 
genes with a similar expression pattern across the experiment are clustered together 
into modules. Thus, genes with only a small but consistent difference over time or 
between phenotypic groups can be clustered in a module and will be considered. A 
unique and useful component of the WGCNA package is that, after clustering, the 
calculated eigengene of a module (defi ned as the fi rst principal component of that 
module) can be correlated with an external numerical or categorical trait. Correlation 
coeffi cients together with nominal  p -values indicate the strength of a module’s 
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relationship to the trait of interest. To understand their biological relevance to the 
trait, the genes in a module can then together be analyzed with GO annotation tools. 

 With regard to disease in pigs, Kommadath et al. ( 2014 ) used WGCNA to exam-
ine the blood transcriptome in pigs infected with  Salmonella enterica  serovar 
Typhimurium (ST) and grouped in extremes for the amount of fecal shedding bac-
teria, e.g. eight low shedders versus eight high-shedding animals (for more details, 
see Section  4.6 ). Four modules were correlated with shedding, two of which were 
annotated for immune functions and many of the immune genes in these modules 
were up-regulated 2 days post-inoculation. Some of the genes found by this method 
were already known to be related to a  Salmonella  infection such as  SLC11A1 ,  TLR4 , 
 CD14  and  CCR1 . For others, such as  SIGLEC5 ,  IGSF6  and  TNFSF13B , the associa-
tion with  Salmonella  shedding was novel (Kommadath et al.  2014 ). In a PRRS 
microarray study comparing four phenotypic groups of animals with extremely dif-
ferent growth rates and viremia levels after a PRRS virus (PRRSv) infection, lim-
ited information was obtained through linear modeling of blood gene DE that 
contrasted pigs with these extreme phenotypes. However, when using WGCNA, an 
interesting immune-related module was found containing cytokines, chemokines, 
interferon type I stimulated genes, apoptotic genes and genes regulating comple-
ment activation. The eigenvalue of this cluster for each pig’s data correlated both 
with weight gain (WG) after 42 days post-infection with PRRSv and the 
WUR10000125 (WUR) SNP genotype on  Sus scrofa  chromosome 4 (SSC4), which 
explained a large proportion of the genetic variance for viral load and, to a lesser 
extent, weight gain (Boddicker et al.  2012 ). The genes in this WGCNA module 
could be useful targets for further selection against PRRS resistance (Schroyen et al. 
 2015 ). For more details, see Section  4.2  entitled “Transcriptomic Analysis of Host 
Response to PRRSv”. 

 Although not directly relevant to pig health, but using the pig as a model for 
human health, Kogelman et al. ( 2014 ) applied WGCNA on RNA-seq of subcutane-
ous adipose tissue from 36 pigs with different risk levels for obesity. The module 
that showed the highest correlation with obesity-related traits contained 275 genes. 
The most signifi cant GO term defi ning this cluster was “osteoclast differentiation” 
and osteoclasts are derived from macrophages, an immune cell type highly up- 
regulated in obese individuals. Other immune-related GO terms enriched in this 
gene list involved natural killer cells and B cell receptor signaling pathways, enlight-
ening the association between obesity and immune-related complications (Kogelman 
et al.  2014 ). 

 Partial Correlation and Information Technology (PCIT) (Koesterke et al.  2013 , 
 2014 ; Reverter and Chan  2008 ), together with the regulatory impact factor (RIF) 
and phenotypic impact factor (PIF) algorithms (Reverter et al.  2010 ) were also used 
to examine differences in networks drawn from different biological states. With 
PCIT, the co-expression correlation between each gene pair in a network is calcu-
lated and changes between different phenotypic groups are noted. RIF and PIF algo-
rithms compute differential wiring between nodes for different treatments or groups 
to identify novel regulators. Using PCIT, Schroyen et al. ( 2015 ) found tighter con-
nections to genes in the immune activation pathways in the low weight gain group 
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compared to the high weight gain group after PRRS infection, indicating that one of 
the most signifi cant differences between these two phenotypic groups was an 
immune network response. However, when comparing WGCNA and PCIT results, 
the WGCNA method seems to be more sensitive, since the PCIT algorithm removes 
edges (gene interaction measures), which can sometimes lead to an underestimation 
of the importance of a hub gene, and has consequences for biological interpretations 
(Kadarmideen and Watson-Haigh  2012 ).  

2.2     Multilevel Data Integration Analyses of Pig Disease 
Biology Are Sparse 

 To date, there are only a few examples of integration of multiple -omics datasets in 
research on pig disease. Most common data integration strategies are comparisons 
between the transcriptome and miRNAome, since the correlation analysis of the 
mRNA transcriptome and miRNAome data can reveal and explain the control of 
reciprocal expression patterns of predicted target mRNAs. An example is the nega-
tive correlation between expression levels of miRNAs and their predicted target 
genes in the swine leukocyte antigen (SLA) complex region found when comparing 
mRNA-seq and miRNA-seq data for liver, longissimus dorsi and abdominal fat 
(Endale Ahanda et al.  2012 ). The SLA region was chosen since this region is highly 
associated with immune response traits in pigs, for instance, in case of infectious 
diseases or after vaccination (Lunney et al.  2009 ), and miRNAs can play a crucial 
role in fi ne-tuning this immune response. With TargetScan, PACMIT and TargetSpy, 
several polymorphic miRNA target sites were found and SNPs in these 3′ untrans-
lated regions (3′-UTR) were predicted to lead to altered miRNA regulation patterns 
(Endale Ahanda et al.  2012 ). 

 Bao et al. ( 2014 ) examined the buffering capacity of miRNAs in response to a 
 Salmonella  infection, i.e. the ability to lower the expression variation of target 
mRNAs, rather than changing their expression level. A signifi cant buffering capac-
ity was seen in lowly to moderately expressed target mRNAs when compared to 
non-target mRNAs, but this difference was not seen for highly expressed genes. In 
response to infection, at 2 days post-infection (dpi) in both up-regulated and down- 
regulated genes, an additional buffering capacity was noticed for the target mRNAs, 
which was not the case for the non-target mRNAs. This result was interpreted as 
indicating that such miRNAs cause the existing transcriptional network to rewire 
more tightly after infection (Bao et al.  2014 ). Other examples of miRNA–mRNA 
comparisons in pig disease studies will follow in the example sections of this 
chapter. 

 Another example of multilevel data integration analysis can be seen in the com-
bination of GWAS and transcriptomic data. The fi rst expression quantitative trait 
loci (eQTL) studies in pig were conducted to examine muscle development, carcass 
and meat quality traits; however, more and more eQTL studies have focused on pig 
health (Ernst and Steibel  2013 ). Ponsuksili et al. ( 2012 ) investigated the relation 
between SNP markers from the PorcineSNP60 BeadChip, gene expression in liver 
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and muscle measured with an Affymetrix porcine genome array and plasma cortisol 
levels, which is important in regulating immune function. They used the network 
edge orienting (NEO) R software package to predict causal interaction between the 
three datasets and found 26 and 70 candidate genes in liver and 2 and 25 candidates 
in muscle to affect or respond to plasma cortisol levels, respectively (Ponsuksili 
et al.  2012 ). Chomwisarutkun et al. ( 2013 ) used a custom-designed microarray tar-
geting previously detected QTL regions to fi nd candidate genes for inverted teat 
defects as opposed to an earlier study which used a commercially available array. 
They found a number of DE genes in both epithelium and mesenchyme, almost all 
belonging to cell signaling pathways and encoding many members of the signaling 
cascades of growth factors (Chomwisarutkun et al.  2013 ). Reiner et al. ( 2014 ) used 
an Affymetrix porcine genome array and found 193  cis - and  trans -eQTL, including 
55 eQTL in a functional hotspot on SSC13, and they identifi ed several candidate 
genes for a genetic predisposition for susceptibility to  Actinobacillus pleuropneu-
moniae . With the increase of RNA-seq data, it has now become quite easy to assess 
allele-specifi c expression in heterozygous individuals. For an example on PRRS 
and allele-specifi c expression, we refer to the study done by Koltes et al. ( 2015 ) 
described below (see Section  4.1 ).   

3     Visualization Tools Improve Our Ability to Identify 
and Interpret Complex Relationships 

 With the increase of -omics data and the complexity of data analyses, data visualiza-
tion is becoming fundamental for the interpretation of high-dimensional molecular 
interactions. Tools to visualize GO enrichment analysis results, such as Gorilla 
(Eden et al.  2009 ), AmiGO (Carbon et al.  2009 ), Panther (Mi et al.  2013 ), REVIGO 
(Supek et al.  2011 ) and others, are freely available. In addition, there are also a few 
network expression tools available. One well-known tool to visualize large datasets 
is Cytoscape (Shannon et al.  2003 ). Cytoscape is an open source software platform 
that easily can be customized with plug-ins and shows data as nodes and edges in a 
network to which multiple levels of annotation can be added and in which genes can 
be selected or fi ltered out. Another freely available program is BioLayout Express 3D  
(BE3D), which draws co-expression networks (Freeman et al.  2007 ). A Pearson’s 
correlation coeffi cient threshold decides which genes (nodes) are kept for visualiza-
tion and a Markov clustering algorithm defi nes genes with similar expression pat-
terns into clusters. Within BE3D are numerous user-defi ned variables for displaying 
these clusters, including the ability to label nodes with any user-inputted variable. 
For example, it is possible to overlay onto a gene expression-based network a visu-
alization of correlation of such expression to an external trait such as pathogen level 
or growth during infection for the pigs in the study. 

 Kapetanovic et al. ( 2013 ) analyzed the expression profi les of pig alveolar macro-
phages (AM), bone marrow-derived macrophages (BMDM) and monocyte-derived 
macrophages (MDM) at 0 and 7 h after LPS stimulation. After stimulation, the 
expression profi les of AM were clearly distinct from those of BMDM and MDM, 
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indicating a different regulation of LPS-stimulated genes in these macrophages. 
They also used the tool to compare expression patterns after stimulation between 
human, mouse and pig macrophages and showed clusters of genes with up- regulated 
expression patterns in human and pig that were not up-regulated in mouse macro-
phages or vice versa (Kapetanovic et al.  2013 ). It is even possible to use tissue- 
specifi c expression patterns from microarray data from many tissues obtained from 
healthy pigs to visualize the relationships of immune cells and their expression pat-
terns versus other cell types (Freeman et al.  2012 ). 

 In Schroyen et al. ( 2016 ), BE3D identifi ed clusters of genes whose expression 
patterns measured by RNA-seq differed between susceptible and more resistant ani-
mals in response to PRRS according to the WUR SNP, which will be described 
below (see Section  4.1 ). One cluster of 516 transcripts showed an apparent dissimi-
larity between the two contrasted groups and could be linked to signaling pathway 
differences involved in viral entry and replication. 

 Another example of the successful use of BE3D was described by the immune 
response annotation group (IRAG) (Dawson et al.  2013 ). IRAG was able to improve 
the characterization of the pig immunome by using correlation network analyses of 
transcriptomic data. In this massive study, genes were clustered according to their 
expression patterns in blood macrophages and lymph nodes derived from a multi-
tude of pig stimulation, infection and disease studies. A cluster of 619 probesets, 
representing at least 511 transcripts, was signifi cantly enriched for human immune- 
related GO terms. Since only 16% of these genes had been annotated in the pig, 
evidence was provided for the involvement of over 500 genes in immune responses 
that had not previously annotated for function in immune response processes 
(Dawson et al.  2013 ).  

4     Bloodomics 

 More and more studies aiming to genetically improve livestock’s robustness involve 
whole blood to defi ne the immune capacity or immunocompetence of an individual 
to different stimuli (Mach et al.  2013 ) and potentially identify predictive biomarkers 
for resistance or resilient pigs (Huang et al.  2011 ). The term “bloodomics” encom-
passes all molecular profi ling -omics tools that have been applied to peripheral 
blood, in which the blood transcriptome plays an infl uential role (Mohr and Liew 
 2007 ). For the immune system, blood is a very relevant tissue, since cells of the 
immune system circulate between central and peripheral lymphoid organs as well as 
migrate to and from sites of injury via the blood (Chaussabel et al.  2010 ). Whereas 
in 2002, very few blood transcriptomic studies were executed on any animal spe-
cies, by 2014, a signifi cant number of studies based on the blood transcriptome had 
been published on several animal species, and in particular for cattle and pigs as 
livestock species (Chaussabel  2015 ; Schroyen and Tuggle  2015 ). 

 Whole blood studies have several advantages such as the ease of collection and 
the repeated sampling of the same individual during response to a stimulus, which 
allows accurate within-animal comparison back to the baseline prior to infection. 
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Examining whole blood also facilitates the ability to develop a genetic marker 
screening based test, which should be relatively easy to obtain on a large scale in a 
commercial setting given that blood sampling is a common surveillance method in 
veterinary practice. Genes expressed in peripheral blood cells have been shown to 
refl ect molecular mechanisms underlying differences in production traits and it can 
be an easily accessible source of information when monitoring physiological 
changes (Jegou et al.  2016 ). The genetic blood markers could include total and dif-
ferential white blood cell counts, peripheral blood mononuclear leukocyte subsets 
and acute phase proteins, specifi c and non-specifi c antibodies, cytokines, as well as 
a set of differentially expressed genes between a healthy and diseased status. In 
Clapperton et al. ( 2009 ) and Flori et al. ( 2011 ), sets of porcine immune trait markers 
that can be used for selection, together with their heritability coeffi cients, are listed. 
However, since whole blood comprises a varying number of cell types, gene expres-
sion and protein differences from sample to sample should be interpreted with great 
caution. Gene expression patterns are highly dependent on the composition of the 
underlying cell population. Knowledge on immune cell specifi c expression could 
help with the investigation of exactly which cells are activated (Abbas et al.  2005 ). 
Computational methods such as cell type enrichment analysis (CTEN) (Shoemaker 
et al.  2012 ) or the tissue expression module in the annotation tool DAVID, used 
effectively by Hulst et al. ( 2013 ), could give an idea of the cell types dominating the 
whole blood transcriptome/proteome response. Complete blood counts (CBCs) as a 
covariate in statistical analyses can be adjusted for such differences across replicate 
blood samples. Furthermore, with such CBC data, the transcriptional response data 
can be deconvoluted to help identify the unique regulatory control of specifi c cel-
lular responses to pathogens (Shen-Orr et al.  2010 ). 

 As with systems biology in general, one of the current hurdles with the interpre-
tation of data from blood transcriptomic research is the organization of the data and 
the integration of different components such as sample information, quality of data, 
clinical information collected at the time of sampling and results of other cellular 
and molecular platforms (Chaussabel et al.  2010 ). 

  Example 1: Overview of -Omics Studies Concerning Porcine Reproductive 
and Respiratory Syndrome (PRRS) in Pig 
 Porcine reproductive and respiratory syndrome (PRRS), also known as mystery 
swine disease or blue ear disease, emerged in the late 1980s and 1990s and is to date 
one of the most economically important diseases affecting pigs worldwide 
(Holtkamp et al.  2013 ; Zimmerman  2003 ). The disease is caused by a single- 
stranded RNA virus belonging to the Arteriviridae family and, as its name refl ects, 
affects two branches of the pig breeding industry. On the one hand, there are severe 
reproduction losses due to infertility, late-term abortions and mummifi ed and still-
born fetuses. On the other hand, grower-to-fi nisher pigs suffer from serious pneu-
monia, which leads to increased pig morbidity and mortality rates (Rossow  1998 ). 
Depressed growth rates in subclinical infections are also signifi cant, and to date 
production costs are estimated at $664 million a year, and that is only for the USA 
(Holtkamp et al.  2013 ). It is therefore not surprising that many efforts were made to 
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understand PRRSv and its replicative life cycle, but the host point of view during 
PRRSv infection is also extensively studied. In this section, we give an overview of 
the different host-related -omics studies performed (Fig.  1 ) and, whenever present, 
the systems biology approaches utilized.

4.1          Linking Host Genomic Variation to Responses to PRRS 

 The fi rst studies on host genetic variation associated with variation in response to 
PRRS used a limited set of SNPs. Galina-Pantoja et al. ( 2006 ) examined the asso-
ciation of phenotypes with 60 SNPs targeting host genes known to be associated 
with virus replication and viral entry into cells, as well as genes for receptors, 
macrophage and other innate immunity functions. They showed that in sows before 
and after infection with the virus, several of the SNPs tested were found to be asso-
ciated with reproductive traits such as number of piglets born alive (Galina-Pantoja 
et al.  2006 ); these experiments were also summarized by Mellencamp et al. ( 2008 ). 
However, resistance is a complex and polygenic trait with substantial environmen-
tal infl uences; therefore, it is clear that selecting the best DNA marker or the best 
marker combination is complicated. Markers have to be consistent across datasets 
and they must have a positive effect on multiple traits and not be favorable for 
some and detrimental for others. Wimmers et al. ( 2009 ) used 88 markers, including 
72 microsatellites and 16 biallelic markers, to fi nd loci controlling the immune 
responsiveness in grower-to-fi nisher pigs. They screened for quantitative trait loci 
(QTL) by measuring complement activity, acute phase response and antibody 

Galina-Pantoja et al. 2006

Wimmers et al. 2009

Genome

Transcriptome

miRNAome

Phosphoproteome

Proteome
Uddin et al. 2011

T S A V R P C stop

T S
P

5'

5'

5'

5'

3'

3'

3'

3'

P
A V R P C stop

Serão et al. 2014
Lu et al. 2012 Xiao et al. 2010

Genini et al. 2012Zhang et al. 2009

Boddicker et al. 2012

Koltes et al. 2015 Waide et al.

AGTTGTACCTGCATGGCGACTACA
TCAACATGGACGTACCGCTGATGT

AGTTGTACCTGCATGGCGACTACA

CTGCATGGC

Genini et al. 2008

Zhou et al. 2011

Bates et al. 2008

Schroyen et al.2015
Loving et al.

Wysocki et al. 2012

Hicks et al. 2013
Cong et al. 2014

Air-Ali et al. 2011Xing et al. 2014

Miller et al. 2012

Badaoui et al. 2014

Sang et al. 2014

jia et al. 2015 Li et al. 2015

Luo et al. 2014

  Fig. 1    Overview of -omics studies concerning porcine reproductive and respiratory syndrome 
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response in animals before and after vaccination against  Mycoplasma hyopneu-
moniae , herpesvirus I and PRRSv. In total, 21 QTLs were detected with a genome-
wide signifi cance level of 1%. These QTLs harbor several candidate genes for the 
traits examined (Wimmers et al.  2009 ). Uddin et al. ( 2011 ) used a panel of 79 
microsatellites and 3 biallelic markers to search for immune-related QTLs. As 
innate immune traits they measured interleukin 2 (IL2), IL10, interferon gamma 
(IFNG), Toll-like receptor 2 (TLR2) and TLR9 levels in serum before and after 
vaccination with  M. hyopneumoniae , PRRSv or tetanus toxoid (Uddin et al.  2011 ). 
The fi ve traits were infl uenced by earlier described and newly found QTL on mul-
tiple chromosomes, implying multiple genes involved. Several candidate genes 
contributing to immune function were proposed for the three different vaccination 
experiments (Uddin et al.  2011 ). 

 However, although such analyses do help to discover regions containing QTL 
of interest, denser marker sets such as the porcine 60 K SNP chip could fi ne map 
the underlying genetic basis for these immune responses. However, substantially 
larger datasets are needed for such analyses. Serão et al. ( 2014 ) used the porcine 
60 K SNP chip to perform a GWAS in a sow herd ( n  = 641) before and after a 
PRRS outbreak. They found a number of genomic regions strongly correlated 
with number of stillborn piglets, number and percentage of born dead piglets and 
sample-to-positive antibody ratios during and/or before PRRS infection. SNPs in 
these regions were found near genes associated with reproductive performance 
or immune response (Serão et al.  2014 ). Boddicker et al. ( 2012 ) also used this 
60 K SNP chip, but focused on grower-to-fi nisher pigs and their genomics in 
relation to PRRSv infection. They found the QTL on SSC4 harboring the WUR 
SNP marker that has been associated with WG as well as PRRSv viremia levels, 
as described above (Boddicker et al.  2012 ). The effect of the SSC4 region and of 
WUR in particular was successfully validated in additional trials on animals with 
a different genetic background (Boddicker et al.  2013 ,  2014 ). This WUR marker 
maps close to several members of the guanylate binding protein (GBP) family 
which are known to be induced by gamma interferon. A transcriptomic approach 
was performed to identify differential expression between pigs with alternate 
QTL genotypes and potentially elucidate the underlying causal mutation. Koltes 
et al. ( 2015 ) specifi cally examined the expression of all genes in the region with 
high linkage disequilibrium to the WUR marker and determined that  GBP5  was 
differentially expressed between WUR genotype groups. Through deeper analy-
sis of the RNA-seq data, they found a putative causal mutation causing differen-
tial splice variants of  GBP5 . 

 However, although these genomic analyses could lead to SNPs with large 
effects on phenotypes or even discover causal mutations, and the pig breeding 
industry could use them for selection towards better performing animals, such 
analyses often give little or no information about the molecular mechanisms that 
underlie these differences in phenotypes. In an integration of SNP association 
data with genome functional annotation, Waide et al. ( submitted ) performed GO 
enrichment analyses on sets of genes in close vicinity of SNPs associated with 
viral load and weight gain. They analyzed gene sets located within 250 kb of 
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SNPs that were associated with these traits (−log 10 ( p -value) > 2.5). Analyses were 
performed using Panther (Mi et al.  2013 ) on a total of 13 trials of approximately 
200 animals per trial and infected with the KS06 or NVSL PRRSv strain (Waide 
et al.  submitted ). For the SNPs associated with viral load, enriched biological 
processes (BP) terms for the KS06 strain included natural killer cell activation, 
immune response and B cell-mediated immunity, although the latter was not sig-
nifi cantly enriched after Bonferroni correction. For the NVSL strain, enriched BP 
terms were immune response, metabolic process and lysosomal transport. For the 
SNPs associated with weight gain, antigen processing and presentation via MHC 
class II was the most enriched BP GO term for KS06; however, after Bonferroni 
correction, this term was no longer signifi cant. Hence, it is possible to fi nd groups 
of genes predicted to have functional differences between pigs with extreme phe-
notypes while using genomic rather than transcriptomic data. Since there are a 
large number of GWA studies available, it might be worthwhile to apply this 
approach to other existing datasets.  

4.2      Transcriptomic Analysis of Host Response to PRRSv 

 Without doubt, the majority of research on host response to PRRSv is performed on 
the transcriptomic level. At the beginning of the twenty-fi rst century, a multitude of 
microarray studies were performed examining host response to PRRSv, and these 
mostly in porcine alveolar macrophages (PAMs) (Genini et al.  2008 ; Zhou et al. 
 2011 ), lung (Bates et al.  2008 ; Xing et al.  2014 ), bronchial lymph nodes (Bates et al. 
 2008 ) and blood (Schroyen et al.  2015 ; Wysocki et al.  2012 ). Some of these studies 
compared non-infected with infected cells or tissues, while others focused on breed- 
specifi c (Ait-Ali et al.  2011 ; Xing et al.  2014 ) or within-breed resistance differences 
after infection (Boddicker et al.  2014 ). At the present time, the fi rst RNA-seq studies 
on host response to PRRS have been reported (Badaoui et al.  2014 ; Koltes et al. 
 2015 ; Miller et al.  2012 ; Sang et al.  2014 ; Schroyen et al.  2016 ). These RNA-seq 
studies examined blood, macrophages and tracheobronchial lymph nodes. 
Differentially expressed genes were often annotated as pro-infl ammatory and several 
signaling pathways linked to the innate immune response surfaced. Overall, it has 
been shown that the PRRS virus triggers an atypical innate immune response, with 
less type I interferon α (IFNα) production compared to other viruses (Van Reeth et al. 
 1999 ), which leads to a reduced expression of interferon-induced genes and path-
ways. Better performing animals, that are less affected by viral infection, are believed 
to trigger their immune system earlier and possibly have a more effective response 
than the more susceptible animals, as seen by the expression profi le differences (Ait-
Ali et al.  2011 ; Schroyen et al.  2015 ), as well as when comparing cytokine levels in 
the sera (Souza et al.  2013 ; Van Reeth et al.  1999 ). The earlier described BE3D 
analysis of all available Affymetrix data on porcine immune response (IR) studies 
identifi ed a general cluster of genes up-regulated due to different infectious agents 
(Dawson et al.  2013 ). This cluster was also up-regulated after a PRRSv infection in 
both alveolar macrophages and lymph nodes, albeit at a slower pace when comparing 
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to  Salmonella  spp. infection or stimulation with LPS (Dawson et al.  2013 ). Using all 
available porcine IR microarray data, including many array platforms, Badaoui et al. 
( 2013 ) performed a meta-analysis using the software Pointillist. They compared 
multiple PRRS microarray studies including many different breeds, tissues and viral 
strains with many immune response experiments to fi nd PRRS-specifi c expression 
responses (Badaoui et al.  2013 ). Several interferon regulatory transcription factors 
(IRF1, IRF3, IRF5 and IRF8) were among those found to respond to immune stimu-
lation only in PRRS-specifi c experiments. In an extension of the WUR-specifi c tran-
scriptomic analysis by Koltes et al. ( 2015 ), Schroyen et al. ( 2016 ) looked at the 
whole transcriptome in order to fi nd differences in pathways between the different 
genotypes and found pathway differences as a result of the inability of the truncated 
GBP5 protein in susceptible pigs to restrain viral entry and replication as fast as the 
intact GBP5 protein in the more resistant pigs. 

 More recently, Loving et al. (in preparation) performed RNA-seq studies on 
thymus from non-infected animals and animals infected with different PRRSv 
strains to investigate thymic atrophy during the infection and how this is refl ected 
in the thymic transcriptome. Thymic samples were collected from four groups of 
±5 animals per group (non-infected animals and animals infected with a mild, 
moderate and severe strain) at 4 and 10 dpi. The number of up-regulated and 
down-regulated genes between the non-infected and infected animals increased 
with severity of strain. The transcriptome of the animals infected with the mild or 
moderate strain showed an infl ammatory response at 4 dpi but the infection was 
resolved by 10 dpi, whereas for the most virulent strain, infl ammation was still 
present at 10 dpi. The most severe PRRSv strain also caused the largest impact on 
thymic atrophy due to apoptosis, so that the amount and types of cells should be 
taken into account to fully understand the data. This experiment is therefore a 
further illustration of the impact of cell counts, as described above for blood 
transcriptomics. 

