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On the Inverse Gamma as a Survival
Distribution

Andrew G. Glen

Abstract This paper presents properties of the inverse gamma distribution
and how it can be used as a survival distribution. A result is included that
shows that the inverse gamma distribution always has an upside-down bath-
tub (UBT) shaped hazard function, thus, adding to the limited number of
available distributions with this property. A review of the utility of UBT
distributions is provided as well. Probabilistic properties are presented first,
followed by statistical properties to demonstrate its usefulness as a survival
distribution. As the inverse gamma distribution is discussed in a limited and
sporadic fashion in the literature, a summary of its properties is provided in
an appendix.
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16 2 On the Inverse Gamma as a Survival Distribution

2.1 Introduction

The inverse gamma distribution with parameters α and β, IG(α, β), is men-
tioned infrequently in statistical literature, and usually for a specific purpose.
Also called the inverted gamma distribution or the reciprocal gamma dis-
tribution, it is most often used as a conjugate prior distribution in Bayesian
statistics. This article has three primary contributions regarding the IG distri-
bution. First it proves that the IG distribution falls into the class of upside-
down bathtub shaped (UBT) distributions, an unreported result. Secondly
this paper demonstrates how the IG distribution can be used as a survival
distribution, a use that appears unreported. Thirdly this paper collects the
scattered properties of the IG distribution into one source, similar to the type
of summary found in popular works like Evans et al. [50].

The number of established UBT distributions is relatively small compared
to the more common increasing failure rate distributions. However, UBT dis-
tributions have been shown to provide excellent models for certain situations.
For example, Aalen and Gjessing [1] show that the UBT class of distributions
are good models of absorption times for stochastic models called Wiener pro-
cesses. Also, Bae et al. [5] show that degradation paths often are modeled
by a restricted set of distributions, with certain paths requiring UBT distri-
butions. Crowder et al. [38] have a conjecture that UBT distributions best
model a particular data set of ball bearing failure times. Lai and Xie [85]
point out that UBT distributions model certain mixtures as well as failure
time models in which failure is primarily due to fatigue or corrosion. To date,
the well known UBT distributions are the inverse Gaussian, log-logistic, and
the log-normal. Thus, a need for more UBT distributions is certainly recog-
nized. We will show that the IG distribution fits in a moment ratio diagram
in between the log-logistic and the log-normal, thus, filling a void in the UBT
area (see Figure 2.3).

One primary use of the IG distribution is for Bayesian estimation of the
mean of the one parameter exponential distribution (see for example Johnson
et al. [72, p. 524] or Phillips and Sweeting [131, p. 777]), as well as estimat-
ing variance in a normal regression (see for example Gelman et al. [57]). It is
one of the Pearson Type V distributions, as is the Wald distribution (a.k.a.
the inverse Gaussian distribution, see Johnson et al. [72, p. 21]). A num-
ber of brief descriptions of the properties of the distribution are available,
mostly in text books on Bayesian methods, often in the econometrics litera-
ture, e.g., Poirier [133] and Koch [81]. Kleiber and Kotz [78] list some basic
properties of the IG distribution and also model incomes with the distri-
bution. Milevsky and Posner [115] discuss the inverse gamma distribution
and point out that estimation by the method of moments is tractable al-
gebraically. There is a different distribution with, coincidentally, the same
name in Zellner [175] that is derived with the square root of the inverse of
a gamma random variable. Witkovsky [169, 170] derived the characteristic
function of the inverse gamma. The most complete listing of some of the
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properties of the inverse gamma distribution is found on the Wikipedia web-
site at http://en.wikipedia.org/wiki/Inverse gamma distribution, an
anonymously written summary that does not list any sources or references.
That summary is limited to the basic properties, the PDF, CDF, MGF, char-
acteristic function, median, entropy, and the first four moments. There appears
to be no comprehensive effort in the literature to employ the IG distribution
as a survival distribution. This article will do that, specifically exploring the
probabilistic and statistical properties of the IG distribution. Further, it is
shown that the IG distribution fills a void in the available UBT distribution
list, as seen in a moment ratio diagram to follow.

2.2 Probabilistic Properties

This section presents a number of probabilistic properties that are useful
when considering the IG distribution as a survival distribution. An inverse
gamma random variable X can be derived by transforming a random variable
Y ∼ gamma(α, β) with the multiplicative inverse, i.e., X = 1/Y . Thus, for
the gamma PDF

fY (y) =
βα

Γ(α)
yα−1e−βy y, α, β > 0,

the resulting distribution, the IG(α, β), has PDF, CDF, survivor function,
and hazard function (HF)

f(x) =
βα

Γ(α)

(
1

x

)α+1

e−β/x,

F (x) =
Γ(α, β/x)

Γ(α)
,

S(x) = 1− Γ(α, β/x)

Γ(α)
,

h(x) =
f(x)

1− F (x)
=

βα

Γ(a, 0, β/x)

(
1

x

)α+1

e−β/x,

all with x, shape α, and scale β > 0. Recall that Γ(·) is the Euler gamma
function, Γ(·, ·) is the incomplete gamma function, and Γ(·, ·, ·) is the general-
ized incomplete gamma function (see Wolfram [172] for example). Figures 2.1
and 2.2 show various PDFs and HFs for certain parameter values to indicate
the shape of these functions. One of the more important aspects of a sur-
vival distribution is the shape of its hazard function. The four main classes of
hazard functions for survival distributions are increasing failure rate (IFR),
decreasing failure rate (DFR), bathtub-shaped (BT) and upside-down bath-
tub shaped (UBT). Appendix 1 shows that the IG distribution will always
have a UBT hazard function.
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In addition to the IG distribution always being in the UBT class, there are
a number of important properties that the IG distribution has as a survival
distribution.

• Moments are calculable, and the rth moment about the origin is as follows

Fig. 2.1. Examples of PDFs of the inverse gamma distribution. Note the dashed
PDF has a heavy right-hand tail, resulting in an undefined mean because α < 1

E(Xr) =

∫ ∞

0

xrf(x)dx =
β rΓ(α− r)

Γ(α)
, α > r.

This function is sometimes referred to as the moment function, and while
it is typical that r = 1, 2, . . . , the function holds true for non negative real
values of r. Some asymptotic results also are calculable:

lim
α→∞E(Xr) = 0 and lim

α→0
E(Xr) = ∞.

• Method of moments estimation techniques are straightforward, because the
mean and variance are expressed in closed-form. The first two moments
about the mean are

μ =
β

α− 1
, α > 1 and σ2 =

β2

(α− 1) (α− 2)2
, α > 2,

so the method of moments estimators can be found by algebraically in-
verting the set of equations in which the sample moments are set equal to
the distribution moments, i.e.,
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Fig. 2.2. Examples of the inverse gamma distribution hazard functions for various
parameters. Note the dashed HF has a heavy tail, resulting in an undefined mean
because α < 1

α̂ =
x̄2 + 2s

s
and β̂ =

x̄ (x̄2 + s)

s
,

in which x̄ is the sample mean and s is the sample standard deviation.
This relationship is useful for finding initial estimate for numeric solutions
of the MLEs.

• The limiting distribution as α → ∞ is degenerate at x = 0.
• One comparison technique when choosing among survival distributions is

to plot the coefficient of variation γ2 = σ/μ versus skewness

γ3 =
E((X − μ)3)

σ3
, see Cox and Oakes [35, p. 27]. A modeler would plot

(γ̂2, γ̂3) on such a graph to see which curve appears to be closest to the
data as a start to model selection. Lan and Leemis [86] expand that graph
to include the logistic-exponential distribution. Figure 2.3 takes their fig-
ure and adds the IG curve to the set of distributions that now include the
Weibull, gamma, log-logistic, log-normal, log-exponential, inverse gamma,
and the exponential distributions. The curve for the IG distribution falls in
between the log-logistic and the log-normal distributions, in effect, helping
to fill the gap between those two well-known UBT survival distributions.
A more complete listing of moment ratio diagrams can be found in Vargo
et al. [163], which includes the inverse gamma distribution in its figures.

• Closed-form inverse distribution functions do not exist for the IG distri-
bution, so calculating quantiles, to include the median, must be done with
numerical methods.

• Variate generation for the IG distribution can be done by inverting a
variate from a gamma distribution. However, gamma variate generation
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is not straightforward (as the gamma inverse distribution function (IDF)
also does not exist in closed-form). Leemis and Park [96], Chap. 7, provide
an explanation of various algorithms for generating gamma variates.
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Fig. 2.3. Various two-parameter survival models with corresponding coefficient of
variation versus skewness plotted. The heavier solid line is the inverse gamma dis-
tribution and the lighter solid line is the gamma ratio distribution

• Special cases and transformations of the IG distribution are equivalent
to other known distributions (beside the obvious inverse transformation
back to a gamma distribution). The IG(1, λ) distribution is the inverse
exponential distribution with PDF

f(x) =
λe−λ/x

x2
λ, x > 0.