 Since miRNAs play an important role in infl uencing gene expression levels in a 
post-transcriptional manner, especially during an immune response (Contreras and 
Rao  2012 ), the miRNAome has also been examined with regard to PRRS infection. 
Several miRNAs are differentially expressed between infected and non-infected 
animals (Hicks et al.  2013 ), and there are responses unique to different PRRSv 
strains (Cong et al.  2014 ) or within different pig breeds (Li et al.  2015a ). 
Interestingly, in two studies published this year, several miRNAs that were previ-
ously identifi ed as infl uencing innate immunity or have antiviral functions were 
tested for their ability to reduce PRRSv in infected alveolar macrophages or 
MARC-145 cells. Jia et al. ( 2015 ) transfected MARC-145 cells with 10 miRNAs 
and at 24 h after transfection infected them with PRRSv at multiplicity of infection 
(MOI) of 0.1. Compared with the other miRNAs, a fi vefold reduction of the viral 
titer was shown at 72 hours post-inoculation (hpi) when the cells were transfected 
with miR-26a. PRRSv also induced miR-26a expression in a dose-dependent man-
ner. Li et al. ( 2015b ) looked at 15 miRNAs in both alveolar macrophages or 
MARC-145 cells and found similar results at a MOI of 0.01 with a 25% and 50% 
reduction of viral titer at 24 and 48 hpi, respectively, when cells were transfected 
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with miR-26a. Both groups used a luciferase reporter analysis to show that the 
overexpression of miR-26a affects PRRSv infection, not by attacking the PRRS 
genome directly but by up-regulation of the innate antiviral response and activation 
of type I interferon and interferon-induced genes (Jia et al.  2015 ; Li et al.  2015b ).  

4.3     Initial Proteomics Approaches to Understanding Host 
Response to PRRSv 

 Using iTRAQ labeling, Lu et al. ( 2012 ) examined the proteome in PAMs during 
PRRSv infection. A total of 160 proteins were differentially expressed between 
uninfected animals and infected animals for at least one time point from 12 up to 
48 h post-inoculation of the cells with the virus (Lu et al.  2012 ). Among them were 
proteins involved in cytoskeleton networks and cell–cell communication, which is 
not surprising since viruses can hijack or interact with the host cytoskeletal trans-
port machinery (Dohner and Sodeik  2005 ). This result was recently confi rmed (and 
extended), as an RNA-seq analysis of blood also saw differences in network con-
nections of genes involved in cytoskeleton rearrangement between susceptible and 
more resistant pigs (Schroyen et al.  2016 ). Other DE proteins found were involved 
in the oxidation-reduction system, RNA-binding proteins or heat shock proteins, 
which was also reported in other proteomics studies performed on porcine alveolar 
macrophages (PAMs) or lungs after PRRSv infection (Lu et al.  2012 ; Xiao et al. 
 2010 ; Zhang et al.  2009 ). However, the question remains how specifi c these proteins 
are up-regulated due to the PRRS virus, in contrast with the response to other 
viruses. 

 In order to fi nd biomarker proteins in serum to detect early-onset PRRSv infec-
tion, Genini et al. ( 2012 ) used surface-enhanced laser desorption ionization time of 
fl ight mass spectrometry (SELDI-TOF MS). At the day of serum collection, no 
clinical signs were noted, and none of the piglets were treated. Genini et al. ( 2012 ) 
were able to fi nd a set of 14 discriminatory proteins that could assign pigs to PRRSv- 
negative and PRRSv-positive groups with high accuracy. They used a dataset of 50 
piglet serum samples (from 25 PRRS positive and 25 PRRS negative pigs) to dis-
cover these proteins and validated this set in an additional 70 serum samples from 
35 PRRS positive and 35 PRRS negative pigs (Genini et al.  2012 ). We compared 
these 14 proteins with mRNA information from transcriptomic studies examining 
host response to PRRSv and some of these proteins could be linked directly to DE 
or differentially wired (DW) genes, while others belonged to families of genes that 
were DE in those studies. One of the 14 proteins was the S100 calcium-binding 
protein A10 (S100A10) and Miller et al. ( 2012 ) identifi ed three family members 
( S100A8 ,  S100A9  and  S100A12 ) among the top 10 up-regulated genes after PRRSv 
infection. This DE occurred at the mRNA level in trachea–bronchial lymph nodes 
when animals infected with PRRS were compared to non-infected animals (Miller 
et al.  2012 ). Other interesting proteins among those 14 biomarkers were proteasome 
activator family member 28 beta, ubiquitin and vacuolar protein sorting 29 (vps29). 
Interestingly, in Schroyen et al. ( 2016 ), proteasome activator family member 28 
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beta ( PSME2 ) and ubiquitin protein ligase E3A ( UBE3A ) were DW between sus-
ceptible and more resistant animals. Furthermore,  VPS41  had a high phenotypic 
impact factor, which meant that it was DE between the susceptible and more resis-
tant animals and at the same time highly expressed (Schroyen et al.  2016 ). 

 Recently, Luo et al. ( 2014 ) were the fi rst to examine the PRRSv host response 
phosphoproteome, a large-scale study of protein phosphorylation levels in PAMs, 
using a TiO 2 -based enrichment method combined with liquid chromatography tan-
dem mass spectrometry (LC-MS/MS). The phosphorylation level of over 200 pro-
teins was altered at both 12 and 36 h post-infection (Luo et al.  2014 ). Pathway 
analysis revealed that several signal transduction pathways such as MAPK, NF-kB 
and PI3K-AKT signaling pathways were signifi cantly activated after infection. It 
has been reported that the PI3K-Akt signal transduction pathway is involved in 
PRRSv entry (Ni et al.  2015 ; Zhu et al.  2013 ).  

4.4     Mathematical models to help in the integration 
of PRRS data 

 A systems biology approach to understand the host response to PRRS would inte-
grate these genomic, transcriptomic and proteomic results. Alternatively, mathe-
matical host–pathogen interaction models could integrate these diverse empirical 
fi ndings and contribute to enhancing our understanding of the immune responses 
even further (Doeschl-Wilson  2011 ). A useful example of mathematical modeling 
of host–PRRS interactions has been provided by Doeschl-Wilson and Galina- 
Pantoja ( 2010 ). Such modeling approaches start off as basic host–pathogen models 
describing the interaction between virus and host macrophages without host immune 
response, and increase complexity gradually by adding innate, humoral and cellular 
immune responses (Doeschl-Wilson and Galina-Pantoja  2010 ). Besides giving bet-
ter insights, such models can also point towards missing system components and 
open up to further experimental investigations. 

 Doeschl-Wilson et al. ( 2012 ) applied the dynamical systems theory on individu-
als after a PRRSv infection. They could distinguish nine different performances 
versus pathogen burden trajectories in pigs infected with the same dose of PRRSv. 
They propose to use these trajectories as reliable categorical tolerance phenotypes 
in subsequent genetic studies (Doeschl-Wilson et al.  2012 ). While inspecting the 
viremia patterns in the blood over a time period from 0 dpi to 42 dpi, another cate-
gorical distinction emerged: cleared, persistent and rebound phenotypes. Islam et al. 
( 2013 ) used Wood’s curves to fi t these blood viremia patterns and linked the analy-
sis of neutralizing antibody (nAb) to these patterns (Islam et al.  2013 ). In the pigs 
that were classifi ed as cleared, a narrow nAb response was noted, showing an effi -
cient immune response by which the virus used in the infectious dose is rapidly 
cleared. Pigs that were persistently viremic over the 42-day period displayed a 
broad nAb spectrum, indicating a more ineffi cient antibody response to the original 
strain as well as potentially a more diverse response due to new viral quasi-species 
that arise from within the inoculum via selection pressure from the host immune 
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response. It would be of great interest to link these different types of immune 
response to transcriptomic and/or proteomic data and identify markers for success-
ful adaptive immunity to PRRSv.  

4.5     Systems Biology on PRRS 

 In some of the studies described above, some form of “systems-wide analyses” was 
utilized. When RNA-seq is performed to examine expression differences between 
animals with a different genotype for an SNP marker related to viral load and weight 
gain, transcriptomics meets genomics (e.g. Koltes et al.  2015 , Schroyen et al.  2016 ). 
When the gene ontology analysis of genes in the vicinity of genetic markers associ-
ated with response traits elucidates differentially expressed pathways between sus-
ceptible and more resistant animals, genomics meets transcriptomics (e.g. Waide 
et al.  submitted ). When the genes encoding proteins found with proteomics are also 
identifi ed by using RNA-seq analyses, or when altered expression of phosphoryla-
tion levels are found in proteins of a specifi c pathway, whose genes are up-regulated 
or down-regulated in microarray or RNA-seq experiments, proteomics meets tran-
scriptomics (Genini et al.  2012 ; Lu et al.  2012 ; Luo et al.  2014 ; Miller et al.  2012 ; 
Schroyen et al.  2016 ). 

 To integrate the data from our whole blood microarray experiment described in 
Schroyen et al. ( 2015 ) with knowledge on protein interaction data, we re-analyzed 
the genes found in the immune-related module and performed a protein–protein 
interaction (PPI) analysis on these genes using NetworkAnalyst (Xia et al.  2014 ). 
By fi rstly annotating the genes in this module, it could be seen that the cluster is 
enriched for interesting annotations, including cytokines, chemokines, interferon 
type I stimulated genes, apoptotic genes and genes involved in complement path-
ways. Because all genes were allocated to the same co-expression module, their 
mRNA expression pattern from animal to animal was similar. By using 
NetworkAnalyst, knowledge about existing (human) protein–protein interactions is 
added on top of the mRNA information. We determined the largest zero-order inter-
action network between proteins encoded by the 506 genes in the immune-related 
module and found a set of 33 proteins, of which the topology is shown in Fig.  2a . In 
Schroyen et al. ( 2015 ), components of this protein network were identifi ed, namely 
the infl ammasome gene  NLRP3 , which is known to activate  CASP1  and in turn 
leads to the activation of  IL1B  and  IL18 . However, with the PPI analysis, other con-
nections become clear. For instance,  TXNIP  was found DE in PRRSv-infected lungs 
and bronchial lymph nodes (Bates et al.  2008 ) and its protein interacts with the 
NLRP3 protein. The pathogen-recognition RIG1 receptor or DDX58 interacts with 
CASP1, which in turn is linked to the interferon-stimulated IFIT3. The anti- 
apoptosis BCL2 family member MCL1 is linked to CASP1 through CASP3. To 
further explore this PPI network, the genes in this PPI network that exhibit up- 
regulation or down-regulation after 4 dpi compared to 0 dpi is shown in Fig.  2b . 
Because the animals in this microarray experiment had been genotyped for the 
WUR SNP described earlier by Boddicker et al. ( 2012 ) as a marker for 
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susceptibility, the immune-related module was also correlated with WUR genotype. 
Looking at this reduced protein network, the substantial differences in expression 
pattern between more and less susceptible animals is very clear (Fig.  3a, b ). These 
multi- omics analyses can help us better understand biological processes such as 
immune responses and they can be used to confi rm or reject hypotheses made after 
performing a single-omics study. In any case, more information can be gained, often 
at low cost. As with the PPI example, the introduction of a protein network on top 
of transcriptomic data displayed a distinct small subset of 33 correlated genes that 
was evidently different between WUR genotypes animals and was not visible when 
looking at the micro-array dataset alone.

     Example 2: Systems Biology in  Salmonella  Studies in Pig 
 Another important pathogen in the swine industry is  Salmonella . It is a foodborne 
pathogen hazardous for human consumption, causing severe gastroenteritis and 
deaths worldwide. In the USA alone, costs for human salmonellosis are estimated 
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  Fig. 2    NetworkAnalyst protein–protein interactions (PPI) on immune-related module found in 
the whole blood PRRS microarray study of Schroyen et al.  2015 . ( a ) Nodes are colored according 
to connectivity; more red means more connections. ( b ) Nodes are colored according to up- 
regulation ( red ) and down-regulation ( green ) of genes at 4 dpi compared to 0 dpi after PRRS 
infection       
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at more than $2.4 billion annually. Human salmonellosis can often be linked to an 
animal source such as poultry, eggs, pork, beef and dairy cattle (Callaway et al. 
 2008 ). Other than affecting human health,  Salmonella  spp. also infect and/or multi-
ply in almost all known vertebrates, from reptiles to birds and mammals (Edwards 
et al.  2002 ), and clinical and subclinical salmonellosis in pigs has been estimated to 
contribute to substantial economic losses to the swine industry (Haley et al.  2012 ).   

4.6      Network-Based Analysis of  Salmonella  in Pigs 

 Probably the two most examined  Salmonella  serovars concerning pig gene expres-
sion regulation are  S. enterica  serovar Typhimurium (ST) and  S. enterica  serovar 
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  Fig. 3    NetworkAnalyst protein–protein interactions (PPI) on immune-related module found in 
the whole blood PRRS microarray study of Schroyen et al.  2015 , split between animals with the 
different WUR marker, predicting for susceptibility to PRRS found by Boddicker et al.  2012 . ( a ) 
Nodes are colored according to positive average expression ( orange ) and negative average expres-
sion ( blue ) after LIMMA normalization of microarray data of genes (Schroyen et al.  2015 ) in more 
susceptible animals at 4 dpi. ( b ) Nodes are colored according to positive average expression 
( orange ) and negative average expression ( blue ) after normalization of genes in less susceptible 
animals at 4 dpi       
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Choleraesuis (SC). ST causes enterocolitis in a wide variety of vertebrates, while 
ST is host-adapted and predominantly affects swine (Edwards et al.  2002 ). In pigs, 
SC was the most common serovar from 1986 to 1995, but in the mid-1990s, it was 
replaced by ST (Foley et al.  2008 ). Recently, several transcriptomic studies were 
performed to determine differences in whole blood causing variation in outcome 
between low (LS) and persistently shedding (PS) pigs after inoculation with ST 
(Huang et al.  2011 ; Knetter et al.  2015 ; Uthe et al.  2009 ,  2011 ). In order to fi nd 
biomarkers that could distinguish between LS and PS animals before infection, 
Kommadath et al. ( 2014 ) performed a network-based analysis. Using recently 
acquired RNA-seq data of blood from ST-infected pigs and WGCNA, they found 
day 0 modules that contained genes annotated for innate defense against bacteria—
or Salmonella in particular—and that had distinct expression patterns in LS versus 
PS animals, with the mean expression levels higher in the LS than PS animals. 
Examining the connectivity of the genes revealed that connections to hub genes 
within these modules were signifi cantly stronger in LS than PS animals, which 
could be an indication of a more tightly regulated transcriptional response of the 
genes in these modules in the LS animals (Kommadath et al.  2014 ), and supports the 
hypothesis that LS animals are better prepared for an infection and quicker to 
respond. 

 miRNA-seq was performed on whole blood samples of the same set of LS and 
PS animals and together with the mRNA-seq data used by Kommadath et al. ( 2014 ), 
a potential involvement of miRNAs was examined (Bao et al.  2015 ). In both LS and 
PS pigs, miR-214 and miR-331-3p were associated with ST infection. Targets for 
miR-214 were predicted to be  SLC11A1  and  LILR -like. The expression of the 
mRNA for these two genes increased at 2 dpi, while the expression of miR-214 
expression decreased. Both these genes are involved in immune response, but no 
role for miRNAs to control them has yet been described.  VAV2  plays a role in the 
entry process of several pathogenic microbes. It is a target gene for miR-331-3p and 
had a lower expression after infection, which could be the result of an observed 
increase in miR-331-3p expression. Results were of a similar magnitude in both LS 
and PS animals. For comparisons between LS and PS, no miRNAs were DE at 0 
dpi, and only three were DE at 2 dpi. Bao et al. ( 2014 ), as described earlier, reported 
a more tightly rewired network after  Salmonella  infection, and it would be interest-
ing to look at DW between LS and PS animals of target mRNAs at 0 dpi.  

4.7     Salmonella and the Microbiome 

 The pig microbiome has been the subject of many immune-related studies and gut 
microbiota are widely recognized to play a crucial role in animal health and well- 
being (Kim and Isaacson  2015 ). Bearson et al. ( 2013 ) compared the microbiome in 
non-infected (NI), LS and PS animals at days 0, and 2, 7 and at 21 dpi. At 0 dpi, 
signifi cant differences in microbial community structure were seen between LS and 
PS animals; however, these two groups were both not signifi cantly different from 
the NI group. At 2 and 7 dpi, there was no difference in the microbiome between the 
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LS group and the NI animals, but a clear difference was shown between PS and the 
other two groups of animals. At 21 dpi, these differences between LS and PS groups 
were gone; however, microbiota profi les for both LS and PS were signifi cantly dif-
ferent from the NI group at 21 dpi, suggesting a Salmonella-induced alteration in 
microbiota regardless of shedding status (Bearson et al.  2013 ). 

 With regard to screening for biomarkers for resistance/tolerance versus suscepti-
bility before infection, DNA sequence analysis of day 0 microbiota samples in this 
study revealed an enriched presence of  Ruminococcaceae  in the LS animals 
(Bearson et al.  2013 ). This positive effect of  Ruminococcaceae  on resistance/toler-
ance is described in several studies focusing on intestinal microbiota compositions 
with regard to diarrhea, whether caused by  Salmonella  spp. or not (Pop et al.  2014 ; 
Suchodolski et al.  2012 ; Videnska et al.  2013 ). Members of this microbial family 
produce short-chain fatty acids (SCFA) with acetate, butyrate and propionate being 
the major SCFA produced in the colon. Specifi cally, butyrate can be infl uential in 
gut health due to its anti-infl ammatory properties and its capacity to strengthen the 
colonic barrier and reduce the intestinal epithelial permeability (Hamer et al.  2008 ). 
In a study on gut microbiota in children with eczema, a negative association was 
reported between  Ruminococcaceae  and TLR2-induced IL6 and TNFα levels (West 
et al.  2015 ). Earlier, Huang et al. ( 2011 ) found that only in PS pigs, TNFα RNA in 
blood was elevated after 2 dpi ST infection (Huang et al.  2011 ). One interpretation 
of these results is that PS animals, with less  Ruminococcaceae  in their intestine 
compared to LS animals, do elevate the TNFα pathway, whereas in LS animals this 
is not the case. Certainly, more research is required to ascertain the generality of 
these proposed relationships.   

5     Current Challenges and Future Directions 

 In the pig, there are only a handful of examples of studies approaching a systems 
biology analysis described thus far, but the merit of such research is becoming more 
and more apparent. Immunology is a highly relevant research domain for a systems- 
level approach because of the multitude of tissues, cells, proteins or genes interact-
ing with one another when facing a disease challenge, with such interactions 
occurring at multiple scales of time. Currently, data created and analyzed by differ-
ent labs and different experiments are hard to integrate in a powerful way due to 
different breeds used, different time points examined, and different protocols fol-
lowed. To make a systems biology approach easier, consortia led by a complemen-
tary set of laboratories or institutions are being established (Benoist et al.  2012 ). 
Genetics research is far more active in consortium science, since it is easier to iden-
tify, map or sequence genes by several groups than it is to examine a complex 
immunological research question (Benoist et al.  2012 ). For pig, the PiGMaP con-
sortium (Archibald et al.  1995 ) and the Swine Genome Sequencing Consortium 
(Schook et al.  2005 ) were the fi rst consortia established. For pig diseases, and spe-
cifi cally to examine PRRS virus infections in pigs, the PRRS Host Genetics 
Consortium (PHGC) was founded (Lunney et al.  2011 ). Some of the research 
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described above is part of this consortium (Boddicker et al.  2012 ,  2013 ,  2014 ; 
Koltes et al.  2015 ; Schroyen et al.  2015 ,  2016 ; Waide et al.  submitted ), and the 
genetic and immunological insights gained strongly demonstrate the value of col-
laborative efforts that increase the power of such challenge experiments. 

 A substantial advantage of these consortia is that variation is reduced by shared 
and standardized protocols and procedures, as is described for the Human 
Encyclopedia of DNA Elements (ENCODE) project (ENCODE project consortium 
 2011 ). By using standards, data quality is assured, data utility can be extended and 
data comparison and thus the establishment of a systems biology approach, has 
become easier. The ENCODE project has been expanded from humans to classical 
model species and recently the Functional Annotation of Animal Genomes 
(FAANG) consortium for domesticated animal species was launched (The FAANG 
consortium et al.  2015 ). As a start, this consortium will focus on chicken, pig, cattle, 
horse, goat and sheep, species with a high-quality reference genome and often a 
plentitude of (ancestor’s) phenotypic data already stored (The FAANG consortium 
et al.  2015 ). Cells and tissues relevant to pig health, including blood cells and liver, 
are being collected on healthy pigs in the FAANG project (  www.faang.org    ). In addi-
tion, several groups have pathogen challenge projects that will provide data relevant 
to a deeper understanding of the porcine immune response and the parts of the 
genome that are responsible for these responses. Thus, the FAANG project will 
accelerate our ability to apply systems biology tools to improving pig health in the 
future.     
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Abstract
The use of RNA sequencing (RNA-Seq) technologies is increasing mainly due to 
the development of new next-generation sequencing machines that have reduced 
the costs and the time needed for data generation.

Nevertheless, microarrays are still the more common choice and one of the 
reasons is the complexity of the RNA-Seq data analysis. Furthermore, numerous 
biases can arise from RNA-Seq technology, and these biases have to be identified 
and removed properly in order to obtain accurate results.

Nowadays, many tools have been developed which allow to perform each step 
without high-level programming skills. However, each step of the pipeline needs 
to be performed carefully and requires a good knowledge of both the technology 
and the algorithms.

In this comprehensive review, we describe the fundamental steps of the pipe-
line for RNA-Seq analysis to identify differentially expressed genes: raw data 
quality control, trimming and filtering procedures, alignment, postmapping qual-
ity control, counting, normalization and differential expression test.

For each step, we present the most common tools and we give a complete 
description of their main characteristics and advantages focusing on the statistics 
that they perform and the assumptions that they make about the data.

The choice of the right tool can have a big impact on the final results. Until 
now, no gold standard has been established for this type of analysis.
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In conclusion, this review can be useful for both educational purposes as well 
as for less experienced practitioners of animal genomic research. In the absence 
of a commonly accepted standard procedure, the general overview presented in 
this review can help to make the best choices during the implementation of an 
RNA-Seq pipeline.

1	 �Introduction

Next-generation sequencing (NGS) technologies allow the generation of huge 
quantities of biological data. The development of new NGS machines has led to a 
reduction in costs and the time needed for data generation. In transcriptomics, the 
use of RNA sequencing technologies is ever increasing. RNA-Seq has considerably 
more benefits than microarray technology: it does not rely on previous knowledge 
and annotation, it has a wide range of sensitivity in detecting transcripts and it 
allows to quantify expression of different isoforms, study specific allele expression 
and identify new transcripts (Zhao et al. 2014).

The advantages on RNA sequencing compared to microarray technologies are 
even more valuable in systems genetics and system biologies studies.

RNA sequencing data facilitates delving into the analysis and extracting infor-
mation about biological pathways and gene function.

Nevertheless, microarrays are still the more common choice for gene expression 
profiling and for differentially expressed genes analysis. The reasons are many.

The cost is still significantly higher for RNA-Seq than microarrays. Furthermore, 
RNA-Seq data brings with it logistic challenges, for example, the high storage capac-
ity needed for the huge quantity of raw data produced as well as the computational 
power needed to perform some steps of the bioinformatics pipeline (Zhao et al. 2014).

Furthermore, RNA-Seq data is more complex, and a good knowledge of the tech-
nology and its related aspects are necessary in order to produce reliable results.

Different biases and artifacts that arise from these technologies and specific sta-
tistics have to be applied to obtain consistent and reliable results.

Nowadays, there are many tools available to perform all the different steps of the 
bioinformatics pipeline of RNA-Seq data (Garber et al. 2011). Some of them have a 
graphical interface which allows researchers with a basic computational background 
to perform all the steps to the final results. However, a good knowledge of the algo-
rithm and a computational background is still necessary to obtain accurate results 
and make the correct choices in term of tools and statistical tests. Tools differ in the 
statistics that they perform and in the assumptions that they make about the data. 
Therefore, they can be more or less efficient with regard to specific characteristics 
of the dataset as well as the experimental design.

The basic steps of the bioinformatics pipeline for RNA-Seq data are: raw data 
quality control followed by trimming and filtering procedures, alignment, postmap-
ping quality control, counting and normalization statistic test for differential expres-
sion (Mutz et al. 2013) (Fig. 1).
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2	 �Raw Data Quality Control

Raw data from RNA-Seq technology is a text file with a FASTQ format. The bio-
logical sequences of the reads as well as the sequencing quality values at each 
nucleotide base are stored in this file. Sequencing quality changes along the posi-
tions of the reads usually with a machine specific trend (Fig. 2a).

This bias together with contaminations of unwanted reads and PCR artifacts, GC 
content and presence of adapters represent technical biases.

Quality control of the raw data is a very important step that facilitates the detec-
tion of biases generated during the sequencing procedure that, if not correctly 
removed, can generate problems like incorrect mapping during the alignment and 
affect the final results.

The more common tools used in this step are FastQC (Andrews 2010), Qualimap 
(García-Alcalde et al. 2012) and Picard Tools (Wysoker et al. 2012). These tools are 
easy to use and the first two also have graphical interfaces for users with no compu-
tational skills. The statistics that are usually considered at this step are: total number 

Fig. 1  This picture represents the basic RNA-Seq data analysis pipeline. The red boxes are the 
main steps. The blue boxes describe the type of file that is given as input or produced as output at 
each step. The green boxes contain the list of the tools described in the text and they are connected 
to the step that they perform
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of reads, per base sequence quality, per sequence quality score, per base sequence 
content, per sequence GC content, per base N content, sequence duplication levels, 
overrepresented sequences and kmer content. This type of quality control is the 
same as that applied to DNA sequencing data. It is not RNA-specific and it can only 
provide information about the quality of read data related to NGS technologies.

Bases with low sequencing quality have a higher probability to be wrong. 
Regions where the quality is too low could have many mistakes that occurred dur-
ing the sequencing and should be trimmed or filtered out. On the other hand, 
(Williams et al. 2016) recently found that a too aggressive trimming of RNA-Seq 
data before gene expression quantification can have great impact on the final esti-
mation leading to unpredictable changes, mainly caused by the generation of very 
short reads.

Tools like Picard, FastQC or Qualimap compute the summary statistics at each 
position considering a representative subset of the reads. They generate a boxplot 
for each position of the read to represent the distribution of the quality per 
position.

Once identified, this type of issue can be removed by trimming specific regions 
or entire reads, considering different criteria chosen on the basis of the quality trend 
of the library.

GC content distribution and overrepresented sequence statistics point out the 
presence of contaminations or PCR artifacts, or problems during the library 
preparation.

If the library preparation is carried out correctly, it is expected to have a specific 
distribution of GC across the set of reads. If the distribution is different from the 
expected one, it is because there is an overrepresentation probably due to 
contaminations.

With regard to the level of contamination, if most of the library is represented by 
contaminations, the sample should be removed, but first it would be better to test 
whether it is an outlier by using clustering techniques or exploratory analysis such 
as principal component analysis (PCA). Otherwise, if the contamination represents 
only a small portion of the library and the sample does not turn out to be an outlier, 
the contamination can be identified and removed before proceeding with the 
analysis.

The kmer content is another way to identify biases due to the sequencing or the 
library preparation technology. The graph represents the overrepresentation of spe-
cific sub-sequences along the length of the reads. Library protocols based on ran-
dom priming have a specific imbalance at the start of the library (Fig. 2b).