The IG(ν/2, 1/2) distribution is the inverse χ2
ν distribution with PDF

f(x) =
(ν/2)ν/2 x−1−ν/2 e−ν/(2x)

Γ(ν/2)
x, ν > 0.

The IG(1/2, c/2) distribution is the Levy distribution with PDF

f(x) =
(c/(2π))

1/2
e−c/(2x)

x3/2
x, c > 0.
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The IG(ν/2, s2/2) distribution is also called the scaled inverse χ2 dis-
tribution, which is the form of the IG distribution that is typically
used for Bayesian estimation of σ2 in normal regression (see for exam-
ple Robert [137]).

• The negative log-gamma distribution is obtained by letting Y ∼ IG(α, β)
and deriving the PDF of X = lnY to be

f(x) =
βαe−αx−βe−x

Γ (α)
−∞ < x < ∞.

The log-gamma distribution is a well-behaved distribution with calcula-
ble moments and derivable inference, e.g., see Lawless [90]. Clearly, the
negative log-gamma distribution is similarly behaved.

• An interesting new one-parameter survival distribution, which will be
called the gamma ratio distribution, is derived as follows. Let Y ∼
gamma(α, β) and X ∼ IG(α, β) be independent random variables. The
distribution of V = XY has PDF

f(v) =
vα−1Γ

(
α+ 1

2

) (
1
4 + 1

2v +
1
4v

2
)−α

2
√
πΓ (α)

α, v > 0.

Note, this distribution is alternately formed by the ratio of two iid IG
distributed random variables (which is the same as the ratio of two iid
gamma distributed random variables). The rth moments about the origin
for V are calculable,

E(V r) =

∫ ∞

0

vrf(v)dv =
22α−1

√
2Γ (α− r) Γ (α+ r)

22α−
1
2 (Γ (α))

2 α > r

and the mean is close to one, as is expected by its construction,

μV =
α

α− 1
α > 1

with variance

σ2
V =

(2α− 1)α

(α− 2)(α− 1)2
α > 2.

The CDF and hazard function are calculable, but require special functions
in Maple. The gamma ratio distribution is of interest because it joins the
exponential and the Rayleigh distributions as a one parameter survival
distribution. For parameter values of α > 1 it can be shown to have a
UBT failure rate, however for 0 < α ≤ 1 it appears to have a decreasing
failure rate. This conjecture still needs to be proven, but can be shown
anecdotally. When α ≤ 1 the distribution has a very heavy right tail,
further indicating that no first moment exists. Furthermore, the PDF is
hump-shaped for α > 1, as is the Rayleigh, a shape the exponential can
not attain. The gamma ratio distribution fits nicely in the moment ratio
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diagram, see Figure 2.3, as it further fills the gap between the log-logistic
and the log-normal distributions. A disadvantage to this distribution be-
ing used as a survival distribution is that the parameter α is a shape
parameter, but not a scale parameter, thus, limiting its flexibility as units
of measure change. This distribution warrants further research as another
survival distribution, as it is in a small class of one-parameter distributions
as well as in the UBT class.

• The distribution of a sum of iid IG random variables does not pro-
duce a closed-form PDF. However, products are better behaved. Let
Xi ∼ IG(α, β), for i = 1, 2 be iid, then Z = X1X2 has PDF

f(z) =
2z−1−αβ 2αBesselK

(
0, 2 β√

z

)
(
Γ(α)

)2 z > 0.

2.3 Statistical Inference

In order for a survival distribution to be viable for empirical modeling, statis-
tical methods must be reasonably tractable. The inverse gamma distribution
can produce statistical inference for both complete and right-censored data
sets. Some likelihood theory and examples of fitting each type of data set are
presented.

2.3.1 Complete Data Sets

For the uncensored case, let t1, t2, . . ., tn be the failure times from an exper-
iment. The likelihood function is

L(α, β) =
n∏

i=1

f(ti, α, β) =
n∏

i=1

βα

Γ(α)

(
1

ti

)α+1

e−β/ti .

Taking the natural logarithm and simplifying produces

lnL(α, β) = nα lnβ − n ln
(
Γ(α)

)
+ (α+ 1)

n∑
i=1

ln

(
1

ti

)
− β

n∑
i=1

1

ti
.

The first partial derivatives of lnL(α, β) with respect to the two parame-
ters are

∂ lnL(α, β)

∂α
= n lnβ − nΨ(α) +

n∑
i=1

ln

(
1

ti

)

and

∂ lnL(α, β)

∂β
=

nα

β
−

n∑
i=1

1

ti
,
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for Ψ(α) = d
dα ln Γ(α) is the digamma function. Equating these two partial

derivatives to zero and solving for the parameters does not yield closed-form
solutions for the maximum likelihood estimators α̂ and β̂ but the system of
equations is well behaved in numerical methods. If initial estimates are needed,
the method of moments can be used. When the equations are set equal to zero,
one finds β = nα(

∑
t−1
i )−1, which reduces the problem to a single parameter

equation

n lnn+ n lnα− ln

(
n∑

i=1

t−1
i

)
− nΨ(α)−

n∑
i=1

ln ti = 0,

which must be solved by iterative methods.
Confidence intervals for the MLEs can be obtained with the observed in-

formation matrix, O(α̂, β̂). Cox and Oakes [35] show that it is a consistent
estimator of the Fisher information matrix. Taking the observed information
matrix

O(α̂, β̂) =

( −∂2 lnL(α,β)
∂α2

−∂2 lnL(α,β)
∂α∂β

−∂2 lnL(α,β)
∂β∂α

−∂2 lnL(α,β)
∂β2

)

α=α̂,β=β̂

,

one then inverts the matrix and uses the square root of the diagonal ele-
ments as estimates of the standard deviations of the MLEs to form confidence
intervals.

To illustrate the use of the inverse gamma distribution as a survival dis-
tribution, consider Lieblein and Zelen’s [101] data set of n = 23 ball bearing
failure times (each measurement in 106 revolutions):

17.88 28.92 33.00 41.52 42.12 45.60 48.48
51.84 51.96 54.12 55.56 67.80 68.64 68.64
68.88 84.12 93.12 98.64 105.12 105.84 127.92
128.04 173.40

This is an appropriate example because Crowder et al. [38, p. 63] conjectured
that UBT shaped distributions might fit the ball bearing data better than
IFR distributions based on the values of the log likelihood function at the
maximum likelihood estimators. Using Maple’s numeric solver fsolve(), the
MLEs are α̂ = 3.6785, β̂ = 202.5369. Figure 2.4 gives a graphical comparison
of the survivor functions for the Weibull and inverse gamma distributions fit
to the empirical data.

The observed information matrix can be calculated from the MLEs of the
ball bearing set:

O(α̂, β̂) =

(
7.1783 −0.1136
−0.1136 0.0021

)
.



24 2 On the Inverse Gamma as a Survival Distribution

The inverse of this matrix gives the estimate of the variance–covariance matrix
for the MLEs:

O−1(α̂, β̂) =

(
1.080 59.472
59.472 3759.361

)
.

Fig. 2.4. The empirical, fitted inverse gamma, and fitted Weibull distributions for
the ball bearing data set

The square roots of the diagonal elements give estimates of standard devia-
tions for the MLEs SEα̂ =

√
1.080 ∼= 1.039 and SEβ̂ =

√
3759 ∼= 61.31. Thus,

the approximate 95% confidence intervals for the estimates are

1.550 < α < 5.807 and 85.511 < β < 319.563.

The off-diagonal elements give us the covariance estimates. Note the positive
covariance between the two estimates, a fact that is made evident in the
following method for joint confidence regions.

There are a number of different methods to get joint confidence regions
for these two estimates. Chapter 8 of Meeker and Escobar [113] gives a good
summary of many of these techniques. One such method, finding the joint con-
fidence region for α and β, relies on the fact that the likelihood ratio statistic,
2
(
lnL(α̂, β̂)− lnL(α, β)

)
, is asymptotically distributed as a χ2

2 random vari-
able. Because χ2

2,0.05 = 5.99, the 95% confidence region is the set of all (α, β)
pairs satisfying
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2
(
lnL(α̂, β̂)− lnL(α, β)

)
= 2

(−114.154− lnL(α, β)
)
< 5.99.

The boundary of the region, found by solving this inequality numerically as
an equality, is displayed in Figure 2.5 for the ball bearing failure times. Note
in this figure the positive correlation between the two parameter estimates,
displayed by the positive incline to the shape of the confidence region.