Overrepresented reads in the library can be due to strongly expressed tran-
scripts, contaminations, PCR artifacts, adapter content or DNA sequences used 
during the lab work. Furthermore, they can represent rRNA transcripts that have 
not been correctly depleted during the RNA purification step. To identify the ori-
gin of the overrepresented reads, the sequences can be aligned against RNA 
sequences in publicly available databases using BLAST or compared against 
UniVec, an annotated database for vector sequences provided by NCBI (Cochrane 
and Galperin 2010).
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3	 �Alignment

During this step, the read sequences of the cDNA fragments originating from the 
random fragmentations and retrotranscription of RNA transcripts are aligned to ref-
erence genomes (Wang et al. 2009).

In this way, it is possible to identify the gene or the genomic locus that gave ori-
gin to the transcript from which each fragment derived.

The choice of the aligner has to be made considering the library and sequencing 
protocol as well as the objective of the analysis.

Tophat (Kim and Salzberg 2011) and STAR (Dobin et al. 2013) are two aligners 
specific for RNA-Seq data (able to identify splicing sites), which have shown the 
best performances.

Tophat and STAR have been tested together with other aligners using different 
datasets and they showed similar accuracy (Engström et al. 2013), but the latter has 
the advantage of being much faster and in the case of large datasets, it can be the 
best solution.

In the case of de novo mapping, the reads are used to generate contigs and recon-
struct the set of isoforms for a specific gene present in a sample directly from the 
sequenced reads. The process can be performed by using a reference or based only 
on the reads (Garber et al. 2011).

The set of contigs obtained can then be used as a reference to count the reads that 
map on them and quantify their expression in the sample. A well-known tool for de 
novo mapping is Trinity.

Trinity is composed of three independent software modules: Inchworm, Chrysalis 
and Butterfly. As a final output, the tool gives a full-length transcript with the cor-
responding alternatively spliced isoforms (Grabherr et al. 2011).

4	 �Postmapping Quality Control

Postmapping quality control is a fundamental step that allows to identify issues that 
have occurred during the sequencing or sample extraction or library preparation that 
can be identified only after alignment.

Nowadays, there are many freely available tools that are able to perform post-
mapping quality control.

These tools do not have a direct impact on the final results; however, it is funda-
mental to check the samples before proceeding with the other steps of the pipeline 
(Williams et al. 2014). Some of the tools are very user-friendly and furthermore, 
they generate easily interpretable outputs compared to others that need more com-
putational skills.

The most widely used tools are FastQC, Picard Tools, Qualimap, RNA-SeqQC 
(DeLuca et al. 2012), RSeQC (Wang et al. 2012) and SAMStat (Lassmann et al. 2011).

During the postmapping quality control, two main types of statistics can be per-
formed: general statistics similar to the one applied to raw data and RNA-Seq spe-
cific statistics. The first type focuses on NGS-related problems (number of reads 
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mapped, nucleotide composition, GC percentage, kmer bias) with the only differ-
ence being that the statistics are based only on uniquely mapped reads.

FastQC and Picard Tools can also be used at this point of the analysis together 
with other tools like SAMStat.

SAMStat performs a deeper analysis to detect possible biases related to the map-
ping quality.

This tool generates a plot where the properties of unmapped, poorly mapped and 
accurately mapped reads are compared in order to see if some differences are related 
to the quality of the alignment.

RNA-Seq postmapping statistics focus on genome coverage, intron/exon cover-
age, intron/exon junction analysis, and in the case of paired end protocols the insert 
size distribution (Fig. 3a).

Considering that our reads are generated mainly from processed transcripts, 
especially in the case of mRNA-enriched libraries, we expect that most of them will 
map to previously annotated exonic regions related to intronic and even less inter-
genic regions.

These types of statistics are organism-specific because they are strictly depen-
dent on the level of annotation of the genome and obviously on the library protocol 
used.

Unexpected percentages of reads from intronic and intergenic regions point out 
problems during library preparation or contamination.

Another important analysis is the intron/exon junction percentages (known, par-
tially known, novel junction). If the sequencing is deep enough and is a good repre-
sentation of the sample, the spliced junctions should be rediscovered in an RNA-Seq 
experiment. Spliced junction saturation analysis is also implemented in RSeQC. 
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Fig. 3  (a) Pie chart obtained with Qualimap showing the percentages of reads mapped to exonic, 
intronic and intergenic regions of RNA-Seq data from bovine samples. The computation is based 
on a General Feature Format file where all the information about genomic features of the species 
of interest were annotated; in this case, we used Bos taurus UMD v.3.1.83. (b) Gene body coverage 
computed with RSeQC. The plot represents the coverage along the length of all the transcripts 
annotated in the bovine genome, normalized from 1 to 100. The reduction present at the 3´ of the 
transcript indicates a low level of degradation present in the sample
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The introns/exons junction saturation is computed by re-sampling and thus increas-
ing the total number of reads; thereby computing each time the percentage of known 
junctions identified.

This information is dependent on the annotation of the genome, but it is impor-
tant to understand whether the information contained in the data is enough to per-
form differential splicing.

In the case of paired end protocols, the insert size distribution can be useful to 
check if the alignment ran correctly.

This statistic has to be specific for RNA, because to compute the correct insert 
size distribution, the presence of introns when the paired reads are mapped back to 
the genome have to be considered.

If the sequenced fragment has originated from two exons and the splicing site is 
in the middle between the forward and the reverse reads, the real insert size can be 
obtained by subtracting the length of the intron from the distance between the reads' 
mapping site in the genome.

Insert size statistics are implemented in Picard Tool, Qualimap, RNA-SeqQC 
and RSeQC. While the first three extract it directly from the SAM file, RSeQC per-
forms a more complex computation, taking the possible presence of introns between 
two paired reads into consideration.

RSeQC and Qualimap are able to compute an interesting postmapping quality 
control called gene body coverage. This test is useful, especially in cases where 
samples have problems in the quality and integrity of the RNA.

The tools give as output a graph representing the level coverage across the length 
of the transcripts present in the genomes, normalized from 1 to 100 (Fig. 3b).

Qualimap, together with Picard Tools, provides a module specific for RNA 
sequencing and together with RSeQC and RNA-SeqQC represent the most com-
plete tools for postalignment quality control in RNA-Seq data.

RNA-SeqQCs can also perform a multisample comparison providing informa-
tion such as correlations and GC content comparisons among samples.

Some tools are less intuitive, while other packages like Qualimap have a well 
developed graphical interface and provide a complete, well-organized graphical 
output particularly useful for researchers with weak computational skills.

The ideal way to get a complete impression of the data is to combine the results 
from different tools, exploiting the advantages of each of them.

This concept is implemented in a recently developed tool called Quality Control 
for RNA-Seq (QuaCRS) (Kroll et al. 2014). The tool runs FastQC, RNA-SeqQC 
and SeQC and merges results in an easily interpretable and accessible way.

5	 �Counting

In this step, reads that map under a biological feature of interest are counted in order 
to quantify its expression in a sample. Various tools perform this step. The differ-
ences are few among these types of tools and they are related mainly in the different 
ways of considering reads that overlap more than one feature. The estimation of the 
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expression can be made at different levels for different biological features (gene 
level, transcript level, exonic level), or it can be applied to all the transcripts identi-
fied during de novo mapping.

For example, HTSeq (Anders et al. 2014) and Cufflinks (Trapnell et al. 2013) are 
commonly used tools to perform this step.

6	 �Normalization

Even if RNA sequencing was initially considered completely immune of biases, 
normalization is still a fundamental step (Wang et al. 2009).

It facilitates the removal of biases and it is necessary in order to obtain accurate 
results during the comparison both within and between samples.

Normalization is tricky and complex in RNA-Seq data, as there are different 
bias types to take into consideration. In RNA-Seq experiments, biases can be of 
two types: within-sample bias that is due mainly to gene length bias and GC 
content bias, and between-sample biases due to the sequencing depth (Dillies 
et al. 2013).

The gene length bias originates because longer transcripts likely generate a 
higher number of fragments and consequently a higher number of reads. Thus, it is 
likely to have a higher level of expression rather than shorter transcripts due to this 
technical problem and not due to a real activation or inactivation of the transcription 
(Zheng et al. 2011; Oshlack and Wakefield 2009).

Similar problems occur in fragments with different GC contents (Risso et  al. 
2011).

GC-rich and GC-poor fragments result in being underrepresented in RNA 
sequencing, which leads to biases at the gene expression level (Benjamini and 
Speed 2012).

To make things even more complicated, it has been seen that GC content bias is 
not consistent between samples. It is lane-dependent and probably introduced dur-
ing the library preparation step (Risso et al. 2011).

Until now, it has not been determined which method performs better in normal-
izing for GC content bias.

One of the methods used to account for length bias is the RPKM unit (reads per 
kilobase of exon per million fragments), which divides the discrete counts of the 
reads by the total number of reads sequenced and by the length of the transcript and 
then computes the proportion to one million total reads (Mortazavi et al. 2008). In this 
way, the expression value of a gene is independent on the length of its transcripts.

Various tools are able to correct for this type of bias, like EDASeq (Risso et al. 
2011) and cqn (Hansen et al. 2012) where the GC bias or length bias are included as 
covariates.

The correction for the biases is dependent on the objective of the study.
If the objective is to rank genes within a sample, for example, to identify which 

genes are more active in a specific cell type, the biases that must be checked are 
gene length and GC content.
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On the other hand, if the experiment is designed to compare gene expressions 
between samples to identify differentially expressed genes, the most influential bias 
to consider is the difference in the library size.

The library size, computed as the total number of reads in a sample, can lead to 
false positives or false negatives during the analysis, as more reads will be assigned 
to each gene if a sample is sequenced to a greater depth.

However, it is also very important to consider that gene length and GC content 
also have an effect in between-sample comparisons; in fact, genes with higher 
counts are more likely to be defined as differentially expressed than genes with 
lower counts.

Cqn and EDASeq have been developed in such a way that they correct first for 
within-sample effect of the GC content and then they correct for between-sample 
bias.

It has been seen that normalization for library size with simple scaling is not 
enough. Together with sequencing depth and gene length, the composition of the 
RNA population has to be considered.

If the majority of genes are highly expressed in one condition compared to the 
other, the results of the analysis will be skewed (Robinson and Oshlack 2010).

More sophisticated normalization methods have been developed to correct for 
differences in library size (Oshlack et al. 2010).

Normalization methods have been tested with different datasets (Dillies et  al. 
2013).

The method implemented in the DESeq2 package (Anders and Huber 2010), 
together with trimmed mean of M values (TMM) (Robinson and Oshlack 2010) 
showed good precision and sensibility in false positive rates and power of detection. 
The first methods use scaling factor for each sample, computed as the median of the 
ratio between genes and their respective geometric mean computed across samples, 
while TMM removes the genes that are most expressed and with the highest log 
ratios and using the remaining genes, a scaling factor is computed as the weighted 
mean of log ratios between the sample and a reference.

Other methods are also used with good performances, such as upper quartile 
(Bullard et al. 2010), where gene counts are divided by the upper quartile of the gene 
counts and median where gene counts are divided by the median of the gene counts.

Even if RPKM, as explained earlier, takes into account the gene length, this 
method together with total count (TC), in which the counts of the genes are divided 
by the total number of reads in the sample, is indicated to be ineffective.

The performance of a normalization method is strictly dependent on the dataset. 
In some cases, no differences have been found in the final results between various 
methods (Seyednasrollah et al. 2015).

In general, there is no agreement on which is the best method and it is very 
important to check if the normalization applied worked fine on a dataset. This can 
be achieved by comparing the median and the distribution of gene expression across 
genes. In this way, it is possible to identify batch effect on the samples. We expect 
that after normalization, if the procedure is performed correctly, the distributions 
should have similar medians and distributions across samples. A similar test is 

G. Mazzoni and H.N. Kadarmideen



71

provided by NOISeq (Tarazona et al. 2012). This R package compares read distribu-
tions among samples using a sample as a reference, check for presence of GC con-
tent bias and length bias (Fig. 4).

Once the data are correctly normalized and transformed, various exploratory 
analyses can be performed and systems genetic approaches can be applied.

Normalization has less influence in the case of co-expression analysis because 
we focus on the correlations between expression levels of pairs of genes across all 
the samples.

In any case, tools for co-expression analysis suggest normalizing the data and 
applying logarithm-based transformations. For example, WGCNA (Langfelder and 
Horvath 2008) suggests using variance stabilizing transformation of RNA-Seq data 
before proceeding with the analysis.

7	 �Statistical Analysis

At this point of the pipeline, data appear in a matrix where each entry represents the 
expression level for a gene in one sample.

The normalized matrix can be used as input for the following steps of the analy-
sis: differential expression, co-expression analysis or exploratory analysis like clus-
tering and data visualization.

At this point, the normalized matrix can be treated in the same way as matrices 
originating from microarray technologies.

One difference has to be taken into consideration: values from RNA-Seq data are 
discrete measures because they are based on counts of the reads, while microarray 
data are continuous measures based on intensity values (Fang et al. 2012).
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Fig. 4  NOISeq batch effect exploration graph. A sample is used as a reference and NOISeq com-
pares the distributions and the medians among all the samples. The RNA samples analyzed are 
obtained from bovine cumulus cells, sequenced with Illumina technology using the same library 
preparation. The samples need to be normalized before proceeding with the next step of the analy-
sis. This issue is mainly due to differences in library sizes
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RNA-Seq data are characterized by two properties: the presence of extreme 
values and heteroscedasticity (relation between variance and mean of gene 
expressions).

For these reasons, data from RNA-Seq data are usually transformed in a logarith-
mic way or with other types of transformation like variance stabilizing transforma-
tion (Lin et al. 2008). Tools developed in a specific way for RNA sequencing do not 
need logarithmic transformation because they already take into account the typical 
distribution of the data counts.

8	 �Differential expression analysis

DE analysis allows to recognize genes whose expression is related to a trait of inter-
est, such as those genes whose expression changes between conditions with enough 
statistical power. In this step, a statistical test is applied to each gene to determine 
whether we have enough statistical power to reject the null hypothesis that the gene 
is equally expressed in two or more conditions.

Differentially expressed genes provide information about the functions of genes 
under different conditions. From a systems biology perspective, the analysis of a 
set of DE genes can be integrated with information from different omics levels, 
leading to the identification of potential biological pathways involved in a 
process.

In RNA-Seq, this step is one of the most critical, for which a number of methods 
have been developed.

Each method is based on different assumptions regarding the distribution of 
the gene counts and on different statistical models. Some of them can deal with 
multifactorial analysis, others can be applied in experimental designs with no 
replicates, while still others allow for isoform detection and quantification 
(Mazzoni et al. 2015). Above all, the performances are dependent on the structure 
of the data.

Many tools have been tested with both real and simulated data sets. From these 
studies, the performances of the tools are strictly dependent on the properties of the 
dataset and on the experimental design (Zhang et al. 2014; Seyednasrollah et al. 
2015).

The choice of the tool is fundamental. Taking into consideration that there is 
great variability in the maturity (Garber et  al. 2011) of available computational 
tools, it is important that the user is aware of the main differences and makes a 
choice considering properties of the data like number of samples, replicates and 
heterogeneity of the dataset (Seyednasrollah et al. 2015).

Tools for differential expression can be classified in non-parametric tools that are 
not based on the assumption of the distribution of the gene counts, and the paramet-
ric tool where gene expression of the genes is assumed to have a specific 
distribution.

Among the non-parametric methods we find NOISeq and SAMSeq.
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Both of them perform very well in terms of control of false positives, but they 
have opposite characteristics: NOISeq is too conservative with a high number of 
replicates, while SAMSeq needs more replicates for a good power of detection and 
its performances are strictly related to the data (Soneson and Delorenzi 2013; 
Seyednasrollah et al. 2015).

Among parametric methods, the best performing tools are DESeq, edgeR 
(Robinson et al. 2010) and BaySeq (Hardcastle and Kelly 2010), which appear to be 
similar in terms of accuracy, control of the number of false positives and sensitivity 
(Zhang et al. 2014; Kvam et al. 2012).

In datasets with small sample size, the best tools turned out to be Limma and 
DESeq.

DESeq proved to be the most conservative, while edgeR has a higher power of 
detection and Limma is the most robust with strong consistency of the results across 
heterogeneous datasets (Seyednasrollah et al. 2015; Soneson and Delorenzi 2013).

DESeq’s successor, DESeq2, has a higher power of detection, but is less precise 
(Seyednasrollah et al. 2015).

BaySeq, based on Bayesian methodology, showed good performances in differ-
ent cases but is strongly dependent on the dataset structure (Seyednasrollah et al. 
2015; Soneson and Delorenzi 2013).

Finally, one of the most prominent tools, Cuffdiff2, has good performances but 
poor power of detection at the gene level (Seyednasrollah et al. 2015; Zhang et al. 
2014).

However, one of the main advantages of Cuffdiff2 is the possibility to compute 
expression changes at the gene and transcript levels.

In the case of complex experimental designs, where more than one variable can 
be correlated to the gene expression levels, the possibility of accounting for those 
variables in the model is very important.

DESeq, DESeq2, edgeR, Limma and NOISeq allow for performing multifacto-
rial analysis (Love et al. 2014; Robinson et al. 2010; Ritchie et al. 2015; Tarazona 
et al. 2012). Thanks to these tools, it is very easy to deal with very complex experi-
mental designs, even for less experienced users.

Typically, the user gives as input the linear model that the tool will fit before 
computing the contrast. The basic model is:

	 y ni covariate covariate covariate trait of interest= + + +1 2 _ _ 	

where yi is the gene normalized gene counts for gene i across all the samples, covari-
ate 1 to n represents potential confounding effects that have to considered during the 
test and the trait of interest is the covariate, which has to be performed for the dif-
ferential expression analysis.

The program will fit many models as the number of genes given in input (i = 1  
to t), where t is the number of genes to be tested.

For DESeq, edgeR and Limma, very extensive explanations of the tools are pro-
vided together with the manuals, making their use and the interpretation of the 
results even easier (Seyednasrollah et al. 2015).
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9	 �Interpretation of DE Analysis Results

The output file generated by most of the tools from a differential expression analysis 
consists of a list of genes or features followed by different parameters obtained from 
the statistic tests (Fig. 5).

The important parameters that are obtained from a differential expression analy-
sis and that generally are presented in the final results file are the estimated fold 
change, the associated p-value and the p-value adjusted for multiple testing. The 
estimated fold change is the effect size estimate. The effect size estimate represents 
how much the expression of a gene changes due to the condition for which the con-
trast has been computed. Usually, this parameter is in a base 2 logarithmic scale. The 
tools compute also a statistic test that can be, for example, a Walt test, a likelihood 
ratio test or a Bayes statistic in order to obtain a p-value associated to the estimates.

Together with the p-value, the related adjusted p-value is also usually computed. 
The adjusted p-value is the statistic significance after multiple testing corrections. 
Usually the multiple testing is based on false discovery rate, but each tool gives the 
possibility to choose between different methods (Robinson et al. 2010; Anders and 
Huber 2010; Ritchie et al. 2015; Love et al. 2014).

The adjusted p-values give information about the significance of the gene expres-
sion change.

In general, to evaluate the differentially expressed genes, two thresholds should 
be set up; one for the adjusted p-value and another one for the fold change. In this 
way, it is possible to select genes whose change in expression is statistically signifi-
cant and with a certain magnitude.

�Conclusions
In this review, we have summarized all basic steps of the pipeline for RNA-Seq 
data analysis focusing on the steps that allow to check and get rid of the biases 
that can arise from RNA-Seq data.

Fig. 5  DESeq2 results from a differential expression analysis performed on bovine RNA-Seq 
data. BaseMean, mean of normalized counts for all samples; log2FoldChange, estimate of the 
gene expression change for the trait analysed (reported in a log2 scale); lfcSE, standard error asso-
ciated to the estimate; stat, Walt test statistic; p-value, p-values obtained from the Walt test; padj, 
p-values adjusted for multiple testing (Benjamini–Hochberg procedure)
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In order to obtain accurate results, it is really important to remove potential 
sources of biases. The choice of the right tool, as well as the choice on how to iden-
tify problems in the data and to get rid of them, can have big impact on the final 
results.

This choice is not always easy and in order to perform a good analysis, it requires 
good knowledge about the tools available as well as about the RNA-Seq 
technology.

While for microarray analysis, the general standard to record and report 
microarray-based gene expression data has been defined in the MIAME guideline 
(Brazma et al. 2001), until now, no golden standard has been described for RNA-
Seq data analysis.

One of the objectives of the FAANG project (http://www.faang.org/) is to estab-
lish a standard procedures for core assays, experimental protocols and also for 
RNA-Seq analysis pipeline in animal genomic research field.

In the absence of a commonly accepted standard procedure, the general overview 
presented in this review can help the reader in setting up the analytic pipeline. 
Furthermore, it can help to make the best choice in term of tools to use, thanks to 
the wide description of their characteristic and of the comparison of their 
performances.

In conclusion, this review can be useful for both educational purposes as well as 
for less experienced practitioners of animal genomic research who are dealing with 
RNA-Seq data.
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    Abstract 
   Feed effi ciency could be defi ned as the capacity to generate products with a cer-
tain amount of food provided; therefore, the performance and feed intake (FI) are 
the main components that infl uence this capacity. In beef cattle, this aims to 
improve the production both by reducing feed costs, which accounts for a large 
part of total costs, and by increasing muscle and adipose tissue growth. It is com-
mon sense that many physiological processes are involved in the regulation of 
this trait, such as feed intake, digestion, body composition, metabolism, activity, 
behavior and thermoregulation. Here, we review the importance of feed effi -
ciency for cattle production, discussing its biological bases from a holistic point 
of view, fi nalizing with the possible use of systems biology to improve this 
important phenotype for animal production.  

1       Introduction 

 Systems biology (SB) could be defi ned as the study of interactions between the 
components of biological systems and how these interactions infl uence the function 
and behavior of those systems. From a simplifi ed point of view, SB is based on the 
understanding that the whole is greater than the sum of the parts  (  www.
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systembiology.org    ). The application of SB in animal production is an emerging and 
interesting area in animal sciences and will surely lead to the discovery of new 
hypotheses and tools to improve effi ciency and sustainability of this important area. 
Some work can be found on systems biology in domestic animals, mostly related to 
growth and reproduction traits (Widmann et al.  2013 ; Canovas et al.  2014 ; 
Kadarmideen  2014 ). In this chapter, we will discuss systems biology approaches in 
animal production, using feed effi ciency in beef cattle as an example.  

2     What Is and Why Feed Efficiency in Beef Cattle? 

 In the last decade, Brazil and Australia have been the two major beef exporters in 
the world, but recently, India has become another major player in the market. 
Although some countries make use of feedlot systems, the vast majority of their 
animals are produced under pasture conditions, at least during the major part of 
their lives (Ferraz and Felício  2010 ; Millen and Arrigoni  2013 ; Meyer and Rodrigues 
 2014 ; Lobato et al  2014 ). These three countries, as well as the USA, are responsible 
for almost 2/3 of total beef exports. The herds of Brazil, India and Australia are 
largely comprised of  Bos indicus  cattle. It is important to highlight that the majority 
of animals are pasture fed, which is the lowest technology level but the highest in 
the production of greenhouse gases and methane. Beef cattle production in Latin 
America accounts for 29% of the world’s cattle population and beef production. In 
addition, Latin America is a region of the world that can signifi cantly increase its 
production in response to beef demand (Montaldo et al  2012 ). In experiments that 
control feed intake individually, it is common to see some animals that eat less than 
4 kg of dry matter to gain 1 kg of live weight and others that eat more than 20 kg to 
gain the same weight. Therefore, it is undeniable that increasing the productivity of 
that subspecies should be one of the directions toward helping to combat world 
hunger and reduce the environmental impact of beef production while contributing 
to a decrease in the production of greenhouse gases. This improvement can be 
achieved by improving environment (nutrition, reproduction, animal welfare and 
health) and breeding (fertility, carcass traits, performance and feed effi ciency). 

 The most common way to measure productivity is by the ratio of the amount of 
resources used for the products generated. In livestock, improved effi ciency may be 
defi ned as the generation of animal products (meat, milk, wool, eggs, etc.) with a 
lesser amount of resources or by increasing the generation of products with the 
same amount of resources already used. 

 Feed effi ciency (FE) means to measure the productivity of animals. FE may be 
defi ned as the capacity to generate products with a certain amount of food provided; 
therefore, the performance and feed intake (FI) are the main components that infl u-
ence this capacity. The relationship between FI (used resource) and performance 
(production) resulted in several FE traits (productivity). In beef cattle, this relation-
ship aims to improve the production both by reducing feed costs, which accounts for 
a large part of total costs, and by increasing muscle and adipose tissue growth (beef 
cattle). At the same time, the interest in FE also includes concerns about 
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environmental impact, considering its role in reducing the relative greenhouse gas 
emissions and solid waste (Hegarty et al.  2007 ; Nkrumah et al.  2006 ). 

 Many factors affected breeding cattle for feed effi ciency because the priority was 
for recording production phenotypes but not traits such as feed intake. This can be 
explained by the cost and complexity of measuring individual FI, so evaluating FE 
in beef cattle has been concentrated mostly in universities and research centers, 
which have proper facilities and manpower for such evaluations. However, in recent 
decades, there has been a considerable increase in commercial genetic selection for 
FE in beef cattle and, most recently, in  B. indicus  cattle. The adoption of FE selec-
tion by animal breeding programs will gradually expand around the world. 
Concurrently, there is an increase in research on this important characteristic, espe-
cially from the point of view of the genetic selection effects over generations and 
understanding the physiology and genetics behind the difference between the more 
and less effi cient animals. 

 Many efforts have been made to better balance the relationship between perfor-
mance and FI in beef cattle. The goal is to fi nd the best way to describe FE effec-
tively and to incorporate it in genetic selection indexes. The selection only for FI is 
not suitable for  B. indicus  cattle, since it has a high negative correlation with adult 
weight at maturity (Crews  2005 ), and the effects of increasing adult weight can be 
very harmful in extensive production systems based on grazing. Some FE traits 
(ratio) also turn out to be less effective in reducing this negatively correlated effect 
with increasing body size, such as feed conversion rate (FCR) and the gross feed 
effi ciency (Kennedy et al.  1993 ; Crews  2005 ). Another issue of FCR is that it does 
not have a real mean and variance is not normally distributed (Atchley and Anderson 
 1978 ; Gunsett  1984 ). In addition, it is highly conditioned to weight gain (Aggrey 
and Rekaya  2013 ). Besides these two measures, dozens of other ratio traits were 
proposed for evaluating the FE of the animals, especially the Kleiber ratio (Kleiber 
 1947 ), the partial effi ciency of growth and the relative growth rate (Fitzhugh and 
Taylor  1971 ). From the point of view of genetic breeding, one of the major prob-
lems of using ratio traits in selection indexes (indices) is that these direct ratios are 
from measures already used in these indices (weight gain), so these linear indices 
have non-normal distribution; therefore, the estimates of linear equations would 
become biased (Gunsett  1984 ; Werf  2004 ). 