Fig. 2.5. The 95% joint confidence region for α and β for the ball bearing data

Comparisons can be made with other survival distributions. Lan and
Leemis [86], as well as Glen and Leemis [61], compare the Kolmogorov–
Smirnov (K–S) goodness of fit statistic D23 at their MLE values for a number
of typical survival distributions. Table 2.1 inserts the inverse gamma into that
comparison. Note that the inverse gamma has a better fit than any of the IFR
class of distributions (to include its ‘parent,’ the gamma distribution). The
inverse gamma also fits similarly to the other UBT distributions, giving more
credence to Crowder’s conjecture that ball bearing data is better fit by UBT
models.

2.3.2 Censored Data Sets

It is important that survival distributions are capable of producing inference
for censored data as well. The statistical methods are similar to uncensored
data, but the derivatives of the likelihood equation are not in closed-form,
thus, the numerical methods require some more assistance in the form of initial
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estimates. Mirroring the process of Glen and Leemis [61] and Lan and Leemis
[86], initial estimates will be derived from a “method of fractiles” estimation.
The data set to be used comes from Gehan’s [56] test data of remission times
for leukemia patients given the drug 6-MP of which r = 9 observed remissions
were combined with 12 randomly right censored patients. Denoting the right
censored patients with an asterisk, the remission times in weeks are:

6 6 6 6∗ 7 9∗ 10
10∗ 11∗ 13 16 17∗ 19∗ 20∗
22 23 25∗ 32∗ 32∗ 34∗ 35∗

Table 2.1. Kolmogorov–Smirnov goodness-of-fit Statistics for the ball bearing data
at the respective MLEs

Distribution Class D23

Exponential IFR 0.301
Weibull IFR 0.152
Gamma IFR 0.123
Logistic-exponential UBT 0.109
Inverse gamma UBT 0.104
Inverse Gaussian UBT 0.099
Log-logistic UBT 0.094
Arctangent UBT 0.093
Log-normal UBT 0.090

To fit the inverse gamma distribution to this data, let t1, t2, . . . , tn be the n
remission times and let c1, c2, . . . , cm be the m associated censoring times.
Our maximum likelihood function is derived as follows:

L(α, β) =
∏
i∈U

f(ti, α, β)
∏
i∈C

S(ci, α, β)

in which U and C are the sets of indices of uncensored and censored obser-
vations, respectively. The log likelihood function does not simplify nicely as
natural logarithms of S(x) are functions that cannot be expressed in closed-
form. Programming environments like Maple and Mathematica will produce
the log likelihood function, but it is not compact, thus, it is not shown here. It
is, however, available from the author. A method of fractiles initial estimate
sets the empirical fractiles equal to the S(x) evaluated at the appropriate ob-
servation in a 2 × 2 set of equations. In the case of the 6-MP data set, two
reasonable choices for the equations are

S(10) ∼= 0.80 = 1− Γ(α, β
10 )

Γ(α)
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and

S(21) ∼= 0.55 = 1− Γ(α, β
21 )

Γ(α)
,

which produce initial estimates α̂0 = 0.9033 and β̂0 = 14.6507. Initial val-
ues of S (i.e., in this case S(10) and S(21)) should be chosen to adequately
represent a reasonable spread of the data, not being too close together, and
not being too close to an edge. The goal is to find two values that will act as
initial estimates for the numeric method for finding the true MLEs that will
cause the numerical method to converge. One may have to iterate on finding
two productive S values. Then one must use these initial estimates required
by numerical methods, take the two partial derivatives of the log likelihood
with respect to α and β, set them equal to zero, and solve numerically for
the MLEs, which are α̂ = 0.9314 and β̂ = 15.4766. A plot of the inverse
gamma and the arctangent distributions (see Glen and Leemis [61]) along
with the Kaplan–Meier non parametric estimator are presented in Figure 2.6.
The inverse gamma has a superior fit in the earlier part of the distribution.

Fig. 2.6. The MLE fits of the inverse gamma distribution (solid curve) and the
arctangent distribution (dashed curve) against the censored 6-MP data set
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2.4 Conclusions

This paper presents the inverse gamma distribution as a survival distribution.
A result is proved that shows that the inverse gamma distribution is another
survival distribution in the UBT class. The well-known UBT distributions are
relatively few, so it is helpful to have an alternative when dealing with UBT
models. Since sporadic mention is made in the literature of the distribution,
as well as very little probability or statistical information, this paper helps fill
this gap in the literature. Probabilistic properties and statistical methods are
provided to assist the practitioner with using the distribution. Finally, many
properties, previous published in a scattered manner, are combined into this
one article.