 To overcome these problems with ratio traits, some measures calculated as resid-
ual (regression equations) were proposed or returned to be considered for measure-
ment of FE, especially the residual feed intake (Koch et al.  1963 ) and the recently 
proposed residual intake and body weight gain (Berry and Crowley  2012 ). The 
residual feed intake (RFI) was proposed in the 1960s and eventually gained more 
recognition because it is considered phenotypically independent of growth and 
body size and focused on reducing the FI (Arthur et al. 200 1a,   b ). This phenotypic 
independence is due to the fact that the RFI is calculated as the difference between 
observed and estimated FI (based on maintenance of body weight and performance). 
Despite the good acceptance of the RFI, no measure of FE is defi nitive and there is 
no consensus on how to use this information in the selection process (Rolfe et al. 
 2011 ). In  B. indicus  cattle, the challenges are even greater because of the small 
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number of animals evaluated and limited knowledge about potential consequences 
of genetic selection in later generations (Barwick et al.  2009 ; Grion et al.  2014 ; 
Santana et al.  2014a ). 

 The evaluation of feed effi ciency is generally performed in young growing ani-
mals, so the problem presented by the low number of phenotypes obtained adds to 
the challenge of estimating breeding values for these animals with high accuracy 
(low or non-existent progenies). One way to deal with the young age and the rela-
tively low number of evaluated animals enabling a selection scheme under these 
conditions is by using molecular marker information via genomic selection. The 
inclusion of these markers can increase the accuracy of estimated breeding values 
of young animals and thus accelerate the process of genetic selection by reducing 
the interval between generations. 

 Even though such assessment is usually made in younger animals, the benefi ts of 
improvement in FE can be observed in every phase of beef cattle growth. There is 
evidence that selection for FE extends to all stages of the production. More effi cient 
animals in the calving phase also showed better FE in fi nishing (Arthur et al.  2001a , 
 b ) and dams with better FE in growing had lower FI in the adult stage with no dif-
ferences in reproductive rates (Arthur et al.  2005 ; Basarab et al.  2007 ). Basically, at 
the stage of calving, the effi cient dams can reduce FI and ensure their requirements 
for maintenance, reproduction and milk production to assure proper growth of their 
offspring annually. After weaning, at the phase of growing and fi nishing, the goal is 
to guarantee the muscle and lipid tissue growth until the animal reaches the ideal 
characteristics for slaughter. However, to understand the biology of FE, a holistic 
view is needed because these traits are very complex and genetics alone is insuffi -
cient to understand this biology.  

3     A Holistic View of Biology of Feed Efficiency 

 Although the biological basis for individual variation in feed effi ciency has not been 
fully elucidated, it is common sense that many physiological processes are involved 
in the regulation of this trait, such as feed intake, digestion, body composition, 
metabolism, activity and thermoregulation (Basarab et al.  2003 ; Herd and Arthur 
 2009 ; Herd et al.  2004 ). For many years, studies have focused on analyzing various 
specifi c aspects of this trait and we now know that animals with divergent pheno-
types for feed effi ciency also differ in temperament, feeding behavior, response to 
stress, appetite, fat deposition, oxygen consumption, energy expenditure, heat loss, 
mitochondrial function and others. 

 Using evidence from studies in cattle, chicken, pigs and mice, some authors 
have discussed that increased physical activity, ingestion behavior and stress are 
associated with lower effi ciency, and that they lead to greater metabolic rate and 
energy consumption (Herd and Arthur  2009 ; Herd et al.  2004 ). Recent studies in 
cattle also corroborate those results by reporting differences in feed effi ciency 
between animals classifi ed as “adequate temperament” and “excitable tempera-
ment” (Francisco et al.  2015 ); fl ightier animals present higher stress response to 
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initial handling and lower feed effi ciency, which suggests an involvement of the 
activation of both the sympatho–adrenal–medullary and hypothalamic–pituitary–
adrenal axes on the control of this trait (Cafe et al.  2011 ). Considerable variability 
in feeding behaviors within animals was also reported; low feed effi cient animals 
present longer feeding duration and feeding head down time, while high feed 
effi cient animals spend more time being sedentary (Kelly et al.  2010a ,  b ; Chen 
et al.  2014 ; McGee et al.  2014 ). 

 Considering that effi cient animals have lower feed intake to gain the same weight 
as ineffi cient animals, it is reasonable to expect that the former spend less time in 
feeding activities, but why do they eat less? Which mechanisms control the differ-
ences in satiety? Appetite is a complex biological process regulated by different 
signs coming from nutrients, hormones and neural cells that act on the hypothala-
mus (Sartin et al.  2011 ). Many studies have focused on understanding the infl uence 
of the hormone leptin on feed effi ciency because of its role in regulating body 
weight, feed intake, energy expenditure and even reproduction, infl ammation and 
immunocompetence (Kelly et al.  2010a ; Richardson et al.  2004 ). Although some 
discordance can be found in the literature, most of the studies show an association 
of higher leptin levels with lower FE, higher feed intake and higher fat deposition 
(Richardson et al.  2004 ; Kelly et al.  2010a ; Foote et al.  2016 ; Nkrumah et al.  2007 ; 
Hoque et al.  2009 ). Polymorphisms within genes related to appetite modulation 
have also been reported (Santana et al.  2014a ,  b ; Sherman et al.  2008 ). On the other 
hand, a few studies trying to understand the complex regulation of FE in the hypo-
thalamus showed no difference in circulating leptin level between high and low FE 
conditions (Perkins et al.  2014b ) or higher expression of leptin in adipose tissue of 
high FE animals (Perkins et al.  2014a ), which indicates that more studies are neces-
sary to understand the modulation of appetite in animals with divergent FE pheno-
types. Nevertheless, some important genes were pointed out as regulators of 
appetite, such as neuropeptide Y (NPY), relaxin-3 (RLN3) and pro- opiomelanocortin 
(POMC) (Perkins et al.  2014a ,  b ). In another study evaluating differences in hor-
mone expression profi le of high and low FE dairy cows, genes regulating adipocy-
tokine signaling pathways and insulin signaling pathways were differentially 
expressed in two groups (Xi et al.  2015 ). Interestingly, adipocytokine signaling 
pathways have leptin as key factor and play an important role in lipid metabolism 
(Zhao et al.  2013 ). 

 It is known that less effi cient animals have higher feed intake and that this phe-
notype can be controlled by differences in metabolism such as satiety control. 
Reduced liver size has been associated with higher feed effi ciency in beef cattle 
during compensatory gain (Connor et al.  2010 ). A smaller amount of small intesti-
nal mass was also associated with high feed effi ciency, which could indicate 
decreased nutrient and energy requirements for tissue maintenance, despite the 
greater mucosal density observed on this phenotype (Montanholi et al.  2013 ; Meyer 
et al.  2014 ). Moreover, lower skeletal muscle protein turnover rate was associated 
with effi cient animals, demonstrating the lower energy requirement for maintenance 
or, in other words, an energy economy in feed effi cient individuals (Castro Bulle 
et al.  2007 ). 
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 There are also metabolic consequences of consuming more food which, in turn, 
impacts on phenotypic measures such as the higher subcutaneous and visceral fat 
deposition reported in this group of animals (Santana et al.  2012 ; Nkrumah et al. 
 2007 ; Gomes et al.  2012 ; Basarab et al.  2003 ; Mader et al.  2009 ). Higher feed intake 
is associated with higher proportion of energy needed for maintenance because of 
the greater energy spent in feeding activities, digestion and tissue metabolism, since 
an increased size of the digestive organs is expected (Herd et al.  2004 ; Herd and 
Arthur  2009 ). 

 Tissues of the splanchnic bed (gastrointestinal tract, liver, spleen, pancreas and 
mesenteric fat depots), together with the associated connective tissue and blood ves-
sels, can be responsible for 35%–60% of the total oxygen consumption of the body 
(Seal and Reynolds  1993 ) and this variation seems to be associated with variation in 
feed intake (Huntington et al.  1988 ), whereas high feed effi cient animals (low feed 
intake) consume less oxygen (Chaves et al.  2015 ). Accordingly, lower plasma CO 2  
concentrations have been reported in high FE animals, which suggests a decreased 
oxidation process (Gonano et al.  2014 ), and in this regard, many studies investigat-
ing differences in mitochondrial function with respect to FE can be found. Data in 
the literature suggest that mitochondrial ADP has greater control of oxidative phos-
phorylation in the liver of high FE animals (Lancaster et al.  2014 ) and that increased 
mitochondrial function in those animals may contribute to improved feed effi ciency 
(Connor et al.  2010 ). Differences in mitochondrial complex I protein between diver-
gent FE phenotypes have also been reported (Ramos and Kerley  2013 ). In pigs, 
differences in mitochondrial function were reported when analyzing muscle 
(Vincent et al.  2015 ) and blood transcriptome (Liu et al.  2016 ), so lower oxidative 
metabolism was associated with high FE. 

 In a scenario where low FE animals have a more excitable temperament, higher 
background energy requirements, higher oxygen consumption and higher CO 2  con-
centration, it is reasonable to discuss that the associated increase in oxidative metab-
olism could be coupled with higher energy wastage as heat (Gonano et al.  2014 ). 
Indeed, the literature reports warmer thermographs for low FE individuals in ther-
moneutral environments, which represents a greater amount of heat dissipated by 
radiation (Montanholi et al.  2010 ; Montanholi et al.  2009 ; Archer et al.  1999 ). 
Contrarily, in warmer temperature environments, animals activate thermoregulatory 
functions and, in this case, low FE animals presented colder thermographs, which 
could indicate less effi cient control of body homeostasis (Martello et al.  2016 ). 

 As discussed above, many aspects of feed effi ciency need to be considered in 
order to understand the physiological differences related to this trait. In this regard, 
high-throughput approaches such as sequencing technologies and genome-wide 
association studies (GWAS), coupled with data integration and network methodolo-
gies, have given us some deeper insights into the regulation of this phenotype and 
hypotheses have been generated. These analyses showed genomic regions and can-
didate genes associated with feed effi ciency of beef cattle (Sherman et al.  2010 ; 
Rolf et al.  2012 ; Lu et al.  2013 ; Santana et al.  2014a ; Oliveira et al.  2014 ). Figure  1  
shows the genome-wide association for ADG, DMI, FCR and RFI in  B. indicus  
(Nellore) cattle (Santana et al.  2014a ,  c ). The associated SNPs were related to genes 
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involved in biological processes like feed intake control, body composition and ion 
transport.

   Karisa, Moore and Plastow (2014) proposed that variations in FE begin with dif-
ferences in glucose uptake into the cells by the infl uence of the GHR gene, insulin, 
creatine-AMPK and leptin on the effi ciency of its transport throughout the cytoplas-
mic membrane. Differences in energy, lipids, steroids and cholesterol metabolism 
were also identifi ed, which altogether could infl uence the formation rate of acetyl 
CoA (Karisa et al.  2014 ). Indeed, differences in fat deposition and lipid metabolism, 
with low FE animals showing higher cholesterol levels, were corroborated by our 
recent study (Alexandre et al.  2015 ). In ruminants, lipogenesis occurs with limited 
capacity in the liver and primarily in adipose tissues (Hannun and Obeid  2002 ). 
However, with elevated levels of fatty acids, uncoupled NADPH oxidation becomes 
more probable, generating increased oxygen-derived radicals and hydrogen perox-
ide in the liver (Knockaert et al.  2011 ). Higher oxidative stress and expression of 
antioxidant enzymes in the liver of low FE cattle have already been reported in 
several studies (Chen et al.  2011 ; Tizioto et al.  2015 ; Paradis et al.  2015 ; Al-Husseini 
et al.  2014 ). 

 Interestingly, in one of our recent papers, network analysis of liver transcriptome 
from low FE animals also indicated liver infl ammation, confi rmed by hepatic lesions 
observed in histopathology analysis and higher level of serum biomarker GGT 
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  Fig. 1    Manhattan plots of −log ( p -value) for average daily gain (ADG), dry matter intake (DMI), 
feed conversion ratio (FCR) and residual feed intake (RFI). The  horizontal lines  represent the 
Bonferroni modifi ed signifi cance threshold ( α  = 9.27 × 10 −5 )       
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(Alexandre et al.  2015 ). Corroborating our fi ndings, Paradis et al. ( 2015 ) found 
upregulated genes involved with innate immunity in the liver of LFE animals. These 
authors hypothesized that high FE animals spend less energy to battle systemic 
infl ammation, because they have better hepatic innate immunity response against 
endotoxins and bacterial products. Based on our results, we conclude that hepatic 
lesions caused increased liver infl ammation because these lesions were probably 
due to the metabolic stress generated by altered energy/lipid metabolism and/or due 
to increased bacterial infection from portal blood. Data in the literature support the 
two possibilities. 

 The oxidative stress found in LFE animals can also be an outcome of immune 
response and this is the point where the two previously presented possibilities con-
nect. In pigs, higher intestinal infl ammation and neutrophil infi ltration biomarkers, 
together with increased serum endotoxin, were reported for low FE animals (Mani 
et al.  2013 ). The authors hypothesized that effi cient animals have better capacity to 
clear, neutralize and detoxify endotoxins and that differences in bacterial population 
could partially explain the decrease in circulating endotoxins (Mani et al.  2013 ). 
Conversely, in cattle, differences in intestinal bacterial population between high and 
low FE animals have already been reported (Myer et al.  2016 ). Moreover, differ-
ences in genes responsible for xenobiotic metabolism in divergent FE phenotypes 
have already been shown (Tizioto et al.  2015 ; Alexandre et al.  2014 ; Alexandre 
et al.  2015 ; Chen et al.  2011 ). However, we cannot ignore that low FE animals have 
higher feed intake and this fact can be the cause of liver lesion and the consequent 
infl ammation. The high concentrate (corn and soy) diet provided in feedlot systems 
is a stressful challenge to the animals which could lead to acidosis and even rumini-
tis (Owens et al.  1998 ; Nagaraja and Lechtenberg  2007 ; Lechtenberg et al.  1988 ). 
Animals with higher feed intake also have higher prevalence of liver abscesses 
caused by bacteria from rumen (Nagaraja and Lechtenberg  2007 ). It is important to 
mention here that differences in rumen microbial population have already been 
pointed out as a contributing factor for FE (Myer et al.  2015 ).  

4     Application of Systems Biology in Feed Efficiency 
in Beef Cattle 

 As one can see above, several groups work with different approaches regarding the 
complex trait of feed effi ciency in beef cattle. Studies on behavior to single base 
polymorphisms in DNA could be found related to FE as well as gene expression 
from single genes in a given tissue to RNA-seq. Nonetheless, to date, no one has 
considered a truly systems biology approach with a holistic vision to characterize 
FE in beef cattle in depth. To perform such important studies, one should consider 
covering the totality (or as many as possible) of cell types, tissues, organs and the 
way they interact, i.e. plasma/serum/blood using the most quantitative and in-depth 
molecular biology techniques to analyze biological macromolecules such as pro-
teins, RNAs and DNA or other molecules such as lipids and metabolites. The 
“-omics” are necessary to perform a systems biology approach of any trait of 
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interest in any area of biological sciences. In addition, powerful computational tools 
are necessary to work with and understand the complexity of such huge databases 
(transcriptome, proteome, lipidome, metabolome, etc.) and propose models of inter-
actions between the molecules from different cell types, tissues and organs (Fig.  2 ). 
However, the use of cutting-edge molecular biology tools and advanced bioinfor-
matics does not guarantee good results per se. Clearly, one should be aware that 
experimental design and sampling are two of the most important factors in a sys-
tems biology approach, since this kind of experiments will cost much more than 
regular experiments. An adequate number of animals, their age, sex, diet, manage-
ment, etc., are equally important to achieving success.

   An example of systems biology application should fi rst consider the defi nition of 
the important cells/tissues/organs for a given phenotype. For feed effi ciency in beef 
cattle, one should at least consider the rumen, small intestines, liver, pancreas, adre-
nals, hypophysis and hypothalamus and plasma or serum. In addition, ruminal con-
tent could also be sampled for metagenomics. Next, one can consider using 
transcriptomic (Fig.  3 ) and/or proteomic analyses of specifi c cells and tissues, 
serum/plasma lipidomics and/or metabolomics coupled with other analytical 
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  Fig. 2    Example of a model for undirected gene interactions. Genes are represented by nodules 
and correlations are represented by the edges. Genes represented by the  darkest colors  are central 
in the network (hub genes) and so, a change in these genes expression would affect greatly the 
other genes (Data from Alexandre et al.  2015 )       
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analyses such as serum biochemistry and histology. In parallel, global DNA analy-
sis of the same animals should be performed as well or by SNP arrays, whole 
genome sequencing or the more targeted exome sequencing. The polymorphisms in 
DNA could be coupled with global gene expression in a given tissue, providing 
results known as eQTLs (expression quantitative trait loci). The genomic regions 
associated with specifi c profi le patterns of gene expression identify possible regions 
of  cis - and  trans -regulatory elements in the DNA as promoters, enhancers, silencers 
and insulators. The sum of these results should be analyzed with care and attention 
by a multidisciplinary team, since a biased vision of one specifi c area of knowledge 
could miss important fi ndings and viewpoints. Remember, the essence of systems 
biology is the holistic point of view!.

   After determining a systems biology model for a trait with the tools mentioned 
above, it is possible to go to the next level: analysis of the environmental impact 
on the trait by the regulation of gene expression, a.k.a. epigenetics. However, 
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researchers should consider performing this analysis fi rst (and maybe only) in 
central cell types or tissues for the trait, mostly to understand how the environ-
ment interacts with genes by regulating their expression. Understanding the epi-
genetics of a trait makes possible the search for specifi c substances that can 
modulate the trait centrally. In this context, global analysis or gene-specifi c analy-
sis can be made; the main focus should be on different mechanisms of control of 
gene expression, such as chromatin and DNA modifi cations controlling the initia-
tion of mRNA transcription, alternative splicing of mRNAs and its degradation by 
miRNAs or other non- coding RNAs (ncRNAs). Most recent techniques can evalu-
ate whole DNA epigenetic modifi cations as the methylome-seq made by bisulfi te 
conversion of methylated cytosines in uracil (RRBS-seq) or by immunoprecipita-
tion of methylated cytosines for DNA microarrays (MeDIP-chip) or next-genera-
tion sequencing (MeDIP-seq). It is also possible to characterize the open chromatin 
regions (regions with potential genes being expressed) by different techniques 
such as ATAC-seq (assay for transposase-accessible chromatin with high-through-
put sequencing), THS-seq (transposome hypersensitive sites sequencing) and 
DNS-seq (differential nuclease sensitivity sequencing). More recently, methods 
were designed to evaluate the relationship between multiple epigenetic modifi ca-
tions on the same DNA molecule, for example, NOMe-seq (nucleosome occu-
pancy and methylome sequencing). Another possibility is to determine the 
sequences of DNA regions associated with regulatory activity by DNase-seq 
(DNase I hypersensitive sites sequencing) and, more recently, by FAIRE-seq 
(formaldehyde-assisted isolation of regulatory elements). The epigenomics of 
specifi c cells or tissues will provide great evidence on gene expression patterns 
related to specifi c phenotypes generating information on possible ways to modu-
late them. 

 Alternative splicing of mRNAs in a given sample can be analyzed in theory by 
RNA-seq but with limitations, since the size of reads can be a problem for correct 
alignment and using the reference genome makes the detection of trans-splicing 
almost impossible. An innovative approach involves using nanopore DNA 
sequencer technology to generate long DNA sequences from cDNAs of specifi c 
primer RT reactions. However, this approach is still not high-throughput and 
gives information on a few genes at the same time, depending on primer design. 
Global miRNAs and long ncRNAs can also be determined by poly-A selection of 
mRNAs and RNA-seq or more specifi cally with commercially available kits for 
small RNAs and sequencing. This type of work has already been done in cattle 
divergently selected for residual feed intake (al-Husseini et al.  2015 ) and in pigs 
(Jing et al  2015 ). 

 Together, all information obtained from experiments analyzed with advanced 
bioinformatics tools should provide new hypotheses for modulating the phenotype 
more accurately. This will be possible by breeding or by controlled alterations in the 
environment (mainly diet and management).  
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5     Final Remarks and Perspectives 

 It is important to consider that selection for higher feed effi ciency can infl uence 
other important economical traits. The differences in body composition and in inter-
mediary metabolism discussed previously can impact reproductive traits. High FE 
heifers present less fat deposition and later sexual maturity, which in turn results in 
calving later in the calving season than low FE herdmates (Randel and Welsh  2013 ; 
Shaffer et al.  2011 ). Furthermore, feed effi cient bulls also have features of delayed 
sexual maturity, for instance, decreased progressive motility and higher abundance 
of tail abnormalities of the sperm (Fontoura et al.  2016 ). At present, in Brazil, selec-
tion for early pregnancy of Nellore heifers is considered a very important selection 
criterion. However, if that confl icts with feed effi ciency, a broader approach should 
be strongly recommended. Early pregnancy heifers mean more calves/cow, fewer 
cows to produce the same amount of beef and less gas emission. But if more effi -
cient cattle are not so precious, how one will be able to balance effi ciency versus 
production is an open question. Defi nitely, more studies are necessary to understand 
FE biology in order to help us select effi cient animals without compromising other 
important production traits. This will certainly be related to the application of sys-
tems biology on this important trait. 

   Conclusions 
•     Feed effi ciency in beef cattle is a very important and complex biological trait 

which is controlled by genetic and epigenetic effects.  
•   New molecular biology techniques and bioinformatics tools are already being 

used on feed effi ciency experiments.  
•   The use of systems biology will defi nitely speed up the gain of knowledge 

regarding the regulation of feed effi ciency.         
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    Abstract 
   A fuller understanding of the complexity of physiologic and metabolic adapta-
tions experienced by the modern high-producing dairy cow during the transition 
into lactation unavoidably requires application of systems biology, i.e. a way to 
systematically study the biological interactions within the cow using a method of 
integration instead of reduction. The use of high-throughput technologies, i.e. 
“omics,” along with bioinformatics are ideal for uncovering pathways, regulatory 
networks, and structural organization within and between tissues (e.g. adipose and 
liver, skeletal muscle and adipose, gut microorganisms and epithelia). The inte-
gration of this information results in a more holistic appreciation of how the cow 
functions, particularly when used within a framework encompassing nutrition as 
a tool for optimizing the ability to adapt to lactation without compromising health. 
This chapter fi rst outlines the current state of biological knowledge on fi ve key 
areas identifi ed as crucial for achieving marked gains in productivity. After a brief 
description of high-throughput technologies, we discuss breakthroughs in knowl-
edge at the tissue, cell, and rumen level. Major topics include regulation of feed 
intake, immune function, fat deposition, and the rumen microbiota. The goal is to 
provide specifi c examples of how genome- enabled approaches have been used to 
advance our understanding of tissue and cell function, and microbiota adaptations 
to dietary changes during the transition into lactation. The available research illus-
trates how a more widespread application of systems biology in ruminant nutri-
tion will, in the medium-to-long-term, enable scientists to design functional diets 
that enhance dairy cow productivity and health based on exploiting the plasticity 
of the rumen microbial ecosystem along with the cow’s full genetic potential.  
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1       The Nutrition–Physiology–Management Relationship 
in Modern Dairy Cattle 

 It is well-accepted among dairy nutritionists and physiologists that the period 
around parturition (“peripartum period”) and the fi rst 3 months of lactation are the 
most challenging in the life cycle of dairy cattle. Achieving homeostasis during the 
peripartum period and early lactation represents a monumental task in modern high- 
producing dairy cows (Drackley et al.  2006 ). It is for this reason that the mecha-
nisms underlying metabolic/physiologic adaptations in keys organs such as liver, 
adipose, and skeletal muscle during this physiological stage remain active areas of 
research (Drackley et al.  2006 ; Loor et al.  2013b ; Roche et al.  2013a ). There are 
several excellent reviews published in the last 5 years on the state of knowledge 
regarding the relationship among nutrition, physiology, and management in peripar-
tum dairy cows (Loor et al.  2013b ; Roche et al.  2013a ; Bradford et al.  2015 ; Sordillo 
 2016 ). 

 The main goal of this brief introduction is not to recapitulate the information 
already available but rather to summarize, in general, the state of knowledge in 
areas that were proposed by Drackley ( 1999 ) to be central for advancing our under-
standing of the linkage among nutrition, management, and physiology of the dairy 
cow during the transition from pregnancy into lactation. We also provide some 
thoughts on proposals that may be a bit controversial at the present time, particu-
larly because of lack of enough data. This section is meant to serve as the basis for 
a brief presentation and discussion in the other sections of this chapter of examples 
from work encompassing systems biology concepts related to nutrition and man-
agement of dairy cows. 

 The following are some of the key areas in which additional knowledge proposed 
by Drackley ( 1999 ) would provide the “largest gains in productivity and profi tabil-
ity in the next decade”: 

1.1     Control of Feed Intake 

 The fi rst review, to our knowledge, of the potential linkage between metabolism and 
intake regulation was published in 2000 (Ingvartsen and Andersen  2000 ). It was 
proposed then that signals such as “nutrients, metabolites, reproductive hormones, 
stress hormones, leptin, insulin, gut peptides, cytokines, and neuropeptides such as 
neuropeptide Y, galanin, and corticotrophin-releasing factor” likely play an “equally 
important role in intake regulation.” A recent review by Allen and Piantoni ( 2013 ), 
however, concluded that control of feed intake during the transition into lactation 
(“peripartum period”) is likely caused by “signals” produced during the oxidation 
of fuels in the liver. They proposed that “continuous supply of NEFA to the liver 
during the lipolytic state at this time likely suppresses feed intake, as they are oxi-
dized.” Although these authors present some persuasive arguments, we believe that 
additional mechanistic studies are required to fully test this overarching hypothesis. 
For instance, additional data on hepatic concentrations of acetyl-CoA across a 
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variety of diets would help establish the degree of association of this end-product of 
oxidative metabolism and feed intake. The neural control of feed intake also would 
have to be addressed in a more mechanistic fashion to fully understand what role (if 
any) peripheral signals discussed by Ingvartsen and Andersen ( 2000 ) have on the 
control of feed intake.  