Appendix 1

In this appendix it is shown that the hazard function of the inverse gamma
distribution can only have the UBT shape and the mode, x�, of the hazard
function is bounded by 0 < x� < 2β

α+1 .
In order to show that the hazard function is always UBT in shape, the

following is sufficient: (1) lim
x→0

h(x) = 0, (2) lim
x→∞h(x) = 0, and (3) h(x) is

unimodal. Because all hazard functions are positive and have infinite area un-
derneath the hazard curve, Rolle’s theorem, taken with (1) and (2) guarantees
at least one maximum point (mode). So it must be shown that there is only
one maximum value of h(x) on the interval 0 < x < ∞ to prove than h is
UBT in shape.

First consider (1) that lim
x→0

h(x) = 0. If we make a change of variable

z = 1/x then the limit to be evaluated becomes

lim
z→∞

βαe−βz z α+1

Γ(α, 0, βz)
.

The denominator is an incomplete gamma function which in the limit becomes
the complete gamma function, Γ(α) = Γ(α, 0,∞), a constant. The numerator
can be rewritten as

βαzα+1

ezβ

so that it has the form ∞/∞ in the limit and can therefore be evalu-
ated with �α	 (the next highest integer if α is not an integer) successive
applications of L’Hospital’s rule. Thus, the limit of the numerator of h is
lim
z→∞βαe−zβ z α+1 = 0. Consequently lim

x→0
h(x) = 0 and (1) is satisfied.

Next, consider (2) that lim
x→∞h(x) = 0. Again applying L’Hospital’s rule,

this time only once, the first derivative of the numerator with respect to x is
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−βαe−β/x

(
1

x

)3+α

(−β + x+ αx).

The first derivative of the denominator with respect to x is

−βαe−β/x
(
1
x

)−1+α

x2
.

Dividing the numerator’s derivative by the denominator’s derivative and sim-
plifying we get

lim
x→∞

−β + x+ αx

x2
= 0

and (2) is satisfied.
Rolle’s Theorem allows us to conclude that because the left and right limits

of h(x) are both zero, and because h is a positive function, there must be some
value ξ such that h′(ξ) = 0 on the interval 0 < ξ < ∞. Because h has a left
limit at the origin, it cannot have a DFR or a BT shape. Because h has a
right limit at zero, it cannot have an IFR shape. Also, because h is a positive
function, there is at least one critical point at x = ξ that must be a maximum.

Finally, considering element (3) of the proof, one must rely on the Lemma
E.1 and Theorem E.2 of Marshall and Olkin [107, pp. 134–135]. That theorem
and lemma establish that

ρ(x) = −f ′(x)
f(x)

and h(x) have the same number of sign changes and in the same order. Further
the critical point of ρ is an upper bound for the critical point of h. For this
distribution,

ρ(x) =
−β + x+ αx

x2
,

which has first derivative

ρ′(x) =
2β − (1 + α)x

x3
,

and can be shown to be positive from 0 < x < 2β
α+1 and negative from

2β
α+1 < x < ∞. Thus, h has only one change in the sign of its slope, is therefore

UBT in shape, and has a single mode x� < 2β
α+1 .

Appendix 2

This appendix summarizes the key properties of the inverse gamma distribu-
tion that have not already been reported in the rest of the paper. The purpose
of this appendix is ensure that all the major properties of the IG distribution
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are in one document, as to date no manuscript appears to be this comprehen-
sive. Most of the properties reported in the appendix are found in the works
previously cited or are derived with straightforward methods.

• Mode:
β

α+ 1
• Coefficient of variation: σ/μ = (α− 1)−1/2

• Skewness: E

[(
X − μ

σ

)3
]
=

4
√
α− 1

α− 3
for all α > 3

• Excess kurtosis: E

[(
X − μ

σ

)4
]
=

30α− 66

(α− 3)(α− 4)
for all α > 4

• Entropy: α− (1 + α)Ψ(α) + ln
(
βΓ(α)

)
• Moment generating function:

−2βtα/2BesselK
(
α, 2

√−βt
)

Γ (α)

• Characteristic function:
−2iβtα/2BesselK

(
α, 2

√−iβt
)

Γ (α)

• Laplace transform:
2βsα/2BesselK

(
α, 2

√−βs
)

Γ (α)

• Mellin transform:
βs−1Γ (1− s+ α)

Γ (α)
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