1.2     Quantification of Nutrient Supply in the Face of a Rapid 
Change in Rate of Feed Intake and Gut Capacity 

 At least for the liver, a major breakthrough in this area was achieved by Reynolds 
et al. ( 2003 ) who meticulously determined splanchnic metabolism in dairy cows 
during the peripartum period and early lactation. For instance, it was determined 
that after parturition the rate of liver metabolism nearly doubles and is a key factor 
driving the increases in milk production and feed intake. The increase in feed intake 
was the main determinant of changes in splanchnic metabolism observed during the 
transition into lactation (Reynolds et al.  2003 ). Measured contributions of propio-
nate, lactate, alanine, and glycerol to hepatic glucose production were measured for 
the fi rst time. Recent studies have utilized similar approaches to determine the 
quantitative aspects of amino acid metabolism not only in splanchnic tissues but 
also whole-body and in the mammary gland (e.g. Larsen et al.  2015 ). In addition, a 
recent review (Zebeli et al.  2015 ) underscored the role of proper dietary and feeding 
management of peripartum cows in the context of optimizing the cow’s adaptations 
to lactation. The proper development of the rumen epithelium and other sections of 
the gastrointestinal tract during the peripartum period clearly could have an impact 
on allowing the cow metabolism to adapt to the onset of lactation.  

1.3     Interactions among Nutrition, Metabolism, 
and the Immune System 

 These linkages have received increased attention during the last 10 years, and the 
state of knowledge has been discussed in at least 5 reviews since 2009 (Sordillo 
et al.  2009 ; Bertoni and Trevisi  2013 ; Ingvartsen and Moyes  2013 ; Sordillo and 
Raphael  2013 ; Sordillo  2016 ). There is consensus that nutritional management 
around parturition and early lactation not only alters metabolism, but contributes to 
proper functioning of the immune system. Overall, it is widely accepted that the 
immune system of peripartum dairy cows is “dysfunctional,” with a number of 
important functions being substantially reduced not only in neutrophils (e.g. chemo-
taxis, phagocytosis) but also in monocytes (TNF production) and lymphocytes 
(total numbers, IFN-γ) (Moyes  2015 ). Novel benefi cial roles for essential nutrients 
such as methionine in the context of immune function and oxidative stress around 
parturition have emerged (Osorio et al.  2013b ,  2014a ,  b ). Despite substantial prog-
ress in this area of research, there is still a gap of knowledge on the regulatory 
mechanisms whereby specifi c nutrients, e.g. vitamins, microminerals, essential 
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amino acids, and essential fatty acids, elicit positive effects on the immune and 
metabolic function of the cow.  

1.4     Metabolic Regulation in, and Interactions Among Liver, 
Adipose, Muscle, and the Digestive Tract 

 The fi rst comprehensive dataset addressing metabolic regulation in a tissue of dairy 
cows during the peripartum period were generated by McNamara’s laboratory on 
adipose tissue (McNamara  1991 ,  1997 ). The work of Reynolds et al. ( 2003 ) pro-
vided the most complete dataset of hepatic metabolic regulation during the peripar-
tum period and early lactation. Those original studies have led other scientists to 
focus on understanding better specifi c pathways such as gluconeogenesis from the 
standpoint of carbohydrate (e.g. Aschenbach et al.  2010 ) or amino acid (Larsen and 
Kristensen  2013 ) nutrition. Others in the 1980s had addressed the endocrine regula-
tion of metabolism during lactation (Collier et al.  1984 ). Despite the vast amount of 
knowledge on endocrine regulation of metabolism, recent research indicates that 
there are additional factors, e.g. serotonin, that potentially play a role in coordinat-
ing metabolic adaptations to lactation in the cow (Laporta et al.  2015 ).  

1.5     “Body Condition” at Parturition and Its Relationship 
with Nutrition in the Context of Metabolic Responses 
to Onset of Lactation 

 The body condition score (BCS) of a dairy cow is an assessment of the proportion 
of body fat that it possesses, and it is recognized by animal scientists and producers 
as being an important factor in dairy cattle management (Roche et al.  2009 ). It is 
now widely recognized that for many production and health variables, there is no 
linear relationship with BCS, i.e. lower BCS at calving is associated with lower 
production and impaired reproductive capacity, while higher BCS is associated with 
a reduction in feed intake and milk production and a higher risk of metabolic disor-
ders (Roche et al.  2013b ). Work to date clearly underscores that genetics of the cow, 
nutrition, and management are key factors interacting with BCS to determine the 
risk of health disorders (Roche et al.  2013b ). 

 Clearly, there has been a substantial amount of progress generated on the link-
ages among nutrition, physiology, and management of dairy cows during the critical 
peripartum period. However, there are still important gaps in knowledge at an organ 
level and more importantly at the systems level. The remaining sections of this 
chapter introduce important technologies that already have been used to better 
understand regulatory mechanisms at the gene, transcript, protein, and metabolite 
levels. Figure  1  depicts the conceptual framework for the application of systems 
biology approaches to better understand the underlying mechanisms associated 
with successful and unsuccessful physiologic adaptations of lactation.
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  Fig. 1    Conceptual framework for the application of systems biology approaches to better under-
stand the underlying mechanisms associated with successful and unsuccessful physiologic adapta-
tions of lactation       
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2         The Technologies 

 During the last decade of the twentieth century, growing interest to understand how 
genes control physiological processes in the body motivated scientists to initiate the 
Human Genome Project. Due to the massive amount of sequences along the whole 
genome, there was a need for developing faster high-throughput screening tech-
niques for detecting small cellular molecules, identifying hundreds of thousands of 
genes, and the protein and metabolite products (Loor et al.  2013b ). 

 The fi rst “omics” technologies were the automated DNA sequencer and the ink-
jet DNA synthesizer developed by Leroy Hood and colleagues as a tool for global 
gene expression analysis, also known as “transcriptomics” (Hood  2002 ). Hood’s 
group also introduced the protein sequencer and the protein synthesizer to study the 
available protein expression at the cellular level, a process known as “proteomics.” 
With the emergence of metabolomics studies, i.e. investigating the cellular metabo-
lite profi ling, started by Frank Baganz and his group (Oliver et al.  1998 ), the fi eld of 
“systems biology” aimed at piecing together information including transcriptomics, 
proteomics, and metabolomics. The goal was to understand the “big picture” within 
the whole system by tracking the metabolic fl ux from gene expression to metabo-
lites (Winter and Kromer  2013 ). 

2.1     Transcriptomics 

 The transcriptome is the total expressed RNA (i.e. mRNA, non-coding RNA, rRNA, 
and tRNA) in a cell or tissue, thus representing a snapshot of the cellular metabo-
lism. The transcriptome era started when Schena et al. ( 1995 ) from Stanford 
University developed the “microarray” technology, allowing for the analysis of cel-
lular mRNA on a large scale. However, the recent introduction of high-throughput 
next-generation DNA sequencing (NGS) technology has revolutionized transcrip-
tomics by allowing RNA analysis through cDNA sequencing on a massive scale 
(RNA-seq) (Voelkerding et al.  2009 ). This technology eliminated several challenges 
posed by microarray technologies, including the limited dynamic range of detec-
tion, while providing further detailed information on the non-coding RNA portion 
of the total RNA, enabling the understanding of complex regulatory mechanisms 
(e.g. epigenetics).  

2.2     Proteomics 

 The term “proteome” was coined by Wasinger et al. ( 1995 ) and was defi ned as 
the characterization and quantifi cation of all sets of proteins in a cell, organ, or 
organism at a specifi c time. A proteome analysis provides the protein inventory 
of a cell or tissue at a defi ned time point, facilitating the discovery of novel bio-
markers, identifi cation and localization of posttranslational modifi cations, and 
study of protein–protein interactions (Chandramouli and Qian  2009 ). In the past 
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decade, major developments in instrumentation and methodology for proteomics 
have been achieved (May et al.  2011 ). The core of modern proteomics is mass 
spectrometry (MS) (Aebersold and Mann  2003 ), a technique in which the chemi-
cal compounds in a sample are ionized and the resulting charged molecules 
(ions) are analyzed according to their mass-to-charge ( m / z ) ratios. One- or two-
dimensional polyacrylamide gel electrophoresis (1D-PAGE, 2D-PAGE) is often 
used for simple preseparation of complex protein mixtures before MS analysis. 
To further enhance automation in the process, different types of liquid chroma-
tography (LC or HPLC) are used to complement or substitute gel-based separa-
tion techniques.  

2.3     Metabolomics 

 Metabolomics consists of the global profi ling of metabolites utilizing high- 
resolution analysis together with statistical tools such as principal component analy-
sis (PCA) and partial least squares (PLS) to derive an integrated picture of 
metabolites (Zhang et al.  2012 ). The wide spectra of molecules detectable by this 
approach includes peptides, amino acids, nucleic acids, carbohydrates, organic 
acids, vitamins, polyphenols, alkaloids, and inorganic species. Metabolome analy-
sis may be conducted on a variety of biological fl uids and tissue types and may 
utilize a number of different technology platforms. As one of the most common 
spectroscopic analytical techniques, nuclear magnetic resonance ( NMR ) can 
uniquely identify and simultaneously quantify a wide-range of organic compounds 
in the micro-molar range, providing unbiased information about metabolite profi les. 
Application of MS is gaining increased interest in high-throughput metabolomics, 
often coupled with other techniques such as chromatography (GE-MS, LC-MS, 
UPLS-MS) or electrophoretic techniques (CE-MS). Due to its high sensitivity and 
wide range of covered metabolites, MS has become the technique of choice in many 
metabolomics studies.  

2.4     Microbiome Analysis 

 Although various culture-dependent approaches were traditionally used to inves-
tigate the rumen microbiota (Russell and Rychlik  2001 ), over 90% of the micro-
bial communities are uncultivable due to their sensitivity to the extra-ruminal 
environment, even when utilizing anaerobic cell culture chambers. This limitation 
has for decades slowed our understanding of the complexity of the rumen micro-
biota. With the rise of omics-based technologies in the 1990s, culture-independent 
techniques to evaluate the ecology and its functional relevance such as qPCR, 
pyrosequencing of the 16S ribosomal RNA gene, metagenomics, and metatran-
scriptomics have been recently applied to address issues related to ruminant nutri-
tion as an important means of predicting microbiota responses to dietary changes 
(McCann et al.  2014 ).   
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3     The Metabolic and Genetic Regulation of Intake 

 Voluntary feed intake is an essential parameter for all livestock enterprises, and is at 
the center of an animal’s ability to express its full genetic potential for a productive 
purpose. Feed intake control and management plays a strategic role in dairy cows, 
especially during the transition to lactation. As stated by Drackley ( 1999 ), “the pri-
mary challenge faced by cows is a sudden and marked increase of nutrient require-
ments for milk production, at a time when DMI, and thus nutrient supply, lags far 
behind.” Due to its multifactorial nature, and taking advantage of the broad spec-
trum of the omics technologies, DMI regulation is the perfect target for a systems 
approach. This said, omics technologies have not yet been widely used to investi-
gate feed intake regulation. 

 The control of feed intake is a complex process that results from the integration 
of multiple short- and long-term signals at the feed intake regulatory centers in the 
brain (Morton et al.  2006 ). As the central nervous system is the main player in DMI 
regulation (Ahima and Antwi  2008 ), scientists started focusing on its physiology in 
dairy cattle. For example, comparing the prepartum cerebrospinal fl uid proteome 
with the postpartum profi le allowed Kuhla et al. ( 2015 ) to conclude that in early 
lactation, the pathway involved in the processing of prohormone convertase PC2 is 
important for the activation of various propeptides controlling feed intake and 
energy homeostasis. The authors particularly emphasized the importance of an 
increased amount of neurosecretory protein VGF, proenkephalin-A, and secretogra-
nins, and an increased tone of endogenous opioids associated with the postparturi-
ent increase of feed intake (Kuhla et al.  2015 ). 

 Food (or energy) restriction can be used experimentally to gain insights into the 
mechanisms of controlling energy homeostasis and food intake regulation. 
Hypothalamic samples from feed restricted cows were collected and subjected to 
proteomic analysis (Kuhla et al.  2007 ). The data revealed not only lower availability 
of substrates but also that oxidative stress plays a role in regulating hypothalamic 
hormones. Synthesis of reactive oxygen species has been previously associated with 
reduced performance of dairy cows during the transition period (Abuelo et al.  2015 ). 
Because peripheral tissues can participate in their production, they can indirectly 
contribute to the regulation of feed intake. For example, not only the small and large 
intestine but also other gastrointestinal tract components (e.g. rumen, abomasum), 
liver, muscle, adipose, and other splanchnic organs express peptides such as PYY 
and GCG, thus, could affect the CNS and regulate intake (Pezeshki et al.  2012 ). 

 Adipose tissue has historically been a central player in the context of peripheral 
organs and their ability to regulate intake and energy homeostasis. In fact, gene 
profi ling in dairy cows has revealed that the secretion of adipokines, such as leptin 
and resistin, is responsive to the metabolic status of the cow during the transition 
period or a period of negative energy balance (Friedrichs et al.  2016 ). Work in non-
ruminants has clearly demonstrated that the effects of leptin on food intake and 
energy homeostasis are mediated via a network of orexigenic and anorexigenic neu-
ropeptides (Ingvartsen and Boisclair  2001 ). In dairy cows, plasma resistin levels are 
high 1 week after calving and positively correlated with plasma NEFA levels and 
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negatively correlated with milk yield, DMI and energy balance (Reverchon et al. 
 2014 ). Thus, the action of resistin on control of feed intake might be more con-
nected to its metabolic and lipolytic effects (Reverchon et al.  2014 ). 

 In addition to plasma metabolites and hormones participating as humoral signals 
in the control of feed intake, oxidative metabolic processes in peripheral organs can 
also generate signals to terminate feeding. The periprandial pattern of fuel oxidation 
can, in fact, be involved in short-term regulating feeding behavior in the bovine 
(Allen et al.  2005 ; Allen et al.  2009 ). Furthermore, through the use of indirect calo-
rimetry, and milk and plasma analysis, Derno et al. ( 2013 ) were able to demonstrate 
how each single feed intake event induced a nearly constant time-delayed change in 
net carbohydrate (COX net ) and net fat oxidation (FOX net ) in late lactation Holsteins 
fed ad libitum. Cows seemed to initiate feed intake in response to an accelerated 
FOX net  rate and a decelerated COX net  rate, respectively. As postprandial increases in 
COX net  and FOX net  coincide with times in which cows did not eat, the occurrence of 
metabolic oxidative processes was hypothesized to signal feed intake suppression, 
which lends support to the hepatic oxidation theory of Allen et al. ( 2009 ). The rela-
tionships among peripheral tissue and the central nervous system, and their ability 
to intercommunicate in the regulation of feed intake, call for the systems approach 
as the only suitable way to pursue the understanding of this complex topic as a way 
to gain further knowledge for future application in nutritional strategies. 

 Genetic merit analyses have recently been conducted to study feed intake regula-
tion as a way to determine the existence of a genetic component that could, in the 
future, be exploited for the development of focused selection strategies (Tetens et al. 
 2014 ; Shonka et al.  2015 ). Spurlock et al. ( 2012 ) fi rst demonstrated how both DMI 
and energy balance likely respond to selection pressure. Subsequently, Rocco and 
McNamara ( 2013 ) confi rmed, for example, how regulation of adipose tissue metab-
olism in lactation is a function of both diet and genetic merit and is controlled by 
multiple mechanisms including gene transcription and posttranslational protein 
modifi cations. These data established the foundation for selection of animals spe-
cifi cally for feed intake, opening the possibility to generate genetic lines with high 
and low DMI, hence, allowing for direct comparisons of the underlying regulatory 
mechanisms controlling feed intake.  

4     Immunonutrition: A Future Frontier 

 Perhaps because of a lack of formal training outside classical concepts in nutrition, 
ruminant nutritionists primarily focus on meeting the production requirements of 
dairy cows, without truly dissecting what components of maintenance requirement 
might affect performance. There is substantial evidence indicating that the immune 
system is intimately involved with other mechanisms that allow cows to adjust 
quickly to the onset of lactation without suffering chronic disorders. In fact, cows 
that lag behind the rest of the herd in terms of production outcomes (including fertil-
ity) often display a greater infl ammatory status and compromised liver function 
(Bionaz et al.  2007 ; Bertoni et al.  2008 ; Trevisi et al.  2012 ). The lower DMI of the 
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health-impaired animals (Trevisi et al.  2012 ) is not surprising, because infl amma-
tory molecules often have anorexogenic effects (Plata-Salaman  1998 ,  2001 ; Wong 
and Pinkney  2004 ). Because it is now generally agreed that the postpartum negative 
energy balance is mainly caused by the reduction in DMI, rather than the increase 
demand of the mammary gland (Grummer et al.  2010 ), health and immunity has to 
be a focus of nutritionists aiming to improve the adaptation of the cow to lactation 
(LeBlanc  2010 ). 

 Several studies reported that both the innate and adaptive immune systems in 
peripartal cows are often compromised; for example, cytokine production is 
impaired (Sordillo and Babiuk  1991 ; Ishikawa et al.  1994 ), oxidative burst activity 
is reduced (Dosogne et al.  1999 ), and consequently phagocytic activity by leuko-
cytes is often (Ingvartsen et al.  2003 ), but not always (Sander et al.  2011 ; Graugnard 
et al.  2012 ), reduced. To better understand the parturition “effect” on cow defense 
mechanisms, Burton et al. ( 2001 ) hybridized leucocyte RNA harvested 6 h after 
parturition to a custom oligo microarray and compared the gene expression to data 
obtained at 2 weeks prepartum. They uncovered that parturition repressed the 
expression of genes involved in the classic immune response as well as other genes 
known to be important in normal cell growth, metabolism, and responsiveness to the 
blood environment. Therefore, they concluded that parturition infl uences the expres-
sion of multiple leukocyte genes required for normal functioning of these cells, a 
fact that could easily explain the dysfunctional capacities of leukocytes from peri-
parturient cows. The authors, however, did not determine which population of leu-
kocytes was affected or what factors of parturition caused the repression of gene 
expression. Preliminary studies at that time implicated neutrophils as the main tar-
get of parturition-induced gene expression changes (Madsen et al.  2002 ; Weber 
et al.  2001 ), and currently most of the research efforts are focused on this specifi c 
population. For example, other microarray data revealed how neutrophils undergo 
great stress around parturition, a feature highlighted by the increased expression of 
antiapoptotic genes, as if these cells were trying to counteract a reduction in viabil-
ity (Madsen et al.  2004 ). A more focused expression analysis further described how 
the changes in neutrophils activity observed around calving appeared related, at 
least in part, to alterations in purinergic signaling as well as changes in expression 
of genes associated with adhesion and chemoattractant binding (Seo et al.  2013 ). 

 Pharmaceutical treatment through the use of different drugs (e.g. non-steroidal 
anti-infl ammatory compounds) have been used in different scenarios to neutralize 
the infl ammatory state displayed, at different degrees, by almost every dairy cow, 
albeit with different results (Bertoni et al.  2004 ; Farney et al.  2013 ; Meier et al. 
 2014 ). Nutritional strategies, even if sometimes ineffective, such as level of dietary 
energy in the dry-period diet (Graugnard et al.  2012 ; Zhou et al.  2015 ), dietary 
amino acid balance (Yuan et al.  2014 ), or natural additives (Garcia et al.  2015 ) have 
resulted in some positive effects on the immune function. From a consumer stand-
point, much more attentive now than before to the use of drug in food animals, 
nutritional approaches to boost the immune system and reduce incidence of disor-
ders are seen in a positive light. 
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 As the metabolic and immune networks are deeply connected (Mathis and 
Shoelson  2011 ), a systems approach clearly is benefi cial when attempting to under-
stand the underlying mechanisms elicited by different immunonutrition strategies. 
Because immune cell function seems to be dysfunctional during early lactation, the 
feed additive industry has placed some emphasis on developing “immunostimu-
lants” as dietary supplements. For example, recent results indicated a positive role 
of a commercially available immunostimulant (OmiGen-AF®, Phibro Animal 
Health Corporation, USA) in enhancing leukocyte function which would provide 
added antibacterial capacity during the peripartum (Nace et al.  2014 ). A transcrip-
tome analysis, coupled with the more traditional Western blot procedure, revealed 
how these improvements might be due to changes in expression that might alter 
neutrophil apoptosis, signaling, sensitivity, and response (Wang et al.  2007 ,  2009 ). 

 Specifi c dietary treatments that have been successful in improving leucocyte 
activity include methionine and other rumen-protected amino acids (Osorio et al. 
 2013a ; Yuan et al.  2014 ), dietary nitrogen level (Raboisson et al.  2014 ), alpha1-acid 
glycoprotein (Rinaldi et al.  2008 ), and orange oil (Garcia et al.  2015 ). However, the 
molecular technologies (i.e. holistic approach) are mostly helping us understand 
some of the “mistakes” in what is considered standard in today’s dairy management 
systems. The most resounding case regards dry cow management, and its effect, 
among others, on cow health status and immunity. Traditional management pro-
vides “far-off” dry cows with a high-fi ber/low-energy density diet, while in the last 
month of gestation (“close-up” dry period) the diet increases in energy density with 
a lower fi ber content. However, studies from different research groups have demon-
strated that prepartum overfeeding of energy often results in prepartum hyperglyce-
mia and hyperinsulinemia and marked postpartum adipose tissue mobilization (i.e. 
greater blood NEFA concentration) (Rukkwamsuk et al.  1999 ; Holtenius et al. 
 2003 ; Janovick et al.  2011 ; Ji et al.  2012 ,  2014 ; Khan et al.  2014 ). In addition, 
higher-energy close-up diets have also been associated with negative effects on 
postpartum health indices, underscoring the possible detrimental effects of this 
management approach (Dann et al.  2006 ; Soliman et al.  2007 ; Graugnard et al. 
 2013 ; Shahzad et al.  2014 ). 

 Transcriptome profi ling of neutrophils revealed that allowing cows free access to 
higher-energy diets during late pregnancy resulted in the alteration of genes encom-
passing pathways associated with the immune response (Moyes et al.  2014 ; Zhou 
et al.  2015 ). Furthermore, phagocytosis activity of these cells was impaired, and 
early prepartal activation of infl ammatory genes suggested a chronic state of com-
promised health (Moyes et al.  2014 ; Zhou et al.  2015 ). Transcriptomic studies fur-
ther highlighted how this practice not only impairs immune function, but affects the 
whole system of the cow as indicated by alterations in endoplasmatic reticulum 
stress in hepatocytes, probably as a consequence of a higher activation of 
infl ammatory- related functions (Shahzad et al.  2014 ). These omics data also 
revealed a predisposition of cows to fatty liver while compromising overall liver 
health during the periparturient period, as indicated by pro-infl ammatory gene 
expression (Loor et al.  2006 ). 
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 A surprising response of the higher-energy feeding approach during the close-up 
is that carry-over effects of this type of diet can be detected in the offspring of the 
cows (Osorio et al.  2013b ), albeit with an opposite positive effect, because calves 
from dams fed the higher-energy prepartum had greater neutrophil phagocytosis 
after birth (Osorio et al.  2013b ). Other studies have also indicated how applying an 
increased plane of nutrition directly to the neonate (and not the mother) can have 
benefi cial effects on the calf immunity (Obeidat et al.  2013 ; Ballou et al.  2015 ). 
Although the occurrence of an “epigenetic” mechanism leading to these effects has 
not been demonstrated, Chang et al. ( 2015 ) were able to provide some evidence of 
how a high-concentrate diet could activate epigenetic mechanisms that contribute to 
the expression of immune-related genes in the livers of dairy cows. The data revealed 
how chromatin decompaction and DNA demethylation in relevant areas of the pro-
moter of candidate immune genes are strongly correlated with their upregulation of 
expression. In light of these recent fi ndings, further studies are needed to better 
understand how dietary strategies could not only affect the cow, but also the calf (i.e. 
the future productive animal). 

 The benefi cial effects of rumen-protected methionine supplementation during 
the transition period could be used to counteract the negative outcome of a high- 
energy plane of nutrition during the dry period. In fact, when supplemented with 
rumen-protected methionine, the temporal adaptations in expression of PMN 
genes related with migration, development and cellular antioxidants indicated 
effectiveness in alleviating the negative effects of prepartal energy-overfeeding 
(Li et al.  2016 ). Furthermore, the similar DMI and milk yield of those cows com-
pared with cows fed the lower-energy diet strengthened the idea that methionine 
helps overcome the limitations of overfeeding energy during the prepartal period 
(Li et al.  2016 ).  

5     Systems Biology Concept in Animal Nutrition 
and Physiology 

 There is compelling evidence that integrating both omics and bioinformatics tools 
in peripartal cow nutrition will enhance our understanding of the complex biologi-
cal functions, interactions, and adaptations among key organs (Loor et al.  2013a ,  b , 
 2015 ). Furthermore, the omics approach also will help unmask the complex compo-
sition of the gut microbial ecosystems and their relation to animal health and milk 
production. Because of its dynamic nature, application of these tools during the 
transition period from pregnancy through the onset lactation will result in the big-
gest gain in knowledge. In turn, the accumulated knowledge would enable nutrition-
ists in the medium-to-long term to develop more effective diets tailored to enhance 
animal health, improve the rumen microbial profi le, reduce metabolic disorders, and 
optimize milk production. Below are examples of published work since 2013 in 
which a systems approach was used to study individual tissues or the rumen micro-
biome (Table  1 ).
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5.1       Liver 

 A recent study provided novel data on the hepatic transcriptome adaptations to feed 
restriction during early lactation and reduced milking frequency in grazing cows 
(Grala et al.  2013 ). Cows that were underfed for 3 weeks, i.e. were energy-restricted, 
had a marked activation of glucose-sparing pathways as well as gluconeogenesis. 
Genes involved in hepatic stress (e.g. angiopoietin-like 4,  ANGPTL4 ; glutathione 
peroxidase 3,  GPX3 ) were upregulated in response to the energy restriction under-
scoring the pressure energy restriction places on liver function (Grala et al.  2013 ) 
even in grazing cows which produce less milk than contemporary confi nement-fed 
cows. It was noteworthy that the “cytoskeletal remodeling” pathway also was acti-
vated, indicating that enhanced tissue remodeling was a feature of hepatic adapta-
tions to energy restriction. From a nutritional standpoint, the marked inhibition of 
“vitamin B6 metabolism” and “biosynthesis of unsaturated fatty acids” during feed 
restriction underscored the existence of key pathways that could be controlled via 
nutrition, e.g. dietary supplementation, to help alleviate stress on the liver during 
periods like the transition into lactation when all cows experience a normal decline 
in feed intake. 

 The extensive bioinformatics and gene network analyses of the hepatic transcrip-
tome performed by Shahzad et al. ( 2014 ) revealed that feed restriction prepartum 
had a positive effect on the liver from the standpoint of overcoming the postpartal 
metabolic and infl ammatory challenges. For example, the analysis of metabolic 
pathways revealed that energy restriction helped prime the liver by activating path-
ways related with the utilization of fatty acids and amino acids through ketogenesis 
and gluconeogenesis. Furthermore, the liver of energy-restricted cows seemed to 
have a higher capacity to cope with endoplasmic reticulum stress, which may lead 
to a decrease in hepatic protein synthesis. The hepatic infl ammatory-related response 
also was activated by feed restriction through the upregulation of genes involved in 
the acute-phase response. 

 The upstream gene network analysis performed by Shahzad et al. ( 2014 ) uncov-
ered that healthy liver adaptations associated with energy restriction might be con-
trolled by stimulating lipid-related transcription factors involved in fatty acid 
oxidation and cell stress including the peroxisome proliferator-activated receptors 
(PPARs) and nuclear factor (erythroid-derived 2)-like 2 ( NFE2L2 ). In contrast to 
these seemingly positive adaptations in the transcriptome, overfeeding during the 
prepartum period activated hepatic triacylglycerol synthesis and lipid accumulation, 
leading to mild hepatic lipidosis after parturition. The authors discussed how greater 
lipid infi ltration could have activated cell proliferation and cell-to-cell communica-
tion pathways in the liver. 

 MicroRNA (miRNA) are small non-protein coding RNA molecules containing 
19–22 nucleotides which act as endogenous posttranscriptional regulators of gene 
expression (e.g. glucose homeostasis and insulin signaling) (Dumortier et al.  2013 ) 
and play important regulatory roles in metabolism (Alisi et al.  2011 ). Recent studies 
have used RNA-seq technology to screen the hepatic miRNA expression profi les in 
early lactating cows undergoing negative energy balance (McCabe et al.  2012 ; 
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Fatima et al.  2014a ,  b ). The most abundant miRNA in the liver are involved in glu-
cose and insulin metabolism, e.g. miR-122, miR-192, miR-3596, let-7c, let-7i, let-
 7g, and let-7f. Furthermore, miR-17, miR-31, and miR-140 were upregulated during 
negative energy balance and have been associated with hepatic disorders such as 
fatty liver, oxidative stress, cholestasis, fi brosis, dysplasia, and cirrhosis. Clearly, 
application of RNA-seq provided additional information on the role of small RNA 
molecules in the control of transcription and liver function during negative energy 
balance after parturition. Additional studies would have to be performed to deter-
mine the functional outcome of the changes in miRNA profi les.  

5.2     Adipose Tissue 

 Relative to transcriptome studies in liver, few studies have evaluated the transcrip-
tome during the peripartum period in adipose tissue (Sumner-Thomson et al.  2011 ; 
Bionaz and Loor  2012 ). Data from those studies were discussed by Loor et al. 
( 2013a ,  b ) and will not be discussed in this chapter. Among the qPCR- based studies 
published recently to detect the effects of dietary energy prepartum and degree of 
adiposity (“body condition score,” BCS) at parturition, our group revealed a nega-
tive effect of feeding a high-energy diet prepartum to over- conditioned cows (BCS 
5, on a 10-point scale) through driving adipogenesis by upregulating the expression 
of fatty acid synthase ( FASN ), leptin, and proadipogenic miRNA such as miR-378 
and miR-143 (Vailati-Riboni et al.  2016 ). In addition, this study revealed an upregu-
lation of expression of chemokine ligand 5 ( CCL5 ) and the cytokines interleukin 6 
( IL6 ) and tumor necrosis factor ( TNF ), which indicated a pro-infl ammatory response 
after parturition. The authors discussed the link among these changes and the 
increase in lipolysis, which often leads to higher susceptibility for hepatic triacylg-
lycerol accumulation and impaired liver functions (Vailati-Riboni et al.  2016 ). 

 Saremi et al. ( 2013 ) and Haussler et al. ( 2015 ) reported little or no effect of 
dietary supplementation of conjugated linoleic acid (CLA) for 105 days postpartum 
on the expression of serum amyloid A3 ( SAA3 ) (an adipokine associated with insu-
lin resistance) and monocyte chemoattractant protein-1 ( MCP - 1 ) (a chemokine syn-
thesized by adipocytes) in adipose tissue. Other PCR-based studies found no effects 
of feeding a high-energy diet prepartum on the expression nutrient-sensing recep-
tors such as hydroxycarboxylic acid receptor 2 ( HCAR2 ) (Friedrichs et al.  2016 ) or 
the Sirtuin-1 ( SIRT1 ) PPARγ co-activator 1α ( PPARGC1A ) axis in adipose tissues 
(Weber et al.  2016 ).  

5.3     Immune Cells 

 Sasaki et al. ( 2014 ) used microarray technology to identify the affected gene net-
works in peripheral blood mononuclear cells associated with hypocalcemia in dairy 
cows. The authors uncovered 98 affected genes in cows affl icted with hypocalcemia 
and among those the expression of protein kinase (cAMP-dependent, catalytic) 

M. Vailati-Riboni et al.



113

inhibitor β ( PKIB ), DNA-damage-inducible transcript 4 ( DDIT4 ), period homolog 
1 ( PER1 ), and NUAK family, SNF1-like kinase 1 ( NUAK1 ) were closely associated 
with both experimental hypocalcemia and milk fever. Although the authors did not 
perform a bioinformatics analysis of the data, the results support the view that “the 
effect of hypocalcemia on the mRNA expression of these genes in the tissues that 
regulate calcium homeostasis in dairy cows should be determined.”  

5.4     Rumen Epithelium 

 Recent transcriptome studies revealed that preweaning development is associated 
with activation of pathways related to cell morphology, cell death, cell cycle, cel-
lular growth, cellular proliferation, molecular transport, and lipid metabolism, while 
the postweaning stage is more associated with activation of cell adhesion molecules, 
p53 signaling, and fatty acid metabolism pathways (Connor et al.  2013 ; Naeem 
et al.  2014 ). Early nutrition in dairy calves also could play a vital role in modulating 
gene expression in rumen papillae. For example, introducing high-protein milk 
replacer (containing 28.5% crude protein) plus high-crude protein starter (contain-
ing 25.5% crude protein) to dairy calves until 42 days of age improved rumen devel-
opment and elicited more effi cient utilization of nutrients (Naeem et al.  2014 ). The 
latter was surmised through the bioinformatics analysis of transcriptome data 
revealing the activation of “carbohydrate metabolism” through inducing citrate 
cycle, galactose metabolism, butanoate metabolism, glycolysis/gluconeogenesis, 
and pyruvate metabolism (Naeem et al.  2014 ). Furthermore, lipid metabolism also 
was activated primarily because of the induction of steroid biosynthesis, sphingo-
lipid metabolism, and biosynthesis of unsaturated fatty acids (Naeem et al.  2014 ). 
In another study dealing with the transcriptome adaptations of rumen epithelium to 
feeding grain- versus hay-based diet, Connor et al. ( 2014 ) uncovered that feeding 
grain enhanced the development of the rumen papillae through activating transcrip-
tion factors such as transforming growth factor β1 ( TGFB1 ), forkhead box O1 
( FOXO1 ), and peroxisome proliferator-activated receptor alpha ( PPARA ) transcrip-
tion factors. In contrast, feeding hay provided more available energy to rumen epi-
thelium in the form of butyrate production. As a result it was hypothesized that 
butyrate could have stimulated the expression of the transcription factor estrogen- 
related receptor alpha ( ESRRA ), hence, playing a role in energy metabolism of the 
developing rumen (Connor et al.  2014 ). 

 Transcriptome analysis using microarrays revealed that rumen epithelium adapts 
to a high-energy diet after parturition by activating epidermal growth factor signal-
ing ( EGFR ), growth hormone receptor ( GHR ), and transforming growth factor β1 
( TGFB1 ) pathways, all of which may enhance VFA utilization by rumen epithelium 
(Steele et al.  2015 ). Additional genes that appear to have a role in the adaptations of 
the rumen epithelium to lactation include an upregulation of 3-hydroxy-3- 
methylglutaryl-CoA synthase 2 ( HMGCS2 ) along with the downregulation of the 
transcription factor retinoid X receptor α ( RXRA ), the insulin receptor ( INSR ), and 
ribosomal protein S6 kinase ( RPS6KB1 ) (Minuti et al.  2015 ). Because of its 
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sensitivity to changes in dietary management, it is expected that transcriptome anal-
ysis of the rumen epithelium during the transition into lactation will continue in the 
future. More importantly, it will be important to address more explicitly the link 
between diet, the rumen microbiome, and the rumen epithelium.  

5.5     Ruminal Microbes 

 In commercial dairy farms, high-producing cows are shifted from low-energy diet 
before calving to high-energy diet postcalving to provide the rumen microbial com-
munities with more readily available energy for enhancing the microbial fermenta-
tion in the rumen. As a result, rumen microbes generate more energy in the form of 
VFA which is required for milk synthesis (Roche et al.  2013a ). In the fi rst study of 
its kind, Wang et al. ( 2012 ) using terminal restriction fragment length polymor-
phism (TRFLP) analysis of the 16S rRNA gene in whole rumen digesta DNA 
revealed that members of the Streptococcaceae family increased while 
Veillonellaceae decreased during the transition period compared with 100 days 
postcalving. Furthermore, members of the Lactobacillaceae family were more 
abundant after calving. More recent studies employing pyrosequencing technology 
revealed that changes in dietary energy alter the composition, structure, and diver-
sity of the rumen microbiota. For example, Kumar et al. ( 2015 ) and Lima et al. 
( 2015 ) reported that enrichment of fungal communities were associated with higher 
dietary fi ber in the prepartum, while the prevalence of protozoa, associated with 
starch digestion, increased with higher dietary energy in the postpartum.   

6     The Physiologic Implication of Body Fatness (BCS) 

 In dairy management systems, BCS is used as an indicator of body fat content and 
cow nutritional status. Cows should be managed to achieve appropriate BCS both 
pre- and postpartum to reduce threats to welfare, because BCS at calving may affect 
early lactation DMI, postcalving BCS loss, milk yield, cow immunity, and fertility 
(Roche et al.  2009 ). At calving, DMI and BCS are negatively correlated (Hayirli 
et al.  2002 ; Matthews et al.  2012 ), so that “fat” cows undergo a more pronounced 
and prolonged depression in DMI, leading to a deeper negative energy balance 
(Hayirli et al.  2002 ; Agenas et al.  2003 ), an increase in lipomobilization, and a 
greater and persistent increase in blood NEFA (Dann et al.  2006 ). However, not only 
over-conditioned but also under-conditioned dairy cows have a greater incidence of 
diseases than animals with a normal BCS (Roche et al.  2009 ). The reproductive side 
is also infl uenced, as low BCS is a risk factor for postpartum endometritis and 
delayed cyclicity in dairy cows (Kadivar et al.  2014 ). Gene expression analysis 
further investigated the low reproduction results in obese heifers, suggesting how, 
unlike normal and lean cows, obese cows had suppressed granulocyte macrophage 
colony-stimulating factor gene expression (an embryogenesis promotant) in the 
ampulla (Nahar et al.  2013 ). Furthermore, the cow BCS has been shown to infl uence 
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calving itself, with higher BCS increasing chances of dystocia, and to correlate with 
calf survival (Bastin et al.  2010 ). 

 Although these phenotypic effects of calving BCS are known, not much has been 
done to understand the molecular mechanisms behind them. As for DMI, geneticists 
determined that selection for good body condition, body conformation, and optimal 
milk production is possible and their genetic associations could be useful for designing 
breeding goals (Koenen et al.  2001 ; Kadarmideen and Wegmann  2003 ). This under-
scores that the regular measurement of fi rst-lactation BCS records should be suffi cient 
for genetic evaluation (Loker et al.  2011 ). The fact that a genetic basis exists opens the 
possibility to evaluate the BCS effect not only with traditional metabolic parameters 
but also with more sophisticated techniques. Because insulin resistance is related to 
BCS (Kawashima et al.  2016 ), and an increase in prepartum adiposity can predispose 
dairy cows to a greater magnitude of insulin resistance during early lactation (Holtenius 
et al.  2003 ; Holtenius and Holtenius  2007 ), Rico et al. ( 2015 ) focused on the study of 
ceramide sphingolipids that are believed to mediate the inhibitory effect of saturated 
fatty acids on insulin signaling (Chavez et al.  2014 ). Metabolomics data, using MS, 
revealed a remodeled plasma sphingolipidome in dairy cows transitioning from late 
pregnancy to lactation, characterized by an accumulation of ceramides in plasma dur-
ing the progression of insulin resistance in overweight cows transitioning from late 
pregnancy to early lactation. These data supported the potential involvement of 
ceramides in the pathological development of insulin resistance in dairy cattle. 

 Due to lack of metabolic data, an extensive amount of work has been conducted 
to evaluate effect of BCS in grazing systems, which normally depends on data gath-
ered from more intensive and controlled systems (e.g. TMR-fed systems). Compared 
with a TMR-based system where the risk of over-conditioning during the dry period 
is far greater, in a pasture system, thin cows have a greater prevalence of problems 
(Roche et al.  2007 ,  2009 ). For these reasons, assessment of BCS prepartum can 
provide a qualitative evaluation of the chances for an optimal transition, which, in 
turn, is closely associated with optimal production and the chances for successful 
lactation (Roche et al.  2009 ). 

 Roche et al. ( 2013c ) were the fi rst to provide evidence linking BCS to cow health 
and welfare. Low peripartum BCS was, in fact, associated with alterations in albu-
min, urea, and magnesium metabolism, which altogether may place cows at a 
greater risk of developing subclinical endometritis. Further, biomarkers of liver 
function and the acute phase response indicated that BCS did not affect the cows’ 
ability to mount infl ammatory responses to the stimuli encountered in the peripar-
tum and during early lactation. Based on these results, the authors concluded that 
BCS alone is not a suffi ciently sensitive measure to be refl ective of cow welfare. 
Regardless, these results supported the general recommendations that a calving 
BCS of 4.5 to 5.5 (10-point scale) would optimize production, reproductive perfor-
mance, and general health. 

 To further understand the effect of BCS on the whole organism, transcriptomic 
analysis was performed on the liver of these animals. The microarray output revealed 
how calving BCS mostly induces changes in metabolic pathways. Thinner cows had 
a compromised gluconeogenic capacity, with increased glucose use, that could 
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probably explain the lower production performance (Akbar et al.  2014 ). However, 
both thin and over-conditioned cows displayed indices of an infl ammatory state at 
the level of the liver (Akbar et al.  2014 ). This was further concluded by a more 
focused gene expression experiment (Akbar et al.  2015 ) which revealed that cows 
calving at BCS 3.5 or 5.5 were compromised relative to cows calving at BCS 4.5 
(10-point scale). Collectively, the results supported an optimum calving BCS for 
pasture-based dairy cows of approximately BCS 5.0 (i.e. equivalent to BCS 3.0 in a 
5-point scale), similar to that recommended by Roche et al. ( 2009 ). 

 Despite the fact that BCS plays an important role in the metabolic response of the 
animal to lactation and its level is regulated through nutrition, in grazing systems 
cows with a different level of adiposity are generally managed similarly during the 
prepartum period (Roche et al.  2013a ). Although several studies attempted to under-
stand the metabolic and molecular changes associated with dietary energy intake 
before calving, the contributing factors remain poorly understood. The calving BCS 
has been proposed as a key contributing factor. To address this lack of knowledge, 
gene and microRNA (miRNA) expression profi ling were used to better understand 
the interaction between precalving BCS and plane of nutrition in the metabolism of 
adipose tissue (Vailati Riboni et al.  2016 ). Specifi cally, how these factors infl uence 
the adipose response to the physiological changes induced by the high metabolic 
demands of early lactation. 

 Overfeeding optimally conditioned cows during the last 3 weeks before parturi-
tion primed adipose tissue for accretion of lipid and a robust localized infl ammatory 
response, which upon parturition could increase the probability of metabolic disor-
ders; that is, localized infl ammation renders the adipocyte more susceptible to lipo-
lytic signals that could result in greater fl ow of fatty acids into the liver (Vailati 
Riboni et al.  2016 ). Similarly, prepartum nutrient restriction of thinner cows enhanced 
the localized pro-infl ammatory response of adipocytes, hence, eliciting a similar 
negative outcome. Using a microarray platform, the same interaction was studied in 
the hepatic adaptation of these animals (unpublished data). As hypothesized, the 
effect of prepartum plane of nutrition on hepatic function was dependent on the BCS 
of the cow, underscoring how these management tools need to be evaluated together 
to optimize the biological adaptations of the cow during the peripartum period. 

 The more pronounced transcriptome changes in under-conditioned cows high-
lighted that they were more susceptible to prepartum feeding level/allocation than 
optimally conditioned cows. Similarly, the bioinformatics analysis revealed tran-
scriptome signatures that indicated a greater and potentially more prolonged nega-
tive energy balance in overfed optimally conditioned cows and also in feed-restricted 
under-conditioned cows. Overall, the combined data indicated that a regimen of 
nutrient restriction prepartum in optimally conditioned cows avoids detrimental 
effects both at the adipose tissue and liver level; hence, physiologically priming the 
cow to the demands of lactation and avoiding a metabolically “lazy” phenotype. 
Instead, thinner animals seem to benefi t from a higher plane of nutrition. 

 As these data cumulatively indicate, BCS alone as well as its interaction with 
feeding management have an effect on the health status of the grazing cow. In TMR- 
based systems, over-conditioned cows are at higher risk of infection due to the fact 
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that the intense lipomobilization taking place around calving is associated with 
alterations of lymphocyte function (Lacetera et al.  2005 ); hence, directly linking 
calving BCS with the immune system. In light of this, the effect of precalving BCS 
and level of feeding on immunocompetence during the peripartum period has been 
investigated (Lange et al.  2016 ). Gene expression analysis of in vitro-stimulated 
cells revealed how cows with high energy intake precalving had increased cytokine 
expression precalving. Furthermore, it confi rmed that optimally conditioned ani-
mals might benefi t from a restricted diet precalving, whereas under-conditioned 
cows could be fed to requirements. 

 A systems approach, encompassing hepatocyte and adipocyte metabolism, and 
immune cell responses, has been a valuable tool for determining calving BCS rec-
ommendations for grazing cows. Furthermore, because these recommendations 
could not always be met, the systems approach was found very reliable in the 
evaluation of how different levels of precalving (calving) adiposity can interact 
with different nutrient supply to better defi ne nutritional management of the dry 
grazing cow.  

7     Perspectives 

 A vast amount of knowledge has been acquired since the review of Drackley ( 1999 ), 
outlining crucial gaps in knowledge on transition dairy cow biology. Omics tech-
nologies have contributed widely to the understanding of the delicate physiologic 
equilibrium that allows for a successful transition into lactation. However, we still 
tend to consider single organs as the “system” to study, subsequently inferring the 
connection with the rest of the organism based on the existing literature. The sys-
tems approach in its most pure connotation has not yet been applied to the study of 
dairy cows in the context of nutritional management and its role in the animal’s 
adaptations to lactation. This is largely due to the fact that when integrating multiple 
datasets, one tends to generate bare numerical relationships rather than meaningful 
biological connections among organs. Therefore, as a future frontier, the dairy sci-
ence community must address the need for “useful” approaches (e.g. modelling, 
bioinformatics) to integrate knowledge derived from the main drivers of the adapta-
tions to lactation, e.g. rumen microbiome and epithelium, liver, adipose, and mam-
mary gland. It is believed that greater focus on integration among various components 
of the cow system will generate more meaningful biological networks to push for-
ward knowledge on the biology of the transition cow.     
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    Abstract 
   Recent breakthroughs in stem cell biology have accelerated research in the area of 
regenerative medicine. Over the past years, it has become possible to derive 
patient-specifi c stem cells which can be used to generate different cell populations 
for potential cell therapy. Systems biological modeling of stem cell pluripotency 
and differentiation have largely been based on prior knowledge of signaling path-
ways, gene regulatory networks, and epigenetic factors. However, there is a great 
need to extend the complexity of the modeling and to integrate different types of 
data, which would further improve systems biology and its uses in the fi eld. In this 
chapter, we fi rst give a general background on stem cell biology and regenerative 
medicine. Stem cell potency is introduced together with the hierarchy of stem 
cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripo-
tent stem cells (iPSCs) to tissue-specifi c multipotent and unipotent stem cells. 
Secondly, we address some of the systems biological approaches which have 
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already added valuable knowledge to the stem cell fi eld. Particular attention is 
paid to the most commonly used knowledge-based models as well as to the unsu-
pervised data-driven model. Finally, we will revisit the discovery of the iPSCs by 
Yamanaka in 2006 and superimpose a data-driven systems biological approach on 
the data which this amazing discovery was based on. This approach helps to dem-
onstrate how systems biology can complement the fi eld of stem cell biology.  

1        Introduction 

 Recent breakthroughs in stem cell biology have advanced the area of regenerative 
medicine and brought it closer to realization. Over the past years, it has become 
possible to derive patient-specifi c stem cells which can be used to generate different 
cell populations for in vitro cell modeling and potential cell therapy (Fig.  1 ). This 
development emphasizes the need to precisely understand and control stem cell 
pluripotency and subsequent differentiation of the pluripotent cell populations into 
a variety of target cell types. Differentiation of patient-specifi c stem cells can also 
be used for the establishment of patient-specifi c in vitro disease models, allowing 
for detailed molecular investigations of, for example, neurodegenerative diseases 
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  Fig. 1    Overview of the potential of human-induced pluripotent stem cells ( iPSC ). ( a ) Patient suf-
fering from, e.g., neurodegenerative disorder like Parkinson’s disease. ( b ) Fibroblasts cultured 
from skin biopsy. (c) iPSC reprogrammed from skin fi broblasts. ( d ) In the case of disorders caused 
by specifi c mutations, these may be corrected by CRISPR/Cas9 gene editing. ( e ) Healthy and 
diseased target cells, i.e., dopaminergic neurons in the case of, e.g., Parkinson’s disease, can be 
compared and used as models for identifying new drug targets and for screening of compound 
libraries with potential effects on these targets. ( f ) As a future potential transplantation of therapeu-
tic cell populations, i.e., dopaminergic neural precursors in the case of Parkinson’s disease, is 
envisioned       
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affecting the target cells, i.e., the neurons. This was previously not possible and 
research was primarily based on animal models or cancer cell lines.

   Pluripotency signaling and stem cell differentiation is governed by the activity of 
gene regulatory networks and tightly controlled by a multitude of pathways as well 
as by complex epigenetic mechanisms (Pir and Le Novere  2016 ). In the exponen-
tially developing area of stem cell biology, technologies that deliver high- throughput 
and accurate molecular data result in the accumulation of large amounts of biological 
information. This data needs to be effi ciently and meaningfully analyzed. Therefore, 
it is foreseen that the interface between stem cell biology and systems biology will 
continue to evolve. The extrapolation of more data from these cells may help to fur-
ther refi ne in vitro protocols that will help drive stem cells towards the clinic. Models 
of stem cell pluripotency and differentiation have been developed for many years and 
have mostly been based on prior knowledge on the signaling pathways, gene regula-
tory networks, and epigenetic factors involved. However, there is a great need to 
extend the complexity of the modeling and to integrate different types of data, which 
would further improve systems biology and its uses in the fi eld. This is where sys-
tems biology becomes an inevitable tool for further development of the fi eld. 

 The fi rst part of the chapter introduces the fi eld of stem cell biology and regenera-
tive medicine. The second part addresses some of the systems biological approaches 
which have already added valuable knowledge to the fi eld of stem cell research. 
Finally, we revisit the discovery of the so-called induced pluripotent stem cells 
(iPSCs) by Yamanaka in 2006 (Takahashi and Yamanaka  2006 ) and superimpose a 
systems biological approach on the data in order to visualize how systems biology 
may streamline and accelerate methods in the fi eld of stem cell biology.  

2     Stem Cells 

 Stem cells are characterized by their ability to self-renew indefi nitely, and by their 
ability to differentiate into tissue-specifi c cells when exposed to in vitro signaling 
and mechanical cues. A symmetrical division of a stem cell produces two identical 
daughter stem cells, whereas an asymmetrical division results in one stem cell and 
one cell which is destined for differentiation. Discrete stem cell populations exist in 
specialized niches of the body such as the bone marrow, the muscles, the gut, the 
skin, and the brain, where they can replace cells which have been lost due to injury, 
disease, or due to regular wear and tear. This ability to produce, maintain, and repair 
tissues and organs makes stem cells a very powerful tool in regenerative medicine 
and a subject of intense research all over the world (Singh et al.  2015 ). 

2.1     Cell Potency in Early Human Embryonic Development 

 When the oocyte is released from the ovary and swept into the fallopian tube, it may 
be fertilized by a spermatozoon to generate the diploid zygote (Fig.  2 ). As the 
zygote travels towards the uterus, it divides and starts to compact, forming a ball of 
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cells called the morula. Approximately fi ve days after fertilization, a fl uid-fi lled 
cavity forms within the morula which is now called the blastocyst. The blastocyst 
contains the pluripotent ICM, which becomes localized to one pole of the develop-
ing blastocyst, and an outer layer of trophectoderm. When the blastocyst has entered 
the uterus, it hatches from the zona pellucida, which previously encapsulated the 
oocyte, and implants into the uterine wall. The ICM then divides into two cell lay-
ers: the hypoblast and the pluripotent epiblast. At 14–16 days postfertilization, the 
epiblast undergoes gastrulation to generate the three germ layers: ectoderm, meso-
derm, and endoderm. Each of these germ layers gives rise to multipotent cell popu-
lations such as neural progenitor cells from the ectoderm, hematopoietic stem cells 
from the mesoderm, and gut epithelial cells from the endoderm. In addition to the 
three germ layers, the epiblast also gives rise to the primordial germ cells which are 
the precursors of the germ cells in the developing embryo, i.e., the oocytes and the 
spermatogonia.
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  Fig. 2    Overview of human fertilization and initial embryonic development. ( a ) Ovulated mature 
oocyte. ( b ) One-celled fertilized ovum, i.e., zygote, with two haploid pronuclei ( PN ). ( c ) 2-cell 
stage. ( d ) 4-cell stage. ( e ) 8- to 16-cell stage. ( f ) Compacted morula where the outer cell layer 
forms a smooth surface of the embryo. ( g ) Blastocyst with cells divided into the fi rst lineages, i.e., 
the inner cell mass ( ICM ) and trophectoderm ( TE ). ( h ) Blastocyst in the process of hatching from 
the zona pellucida. ( i ) Implanted blastocyst with the development of the epiblast and hypoblast 
from the inner cell mass. ( j ) Implanted embryo during gastrulation where the epiblast gives rise to 
the three germ layers: ectoderm, mesoderm, and endoderm       
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2.2        Cell Potency and Differentiation 

 Stem cell biology and developmental biology are intimately linked. In the paradigm 
of developmental biology, cells are divided into distinct categories according to 
their differentiation capacity, or “potency”. In its strictest sense, a totipotent cell is 
one that can produce an entire fertile adult organism, including its temporary fetal 
membranes, when placed in the correct environment, such as the uterus, in the case 
of humans (De Paepe et al.  2014 ). The zygote is totipotent as are the daughter cells 
which are initially produced by symmetrical divisions of the zygote (Condic  2014 ). 
Due to their unlimited differentiation capacity, totipotent cells are often considered 
to be at the top of the developmental hierarchy. However, in the case of mammals, 
totipotency is not a cell state which can be sustained. During embryonic develop-
ment, cells will only remain totipotent during the fi rst few divisions of the zygote. 
Furthermore, no single mammalian cell can orchestrate the complex spatial and 
temporal patterns of proliferation, differentiation, and self-organization which result 
in an entire organism and its fetal membranes, when cultured in vitro (Condic  2014 ). 

 Pluripotency represents, in relation to totipotency, the next stage, which is 
reached once asymmetrical cell divisions of the totipotent cells result in the fi rst 
differentiation and emergence of the blastocyst. Cells from the ICM are pluripotent; 
these can differentiate into all cell types of the body, but they do not contribute to 
the extraembryonic lineages derived from the trophectoderm under normal circum-
stances (Morgani et al.  2013 ). Embryonic stem cells (ESCs) are derived from the 
ICM, or the subsequent epiblast, of preimplantation embryos, and they can be cul-
tured as self-renewing pluripotent cells in vitro, in principle, indefi nitely (Morgani 
et al.  2013 ). Multipotent stem cells are generated in the embryo when pluripotent 
stem cells differentiate into specialized progenitor cells; examples of such are the 
neural progenitor cells which give rise to neurons and glia, or hematopoietic stem 
cells which give rise to different types of blood cells. These multipotent stem cells 
are lineage restricted, meaning they are committed to produce only certain cell 
types. Thus, they are more specialized than pluripotent stem cells and they can be 
found as “adult stem cells” in various organs and tissues postembryonic develop-
ment (Roy and Kundu  2014 ). The most restricted stem cell types are referred to as 
unipotent, indicating that they only give rise to a single terminally differentiated cell 
type, such as a skin stem cell residing in the basal layer of the epidermis which only 
gives rise to keratinocytes.  

2.3     Embryonic Stem Cells (ESCs) 

 ESCs were fi rst derived from the ICM or the early epiblast of preimplantation 
mouse blastocysts in 1981 (Evans and Kaufman  1981 ; Martin  1981 ). When cultured 
in vitro on mitomycin-C inactivated fi broblasts, these mouse ESCs formed well- 
defi ned dome-shaped colonies composed of tightly packed small, round cells with a 
large nuclei and scanty cytoplasm. The ESCs were characterized by a high prolif-
erative capacity and the ability to generate teratomas when injected into syngeneic 
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mice, reminiscent of embryonic carcinoma cells (ECs). Additionally, when cultured 
in feeder-free conditions in vitro, the ESCs formed three-dimensional spheres called 
embryoid bodies which upon directed differentiation could develop into derivatives 
of all three germ layers. However, in contrast to ECs, the ESCs have a normal karyo-
type (Evans and Kaufman  1981 ; Martin  1981 ). Some years later, it was shown that 
ESCs could contribute to germ line chimeras (Bradley et al.  1984 ) and that aggrega-
tion of the ESCs together with developmentally compromised tetraploid embryos 
could give rise to fetuses exclusively composed of ESC-derived cells (Nagy et al. 
 1990 ). This unequivocally confi rmed the pluripotent state of the cells. Like the ICM 
and the preimplantation epiblast of mice, the ESCs expressed pluripotent-related 
transcription factors including,  Oct4 ,  Nanog ,  Sox2 ,  Klf4  as well as  Rex1  and  Fgf4 , 
and ESCs derived from female mice were characterized by the presence of two 
active X chromosomes (Nichols and Smith  2009 ). It was discovered that ESCs 
could be cultured in feeder- and serum-free conditions by addition of the myeloid 
leukaemia inhibitory factor (LIF) and the bone morphogenic protein 4 (BMP4) to 
the culture medium (Williams et al.  1988 ; Ying et al.  2003 ). Additionally, it was 
found that the pluripotent state of murine ESCs could be promoted by blocking the 
MAPK/ERK pathway and by inhibiting GSK3-beta, both of which were known to 
induce differentiation of the ESCs (Nichols and Smith  2009 ; Yeo and Ng  2013 ). 
Accordingly, a LIF + 2i medium was developed, which allows for much better con-
trol and maintenance of the pluripotent ESCs in vitro (Ying et al.  2008 ). 

 Pluripotent stem cells have also been derived from postimplantation mouse epi-
blasts. In contrast to ESCs, these so-called epiblast stem cells (EpiSCs) are sus-
tained in medium containing fi broblast growth factor (FGF) and the transforming 
growth factor (TGF)-beta family member Activin, but not LIF (Nichols and Smith 
 2009 ; Tesar et al.  2007 ). They depend on  Oct4 ,  Sox2 , and  Nanog  expression and 
form embryoid bodies and teratomas, but display epigenetic silencing of one of the 
X chromosomes in female cells and cannot contribute to blastocyst chimaeras (Tesar 
et al.  2007 ). Additionally, EpiSCs actively transcribe lineage-specifi c genes, such as 
 Eomes ,  Gata6 ,  Sox17 , and  T  (Brachyury), and do not express genes associated with 
the ICM, such as  Tbx3  and  Pecam1  (Tesar et al.  2007 ). In addition, EpiSCs form 
monolayers of columnar epithelium in culture, reminiscent of the rodent postim-
plantation epiblast (Nichols and Smith  2009 ). Thus, EpiSCs represent a later stage 
of development compared to ESCs, yet are still considered pluripotent. Accordingly, 
EpiSCs are classifi ed as “primed” pluripotent stem cells in contrast to murine ESCs 
which are classifi ed as “naïve” or belonging to the “ground state” of pluripotency 
(Nichols and Smith  2009 ). 

 Human ESCs were fi rst derived from the ICM of preimplantation blastocysts in 
1998 (Thomson et al.  1998 ). These cells were characterized by high levels of telom-
erase activity, indicative of an immortalized state, and could be sustained for more 
than 32 passages. They are able to differentiate into the three germ layers, when 
cultured as embryoid bodies, and give rise to teratomas, but for ethical reasons their 
ability to contribute to the germ line have not been tested. Human ESCs express 
surface markers such as stage-specifi c embryonic antigen (SSEA)-3 and (SSEA)-4, 
alkaline phosphatase, tumor rejection antigen (TRA)-1–60, and TRA-1–81, 
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indicative of an undifferentiated state. However, later studies have shown that human 
ESCs are not equivalent to murine ESCs; rather, they display many features of the 
primed pluripotent state, similar to EpiSCs. For example, culturing of human ESCs 
requires TGF-beta/Activin signaling rather than LIF and BMP (Daheron et al.  2004 ; 
Xu et al.  2002 ; Xu et al.  2005 ; James et al.  2005 ), and human ESCs display a ten-
dency to drive OCT4 expression via the proximal enhancer of this gene rather than 
the distal enhancer, which is the case in naïve ESCs (Hanna et al.  2010 ). Additionally, 
human ESCs share the fl attened monolayer morphology of EpiSCs and most female 
human ESC lines display X chromosome inactivation (Hanna et al.  2010 ). 

 Regardless of these differences between mouse and human ESCs, both cell types 
are valuable research tools which can be used to study the mechanisms of cell fate 
decisions during development and disease. The pluripotent and proliferative capac-
ity of ESCs makes it possible to generate large numbers of specifi c cell types 
in vitro, which would otherwise be diffi cult to obtain, such as cardiomyocytes, reti-
nal pigment cells, and neurons (de Wert and Mummery  2003 ). Murine ESCs can be 
genetically modifi ed and injected into blastocysts, thus giving rise to chimeras 
which upon mating will produce heterozygous and homozygous offspring. These 
offspring are useful for providing phenotypic readouts of the potential effects of 
specifi c mutations that can be introduced into the starting ESC populations 
(Capecchi  2005 ). Additionally, ESC-derived tissues can be applied for transplanta-
tion purposes. Indeed, it was reported in 2012 that retinal pigment epithelium 
derived from human ESCs is currently being investigated in early phases of several 
clinical trials for the treatment of macular degeneration (Trounson and McDonald 
 2015 ). Despite these advances, the use of human ESCs in research is a controversial 
subject (de Wert and Mummery  2003 ). The fact that these cells are derived from 
human preimplantation embryos, which have the potential to give life to a human 
being, poses an ethical dilemma for stem cell researchers. On the one side, the use 
of human ESCs can potentially alleviate suffering by providing knowledge about 
disease mechanisms and treatments. On the other side, the embryo must be destroyed 
in order to obtain the ESCs (de Wert and Mummery  2003 ). The later discovery of 
iPSCs provided researchers with a solution to this problem.  

2.4     Reversal of Lineage Specification 

 In 1957, Conrad Waddington produced an “epigenetic landscape” modeling lineage 
specifi cation during normal embryonic development (Waddington  1957 ). In this 
landscape, a marble residing on the top of a hill represented the totipotent or plu-
ripotent cell. As the cell initiated the process of differentiation, it would slide down 
the hill in increasingly restricted paths, eventually terminating its movement at the 
lowest point of the landscape, representing its fi nal differentiated state. Just as mar-
bles are not likely to spontaneously roll back up to the top of a hill, it was believed 
that cells would not return to more potent states once terminally differentiated. 
Thus, lineage specifi cation was considered unidirectional and irreversible in nature 
(Waddington  1957 ). 
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 However, during the 1950s and 1960s, development of the somatic cell 
nuclear transfer (SCNT) technique demonstrated that the differentiated state of 
ectodermal, endodermal, and mesodermal amphibian cells could in fact be reset 
back to totipotency by introducing the nucleus of these cells into frog oocytes 
(Gurdon et al.  1958 ). The oocyte was found to contain molecules which were 
able to rewind the epigenetic landscape. A few decades later, Ian Wilmut and 
colleagues demonstrated that this principle could also be applied to mammals by 
producing Dolly the sheep, cloned by SCNT from a mammary gland epithelial 
cell (Wilmut et al.  1997 ). Together, these pioneering studies revealed that certain 
conditions in the oocyte could reverse cell differentiation and lineage specifi ca-
tion. Thus, in the right environment, the marble could be induced to roll back up 
to the top of the hill.  

2.5     Induced Pluripotent Stem Cells (iPSCs) 

 In a quest to unravel which factors in the oocyte were responsible for the dediffer-
entiation of somatic cells, Kazutoshi Takahashi and Shinya Yamanaka screened 24 
candidate genes known to be important for embryonic stem cell identity (Takahashi 
and Yamanaka  2006 ). We will return to this experimental approach in the fi nal sec-
tion of this chapter. By retroviral transduction of different combinations of these 
genes into mouse embryonic fi broblasts (MEFs) they revealed that expression of 
only four transcription factors,  Oct4 ,  Sox2 ,  C - Myc , and  Klf4 , was enough to convert 
the fi broblasts to pluripotent stem cells, when cultured in appropriate stem cell con-
ditions (Takahashi and Yamanaka  2006 ). Soon thereafter, they were able to generate 
“induced” pluripotent stem cells (iPSCs) from human fi broblasts using the same 
four factors which are now commonly referred to as the Yamanaka factors (Takahashi 
et al.  2007 ). The ability to reverse the lineage specifi cation of adult somatic cells 
back to the pluripotent state without the requirement for oocytes revolutionized the 
fi eld of regenerative medicine and Yamanaka was consequently awarded with the 
Nobel Prize in Physiology or Medicine in 2012 alongside John Gurdon who under-
took the previously mentioned frog SCNT experiments. Not only was it possible to 
avoid the ethical challenge associated with the isolation of ESCs from human blas-
tocysts, it was now possible to obtain patient-specifi c pluripotent stem cells and 
differentiate these into any cell type of interest. In this way, inaccessible tissue, such 
as that of the brain, could now be studied in a dish and be applied for development 
of personalized medicine (Medvedev et al.  2010 ; Singh et al.  2015 ). Additionally, 
derivation of various tissues from patient-specifi c iPSCs allows for autologous cell 
transplantation for the treatment of various degenerative diseases and which cir-
cumvents immune rejection. Finally, reprogramming of differentiated cells into 
iPSCs provided a fascinating tool for researchers to study the basic mechanisms of 
cell fate conversions, both “forwards” and “backwards”. Indeed, many groups have 
strived to map the paths which lead to the iPSC state and to identify techniques, as 
well as factors, which can push differentiated somatic cells back to the top of 
Waddington’s epigenetic hill.  

K. Mashayekhi et al.



135

2.6     Reprogramming to iPSC: Techniques, Factors, 
and Cell Types 

 The desire to generate clinical grade iPSCs for transplantation purposes soon caused 
stem cell researchers to look for alternatives to the original retroviral reprogram-
ming protocol used by Yamanaka’s team. The retroviral delivery technique involved 
random integration of the Yamanaka transgenes into the host cell genome, causing 
a risk of insertional mutagenesis and potential problems with continuous expression 
or reactivation of the transgenes in differentiated iPSCs (Medvedev et al.  2010 ). In 
order to overcome these safety issues, a variety of reprogramming techniques were 
developed which involved only transient expression of the Yamanaka factors in the 
cells undergoing reprogramming. These techniques included the use of non- 
integrating vectors such as Adenovirus or Sendai virus, plasmids, DNA minicircles, 
PiggyBac transposons, episomal vectors or direct introduction of mRNA or protein 
into the cells. Although these alternative techniques were generally less effi cient 
than reprogramming with retrovirus or lentivirus, they brought iPSC research one 
step closer to clinical application. In addition, several transcription factors were 
identifi ed, which could replace one or more of the Yamanaka factors or enhance the 
reprogramming effi ciency in the presence of the Yamanaka factors. For example, it 
was reported that  KLF4  and  C - MYC  could be substituted by the less oncogenic 
 NANOG  and  LIN28  in reprogramming of human cells (Yu et al.  2007 ), whereas the 
estrogen-related receptor  Esrrb  could substitute for  Klf4  when reprogramming 
MEFs (Feng et al.  2009 ). Furthermore, it was recently shown that members of the 
GATA family of transcription factors could substitute for  Oct4  in mouse cells, 
whereas  Sox2  could be replaced by the DNA replication inhibitor  Gmnn  (Shu et al. 
 2013 ). Also, a short hairpin suppression of p53 was able to enhance reprogramming 
effi ciency without causing increased chromosomal instability (Rasmussen et al. 
 2014 ). Additionally, a myriad of chemical compounds have been shown to enhance 
reprogramming to iPSC. These include HDAC inhibitors such as valproic acid, 
sodium butyrate, and trichostatin A, TGF-beta inhibitors such as A-83-01 and 
SB43152, as well as inhibitors of MEK (PD0325901) and GSK3 (CHIR99021) 
(reviewed in Medvedev et al.  2010 ; Malik and Rao  2013 ). 

 Finally, researchers have broadened the repertoire of reprogrammable cell types 
to include not only fi broblasts, but also keratinocytes, peripheral blood T cells, 
hematopoietic stem cells, umbilical cord blood cells, renal epithelial cells, mesen-
chymal stem cells, mesenchymal stromal cells, hepatocytes, pancreatic islet beta 
cells, synovial cells, and other cell types (reviewed in Raab et al.  2014 ). These dif-
ferent cell types each present distinct advantages and disadvantages to reprogram-
ming, according to their ease of derivation and maintenance in culture, and according 
to their proliferative capacity and endogenous expression of iPSC-related genes 
(Raab et al.  2014 ). Despite this, fi broblasts remain the most popular choice of cells 
for iPSC reprogramming. 

 There has been very great focus on the translation of the iPSC technology into 
therapeutic use. In 2015, the fi rst clinical trials were initiated in Japan, where iPSC- 
derived retinal pigment epithelial cells were used for cell replacement therapy for 
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age-related macular degeneration (Sheridan  2014 ). However, this was suspended 
only some months after initiation due to the discovery that the iPSCs contained chro-
mosome abnormalities (webpage:   https://www.ipscell.com/2015/07/fi rstipscstop/    ).   

3     Systems Biology Approaches for Unraveling Stem Cell 
Pluripotency and Differentiation 

 Over the past years, different system biological approaches have been utilized for 
understanding and unraveling stem cell pluripotency and differentiation. Basically, 
two different types of modeling have been applied: knowledge-based models and 
data-driven models. Both of these models are based on well-documented data, but 
differ fundamentally in their handling of the data. The knowledge-based models are 
based on theories formulated from careful surveys of existing knowledge, whereas 
data-driven models are based on holistic unsupervised computational analyses of 
databases. In addition to these two types of models, completely theoretical models 
of cell fate and behavior may be applied in the fi eld. In this chapter, the knowledge- 
based and data-driven models are discussed in detail. 

3.1     Knowledge-Based Models Applied on Cell Pluripotency 
and Differentiation 

 The advantage of applying systems biology in stem cell biology has already materi-
alized. Most of the available mechanistic models for stem cell biology and differen-
tiation are built based on previous knowledge, also commonly described as the 
bottom-up approach. In this approach, the data to be included as well as their rela-
tionships are obtained from wet laboratory experiments, scientifi c literature, or pub-
lic databases that contribute with previously generated modules of information that 
can be incorporated as building blocks into the modeling process (Le Novere  2015 ; 
Pir and Le Novere  2016 ). Knowledge-based modeling in stem cell biology has most 
extensively been applied in four areas: pluripotency-related signaling pathways, 
gene regulatory networks related to master pluripotency transcription factors, repro-
gramming of somatic cells into iPSCs, and epigenetic regulation. Each of these four 
aspects will be addressed in the following. 

 The fi rst mathematical model applied to stem cell biology revealed that murine 
ESC self-renewal was dependent on the concentration of cytokines (Viswanathan 
et al.  2002 ). This was revealed not long time after the discovery that the LIF/JAK/
STAT3 pathway was important for the maintenance of pluripotency (Niwa et al. 
 1998 ). This computational model generated predictions for the degree of self- 
renewal as a function of cytokine concentrations. These model predictions were 
consistent with experimental data and indicated that differences in the effects of LIF 
and another cytokine, hyper-interleukin-6 (HIL-6), were based on differences in 
receptor-binding stoichiometry and properties. These results revealed that ligand/
receptor signaling thresholds could be used to model ESC fate. 
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 The modeling approach of Viswanathan et al. ( 2002 ) described above was useful 
for examining cell fate decisions following a single cell division and under steady- 
state conditions. However, it did not permit direct application to the behavior at the 
more complex cell population dynamic level. To address this, the same research 
group extended the model substantially by incorporating cytokine-mediated regula-
tion of single-cell proliferation, differentiation, and death to account for the clonal 
evolution of individual cells in a population. They also added cell-intrinsic param-
eters, such as the half-life of downstream transcription targets. The resulting model 
included heterogeneities in individual-cell properties (e.g., ligand–receptor com-
plex numbers, cell cycle asynchrony, and transcription factor half-lives) to predict 
the generation of various progeny trajectories in response to diverse stimuli. 
Specifi cally, it became possible to integrate stochastic (individual cell) and deter-
ministic (population-averaged) variables to compute dynamic cellular system 
behavior simultaneously at the individual cell as well as at subpopulation levels. 
The group employed a transgenic murine ESC line expressing GFP (green fl uores-
cent protein) driven by the  Oct4  promoter, allowing for in situ tracking of pluripo-
tency and differentiation. Using this cell line model, predictions were tested and 
were consistent with bulk measurements of  Oct4 - GFP + and  Oct4 - GFP − cell out-
puts over a range of exogenous conditions. This computational model provided 
alternatives to previous theories supporting the view that stem cell self-renewal ver-
sus differentiation choices are completely stochastic. Overall, the model indicates 
that the probability of self-renewal is neither a random (as predicted by the stochas-
tic models) nor an invariant (as predicted by the Poisson model) property of indi-
vidual cells, but more a consequence of the cell’s dynamic interactions with its 
microenvironment. Finally, the model could be generalized to the previously char-
acterized intestinal crypt system in elucidating relative contributions of stem and 
progenitor cells to population output. 

 Another modeling example is the deterministic model of self-renewing and dif-
ferentiating ESC populations developed to predict the response to the cytokines LIF 
and FGF4 in addition to the extracellular matrix components laminin and fi bronec-
tin (Prudhomme et al.  2004b ). Stem cell self-renewal versus differentiation fate 
decisions are diffi cult to characterize and analyze due to multiple competing rate 
processes occurring simultaneously among heterogeneous cell subpopulations. A 
mathematical model was described that allows fl ow cytometric measurement of 
population distributions of molecular markers to be deconvoluted. This, therefore, 
could address the cell population dynamics in terms of subpopulation-specifi c rate 
parameters and distinguish between commitment to differentiation, proliferation of 
differentiated cells, or proliferation of undifferentiated cells (i.e., self-renewal). 
This model was validated by means of dedicated, independent cell-tracking studies 
and demonstrated that it was capable of accurately interpreting relationships under-
lying the effects of external cues on cell responses in differentiating cultures via 
intracellular signals. 

 Woolf et al. ( 2005 ) adapted a Bayesian network learning algorithm to model 
proteomic signaling data for ESC fate responses to external cues (Woolf et al.  2005 ). 
They were able to characterize the signaling pathway infl uences as quantitative, 
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logic-circuit type interactions. Their experimental data set included measurements 
for phosphorylation states of 28 signaling proteins across 16 different factorial com-
binations of cytokine and matrix stimuli. The group showed that Bayesian networks 
are able to organize data at two levels of abstraction. At the fi rst level, the Bayesian 
network itself is a directed graph that refl ects many known, physiological connec-
tions in the original source data. On a second level of abstraction, the connections 
between nodes can be plotted and these plots reveal novel insight into the underly-
ing biochemical mechanisms. The approach also demonstrated that it could be pos-
sible to make reliable predictions of new conditions by performing experiments in 
silico in order to identify combinations of input parameters likely to yield interest-
ing and useful results in the wet laboratory. 

 As described earlier, STAT3 signaling is involved in ESC self-renewal. Mahdavi 
et al. ( 2007 ) developed and validated a computational model of STAT3 pathway 
kinetics (Mahdavi et al.  2007 ). They revealed novel pathway responses such as 
overexpression of the receptor glycoprotein-130 results in reduced pathway activa-
tion and increased ESC differentiation. A systematic in silico screen was used to 
identify novel targets and protein interactions involved in STAT3 signaling and it 
was found that signaling activation and desensitization (the inability to respond to 
ligand re-stimulation) is regulated by balancing the activation state of a distributed 
set of parameters including nuclear export of STAT3, nuclear phosphatase activity, 
inhibition by suppressor of cytokine signaling, and receptor traffi cking. This knowl-
edge was used to devise a temporally modulated ligand delivery strategy that maxi-
mizes signaling activation and leads to enhanced ESC self-renewal. 

 Further investigations of the STAT3 effects on murine ESCs were performed by 
Moledina et al. ( 2012 ) using a combined in silico and experimental approach in 
which they directly manipulated, using laminar fl uid fl ow, the local impact of 
endogenously secreted gp130-activating ligands and their activation of STAT3 sig-
naling (Moledina et al.  2012 ). The model analysis predicted that fl ow-dependent 
changes in autocrine and paracrine ligand binding would impact heterogeneity in 
cell- and colony-level STAT3 signaling activation and cause a gradient of cell fate 
determination along the direction of fl ow. Interestingly, analysis also predicted that 
local cell density would be inversely proportional to the degree to which endoge-
nous secretion contributed to cell fate determination. Experimental validation using 
functional activation of STAT3 by secreted factors under microfl uidic perfusion cul-
ture demonstrated that STAT3 activation, and consequently ESC fate, could in fact 
be manipulated by fl ow rate, position in the fl ow fi eld, and local cell organization. 

 Peerani et al. ( 2009 ) extended a stochastic model developed previously to predict 
the fraction of autocrine and paracrine trajectories captured by a single cell in cell 
culture assays in order to study how STAT3 activation is modulated by three ESC 
culture parameters: colony size, colony separation, and degree of clustering. The 
results of this modeling and associated wet laboratory experiments demonstrated 
that colonies less than 100 μm in diameter were too small to maximize endogenous 
STAT3 activation and that colonies separated by more than 400 μm could be consid-
ered independent from each other (Peerani et al.  2009 ). This resulted in defi ned 
parameter boundaries for the use of ESCs in screening studies and demonstrated the 
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importance of context in stem cell responsiveness to exogenous cues. It also revealed 
that niche size is an important parameter in stem cell fate control. 

 Ellison et al. ( 2009 ) developed a computational model assuming a critical need 
for cell-secreted survival factors to better characterize possible effects of autocrine 
and paracrine signaling in murine ESCs (Ellison et al.  2009 ). This model suggested 
a precise way in which the removal of putative survival factors could affect stem cell 
survival in culture. The predictions were experimentally tested in murine ESCs by 
taking advantage of a novel microfl uidic device allowing removal of the cell- 
conditioned medium at defi ned time intervals. Experimental results in both serum- 
containing and defi ned media confi rmed the computational model predictions, 
suggesting the existence of unknown survival factors with distinct rates of diffusion, 
and revealed an adaptive/selective phase in the response of the ESCs to a lack of 
paracrine signaling. 

 Yeo et al. ( 2013 ) developed a multiscale mathematical model describing 
population- segregated growth kinetics, metabolism, and the expression of selected 
pluripotency genes to characterize nutritional requirements for murine ESCs (Yeo 
et al.  2013 ). The model was validated by wet laboratory experiments with the expan-
sion of undifferentiated murine ESCs encapsulated in hydrogels in batch and perfu-
sion cultures using bioreactors. The model clearly demonstrated that despite 
suffi cient nutrient and growth factor provision, the accumulation of inhibitory 
metabolites resulted in the unscheduled differentiation of ESCs and a decline in 
their cell numbers in the batch cultures. In contrast, perfusion cultures maintained 
metabolite concentration below toxic levels, resulting in the robust expansion (>16- 
fold) of high-quality “naïve” ESCs within four days. 

 Gene regulatory networks are extremely important in cell fate determination dur-
ing embryonic development as well as in stem cell biology. Transcription factors are 
the major players in the regulation of gene expression and very often bind to each 
other’s promoters, establishing gene regulatory feed-back loops (Pir and Le Novere 
 2016 ). Computational models have also addressed these networks and master pluri-
potency transcription factors. 

 Krupinski et al. ( 2011 ) developed a computational modeling framework for 
mimicking murine blastocyst formation. They concluded that the coupling of gene 
expression with the mechanics of cell movement is important for formation of both 
the trophectoderm and the endoderm (Krupinski et al.  2011 ). Further, Bessonnard 
et al. ( 2014 ) developed a model that describes the temporal dynamics of ERK sig-
naling and of the concentrations of NANOG, GATA6, secreted FGF4 and FGF 
receptor 2 in the differentiation of the ICM into the epiblast and primitive endo-
derm. The model reveals a mechanism relying on the co-existence between three 
stable steady states (tristability), which correspond to ICM, epiblast, and primitive 
endoderm (Bessonnard et al.  2014 ). 

 The OCT4–SOX2–NANOG network is of major importance in murine ESCs. 
Chikarmane et al. (2006) designed a kinetic modeling approach that ascribes func-
tion to this network by making plausible assumptions about the interactions between 
the transcription factors at the gene promoter binding sites and RNA polymerase, at 
each of the three genes as well as at the target genes (Chickarmane et al.  2006 ). 
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They identifi ed a bistable switch in the network which arises due to several positive 
feedback loops and is switched on/off by input environmental signals. The switch 
stabilizes the expression levels of the three genes and through their regulatory roles 
on the downstream target genes leads to a binary decision: when OCT4, SOX2, and 
NANOG are expressed and the switch is on, the self-renewal genes are on and the 
differentiation genes are off. The opposite holds when the switch is off. The model 
was subsequently further extended to include more transcription factors 
(Chickarmane and Peterson  2008 ). 

 Murine ESC populations are heterogeneous with respect to the expression of 
NANOG and Glauche et al. ( 2010 ) applied a novel mathematical transcription fac-
tor network model to explore mechanisms and feedback regulations to describe the 
effect of this differential expression (Glauche et al.  2010 ). They were able to show 
that these variations can occur under different assumptions yielding similar experi-
mental characteristics. Based on model predictions, experimental strategies were 
designed to distinguish between these explanations. The authors concluded that the 
heterogeneity with respect to the NANOG expression is most likely a functional 
element to control the differentiation propensity of an ESC population. Furthermore, 
a conceptual framework that consistently explains NANOG variability and a poten-
tial “gatekeeper” function of NANOG expression with respect to the control of ESC 
differentiation was proposed. The conclusions were later supported by other model-
ing approaches (Chickarmane et al.  2012 ). Subsequent modeling approaches have 
demonstrated that autocrine FGF feedback can establish distinct states of NANOG 
expression murine ESCs and may be an underlying background for these effects 
(Lakatos et al.  2014 ). Other reports on murine ESC modeling also conclude that 
interaction between NANOG expression and FGF4/Erk signaling qualifi es as a key 
mechanism to manipulate ESC pluripotency (Herberg et al.  2014 ). 

 Other modeling studies help to show the complexity of cell signaling pathways 
which interact with OCT4, which is a master regulator of pluripotency. Munoz et al. 
( 2013 ) combined single-cell quantitative immunofl uorescence microscopy and 
gene expression analysis together with theoretical modeling (Munoz Descalzo et al. 
 2013 ). They found that a network of protein complexes, including among others 
NANOG, OCT4, TCF3, and β-catenin, are important for maintaining ESC 
 pluripotency. The results suggest that the function of the network is to buffer the 
transcriptional activity of OCT4 under different conditions. 

 Our current understanding of how somatic cells are reprogrammed into iPSCs 
has improved over recent years, although certain details remain incomplete. There 
is a general understanding that reprogramming is either a two- or three-step process 
(Samavarchi-Tehrani et al.  2010 ; Golipour et al.  2012 ; Hansson et al.  2012 ) that 
involves an early stochastic phase, whereby the cell increases proliferation, under-
goes metabolic changes, initiates the mesenchymal-to-epithelial transition, changes 
its expression of histone marks, and activates both DNA repair and RNA process-
ing. Later events are marked by maturation and stabilization phases, whereby acti-
vation of the core pluripotency circuit is initiated, among several other cellular 
changes (Buganim et al.  2013 ). Despite this recent knowledge, a rate-limiting step 
in iPSC reprogramming exists. That is, only a few cells of the starting population 
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are successfully reprogrammed and reasons for this remain unknown. There are cur-
rently two confl icting theories on the reprogramming mechanisms which infer that 
reprogrammed cells arise from either a selective cell type in the cell population or 
emerge equally from all cell types present in the starting population. In the former 
case, the so-called elite model proposes that iPSCs can be exclusively generated 
from a subpopulation of cells with particular reprogramming competences (Byrne 
et al.  2009 ; Wakao et al.  2011 ), while in the latter case, the stochastic model pro-
poses that every cell type has the potential to be reprogrammed (Yamanaka  2009 ). 
The stochastic model for iPSC reprogramming was supported by a computational 
model of transcriptional control of cell fate specifi cation (MacArthur et al.  2008 ). 
The model comprises two mutually interacting subcircuits: A central pluripotency 
circuit consisting of interactions between stem cell-specifi c transcription factors 
OCT4, SOX2, and NANOG coupled to a differentiation circuit consisting of inter-
actions between lineage-specifying master genes. The model suggests that under 
certain circumstances, amplifi cation of low-level fl uctuations in transcriptional sta-
tus (transcriptional “noise”) may be suffi cient to trigger reactivation of the core 
pluripotency switch and reprogramming to a pluripotent state. Further quantitative 
analyses have defi ned distinct cell-division-rate-dependent and -independent modes 
for accelerating the stochastic course of reprogramming and suggest that the num-
ber of cell divisions is a key parameter driving epigenetic reprogramming to pluri-
potency (Hanna et al.  2009 ). 

 Clinical applications of human iPSCs are critically dependent on effi cient upscal-
ing of cells required for differentiation into relevant therapeutic cell populations. 
The process of upscaling of human iPSCs generation has also been the focus of 
ordinary differential equation (ODE) based modeling by Selekman et al. ( 2013 ). 
These authors demonstrate a strategy for investigating the effi ciency and scalability 
of iPSC differentiation platforms. Using two previously reported epithelial differen-
tiation systems, they fi tted an ODE-based kinetic model to data representing dynam-
ics of various cell subpopulations in the culture by estimating rate constants of each 
cell subpopulation’s cell fate decisions (self-renewal, differentiation, death). 
Sensitivity analyses on predicted rate constants indicated which cell fate decisions 
had the greatest impact on overall epithelial cell yield in each differentiation pro-
cess. In this way, the group outlined a novel approach for quantitative analysis of 
established laboratory-scale human iPSC differentiation systems, which may ease 
development to produce large quantities of cells for tissue engineering applications 
(Selekman et al.  2013 ). 

 As described previously in this chapter, Waddington proposed epigenetic regula-
tory mechanisms already in 1957 and they have been shown to be of utmost impor-
tance in relation to cell differentiation and reprogramming to pluripotency. 
Epigenetics is defi ned as relatively stable and potentially heritable changes in the 
cell phenotype without any changes in the DNA sequence. At the molecular level, 
epigenetic mechanisms work through small molecules such as methyl-groups 
deposited on DNA, the 3D chromatin structure dictated by numerous modifi cations 
of a set of DNA-binding proteins such as histones, together with small molecules 
deposited on the DNA-binding proteins, and non-coding RNA with regulatory 
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functions (Boland et al.  2014 ). In particular, the reprogramming of somatic cells 
into iPSCs has been a focus for systems biological modeling of epigenetic mecha-
nisms, as it was discovered that epigenetic factors might be a major barrier in the 
reprogramming of somatic cells into iPSCs (Papp and Plath  2011 ). 

 A systems biological approach for modeling iPSC reprogramming which also 
takes into account epigenetic mechanisms has been presented by Artyomov et al. 
( 2010 ). Here, a cell cycle-based binary model including both gene regulatory net-
works and permissive as well as repressive epigenetic marks was constructed. The 
results obtained from the model are consistent with the stochastic mode of iPSC 
reprogramming and identifi ed the rare pathways that allow reprogramming to occur. 
If validated by further experiments, this model could be developed further for design-
ing optimal strategies for reprogramming (Artyomov et al.  2010 ). The model devel-
oped by Artyomov et al. ( 2010 ) was further refi ned by Hu et al. ( 2011 ) who proposed 
a novel Markov model in which they calculated the reprogramming rate and showed 
that it would increase in the condition of knockdown of somatic transcription factors 
or inhibition of global DNA methylation (Hu et al.  2011 ). The utility of this latter 
model was verifi ed by testing it with the real dynamic gene expression data spanning 
across different intermediate stages in the iPSC reprogramming process. 

 An extension of these studies was performed by Flottmann et al. ( 2012 ) who 
pushed probabilistic Boolean network approaches further by focusing on the inter-
play between gene expression, chromatin modifi cations, and DNA methylation. The 
simulation results showed good reproduction of experimental observations during 
reprogramming and indicated that faster changes in DNA methylation increased the 
speed of reprogramming at the expense of effi ciency, while accelerated chromatin 
modifi cations moderately improved effi ciency (Flottmann et al.  2012 ). 

 Interestingly, modeling that also includes epigenetic data has also added to the 
discussion of whether iPSC reprogramming occurs according to the elite model or 
the stochastic model described earlier in this chapter. In particular, Grácio et al. 
( 2013 ) built mass-action models of the core regulatory elements controlling iPSC 
reprogramming, which included not only the network of transcription factors 
NANOG, OCT4, and SOX2 but also important epigenetic regulatory features of 
DNA methylation and histone modifi cation (Gracio et al.  2013 ). This work sug-
gested an alternative, somehow intermediate hypothesis that the unpredictability 
and variation in reprogramming decreases as the cell progresses along the induction 
process and that identifi able groups of cells with elite-seeming behavior can emerge 
from a stochastic process. 

 Systems biological modeling including the epigenetic effects has also contrib-
uted to the understanding of the variability in NANOG expression, which was 
described earlier in this chapter. Sasai et al. ( 2013 ) constructed a model of the core 
gene network of mouse ESCs and showed that the phenotypic heterogeneity of 
ESCs can be explained by a slow transcriptional switching of the chromatin permis-
siveness at the  Nanog  locus related to the cell cycle progression (Sasai et al.  2013 ). 
These NANOG-related changes simulated ESCs to fl uctuate among multiple tran-
sient states and triggered differentiation into lineage-specifi c cell states. The epigen-
etic landscape underlying these transitions was calculated and it was proposed that 
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the slow  Nanog  switching was the underlying mechanism for the change in ESC 
states. This proposal was further supported by Zhang and Wolynes ( 2014 ) who 
constructed an approximation that allows for quantitative modeling of the epigene-
tic network (Zhang and Wolynes  2014 ). 

 Altogether, the knowledge-based systems biological modeling has contributed 
signifi cantly to our understanding of the cell pluripotency and differentiation and 
has supported existing theories but also led to the generation of new theories on how 
iPSC reprogramming occurs (for a review, see (Muraro et al.  2013 )).  

3.2     Data-Driven Models Applied on Cell Pluripotency 
and Differentiation 

 The models presented in the previous section are knowledge-based and built on 
well-documented information about the systems to be investigated. Constructing 
such knowledge-based models can be tedious, as the relevant molecular interactions 
have to be extracted from wet laboratory experiments or from the literature. In an 
emerging fi eld like stem cell research, there is also the possibility that the list of 
interactions derived from the literature is incomplete (Pir and Le Novere  2016 ). The 
following section will focus on the less abundant examples of models built without 
prior information, i.e., built using data-driven holistic top-down approaches to iden-
tify network components or network structures related to stem cell biology where no 
previous hypotheses have been formulated. With the tremendous and exponentially 
increasing speed by which high-throughput data is accumulating, such data- driven 
unsupervised methods are becoming more and more attractive in systems biology, 
as they do not require tedious wet laboratory experimentation and literature surveys, 
but instead rely on holistic, non-biased analysis of the accumulating data mass. 

 To gain insight into murine ESC differentiation, Prudhomme et al. ( 2004a ) con-
ducted a data-driven multivariate proteomic analysis of murine ESC self-renewal ver-
sus differentiation signaling. Phosphorylation states of 31 intracellular signaling 
network proteins were obtained from 16 conditions by quantitative Western blotting. 
Partial least squares modeling was then applied to determine which components were 
most strongly correlated with cell proliferation and differentiation constants obtained 
following fl ow cytometry of OCT4 expression. This approach yielded, in a data-
driven manner, a set of seven phospho-proteins (STAT3, RAF1, MEK, ERK, SRC, 
PKCε, and PKBα) most critically associated with cell differentiation rates and/or pro-
liferation rates. Many of the predictions were found to be consistent with the previous 
literature or experimental tests that were later performed (Prudhomme et al.  2004b ). 

 Data-driven approaches have also been applied on gene regulatory networks. 
Using generalized singular value decomposition and comparative partition around 
medoids algorithms, a set of transcription factors, including FOX, GATA, MYB, 
NANOG, OCT, PAX, SOX, and STAT, and the FGF response element were identi-
fi ed as key regulators underlying the transcriptional co-expression maintaining plu-
ripotency (Sun et al.  2008 ). By transcriptional intervention conducted in silico, 
dynamic behavior of pathways was examined, demonstrating how much and in 
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which specifi c ways each gene or gene combination affected the behavior transition 
of a pathway in response to ESC differentiation or pluripotency induction. 

 Chavez et al. ( 2009 ) further performed a data-driven in silico identifi cation of a 
core regulatory network of OCT4 in human ESCs using an approach where they 
carried out an integrated analysis of high-throughput data (ChIP-on-chip and RNAi 
experiments along with promoter sequence analysis of putative target genes) and 
identifi ed a core OCT4 regulatory network in human ESCs consisting of 33 target 
genes (Chavez et al.  2009 ). Likewise, Gu et al. ( 2008 ) performed in silico analyses 
of novel miRNA candidates and miRNA–mRNA pairs in ESCs and were able to 
identify a plethora of previously unknown miRNA candidates, including 545 RNAs 
that are enriched in ESCs compared with adult cells (Gu et al.  2008 ). 

 Qin et al. ( 2014 ) employed a data-driven systematic model to elucidate endoge-
nous barriers limiting this process of human iPSC reprogramming (Qin et al.  2014 ). 
They systematically dissected cellular reprogramming by combining a genomewide 
RNAi screen, innovative computational methods, extensive single-hit validation, 
and mechanistic investigation of relevant pathways and networks. They succeeded 
in identifying reprogramming barriers, including genes involved in transcription, 
chromatin regulation, ubiquitination, dephosphorylation, vesicular transport, and 
cell adhesion. Specifi cally, disintegrin and metalloproteinase (ADAM) proteins 
inhibit reprogramming together with clathrin-mediated endocytosis, which posi-
tively regulates TGF-β signaling.   

4     Revisiting Yamanaka’s Discovery of Induced Pluripotent 
Stem Cells (iPSCs) by a Data-Driven Top- Down Systems 
Biological Approach 

 Generation of induced pluripotent stem cells (iPSCs) in the mouse was fi rst reported 
in 2006 by Takahashi and Yamanaka, which revolutionized the fi eld of stem cell 
biology. The process that Yamanaka used to reveal the four key transcription factors 
required to produce iPSCs was an eloquent and systematic approach. Yamanaka 
selected in total 24 candidate genes (Table  1 ). The selection of these genes was 
based on previous publications which showed that they played some role in main-
taining pluripotency in mouse and human ESCs. Yamanaka tested the effect of the 
24 genes on inducing pluripotency in Fbx15 ßgeo/ßgeo  mouse fi broblasts. These trans-
genic mice contained a fused form of the ß-galactosidase and neomycin resistance 
genes, located in the  Fbx15  gene. This meant that only reprogrammed cells posi-
tively expressing  Fbx15  (a specifi c gene expressed in mouse ESCs and early 
embryos) would survive when cultured in the presence of G418 antibiotic. This was 
a particularly elegant strategy used to select for only pluripotent cell colonies. 
Yamanaka’s group used retrovirus to transduce single genes or combinations of the 
genes into fi broblasts. He discovered that transduction of the genes individually did 
not result in any ESC-like colonies; however, when all 24 genes were included, 
ESC-like colonies emerged. In order to determine which genes were of greatest 
importance, Yamanaka subsequently systematically withdrew individual genes 
from the pool of 24 to identify ten genes which were important for the ESC-like 
colony formation. Also, he found that the combination of these ten genes produced 
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more colonies than the transduction with all 24 genes. Again, Yamanaka performed 
withdrawal of individual genes from the pool of ten to identify four genes, i.e.,  Oct4 , 
 Sox2 ,  Klf4 , and  c - Myc , which together could produce ESC-like colonies with a sim-
ilar effi ciency as the combination of the ten genes. Further subtraction of genes from 
these four (i.e., combinations of two or three) failed to give rise to ESC-like colo-
nies. He thus concluded that  Oct4 ,  Klf4 ,  Sox2 , and  c - Myc  are key reprogramming 
factors for producing iPSCs cells from mouse fi broblasts. It is clear that Yamanaka 
and his colleagues invested an enormous effort in identifying the 24 genes, but even 
more in performing the reductive wet laboratory experiments which involved vector 
construction, transduction, and subsequent analyses at each step. The 24 genes 
selected appear to be rather arbitrarily chosen. How Yamanaka managed to discover 
these four magic factors seems to be rather incredulous. Of the several thousand 
genes expressed in pluripotent cells it was amazing that he could select only 24 and 
from these discover the four required to reprogram a somatic cell. In fact, it turns 
out that there are other genes that can also reprogram somatic cells and/or enhance 
the reprogramming process (e.g.,  PDGF - BB ,  LIN28 ,  LMYC ), and even other com-
binations of genes can be used (Jung et al.  2014 ; Park et al.  2014 ).

   We were interested in examining whether a holistic data-driven systems biology 
approach could, as an alternative and precise method, be applied to large “omic” 
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Oct4*
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0

0
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0

0

0

0

0

0

0

      Table 1    Yamanaka’s starting list of 24 genes        

 Here we have ranked the genes according to our pathway analyses presented in Table  2 , from 
ascending to descending based on the number of pathways an individual gene relates to. A + indi-
cates that the gene is associated with the pluripotency-related pathways listed. Gray highlights the 
top seven genes based on their involvement in more than three pluripotent-related pathways. All 
four of the Yamanaka factors fall into the top seven and are marked in bold with * 
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data sets available on pluripotent cell populations in order to discover the genes 
important for pluripotency and cell reprogramming. Hence, we asked the question: 
Can we, using systems biology, identify the key Yamanaka factors using a data- 
driven, holistic, unbiased approach or will we fi nd another gene set? Consequently, 
in the following, we analyze a transcriptomic data set of cultured murine ESCs in 
order to identify crucial genes important for pluripotency by means of an unbiased 
holistic systems biology approach. We decided to perform this analysis only on 
transcriptomic data as a “proof of principle”, but the approach should have opti-
mally combined transcriptomic data with proteomic, lipidomic and other “omic” 
data sets. We evaluated two data sets of mouse ESCs representing two very different 
physiological conditions already addressed earlier in this chapter: Naïve murine 
ESCs are representative of the in vivo early epiblast derived from the blastocyst and 
are maintained in vitro in the presence of the growth factor leukemia inhibitory fac-
tor (LIF). These are thought to represent an early state of pluripotency termed the 
“ground state” of pluripotency (Nichols and Smith  2009 ). In contrast, primed 
murine ESCs, also often referred to as EpiSCs since they can be derived from the 
later stage epithelial epiblast, are cultured in the presence of bFGF (Nichols and 
Smith  2009 ). In the following systems biological analysis, we performed in silico 
analyses on a publicly available data set obtained from Gene Expression Omnibus 
(GEO). We selected RNA sequencing (RNA-seq) data on both naïve (mouse ESC) 
and primed ESCs (here referred to as EpiLCs) from the GEO entry GSE67259 and 
used four of the 74 samples, mESC #1 and #2 and EpiLC #1 and #2. This particular 
data set was recently published by Yamanaka and colleagues (Sasaki et al.  2015 ). 
The RNA-seq was performed on an ABI SOLiD 5500XL genetic analyzer. The 
reads were processed by trimming library adaptor and poly-A sequences by cut 
adapt-1.3 and trimmed reads of less than 30 bp were discarded. The remaining reads 
were mapped onto the genomes and were separated from the ERCC spike-in RNAs 
using a Perl script and the Cuffl inks 2.2.0 program. Finally, the reads mapped on the 
ERCC spike-in RNAs were used to estimate transcript copy numbers per cell, and 
expression levels were normalized to the total mapped reads (Sasaki et al.  2015 ). 
We then further normalized the raw data and determined the differentially expressed 
genes comparing naïve vs. primed ESCs. From a total number of 26,311 transcripts, 
2079 passed a fi lter of greater than or equal to 1.5-fold and a  P -value of less than 
0.05 using the Benjamini and Hochberg false discovery rate. From these 2079 
genes, 1100 were upregulated and 979 downregulated in naïve compared to the 
primed state (Fig.  3 ).

   Subsequently, we performed pathway enrichment on the genes that were upregu-
lated in the naïve mouse ESCs. The selection criteria used included that a gene (1) 
had to be involved in at least three of the selected 19 stem cell and pluripotency 
enrichment pathways available (Pathway Central Qiagen) and (2) had to be a tran-
scription factor. Pathway enrichment criterium 1 resulted in a narrowing of the 
genes of interest to a list of 40 and application of the criterium 2 further narrowed 
the list to 18 genes (Table  2 ). The data was further sorted by binary search sorting 
to create an ordered list from ascending to descending based on the number of 
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STAGE mESC

STAGE EpiLC

Expression

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.5

  Fig. 3    Heat map of differentially expressed genes in mouse ESCs representing naïve pluripotency 
( mESC ) versus primed pluripotency ( EpiLC ). The heat map shows hierarchical clustering of 2079 
genes that passed Benjamini and Hochberg with a false discovery rate test correction ( p  < 0.05) and 
which had an expression alteration of greater than or equal to 1.5-fold       
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Cdx2
Gli2
Smad1

Nanog

Klf4*
Tbx3
Otx2
Fzd2
Hoxc12
RbI1
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Table 1 Pathway Population 3 31 5 2 0 8 6 2 10 2 5 2 2 1 1
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4
4
3
3
3
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2
2
2
2
1
1
1

5603

         Table 2    A list of 18 genes were, by means of pathway analyses, selected from 1100 that were 
upregulated in naïve vs. primed state ESCs       

  The selection criteria included that a gene (1) had to be involved in at least three of the selected 19 
stem cell and pluripotency enrichment pathways available (Pathway Central Qiagen) and (2) had 
to be a transcription factor. The genes are ranked from ascending to descending based on the num-
ber of scores they have in different pluripotent-related cell pathways. A + indicates that the gene is 
associated with the pluripotency-related pathways listed. Grey highlights the top 10 genes based 
on their involvement in more than three pluripotent-related pathways. Three of the four Yamanaka 
factors fall into this list and are marked in bold with *  
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different pluripotency pathways the genes adhered to, i.e., the higher the number of 
pathways, the higher the ranking of the gene. The top 10 genes fell into more than 
three pluripotent-related pathways.

   Interestingly, 10 of the 18 genes we report fall into one pathway, the stem cell 
transcription factors (TF) pathway, followed by the embryonic stem cells pathway 
(8), the stem cell signaling pathway (6), the WNT pathway (5), and the Jak-STAT 
(5) (Table  2 ). It was interesting that  Myc  topped the list (one of the four Yamanaka 
factors). We were excited to fi nd that three of Yamanaka’s four reprogramming fac-
tors fell into the top 10 of our list, which substantiates that systems biology could be 
successful in determining master genes for biological processes to be applied in 
biomedical research. The top 10 genes in Table  2  were then further evaluated using 
the GeneNetworkCentralPro hub (Qiagen) and a fl ux diagram was produced in 
PathVisio to reveal predictive transcriptional regulation networks and predictive 
protein interaction networks both between the genes themselves as well as with 
other genes potentially related to the pluripotent pathways (Fig.  4 ). The network 
fl ux was constructed using the PathVisio in xml format, which can be migrated to 
other systems biology hubs such as Cytoscape for further interface to external web 
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PIAS3 CTNNB1
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TBX3MYC

GLI2

SOX2

STAT3
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Down - regulation
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Predicted Protein Interaction
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Other
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  Fig. 4    Flux diagram of top 10 ranked genes from Table  2 . The diagram reveals a broad insight into 
common gene interaction network and their fl ow based on the interaction data obtained from 
GNCPro, SABiosciences. The interactions can be either undirected (mutual) as gene–gene or pro-
tein–protein interactions or directed, where one gene or protein can alter the expression of its 
neighbor by upregulation/downregulation or acting as a transcription factor. Boxes outlined in 
black are the target genes and light gray boxes their immediate neighbors. The network fl ux is a 
construction by PathVisio in xml format for migration to other systems biology hubs       
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resources and other available public data repositories like GEO, ArrayExpress, 
UniProt, Reactume, Entrez, and Gene Ontology.

   It is important to mention that one reprogramming gene,  Oct4 , did not fall into 
our fi nal list of 18 genes. This is related to its lower  P -value, which did not pass the 
minimum cutoff fold change (1.5) based on the set minimum criteria. It is also 
important to mention that the number of replicates in this experiment is also lower 
than that of the minimum number of replicates ( n  = 2) for a non-parametric, non- 
Gaussian distribution which requires a minimum of fi ve replicates. Thus, a higher 
number of replicates may have increased the  P -value of this and potentially other 
genes. However, the mere fact that  Oct4  is known to be expressed in both naïve and 
primed mouse ESCs (Buecker et al.  2014 ) helps to substantiate the fact that this 
gene has not been selected by our analyses which were based on genes that were 
upregulated early on in pluripotency (i.e., in the naïve-like condition). 

 Additionally, it is important to note this approach utilized a selection for pluripo-
tency transcription factors from the assumption that these master regulators of gene 
expression would be most likely to engage in the reprogramming process. This may 
or may not be the case. Several other genes are represented in the list of 18 genes 
predicted to be important for the reprogramming events. It is not known whether 
overexpression of these may actually reprogram somatic cells more effi ciently than 
the Yamanaka factors. Therefore, it is obvious that this predictive tool must be used 
in combination with wet laboratory experiments to test whether combinations in the 
overexpression of these other genes can replace and/or improve the known repro-
gramming factors in effectively reprogramming somatic cells. 

 Finally, we decided to apply the same ranking method as we applied to our short-
list of 18 genes (Table  2 ) from the RNA-seq data onto Yamanaka’s starting gene list 
( n  = 24) that he used for his wet laboratory experiments (Table  1 ). This resulted in 
seven of the 24 genes falling into more than three different pluripotent-related path-
ways (Table  1 ). In these top seven genes, all of the four Yamanaka factors ( Oct4 , 
 Sox2 ,  Klf4 , and  Myc ) were found. Of greater interest was that two others,  Stat3  and 
 Nanog , were also found in both the top seven of Yamanaka’s list (Table  1 ) and in the 
top 10 of our gene list (Table  2 ). Although  Nanog  has been used to improve repro-
gramming, this has not been shown to be true for  Stat3 , which does not appear to 
improve reprogramming. Therefore, again, it is important to state that although 
these in silico tools are helpful, the genes that were brought forward require valida-
tions and biological testing to confi rm the ability to reprogram somatic cells.  

5     Conclusions and Further Challenges 

 Systems biological models based on computational approaches have already shown 
that they can elevate the fi eld of stem cell biology. Knowledge-based bottom-up appli-
cations have shed signifi cant light on mechanisms underlying stem cell pluripotency 
and differentiation. Results arising from unsupervised data-driven top- down 
approaches are fewer, but have contributed to the understanding of the gene regulatory 
networks underlying pluripotency. In order to fully benefi t from the synergy between 
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systems biology and stem cell research, there are some challenges to be overcome: 
First, common data repositories of a variety of “omics” data on pluripotency and dif-
ferentiation in man and different animal species must be expanded. Secondly, faithful 
algorithms for unsupervised analyses must be refi ned and shared. And fi nally, a com-
munication gap between systems biologists on the one hand and stem cell researchers 
on the other must continuously be narrowed through synergistic collaborative efforts.     
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